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In this paper, we propose strongly correlated gapless states (or critical states) of spin-1/2 electrons in 1+1
dimensions, such as the doped ferromagnetic and antiferromagnetic spin-1/2 Ising chains. We find that the
metallic phases in the doped ferromagnetic and antiferromagnetic Ising chain are different strongly correlated
gapless phases, despite the fact that the two phases have the same symmetry. The doped antiferromagnetic Ising
chain has a finite energy gap for all charge-1 fermionic excitations even without pairing caused by the attractive
interaction, resembling the pseudogap phase of underdoped high Tc superconductors. Applying a transverse field
to the ferromagnetic and antiferromagnetic metallic phase can restore the Z2 symmetry, which gives rise to
two distinct critical points despite the fact that the two transitions have exactly the same symmetry-breaking
pattern. We also propose chiral metallic states. Some of these gapless states are strongly correlated in the
sense that they do not belong to the usual Tomonaga-Luttinger phase of fermions, i.e., they cannot be smoothly
deformed into noninteracting fermion systems with the same symmetry. Our nonperturbative results are obtained
by noting that gapless quantum systems have emergent categorical symmetries (i.e., noninvertible gravitational
anomalies), which are described by multicomponent partition functions that are modular covariant. This allows
us to calculate the scaling dimensions and quantum numbers of all the low-energy operators for those strongly
correlated gapless states. This demonstrates an application of emergent categorical symmetries in determining
low-energy properties of strongly correlated gapless states, which are hard to obtain otherwise.

DOI: 10.1103/PhysRevB.102.195107

I. INTRODUCTION

The simplest one-dimensional (1D) metallic states are
Fermi liquids of noninteracting electrons, the low-energy
properties of which are described by noninteracting fermionic
quasiparticles. In the low-energy limit, Fermi liquids are de-
scribed by several decoupled sectors and each sector contains
a few modes. In this paper, we will try to develop a general
understanding of gapless states by viewing the gapless states
as formed by several decoupled sectors, and using the notion
of categorical symmetry [1] (i.e., modular covariance of a
noninvertible gravitational anomaly [2]).

Readers who are just interested in 1D strongly interacting
metallic states can directly go to Sec. III. Section II contains
some general discussions.

If a strongly interacting metallic state is stable against
all symmetry preserving perturbations, then it will represent
a stable phase of quantum matter. However, most strongly
interacting metallic states are not stable against certain sym-
metry preserving perturbations. Those metallic states will
correspond to critical states (or multicritical points) that de-
scribe continuous phase transitions between different phases
of quantum matter. Thus the constructions discussed in
this paper can be viewed as a systematic way to discover
1D gapless quantum phases, as well as 1D (multi)critical
points. In this paper, we will use “1D” (“2D,” etc.) to re-
fer to one-dimensional (two-dimensional, etc.) space and
“1+1D” (“2+1D,” etc.) to refer to 1+1-dimensional (2+1-
dimensional, etc.) space-time.

II. GENERAL PICTURE FOR GAPLESS
QUANTUM STATES

With the developments of the last 30 years, we have be-
gun to have a comprehensive understanding of all gapped
quantum states in one-dimensional, two-dimensional (2D),
and three-dimensional (3D) spaces, in terms of sponta-
neous symmetry-breaking [3,4], group cohomology [5,6],
and braided fusion (higher) categories [7–17]. In fact, we
have classified (or proposed to classify) all 1D [18–21], 2D
[12–14,22], and 3D [15–17] gapped liquid [23,24] states
of boson/fermion systems with any finite on-site symmetry.
The classification is achieved via the realization that gapped
quantum phases are described by symmetry-breaking orders,
topological orders [7,25,26], and/or symmetry protected triv-
ial (SPT) orders [27,28].

Such a systematic understanding of topological orders
[7,25,26] and SPT orders [27] (including topological in-
sulators and superconductors [29–40]) leads to a deeper
understanding of gauge and gravitational anomalies, in terms
of the boundaries of topological order or SPT order in one-
higher-dimensional lattice models [41–44]. This results in a
generalization of anomalies including noninvertible anoma-
lies [2,43,45–47]. Those generalized anomalies (including
perturbative and global gauge/gravity anomalies) are classi-
fied in terms of topological orders and SPT orders in one
higher dimension [42,43]. Such an understanding of anoma-
lies also leads to a solution to the long-standing chiral fermion
problem [48,49].
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In comparison, there is a lack of comprehensive under-
standing of gapless quantum states of matter, despite the fact
that we know many examples of them, such as superfluid, an-
tiferromagnets, nodal d-wave superconductors, graphene, and
Weyl semimetals. But in one dimension, thanks to Belavin-
Polyakov-Zamolodchikov, we do have a good understanding
of gapless quantum states with linear velocities via conformal
field theories (CFTs) [50–52]. In particular, we can use the
modular invariant partition function, which is parametrized by
a complex number τ describing the shape of the space-time
torus,

Z (τ ) = Z (τ + 1) = Z (−1/τ ), (1)

to systematically study 1D gapless states. In this paper, we
will try to develop a systematic point of view of gapless
quantum matter based on a gauge/gravity anomaly, hoping
this may lead to a more general understanding of gapless
states in higher dimensions.

First, the low-energy part of a gapless state may become
several decoupled sectors, where the interactions between
different sectors approach zero in the infrared limit under
renormalization-group flow. Consequently, in the low-energy
limit, there are often emergent symmetries. For example, the
original UV symmetry G (the lattice symmetry) may be en-
larged at low energies, G → G × G × · · · , with one copy
for each decoupled sector. Since each decoupled low-energy
sector is not a full system, each sector by itself is often
anomalous. Thus there are also emergent anomalies (i.e., the
low-energy effective theory is anomalous).

Recently, it was pointed out that, when restricted to the
symmetric sub-Hilbert space, a symmetry can be fully charac-
terized [1] by a noninvertible gravitational anomaly [2,43,45–
47]. So we can treat the emergent symmetries and emergent
anomalies in a unified way by restricting to the symmetric
sub-Hilbert space. In this case, we only have an emergent
noninvertible gravitational anomaly. To stress this close con-
nection between a noninvertible gravitational anomaly and the
symmetry, we refer to a noninvertible gravitational anomaly as
a categorical symmetry [2]. This point of view is very general.
Not only can emergent zero-symmetries (i.e., the usual global
symmetries) be viewed as emergent noninvertible gravita-
tional anomalies, but emergent higher symmetries and even
more general emergent higher algebraic symmetries can also
be viewed as emergent noninvertible gravitational anomalies
(i.e., emergent categorical symmetries) [53,54].

For example, the 1+1D gapless state with on-site symme-
try G in the original lattice system also has a dual algebraic
symmetry denoted by G̃ [2]. The total symmetry is the
categorical symmetry denoted by G ∨ G̃ [2]. Note that a
categorical symmetry is nothing but a generalized gravita-
tional anomaly (which can be a noninvertible gravitational
anomaly). Also note that a generalized gravitational anomaly
is nothing but a topological order in one higher dimension
[42,43,45–47]. The topological order in one higher dimen-
sion that describes the categorical symmetry G ∨ G̃ is the
topological order described by G gauge theory. The 1+1D
gapless state corresponds to the minimal gapless boundary
of the 2+1-dimensional (2+1D) G gauge theory [2], that has
neither condensation of gauge charge nor gauge flux.

FIG. 1. A general picture of a gapless quantum state, which is
formed by decoupled anomalous gapless sectors restricted to the
symmetric sub-Hilbert spaces (the red dots). The emergent symmetry
and emergent anomalies are described by noninvertible gravitational
anomalies (i.e., the topological orders in one higher dimension).
Thus, the anomalous sectors are the boundaries of corresponding
topological orders in one higher dimension.

To have more information describing a gapless state, we
want to decompose the gapless state into smallest decoupled
sectors. This allows us to see the maximal emergent symmetry
and emergent anomalies. In other words, this allows us to ob-
tain the maximal categorical symmetry [1]. It may be possible
that the maximal categorical symmetry fully characterizes the
gapless state. This may be a way to systematically understand
strongly correlated gapless states.

Since each decoupled sector has a generalized gravitational
anomaly, it can be viewed as a boundary of topological or-
der in one higher dimension (see Fig. 1). For example, the
right-moving sector of a 1+1D gapless state has a perturba-
tive gravitational anomaly characterized by its central charge
cR. Similarly, the left-moving sector also has a gravitational
anomaly characterized by its central charge cL. The right-
moving sector is a boundary of a 2+1D chiral topological
order. The left-moving sector is also a boundary of a 2+1D
chiral topological order. The two chiral topological orders
allow us to describe the 1+1D gapless state.

For a system with a generalized gravitational anomaly
(i.e., a noninvertible gravitational anomaly), its partition func-
tion has multiple components. This multicomponent partition
function transforms covariantly under mapping-class-group
transformations of the space-time [2,55]. So the multicompo-
nent partition function forms a representation of the mapping
class group. Such a representation turns out to be the repre-
sentation that describes the topological order in one higher
dimension. Since

topological order in one higher dimension

= noninvertible gravitational anomaly

= categorical symmetry, (2)

we see that the categorical symmetry determines the rep-
resentation of the mapping class group formed by the
multicomponent partition function, which in turn determines
the dynamical properties (such as scaling dimensions) of the
1+1D gapless state. This is how emergent maximal categor-
ical symmetry systematically describes a strongly correlated
gapless state.

In this paper, we will use this line of thinking, i.e., use mul-
ticomponent partition functions and their modular covariance,
to study strongly correlated metals. This approach is beyond
perturbation.
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III. SUMMARY OF RESULTS

A. Ising strongly correlated metal with ferromagnetic
and antiferromagnetic correlation

In Sec. IV, we consider a spin- 1
2 electron chain close to one

electron per site with strong on-site repulsive interaction and
(anti)ferromagnetic Ising spin interaction. The model has Z2

spin-flip symmetry, Sz → −Sz with U (1) electron conserva-
tion symmetry, as well as translation symmetry, U (1) × Zs

2 ×
Z.

We note that for the insulating Ising chain there are two
Z2 symmetry-breaking phases, one when the interaction is
ferromagnetic and the other when the interaction is antifer-
romagnetic. The phase in the antiferromagnetic case breaks
the translation symmetry.

After doping, there are also two Z2 symmetry-breaking
phases in the metallic states for ferromagnetic and antiferro-
magnetic Ising interactions. However, the antiferromagnetic
metallic phase does not break the translation symmetry. We
will show that despite the two metallic phases having the
same symmetry they are two distinct phases separated by
phase transitions, if we do not explicitly break the symmetry.
In particular, the fermionic charge-1 excitation is gapless in
the ferromagnetic metallic phase, and is gapped in the an-
tiferromagnetic metallic phase. Thus the ferromagnetic and
antiferromagnetic metallic phases provide examples of sym-
metry protected gapless phases [56,57].

The Z2 spin-flip symmetry breaking in the two metallic
phases can be restored if we add a strong transverse magnetic
field, which will change the two metallic phases into the same
metallic phase of polarized spins. We find that the critical the-
ories of the transition points are different for the ferromagnetic
and antiferromagnetic cases. The ferromagnetic critical point
is described by a CFT,

u1 ⊕ Is ⊕ u1 ⊕ Is, (3)

while the antiferromagnetic critical point is described by a
different CFT. We see that even the same symmetry-breaking
pattern can have distinct critical theories [58].

B. Spin-rotation symmetric strongly correlated metal

In this paper, we also construct some 1D chiral gapless
states. One way to do so is to start with a 2D fractional
quantum Hall (FQH) stripe. On one side of the stripe, we have
a gapless edge state (the bottom part of Fig. 1), and on the
other side of the stripe (the top part of Fig. 1) we have a fully
gapped edge (assuming the FQH state supports gapped edges).
This way, we can obtain a strongly interacting gapless state. In
Appendix A, we show that, if we start with an Abelian FQH
state and consider only U (1) symmetry of electron number
conservation, the above construction actually will always give
us a Tomonaga-Luttinger (TL) liquid, not a new gapless phase.
Thus, in this paper, we consider electron systems with more
than just the U (1) symmetry. As an application, in Sec. V,
we start with a 2D integer quantum Hall stripe with SO(3)
spin rotation symmetry, and obtain a chiral metallic state
of spin-1/2 charge-1 electrons, where the right-moving and
left-moving gapless fermions carry different spins. This chiral
metallic state is beyond the TL liquids of spin-1/2 electrons.

