MULTIGRID ALGORITHMS AND COMPLEXITY RESULTS
FOR
DISCRETE-TIME STOCHASTIC CONTROL
AND
RELATED FIXED-POINT PROBLEMS

by

Chee-Seng Chow
Electrical Engineer, MIT, 1987
S.M., Electrical Engineering and Computer Science, MIT, 1985
S.B., Electrical Engineering, MIT, 1985
S.B., Computer Science, MIT, 1985
S.B., Mathematics, MIT, 1985
S.B., Physics, MIT, 1985

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE oOF

DOCTOR OF PHILOSOPHY
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
December 1989

(©1989 Massachusetts Institute of Technology

Signature of Author

Departmen&_i_—?%/al Engineering and Computer Science
December 5, 1989

Certified by

John N. Tsitsiklis
Thesis Supervisor

Accepted by

Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MULTIGRID ALGORITHMS AND COMPLEXITY RESULTS
FOR
DISCRETE-TIME STOCHASTIC CONTROL
AND
RELATED FIXED-POINT PROBLEMS

by
Chee-Seng Chow

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
DECEMBER 1989

Abstract

We study the computational aspects of discrete-time stochastic control and related
fixed-point problems. We first consider the approximate solution of a discrete-time
stochastic control model: stationary, infinite-horizon, discounted-cost Markov Deci-
sion Processes that satisfy certain Lipschitz continuity assumptions. We study the
computational complexity of the problem as a function of the accuracy and the dis-
count parameters. We also study the effects of ergodicity conditions on the problem’s
discretization and complexity. We analyze the complexity of a traditional single-grid
and a one-way multigrid algorithm for the problem. We show that the multigrid
algorithm improves upon the single-grid algorithm. We show the optimality of the
multigrid algorithm by obtaining information-based lower bounds on the problem. We
also study the computational complexity of average-cost Markov Decision Processes.

We then develop an abstract framework for studying multigrid algorithms for re-
lated fixed-point problems. We consider a general fixed-point problem that can be
discretized at various levels of accuracy. We assume that at each grid-level, we have
an iterative algorithm for computing an approximate solution to the discretized prob-
lem. We consider three grid-level dependent parameters: (i) the rate of convergence
of the algorithm, (ii) the cost of an iteration of the algorithm, and (iii) the accuracy
of the discretized solution. We analyze the complexity of a single-grid and a one-
way multigrid algorithm for some special cases that include discrete-time stochastic
control, simulated annealing, and boundary value problems. We prove the optimal-
ity of the one-way multigrid algorithm by constructing an algorithmic-based lower
bound. We also prove the optimality of one-way algorithms in general, under certain
monotonicity conditions on the grid-level dependent parameters.

Thesis Supervisor: Dr. John N. Tsitsiklis
Title: Associate Professor of Electrical Engineering

Acknowledgments

I thank my thesis supervisor, Professor John Tsitsiklis, for his invaluable guidance
and support. I am deeply impressed by his patience, his kindness, and his generousity.
I greatly respect him as a teacher, as an advisor, and admire him as a person, as a
friend. I consider myself very fortunate to have been supervised by him.

I thank my thesis readers, Professors Dimitri Bertsekas and Pjerre Humblet, for
their help and encouragement. Professor Bertsekas’s pioneering work in dynamic pro-
gramming has been a major influence on this thesis. Professor Humblet has frequently
helped me on problems with the computing facilities.

Special thanks to Professor Michael Athans, my graduate counseler for more than
three years, and who has been very helpful and supportive throughout my graduate
years at MIT. He always gives good advice.

Numerous professors at MIT have had a major influence on my education and
development. I am very glad to have learned and received help from them. I now
thank them: Professors Fernando Corbato, Munther Dahleh, Alvin Drake, Robert
Gallager, and Gerald Sussman.

Thanks to Dr. Craig Douglas at IBM Research, Yorktown Heights, for introducing
me to the term “one-way multigrid algorithm”. I have also gained valuable insights
on the subject after a discussion with him.

I thank all my colleagues and officemates at LIDS for the many good discussions
we have had. I thank the administrative staff members at LIDS who are always very
friendly and very eager to help.

I thank my parents and my siblings for their patience and support, my wife for
her love and encouragement.

Contents

1 Introduction and Summary

1.1 Introduction and Motivation
1.2 Problem Definition,
1.3 Literature Survey e e e e
1.3.1 Computational Aspects
1.3.2 Multigrid Methods
1.3.3 Discretization Procedures
1.3.4 General References
1.3.5 Notes i e e e e
1.4 Report Qutline iiiuni..
1.5 Contributions of This Report
Markov Decision Processes and Their Discretizations
2.1 Notation and Basic Concepts,
2.1.1 BasicNotation iuiue...
2.1.2 Normed Vector Spaces,
2.1.3 Contraction Operators on a Banach Space
2.1.4 Signed Measuresttt
2.1, Kernels e
2.1.6 Notes e e e e
2.2 Specification of a Markov Decision Process
221 TheModel. e,
2.2.2 The Dynamic Programming Operator and Bellman’s Equation
2.2.3 Problem Statement,
224 Notes i i i i i e e e e e
2.3 The Effects of Ergodicity Conditions
2.3.1 Preliminaries e
2.3.2 Ergodicity Conditions
2.3.3 Ergodicity and Span-Norm Contraction
234 Notes i i i e e e e e e e
2.4 Discretization Procedures and Error Bounds
2.4.1 Discretization ofan MDP
2.4.2 Discretization and Ergodicity Conditions
2.4.3 Discretization Error Bounds
244 Notes i i i e e e e

2.5 Discretization of Densities 46
2.5.1 Piecewise Lipschitz Continuous Functions 47
2.5.2 Discretizing Piecewise Lipschitz Continuous Densities 48
2.5.3 Discretization of Probability Densities 49
2.5.4 Notes e e e 50

2.6 Summary e e e e e e e e e e e e 51

The Complexity of Markov Decision Processes 53

3.1 Preliminaries e 53
3.1.1 Model of Computation 54
3.1.2 Problem Classes, 55
3.1.3 An Approximation Algorithm 56

3.2 The Complexity of Successive Approximation 60
3.2.1 Single-Grid Successive Approximation 60
3.2.2 Multigrid Successive Approximation. 62
3.2.3 A Comparison with Other Multigrid Algorithms 67
3.24 Notes e e e 67

3.3 The Information-Based Complexity of Markov Decision Processes . . 68
3.3.1 Information-Based Complexity 68
3.3.2 Simplifying Assumptions L oL ... 69
3.3.3 Information-Based Upper Bounds 69
3.3.4 Information-Based Lower Bounds 70
3.3.5 Optimality of Multigrid Successive Approximation 81

3.4 Computing e-Optimal Policies 82
3.4.1 A Definition of ¢-Optimal Policies 82
3.4.2 Upper Bounds for Computing e-Optimal Policies 82
3.4.3 Lower Bounds for Computing e-Optimal Policies 85

3.5 Extenmsions e 87
3.5.1 Fredholm Equations of the Second Kind 87
3.5.2 Different Error Criteria 88

Further Results 89

4.1 Another Discrete-Time Stochastic Control Model 89
4.1.1 Deterministic Problems 89
4.1.2 ThefModel 90
4.1.3 FutureResearch. 91

4.2 Multigrid Policy Iteration 91
421 Basicldeas 92
4.2.2 A Policy-Iteration-Based Multigrid Algorithm 93

4.3 Average Cost Problems 94
4.3.1 Problem Formulation 95
4.3.2 1Ill-Posed Average Cost Problems 96
4.3.3 Well-Posed Average Cost Problems 97
4.34 OtherResults 103

4.4 Numerical Results 103
4.4.1 Some Observations v v v it s .. 104
4.4.2 A Numerical Example 104
4.4.3 Implementation 105
44.4 Results. e 105
4.4.5 Conclusions e, 107

4.5 Conclusions e e e e e e 108

5 Multigrid Algorithms and Complexity Results For General Fixed-
Point Problems 109

5.1 A Minimum Computational Cost Problem 110
5.1.1 Contraction Processes 111
5.1.2 The General Framework 112
5.1.3 Problem Definition 115
5.1.4 Notes @ . i i i e e e e e e e 118

5.2 Algorithms and Their Complexities 119
5.2.1 Special Cases 119
5.2.2 The Single-Grid Algorithm 121
5.2.3 The Basic Multigrid Algorithm 123
524 LowerBounds 127
5.2.5 Verification e e 132
5.2.6 Summaryof Results 133
5.2.7 Discussion v i i v i e e e e e e e e e e 134

5.3 Applications e 135
5.3.1 Discrete-Time Stochastic Control 136
5.3.2 Simulated Annealing 138
5.3.3 Boundary Value Problems 140
53.4 Summary e e 143

5.4 General Results for MCCP’s 143
5.4.1 Optimality of The Basic Bound 143
5.4.2 The Optimality of One-Way Multigrid Algorithms 146
5.4.3 Discretization and Grid-Transfer Error Bounds 150

5.5 Conclusions e e e e e e e e 155
5.5.1 Some Observations 'uvueueuee.. 155
5.5.2 FutureResearch. 156

6 Conclusions 157

6.1 Summary e e e e e e e e e e 157

6.2 Areas of Future Research 158

References 159

List of Figures

3.3.1 Functions used in the lower bound proof of Pstd -« v v vv oo (i
4.3.1 Two instances illustrating the ill-posedness of Py 96
4.3.2 Two instances illustrating the ill-posedness of Pgypy 97
4.4.1 the transition density of an inventory control example 105
4.4.2 Numerical data showing MG versus SG 106

Chapter 1
Introduction and Summary

We begin by giving a non-technical perspective of our research ob jectives. We then
give a more detailed description of our work and survey some relevant literature.
Next, we give an outline of the report. Finally, we list our contributions.

1.1 Introduction and Motivation

In this report, we study the computational aspects of discrete-time stochastic control
and related fixed-point problems. This study is motivated by the desire to understand
the close connection between control and computation.

The purpose of control is to design controllers to take care of certain control
problems so that we do not have to be concerned about them. The use of such
automatic or feedback controllers goes far back in man’s history [see, for example,
Mayr (1970) for a historical account on the development of mechanical feedback
controllers|. The intent of control has been exercised probably as far back as the
emergence of man as a social animal—with group leaders assigning “control tasks” to
subordinates, so that they can pursue other interests while keeping things in order.

However, the advent of computer has changed the situation. Instead of using
mechanical controllers with their mechanical failures or human controllers with their
human failures, we now can use computers, which are logical, precise, and can carry
out commands quickly and faithfully. Just look at any piece of twentieth century
human engineering. From cars to space shuttles, to the space stations of the future,
there are thousands (and thousands) of controllers in them, each finely tuned for
some specific control tasks. The current trend is that logical controllers are quickly
replacing mechanical controllers, just as mechanical controllers have replaced human
controllers.

This trend points to an increasingly close connection between control and com-
putation as two fields of study. However in this report we will look at only a very
narrow aspect of this connection. We begin by considering a well-known, well-studied
discrete-time stochastic control model: Markov Decision Processes. We address the
question on the amount of computational effort needed to solve the problem to a
certain accuracy as a function of the accuracy parameter. This is a natural question
to ask for the following reasons: (i) Intuitively it is clear that the more accurately

we want to solve the problem, the more computational effort is required. It is cer-
tainly nice to have a formal quantitative characterization of this intuition. (ii) A
more important reason is that since computers are used to solve control problems, it
is natural to want to know how well they perform. Can they be programmed to work
more efficiently? Are there any inherent limitations on their performance?

The last two questions lead us into the domain of algorithms and lower bounds,
which is the heart of the issue and is also the central theme of this report.

1.2 Problem Definition

We now discuss our work in more detail. We first study the approximate solution of a
discrete-time stochastic model: stationary, infinite-horizon, discounted-cost Markov
Decision Processes. We assume that the problem has bounded state and control
spaces and satisfies certain Lipschitz continuity assumptions.

We study the complexity of computing an e-approximation of the optimal cost
function. We analyze the complexity as a function of the accuracy parameter € and
the discount parameter a (in the limit as € | 0 and a T 1). We show that this problem
can be viewed as computing an approximation to Bellman’s (fixed-point) equation.

We introduce a traditional single-grid and a one-way multigrid successive approx-
imation algorithm. (The one-way multigrid algorithm proceeds from coarse to fine
grid.) We analyze the complexity of the algorithms. We show that if the dimensions
of the state and the control spaces are n and m, respectively, then the complexity of
the single-grid algorithm is

1 (2n+m)
0 log i=ax: 1
l-a [(1-a) ’

and the complexity of the multigrid algorithm is

° (1 = [(1 —laVJ(W)) |

Therefore, multigrid is an improvement of the single-grid algorithm.

We also study the effects of ergodicity conditions on the problem’s discretization
and complexity. We show that ergodicity improves the accuracy of discretization.
Moreover, under an ergodicity condition, the single-grid and the multigrid algorithms
have complexity

0 (1og a - e [(1 _la)e](mm)) and O ([ﬁ] (2n+m)) ,

respectively.
We show the optimality of the one-way multigrid algorithm by proving lower
bounds. Using an adversary-type argument, we establish information-based lower

9

bounds on the problem. We show that the information-based lower bounds are
) ([(1 - a)’e]‘(z"*"‘)), in general, and ([(1 - a)e]‘(z"""")), with ergodicity. There-
fore, the one-way multigrid algorithm is, in general, within a factor of O (1/(1 — a))
from optimal; with ergodicity, it is optimal.

We also study the complexity of computing an e-optimal policy. We show that
this problem is, in a certain sense, as hard as computing an e-optimal cost function.
In particular, the earlier upper and lower bounds apply to this problem as well.

We also discuss other models of discrete-time stochastic control (average-cost and
deterministic problems) and a multigrid algorithm based on policy iteration.

In the second part of the report, we develop an abstract framework for studying
multigrid algorithms for related fixed-point problem. We consider the approximate
solution of a general fixed-point equation

Ar ==z

that can be discretized at various levels of accuracy. We assume that the equation has
a unique fixed-point, denoted by z*, and can be discretized into a family of fixed-point
equations

Apz = =z, h € (0,1],

where A, is a contraction mapping [on a metric space (M, d)] with fixed point z}.
(Here, a smaller h implies a more accurate discretization.)

An algorithm, in the framework, computes an e-approximation of z* using only
the family of contraction mappings {Ar}. We consider the following three grid-level
dependent parameters: (i) the contraction factor of Ay, (ii) the cost of an iteration
of Ay, and (iii) the distance d(z*,z}). We analyze the complexity of a single-grid
and a one-way multigrid algorithm for some special cases that include discrete-time
stochastic control, simulated annealing, and boundary value problems. We prove the
optimality of the one-way multigrid algorithm by constructing an algorithmic-based
lower bound. We also prove the optimality of one-way multigrid algorithms in general,
under certain monotonicity conditions on the grid-level dependent parameters.

1.3 Literature Survey

The subject matter in this report is related to numerous areas of research. We now
give a general survey of some of them; more specific references are given at the end
of the relevant sections.

1.3.1 Computational Aspects

Our goal to understand the computational aspects of control problems is part of an
ongoing research effort [see, for example, Papadimitriou and Tsitsiklis (1986, 1987)].
Papadimitriou and Tsitsiklis (1987) study the complexity of (finite-state) Markov
Decision Problems. They show that these problems can be grouped into different

10

complexity classes. The difference with their work is that theirs is inherently discrete,
whereas ours is continuous.

