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Abstract

The product of the Λ0
b (B0) differential production cross-section and the branching

fraction of the decay Λ0
b → J/ψpK− (B0 → J/ψK∗(892)0) is measured as a function

of the beauty hadron transverse momentum, pT, and rapidity, y. The kinematic
region of the measurements is pT < 20GeV/c and 2.0 < y < 4.5. The measurements
use a data sample corresponding to an integrated luminosity of 3 fb−1 collected by
the LHCb detector in pp collisions at centre-of-mass energies

√
s = 7TeV in 2011 and√

s = 8TeV in 2012. Based on previous LHCb results of the fragmentation fraction
ratio, fΛ0

b

/fd, the branching fraction of the decay Λ0
b → J/ψpK− is measured to be

B(Λ0
b → J/ψpK−) = (3.17± 0.04± 0.07± 0.34+0.45

−0.28)× 10−4,

where the first uncertainty is statistical, the second is systematic, the third is due
to the uncertainty on the branching fraction of the decay B0 → J/ψK∗(892)0, and
the fourth is due to the knowledge of fΛ0

b

/fd. The sum of the asymmetries in the

production and decay between Λ0
b and Λ0

b is also measured as a function of pT and
y. The previously published branching fraction of Λ0

b → J/ψpπ−, relative to that of
Λ0
b → J/ψpK−, is updated. The branching fractions of Λ0

b → P+
c (→ J/ψp)K− are

determined.
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1 Introduction

In quantum chromodynamics (QCD) the production process of b hadrons can be divided
into two steps, assuming factorisation: a hard process for b production and a soft process
to describe hadronisation. The hard process can be predicted by perturbative calculations
in QCD; the soft process is parameterised by the fragmentation function, which has large
uncertainties due to non-perturbative QCD contributions. The study of the production
of b hadrons tests the factorisation ansatz. The ground state of the b-baryon family,
Λ0

b , has a wide range of decay modes. The study of its production and decays can offer
complementary information to that obtained from the study of B mesons. The kinematic
dependence of the production of Λ0

b baryons relative to that of B mesons can test differences
in the b quark hadronisation process between the two [1, 2]. Furthermore, the asymmetry
of heavy flavoured baryons and antibaryons produced in pp collisions is an important
input for various asymmetry measurements. Leading-order QCD calculations predict equal
production cross-sections for heavy baryons and heavy anti-baryons, while measurements
at the ISR showed that Λ+

c production is favoured in pp collisions at forward rapidity,
y [3, 4]. The CMS experiment measured the Λ0

b and Λ0
b production ratio in pp collisions

at 7 TeV, and no asymmetry was observed, but the large uncertainties preclude definitive
conclusions [5]. Measurements at LHCb can provide further tests of existing mechanisms,
e.g., the string drag effect or the leading quark effect [6].

Measurements of Λ0
b production to date have mostly been based on semileptonic decays

and the hadronic decays Λ0
b → J/ψΛ and Λ0

b → Λ+
c π

− (charge-conjugation is implied
throughout the paper unless otherwise specified). Using semileptonic decays, the LHCb
experiment measured the ratio of Λ0

b baryon production to light B meson production,
fΛ0

b

/(fu + fd) [7]. The kinematic dependence of the ratio of Λ0
b to B0 production, fΛ0

b

/fd,

was measured using Λ0
b → Λ+

c π
− and B0 → D+π− decays, and the absolute branching

fraction B(Λ0
b → Λ+

c π
−) was determined [8].

In this paper, the Λ0
b candidates are reconstructed in the decay channel Λ0

b → J/ψpK−,
which was first observed by LHCb in 2013 [9]. Compared with the open-charm decays
of Λ0

b baryons, this channel has higher trigger efficiencies, especially in the region of low
transverse momentum, pT. Two pentaquark-charmonium states Pc(4380)+ and Pc(4450)+

were observed by LHCb [10] in the amplitude analysis of the Λ0
b → J/ψpK− decay.

The measurement of the absolute branching fraction of Λ0
b → J/ψpK− in the current

paper allows the pentaquark branching fractions to be determined. Other Λ0
b decays

with a charmonium meson in the final state, such as the Cabibbo-suppressed decay
Λ0

b → J/ψpπ− [11], can use the Λ0
b → J/ψpK− decay as a reference to measure their

absolute branching fractions.
The product of the Λ0

b (B0) differential production cross-section and the branching
fraction of the Λ0

b → J/ψpK− (B0 → J/ψK∗0) decay is measured as a function of pT and
y, where K∗0 indicates the K∗(892)0 meson throughout the text. The kinematic region of
these measurements is pT < 20 GeV/c and 2.0 < y < 4.5 for the b hadron. The production
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ratio of the two b hadrons, defined as

RΛ0

b
/B0 ≡ σ(Λ0

b)B(Λ0
b → J/ψpK−)

σ(B0)B(B0 → J/ψK∗0)
, (1)

is determined, taking advantage of the cancellation of some uncertainties in both exper-
imental measurements and theoretical calculations. Here, σ(Λ0

b) and σ(B0) represent
the production cross-sections of Λ0

b and B0 hadrons in pp collisions. The branching
fraction B(Λ0

b → J/ψpK−) is calculated from this result using previous measurements
of fΛ0

b

/fd [7, 8] and B(B0 → J/ψK∗0) [12]. The kinematic dependence of the sum of

the asymmetries in the production and decay, ap+d ≡ aprod + adecay, between Λ0
b and

Λ0
b is studied using Λ0

b → J/ψpK− and Λ0
b → J/ψpK+ decays. Furthermore, using the

measurement of B(Λ0
b → J/ψpK−), the branching fractions of the decays Λ0

b → J/ψpπ−

and Λ0
b → P+

c (→ J/ψp)K− are determined.
The measurements in this paper are based on a data sample corresponding to an

integrated luminosity of 3 fb−1, collected by the LHCb experiment in pp collisions at centre-
of-mass energies

√
s = 7 TeV in 2011 and

√
s = 8 TeV in 2012. Separate measurements are

performed for each of the two centre-of-mass energies.

