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Abstract

We present a quantum algorithm for approximating maximum independent sets of a graph based
on quantum non-Abelian adiabatic mixing in the sub-Hilbert space of degenerate ground states,
which generates quantum annealing in a secondary Hamiltonian. For both sparse and dense random
graphs G, numerical simulation suggests that our algorithm on average finds an independent set
of size close to the maximum size «(G) in low polynomial time. The best classical algorithms, by

contrast, produce independent sets of size about half of a(G) in polynomial time.

I. INTRODUCTION

Finding a maximum independent set (MIS) of a graph is an NP-hard problem that
appears difficult to solve even approximately. In spite of decades of research, no known
classical algorithm produces much better results than the naive, greedy strategy.

For a graph G(n, m) that contains n vertices and m edges, it is known that unless P=NP
no polynomial algorithm can find a O(n'~¢)-approximate solution in the worst case [I][2],
where € > 0 is an arbitrary small positive number that is independent of n. We let a(G)
denote the largest size of independent sets for a given graph GG. The aforementioned state-
ment means that the size of the best approximate MIS found by a polynomial algorithm is
~ a(G)/n'~¢. This is not an impressive result when you notice that 1 < a(G) < n. Average
case performance, for both sparse and dense graphs, is not much better. Consider for ex-
ample the class of Erdés-Rényi random graphs, denoted G(n, P), where P is the probability
to generate an edge between any pair of vertices. Erdés-Rényi graphs G(n,P) are dense at
P = 1/2, as their edge numbers are proportional to n?. For them, the MIS size is typically
a(G(n,1/2)) ~ 2logyn [3]. But no classical algorithm is known or suspected to produce in
polynomial time, with non-vanishing probability, an independent set of size (1 + ¢€) log, n for
any fixed e > 0, neither analytically nor through numerical evidence [4]. It is common to
take d = 2m/n to define sparse random graphs G(n, m) parametrically. One finds that for
sparse graphs with d > 1 [5]

Ind

a(G(n,m)) ~ 2n7 : (1)

Here too, no classical algorithm is known or suspected to perform well - specifically, to find

Ind

an independent set of size (1 + €)n™}

in polynomial time with non-vanishing probability.

Here we introduce a quantum algorithm which appears, in extensive numerical evidence,



to perform much better. It builds on the the quantum algorithm for independent sets we
proposed in Ref. [0], but adds a major new ingredient. Numerical experiments indicate
that our quantum algorithm typically produces an independent set of size almost a(G) in
low polynomial time, for both sparse and dense random graphs in the average-case scenario,
where we average over both the final quantum measurement and many randomly generated

graphs.

II. QUANTUM ADIABATIC EVOLUTION IN THE SOLUTION-SUBSPACE

Our approach for approximating MIS builds on a quantum algorithm for independent
sets [0, [7]. To fix notation and to make this work self-contained, we briefly recall the earlier
algorithm here. For a given non-empty graph GG, we construct a corresponding spin-system

with the following Hamiltonian [6]

Hy =AY (67 + 067 +6757), (2)

(i)
where the summation (ij) is over all edges in the graph. Spin j being up should be interpreted
as inclusion of site j in the candidate set, and the terms in the Hamiltonian as imposing a

penalty for connection between included sites. Two key features of this Hamiltonian are:

1. The independent sets of a graph G are in one-to-one correspondence with the ground

states of Hy.

2. There is an energy gap 4A between the ground states and the first excited states,

independent of n and m.

These features allow us to explore the space of independent sets through non-abelian adia-
batic evolution.

We consider acting uniformly upon all the spins with the rotation matrix

cost e sinf .
vi=| 2, 2 =vi (3)
e sin 5 —CoSg

9
2

0

V; represents rotation through 7 around the axis (sin 5 cos ¢, sin § sin ¢, cos g) and takes the

unit vector (0,0,1) to 7 = (sin 6 cos ¢, sin O sin , cos#). Note that such mapping from the
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SO(3) rotation to V; is not unique and V; does not have unit determinant, but it includes
a convenient overall phase factor.
If |u); and |d); are eigenstates of 67, that is, 67 |u); = |u); and 67 [d); = — |d);, then the

eigenstates of 77 = V}&jvj_l are
g .0 4,
|uz); = cos 5 |u); + sin %€ d); (4)

.0 0 ,
\d,r)j:sm§\u>j—cos§e“”\d)j : (5)

Upon acting with U = Vi ® Vo ®---®V,,, we rotate all the spins and find a new Hamiltonian

iy

H, =UHU " =AY (3 + 7 +#7%) . (6)
(ig)

Of course U need not be implemented through physical rotation of the computing apparatus;
it can be simulated using parallel operation of simple, one-bit gates.
H, has the same set of eigenvalues as Hy. Its eigenstates of H, are obtained by rotating

those of Hy, in the form

[Eu(0,0)) = [51) @ |s2) @ - @ [55) @ --- @ s)

where p is a string of {£1}" and |s;) = |uz) or |dz) for p; =1 or — 1.

