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This article reports the first measurement of prompt χc1 and χc2 charmonium production in nuclear collisions at
Large Hadron Collider energies. The cross-section ratio σ (χc2)/σ (χc1) is measured in pPb collisions at

√
sNN =

8.16 TeV, collected with the LHCb experiment. The χc1,2 states are reconstructed via their decay to a J/ψ meson,
subsequently decaying into a pair of oppositely charged muons, and a photon, which is reconstructed in the
calorimeter or via its conversion in the detector material. The cross-section ratio is consistent with unity in the
two considered rapidity regions. Comparison with a corresponding cross-section ratio previously measured by
the LHCb Collaboration in pp collisions suggests that χc1 and χc2 states are similarly affected by nuclear effects
occurring in pPb collisions.

DOI: 10.1103/PhysRevC.103.064905

I. INTRODUCTION

Collisions of protons with nuclei offer opportunities to
study the production and interaction of heavy quarks inside
the nucleus. Charm-quark production in hadron collisions is
sensitive to the gluon content of colliding hadrons, and can be
used to probe modifications of the parton distributions inside
the nucleus [1]. While traversing the nucleus, heavy quarks
are also subject to energy loss that can lead to the suppres-
sion of bound states [2]. Once the heavy-quark pair exits the
nucleus, late-stage interactions with comoving hadrons can
disrupt fully formed quarkonium states [3]. Measurements in
proton-nucleus collisions also give an experimental baseline
for the interpretation of quarkonium suppression in nucleus-
nucleus collisions, where color screening in a deconfined
quark-gluon plasma is expected to be a dominant effect [4].
Studies of quarkonium suppression in pPb collisions revealed
that the excited states, such as the charmonium ψ (2S) state
or the bottomonium ϒ (2S) and ϒ (3S) states, show a different
suppression pattern compared to the J/ψ and ϒ(1S) states (see
[5–11] and references therein). Such a difference cannot be
explained by processes taking place during the initial stages
of the collision, i.e., acting on the quark-antiquark pair. In-
stead, the processes must occur after the hadronization of the
heavy-quark pair into a final state, e.g., through dissociation
due to interactions with the comoving matter created at the
collision point [12,13]. Currently, the J/ψ and ψ (2S) mesons
are the only charmonium states which have been measured in
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collisions of protons with nuclei at the Large Hadron Collider
(LHC).

The χcJ states, with J = 0, 1, 2 denoting the total angular
momentum, comprise a triplet of orbitally excited 1P char-
monia. They are typically studied in collider experiments via
their radiative decay χcJ → J/ψγ , with a subsequent decay
J/ψ → �+�−, where � denotes electron or muon. A selection
of recent measurements in pp and pp collisions can be found
in Refs. [14–18].

The binding energies of χcJ states are significantly smaller
than that of the J/ψ state and greater than the binding en-
ergy of ψ (2S) state [19]. The small difference in the binding
energies of χc1 and χc2 charmonia makes the ratio of their
production cross sections, σ (χc2)/σ (χc1), a useful tool to
study their sensitivity to final-state nuclear effects, which are
expected to be similar for both states. The χcJ states also
form an important feed-down contribution to J/ψ production,
so measurements of nuclear effects on χcJ states can clarify
interpretation of the J/ψ data. Moreover, various efficiency
factors and sources of uncertainty cancel out in the ratio, al-
lowing for a more precise measurement. In nuclear collisions,
the χcJ states have been measured by the HERA-B [20] and
PHENIX Collaborations [21]. To date, no measurement has
been reported at the LHC energies.

Here we present the first measurement of the cross-section
ratio of promptly produced χc2 and χc1 states, σ (χc2)/σ (χc1),
in nuclear collisions at the LHC. The measurement is per-
formed using data collected by the LHCb Collaboration in
pPb collisions, at the center-of-mass energy per nucleon pair√

sNN = 8.16 TeV, in 2016.