2 Detector and simulation

The LHCb detector [13,14] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region [15], a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes [16] placed downstream of the magnet.
The tracking system provides a measurement of momentum, p, of charged particles with
a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c.
The minimum distance of a track to a primary vertex (PV), the impact parameter (IP),
is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the
momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors [17]. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter.
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers [18]. The online event selection is performed by a trigger [19], which
consists of a hardware stage, based on information from the calorimeter and muon systems,
followed by a software stage, which applies a full event reconstruction. In the hardware
trigger, events are selected by requiring at least one high-pT track that is consistent with
a muon hypothesis. In the software trigger, two well-reconstructed muons are required
to form a vertex with good fit χ2 and to have an invariant mass consistent with that of
the J/ψ meson [20]. The trigger also requires a significant displacement between the J/ψ
vertex and the associated PV of the pp collision.
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In the simulation, pp collisions are generated using Pythia [21, 22] with a specific
LHCb configuration [23]. Decays of hadronic particles are described by EvtGen [24],
in which final-state radiation is generated using Photos [25]. The interaction of the
generated particles with the detector, and its response, are implemented using the Geant4

toolkit [26,27] as described in Ref. [28]. The physics models used by LHCb in Geant4

for hadronic interactions have been tested against experimental data from COMPAS [20],
and good agreement was observed.1

3 Event selection

Candidates for Λ0
b (B0) hadrons are reconstructed in the Λ0

b → J/ψpK− (B0 → J/ψK∗0)
decay channel, where the J/ψ mesons are reconstructed in the dimuon final state, and
K∗0 candidates are reconstructed from K∗0 → K−π+ decays. Since the Λ0

b → J/ψpK−

and B0 → J/ψK∗0 decays have the same topology, a similar event selection is adopted for
both.

An offline selection is applied after the trigger and is divided into two steps: a
preselection and a multivariate selection based on a boosted decision tree (BDT) [29–32].
In the preselection, each track of the Λ0

b (B0) candidate is required to be of good quality
[14,33–35]. Identified muons are required to have pT greater than 550 MeV/c, while hadrons
are required to have pT greater than 250 MeV/c. The muons should be inconsistent with
originating from any PV, as determined by their impact parameter. Each J/ψ candidate is
required to have a good vertex fit χ2 and an invariant mass within +43

−48 MeV/c2 of the known
J/ψ mass [20]. Particle identification (PID) requirements are imposed on the final-state
tracks. For the kaon and proton in the Λ0

b → J/ψpK− decay, the sum of the kaon and
proton pT should be larger than 1 GeV/c. Each K∗0 candidate is required to have a good
vertex fit χ2 and to have pT greater than 1 GeV/c. The invariant mass of the reconstructed
K∗0 is required to be within ±70 MeV/c2 of the K∗0 mass [20]. Each b hadron candidate
must have a good vertex fit χ2, be consistent with originating from the PV, and have a
decay time greater than 0.2 ps.

Some non-combinatorial backgrounds exist in the Λ0
b → J/ψpK− data sample, originat-

ing from B0 → J/ψK−π+ and B0
s → J/ψK−K+ decays with the π+ and K+ misidentified

as a proton. In order to suppress these events, the invariant mass is recalculated by inter-
preting the proton candidate as a pion or a kaon, and the two relevant invariant mass regions
are vetoed: m(J/ψK−π+) ∈ [5250, 5310] MeV/c2 and m(J/ψK+K−) ∈ [5340, 5400] MeV/c2.
After the mass vetoes these background contributions are reduced to a negligible level.

After the preselection, the Λ0
b → J/ψpK− (B0 → J/ψK∗0) candidates are filtered with

the BDT to further suppress combinatorial background. For the decays Λ0
b → J/ψpK−

and B0 → J/ψK∗0, the same BDT classifier is applied. Independent BDT classifiers are
used for the 2011 and 2012 samples. In the BDT training a simulated Λ0

b sample is used
as the signal. The background is taken from the lower, (5420, 5560) MeV/c2, and upper,
(5680, 5820) MeV/c2, sidebands of the Λ0

b invariant mass distribution in data. Events in

1Data files are courtesy of the COMPAS Group, IHEP, Protvino, Russia.
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the sidebands are randomly divided into two parts, one for the training and the other
for the test. No overtraining is observed. The following information is used by the
BDT classifier: the kinematic properties and the impact parameters of the tracks; and
the vertex quality, the decay length and the impact parameter of the reconstructed b
hadron candidate. The variables used for the training are chosen based on their power
to discriminate signal from background and on the similarity of their distributions for
Λ0

b → J/ψpK− and B0 → J/ψK∗0 decays. The threshold for the BDT response is chosen
to maximise S/

√
S +B, where B represents the number of background events estimated

from the sideband region and S the number of signal events in the mass peak.

4 Cross-section and branching fraction determina-

tion

The product of the differential production cross-section of each b hadron and the corre-
sponding branching fraction is calculated as

d2σ

dpT dy
B =

N(pT, y)

ε(pT, y) L Binter ∆pT ∆y
, (2)

where N(pT, y) and ε(pT, y) are respectively the signal yield and the efficiency as functions
of pT and y of the b hadron, ∆pT and ∆y are the bin widths, L is the integrated luminosity,
B is the absolute branching fraction of the Λ0

b → J/ψpK− (B0 → J/ψK∗0) decay, and
Binter represents the branching fractions of the intermediate decays:

Binter ≡
{

B(J/ψ → µ+µ−) for Λ0
b ,

B(J/ψ → µ+µ−) B(K∗0 → K−π+) for B0.

The luminosity is measured with van der Meer scans and a beam-gas imaging
method [36]. The 2011 and 2012 data samples correspond to 1019 ± 17 pb−1 and 2056 ±
23 pb−1, respectively. The branching fraction B(J/ψ → µ+µ−) = (5.961 ± 0.033)% [20],
while B(K∗0 → K−π+) is taken to be 2/3 assuming isospin symmetry. The branching
fraction B(B0 → J/ψK∗0) = (1.29 ± 0.05 ± 0.13) × 10−3 as measured by Belle [12] is used
in preference to the world average value, since in the Belle result the S-wave component is
subtracted.