Furthermore, we consider an electron system with U (1)
charge, SU (2) spin, and Z lattice translation symmetries. The
lattice fermions carry charge 1 and spin 1/2. Such an electron
system can realize a chiral metallic phase (see Sec. VI). In this
chiral metallic state, the low-energy excitations are described
by the CFT

su22 ⊕ u1 ⊕ Is ⊕ su21 ⊕ su21 ⊕ u1. (4)

Note that the right movers and left movers are described
by different CFTs (i.e., different chiral algebras), and those
different sectors may have different velocities. We see that
the single lattice SU (2) spin rotation symmetry is enlarged
to SU (2) × SU (2) × SU (2) symmetry at low energies. The
single lattice U (1) charge conservation symmetry is enlarged
to U (1) × U (1) symmetry at low energies. In the clean limit,
the chiral metallic state has a quantized two-terminal thermal

conductance κ = c π
6

k2
BT
h̄ , where c = 3

2 + 1 + 1
2 = 3 is the to-

tal central charge for right movers (or left movers). Since the
spin Sz is conserved, we can treat it as a conserved charge
where each electron carries ±h̄/2Sz charge. The correspond-
ing two-terminal Sz conductance is also quantized:

σSz = νs
(h̄/2)2

h
= νs

h̄

8π
, (5)

with νs = 4. For TL liquids of spin-1/2 electrons, c and νs are
always integers, and they are always the same:

c = νs. (6)

For the chiral metallic state (4), c = 3 and νs = 4. Thus the
constructed chiral metallic state (4) is beyond the TL liquid.
Note that the central charges of some sectors are fractional.
Thus the chiral metallic state is a chiral “non-Abelian” metal-
lic state.

IV. ISING PHASE TRANSITIONS IN THE METALLIC
STATE OF A SPIN- 1

2 ELECTRON CHAIN

In this section, we consider a spin- 1
2 electron chain with

ferromagnetic or antiferromagnetic Sz-spin interactions. The
system has a symmetry U (1) × Zs

2 × Z. We show that the Zs
2

symmetry-breaking transitions for the two cases are described
by different CFTs in the metallic state, despite the fact that
the two transitions cause the identical symmetry change, i.e.,
reduce the symmetry group of the ground state from U (1) ×
Zs

2 × Z to U (1) × Z.

A. Model

Let us first consider a spin- 1
2 chain with Ising interaction

H = −J
∑

i

σ z
i σ z

i+1 − B
∑

i

σ x
i , (7)

where B is the external magnetic field. We then add some
doping to obtain a metallic state of a spin- 1

2 electron chain.
In this paper, we will mainly consider the case when Fermi
energy of the dropped electrons is much less than |J|, |B|. In
this case, the system is in the Z2 symmetry-breaking phase
when B = 0, with σ z = ±1 (i.e., all the electrons either have
σ z = +1 or −1). In the Z2 symmetry-breaking phase, the
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charge degree of freedom remains gapless. The phase is de-
scribed by the U (1) CFT with central charge c = c = 1. The
Z2 symmetry-breaking state has central charge c = c = 1. In
the large B limit, the system is in a Z2 symmetric phase
where all the electrons have σ x = +1. The Z2 symmetric
state has central charge c = c = 1. We would like to consider
the critical point of the Z2 symmetry-breaking transition. The
critical point of pure Z2 symmetry breaking has central charge
c = c = 1

2 . With the contribution from the conserved U (1)
charge fluctuations, the critical point is expected to have a total
central charge c = c = 3

2 .
The symmetry of a fermion system is described by a pair

of groups: (Z f
2 , G f ). Here G f is the full symmetry group and

Z f
2 is generated by fermion number parity, which is a central

subgroup of G f . For our spin-1/2 chain G f = U (1) × Zs
2 and

Z f
2 is the subgroup of U (1).

In general, to fully describe a critical theory with a
global symmetry G, we can consider the partition function
twisted under the symmetry. More specifically, a twisted
partition function defined on a Euclidean space-time torus
parametrized by a complex number τ is indexed by a pair of
elements g and h of G f :

Zg,h(τ ), gh = hg, g, h ∈ G f . (8)

It records all low-energy excitations φ that satisfy
twisted boundary conditions along spatial and temporal
directions, φ(x + L,−it ) = gφ(x,−it ) and φ(x,−it + T ) =
hφ(x,−it ), where −it denotes the imaginary time.

If the symmetry G f is nonanomalous, the partition func-
tions twisted under the symmetry satisfy the following
relations:

Zh−1,g(−1/τ ) = Zg,h(τ ),

Zg,hg(τ + 1) = Zg,h(τ ),

Zugu−1,uhu−1 (τ ) = Zg,h(τ ).

(9)

For example, for a fermionic system with only fermion-
number-parity symmetry, G f = Z f

2 , the partition function
depends on the boundary conditions along temporal and spa-
tial directions. To put it in plain words, we consider the
four-component partition function indexed by g, h ∈ {P, A}:
ZAP(τ ), ZAA(τ ), ZPA(τ ), and ZPP(τ ), where P and A represent
the periodic and antiperiodic boundary conditions of a local
fermion.

B. Partition functions

Thus, for a CFT of a fermionic system, there are at least
four sectors of partition functions defined as

ZPE f (τ ) = TrEe−Im(τ )HP−iRe(τ )KP ,

ZPO f (τ ) = TrOe−Im(τ )HP−iRe(τ )KP ,

ZAE f (τ ) = TrEe−Im(τ )HA−iRe(τ )KA,

ZAO f (τ ) = TrOe−Im(τ )HA−iRe(τ )KA, (10)

where TrE is the trace over the states with even (total) num-
bers of fermions and TrO is the trace over the states with odd
numbers of fermions. HP (HA) is the Hamiltonian for a sys-
tem where fermion fields satisfy a(n) (anti)periodic boundary

condition in the x direction. Similarly, KP (KA) is the total mo-
mentum operator of the systems where fermion fields satisfy
a(n) (anti)periodic boundary condition in the x direction.

Alternatively, we may define the torus partition functions
for fermion systems through the space-time path integral,
which also include four types, ZPP(τ ), ZPA(τ ), ZAP(τ ), and
ZAA(τ ). Here the first and second subscription P and A cor-
respond to the periodic and antiperiodic boundary conditions
for fermions in x and t directions, respectively. The two sets
of partition functions are related:

ZPE f = 1
2 (ZPP + ZPA), ZPO f = − 1

2 (ZPP − ZPA),

ZAE f = 1
2 (ZAP + ZAA), ZAO f = − 1

2 (ZAP − ZAA). (11)

Each partition function can be expanded as

Z (τ ) = q− c
24 (q∗)−

c
24

∑
(h,h)

Nh,hqh(q∗)h, (12)

where c and c are the central charges for right and left movers:

q = e−iτ 2π
L , (13)

where L is the size of the 1D system. The summation
∑

(h,h)

is over a set of pairs (h, h), which gives rise to the spectrum
of scaling dimensions of local operators. In particular, the
expansion coefficients Nh,h must be positive integers for each
of ZPE f (τ ), ZPO f (τ ), ZAE f (τ ), and ZAO f (τ ).

Unlike CFTs from bosonic lattice systems that have a mod-
ular invariant partition function Eq. (1), for a CFT realizable
by a fermionic lattice model, the above four types of partition
functions transform covariantly under modular transforma-
tions. More explicitly, under S : τ → − 1

τ
,

ZPP

(
− 1

τ

)
= ZPP(τ ), ZAA

(
− 1

τ

)
= ZAA(τ ),

ZAP

(
− 1

τ

)
= ZPA(τ ), ZPA

(
− 1

τ

)
= ZAP(τ ), (14)

and, under T : τ → τ + 1,

ZPP(τ + 1) = ZPP(τ ), ZAA(τ + 1) = ZAP(τ ),

ZAP(τ + 1) = ZAA(τ ), ZPA(τ + 1) = ZPA(τ ). (15)

In the basis (ZAE f , ZPO f , ZPE f , ZAO f ), the partition function
transforms as [2]

ZI (τ + 1) = T
Z f

2
IJ ZJ (τ ), ZI (−1/τ ) = S

Z f
2

IJ ZJ (τ ), (16)

where I, J = AE f , PO f , PE f , AO f and

T Z f
2 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠, SZ f
2 = 1

2

⎛⎜⎝1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎠.

(17)

As a warm-up example, we consider the 1D charge-1 spin-
less noninteracting fermions. The four-component partition
functions for a charge-1 spinless fermion satisfy Eq. (16) and
are given by the characters of a u14 CFT for right movers near
kF , and by the characters of a u14 CFT for left movers near
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−kF (see Appendix B 3). As a result, the four-component par-
tition functions for a charge-1 spinless noninteracting fermion
can be constructed from the characters of a u14 ⊕ u14 CFT:

ZAE f = ∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2
,

ZPO f = χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1 ,

ZPE f = ∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2
,

ZAO f = χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0 . (18)

Here, the primary field corresponding to χ
u14
2 (χu14

2 ) is the
charge-1 right(left)-moving fermion. We also note that the
right (left) mover near kF (−kF ) can be viewed as the edge
state for the integer quantum Hall state with filling fraction
ν = 1 (ν = −1).

To find modular covariant partition functions for the Ising
critical point in the spin-1/2 electron system, we use the
characters of a u14 CFT, χu14

m , and the characters of an Ising
CFT, χ Is

h , to construct the four-component partition functions
that satisfy Eq. (16) (details shown in Appendix B 3):

χu1M
m (τ ), 0 � m < M = 4,

χ Is
h (τ ), h = 0, 1

2 , 1
16 . (19)

Here the u1 CFT describes the gapless U (1) charge fluc-
tuations. Also the Ising CFT describes the gapless spin
fluctuations at the Ising transition point. Equation (16) can
have many solutions. For example, the following four-
component partition functions represent a solution satisfying
Eq. (16):

ZAE = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
+ (∣∣χu14

1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
+ (

χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1

16

∣∣2
,

ZPE = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2

+ (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1

16

∣∣2

+ (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
. (20)

In the above four-component partition function, we have
considered the symmetry twist and the quantum number
of Z f

2 . To obtain more information, let us also con-
sider the partition functions for the spin symmetry twist
Zs

2—ZPP(τ ), ZPA(τ ), ZAP(τ ), and ZAA(τ ), which also satisfy
Eqs. (15) and (22). We introduce ZPEs (τ ), ZPOs (τ ), ZAEs (τ ),
and ZAOs (τ ) in a similar but slightly different way:

ZPEs = 1
2 (ZPP + ZPA), ZPOs = 1

2 (ZPP − ZPA),

ZAEs = 1
2 (ZAP + ZAA), ZAOs = 1

2 (ZAP − ZAA), (21)

where ZPEs is the partition function in the Zs
2 even sector and

ZPOs is the partition function in the Zs
2 odd sector. Similarly,

ZAEs is the partition function in the Zs
2 even sector, and ZAOs

is the partition function in the Zs
2 odd sector, but now there

is a Zs
2 symmetry twist in the spatial direction. In the basis

(ZPEs , ZPOs , ZAEs , ZAOs ), the partition function transforms as

ZI (τ + 1) = T
Zs

2
IJ ZJ (τ ), ZI (−1/τ ) = S

Zs
2

IJ ZJ (τ ), (22)

where I, J = PEs, POs, AEs, AOs and

T Zs
2 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠, SZs
2 = 1

2

⎛⎜⎝1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎠,

(23)

which is the same as Eq. (17).
For example, the four-component partition functions for

the critical point of a 1D Ising model (7) satisfy Eq. (22) and
are given by the characters of the Ising CFT (see Appendix
B 3):

ZPEs = ∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2
,

ZPOs = ∣∣χ Is
1
16

∣∣2
,

ZAEs = ∣∣χ Is
1
16

∣∣2
,

ZAOs = χ Is
0 χ Is

1
2
+ χ Is

1
2
χ Is

0 . (24)

Now we would like to include symmetry twists and
the quantum numbers for both Z f

2 and Zs
2, which gives

us the 16-component partition functions ZII ′ (τ ), where I =
AE f , PO f , PE f , AO f and I ′ = PEs, POs, AEs, AOs. ZII ′ (τ )
satisfy the modular covariant condition (see Ref. [2])

ZII ′ (τ + 1) = T
Z f

2 ×Zs
2

II ′;JJ ′ ZJJ ′ (τ ),

ZII ′ (−1/τ ) = S
Z f

2 ×Zs
2

II ′,JJ ′ ZJJ ′ (τ ), (25)

where

T Z f
2 ×Zs

2 = T Z f
2 ⊗ T Zs

2 ,

SZ f
2 ×Zs

2 = SZ f
2 ⊗ SZs

2 . (26)

Equation (25) has many solutions. The list of 36 solutions are
given in Appendix G. But which one of the partition functions
describes the Ising transition of spin-1/2 electrons?