Papadimitriou and Tsitsiklis (1986) also study certain decentralized decision mak-
ing and control problems. They are able to relate the complexity of a continuous
problem to that of a discrete version, thereby showing the intractability of certain
continuous problems.

The continuous model of computation we use in this report has been studied and
used by other researchers [see, for example, Papadimitriou and Tsitsiklis (1986), Ne-
mirovsky and Yudin (1983), and Traub, et al (1988)]. This model of computation is
often used in Numerical Analysis when only the number of arithmetic operations is

counted, and roundoff error is ignored. For other works using this model of compu-
tation, see Traub, et al (1988).

1.3.2 Multigrid Methods

In this report we will look at two different algorithms: a traditional single-grid algo-
rithm and a multigrid algorithm. Multigrid algorithms or, more generally, multigrid
methods have a long history. They are the outgrowth of certain iterative methods
used for solving elliptic partial differential equations and boundary value problems.
They have been studied extensively by many researchers [see, for example, Hackbusch
(1985) and Brandt (1986)]. Since then, the study of multigrid methods has become
a field by itself. Its areas of applications include algebraic problems [Chatelin and
Miranker (1982)], statistical physics [Goodman and Sokal (1986)], vision problems
[Terzopoulos (1984)], and many others.

A simplified explanation why multiple grid levels should be used rather than using
only one grid level is summarized by Brandt’s golden rule: Computation work should
be proportional to real physical change in the system. By using different grid levels,
different levels of physical change of a system can be captured more effectively. In
many problems for which multigrid ideas apply, the resultant algorithms have been
shown empirically (and, in some limited cases, rigorously) to be optimal.

In the context of solving finite-state dynamic programming problems, multigrid
ideas have been introduced and studied. For example, Schweitzer, et al (1985) intro-
duce an aggregation-disaggregation method for accelerating the rate of convergence
of a successive approximation algorithm. Bertsekas and Castanon (1986) go a step
further and introduce an adaptive version, where the set of states are aggregated and
disaggregated adaptively during the course of computation.

The multigrid algorithm we study in this report is different from all of the above
multigrid (or multigrid-based) algorithms—though ours can be viewed as a special
case—it is a one-way multigrid algorithm where the grid-levels are always chosen from
coarse to fine. All the other multigrid algorithms mentioned above move up and down
the grid-levels. An explanation for the difference is that we are interested in proving
the asymptotic optimality of the algorithm, while other work is interested in improving
the rate of convergence of the algorithm. (We will discuss improving the rate of
convergence of the algorithm, but in a different context—ergodicity conditions.)

11

One-way multigrid algorithms are not new. However, our work appears to be
the first systematic and rigorous study, particularly in the context of discrete-time
stochastic control. One-way multigrid algorithims may be too simplistic for practical
use. But they are easy to analyze, and in the context of discrete-time stochastic
control, they can be shown to be optimal.

Multigrid algorithms have also been reported in the context of continuous-time
stochastic control [see Hoppe (1986) and Akian, et al (1988)]. Again the algorithms
move up and down the grid levels. A more detailed comparison with these algorithms
is given in Section 3.2.3.

1.3.3 Discretization Procedures

The main reason for discretization is that one can approximate a problem with a
large (for example, continuous) state space by a smaller (finite) state space problem,
assuming that the original problem is sufficiently regular. Starting with the works by
Fox (1971, 1973), by Bertsekas (1975), and by Whitt (1978,1979), a series of papers
follows [for example, see Hinderer (1976), White (1980, 1982), Langen (1981), Haurie
and L’Ecuyer (1986); see also Hernandez-Lerma. (1989) and the references therein].
The discretization procedures we use are most similar to Whitt (1978). However, we
have adapted our procedures for multigrid analysis (whereas the available discretiza-
tion procedures are mainly designed for single-grid applications). In a certain sense,
our discretization is reminiscent of the non-stationary value-iteration approximation
scheme used by Hernandez-Lerma (1989).

1.3.4 General References

For standard results on finite-state dynamic programming, we use Bertsekas (1987);
for measurability issues that arise in continuous-state dynamic programming, we use
Bertsekas and Shreve (1978). Other references on dynamic programming as applied
to Markov Decision Processes are Howard (1960), Puterman (1978), and Hartley, et
al (1980).

A reference that has considerably influenced the presentation of Chapter 2 of this
report is Hernandez-Lerma (1989). The abstract framework for studying dynamic
programming by Denardo (1967) has inspired our development of the abstract frame-
work for studying multigrid algorithms in Chapter 5.

1.3.5 Notes

A preliminary version of the results in Chapter 3 has been reported in Chow and
Tsitsiklis (1988). Section 3.3 is mainly adapted from Chow and Tsitsiklis (1989a);
the rest of Chapter 3 is adapted from Chow and Tsitsiklis (1989D).

12

1.4 Report Outline

This report is divided into two parts that can be read independently. The first part,
Chapters 2-4, studies the computational aspects of discrete-time stochastic control.
The second part, Chapter 5, discusses an abstract framework for studying multigrid
algorithms.

A more detailed outline is as follows. In Chapter 2 we introduce our discrete-
time stochastic control model: stationary, infinite-horizon, discounted-cost Markov
Decision Processes. We begin with a review of notation and some basic concepts.
After giving a precise mathematical formulation of the model, we study the effects
of certain ergodicity (or mixing) conditions. Next we discuss the discretization of
the model. We derive discretization error bounds and show that certain ergodicity
conditions improve the discretization bounds. Finally, we specialize the results to the
case where the dynamics of the Markov process are described by a density. (This is
the case we study in Chapters 3 and 4.)

In Chapter 3, which contains the main contribution of the first part of this report,
we prove complexity results. We begin with an introduction to the model of compu-
tation, and we define various problem classes and their complexity. We introduce two
versions of the successive approximation algorithm for the problem—a single-grid
and a one-way multigrid algorithm—and analyze their computational complexity.
We show that the (one-way) multigrid algorithm has a better complexity than its
single-grid version. We also study the effects of certain ergodicity (or mixing) condi-
tions on the complexity. Next, using an adversary-type argument, we establish the
information-based lower bounds for these problems. As a result, we show that the
discretization error bounds of Chapter 2 are optimal. We also show that the multigrid
successive approximation algorithm, in general, has nearly optimal complexity; the
complexity is optimal under certain ergodicity conditions. Finally, we analyze the
problem of computing good control policies; we show that this problem is in a certain
sense as hard as approximating the optimal cost function. We conclude the chapter
with a discussion of some extensions.

Chapter 4 contains exploratory results and some candidate problems for future
research. We begin by introducing another discrete-time stochastic control model;
we show that this model is computationally harder than Markov Decision Processes;
in particular, the discretization error bounds of Chapter 2 do not apply. We then
discuss multigrid algorithms that are based on policy iteration (instead of successive
approximation). We discuss some unresolved issues regarding analyzing the complex-
ity of these algorithms. Next, we discuss average-cost problems. We show that these
problems are, in general, computationally ill-posed. We also show that, under certain
ergodicity conditions, the problems become well-posed and the algorithms of Chap-
ter 3 can be used. Finally, we discuss some simple numerical results showing that the
one-way multigrid algorithm performs better than its single-grid counterpart.

In Chapter 5, which is the second part of this report, we introduce a general
framework for studying multigrid algorithms. This framework models the problem

13

of computing an approximate solution of a general fixed-point problem that can be
discretized at various levels of discretizations. We assume that at each grid (or dis-
cretization) level, we have an iterative algorithm for computing the solution of the
discretized problem; furthermore, the algorithms have different convergence rates and
iteration costs, and the discretized solutions have different discretization error.

In Section 5.1, we introduce a minimum computational cost problem to model
the tradeoffs between these three parameters: rate of convergence, iteration cost, and
discretization error.

In Section 5.2, we consider some special cases of the general framework and analyze
the complexity of a single-grid algorithm (which uses only one grid-level) and a one-
way multigrid algorithm (which uses multiple grid-levels, from coarse to fine). We
show that the one-way multigrid algorithm has better complexity than the single-
grid algorithm. We also prove a lower bound showing that the one-way multigrid
algorithm is, in a certain sense, optimal.

In Section 5.3, we consider three areas of applications: the discrete-time stochastic
control problem of the first part of this report, simulated annealing, and boundary
value problems. Using the results of Section 5.2, we are able to analyze these problems
with minimal effort. We also discuss how the Full Multigrid V-cycle algorithm [see, for
example, Bohmer and Stetter (1984), Hackbusch (1985), or Briggs (1987)], which is
widely used for the numerical solution of partial differential equations, can be viewed
and analyzed as a one-way algorithm.

In Section 5.4, we discuss some more general results. We show, under general
conditions, that one-way multigrid algorithms are in a certain sense optimal.

Finally, in Section 5.5 we discuss some alternative aspects of our general framework
and suggest problems for future research.

In Chapter 6, we state our conclusions and suggest general areas for future re-
search.

1.5 Contributions of This Report

We now state our contributions.

In Chapter 2, we study the effects of ergodicity conditions on the discretization of
discounted-cost Markov Decision Processes. Prior research on ergodicity conditions
has been mainly in the finite-state setting and in the context of average-cost problems.
We show that certain ergodicity conditions improve the discretization of discounted-
cost problems. We introduce a “novel” discretization procedure which, in our opinion,
is more suitable for analyzing multigrid algorithms for discrete-time stochastic control.

In Chapter 3, we characterize the computational complexity of discounted-cost
Markov Decision Processes. We show that computing an e-optimal policy is, in a
certain sense, as hard as computing an e-optimal cost function. We show, in a detailed
and rigorous analysis, that multigrid has better complexity than single-grid successive
approximation. We establish information-based lower bounds on the problem. The
lower bounds show the optimality of multigrid successive approximation and the

14

accuracy and the discount pParameters
In Chapter 4, we show that deterministic problems, in general, do not have lin-
ear discretization error bounds. This implies that a certain popular discrete-time

The main contributions of Chapter 5 are as follows: (i) Weintroduce a novel frame-
work for studying multigrid algorithms for general fixed-point problems. (ii) We ana-
lyze the complexity of a single-grid algorithm and & one-way multigrid for some special
cases that include discrete-time stochastjc control, simulated annealing, and bound-
ary value problems. (ili) We prove an new type of lower bounds——a.lgorithmic-ba.sed
lower bounds; thereby, pProving the optimality of the one-way multigrid algorithm
within the framework, (iv) We also establish the optimality of one-way multigrid

algorithms in general.

15

Chapter 2

Markov Decision Processes and Their
Discretizations

In a typical Markov Decision Process (MDP), we are given a controlled discrete-time
system that evolves in a state space S and we are interested in computing a fixed

point J* of the dynamic programming operator T (acting on a space of functions on
the set S) defined by

(TJ)(z) = 525 [g(m,u) + afsq(dy | z,u)J(y)|, Vz € S.

Here, C is the control space, g(z,u) is the cost incurred if the current state is z and
control u is applied, & € (0,1) is a discount factor, and q(- | z,u) is a stochastic
kernel that specifies the probability measure of the next state, when the current state
is ¢ and control u is applied. Then, J*(z) is interpreted as the value of the expected
discounted cost, starting from state z, and provided that the control actions are
chosen optimally. Unfortunately, even if the problem data (the functions g and q) are
given in closed form, the equation TJ* = J* does not usually admit a closed form
solution and must be solved numerically. This can be accomplished by discretizing the
continuous problem to obtain an MDP with finite state and control spaces. Then, the
resultant discrete problem can be solved by means of several algorithms (for example,
successive approximation, policy iteration, and linear programming). Furthermore,
there are bounds available on how fine the discretization should be in order to achieve
a desired accuracy.

In this chapter we give a precise formulation of an MDP. This MDP is the main
model we will study in this and the next two chapters. Weintroduce the discretization
procedures for the model and estimate the error resulting from discretization. We
also study the effect of certain ergodicity or mixing conditions on the convergence of
successive approximation and the accuracy of discretization.

We are mainly interested in the case where the dynamics are described by a
probability density. To simplify the presentation, it is easier if we proceed from
general to specific, by first formulating the model in terms of stochastic kernels. We
describe the discretization procedures and the ergodicity conditions, and also study
the effects of the ergodicity conditions in terms of stochastic kernels. Only in the end
we specialize the results to probability densities.

16

This chapter is organized as follows. In Section 2.1, we introduce the notation
and review some basic concepts. In Section 2.2, we give a precise formulation of an
MDP; we introduce Bellman’s equation and the optimal cost function and define the
objective of computation. In Section 2.3, we study some ergodicity conditions and
discuss their effects on the convergence of the successive approximation algorithm.
In Section 2.4, we introduce some discretization procedures for the MDP. We also
establish bounds on the discretization error and show that certain ergodicity condi-
tions improve the discretization accuracy. In Section 2.5, we specialize the results
to the case where the dynamics are described by a density (instead of a kernel), by
providing bounds on the discretization error. Finally, in Section 2.6, we summarize
the main ideas in the chapter and provide a list of assumptions and notation which
will be used in the next chapter.

2.1 Notation and Basic Concepts

The purpose of this section is to introduce the notation and review some basic con-
cepts. First, we introduce the basic notation. Second, we look at some examples
of normed vector spaces and introduce more notation. Third, we consider operators
on a Banach space and review a fixed point theorem. Fourth, we review some basic
facts about signed measures. Fifth, we show how kernels can be viewed as operators.
Finally, we give some references.

2.1.1 Basic Notation

The set of real numbers is denoted by R. We assume that R is endowed with the
usual topology. Let z,y € R. The minimum (respectively, maximum) of z and y
is denoted by = A y (respectively, z V y). We use [z] to denote the smallest integer
greater than or equal to z; we use [z] to denote the largest integer less than or equal
to x.

For any positive integer n, we view R™ as a normed vector space by endowing it
with the sup-norm || - [|o. Moreover, if z € R™ and « € R™, for some positive integer
m, then (z,u) € R™™ and ||(z,u4)]|ec = ||Z]|c V |[%]ls- We also endow R" with the
usual topology.

Let {fa}acr be a collection of real-valued functions defined on a set X. Assuming
that for all z € S, sup,¢;|fa(z)] is finite, we use infues fo to denote the real-valued
function defined by

inf fu(e) = iréfl'{fa(m)}, z € X. (2.1.1)

The notation sup,; f, is defined similarly.

For any topological space X, the Borel sigma-algebra of X is denoted by Bx; it
is the smallest sigma-algebra which contains all of the open sets in X. A subset of
X is Borel measurable if it belongs to Bx. Moreover, a mapping ¥ : X — Y, for
some topological space Y, is Borel measurable if 9~1(B) € Bx for all B € By; in

17

particular, a real-valued function f : X — R is Borel measurable if F~Y(B) € By for
all Borel measurable B C R. The space of all bounded Borel measurable (respectively,
bounded continuous) functions on X is denoted by B(X) [respectively, C(X)]. Since
we only consider Borel measurability, we will use the word “measurable” to mean
“Borel measurable”.

2.1.2 Normed Vector Spaces

Let S be a measurable subset of R”. When comparing two functions J, J' € B(S), we
use the shorthand J < J' to denote J(z) < J'(z) for all z € S; a similar convention
applies to J = J' and J > J'. Furthermore, any real scalar ¢ may also denote the
constant function on S of value c; in particular, J + ¢ denotes the function with value
J(z)+catzeS.

