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ARTICLE

Differentiable sampling of molecular geometries
with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda 1,2, Aik Rui Tan 1,2 & Rafael Gómez-Bombarelli 1✉

Neural network (NN) interatomic potentials provide fast prediction of potential energy sur-

faces, closely matching the accuracy of the electronic structure methods used to produce the

training data. However, NN predictions are only reliable within well-learned training domains,

and show volatile behavior when extrapolating. Uncertainty quantification methods can flag

atomic configurations for which prediction confidence is low, but arriving at such uncertain

regions requires expensive sampling of the NN phase space, often using atomistic simulations.

Here, we exploit automatic differentiation to drive atomistic systems towards high-likelihood,

high-uncertainty configurations without the need for molecular dynamics simulations. By

performing adversarial attacks on an uncertainty metric, informative geometries that expand

the training domain of NNs are sampled. When combined with an active learning loop, this

approach bootstraps and improves NN potentials while decreasing the number of calls to the

ground truth method. This efficiency is demonstrated on sampling of kinetic barriers, collective

variables in molecules, and supramolecular chemistry in zeolite-molecule interactions, and can

be extended to any NN potential architecture and materials system.
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Recent advances in machine learning (ML) techniques have
enabled the study of increasingly larger and more complex
materials systems1–3. In particular, ML-based atomistic

simulations have demonstrated predictions of potential energy
surfaces (PESes) with accuracy comparable to ab initio simulations
while being orders of magnitude faster4–6. ML potentials
employing kernels or Gaussian processes have been widely used
for fitting PESes7–9, and are particularly effective in low-data
regimes. For systems with greater diversity in chemical composi-
tion and structures, such as molecular conformations or reactions,
larger training datasets are typically needed. Neural networks
(NNs) can fit interatomic potentials to extensive datasets with
high accuracy and lower training and inference costs10,11. Over the
last years, several models have combined different representations
and NN architectures to predict PESes with increasing
accuracy11–14. They have been applied to predict molecular
systems15,16, solids17, interfaces18, chemical reactions19,20, kinetic
events21, phase transitions22, and many more4,6.

Despite their remarkable capacity to interpolate between data
points, NNs are known to perform poorly outside of their
training domain23,24 and may fail catastrophically for rare events,
such as those occurring in atomistic simulations with large sizes
or time scales not explored in the training data. Increasing the
size and diversity of the training data is often beneficial to
improve performance20,25, but there are significant costs asso-
ciated to generating new ground-truth data points. Continuously
acquiring more data and re-training the NN along a simulation
may negate some of the acceleration provided by ML models. In
addition, exhaustive exploration or data augmentation of the
input space is intractable. Therefore, assessing the trustworthiness
of NN predictions and systematically improving them is funda-
mental for deploying ML-accelerated tools to real world appli-
cations, including the prediction of materials properties.

Quantifying model uncertainty then becomes key, since it
allows distinguishing new inputs that are likely to be informative
(and worth labeling with ab initio simulations) from those close
to configurations already represented in the training data. In this
context, epistemic uncertainty—the model uncertainty arising
from the lack of appropriate training data—is much more rele-
vant to ML potentials than the aleatoric uncertainty, which arises
from noise in the training data. Whereas ML-based interatomic
potentials are becoming increasingly popular, uncertainty quan-
tification applied to atomistic simulations is at earlier stages26,27.
ML potentials based on Gaussian processes are Bayesian in nat-
ure, and thus benefit from an intrinsic error quantification
scheme, which has been applied to train ML potentials on-the-
fly9,28 or to accelerate nudged elastic band (NEB) calculations29.
NNs do not typically handle uncertainty natively and it is com-
mon to use approaches that provide distributions of predictions
to quantify epistemic uncertainty. Strategies such as Bayesian
NNs30, Monte Carlo dropout31, or NN committees32–34 allow
estimating the model uncertainty by building a set of related
models and comparing their predictions for a given input. In
particular, NN committee force fields have been used to control
simulations35, to inform sampling strategies36 and to calibrate
error bars for computed properties37.

Even when uncertainty estimates are available to distinguish
informative from uninformative inputs, ML potentials rely on
atomistic simulations to generate new trial configurations and
bootstrapping a potential becomes an infinite regress problem: the
training data for the potential needs to represent the full PES, but
thoroughly sampling the PES requires exhaustive sampling, which
needs long simulations with a stable accurate potential. It is com-
mon to perform molecular dynamics (MD) simulations with NN-
based models to expand their training set in an active learning (AL)
loop20,25,38. MD simulations explore the phase space based on the

thermodynamic probability of the PES. Thus, in the best case, ML-
accelerated MD simulations produce atomic configurations highly
correlated to the training set that only provide incremental
improvement to the potentials. Configurations corresponding to
rare events may be be missing, because observing them requires
large time- and size-scales that are only accessible in the final
production runs after AL. In the worst case, MD trajectories can be
unstable when executed with an NN potential and sample unrea-
listic events that are irrelevant to the true PES, especially in early
stages of the AL cycle when the NN training set is not representative
of the overall configuration space. Gathering data from ab initio
MD prevents the latter issue, but at a higher computational cost.
Some works avoid performing dynamic simulations, but still require
forward exploration of the PES to find new training points39. Even
NN simulations need to sample very large amounts of low uncer-
tainty phase space before stumbling upon uncertain regions. Hence,
one of the major bottlenecks for scaling up NN potentials is
minimizing their extrapolation errors until they achieve self-
sufficiency to perform atomistic simulations within the full phase
space they will be used in, including handling rare events. Inverting
the problem of exploring the configuration space with NN poten-
tials would allow for a more efficient sampling of transition states
and dynamic control40,41.