5 Signal determination

The signal yields of the Λ0
b → J/ψpK− and B0 → J/ψK∗0 decays are determined from

unbinned extended maximum likelihood fits to the invariant mass distributions of the
reconstructed b hadron candidates in each pT and y bin. In order to improve the mass
resolution, the b hadron is refitted with constraints [37] that it originates from the PV
and that the reconstructed J/ψ mass equals its known mass [20].
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Figure 1 shows, as an example of one of the fit results, the invariant mass distributions
of Λ0

b and B0 candidates in the kinematic region pT ∈ [6, 7] GeV/c and y ∈ [3.0, 3.5] for
the 2012 data sample. The signal shape in the fits is modelled by a double-sided Crystal
Ball (DSCB) function, an empirical function comprising a Gaussian core together with
power-law tails on both sides. The mean and the mass resolution of the DSCB function are
free in the fits, while the tail parameters are determined from simulation in each kinematic
bin according to the empirical function given in Ref. [38]. The combinatorial background
is modelled by an exponential function whose parameters are left free in the fits.

In the fits to the Λ0
b mass distribution, there is a contribution from the Λ0

b → J/ψpK−

decay in which the proton is misidentified as a kaon and the kaon is misidentified as a
proton. This background is denoted as the doubly misidentified background, and it is
modelled by a DSCB function. All parameters of this DSCB function are fixed from the
simulation study, including: the difference between the mean of this DSCB function and
that of the signal shape; the ratio of the mass resolution between these two DSCB; the
yield fraction relative to the Λ0

b signal channel; and the tail parameters.
In the B0 → J/ψK∗0 sample, in addition to the combinatorial background, there are

two further sources of background. One is the decay B0
s → J/ψK∗0, which populates

the upper sideband of the invariant mass distribution, and is modelled with a DSCB
function. The tail parameters of this DSCB function are the same as those of the B0

signal shape and the remaining parameters are free in the fits. The other comes from
partially reconstructed B mesons and is described by the tail of a Gaussian function. The
associated mean and width are free parameters in the fits.

According to a previous LHCb measurement [39], the fraction of the K∗0 meson
contribution in the B0 → J/ψK∗0 decay is calculated as (89.9 ± 0.4 ± 1.3)%, where the
remainder is due to the S-wave component in the K−π+ system and its interference with
the K∗0 meson. The fitted B0 yields are subtracted with this number to remove the
components from S-wave and its interference.

6 Efficiencies

The efficiency εΛ
0

b
,B0

(pT, y) consists of the geometrical acceptance of the detector, the
trigger efficiency, the reconstruction and preselection efficiency, the hadron PID efficiency,
and the BDT selection efficiency. All the efficiencies are determined from a sample of
simulated signal events, except the hadron PID efficiency, which is determined from data
with tracks from the decays J/ψ → µ+µ−, D∗+ → D0(→ K−π+)π+ and Λ+

c → pK−π+.
The rich resonance structure observed in decays of Λ0

b → J/ψpK− in data [10] is
not modelled in the simulation. The simulated sample is weighted to reproduce the
distributions of the BDT training variables and the two-dimensional distribution of
m(pK−) and m(J/ψp) observed in the background-subtracted data sample, which has
been obtained using the sPlot technique [40], with the b-hadron invariant mass as the
discriminating variable. It is found that the correlations between the discriminating
variable and the control variables are negligible.
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Figure 1: Fit to the (left) J/ψpK− and (right) J/ψK∗0 invariant mass distributions with
pT ∈ [6, 7]GeV/c and y ∈ [3.0, 3.5] for the 2012 data sample. The hatched (red) area represents
the signals, the filled (green) areaB0

s → J/ψK∗0, and the dashed (magenta) lines the combinatorial
background. The dot-dashed (black) lines indicate the doubly misidentified background (left)
and partially reconstructed background (right). The solid (blue) lines represent the sum of the
above components and the points with error bars show the data.

7 Asymmetry determination

The observed (raw) asymmetry for Λ0
b and Λ0

b is defined as

Araw(x) ≡ NΛ0

b (x) −NΛ0

b (x)

NΛ0

b (x) +NΛ0

b (x)
. (3)

The symbol N(x) is the signal yield in the given bin of x from the fits to the invariant mass
distribution of the Λ0

b (Λ0
b) sample, where x denotes pT or y. The observed asymmetry is a

sum of several contributions: the asymmetry between the numbers of the produced Λ0
b and

Λ0
b baryons in pp collisions, aprod(x); the decay asymmetry between the Λ0

b → J/ψpK−

and Λ0
b → J/ψpK+ channels, adecay(x); the asymmetry between the p and p detection

efficiencies, apD(x); the asymmetry between the K− and K+ detection efficiencies, aKD (x);
and the asymmetry between the PID efficiencies for Λ0

b and Λ0
b baryons, aPID(x). Other

possible asymmetries are neglected. Assuming that all these asymmetries are small, the
asymmetries ap+d(x) of Λ0

b and Λ0
b baryons can be calculated as

ap+d(x) = Araw(x) − aPID(x) − apD(x) − aKD (x). (4)

The value Araw(x) − aPID(x) can be calculated as

Araw(x) − aPID(x) =
NΛ0

b (x)/ε
Λ0

b

PID(x) −NΛ0

b (x)/ε
Λ0

b

PID(x)

NΛ0

b (x)/ε
Λ0

b

PID(x) +NΛ0

b (x)/ε
Λ0

b

PID(x)
, (5)

where ε
Λ0

b

PID(x) and ε
Λ0

b

PID(x) represent the PID efficiencies for Λ0
b and Λ0

b . The kaon detection
asymmetry aKD (x) as a function of pT and y is obtained from a previous LHCb study [41].
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Table 1: Summary of the systematic uncertainties (%) for the production cross-sections of Λ0
b

and B0. The large uncertainties affect the bins with very few candidates.