The quantum algorithm in Ref. [0] starts the spin system in the state E, with p =
{-1,—1,--- ,—1}, which is one of many ground states of Hy. Then all spins are rotated
in the same way, by slowly changing 7. The system evolves, to exponential accuracy in the
slowness parameter, within the sub-Hilbert space spanned by the ground states of H,. But
the evolution within that space is nontrivial due to the non-Abelian geometric phase [§],
and when 7 is rotated back to the z-direction, upon measurement one obtains with high
probability a non-trivial independent set [6].

The evolution within the sub-Hilbert space of the ground states is given by [§]

() = Peso (i tA(t’)dt’) 4(0)) ™)

where P stands for time ordering and A is the hermitian nonabelian gauge matrix. The off-
diagonal terms of the gauge matrix A are non-zero only when they connect states labelled
by strings p, v separated by Hamming distance | — v| = 1. In that case we have

sinfdy 1 do
5 %4'588;11(#—’/)%, (8)

Apw(0) = i (E 0] By) = i (ur|0r] dr) =



where sgn(p — v) is a sign function, depending on the sign of first non-zero element of 1 — v.
And p — v is defined as element-wise subtractions ( e.g., sgn({1,1,—1} — {-1,1,1}) =
sgn({2,0, —2}) = +1). The diagonal terms of A are

A8 = 1B, 101 B = = {mesi? § - (n =)o G 22 )

where n, is the number of plus signs in p.

Eq. indicates that that the gauge matrix A can be regarded as an emergent Hamilto-
nian for the spin system, generating unitary evolution within the eigenspaces of the original
Hamiltonians Hy. We call this the secondary Hamiltonian. In Ref.[6], we took 6 to be
fixed and let ¢ vary slowly. This gives rise to a time-independent secondary Hamiltonian
A(#). In this work we change both ¢ and 6 slowly, under the condition df/dt < dy/dt.
This generalization brings in profoundly different dynamics. In this case, A(f) becomes a
time-dependent secondary Hamiltonian with the parameter 6 changing slowly. Remarkably,
the empty-set solution y = {—1,—1,--- , —1} is the ground state of A(0), but the maximum
independent set (MIS), which has largest number of vertices n, is the ground state of A(m).

According to the adiabatic theorem, sufficiently slow evolution of the secondary Hamil-
tonian will keep us within the ground state manifold. This means that if we change 6
slowly enough, and evolve from # = 0 to § = 7, we will evolve to the state representing the
maximum independent set when # = 7. (Note that at the end we must reverse the spin
directions, e.g. turning {—1,—1,+1} into {+1,+1, —1}, as the system ends along the —z
direction (# = 7).)This is a quantum adiabatic algorithm for MIS. Its time complexity is
determined by the energy gap of A(f) [9]. In a worst case scenario the energy gap of A(6)
can be exponentially small, as we will shortly exemplify. However, our numerical results
show that more typically, in interesting cases we get independents set whose size is very

close to a(G).

III. TWO SPECIAL GRAPHS

To illustrate possible behavior of the minimum energy gap of A(#), let us consider two
special graphs. The first graph is the one that has no edges. In this case, all combinations

of vertices are independent sets and the gauge matrix A(#) acts on the whole 2"-dimension
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Hilbert space. Denote A(f) for no-edge graphs as A. It can be re-written as

2o sinfdp & 50 cosé’dgp 5 1df 5 0
A(9) = 5 dtz 5 dtz 2dt20+c080 n cos’ 2)] (10)

where [ is the 2" x 2" identity matrix and contributes only a global phase factor during the

evolution. Note that these 67 ; are not the spin operators o7 in Hy, and they are used

Jo ]7

just to put A(f) in a concise form. If df/dt is much smaller than dy/dt, then we can omit
the third term of A and have

~ sin @ dy . cos@dnp .
A(9) ~ o7 — z. 11
)~ = dtz 2 dth:UJ (11)

This is effectively a Hamiltonian for n identical non-interacting spins in the same magnetic

field. Apparently, A(Q) has a constant gap between the ground state and the first excited
state. When we let 6 evolve slowly from 0 to 7 for a fixed period of time, the system no
matter how large will evolve from the initial ground state at # = 0 to the ground state at
0 = m. This is consistent with the original Hamiltonian in Eq.. For the graph with no
edges, the Hamiltonian Hj is zero. This means that there is no evolution; the system stays
in the state {—1,—1,--- ,—1}. Upon reversing the direction of the spins, we get the MIS
{1,1,---,1}.