In this work, we propose an inverse sampling strategy for NN-
based atomistic simulations by performing gradient-based opti-
mization of a differentiable, likelihood-weighted uncertainty
metric. Building on the concept of adversarial attacks from the
ML literature42,43, new molecular conformations are sampled by
backpropagating atomic displacements to find local optima that
maximize the uncertainty of an NN committee while balancing
thermodynamic likelihood. These new configurations are then
evaluated using atomistic simulations (e.g., density functional
theory or force fields) and used to retrain the NNs in an AL loop.
The technique is able to bootstrap training data for NN potentials
starting from few configurations, improve their extrapolation
power, and efficiently explore the configuration space. The
approach is demonstrated in several atomistic systems, including
finding unknown local minima in a toy PES, improving kinetic
barrier predictions for nitrogen inversion, increasing the stability
of MD simulations in molecular systems, sampling of collective
variables in alanine dipeptide, and predicting supramolecular
interactions in zeolite-molecule systems. This work provides a
new method to explore potential energy landscapes without the
need for brute-force ab initio MD simulations to propose trial
configurations.

Results and discussion
Theory. An NN potential is a hypothesis function hθ that predicts
a real value of energy Ê ¼ hθðXÞ for a given atomistic config-
uration X as input. X is generally described by n atoms with
atomic numbers Z 2 Zn

þ and nuclear coordinates R 2 Rn´ 3.
Energy-conserving atomic forces Fij on atom i and Cartesian
coordinate j are obtained by differentiating the output energy
with respect to the atomic coordinates rij,

F̂ij ¼ � ∂Ê
∂rij

: ð1Þ

The parameters θ are trained to minimize the expected loss L
given the distribution of ground truth data (X, E, F) according to
the dataset D,

min
θ

E
ðX;E;FÞ�D

L X; E; F; θð Þ½ �: ð2Þ

During training, the loss L is usually computed by taking the
average mean squared error of the predicted and target properties
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within a batch of size N,

L ¼ 1
N

∑
N

i¼1
αE kEi � Êik2 þ αF kFi � F̂ik2
� �

; ð3Þ

where αE and αF are coefficients indicating the trade-off between
energy and force-matching during training12. The training
proceeds using stochastic gradient descent-based techniques.

To create a differentiable metric of uncertainty, we turned to
NN committees. These are typically implemented by training
different hθ and obtaining a distribution of predictions for each
input X. For example, given M models implementing

Ê
ðmÞ ¼ hðmÞ

θ ðXÞ, the mean and the variance of the energy of an
NN potential ensemble can be computed as

�EðXÞ ¼ 1
M

∑
M

m¼1
Ê
ðmÞðXÞ; ð4Þ

σ2EðXÞ ¼
1

M � 1
∑
M

m¼1
k ÊðmÞðXÞ � �EðXÞk2; ð5Þ

and similarly for forces,

�FðXÞ ¼ 1
M

∑
M

m¼1
F̂
ðmÞðXÞ; ð6Þ

σ2FðXÞ ¼
1

M � 1
∑
M

m¼1

1
3n

∑
i;j
k F̂ðmÞ

ij ðXÞ � �FijðXÞk2
� �

: ð7Þ

Whereas the training objective (2) rewards approaching mean
energies or forces to their ground truth values, this is not
guaranteed for regions outside of the training set.

Since variances in properties may become higher when the NN
models are in the extrapolation regime, identifying whether an
NN committee is outside its fitting domain requires evaluating
the probability that the output of the NN is reliable for an input
X. One option is to model this problem for the epistemic error as
a simple classifier,

PðX 2 D j σ2Þ ¼ 1; σ2 < t;

0; σ2 ≥ t;

�
ð8Þ

with t a threshold chosen by evaluating the model on the training
set. Although Eq. (8) can be modified to accept the data X with a
certain likelihood, the deterministic classifier demonstrates
reasonable accuracy (see Supplementary Fig. 1 for details).

When developing adversarially robust models, the objective (2)
is often changed to include a perturbation δ44,

min
θ

E
ðX;E;FÞ�D

max
δ2Δ

L Xδ; Eδ; Fδ; θ
� �� �

; ð9Þ

with Δ the set of allowed perturbations and Xδ, Eδ, Fδ the
perturbed geometries and their corresponding energies and
forces, respectively. In the context of NN classifiers, Δ is often
chosen as the set of ℓp-bounded perturbations for a given ε,
Δ ¼ fδ 2 Rjk δkp ≤ εg. Adversarial examples are then con-
structed by keeping the target class constant under the application
of the adversarial attack42,43. On the other hand, adversarial
examples are not well defined for NN regressors. Since even slight
variations of the input lead to different ground truth results Eδ, Fδ,
creating adversarially robust NN regressors is not
straightforward.

We propose that creating adversarially robust NN potentials
can be achieved by combining adversarial attacks, uncertainty
quantification, and active learning. Although similar strategies
have been used in classifiers, graph-structured data45,46, and
physical models47, no work has yet connected these strategies to
sample multidimensional potential energy landscapes. In this
framework, an adversarial attack maximizes the uncertainty in
the property under prediction (Fig. 1a). Then, ground-truth
properties are generated for the adversarial example. This could
correspond to obtaining energies and forces for a given
conformation with density functional theory (DFT) or force field
approaches. After acquiring new data points, the NN committee
is retrained. New rounds of sampling can be performed until the
test error is sufficiently low or the phase space is explored to a
desirable degree. Figure 1b illustrates this loop.

Within this pipeline, new geometries are sampled by perform-
ing an adversarial attack that maximizes an adversarial loss such
as

max
δ2Δ

LadvðX; δ; θÞ ¼ max
δ2Δ

σ2FðXδÞ: ð10Þ
In force-matching NN potentials, the uncertainty of the force
may be a better descriptor of epistemic error than uncertainty in
energy48 (see Supplementary Figs. 1, 3–5, and 7).

In the context of atomistic simulations, the perturbation δ is
applied only to the nuclear coordinates, Xδ= (Z, R+ δ),
δ 2 Rn ´ 3. For systems better described by collective variables
(CVs) s= s(R), an adversarial attack can be applied directly to
these CVs, Xδ= (Z, s−1(s+ δ)), as long as there is at least one

Fig. 1 Schematic diagram of the method. a Nuclear coordinates of an input molecule are slightly displaced by δ. Then, a potential energy surface (PES) and
its associated uncertainty are calculated with an NN potential committee. By backpropagating an adversarial loss through the NN committee, the
displacement δ can be updated using gradient ascent techniques until the adversarial loss is maximized, thus converging to states that compromise high
uncertainty with low energy. b Schematic diagram of the active learning loop used to train the NN potential committee. The evaluation can be performed
with classical force fields or electronic structure methods.
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differentiable function s−1 backmapping s to the nuclear
coordinates R.

