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Abstract

This thesis is a study of the problem of finding the expected value of the distance hetween
two uniformly, identically, and independently distributed random points in a polygonal
region. The measures of distance considered are the Euclidean (or straight-line) distance
metric and the Manhattan (or rectangular) distance metric.

Separate numerical methods are developed for finding the expected distance in a con-
vex polygon using the Euclidean distance metric and for finding the expected distance
in any polygon using the Manhattan distance metric. Both methods employ a “divide-and-
conquer” strategy which divides the polygon into regions that are mathematically tractable
so that analytic expressions can be derived in closed form.

The methods have been implemented in computer programs, and numerical examples are
provided.
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Chapter 1

Introduction

1.1 Motivation

This thesis is a study of the problem of finding the expected value of the distance between
two uniformly, identically, and independently distributed random points in a polygonal
region. The problem of finding expected distances is a common one in distribution man-
agement, transportation systems analysis, and urban operations research. The expected
distance may be used to estimate average trip lengths or the average service time for urban
response systems. The result that we are seeking can be applied in any situation where
there is a point source and point sink for goods or services such that the two points are
uniformly and independently distributed in a region.

In the next section, we will define the problem more precisely.

1.2 Defining the problem

Before we can discuss the problem of finding the “expected distance” between two “random
points” in a “polygon”, it is necessary to precisely define some of these terms. The purpose
of this section is to formally define these terms and, in so doing, establish a system of

notation to be used throughout this thesis.



Polygon

Our definition of a polygon is taken from a geometry text: it is “a simple closed curve
which is the union of line segments. Each of the line segments is a side of the polygon and
each of the endpoints of the line segments is a vertex of the polygon.” ! In the context of
this thesis, where the phrase “in a polygon” would be more correctly phrased as “within a
polygonal region”. The distinction is that a polygon is simply the boundary of a region,
whereas a polygonal region is the union of the polygon and its interior.

We will denote the polygonal region by the symbol Q and we will designate n to he
the number of sides in the polygon. A polygon is defined by the set of vertex points
{v1,v2,...,v,}. The set of vertex points is ordered so that the sequence represents the
arrangement of points on the perimeter as we follow the perimeter in the counter-clock wise
direction. (A polygon with its points arranged in this order is often referred to as a “right-
oriented” polygon.)

The “sides” of the polygon are the line segments that connect adjacent vertex points.

The side §; represents the line segment connecting the vertex points v; and Vigr.
Si={t-vi+(1-¢t)-v;4,:0<t <1}

(Note that the sequence of vertex points and the sequence of sides is circular (modulo n) in
the sense that the vertices adjacent to v, are v,,_; and v,. Similarly, the vertices adjacent

to v, are v, and v;.)

Random point

The term “random point” refers to a “point that is randomly and uniformly distributed
within a polygon such that any two random points are by definition also statistically in-
dependent”. It is perhaps less unwieldy to define “two random points” as meaning “two
uniformily, identically and independently distributed random points”.

We will use the probability density function fg(q) to denote the distribution of a random
point ¢ in a polygon Q. In the polar coordinate system, for a point located at (r,8) that is

'Merlyn J. Behr and Dale i. Jungst, Fundamentals of Elementary Mathematics: Geometry. (New York:
Academic Press, 1972), p. 121.



uniformly distiributed,

fo(r,0) = Area(Q)

where Area(Q) is the area of the polygon Q. In the Cartesian coordinate system, a uniform

distribution for a point located at (z,y) is expressed by:

1
fo(z,y) = Area(Q)

Expected distance

The term “expected distance” means the “expected valde of the distance”. If d(q;, q2) is the
measure of distance between points ¢, and ¢,, and fg(q) is the probability density function
that distributes the points in a region Q, then the expected distance D(Q) between the two

points is:
D(Q) = [[ [[ fe(a)ia(e2)d(a1,02)dazdl
Q @

The measure of the distance requires further elaboration. Distances are measured ac-
cording to a “distance metric” and in this thesis, we will consider the Manhattan distance
metric and the Euclidean distance metric. The Manhattan distance, also known as the
rectangular distance or the right-angle distance, is one that is measured along the r and y
axes. We can express the Manhattan distance das(z;,y1, 2, y2) in the Cartesian coordinate

system between two points (z,,y,) and (z,, y,) as:

dp(z1, 41,22, ¥2) = |21 — 2| + |41 — 2|

The Euclidean distance is also known as the straight-line distance. In the Cartesian coor-

dinate system, the Euclidean distance dg(z,, y1, 22, y2) is expressed as:

de(z1, 41,22, ¥2) = \/(31 -22)" + (31 ~ 1)’

The distance expressions above represent “direct distances” in the sense that they rep-
resent the length of the path between two points if there is a direct, unobstructed path

between the two points. However, if barriers to paths are considered, the length of the path
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may be somewhat greater. In fact, in this thesis, we will assume that a path may not cross
the perimeter of the polygonal region. In other words, the path between two points in a
polygonal region must itself be interior to the polygonal region.

In the Euclidean metric, the path between every pair of points in a polygon is “direct”
if and only if the polygon is convex. We define a convex polygon to be a polvgon where
every vertex in the polygon is a convex vertex. A convex vertex is a vertex where the angle
on the interior side of the polygon formed between the sides adjacent to the vertex is less
than or equal to 180°. A concave polygon is a polygon that is not convex.

Unlike the Euclidean metric, there may be mere than one “direct” path between a pair
of points in the Manhattan metric where the length of the direct path is expressed by
dam(q1, g2) earlier. In fact, the path between any pair of points using the Manhattan metric
may be “direct” in certain concave polygons. However, in the Manhattan metric, the path
between every pair of points in a polygon is “direct” if and only if the polygon is monotone
with respect to the z and y axes. We define a polygon to be “monotone” with respect to
an axis if the perimeter of the polygon forms two envelopes that are each monotone with
respect to that axis. The perimeter of the polygon forms an envelope that is monotone to
an axis if the projections of the vertices on the perimeter onto the axis is ordered the same
as in the perimeter. 2 The implications of a direct path and the property of monotonicity
will be discussed in more detail in Chapter 2.

For a pair of points where there can be no direct path without crossing the side of
the polygon, the shortest path will pass by the intermediate points I, where each of the
intermediate points are concave vertices of the polygon. The length of an indirect path in

the Cartesian coordinate system for either of the two distance metrics is:

d(z1,y1,22,92) = d(z1, 91, Ix, Iva) + d(Tx,ms Iy,ms 22, ¥2)+
E::d(fx.k, Iy gy Ix et 15 Iy pe41)
Because of the fact that we are considering the sides of the polygon to he barriers, the term
“expected distance” is more precisely expressed as the “expected value of the length of the

shortest interior path”.

*Joseph O'Rourke. Art Gallery Theorems and Algorithms. (New York: Oxford University Press. 1987),
p. 14,



1.3 Outline of the Contents

In this chapter, we have provided some provided some motivation for finding the expected
distance between two random points, and have given a precise definition of the problem. In
Chapter 2, we will study the expected distance between two random points in a polygon
using the Manhattan distance metric. In Chapter 3, we will focus on the Euclidean distance
metric for convex polygons only. We summarized our results and offer suggestions for further
investigation in the concluding chapter.

The numerical methods that we present in Chapters 2 and 3 have been implemented
in computer programs. Appendix A contains the listings for the programs as well as sote
numerical examples. Appendix B discusses the problem of finding the expected distance

using the Euclidean distance metric in concave polygons.

10



Chapter 2

The Expected Manhattan

Distance in a Polygon

In this chapter, we will present a method for finding the expected distance between two

random points in a polygon using the Manhattan distance metric.

2.1 A general approach

From the general expected distance formula from Chapter 1, we state that the expected

Manhattan distance Dy (Q) between two randomly distributed points in a polygon Q is:

Du(Q) = [[ [[ folar)fetas)dm(ar,g2)darday (2.1)
Q Q

where dar(qy,g2) is the distance of the shortest path in the Manhattan metric between the
random points ¢; and g; in the polygon Q, and fo(gq) is the density function for distributing
a random point in the polygon. For the Manhattan metric, the most appropriate coordinate

system for distributing the random points is the Cartesian coordinate system.

a = (z1,0), 92 = (72, 92)

The density function fg(q) is in this case:

1 1
fo(ar) = Area(Q)’ fo(g:) = Area(Q)

11



Let us assume for the moment that the polygon Q is monotone with respect to both the «
and y axes. (Refer to section 1.2 for the definition of a “monotone” region.) Then the path
between any pair of random points in the polygon is “direct” and the distance between the

two random points is:

dar(91,92) = da(z1, ¥1, 22, ¥2) = |21 — 22| + |y1 - 32|

The eapression for the expected Manhattan distance from Equation 2.1 hecomes:

I [l 21 — 22| + |y1 — y2| dy2dz2dy,dzy
Da(Q) = 22

Area’(Q) (2:2)

We can take advantage of the fact that the 2 component of the distance is independent

of the y component:

HQI”-"M — z2| dyadzady,dz, + gghh — Y2| dyadzady,dz,

Du(Q) =2 K (0)
which is equivalent to:
Dm(Q) =Dx(Q) + Dy(Q) (2.3)

where:

Dx(Q) = m%(q—)////lfl - 72| dyzdzydy, dz,
e Q

Dy(Q) = Xre_alzm// _// [y1 - y2| dy2dzady,dz,
Q Q

The purpose of separating the expression into two subexpressions in Equation 2.3 is
that each of the subexpressions is much easier to evaluate than the whole expression. Fur-

thermore, the two subexpressions are so similar that we can express Dy(Q) in terms of

Dx(Q):

Dy(Q) = Dx(QT)

12



where QT may be defined as the polygon Q that has been rotated +90° about any arbitrary
point, or as the reflection of Q about the line y = = + ¢ for any arbitrary constant c. For
computational simplicity, we will define QT as the “transpose” or reflection of Q about the
y = z line. In other words, for every point (z,y), we replace the = value by the y value,

and the y value by the z value.

(z,9)T = (y,7)

We illustrate the effect of transposing a polygon in Figure 2-1. Mathematically, we can

A | Q

Figure 2-1: QT is the polygon Q transposed about the y = z line

prove that Dy (Q) = Dx(QT) as follows:

~ 1
Dy = — — y2| dyadzady,d
r(@) Amz(q)/oj[? 191 - 92l dyadadysday

Dy(Q) = m// // ly1 ~ y2| dz2dyzdz,dy,
Qe Q

13



To transpose each point in the polygon about the y = z line, we substitute z by yT, and y

by zT:

Dy(Q) = Area,(q)/f/ﬂz, 2| dyf deTdy daT
QT QT

Since the area of a polygon Area(Q) is the same as the area of the transposed polygon

Area(QT),

Dr(Q) = 1— (QT), I[ [[|eF - oF|ayFdeTaT dT
QT QT

and:

Dy(Q) = Dx(QT)

In deriving the result in Equation 2.3, we showed that the distance formula for das(q;, q2)
is such that the # component and y component are independ:nt and could be separated
mathematically, but under the assumption that the polygon is monotone with respect to
both the = and y axes. We now turn to the case where the twc random points are in a
polygon that is not monotone, so that a direct path between two random points might not
be possible due to barriers caused by the sides in a concave polygon.

However, we will show that Equation 2.3 is general even for polygons that are not
monotone. We showed in section 1.2 that where the path between two random points was

“indirect”, the length of the shortest path is expressed by:

dp(z1,v1,22,92) = |21 = Ixal + 1y = Ival + |22 = Ixoml + |2 — Iyml +
Z:‘:—li (Hx e = Ix k1] + Hype — Iypesal)

where I'x ; and Iy, are the z coordinate and y coordinate respectively of the m intermediate
vertex points in the path from (z,,y;) to (z2,y2). (Figure 2-2 shows a path hetween two
points that is indirect. With two intermediate vertex points in the path, there are three
pairs of z com)onent and y component segments in the path.) Once again, we can separate
the length of the path into an z component and a y component which are independent of

one another:

14



6 segments of the path
from (x,,y ) to (x v ),

(82I yz)

-I
2 Y,2

Figure 2-2: Path from (2,, y,) to (22, y2) must go around intermediate vertex points I; and
I,

dm(z1, 41,22, ¥2) = dx (21,41, 22, ¥2) + dy (21, 1,22, ¥2)

m-1
dx(z1,91,22,¥2) = |21 — Ixal + |22 = Ixoml + Y Wx e — Ixesr| (2.4)
k=1
m~1
dy (21,31, 22,92) = [y1 — Iyl + |y2 = Tyym| + Y vk — Ty
k=1

Because the same conditions exist that were necessary for our earlier proof of Equation 2.3,
we can state that the y component of the expected Manhattan distance of a general polygon
can also be calculated by finding the z component of the expected distance of the transpose
of the polygon.

In short, we have shown that we can evaluate the expected Manhattan distance in any
polygon by finding its z and y components independently. Furthermore, any method that we
develop to evaluate one component can be used to evaluate the other component. Our next

step is to develop such a method, and we arbitrarily choose to evaluate the z component.
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2.2 The v component of the expected Manhattan distance

in a polygon that is monotone with respect to the =z

axis

We will attempt to evaluate the z component D x(Q) of the expected Manhattan distance
in a polygon. In order that we may begin with Equation 2.3, let us consider polygons that
are menotone with respect to the z axis. To reduce verbiage, we will call these polygons

“z-monotone” polygons.

Dx(Q) = Fea;(_as,//,// |21 — 22| dy2dz2dyidz,
Q @

For a polygon bounded in the z dimension between z; and z, and enveloped in the y

dimension by the functions bottom(z) and top(z), we have:
_ 1 Ty ptop(zy) xy ptop(za)
DX(Q) = —T——/ / / |231 _ :r.2|dy2d:czdy1d:c1 (2.5)
Area®(Q) Jz; Jbottom(zy) Jz; Jbottom(zs)

Even for the simple polygon shown in Figure 2-3, it is not easy to express the envelope

v} top(x) =

bottom(x)

-
X

Figure 2-3: An z-monotone polygon bounded by z;, z,, bottom(z) and top(z)

functions bottom(z) and top(z). Rather than evaluating D x(Q) in one expression, we will

attempt to divide the polygon into convenient pieces that can be evaluated individually.

16



2.2.1 Dividing the z-monotone polygon

We observe in Figure 2-3 that the envelope functions are linear functions between vertex
points on the envelope. The fact that we can easily express linear functions suggests that
we should divide the polygon at the vertex point:. Figure 2-4 shows lines at z = vy ; for
all vertex points i = 1,...,n in an n-side polygon, where vy ; is the z-coordinate of vertex

point i. We use these lines to partition the polygon into “zones”. We claim that the leftmost

v
v 38
1 S
Zone g 5 4

2.t 5

'v.

A

v v v V‘ v -
X,2 X,1 X,3 X,5 X, 4 X

Figure 2-4: An z-monotone polygen partitioned by lines on = = vy ; into “zones”

line (i.e. the one with the smallest value of z) is at z;, and the rightmost iine is at z,. In
other words, the entire polygon is bounded in the z dimension between the minimum z

vaiue of all the vertex points and the maximum z value of all the vertex points.
z) = minvy;, fori=1,...,n
1}
z, = maxvy,.ori=1,...,n
1

This is due to the fact that the boundary of a polygon consists of straight line segments, and

so there can be no part of a polygon that extends in the z dimension beyond the leftmost

17



(or rightmost) vertex. (This argument is identical to the contention in linear programming
that when maximizing one linear objective function (in this case, the magnitude of z),
the maximum value must occur at some corner point if the region is bounded by linear
contraints, which is true of any polygon.) Thus, the polygon is enclosed between the two
lines at £ = vy ; having the lowest and highest values of =.

Given that the polygon is enclosed between the two extreme lines at z = vy, the
remaining n — 2 lines divide the polygon into n — 1 zones. Even when two of the lines are
coincident (which occurs when two vertex points happen to have the same z value), we say
that there is a zone between them (albeit a zone having an area 0). Each zone is hounded
on the left and right by two of the lines at £ = vy ;. Each zone is bounded on the bottom
and the top by the envelope functions of the polygon. Note that the top and bottom of each
zone are line segments because the envelope functions of the polygon are necessarily Lnear
between each pair of adjacent lines at z = vy ;. Thus, each zone is trapezoidal with the
parallel sides formed by two of the lines at z = vy ;, and the other two lines formed by the
bottom and top envelope of the polygon. (The leftmost and rightmost zones are triangular,
but these are still trapezoids with the property that one of the parallel sides has length 0.)

In order that we can express the polygon in terms of zones, let us define P; such that
{Py, Pa,...,P,} is the sequence of vertex points ranked by their z value. Then, if we let

px,: be the z value of the vertex point P;,

PX1<px2<...SPxn

Let us also define pp ; and pr; to be the y value of the bottom and top envelopes respectively
of the polygon at z = px ;. Because the envelopes are linear in the z domain of the zone,
the bottom envelope function for a zone 1 is:

T — PX,i

bottom(z) = pp; + —————
(=) = pay PX,i+1 — PX

(PB.i+1 - PB.i)

and the top envelope function for zone i is similarly:

T — PX,i

T PAa 41 — PT.i
PX,i+1 — PX,i (pr.+ PTi)

top(z) = pr.i +
Figure 2-5 illustrates a zone i, which lies between z = px; and = = px ;4 that is defined

18



Zone

Figure 2-5: The corners of zone ¢ defined by px.i, PB,is PT,i» PX.i+1, PB.i+1 and pr sy

by px.i, PB,is PT.is PX,i+1, PB,i+1 and priy1. Thus, one possible way to generate all zones

would be to find the quantities py ;, pp,i;, and pr; foralli (i € 1...n).

We will briefly describe a method for finding px i, ps,i, and pr,.

1. To find px,, we rank all vertex points by their =z value so that we have a sequence of
vertex points {Py, P,..., P,}. The value of px; is by definition the z value of the
point P;.

2. The bottom and top envelope values for vertices P, and P, are simply the y values of

the respective vertices.
PB1 = PT,1 = PY,1

PB.n = PTn = PYn

19



Finding the envelope values pp; aud pr; for the other vertices depends on which

envelope the vertex P; lies on.

3. If P, lies on the bottom envelope, then pg ; is the y value of the P;.

PB,i = Pv,i

The top envelope value pr; can be found by interpolating the y value between the
nearest vertex on the top envelope to the left of px ; and the nearest vertex on the top
envelope to the right of py ;. In Figure 2-6, the nearest vertex on the top envelope to
the left of px ; is calied P, and the vertex on the top envelope to the right is called
P,. (Note that depending on the polygon, P, is not necessarily P;_;, and P, is not

necessarily P;;+;.) The interpolation formula is:

PXx, — Px,| (

= Py
PXx,r — PXx| )

PT,i =Py, +

4. On the other hand, if the vertex point P; is on the top envelope, then:

PTi = PY,i

and the bottom envelope value pg; can be found similarly by interpolating between
the y values of two vertex points on the bottom envelope immediately to the left and

right of px ;.

We can re-state Equation 2.5 so that the limits of the integrals that define the polygon
are in terms of our definitions for the n — 1 zones:

_E1-PX

"Zl/t’x.in /PT.. PXaTIoPXS s——2— (o741 P )
P P

®1-PX.i
o —
X8 B, PXitl —PXn (PB:+I PB:)

) F2-PX, T .
PX,j+1 /‘PT,, + (P'r.,+1 pPT,; )
4

n-1
Z/ PX.j+1-PX,
j:l PXx,

_Tarx,
B, +

Dx(Q) = ”"“-’x

|21 — 22| dypdeady day
(PB.,“ —PB;j

Area’(Q)

Moving the summations to the left of the expression,

20



P part of the top envelope

pY,l .....................
pT'i ..................... deccsccsnasasscnansn s ’

1 : *
pY,r

-
A-1 i+l
’1
part of the :bottom envelope
P P -
px, 1 X, i X, r X

Figure 2-6: P, and P, are the nearest vertices on the top envelope to the left and right of
PXx,i

1 -PX,¢
: ———-—l-—
PX,i+1 /PT.:+,X T -PXa (PT.H-I PT.:)
- - . ©1-PX,
n-1n-1 PX PB"+”XH-I"'PX (PB.'+1 PB.\)

=1 j=1 PX,541 .5+ X — (PT;-!—I“PT,)
.:+l "X:
/ |21 — 22| dy2dzody,dz,

Dx(Q) = Pxa PBits 2+|,’-J-‘1»x (pB.j+1-pB;)

Area?(Q)

We can distinguish between two scenarios within the above expression — where i and j are
the same (hence the points (z,,y,) and (z2,y2) are in the same zone), and where i and j

are different (hence the points (z,,¥;) and (z2,y2) are in different zones).

Px(@)= g (ZZN('H‘Z > zw(m)) (26)

=1 1=1 j=1,j#¢
where the “intrazonal distance” factor Z,(i) is expressed by:

*2-PX
PX,it+1 /p"""'rx.“—rx.("'“ -pr.i) /-px.+1 /pr,.+m';{—(pr.+n -PT.i)
P Px P

€1 -PX,i
P L A -
B'+Px YT (pB.-+1 ps.

Zy(i) =

B .+2_”"'——(PB.|+1 pB .)

PX, PX,i+1~PX,

|21 — 22| dyzdzody,dzy

and the “interzonal distance” factor Z4(i,j) is expressed by:
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o1 —px,i €3-px
. PX.i+1 Pr.i+;m‘—_-,"§—.:(l’r,i+x -PTi)  [PX.j1 [P+ -———-"L—-’x TR (prj+1-p1j)
zo('a J) =
P p P

. . F1oPX,i i —pm ) , . faI-PX,; o )
PX.i s,.+’x.'.“_'x‘.. (Pa..+x PB.i/ X5 B"+rx.j+1—rx.; (ps,,+n Pa,,)

|21 — 22| dy2dz2dy de,

We will devote the next subsection to evaluating the expressions for the two factors.

2.2.2 The intrazonal and interzonal distance factor expressions

We begin by evaluating the intrazonal distance factor Z,,(i). For a particular zone 1, let us
define the quantity /; for the length of the left edge, r; for the length of the right edge, and

w; for the width. Figure 2-7 illustrates the qrantities, and we can express them in terms of

Zone
11
b 4
i i
Py, g froeeeeeens: \ N
S s fomesenenammcanacaenad v
B,i+1 -—— w, —
: i :
: : -
Px. 1 Px,141 X

Figure 2-7: A zone showing ;, r;, and w;
previous definitions. (For convenience, we also define the quantity c;.)
li = pri — pB,; (2.7)

ri = liy1 = Pri+1 — PB,i+1

22



Wi = PX,i+1 — PX,i

ri —I;

¢y =
w;

Starting with the expression for Z,(¢) from Equation 2.6, we can remove the absolute
value function in the integrand |z, — z;| by dividing the integration over z, into two sub-
ranges: one where z; is less than z, (and thus is in the subrange [pyx ; #;]), and another
where z; is greater than z, (in the subrange [z,; px,i+1]).