The second special graph S, is shown in Fig[l] which has 2n + 1 vertices and 2n edges.
The graph has 2" maximal independent sets, and only one of them is the MIS. For each n,
we compute numerically the energy gaps of A(f) for 0 < 6 < 7 and find the minimum. The
results are plotted in Fig[l] which shows that the minimum energy gaps of A(6) for these
graphs decrease exponentially with n.

It is clear from these two special types of graphs that there is no universal behavior for

the minimum energy gap of the gauge matrix A(#).

IV. QUANTUM ALGORITHM FOR APPROXIMATELY MAXIMAL INDEPEN-
DENT SET

Our quantum algorithm for finding an approximately maximal independent set runs as

follows:

1. Construct the Hamiltonian H, according to a given graph G and prepare the

system at the state {—1,—1,---,—1}.



In (minimum gap of A)

FIG. 1. (Left) A special type of graphs that has 2n edges and 2n + 1 vertices. Note that it has a
unique maximum independent set {xg, 2, ..., 2, }. (Right) the minimum energy gap of A for these

graphs as a function of n. The fitting line is given by In(gap)=0.0286 — 0.332n.

2. Set 7(6,p) initially along the z axis and slowly change H, according to
0 = wyt, p = w,t with w,, being some constant and wy = 7w, /T. T = n" is the
total run time.

3. Stop the system at # = m and make a measurement along the z axis.

4. Reverse the direction of the spins, e.g. changing {—1,—1,---,—1} into

{1,1,--- ,1}, to achieve the u for the candidate answer.

Since the energy gap of the secondary Hamiltonian A can be exponentially small, run times
T = n” which scale polynomially do not guarantee that the system will stay in the ground
state of A. However, the system will stay mostly within the manifold of states whose energy is
close to the ground state, i.e., approximately maximum states, if the evolution is slow enough.
As a result, at the end of computation, we might expect to find a good approximately
maximum states. We have explored this hypothesis numerically, with excellent results in
generic cases, as we will now discuss. As the adiabatic condition for H, can be satisfied
(see supplemental online materials), our numerical simulation is done with A so that we can
compute for larger graphs.

If the final quantum state is [¢f) = >, as|Ey) (after the reverse of the spin direction),

we define the averaged size N of the independent sets as
N =>"lalN, (12)
¢

where Ny is the size of the /th independent set |E,). In the quantum mechanical formalism,
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this represents the average value of a single measurement. We are interested in the ratio
k = N/a(G). Our numerical results, displayed in Figure [2[a), show that for Erdés-Rényi
random graph G(n,1/2), if we set T' ~ n?, the average of x will increase to almost 1 when n
increases. This is compared to the results obtained using the classical greedy and Metropolis
algorithms [10] (see supplemental online material for details of the two algorithms). We run
the classical algorithms several times on each graph to get N and ratio k = N/a(G), then
run the process over multiple random graphs to find the double average k. Our numerical
results in Fig(b) show that even for small graphs, the ratio k in the two classical algorithms
is not as close to 1 as the one with our quantum algorithm. More importantly, the classical
ratio k tends to decrease when n gets larger. This is consistent with the well known result
that the best classical polynomial algorithm face grave difficulty in pushing the ratio larger
than 1/2 when n goes to infinity [4] (see below).

For sparse graphs with edge number m = |nlnn| the results are similar, as shown in
Figure

These numerical results indicate that our quantum algorithm can find an independent set
of size (1—€)a(G) in run times T ~ n?. We also tried T' ~ n. In this case the average radio x
decreases when n increases. These numerical results suggest that our quantum algorithm is
of time complexity of O(n?). Note that in Ref. [T1], it was shown that the run time required
in a quantum adiabatic algorithm can increase polynomially with the system size even when
the energy gap is constant. Our numerical results (see the supplemental online material)

show that the adiabaticity for H. is ensured with 7' ~ n?.

V. DIFFUSION AND ANNEALING IN SOLUTION TREES

In this section, we review a theoretical picture that clarifies the challenge of finding
approximate maximum independent sets, and offer an heuristic explanation for the enhanced
performance of our quantum algorithm, relative to classical ones.