The function space B(S) becomes a normed vector space when endowed with a

norm. One possible norm is the sup-norm || - ||, which is defined by
1|0 = ilelfs) |J(z)|, J € B(S). (2.1.2)
This normed vector space is denoted by (B(S), || - [|oo)-
We also consider the span-norm || - ||s, which is defined by
1 J]ls = sup J(z) — ;Ieng(:c), J € B(S). (2.1.3)

The span-norm is actually a semi-norm; namely, it satisfies all the requirements of
being a norm, except that ||J||s = 0 does not imply J = 0. (In particular, it satisfies
the triangle inequality.) The span-norm also satisfies

I7lls = 2min |7 + clleo, T € B(S), (2.1.4)
where the minimum is attained by letting ¢ = — [sup, J(z) + inf, J(z)] /2.

We make the span-norm a norm by introducing an equivalence relation between
J,J' € B(S) whenever ||J — J'||s = 0. We then partition B(S) into a collection
of equivalence classes. Next, a representative is chosen from each equivalence class.
Finally, we let (B(S),||-||s) be the normed vector space of all the representatives, and
let (C(S), |l - [Is) be the subspace of all the continuous representatives.

2.1.3 Contraction Operators on a Banach Space

A complete normed vector space is called a Banach space. Let (X, -1I) be a Banach
space and let 7' be an operator mapping X into itself. For any positive integer k,
let T* denote the composition of k& copies of T'; let T° denote the identity operator.
The operator T is called a k-stage contraction operator on (X,]l -]]) with contraction
factor a, if a € [0,1) and for all z,2’ € X there hold: (i) Tz — Tz'| < ||z — /||

18

and (i) || T*z — T*z'|| < af|lz — ']|. A 1-stage contraction operator is usually called
a contraction operator.

The main reason for considering contraction operators on a Banach space is the
following well-known proposition.

Proposition 2.1.1 (Banach’s fized point theorem) If T' is a k-stage contraction op-
erator on a Banach space (X, || -||), then T has a unique fized point in X; namely,
there exists a unique z* € X such that Tz* = z*.

Proof See Kolmogorov and Fomin (1970) or Denardo (1967).]

Most normed vector spaces we deal with are Banach spaces. It is well known that
(B(S5), || leo) is a Banach space [for example, see Ash (1972)]. Similarly, (C(S), |- [le)
is also a Banach space [for example, see Kolmogorov and Fomin (1970)]; hence, it is a
closed subspace of (B(S), ||-||«). It is easily shown [using Eq. (2.1.4)] that (B(S), ||-|Is)
and (C(S), || - [|s) also are Banach spaces [for example, see Theorem II1.4.2, p. 73, of
Conway (1985)].

Lastly, an operator T : B(S) — B(S) is called a monotone operator, if for all
J,J' € B(S), J < J' implies that TJ < T'J'. If T is also a contraction operator, then
it is called a monotone contraction operator.

2.1.4 Signed Measures

Let S be a measurable subset of R". Together with its Borel sigma-algebra Bg, S
forms a measurable space (S,Bs). A finite signed measure on (S,Bs) is a real-valued
function v : Bg — R that satisfies the following conditions:

L v(¢)=0;

2. for any sequence {4;}32, of disjoint measurable subsets of S , there hold

() 45) = iu(A,-) and 3 p(Ay)] < oo. (2.1.5)

i=1 =1

The finite signed measure is called a finite measure if v(A) > 0forall A € Bs. A
finite measure is called a probability measure (respectively, a subprobability measure)
if v(S) = 1 [respectively, (S) < 1]. Since we only consider finite signed measures and
finite measures, we will not use the word “finite” but will simply call them “signed
measures” and “measures” instead. (Signed measures are used when we consider
generalizations of Markov Decisions Processes.)

19

The Decomposition of a Signed Measure

Let v be a signed measure on (S,Bs). We can “decompose” v into its positive and
negative parts as follows:

vH(A)Y sup v(AN B); (2.1.6)
BeBg
— def .
v (A)= _Blé‘;’;s”(AﬂB)' (2.1.7)

Note that »* and v~ are measures on (5,Bs5). We can also define another measure
on (5, Bs) by letting

lv[(A) = vt (A) + v~ (A), A€ Bs. (2.1.8)
A useful result on the decomposition of a signed measure is the following proposition.

Proposition 2.1.2 (Jordan-Hahn decomposition theorem) Let v be a signed measure
on a measurable space (S,Bs). There exist two disjoint measurable sets St and S~
whose union is S such that

vH(A)=v(ANST) and v (A)=—v(ANS), VA € B(S). (2.1.9)
In particular, |v|(S) = v(S*) — v(S7).
Proof See Royden (1968) or Ash (1977).]

A Normed Vector Space

Let 11 and v, be signed measures on (S,Bs). We use v; A v; to denote the signed
measure on (5, Bs) defined by

(1 A a)(A) = (A) A p(A), VAE Bs. (2.1.10)

We also use the shorthand vy > v, to denote v1(A) > v2(A) for all A € Bs. The
notation v, < vy and vy = v, are similarly defined.
For any scalars ¢;,c; € R, we define a signed measure c;v; + ¢av; by letting

(Cllll + Czllz)(A) = ClVl(A) + Csz(A), \V/A € Bs. (2111)

It follows that the space of all signed measures on (5, Bs) forms a vector space (with
0 being the signed measure with value identically zero).
The (total) variation norm on a signed measure v is given by

lvllv < 1v)(S).

It is easily checked [for example, see Royden (1968)] that || - ||v is indeed a norm on
the vector space of signed measures; moreover, the resultant normed vector space is
complete. Furthermore, the space of all probability measures and the space of all
subprobability measures are also Banach spaces with respect to || - ||v.

We state a useful lemma about || - ||y.

20

Lemma 2.1.1 Letv, and v, be signed measures on a measurable space (S,Bs). Then
1
r\Nvy = —2'(111 + vy — IVI - VZI);
in particular, |[v1 — valv = 11(8) + v2(S) — 211 A 1,)(S).

Proof See Royden (1968). O

Integrals and Densities

Let f be a measurable function on B(S). The integral with respect to the signed
measure v,

[1@ widn) [fapt(dz) - [sz (de).
It follows that

Il = max { [f(e)o(de) | 17w <1, (2.1.12)

FEB(S)

where the maximum is attained by letting f = 1 on S* and f=—1on S-. [The sets

S* and S are the decomposition of S according to the Jordan-Hahn decomposition
theorem (Proposition 2.1.2).] It follows from Eq. (2.1.12) that

[#@)wtan)

Let g1 € B(S). We define a signed measure v; on (S, B(S)) by letting

< fllellllv, V5 € B(S). (2.1.13)

VI(A)=Lgl(w)dm, VA € Bs, (2.1.14)

where [, - dz denotes the Borel integral. [It is easily shown that vy is indeed a signed
measure.]| We say that the signed measure v, is specified by the density g, or simply
vy is a density. Furthermore, if

vo(A) = /Agz(w)d:v, VA € Bs, (2.1.15)

for some g, € B(S), then we can use the Jordan-Hahn decomposition theorem to
show that

lor = valle = [los(2) - gu(e) da- (2.1.16)

2.1.5 Kernels

Let 51 and S be measurable subsets of R™ and R", respectively. A kernel q on S,
given S is a family of signed measures ¢(- | z) [on (Sy,Bs,)] parametrized by z € S.
The kernel is measurable (respectively, continuous), if for all J € B(S) [respectively,
J € C(S)] the function f5 J(y)g(dy | z) is measurable (respectively, continuous) in

21

z. Since we consider only measurable kernels, we will use the word “kernel” to mean
“measurable kernel”.

Let q; be a kernel on S given S. We can view 1 as a linear operator mapping
B(S) into itself by letting

(@))@) = [aildy | e)I@w), JeB(S).

Let g; be another kernel on S given S. The composition ¢;¢; is a kernel on S given
S defined by

nqx(A | z) = fsql(dy | z)g2(A | y), VA€ Bs.

The kernel ¢,9; is also a linear operator on B(S). Moreover, for any J € B(S), we

have
((q192)7)(z) = /Sql‘]?.(dy |2)J(y), =¢€S8.
Using Fubini’s theorem, we have
(9192)J = (q1(g2J));

therefore, we can, without ambiguity, omit the parentheses when writing ¢,¢,J. For
any integer t > 0, we let ¢! denote the composition of ¢ copies of ¢;, where ¢ denotes
the identity operator.

Similarly to signed measures, kernels on § given S form a vector space. In par-
ticular, for any scalar ¢i,c, € R, the kernel c;q; + c2q2 on S given § is defined by

(g1 + c2q2)(A | 2) = c1q1(A | 2) + c2q2(A | ©), A€ Bs,z e 8.

To obtain a normed vector space, we introduce the sup-norm for kernels,
def
laille = sup {llq]]loo | |]|eo < 1}. (2.1.17)
JeB(S)

The sup-norm is an induced norm.] We see that
P

1917l < llgilleol|Tlleos VI € B(S); (2.1.18)
therefore,
“‘h‘h”oo S “‘h”co“‘h”oo- (2119)
It is easily shown that
lg1]loo = sup [lg(- | 2)]lv- (2.1.20)
Furthermore, the space of kernels with respect to |l - |l is a Banach space.

Finally, a kernel is stochastic (respectively, substochastic) if ¢(- | z) is a proba-
bility (respectively, a subprobability) measure on §, for all = € S. For stochastic
(respectively, substochastic) kernels ¢; and g2, it is easily checked that ||g1]|e = 1
(respectively, ||qi]jc < 1) and ¢iq, is also a stochastic (respectively, substochastic)
kernel. The space of all stochastic kernels and the space of all substochastic kernels
are Banach spaces, with respect to the induced sup-norm.

22

2.1.6 Notes

For a more thorough treatment of normed vector spaces see Kolmogorov and Fomin
(1970), which also discusses Banach spaces and contraction operators. A standard
reference on monotone and contraction operators as applied to dynamic programming
is Denardo (1967).

The most useful reference to our discussion on signed measures is Section 11.5 of
Royden (1968). In fact our discussion on signed measures (Section 2.1.4) is mainly
an adaptation of that section. Another relevant reference on signed measures is Ash
(1972).

Our statement of the Jordan-Hahn decomposition theorem (Proposition 2.1.2)
is adapted from Hernandez-Lerma (1989). This book’s appendices contain most of
the material in this section. Moreover, this book has significantly influenced the
presentation of this chapter.

For an in-depth discussion of stochastic kernels, see Section 7.4.3 of Bertsekas and
Shreve (1978). Our definitions of measurable and continuous kernels can be shown
to be equivalent to the (standard) definitions in that book. The main reason we view
kernels as operators is that this simplifies some of the proofs later on.

2.2 Specification of a Markov Decision Process

In this section we give a precise definition of Markov Decision Processes (MDP’s),
introduce Bellman’s equation, and define the objective of computation. Measurability
issues pertaining to the formulation of the model are also discussed. There are no
new results in this section, only the problem formulation is new.

First, we introduce the model, state the assumptions, and define the optimal cost
function. Second, we introduce the dynamic programming operator and show that the
optimal cost function is the unique solution to Bellman’s equation. We also introduce
a measurable selection theorem. Third, we give a precise statement of our objective.
Finally, we make some observations and discuss some references.

2.2.1 The Model

An MDP has a state space S on which a controlled stochastic process evolves, a
control space C' from which control actions will be chosen, a stochastic (transition)
kernel ¢ on S given S x C that describes the dynamics of the process, and a cost
function g : § x C' + R. The stochastic kernel (- | ©,u) is to be interpreted as the
probability measure of the next state, when the current state is z and the control u
is applied.

We incorporate state-dependent constraints in our formulation. For each z €S,
we are given a nonempty set U(z) C C of admissible controls. We are primarily
interested in discounted-cost MDP’s, where a discount factor o € (0,1) is also given.
For discounted-cost MDP’s, future costs are discounted; in particular, if at some

23

stage ¢, the state is ¢ and control u is applied, then the incurred cost is atg(z,u).
The problem is to control the process so as to minimize the long-term accumulated
cost.

Assumptions

We assume that S and C' are bounded, measurable subsets of some Euclidean space;
without loss of generality, we can make the further assumption that § C [0,1]" and
C =[0,1]™. Let
def
r {(m,u)leSandueU(m)}. (2.2.1)

We assume that I is the intersection of a closed subset of R™ x R™ with the set SxC;
that is, I' is closed with respect to the induced topology on S x C. It follows that
U(z) is a compact subset of C, for all z € S.

Furthermore, we assume that there exists a constant K 2> 1 such that:

A.1 Forallz,2' € Sand u,u’ € C, |g(z,u)| < K and |9(z, u)—g(z',v')| < K||(z,u)—
(2,)] oo

A.2 Forallz,z' € Sand u,u' € C, ||q(- | z,u)—q(- | @', ')y < K||(z,u)—(z',u')||oo-

A.3 For any z,2' € § and any u' € U(z'), there exists some u € U(z) such that
v = %]l < K|z — 2']| oo.

A4 Forallz e Sandue C,0<g(-|z,u) and ¢(S | z,u) = 1.

The first assumption states that g is a bounded Lipschitz continuous function. The
second assumption states that ¢ is Lipschitz continuous with respect to the variation
norm—it ensures that ¢ is a continuous kernel [cf. Eq. (2.2.5)]. The third is a con-
tinuity condition on the point-to-set mapping = — U (). Finally, Assumption A.4
reflects the fact that ¢ is a stochastic kernel.

We also introduce the following generalizations of Assumption A .4.

A.4 Forallz e Sandue C,0<g(-|z,u)and ¢S |z,u) < 1.
A.4" Forall z € Sand u € C, ||q(- | z,u)||y < 1.

Assumption A.4’ says that ¢ is a substochastic kernel; it models those MDP’s in
which the system has some nonzero probability of entering a zero-cost absorbing
state. Assumption A.4" says that g is a kernel with variation norm bounded by 1; it
models an even more general class of problems that do not necessarily correspond to
MDP’s.

Unless otherwise stated, Assumptions A.1-A.3 will always be in effect. And by
default Assumption A.4 will also be in effect, unless A.4’ or A.4" is in effect. From
now on, K will always denote the constant of these assumptions.

24

The Optimal Cost Function
Let

s {p : 5+ C | p is measurable and pu(z) € U(z),Vz € S} . (2.2.2)

Let II* be the set of all sequences 7 = (0, 1, . . .) of elements of II. Each element of
II* is called a policy and is interpreted as a prescription for choosing control actions
as a function of time and of the current state. In particular, if the state at time
t is equal to some = and policy 7 is used, then control pe(z) is applied. Once a
particular policy is fixed, we can construct a Markov process {z] |t = 0,1,...} by
letting ¢(z7,, | z7, pe(z7)) be the probability measure of zy,, conditioned on z7. (We
construct the Markov process only when Assumption A.4 or A.4' is in effect.)

For any policy n € II*°, we define its cost Jx(z), as a function of the initial state,
by letting

() EE {Z a'g(z], pe(zT)) ‘ Ty = :c} , z€S8. (2.2.3)
t=0

(Here, E{-} denotes the expectation with respect to the Markov process.) Accord-
ingly, we call infrenw Jr the optimal cost function and 7* € II* an optimal policy if
Jur = infrcpge J,. We next show that the optimal cost function is the unique solution
to Bellman’s equation.

2.2.2 The Dynamic Programming Operator and Bellman’s
Equation

Before we show that the optimal cost function is the unique solution to Bellman’s
equation, we first introduce the dynamic programming operator, stationary policies,
and a measurable selection theorem.