. PXitwi  rPT +:';:._£'i (pr.-'+| —PT )
P

ey -PX.¢
et -lTiL'-(Pa.i-u -PB,i)

T Tt ;’:x" (Pris1-prs)
/ / (z1 — z2) dy,dz,
P

X

X 6 pa,.-+"—:,’:.—x-'-"-(Ps,.'+|—Pa.e)
02 -px + | dyrdzy
Pxitwi PT..'+—U'.-—’1(PT..'+1 ~PT.i)
/ f €2-Px. (z2 — 1) dyadz,
ER Ps.i+T'l(Pa..'+1 -PB,i
By substituting > + px,; for z, and substituting #; + px,i for z;, we have:
. w; Pr..'+(PT..'+|—Pr..');‘.;1'|
= f
0 PB..'+(PB..'+|~P5..' ;’,;fn
) PT,-‘+(PT.€+I -PT.s)le.fz A N )
/ / (#1 — 23) dyzd7,
0 Jppit(Ppi+1-PB. );:—'.f: )
+ | dy,dz,y

wi PPT +( PTi+1—PT,i ).,L..fz ) A N
L (£2 — #1) dy,da,
1

pe,i+(PB.i+1-PB, ;'71'2

Integrating over y,:

Zoali) = [)

£ 1 . 1 N . .
/ [PI'.:' + (Pr,i+1 — Pr,i) —%2 — PB,i — (PB.i+1 — PB.i) —1'2] (#1 — &2) de,
() w; w;

wq /‘PT.-‘ +(Pri+1-Pr ):‘;fl

PB,i+(PB.|’+l -Pa,i)é;-‘fl

wq 1 . 1 . . N N +
/ pri + (Pri+1 = Pr;i) —%2 — pB.i + (PB,i+1 — PB,i) — 2| (72 — &) uay
& w; w;

dy;d¥,

Substituting the definitions in Equation 2.7:
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Zuu(i) /W.' /Pr.-‘+(Pr..’+n ~PT,i H;aﬁ
) =
" 0 ppi+(PBi+1 —PB. );‘,;a’n

L
/ (i + cix2) (21 — £2) doy
0 + | dy,d7,

wy
/;r i + ciZs) (2 — #1)dz,
1

Integrating over z5:

. wi  prit(Prisr—PrT. ;,'Tfn
=[]
0 Ps.i+(Ps..'+|—Pn..');,L..-1"|
(l{flz + %c.'t‘la + %c;w? + %l,-w,-’ - %c‘-w?z‘lz - l,'w,':fl) dy,dx,
Integraving over y;, and using our definitions for ;, r;, and ¢;:

wy 1
Zn(t) = /(; [l, + c;zﬁ] (l,'t"lz + %65513 + %c;w? + Eliwiz - %C,‘w,-zflz — l,-w,-:c'l) dz,

After some additional manipulation, we finally obtain:

. 2+ 3Lr; + r?) wd
Zo(i) = Y ot ri) wi (2.8)

Note that our expression for the intrazonal distance factor Z,(i) is not dependent on the =
and y location of the zone, but rather is dependent only upon the length of the left side [;
of the zone, the length of the right side r;, and the width w;.

It should be noted that the z component of the expected distance between two random
points in a zone is not the intrazonal distance factor Z,(z), but rather Z,(7) divided by the

square of the area of the zone.

We will now evaluate the expression for the interzonal distance factor Z..(i,j) where
one random point (z;,y;) is distributed in zone i, and the other random point (z;,y,) is
distributed in zone j where zone ¢ and zone j are not the same. According to our definition
of a zone, the z domain for a zone i never overlaps with the z domain of a zone j. In other

words, zone i will either be to the left of zone j, in which case:

Px,i < Px,i+1 < Px,j < PX,j+1
or else, zone ¢ will be to the right of zone j, in which case:
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Px,; < Px,i+1 < Px,i < PX.i+1

Let us first consider the case where zone i is to the left of zone j. Then, the z component
of the distance dy between the first random point (z,, ;) in zone i and the second point

(22, y2) in zone j can be expressed without the absolute value sign:

dx(z1,y1,22,¥2) = 22 — 24

The expression for Z4(1,j) from Equation 2.6 is in this case:

_FIPXi
L PX,i+1 P'r..+,x:“f,'x (pris1-Pr1si)
Z«,(t,]):/ / e (2.9)
PX, Pn..+,x “_,x (Pa.+n—Pa.)
. _Fa-PXy
/PX”+'/pT"+Px,+1 _PX)(pT'J+l PT,)) (zz _ zl)dyzdzzdyldxl
£3-PX,
Px,j Ps.,-!-,x e s —(pp,j4+1-PB,j)

We can solve Equation 2.9 much like we evaluated the intrazonal distance factor and
substitute the definitions from Equation 2.7 wherever possible. Alternatively, we can arrive

at the same result by separating Equation 2.9 into two terms:

c»('a])"'// // zadydzady dry — // // z1dyadzady dz,

Zonei Zone j Zonei Zone j
Za(iyj) = // // z2dyidzdy,dz, - // // z1dy,dzady,dz
Zone j Zone i Zone i Zone j

Because the integrand of the first term is independent of z, and y;, and the integrand in

the second term is independent of z, and y,, then:

Za4(i,j) = Area(i) // zadyadz, — Area(_y)// z1dydz,y

Zone j Zone {
We know that the mathematical definition of the center of mass in the = dimension for a
region R is:
jf zdydz

Cx(R) = hreal Area(R)

where Cx(R) is the center of mass in the z dimension and Area(R) is the area of region R.

Since zones i and j are instances of regions:
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Z (1, j) = Area(i)Area(j)Cx(j) — Area(j)Area(i)Cx(i)

Z(i,§) = Area(i)Area(j) (Cx(4) - Cx(i)) (2.10)
with:
Area(i) = (l'—+2t'-l-uﬁ

and, with somne simple analysis, we find:

(l,' + 21‘,’)!‘),‘

Cx(i) = pxi + 301 o)

(2.11)
The previous results presupposed that zone i was to the left of zone j. If we assume
the other case where zone j is to the left of zone i, we have Equation 2.9 except that the

integrand is different:

1-P 1-PXy

7 (i PX.i41 PT.-"';;"TI—_%";'T'(PTMI Pr.) PX.y+1 PT.J+,x’“f” (prj+1-p15)
®(ir) = £1-PX,i £2-PX,j

PX,i PB.+—'—(PB..‘+:-PB..') PX.j pp,;t (Pa,-n -pB.;)

PX,i+1~PX,; PX,j+1-PX,y

(tl —_ 22) dyzd:!‘gdy]dll

Solving this equation results in:
Zo(1,j) = Area(i)Area(j)(Cx(i) — Cx(7))

We can generalize the expressions for the Z (i, j) above and in Equation 2.10 to state that

the interzonal distance factor is in all cases:

Z (i, j) = Area(i)Area(j)|Cx(¢) — Cx(4)] (2.12)
From the above equation we can clearly see that Z.(j,1) is equal to Z,.(i,j), so we can
re-write Equation 2.6 as:

n-2 n-1
Dx(Q)— Areaz(Q) (Z ZN(1)+2Z Z Z‘»(z’])) (2.13)

1=1 =1 j=i41

To summarize the ideas discussed in this section, we proposed to divide a polygon that
is monotone with respect to the z axis into subregions called “zones”, and then derived
expressions for the z component of the expected Manhattan distance within one zone and
between different zones. In the next section, we will develop a method that works with

general polygons.
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2.3 The z component of the expected Manhattan distance

in a general polygon

In this section, we are once again concerned with finding the z component of the expected
Manhattan distance in a polygon. However, we will not be restricted to polygons that
are monotone with respect to the z axis. The results from the previous section cannot be
directly applied to a general polygon because without monotone envelope functions, the
length of a path between two points in a general polygon is not always expressed by the

formula for the 2 component of the Manhattan distance:

dx(z1,y1,22,¥2) = |21 — 25| (2.14)

Nevertheless, let us consider a “divide-and-conquer” strategy where we partition the
polygon into special regions that meet the criterion that the distance between two points
within such a region can be expressed by (2.14). Once this is accomplished, we can calculate
the expected distance between random points that are distributed within the same region
by utilizing the expressions that we develcped in the previous section. Then, if we also
develop an expression for the expected disiance between points in different regions, we will
have an expression for the expected distance in the polygon.

The first step in our proposed strategy is to partition the polygon into regions such that
the distance between two points in a region can be expressed by the formula in (2.14). There
are, in fact, an infinite number of ways to partition a polygon that meet this criterion. We
will develop a method to partition a polygon into regions that have two characteristics: (i)
the regions are z-monotone, and (ii) the regions are bounded in the z dimension ai the z
value of a cusp that is on the bottom or top envelope.

These two characteristics need further elaboration. We define a region to he “z-
monotone” if it is bounded on the bottom and top by envelopes that are z-monotone and
that are on the perimeter of the polygon. The notion of the z-monotone polygon described
in the previous section is an example of an z-monotone region. To better understand this
characteristic, it is helpful to study the polygon in Figure 2-8. We will refer to each region
that is partitioned according to our requirements as a “channel”. Notice how each chan-

nel maintains the property that the bottom and top envelopes of each channel are on the
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Figure 2-8: A non-monotone polygon divided into 9 z-monotone “channels”

perimeter of the polygon and that both envelopes are z-monotone.

The description of the second characteristic refers to a “cusp”, which we define to be a
vertex point on the polygon such that the adjacent vertex points either both have a greater
z value or both have a lesser = value than the z value of the cusp. In the Figure 2-8, those
vertex points labelled in boldface are cusps. For example, the vertex point 19 is a cusp
because the adjacent vertex points 18 and 20 both have an z value which is greater than
that of point 19. It is worth noting that cusps are the only locations on the perimeter of
the polygon where the property of z-monotonicity dces not hold true. From the diagram,
we can observe the second characteristic whereby the z bounds of each channel is located
at a cusp.

We have stated our general “divide-and-conquer” strategy and have described the char-
acteristics of the regions called “channels” into which a polygon may be divided. In the

next subsection, we will present a method for dividing a polygon into channels. In the
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subsequent subsection, we will develop an expression for the expected distance in the z

direction between two random points that are distributed within one channel and that are

distributed in different channels.

2.3.1 Dividing the polygon into channels

In devising a method c¢o divide the polygon into channels, the fact that each channel is

bounded by vertex points that are cusps suggests that we should first identify all cusps.

The procedure for accomplishing this task follows directl; from the definition of a cusp

given earlier whereby a cusp can he determined by comparing the z coordinate of a vertex

point with the z coordinates of the two adjacent vertex points. In fact, we will categorize

every vertex point as belonging to one of the following five classes:

1.

2.

“Intermediate”-any vertex point that is not a cusp.

“Open”-a cusp at a convex vertex point where the adjacent vertex points both have a
greater z value than that of the cusp. The ver..  points that are in the open class in
Figure 2-8 are points 19 and 28. Pictorially, a vertex point in the open class “opens”

a new channel, forming the left limit.

“Divide”-a cusp at a concave vertex point where the adjacent vertex points both have
a greater z value than that of the cusp. The vertex points in the figure that are in
the divide class are points 23, 11 and 6. We see in the diagram that a vertex point in

the divide class “divides” one channel on the left into two channels on the right.

“Close”-a cusp at a convex verter point where the adjacent vertex points both have
a lesser z value than that of the cusp. Vertex points that are in the “close” class in
the figure are points 22, 13, 8 and 3. Pictorially, a vertex point in this class “closes”

a channel, forming the right limit.

“Join”-a cusp at a concave vertex point where the adjacent vertex points both have a
lesser z value than that of the cusp. The only vertex point that is in this class in the
figure is point 27.) In the diagram, we see that ihis vertex point joins two channels

on the left into one channel on the: right.
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We observe that every z-monotone polygon (including all convex polygons) has exactly two
cusps — one in the “open” class, and one in the “close” class. Every polygon has one or
more vertex points in the “intermediate” class. Only polygons that are not z-monotone
have “join” or “divide” vertex points. For every “divide” vertex, there is also an extra
“close” vertex, and for every “join” vertex, there is an extra “open” vertex. The number of
channels is one less than the number of cusps.

We should note that there is a slight complication when two or more adjacent vertex
points have the same z coordinate. In this case, the group of adjacent vertex points sharing
the same z coordinate are treated as one unit, and its z coordinate is compared with
the z coordinates of the vertex points that are adjacent to the group. For instance, in a
hypothetical polygon where vertex points 3, 4, and 5 have the same z coordinate, then this
z coordinate is compared with the z coordinates of vertex 2 and of vertex 6. When the
class for the group of vertex points is found, only one of the vertex points is assigned to that
class. For instance, if the group of vertex points 3, 4 and 5 have the same z coordinate and
is found to be of the “divide” class, then one arbitrarily chosen vertex point (let us choose
point 3) is assigned to the “divide” class, and the other vertex points in the grcup (in this
case, 4 and 5) are assigned to the “intermediate” class.

There is more than one method for finding the channels in a polygon once the vertex
points are categorized into the five classes. The method that we will adopt starts at the
vertex points in the “open” class, and each such vertex point is necessarily at the left edge
of a channel. We then “process” the channels one by one. By the term “process”, we mean
that we will apply a procedure to divide the channel into zones (as we had in the previous
section) by following the bottom and top envelope of the channel until we encounter a cusp
which defines the right edge of the channel.

To implement this method, we will need to keep track of the channels in a list which
we will cail the “channel queue”. The channel queue represents the known channels that
we have yet to “process”. Initially, we place all vertex points in the “open” class into the
channel queue in any arbitrary order. Our method is structured around an iteration loop
that continues until the channel queue is empty, or, in other words, until all channels have

been processed. In each iteration loop, we take the first channel in the channel queue which
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we call the “current channel” and we “process” it.

The steps to “process” a channel are similar to the steps to find the zones in an z-
monotone polygon. In fact, because we will eventually need the zones to compute the
expected distance, we will generate and save the zone definitions for later use. To traverse
the channel one zone at a time, we must find the “next point” which we define as the next
closest vertex point to the right in the z dimension. To do this, we follow the hottom
and top envelopes knowing that in a polygon defined with vertex point indicies arranged in
counter-clockwise order, the point indicies increase as we move to the right on the hottom
envelope and decrease as we move to the right on the top envelope. For example, in Figure
2-8, if we are starting at vertex 19, the next vertex point on the bottom envelope is vertex
20, and the next vertex point on the top envelope is 18. Because vertex 20 has a smaller z
value (hence is the closer vertex point in terms of the z coordinate), it is the “next point”
and defines the right edge of the first zone. As long as the class for the “next point” is
“intermediate”, then we repeat the procedure to find the right edge of the next zone until
we encounter a vertex point that is a cusp.

Actually, we must refine our definition of the “next point” so that we consider not only
the next vertex point on each of the two envelopes, but also any vertex point of the “divide”
class that is between the two envelopes. The “next point” is the closest of all of these. For
example, in Channel 2 in Figure 2-8, the sequence of “next points” found is: 20, then 18,
and finally 23, which is a “divide” point between the top and bottom envelope of the channel
that is closer than either 21 or 17.

The cusp marks the right edge of the current channel, and we can remove the current
channel from the channel queue. The class of the cusp also indicates if there are any channels
connected to the right of the current channel. The possible classes for a cusp encountered
by traversing a channel from left to right are: “close”, “divide”, and “join”. If the class of
the cusp is “close”, then there is no channel to the right.

However, if the class is “divide”, there are two new channels to the right, which we place
into the channel queue. In Figure 2-8, vertex point 23 pictorially “divides” one channel
(Channel 2) into two channels (Channel 1 and Channel 3). Of the two new channels, the

lower channel is bounded at the bottom by same bottom envelope as the current channel.
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The top envelope of the lower channel begins at the “divide” point. Conversely, the upper
channel has the same top envelope as the top envelope for the current channel, and its
bottom envelope starts at the “divide point”.

If the class of the cusp is “join”, then there is one channel to the right. For example, in
Figure 2-8, if we have processed Channel 3 which has a right edge at the “join” point 27,
then we know that there is a new channel to the right. If the “join” point is on the botto1.
envelope of the current channel (s is the case for Channel 3), then the tc; envelope of the
new channel is the same as the top envelope for the current channel. However, we will not
know the bottom envelope until the other channel (in this case, Channel 5) that meets at
the “join” point is processed. For each pair of channels that are “joined” at a vertex point
belonging to the “join” class, one new channel is placed into the channel queue.

The method iteraiively processes all channels in the channel queue until channel queue
is empty, at which point the polygon is completely divided into channels. This concludes
our discussion on the first phase of the “divide-and-conquer” strategy. Before proceeding
to the final phase of the strategy in the next subsection, let us summarize our method for

dividing the polygon into channels:

1. For every vertex point in the polygon, categorize the point as belonging to one of the

following classes: “open”, “close”, “divide”, “join”, or “intermediate”.

2. Create a “channel queue” for channels yet to be processed. For every vertex point
belonging to the “open” class, place a channel into the queue whose left edge is formed
by the vertex point. In the subsequent steps, process the first channel in the queue

as the “current channel”.

3. To process the “current channel”, begin at the left edge of the channel and find the
zones in the channel one at a time. The left edge of the first zone in the channel is the
left edge of the channel. To find the right edge of the first zone, find the next vertex
points to the right that are on the hottom and top envelopes. Choose the closer one
of the two (the one with the smaller z value). We will call this point the “next point™
unless there happens to be some other point belonging to the “divide” class that is

both between the bottom and top envelopes and that is even closer. In that case, this
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other point is the “next point”. In either case, the “next point” defines the right edge

of the first zone in the channel.

If the “next point” belongs to the class “close”, “divide”, or “join”, go to step 6 (since

we are at right edge of the current channel).

Otherwise, proceed to find all other zones in the channel by the same method as step
4 - look for the next point to the right on the bottom and top envelof:es of the channel
and choose the closer of the two. Unless there is a closer point that is between the
envelopes (belonging to the “divide” class), this point is the “next point” defining the
right edge of the zone. The left edge of the zone is at the same place as the right edge

of the previous zone. Go back to step 4.

At this point, we have processed the “current channei” and have found all of its zones
from the left to the right. Remove the current channel from the channel queue. The
most recent “next point” not only defines the right edge of the channel, but also its

class determines if there are more channels to the right:

o If the class of the “next point” is “close”, then there are no channels immediately

to the right.

o If the class of the “next point” is “divide”, then put two new channels into the
“channel queue”. The left edge of both of the new channels is at the “divide”
point. One of the new channels will have the same bottom envelope as the
bottom envelope of the current channel. The top envelope of this new channel
with begin at the “divide” point. The other new channel will have the same top
envelope as the current channel’s top envelope, and the bottom envelope of this

new channel will begin at the “divide” point.

o Otherwise, the “next point” helongs to the “join” class. In this scenario, two
channels join together from the left of the “next point” to form one channel to
the right. If the current channel is the first channel of the two channels to reach
the “next point”, then save this fact for later reference. On the other hand, if

the “next point” has already been reached by another channel, then put a new
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channel into the “channel queue”. The left edge of the new channel is at the
“next point”, and the bottom and top envelopes are continued from the two

channels that are joined together.

7. As long as there are some channels in the “channel queue” that have not been pro-
cessed, go back to step 3 and process the next channel in the queue as the “current

channel”. Otherwise, the entire polygon has been divided into chanuels and zones.

2.3.2 The expected distance between points in different channels

Having found a method for dividing a polygon into channels, we now turn to the proilem
of finding an expression for the z component of the expected distance between random
points that are distributed in different channels. Given a polygon Q that is divided into
H channels with one random point (z;,y;) distributed in channel a and the other random

point (z2,y2) distributed in channel b:

i 3 J [ dm(z1, 1,22, y2)dy2dzody  dzy

R - Channel a Channel b
Dx(Q) = Area?(0) (2.15)

In the same way that we earlier found the expected distance between random points dis-

tributed in zones, we can express Equation 2.15 in terms of an “intrachannel distance”
factor Cs(a) and an “interchannel distance” factor C.(a, b).

~ 1 H H H

Dx(Q) = Area?(Q) (az=:l Cu(a) + agl b=1Z.b¢a Cal(a, b)) (2.16)

The intrachannel distance factor is expressed by:

CR,a ftopa(z:) CR,a ftopa(=zz)
Cwl(a) = / / / |21 — 22| dyadzady, dz,
CL,a Ybottoma(xy) JCrp a4 Jbottoma(za)

where the z domain of the channel a is from CL 4 to Cr, and the channel is enveloped
by the bottom,(z) and top,(z) functions. Given the fact that a channel is by definition an
z-monotone region, it is not surprising that the above expression and Equation 2.5 are very
similar. In fact, because our method for dividing the polygon into channels also divided each
channel into zones, we can use the same procedure to evaluate the intrachannel distance
factor. With a channel a divided into Cz, zones, we can adapt Equation 2.13, which

represents the expected distance factor between points distributed in zones, to:
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CZ.- Cz..- 1 C-'z.-

Cula)= 3 Zu(i)+2 Y Y Zw(isi) (2.17)
Jj=2

i=1 i=1
where Z,,(i) and Z(¢,j) were evaluated in the previous section (see Equations 2.8 and
2.12).

Evaluating the “interchannel distance” factor Cq.(a,b) is very similar to evaluating the
interzonal distance factor. In fact, two points are necessarily in different zones if the points
are in different channels hence the distance between them is technically “interzonal”. The
distance factor is simply the summation of individual distance factors Z4(a,i,b, j) hetween

zone ¢ of channel a to zone j of channel b.
C2,.Czp

Cala,b)= Y Y Zo(a,i,b,j)

i=1 j=1

However, the expected distance between points in zones of different channels is not
merely the difference in the z coordinates between the centers of mass C'x (i) for the two
zones as was the case earlier for z-monotone regions (see Equation 2.12). Depending on the
configuration of the channels, the z component of the expected distance between points in
zones of different channels may have to “go around” sides of the polygon that are barriers.
Figure 2-9 shows a zone i in channel a and a zone j in a different channel b where the
z component of the path between points in the two zones is “indirect”, and involves four
segments. In Equation 2.4, we wrote an expression for the z component of the distance of
an indirect path between two points with m intermediate vertex points. We will use that
distance expression to represent the path between a point in zone i of a channel a to a point

in zone j of some other channel b:

m-1

Zaiaisbd)= [[ [ [ los = Ixal + le2 = Ixgnl + 3 1k = Ixers| duadesdys e

Zone a,i Zone b,j k=1

Separating the three terms in the integrand:

Za(a,i,b,j) = // // |£1 = Ix,1| dyadzody dey +

Zone a,i Zoneb,j

/J/ / / |23 — Ix m| dysdzady, dzs +

Zone a,i Zone b,j

// // Yot Ux ke — Ix 1| dyzdzady de,

Zone a,i Zone b,j
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Figure 2-9: Indirect path between points in zones of different channels

Employing the same analysis that produced Equation 2.12, we have:

Zo(a,i b, j)= Area(j)// |21 — Ix,1|dy1dzy+

Zone a,t

Area(i)// |22 — Ix,m|dy2dz2+

Zone b,j

Area(i)Area(j) 2;:':‘11 x e — Ix g1l

Zo(a,i,b,5) = Area(j)|Cx(i) — Ixa| + Area(i) |Cx(j) — Ix,m| + (2.18)
Area(i)Area(j)dx(a,b)

where dx(a,b) is the length of the shortest path connecting channel a and channel b the

intermediate vertices I); and I, along the path between a point in channel a to a point in

channel b is:
m~1
dx(a,0) = 3 xk — Ixpesal
le=1
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Our one remaining task is to find the path between two different channels. There are
many techniques that may be used to accomplish task. One way is to simply keep track
of connections between channels as we divide the polygon into channels. Another way is
the build an adjacency matrix after the channels have been divided. (This technique is
implemented in the computer program in Appendix A.2.) Yet another way is to build a
tree data structure which represents the connections between adjacent channels, and to use
a tree traversal algorithm to produce the path between different channels. Because these
techniques are documented elsewhere, we will not dwell on the procedure of finding the
path between different channels.

One final note is that in sections 2.2 and 2.3, we found the z component of the expected
Manhattan distance only. As expressed in Equation 2.3, we must also repeat the procedure
for the y component and add the two components in order to find the correct expected

distance in the Manhattan metric.

2.3.3 Analysis of the method

The order of complexity of the method remains to be analyzed. At the heart of the method
to divide the polygon into channels is the procedure to define the individual zones within
the channels. In n-sided polygons without cusps belonging to the “divide” class, each zone
requires computation of order (1) and there are n — 1 zones so that the complexity of the
method is O(n). However, if there are m cusps of the “divide” class, each zone requires m
tests to check if such cusps bound the zone, and the method performs at order O(m - n)
which, in the worse case, is of order O(n?).

Apart from the method to divide the polygon into zones and channels, there is the
actual calculation of the expected distance factors themselves. The calculation for monotone
polygons in section 2.2 is expressed in Equation 2.13. This equation contains a pair of nested
summations each of order O(n), thus the order of complexity is O(n?). For general polygons,
there is the added computation to search for the shortest path between different channels.
However, if shortest path computations are performed separately (not nested in the loop
that calculates the expected distance factor) with results stored in a matrix (as is done in

Appendix A.2), the total order of complexity for general polygons remains at O(n?).
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2.4 Conclusions

In this chapter, we studied the problem of finding the expected distance bet ween two random
points in a polygon. We first showed that we could find the expected Manhattan distance
by summing two separate quantities-the expected distance between two random points
where the distance was measured in the = direction, and the expected distance hetween two
random points in the y direction. Because we were able to show that these two quantities
could be found independently and equivalently, we focused our attention on the problem of
finding the expected distance in one dimension at a time.