If the electron spins have a ferromagnetic interaction [i.e.,
J < 0 in Eq. (7)], then we can view the doped holes as spinless
fermions. Thus, in this case, we can view the Ising transi-
tion point as the decoupled critical point of the Ising chain
and the metallic state of spinless fermions. Therefore, the
ferromagnetic Ising transition point of spin-1/2 electrons is
described by the following 16-component partition functions
[see Eq. (G1)]:

ZAE f ,PEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPO f ,PEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPE f ,PEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO f ,PEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
; (27)
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ZAE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZAO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
; (28)

ZAE f ,AEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,AEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,AEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZAO f ,AEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
; (29)

ZAE f ,AOs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPO f ,AOs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPE f ,AOs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZAO f ,AOs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
. (30)

The above 16-component partition function is the multicom-
ponent partition function mentioned in Sec. III, which is a
reflection of the noninvertible gravitational anomaly if we
restrict to the symmetric sub-Hilbert space of the Z f

2 × Zs
2

symmetry. The modular covariance of the above multicom-
ponent partition function can help us to determine many
properties of the strongly correlated gapless state. We remark
that the above 16-component partition function only describes
part of the emergent noninvertible gravitational anomaly (i.e.,
part of the emergent categorical symmetry), which is not the
maximal categorical symmetry.

We also note that the 16-component partition function re-
duces to the following four-component partition function if
we only consider the Z f

2 symmetry twist:

ZAE f = ZAE f ,PEs + ZAE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)
ZIs,

ZPO f = ZPO f ,PEs + ZPO f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)
ZIs,

ZPE f = ZPE f ,PEs + ZPE f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)
ZIs,

ZAO f = ZAO f ,PEs + ZAO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)
ZIs,

(31)

where

ZIs = ∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2 + ∣∣χ Is
1
16

∣∣2
. (32)

When the electron spins have an antiferromagnetic interac-
tion [i.e., J > 0 in Eq. (7)], the Ising transition point will be
described by a different CFT. This is because when there is
an odd number of electrons on the ring the spins carried by
the electrons will behave like those in a spin chain with a Zs

2
symmetry twist. In other words, a state with an odd number
of fermions is like a Neel ordered Ising spin configuration
with an odd number of spins, thus satisfying the antiperiodic
boundary condition.

This means that in the partition functions the first label of
which is AO f or PO f (i.e., with an odd number of electrons)
the (untwisted) spin part of the excitations (the sectors labeled
by POs and PEs) is given by the Zs

2 twisted sector of the Ising
CFT. Specifically, if the second label is POs, the spin part is
described by Ising character χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0 [which is ZAOs

shown in Eq. (24)]; if the second label is PEs, it is described
by Ising character |χ Is

1
16

|2 [which is ZAEs shown in Eq. (24)].

Still, in the partition functions the first label of which is AO f

or PO f , the Z2 twisted spin part is given by the Zs
2 untwisted

sector of the Ising CFT. In summary, the partition functions
the first label of which is AO f or PO f are as follows:

Z Is
AO f /PO f ,PEs = ∣∣χ Is

1
16

∣∣2
,

Z Is
AO f /PO f ,POs = χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0 ,

Z Is
AO f /PO f ,AEs = ∣∣χ Is

0

∣∣2 + ∣∣χ Is
1
2

∣∣2
,

Z Is
AO f /PO f ,AOs = ∣∣χ Is

1
16

∣∣2
. (33)

Also, in the partition functions with first label AE f or PE f

(i.e., with an even number of electrons), the (untwisted) spin
part is given by the untwisted sector of the Ising CFT, and the
Z2 twisted spin part is given by the Zs

2 twisted sector of the
Ising CFT:

Z Is
AE f /PE f ,PEs = ∣∣χ Is

0

∣∣2 + ∣∣χ Is
1
2

∣∣2
,

Z Is
AE f /PE f ,POs = ∣∣χ Is

1
16

∣∣2
,

Z Is
AE f /PE f ,AEs = ∣∣χ Is

1
16

∣∣2
,

Z Is
AE f /PE f ,AOs = χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0 . (34)

Furthermore, since a fermion always carries an odd number
of the U (1) charge, the partition functions labeled by AO f and
PO f (i.e., with an odd number of electrons) must be described
by u1 character χu14

m χu14
n with m − n = 2 mod 4. We find

the partition functions Eq. (G13) satisfy the above conditions.
Thus, the antiferromagnetic Ising transition point of spin-1/2
electrons is described by the following 16-component parti-
tion functions [see Eq. (G13)]:

ZAE f ,PEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPO f ,PEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
, [3pt]

ZPE f ,PEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO f ,PEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
; (35)

ZAE f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZPO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZAO f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
; (36)
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TABLE I. Quantum numbers of local and nonlocal operators in
the critical point of the ferromagnetic Ising model Eq. (7). Here σ x is
the Z2 spin quantum number, k is the crystal momentum, and (h, h)
are the right and left scaling dimensions. ψ and σ are the Is CFT
primary fields associated with the Ising character χ Is

1
2

and χ Is
1
16

, which

have scaling dimensions 1
2 and 1

16 , respectively. Similarly, ψ and σ

are the Is CFT fields.

Operators σ x k h, h

ψψ 1 0 1
2 , 1

2

σσ −1 0 1
16 , 1

16

ψ −1 0 1
2 , 0

ψ −1 0 0, 1
2

σσψ ∼ σσψ 1 0 1
16 , 1

16

ZAE f ,AEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,AEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPE f ,AEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZAO f ,AEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
; (37)

ZAE f ,AOs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPO f ,AOs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,AOs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZAO f ,AOs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
. (38)

The above 16-component partition functions reduce to the
four-component partition functions given in Eq. (20), if we
only consider the Z f

2 symmetry twist.

C. Scaling operators and their quantum numbers

Let us first consider the scaling operators and their quan-
tum numbers of the critical point (24) of the Ising model
Eq. (7) without doping. The partition functions Eq. (24) tell
us the Zs

2 quantum numbers. For ferromagnetic spin coupling
[J < 0 in Eq. (7)], the low-energy states all carry crystal mo-
mentum near zero. The states described by |χ Is

1
2
|2 in ZPEs are

created by local operator ψψ from the ground state in |χ Is
0 |2.

Thus the operator ψψ carries Zs
2 quantum number σ x = 1.

The states described by |χ Is
1
16

|2 in ZPOs are created by local op-

erator σσ from the ground state. Thus the operator σσ carries
Zs

2 quantum number σ x = −1. The states described by χ Is
1
2
χ Is

0

in ZAOs are created by nonlocal operator ψ from the ground
state. Thus the nonlocal operator ψ carries Zs

2 quantum num-
ber σ x = 1. Similarly, the nonlocal operator ψ also carries
Zs

2 quantum number σ x = 1. The states described by |χ Is
1
16

|2
in ZAEs are created by nonlocal operator σσψ ∼ σσψ from
the ground state. Thus the operator σσψ ∼ σσψ carries Zs

2
quantum number σ x = 1. The above results are summarized
in Table I.

TABLE II. Quantum numbers of local and nonlocal operators in
the critical point of the antiferromagnetic Ising model Eq. (7).

Operators σ x k h, h

ψψ 1 0 1
2 , 1

2

σσ −1 ± π

a
1

16 , 1
16

ψ −1 ± π

a
1
2 , 0

ψ −1 ± π

a 0, 1
2

σσψ ∼ σσψ 1 0 1
16 , 1

16

However, for antiferromagnetic spin coupling [J > 0 in
Eq. (7)], the low-energy states carry crystal momentum near
k = ±π

a if the Zs
2 quantum number σ x = −1 (and carry crystal

momentum near zero if the Zs
2 quantum number σ x = 1). The

scaling operators and their quantum numbers for the antifer-
romagnetic Ising critical point are summarized in Table II.

Now let us consider the scaling operators and their quan-
tum numbers for the spin-1/2 electrons at the Ising transition
point. The partition functions Eqs. (27)–(30) and (35)–(38)
tell us the Z f

2 and Zs
2 quantum numbers. In the following, we

will discuss the U (1) and momentum quantum numbers.
Let us first consider the ferromagnetic Ising transition point

described by Eqs. (27)–(30). The u14 character χu14
m describes

states with U (1) charge q = m
2 mod 2, and momentum k = kF

2
mod 2kF . Here kF = πnF , where nF is the fermion number
per site. The u14 character χu14

m describes states with U (1)
charge q = −m

2 mod 2, and momentum k = kF
2 mod 2kF . For

such U (1) charge assignment, we see that the states described
by the partition function ZAE f ,··· (ZAO f ,···) carry even (odd)
U (1) charges. The states described by the Ising character do
not carry any U (1) charge or momentum.

The states described by the partition function ZAE f ,···
(ZAO f ,···) are created by local gapless bosonic (fermionic)
operators from the ground state in the sector |χu14

0 |2|χ Is
0 |2.

So the above discussion gives us a list of scaling operators,
as well as their quantum numbers and scaling dimensions.
The results are summarized in Table III. For example [see
Eq. (27)], the bosonic operator e±i(ϕ±ϕ) creates the states in
|χu14

2 |2|χ Is
0 |2. The local fermionic operator e±iϕ creates the

states in χ
u14
2 χ

u14
0 |χ Is

0 |2.
From Table III, we see that there is only one relevant

operator that carries a trivial quantum number, ψψ , with total
scaling dimension h + h = 1. This is the operator that drives
the ferromagnetic Ising transition.

Next, let us consider the antiferromagnetic Ising transition
point described by Eqs. (35)–(38). The u14 character χu14

m still
describes states with U (1) charge q = m

2 mod 2, and momen-
tum k = kF

2 mod 2kF . The u14 character χu14
m still describes

states with U (1) charge q = −m
2 mod 2, and momentum

k = kF
2 mod 2kF . For such U (1) charge assignment, again

the states described by the partition function ZAE f ,··· (ZAO f ,···)
carry even (odd) U (1) charges. The states described by the
Ising character do not carry any U (1) charge. But they can
carry momentum ±kF if σx = −1. The results are summarized
in Table IV. For example [see Eq. (35)], the local gapless
bosonic operator e±i(ϕ±ϕ) creates the states in |χu14

2 |2|χ Is
0 |2.
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TABLE III. Quantum numbers of local gapless bosonic and
fermionic operators in the ferromagnetic Ising transition point of the
strongly interacting spin-1/2 electron system (the doped ferromag-
netic Ising model). Here σ x is the Z2 spin quantum number, q is
the U (1) charge, k is the crystal momentum, and (h, h) are the right
and left scaling dimensions [the values in brackets are for θ = 0,
see Eq. (44)]. ϕ is the bosonic field to describe u14 CFT, where
ϕ is normalized such that eiϕ has a scaling dimension 1

2 . ψ and σ

are the Is CFT fields with scaling dimension 1
2 and 1

16 , respectively.
Similarly, ϕ is the bosonic field to describe u14 CFT and ψ and σ are
the Is CFT fields.

Operators σ x q k h, h (θ = 0)

e±i(ϕ+ϕ) 1 0 ±2kF
(chθ−shθ )2

2 , (chθ−shθ )2

2 ( 1
2 , 1

2 )

e±i(ϕ−ϕ) 1 ±2 0 (chθ+shθ )2

2 , (chθ+shθ )2

2 ( 1
2 , 1

2 )

ψψ 1 0 0 1
2 , 1

2 ( 1
2 , 1

2 )

σσ −1 0 0 1
16 , 1

16 ( 1
16 , 1

16 )

e±iϕ 1 ±1 ±kF
ch2θ

2 , sh2θ

2 ( 1
2 , 0)

e±iϕ 1 ∓1 ±kF
sh2θ

2 , ch2θ

2 (0, 1
2 )

e±iϕσσ −1 ±1 ±kF
ch2θ

2 + 1
16 , sh2θ

2 + 1
16 ( 7

16 , 1
16 )

e±iϕσσ −1 ∓1 ±kF
sh2θ

2 + 1
16 , ch2θ

2 + 1
16 ( 1

16 , 7
16 )

The local fermionic operator e±iϕσσψ ∼ e±iϕσσψ creates
the states in χ

u14
2 χ

u14
0 |χ Is

1
16

|2.

From Table IV, we see that there is only one relevant
operator that carries trivial quantum numbers, ψψ , with total
scaling dimension h + h = 1. This is the operator that drives
the antiferromagnetic Ising transition.

D. Low-energy effective theory

Let us further compare the ferromagnetic and antiferro-
magnetic Ising transition for the spin-1/2 electrons when
there is interaction. Both the ferromagnetic and antiferro-
magnetic Ising transition points are described by the same

TABLE IV. Quantum numbers of local gapless bosonic and
fermionic operators in the antiferromagnetic Ising transition point of
the strongly interacting spin-1/2 electron system (the doped antifer-
romagnetic Ising model).