We define the dynamic programming operator T : B (8) = B(S), by letting

TJ(z) def min) {g(w,u) + a/SJ(y)q(dy | :c,u)}, zes. (2.2.4)

ueU(z

We have used “min” in Eq. (2.2.4) because the minimum is always attained, which
we will show when we prove the following lemma.

Lemma 2.2.1 (Under Assumption A.4") T maps B(S) into C(S). In particular, T
maps C(S) into itself.

Proof Fix some J € B(S) and define
H(z,u) = g(z,u) -I—a/SJ(y)q(dy | z,u), z¢€S,ueC.
For any z,z' € § and u,u' € C, we have, by Assumption A.1,
l9(z,u) — g(',u')| < K||(2,u) — (2',')]|o

25

and, by Eq. (2.1.13) and Assumption A.2,

’/s T(Y)a(dy | z,u) — g(dy | 2',u))| < 1]lllg(- | 2,u) — g(- | &', u')|v
< K ll@0) = (). (225)
Therefore,
|H(z,u) — H(z',v')| < K (1 + a||J||o) ||(z,u) — (z', %)), Vez,z' € S,u,u' €C.

In particular, H(z,u) is a continuous function of u. Since U (z) is compact, the
minimum in Eq. (2.2.4) is attained by some u € U(z).
Fix some z,z’ € S, and let v' € U(z') be such that

oy . '
H(z',v") = uélrljl(l::,)H(:E yU).

According to Assumption A.3, there exists some v € U(z) such that lv — v'||eo <
K|z — 2'||c. Thus,

no_ . _ .)
TJ(a:)—TJ(w)_HIGI%}&)H(m,u) ulg}}&)ﬂ(m,u)

< |H(z,v) — H(z',v")
< K(1+allJlle)lI(z,v) - (2',v")]|
<K(1+4a|J|w) K|z — 2'||e, Vz,z'€S.
By symmetry, the same bound applies to TJ(z') — TJ(z) as well. Therefore,
ITJ(z) = TJ(z")| < K (14 a||J||) K|z — @'||c, Va,z'€ S.
This shows that T'J is Lipschitz continuous; in particular, T'J € C(S). O

The following well-known facts about the dynamic programming operator T are
easily shown.

Proposition 2.2.1 There hold

(a) under Assumption A.4", T is a contraction operator on (B(S), |l - lloo) with con-
traction factor a;

(b) under Assumption A.4', T is also a monotone operator;

(c) under Assumption A.4, T also satisfies

T(J+¢c)=TJ+ac, YJeB(S),ceR; (2.2.6)

ITJ -TJ|s <allJ —J'|s, VJ,J" € B(S). (2.2.7)

Proof See Denardo (1967), Whitt (1978), or Bertsekas (1987). a
Since T is a contraction operator on the Banach space (B(S), |- |leo), the dynamic

programming equation, also called Bellman’s equation, J = T'J has a unique solution
in B(S). This solution is denoted by J*.

It then follows from Lemma 2.2.1 that J* belongs to C(S)- Furthermore, we will
show that J* is actually the optimal cost function. Hence, the optimal cost function
is a continuous function and could have been defined as the unique fixed point of the
dynamic programming operator 7.

26

Stationary Policies and Their Associated Operators

For any u € II, a policy of the form m = (,pu,...) is called a stationary policy. When
dealing with a stationary policy, we abuse notation and use p to denote the policy
and J, to denote its expected cost function (instead of using and J,, respectively).
For any p € II, we define the operator T}, : B(S) — B(S), by letting

Lﬂﬂﬁ%gwu»+a4J@n@|%M@y JeB(S),zeS. (228)
We check that
Lemma 2.2.2 (Under Assumption A.4") T, maps B(S) into itself.

Proof Fix some J € B(S) and define H(z,u) as in the proof of Lemma 2.2.1.
Since H(z,u) is a continuous function of (z,u) and p is measurable, it follows that
T.J(z) = H(z,pu(z)) is a measurable function of z, as required. O

Similarly to T, we have the following proposition for T,.

Proposition 2.2.2 For all 4 € TI, Proposition 2.2.1 holds for T,.

Proof Let IT = {u}; the results follow. O

In particular, T, is a contraction operator on (B(S),| - ||s) and must have a unique
fixed point in B(S). It is then easily shown from Eq. (2.2.3) that the unique fixed
point of T}, is J,,. More importantly, we will show (in Theorem 2.2.1) that there exists
an optimal stationary policy.

A Measurable Selection Theorem

We now introduce an important theorem in continuous-state dynamic programming:
a (Borel) measurable selection theorem. The following version of the theorem is a
special case of Proposition 7.33 in Bertsekas and Shreve (1978).

Proposition 2.2.3 Let X be a metric space, Y be a compact metric space, and D
be a closed subset of X x Y. Furthermore, let D, = {y € Y | (z,y) € D} and
D*={z € X |(z,y) € D for somey € Y} If f : D — R is a bounded continuous
function, then there ezists a measurable v : D* +— Y such that for all z € D*,

¥(2) € Dy and f(=,%(z)) = minyep, f(=,y).
Proof See Proposition 7.33, p. 153, in Bertsekas and Shreve (1978). O

An immediate consequence of this theorem is the following useful lemma:

Lemma 2.2.3 (Under Assumption A.4") For any J € B(S), there exists a p € II
such that T,J = T'J; in particular,

TJ=minT.J, VJ € B(S). (2.2.9)

27

The Optimal Cost Function and Bellman’s Equation

We now show that J*, the fixed point of the dynamic programming operator, is the
optimal cost function and that there exists an optimal stationary policy p* € II;
namely, J* = J,.. We are mainly interested in this result when ¢ is a stochastic
kernel (Assumption A.4). But we will show the following theorem for substochastic
kernels (Assumption A.4').

Theorem 2.2.1 (Under Assumption A.4') There holds J* = infrcne Jr; moreover
there exists a p* € II such that J* = J,..

Proof TUnder Assumption A.4', the expectation in Eq. (2.2.3) is well-defined and
is monotone. Therefore, we have for any © = (po, f1,...) € II*°,

k—1
TMO o 'Tﬂk_1J(m) =E {Z atg(m:r1#t(m:r)) + akj(mk) I z:‘(l)“ = :B}

t=0

k-1
<E {Zatg(:c;',p,t(:cf)) l Ty = :c} + *||J|le, V= € S.
t=0

(2.2.10)
Since |g(z,u)| < K for all (z,u) € § x C, we also obtain

Iu(o) = B{ 3o (e mta) | 55 = o

t=0

k-1 k
>E {E atg (7, m(z])) | 25 = :c} - I—‘ETIK, Vee S. (2.2.11)

t=0

Combining Egs. (2.2.10) and (2.2.11) gives

Ty T < Tt 0 (7wt 72, VI € B(S). (2.2.12)

By definition, T'J < T,J for all u € II; therefore, using the monotone property of T,
we obtain

J*<Ty--To J° Vke{l,2,...}. (2.2.13)
Combining Eqgs. (2.2.12) and (2.2.13) gives
J* < Je 4o (||J‘||°° + %) , Vrell ke {l,2...}. (2.2.14)

Since w and k are arbitrary, it follows that J* < J,, for all 7 € II.

By Lemma 2.2.3 there exists a p* € II such that T,.J* = T'J* = J*. But since T.
is a contraction operator, we must have J* = J,.. This shows that J* is the optimal
cost function and there exists an optimal stationary policy, as required. a

With the above theorem, we can restrict attention to stationary policies and from
now on, the word “policy” should be interpreted as “stationary policy”.

28

2.2.3 Problem Statement

We are interested in the computation of J* and of a corresponding optimal policy
p*. This can be accomplished, in principle, by solving Bellman’s equation J = TJ.
However, since Bellman’s equation is infinite-dimensional and nonlinear, we have to
be content with computing approximations to J* and p*.

Let € > 0. A function J € B(S) that satisfies the inequality ||J — J*||o < €
is called an e-approzimation of J* or an e-optimal cost function. And a policy x is
called an e-optimal policy, if ||J, — J*|| < €. For now, we will mainly focus on the
computation of an e-approximation of J*.

We are interested in the complezity (that is, the computational requirements) of
computing an €-optimal cost function as a function of € and a, in the limit as € | 0
and a T 1. Furthermore, we are also interested in how this complexity depends on
any ergodicity conditions the problem may satisfy. In the next section, we will look
at some ergodicity conditions.

2.2.4 Notes

Most authors consider more general formulations of MDP’s than ours. Our formu-
lation is similar to that in Hernindez-Lerma (1989); in fact, our model is a special
case of a certain continuous model there. However, the model we have now is still too
general for our purpose: namely, to analyze the computational complexity of MDP’s.
Additional assumptions will be introduced later.

A standard reference on MDP’s and general continuous-state dynamic program-
ming is Bertsekas and Shreve (1978). This book considers even more general models
and discusses measurability issues in considerable detail.

To formally construct the Markov process {z7 | ¢t = 0,1,...} requires a certain
technical lemma. This is handled by Proposition 7.28, p. 140, in Bertsekas and Shreve
(1978) [or see Section 2.7 of Ash (1972)]. The proposition also gives a precise definition
to the expectation in Eq. (2.2.3).

Note that when ¢ is a substochastic kernel, we first augment the state space to
get an equivalent stochastic kernel. We then construct a Markov process using the
new kernel.

Lemma 2.2.1 and Theorem 2.2.1 are well known results. For more general results
see Bertsekas and Shreve (1978).

Markov Decision Processes with discrete state and control spaces are usually called
Markov Decision Problems. Our model includes finite-state Markov Decision Prob-
lems as a special case.

There are several limitations to our model. One of them is that the cost function
and the state and the control spaces must be bounded. At present we do not have
a suitable framework for analyzing the complexity of problems with unbounded cost
or with unbounded state and control spaces. Developing one is an area of future
research.

29

2.3 The Effects of Ergodicity Conditions

In this section, we consider a special case where the dynamics are described by a
stochastic kernel and, in addition, satisfy certain ergodicity (or mixing) conditions.
These conditions lead to faster convergence in the successive approximation algo-
rithm (to be introduced in Chapter 3). Moreover, they also result in a more accurate
problem discretization. The results here are direct generalizations of the well-known,
well-studied results in finite-state problems; the proofs here are also adapted from
there. For the rest of the section, we assume that q is a stochastic kernel (Assump-
tion A.4).

An outline of the section is as follows. We begin by introducing more notation and
prove a useful fact about stochastic kernels. We then discuss the ergodicity conditions
and show how they relate to each other. Next, we show that certain ergodicity
conditions result in an extra contraction factor in the dynamic programming operator
T'; this in turn improves the convergence of successive approximation. Finally, we
show that certain ergodicity conditions allow us to bound |7*||s independently of the
discount factor a; we will use this result in Section 2.4 to obtain better discretization
error bounds.

2.3.1 Preliminaries

We now introduce more notation. For any policy u € II, let

9u(z) € g(z,u(z)), z € S;
(-1 2) Eq(- | z,u(x)), € S.

It is clear that g, is a measurable function and q. is a measurable stochastic kernel.
We now prove a useful result for stochastic kernels.

Lemma 2.3.1 Let qo and q; be kernels on S given S. If qo satisfies
%(S|z)=0, Vzes, (2.3.1)
and q, is stochastic and satisfies
la(- | 2) — (- [2')]lv <2(1 ~p), Vaz,z' €S, (2.3.2)

then
ll9091/lec < (1= p)|lg0]|co- (2.3.3)

Proof Fixa J € B(S) and let ¢ = —[sup_ J(z) + inf, J(z)]/2. Using Eq. (2.3.1),

we have

90917 [loo = ll20(91J + €)l|co
< llgollollg1 + | o
= llgollco llg1 7|5 /2. (2.3.4)

30

Fix z,z' € §. Using Eq. (2.3.2), we obtain

9.7(2) = 917(=") = | [(@x(dy | =) — au(dy |)T (w)

< lla(dy | 2) — qu(dy | =) ||v]| [|oo
< 2(1 =)| leo-

Since z,z' are arbitrary, we have
lg11ls < 2(1 =)| |co-

Using this in Eq. (2.3.4), we obtain

9091 llee < (1 = p)llg0]lo | Tl co-

The result follows by taking the supremum over all J € B(S) with [|J]|eo < 1.]

2.3.2 Ergodicity Conditions
We now consider, in increasing generality, the following ergodicity conditions.

E.1 There exist a scalar p € (0,1] and a measure v with v(S) > p such that
q(- | zy,u) > v(-), ¥(z,u)€eT.
E.2 There exists a scalar p € (0, 1] such that
la(- [2,u) — g(- [2", w)[lv < 2(1 - p), ¥(=,u),(z',u') €T.

E.3 There exist an integer k¥ > 1 and a scalar p € (0,1] such that for any policies
10y (15« « - fk—15 Moy fi15 - - -5 Hho_y € II, there holds

1900 0us -+ G s (- 1 @) — Qg @ -+ 0, (- | ')y <2(1 = p), Ve,a'€ S.

E.3" There exist an integer k¥ > 1 and a scalar p € (0,1] such that for any policies
Foy o1y o« fk—1y oy by -+ -y B, € I, there holds

1909+~ Qs (1) A Qs g -+ qur_ (- |)llv > p, Va,a' € S.

E.4 There exist an integer £ > 1 and a scalar p € (0,1] such that for any policies
Hoy f1, - - . g € II, there holds

HQItoqm " 'qu»k_l(' | .'l:) — 9y Qu, - ‘qﬂ'k—l(' I z,)”V < 2(1 - P)-

31

E.5 There exists a constant K, < oo such that for any policy p € II, there exists a
probability measure v} satisfying

Slg-1z)-villv < K., Vzes.
t=0

(Note that K. is independent of u and «.)

E.8 For any policy p € II, there exists a probability measure v}, satisfying

lim Hqt(- | ©) — U;”V =0, Vzes.

t— oo
(Or equivalently, g, is ergodic.).
The relation between the above ergodicity conditions are given below

Theorem 2.3.1 (Under Assumption A.4) There hold
El1=E2=(E3% E3)=E = Eb5= E.6.

Proof We will prove the implications from left to right.

To prove E.1 = E.2, we fix some (z,u),(z',u') € T and let vi(+) = g(- | z,u) and
va(-) = ¢(- | «',u'). By the Jordan-Hahn decomposition theorem (Proposition 2.1.2),
we can partition S into disjoint St and S~ whose union is S, such that

1 = vally = 22(SF) = v2(S) = 11(S7) + 1a(S™)
SE=v(ST) = v(8*) - v(S7) + [1 - v(S*)]
=2[1 — v(5)]
< 2(1 - P),
as required.

It is clear that E.2 = E.3'. We now verify E.3 < E.3'. The equivalence between
the two is seen by letting

Vl(') = Quoqy, " 'ql-lk_l(' I '1:);
(-

va(+) = Qg st~ Quf,_, z').
Using Lemma 2.1.1, we have

1 — vallv = 21(8) + v2(S) — 2|vn A val|y
= 2(1 — [lvr A vally),

and the result follows (with the same p in both cases).
Since E.4 is a generalization of E.3, the implication (E.3 & E.3') = E.4 follows
immediately.

32

We now prove E.4 = E.5. To show the existence of v;, we first show that ¢, is a
Cauchy sequence with respect to || - ||. By Assumption E.4, we have

lga(- 12) — gi(- [2)llv <2(1 - p), Vz,a' € S.
Now using Lemma 2.3.1, we obtain
g — 4 lloo = 11(g2 — a5 lloo
<(1-p)ll(gs ~ g)llo
<2(1-p), Vt'2>0,

where we have used the fact the (g2 — ¢") satisfies Eq. (2.3.1). More generally, we
have

gl — @5 lleo < (1= p)¥/*2, Vi, ¢' > 0.