To solve this problem, we developed a method to find the expected distance in an
z-monotone polygon, where the polygon was enveloped at the top and the bottom by a
perimeter that was monotone with respect to the z-axis. We utilized the fact that the en-
velope functions for a polygon are piecewise linear, and divided the polygon into subregions
called “zones” where the top and bottom envelopes are linear. Expressions were derived for
the expected distance between two random points in the same zone, and for the expected
distance between two random points in different zones. These expressions were incorpo-
rated into the expression for the expected distance in the z dimension for an z-monotone
polygon.

In general polygons, the property of z-monotone envelopes does not hold true. The
approach that we used to find the expected distance was to partition the polygon into regions
which we call “channels” that are z-monotone. The expected distance between random
points in the same channel can be computed in the identical way as for random points in
z-monotone polygon. The technique to find the expected distance between random points
in different channels was very similar to finding the expected distance between random
points in different zones, only that the path between the two different channels had to
be considered. Before find the path between channels, it is first necessary to define the
channels themselves, and perhaps the central part of the approach is the method to divide
the polygon into channels. This we accomplished by observing that the perimeter of a
polygon is z-monotone except at vertex points that are cusps. By finding each cusp and
determining its class, we were able to find each of the channels.

In summary, we have studied the problem of finding the expected Manhattan distance
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in a pol gon, and have presented a numerical method for expressing a solution in closed

form.
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Chapter 3

The Expected Euclidean Distance

in a Convex Polygon

In this chapter, we will present a method for finding the expected distance between two
random points in a convex polygon using the Euclidean distance metric. We will proceed
by first deriving a mathematical expression for finding the expected Euclidean distance in
general convex planar regions. Then, we will present an algorithm that divides a convex

polygon in such a way that we can apply the expression in closed form.

3.1 Expected Euclidean Distance Expression

3.1.1 Direct Methods

We will begin by stating the general expected distance expression using the same notation

as in Chapter 1.

D5(@) = [/ [f tolan)io(a2)ds (a1, 2)dasdas (3.1)
Qe @

where dg(g1,93) is the distance in the Euclidean metric between the random points q1 and
g2 in the region Q, and fg(gq) is the density function for distributing a random point in the
region.

As discussed in Chapter 1, it is reasonable to limit our consideration to polygons as

special cases of general planar regions, because a polygon can approximate any simply-
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connected planar region. Let us first try to solve the expression in Cartesian coordinates,

since polygons a.c most easily defined in this coordinate system.

a = (21, n), 92 = (22, ¥2)

In this chapter, we will study the Euclidean distance metric. So that we can use the
straight-line distance formula without having to consider the barriers possible in concave

regions, let us consider convex polygons only.

de(91,92) = /(21 — 22)* + (31 — 92)?

Once again, we are interested in the expected distance between two random points that are

uniformly, independently and identically distributed.

folar) = fole2) = frmarzy

Therefore, for this specific subset of expected distance problems, the expression (3.1) be-

comes:

Qﬂqﬂ V(z1 — 22)% + (y1 — y2)2dyzdz,dy, dz,

Area?(Q)

De(Q) = (3:2)

Let us consider the simplest of all planar regions defined in Cartesian coordinates — the

unit square.

1 01 p1 p1
ﬁE(.square)=/(; /o /; /(; \/(zl—z2)2+(y1-—yz)zdygd:czdyldzl (3.3)

It so happens that the four integrals in this expression cannot be evaluated in closed form.
Even for this simple polygon, we can only perform two of the four integrations before
intractable terms such an inverse hyperbolic sine term muitiplied with a square-root ex-
pression prevent further evaluation. We conclude that we cannot derive an expression that
distributes ¢; and ¢, in Cartesian coordinates.

We now attempt to set up the expected Euclidean distance expression that distributes

the two points ¢; and ¢, in polar coordinates.

@ = (r1,61), a2 = (r2,0,)
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de(q1,92) = J"f + 1‘2 — 2ryr2cos(6; — 6y)

fo(q) = __—Are:(Q)

For the simplest planar region defined in polar coordinates — a circle of radius a - this

expression can be solved analytically. !

5 I3 I3 37 \J73 + v} — 2r1ry cos(8; — 6y)ryrad6adr.dfydry

Dg(circle,) = (ra)? (3.4)
_ 8a
Dg(circle,) = ——
g(circle,) 5([‘(%))2
Dg(circle,) = 142:,’81:1

Therefore, the expression for a circle can be evaluated. However, the class of planar
regions that can easily be defined in polar coordinates -- circles, cardioids and conic sections

~ is rather small and cannot be used easily to approximate arbitrary regions.

3.1.2 An alternative approach

Even though Cartesian coordinates are ideal for defining polygons, it is extremely difficult to
produce closed form results for Euclidean distances primarily due to cifficulty in integrating
the distance formula in that coordinate system. Conversely, with polar coordinates, we have
some degree of analytic tractability but polygons (or other general planar regions) cannot
easily be defined. These observations would suggest an alternative approach, whereby one
point is distributed in Cartesian coordinates, and the other in polar coordinates.

We will begin by stating the general expected distance expression for any convex region

Q written in terms of conditional expectation.
D(@) = [[ folar) [[ fauta (a2l)ds(ar, las )dasds (35)
Q Q

We can choose to distribute ¢; and g, in any two-dimensional coordinate system. Let us

distribute ¢, in polar cocrdinates where the origin is at ¢;.

!Samuel Eilon. (*.D.T. Watson-Gandy and Nicos Christofides. Distribution Management: Mathematical
modelling and practical analysis (New York: Hafner Publishing Company. 1971), p. 154.
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g2 = (r2,02)
Then,

2x  pr(q1,02)
De(Q) = //fq(m)fo /(; fr,0lq: (202191 )dE(q1, 72, 02| q1 )dr.odfrdg, (3.6)
Q

Figure 3-1: A convex region defined by r(q;,6,) at a given ¢;

As shown in Figure 3-1, the function r(g;,0,) is the distance from ¢; to the boundary of
the region Q for a given value of 8;. The function dg(q;,72,02|g1) is the Euclidean distance
from ¢, to g,.

For uniform distribution of ¢, i.nd independent distribution between ¢; and ¢, in the
polar coordinate system,

frelq (2, 02l1) = [[r2drod6; ~ 2 f(;'(""a’lq')rzdrngz
e
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Because we are assuming Q to be a convex region such that the distance between any two
points in the region is the straight-line distance, and ¢, is by definition at the origin of the

polar coordinate system, the distance between ¢, and g; is simply:

de(q1,72,02|q1) = 72

Integrating (3.6) with respect to ry, we in effect absorb the distribution of g,:

Jfela) JoT 3r%(q1,02)d0,dgy
De(Q) = 3.7
2" 1r2(q1,6,)d62dg, (3.7)
Changing the order of integration:
i g fq(q1)r3(q1,62)dy¢1d0,

JZ" r%(q1,0;)dq:db,

Dp(Q) = (3.8)

Figure 3-2: A convex region shown in the (6,1,)) coordinate system
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Now let us choose to distribute ¢; in a quasi-Cartesian coordinate system (1, \) where
the A-axis is in the direction of @ and ¢ is perpendicular to \. We define 3 such that the
extremity of the region @ with the lowest value of ¢ is at ¥ = 0, and the extremity of Q
with the highest value of 1 is at ¢ = w(6@). Therefore, the value of w(8) represents the
“width” of the region Q in the ¢ direction. Figure 3-2 shows an example of a region Q with
the ¥ and A axes drawn for a given value of 6.

The functions c(6, ¥) and t(0, ) represent the A values of the lower and upper boundary

of the region Q at a given 1 value for a given & angle.

i . t((z.'f)) fQ(6, ¥, \)r3(6, ¥, A)dypdd 9

= 3
DE(Q) - foz,r r‘~'(0, ¢’ /\)do

In our quasi-Cartesian coordinate system,

1

0@ Lo D) dady

r(6,%,A) =t(6,9) - A

fq(O, ¥,A) =

Thus,
B5(Q) = " o [ (£(8, %) — N)PdAdyda .10
§ f”' 1@ [e0(t(6, %) - A)2drdyds '

Let us shift A by ¢(8,%) so that A = 0 does not correspond to the locus of points on the
¥-axis, but rather the locus of points on (8, ).

D(Q) = 3 2™ Jo @) [ 4(0, ) — (A + (8, ¥)))PdAdypdO
E - foz‘l' f‘;'(o) f:(‘,‘l’)"c(aﬂl’)(t(o, ¢) _ (A + c(o’ ¢)))2d)\d¢d9

Let us define a new function,

(3.11)

1(09 '/’) = t(os ¢) - c(0, 'l’)

From Figure 3-3, we observe that 1(6, 1) has the physical interpretation of being the length

or extent of the polygon in the 6 direction at a given value of 1.

Ds(Q) = 205 10 [0 P(1(6, v) - A)2drdypds
f21r IOW(O) fl(O,il’)(l(o’ ¥) — A)2dAdypdo
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Figure 3-3: The length function 1(6, v)

by(q) = LB [0, w3 - 31206, 9)9 + 316, w)¥° - 39*]. " dyas
E =
L@ [1’(0, ) — 316, ¥)¥? + %t.ba]:)(o"b)dd’do

_ 21 r2w ‘"(0)14(0 ¢)d¢’d9
D — 34 0 fo )

=@ L33 15O 13(0, )dydo

2x pw(0)

Dg(Q) = 2J0 S0 1i(6,4)dydd (.12

2% [(9)13(6, y)dyde

We observe in Figure 3-4 that w(8) and 1(0, ) are periodic in @ with period . Mathe-

matically stated,
w(0 + ) = w(0)

[0+ 7,9) =10, w(6) - ¥)
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Figure 3-4: Defining a polygon in the (6,1,)) coordinate system is periodic in 8

Thus, fo' ©) 14(6,y)dy and [y @) 13(8, )dy are also periodic ir: @ with period 7. The expres-
sion (3.12) can be generalized to:

1 fat (O 146, ) dyde

D&(Q) = (3.13)
Joe*™ 5 13(6, )
where 6y is any arbitrary value. If 8 = 0 then we obtain:
1 pr (w(9) 14
Dr(Q) = Z Jo Jo 146, ¥)dypdo (3.14)

17 5@ (0, y)dyds
3.1.83 Applying the expression to a circle and a square

We will test the expression on a circle with radius a. From previously derived results, we

anticipate the expected distance to be 1232, Figure 3-5 illustrates the width function w(#)

and length function 1(6, 1) for a circle of radius a. We state these functions mathematically

as:

w(0) = 2a

1(0,v) = 2y/a? - (¢ — a)?
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Figure 3-5: A circle of radius a defined in terms of w(@) and 1(6, v)

which, with Equation 3.14, produces:

1 f2 [22(2,/a = (¢ — a)?)*dydo (3.15)
2" [2%(24/a% = (¥ — @)?)3dydo )

Because none of the terms in the integrands contain 6, we can drop the @ integrals

Dg(circle,) =

from the niumerator and the denominator. Also, because the semi-circles on either side of

¥ = a are identical, we only need to consider one of them. Figure 3-6 shows only the upper

Figure 3-6: Half of the circle

semi-circle. Mathematically, we shift ¢ by a, resulting in:
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w(0) =a

1(6,$) = 2/a? — ¢?

and so,

s }24 50" - gy

=22 Jo\" 7V O¥
Dg(circle,) = 23 [2(a? — ¥2)\/a? — Pidy
o _ Jo a* — 2a%y? + Pidy
Dg(circle;) = a? [o JaZ = PPy — [ ¢?r/a? — Pidy
D p(circle,) |49 - 30292 + 347

E(C”‘C €a) = o [¥\/m+ E;sin"l %]: _ [c_‘ls‘_ sin—l ..’i’. - %¢m(a2 —_ ¢2)]:
8
Dg(circle,) = 2‘_:%050‘ x i;:;:
a2 ©82

Dg(circleg) = %2‘,)—81‘.2

Therefore, the expression produces a result which agrees with the previously derived result

for a circle.

We have not previously derived the expected Euclidean distance for a unit square, but

from an analytic expression that already exists, we know that the result is approximately

(a) (b) (c) (d)
0 0
/ 92 93 Nd
0<0<mw4 0,=m2-0 0,=m2+8 0,=m-8

Figure 3-7: Four subranges of @ produce equivalent geometries for a square
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0.521405. 2

Due to the natural symmetry of a square, we can reduce the limits of integration of 6
from being in the range from 0 to 7 to being in the range from 0 to §. This is because
integrating 6, from 7 to § is equivalent to integrating 6 from 0 to § with @ = § — 0, (see
Figure 3-7 (b)). Similarly, the range of 63 from § to 3 can be translated to 6 = 6 — I (see
Figure 3-7(c)) and the fourth subrange with 64 from 3F to 7 can be translated to § = = — 6,
(see Figure 3-7(d)).

For these reasons, we can reduce the limits of integration of 8 such that the expression

for the expected distance within a square is,

LI O 16, p)dyds

Dg(square) = (3.16)

S [T©13(6, ) dydo

1-tan 6

Figure 3-8: Square divided into 3 subregions

We can divide the square into three subregions labelled [1], [2], and [3] in Figure 3-8.

Note that subregions [1] and [3] are symmetrical.

¥ = cosftan@ = sin@

2Private communication with Dr. Amedeo R. Odoni.
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¥2 = cosf(1 — tan@) = cosf — sin @

sec@ _ sec@

11(01 'l’) = ¥ Y= ¥

sin @

15(6, ) = sec@

The expression thus becomes:

1 I (24140, 9)dy + 3 13(6, 9)dy)do
I (20 136, 9)d + [713(6, v)dw)do

Dg(square) =

%fof sec? 0(,&? . osino ‘l!)‘dﬂb + f(;:ouO-sinO dt/’)do

DE("quare) = -‘"— 2 sin @ cosf—siné
Jo! sec® 0(—3—0 Lo Yidy + [ d¢)d0

sin

%fo* sec‘O(%%‘—;;% + cos@ — sin0)d0

f(;2 sec3 0(%:—;:‘1;% + cos @ - sin 0) de

Dg(square) =

3 foz" sec®@ — 3 sin O sec* 6d0

fo% sec2@ — % sin@ sec30d9

Dg(square) =

Since:

/sec30d0= E:—-a2—t§-n—o+-;-ln

1+ sin@
cos @

/ sin @ sec* 0d0 = % sec3 9
/ sec20d0 = tané

/ sin @ sec3 0d0 = % sec2d

then,
i %[secd;md " %hl lci::nﬂl _ %seca 0] 1
Dg(square) = = 0
[tano - %sec2 0](:
$(3va+ || - v+ )
D - o
g(square) 1-2.141

(3.17)



1¢1 1 1
Dg(square) = 3(f5v2 + ill;l\/i"' 1+ )

V2
15
Dg(square) = 0.52140543 ...

= 1 2
Dg(square) = + §1n|\/§+ 1]+ =

With our expression verified for the unit square and for a circle, we will continue in the
next section to develop a method for computing the expected Euclidean distance in any

convex polygon.

3.2 Expected Euclidean Distance in a Convex Polygon

In the previous section, we derived an expression (3.14) for finding the expected Euclidean
distance in a convex planar region. However, in order to obtain an analytic result, two
conditions must be met — that we can express the region in terms of the width function
w(@) and the length function 1(6, ), and that when these functions are inserted into the
expression, the integral can be evaluated.

We have successfully applied the expression to find the expected distance in a circle
and a square. For such special regions, we can directly write expressions for w(6) and
1(0,v). However, it is not immediately clear how these functions can be expressed for
arbitrary regions, or even for arbitrary convex polygons, which have several simplifying
characteristics.

In this section, we will turn to the problem of adapting the expression to find the ex-
pected Euclidean distance in convex polygons. In the previous chapter, we encountered this
very problem, and focused on a method that divided a polygon into convenient pieces, then
applied a mathematical expression which we developed for each piece, and then aggregated
results. We will use the same “divide-and-conquer” strategy as the basis for a method to

compute the expected Euclidean distance in a convex polygon.

3.2.1 Dividing the Convex Polygon

Our technique for dividing the polygon contains many of the same ideas as in the method

that we presented in section 2.2.1 where we divided the convex polygon into trapezoidal
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regions called “zones”. The techniques are not identical, however, because the angle of
a path between two random points in the Euclidean metric is continuous between [0, 7),
whereas the orientation of the path between random points in the Manhattan metric is
restricted to the direction of the ¢ and y axes only.

Let us first introduce some terminology to facilitate the discussion of our method. We
define a “scan iine” for a vertex point to be the line that is in the @ direction that crosses

the vertex point. An n-sided polygon has n vertices, thus there are n scan lines.

Figure 3-9: An n-sided polygon shown with the n scan lines

Let us refer to the scan line with the lowest i value as the “bottom scan line”, and
let the vertex point on which the bottom scan line falls be called the “bottom point”. (In
Figure 3-9, vertex 3 is the bottom point.) Similarly, let the scan line with highest ¢ value
be the “top scan line” and its corresponding vertex point be the “top point”. (In the same
figure, vertex 5 is the top point.) Now, according to our previous definitions, the bottom
scan line occurs at ¥ = 0, and the top scan line occurs at ¥ = w(0). We claim that the

entire polygon is enclosed between the bottom scan line and the top scan line because the
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sides of a polygon are straight line segments, and so there can be no part of a polygon that
extends beyond the highest (or lowest) corner value of .

Given that the top and bottom scan lines enclose the entire polygon, the remaining n — 2
scan lines divide the polygon into n — 1 regions. We will call these regions “facets”. (When
two scan lines coincide, we say that there still exists a facet between them, even though the
facet has no thickness.) Each of these facets has the desirable property that two of its sides
are scan lines, therefore are both parallel and in the @ direction. Also, the other sides are
necessarily two straight line segments. This is because a polygon is bounded by straight
line segments connecting vertex points, and because there can be no vertex points between
adjacent scan lines (since every vertex point is on a scan line). In short, there are n — 1
facets each of which is trapezoidal. (Note that the two facets on the ends are triangular,
but they may be considered to be trapezoids where one of the parallel sides has length 0.)

Having divided a polygon into facets, we shall define the “configuration” of the facets

Figure 3-10: Configuration of facets

for a given value of @ to be the arrangement of facets. Each facet is defined by four lines: a
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lower scan line, an upper scan line (with the higher value of 1), a “cis” side, and a “trans”
side. The cis side is on the near side of the polygon relative to the direction of 8. The
trans side is on the far side of the polygon relative to # (thus having a larger value of \).
In Figure 3-10, the sides which are “cis” are sides 2, 1, and 5; sides 3 and 4 are “trans”.
Vertex points 3, 2, and 1 are cis while vertex points 4 and 5 are trans. (The bottom point
and top point can be classified as either cis or trans, but arbitrarily we will call the bottom

point cis and the top point trans.)

Figure 3-11: Conjunction between vertex points 2 and 4

The configuration of the four facets in Figure 3-10 is as follows:
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Lower Upper  Cis Trans
Scan Line Scan Line Side Side

Facet 1 3 2 2 3
Facet 2 2 4 1 3
Facet 3 4 1 1 4
Facet 4 1 5 5 4

As 0 is increased, the size and shape of each facet will change, but the configuration
remains the same until two scan lines coincide. When this happens, a facet disappears (has
no thickness). The situation when two scan lines coincide is called a “conjunction”. Figure
3-11 shows the polygon at a conjunction. (Note that facet 2 has disappeared.) The value of
0 is called the “conjunction angle” ¢, \ between the vertex points a and b that correspond
to the coincidental scan lines.

When 6 increases beyond the conjunction angle, a second configuration is formed (shown

in Figure 3-12) as follows:

Lower Upper Cis Trans

Scan Line Scan Line Side Side
Facet 1 3 4 2 3
Facet 2 4 2 2 4
Facet 3 2 1 1 4
Facet 4 1 5 5 4

As 0 is further increased, the configuration will remain until scan lines from another pair
of vertex points coincide-in other words, when 0 reaches another “conjunction angle”. We
once again observe that between any pair of successive conjunction angles, the configuration
(i.e. the arrangement of facets each defined by a lower and upper scan line and a cis and
trans side) does not change. We claim that this observation reflects a situation that is true
in general.

Up to now, we have given an intuitive description and introduced the related terminology
on how a convex polygon might be represented by a “configuration” and how it might be

divided into “facets”. Eventually, we will present formally an algorithm that generates all
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Figure 3-12: A second configuration of facets

of the configurations and facets and will solve the expected distance problem. For now, let
us show that a decomposition of a polygon in terms of configurations and facets can be
derived from our previous results.

Firstly, let us consider all conjunction angles ¢, between vertex points a and b such
that the angle ¢, 4 is defined to be in the range 0 < ¢, < 7. Knowing that one conjunction

angle occurs for each pair of vertex points, the number of conjunction angles C is thus:

_ n(n - 1)

¢ 2

Let us arrange the conjunction angles in ascending order and refer to them as ¢; where:
0<hr<¢2<...<go<m
We also define ¢ so that:
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do=¢c -~

Due to our observation that a unique configuration exists between any pair of successive
conjunction angles, C represents the number of configurations in the range from ¢o through
¢c. We will refer to configuration ¢ as the configuration that exists between the conjunction
angles ¢;_; and ¢;.

From Equation 3.13, we can choose any value for the lower limit of integration (as long
as the upper limit of integration has the value of 7 greater than the lower limit). It is
convenient for us to choose a range of integration over 6 that begins with a lower limit that

is a particular conjunction angle ¢o.

L [t (7O 13(6, p)dyde

Dp(Q) = 3.18
O e S0, ) avdo (18
Dividing the range over 6 into the C' subranges representing each configuration,
L5C fF [ O1%(6, v)dydd
D 5(polygon) = 2 Tt fa, o 16, ¥) (3.19)

S S350 16, w)dade
In a similar fashion to the way that we divided the range of integration over @ into C'

subranges, we can divide the range of integration over 3 into subranges. We define p; ;(6)

as the 1 values of the scan lines in configuration i that are ordered so that:

Pi1(0) < pi2(0) < ... < pin(6)

We recall that each facet occurs between a pair of adjacent scan lines, and so each facet
j in configuration i is bounded by a lower scan line at 1 = p; ;(¢) and an upper scan line at

¥ = pi j+1(0) as depicted in Figure 3-13. From the definition of and w(0), it is true that:
pi1(0) =0
Pin(6) = w(0)

We can now divide the integration over ¢ into F subranges where F is the number of facets:

F=n-1
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Figure 3-13: Scan lines defined with p; ;(9)

We express Equation 3.19 as:

Ive I8 4,,_, Sy [P0, )dyde
)
PR VoD DI ,’(;l)( )13(6, )dypdo

Dg(polygon) =

Moving the summations to the left of the expressions,

18 S Sg, [P @1y, y)dyds

Pi ,
Zt-—l EJ—I f¢.. fp:;(-;l)(o) ]3(0, '!’)dil’da

Dg(polygon) =

We can restate the above equation as:

3 T8 51 G, d)
>%. T, H, )

Dg(polygon) =

59

(3.20)

(3.21)



with:
L. & pPig+1(9)
G(i, j) = / / 14(6, )dydd
éi—1 Vpi,i(0)
. $i  [Pij+1(0)
H(i,j) = 1°(6, $)dydo
$i—1 Ypi,;(9)
The algorithm that finds the conjunction angles ¢; and the arrangements of the facets
in the configurations is called the “Configurator Method” and is presented in the following

subsection. In subsection 3.2.3, the “Facet Term Expressions” for G and H will be solved

in closed-form.

3.2.2 Configurator Method

The Configurator Method essentially is the algorithm that performs the summations of the
“Facet Term Expressions” in Equation 3.21. The method sets up the summations by finding
the conjunction angles and the associated configuration of facets.

The first task is to arrange the conjunction angles. We compute the conjunction angle
between points a and b as ¢, = tan—! (g:—:g’;) for every possible pair of vertex points a
and b. Having computed the C' conjunction angles B1.25P1,35+ ++» 2,3y 02,45+« oy Pr_1,ny We
re-arrange them in increasing order such that 0 < ¢; < ¢ < ... < ¢o < 7.