The set Δ can be defined by appropriately choosing ε, the
maximum p-norm of δ. However, in atomistic simulations, it is
often interesting to express these limits in terms of the energy of
the states to be sampled, and the sampling temperature. To that
end, a normalization constant Q of the system at a given
temperature T can be constructed from the ground truth data D,

Q ¼ ∑
ðX;E;FÞ2D

exp � E
kT

	 

; ð11Þ

with k being the Boltzmann constant. Although the form of Q is
inspired in the partition function of the system, it does not
represent the true partition function due to the lack of data on all
the states the system can exist. Accessing as many of them as
possible is the required exhaustive sampling that is reserved to the
production simulation after AL. Nevertheless, we can estimate
that the probability p that a state Xδ with predicted energy �EðXδÞ
will be sampled is proportional to

pðXδÞ ¼
1
Q
exp �

�EðXδÞ
kT

	 

: ð12Þ

In this case, the factor Q improves the numerical stability of the
method by keeping p(Xδ) within reasonable bounds. Finally,
instead of limiting the norm of δ, the adversarial objective can be
modified to limit the energy of sampled states by combining Eqs.
(10) and (12),

max
δ

LadvðX; δ; θÞ ¼ max
δ

pðXδÞσ2FðXδÞ: ð13Þ
Using automatic differentiation strategies, the value of each

displacement δ can be obtained by iteratively using gradient
ascent techniques,

δðiþ1Þ ¼ δðiÞ þ αδ
∂Ladv

∂δ
; ð14Þ

with i the number of the iteration and αδ the learning rate for the
adversarial attack.

In practice, adversarial examples require input geometries as
seeds, and an appropriate initialization of the displacement
matrix δ. One possibility is to sample the initial δ from a normal
distribution N 0; σ2δ I

� �
with a small value of σ2δ . The degenerate

case σ2δ ¼ 0 leads to deterministic adversarial attacks with the
optimization procedure.

Since one can parallelize the creation of several adversarial
examples per initial seed by using batching techniques, the
computational bottleneck becomes evaluating them to create
more ground truth data. Hence, reducing the number of
adversarial examples is of practical consideration. Generated
examples can be reduced by using only a subset of the initial
dataset D as seeds. Even then, the optimization of δ may lead to
structures which are very similar, corresponding to the same
points in the configuration space. To avoid evaluating the same
geometry multiple times, structures can be deduplicated accord-
ing to the root mean square deviation (RMSD) between the
conformers. One efficient algorithm is to perform hierarchical
clustering on the data points given the RMSD matrix, and
aggregating points which are within a given threshold of each
other. Finally, to avoid local minima around the training set, one
can classify whether the given structure is well-known by the
model using Eq. (8). Then, new points are evaluated only if they
correspond to high uncertainty structures and not just to local
optima in uncertainty, avoiding sampling regions of the PES
which are already well represented in the training set.

The complete adversarial training procedure is described in
Fig. 2.

Adversarial sampling on double well potential. As a proof-of-
concept, the adversarial sampling strategy is demonstrated in the
two-dimensional (2D) double well potential (see Supplementary
Note 1 and Supplementary Figs. 1–4 for an analysis of the 1D
example). To investigate the exploration of the phase space, the
initial data is placed randomly in one of the basins of the
potential. Then, a committee of feedforward NNs is trained to
reproduce the potential using the training data (see Methods). At
first, the NN potential is unaware of the second basin, and pre-
dicts a single well potential in its first generation. As such, an MD
simulation using this NN potential would be unable to reproduce
the free energy surface of the true potential. Nevertheless, the
region corresponding to the second basin is of high uncertainty
when compared to the region where the training set is located.
The adversarial loss encourages exploring the configuration space
away from the original data, and adversarial samples that max-
imize Ladv are evaluated with the ground truth potential, then
added to the training set of the next generation of NN potentials.
Figure 3a shows the results of the training-attacking loop for the
NN potential after several generations. As the AL loop proceeds,
the phase space is explored just enough to accurately reproduce
the 2D double well, including the energy barrier and the shape of
the basins.

To verify the effectiveness of the adversarial sampling strategy,
the evolution of the models is compared with random sampling.
While the former is obtained by solving Eq. (13), the latter is
obtained by randomly selecting 20 different training points from
the training set and sampling δ from a uniform distribution,
δ � U �σδ; σδ

� �
. Although randomly sampling geometries is

often not adequate in molecular simulation, adding small
distortions to inputs has shown to increase the robustness of

Fig. 2 Algorithm. Pseudocode of the adversarial training of a neural
network potential.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25342-8

4 NATURE COMMUNICATIONS |         (2021) 12:5104 | https://doi.org/10.1038/s41467-021-25342-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


NN classifiers49,50, and is a common data-acquisition technique
for NN potentials, typically along vibrational normal modes51.
Thus, it is meaningful to compare the adversarial training with
random inputs for NN regressors. To perform a statistical
analysis on the methods, more than 100 independent active
learning loops with different initializations are trained for the
same 2D well potential (Fig. 3b). Overall, the root mean square
error (RMSE) between the ground truth potential and the
predicted values decreases as the space is better sampled for both
methods. However, although the random sampling strategy
collects more data points, the median RMSE of the final
generation is between two to three times higher than the
adversarial attack strategy. Moreover, the median sampled energy
is one order of magnitude higher for randomly sampled points.
As several randomly sampled points travel to places outside of the
bounds of the double well shown in Fig. 3a, the energy quickly
increases, leading to high-energy configurations. This is often the
case in real systems, in which randomly distorting molecules or
solids rapidly lead to high-energy structures that will not be
visited during production simulations. As such, this toy example
suggests that the adversarial sampling method generates thermo-
dynamically likely structures, requires less ground-truth evalua-
tions and leads to better-trained NN potentials compared to
randomly sampling the space.