Thus, it follows that ¢* is a Cauchy sequence.

The space of all stochastic kernels is a Banach space with respect to || « ||oo;
therefore, there exists a stochastic kernel g;, such that lim,_, Ilqt, — llo = 0. We
now show that ¢:(- | z) = g}(- | 2') for all z,2' € S. Using the triangle inequality, we
have

lga(- 1) = qi(- 1 2)llv < Mlgi(- 1 2) = g&(- | @)l + llgi(- | =) — g.(- | =)llv
+ llgu(- | 2') — gi(- | ')||v
< 2l — gilloo + (- | 2) — gi(- | 2')|Jv
<2)lg; — ghlleo + (1 — p)¥*2, vt > 0.

where we have used Lemma 2.3.1 to obtain the last inequality. By letting ¢ go to
infinity, we obtain [|lgi(- |) — ¢%(- | #')||[v = 0 which gives the desired result. Thus,
we can let v} = ¢;(- | z).

Finally, we bound the constant K.. We have

lg. — gilleo < llgh — a5 lloo + |5 — @%)leo
(L= p)M2 4 g5 — @ ley VE, £ > 0.

Letting t' go to infinity, we obtain
g, — gilleo < (1 —p)lt/*2, Vi >0

Therefore, for any = € S, u € II, we have
[e. <] e <}
2o llgal T2) = villv < 3 llek — gl
t=0 t=0

<2 (1 - p)H
t=0
< 2k/p.

Therefore, K. = 2k/p is the required constant. Finally, it is clear that E.5 = E.6. O

33

We call Assumption E.1 a 1-stage ergodicity condition, Assumption E.3 a k-stage
ergodicity condition, and p the ergodicity rate.

Note that when k = 1, Assumptions E.3 and E.4 are equivalent to Assumption E.2,
which is weaker than Assumption E.1.

In this section we study the relationship between the different ergodicity condi-

tions and some of their consequences. In the subsequent chapters we will only use
Assumptions E.1 and E.3.

2.3.3 Ergodicity and Span-Norm Contraction

We now show that Assumptions E3 and E.4 lead to an additional (span-norm) con-
traction factor, independent of a, in the dynamic programming operator 7.

Theorem 2.3.2 (Under Assumption A.4) For all integer t > 0, if the transition
kernel q satisfies

(a) Assumption E.3, then

IT°T = T*T'ls < &' (1 =)M\ = J'|ls, VJ,J" € B(S).
(b) Assumption E.J, then

T = T*T]|s < (1 —)M\ TT - J))s, VJ € B(S).

Proof We first prove (a) when ¢ = k, the general result follows immediately. Let
ftoy ft1y - -« k-1 (respectively, ph, pi,...u}_,) be the policies that attain the minimum
in T*J (respectively, T*J'); that is,

T*J = TuoTuy - Ty, J;
T*J' =TTy - T J

K1

Thus,
T* — T = {g,, + agu T* T} — {gy + ag, Tk}

< {g% + aq%Tk'lJ} — {g,,;) + aq%Tk‘lJ'}
= af g (TH'7 - T+10)}.

Repeating the above procedure k — 1 more times,
TH ~ T < a*{qup - qu_ (J - J')}. (2.3.5)
A symmetrical argument yields,
TET — T 2 a*{gu ++ que_ (T —). (2.3.6)
Fix some z,z' € S. For brevity, let H = T*J — T*J',

1 — —
Vo= quir Qui and v = Qo™ " " Dup_y -

34

Using Egs. (2.3.5), (2.3.6), and Assumptions E.3, we obtain

H() ~ H(z) < o | [V(@) =)w) — [()T ~ @)

< aHl = ViVl — Tl
< a*(1 = p)2)lJ = I

Since z and z’ are arbitrary, we have
|75 = T < a*(1 - p)2 — ']
Replacing J by J + ¢ in Eq. (2.3.7), where
e = ~sup(J — J')(z) +inf(J -)(2)}/2,
and using Proposition 2.2.1(c), we obtain

ITT — Ty = T + ¢) — T+J')s
< at(1=p)2llJ +c— I
= a*(1 = p)[lJ = I,

as required.

(2.3.7)

The proof for (b) is similar. Let the minimizing policies in T*+1J be attained by

Moy f1 - ..y pii. We argue as before to obtain
T — T4 < g, - gy (T — J)

and

T —T* > quy - que_ (T = J).

Now following the same argument used in (a), we obtain,
IT*1T — T*J||s < o*(1 = p)||TT = J|s.

The proof for general values of ¢ follows immediately.

O

Note that under Assumption E.3, the dynamic programming operator T is a k-stage
contraction operator on (B(S), ||-||s) with contraction factor (1—p), independent of a.
We will see in Chapter 3 that this results in a better convergence rate in the successive
approximation algorithm. Actually Assumption E.4 is sufficient for this purpose; in
fact, most of the results in Chapter 3 can be shown under Assumption E.4 instead of

E.3. But we will not do this to keep the proofs simple.

We now show that under Assumption E.5, we can bound ||J*||s by a constant
independent of a. We will see in the next section that this bound leads to a better

discretization error.

35

Theorem 2.3.3 (Under Assumption A.4) If the transition kernel q satisfies Assump-
tion E.5, then ||J*||s < 2K K., independent of a, where K, is the constant of E.5.

Proof By the measurable selection theorem (Proposition 2.2.3), there exists an
optimal policy u* € II so that

J* = Ju. = Zatq:‘,.g’_“.
t=0
For any z,z' € S, we have

T*(2) — J*(")] < ia

quL-(dy | w)gu-(y)—/sqf,-(dy | 2")g- (v)

<D llg (- 12) — g (- | 2)IvK
t=0

S K3 Ngu (- 12) = vl + 195 — gbul- | 2)]Jw
t=0

<2KK..
Therefore, ||J*||s < 2K K., independent of a. O

2.3.4 Notes

Ergodicity conditions are well studied for finite-state MDP’s (usually in the context
of average cost problems). Federgruen, et al, (1978) and Schweitzer (1988) study
(finite-state) ergodicity conditions and their relation to span-norm contraction. The
two papers also consider necessary and sufficient conditions for span-norm contrac-
tion. Assumption E.3' is a continuous-state formulation of a condition studied in
Federgruen, et al, (1978).

Assumption E.4 is a continuous-state formulation of a condition in Bertsekas
(1987). He also discusses a finite-state version of Assumption E.6 and shows how
this condition leads to span-norm contraction in successive approximation. (We have
not been able to establish such a connection for continuous-state problems.)

Assumption E.3 is a k-stage version (a generalization) of a condition studied by
Hernéndez-Lerma (1989). Hernédndez-Lerma studies continuous-state ergodicity con-
ditions in the context of average cost problems and proves a special case of Theo-
rem 2.3.1. Our proof of Theorem 2.3.1 is motivated by this result.

Ergodicity conditions are also studied in the context of Markov chains. See for
example Seneta (1981). Assumption E.3' is known as a scrambling-type condition in
this context.

Our definition of ergodicity (in Assumption E.6) is taken from Nummelin (1984).
This book also discusses other ergodicity conditions in the continuous-state context.
Assumption E.5 is related to a uniformly ergodic condition discuss there.

Going from finite-state to continuous-state ergodicity conditions introduces tech-
nical difficulties. We have been able to avoid most of the difficulties by establishing
the existence of a minimizing policy in TJ.

36

2.4 Discretization Procedures and Error Bounds

The computation of an e-approximation of J* is usually accomplished by discretizing
the original problem and by constructing a new MDP that has finite state and control
spaces. However, since we will be comparing functions corresponding to different
discretization levels, it is both conceptually and notationally simpler for us to consider
MDP’s that involve simple functions on S rather than functions on finite subsets of
S. In this section, we construct such a discretization.

First, we describe the procedures for discretizing the MDP. Second, we show
that ergodicity conditions in the original problem are “inherited” by the discretized
problems (when the discretization is sufficiently fine). Third, we prove the main
theorems of this section—bounds on the discretization error—that is, we estimate
the inaccuracy in discretization as a function of the grid-spacing and of the discount
parameter a. We also show how ergodicity conditions reduce the discretization error.
Finally, we compare with other discretization procedures in the literature, and give
some references.

2.4.1 Discretization of an MDP

We now consider the discretization of an MDP. We first show how the state and
control spaces are discretized. We then consider the discretization of the costs and
the dynamics. Next, we look at the discretization of Bellman’s equation. Finally, we
consider the discretization of policies.

Discretization of the State and Control Spaces

Let h € (0,1] be a scalar that parametrizes the coarseness of discretization; we call
h the grid-size or the grid-level. We start by partitioning the unit interval I = [0, 1]
into a collection Zj, of subsets. In particular, Z,, consists of the set [0, k] together with
all nonempty sets of the form (ih,(s + 1)A] NI, i = 1,2,.... We then partition the
unit n-dimensional cube [0, 1]" into a collection Z7* of subsets defined by

e {le---xIn’IieIh}.

We discretize the state space by partitioning it into a finite collection of subsets.
Each set in this partition is the intersection of S with an element of I}. More precisely,
we let Sj, be the set of all nonempty sets o of the form ¢ = S N t, t € I, and these
sets form the desired partition. We choose a representative element from each o € Sy
and we let S, be the set of all representatives. For any z € S, we let o, be the element
of Sy to which z belongs. We also use &, to denote the representative of the set o.

The control space is discretized by letting Cj be the set of all (¥1y...,um) € C

such that each u; is an integer multiple of k. The set of admissible discretized controls
is defined by

Un(z) = {ﬁ ey ‘ |l — @]|oo < g for some u € U(&m)}, r€eS. (2.4.1)

37

For any z € S, the set U(&,) is nonempty, by assumption. Furthermore, using the
definition of (), we see that for any u € U(6,) there exists some @ € ()}, such that
|l — @lc < h/2. Thus, the set Un(z) is nonempty for each z € S. It is also easy to
see that

Un(z) = Un(z') = Un(6,), Yz €S, Ve' € o, (2.4.2)
Lastly, let))
Tn={(z,2)|zeSandac On(z)} . (2.4.3)
Discretization of the Cost and the Dynamics

Given some h € (0,1], we define the discretized cost function grn: S xCh— R by
letting

n(z,) = (6.,). (2.4.4)
It follows from Assumption A.l that

Ig(:c,ﬂ) _gh(zvﬁ)l < Kh? Vz € S’ﬁ € Oh'

We now consider the discretization of the dynamics. We are primarily interested
in the case where h is small. We can therefore assume that A < ha, where h, € (0,1]
is a constant to be determined later. We will also assume that for all & € (0, h,], we
have a kernel §, on S given S, x G, satisfying the following discretization conditions.

D.1 If ¢ satisfies Assumption A.4, A.4', or A.4" then gn satisfies Assumption A .4,
A4, or A.4" respectively.

D.2 There exists some constant K, > 1 such that
”‘I(I "i’i‘-’) - qh(l z,a)llv < Kih, &€ Sh,ﬂ € éh'

We will construct §, from q later after we introduce more assumptions on q; we will
also determine the values of h, and K, then (see Section 2.5).
Given the above gy, we can extend gx(- | z,i) to all (z,%) € § x C), by letting

(- | 2,8) < Gu(- | 3ay@), z € S, € Ch. (2.4.5).

This extended kernel g, on S given S x C}, is the discretized kernel. It follows from
Assumptions A.2 and D.2 that

llg(- | 2, @) — Gu(- | z,a)|lv < (K + K)h, VYhe (0,he],z € Sp,a € Ch. (2.4.6)

Finally, a discretized MDP is specified by (S, Ch, {Un(2)}, G, G, a) with the ad-
ditional information S} and 5';,.

38

The Discretized Bellman’s Equation

We now consider the discretization of Bellman’s equation. We have so far constructed
a discretized MDP (S, Ch,{Uh(z)},gh,tjh,a). The dynamic programming operator

Tw:B(S)— B (S) corresponding to this problem is defined by

ToJ ()% min {gh(:c,ﬁ)+a /. qh(dy|:c,ﬁ)J(y)}, T € B(S). (2.4.7)

A€l (x)

By Assumption D.1, 7, has the same properties as T' (cf. Proposition 2.2.1), except
that T}, maps measurable functions into simple functions, and therefore the fixed point
of T}, denoted by J¢, is a simple function. To see this we introduce the following
terminology.

Given the partition S}, of the state space S, we say that a function f with domain S
is a simple function on S, if f is constant on each element of S,. That is, f(z) = f(z')
for every o € S;, and every z,z' € 0.

For any fixed @ € C),, the functions gn(-, @) and [5 Gn(dy |-, @)J(y) are simple on
Sh- 1t follows from Eq. (2.4.7) that for any J € B(S), ThJ is a simple function on S,.

Since simple functions on S form a Banach space, the fixed point of T} must also
be a simple function on Sy; in particular, there exists a unique simple function on Sy,
denoted by j,:, that solves the discretized Bellman’s equation J = ThJ.

It is clear that the discretized problem (5, Cy, {Un(z)}, §r, G, a) is equivalent to a
finite-state MDP (S, Cn, {Un(2)}, Gn, Gn, a). To this latter problem, we can associate
an optimal cost function with values J;(z) for zZ €). For our purpose, however, it is
easier to work with the state space S, rather than S, because J: and J* are defined
on the same set S and can be directly compared.

Discretization of Policies
For the discretized problem, the set of policies is defined as
I, & {ﬂh : S+ Cy | fwn is a simple function on Sk and jin(z) € Up(z), Vo € S} .
(2.4.8)

As in the original MDP, for any policies i € II, we can associate an operator T} :

B(S) — B(S) by letting
Tpd = §a + agad, J € B(S),

where »
9a(z) = gn(z, i(z)), Ve e S;
@l | 2) L G- | 2, i(z)), Yzes.

We argue as before that for any J € B(S), TEJ is a simple function on Sj, and it
follows that the fixed point of T}, denoted by J;, is a simple function on Sj,.

39

Moreover, it is clear (since II, is a finite set) that for any J € B(S) there exists a
ft € Iy such that T),J = T;J; in particular,
TpJ = min T,J, VJ € B(S).
pelly,
It follows that there exists a policy ji* € II} such that J¢ = TyeJ7; therefore, Jp = Joe
and fi* is an optimal policy.
Finally, we have the following useful lemma:

Lemma 2.4.1 Forany i € I, there exists a u € II such that li—ulo < (K+1/2)h.

Proof Fix some /i € II;, and some o € S. The partition that contains zq is T
and its representative is &,,. Let @y = i(zo) = fi(Jz,), where the second equality
holds because ji is constant on the set 0z, By the definition of ITj,, there exists some
Ug € U(&mo) such that ”’U,o — ’[Lg”m S h/2

Let G¥{u e C | lu — tolle < (K + 1/2)h}. By Assumption A.3, G N U(z) is
nonempty for all z € o,,. Thus, for every z € Oz, We can choose some u(z) € U(z)
such that ||u(z) — fi(2)||ee = ||1e(2) — fio]|o < (K +1/2)h. By repeating this argument
for each set in the partition of S we obtain a function u that satisfies the desired
inequality. There is one final issue that has to be dealt with: according to the
definition of II, y must be a measurable function. This can be accomplished by
appealing to the measurable selection theorem (Proposition 2.2.3).]