The procedure to set up the arrangement of facets for a configuration is more involved.
The C conjunction angles that we have arranged define the @ bounds for exactly C' con-
figurations, of which C' — 1 are bounded within successive pairings of conjunction angles:
$1 <6< 2,62 <0< ¢3,...,0c-1 <0 < ¢c. The remaining configuration, which we will
refer to as the “first configuration”, occurs in the remaining @ subrange ¢o < 6 < ¢, where
#6 = ¢c — 7. The principal interest that we have in a configuration is the arrangement
of facets. We will find the arrangement of facets by first finding the sequence of n vertex
points whose scan lines define the n — 1 facets.

For a configuration i, let us define a “sequence” {P;;, P; 3, ..., P;,} which is the ordering
of the n vertex points such that the points are ranked by 1 value. Referring back to Figure
3-13, the first point P;; in the sequence would be point 3, the second point P;, in the

sequence would be point 4, etc..
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Pi,al
P1,3

P1,2

Pi,1

’

=0

Figure 3-14: A sample polygon shown when 6 = 0

Let us begin by finding t:e sequence for the first configuration. By definition, the first
configuration occurs for 6 in the subrange ¢o < 6 < ¢;. We know that ¢y < 0 since
$o = ¢c — % and that ¢¢ < . We also know that ¢; > 0 thus the situation when 8 = 0
occurs in the first configuration. The polygon in Figure 3-14 is shown when 6 = 0.

By comparing Figure 3-14 to Figure 3-15, which shows how the same polygon might be
defined in Cartesian coordinates, we note that ranking the vertex points by ¥ value when
@ = 0 is equivalent to ranking the vertex points of the polygon by their y value. Thus, we
can generate the sequence of points for the first configuration by ranking the vertex points
by their y value. (When points share the same y coordinate, we rank them in increasing «
value.)

Once we have determined the sequence of vertex points for the first configuration, we
can easily set up the arrangement of facets. The lower scan line of facet 1 passes through
the first point in the sequence at 1 = p;,1(0); the upper scan line of facet 1 passes through

the second point in the sequence at 1 = p; 3(6); the lower scan line of facet 2 is the same
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Figure 3-15: Same polygon defined in (z, y) coordinates

as the upper scan line of facet 1; the upper scan line of facet 2 passes through the third
point in the sequence at ¢ = p; 3(6); and so on. For the polygon in Figure 3-16, we show

the complete sequence for the first configuration in Table 3-1. By convention, the bottom

Faget Vertex Pivot Crosses

J Point Side Side
1 3 Cis 3
2 2 Cis 3
3 4 Trans 1
4 1 Cis 4
5 5 Trans 5

Table 3-1: Sequence of Vertex Points for the first configuration

point (first point in the sequence) is on the cis side, and the top point (last point in the

sequence) is on the trans side.

Up to this point, we have stated that a “sequence” of n points is sufficient for defining the

62



rigure 3-16: Sample polygon in first configuration

n—1 facets in a configuration, and we have shown how the sequence for the first configuration
can be found. We must now find the sequences for the remaining C — 1 configurations. One
way to accomplish this is to repeat the process as in the first configuration but instead of
ranking each vertex points by its y-coordinate, we rank them by the quantity ycos; —
zsin@; where 0; is an angle that is strictly within the 8 bounds of the configuration.
However, it is computationally simpler to incrementally find the sequence of vertex
points in a configuration from the sequence in the previous configuration. For example,
with the same polygon from Figure 3-16, we can use the sequence for the first configuration
(where 6 is in the range ¢o < 6 < ¢,) given in Table 3-1 to find the sequence in the
second configuration in Table 3-2. (where 6 is in the range ¢; < @ < #¢2). The second
configuration is shown in Figure 3-17. By comparing the sequences in the two tables,
we make the following four observations. There are exactly two points that change their
position in the sequence (vertex points 2 and 4 in the example). Those two points are the
same two points whose conjunction angle separated the two configurations. The two points

are adjacent in the sequences. One of the points is on the cis side and the other is on the
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Figure 3-17: Sample polygon in second configuration

trans side. The values in the “crosses side” category increased by 1 for the two points.
Without lengthy explanation, these observations are not surprising given our definition of a
configuration, and of a conjunction angle, and the fact that the indicies for the sides in the
polygon are arranged counterclockwise. In fact, we can in general find the new sequence
given: (i) the sequence of the current configuration, and (ii) the information that the

conjunction separating the next configuration and the current configuration occurs between

Facet Vertex Pivot Crosses

j Point Side Side
1 3 Cis 3
2 4 Trans 2
3 2 Cis 4
4 1 Cis 4
5 5 Trans 5

Table 3-2: Sequence of Vertex Points for the second configuration
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points a and b as follows:

1.

2.

3.

Swap the two points in the sequence together with the corresponding pivot and

“crosses side” information.

Increment the value of the “crosses side” for the two points. (Note: incrementing a

“crosses side” value of n results in a value of 1.)

If either of the two points is a bottom point or a a top point, then ensure that the

bottom point’s pivot type is cis and the top point’s pivot type is trans.

This concludes our treatment of the Configurator Method. To summarize the method:

1.

6.

Find the conjunction angles between all pairs of points.

. Arrange them so that:

0<$1<¢2<...<¢o<m
Define ¢ such that:
$o=¢c -7

Generate the sequence of points for the first configuration by the vertex points in

increasing y-coordinate order.

. For each facet in the configuration’s arrangement of facets apply the formulas for the

“Facet Term Expressions” (to be derived in the next subsection). The resulting values

are summed into the numerator and denominator terms as in Equation 3.21.

Generate the next configuration from the current configuration and go back to step

4.

When all C configurations have been considered, then the expected Euclidean distance
for the polygon can be found by dividing the summation of numerator terms by the

summation of denominator terms (and factoring in a constant).

The remaining step is to find the “Facet Term Expressions” themselves, which we will

discuss next.
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3.2.83 Facet Term Expressions

Earlier in the chapter, we derived Equation 3.21 which consists of a summation of numerator
terms divided by a summation of denominator terms. Each instance of a numerator and
denominator term corresponds to a trapezoidal subregion of the polygon called a “facet”. In
the previous subsection, we presented an algorithm for systematically generating all possible
facets. In this subsection, we will evaluate in closed form the expressions, which we call the
“Facet Term Expressions” for the numerator term and denominator term.

We previously defined a facet j in configuration i by the lower scan line (which crosses
the vertex point P;; at 1 = p; ;(6)), the upper scan line (which crosses the vertex point
P;j+1 at ¢ = p;,j11(0)), the cis side, the trans side, and the 0 subrange for the configuration
di—1 < 0 < ¢;. There are two classes of facets each requiring separate analysis. A “same-
based” facet is one where the vertex points P;; and P; ;. are on the same side of the
polygon—in other words, where the vertex points are either both on the cis side or both on

the trans side. (The example in Figure 3-18(a) happens to have both vertex points on the

(a) A same-based facet (b) An opposite-based facet

Figure 3-18: (a) A same-based facet and (b) an opposite-based facet

cis side.) The other class of facets is “opposite-based”. In this case, the vertex points are

on opposite sides. For example, in Figure 3-18(b), the vertex point P; ; for the lower scan
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line is on the cis side while the vertex point P; ;,; for the upper scan line is on the trans
side.

It is convenient for us to define a facet using a notation that is specific to the particular
facet. In the same way that we had defined the v dimension to be perpendicular to the
0 direction such that the minimum value of 1 for the polygon is ¥ = 0, we define Vi j
perpendicular to the @ direction (i.e. in the same direction as 1) such that the minimum
value of 1; ; for the facet j in configuration i is ¥; ; = 0. In other words, ;,; is the same
as ¥ except that it is offset by p; ;(#). We can also define a “facet width” function w; ;(6)
which represents the thickness of the facet in the 1; ; dimension at a given value of 8. (Just
as w(0) is the extent of the polygon in the ¥ dimension, w; ;(6) is the extent of the facet in
the ¥; ; dimension.) Finally, we define a “facet length” function 1; j(6, 1; ;) which represents
the extent of the facet in the A direction at a given 6 value and at a given value of ;, j» Our

definitions for the v; ;, w; j(0), and 1; ;(0, ¥; ;) are:
¥i,; = ¥ — pi,;(0) (3.22)
wi,i(0) = Pi.j+1(0) — pi,;(0)
L,5(6, ¥i,5) = 16, i, + p:,3(0))

We can restate G(7, j) and H(i,j) in Equation 3.21 as:

$i  pwii(9)
GGig)= [ [T 1800, 0001508 (3.2

¢ wi;(0)
HG )= [ [ 18500, o) a0

Let us begin by considering a “same-based” facet which we will refer to as facet j in
configuration i. As shown in the Figure 3-19, P;; and P; ., are the vertex points at the
lower and upper scan lines which occur at ¥;; = 0 and ¥;; = w; ;(0) respectively. Let
#i,5,j+1 be the angle formed between points P; ; and P; ;11 and the 6 = 0 direction and let
di,j,j+1 be the distance between P; ; and P; ;.

Let us define the “opposite side” S§;«; as the side of the polygon on the opposite side
of facet j to the vertex point P; ;. Let us also define the “altitude” from a point P;; to its
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Figure 3-19: Same-based facet showing d; ;;+1 and ®ijj+1

“opposite side” Si; to be the length of the line segment connecting P; ; to Si»; such that
the line segment is perpendicular to the line containing So;. We let a;,; be the altitude
from the lower vertex point P; ; to its “opposite side”, and we let a; ;11 be the altitude from
the upper vertex point P;;; to its “opposite side”. (Because the facet is “same-hased”,
then the “opposite sides” with respect to P;; and P; j,; are one and the same.) Let the
angle formed between this “opposite side” and the § = 0 direction be called Piaj. We
illustrate a; j, a; j+1, Si; and ®irj in Figure 3-20.

For the purposes of finding 1; j(6, ;,;), we must first find the lengths of the lower and
upper scan lines for the facet. We can determine the length of the lower scan line (which
at 1;,; = 0) by studying Figure 3-21. We are given 8, ¢;.q;, and a; ;. By inspection, we see
that Lz = ¢ye; — §, the angle /z is equal to the angle Ly, and the angle /2 = @ — /y. By

substitution,
7r
Lz =0 - ¢ib<j + 5

The length of the lower scan line is:
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Figure 3-20: Facet showing a; j, @i j+1, Sirej, and Pia;

au I3
L.;(6,0) = |co:22|
@
15(6,0) = s
:J( ’ ) 'C03(0—¢i><j+ %)I
1;,i(8,0) = —— (3.24)

[sin(8 — ioes)|

By similar reasoning, the length of the upper scan line (which is at ¥; ; = w; ;(8)) is:

. . (0)) = %ij+1
L ;(6, w;,;(6)) |8in(0 — @iras)] (3.25)

Because the length of the polygon 1; ;(6, v ;) is clearly a linear funcion of 4; ; within a

facet, then the length of the polygon within the domain of the facet (i.e. 0 < ¥;,; < w; ;(6))

can be expressed in terms of the length of the lower scan line (from Equation 3.24), the

length of the upper scan line (from Equation 3.25), the value of ¥i,j, and the facet “width”
wi,;(0):

(0. ) — i s S aij ¥ij
ki85 = e (Isin(O—J bl T —J¢£»<j)l) i il6)
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\Opposite Side
Sip3

1;,;(6,4;,;) =

ai,j

Figure 3-21: Angles for finding the length of the lower scan line

4 Gl T i
|sin(@ — Pia;)]

¥ij
|sin(0 — dina;)| Wi,;(6)

(3.26)

We are now ready to solve for the numerator and denominator terms in Equation 3.23
for same-based facets. Let us begin with the numerator term G:

.. ¢ pwii(0)
GGig)= [ [ 1800, 50
i—1

Substituting from Equation 3.26:

o= 2 [

ai,j

4

Gij+1 — @i i

" + —:—J d i d0 3.27

[8in(8 — iej)| * [sin(0 — pie;)| w,-,,-(())) Y (3.27)

For algebraic simplicity, let us restate this equation with the folic'ving substitutions:
A ai’j

~ Jsin(0 - Giv)]

Aij+1 — Qi

(3.28)
~ Jsin(0 — dives)] Wi3(0)
C = w,',j(O)
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Equation 3.27 can now be expressed as:
. J ¢" C
GG = [ [ (A4+ By asa0
-1
Solving:

b c
G(i,j5) = L /; (A4 + 4ASB¢,',J' + 6.4sz¢,-2':~ + 4ABS¢?'J~ + %Bql/)?‘j) di; ;df
i—1
- %04 3p.2 2p2,,3 3,4 4 lpa51°
(i, §) = /¢ [A%s5 + 24°Byl; + 247 B263; + AB®wl; + S BY4Y) do
- it

G(i,j) = /¢ ‘: c (A4 + 24%(BC) + 24%(BC)? + A(BC)® + -;;(BC)‘*) o (3.29)

Referring back to Figure 3-19, we can express the term C which is the “width” w(8) of
the facet in the y; ; direction in terms of the length d; ; ;+1 of the side of the facet connecting

points P; ; and P; j,q:
C = w;;(0) = dij,j41 Isin(0 — ij541)] (3.30)
With this expression for C, we expand the term (BC) from Equation 3.28:

@i — @ s
Bc) = i . di jj+1|sin(8 — &; ; ;
(56 di jj+1[8in(0 — @i jj+1)] [sin(0 — Pinej)] 7 [sin(8 — &i5,5+1)]

o
BC - .‘|J+l ti]
(BC) = 16 = g

We can now substitute the expressions for 4, (BC), and C back into the expression for G

in Equation 3.29:

5 disson o100 — iss0) al; + 20} j(aij41 — aij)+
c ooy [ Bigg+1 18IMY — @i 5 j+1
o= | i SN0 fy) | 2ohi(%aer — 0i) + aislenn - aig)? [ dF

+i(aijo — @)t

After some algebraic manipulation, we obtain:

sy — Diggsr (4 3 .. 2 2 P 4
G(i,j) = =yt (a;,,- 16 054 +af;a0 0 +aija ;. taf iy, (3.31)

b Juin(9=giji11)]
f i—1 J‘:'i‘n (0-—¢.’,.,,'l) do
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The absolute value signs may be dropped if we define éi.j.j+1 which is the same as
#i,j,i+1 “adjusted” so that sin(@ — @; ;;,1) is greater than or equal to zero. Given that 0
and ¢;,; ;41 are always in the range (0; 7], then:

Biji+1 for 6 > ¢,j,541,

Bijt1 = (3.32)
®ijj+1 — ™ otherwise

We can further simplify Equation 3.31 if the sine term in the numerator of the integral
is a simple function of @ instead of the sum of # and a constant. This can be accomplished

by translating @ by JS;'J-‘J-H:
©in = bio1 — Bijis1 (3.33)
Piz2 = @i — Gijin
@ = Gijjr1 — Biej

Equation 3.31 can now be stated as:

c oo dig 3 4
G(i,j) = =gt (a?j +al;aij01 +a} 0l +aijad; ) + ai.j+1) (3.34)

1y in 8
f‘: 1’ sm’('; ¢)d0

The key to deriving a closed-form solu*ion for G lies in the ability to evaluate the integral

above. Fortunately, this is possible: 3
sin @
_ = 3.3
/sin‘(a—gb) (3.35)

3 cos(66 + 7¢) + 3 cos(66 + 5¢) — 18 cos(48 + 5¢)— L4cos(8+
18 cos(46 + 3¢) + 45 cos(20 + 3) + 45 cos(20 + @) — 60 cos @ ! "“’é"*‘a’
—12cos(560 + 6¢) — 12 cos(50 + 4¢) + 68 cos(30 + 4¢3)
+4 cos(36 + 25) — 120 cos(9 + 2) + 72 cos @
6 cos(460 + 2p) — cos(66 + 6p) — 15 cos(20 + 2¢) + 10

¥This result and the result in (3.38) were obtained using the MACSYMA mathematical symbolie manip-
ulation system.
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We can solve for the denominator term H from Equation 3.23 in a similar fashion:

Hig) = [

wi,;(0) 3
/ 13.;(0, 4i,;)d; ;d6
¢0—! 0

Substituting from Equations 3.28:

éi fC
H(i, j) = /¢ 3 /o (A -+ By ;)°dep;, ;8

Solving:

¢ fC
H(i, j) = /¢ fo A%+ 3A’Byy; + 3AB?Y7; + ng,.du/;.-,,-glo
i1 '
i

3 1 c
APBY}; + AB™; + 1B do

H(,j) = /:; [A3¢i.j + 3

HGij) = | e (A" + 3A4%(BC) + A(BCY: + %(30)3) do

i—1

Substituting the expressions for 4, (BC), and C back into the equation for H:

af; + §ad;(ai i1 — i) + aij(aije — @i ) + Haijer — aij)?) d6

o digie b Jsin® - g
H(l,]) - '_34-7_"'_. (a?'j + a?'ja,-,j.‘.l + a,-,ja,?'j_,_l + a?,j+l) /4’ Ilsilfs(o _ ;.:}))Ildo
i—1 w1y

The absolute value signs may be dropped if we define c,{&,-,‘,j which is the same as ¢;.;
adjusted such that sin(6 — q?»,-,.,,-) is greater than or equal to zero. Given that 8 and ¢,.; are
always in the range (0; 7}, then:

. ibas for 8 > ¢ina;
¢i><j _ ¢»<J z ¢u><3a ( 3.3 6)
Piaj — ™ otherwise
As we did earlier for G, we will eliminate the constant in the numerator of the integral

by translating @ with the expressions defined in Equation 3.33:

ooy i+l ¥h2  gind _
H(G,j) = S84 (o3 4 adjaizn + aigals; + 050 /w g A
i,1 -

where the solution to the integral is:
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Figure 3-22: Opposite-based facet showing Siraj and Sipqjty

/‘ sinf _ sin(40 + 5¢) + sin(46 + 3¢) — 45in(20 4 3p) + 4sin g (3.38)

sind(0 — @) 2cos(40 + 4¢) — 8cos(20 + 2p) + 6

We now have closed form solutions for the expected distance expression in same-based
facets. There remains the case in which the facet is opposite-based. As shown in Figure
3-22, we define S;q; and Sjej41 to be the sides of the polygon that are on the opposite
side of the facet from points P;; and P; ;;; respectively. Figure 3-23 shows the altitudes
ai,; and a; ;1 from these points to their respective opposite sides and shows the respective
angles ¢;q; and Pirqj+1 formed between these sides and the @ = 0 direction. We can state
the lengths of the scan lines, similar to Equations 3.24 and 3.25:

a;;
|sin(6 ~ dive;)l

: N _ aijj-{-l
Lj(8, wi,;(8)) = |sin(0 — Pirjis1)|

The expression for the facet length function 1; ;(6, ¥; ;) is then:

1;,;(6,0) =

(B ) = aij @ij+1 _ i, Pij
L6 vis) = g * (Isin(9 ~ b))l (G- ¢iwj)|) wis(0)
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Figure 3-23: Opposite-based facet showing altitudes and angles of the sides

In fact, compared with our derivation for same-based facets, the existence of the addi-
tional factor sin(@ — @iej+1) complicates the expression for 1; ;(6, ¥; ;) such that it cannot
be simplified and evaluated in closed-form in Equation 3.23.

However, we observe that we can convert the G and H expressions for any opposite-
based facet into G and H expressions for two same-based facets. Let us assume for the
moment that the sides $;..; and Sjj41 are not parallel. Then we can find the point Py
which is the intersection of the lines of those sides as shown in Figure 3-24. Note in Figure
3-25(a) how the large triangle A forms a same-based facet with P;; and Px as the scan
points and Si~j+1 and §;,q; as the sides. In Figure 3-25(b), the triangle B forms a same-
based facet with P;;,; and Px as the scan points and Siraj+1 and S;q; as the sides. The
fact that both facets are same-based is due to the fact that Py is by definition on both S;mq;
and Sipqj+1.

Essentially, we claim that the G and H expressions that we are seeking for opposite-
based facet j can be found by taking the difference between the G and H expressions for
the “fictitious” facets A and B. We can show this mathematically by considering the limits
of the integrals for either of the expressions for G and H in Equation 3.23. If w x(0), which

is the value of 9 for the point Px at a given 0 angle, is such that wx(6) > w; (), then:
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Figure 3-24: The intersection point Py

wi,;(6) Wx(") #i  pwx(6)
/ [ dpade = / dyigdo = [T [ dysde(3.39)
¢|-—l ¢o—1

i1 Jw; ;(0)

If not, then wx (@) < 0. (It is not possible for 0 < wx(8) < w; ;()). In this case:

wi,;(6) wi,j(6) éi 0
/ / cer diidf = / coe dip; jdf — / / cee dip; ;df
bi-1 i1 Jwx(0) di—1 Ywx(6)

wi ;(9) Wx(ﬂ) x(6)
/ / “oe d¢‘l,1d0 f d¢;’1d0 f e d¢i,Jd0
bi1 di—1 bi1

wi,j(0)

Therefore, equation 3.39 holds true no matter where the point Py is located. We
conclude that an opposite-based facet with non-parallel sides can be evalwated by finding
the intersection point Px between the sides and creating two fictitious same-based facets
for which we can find G and H. The values of G and H for the opposite-hased facet are
thus equal to the difference between the values of G and H respectively for the two fictitious
facets.

It should be noted that the computation for these values is adversely affected when thé

sides are nearly (but not quite) parallel. In this situation, the location of the intersection
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Figure 3-25: Fictitious facets formed with Py

point Px will be very far away from the rest of the polygon resulting in very large values
for the G and H expressions for facet A and facet B. Taking the difference between very
large numbers will result in roundoff errors.

If, however, the facet is opposite-based, and the opposite sides Siraj and Siqj41 are
parallel, then the previously described procedure for handling opposite-based facets will
not work. This is because the intersection point Py cannot be found since parallel lines
by definition do not intersect. However, we can treat this case as if the facet were same-
based. In Figure 3-26, we observe that the facet width function w; ;(8) is the same as for

same-based facets (see Equation 3.30).
Wi,j(0) = dijjv1 |sin(6 — i jj41)]

Because the opposite sides are parallel, the facet length function 1;,j(8,;,;) is the same for
all values of ; ; in the facet. Since we have already obtained the length of the bottom scan

line in Equation 3.24, we will use that for the facet length function.

@i

|sin(0 — Bisa;)|

1;,i(0,%i,;) =

7



Figure 3-26: Opposite-based facet with parallel “opposite sides”

Thus, the case where the face: is opposite-based but the opposite sides are parallel reduces
to the scenario where the facet is same-based.

In summary, we have shown that the definition of any facet can be manipulated so that
the Facet Term Expressions G and H can be evaluated. The key steps in preparation for

evaluating the Facet Term Expressions are:

1. Identify whether or not the facet is same-based or opposite-based. If the facet is
opposite-based, but the opposite sides Sjq; and Siqj4+1 are parallel, then treat the

facet as if it were same-based.

2. If it is opposite-based but the sides S<; and Si.j4+1 are not parallel, ther find the
intersection point Px of the two sides, and compute the Facet Term Expressions as
the difference between the Facet Term Expressions for the facet bounded by the two
sides from P; ; to Px and the Facet Term Expressions for the facet hounded by the twe
sides from P; j;; to Px. The Facet Term Expressions for the two facets are calculated

according to step 3.
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3. Determine the following quantities: the altitudes a; ; and a; ;1 from the facet’s vertex
points to their respective opposite sides, the distance d; ; ;1 between the two vertex
points, the angle ¢; ; ;i1 between the points P, ;, P; ;41 and the 6 = 0 direction, and
the angle ¢;.; between the opposite side of the facet to P; ; and the § = 0 direction.
Then find the “adjusted” ¢ values cfb,-' j.i+1 from Equation 3.32 and JS;NJ- from Equation
3.36. Then evaluate G and H using Equations 3.33, 3.34, 3.35, 3.37 and 3.38.

This concludes the discussion of our method for finding the expected Euclidean distance

in a convex polygon.

38.2.4 Analysis of the method

We will now discuss the complexity of the algorithm with respect to the number of sides

n-1

of the polygon n. The value of C is the number of unique configurations which is 2 5

Sorting the C' conjunction angies has a complexity of order O(C logC') which translates
to O (n?logn?). This operation, however, is not as complex as the number of terms that
are summed for each of the n — 1 facets in C' configurations. Because each facet requires
computations of order O(1) (the “Facet Term Expressions”), the total complexity of the
algorithm is O (n3).