Adversarial sampling of nitrogen inversion on ammonia. As a
second example, we bootstrap an NN potential to study the
nitrogen inversion in ammonia. This choice of molecule is
motivated by more complex reactive systems, in which quanti-
fying energy barriers to train a robust NN potential requires
thousands of reactive trajectories from ab initio simulations20. To
circumvent that need, we start training an NN committee using
the SchNet model12 from Hessian-displaced geometries data.
Then, new geometries are sampled by performing an adversarial
attack on the ground-state conformation, and later evaluated
using DFT. After training a new committee with newly sampled
data points, the landscape of conformations is analyzed and
compared with random displacements. Figure 4a shows a UMAP
visualization52 of the conformers, as compared by their similarity
using the Smooth Overlap of Atomic Positions (SOAP)
representation53. A qualitative analysis of the UMAP plot shows
that adversarial attacks rarely resemble the training set in terms of
geometric similarity. Attacks from the second generation are also
mostly distant from attacks in the first generation. On the other
hand, small values of distortions σδ for a uniform distribution
create geometries that are very similar to Hessian-displaced ones.

While higher values of σδ (e.g., σδ= 0.3Å) explore a larger con-
formational space, several points with very high energy are
sampled (Fig. 4b), as in the double well example. As the number
of atoms increases, this trade-off between thermodynamic like-
lihood and diversity of the randomly sampled configurations
worsens in a curse-of-dimensionality effect. In contrast, energies
of adversarially created conformations have a more reasonable
upper bound if the uncertainty in forces is used. When the
uncertainty in energy is employed in Eq. (10) instead of σ2F ,
adversarial examples may not efficiently explore the configuration
space (Supplementary Fig. 5), supporting the use of σ2F for per-
forming inverse sampling. Although calculating gradients with
respect to σ2F requires more memory to store the computational
graph (Supplementary Fig. 6), this metric is more informative of
epistemic uncertainty and error in NN potentials than its energy
counterpart (Supplementary Figs. 7–9) and better reflects the
preference of force-matching over energy-matching at train time.
Figure 4c compares the degree of distortion of the geometries
with respect to their energies. It further shows that the adversarial
strategy navigates the conformational space to find highly dis-
torted, lower energy states. Both the first and second generation
of attacked geometries display higher RMSD than Hessian-
displaced structures with respect to the ground-state geometry
while staying within reasonable energy bounds. However, as the
low-energy region of the PES is better explored by the NN
potential as the AL loop progresses, adversarially sampled geo-
metries from later generations become increasingly higher in
energy (Supplementary Fig. 10).

Once new configurations are used in training, predictions for
the energy barrier in the nitrogen inversion improve substan-
tially (Fig. 4d). While the first generation of the NN potential
underestimates the energy barrier by about 1 kcal/mol with
respect to the DFT value, the prediction from the second
generation is already within the error bar, with less than
0.25 kcal/mol of error for the inversion barrier (see Supple-
mentary Fig. 11). In contrast, predictions from an NN
committee trained on randomly sampled geometries over-
estimate this energy. They also exhibit higher uncertainties,
even for geometries close to equilibrium (Supplementary
Fig. 11). This suggests that adversarial attacks were able to
sample geometries that improved the interpolation of the
energy barrier without the need to manually add this reaction
path into the training set.

The evolution of the phase space of each NN committee is
further compared in the projected PES of Fig. 4e (see Methods).
Two CVs are defined to simplify the representation of the 12-

Fig. 3 Adversarial attacks applied to a toy potential. a Evolution of the PES of a 2D double well predicted by an NN committee. Adversarial examples
(black dots) are distortions from original training data (white dots) or past adversarial examples (gray dots) that maximize the adversarial loss Ladv. The
plotting intervals are [−1.5, 1.5] × [−1.5, 1.5] for all graphs. The generation of the NN committee is shown in the top left corner of each graph. b Evolution of
the root mean square error (RMSE), number of training points, and energy of the data points sampled using the adversarial attack strategy (red) or by
randomly distorting the training data (blue). The solid line is the median from more than 100 experiments, and the shaded area is the interquartile region.
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dimensional phase space of this molecule: the radius of the
circumference defined by the three hydrogen atoms (R) and the
distance between the nitrogen atom and the plane defined by the
three hydrogens (Z) (Supplementary Fig. 12). Figure 4e shows the
energies and force uncertainties calculated for the most
symmetrical structures containing these CVs (see Supplementary
Fig. 12a), with R, Z normalized by the values found in the ground
state geometry. Analogously to Fig. 3a, adversarial attacks expand
the configuration space used as train set for NN committees and
bring the phase space closer to the ground truth, thus lowering
the uncertainty of forces in the phase space (see also
Supplementary Figs. 7 and 8). Nevertheless, randomly sampled
geometries also allow bootstrapping an NN committee depending
on the system and values of σδ. Importantly, NN committees
successively trained on adversarial attacks have smaller errors in
the low-energy region of the PES of ammonia. As expected, the
high-energy configurations sampled by randomly generated
geometries slightly improve the higher energy region of the PES
that will not be visited in production simulations. Figure 4f shows
the RMSE of each model compared to DFT across all the
projected phase space of Fig. 4e. When only energies smaller than
5 kcal/mol are compared, all three generations display much
smaller RMSE than NNs trained with randomly sampled
geometries, probably due to the presence of Hessian-displaced
geometries in their training set. Up to 40 kcal/mol, the third
generation of NN committees has a smaller RMSE when
compared to committees trained with randomly distorted
geometries, further supporting that the adversarial sampling
strategy is useful to balance exploration of diverse conformations
with higher likelihood. Finally, the adversarial training yields

models capable of performing stable MD simulations. Whereas
the first generation cannot produce stable MD trajectories, i.e.,
always leading to unphysical configurations such as atomic
dissociation or collision, 83% of the trajectories produced by the
third generation of adversarially based NN committees are stable,
even though the NN-based MD geometries include data points
originally not in the training set (Supplementary Fig. 13). In
contrast, only 63% of the trajectories are stable when the NN
committee trained on random geometries is used. Since the NN
committees were trained on as few as 150 training points (see
Methods), this indicates that the adversarial sampling strategy
enhances the robustness of NN-based MD simulations by seeking
points which are known to cause instabilities due to extrapolation
errors, and unlikely to exist in training sets created by unbiased
MD simulations (Supplementary Fig. 13).