II. EXPERIMENTAL APPARATUS

The LHCb detector [22,23] is a single-arm forward
spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector consists of a high-precision silicon-strip vertex
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locator (VELO) surrounding the interaction region, a set of
four planar tracking stations coupled to a dipole magnet with
a 4 Tm bending power, a pair of ring-imaging Cherenkov
detectors to discriminate between different types of charged
hadrons, followed by calorimetric and muon systems that are
of particular importance in this measurement. The calorimet-
ric system allows for identification of electrons and photons
and consists of a scintillating pad detector (SPD), a preshower
system (PS), an electromagnetic (ECAL) calorimeter, and a
hadronic (HCAL) calorimeter. The SPD and PS are designed
to discriminate between signals from photons and electrons,
while ECAL and HCAL provide the energy measurement
and identify electromagnetic radiation and neutral hadrons.
Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

The pPb data were collected with the LHCb experiment
in two distinct beam configurations. In the forward configura-
tion, the particles produced in the direction of the proton beam
are measured in a center-of-mass rapidity region 1.5 < y∗ <

4.0, while, in the backward configuration, particles produced
in the lead-beam direction are measured at center-of-mass
rapidity −5.0 < y∗ < −2.5. The forward (backward) data
sample corresponds to an integrated luminosity of about
14 μb−1 (21 μb−1).

III. DATA SELECTION

The analyzed events are selected by a set of triggers
designed to record collisions containing the decay J/ψ →
μ+μ−. The J/ψ candidates are reconstructed from a pair of
oppositely charged muons with momentum component trans-
verse to the beam, pT, larger than 700 MeV/c, originating from
a common vertex and an invariant mass within ±42 MeV/c2

of the known J/ψ mass [24] (corresponding to three times
the dimuon mass resolution). The J/ψ candidates are com-
bined with a photon candidate to form a χc1,2 candidate.
Photons used in this analysis are classified in two mutually
exclusive types: those that converted in the detector material
upstream of the dipole magnet and of which the electron
and positron tracks were reconstructed in the tracking sys-
tem (converted photons), or those reconstructed through their
energy deposits in the calorimetric system (calorimetric pho-
tons). The calorimetric photon sample is about an order of
magnitude larger than the converted photon sample but has
worse mass resolution. Converted photons are reconstructed
from a pair of oppositely charged electron candidates and are
required to have a transverse momentum pT >600 MeV/c
and a good-quality conversion vertex γ → e+e−. Calorimetric
photons are identified using the ratio of their energy deposited
in the hadronic and electromagnetic calorimeters and a pair
of likelihood-based classifiers that discriminate photons from
electrons and hadrons [25,26]. Calorimetric photons accepted
for analysis are required to have pT >1 GeV/c. The two mea-
surements discussed here are independent given the different
reconstruction between the converted and the calorimetric
photons. The selected μ+μ−γ combinations, which comprise
the χc1,2 candidates, are required to be reconstructed within
the pseudorapidity window 2 < η < 4.5 and in the transverse
momentum range of 3 < pT < 15 GeV/c for the converted

and 5 < pT < 15 GeV/c for the calorimetric candidates. In
order to select the χc1,2 candidates produced promptly at the
primary-collision vertex and to suppress nonprompt produc-
tion from b-hadron decays occurring away from the primary
vertex, an upper limit is imposed on the pseudodecay time of
the candidates, defined as

tz = (zdecay − zPV) × Mχc1

pz
, (1)

where zdecay − zPV is the difference between the positions of
the reconstructed vertex of the χc1,2 candidate and the primary
proton-nucleus collision vertex along the beam axis, pz is the
longitudinal component of the χc1,2 candidate momentum and
Mχc1 is the known mass of the χc1 meson [24]. The pseudode-
cay time is limited to tz < 0.1 ps. The χc1 and χc2 candidates
originating from decays of short-lived resonances, such as
ψ (2S) produced at the interaction point, are also considered
in the analysis.