2.4.2 Discretization and Ergodicity Conditions

We now show that an ergodicity condition in the continuous-problem is “inherited”
by the discretized problem for a sufficiently fine discretization. Note that for the dis-
cretized transition kernel g, we use the same definitions of ergodicity as in Section 2.3,
except that we replace ' by I’y and II by II, (in Assumptions E.1-E.6).

Before proving the main result, we prove the following lemma:

Lemma 2.4.2 (Under Assumption D.2) For any h € (0, k) and fi € 114, there exists
a p € II such that
llga — Qullo < K;ha

where K,=K+K(K+1/2)+ K,.
Proof Fix some h € (0,h,] and some i € II,. By Lemma 2.4.1, there exists a u
such that

I — oo < (K +1/2)h. (2.4.9)

Fix some = € S. Using the triangle inequality, we have

19a(- | 2) = gu(- | 2)llv = |3 (- | 2, (<)) — g(- | =, u(z))lv
< llan(- [2, i(2)) — q(- | 2, 4(=))]lv
+lle(- [2, ii(2)) — q(- | z, p(2))llv
<(K+K,)h+K(K +1/2)h
=K.k,

40

where the last inequality follows from Eq. (2.4.6), Assumptions A.2, and Eq. (2.4.9).
Since z is arbitrary, it follows that

14 — gulleo < K,

- q

as required. O

For the main result in this subsection, we are only interested in the case where
q is a stochastic kernel. (Note that it follows from Assumption D.1 that §, is also a
stochastic kernel.) The theorem is as follows.

Theorem 2.4.1 (Under Assumption A.4, D.1, and D.2.) If q satisfies Assump-
tion B.3 (respectively, E.}) with ergodicity rate 2p then there ezists an hy € (0, hg]
such that for all h € (0, hy], Gn satisfies Assumption E.3 (respectively, E.J) with er-
godicity rate p.

Proof We will prove the result for Assumption E.4, the proof for the other case is
similar.

Fix an h € (0,h,]. Let jio, jis,... yfi. € M. By Lemma 2.4.2, there exist policies
Moy M1y ooy fik_1, itk € IT such that

I — quilloo < Kb, Vi=0,1,.... k. (2.4.10)

We now prove by induction that
”‘iﬂo " '6[1.' —qup ‘Iui”w < (7'. + I)Kéha Vi = 0’ T ’k - L (2'4'11)

When i = 0, the result follows from Eq. (2.4.10). We now assume that (2.4.11) is
true for 7 and will show it for 7 + 1. By the triangle inequality,

”@'Ao T gﬂ.’“ = Quo " Quiy,y “oo < "(qﬁo G — Quo *** qﬂ;‘)éﬂi+l ”00
9o+ * Qi (Gaigs — Qg)lloo
<iK h+ K h
<(i+1)Kh,
as required.
Using Eq. (2.4.11) and the triangle inequality, we have

e - Gy = o+ Galloo < 1Gag - - G, — Quo"* * Gun—sy [l oo
+ [l - - Tuxer — Qo " Gy [oo
+ ”qlll' “Qu — Gay - Qﬁk “°°
< 2(1-2p) + 2kK'h
= 2[1 - (2p — kK!R)).

By letting hy % A, A p/(kK}), we see that the discretized stochastic kernel §, satisfies
Assumption E.4 with ergodicity rate p for all h ¢ (0, hy], as required. O

41

2.4.3 Discretization Error Bounds

An outline of this subsection is as follows. We first prove some useful lemmas. We
then prove for the general case (where Assumption A.4" is in effect) a theorem which
bounds the error between the optimal cost functions of the original MDP and the
discretized MDP. Finally, we specialize the theorem when Assumption A.4 is in ef-
fect and show that the discretization error is reduced if the dynamics satisfy certain
ergodicity conditions.

We now prove some useful lemmas.

Lemma 2.4.3 Let Ty be a k-stage contraction operator, with contraction factor a,
on a Banach space (X, || - ||). If J1 € X is the fized point of Ty, then

k
|1 —J|| < —|IT:J = J|l, VJ€X.

1—
Proof Using the triangle inequality, we have
k . .
ITE T = T < 3NTENT - T4
i=1
S E|TT - J|.

Now using the triangle inequality and the contraction property of T}, we have

19y = TN < N1 T¢ = TET|| + (| TET - J)|
< allJi = J|| + kT - J|,

from which the result follows. O
Lemma 2.4.4 (Under Assumption A.4") There holds
[/*[lo < K/(1 —).

Proof Let J%z)=0forall z € S. It is clear from Assumption A.1 that |TT o <
K. Therefore,
[oo = 1" = T°|oo
SNTT* =TI +ITT° ~ J°||ew
< af|J*e + K;

the result follows. O

We now show a similar result under Assumption A.4 and an ergodicity condition.

Lemma 2.4.5 (Under Assumption A.4) If the dynamics described by q satisfy a k-
stage ergodicity condition with ergodicity rate p (Assumption E.3), then

171« < 26K /p.

42

Proof Let J°%z) = 0 for all z € S. It follows that ITT%s < 2||TJ°|e < 2K.

Now,

k
”TkJolls S Z ”Tk+l—iJ0 _ Tk—iJOHS

i=1

k
<SoqTIo - I

i=1

< 2kK.
Therefore, by Theorem 2.3.2(a),

I7*lls < | T*T* — T*J°||s + | T*T° — J°s
< (X =PI s + 2kK;
the result follows. 0

We now prove the main theorem for the general case.

Theorem 2.4.2 (Under Assumption A.4", D.1, and D.2) There ezist constants K,
and K, (depending only on the constants K and K,) such that for all h € (0, h,) and
all J € B(S),

1T = Tid oo < (K1 + aKo||J||eo); (2.4.12)
1T* = J2 [l < l—i_a(K1 + @k | "0)b (2.4.13)

Furthermore, .
1* = Jilles < (—lfi—’;),, (2.4.14)

where K' = K; + KK,.
Proof Fix some J € B(S) and some z € S. We define
H(v) = g(a,u) + a [q(dylz,u)I(v), ue O;
(%) = 9u(2,9) + @ [Gu(dy |, 8 (), @ € G
Let v € U(z) be such that H(v) = min,cy(z) H(u). Using Assumption A.3, there
exists some v’ € U(&;) such that ||v — v'||o < K|z — 0zlloc < Kh. Finally, choose

some ¥ € Up(,) = Up(z) such that ||v’ — |lec < h/2. [This is possible because of the
way that Un(5;) is defined.] By construction,

i 1
lo - 3lloe < (K + 5)h. (2.4.15)

43

We now have

Tod(z) — TJ(z) = min H,(%) — min H(u)

a€Ux(z) u€U(=)
< |Bu(3) — H(v)|
< |En(5) - H(3)| + |H(3) - H(v)|. (2.4.16)

We bound the two terms in the right-hand side of Eq. (2.4.16). For the first term,

|H(5) — H(5)| < |gn(2,5) - 9(2,)] + alldn(- | £,) — a(- | 2, 8)]}v - | /]|
< K|z = ol + @K oA]|
< (K + aK,||J||w)h, (2.4.17)

where K is the constant of Assumption D.2 (see Section 2.4.1). And for the second
term,

[H(3) — H(v)| < |g(=,9) - g(z,v)| + allg(- |, 5) — g(- |z, 0)lv - [| w0
S K5 = vl + aK||5 — vloo - || eo

1
< (K + aK||J|lo) (K + §)h. (2.4.18)
Using the bounds of (2.4.17) and (2.4.18) in Eq. (2.4.16), we obtain
Thd(z) — TJ(z) < (K1 + aKy||J||o0)h,

where K; and K, are suitable constants. By a symmetrical argument, we obtain the

same bound for T'J(z) — T),J(z); thus,
| 10T (2) = TJ(2)] < (K + aks[|T oo)b
Taking the supremum over all ¢ € S, we obtain
ITJ — Thd |l < (K1 + aKo||J||oo)k, (2.4.19)

which is the desired result. We now use Lemma 2.4.3 (with k=1, Ty = T}, Jy = J7,
J = J*) and Eq. (2.4.19) to obtain

1

-«

- - 1
I = Jilleo < 7= IThd* — TJ" || < T o B+ aka||J"]|w)h,
which proves the first part of the theorem.

The second part follows trivially from Lemma 2.4.4, where we have ||J*|, <
K/(1 — a), and therefore

K'h

(1—a)?’
where K' = K, + KK,. O

17 ~ Jhllew <

44

We now specialize the result under Assumption A.4. We also show that if the
dynamics satisfy a certain ergodicity condition, the discretization error bound can be
improved.

Theorem 2.4.3 Let Ky and K, be the constants of Theorem 2.4.1. Forallh € (0,h,)
and all J € B(S), there hold,

-~ «
I1TT ~ Tid ||oo < (K; + 7Kl Tll)h; (2.4.20)
= 1
17 = Jilleo < 5= (K + S Kal|T* o). (24.21)

Furthermore, if the dynamics satisfy Assumption E.3 (a k-stage ergodicity condition
with ergodicity rate p) then

- K"h
* _ * < — 4.
197~ Jille < s (2.4.22)

where K" = K1 + kK K,/p

Proof Let c= —3[sup,c5J(z)+ infres J(z)]. Since T and T, satisfies Eq. (2.2.7),
we have

ITJ = Tndlloo = |T(J + ¢) = Ta(J + ¢)||w
< (K1 + aK||J + cfeo)b,

where the last step uses Eq. (2.4.12). It is easily seen that ||J + |lo = ||]|s/2, and
we obtain

17T~ Tnd [l < (Kx + S Kol T)b

Using Lemma 2.4.2 (as in the proof of Theorem 2.4.2), we obtain
T = Jilleo < —— (K1 + ZE||J* 1)
17° = Jille < m(1+ 5 Ko s)h.

The second part follows from Lemma 2.4.5(b), where we have |J*|ls < 2kK/p and
therefore

5 K"h
L < =
“J Jh||°° = (1 — a)’

where K" = K, + kKK, /p. a

Note that the bounds of Theorem 2.4.3 hold under Assumption E.4 or E.5, provided
K" is replaced by a suitable constant (independent of a).

45

2.4.4 Notes

In an approximation scheme we use the same state and control spaces and only the cost
function and the dynamics are approximated. In contrast, in a discretization scheme,
both the state and control spaces are approximated by discrete (finite) sets; the
cost function and the dynamics are also discretized appropriately. Our discretization
scheme is somehow in between—we keep the same state space but discretize the
control space, the cost function, and the dynamics.

Our discretization procedures are similar to the discretization procedures in Whitt
(1978). Whitt considers an abstract framework for discretizing MDP’s, and obtain
similar bounds to Theorems 2.4.2 and 2.4.3. But a key difference is that our discretized
problems are defined on the same state space S (unlike Whitt) and all of the operators
T, act on the same function space B(S). This greatly facilitates the grid-level changes
in the multigrid algorithms to be introduced later. For example, in our framework,
two iterations on different grids correspond to the application of an operator of the
form T, Ty In contrast, in the framework of Whitt, a grid-level change requires the
application of certain interpolation and projection operators. Whitt does not study
the effect of ergodicity conditions on the discretization error in his paper.

Our discretization scheme is similar to an approximation scheme in Herndndez-
Lerma (1989), except that we have discretized the control space. Our discretization
bounds are similar to the bounds in Hernindez-Lerma. Hernandez-Lerma, studies
ergodicity conditions in the context of average-cost problems but does not study the
effect on the discretization error bound for discounted-cost problems.

Note that a discretized policy may lie outside the set II of admissible policies for
the original problem. This is why we require g and ¢ to be Lipschitz continuous
outside of I' (cf. Assumptions A.1-A.4).

2.5 Discretization of Densities

We now specialize the results of Sections 2.3 and 2.4 to the case where the transition
kernel ¢ is a density. That is we assume that for each (z,u) € § x C, we are given a
bounded, measurable function P(- | z,u): S — R such that

a(B | z,u) % /B P(y|z,u)dy, VB e Bs. (2.5.1)
Note that for any z,2’' € S and w,u € C,
a1 2,w) — (- |2, w)lly = [[1P(y | 2,u) ~ P(y] ', u')| dy

and that 0 < ¢(- | z,u) is equivalent to 0 < P(y | z,u) for all y € S. So, when ¢ is a
density the assumptions in the previous sections should be modified appropriately.
In this section we consider the discretization of P when it satisfies additional
Lipschitz continuity assumptions. We show how to construct a discretized transition
density P, from P, so that the discretization conditions D.1 and D.2 are satisfied;

46

we also obtain explicit bounds on the constants he and K, of these discretization
conditions. (See Section 2.4.1.)

An outline of this section is as follows. First, we introduce the notion of “piecewise
Lipschitz continuous functions” and impose additional assumptions on the dynamics.
Second, we discuss the discretization of general densities (Assumption A.4") and
ensure that Assumptions D.1 and D.2 are satisfied. Third, we specialize the result to
probability densities (Assumption A.4). Finally, we make some observations.

2.5.1 Piecewise Lipschitz Continuous Functions

We introduce the notion of piecewise Lipschitz continuous functions. We begin by
introducing more notation. Let X C R". The interior of X is the union of all open
subsets of R™ contained in X; it is denoted by X°. The closure of X is the intersection
of all closed subsets of R™ containing X; it is denoted by X. The boundary of X is
denoted and given by

0XE{aeX |z g x°}.
Furthermore, for any h > 0,

0XWE {2 € R" | |l - o'||ue < h for some 2’ € 9X}.

Finally, let A, (-) denote the n-dimensional Borel measure; that is, A, (B) = [p dy.
A function f : S — R is called a piecewise Lipschitz continuous function on S with
Lipschitz constant K, if there exists a finite collection of measurable subsets {S:}ier
of S such that S = {J;c; S; and that

1F() = fGN < Killy — 'llos V9,9 € Siyi € I (2.5.2)
An (s nU asg”)) < Kk, Vhe(0,1], (2.5.3)
iel

Equation (2.5.2) says that f is Lipschitz continuous on each set S; in the partition.
And Eq. (2.5.3) is a smoothness condition on the boundaries of the partition {S;};in
particular, this assumption is satisfied when the boundaries 95; are given by smooth
curves. This condition implies that A, (U;e;0S;) = 0; but the latter is not suffi-

cient for our purpose, because we need explicit bounds on), (S N Usier BS,;(h)) for our
discretization estimates.

Additional Assumptions

We now introduce the following additional assumption on the transition density P.

A.5 For each y,z € S and v € C, |P(y | z,u)| < K and P(- | z,u) is a piecewise
Lipschitz continuous function on § with Lipschitz constant K.

47

Assumption A.5 is a locally Lipschitz continuous assumption; it ensures that for
each (z,u), P(- | z,u) can be accurately approximated, when the discretization is
sufficiently fine. [Note that the partitions on which P(-| z,u) is Lipschitz continuous
may vary with (z,u).] Since P may have discontinuities, Assumption A.5 also bounds
the magnitudes of these discontinuities (by K).

From now on, we will always assume that the dynamics are described by the
density P and that Assumption A.5 is always in effect.