Λ0
b (7 TeV) Λ0

b (8 TeV) B0 (7 TeV) B0 (8 TeV)

Uncorrelated between bins

Signal shape 0.4 − 15.4 0.2 − 6.2 0.2 − 1.5 0.2 − 1.5

Background shape 0.0 − 1.9 0.0 − 4.3 0.0 − 0.9 0.0 − 0.9

Simulation sample size 4.1 − 16.5 3.9 − 14.3 1.7 − 9.5 2.2 − 14.9

BDT efficiency 0.4 − 2.5 0.4 − 2.8 0.1 − 0.5 0.1 − 0.5

Trigger efficiency 0.0 − 4.6 0.0 − 14.9 0.0 − 2.1 0.0 − 4.0

PID efficiency 0.4 − 8.4 0.4 − 15.8 0.2 − 4.6 0.2 − 2.7

Resonance 0.0 − 1.0 0.0 − 1.8

Correlated between bins

Tracking efficiency 3.0 3.0 3.0 3.0

Mass veto efficiency 1.3 1.9

Luminosity 1.7 1.2 1.7 1.2

B(J/ψ → µ+µ−) 0.6 0.6 0.6 0.6

S-wave and interference in K−π+ 1.4 1.4

The proton detection asymmetry apD(x) as a function of pT or y is estimated from simulation,
which uses the Geant4 model as described in Section 2. The proton detection asymmetry
as a function of pT or y is calculated with the proton and antiproton track reconstruction
efficiencies in the corresponding kinematic bin. It is checked that the kinematic distributions
of protons and Λ0

b baryons in the simulation sample are consistent with those in the data
sample. As a crosscheck, the proton detection asymmetries are also estimated through
a simulation sample, where the Λ0

b signals are partially reconstructed without using the
proton information, and the results are consistent.

8 Systematic uncertainties

Several sources of systematic uncertainties are studied in the analysis and are summarised
in Tables 1 and 2. For the production cross-section measurements, the uncertainties
originate from the determination of the signal yields, efficiencies, branching fractions and
luminosities. The total systematic uncertainties are obtained from the sum in quadrature
of all components.

Imperfect knowledge of the mass distributions for the signal and backgrounds causes
systematic uncertainties in the signal yield determination. For the signal shape, the
Apollonios function [42] and the sum of a Gaussian function and a Crystal Ball function

7



Table 2: Summary of the absolute systematic uncertainties (%) for the asymmetry of Λ0
b and Λ0

b .
The large uncertainties affect the bins with very few candidates.

2011 2012

PID efficiency 0.4 − 4.4 0.0 − 2.6

Signal shape 0.0 − 0.8 0.0 − 0.9

Background shape 0.0 − 0.1 0.0 − 0.3

MC statistics 0.7 − 5.4 0.3 − 4.2

Tracking asymmetry of proton 0.1 − 1.9 0.1 − 1.9

are tried as alternatives to the DSCB. The largest deviation to the nominal result is taken
as the uncertainty due to the model of the signal shape.

The fits are repeated with a linear function substituted for the exponential model for
the combinatorial background. The fits are also repeated without the double misidentified
components. The maximum differences of the signal yields from the nominal results are
quoted as systematic uncertainties due to the background shape.

Most efficiencies are estimated from simulation. The limited size of the simulation
sample leads to systematic uncertainties on the efficiencies ranging from 1.7% to 16.5%.

The tracking efficiency is estimated from simulation and calibrated by data [43]. The
uncertainty of the calibration is 0.4% per track. Additional systematic uncertainties are
assigned to hadrons due to imperfect knowledge of hadron interactions in the detector,
1.1% for kaons, 1.4% for pions and 1.4% for protons.

The BDT efficiency is estimated with the weighted simulation sample to ensure that
the distributions of the two training variables, the kinematic properties of the tracks
and the vertex quality, agree with those in data. The uncertainties on the weights are
propagated to the final results to give the corresponding systematic uncertainty.

The trigger efficiency is determined in the simulation and validated in a control sample
of J/ψ → µ+µ− decays [19]. The difference of the central values of this determination in
data and the simulation in each bin is taken as the systematic uncertainty. Uncertainties
due to the limited sample size of the simulation are added in quadrature.

The PID efficiency is estimated with a data-driven method. A sample of J/ψ →
µ+µ−, D∗+ → D0(→ K−π+)π+ and Λ+

c → pK−π+ decays obtained without using PID
information is used to evaluate the PID efficiency. The limited sample size used to calculate
the PID efficiency introduces a systematic uncertainty in each kinematic bin. To study
the bin-by-bin migration effect, the number of the bins is doubled or halved and the PID
efficiency is recalculated. The largest deviation from the nominal result is taken as the
uncertainty.

To account for the rich and complex structure of multiple intermediate resonances in
the Λ0

b → J/ψpK− decay, the simulation sample is weighted in two-dimensional bins of
m(K−p) and m(J/ψp) to match the data. Pseudoexperiments are performed to estimate

8



the systematic uncertainties due to the weights. The weight in each bin is varied according
to its uncertainty and the total efficiency is recalculated. The RMS of the distribution
obtained from the pseudoexperiments is taken as the systematic uncertainty. As mentioned
in Section 3, the preselection includes mass vetoes. The preselection efficiencies are
estimated from the simulation sample. A fit to the Λ0

b invariant mass distribution in the
vetoed data sample is performed, which gives the number of Λ0

b → J/ψpK− signal events
rejected by the vetoes. The fraction of the vetoed signal events in the data sample is
compared with that in the simulation sample. A difference of 1.3% (1.9%) is observed for
the 2011 (2012) sample, and this is taken as the systematic uncertainty.

The uncertainty in the determination of the integrated luminosity is 1.7% (1.2%) for
the 2011 (2012) data sample [36]. An uncertainty of 0.6% is taken on B(J/ψ → µ+µ−) [20].
The fractions of the S-wave component in the K−π+ system and their interference were
determined by a previous LHCb measurement, and their 1.4% uncertainty [39] is taken as
a systematic uncertainty for the B0 → J/ψK∗0 decay.