The effects of the detector acceptance as well as of the
reconstruction and selection efficiencies are investigated with
simulated events. The χc1,2 signal is generated in PYTHIA [27]
with an LHCb specific configuration [28]. The χc1 and χc2

states are generated assuming unpolarized production. The
underlying minimum bias forward and backward pPb colli-
sions are generated using the EPOS event generator configured
for the LHC [29]. Unstable particles are decayed via EVTGEN

[30]. The J/ψ → μ+μ− decays are corrected for final-state
electromagnetic radiation using PHOTOS [31]. The response
of the detector to the interactions of the generated particles
is implemented using the GEANT4 toolkit [32]; for a detailed
description see Ref. [33].

IV. DATA ANALYSIS

This paper aims at measuring the ratio of the cross sections
for prompt χc1 and χc2 production. The cross-section ratio is
defined as

σ (χc2)

σ (χc1)
= Nχc2

Nχc1

εχc1

εχc2

B(χc1 → J/ψγ )

B(χc2 → J/ψγ )
. (2)

Here, Nχc2 and Nχc1 represent the signal yields of the χc2 and
χc1 states, respectively, and εχc2 and εχc1 denote the efficien-
cies to reconstruct and select the corresponding state. The
branching fractions for the χc1,2 decays are B(χc1 → J/ψγ ) =
(34.3 ± 1.0)% and B(χc2 → J/ψγ ) = (19.0 ± 0.5)% [24].

The χc1 and χc2 signal yields are determined by performing
a binned maximum-likelihood fit to the spectra of the dif-
ference between the invariant mass of the μ+μ−γ candidate
and that of the μ+μ− pair, 
M ≡ M(μ+μ−γ ) − M(μ+μ−).
The fit function comprises a Gaussian shape for the χc1

and χc2 resonances and a background component described
with a second-order Chebyshev polynomial. In the fit, the
difference between the values of the χc1 and χc2 masses is
set to the known mass difference [24]. The widths of the
χc1 and χc2 peaks are set to be equal, following expecta-
tions from simulation, and left as a free parameter. The χc0

peak is also included in the fit, however no significant χc0

yield is observed. The fit to the spectra of converted can-
didates is performed in the range 200 < 
M < 800 (850)
MeV/c2 at forward (backward) rapidity. For the calorimetric
candidates, the invariant-mass difference spectrum is fitted
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FIG. 1. Mass-difference spectra of converted χc1,2 candidates in
forward (left) and backward (right) configuration data. The data are
superimposed with a fit (solid blue line) comprising χc1 and χc2

signals and combinatorial background (dashed black line).

between 250 < 
M < 650 MeV/c2 in the two rapidity in-
tervals. The mass-difference spectra of the converted and
calorimetric samples are shown, together with the fit compo-
nents, in Figs. 1 and 2, respectively. In the converted samples,
the yield ratio Nχc2/Nχc1 is determined to be 0.51 ± 0.23 at
forward and 0.56 ± 0.26 at backward rapidity, where the un-
certainties are statistical. In the calorimetric samples, these
ratios are found to be 0.63 ± 0.08 at forward and 0.67 ± 0.10
at backward rapidity. Individual yields as well as their corre-
sponding significance are listed in Table I.

Since the kinematics of χc1 and χc2 decays are nearly
identical, various detector effects such as tracking and
particle-identification efficiencies cancel out in the ratio, so
that the efficiency ratio in Eq. (2) can be expressed as

εχc1

εχc2

= εacc
χc1

εacc
χc2

εreco
χc1

εreco
χc2

.

The factor εacc expresses the geometrical acceptance of the
decay products to fall within the LHCb acceptance, while the
factor εreco represents the efficiency of selection and recon-
struction of the signal candidates. These correction factors are
computed from dedicated simulated events.