2.5.2 Discretizing Piecewise Lipschitz Continuous Densities

We now consider the discretization of the transition density P for the general case
where Assumption A.4" is in effect. Let A, = 1 and fix some grid-size h € (0, h,]. We
discretize the state and control spaces as in Section 2.4.1 and construct the discretized
density P,. We will check that P, satisfies the discretization conditions D.1 and D.2.
Fix some (&,i) € S, x). For conciseness, we write P(-) and P,(-) instead of
P(- | #,@) and Py(- | &,4), respectively. Recall that for any y € S, o, denotes the
partition of S that contains y and &, denotes the representative of o,. We let

5 o | P(5y) if [5|P(dy)|dy < 1;
Py {P(&,,)/ Js|1P(3,)|dy otherwise (2:5.4)

[Note that P,(-) is defined from the values of P(.), sampled at the representatives.]
We check that P, satisfies the discretization conditions. It is clear from Eq. (2.5.4)
that fg Iﬁh(y)l dy < 1. Therefore, P, satisfies Assumption D.1. It remains to verify

that P, satisfies Assumption D.2, which we will show in the following lemma.

Lemma 2.5.1 (Under Assumption A.f") Let h, =1 and K, = 2(K + 2K?). If b,
is given by Eq. (2.5.4) then

L|P@) ~ Buw)| dy < Koh, ke (0,ha).
Thus, P, satisfies Assumption D.2.
Proof Fix some h € (0, h,]. Using Assumptions A.2 and A.5, we have
|P(y) — P(6,)| < Klly - &yllo < Kh, VyeS§, (2.5.5)

except for a set of measure Kh, where |P(y) — P(&,)| < 2K. Therefore, we have the
following useful bound

fs |P(y) — P(5,)|dy < Kh L dy + 2K - Kh
< (K +2K?)h. (2.5.6)

48

We consider two cases: (i) [s|P(6,)|dy > 1, and (ii) fs |P(&y)|dy < 1. For Case

(i), we have

L 1P@dy 1< [1P@)dy~ [1Pl ay
< [[1P@) - Pl dy
< (K 4 2K?)h, (2.5.7)

where the last inequality follows from Eq. (2.5.6). By the definition of B, [Eq. (2.5.4)]
we have

; IP(52) = P(2) - f5 [P(2,)] dy]
Jolstwr = P dy = [e e

< [[1P@) = PW)ldy + [1P@)ldy | [1P(3,)] dy -1

< [1P@) — Pl dy + [[1P(3,)dy -1
< 2(K +2K?)h, (2.5.8)

’

where the last inequality follows from Eq. (2.5.6) and (2.5.7). The result is within
the desired bound.
We consider Case (ii), where [5|P(&,)|dy < 1. It follows from Eq. (2.5.4) that

L1B) - Py = [1P(2,) - Pl dy
< (K +2K?)h,

where the last inequality follows from Eq. (2.5.6). Again the result is within the
desired bound. O

Therefore, we have constructed P, from the samples of P and shown that P, satisfies
the discretization conditions D.1 and D.2. The same discretization procedure applies
to the case when P is a substochastic kernel (Assumption A.4') and the resultant B,
also satisfies D.1 and D.2.

2.5.3 Discretization of Probability Densities

We now consider the discretization of the transition density P when P is a probability
density (Assumption A.4). We proceed as in the general case, except that we let A, =
1/(2K+4K?) instead of 1. We fix some grid-size h € (0, k) and some (&, 1) € S, x Cp.
The discretized density is now given by

B ¥ @)/ [1P@,)dy (2:5.9)

49

We verify that B, is well-defined by checking that the denominator in Eq: (2.5.9) is
non-zero. We note that Eq. (2.5.6) applies, and it follows that

[P@)dy > [Ply)dy - (K +2K7)h
>1— (K +2K?%)h
> 1/2 (2.5.10)

verifying that the denominator of Eq. (2.5.9) is indeed non-zero.

We check that Ph satisfies the discretization conditions D.l and D.2. Assump-
tion D.1 requires Ph() to be a probability density on S; but that is clear from
Eq. (2.5.9). It remains to verify that P, satisfies Assumption D.2. We show this
in the following lemma. :

Lemma 2.5.2 (Under Assumption A.4{) Let h, = 1/(2K + 4K?) and K, = 4(K +
K?). If P, is given by Ejq. (2.5.9) then

L|P@) — Buw)| dy < Koh, VR € (0,h].

Proof We consider two cases: (i) f5 P(¢,)dy > 1, and (ii) [P(ay) dy < 1.

For Case (i), where [; P(5,)dy > 1, the discretized density P, is identical to the
general case and therefore the bound of Lemma 2.5.1 applies. Hence, K, is within
the desired bound.

It remains to consider Case (ii), where [5 P(5,)dy < 1. Using Egs. (2.5.9) and
(2.5.10), we have

[1) - Py = [2L =PC) Je Plo)

fSIP(Uy)——P(y)chy+f5 P(y)dy - |Js P(&,)dy — 1]
1/2

< 2[(K +2K*)h + (K +2K°)A]
=4(K + 2K?)h,

where the last inequality follows from Egs. (2.5.6) and (2.5.7) and the fact that
Js P(y)dy = 1. O

Thus, when we discretize a probability density according to Eq. (2.5.9), we obtain a
probability density that satisfies Assumptions D.1 and D.2.

2.5.4 Notes

The normalization in Egs. (2.5.4) and (2.5.9) is needed to ensure that Assumption D.1
is satisfied, which in turn ensures that 7T} has the same contraction and monotone

50

properties as T'. The normalization is important in our analysis because we study the
dependence on a as o T 1.

The discretization results in this section are new. The discretization bounds can
be extended to the case where the densities have “impulses” at fixed known locations
and provided Assumption A.2 is satisfied.

2.6 Summary

In this chapter we have formulated a discounted-cost Markov Decision Process (MDP)
and discussed some ergodicity conditions. We show that certain ergodicity conditions
result in an extra span-norm contraction factor in the dynamic programming opera-
tor. We also study the discretization of the MDP and show that certain ergodicity
conditions improve the discretization error bounds. Finally, in Section 2.5, we special-
ize our results to the case where the dynamics are described by a piecewise Lipschitz
continuous density.

From now on, we are interested in the above results only when the dynamics are
specified by a density; thus, an MDP is specified by (S, C, {U(z)}, P,g,a). For easy
reference, we restate all the assumptions that we will use in the next chapter, in terms
of the density P (instead of the kernel g).

Assumptions

A.l Forallz,z' € Sand u,u’' € C, |g(z,u)| < K and |g(z,u)—g(z',v')| < K||(z,u)—
(@', ') oo

A.2 For all z,2' € § and u,u’ € C, [5|P(y | z,u) — P(y | z',u')|dy < K||(w,u) —

(2,)| co-

A.3 For any z,2' € S and any ' € U(z'), there exists some u € U(z) such that
v = w'llee < K|z — '] .

A.4 Forally,z€ Sanduec C,0< P(y|z,u)and f5P(y | z,u)dy = 1.
A.4" Forally,z € Sandu e C,0< P(y|=z,u) and f5 P(y | z,u)dy < 1.
A.4" Forallz € Sand u e C, [5|P(y | z,u)|dy < 1.

A.5 For each y,z € S and u € C, |P(y | z,u)| < K and P(- | z,u) is a piecewise
Lipschitz continuous function on S with Lipschitz constant K.

Assumptions A.1-A.3 and A.5 will always be in effect; by default Assumption A.4 is

also in effect, unless Assumption A.4' or A.4" is in effect. Moreover, K will always
denote the constant of these assumptions.

51

Ergodicity Conditions
Two ergodicity conditions we will use are:

E.1 There exist a scalar p € (0,1] and a non-negative measurable function with
Jsr(y)dy > p such that Ply | z,u) > m(y), Vye¢ S,(z,u) €T.

E.3 There exist an integer £ > 1 and a scalar p € (0, 1] such that for any policies
Hoy fty, .. .”k"l’”a’#i, sy € II, there holds

[SIPMOPM "'Pm._l(ylz)“Pu.’,Pu{ "'PML_I(:’/ | :z:')‘dySZ(l —p) Vz,2' € S.

Assumption E.1 is called a I-stage ergodicity condition; Assumption E.3 is called a
k-stage ergodicity condition. Moreover, p will always denote the ergodicity rate of
these assumptions, and k will denote the constant of Assumption E.3.

Discretization of the Dynamics

We now summarize the discretization of the transition density P. Under Assump-
tion A.4" or A.4', the constants of the discretization conditions D.1 and D.2 (see Sec-
tion 2.4.1), A, and K, are given by h, = 1 and K, = 2(K +2K7?) (cf. Lemma 2.5.1).

And for all y,z ¢ S, %€ Chyand h € (0, ko), the discretized density is given by

&

) i Js [P(oy | 6.,)| dy < 1;

P(&, | 5.,
Oey@) [f5 |P(3, | 60yi)| dy otherwise.

Al =% {0

Under Assumption A4, we have h, = 1/(2K + 4K?) and K, = 4K + K?)
(cf. Lemma 2.5.2). And for all y,z € S,4 € Chyand b € (0, ko], the discretized
density is given by

By 2,0) ¥ PGy | 00,3)/ [(PG5, | 5.,3)(dy

Other Constants

Some other constants we will encounter are: (i) the constants K1, K;, and K' of
Theorem 2.4.2, all of which depend only on K, (ii) the constant K" of Theorem 2.4.3,
which depends on K, k, and p.

52

Chapter 3

The Complexity of Markov Decision
Processes

In this chapter we analyze the computational complexity of various classes of Markov
Decision Processes (MDP’s). We study the complexity of computing the optimal
cost function of an MDP. We introduce a multigrid version of the traditional single-
grid algorithm and show that multigrid is better than single-grid. We also obtain
lower bounds on complexity of the problem and show that the multigrid algorithm
has optimal complexity with respect to the dependence on the accuracy parameter
€ and nearly optimal in «. This is in contrast to the single-grid algorithm which is
non-optimal. We show that the discretization procedures in the preceding section
are optimal. We also consider the problem of computing an e-optimal policy. We
show that this problem is in a certain sense as hard as the problem of computing an
e-optimal cost function.

We now give an outline of this chapter. In Section 3.1, we introduce our model of
computation. We use a finite real number computer with an oracle. We also define
various problem classes and make precise the notion of computational complexity.
In Section 3.2, we analyze the computational complexity of a single-grid successive
approximation algorithm and a multigrid version of the algorithm. We show that the
multigrid version has better complexity than the single-grid version. We also study
the effect of ergodicity conditions on the complexity of the problem. We compare
our multigrid algorithm with other multigrid algorithms. In Section 3.3, we prove
lower bounds. Using an adversary-type argument, we obtain the information-based
lower bounds of the problem and as a result show that multigrid algorithm is within
a factor of O (1_}&) from the lower bound; it is optimal when the problem satisfies
an ergodicity condition. In Section 3.4, we address the question of computing an e-
optimal policy. We show that this problem is in a certain sense as hard as computing
an e-optimal cost function. In Section 3.5, we consider some simple extensions and
state our conclusions.

3.1 Preliminaries

In this section, we introduce our model of computation, review a well known approxi-
mation algorithm, and analyze the computational requirements of this algorithm. We

53

first define the model of computation.

3.1.1 Model of Computation

Given that we are dealing with problems involving continuous variables, discrete
models of computation such as Turing machines [Lewis and Papadimitriou (1981)] are
not suitable. We shall use instead a continuous model in which arithmetic operations
are performed on infinite precision real numbers [see Nemirovsky and Yudin (1983)
and Traub, et al (1988) for related models].

Our model consists of three components:

1. A mechanism for reading the input.

The input to the computation is provided by means of an “oracle” that works
as follows:

(i) To obtain information about S, a computer submits to the oracle “queries”
consisting of an element « € I7. If N § is empty then the oracle returns
a special symbol to indicate this fact; otherwise, the oracle returns an
element in ¢ N S and the volume X, (N S) of that set, where), (-) stands
for the Borel measure.

(ii) To obtain information about U(z), a computer submits to the oracle a pair
(h,z) and the oracle returns a list of the elements of the set Un(z).

(iii) Finally, to obtain values of g and P at some specific points, the computer
submits to the oracle a triple (y,z,), and the oracle returns the values of
P(y | z,u) and g(z,u). We then say that the computer samples (y,z,u).

2. The nature of the allowed computations.

We consider a computing machine, or simply a “computer” that has the capabil-
ity of performing comparisons and elementary arithmetic operations on infinite
precision real numbers. Furthermore, the computer can use the results of earlier
computations (or the answers to earlier queries) to decide what queries to sub-
mit to the oracle. The rules by which the computing machine decides at each
step what to do next will be referred to as an “algorithm”. [We are therefore
dealing with an “adaptive” algorithm in the sense of Traub, et al (1988).]

3. A format for representing the output of the computation.

In our case, the output of the computation is a function J which is simple on
Sk, where the discretization parameter A is to be decided by the computer itself.
One possible format is the following. The computer first outputs the value of
h, which implicitly specifies the partition S, of S. It then outputs the pair
(%, Jn(&)), for every & € Sj.

54

There are some additional assumptions that have to be made in our particular
context: The computer is provided the values of the dimensions m and n (of C' and
S, respectively), the discount factor a, the desired accuracy ¢, and the constant K
(of Assumptions A.1-A.5). Furthermore, if a k-stage ergodicity condition is assumed,
the computer is also given the values of k and of the ergodicity rate p.

The computational cost of an algorithm (also called its complezity) will be counted
in a very simple manner: each query to the oracle costs one unit; similarly, each
arithmetic operation or comparison costs one unit. [In a variation of this model, a
query asking for the elements of a set 0h(z) could have cost equal to the cardinality of
the set returned by the oracle. Our complexity estimates, however, are not sensitive
to minor variations of this type.]

3.1.2 Problem Classes

Let us fix the dimensions m, n, of S and C, respectively, the constant K of Assump-
tions A.1-A.5 (see Section 2.6), and the constants k and p involved in the ergodicity
conditions (see Section 2.3). Once these parameters are fixed, let P.a(a) be the set
of all MDP’s with discount factor a and let P,,, = Uae(0,1)Pua(@). Let us consider
an algorithm + that given any ¢ > 0 and any MDP in P,,,, returns an e-optimal cost
function. We use C],(a, €) to denote the worst case running time of this algorithm for
a particular value of € and where the worst case is taken over all MDP’s belonging to
Pua(a). We then define the complexity C, (e, €) of solving MDP’s as the minimum
of C,(a,¢) over all algorithms v with the above mentioned properties.

There is a similar set of definitions for the more general class of MDP’s where
Assumption A.4' (respectively, A.4") is in effect. We use the subscript “sub” (respec-
tively, “gen”) instead of “std”.

We also consider other problem classes where an additional ergodicity condition
is assumed. We summarize below all the different problem classes we will encounter
in this chapter.

(a) P..—Assumptions A.1-A.5;
(b) P,.,—Assumptions A.1-A.3, A.4’, and A.5;
(¢) P...—Assumptions A.1-A.3, A.4", and A.5;

(d) Puix—Assumptions A.1-A.5 and E.3 (a k-stage ergodicity condition with rate
2p);

(e) P.mi—Assumptions A.1-A.3, A.4’, A.5, and E.1 (a 1-stage ergodicity condition
with rate p);

f) Pria—Assumptions A.1-A.5 and E.1 (a 1-stage ergodicity condition with rate
g g Y
p)-

95

Order of Magnitude Notation

It is convenient to only consider order of magnitude estimates when arguing about
algorithm or problem complexity. We thus introduce the following notation:

1. Let f,g:(0,1] = [0,00) be functions of the grid-size k. We write f = O (9) if
there exist constants ¢ and ho > 0 such that f(h) < cg(h) for all A € (0, ho).
We also write f = Q(g) if ¢ = O(f), and write f = O(g)if f = O(g) and
f=9(g).