In the Λ0
b and Λ0

b asymmetry measurement, all of the uncertainties mentioned above
cancel in the ratio, except for those due to the signal shape, the background shape, the
limited sample size and the PID efficiency. Since a data-driven determination of proton
detection asymmetries is not available, the difference in the determination of the kaon
detection asymmetries in data and simulation is taken as a systematic uncertainty for the
proton detection asymmetry. The uncertainties vary from 0.1% to 1.9% in kinematic bins,
with large values occurring in bins of low pT or low signal yields. In the LHCb Geant4

physics models, the cross-sections of interactions between particles and the material are
checked with test beam data as discussed in Section 2. There are more data for protons
than for kaons. Therefore, these uncertainties can be considered to be conservative.

9 Cross-section results

The product of the Λ0
b (B0) double-differential cross-section and the branching fraction

of the decay Λ0
b → J/ψpK− (B0 → J/ψK∗0) is shown in Fig. 2, and the values are

listed in Tables 3, 4, 5 and 6 in the Appendix. By integrating over y or pT, the single
differential production cross-sections, shown in Fig. 3, are obtained. Figure 4 shows the
pT distribution of the Λ0

b production, fitted by a power-law function with the Tsallis
parameterisation [44,45]:

dσ

pTdpT
∝ 1

[1 + Ek⊥/(TN)]N
, (6)

where T is a temperature-like parameter, N determines the power-law behaviour at large
Ek⊥, and Ek⊥ ≡

√

pT2 +M2 −M with M the mass of the hadron. The fit results are

T = 1.12 ± 0.04 GeV N = 7.3 ± 0.5 (7 TeV),

T = 1.13 ± 0.03 GeV N = 7.5 ± 0.4 (8 TeV).

For the 7 TeV (8 TeV) sample, the fit χ2 is 21.0 (10.7) for 7 (9) degrees of freedom. The
parameters T and N obtained from the 7 TeV and 8 TeV samples are consistent with each
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Figure 2: Products of production cross-sections and branching fractions as functions of pT in y
bins for (left) Λ0

b → J/ψpK− and (right) B0 → J/ψK∗0. The top (bottom) plots represent the
2011 (2012) sample. The error bars represent the total uncertainties.

other and with the values found by CMS [5]. Other functions suggested in Ref. [46] do not
give acceptable fits to the data. In Fig. 4 the data points are placed in the bin according
to the prescription of Ref. [47].

The integrated cross-sections of the b hadrons with 0 < pT < 20 GeV/c and 2.0 < y < 4.5
are measured to be

σ(Λ0
b ,

√
s = 7 TeV) B(Λ0

b → J/ψpK−)

= 6.12 ± 0.10 (stat) ± 0.25 (syst) nb,

σ(Λ0
b ,

√
s = 8 TeV) B(Λ0

b → J/ψpK−)

= 7.51 ± 0.08 (stat) ± 0.31 (syst) nb,

σ(B0,
√
s = 7 TeV) B(B0 → J/ψK∗0)

= 53.4 ± 0.3 (stat) ± 2.0 (syst) nb,

σ(B0,
√
s = 8 TeV) B(B0 → J/ψK∗0)

= 63.6 ± 0.2 (stat) ± 2.3 (syst) nb.

Taking the branching fraction B(B0 → J/ψK∗0) from Belle [12], the measured B0 produc-
tion cross-section at 7 TeV is consistent with the previous LHCb measurement [38]. The
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Figure 4: Fit to the Λ0
b distribution with the Tsallis function.

ratios of the Λ0
b and B0 integrated production cross-sections between 8 TeV and 7 TeV, in
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the kinematic range 0 < pT < 20 GeV/c and 2.0 < y < 4.5, are

σ(
√
s = 8 TeV)

σ(
√
s = 7 TeV)

=

{

1.23 ± 0.02 ± 0.04 for Λ0
b ,

1.19 ± 0.01 ± 0.02 for B0,

where the first uncertainties are statistical and the second systematic. Many systematic
uncertainties cancel totally or partially in these ratios: the ratio of the luminosities is
known with a precision of 1.44% [36]; the tracking efficiency is considered to be fully
correlated, due to the fact that the associated systematic uncertainty is dominated by
hadronic interactions of the tracks in the detector; the mass veto efficiency, the branching
fraction of the J/ψ → µ+µ− decay, and the S-wave contribution in the K−π+ system
are also fully correlated. All other sources are considered uncorrelated. The ratio of the
integrated production cross-sections agrees with FONLL predictions [48–50]. Figure 5
shows the pT and y dependence of the ratios for Λ0

b and B0 production cross-sections at
8 TeV with respect to those at 7 TeV, together with linear fits to the distributions:

Λ0
b

{

(1.25 ± 0.03) + (0.003 ± 0.007)(pT − 〈pT〉)/(GeV/c) χ2/ndf = 6.1/8,

(1.22 ± 0.03) − (0.20 ± 0.07)(y − 〈y〉) χ2/ndf = 1.2/3,

B0

{

(1.21 ± 0.01) + (0.010 ± 0.003)(pT − 〈pT〉)/(GeV/c) χ2/ndf = 12/8,

(1.15 ± 0.01) − (0.04 ± 0.02)(y − 〈y〉) χ2/ndf = 15/3,

where 〈pT〉 = 6.7 (6.9) GeV/c is the mean pT of Λ0
b (B0) hadrons in the data sample,

〈y〉 = 3.1 is the mean y, and ndf is the number of degrees of freedom. The pT dependence
of the ratio agrees with FONLL predictions, while the y dependence does not.

The measured values of the ratio RΛ0

b
/B0 , defined in Eq. 1, as a function of pT and y

are shown in Fig. 6. In the region pT < 5 GeV/c, no pT dependence of the ratio RΛ0

b
/B0

is observed, while the ratio decreases for pT > 5 GeV/c. No dependence with rapidity is
observed. In Fig. 6 the pT dependence of the ratio RΛ0

b
/B0 is fitted with the fragmentation

function ratio fΛ0

b

/fd(pT) given in Ref. [8], which is only defined in the range pT > 3 GeV/c.