3.3 Conclusions

In this chapter, we studied the problem of finding the expected distance between two random
points in a planar region using the Euclidean distance metric. Even for the simplest of
shapes defined entirely through the Cartesian coordinate system, direct methods may be
unable to produce results in closed form. However, we presented an alternative approach
where one random point is distributed in polar coordinates and the other is distributed in
a quasi-Cartesian coordinate system and derived an expression for the expected Euclidean
distance. This expression was successfully adapted to a circle and to a square producing
results that matched previously known ones.

We proceeded by describing a method for dividing a convex polygon into trapezoidal

regions called facets and showed how a comprehensive enumeration of all configurations of
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facets is equivalent to distributing two random points in a polygon according to our derived
expression for the expected Euclidean distance. The derived expression was then evaluated
in closed form for any definition of a facet generated by our method. We have implemented
a computer p;ogram that follows our method for finding the expected Euclidean distance
in any convex polygon. The listing for the program is given in Appendix A.3.1, and some
numerical examples are given in Appendix A.3.2.

Regarding the generality of our results, the expression for the expected Euclidean dis-
tance can be applied to convex planar regions other than polygons and the circle. First,
it must be possible to express the width function w(#) and the length function 1(6, v) that
define the region. In all but the simplest of regions, this will involve some decomposition
procedure (mach like the Configurator Method) to divide the integratioﬁ over the region
into various 6 and 1 subranges. Furthermore, the resulting integrand(s) must be integrable
in order to obtain closed form results.

An interesting extension to our method would be to be able to find the expected Eu-
clidean distance in concave polygons. We will briefly discuss this topic in the Appendix
B.

80



Chapter 4

Conclusions .

We have studied the problem of finding the expected distance between two random points in
a polygon. More precisely, we have investigated the problem of finding analytic expressions
for the expected value of the distance between two identically, uniformly, and independently
distributed random points in a polygonal region.

The measure of distance between two points depends upon the distance metric. In
Chapter 2, we studied the problem of finding expected distances in the Manhattan or
rectangular distance metric, and we derived an analytic expression for any polygon using
that distance metric. In Chapter 3, we considered the same problem except with the
Euclidean or straight-line distance metric, and we derived an analytic expression for convex
polygons only. '

In Appendix A, we present implementations of the methods in computer programs. We
provide some numerical examples of the methods using these programs.

Even though the methods for evaluating the expected distance were different for the
two distance metrics, the same “divide-and-conquer” strategy was employed. The polygon
was first divided into simpler regions so that the expected distance expressions could be
evaluated.

As suggestions for further work, there remains the problem of finding the expected
Euclidean distance between random points in a concave polygon. In Appendix B, we discuss
this problem briefly. Also in the appendix is an implementation of a Monte Carlo simulation

for finding the expected distance between two random points. The Monte Carlo analysis is
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only preliminary, and a complete analysis is left as a possible topic of study.

There are other areas for further investigation that are closely related. While this thesis
focused entirely on the expected value (the first moment of expectation) of the distance,
the higher moments of expectation such as the variance are also of importance. Besides the
Manhattan and Euclidean distance metrics, there are other measures of distance that may
be considered. We have studied the expected distance problem in polygons, but there are
other types of planar regions that are worth studying. For instance, polygonal regions are,
by definition, simply-connected, but regions that contain voids may more accurately reflect
real situations for some applications. The assumption that the random points are uniformly
distributed may be relaxed so that subregions of the polygon may have different probability
densities. (In an urban operations research application, the different probability deusities
may be useful for modelling different demand densities within an urban region.) Solving
these problems will likely make use of the “divide-and-conquer” strategy and some of the

expressions and partitioning methods presented in this thesis.
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Appendix A

Computer Program

Implementations

In this appendix, we present computer programs that implement the numerical methods
described in this thesis. The appendix is divided into four sections containing: (1) basic
geometric routines that are fundamental to the computational manipulation of polygons,
(2) the implementation of the method for finding the expected Manhattan distance from
Chapter 2, (3) the implementation for the Euclidean metric from Chapter 4, and (4) a
Monte Carlo simulation for the purpose of verifying our numerical results.

The computer programs are written in Turbo Pascal Version 4.0. Turbo Pascal is an
implementation of the Pascal computer language which runs under the PC-DOS/MS-DOS
operating system. Our programs deliberately avoid taking advantage of some of the lan-
guage extensions that are offerred by Turbo Pascal. With a few minor exceptions that are
noted in the source code, the programs conform to ANSI Pascal standards.

For the purposes of evaluating the speed of program execution, the elapsed time are
included with the examples, which have all been performed on an AT&T PC 6300. The
PC 6300 is an IBM PC-XT clone that uses an Intel 8086 processor running at 8 MHz.
The particular machine used did not have an 8087-2 numerical coprocessor (which probably

would reduce the computation time by over an order of magnitude).
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A.1 Basic Geometric Routines

The basic geometric routines are simple computational geometry utility routines, as well
as system-specific routines. The computational geometry routines include basic polygon
indexing routines, polygon validity test, and if a line does not cross the perimeter of the
polygon. There also routines of a system-specific nature that have been isolated in this
module. In particular, the routines include input/output with the user, CPU usage mea-

surement, floating-point equality test, and random number generation.

A.1.1 Pascal Source Code

The source code shown below is a group of data definitions and routine
definitions that are used by other programs (particularly, the MANHAT (for
computing the expected Manhattan distance between two random points in a
polygon), EUCLID (for computing the expected Fuclidean distance between two
random points in a convex polygon), and MCARLO (a Monte Carlo simulation to
estimate the expected Manhattan and Euclidean distances between two random
points in a polygon.) Note that the source code below cannot be compiled
stand-alone.

Written in Turbo Pascal, Version 4.0.

Runs under PC-D0S/MS-DOS Version 2.0 or later.
Runs on IBM PC or compatible.

Written by Arthur Hsu, 1984 (revised January 1990).

.......................................................................... }
USES DO0S; { Turbo Pascal unit for access to
"GetTime" routine }
CONST
max_points = 20; { maximum number of points in polygon }
TYPE

point_range = 1..max_points;

point_array = ARRAY[point_range] OF REAL;

point_set = SET OF point_range;

string_type = STRING[31]; { string type in ANSI Pascal, but in Standard
Pascal, use "PACKED ARRAY[1..31] OF CHAR" }

VAR
n_points : point_range; { number of points in polygon }
X, ¥y : point_array; { coordinates of points in polygon }

operation_count : INTEGER; 1 for computational statistics }

polygon_area : REAL;
initial_time, elapsed_time : LONGINT; { LONGINT is a 32-bit integer }

84



output_file : TEXT;

This function takes the inde:: of a point and returns the index of the next
point in the polygon in the counter-clockwise direction. }

FUNCTION plus_1 (index : point_range) : point_range;

BEGIN
IF index < n_points THEN
plus_1 := index + 1
ELSE
plus_1 := 1
END; { plus_1}

This function takes the index of a point and returns the index of the next
point in the polygon in the clockwise direction. }

FUNCTION minus_1 (index : point_range) : point_range;

BEGIN
IF index > 1 THEN
minue_1 := index - 1
ELSE
minus_1 := n_points
END; { minus_1 }

This function returns the magnitude of the cross-product of the vector from
(x1;y1) to (x2;y2) and the vector from (x2;y2) to (x3;y3). }

FUNCTIOR crossproduct (xi, y1, x2, y2, x3, y3 : REAL) : REAL;

BEGIN

crossproduct := (x1 - x2)*(y2 - y3) - (y1 - y2)*(x2 - x3)
END;

IFF the line from (x1;y1) to (x2;y2) does not cross or touch any of the
line segments in the polygon except for the line segments specified in the
set of excluded sides. Note: ’excluded’ contains indicies that represent

the line segment from the point number (given by the index) the next point
in the polygon in the counter-clockwise direction. }

FUNCTION uncrossed (xi, yi, x2, y2 : REAL; excluded : point_set) : BOOLEAN;

VAR
valid : BOOLEAN; { if the line has not been crossed by any side so far }
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i, j : point_range;

IFF the line segment from (x1;yl) to (x2;y2) is separate from the line
segment from (x3;y3) to (x4;y4) -- that is, if the line segments neither
cross nor touch. }

FUNCTION separate (x1, yi, x2, y2, x3, y3, x4, y4 : REAL) : BOOLEAN;

VAR
cross_123, cross_124, _1_2_on_same_side_of_3_4 : REAL;

This routine works in principle by comparing the length of the line
from (x_end1, y_end1) to (x_end2, y_end2) to the sum of the lines from
the testpoint to the ends of the line segment. If they are equal, then
the tes? point must lie on the line (therefore, ’in_between’ returns
TRUE). For reasons of computational efficiency, it is unnecessary to
evaluate the Euclidean distance formula (involving a SQRT operation)
since the Manhattan distance formula is sufficient for comparisons if
it is known that the three points are collinear. }

FUNCTION in_between (x_test, y_test, x-‘ndi, y-endl, x_end2, y_end2 :
REAL) : BOOLEAN;

BEGIN
in_between := ABS (x_endl - x_end2) + ABS (y_endl - y_end2) =
ABS (x_endl - x_test) + ABS (y_endl - y_test) +
ABS (x_end2 - x_test) + ABS (y_end2 - y_test)
END; { in_between }

BEGIN { separate }
cross_123 := crossproduct (xi, yi1, x2, y2, x3, y3);
cross_124 := crossproduct (xi, yi, x2, y2, x4, y4);

IF cross_123 * cross_124 > 0 THEN { points 3 and 4 are on same side }
separate := TRUE { of line from points 1 to 2 }

ELSE BEGIN
-1_2_on_same_side_of_3_4 := crossproduct (x3, y3, x4, y4, xi, yl1) *
crossproduct (x3, y3, x4, y4, x2, y2);

IF _1_2_on_same_side_of_3_4 > 0 THEN
separate := TRUE { points 1 and 2 on same side }

ELSE IF (cross_123 <> 0) OR (cross_124 <> 0) OR

(.1_2_on_same_side_of_3_4 <> 0) THEN
separate := FALSE { lines completely intersect }
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{ For the remaining tests below, the points are necessarily collinear.
Test where on the line that the line segment from points 1 to 2 falls
relative to line segment from points 3 to 4. }

ELSE IF in_between (x3, y3, x1, yi, x2, y2) THEN
separate := FALSE

ELSE IF in_between (x4, y4, x1, yi, x2, y2) THEN
separate := FALSE

ELSE IF in_between (xi, yi1, x3, y3, x4, y4) THEN
separate := FALSE

ELSE
separate := TRUE

END
END; { separate }

BEGIN { uncrossed }
valid := TRUE;
i -peints;

n
1

j

WHILE valid ARD (j <= n_points) DO BEGIN
{ Ensure that line is separate from side of polygon unless excluded }
IF NOT (i IN excluded) THEN

valid := separate (xi, y1, x2, y2, x[il, y[i], x[jl, y[j1);

uncrossed := valid
END; { uncrossed }

If the polygon .3 such that the points are clockwise order, the points may
be re-arranged by swapping point 1 with point "n_point", point 2 with peint
"n_point - 1", etc.. This routine is used by "get_points" and in the
MANHAT program. }

PROCEDURE reverse_order;

VAR
half_way, p : point_range;
temp_x, temp_y : REAL;

BEGIN
half_way := n_points DIV 2;
FOR p := 1 TO half_way DO BEGIN { swap coordinates between “p" and }
temp_x := x[p]; { “"npoints + 1 - p" }
temp_y := ylpl;
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x[p] := x[n_points + 1 - p];
y[p] := y[n_points + 1 - pl;
x[n_points + 1 - p] := temp_x;
y[n_points + 1 - p] := temp_y
END
END; { reverse_order }

This routine gets the definition of the polygon from the user. It also
verifies that the polygon is valid (with sides that do not intersect),
ensures that the polygon is convex if that is required by "must_be_convex"
parameter, ensures that the points defining the polygon are arranged in
counter-clockwise order, and outputs the polygon to an output file. }

PROCEDURE get_points (must_be_convex : BOOLEAN; filename : string_type);

VAR
P : point_range;

This function tests if the polygon with ’'n_points’ sides snecified in the
arrays 'x’ and 'y’ is convex. The method used is to look .t the angle nt
every vertex of the polygon formed by the two sides adjacent to the
vertex and to determine if the angle there is convex. (The test for
convexity does not assume that the points in the polygon are arranged in
counter-clockwise order, so the sign of using the crossproduct must not
alvays be positive, but rather, must always be the same.) }

FUNCTION convex_polygon_test : BOOLEAN;

VAR
P : point_range;
convex_counter_clockwise, convex_clockwise : BOOLEAN;
xprod : REAL;

BEGIN
P :=1;
convex_counter_clockwise := TRUE;
convex_clockwise := TRUE;

WHILE (convex_counter_clockwise OR convex_clockwise) AND
(p <= n_points) DO BEGIN
xprod := crossproduct (x[minus_1i (p)], y[minus_1 (p)], x[pl, y[pl,
x[plus_1 (p)], ylplus_1 (p)1);
IF xprod > 0 THEN
convex_clockwise := FALSE;
IF xprod < O THEN
convex_counter_clockwise := FALSE;
P:=p+1
END;
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convex_polygon_test := convex_counter_clockwise OR convex_clockwise
EED; { convox_polygon_test }

This routine checks if the polygon ie valid -- i.e. has sides that do not
cross or even touch (except for adjacent sides). }

FUNCTION valid_polygon_test : BOOLEAN;

VAR
valid : BOOLEAN;
P : point_range;
exclude : point_set; { set of sides of the polygon to exclude }

BEGIN
{ special test for triangles -- points cannot be collinear }
IF n_points = 3 THEN
valid := crossproduct (x[1], y[1], x[2], y[2], x[3], y[3]) <> ¢

ELSE BEGIN
{ To test side 1 (from point 1 to point 2), note how three sides (the side
from points "n_points" to 1, the side from points 1 to 2, and the side
from points 2 to 3) must be excluded from the call to "uncrossed”. }
exclude := [i, 2];
valid := uncrossed (x[1], y[1], x[2], y[2], exclude + [n_points]);

P := 2; { now test the other sides (except final two) }
WHILE valid AND (p <= n_points - 2) DO BEGIN
exclude := exclude + [p+1]; { add to (via union operator) set }
valid := uncrossed (x[pl, y[pl, x[p+1], y[p+1], exclude);
Pi:i=p+1
END
ERD;

IF NOT valid THEN
WRITELN (° Invalid polygon. Please re-input:’)

{ If polygon must be convex, then invoke convex polygon test }
ELSE IF must_be_convex AND NOT convex_polygon_test THEN BEGIN
WRITELN (° Polygon must be convex. Please re-input:’);
valid := FALSE
END;

valid_polygon_test := valid
END; { valid_polygon_test }

BEGIE { get_points }
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{ First get number of points }
REPEAT
WRITE (’Enter number of points = ’);
READLN (n_points);
IF (n_points < 3) OR (n_points > max_points) THEN
WRITELN (’ (must be >= 3 and <= ’, max_points, ’)’)
UNTIL (n_points >= 3) AND (n_points <= max_points);

{ Read in the x and y coordinate pair for each of the ’n_points’ points }
REPEAT
FOR p := 1 TO n_points DO BEGIN

WRITE (’ x(’, p:2,'], Y[, p:2, ] =);
READLN (x[pl, y[pl)
END;

UNTIL valid_polygon_test;

{ Now find the direction in which the points in the polygon are arranged by
the sign of the area of the polygon using the crossproduct method }
polygon_area := 0;

FOR p := 2 TO n_points - 1 DO
polygon_area := polygon_area +
crossproduct (x[1], y[1l, x[pl, y[pl, x[p+1], y[p+1l);

IF polygon_area < 0 THEN { if in clockwise order, then reverse order }
reverse_order;

polygon_area := 0.5*ABS (polygon_area);
WRITELN (’Polygon area = ’,polygon_area);
WRITELN;

{ Open output file for saving results }
ASSIGN (output_file, filename);
REWRITE (output_file);

WRITELN (output_file, ’'POLYGON AREA = ’,polygon_area:7:6);
FOR p := 1 TO n_points DO
WRITELN (output_tfile, ’ X[’,p:2,’] Y[’,p:2,’] = ’,x[pl,’ ’,y[pl);

{ Other initializations }
operation_count := 0
END; { get_points }

o e e mecemmem——m—as e ————
It is not possible to use the "=" operatcr to test for equality between two
real numbers. Instead, two real numbers that are very close -- within some
"epsilon"-- are considered, for all intents and purposes, equal. An

appropriate value for "epsilon" depends on the precision of the
floating-point number representation. }
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FUNCTION real_equal (a, b : REAL) : BOOLEAN;

CONST
epsilon = 1E-10;

VAR
differe.ce, abs_max, abs_b, relative_error : REAL;

BEGIN
IF a = b THEN { the obvious test }
real_equal := TRUE

ELSE BEGIN
difference := ABS (a - b);

IF difference < epsilon THEN { close enough }
real_equal := TRUE

ELSE BEGIN
abs_max := ABS (a);
abs_b := ABS (b);
IF abs_b > abs_max THEN
abs_max := abs_b;

relative_error := difference/abs_max;
IF relative_error < epsilon THEY { compare relative error }
real_equal := TRUE

ELSE
real_egual := FALSE
END -
END
END; { real_equal }

This system-specific routine is intended to store the current CPU usage for
for the user process, so that it can be compared after the comput :tions in
the program have been run. On this system, which is single-user, we can
use the current time. }

PROCEDURE start_timer;

VAR
h, m, s, cs : WORD;

BEGIN
GetTime (h, m, s, cs5);

initial_time := m + 60*h;

initial_time := cs + 100*(s + 60*initial_time)
END; { start_timer }
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This is the complement of "start_timer" in that it takes the current CPU
usage for the user process, and subtracts it from the CPU usage stored by
"start_timer" to compute the elapsed CPU time. Note that our
implementation here assumes that "start_timer" and "stop_timer" are both
called during the same day. }

PROCEDURE stop_timer;

VAR
h, m, 8, cs : WORD;

BEGIN
GetTime (h, m, s, cs);
elapsed_time := m + 60#h;
elapsed_time := cs + 100*(s + 60%elapsed_time); ' -
elapsed_time := elapsed_time - initial_time;

WRITELN (output_file)
END; { stop_timer }

This routine outputs the result in "distance" with the label in
“result_name" to the user console, and to "output file" which was oponed by
"get_points". }

PROCEDURE print_results (result_name : string_type; distance : REAL);

BEGIR

WRITELN (result_name, distance);

WRITELN (output_file, result_name, distance)
ERD; { print_results }

This routine is the final action of the progrum, showing the elapsed time
and closing “"output_file". }

PROCEDURE terminate (show_operation_count : BOOLEAN);

BEGIN
WRITELN (’Elapsed time = ’,elapsed_time/100:2:1,’ seconds’);
WRITELN (output_file, ’Elapsed time ~ ’,elapsed_time/100:2:1,’ seconds’);

IF show_operation_count THEN BEGIN

WRITELN (’Operation count = ’,operation_count);

WRITELN (output_file, ’Operation count = ’,operation_count)
END;
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CLOSE (output_file)
END; { terminate }

This routine reads the parameters "n_iterations" (number of samples) and
"geed" (for the random number generator) that are used by the Monte Carlo
simulation. }

PROCEDURE got_Monte_Carlo_parameters (VAR n_iterations, seed : INTEGER);

BEGIN

WRITE (’Number of iterations in simulation = ?);

READLN (n_iterations);

WHILE n_iterations < 1 DO BEGIN
WRITELN (° (must be > 0)’);
WRITE (’Number of iterations in simulation = ’);
READLN (n_iterations)

ERD;

operation_count := n_iterations;

WRITE (’Random number seed = ?);
READLN (seed);
IF seed < O THEN seed := -seed;

{ Turbo Pascal only: initialization of random number generator }
RandSeed := seed;

WRITELN
END; { get_Monte_Carlo_parameters }

This procedure returns two random numbers that are uniformly distributed
between 0 and 1 {for the Monte Carlo simulation). The implementation here
is specific to Turbo Pascal and does not actually modify ’seed’. }

PROCEDURE new_random (VAR seed : INTEGER; VAR ri, r2 : REAL);
BEGIN
rl andom; { Turbo Pascal function to get pseudo-random number }

:= R
r2 := Random
END; { nsw_random }
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A.2 Numerical method for the Manhattan metric

A.2.1 Pascal Source Code

This program implemonts the method in Chapter 2 to find the expected
Manhattan distance between two uniformly, identically, and independently
distributed points in a polygon.

Written in Turbo Pascal, Version 4.0.

Runs under PC-DOS/HS-DOS Version 2.0 or later.

Runs on IBM PC or compatible.

Written by Arthur Hsu, 1984 (revised January 1990).