Operators σ x q k h, h

e±i(ϕ+ϕ) 1 0 ±2kF
(chθ−shθ )2

2 , (chθ−shθ )2

2

e±i(ϕ−ϕ) 1 ±2 0 (chθ+shθ )2

2 , (chθ+shθ )2

2

ψψ 1 0 0 1
2 , 1

2

e±i ϕ+ϕ
2 σσ −1 0 ±kF

2(chθ−shθ )2+1
16 , 2(chθ−shθ )2+1

16

e±iϕσσψ 1 ±1 ±kF
ch2θ

2 + 1
16 , sh2θ

2 + 1
16

e±iϕσσψ 1 ∓1 ±kF
sh2θ

2 + 1
16 , ch2θ

2 + 1
16

e±i ϕ−ϕ
2 ψ −1 ±1 ±kF

(chθ+shθ )2+4
8 , (chθ+shθ )2

8

e±i ϕ−ϕ
2 ψ −1 ±1 ±kF

(chθ+shθ )2

8 , (chθ+shθ )2+4
8

low-energy effective field theory:

L = 1

4π
(∂xϕ∂tϕ − ∂xϕ∂xϕ − ∂xϕ∂tϕ − ∂xϕ∂xϕ)

− 1

2π
V ∂xϕ∂xϕ + ψ (∂t − ∂x )ψ + ψ (∂t + ∂x )ψ. (39)

However, the sets of local operators are different for the two
Ising transition points. For the ferromagnetic Ising transition
point, the local operators are given in Table III, while for the
antiferromagnetic Ising transition point the local operators are
given in Table IV. In the tables, the σ (x) [σ (x)] operator is the
operator that creates the sign flip at x in the ψ [ψ] field.

In the last section, we study the case with V = 0. And
the U (1) charge fluctuations are described by the u14 ⊕ u14

CFT. Here we will consider the effect of V on the scaling
dimensions h and h. Let us introduce(

φ

φ

)
=

(
chθ shθ

shθ chθ

)(
ϕ

ϕ

)
,(

ϕ

ϕ

)
=

(
chθ −shθ

−shθ chθ

)(
φ

φ

)
, (40)

with θ satisfying

V = 2chθshθ

ch2θ + sh2θ
. (41)

The Lagrangian for φ and φ is diagonal:

L = 1

4π
(∂xφ∂tφ − v∂xφ∂xφ − ∂xφ∂tφ − v∂xφ∂xφ). (42)

Thus the scaling dimensions h and h for operator

ei(mϕ+m ϕ) = ei[m(chθ φ−shθ φ)+m(chθ φ−shθ φ)] (43)

are given by

h(θ ) = (m chθ − m shθ )2

2
, h(θ ) = (m chθ − m shθ )2

2
.

(44)

From Tables III and IV, we see that the charge neu-
tral operator with σ x = −1 has scaling dimensions 1

16 , 1
16

and 2(chθ−shθ )2+1
16 , 2(chθ−shθ )2+1

16 for the ferromagnetic and the
antiferromagnetic critical points, respectively. The scaling di-
mensions for the antiferromagnetic critical points are always
larger than 1

16 , 1
16 . So the ferromagnetic and the antiferromag-

netic critical points are really distinct critical points, despite
the fact that they describe identical symmetry-breaking pat-
terns.

Next we compare the ferromagnetic and antiferromagnetic
Ising transitions for the spin-1/2 electrons by considering
the total scaling dimension h+(θ ) = h + h for the electron
operator with Zs

2 quantum number σ x = 1 and h−(θ ) = h + h
for the electron operator with Zs

2 quantum number σ x = −1.
As a function of interaction θ, h+(θ ) and h−(θ ) have different
relations for the ferromagnetic and antiferromagnetic Ising
transitions, as shown in Fig. 2. For example, in the ferromag-
netic transition, the Zs

2 even and odd electron operators can be
e±iϕ and e±iϕσσ , respectively. And in the antiferromagnetic
transition they can be e±iϕσσψ and e±i ϕ−ϕ

2 ψ , respectively.
From Fig. 2, we see that in the ferromagnetic case the scaling
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FIG. 2. The relations between the total scaling dimensions h+
and h− of the electron operators with Zs

2 quantum number σ x = 1 and
−1, respectively, for the ferromagnetic (FM) and antiferromagnetic
(AFM) Ising transitions.

dimension of the Zs
2 odd electron operator is always larger

than that of the Zs
2 one by 1

8 , which is independent of inter-
action. However, in the antiferromagnetic case, the difference
in the scaling dimension of the Zs

2 odd and Zs
2 even opera-

tor increases with the attractive interacting strength (θ > 0),
and decreases with the repulsive interacting strength (θ < 0),
comparing to the noninteracting case θ = 0.

E. Two metallic phases of a spin- 1
2 electron chain

with the same symmetry

Let us consider the spin- 1
2 Ising chain Eq. (7) with B > 0.

As we change J from 0 → +∞, the Ising chain goes into a
state that breaks the Zs

2 spin-flip symmetry. If we change J
from 0 → −∞, the Ising chain goes into a state that breaks
both the Zs

2 spin-flip and translation symmetries.
However, for a doped Ising chain which is a metallic state,

both the J → +∞ and the J → −∞ cases have the same
symmetry: the Zs

2 spin-flip symmetry is spontaneously broken
while the translation symmetry is not broken. Despite the two
large |J| metallic phases having the same symmetry, our pre-
vious discussions indicate that the transitions from the J = 0
metallic phase to J = ±∞ metallic phases are described by
two distinct critical points. Thus, even the transitions that
have identical spontaneous symmetry-breaking patterns can
be described by different critical points.

The two distinct critical points also suggest that J = ±∞
metallic phases are two distinct metallic phases despite the
fact that they have the same symmetry. Thus, they are ex-
amples of symmetry protected gapless phases, i.e., distinct
gapless phases with the same symmetry. To understand these
two distinct metallic phases, we consider modular covari-
ant partition functions with U (1) × Z f

2 symmetry. We will
consider the 16-component partition functions with Z f

2 × Zs
2

symmetry twists. Since Zs
2 symmetry is spontaneously broken,

TABLE V. Quantum numbers of local gapless bosonic and
fermionic operators in the metallic phase of spin-1/2 electrons with
strong ferromagnetic Ising interaction. Here, q is the U (1) charge,
k is the crystal momentum, and (h, h) are the right and left scaling
dimensions [the values in brackets are for θ = 0, see Eq. (44)]. ϕ

is the bosonic field to describe u14 CFT. Similarly, ϕ is the bosonic
field to describe u14 CFT.

Operators q k h, h (θ = 0)

e±i(ϕ+ϕ) 0 ±2kF
(chθ−shθ )2

2 , (chθ−shθ )2

2 ( 1
2 , 1

2 )

e±i(ϕ−ϕ) ±2 0 (chθ+shθ )2

2 , (chθ+shθ )2

2 ( 1
2 , 1

2 )

e±iϕ ±1 ±kF
ch2θ

2 , sh2θ

2 ( 1
2 , 0)

e±iϕ ∓1 ±kF
sh2θ

2 , ch2θ

2 (0, 1
2 )

the partition functions with nontrivial Zs
2 symmetry twist van-

ish. Using the u14 CFT characters to construct the modular
covariant partition functions, we identify the following two
sets of partition functions to describe the J = ±∞ metallic
phases.

For the J = +∞ metallic phase (ferromagnetic Ising inter-
action), we have

ZAE f ,PEs = ∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2
,

ZPO f ,PEs = χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1 ,

ZPE f ,PEs = ∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2
,

ZAO f ,PEs = χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0 ; (45)

ZAE f ,POs = ∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2
,

ZPO f ,POs = χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1 ,

ZPE f ,POs = ∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2
,

ZAO f ,POs = χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0 ; (46)

ZAE f ,AEs = 0,

ZPO f ,AEs = 0,

ZPE f ,AEs = 0,

ZAO f ,AEs = 0; (47)

ZAE f ,AOs = 0,

ZPO f ,AOs = 0,

ZPE f ,AOs = 0,

ZAO f ,AOs = 0. (48)

The corresponding primary fields (i.e., gapless operators) and
their quantum numbers are listed in Table V.

For the J = −∞ metallic phase (antiferromagnetic Ising
interaction), we have

ZAE f ,PEs = ∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2
,

ZPO f ,PEs = 0,

ZPE f ,PEs = ∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2
,

ZAO f ,PEs = 0; (49)
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TABLE VI. Quantum numbers of local gapless bosonic operators
in the metallic phase of spin-1/2 electrons with strong antiferromag-
netic Ising interaction. Local fermionic operators (i.e., odd-charge
operators) are all gapped.

Operators q k h, h (θ = 0)

e±i(ϕ+ϕ) 0 ±2kF
(chθ−shθ )2

2 , (chθ−shθ )2

2 ( 1
2 , 1

2 )

e±i(ϕ−ϕ) ±2 0 (chθ+shθ )2

2 , (chθ+shθ )2

2 ( 1
2 , 1

2 )

ZAE f ,POs = ∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2
,

ZPO f ,POs = 0,

ZPE f ,POs = ∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2
,

ZAO f ,POs = 0; (50)

ZAE f ,AEs = 0,

ZPO f ,AEs = χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1 ,

ZPE f ,AEs = 0,

ZAO f ,AEs = χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0 ; (51)

ZAE f ,AOs = 0,

ZPO f ,AOs = χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0 ,

ZPE f ,AOs = 0,

ZAO f ,AOs = χ
u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1 . (52)

The corresponding primary fields (i.e., gapless operators) and
their quantum numbers are listed in Table VI.

In particular, from the above partition function, we can read
that in the antiferromagnetic metallic phase the single electron
excitations are all gapped. For example, in Eq. (49), we see
that ZAE f ,PEs �= 0, which means a sector with even fermions
and integer Sz spins is gapless. If we add an electron, we obtain
a sector with odd fermions and half-integer Sz spins described
by ZAO f ,POs in Eq. (50). ZAO f ,POs = 0 means the sector has an
energy gap.

This is in contrast to the ferromagnetic metallic phase.
ZAE f ,PEs �= 0 in Eq. (46) and ZAO f ,POs �= 0 in Eq. (47) imply
that the sectors differ by an electron and are both gapless. Thus
the single electron excitations are gapless.

To understand this result, we note that the spins of electrons
have a Neel-like ↑↓↑↓ · · · pattern. As a result, for an even
number of electrons, the partition function is nonzero only
when there is no Zs

2 symmetry twist. For an odd number of
electrons, the partition function is nonzero only when there is
a Zs

2 symmetry twist. Since the fermion number and the Zs
2

symmetry twist are locked, the fermion operators (i.e., odd-
charge operators) are all gapped. We can also see the gapping
of charge-1 fermions by noticing that applying a charge-1
fermion operator to states in the sector ZAE f ,PEs gives us
states in the sectors ZAO f ,PEs and ZAO f ,POs , where AE f → AO f

(adding a fermion) and PEs → PEs, POs (the Zs
2 symme-

try twist cannot be changed). Since ZAO f ,PEs = ZAO f ,POs = 0,

TABLE VII. Strongly interacting spin-1/2 electrons can form
chiral metallic states, whose low energy excitations are right-moving
and left-moving fermionic quasiparticles. Here two possible chiral
metallic states are listed in terms of spins carried by the right-moving
and left-moving quasiparticles.

Right movers Left movers νs = 4Tr(SR
z )2 c

Spin 1
2 , 1

2 , 1
2 , 9

2
7
2 , 7

2 336 16

Spin 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 5

2
3
2 , 3

2 , 3
2 , 3

2 80 16

meaning the two sectors are gapped, the charge-1 fermionic
excitations are all gapped.

V. CHIRAL METALLIC PHASES OF SPIN- 1
2 ELECTRONS

Following the ideas in Ref. [59], we can also construct
a strongly interacting metallic phase of spin-1/2 electrons
where the left movers and right movers have very different
behavior. We will call such metallic phases chiral metallic
phases.

In the first example, the left movers and right movers
have the same emergent symmetry at low energy. However,
they carry different representations under the symmetries.
Specifically, one such chiral metallic phase has SU (2)-spin
and U (1)-charge symmetries with symmetry group [SU (2) ×
U (1)]/Z2. At low energies, the chiral metallic phase has n
left-moving and n right-moving fermions, which are nonin-
teracting. Those noninteracting fermions all carry charge 1.
But the left-moving and right-moving fermions form different
SU (2) representations. Let SR

z be the n × n Hermitian matrix
for the Sz spin of the right-moving fermions, and let SL

z be
the n × n Hermitian matrix for the left-moving fermions. For
the low-energy fermions to be free from perturbative SU (2)
anomaly, the SU (2) representations must satisfy

Tr
(
SR

z

)2 = Tr
(
SL

z

)2
. (53)

Then combining the results in Refs. [48,59], we find that such
a chiral metallic phase is free of all U (1) × SU (2) anomalies,
and can be realized by interacting fermions on a 1D lattice.