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties on the cross-section ratios are
determined as follows. A systematic uncertainty on the signal
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FIG. 2. Mass-difference spectra of calorimetric χc1,2 candidates
in forward (left) and backward (right) data. The data are superim-
posed with a fit result (solid blue line) comprising χc1 and χc2 signals
and combinatorial background (dashed black line).

extraction is determined by varying the models used in the
mass-difference fits. Several different signal and background
models are tested. The signal shapes are varied between Gaus-
sian functions and Voigtian functions (a convolution of a
Breit-Wigner and a Gaussian function), and the background
shape is varied between second- and third-order Chebyshev
polynomials. The natural widths of the χc1 and χc2 states are
narrow compared to the resolution; the Breit-Wigner widths
are therefore fixed to the known values [24]. The fit range is
varied between 100 (150) < 
M < 900 MeV/c2 and 200 <


M < 800 (850) MeV/c2 for the converted candidates at for-
ward (backward) rapidity. For the calorimetric candidates,
the fit range is varied between 250 < 
M < 650 MeV/c2 and
300 < 
M < 600 MeV/c2 in the two rapidity intervals. The
various choices of signal shape, background parametrization,
and range give a total of eight fits to each of the mass-
difference spectra in each rapidity interval. In all cases, the
χc0 peak is also included in the fit; however, no signifi-
cant χc0 yield is observed. The systematic uncertainty on
the yield ratios due to the fitting procedure is assigned as
the standard deviation between the values returned by the
eight individual fits. For the converted sample, this systematic
uncertainty amounts to 4.9% (3.2%) at forward (backward)
rapidity. For the calorimetric sample it is 2.6% (6.8%) at
forward (backward) rapidity. The residual background from
the nonprompt χc1,2 production is verified as negligible and
shown to cancel out in the ratio, hence no related uncertainty
is assigned. The systematic uncertainty on the acceptance and
efficiency corrections includes contributions from the limited
size of the simulated samples used to compute the εacc and
εreco factors, and the uncertainty due to the discrepancy of
the χc1,2 and photon properties between data and simulation.
The latter is estimated using simulated samples, weighted to
reproduce the kinematic distributions of χc1,2 and photons
in background-subtracted data, and obtained using the sPlot
technique, with 
M as the discriminating variable [34]. The
weights are extracted by comparing the transverse momen-
tum and rapidity dependent ratios of the simulated counts
Nχc1/Nχc2 with those in data. The simulated χc1 samples are
then weighted event-by-event and the uncertainty is assessed
as the difference between the efficiency ratios computed from
simulated samples prior to and after weighting. In the case
of calorimetric photons, an additional weighting process is re-
quired in order to recover kinematic distributions of final-state
photons observed in the data as well, in a similar event-by-
event process as the weights obtained from χc1,2 kinematic
distributions. The effect of the photon-identification selection
and the reproducibility of relevant variables in simulation are
also taken into account. For the converted χc1,2 sample, the
total systematic uncertainty on the acceptance and efficiency
equals 9.6% at forward and 14.9% at backward rapidity, while
for the calorimetric sample the uncertainty is 8.1% at forward
rapidity and 12.4% at backward rapidity. The ratio of the
branching fractions of the χc1,2 → J/ψγ decays contributes
with an uncertainty of 3.9%. A summary of contributions to
the statistical and systematic uncertainties of each analyzed
sample is given in Table II.
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TABLE I. Yields of χc1 and χc2 signals with statistical uncertainties and corresponding significance (given in standard deviations).

Data sample Nχc1 Significance Nχc2 Significance

Converted photons 1.5 < y∗ < 4.0 41 ± 9 6.0 21 ± 8 3.1
−5.0 < y∗ < −2.5 38 ± 9 4.4 21 ± 8 3.0

Calorimetric photons 1.5 < y∗ < 4.0 1151 ± 69 15.7 721 ± 76 9.8
−5.0 < y∗ < −2.5 1004 ± 73 13.3 676 ± 82 8.5

VI. RESULTS

The prompt-production cross-section ratio σ (χc2)/σ (χc1) in pPb collisions at the center-of-mass energy per nucleon pair√
sNN = 8.16 TeV is shown for the two rapidity regions in Fig. 3. The ratio measured from converted photons amounts to

σ (χc2)

σ (χc1)
= 0.92 ± 0.42 (stat.) ± 0.11 (syst.) for 1.5 < y∗ < 4.0,

σ (χc2)

σ (χc1)
= 0.98 ± 0.46 (stat.) ± 0.15 (syst.) for − 5.0 < y∗ < −2.5.