Collective variable sampling in alanine dipeptide. As a third
example, we illustrate the use of adversarial attacks for sampling
predefined CVs. Since translation-based adversarial attacks
Xδ= (Z, R+ δ) may not be able to capture collective dynamics of
interest such as bond rotations (see full discussion in the Sup-
plementary Note 2), we seek high-uncertainty conformations in
predefined CVs s= s(R). To do that, there should exist a differ-
entiable function s−1 mapping a point in the CV space to the
atomic coordinates space Rn´ 3. Typically, CVs aggregate infor-
mation from many degrees of freedom and s(R) is not bijective.
Nevertheless, in the case of adversarial attacks, it suffices to have
an operation s−1 that acts on a geometry X ¼ Z;Rð Þ to produce
the adversarial attack Xδ ¼ Z; s�1 X; δð Þ� �

. Using this strategy, a

Fig. 4 Adversarial attacks applied to the ammonia molecule. a UMAP plot for the SOAP-based similarity between ammonia geometries. Both axes are on
the same scale. b Distribution of DFT energies for conformations sampled with different methods. The horizontal line is the median, the box is the
interquartile region and the whiskers span the range of the distribution. c Relationship between DFT energy and root mean square deviation (RMSD) of a
geometry with respect to the ground state structure of ammonia. The color scheme follows the legend of a. d Energy barrier for the nitrogen inversion
calculated with NEB using DFT or using the NN committee. e Evolution of the PES projected onto the CVs (Z, R) for ammonia. The generation of the NN
committee is shown in the top left corner of each plot. The scale bar of energies is plotted with the function log 10ð1þ EÞ, and all energy contour plots have
the same levels. Random geometries were generated with σδ= 0.3 Å (see Methods). f RMSE between the NN and DFT PES for each NN potential when a
maximum energy is imposed for the DFT PES. f inset fraction of stable MD trajectories generated using each NN committee as force field.
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seed geometry can be distorted in the direction of its predefined
CVs even if the CVs are not invertible.

This application is illustrated with the alanine dipeptide
molecule (N-acetyl-L-alanine-N′-methylamide), using its two
dihedral angles (φ, ψ) as CVs (Fig. 5a). Despite their apparent
chemical simplicity, flexible molecules pose tremendous chal-
lenges to NN potentials54, which are typically benchmarked on
molecules with barely any rotatable bonds (e.g., MD17). In this
particular case, the function s−1 takes a reference geometry X as
an input and performs the dihedral rotations of interest through
purely geometrical operations. Since bond rotations can be
written with matrix operations, they can be implemented in the
training pipeline without breaking the computational graph that
enables the adversarial strategy. To compare the effects of the
adversarial learning method with MD-based training sets, a series
of NN committees were trained using the same architecture
employed in the previous section. The models were initially
trained on geometries created from MD simulations using the
Optimized Potentials for Liquid Simulations (OPLS) force field55

with the OpenMM package56,57 (see Methods). Then, adversarial
attacks were performed by randomly taking training points as
seed geometries. Since bond rotations are periodic, the adversarial
distortion δ does not break the geometries apart, a concern that
exists in many other ML-accelerated simulations as in the
previous section. Nevertheless, some angles (φ, ψ) may lead to
high-energy configurations depending on the conformation X of
the molecule prior to the attack. Figure 5b shows the distribution
of sampled energies for different rounds of adversarial attacks.
We discarded points with extremely high energy from the
training set, since they interfere with the training of the NN
potential for being overly far from equilibrium. Nevertheless, the
distribution of energies show that most of the sampled points lie
in energy ranges that are not accessible by unbiased, short MD
simulations, but are expected to be accessed in long production
simulations. This further supports the hypothesis that adversarial
attacks are effective in sampling regions of the phase space with
good compromise between energy and uncertainty, even after
extensive MD simulations. To confirm that the adversarial

sampling strategy improves the robustness of the NN potential,
the stability of MD trajectories is computed for various initial
configurations. Figure 5c compares the duration of stable
trajectories obtained with the first and seventh generation of
NN committees. As expected, the first generation produces many
unstable trajectories, as even nanoseconds of unbiased MD
simulations do not provide enough data to stabilize the NN
potential. On the other hand, adding a relatively small number of
adversarial examples enhances the robustness of the NN
committees, as reflected in more stable MD trajectories (see also
Supplementary Figs. 14 and 15). Since high-energy adversarial
points are discarded from the training, the NN committee is
unable to produce stable trajectories for starting configurations
with CVs near (φ, ψ)= (0, 0).

The evolution of NN committees for predicting the PES of
alanine dipeptide is shown in Fig. 5d. At first, only a small region
of the phase space is known from the data obtained in MD
simulations. This is reflected on the high contrast between the
uncertainty close and far from the training set. In the first few
adversarial attacks, the space is better sampled according to the
uncertainty metric, decreasing the error for low-energy regions
and increasing the uncertainty in high-energy regions. This
suggests that the quality of the epistemic error quantification
improves as the conformation space is better explored, and also
further supports that epistemic error estimation is better
informed by the force uncertainty (see also Supplementary
Fig. 16). To better compare the ground truth results with the NN
predictions in the low-energy region, we clipped the energies of
the former to 300 kcal/mol in Fig. 5d. As the active learning loop
progresses, the NN committee is able to better reproduce the
energy landscape of alanine dipeptide, as exemplified by the
improvement of the CV landscape for φ > π/2 or the high-energy
ellipsoid centered at (φ, ψ)= (0, 0), which will not be visited in
unbiased simulations. Interestingly, the uncertainty remains high
in the central region, since the sampled energies of the system are
much higher than the rest of the phase space. Since some of them
are discarded for being extremely unlikely (e.g., configurations
with energies greater than 200 kcal/mol), the predictive power of