Equation (53) has solutions only when n � 16, if we re-
quire all the fermions to have half-integer spins. At n = 16, we
only have the two solutions in Table VII. All the fermions in
Table VII carry charge 1. The spin-1/2 fermions correspond to
the spin-1/2 electrons. The fermions with higher spins can be
viewed as bound states of several spin- 1

2 electrons and spin- 1
2

holes.
The chiral metallic phases of charge-1 fermions carrying

the list of spins in Table VII can be realized by interacting
electrons on a 1D lattice, according to the argument presented
in Refs. [48,59]. However, such chiral metallic states cannot
be smoothly deformed into the noninteracting spin-1/2 elec-
tron systems since νs [defined in Eq. (5)] and the chiral central
charge c are not equal.
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FIG. 3. The band structure of free fermions to construct the chiral
metallic phase. The two bands are for two flavors. Each band is
doubly degenerate corresponding to two spin- 1

2 states. Velocities
v(k) at k = 0 are the same, and likewise v( π

2 ) = v(π ).

VI. CHIRAL NON-ABELIAN METALLIC PHASES

A. Construction

In this section, we are going to construct another stable
chiral metallic phase which is also non-Abelian. We start with
a noninteracting 1D electron system described by

H0 = ψ†
αa(x)iv0∂xψαa(x) − ψ

†
αa(x)iv0∂xψαa(x), (54)

where α and a are the spin SU (2) and flavor SU (2) la-
bels, and v0 is the Fermi velocity. At low energy, the model
has an emergent [SUs(2) × SUf (2) × U (1)]R × [SUs(2) ×
SUf (2) × U (1)]L symmetry for right movers and left movers.
The right movers of the above system are described by the
CFT

su2s
2 ⊕ su2 f

2 ⊕ u1c, (55)

where the excitations in su2s
2 carry SUs(2) spin quantum

numbers, the excitations in su2 f
2 carry SUf (2) flavor quantum

numbers, and the excitations in u1 carry the U (1) charges.
Similarly, the left movers of the above system are described
by the CFT

su2s
2 ⊕ su2 f

2 ⊕ u1c. (56)

In the above, suNk denotes both the level-k su(N ) Kac-
Moody algebra and the CFT built from it. The CFT has central
charge

c = k(N2 − 1)

k + N
. (57)

Likewise u1M denotes the U (1) current algebra, and the cen-
tral charge of the associated CFT is c = 1. For details, see
Appendix B.

In Eq. (54) the fermions also carry crystal momenta. In
particular, ψαa carry crystal momentum kF = 0, ψα1 carry
crystal momentum kF1 = π , and ψα2 carry crystal momentum
kF2 = π/2. Such a free fermion model is easily realized, for
example, with a band structure shown in Fig. 3. In particular,
the low-energy fermion operator ψαa,k−kF can be represented
in terms of lattice fermion operator cαa,k as follows. For k ∼
kF ,

Cαa,k =
(

3∑
μ=0

eiμ(k−kF )

)
cαa,k ∼ ψαa,k−kF , (58)

FIG. 4. (a) Chiral fermions and the mirror of chiral fermions
can appear on the boundary of a 4+1D slab of a gapped state.
(b) Sometimes [such as in the SO(10) case] the boundary mirror chi-
ral fermions can be gapped by interaction, which leads to a solution
of the chiral fermion problem.

and, for k ∼ kFa,

Cαa,k =
(

3∑
μ=0

eiμ(k−kFa )

)
cαa,k ∼ ψαa,k−kFa

. (59)

Additionally, in real space,

ψαa,i =
3∑

μ=0

e−iμkF acαa,i+μ, ψαa,i =
3∑

μ=0

e−iμkFa cαa,i+μ. (60)

Cαa,k reach the maximum at k = 0 and vanish at k = π
2 , π ;

Cα1,k reach the maximum at k = π and vanish at k = 0, π
2 ;

Cα2,k reach the maximum at k = π
2 and vanish at k = 0, π .

To obtain the chiral metallic phase from the above free
fermion model, we add interactions that respect the spin
SU (2), charge U (1), and translation symmetry. We will add
interactions in three steps, which finally lead to the Hamilto-
nian

H = H0 + δH + δH + δH′. (61)

It is crucial here that the interactions are different for left
movers and right movers. For the right movers, we add in-
teraction

δH = gsJs(x) · Js(x) + gcJc(x)Jc(x), (62)

where

Jc(x) = ψ†
αa(x)ψαa(x),

Js(x) = 1
2ψ†

αa(x)σαβψβa(x) (63)

are the U (1) charge and SU (2) spin current (or density), and σ

are the Pauli matrices. As a current-current interaction, when
the coupling constant g’s are not too large, the above inter-
action term [with scaling dimension (h, h) = (2, 0)] is always
exactly marginal. It does not open up any energy gap, but only
modifies the velocities in the corresponding sector. With the
interactions, the right movers have SU (2) × SU (2) × U (1)
symmetry, and are described by the CFT

su2 f
2 ⊕ su2s

2 ⊕ u1c. (64)

The three sectors, each containing the flavor, spin, and charge
degrees of freedom, respectively, can have separate velocities,
while the excitations within each sector have the same veloc-
ity.

For left movers we add interactions

δH = gs1Js1(x) · Js1(x) + gs2Js2(x) · Js2(x)

+ gc1Jc1(x)Jc1(x) + gc2Jc2(x)Jc2(x). (65)
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Here,

Jc1(x) = ψ
†
α1(x)ψα1(x),

Jc2(x) = ψ
†
α2(x)ψα2(x),

Js1(x) = 1
2ψ

†
α1(x)σαβψβ1(x),

Js2(x) = 1
2ψ

†
α2(x)σαβψβ2(x). (66)

Such current-current interactions also do not open up gaps,
but modify the velocity in the corresponding sector. With
the interaction, the left movers have the symmetry SU (2) ×
U (1) × SU (2) × U (1), and are described by the CFT

su2s
1 ⊕ u1c1 ⊕ su2s

1 ⊕ u1c2. (67)

The chiral metallic phase that we have constructed so far
[see Eqs. (64) and (67)] can be smoothly connected to the
TL liquid (i.e., interacting 1D Fermi liquids) [60,61], as we
reduce g’s to zero. To construct a chiral chiral metallic phase
that is not connected to the TL liquid, we add an additional
interaction term:

δH′ = g(ψ†
↑1ψ

†
↓1 − ψ

†
↓1ψ

†
↑1)(ψ↑1ψ↓1 − ψ↓1ψ↑1) + H.c.

(68)

We note that the above operator carries a crystal momentum
k = 0 + 0 + π + π = 0 mod 2π . Thus the term respects the
translation symmetry. Such a term is not a current-current
interaction and can induce energy gaps for some excitations
and drive the system into a new phase.

To understand the new phase, note that the above operator
respects the spin SU (2), the diagonal charge U (1), and the
translation symmetry (since the crystal momentum carried by
the operator vanishes). Such an operator only causes inter-

action within the sector su2 f
2 ⊕ u1c ⊕ u1c1. If the interaction

g is strong enough, it will gap out the u1c1 and part of the

su2 f
2 ⊕ u1c sector, which reduces su2 f

2 ⊕ u1c ⊕ u1c1 down to
Is ⊕ u1c f , where Is denotes the Ising CFT. In this way, we
obtain a chiral metallic phase described by the CFT

su22 ⊕ u1c f ⊕ Is ⊕ su21 ⊕ su21 ⊕ u1, (69)

which is beyond the TL liquid.

B. Gapping process

We would like to show the gapping process of the interac-
tion (68) more explicitly. This is accomplished by using CFT
and current algebras. Furthermore, we can derive the physical
properties such as local operators, correlation functions, and
partition functions, which will be done in the next subsection.

We start with H0 in Eq. (54) plus the interactions Eqs. (64)
and (67). The resulting low-energy theory has the following
emergent symmetry:

right movers, U (1) × SUf (2) × SUs(2);

left movers, U1(1) × SUs(2) × U2(1) × SUs(2). (70)

ψαa carry the U (1) charge 1 and transform as doublets of
both the flavor and spin SU (2). In contrast, ψα1 carry the
charge 1 for U1(1) and form a doublet of the first SUs(2), and
ψα2 carry the charge 1 for U1(1) and form a doublet of the

second SU (2)s. The low-energy excitations are described by
the following current algebras:

right movers, u1c ⊕ su2s
2 ⊕ su2 f

2 ;

left movers, u11 ⊕ su21
1 ⊕ u12 ⊕ su22

1. (71)

The theory is free from any gravitational anomaly, since the
left central charge c = 1 + 3

2 + 3
2 = 4 is equal to the right

central charge c = 1 + 1 + 1 + 1.
The local operators of our theory are powers of the fermion

operators ψαa and ψαa. The fermion operators can be repre-
sented in terms of the primary fields of the above CFT. In
particular, they can be written in terms of simple free boson
fields and free Majorana fermion fields in u1, su22, and su21

CFTs (see Appendix B 1):

ψαa = eiϕc/2σse
±i φs

2 σ f e±i
φ f
2 = ei ϕc

2 V
su2s

2
1
2 ,± 1

2

V
su2 f

2
1
2 ,± 1

2

,

ψα1(z) = ei ϕ1√
2 e±i φ1√

2 = ei ϕ1√
2 V

su21
1

1
2 ,± 1

2
,

ψα2 = ei ϕ2√
2 e±i φ2√

2 = ei ϕ1√
2 V

su22
1

1
2 ,± 1

2
.

(72)

Here, for right movers, (1) ϕc is the bosonic field to describe
u1c; (2) ηs, σs, and φs are the Ising CFT fields and the bosonic
field to describe su2s

2; and (3) η f , σ f , and φ f are the Ising
CFT fields and the bosonic field to describe su2 f

2 . Similarly,
for left movers, (1) ϕ1 is the bosonic field to describe u11,
(2) ϕ2 is the bosonic field to describe u12, (3) φ1 is the
bosonic field to describe su21

1, and (4) φ2 is the bosonic field

to describe su22
1.

We adopt the convention that the correlation function of all
bosonic fields is

〈φ(z1)φ(z2)〉 ∼ − ln(z1 − z2), (73)

where zi = τi + ixi is the complex coordinate. The scaling
dimensions of operators in Eq. (72) all equal 1

2 , a necessary
condition for chiral fermion operators. This fixes the u1 parts
of the fermion operators in Eq. (72).

Now the gapping term (68) can be rewritten as [via operator
product expansion (OPE); see Appendix B 2]

δH′ ∼ −gcos(ϕc + φ f −
√

2ϕ1). (74)

When g > 0 is large, the sectors generated by ϕc + φ f and ϕ1
are fully gapped. Other sectors are not affected. Consequently,
the gapless excitations in the new phase are described by the
following CFT:

right movers, u1c f ⊕ su2s
2 ⊕ Is f ;

left movers, su21
1 ⊕ u12 ⊕ su22

1. (75)

Here u1c f is the u1 CFT represented by the field ϕc − φ f ,
the conjugate field of ϕc + φ f that remains gapless. And

Is f = su2 f
2

u1 f is the Ising CFT with primary fields 1, σ f , and
η f . Primary fields of the above CFTs are summarized in
Appendix B 1.

The scaling dimension of ei(ϕc+φ f −
√

2ϕ1 ) is (h, h) = (1, 1).
We emphasize that, even though the local interaction term
gaps out the left mode and right mode in equal numbers, it
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selects an inequivalent combination of right modes, compar-
ing to the left modes, since the operator is in the CFT

u1c
4 ⊕ u1 f z

4 ⊕ u11
2 ⊂ u1c

4 ⊕ su2 f
2 ⊕ u11

2. (76)

The resulting phase is anomaly free and has a lattice realiza-
tion.

C. Local operators

To compute the physical properties of the chiral metallic
phase, we first identify local operators in the above CFT.
In the chiral metallic phase, the fermion operators ψα1 and
ψα1 are gapped (i.e., their imaginary-time correlations have

exponential decay), since they contain either ei
ϕc+ϕ f

2 or ei φ1√
2 .

They are local operators but do not appear in the low-energy
CFT. All other fermion operators,

ψα2 = ei
ϕc−φ f

2 σse
±iφs/2σ f = ei

ϕc−φ f
2 V

su2s
2

1
2 ,± 1

2

σ f ,

ψα2 = ei ϕ2√
2 e±i φ2√

2 = ei ϕ2√
2 V

su22
1

1
2 ,± 1

2
, (77)

are still gapless and, therefore, are local operators in the CFT.
Operators generated from the OPEs of ψα2 and ψα2 are also
local operators.

The above local operators are purely chiral with either
only right movers or only left movers. Another type of local
operators containing both right movers and left movers is

ψ
†
α1ψβ1 = e−i

ϕc+φ f −√
2φ1

2 σse
±iφs/2σ f e±i φ1√

2

∼ σse
±iφs/2σ f e±i φ1√

2 = σ f V
su2s

2
1
2 ,± 1

2

V
su21

1
1
2 ,± 1

2
, (78)

where we have used the knowledge that in the chiral metallic
phase the cos term in Eq. (74) is frozen to the maximum value,

i.e., e−i
ϕc+φ f −√

2φ1
2 ∼ 1. Therefore ψ

†
α1ψβ1’s are also low-energy

local operators in the chiral metallic phase. The above results
are summarized in Table VIII.