The ratio measured from calorimetric photons is found to be

σ (χc2)

σ (χc1)
= 1.11 ± 0.14 (stat.) ± 0.10 (syst.) for 1.5 < y∗ < 4.0,

σ (χc2)

σ (χc1)
= 1.14 ± 0.16 (stat.) ± 0.17 (syst.) for − 5.0 < y∗ < −2.5.

The cross-section ratios for both converted and calorimetric
samples are consistent with unity in both rapidity regions. The
significantly larger yield of the calorimetric sample allows
more precise conclusions on the observed trend to be drawn.

The cross-section ratio obtained in pPb data is compared
with the corresponding ratio measured in pp collisions at√

s = 7 TeV by the LHCb Collaboration [16]. The two
measurements are consistent within two standard deviations.
While the ratio in the pp data was measured at a lower center-
of-mass energy than that of pPb collisions, results show that
the relative cross section of different charmonium states is
independent of energy at the LHC energy scale [35]. Thus,
the only aspect to consider in a direct comparison between the
shown pPb and pp data is the rapidity range, where the pPb
results are shifted by −0.5 in rapidity. Bearing that in mind,

we can express the relative suppression of χc2 and χc1 states
via the ratio of their nuclear-modification factors,

R ≡ σ (χc2)/σ (χc1)|pPb

σ (χc2)/σ (χc1)|pp
. (3)

Using the more precise calorimetric pPb results, the
ratio of nuclear-modification factors amounts to R =
1.41 ± 0.21(stat.) ± 0.18(syst.) at forward and R = 1.44 ±
0.24(stat.) ± 0.25(syst.) at backward rapidity, showing no sig-
nificant change relative to the pp ratio in either rapidity
region. The measured cross-section ratio and ratio of nuclear-
modification factors suggest that the nuclear effects have the
same impact on both χc1 and χc2 states within uncertainties,
independent of rapidity.

TABLE II. Statistical and systematic uncertainties on the cross-section ratio, σ (χc2)/σ (χc1). The total systematic uncertainty is also quoted.

Analyzed sample Source 1.5 < y∗ < 4.0 −5.0 < y∗ < −2.5

Signal extraction 4.9% 3.2%
Limited simulation sample size 5.6% 6.5%
Efficiency correction 7.7% 13.4%

Converted photons
Branching fraction ratio 3.9% 3.9%
Total systematic uncertainty 11.4% 15.7%
Statistical uncertainty 45.2% 47.0%
Signal extraction 2.6 % 6.8%
Limited simulation sample size 2.5% 2.8%
Efficiency correction 7.7% 12.1%

Calorimetric photons
Branching fraction ratio 3.9% 3.9%
Total systematic uncertainty 9.3% 14.7%
Statistical uncertainty 12.2% 14.2%
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FIG. 3. Cross-section ratio, σ (χc2)/σ (χc1) as a function of
center-of-mass rapidity y∗, for the χc2 and χc1 promptly produced
in pPb collisions measured using converted photons (red circles) and
calorimetric photons (blue squares). The error bars correspond to the
total uncertainties. Blue points and vertical uncertainties are shifted
horizontally to improve visibility. The pPb data are compared with
results of the converted sample in pp collisions at

√
s = 7 TeV [16]

(yellow triangles).

VII. SUMMARY

In summary, we present the first measurement of χc1,2

charmonium production in nuclear collisions at the LHC.
The cross-section ratio σ (χc2)/σ (χc1) is consistent with unity
for both forward and backward rapidity regions. Moreover,
comparison with the ratio measured in pp collisions hints at
a suppression pattern between the two states, which is com-
parable within uncertainties. This suggests that the final-state

nuclear effects impact the χc1 and χc2 states similarly within
the achieved precision.
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