Fig. 5 Adversarial attacks applied to an alanine dipeptide molecule. a Schematic diagram of alanine dipeptide and the CVs (φ, ψ) created from the
highlighted dihedral angles. Hydrogen, carbon, oxygen, and nitrogen atoms are depicted with white, gray, red, and blue spheres, respectively. b Distribution
of force field energies for conformations generated from the collective variables. The horizontal line is the median, the box is the interquartile region and
the whiskers span the range of the distribution. c Duration of stable alanine dipeptide trajectories simulated with NN committees trained with and without
adversarial examples. Grid points represent dihedral angles (φ, ψ) of the starting configurations of trajectories obtained via rigid rotation of the lowest
energy geometry. d Evolution of the PES of an NN committee trained on alanine dipeptide. Adversarial examples (blue points) are distortions along the CVs
(φ, ψ) from randomly chosen original training points (hexagonal bins) through Eq. (13). Angles are given in radians.
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the NN committee is not guaranteed in this part of the phase
space. This is characterized by the ring-like energy barrier
featured in Fig. 5d for later generations, and may change the
absolute values of the adversarial loss (see example in
Supplementary Fig. 3). It is yet unclear whether NN potentials
are able to simultaneously predict ground-state conformations
and such high-energy states with similar absolute accuracy54. In
fact, learning high-energy regions of the PES may not be needed,
since the learned barriers are insurmountable in production
unbiased simulations. Finally, the uncertainty in forces resembles
traditional biasing potentials in enhanced sampling techniques
applied to obtain the free energy landscape in alanine
dipeptide58,59. Although this intuition is not thoroughly quanti-
fied in this work, we suggest that NN potentials with uncertainty
quantification intrinsically provide a bias towards transition states
through the uncertainty metric. Although the uncertainty can
vary outside of the training set, as seen in Fig. 5d, this idea
qualitatively agrees with the examples in this paper (see also
Supplementary Figs. 1a and 8). While we explore this bias
through adversarial attacks for bootstrapping NN potentials in
this work, we further suggest they could lead to automatic
transition state and rare-event sampling strategies based on
differentiable atomistic simulations with the uncertainty as a
collective variable itself. The adversarial approach is compatible
with other NN architectures and may be used for improving the
training sets of existing models. For instance, for the ANI
model51, we have used publicly available pre-trained models and
carried out uncertainty-based attacks on small molecules (see
Supplementary Note 3, Supplementary Figs. 17–20). For
molecules present in the training data (methane, ammonia,
water), and particularly for a molecule not in the training data
(alanine dipeptide), it was possible to identify high-uncertainty,
thermally accessible configurations that could be added to the
training data in an active learning loop.

Adversarial attacks in solids and supramolecular chemistry. As
a final example, we show our method can be used to bootstrap
NN potentials for larger systems, including solids and supramo-
lecular chemistry. This application is illustrated with zeolite
structures occluded with neutral organic molecules, some of
which act as organic structure-directing agents (OSDAs) for these
materials (see Fig. 6a for an example and Supplementary Table 3
for the complete list). Despite the wide commercial interest in
predicting host–guest interactions in these materials, the diversity
of zeolite topologies and organic molecules offers a challenge for
reproducing their complex potential energy surfaces, particularly
with dynamic simulations.

We start with a dataset of 543 zeolite-OSDA pairs, from which
we obtain more than 17,000 DFT energies and forces (see
Methods). Despite extensive data generation through MD
simulations, random sampling, and structural optimizations,

NN potentials trained on this dataset are unable to fully produce
stable MD trajectories. On average, 23% of the MD trajectories
starting from each of the 543 optimized poses are unstable, and
lead to the collapse of the simulation. This number lowers to 20%
of the trajectories when an NN committee is used to perform the
MD simulation (see Fig. 6b).

Conventional strategies to increase the stability of NN
potentials include performing active learning loops by retraining
the networks on MD-sampled data (Supplementary
Fig. 21a)20,25,36,37. However, sampling new host–guest geometries
to diversify the training of NN potentials and stabilize their
predictions is computationally inefficient due to the large number
of atoms in these systems. On the other hand, adversarial attacks
can sample just enough new configurations to enable the models
to achieve self-sufficiency in dynamic simulations. To verify this
hypothesis, we performed both adversarial attacks and NN-based
MD using the first generation of trained models (see Methods). In
additional to the original training sets, 4879 MD frames and 543
adversarial attacks were evaluated using single-point DFT
calculations and added to the training set of the next generation
(Fig. 6b). After retraining the NN potentials, new NN-based MD
simulations were performed. NNs trained with MD trajectories
are less stable than their adversarially robust counterparts despite
being trained with nine times more new points. Whereas 8% of
the trajectories produced by the second generation of MD-trained
NNs are unstable, only 3% of the trajectories produced with
adversarially robust NNs are unphysical. Even when the possible
stabilizing effect by the NN committee is disregarded, the MD-
trained NNs use significantly more data points to achieve a
similar performance. While the overall cost of performing DFT
calculations can be lowered by filtering out geometries with low
uncertainty36,37 or using the deduplication techniques discussed
in the Theory section, MD simulations may not maximally
sample informative points for retraining the NNs since they are
bound to overrepresent low-energy minima and scarcely visit
highly informative rare events. Hence, adversarially sampled
geometries enable evaluating fewer points with DFT-level
calculations while improving the performance of the neural
networks, showing increasing advantage in larger and more
diverse systems. The method might enable NN potentials to be
applied in increasingly complex and realistic materials systems.