D. Partition functions

To find modular covariant partition functions [see
Eq. (16)], we use the CFT characters for u1M , Is ∼= su22

u1 , su21,
and su22 (details shown in Appendix B 3):

χu1M
m , 0 � m < M,

χ Is
μ , μ = 0, η, σ,

χ su21
ρ , ρ = 0, 1

2 ,

χ su22
ν , ν = 0, 1

2 , 1. (79)

The scaling dimensions of the U (1) part in ψα2 and ψα2 in
Eq. (77) are both 1

4 , and thus correspond to u1 primary fields
with R = √

2. This determines the level of u1M CFT to be
M = 2 [see Eq. (B9)].

We find that the simplest solutions of covariant partition
functions that contain local operators (77) and (78) are the
following.

(1) The first solution is the antiperiodic boundary condition
with an even number of fermions:

ZAE = χ
u12
0

(
χ

su22
0 χ Is

0 + χ
su22
1 χ Is

η

)
χ

u12
0 χ

su21
1

0 χ
su22

1
0

+ χ
u12
1

(
χ

su22
1 χ Is

0 + χ
su22
0 χ Is

η

)
χ

u12
1 χ

su21
1

1/2 χ
su22

1
1/2

+ χ
u12
0 χ

su22
1/2 χ Is

σ χ
u12
0 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
1 χ

su22
1/2 χ Is

σ χ
u12
1 χ

su21
1

0 χ
su22

1
1/2 . (80)

The primary field corresponding to each term of characters
in ZAE is bosonic with integral spin h − h ∈ Z. We list the
scaling dimensions of all primary fields in Appendix E.

(2) The second solution is the antiperiodic boundary con-
dition with an odd number of fermions:

ZAO = χ
u12
0

(
χ

su22
0 χ Is

0 + χ
su22
1 χ Is

η

)
χ

u12
1 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
1

(
χ

su22
1 χ Is

0 + χ
su22
0 χ Is

η

)
χ

u12
0 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
0 χ

su22
1/2 χ Is

σ χ
u12
1 χ

su21
1

1/2 χ
su22

1
1/2

+ χ
u12
1 χ

su22
1/2 χ Is

σ χ
u12
0 χ

su21
1

0 χ
su22

1
0 . (81)

The primary field corresponding to each term of charac-
ters in ZAE is fermionic with half-integral spin h − h ∈ Z +
1
2 . We list the scaling dimensions of all primary fields in
Appendix E.

(3) The third solution is the periodic boundary condition
with an even or odd number of fermions:

ZPE = ZPO = 1
2

(
χ

u12
0 χ

su22
1/2 χ Is

σ χ
su21

1
0 + χ

u12
1 χ

su22
0 χ Is

0 χ
su21

1
0

)
× (

χ
u12
1 χ

su22
1

0 + χ
u12
0 χ

su22
1

1/2

)
+ 1

2

[
χ

u12
0

(
χ

su22
1 χ Is

0 + χ
su22
0 χ Is

η

)
χ

su21
1

1/2

+ χ
u12
1

(
χ

su22
1 χ Is

η χ
su21

1
0 + χ

su22
1/2 χ Is

σ χ
su21

1
1/2

)]
× (

χ
u12
1 χ

su22
1

0 + χ
u12
0 χ

su22
1

1/2

)
, (82)

where both terms in ZPE (ZPO) are eightfold degenerate, es-
sentially contributed from four Majorana zero modes for the
periodic boundary condition, as explained in Appendix D.
The primary field corresponding to each term of characters
in ZPE (ZPO) is bosonic with integral spin h − h ∈ Z. We list
the scaling dimensions of all primary fields in Appendix E.

Here we have used the fact that ZPP = 0, since the chiral
metallic phase contains free fermions ψα2 and ψα2. The zero
modes of free fermions in the space-time path integral cause
ZPP = 0.

There is a physical approach that leads to this solution of
modular covariant partition functions. Consider the combi-
nation of a Heisenberg chain and a spin-1/2 Dirac fermion
(referred to as the HD hybrid system). The low-energy theory
for the Heisenberg chain is the su21

1 ⊕ su21
1 CFT. The low-

energy theory of the free spin-1/2 Dirac fermion is su22
1 ⊕

u12 ⊕ su22
1 ⊕ u12. Its partition function ZHD

AA is thus the prod-
uct of the partition functions of the two CFTs,

ZHD
AA = (

χ
su21

1
0 χ

su21
1

0 + χ
su21

1
1/2 χ

su21
1

1/2

)(
χ

su22
1

0 χ
u12
0 + χ

su22
1

1/2 χ
u12
1

)
× (

χ
su22

1
0 χ

u12
0 + χ

su22
1

1/2 χ
u12
1

)
, (83)
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TABLE VIII. Quantum numbers of local operators, where k is
the crystal momentum.

Operators Spin Charge k

ψα2 = ei
ϕc−φ f

2 V
su2s

2
1
2 ,± 1

2
σ f

1
2 −1 0

ψα2 = e
i
ϕ2√

2 V
su22

1
1
2 ,± 1

2

1
2 −1 − π

2a

ψ†
α1ψβ1 = σ f V

su2s
2

1
2 ,± 1

2
V

su21
1

1
2 ,± 1

2
0, 1 0 π

a

and can be reorganized as

ZHD
AA = [(

χ
su21

1
0 χ

su22
1

0 χ
u12
0 + χ

su21
1

0 χ
su22

1
1/2 χ

u12
1

)
χ

su21
1

0

+ (
χ

su21
1

1/2 χ
su22

1
0 χ

u12
0 + χ

su21
1

1/2 χ
su22

1
1/2 χ

u12
1

)
χ

su21
1

1/2

]
× (

χ
su22

1
0 χ

u12
0 + χ

su22
1

1/2 χ
u12
1

)
. (84)

The interesting fact is that su21
1 × su22

1 characters can all
be represented precisely by su22 × Is characters. More specif-
ically,

χ
su21

1
0 χ

su22
1

0 =χ
su22
0 χ Is

0 + χ
su22
1 χ Is

η ,

χ
su21

1
0 χ

su22
1

1/2 =χ
su21

1
1 χ

su22
1

0 = χ
su22
1/2 χ Is

σ , (85)

χ
su21

1
1/2 χ

su22
1

1/2 =χ
su22
0 χ Is

η + χ
su22
1 χ Is

0 .

We find that after replacing χ
su21

1
μ χ

su22
1

ν in the partition function
(84) with these identities above, and rewriting in the basis
with fixed fermion number parity, we reach partition functions
(80)–(82).

The partition function (80) provides us a list of local gap-
less bosonic operators and their scaling dimensions (E1) in the
chiral metallic phase. The result is summarized in Table IX.

The crystal momenta of those local gapless bosonic oper-
ators are also important quantum numbers. Note that all right
movers carry zero crystal momentum. For left movers, the
spin-1/2 operators in the su1

1 sector carry crystal momentum

π . In the u12 ⊕ su2
1 sector, the operator ψα2 ∼ e±i ϕ2√

2 V
su22

1
1
2 ,± 1

2

carries crystal momentum ±π/2. From these results, we ob-
tain the crystal momenta of the local gapless bosonic operators
in Table IX.

From the χ
u12
0 χ

su22
0 χ Is

0 χ
u12
0 χ

su21
1

0 χ
su22

1
0 term in ZAE , we see

that there is no discrete symmetry breaking in the chiral
metallic phase. If there is, say, a Z2 symmetry breaking,

2χ
u12
0 χ

su22
0 χ Is

0 χ
u12
0 χ

su21
1

0 χ
su22

1
0 will appear in ZAE .

We see that all the local gapless bosonic operators carry
nontrivial quantum numbers. Therefore, the chiral metallic
phase is stable.

E. Phase transition from the Tomonaga-Luttinger liquid
to the chiral metallic phase

This procedure signals that there can be a direct phase
transition between the HD hybrid system, the low energy of
which is described by Tomonaga-Luttinger liquid theory, and
the chiral metallic phase, the low-energy physics of which
is described by non-Abelian CFTs. The HD phase has four
emergent SU (2) symmetries. The chiral metallic phase has
three emergent SU (2) symmetries.

Indeed, the interaction operator (74) is a marginal operator
with h = h = 1. It is a tempting indication that the zero-spin
marginal perturbation can drive a transition between two sta-
ble gapless (under symmetry) phases.

VII. EXAMPLES OF STRONGLY INTERACTING GAPLESS
METALLIC STATES IN HIGHER DIMENSIONS

The fact that the emergent symmetry at low energies
can be anomalous plays a key role in the solution of the
chiral fermion problem [48,49]. For example, in the lat-
tice realization of SO(10) chiral fermions, we start with a
4+1-dimensional (4+1D) slab, which can be viewed as a
3+1-dimensional (3+1D) system from far away. We design
the gapped fermion state with SO(10) on-site symmetry in
the 4+1D bulk properly, such that its surface is described by
16 massless Weyl fermions, forming a 16-dimensional spinor
representation of SO(10). On the 4+1D slab, one 3+1D
surface gives rise to 16 chiral Weyl fermions and the other
3+1D surface gives rise to 16 mirror chiral Weyl fermions
[see Fig. 4(a)]. Each sector of the Weyl fermions has an emer-
gent symmetry U (16). Such an emergent U (16) symmetry is
anomalous for each sector [49]. In Ref. [48], the sufficient
conditions are given for a sector (such as the 16 mirror chiral
Weyl fermions) to be gappable via interactions without break-
ing the lattice and on-site symmetry [see Fig. 4(b)]. Applying

TABLE IX. Quantum numbers of local gapless bosonic operators in the chiral metallic phase su2s
2 × u12 × Is × su21

2 × su22
2 × u12. Here

k is the crystal momentum.

Operators Spin Charge k h, h

e
±i

ϕc−ϕ f
2 ±i

ϕ2√
2 V

su2s
2

1,l V
su21

1
1
2 ,± 1

2
V

su22
1

1
2 ,± 1

2
0,1,2 0, ±2 π ± π

2
3
4 , 3

4

e
±i

ϕc−ϕ f
2 ±i

ϕ2√
2 η f V

su21
1

1
2 ,± 1

2
V

su22
1

1
2 ,± 1

2
0,1 0, ±2 π ± π

2
3
4 , 3

4

V
su2s

2
1,l η f 1 0 0 1,0

V
su2s

2
1
2 ,± 1

2
σ f V

su21
1

1
2 ,± 1

2
0,1 0 π 1

4 , 1
4

e
±i

ϕc−ϕ f
2 ±i

ϕ2√
2 V

su2s
2

1
2 ,± 1

2
V

su22
1

1
2 ,± 1

2
0,1 0, ±2 ± π

2
1
2 , 1

2
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to the SO(10) case, we find that the 16 mirror chiral Weyl
fermions can be gapped without breaking the SO(10) on-site
symmetry, and this solves the chiral fermion problem for the
case of SO(10) grant unification. We would like to stress that
the gapping of 16 chiral Weyl fermions is very special, in the
sense that there is no fermion mass term that can achieve such
a gapping process without breaking the SO(10) symmetry. It
appears that the anomaly of the emergent U (16) symmetry
protects the 16 chiral Weyl fermions to be gapless against any
small perturbations that respect the SO(10) symmetry.

In the above example, each sector of 16 massless Weyl
fermions is free of all anomalies. It was also pointed out in
Ref. [48] that even when each sector is anomalous it is still
possible that an anomalous sector can be in a topologically
ordered gapped phase [62]. This offers a more general way
to solve the chiral fermion problem. In general, for a gapless
system, the low-energy effective theory for the gapless modes
can be anomalous. Even such an anomalous low-energy ef-
fective theory can sometimes be realized by a well-defined
lattice model in the same dimension, since the anomaly can
be canceled by a gapped (anomalous) topological sector.

One such example is the 2D gapless theory of one sin-
gle Weyl fermion with U (1) (fermion number NF ) and
time-reversal (T ) symmetry. The time-reversal transformation
satisfies T 2 = (−)NF . Such a single-Weyl-fermion theory has
a parity anomaly (time reversal is a space-time parity trans-
formation). It was believed (incorrectly) that there was no 2D
lattice theory with on-site U (1) and time-reversal symmetries
that can produce a low-energy effective theory of a single
Weyl fermion. Indeed, there are no noninteracting lattice the-
ories with on-site U (1) and time-reversal symmetries that can
produce low-energy effective theory of a single Weyl fermion.
However, if we include interaction, then there are interacting
lattice theories with on-site U (1) and time-reversal symme-
tries that can produce a low-energy effective theory of a single
Weyl fermion without breaking those symmetries. One way to
construct such an interacting 2D lattice model is to start with a
slab of a 3D lattice model, which can be viewed as a 2D lattice
model from far away. On the 3D slab we have the topological
insulator with U (1) symmetry and T 2 = (−)NF time-reversal
symmetry. The fermions do not interact near one surface of
the slab, which gives rise to the low-energy effective theory
of a single Weyl fermion. Near the other surface of the slab,
fermions interact strongly, which gives rise to a gapped non-
Abelian topologically ordered state and does not contribute to
low-energy modes [see Fig. 4(b)].
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APPENDIX A: TOMONAGA-LUTTINGER LIQUID
AS AN ABELIAN GAPLESS PHASE

We define the Tomonaga-Luttinger liquid (LL) as the liquid
containing only excitations with integral (or bosonic) statis-

tics. It can always be written as

KF =
(

1 0
0 −1

)
. (A1)

Thus the LL has the property that � = �0. For simplicity, we
assume NL = NR = 1, and there is only one left and one right
mode. The essence of the proof does not depend on NL(= NR),
and can be generalized to NL > 1. The task is to prove that
once all excitations in the Lagrangian subgroup are condensed
the partition function of the low-energy theory is the same as
that of LLs, i.e., the u11 ⊕ u11 CFT.