PROGRAM manhattan;

{$I BASICS.PAS} { Turbo Pascal command to include external file
"BASICS.PAS" containing basic polygon routines
-- see listing in Appendix A.1.2 }
TYPE
class_types = (open, close, join, divide, intermediate);
channel_range = 0..max_points;
connexion_range = -max_points..max_points;

VAR
i, d : point_array;
class : ARRAY[point_range] OF class_types; { class for each vertex }

n_channels, n_zones : channel_range; { number of channels, zones }
channel : ARRAY[point_range] OF { parameters per channel }
RECORD

connexion : ARRAY[point_range] OF connexion_range;
low_i, high_i : REAL
END;
zone : ARRAY[point_range] OF { parameters for each zone }
RECORD
area, centre, intrazonal_distance : REAL;
in_channel : point_range
END;
average_x, average.y : REAL; { avg distance in each axis }

This procedure finds the "class" for each point ’p’, and sets the array
‘class’ accordingly. The default class is ’intermediate’, and four special
classes are ’open’, ’close’, ’join’, and ’divide’. }

PROCEDURE determine_classes;

VAR
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P, high_p, initial_p : point_range;
continue : BOOLEAN;

This routine identifies the class for point ’p’ given that the points ’p’
through ’'high_p’ are all contiguous points including ’p’ that share the
same ’'i’ value. }

PROCEDURE identify_class (p, high_p : point_range);

VAR
previous, next : point_range;
convex_turn : BOOLEAN;

BEGIN ,
{ Based on definition for ’p’ and ’high_p’, 'i[previous]’ <> ’i[p]’, and }
previous := minus_1 (p); { ‘’ilnext]’ <> ’i[p]’ }
next := plus_1 (high_p);

{ Separate the classes }
IF (ilp] - ilprevious])*(i[p] - ilnext]) <= O THEN
class[p] := intermediate

ELSE BEGIN { previous and next are on same side of p }
convex_turn := crossproduct (i[previous], d[previous]l, il[pl, dlp],
ilhigh_p], d[high_p]) + crossproduct (il[previous], d[previous],
i[high_p], d[high_p]l, ilnext], d[next]) > 0;

IF i[p] < ilnext] THEN { p is to the left of previous and next }
IF convex_turn THEN { p is a convex vertex }
class[p] := open
ELSE { p is a concave vertex }
class[p] := divide
ELSE { p is to the rmight of previous and next }
IF convex_turn THEN { p is a convex vertex }
class[p] := close
ELSE { p is a concave vertex }
class[p] := join
END { ELSE }
END; { identify_class }

Y

BEGIN { determine_classes }

{ get initial ’p’, the point in the group of points adjacent to and sharing
the same ’i’ value as point 1 that has the lowest relative index }
initial_p := 1;

WHILE i[initial_p] = i[minus_1 (initial_p)] DO
initial_p := minus_1 (initial_p);
P := initial_p;
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REPEAT
{ find largest group of points contiguous with ’p’ with same ’i’ value }
high_p := p;
WHILE iflhigh_p] = i[plus_1 (high_p)] DO
high_p := plus_1 (high_p);

identify_class (p, high_p);
{ having assigned class to ’p’, set all others in group to ’intermediate’ }
WHILE p <> high_p DO BEGIN
p :* plus_1 (p);
class[p] := intermediate
END;

plus_1 (high_p)

P :=
UNTIL p = initial_p
END; { determine_classes }

Having identified the class for all of the points, this routine divides the
polygon into zones and channels }

PROCEDURE divide_polygon_into_zones_and_channels;

TYPE
edge_parameters =
RECORD
high_index, low_index : point_range;
i_value, high_d, low_d : REAL
END;
VAR

P, P1 : point_range;

¢ : channel_range;

left _edge : ARRAY[point_range] OF edge_parameters;

join_channel : ARRAY[point_range] OF channel_range; { this indicates if
the point is of the ’join’ class where there is channel that has
already been found whose right edge is at that point }

This routine starts at the left edge of the channel and sweeps to the
right until the right edge of the channel, in so doing, dividing the
channel into zones. The left edge is specified by the left edge
parameters and ’low_i’. The right edge is encountered when a ’close’,
’join’, or ’divide’ (internal) is encountered. }

PROCEDURE process_channel_into_zones (c : point_range);

TYPE
index_types = (high, low, divider);
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VAR

old_left : edge_varameters;

next_low, next_high, index : point_range;
index_type : index_types;

alpha, beta, lambda : REAL;

For the current left edge, this routine finds the index of the point in
the channel with next highest ’i’ value. }

PROCEDURE find_next_index (VAR next_high, next_low, next_index :
point_range; VAR next_index_type : index_types);

VAR
divide_point : point_range;
next_i : REAL;

BEGIN
WITH left_edge[c] DO BEGIHN
next_high := minus_1 (high_index); { since points in polygon are }
next_low := plus_1 (low_index); { 1in counterclockwise order }

IF i[next_high] < i[next_low] THEN BEGIN { take lower one }
next_index_type := high;
next_index := next_high
END
ELSE BEGIN
next_index_type := low;
next_index := next_low
END;
next_i := i[next_index];

{ But must check for divide cases in between the low and high envelopes }

FOR divide_point := 1 TO n_points DO
IF class[divide_point] = divide THEN
IF (i[divide_point] >= i_value) AND (i[divide_point] < next_i)
THEN { if in possible ’i’ range }
IF (crossproduct (il[next_high], d[next_high], i[high_index],
d[high_index], i[divide_point], d[divide_point]) > 0) AND
(crossproduct (i[low_index], d[low_index], i[next_low],
d[next_low], ildivide_point], d[divide_point]) > 0)
THEN BEGIN { if in middle of channel }
next_index_type := divider;
next_index := divide_point;
next_i := i[next_index]
END
EKD
END; { find_next_index }
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This routine sets up the necessary connexion(s} to the channel(s) at
the right and of the channel: there will be two new channels formed for
each ’divide’ class; one new channel for each pair of ’join’-clase
channels; and no new channels for a ’close’ class. }

PROCEDURE channel_interface;

VAR
upper, lower : point_range;
BE JIN
IF class[index] = divide THEN BEGIN
n_channels := n_channels + 1; { set up upper channel }

channel[c] . connexion[n_channels] := n_channels;
left_edge[n_channels] := ieft_edge(c];
WITH left_edge[n_channels] DO BEGIN
low_index := index;
low_d := d(index]
END;

n_channels := n_channels + 1; { set up iower channel }
channel [c] . connexion{n_channels] := n_channels;
left_edge[n_channels] := lsft_edgelc];
WITH left_edge(n_channels! DO BEGIN
high_index := index;
high_d := d[index]
END;
END

ELSE IF class[index] = join THEN
IF join_channel(index] = 0 THEN { tirst of a pair of channels }
join_channel[index] := ¢
ELSE BEGIWN { second of the pair }
{ Distinguish between the upper and lower of the pair of join channels }
IF left_edgel[c] . high_d >
left_edge[join_channel{index]] . high_d THEN BEGIN
upper := c;
lower := join_channel[index]

END

ELSE BEGIN
upper := join_channel[index];
lower := ¢

END;

n_channels := n_channels + 1;

{ Set up connexions }
channel[upper] . connexion[n_channels] := n_channels;
channel[lower] . connexion[n_channels] := n_channels;
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{ Set up new channel }

WITH left_edge[n_channels] DO BEGIN
high_index := left_edge{upper] . high_index;
low_index := left_edge[lower] . low_index;
i_valus := i[index];
high_d := left_edge[upper] . high_d;
low_d := left_edge[lower] . low_d

ERD

END { ELSZ }
END; { channel_interface }

BEGIN { process_channel_into_zones }
channel([c] . low_i := left_edgel[c] . i_value;

{ For each zone, set up parameterc }
REPEAT
old_left := left_edgel[c];
find_next_index (next_high, next_low, index, index_type);

{ Update new left_edge[c] }
WITH left_edge[c] DO BEGIN
i_value := i[index];

{ Find high_ d }
IF index_type = high THEN BEGIN { zone onds due to high point }
high_index := next_high;
high_d := d[next_high] { high_d at vertex }
END
ELSE IF i[next_high] > old_luft . i_value THEN
high_d := high_d + (d[next_high] - high_d)=*
(i_value - old_left . i_value)/ { interpolate high_d }
(i[next_high] - old_left . i_value)
ELSE
high_d := d[next_high];

{ Similarly, find low.d }
IF index_type = low THEN BEGIN

low_index := next_low;
low_d := d[next_low]
END

ELSE IF i[next_low] > old_left . i_value THEN
low_d := low_d + (i_value - old_left . i_value)* { interpolate }
(dinext_low] - low_d)/(i[next_low] - old_left . i_value)
ELSE
low_d := d[next_low]
END; { WITH left_edgel[c] }
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{ Add new zone }
n_zones := n_zones + 1;
WITH zone[n_zones] DO BEGIK

alpha := old_left . high_d - old_left . low_d; { left edge }

beta := left_edgelc] . high_d - left_edge[c] . low_d; { right )}

lambda := left_edgelc] . i_value - old_left . i_value; { width }

area := 0.5*lambda*(alpha + beta); { area of trapezoid }

IF area = 0 THEN { in class area is zero }
n_zones := n_zones - 1 { remove zone }

ELSE BEGIN

in_channel := c;
{ from Equation 2.12 }
centre := old_left . i_value +
(alpha + 2*beta)*lambda/(3*(alpha + beta));
{ adapted from Equation 2.8 }
intrazonal_distance := (SQR(alpha) + 3+alpha*beta + SQR (beta))*
lambda*SQR(lambda)/(15+SQR(area))
END
END
UNTIL class{index] <> intermediate; { until end of channel }

{ Set channel parameters }
channel{c] . high_i := left_edge[c] . i_value;
channel_interface { interface to other channels }
ERND; { process_channel_into_zones }

BEGIN { divide_polygon_into_zones_and_channels }

{ Initializations }
n_channels := 0;
n_zones := 0;
FOR p := 1 TO max_points DO
FOR p1 := 1 TO max_points DO
channel(p] . connexion(pi] := 0; { channels are unconnected }
FOR p := 1 TO n_points DO
join_channel([p] := 0; { channels not joined to others }

{ Start new channels at all ’open’ classes, and set left edge parameters }
FOR p := 1 TO n_points DO
IF class[p] = open THEN BEGIN

n_channels := n_channels + 1;

WITH left_edge[r_channels] DO BEGIN
high_index := p;
low_index := p;
i_value := ifp];
high_d := d[p];
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low_d := d[p]
END
END;

{ Loop through all channels. Note that as a side-effect of
'process_channels_into_zones’, n_channels may be incremerted }
c := 0;
WHILE ¢ < n_channels DO BEGIN
c = c¢c + 1;
process_channel_into_zones (c)
END
END; { divide_polygon_into_zones_and_channels }

This routine, given the zone and channel parameters, actualiy computes the
expected Manhattan distance in the independent axis. }

FUNCTION compute_distance_in_independent_axis : REAL;

VAR
distance : REAL;
interchannel : ARRAY[point_range, point_range] OF
RECORD
edgel, edge2, common_path : REAL
ERD;

In oxrder to reduce the computation in the function interzonal_distance,
this routine not only sets up the rest of the inter-channel connexions,
but computes the interchannel distances as well in setting up the array
’interchannel’. }

PROCEDURE complete_connexions;

VAR
ci, c2, destination, int_channel : point_range;
done : BOOLEAN;
int_position, next_int_position : REAL;
{ int stands for intermediary channel }

BEGIN

{ First reflect the upper right “triangle" of matrix into the lower left }
FOR c¢i1 := 1 TC n_channels - 1 DO
FOR ¢c2 := c1 + 1 TO n_channels DO
IF channel[c1i] . connexion[c2] <> O THEN
channel[c2] . connexionl[ci] := -¢i;

{ Then fill the matrix }
REPEAT
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done := TRUE;
FOR c1 := 1 TO n_channels DO
WITH channel(c1] DO
FOR ¢2 := 1 TO n_channels DO
IF ABS (connexion[c2]) = c2 THEN
FOR destination := 1 TO n_channels DO
IF (connexion[destination] = 0) AND
(channel([c2] . connexion[destination] <> 0) THEN BEGIN

connexion[destination] := connexion[c2];
done := FALSE
END
UNTIL done;
{ Now set up interchannel -- only upper right triangle need be done }

FOR c1 := 1 TO n_channels - 1 DO
FOR ¢2 := c1 + 1 TO n_channels DO
WITH interchannel[ci, c2] DO BEGIN
WITH channel(ci] DO
IF connexion[c2] > O THEN { ’'c2’ to right of ’'ci’ }
edgel := high_ i
ELSE
edgel := low_i; { ’c2’ to left of ’ci’ }
WITH chani:el(c2] DO
IF connexionf[ci] > O THEN
edge2 := high_ i
ELSE
edge2 := low_i;

{ Now find the common_path length by traversing all intermediary channels }

common_path := 0;
int_channel := ci;
int_position := edgel;
REPEAT

WITH channel[int_channel] DO BEGIN
IF connexion[c2] > O THEN
next_int_position := high_ i
ELSE
next_int_position := low_i;
common_path := common_path +
ABS (next_int_position - int_position);
int_position := next_int_position;
int_channel := ABS (channel[int_channel] . connexion[c2])
END
UNTIL int_channel = c2
END { WITH interchannelfci, c2] }
END; { complete_connexions }

This function returns the expected distance between zonel and zone2 (in
the direction of the independent axis }
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FUNCTION interzonal_distance (zonel, zone2 : point_range) : REAL;

VAR
channeli, channel2 : point_range;

BEGIN
channell := zone[zonel] . in_channel;
channel2 := zone[zone2] . in_channel;

IF channeli = channel2 THEN
interzonal _distance := ABS (zone[zonel] . centre -
zone[zone2] . centre)
ELSE
WITH interchannel[channell, channel2] DO
interzonal _distanca := ABS (edgel - zone{zoneil] . centre) +
common_path + ABS (zone[zone2] . centre - edge2)
END; { interzonal_distance }

With all parameters set up, this routine actually completes the
calculation for the expected distance (according to Equation 2.13). }

PROCEDURE sum_up_distance_components;

VAR

z1, 22 : point_range;
total_area : REAL;

BEGIN
distance := 0;
total_area := 0;

FOR z1 := 1 TC n_zones DO
WITH zone[z1] DO BEGIN
total_area := total_area + area;
distance := distance + SQR(area)*intrazonal_distance;

FOR z2 := z1 + 1 TO n_zones DO
distance := distance +

2 * area * zone[z2] . area * interzonal_distance (z1, z2)
END; { WITH zone(z1] }

distance := distance/SQR (total_area)
END; { sum_up_distance_components }

BEGIN { compute_distance_in_independent_axis }
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complete_connexions;

sum_up_distance_components;

compute_distance_in_independent_axis := distance
END; { compute_distance_in_independent_axis }

FUNCTION apply_method_for_independent_axis
(independent, dependent : point_array) : REAL;

BEGIN
i := independent;
d := dependent;

determine_classes;

divide_polygon_into_zones_and_channels;

apply_method_for_independent_axis := compute_distance_in_independent_axis
END; { apply_method_for_independent_axis }

BEGIN { MAIN - manhattan }
get_points (FALSE, ’*MANHAT.OUT’);
start_timer;

average_x := apply_method_for_independent_axis (x, y);
reverse_order;
average_y := apply_method_for_independent_axis (y, x);

stop_timer;
print_results (’Expected Hanhattan Method = ’,

average_x + average_y); { according to Equation 2.3 }
terminate (FALSE)
END. { MAIN - manhattan }
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A.2.2 Numerical Exampies

To demonstrate the program for the Manhattan metric, we have provided some numeri-
cal examples. The computation time required varied from 0.1 seconds for triangles and
quadrilaterals, to 0.6 seconds for a 20-sided regular polygon, to 1.0 seconds for an irregular,
concave 20-sided polygon.

Example A-1. Unit Square

Our first example is of a unit square. We will also use this example to demonstrate how

0, 1) (1, 1)

(0,0) (1,0)

Figure A-1: A unit square

to use the program. To start the program on an MS-DOS machine, the user would type
“MANHAT”. The user would first enter the number of points in the polygon - in this
case, 4 — and then the coordinates for each point defining the polygon. Then the program
would calculate the expected Manhattan distance between two random points in the defined

polygon. For this example, the user would see on the console:

Enter number of points
X[ 11, Y[ 1]
x[ 2], Y[ 2]
X[ 3], Y[ 3]
X[ 4], Y[ 4]
Polygon area = 1.0000000

[ L2 T I | B [ B |}
O O = = O W
O = = OO0

00E+00

Expected Manhattan Method = 6.6666666667TE-01
Elapsed time = 0.1 seconds
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There is also an output file created called “MANHAT.OUT” that contains the following

text:

POLYGON AREA = 1.000000
X[ 1] Y[ 1] = 0.0000000000E+00 0.0000000000E+00
X{ 2] Y[ 2] = 1.0000000000E+00 0.0000000000E+00
X[ 31 Y[ 3] = 1.0000000000E+00 1.0000000000E+00
X[ 4] Y[ 4] = 0.0000000000E+00 1.0000000000E+00

Expected Manhattan Method = 6.6656666667E-01
Elapsed time = 0.1 seconds

The calculated result of 0.666667 matches the previously known value.

We performed further experiments on the square. If the square was translated elsewhere
in the coordinate system - for example, a unit square where the lower-left corner is at
(50,100) - the result is still the same. If the lengths of the sides of the square were scaled,
the resulting expected distance is scaled proportionately. (For example, for a square with
sides of length 100, the expected distance is 66.666667.) If we used more than 4 points to

define the same square such as in Figure A-2, the result was still the same.

(0,1) (1, n
8 7
4
9
1 2 3
(0,0) (1,0)

Figure A-2: A nonagon shaped like a square

Example A-2. Rotated Unit Square

Using the Manhattan metric, the expected distance of a polygon is affected if the polygon
is rotated. Figure A-3 shows a unit square that is rotated, and some numerical results at

different rotation angles are given in Table A-1.
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(0,12)

-1l (<2
&% T

(0,0)

Figure A-3: A unit square rotated by 45°

Rotation angle  Expected Manhattan distance

0° 0.666667
15 0.565829
30 0.662464
45 0.659966

Table A-1: Expected Manhattan distance within a unit square that is rotated

Example A-3. Other regular polygons

We can experiment with other regular polygons of unit area. Because the orientation
(rotation) of the polygon affects the expected distance, our examples in Table A-2 all are

of regular polygons that have at least one side that is parallel to the z-axis.

It is known that the expected Manhattan distance between two random points in a
circle of unit area is 3%27; ~ 0.650403. ! It is not surprising that the expected Manhattan
distance of a regular polygon approaches this value as the number of sides increases since

the shape of a regular polygon approaches a circle as the number of sides is increased.

'Samuel Eilon. C.D.T. Watson-Gandy aud Nicos Christofides, Distribution Management: Mathematical
modelling and practical analysis (New York: Hafner Publishing Company. 1971). po 163,
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Number of sides Expected Manhattan distance

3 0.705543
4 0.666667
5 0.655374
6 0.652637
10 0.650676
15 0.650456
20 0.650420

Table A-2: Expected Manhattan distances for various regular polygons

Example A-4. Linear figure

Figure A-4: A very thin rectangle that have been rotated by 45°

Regular polygons are fairly “round” in the sense that they have a shape that is fairly
similar to a circle. Consequently, in Example A-2, we found that rotating the figure had
a relatively small effect. However, in this example, we will consider a very thin rectangle
that approaches a line segment in shape. The expected Manhattan distance is 0.333667
for a rectangle of length 1 and width 0.001. This could have been calculated knowing that
the expected Manhattan distance in a rectangle aligned parallel to the = and y axes is
w,

For an infinitesimally thin rectangle that is parallel to the z-axis, the distance hetween
two points is the difference between their + coordinates which is the same as the straight-
line distance. However, if we rotate the rectangle by 45° as in Figure A-4, the expected
Manhattan distance is 0.471405 which is approximately /2 times greater than that of the

“unrotated” rectangle. Even though both rectangles have the identical shape, the difference
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is to be expected because the Manhattan distance between the two points is a factor of
(sin@ + cos 6) greater than the straight-line distance, where 8 is the angle of rotation. In

this case, with @ = 45°, the factor is sin 45° + cos 45° = V2.

Example A-5. Complex concave polygon

4

10 -+

O
(=
N
>
-
N+
~J
-
O

b

Figure A-5: A complex concave polygon

This example tests a case of a polygon (shown in Figure A-5) with vertices of all of the
types of classes (open, divide, join, intermediate, close) that were described in Chapter 2.

The expected Manhattan distance is 7.584389.

Example A-6. Another concave polygon

The previous example of a concave polygon produced a result that cannot easily be
verified. In this example, we will test the concave polygon shown in Figure A-6 that has

been contrived so that we can predict the expected distance. The polygon consists of two
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6 (11, 7)

(1,5) (3,5) (7,5) (9,5)
7 6
(1,3) (9,3)
y 2
3
0 (1,1) 4 (11,1)
X (5,0)

Figure A-6: A concave polygon with two lobes connected by a narrow pathway

“lobes” of equal size connected by a very narrow pathway. If the pathway has an area
that is infinitesimally small, then we would anticipate a 50% probability that the expected
distance would be for two random points in the same lobe, while the remaining 50% the
two random points would pe in opposite lobes. Because each lobe is a square with sides of
length 2, the “intralobal” expected distance is 3§3 ~ 1.333333. The length of the narrow
path is 30, and the expected distance to “connect” a point in a lobe to the end of the narrow
pathway is 2 (since the expected Manhattan distance between a random point in a square
and any one of the corners is the length of a side of the square). Because the expected
“connecting” distance is required at each lobe, the expected distance between two points in
opposite lobes is (2+ 30+ 2) = 34. Thus, we would anticipate that the expected Manhattan
distance to be the average of 1.333333 and 34, which is 17.666667. In fact, with the pathway
of thickness 0.000001, our program produces an expected distance of 17.666657.
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A.3 Numerical method for the Euclidean metric

A.2.1 Pascal Source Code

This program implements the method in Chapter 3 to find the expected
Euclidean distance between two uniformly, identicaliy, and independently
distributed points in a convex prlygon.

Written in Turbo Pas~al, Version 4.0.

Runs under PC-D0OS/MS-D0S Version 2.0 or later.

Runs on IBM PC or compatible.

Written by Arthur Hsu, 1984 (revised January 1990).

PROGRAM euclidean;

{$I BASICS.PAS} { Turbo Pascal command to include external file
"BASICS.PAS" containing basic polygon routires
-- see listing in Appendix A.1.2 }

CONST
max_conjunctions = 190; { <-- max_points*(max_points - 1) }

TYPE
pivot_type = (cis, trans);
sequence_element = { each element (scan line) in the sequence }
RECORD
point, side : point_range;
pivot : pivot_type
END;
conjunction_range = 0..max_conjunctions;
conjunction_element = { detines each conjunction }
RECORD
angle : REAL;
cis_point, trans_point : point_range
END;
VAR
sequence : ALRAY[point_range] OF { contains entire sequence of }
sequence_element; { scan lines }
n_conjunctions : conjunction_range; { number of conjunctions }
conjunction : { all conjunction angles }
ARRAY [conjunction_range] OF conjunction_element;
phi : { all angles between points }
ARRAY [point_range, point_range] OF REAL;
distance_result : REAL; { holds expected distance result }



This procodurc takes the indicies of two elements (scan lines) in the
sequence and ctwaps them. }

PROCEDURE swap_sequence (index1, index2 : point_range);

VAR
temp : sequence_element;

BEGIN
temp := sequence[index1];
sequence[index1] := sequence[index2];
sequence[index2] := temp

END; { swap_sequence }

Step 3 in the Configurator Method summary {section 3.2.2).
This procedure generates the sequence of points for the first
cornfiguration. }

PROCEDURE generate_first_configuration;

VAR
p, pair_range, current_cis_side, current_trans_side : point_range;
continue_sort : BOOLEAK;
x_bottom, y_bottom, x_top, y_top : REAL;

BEGIN
{ Set first sequence by sorting the points in increasing y-coordinate }
FOR p := 1 TO n_points DO { initialize bubble sort }
sequence[p] . point := p;
pair_range := n_points - 1;

continue_sort := TRUE;

WHILE continue_sort DO BEGIN { bubble sort loop }
P := 1;
continue_sort := FALSE; { assume all is sorted }

WHILE p <= pair_range DO BEGIN
{ primary comparison test in sort }
IF y[sequence(p] . point] > y[sequence{p+1] . point] 'THEN BEGIN
swap_sequence (p, p+i);
continue_sort := TRUE
END
{ secondary test on x-coordinate }
ELSE IF (y[sequence[p] . point] = y[sequence[p+1] . point]) AND
(x[sequence[p] . point] > x[sequence[p+1] . point]) THEN BEGIN
swap_sequence (p, p+1);
continue_sort := TRUE { all i: not sorted }
END;
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p:=p +1
END;

pair_range := pair_range - 1 { no need to check last value again }
ERD;

{ Now that the ’sequence’ is sorted so that ’point’ is arranged in
increasing y-coordinate, set the other sequence fields ’pivot’ (pivot
type is either cis or trans) and ’side’ (the side crossed by the scan
line on the point) }

WITH sequence(i] DO BEGIN { the bottom point }
x_bottom := x[point];
y_bottom := y[point];
current_cis_side := point:
current_trans_side := point
END;

WITH sequence[n_points] DO BEGIN¥ { the top point }
x_top := x[point];
y_top := ylpoint]l;

ivot := trans; { by convention, top point is trans }
P y PP

side := point
END;

{ Conridering each point in ’sequence’, set ’pivot’ and ’side’ }
FOR p := 1 TO n_points - 1 DO
WITH sequence(p] DO
IF crossproduct (x_bottom, y_bottom, x_top, y._top, x[point],
yIpoint]l) >= O THEN BEGIN { point is on cis side }
pivot := cis;

side := current_trans_side;
current_cis_side := point
END
ELSE BEGIN { point is on trans side }

pivot := trans;
side := minus_1 (current_cis_side);
current_trans _side := point
ENRD
END; { generate_first configuration }

g B T T T
Steps 1 and 2 in the Configurator Method (section 3.2.2).
This routine sets up the conjunctions -- one for each pair of points. }

PROCEDURE set_up_conjunctions;
VAR

Pl, p2 : point_range;
continue_sort : BOOLEAN;
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pair_range, ¢ : conjunction_range;
temp : conjunction_element;

For each pair of points ’pi’ and ’'p2’, the conjunction angle is
determined, and also if which is the cis-point (the one nearest to the
scanning direction). }

PROCEDURE set_conjunction_parameters (¢ : conjunction_range);

BEGIN
WITH conjunction[c] DO BEGIN
IF y[p1) = y(p2] THER BEGIN { horizontal angle }

angle := 0;
IF x[p1] < x[p2] THEN { cis has the lesser x value }
cis_point := pil
ELSE
cis_point := p2
END
ELSE BEGIN
IF x[p1] = x{p2] THEN { vertical angle }
angle := 0.5*pi
ELSE BEGIN { all other angles }
angle := ARCTAN ((y(p1] - y[p2])/(x[p1] - x[p2]));
IF angle < O THEN { adjust so all angles in [0;pi) range }
angle := angle + pi
ERD;
IF y[p1] < y[p2] THEN { cis has the lesser y value }
cis_point := pi
ELSE
cis_point := p2
END;
.F cis_point = pi THEN { trans point is whatever is not cis }
trans_point := p2
ELSE

trans_point := pi;
phifp1l, p2] := angle;
philp2, p1l := angle

END { WITH conjunction[c] }
END; { set_conjunction_parameters }

BEGIN { set_up_conjunctions }
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n_conjunctions := 0; { number of unique conjunction angles }

FOR pt := 1 TO n_points - 1 DO
FOR p2 := p1 + 1 TO n_points DO BEGIN
n_conjunctions := n_conjunctions + 1;
set_conjunction_parameters (n_conjunctions)
END;

{ Now sort the cunjunctions by angle value using bubble sort }
continue_sort := TRUE;
pair_range := n_conjunctions - 1;
WHILE continue_sort DO BEGIN
continue_sort := FALSE;

c := 1;
WHILE c <= pair_range DO BEGIN
IF conjunction[c] . angle > conjunction[c+1] . angle THEN BEGIN
temp := conjunction(c+1];
conjunction[c+1] := conjunction[c];
conjunctionfc] := temp;
continue_sort := TRUE
END;
c:=c+1
END;

pair_range := pair_range - 1
END
END; { sct_up_conjunctions }

This procedure takes a facet as defined between two sequences (scan lines)
in ’'sequencel’ and ’sequence2’ and for the angles between ’thetal’ and
theta2’, and returns the factors to be summed into the numerator and
denominator terms of Equation 3.21 as "G" and "H".