In summary, we proposed a new sampling strategy for NN
potentials by combining uncertainty quantification, automatic
differentiation, adversarial attacks, and active learning. By
maximizing the uncertainty of NN predictions through a
differentiable metric, new geometries can be sampled efficiently
and purposefully. This technique allows NN potentials to be
bootstrapped with fewer calls to the ground truth method,
maximizing the final accuracy and efficiently exploring the
conformational space. Successful adversarial attacks were demon-
strated in four examples. In a 2D double well potential, the
attacks provided an exploration strategy and outperformed a

Fig. 6 Adversarial attacks applied to zeolite-molecules systems. a Example of zeolite-molecule pair simulated in this work. In total, 543 different poses
were used as starting configurations for the simulations (see Supplementary Table 3). b Active learning strategies for training a NN potential for zeolite-
molecule systems. A traditional, MD-based loop is compared with adversarially trained NN potentials.
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random baseline. In the ammonia molecule, the approach
accurately predicted distorted configurations or reaction paths,
and produced better fits to the PES and more stable atomistic
simulations, without the need of AIMD. For alanine dipeptide, a
challenging molecule for NN potentials due to its flexibility,
adversarial attacks were performed on collective variables to
efficiently explore phase space and systemically improve the
quality of the learned PES. Finally, for zeolite-molecule systems,
sampling new data points with adversarial attacks leads to more
robust NN potentials with less training points compared to MD-
based active learning loops. This work presents a new data-
efficient way to train NN potentials and explore the conforma-
tional space through deep learning-enabled simulations. By
balancing thermodynamic likelihood and attacking model con-
fidence it becomes possible to gather representative training data
for uncertain, extrapolative configurations corresponding to rare
events that would otherwise only be visited during expensive
production simulations. The approach can be extended to any
NN-based potential, such as the publicly available ANI, and
representation, and can be further explored for biased
simulations.

Methods
Double well potential. The double well potential adopted in this work is written as
the following polynomial:

Eðx; yÞ ¼ 10x4 � 10x2 þ 2x þ 4y2: ð15Þ
Initial training data was generated by randomly sampling up to 800 points with

independent coordinates according to a uniform distribution U �1:5; 1:5ð Þ, and
selecting only those with energy lower than −2. This allows us to select only data
points lying in the lowest energy basin of the double well, creating an energy barrier
between the two energy minima.

Five feedforward NNs with four layers, softplus activation and 1024 units per
layer were trained using the same train/test splits of the dataset. The NNs had
different initial weights. The dataset was split in the ratio 60 : 20 : 20 for training :
validation : testing, with a batch size of 35. The training was performed for 600
epochs with the Adam optimizer60 and a learning rate of 0.001. The reported
RMSE is the root mean squared difference between the average predicted energy �E
and the ground truth potential E as evaluated on a 100 × 100 grid in the region
[−1.5, 1.5] × [−1.5, 1.5].

Adversarial attacks were performed with a normalized sampling temperature of
5 (Eq. (15) units) for 600 epochs, learning rate of 0.003 and the Adam optimizer.
Deduplication via hierarchical clustering was performed using a threshold of 0.02
for the distance and the 80th percentile of the train set variance.

Random distortions were performed in each generation by displacing the (x, y)
coordinates of training data points (or past random samples) by δ � U �1:0; 1:0ð Þ.
After deduplication via hierarchical clustering and uncertainty percentile as
performed for adversarial attacks, up to 20 points were randomly selected from the
resulting data. Distortions smaller than 1.0 were often unable to efficiently explore
the PES of the double well, landing in the same basin.

Simulations of ammonia. Initial molecular conformers were generated using
RDKit61 with the MMFF94 force field62. DFT structural optimizations and single-
point calculations were performed using the BP86-D3/def2-SVP63,64 level of theory
as implemented in ORCA65. NEB calculations66,67 were performed with 11 images
using the FIRE algorithm68 as implemented in the Atomic Simulation
Environment69. Hessian-displaced geometries were created by randomly displacing
the atoms from their ground-state conformation in the direction of normal mode
vectors with temperatures between 250 and 750 K. In total, 78 training geometries
were used as initial dataset.

For each generation, five NNs with the SchNet architecture12 were employed.
Each model used four convolutions, 256 filters, atom basis of size 256, 32 learnable
gaussians and cutoff of 5.0Å. The models were trained on different splits of the
initial dataset (ratios 60: 20: 20 for train : validation : test) for 500 epochs, using the
Adam optimizer with an initial learning rate of 3 × 10−4 and batch size of 30. A
scheduler reduced the learning rate by a factor of 0.5 if 30 epochs passed without
improvement in the validation set. The training coefficients αE and αF (see Eq. (3))
were set to 0.1 and 1, respectively.

Adversarial attacks were initialized by displacing the ground-state geometry of
ammonia by δ � N ð0; 0:01 ÅÞ for each coordinate. The resulting attack δ was
optimized for 60 iterations using the Adam optimizer with learning rate of 0.01.
The normalized temperature kT was set to 20 kcal/mol to ensure that adversarial
attacks were not bound by a low sampling temperature, but by the uncertainty in
force predictions. 30 adversarial attacks were sampled for each generation. No
deduplication was performed.

Random distortions were generated by displacing each coordinate of the
ground-state geometry of ammonia by a value of δ � Uð�σδ ; σδÞ. The values of
σδ= 0.1Å and σδ= 0.3Å were adopted. 30 (100) random samples were created for
σδ= 0.3 Å (σδ= 1.0Å).

NN-based MD simulations were performed in the NVT ensemble with Nosé-
Hoover dynamics, 0.5 fs timesteps, and temperatures of 500, 600, 700, 800, 900, and
1000 K. 100 5 ps-long trajectories were performed for each NN committee and
temperature. The ground-state geometry of ammonia was used as initial
configuration for all MD calculations. Trajectories were considered as unphysical if
the distance between hydrogen atoms was closer than 0.80Å or larger than 2.55Å,
or if the predicted energy was lower than the ground-state energy (0 kcal/mol for
the reference adopted in this work).

SOAP vectors were created using the DScribe package70. The cutoff radius was
set as 5Å, with spherical primitive Gaussian type orbitals with standard deviation
of 1Å, basis size of 5 functions, and Lmax ¼ 6. The vectors were averaged over sites
before summing the magnetic quantum numbers.

The projected PES shown in Fig. 4e is constructed by evaluating the NN
potentials on symmetrical geometries generated for each tuple (Z, R). As such, train
points and adversarial attacks are projected onto this space even though the
conformers display distortions not captured by the CVs (Z, R) (see Supplementary
Fig. 12). The RMSE between the projected PES of the NN potential and DFT
calculations is taken with respect to these symmetrical geometries.