We consider one kind of Abelian state, constructed from
a double-layered FQH stripe, and gap sectors along only one
edge (the top part of Fig. 1) while sectors from the other edge
remain gapless (the bottom part of Fig. 1). The claim is that
Abelian states realized by such construction are always LLs,
the low-energy theory of which is the u11 ⊕ u11 CFT.

The edge theory of the Abelian FQH state is described
by a symmetric integer matrix K . Quasiparticles created by
operator eilT φ are labeled by an integer vector l . Given two
quasiparticles l, m ∈ Z2, the self-statistics of the l quasiparti-
cle and the mutual statistics of two quasiparticles are

θl

π
= lT K−1l,

θlm

2π
= lT K−1m. (A2)

In particular, a local excitation is one that can be created by
local operators, i.e., bosonic or fermionic operators. One set
of local excitations is �0 = KZ2. We see that basis vectors are
columns of K = (k1, k2). It follows that the K matrix encodes
the statistics of these local operators:

θi j

2π
= kT

i K−1k j = Ki j, (A3)

which is integral. Another set of local operators is

eilT (φ+φ), l ∈ Z2, (A4)

where φ are fields of the other edge, described by −K . We
have the statistics

θlm

2π
= lT K−1m − lT K−1m = 0 (A5)

and
θlm

2π
= lT K−1m ∈ Z2, (A6)

since m ∈ KZ2.
The gappable condition for a single edge is that there is

a set of quasiparticles m ∈ Z2 that form a “Lagrangian sub-
group” M [63]. One way to fully gap the edge is to add
perturbation:

δL =
∑

m∈M
gn cos(mT φ). (A7)

We see that when gn > 0 are sufficiently large the quasi-
particles labeled by m are condensed, i.e., eimT φ ∼ 1. The
question is, what is the gapless theory for the other edge that
remains gapless?

When all m are condensed, the local excitations in Eq. (A4)
become

eimT (φ+φ) → eimT φ. (A8)
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Now the lattice of local operators is

� = ⊕m∈M(m + KZ2). (A9)

This is still a two-dimensional integral lattice, and can thus
be represented by � = UZ2, where U is an integral matrix.
Levin proved that now P = U T K−1U is a symmetric integral
matrix with vanishing signature, det P = ±1. In fact, P is the
effective K now:

P = U T K−1U . (A10)

Next, by another linear superposition,

(W T )−1 = UW0, W T KW = η, (A11)

which means that when the null vectors become local opera-
tors will as well. Meanwhile, we tune the interactions at the
upper edge appropriately, so that Ṽi j = vδi j :

V = (W T )−1ṼW −1. (A12)

Let us illustrate the proof with two examples. First, we
consider

K =
(

m 0
0 −m

)
. (A13)

Pick a null vector l = (1, 1)T and k1 to form the new basis:

U =
(

1 m
1 0

)
(A14)

with mutual statistics

P =
(

0 1
1 m

)
. (A15)

By a second basis transformation W0 we find the basis:

W0 =
( 1−m

2
1+m

2

1 −1

)
, UW0 = 1

2

(
1 + m 1 − m
1 − m 1 + m

)
.

(A16)

With this basis, the statistics is

Keff = KF . (A17)

The interaction is tuned to

V = v

2

(
1 + m2 1 − m2

1 − m2 1 + m2

)
. (A18)

In this basis, all vectors are mutually trivial:

eiuT φ = eiγ T W −1φ = eiγ T φ̃ (A19)

where γ = W T u contributes

Z (τ ) =
∑
γ∈�̃

|η(q)|−2q
1
2 γ 2

1 (q∗)
1
2 γ 2

2 (A20)

to Z (τ ).
γ is in the lattice

�̃ = W T UZ2 = W −1
0 U −1UZ2 = W −1

0 Z2. (A21)

Since W0 is an integer matrix with det W0 = ±1, so is W −1
0 .

Then, from the theorem of lattice theory,

�̃ ≡ Z2. (A22)

Therefore,

Z (τ ) =
∑
γ∈Z2

|η(q)|−2q
1
2 γ 2

1 (q∗)
1
2 γ 2

2 = χ
u11
0 χ

u11
0 , (A23)

which is the same as the partition function of the u11 CFT:

Z (τ ) =
∑

m∈M

∑
γ∈�m

|η(q)|−2q
1
2 γ 2

1 (q∗)
1
2 γ 2

2 . (A24)

We point out that for the velocity matrix

V =
(

v 0
0 v

)
(A25)

the matrix to make K → η and V diagonal is

W ′ = 1√
m

η, (A26)

and in this case the partition function is

Z (τ ) =
∑

m∈PZ

Zm(τ ). (A27)

It is modular invariant, since

Z

(
− 1

τ

)
=

∑
m,n∈PZ

SmnZn(τ ),

Smn = 1

| det P|ei2πmT K−1
eff n. (A28)

The low-energy theory is a u1M × u1M CFT, and

(W ′)−1W = 1

2
√

m

(
1 + m −1 + m

−1 + m 1 + m

)
(A29)

is a boosting matrix in SO(1, 1).
Second, we consider a general case with a nontrivial La-

grangian subgroup:

K =
(−1 1

1 3

)
. (A30)

We can choose a Lagrangian subgroup M =
{(0, 0)T , (1, 1)T }, and we find

U =
(

1 1
1 −1

)
, W0 =

(
1 0

−1 1

)
, W =

(
1
2 1
1
2 0

)
.

(A31)

We conclude that from the double-layered FQH and
gapping one edge the gapless phase obtained is still a
Tomonaga-Luttinger liquid.

APPENDIX B: CONFORMAL FIELD THEORY EXTENDED
WITH CURRENT ALGEBRAS

The theory of conformal field theory with extended sym-
metry is well known. In this section, we summarize some
defining knowledge to introduce our convention. We refer the
readers to Francesco et al.’s textbook [64] for further details.
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1. Current and primary fields

The u1, su21, and su22 CFTs are not only invariant un-
der conformal symmetry, but also invariant under current
algebras. Current algebras are generated by currents, chiral
primary fields with scaling dimension 1, and denoted as Ja(z).
The defining OPE of the level-k current algebra gk is

Ja(z)Jb(w) ∼ kδab

(z − w)2
+

∑
c

i fabc
Jc(w)

(z − w)
, (B1)

where fabc is the structure constant of the corresponding Lie
algebra g. In particular, for u1M current algebra,

J0(z)J0(w) ∼ M

(z − w)2
, (B2)

and for su2k current algebra in the spin basis, the su2 genera-
tors of which satisfy

[J+, J−] = 2J0, [J0, J±] = ±J±, (B3)

the OPEs are

J0(z)J0(w) ∼ k/2

(z − w)2
,

J0(z)J±(w) ∼ ±J±(w)

(z − w)
, (B4)

J+(z)J−(w) ∼ k

(z − w)2
+ 2J0(w)

(z − w)
.

Analogous to highest weight representations of Lie alge-
bras, the highest weight representations of the current algebras
are labeled by primary fields. The defining OPE of a primary
field Vλ(z) is

Ja(z)Vλ(w) ∼ t a
λVλ(w)

z − w
, (B5)

where t a
λ is the representation matrix for Ja of g in the repre-

sentation labeled by λ.
Current algebras can be represented in terms of differ-

ent quantum fields, as long as the different representations
produce the same correlation functions (so-called quantum
equivalence). In particular, primary fields of the above current
algebras can be expressed in terms of the chiral compactified
bosonic field φ and primary fields in the Is CFT. The represen-
tations of current fields and primary fields, and their scaling
dimensions h, are listed in Table X. Table XI lists the primary
fields and the scaling dimensions h.

2. Operator product expansion

The OPE of fermion operators is

η(z)η(w) ∼ 1

z − w
. (B6)

The OPEs of Ising primary fields are

σ (z)σ (w) ∼ 1

(z − w)
1
8

+ C(z − w)
3
8 η(w),

η(z)σ (w) ∼ 1

(z − w)
1
2

μ(w), (B7)

η(z)μ(w) ∼ 1

(z − w)
1
2

σ (w),

TABLE X. Fields of CFTs with current algebras. Ji are current
fields, and others are primary fields (except the identity field with
scaling dimension zero) of the current algebra. a0 is the cutoff length
scale.

CFT Field h

u1M J0 = i
√

M∂φ 1

Vk = e
i k√

M
φ
, k = 0, . . . , M − 1 k2

2M

su21 J0 = i√
2
∂φ 1

J± = e±i
√

2φ 1

V 1
2 ,± 1

2
= e

±i 1√
2
φ 1

4

su22 J0 = i∂φ 1

J± = √
2ηe±iφ 1

V 1
2 ,± 1

2
= σe±iφ/2 3

16

V1,±1 = e±iφ 1
2

V1,0 = η 1
2

where μ denotes the disorder operator dual to the spin opera-
tor σ , and it has the same OPE and conformal dimensions as
σ . All other OPEs can be derived from (73), (B6), and (B8).

3. Characters and modular transformations

Each primary field corresponds to a highest weight rep-
resentation of the current algebra. The character of a highest
weight representation encodes the degeneracy or multiplicities
of states with the same quantum numbers.

a. u1M character

The u1M character χu1M
m is given by

χu1M
m (τ ) = q− 1

24

∑∞
n=−∞ q

1
2 ( m

R +nR)2∏∞
n=1(1 − qn)

, R2 = M, (B8)

which contains primary fields of conformal symmetry:

ei( m
R +nR)φ. (B9)

When M is even, under modular transformation, χu1M
m trans-

forms as

χ
u1M
i

(
− 1

τ

)
=

∑
j

Si jχ
u1M
j (τ ),

Si j = 1√
M

e−i2π
i j
M , (B10)

χ
u1M
i (τ + 1) = ei2π ( 1

2
i2

M − 1
24 )χ

u1M
i (τ ).

When M is odd, χu1M
m corresponds to the partition function of

a fermionic system.

TABLE XI. Primary fields of Ising CFT.

Primary field h

1 0

σ 1
16

η 1
2
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b. su2k character

The ŝu(2)k character χ
su2k
j (τ ) is

χ
su2k
j (q) = q(2 j+1)2/4(k+2)

[η(q)]3

×
∑
n∈Z

[2 j + 1 + 2n(k + 2)]qn[2 j+1+(k+2)n]

(B11)

where j ∈ P = {0, 1
2 , · · · , k

2 }. The modular transformations
are

χ
su2k
j (−1/τ ) =

∑
l∈P

S jlχ
su2k
l (τ ),

S jl =
√

2

k + 2
sin

[
π (2 j + 1)(2l + 1)

k + 2

]
,

χ
su2k
j (τ + 1) =

∑
l∈P

Tjlχ
su2k
l (τ ),

Tjl = δ jl e
i2π( j( j+1)

k+2 − c
24 ), (B12)

and c = 3k
k+2 .

c. Ising characters

The Ising characters are

χr,s(q) = η−1(q)
∑
n∈Z

(
q(24n+4r−3s)2/48 − q(24n+4r+3s)2/48),

(B13)

where

χ1 ≡ χ1,1, χσ ≡ χ1,2, χψ ≡ χ2,1. (B14)

In the basis (χ1, χσ , χη ), the S matrix is

S = 1

2

⎛⎝ 1
√

2 1√
2 0 −√

2
1 −√

2 1

⎞⎠, (B15)

and the T operation is

T χμ = ei2π(hμ− 1
48 )χμ, (B16)

where h1 = 0, hσ = 1
16 , and hη = 1

2 .

APPENDIX C: EXACTLY MARGINAL OPERATORS

Consider a perturbation δS = 1
2π

∑
i gi

∫
d2zφi(z, z),

where φi(z, z) is the marginal Virasora primary field with
weights (hi, hi ). The correction of the correlations of O(z, z),
a product of primary fields, is

δ

δg j
〈O〉 = 1

2π

∫
d2w〈φ j (w,w)O〉. (C1)

In particular, by taking O = φi(z1, z1)φi(z2, z2), one can show
that to the first order in δgi the correction to the weights is

δhi = δhi = −
∑

j

cii jδg j . (C2)

The necessary condition for a marginal operator to be ex-
actly marginal, i.e., preserving conformal symmetry when gi

is turned on continuously, is that cii j = 0, for any primary
field φ j .