For sparse graphs G(n,m), Coja-Oghlan and Efthymiou showed in Ref. [4] that the
difficulty is related to the structure of the space of independent sets, which shatters severely
when their size k is large enough. Thus, the classical Metropolis process has exponentially
large mixing times. The graphs considered in Ref. [4] have d = 2m/n > 1. For these

graphs, the size of the maximum independent set is o ~ (2 — e@n% with high probability.
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FIG. 2. The average x (or k) as a function of n for Erdés-Rényi random graphs G(n,1/2) with
three different algorithms. (a) The results of our quantum algorithm. We set T = n?, w, = 1,
wg = w/T and run over 1000 Erdés-Rényi random graphs G(n,1/2). The variance of & is around
1075, The calculation is done with A. (b) The results of the Greedy algorithm and the Metropolis
algorithm in comparison with our quantum results. For the Greedy algorithm, the calculation
runs 1000 times over one graph to get N, and then runs over 1000 random graphs to get #. The
variance of & is around 10™4. For the Metropolis algorithm, we set the iteration time 7" = n?. The
calculation runs 1000 times over one graph to get IV, and then runs over 1000 random graphs to

get &. The variance of & is around 10™*. The lines in the figure are guide for the eye.

Let Sk(G) denote all the independent sets of size k. “Sy(G) shatters severely” in the precise
sense that Si(G) can be divided into many groups such that the Hamming distance between
each pair of groups is proportional to n, while the number of independent sets in each
group decreases exponentially with n [4] (see Figure [d)). It is found that S,(G) shatters for
(1+ e@n% < k < . This means that searches for the maximum independent set, based

on building up through consideration of changes in small numbers of entries will get stuck

at sizes around n%. This is the essential reason why polynomial classical algorithms have

Ind
ad

difficulty finding independent sets of size k > (1 + €4)n

Quantum evolution, by allowing superpositions, can enable more efficient exploration of a
shattered solution landscape. All the candidates appear as components in the wave function.
In our context, different independent sets are assigned different energies according to the
secondary Hamiltonian. During slow evolution, we can expect the system - which starts

cold, and plausibly remains so, to approach a quasi-thermal equilibrium state, favoring larger
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FIG. 3. The average x (or k) as a function of n for random graphs G(n,m) with m = |[nlnn]
via three different methods. (a) The results of our quantum algorithm. We set T' = n?, w, = 1,
wy = m/T and run over 1000 random graphs G(n, [nInn|). The variance of & is around 10~°. The
calculation is done with A. (b) The results of the Greedy algorithm and the Metropolis algorithm
in comparison with our quantum results. For the Greedy algorithm, the calculation runs 1000
times over one graph to get IV, and then runs over 1000 random graphs to get &. The variance of
% is around 10~%. For the Metropolis algorithm, we set the iteration time 7' = n?. The calculation
runs 1000 times over one graph to get N, and then runs over 1000 random graphs to get &. The

variance of & is around 10~%. The lines in the figure are guide for the eye.

overlaps with lower energy eigenstates. Since low energies correspond, at the conclusion of
the evolution, to approximate maximum independent sets, with high probability they will
appear as the result of the final measurement. This argument is far from rigorous, but it
makes the striking numerical results presented above appear less mysterious.

It has been rigorously established that quantum diffusion can hold advantages over clas-
sical random walk for a special types of decision trees[I2]. In the future, it will be important
to investigate further why and in what circumstances quantum diffusion is more effective

than its classical counterpart.

VI. CONCLUSION

We have proposed a quantum algorithm for approximating the maximum independent
set of a graph G(n, m) by exploiting non-Abelian adiabatic mixing in the sub-Hilbert space

of solutions and adiabatic evolution in the secondary Hamiltonian it generates. Our numer-
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FIG. 4. (color online)The tree of independent sets of a graph G. Each point represents an
independent set; the one at the top represents the empty set. The tree is layered: the independent
sets Sk(G) in each layer has the same size k. If the Hamming distance between an independent set
of size k and an independent set of k + 1 is one, they are connected by a solid line. Each point in
the layer of k + 1 must be connected by a solid line with a point in the layer of k. For clarity, we
only draw the solid lines between k£ = 0 and k = 1 and between £ = 1 and k = 2. For independent
sets of the same size, they are connected by dashed lines if the Hamming distance between them
does not scale up with n. Before a critical size k., the tree is well connected by dashed lines in each
layer. When the size is over k., the layers shatter with the independent sets divided into small
groups, between each pair of which the Hamming distance is proportional to n. At the same time,

the group size decreases exponentially with n.

ical experiments indicate that for both sparse and dense graphs on average we obtain an
independent set of almost maximum size a(G) size in the evolution time T' ~ n? with a
single measurement.

While our numerical results are encouraging, they are limited to relatively small systems.

Due to the exponential complexity of simulating qubit systems classically, we only calculated
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systems containing up to 20 qubits. We made a heuristic argument that makes a robust
quantum advantage, extending to large n, seem plausible, but this question deserves much

further attention.
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