The asymmetry ap+d between Λ0
b and Λ0

b is shown in Fig. 7. The values are listed in
Table 7 in the Appendix. The data points are fitted with linear functions. The slope fitted
to the asymmetry as a function of pT is consistent with zero, (2.3 ± 3.0) × 10−3/(GeV/c)
for 7 TeV and (3.5 ± 2.0) × 10−3/(GeV/c) for 8 TeV. The fit to ap+d(y) gives a non-zero
slope, and a combination of the results for 7 TeV and 8 TeV gives

ap+d(y) = (−0.001 ± 0.007) + (0.058 ± 0.014)(y − 〈y〉),

where 〈y〉 = 3.1 is the average rapidity of Λ0
b hadrons in the data sample. The non-zero

slope suggests some baryon number transport from the beam particles to the less centrally
produced Λ0

b , which leads to a Λ0
b/Λ

0
b cross-section ratio that increases with rapidity and

which can be interpreted as, for example, a string drag effect or leading quark effect [6,51].
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Figure 5: Production ratios of (left) Λ0
b and (right) B0 at 8TeV and 7TeV as functions of the

(top) pT and (bottom) y of the b hadron. The blue lines are FONLL predictions. The error bars
represent uncorrelated uncertainties, while the hatched areas show the total uncertainties. Linear
fits are also shown.

10 Branching fraction results

The ratio RΛ0

b
/B0 can be calculated in bins of pT as:

RΛ0

b
/B0(pT) =

N
Λ0

b

sig (pT) εB
0

tot(pT)

NB0

sig (pT) ε
Λ0

b

tot(pT)
B(K∗0 → K−π+). (7)

It is related to the fragmentation fraction ratio fΛ0

b

/fd through

RΛ0

b
/B0(pT) =

B(Λ0
b → J/ψpK−)

B(B0 → J/ψK∗0)
fΛ0

b

/fd(pT) ≡ S fΛ0

b

/fd(pT), (8)

where S ≡ B(Λ0
b → J/ψpK−)/B(B0 → J/ψK∗0) is a constant factor, which can be

determined from the fit in Fig. 6. The absolute branching fraction of the decay Λ0
b →

J/ψpK− can then be measured as

B(Λ0
b → J/ψpK−) = S B(B0 → J/ψK∗0). (9)
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b
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where the error bars indicate statistical uncertainties and the hatched areas the total uncertainties.
The red solid (blue dashed) line in the left plot represents the fit to the ratio fΛ0

b

/fd(pT) from

Ref. [8] for the 2011 (2012) data sample.

Figure 7: Asymmetries ap+d between Λ0
b and Λ0

b as functions of (left) pT and (right) y. The
error bars indicate statistical uncertainties, and the hatched areas the total uncertainties.

The average of the fit results for the 7 and 8 TeV samples gives S = 0.2458± 0.0030, which
results in

B(Λ0
b → J/ψpK−) = (3.17 ± 0.04 ± 0.07 ± 0.34+0.45

−0.28) × 10−4.

The first uncertainty is statistical, the second is systematic, the third is due to the
uncertainty on the branching fraction of the B0 → J/ψK∗0 decay, and the fourth is due to
the knowledge of fΛ0

b

/fd.

In Ref. [11] the ratio B(Λ0
b → J/ψpπ−)/B(Λ0

b → J/ψpK−) was reported. Combining
this with the value of B(Λ0

b → J/ψpK−) above, the branching fraction of Λ0
b → J/ψpπ− is

determined as

B(Λ0
b → J/ψpπ−) = (2.61 ± 0.09 ± 0.13+0.47

−0.37) × 10−5,

where the first uncertainty is statistical, the second is due to the systematic uncertainty
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on B(Λ0
b → J/ψpπ−)/B(Λ0

b → J/ψpK−), and the third is due to systematic uncertainty
on B(Λ0

b → J/ψpK−).
Two pentaquark-charmonium states, Pc(4380)+ and Pc(4450)+, were observed by LHCb

in the amplitude analysis of the Λ0
b → J/ψpK− decay [10], and the fractions f(P+

c ) of the
two pentaquark-charmonium states in the Λ0

b → J/ψpK− decay were measured. Using
these fractions and the value of B(Λ0

b → J/ψpK−) obtained in this analysis, the branching
fractions B(Λ0

b → P+
c K

−)B(P+
c → J/ψp) are calculated as

B(Λ0
b → P+

c K
−)B(P+

c → J/ψp) = f(P+
c )B(Λ0

b → J/ψpK−)

=

{

(2.66 ± 0.22 ± 1.33+0.48
−0.38) × 10−5 for Pc(4380)+,

(1.30 ± 0.16 ± 0.35+0.23
−0.18) × 10−5 for Pc(4450)+,

where the first uncertainty is statistical, the second is due to the systematic uncertainty
on f(P+

c ), and the third is due to the systematic uncertainty on B(Λ0
b → J/ψpK−).

11 Conclusion

Using a data sample corresponding to an integrated luminosity of 3 fb−1 collected by the
LHCb detector in 2011 and 2012, the product of the Λ0

b differential production cross-section
and the branching fraction of the decay Λ0

b → J/ψpK− is measured as a function of the Λ0
b

baryon’s transverse momentum and rapidity. The product of the B0 differential production
cross-section and the branching fraction of the decay B0 → J/ψK∗0 is also measured. The
kinematic region of the measurements is pT < 20 GeV/c and 2.0 < y < 4.5.