APPENDIX D: PARTITION FUNCTIONS OF FREE SPIN- 1
2

DIRAC FERMIONS

The spin- 1
2 Dirac fermions can be considered as the rep-

resentation of the u12 ⊕ su21 current algebra. The partition
functions are

ZDirac
AE = χ

u12
0 χ

su21
0 χ

u12
0 χ

su21
0 + χ

u12
1 χ

su21
1/2 χ

u12
1 χ

su21
1/2

= 1

2

(∣∣∣∣θ3(q)

η(q)

∣∣∣∣4

+
∣∣∣∣θ4(q)

η(q)

∣∣∣∣4)
=

∑
k=0,2,4

(
4

k

)(
ZMaj

AE

)k(
ZMaj

AO

)4−k
,

ZDirac
AO = χ

u12
0 χ

su21
0 χ

u12
1 χ

su21
1/2 − χ

u12
1 χ

su21
1/2 χ

u12
0 χ

su21
0

= 1

2

(∣∣∣∣θ3(q)

η(q)

∣∣∣∣4

−
∣∣∣∣θ4(q)

η(q)

∣∣∣∣4)
=

∑
k=1,3

(
4

k

)(
ZMaj

AE

)k(
ZMaj

AO

)4−k
,

ZDirac
PE = ZDirac

PO

= 1

2

(
χ

u12
0 χ

su21
1/2 + χ

u12
1 χ

su21
0

)(
χ

u12
0 χ

su21
1/2 + χ

u12
1 χ

su21
0

)
= 1

2

∣∣∣∣θ2(q)

η(q)

∣∣∣∣4

= 8
(
ZMaj

PE

)4
, (D1)

where we have used Jacobi’s theta functions θa(τ ) to track
the various identities between characters. To understand the
multiplicity in ZDirac

PE (ZDirac
PO ), we compare it with

ZMaj
PE =ZMaj

PO = 1

2

∣∣∣∣θ2(q)

η(q)

∣∣∣∣. (D2)

Since θ2/η has twofold degeneracy, there is no degeneracy
in ZMaj

PE , but an eightfold degeneracy in ZDirac
PE . Physically, in

n chains of a Majorana fermion with a periodic boundary
condition, there is a ground-state degeneracy of 2n due to n
zero modes. For fixed fermion number parity, the degeneracy
is ∑

k=0,2,··· ,k�n

(
n

k

)
=

∑
k=1,3,··· ,k�n

(
n

k

)
= 2n−1. (D3)

APPENDIX E: SCALING DIMENSIONS OF PRIMARY
FIELDS IN THE CHIRAL METALLIC PHASE

Here we list the scaling dimensions (h, h) of primary fields
corresponding to each term of characters ZAE (80).

(1) In ZAE (80),

(0, 0),
(

3
4 , 3

4

)
,

(
3
4 , 3

4

)
, (1, 0)

(
1
4 , 1

4

)
,

(
1
2 , 1

2

)
. (E1)

(2) In ZAO (81),(
0, 1

2

)
,

(
3
4 , 1

4

)
,

(
3
4 , 1

4

)
,

(
1, 1

2

) (
1
4 , 3

4

)
,

(
1
2 , 0

)
. (E2)
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(3) In ZPE or ZPO (82),(
1
4 , 1

4

)
,

(
1
4 , 1

4

)
,

(
1
2 , 1

2

)
,

(
1
2 , 1

2

)
,(

1
2 , 1

2

)
,

(
1
2 , 1

2

)
,

(
5
4 , 1

4

)
,

(
5
4 , 1

4

)
,(

1
4 , 1

4

)
,

(
1
4 , 1

4

)
,

(
1
2 , 1

2

)
,

(
1
2 , 1

2

)
.

(E3)

APPENDIX F: COMPUTATION OF MODULAR INVARIANT
PARTITION FUNCTIONS

1. Fusion algebra in the chiral metallic phase

Fields generated from OPEs of fermion operators can be
summarized in terms of fusion algebras. The primary fields
in the partition functions can be organized in the following
fashion. We denote the vacuum and local operators as

ν1 = V u12
0 V su22

0 1IsV
u12

0 V
su21

1
0 V

su22
1

0 ,

ν2 ≡ ψα2 = V u12
0 V su22

0 1IsV
u12

1 V
su21

1
0 V

su22
1

1
2

,

μ1 ≡ ψα2 = V u12
1 V su22

1
2

σV
u12

0 V
su21

1
0 V

su22
1

0 ,

μ2 ≡ ψ
†
α1ψβ1 = V u12

0 V su22
1
2

σV
u12

0 V
su21

1
1
2

V
su22

1
0 . (F1)

All the primary fields generated from the fusion of them
are

μ3 = ν2 × μ1 =V u12
1 V su22

1
2

σV
u12

1 V
su21

1
0 V

su22
1

1
2

,

μ4 = ν2 × μ2 =V u12
0 V su22

1
2

σV
u12

1 V
su21

1
1
2

V
su22

1
1
2

. (F2)

The other fields are νi j, 1 � i � 4, 0 � j � 3 defined as

νi0 =νi,

νi1 = V u12
0 V su22

1 1Is × νi0,

νi2 = V u12
0 V su22

0 η × νi0,

νi3 = V u12
0 V su22

1 η × νi0. (F3)

ν1 and ν2 have been given. ν3 and ν4 are determined by

μ1 × μ2 =
3∑

j=0

ν3 j, μ1 × μ4 =
3∑

j=0

ν4 j . (F4)

The solution is

ν3 = V u12
1 V su22

0 1IsV
u12

0 V
su21

1
1
2

V
su22

1
0 ,

ν4 = V u12
1 V su22

0 1IsV
u12

1 V
su21

1
1
2

V
su22

1
1
2

. (F5)

Note that all νi0 ≡ νi have the partial vacuum V su22
0 1Is, thus

the fusion in Eq. (F3) is Abelian and trivial.
The primary fields defined above form a complete set such

that the fusion algebra is closed. We denote this fusion algebra
as

C = {μl , νi j | 1 � l, i � 4, 0 � j � 3}. (F6)

2. Procedure to look for modular invariant partition functions

From the fusion algebra C, we can look for solutions of
modular covariant Z .

(1) Assign non-negative integral multiplicities for the char-
acters χc j for c j ∈ C, and sum over them to get an initial
partition function z.

(2) Generate a set of partition functions:

z, Sz, T Sz, ST Sz, T z, ST q. (F7)

Since S2 = 1 [65], T 2 = 1, and (T S)3 = 1, they are all the
partition functions generated by modular transformations.
Next one checks that all the multiplicities in these vectors are
non-negative integers, and the primary fields in these partition
functions are either bosonic or fermionic fields.

(3) There are three basis vectors of S invariant partition
functions:

z1 = z + Sz, zT = T z + ST z, zT S = T Sz + ST Sz.
(F8)

Therefore all vectors ZAA = ∑3
i=1 aizi, ai ∈ Z, ai � 0 are in-

variant under S transformation.
(4) The other sectors of partition functions can be gener-

ated by ZAP = T ZAA and ZPA = SZAP.
(5) Use ZPP to find

∑3
i=1 aizi, ai ∈ Z, ai � 0, which is

purely bosonic.
The only free choice in the procedure is in the first step; the

general guideline is to assign small integers to the multiplici-
ties.

Another modular covariant partition function

There is another independent solution for modular covari-
ant partition functions, as shown below:

Z ′
AE = χ

u12
0 χ

su22
0 χ Is

0 χ
u12
0 χ

su21
1

0 χ
su22

1
0

+ χ
u12
1 χ

su22
1 χ Is

0 χ
u12
1 χ

su21
1

1/2 χ
su22

1
1/2

+ χ
u12
1 χ

su22
0 χ Is

η χ
u12
1 χ

su21
1

1/2 χ
su22

1
1/2

+ χ
u12
0 χ

su22
1 χ Is

η χ
u12
0 χ

su21
1

0 χ
su22

1
0

+ χ
u12
1 χ

su22
0 χ Is

0 χ
u12
0 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
0 χ

su22
1 χ Is

0 χ
u12
1 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
0 χ

su22
0 χ Is

η χ
u12
1 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
1 χ

su22
1 χ Is

η χ
u12
0 χ

su21
1

1/2 χ
su22

1
0 . (F9)

The scaling dimensions of the primary field corresponding to
each term are

(0, 0),
(

3
4 , 3

4

)
,

(
3
4 , 3

4

)
, (1, 0),(

1
4 , 1

4

)
,

(
1
2 , 1

2

)
,

(
1
2 , 1

2

)
,

(
5
4 , 1

4

)
; (F10)

Z ′
AO = χ

u12
0 χ

su22
0 χ Is

0 χ
u12
1 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
1 χ

su22
1 χ Is

0 χ
u12
0 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
1 χ

su22
0 χ Is

η χ
u12
0 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
0 χ

su22
1 χ Is

η χ
u12
1 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
1 χ

su22
0 χ Is

0 χ
u12
1 χ

su21
1

1/2 χ
su22

1
1/2
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+ χ
u12
0 χ

su22
1 χ Is

0 χ
u12
0 χ

su21
1

0 χ
su22

1
0

+ χ
u12
0 χ

su22
0 χ Is

η χ
u12
0 χ

su21
1

0 χ
su22

1
0

+ χ
u12
1 χ

su22
1 χ Is

η χ
u12
1 χ

su21
1

1/2 χ
su22

1
1/2 . (F11)

The scaling dimensions of the primary field corresponding to
each term are(

0, 1
2

)
,

(
3
4 , 1

4

)
,

(
3
4 , 1

4

)
,

(
1, 1

2

)
,(

1
4 , 3

4

)
,

(
1
2 , 0

)
,

(
1
2 , 0

)
,

(
5
4 , 3

4

)
; (F12)

Z ′
PE =Z ′

PO

=χ
u12
0 χ

su22
1/2 χ Is

σ χ
u12
1 χ

su21
1

0 χ
su22

1
0

+ χ
u12
0 χ

su22
1/2 χ Is

σ χ
u12
0 χ

su21
1

0 χ
su22

1
1/2

+ χ
u12
1 χ

su22
1/2 χ Is

σ χ
u12
1 χ

su21
1

1/2 χ
su22

1
0

+ χ
u12
1 χ

su22
1/2 χ Is

σ χ
u12
0 χ

su21
1

1/2 χ
su22

1
1/2 . (F13)

The scaling dimensions of the primary field corresponding to
each term are(

1
4 , 1

4

)
,

(
1
4 , 1

4

)
,

(
1
2 , 1

2

)
,

(
1
2 , 1

2

)
. (F14)

APPENDIX G: SOLUTIONS OF EQ. (25)

Using the characters of the u14 CFT, χu14
m , and the charac-

ters of the Ising CFT, χ Is
h , we can construct many solutions of

Eq. (25). The following is a list of 36 solutions (the list may
not be complete):

ZAE f ,PEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPO f ,PEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPE f ,PEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO f ,PEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZPO f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZAO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
,

ZAE f ,AEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZPO f ,AEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,AEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1

16

∣∣2
,

ZAO f ,AEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
,

ZAE f ,AOs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPO f ,AOs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPE f ,AOs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZAO f ,AOs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
; (G1)

ZAE f ,PEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPO f ,PEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPE f ,PEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO f ,PEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPE f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1

16

∣∣2
,

ZAO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1

16

∣∣2
,

ZAE f ,AEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,AEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPE f ,AEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1

16

∣∣2
,

ZAO f ,AEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1

16

∣∣2
,

ZAE f ,AOs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPO f ,AOs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPE f ,AOs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZAO f ,AOs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
; (G2)

ZAE f ,PEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPO f ,PEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPE f ,PEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZAO f ,PEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAE f ,POs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZPO f ,POs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZPE f ,POs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(∣∣χ Is
0

∣∣2 + ∣∣χ Is
1
2

∣∣2)
,

ZAO f ,POs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1
16

∣∣2
,

ZAE f ,AEs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,

ZPO f ,AEs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)∣∣χ Is
1
16

∣∣2
,

ZPE f ,AEs = (∣∣χu14
1

∣∣2 + ∣∣χu14
−1

∣∣2)∣∣χ Is
1
16

∣∣2
,

ZAO f ,AEs = (∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,
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ZAE f ,AOs = (
χ

u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

)∣∣χ Is
1

16

∣∣2
,

ZPO f ,AOs = (
χ

u14
1 χ

u14
−1 + χ

u14
−1 χ

u14
1

)(
χ Is

0 χ Is
1
2
+ χ Is

1
2
χ Is

0

)
,
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