This procedure can be internal to ’perform_angle_scan_method’. }

PROCEDURE facet_angle_scan (sequencel, sequence2 : sequence_element;
thetal, theta2 : REAL; VAR numerator, denominator : REAL);

VAR
numerator_term, numerator_termi, numerator_term2, denominator_term,
denominator_termi, denominator_term2, x_j, y_j : REAL;
parallel, same_based : BOOLEAN;
temp : sequence_element;

This routine finds the point (x_j;y_j) where the extensions of sides
’sidel’ and ’side2’ intersect. In the text of the thesis, the "joiner
point" is referred to as the intersection point Px. }
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PROCEDURE get_joiner_point (sidei, side2 : point_range;
VAR x_j, y_j : REAL; VAR parallel : BOOLEAN);

VAR
x1, y1, x2, y2, x3, y3, x4, y4 : REAL;
y.donominator : REAL;

BEGIN
x1 := x[side1]; x2 := x[plus_1 (sidel)];
y1 := y[side1]; y2 := y[plus_1 (sidei)];
x3 := x[side2]; x4 := x[plus_1i (side2)];
y3 := y[side2]; y4 := y[plus_i (side2)];

{ Theoretically, the next statement have should read:
IF crossproduct (xi, yi, x2, y2, x3, y3) =
crossproduct (xi, yi, x2, y2, x4, y4) THEN
but because two real numbers cannot be tested safely for equality using
the equal sign, we have implemented a special ’‘real_equal’ function that
tests if two real numbers are close enough to be considered equal }

IF real_equal (crossproduct (xi, y1, x2, y2, x3, y3),
crossproduct (x1, yi, x2, y2, x4, y4)) THER
parallel := TRUE

ELSE BEGIN
parallel := FALSE;

IF real_equal (y1, y2) THEN BEGIN { horizontal line }
y.denominator := y3-y4;
IF real_equal (y_denominator, 0) THEN
parallel := TRUE
ELSE BEGIN
y-j =y
x_j := x3 + (y_j-y3)*(x3-x4)/(y3-y4)
END
END

ELSE BEGIN
y_denominator := (y1-y2)*(x3-x4) - (x1-x2)*(y3-y4);
IF real_equal (y_denominator, 0) THEN
parallel := TRUE

ELSE BEGIN { compute intersection }

y-j := ((x1-x3)*(y1-y2)*(y3-y4) - yi*(x1-x2)*(y3-y4) +
y3*(x3-x4)*(y1-y2)) / y_denominator;

x_j = x1 + (y_j-y1)*(x1-x2)/(y1-y2)

END

END
END { ELSE }
END; { get_joiner_point }
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This routine embodies the heart of the method by finding the actual
terms in the expected distance expression. }

PROCEDURE scan_procedure (base_sequence, end_sequence : sequence_element;
opposite_based : BOOLEAN; x_j, y.j, thetal, theta2 : REAL;
VAR numerator_term, denominator_term : REAL);

VAR
al, a2, d_1_2, phi_1_2, phi_side, phi_hat, thetal_hat, theta2_hat,
average_theta, numerator_thetal, denominator_thetal,
rumerator_theta2, denominator_theta2 : REAL;

This function returns the altitude from (xp;yp) to the line on (xi;y1)
and (x2;y2). }

FUNCTION altitude (xp, yp, x1, y1, x2, y2 : REAL) : REAL;

BEGIN
altitude := ABS (crossproduct (xp, yp, x1, yi, x2, y2)/
SQRT (SQR (x1 - x2) + SQR (y1 - y2)))
END; { altitude }

This routine evaluates the integrals that form part of the numerator
expressions "G" and the denominator expression "H", as taken from
Equations 3.36 and 3.38. ’t’ and ’p’ represented the adjusted angles
theta and phi_hat. }

PROCEDURE evaluate_integrals (t, p : REAL;
VAR numerator_expression, denominator_expression : REAL);

BEGIN

numerator_expression :=
( ( 3%COS(6%t+7*p) + 3*COS(6*t+5+p) - 18+COS(4*t+5*p) - 18*COS(4*t+3%p)
+ 45+C0S(2*t+3%p) + 45+C0S(2+t+p) - 60+COS(p) )
» LEC (1 + coS(t+p)) / (1 - COS(t+p)))
- 12#C0S(5*t+6#+p) - 12#COS(5*t+4+p) + 68+COS(3*t+4*p) + 4*COS(3*t+2*p)
- 120*C0OS(t+2*p) + T2*COS(t) )
/ (6%C0S(4*t+4»p) - COS(6+t+6%p) - 15*COS(2*t+2*p) + 10 );

denominator_expression :=
( SIN(4*t+5*p) + SIN(4x+%+3%p) - 4*SIN(2%t+3*p) + 4*SIK(p) )
/ ( 2»C0S(4*t+4+p) - 8»COS(2*t+2*p) + 6)

END; { evaluate_integrals }
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BEGIN { scan_procedure }
operation_count := operation_count + 1i;

WITH base_sequence DO BEGIN
al := altitude (x[point], y[point], x[side], y([side],
x[plus_1 (side)], y[plus_1 (side)]);
phi_side := philside, plus_i (side)]
END;

IF opposite_based THEN BEGIN
a2 := 0;
WITH base_sequence DO
d_1_2 := SQRT (SQR (x[point] - x_j) + SQR (y[point] - y_j));
WITH end_sequence DO
phi_1_2 := phi[side, plus_1 (side)]
END

ELSE
WITH end_sequence DO BEGIN
a2 := altitude (x[point), y[point], x[side], y[sidel,
x[plus_1i (side)], y[plus_i (side)]);
d_1_2 := SQRT (SQR (x[base_sequence . point] - x[point]) +
SQR (y[base_sequence . point] - y[point]));
phi_1_2 := phi[base_sequence . point, point]
END;

{ adjustments }
average_theta := 0.5%(thetal + theta2);
IF average_theta < phi_1_2 THEN
phi_1_2 := phi_1_2 - pi;
IF average_theta < phi_side THEN
phi_side := phi_side - pi;
{ set parameters for ’evaluate_integrals’ }
thetai_hat := thetal - phi_1_2;
theta2_hat := theta2 - phi_1_2;
phi_hat := phi_1_2 - phi_side;
{ now evaluate them }
evaluate_integrals (thetai_hat, phi_hat, numerator_thetatl,
denominator_thetal);
evaluate_integrals (theta2 hat, phi_hat, numerator_theta2,
denominator_theta2);
numerator_term := d_1_2 / 60
* (SQR(SQR(a1)) + ai1*a2*SQR(al) + SQR(ai1*a2) + ai*a2*SQR(a2) +
SQR(SQR(a2)))
* ABS (numerator_thetal - numerator_theta2);
denominator_term := d_1_2
* 7a1»SQR(a1) + a2»SQR(a1) + ai»SQR(a2) + a2*SQR(a2))
* ABS (denominator_thetal - denominator_theta2)
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END; { scan_procedure }

BEGIN { facet_angle_scan }
IF sequencel . pivot = sequence2 . pivot THEN
same_based := TRUE

ELSE IF sequencel . side = plus_1 (sequence2 . side) THEN { bottom }
BEGIN
same_based := TRUE; { bottom point is both cis and trans }

temp := sequencel; { swap the two sequences }
sequencel := sequence2;
sequence2 := temp
END
ELSE IF sequence2 . side = plus_1 (sequencel . side) THEN { top }
same_based := TRUE { top point is both cis and trans }

ELSE BEGIN { opposite-based unless sides are parallel }
get_joiner_point (sequencel . side, sequence2 . side, x_j, y_j,
parallel);
same_based := parallel
END;

IF same_based THEN
scan_procedure (sequencei, sequence2, FALSE, 0, 0, thetal, theta2,
numerator_term, denominator_term)

ELSE BEGIN { opposite-based }
scan_procedure (sequencel, sequence2, TRUE, x_j, y_j, thetal, theta2,
numerator_termi, denominator_termi);
scan_procedure (sequence2, sequencei, TRUE, x_j, y_j, thetal, theta2,
numerator_term2, denominator_term2);
numerator_term := ABS (numerator_termi - numerator_term2);
denominator_term := ABS (denominator_termi - denominator_term2)
ERD;

numerator := numerator + numerator_term;

denominator := denominator + denominator_term
END; { facet_angle_scan }

With first configuration set up and conjunction angles sorted, this routine
does the main part of the method by doing steps 4, 5, and 6 of the
Configurator method. }

PROCEDURE perform_angle_scan_method (VAR distance : REAL);

VAR
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n_facets, f, cis_location, trans_location : point_range;
n_configurations, ¢ : conjunction_range;
numerator, denominator, thetai, theta2 : REAL;

BEGIN
n_configurations := n_conjunctions;
n_facets := n_points - 1;

numerator := 0;
denominator := 0;
theta2 := conjunction[n_conjunctions] . angle - pi;

FOR ¢ := 1 TO n_configurations DO BEGIN
{ Step 4 in Configurator method }
thetal := theta2;
theta2 := conjunction{c] . angle;

IF theta2 > thetal THEN { do it unless conjunctions are parallel }
FOR £ := 1 TO n_facets DO
facet_angle_scan (sequence(f], sequence[f+1], thetal, theta2,
numerator, denominator);

{ Step 5 in Configurator method - set up next configuration }
cis_location := 1;
WHILE sequence[cis_location] . point <> conjunction[c] . cis_point DO
cis_location := cis_location + 1;

trans_location := 1;
WHILE sequence[trans_location] . point <> conjunction[c] . trans_point
DO

trans_location := trans_location + 1;
swap_sequence (cis_location, trans_location); { swap sub-step }

WITH sequence[cis_location] DO { increment sub-step }
side := plus_1i (side);
WITH sequence[trans_location] DO
side := plus_1 (side);
{ ensure top/bottom pivot }
IF (cis_location = 1) OR (trans_location = 1) THEN
WITH sequence[1] DO BEGIN
pivot := cis;
side := plus_1i (side)
END;
IF (cis_location = n_points) OR (trans_location = n_points) THEN
WITH sequence[n_points] DO BEGIN

pivot := trans;
side := plus_1 (side)
END

END; { FOR c }
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{ Step 6 in Configurator method - distance calculation }
distance := numerator/denominator
END; { perform_angle_scan_method }

BEGIN { MAIN - euclidean }
get_points (TRUE, ’'EUCLID.OUT’);
start_timer;

generate_first_configuration;
set_up_conjunctions;
perform_angle_scan_method (distance_result);

stop_timor; .
print_results (’Expected Euclidean distance = ’, distance_result);
terminate (TRUE)

END. { MAIN - euclidean }
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A.3.2 Numerical Examples
Example A-7. Unit square

This example is the same as Example A-1 in section A.2.3 except for the distance met-
ric. The user interface is the same, and the output is very similar to the method for the
Manhattan metric.

The result that we obtained, 0.521405, matches what was previously calculated. Unlike

the Manhattan metric, rotating the square did not affect the expected distance.

Example A-8. Other regular polygons

The program for the Euclidean metric was tested with other regular polygons. As in the

Expected Computation Calls
Number of  Euclidean time to
sides distance (seconds) “scan_procedure”
3 0.554363 1.7 6
4 0.521405 3.6 15
5 0.514733 15.2 50
6 0.512614 14.3 49
7 0.511762 51.5 167
8 0.511364 41.7 153
10 0.511041 132.3 437
15 0.510867 580.8 1868
16 0.510858 504.0 1737
20 0.510839 1022.7 3416

Table A-3: Expected Euclidean distances for various regular polygons

Manhattan metric examples, we see in Table A-3 that as the number of sides increases, the
expected distance approaches that of a circle of unit area, which is 12%= ~ 0.510826. 2
However, the computational effort seems to be substantial-a 20-sided polygon requires 17
minutes of computation (on a PC clone). The computation time is closely linked with the
number of calls to the routine “scan_procedure”, and we can observe that the number of calls

does indeed follow the O(n3) complexity of the algorithm. Each call to “scan_procedure”

2Samuel Eilon. (".D.T. Watson-Gandy and Nicos Christofides, Distribution Management: Mathematical
modelling and practical analysis (New York: Hafner Publishing Company. 1971). p. 154
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involves numerous trigonometric and floating-point operations which the test machine is
relatively slow to calculate.

There appears to be an anomaly in the test results regarding the computational effort
as a function of the number of sides in the regular polygon-it takes more time to compute
the expected distance for a heptagon than a hexagon, and more time for a 15-sided polygon
than a 16-sided polygon. This is explained by the fact that polygons with an even-number
of sides will have many conjunction angles that are eliminated due to parallel sides and
parallel conjunctions. Furthermore, a facet defined between parallel sides is considered by
the procedure “facet_angle_scan” to be same-based, thus eliminating the need to compute

the intersection point Py, and requiring only one call to “scan_procedure”.

Example A-9. Different rectangle shapes

We will consider a rectangle with a unit length, and experiment by varying the width y, as

shown in Figure A-7. We see in Table A-4 that as we reduce y, the expected Euclidean

(0,y) (1, y)
4 3] 4
Y
1 2 Y
(0,0) (1,0)
- 1 —

Figure A-7: Rectangle in Example A-9

distance rapidly approaches the limit of 0.333333. Unfortunately, we could not reduce y
further than 0.1 without causing round-off errors to become apparent. (We know that
the inaccur;cies for small values of y in this example are due to round-off as opposed to
some methodological error because we have been able to compare results with the same
program implemented using floating-point numbers of greater precision. In the same tests,

the results from 1.0 to 0.1 were identical (to 8 or more significant figures), but helow 0.1, our
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v  Expected Euclidean distance

1.0 0.521405
0.5 0.402386
0.2 0.349759
0.1 0.338531

Table A-4: Expected Euclidean distances for different rectangles

PC implementation produced some values that diverged from the anticipated pattern, while
the implementation with more precise numbers produced accurate results for considerably

smaller values of y.)

A.3.3 Conclusions

Our experiments with the program for finding the expected Euclidean distance show that
a machine with powerful floating-point capabilities is highly desirable. In particular, the
hardware that we used in our experiments was slow and did not have enough precision. Our
previous implementation of this method (using VAX Pascal running on VAX/VMS) with
32-bit floating point (real) numbers provided extremely inaccurate results and we resorted to
double precision numbers (64-bits). Our examples here were performed using Turbo Pascal’s
48-bit floating-point numbers (with a 39-bit mantissa) which provided fairly accurate results
as long as there were no angles between lines that were almost parallel (producing acute
angles). However, this problematic situation was encountered often enough to suggest
porting the program over to a more suitable machine if detailed experiments are required.

As for expected Euclidean distances in convex polygons, it seems that this quantity is
bounded at the upper end by 0.510826 times the maximum dimension of the polygon and at
the lower end by 0.333333 times the maximum dimension, where we define the “maximum
dimension” of a convex polygon to be the longest possible length between two points in the
polygon. The value for the upper bound is taken from the circle, which is the “most convex™
shape, while the value for the lower bound is taken from a linear figure as in Example A-9,

which is the “least convex” shape that is still convex.
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A.4 Monte Carlo simulation

For the purposes of generating approximate values for the expected Manhattan and Eu-
clidean distance between two random points, we have implemented a Monte Carlo sim-
ulation. The Monte Carlo analysis is admittedly not complete, but serves as a basis for
verifying the results from the analytic methods.

In each run of the Monte Carlo program, expected distances are computed for hoth the

Euclidean and Manhattan distance metrics.

A.4.1 Pascal Source Code

This program implements a Monte Carlo simulation for finding the expected
Manhattan and Euclidean distances between two uniformly, identically, and
independently distributed points in a polygon.

Written in Turbo Pascal, Version 4.0.

Runs under PC-D0OS/MS-D0S Version 2.0 or later.
Runs on IBM FC or compatible.

Written by Arthur Hsu, 1984 (revised January 1990).

PROGRAM monte_carlo;
{$I BASICS.PAS} { Turbo Pascal command to include external file

"BASICS.PAS" containing basic polygon routines
-- see listing in Appendix A.1.2 }

CONST
max_real : REAL = 1.7E37;
TYPE
distances =
RECORD
Euclidean, Manhattan : REAL
END;
VAR
n_iterations, { number of iterations (samples) }
initial_seed : IRTEGER; { for random number generator }
polygon_is_convex : BOOLEAN; ’
concave_vertex : { iff vertex is concave }
ARRAY [point_range] OF BOOLEAN;
best_path : { in concave polygons, the length of }

ARRAY[point_range, point_range] { the best path between every pair }
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OF distances; { of concave vertices }
triangle : ARRAY([point_range] OF { triangles that meke up the polygon }
RECORD
base_x, base_y, alpha_x, alpha_y, beta_x, beta_y, range : REAL
END;
vertex : ARRAY[point_range] OF { the vertices of each triangle }
RECORD

vi, v2, v3 : point_range
END;

expected_distance, standard_deviation : distances;

This utility routine adds distance components (both Euclidean and
Manhattan).}

PROCEDURE add_distances (VAR distancei : distances; distance2 : distances);

BEGIN
WITH distancei DO BEGIN
Euclidean := Euclidean + distance2 . Eucl.. van;
Manhattan := Manhattan + distance2 . Manhattan
END
END; { add_distances }

This function returns true iff ’peinti’ and ’point2’ cannot be connected by
a line segment that is within the polygon by checking if the angle between
‘pointl’ and ’point2’ falls between the angle from ’pointi’ and the two
adjacent points. It is assumed that the points defining the polygon are
arranged in counter-clockwise order. }

FUNCTION backdoor (pointi, point2 : point_range) : BOOLEAN;
VAR

to_previous, to_following, to_point2 : REAL;

For reasons of efficiency and simplicity, this function will return an
approximate pseudo-angle that has the necessary property that if an angle
is greater than a second angle, then the pseudo-angle of the first angle
is greater than the pseudo-angle of the second angle. (The pseudo-angle
is a strictly monotonically increasing function of angle.) }

FUNCTION pseudo_angle (delta_x, delta_y : REAL) : REAL;

VAR
angle : REAL;

BEGIN
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{ Find quantity within quadrant }
IF delta_x*delta_y <> O THEN
angle := 90+*ABS(delta_y)/(ABS(delta_x) + ABS(delta_y))
ELSE IF delta_y <> O THEN
angle := 90
ELSE

angle := 0;

{ Adjust depending on quadrant }

IF (delta_x <= 0) AND (delta_y > O) THEN
pseudo_angle := 180 - angle

ELSE IF (delta_x < 0) AND (delta_y <= 0) THEN
pseudo_angle := angle + 180

ELSE IF (delta_x >= 0) AND (delta_y < 0) THEN
pseudo_angle := 360 - angle

ELSE
pseudo_angle := angle

END; { pseudo_angle }

BEGIN { backdoor }
to_previous := pseudo_angle (x[minus_1 (point1)] - x[pointi],
y[minus_1 (pointi)] - y[pointi]);
to_following := pseudo_angle (x[plus_1 (point1)] - x[pointi],
y[plus_1 (point1)] - y[pointi]);
to_point2 := pseudo_angle (x[point2] - x[pointi], yl[point2] - y[pointi]);

{ Adjust angles so that it can be compared to ’to_previous’ }
IF to_following > to_previous THEN
to_following := to_following - 360;
IF to_point2 > to_previous THEN
to_point2 := to_point2 - 360;

backdoor := to_following > to_point2
END; { backdoor }

This procedure sets up the boolean array ’concave_vertex’, and then finds
the shortest path between all pairs of concave vertices. This is done by
first finding the pairs of concave vertices that directly connect (can be
connected by a line segment that does not cross the perimeter of the
polygon), and then for the others, by calling the recursive routine
'find_path’ that finds the shortest path among vertices that do not
directly connect by minimizing the set of all possible connecting paths. }

PROCEDURE set_up_best_path_matrix;
TYPE

connexion_types = (direct, indirect, not_done);
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node_array = ARRAY[point_range] OF point_range;
node_stack_type = ARRAY[O..max_points] OF point_range;

VAR
pl, p2, n_nodes, gap, seq, first, last : point_range;
connexion : ARRAY[point_range, point_range] OF connexion_types;
sequence : node_array;

If ’pointl’ and ’point2’ are directly connected (as determined by
'uncrossed’) then set up ’connexion’ and ’best_path’. }

PROCEDURE direct_path (point1, point2 : point_range);

BEGIN
conn.cion[pointl, point2] := direct;

IF pointi = point2 THEN
WITH best_path[pointi, point2] DO BEGIN
Euclidean := 0;
Manhattan := 0
END

ELSE BEGIN
connexion[point2, pointi] := direct;
WITH best_path[pointi, point2] DO BEGIN
Euclidean := SQRT (SQR(x[pointi] - x[point2]) +
SQR(y[pointi1] - y[point2]));
Manhattan := ABS (x[pointi] - x[point2]) +
ABS (y[point1] - y[point2])
END;
best_path[point2, point1] := best_path[pointi, point2]
END
END; { direct_path }

This procedure passes back the sequence of nodes in the shortest path
between the given origin and destination (concave) nodes and also the
number of nodes. }

PROCEDURE find_path (origin, destination : point_range;
VAR sequence : node_array; VAR n_nodes : point_range);

VAR
distance : REAL;
reverse_seyuence : node_stack_type;
§ : point_range;

This recursive routine is the key to the search between the shortest
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path between two nodes. By enumerating all the possible next nodes
to "visit" that have not yet been visited, the routine searches down
subsequent subpaths until a node is found for which an optimal path
is known to the destination (if any). The routine that chooses the
shortest path by finding the one with the minimum Euclidean distance.