The ratios of the cross-sections at
√
s = 8 TeV to those at

√
s = 7 TeV are calculated

for Λ0
b and B0 hadrons and are compared with FONLL predictions. The pT dependence

of the ratios is consistent with the FONLL calculations, while the y dependence is not
consistent. The production ratios of the Λ0

b and B0 hadrons are given for the 2011 and
2012 samples separately, and are consistent with the dependence on pT and y of the b
hadron observed in a previous LHCb analysis. The asymmetry ap+d between Λ0

b and Λ0
b

is also measured as a function of pT and y. The result suggests some baryon number
transport from the beam particles to the Λ0

b baryons.
Using information on the fragmentation ratio fΛ0

b

/fd from a previous LHCb measure-

ment, the absolute branching fraction B(Λ0
b → J/ψpK−) is obtained. Using previous LHCb

measurements, the branching fractions B(Λ0
b → J/ψpπ−) and B(Λ0

b → P+
c K

−)B(P+
c →

J/ψp) are determined.
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Appendix

Table 3: Products of Λ0
b production cross-sections (pb) and the branching fraction B(Λ0

b →
J/ψpK−) in bins of pT and y in the 2011 data sample. The first uncertainties are statistical and
the second are systematic.

pT[ GeV/c] 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0 − 3 326 ± 42 ± 44 354 ± 18 ± 23 319 ± 14 ± 20

3 − 4 439 ± 58 ± 54 503 ± 27 ± 33 486 ± 22 ± 31

4 − 5 445 ± 48 ± 48 425 ± 21 ± 27 376 ± 17 ± 22

5 − 6 411 ± 39 ± 45 297 ± 15 ± 17 296 ± 13 ± 17

6 − 7 224 ± 23 ± 24 235 ± 12 ± 14 203 ± 10 ± 12

7 − 8 162 ± 17 ± 16 175 ± 9 ± 11 145 ± 7.4 ± 9.2

8 − 9 100 ± 12 ± 9 109 ± 6.5 ± 7.0 92.7 ± 5.5 ± 6.3

9 − 10 83.2 ± 9.7 ± 8.1 93.6 ± 6.0 ± 6.4 63.6 ± 4.4 ± 4.6

10 − 12 53.6 ± 4.6 ± 4.3 39.5 ± 2.3 ± 2.4 29.0 ± 1.8 ± 1.9

12 − 20 11.4 ± 0.8 ± 0.7 11.3 ± 0.6 ± 0.6 8.6 ± 0.6 ± 0.6

3.5 < y < 4.0 4.0 < y < 4.5

0 − 3 244 ± 13 ± 19 221 ± 26 ± 35

3 − 4 371 ± 21 ± 32 231 ± 29 ± 38

4 − 5 294 ± 16 ± 22 138 ± 18 ± 19

5 − 6 229 ± 12 ± 17 95 ± 14 ± 16

6 − 7 151 ± 9 ± 12 61 ± 11 ± 8

7 − 8 99.0 ± 6.5 ± 8.1 38.4 ± 0.8 ± 6.2

8 − 9 69.0 ± 5.3 ± 5.9 37.7 ± 7.7 ± 5.9

9 − 10 43.3 ± 4.1 ± 4.2 22.8 ± 5.8 ± 4.0

10 − 12 20.4 ± 1.9 ± 1.7 7.8 ± 1.8 ± 1.2

12 − 20 4.0 ± 0.4 ± 0.4 2.2 ± 0.6 ± 0.5
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Table 4: Products of Λ0
b production cross-sections (pb) and the branching fraction B(Λ0

b →
J/ψpK−) in bins of pT and y in the 2012 data sample. The first uncertainties are statistical and
the second are systematic.

pT[ GeV/c] 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0 − 1 100 ± 29 ± 33 159 ± 20 ± 27 157 ± 15 ± 22

1 − 2 465 ± 64 ± 88 487 ± 29 ± 50 433 ± 24 ± 46

2 − 3 661 ± 63 ± 120 648 ± 30 ± 58 541 ± 22 ± 41

3 − 4 706 ± 51 ± 94 715 ± 25 ± 52 559 ± 18 ± 38

4 − 5 579 ± 39 ± 68 624 ± 20 ± 39 417 ± 12 ± 27

5 − 6 463 ± 28 ± 47 446 ± 14 ± 28 356 ± 10 ± 23

6 − 7 318 ± 20 ± 29 322 ± 10 ± 20 210 ± 7 ± 12

7 − 8 248 ± 15 ± 23 236 ± 8 ± 15 159 ± 5 ± 10

8 − 9 173 ± 11 ± 18 140.7 ± 5.4 ± 9.2 118.4 ± 4.4 ± 7.8

9 − 10 130 ± 9 ± 13 92.6 ± 3.9 ± 6.3 65.4 ± 2.9 ± 4.4

10 − 12 81.3 ± 4.5 ± 7.0 57.1 ± 2.1 ± 3.4 38.1 ± 1.5 ± 2.4

12 − 20 15.2 ± 0.7 ± 1.0 13.7 ± 0.5 ± 0.8 9.5 ± 0.4 ± 0.6

3.5 < y < 4.0 4.0 < y < 4.5

0 − 1 141 ± 18 ± 33 108 ± 29 ± 51

1 − 2 269 ± 20 ± 41 222 ± 36 ± 52

2 − 3 427 ± 21 ± 48 234 ± 28 ± 43

3 − 4 393 ± 17 ± 34 256 ± 25 ± 45

4 − 5 324 ± 12 ± 27 195 ± 17 ± 26

5 − 6 229 ± 9 ± 16 111 ± 11 ± 16

6 − 7 152 ± 7 ± 11 99 ± 10 ± 14

7 − 8 114 ± 5 ± 9 51.3 ± 5.8 ± 6.4

8 − 9 74.7 ± 4.2 ± 6.1 30.8 ± 5.0 ± 5.0

9 − 10 55.4 ± 3.5 ± 5.4 17.4 ± 3.5 ± 2.9

10 − 12 27.7 ± 1.7 ± 2.3 10.3 ± 1.6 ± 1.4

12 − 20 6.1 ± 0.4 ± 0.5 1.4 ± 0.4 ± 0.2
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Table 5: Products of B0 production cross-sections (pb) and B(B0 → J/ψK∗0) in bins of pT and
y in the 2011 data sample. The first uncertainties are statistical and the second are systematic.

pT[ GeV/c] 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0 − 3 2850 ± 130 ± 200 2870 ± 50 ± 140 2580 ± 30 ± 110