Simulations of alanine dipeptide. Alanine dipeptide was simulated using the
OPLS force field55 within the OpenMM simulation package56,57. The force field
parameters were generated using LigParGen71. The molecule was placed in
vacuum, with a box of size 30Å. MD simulations were performed at 1200 K using a
Langevin integrator with a friction coefficient of 1 ps−1 and step sizes of 2 fs.
Calculations of Lennard-Jones and Coulomb interactions were performed in real
space with no cutoff. The initial training data was obtained by conducting 320 ns of
MD simulations, from which snapshots every 2 ps were collected. 10,000 snapshots
were extracted from these trajectories as the initial training data for the NN
committee.

For each generation, five NNs with the SchNet architecture12 were employed.
The NNs follow the same architecture employed in the simulation of ammonia,
with five NNs per committee, each containing four convolutions, 256 filters, atom
basis of size 256, 32 learnable gaussians and cutoff of 5.0Å. The models were
trained on different splits of the initial dataset (ratios 60: 20: 20 for train :
validation: test) for 200 epochs, using the Adam optimizer with an initial learning
rate of 5 × 10−4 and batch size of 50. A scheduler reduced the learning rate by a
factor of 0.5 if 30 epochs passed without improvement in the validation set. The
training coefficients αE and αF (see Eq. (3)) were both set to 1.0.

Adversarial attacks were initialized by displacing the CVs (φ, ψ) by δ �
N ð0; 0:01 radÞ for each angle. The resulting attack δ was optimized for 300
iterations using the Adam optimizer with learning rate of 5 × 10−3. Normalized
temperature of kT was set to 20 kcal/mol. 50 adversarial attacks were sampled for
each generation. No deduplication was performed.

NN-based MD simulations were performed in the NVE ensemble using
Velocity Verlet integrator at 300 K with a timestep of 0.5 fs. Trajectories starting
from 324 different initial configurations were performed for each NN committee.
Each starting geometry was obtained via rotation of the dihedral angles of the
ground-state configuration while keeping the connected branches rigid.
Trajectories were considered unstable if distance between bonded atoms became
smaller than 0.75Å or larger than 2.0Å.

Simulations of zeolites. DFT calculations of zeolite-OSDA systems were per-
formed using the Vienna Ab-initio Simulation Package (VASP)72,73, version 5.4.4,
within the projector-augmented wave (PAW) method74,75. The
Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient
approximation (GGA)76 was used as the exchange-correlation functional. vdW
interactions were taken into account through Grimme’s D3 corrections77,78. The
kinetic energy cutoff for plane waves was restricted to 520 eV. Integrations over the
Brillouin zone were performed using Monkhorst-Pack k-point meshes79 (Γ-cen-
tered for hexagonal unit cells) with a uniform density of 64 k-points/Å−3 (see
Supplementary Table 2). A threshold of 10−6 eV was adopted for the energy
convergence within a self-consistent field (SCF) cycle. Relaxation of unit cell
parameters and atomic positions was performed until the Hellmann–Feynman
forces on atoms were smaller than 10 meV/Å.

543 different poses were created by docking 107 neutral molecules into 66 pure-
silica zeolite frameworks with the VOID package80. Then, poses were fully
optimized using DFT, following the guidelines in ref. 81. In total, 253 different
zeolite-molecule pairs with less than 350 atoms were selected for computational
efficiency (see Supplementary Table 3 for complete details). Within the same
zeolite-molecule complex, poses differ according to the initial placement of the
molecule or loading81.

An initial dataset of structures was created by displacing atoms of each pose by
up to 0.2Å. Then, each new structure was calculated using DFT at the PBE-D3
level. The procedure was repeated about 14 times per structure, resulting in about
7647 geometries. In addition, 9184 off-equilibrium configurations of zeolite-OSDA
pairs sampled using AIMD simulations within the NVT ensemble at 600 K were
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added to the initial training set. Similarly, 661 frames from unloaded, pure-silica
zeolites sampled using the NVT ensemble at 450 K were added to the training set.

A conventional active learning loop was performed by retraining the NN
potentials on geometries sampled with NN-based MD simulations20,25 performed
in the NVE ensemble using the Velocity Verlet integrator with initial temperature
of 600 K, a duration of 5 ps, and a timestep of 0.5 fs. Trajectories started from each
of the 543 optimized poses. For each trajectory, 10 frames corresponding to the last
2 ps of the simulations were saved and later evaluated using DFT. Frames with DFT
energy higher than 20 kcal/mol/atom above its ground state, often due to unstable
trajectories, were not added to the training sets. When evaluating the robustness of
the models, NN-based MD simulations were performed using the same parameters
described above, but at a higher temperature of 1000 K. Trajectories were
considered unstable if distances between bonded atoms became smaller than 0.75Å
or larger than 2.0Å throughout the simulation.

Two scenarios were considered for each generation of neural networks: (i) a
single NN is retrained from its own MD simulations20,25; or five NNs are retrained
with geometries sampled using adversarial attacks (see Supplementary Fig. 21). All
NNs employ the same SchNet architecture, with five NNs per committee, each
containing four convolutions, 256 filters, atom basis of size 256, 64 learnable
gaussians, and cutoff of 5.0Å. The models were trained on different splits of the
initial dataset (ratios 60:20:20 for train:validation:test) for 400 epochs, using the
Adam optimizer with an initial learning rate of 5 × 10−4 and batch size of 150. A
scheduler reduced the learning rate by a factor of 0.5 if 25 epochs passed without
improvement in the validation set. The training coefficients αE and αF (see Eq. (3))
were set to 0.1 and 1.0, respectively.

Adversarial attacks were initialized by displacing the atomic coordinates of
optimized geometries by δ � N ð0; 0:01 ÅÞ for each pose. The resulting attack δ
was optimized for 200 iterations using the Adam optimizer with a learning rate of
10−2. The normalized temperature kT was set to 20 kcal/mol. No deduplication was
performed.

Data availability
The atomistic simulation data generated in this study have been deposited in the Materials
Cloud Archive under accession code https://doi.org/10.24435/materialscloud:2w-6h83.

Code availability
The code used to reproduce the results from this paper is available at https://github.com/
learningmatter-mit/Atomistic-Adversarial-Attacks under the MIT License (see ref. 84 for
permanent link).
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