PROCEDURE path_finder (origin, destination : point_range;
visited : point_set;
VAR distance : REAL; Vai node_stack : node_stack_type);

VAR
P : point_range;
s : 0..max_points;
children, new_visited : point_set;
new_distance : REAL;
new_node_stack : node_stack_type;

BEGIX
IF connexion[origin, destination] <> not_done THEN BEGIN
distance := best_path[origin, destination] . Euclidean;
node_stack[0] := 2; { number of nodes in stack }
node_stack[1] := destination;
node_stack{2] := origin
END

ELSE BEGIN
children := []1;
FOR p := 1 TO n_points DO
IF concave_vertex[p] AND (connexion([origin, p] = direct) AND NOT
(p IN visited) THEN
children := children + [p];
new_visited := visited + children;

distance := max_real;
FOR p := 1 TO n_points DO
IF p IN children THEN BEGIN
path_finder (p, destination, new_visited, new_distance,
new_node_stack);
new_distance := new_distance +
best_pathlorigin, p] . Euclidean;

IF new_distance < distance THEN BEGIN
distance := new_distance;
{ Copy ’new_node_stack’ into ’node_stack’ }
FOR 8 := 0 TO new_node_stack[0] DO
node_stack[s] := new_node_stack[s]
END
END; { IFp}

IF distance < max_real THEK BEGIN { push origin onto stack }
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node_stack[0] := node_stack[0] + 1;
node_stack[node_stack[0]] := origin
END

EXD { ELSE }
END; { path_finder }

BEGIN { find_path }

path_finder (origin, destination, [origin], distance,
reverse_sequence);

n_nodes := reverse_sequence[0];
FOR 8 := 1 TO n_nodes DO

sequence[s] := reverse_sequence[n_nodes + 1 - s]
END; { find_path }

BEGIN { set_up_best_path_matrix }
FOR p1 := 1 TO n_points DO { set up ’concave_vertex’ array }
concave_vertex[pil] := crossproduct (x[minus_1 (p1)], y[minus_i (p1)],
x[p1l, y[p1], x[plus_1 (p1)], ylplus_i (pi)]) < 0;

polygon_is_convex := TRUE; { assumption until concave vertex is seen }

FOR p1 := 1 TO n_points DO { set up direct connect subset of paths }
IF concave_vertex[pi] THEN BEGIN

polygon_is_convex := FALSE;
direct_path (p1, p1);

FOR p2 := p1 + 1 TO n_points DO
IF concave_vertex([p2] THEN
IF uncrossed (x[p1l, y[p1], x[p2], y[p2l, [winus_1 (p1), pi,

minus_1 (p2), p2]) AND NOT backdoor (pi, p2) THEN
direct_path (p1, p2)

ELSE BEGIN
connexion(pl, p2] := not_done;
connexion(p2, pi] := not_done
END '

END;

{ Now f£ill ’best_path’ matrix when it is not yet connected }
FOR p1 := 1 TO n_points - 1 DO
IF concave_vertex[pi] THEN
FOR p2 := p1 + 1 TO n_points DO
IF concave_vertex[p2] THEN
IF connexion[pi, p2] = not_done THEN BEGIN
{ Find shortest path from ’p1’ and ’p2’ including all points passed }
find_path (pi, p2, sequence, n_nodes);
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{ Also fill ’'best_path’ for subpaths ’si1’ to ’s2’ within the sequence }
FOR gap := 2 TO n_ncdes - 1 DO
FOR seq := 1 TO n_nodes - gap DO BEGIN
tirst :+ sequence[seq];
last := sequence(seq + gap]l;
connexion[first, last] := indirect;
connexion[last, first] := indirect;
best_path[first, last] := best_path[first,
sequence[seq + 1]];
add_distances (best_path[first, last],
best_path[sequence[seq + 1], last]);
best_path[last, first] := best_path[first, last]
END
END { IF connexion }
END; { set_up_best_path_matrix }

This procedure divides the n-sided polygon into n-2 triangles. }
PROCEDURE set_up_triangles;

VAR
P, lead, middle, lag, t : point_range;
hull : ARRAY[point_range] OF BOOLEAK;

Iff the angle tetween the line from ’pi’ to ’p2’ and the line from ’p2’
and ’p3’ is convex (assuming the points in the polygon are defined in
counter-clockwise order). }

FUNCTION convex (p1l, p2, p3 : point_range) : BOOLEAN;

BEGIN
convex := crossproduct (x[p1l, y[p1l, x[p2], y[p2], x[p3], y[p3]) >=0
END; { convex }

BEGIN { set_up_triangles }
FOR p := 1 TO n_points DO { initially, all points are on hull }
hull[p] := TRUE;

lag := 1; { arbitrary starting group of points }
middle := 2;
lead := 3;

FOR t := 1 TO n_points - 2 DO BEGIN { for each triangle }
{ find a "middle" that can be removed from hull }
WHILE NOT convex (lag, middle, lead) OR NOT uncrossed (x[lagl, y[lagl,
x[lead], y[lead], [minus_1 (lag), lag, minus_1 (lead), lead]) OR
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backdoor (lag, lead) DO BEGIN

lag := middle; { shift around hull }
middle := lead;
REPEAT { get new lead }

lead := plus_i (lead)
UNTIL hull([lead]
EHND;

hull [middle] := FALSE; { remove "middle" from hull }
WITH vertex[t] DO BEGIN { save triangle points }

vl := lag;

v2 := middle;

v3 := lead
END;
middle := lead; { with point removed from hull, find next group }
REPEAT

lead := plus_1 (lead)
UNTIL hull([lead]
END { FOR t }
END; { set_up_triangles }

This procedure takes the triangles stored in ’vertex’ and computes the
triangle parameters to be put into ’triangle’. }

PROCEDURE parameterize_triangles;

VAR
t : point_range;
total_area : REAL;
area : ARRAY[point_range] OF REAL;

BEGIN
{ find relative areas of triangles }
total_area := 0;
FOR t := £ TO n_points - 2 DO BEGIN
WITH vertex([t] DO
area[t] :=
ABS (crossproduct (x[v1l, y[v1], x[v2], y(v2], x[v3], y(v3]));
total_area := total_area + area[t];
triangle(t] . range := total_area
EFD; { FOR t }
{ now set up triangle parameters }
FOR t := 1 to n_points - 2 DO
WITH triangle[t] DO BEGIN
WITH vertex[t] DO BEGIN
base_x := x[vi];
base_y := ylvi]l;
alpha_x := x[v2] - x[vi];
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alpha_y := y[v2] - y(vi];

beta_x := x[v3] - x[v2];

beta_y := y[v3] - yl[v2]
END;

range := range / total_area
END
END; { parameterize_triangles }

This routine actually performs the Monte Carlo method -- first determines
the triangle in which the random point is located (this takes one random
number), and then the location of the point within the triangle using two
other random numbers. Each pair of random points thus takes 6 random
numbers, and the distances for each metric are computed between the random
points, summed up and averaged for the expected distances. }

PROCEDURE simulate;

VAR
path, path_square, total_distance, total_square_distance : distances;
seed, iteration : INTEGER;
trianglel, triangle2 : point_range;
r_a, r b, xi, y1, x2, y2 : REAL;

This function takes a uniformly distributed random number ’r’ and returns
the triangle corresponding the range in which ’'r’ falls. Recall that the
ranges were determined in ’'parameterize_triangles’ and are proportional
to the area of the triangles. HNote that there are more efficient means
of finding the triangles -- e.g. binary search, ordering so the larger
triangles are tested first, etc. -- but the following method is simplest
to implement. }

FUNCTION find_triangle (r : REAL) : point_range;

VAR
t : point_range;

BEGIN
t :=1;
WHILE triangle[t] . range <= r DO
t :=t + 1;
find_triangle :=t
END; { find_triangle }

If it is known that a straight-line path betwwen thne randomly chosen
points (xi;yl) and (x2;y2) cannot be made without travelling outside the
polygon, ther "his routine finds the shortest path within the polygon.
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This is done by generating the sets of concave vertices (’direct_setl’
and ’direct_set2’) that can be directly connected to each of the two
points. Given the best path between any pair of concave vertices
(pre-calculated in the variable ’best_path’), the shortest path is
determined by finding the minimum path length of the paths from ’pointil’
to every point in ’direct_setl’, to every point in ’direct_setl’, to
'point2’. Note that the Manhattan path follows easily, since the
shortest Euclidean path is also a shortest Manhattan path. }

PROCEDURE get_shortest_path (VAR shortest_path : distances);

VAR
pl, p2, mini, min2 : point_range;
min_path, test_path : REAL;
direct_seti, direct_set2 : point_set;

This procedure generates the set of concave vertices that can be
directly connected to (x_test;y_test) assuming that (x_test;y_test) is
within the polygon. }

PROCEDURE generate_direct_set (x_test, y_test : REAL;
VAR direct_set : point_set);

VAR
P : point_range;

BEGIN
direct_set := [];
FOR p := 1 TO n_points DO
IF concave_vertex[p] THEN
IF uncrossed (x_test, y_test, x[p], y[pl, [minus_1 (p), p]) THEN
direct_set := direct_set + [p]
END; { generate_direct_set }

BEGIN { get_shortest_path }
generate_direct_set (x1, y1, direct_setl);
generate_direct_set (x2, y2, direct_set2);

min_path := max_real;
FOR p1 := 1 TO n_points DO
IF p1 IN direct_setl THEN
FOR p2 := 1 TO n_points DO
IF p2 IN direct_set2 THEN BEGIN
{ Test all combinations of points between the two direct-sets }
test_path := SQRT (SQR(x1 - x[pi]) + SQR(y1 - y[p1l)) +

best_path[p1i, p2] . Euclidean +
SQRT (SQR(x[p2] - x2) + SQR(y[p2] - y2));
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IF test_path < min_path THEN BEGIN
min_path := test_path;
minl := pi;
min2 := p2
END
END; { IF p2}

shortest_path . Euclidean := min_path;
shortest_path . Manhattan := ABS(x1 - x[min1]) + ABS(yi - y[min1]) +
best_path[mini, min2] . Manhattan +
ABS(x[min2] - x2) + ABS(y[min2] - y2)
END; { get_shortest_path }

BEGIN { simulate }
seed := initial_seed;
total_distance . Euclidean := 0;
total_distance . Manhattan := 0;
total_square_distance := total_distance;

FOR iteration := 1 TO n_iterations DO BEGIN
new_random (seed, r_a, r_b);
trianglel := find_triangle {(r_a); { first pair of random numbers to }
triangle2 := find_triangle (r.b); { find triangles of the 2 points }

new_random (seed, r_a, r_b); { use 2nd pair of random numbers }
IF r_a < r_b THEN BEGIN { for location of first point }
r.a:=1 - r_a;
rb:=1-1_b

END;
WITH triangle[trianglei] DO BEGIN
x1 := base_x + r_a*alpha_x + r_b*beta_x;
yl := base_y + r_a*alpha_y + r_b*beta_y
END;
new_random (seed, r_a, r_b); { use 3rd pair of random numbers }
IF r_a < r_b THEN BEGIN { for location of second point }

r.a :=1-r.a;
rb:=1-1rb
END;
WITH triangle[triangle2] DO BEGIN
x2 := bagse_x + r_a*alpha_x + r_b*beta_x;
y2 := base_y + r_a*alpha_y + r_b*beta_y
END;

IF polygon_is_convex THEN BEGIN { if convex, then path is direct }
path . Euclidean := SQRT (SQR(x1 - x2) + SQR(yli - y2));
path . Manhattan := ABS(x1 - x2) + ABS(yl - y2)

END
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{ else, first try a direct path }
ELSE I. uncrossed (xi, yi, x2, y2, []) THEN BEGIN
path . Euclidean := SQRT (SQR(x1 - x2) + SQR(y1 - y2));
path . Manhattan := ABS(xi - x2) + ABS(y1 - y2)
END
ELSE { else find the shortest path }
get_shortest_path (path);
{ accumulate statistics }
add_distances (total_distance, path);
WITH path_square DO BEGIN { second order statistics }
Euclidean := SQR(path . Euclidean);
Manhattan := SQR(path . Manhattan)
END;
add_distances (total_square_distance, path_square)
END; { FOR iteration }
{ final maesaging }
WITH expected_distance DO BEGIN
Euclidean := total_distance . Euclidean/n_itera“ions;
Manhattan := total_distance . Mankattan/n_iterations

END;
WITH standard_deviation DO BEGIN
Buclidean := SQRT (total_square_distance . Euclidean/n_iterations -

SQR(expected_distance . Euclidean));
Manhattan := SQRT (total_square_distance . Manhattan/n_iterations -
SQR(expected_distance . Manhattan))
END
"END; { simulate }

BEGIN { MAIN - monte_carlo_simulation }
get_points (FALSE, *MCARLO.OUT’);

get_Monte_Carlo_parameters (n_iterations, initial_seed);
start_timer;

set_up_best_path_matrix; { startup overhead }
set_up_triangles;
parsueterize_triangles;

simulate; { the simulation itself }

stop_timer;
WITH expected_distance DO BEGIN
print_results (’Average Euclidean distance = ’, Euclidean);
print_results (’Average Manhattan distance = ’, Manhattan)
END;
WITH standard_deviation DO BEGIN
print_results (’Euclidean standard deviation
print_results (’Manhattan standard deviation
END;

*, Euclidean);
', Manhattan)
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terminate (TRUE)
END. { MAIN - monte_carlo_simulation }
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A.4.2 Numerical Exampl~s

We used Monte Carlo test examples to verify results from our numerical methods. Of
course, Monte Carlo simulations produce results that are approximate, and cannot be used
to either prove or disprove the validity of an exact method. In all examples, the same

random number seed was used (17173).

Example A-10. Unit Square

From our previous tests on a unit square in Examples A-1 and A-7, we know that the
expected distance for the Manhattan metric is 0.666667, and for the Euclidean metric, it
is 0.521405. To produce Table A-5, we ran the simulation with the same random number
seed but with a different number of iterations. In each iteration, one pair of random points

is generated.

Number of Expected Expected Computation

Iterations Manhattan distance  Euclidean distance  time (seconds)
10 0.5015 0.3870 0.1
100 0.7567 0.5836 0.9
1000 0.6651 0.5184 8.4
10000 0.6664 0.5199 83.6

Table A-5: Expected distances and computation time at different numbers of iterations

Notice as the number of iterations increases, the expected distance approaches its known
exact value. In a Monte Carlo simulation, there is no guarantee that this tendency will
always occur, but theoretically, the variance of the error should decrease as the number of
iteratinns increases. Also note that the computation time is virtually directly proportional

to the number of iterations.

Examr ale A-11. Other regular polygons

Various tests were run on other regular polygons. The results, while reasonably close to
exact results as shown in Examples A-3 and A-8, could not be used to show how the expected

distances approach that of a circle with the same area. The computation time required for
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1000 iterations is shown below in Table A-6. Even though our version of the Monte Carlo

Number of sides  Computation time (seconds)

3 10.1
4 10.7
10 11.6
20 13.2

Table A-6: Effect of number of sides in a regular polygon on the computation time of a
Monte Carlo simulation

simulation is O(n) where n is the number of sides, it is difficalt to confirm this statement
from the above table with values of n that are relatively small.

Note that the computation time required to perform 1000 iterations for a square in
this example (10.7 seconds) does not match the apparently identical case in Example A-10
(8.4 seconds). The reason for this is that the unit square in Example A-10 was oriented
differently. (Specifically, in Example A-10, the two sub-triangles of the square had alpha
and beta parameters of 1. This number can be multiplied with less computational effort

than for other real numbers.)

Example A-12. Concave polygons

The two previous examples were of convex polygons where the Monte Carlo simulation
produced results that were consistent with our exact numerical methods. A main strength
of the Monte Carlo method is that it can be used to find results for problems where analytic
methods do not exist. For instance, using our Monte Carlo program, we can find the
expected Euclidean distance in a concave polygon, or find second order (variance) statistics.

In our test with the polygon shown in Figure A-5, the simulation with 1000 iterations
produced an expected Manhattan distance of 7.43 and an expected Euclidean distance of
6.01. In fact, the exact expected Manhattan distance is 7.584389 (from Example A-5). The
computation time was 657.8 seconds—significantly more time is required to find the shortest
path in a concave polygon.

Another example with the polygon shown in Figure A-6, the simulation with 1000
iterations produced an expected Manhattan distance of 17.86 (compared with 17.666657
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from Example A-6), and an expected Euclidean distance of 17.22. The computation time

in this case is 273.8 seconds.

140



Appendix B

Expected Euclidean Distance in

Concave Polygons

In Chapter 3, we described a numerical methed for finding the expected Euclidean distance
between two random points in a convex polygon. Let us explore the added complexity of

a method that handles concave polygons by considering the polygon in Figure B-1 that

Figure B-1: Sample concave polygon with ¢23 < 0 < ¢34

contains a concave angle at vertex 3. For this polygon, we can use the same Facet Term

Expressions as we have done in section 3.2.3, but only for values of § in the range ¢53 < ¢ <
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Figure B-2: Concave polygon where 3 values for different facets overlap

#3,4. However, when 6 is outside of this range, additional complications arise. For instance,
at the value of @ shown in Figure B-2, the 1 range of facets 3A and 3B overlap. The length
function 1(8, ) for the polygon cannot be defined as we had done for convex polygons since
1(8,) is no longer a function of @ and ¥ alone. The main complication, however, is in
expressing the distance from a point g4 in facet 3A to a point g with the same value of
¢ in facet 3B shown in Figure B-3. Because we assume that the sides of a polygon form a
barrier to travel, a direct path from g4 and gp is not possible, and the shortest path must
“go around” vertex 3. Handling this condition presents a difficult problem.

However, utilizing some of the insights that we have gathered from both Chapters 2
and 3, we can suggest a possible approach. Conceptually, we can divide a concave polygon
into “channels” for a particular range of . We define a channel such that the straight-line
path between two points with the same value of 1 at a given 8 does not cross any side
of the polygon if and only if the two points are in the same channel. (For example, the
points ¢; and ¢, in Figure B-4 are in the same channel; ¢3 is not.) We can now divide
our examination of expected Euclidean distances in concave regions into two parts: the
“intrachannel distances”, and the “interchannel distances”. Note that the arrangement of

channels depends upon 6. For the same polygon as in Figure B-4 but with a different value
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Figure B-3: Concave polygon where sides form barrier to travel

of 8, Figure B-5 shows only one channel (with all nine facets in the same channel).

With this definition of a “channel”, let us begin by finding the intrachannel distances.
As it turns out, almost all of the steps that we need havc already been developed earlier for
the Configurator Method in subsection 3.2.2:

1. Find the conjunction angles between all pairs of points. Discard any conjunction angle
between a pair of points that cannot be connected by a straight line without crossing
any side of the polygon. (This condition may be tested using the “uncrossed” routine
developed in appendix A.1.) The number of conjunction angles, which is the same as

the number of configurations C', is now such that:

n(n — 1)

'
Cc'< 5

2. Arrange the conjunction angles under consideration so that:

Define ¢ such that:

$o=¢c — 7
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Figure B-4: Concave polygon shown with multiple channels

3. For each of the “configurations” that occurs between successive sorted conjunction

angles, divide the polygon into channels and zones. We can use the same method
presented in Chapter 2 with the only difference being that we replace the independent
axis ¢ by the 1-axis, and the dependent axis y by the A-axis. We note that.

Y(z,y,0) = ycosf — zsinf

A(z,¥,0) = £ cosf + ysinb

. The resulting zones are equivalent to the facets defined in Chapter 3, and we can
apply the Facet Term Expressions G and H derived in subsection 3.2.3 and tally the
results into the numerator and denominator terms of the expected distance equation

(3.21).

. Generate the next configuration from the current configuration and go hack to step 3.
(The steps for generating the next configuration is somewhat more complicated than

the method for convex polygons described in subsection 3.2.2.)
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Figure B-5: Same polygon with one channel at different value of 6

The above procedure will only provide part of the solution, since the numerator terms
and denominator terms only consider the intrachannel distances. We will now outline a
possible approach for finding the interchannel distances that is conceptually equivalent
to the strategy for finding the expected Euclidean distance in convex polygons that we
developed in Chapter 3. Starting with Equation 3.5, we can separate the distribution of the
two points ¢; and ¢, into separate cases: when the points are intrachannel-denoted by a

prime symbol ('), and when the points are interchannel-dencted by a double-prime symbol
(’I)‘
ng(‘h)gf&,h, (92191)d’5 (91, 2191 )dg2dgs +

[ folq) [ 15,14, (22191)dE(q1, 9291)dg2dg,
_ ) 9 Qzla
Dg(polygon) = (B.1)
g fo(q) g f&,m (92|91)dgzdq: +

ng(‘Il) Qﬂ 18210 (22101)dg2dqy

where the intrachannel probability density function fé?zl o (g2]¢1) is only defined when ¢; and

g2 are in the same channel:
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, fo(q2) for ¢; and g; in same channel,
@10 (22101) = _
otherwise

and where the interchannel probability density function fgzl q,('12|‘11) is only defined when
¢1 and ¢, are in different channels:

fo(g2) for q; and g; in different channels,

f3,|q,(‘h|‘11) =
otherwise

We can rewrite (B.1) to incorporate the intrachannel distance terms from Chapter 3:

D! F{; . .
Et_l i1 Lpey G'(6, 4, k) +
ﬂfq(ql) ﬂ'fg,m (g2191)d%(q1, g2]q1)dg2dg,

Dg(polygon) = (B.2)
¢, T2 0 H G, k) + [te(@) [ G,10, (@2l darda:

where D! is the number of channels in configuration i, F; ; is the number of facets or zones
in channel j of configuration i, and G' and K' are the same Facet Term Expressions derived
earlier except that the constants that were cancelled from the numerator and denominator
during our earlier analysis are factored back into the expressions. We can rewrite Equation
B.2 in terms of the interchannel distance expressions, which we call I and J, that are

respectively summed into numerator and denominator.

E 123—1 k_ Gl(z’J’k)"'Za:I(z)
Z‘l:‘-l ZJ:I Zk:’ H'(l’ Js k) + 2:: J(z)

The summation over ¢ implies a decomposition method that enumerates the possible sce-

Dg(polygon) = (B.3)

narios in which two random points in a polygon are distributed in different channels. The
function I and J are similar in function to the Facet Term Expressions (Equation 3.21) in
that they represent the terms that express the expected distance for each such scenario.
Without formally deriving the expressions for I and J, we can gain some insight into
the problem of finding the distance between points in different channels by studying the
polygon in Figure B-6. According to our definition of a channel, for the configuration in
¢4 < 0 < ¢p, the polygon contains three unique channels which are labelled in the figure

as A, B, and C. The computation for the expected distance will involve four sets of the
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Channel A

Channel C

Figure B-6: Concave polygon with multiple channels

intrachannel Facet Term Expressions G’ and H'-one for channel A, one for channel B, and
two for channel C (since there are two facets in channel C). We have introduced another set
of expressions I and J that represent the interchannel distances between points in channel
A and channel B. The path from point g4 in channel A to a point ¢p in channel B will have
to “go around” the vertex point 4.

Unlike the Facet Term Expressions which are associated with a trapezoidal subregion of
the polygon, I and J will consider a wedge-shaped (triangular) subregion where the apex
of the “wedge” is at a vert.x point around which the path between two points in different
channels must pass. In Figure B-6, the vertex point 4 serves as the apex for both the wedge
that is channel A and the wedge that is channel B. (In general, a channel may contain more
than one wedge deper.ding upon the polygon, much as a channel in Chapter 2 may contain
more than one zone. Also, in general, the apex for wedges in different channels need not be
the same.)

We propose to distribute one of the random points g4 in a thin “pie slice” of wedge A

between the angles @ and 6 + df. We distribute gg in the “pie slice” between the angles w
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and w + dw where w is in the range @ < w < ¢p as shown in Figure B-7. The probability

Figure B-7: Distribution of ¢4 and ¢p

that a point g4 lies in the slice is related to the area of the slice, given our assumption of

uniform distribution:
1
£4(8) = 514(6) - 14(6)

where f4(0) is the unnormalized probability density function and 14(0) is the length of the
“scan line” in the @ direction bordering channel A from vertex 4 to the far side of the
polygon. We state without proof that the expected distance d4, x(9) between a random

point g4 in the triangular slice and the apex is:
2
da,x(6) = 31a(6)

Similarly, fg(w)dw is the unnormalized probability density function that a point ¢p lies in

the “slice” between the angles w and w + dw.
1
fp(w) = SlB(w) -1p(w)
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where 1g(w) is the length of the “scan line” in the w direction bordering channel B from
the apex to the far side of the polygon. The expected distance dp x(w) between a random

point gp in the slice and the apex is:

2
dp.x(w) = 315(w)
The distance between g4 and gg is simply the sum of the distance between the apex

and g4 and the distance between the apex and ¢p:
d4,B(0,w) = da,x(0) + dp.x(w)

In general, the distance expression between points in different channels that do not share a
common apex will have a fixed component ds( A, B) representing the distance of the path
between the apex points. Using the notation in Chapter 1, we can express the length of

this component as:

m-—1
ds(4,B) = 3 /(Ixp — Ixpsr)? + (Tre — Irsa)?
k=1

where m is the number of intermediate apex points (which are all concave vertices) which
are located at (Ix; Iv,).
Returning the simple case in Figure B-7, m = 1 so d¢(A, B) = 0 and we can express I

and J as:

¢B B
Ins = /¢ /o £4(0)f5(w)(da,x(8) + dp,x(w))dwdd (B.4)

¢ rom
Jap = / / £4(0)fg(w)dwdd
b. JO

The expressions for I and J remain to be evaluated.

This concludes our preliminary discussion on an approach for finding the expected Eu-
clidean distance in concave polygons. A completely generalized method to handle concave
polygons would be an important and interesting extension to the methods for finding the

expected Euclidean distances covered in this thesis.
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