3 − 4 4420 ± 220 ± 340 4350 ± 80 ± 220 3740 ± 60 ± 170

4 − 5 3540 ± 160 ± 250 3570 ± 60 ± 160 3310 ± 50 ± 150

5 − 6 2620 ± 100 ± 170 2920 ± 50 ± 130 2330 ± 40 ± 100

6 − 7 2290 ± 80 ± 150 2150 ± 40 ± 100 1820 ± 30 ± 80

7 − 8 1790 ± 70 ± 110 1630 ± 30 ± 80 1320 ± 20 ± 60

8 − 9 1260 ± 50 ± 80 1150 ± 20 ± 60 877 ± 17 ± 42

9 − 10 853 ± 34 ± 53 862 ± 19 ± 43 613 ± 14 ± 31

10 − 12 581 ± 17 ± 32 540 ± 10 ± 25 411 ± 8 ± 20

12 − 20 172 ± 4 ± 8 141 ± 2 ± 6 102 ± 2 ± 5

3.5 < y < 4.0 4.0 < y < 4.5

0 − 3 2110 ± 30 ± 90 1450 ± 40 ± 80

3 − 4 2660 ± 50 ± 130 1790 ± 70 ± 130

4 − 5 2310 ± 40 ± 110 1460 ± 60 ± 110

5 − 6 1750 ± 30 ± 80 1050 ± 40 ± 80

6 − 7 1190 ± 30 ± 60 608 ± 30 ± 48

7 − 8 853 ± 20 ± 45 573 ± 29 ± 51

8 − 9 650 ± 18 ± 37 385 ± 21 ± 38

9 − 10 424 ± 14 ± 27 207 ± 15 ± 23

10 − 12 258 ± 7 ± 15 96 ± 6 ± 9

12 − 20 64 ± 2 ± 4 26 ± 2 ± 3
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Table 6: Products of B0 production cross-sections (pb) and B(B0 → J/ψK∗0) in bins of pT and
y in the 2012 data sample. The first uncertainties are statistical and the second are systematic.

pT[ GeV/c] 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5

0 − 1 1260 ± 110 ± 200 1240 ± 40 ± 80 1100 ± 30 ± 60

1 − 2 3340 ± 170 ± 340 3360 ± 60 ± 170 3200 ± 50 ± 150

2 − 3 5860 ± 220 ± 600 4930 ± 70 ± 240 4100 ± 50 ± 180

3 − 4 6650 ± 200 ± 550 5010 ± 60 ± 240 4150 ± 50 ± 180

4 − 5 4560 ± 120 ± 310 4340 ± 50 ± 190 3400 ± 40 ± 140

5 − 6 4260 ± 100 ± 280 3550 ± 40 ± 160 2730 ± 30 ± 120

6 − 7 2830 ± 60 ± 170 2560 ± 30 ± 110 1960 ± 20 ± 80

7 − 8 2270 ± 50 ± 140 1810 ± 20 ± 80 1460 ± 20 ± 70

8 − 9 1650 ± 40 ± 100 1460 ± 20 ± 70 1100 ± 10 ± 50

9 − 10 1180 ± 30 ± 70 1070 ± 20 ± 50 696 ± 10 ± 34

10 − 12 707 ± 13 ± 38 614 ± 7 ± 27 489 ± 6 ± 23

12 − 20 246 ± 3 ± 11 180 ± 2 ± 8 129 ± 2 ± 6

3.5 < y < 4.0 4.0 < y < 4.5

0 − 1 1010 ± 30 ± 60 754 ± 45 ± 73

1 − 2 2830 ± 50 ± 150 1720 ± 60 ± 140

2 − 3 3200 ± 50 ± 160 2460 ± 80 ± 200

3 − 4 3180 ± 40 ± 150 1770 ± 50 ± 130

4 − 5 2610 ± 30 ± 120 1650 ± 50 ± 120

5 − 6 1900 ± 30 ± 90 1280 ± 40 ± 100

6 − 7 1500 ± 20 ± 70 816 ± 26 ± 60

7 − 8 1030 ± 20 ± 50 621 ± 22 ± 52

8 − 9 711 ± 13 ± 38 390 ± 15 ± 34

9 − 10 478 ± 10 ± 28 301 ± 13 ± 31

10 − 12 312 ± 6 ± 18 137 ± 5 ± 12

12 − 20 82 ± 2 ± 5 36 ± 2 ± 3
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Table 7: Asymmetries ap+d (%) of Λ0
b and Λ0

b in bins of pT and y for the 2011 and 2012 samples.
The first uncertainties are statistical and the second are systematic.

2011 2012

pT [ GeV/c ]

0 − 1 −5.9 ± 9.4 ± 7.0 −14.5 ± 6.4 ± 5.0

1 − 2 +2.7 ± 4.9 ± 4.4 −4.9 ± 3.4 ± 3.5

2 − 3 −0.1 ± 3.6 ± 3.3 −0.6 ± 2.5 ± 2.4

3 − 4 −4.5 ± 2.9 ± 2.6 −4.2 ± 2.0 ± 1.9

4 − 5 −1.3 ± 2.7 ± 2.2 −1.1 ± 1.8 ± 1.7

5 − 6 −1.3 ± 2.7 ± 2.3 −0.5 ± 1.8 ± 1.3

6 − 7 +2.7 ± 2.9 ± 1.9 −2.7 ± 1.9 ± 1.2

7 − 8 +5.3 ± 3.1 ± 1.7 −1.3 ± 2.0 ± 1.0

8 − 9 −4.4 ± 3.5 ± 1.9 −0.3 ± 2.3 ± 1.6

9 − 10 −5.8 ± 4.0 ± 1.2 +1.6 ± 2.6 ± 0.9

10 − 12 +1.1 ± 3.6 ± 2.1 +2.3 ± 2.2 ± 2.0

12 − 20 +2.7 ± 3.4 ± 0.8 +0.6 ± 2.2 ± 0.5

y

2.0 < y < 2.5 −6.0 ± 3.3 ± 3.1 −7.6 ± 2.0 ± 1.2

2.5 < y < 3.0 −0.3 ± 1.7 ± 2.1 −0.3 ± 1.1 ± 0.9

3.0 < y < 3.5 −1.0 ± 1.6 ± 1.1 +0.7 ± 1.1 ± 1.0

3.5 < y < 4.0 +4.3 ± 2.1 ± 1.1 +2.4 ± 1.5 ± 1.2

4.0 < y < 4.5 +7.3 ± 5.4 ± 2.2 +8.4 ± 3.7 ± 1.9
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