2. Let f,9:(0,1) x (0,1] = [0,00) be functions of & and e. We write f = 0O(9),
if there exist constants ¢, €0 > 0, and ap < 1 such that f(e,a) < cg(e, a), for
all € € (0,¢0] and a € [ao,1). We also write f = Q(g) if ¢ = O(f), and write
f=0(g)if f=0(g) and f = Q(g).

3.1.3 An Approximation Algorithm

To find an approximation of the optimal cost function to within some prespecified
accuracy, a problem is first discretized using a suitable choice of grid-size. For the dis-
cretized problem, there are many algorithms for computing its optimal cost function
J-,:: for example, successive approximation, policy iteration, and linear programiming
[see Bertsekas (1987)]. In this chapter we will only discuss one of them—successive
approximation. In the next chapter we will discuss policy iteration.

Successive Approximation Algorithm

In this section, we introduce the successive approximation algorithm, review some
known bounds on its speed of convergence, and discuss the effect of an ergodicity
condition.

The successive approximation algorithm for a discretized problem proceeds as
follows. We start with some function J € B(S) which is simple on Sy, and we
compute TtJ (t =1,2,...), where T} stands for the composition of ¢ replicas of T},
and T represents the identity operator. Since T} is a contraction operator (with
contraction factor a) and since J} is (by definition) a fixed point of Th, we have

17 = Tl < QX1 = T]wor (3.1.1)

In particular, TtJ converges to J:. A further consequence of the contraction property
of T}, is the following well-known error bound [Denardo (1967)]:

a at

|TET — T oo <

-« l -«

N Tod = I ||co- (3.1.2)

In contrast to Eq. (3.1.1), the bounds of Eq. (3.1.2) can be computed with information
available to the algorithm.

56

We note that the above algorithm applies to problems originated from Peen- And
for problems in P4, since T}, is also a monotone operator and satisfies

T(J+¢)=TJ+ac, VYJe€B(S),ceR (3.1.3)

[cf. Proposition 2.2.1(c)], the convergence rate of the algorithm can be accelerated by

using the following error bounds [see, for example, Bertsekas (1987)], that are valid
for any J € B(S):

T @ T+ A a
T J + -1_—ag§ﬁ <TG <THYJ + 1= ac;*,“ (3.1.4)
where
&+ = min {(T41J - TtJ)(=)}; (3.1.5)
&t = max {(T4*7 - TtJ)(=)} - (3.1.6)

We have used “max” and “min” because TfJ and T{+'J are simple functions.) The
L h h
following is an approximation to J;; that exploits the bounds of Eq. (3.1.4):

04

t+1 __ t+1
JH = T J+——2(1_a)

et +2+]. (3.1.7)

We subtract Eq. (3.1.4) from Eq. (3.1.7) to obtain

t+1
fr_gthy <« @ [T — T € o |1 FWd — J.. 1.
”Jh J ||°° = 2(1 _ a)”Th J ThJ”S = 2(1 — a)”ThJ JHS (3 1 8)

This bound is not much better than the bound of Eq. (3.1.2). However, for problems
in Pp;, where we assume that a k-stage ergodicity condition (Assumption E.3) holds,
Theorem 2.3.2 yields

TR = TikT s < @™(1 = p)*|Tnd = Ts < (1 =)| Tnd = Jls- (3.1.9)

Combining with Eq. (3.1.8), we obtain

|Jz - T, < MHT;,J —J|Is (3.1.10)
h =201 - a) ’

Thus, the distance of J* from J; contracts by a factor of at least (1 — p) every k
iterations. In particular, the convergence rate is independent of a.

We next analyze the computational requirements (the complexity) of a typical
iteration of the algorithm, using the model of computation defined previously.

57

The Complexity of Evaluating T,J

We estimate here the complexity of evaluating T},.J according to the formula

Tod(z) = min {gh(m,ﬂ) ta /S J(v)Bu(y | :c,ﬁ)dy} , (3.1.11)

for the case where J is a simple function on Sh. Since ThJ al_so turns out to be a
simple function on S, we only need to determine the values of T,J for & € Sh. Thus,
TyJ is determined by

ThJ (&) = ﬁng(n) {gh(:z-,a) +a) J@)Pu(F | & a)An (ag)} , &€ 8, (3.1.12)
evte €8,

where A, (-) stands for the n-dimensional Borel measure.!

We make the following observations. Since |S4| = O (h="), and |Uy(2)| < |Cy| =
O (h™™), there are O (h‘(”'*'"')) different pairs (Z,%). Also, for any fixed # and @, the
right-hand side of Eq. (3.1.12) can be computed with O (h~") operations, with most
of the work needed for the summation. Thus, the total time spent in arithmetic op-
erations and comparisons is O (h_(2"+"‘)). Furthermore, O (h‘(2"+"‘)> oracle queries
are sufficient for obtaining the required values of the functions dny Pr, and of the
elements of the sets I/,(%). We have therefore proved the following;:

Lemma 3.1.1 IfJ is a simple function on Sy, then the complezity of computing T}, J
is O (1/h?n+m).

In our estimates, we have assumed that the minimization with respect to 4 is carried
out by exhaustive enumeration. In practice, the dependence on u may have a special
structure that can be exploited to reduce the computational requirements. Neverthe-
less, our analysis will be carried out for the general case where no special structure
is assumed.

We now prove some useful lemmas.

Lemma 3.1.2 (Under Assumption A.4{") For every J € B(S) and every h € (0, k),
we have

(@) 1 Tndlloo < K + otf|J|oo;
(b) if [|J]leo < K/(1) then ||ThJ]|o0 < K/(1 — a);
(¢) 1illeo < K/(1 - a).

I'This formula should explain why we have assumed that the oracle can provide information on the
volume of certain sets [see item 1(i) in Section 3.1.1]. If such volume information were not directly
available, then it should be somehow estimated. Although this could be an important issue in
practice, its theoretical aspects are somewhat tangential to the present discussion.

58

Proof We first prove (a). Fix an z € S and let v € U,(z) attains the minimum in
TnJ(z); that is
[TT(2)] = |u(2,0) + « [au(dy | 2,u)I(3)
< lon(2,)| + alld ol |)l
< K + a||J|eo-
Since z is arbitrary (a) follows, and now (b) follows immediately from (a).
Since the space of all J € B(S) with ||J||e < K/(1 — a) forms a closed subset of

B(S), it follows from (b) that T}, is a contraction operator on this subspace; therefore,
its fixed point J}} lies in the subset, and (c) holds. O

An analogous result holds when Assumptions A.4 and E.3 are in effect:

Lemma 3.1.3 (Under Assumptions A.4) If q satisfies a k-stage ergodicity condition
(Assumption E.3) with ergodicity rate 2p, then for any J € B(S) and every h € (0, hy)],
we have

(a) if | J]ls < 2(k + 1)K/p, then
|TEAT s < 2(k + 1)K /p, VE€=1,2,.... (3.1.13)
(b) [1Flls < 2kK/p.

Proof Let J%z) = 0 for all z € S. First, we note from Theorems 2.4.1 and 2.3.2
that T, is a k-stage contraction operator on (B(S), ||-|Is) with contraction factor (1—p);
from the proof of Lemma 2.4.5 that | T#J?||s < 2kK; and from Lemma 3.1.2(a) that
IThdlls < 2K + ||J||s for all J € B(S).

We now prove (a) by induction on £. For £ = 1, we have

1T T)ls = | TR T = T°))s

SNTEHT = TRIOls + |1 TET® — J°ls

< (L= o) Tad s + 1 TEI°)s

<(1—-p)2(k+1)K/p +2K] + 2kK

<2(k+1)K/p.

Now assuming that Eq. (3.1.13) holds for £, we will prove it for £ + 1.
TR T |5 < TS — BTl + 1T

< (1= p)| T+ T ||s + 2k K
< (1= p)2(k + 1)K/p] + 2K
<2(k+1)K/p,

as required. And (a) follows.
To prove (b), we have

< (1= p)ITEJR]ls + 2k K,

as required. O

59

3.2 The Complexity of Successive Approximation

In this section, we use the model of computation of Section 3.1 to analyze the com-
plexity of various successive approximation algorithms. We will consider separately
(i) the general class of problems Pien where Assumption A.4" is in effect, and (ii) the
special class of problems P,,, where Assumption A.4 is in effect and the problems are
assumed to satisfy a k-stage ergodicity condition. We assume that the ergodicity rate
is 2p so that for all discretization parameter A < hy, the discretized problem satisfies
a k-stage ergodicity condition with ergodicity rate p (cf. Theorem 2.4.1). We first
consider the traditional single-grid successive approximation algorithm.

3.2.1 Single-Grid Successive Approximation

The basic idea in single-grid successive approximation is that we choose a grid-size
hy so that ||J* — Jii, o is small. We then keep applying the operator T, until a

sufficiently accurate approximation of J; , is obtained. We first consider the general
case where Assumption A.4" is in effect.

The General Case

Let € be the desired accuracy. From the discretization error bound of Theorem 2.4.2,
we have

- K’
Thus, if we let
PRy
hy = Lo (3.2.2)

2K'
we obtain ||J* — J.,:f”oo < €¢/2. [Note that hy is chosen with the knowledge of K', a
constant which depends only on K (cf. Theorem 2.4.2); therefore, hy can be deter-
mined from the values of K, a, and €. Also note that Theorem 2.4.2 has the condition
h < h,. This of no concern because we are interested in the cases where ¢ 1 0or
a 1 1. In these cases, Eq. (3.2.2) shows that h; becomes arbitrarily small.

With our choice of hy, the complexity of evaluating T}, ;+J, for some J that is simple
on Sp,is O (1/((1 - a)ze)z""'m) by Lemma 3.1.1.

Let J%(z) = 0 for all z € S, and apply Thf on J° for t times, where t is the smallest
integer satisfying

t
Tl Tl < 5.

(1—-a)

Let J* = T}J°. Then, Eq. (3.2.2) yields Iz, = T¢J°le < €/2, and the triangle
inequality shows that

1° = T lleo < 1% = Ji, lleo + 15, = Ttlloo < ¢,

60

as desired.
We now bound the complexity of this algorithm. Since |T,J%||e < K, it is seen

that | .
¢ < lOg [2K/((1 — Q)E)] + 1= O og (1-a)e)
| log a| |log a|

Therefore, the complexity of the algorithm is
0 lOg (l—a)e 2ntm '
|loga| [(1— a)2

We now assume that Assumption A.4 is in effect and impose an ergodicity condition.
Theorem 2.4.2 yields

The Special Case

K"
o < —h

We wish to have ||J* — j,:f”w < €/2 and this can be accomplished by letting

17— J&,

(1 —a)e'

hy = 2K

Accordingly, the complexity of each iteration is O (1 /(1 = a)6)2"+"') .
Let again J°(z) = 0 for all z € S, and apply Thf on JO for [k + 1 times. Let

£k+1 — -lk+1J Lk41 —-[k+1 .
J SR R — 2(1 y <]

[Cf. Eq. (3.1.7).] Equation (3.1.10) yields

177, = T* oo < 2(())||Th,J°||s < 5((11‘7”%21{ (3.2.3)

We now bound the complexity of the algorithm. We desire to have ||Jh -
J*+1| < €/2 and, from Eq. (3.2.3), this can be achieved with

IOg (1 a)s
~ |log(1 - p)|

So, the complexity of the algorithm is

7 (10g = [(1 - a)f] 2"“") |

We summarize our results in the following theorem:

+1:O(logz1_1—a)€).

61

Theorem 3.2.1 There holds

log 1 1 2n+m
_ (1-a)e .
Con(aye) = O (L - [(1 _a)ze] ,

Ol =0 (I"g o [m) |

Furthermore, the complezity of the single-grid successive approzimation algorithm is
within these bounds.

3.2.2 Multigrid Successive Approximation

We now introduce a multigrid version of the algorithm of Section 3.2.1 and estimate its
complexity. The first iterations of this algorithm are executed with a relatively large
value of & (coarse grid) and the value of & is gradually reduced (grid refinement) as the
algorithm proceeds. The basic idea is that the results of the initial iterations are fairly
inaccurate approximations of J*, so the use of a very fine grid is unnecessary. Thus,
most iterations are executed on relatively coarse grids, with much less computational
costs, and the overall complexity of the algorithm is improved.

Multigrid methods have been extensively studied in the context of partial differen-
tial equations, and have been found to lead to substantially faster convergence (both
theoretically, and in practice) [Brandt (1986) and Hackbusch(1985)]. Some alterna-
tive methods [Akian, et al (1988) and Hoppe (1986)] are discussed at the end of the
section.

As in Section 3.2.1, we will analyze the complexity of the multigrid algorithm for
the general case and for the special case where an ergodicity condition is imposed. Our
results show that the complexity of multigrid successive approximation is (for both
cases) better than that of the single-grid method by a factor of O (log [1/((1 — a)e)]),

and is optimal in a sense to be discussed in Section 3.3.

The General Case

The algorithm starts by fixing an appropriate coarsest grid-level (discretization pa-
rameter) ho. The choice of hg is independent of « and ¢, but we require that hy < h,,
so that the discretization error bound of Theorem 2.4.2 applies. We then compute
the function j,‘:u exactly, and let Jf = j,:o. We switch to a new grid-level by replacing
ho by ho/2, and use J;f‘; to initialize the computations at the new grid-level.

More generally, at any grid-level h, we do the following. We start with an initial
estimate J! and we compute T{J/, t = 1,2,...,t(h), where t(h) is the smallest
positive integer such that

K'h

Ft(h) I mqt(h)-1 g1 <
”Th Jh Th Jh”°° = Ol(l _ a)'

(3.2.4)

62

[The fact that such a t(h) exists is evident because T¢J{ converges.] At that point, we

let JI' = Tt(h)J,f which is our final estimate at the current grid-level. Then, Eq. (3.2.3)
yields

)) ath)
1k = T lleo < i)||T) gT _ -1 g (1—_0—)||ThJ,f —Jille: (3.2.5)
If K
€
T—eF <7 (3.2.6)

the algorithm terminates. Otherwise, we replace h by h/2 and use the final function
Jh of the current grid-level to initialize the computations at the next grid-level. That
is, Jh 2= JE.

It is clear that after a finite number of grid-level changes, Eq. (3.2.6) will be
satisfied, and this shows that the algorithin eventually terminates.

We now verify correctness of the algorithm. Let h; be the final grid-level at which
the algorithm terminates. Using Theorem 2.4.2, we have
K ’hf €

- < 5. (3.2.7)

Furthermore, Eqs. (3.2.4) and (3.2.5) yield

K'hy €
—_— < -, 2.
Sl-ap 7z (29

T t(h h 1
1, = T leo < s Ty TR, = Tl 7 e <

(1-)

Equations (3.2.7)-(3.2.8) and the triangle inequality yield ||J*— Ji, lloo < €, as desired.
In order to develop a complexity estimate, we need to bound the number ¢(h) of
iterations at each grid-level. This is done in the following two lemmas.

Lemma 3.2.1 For h € {ho/2,ho/4,...,hs} and every t € {1,...,t(h)}, we have
I1T¢ Tl < K/(1 — @). In particular, ||JF||oo <K/(1-a).

Proof The proof proceeds by induction. We have 174, /2lle0 = 7% lleo < K/(1—a).

Then using Lemma 3.1.2, we have || T, J{|l < K/(1 — a) and continuing inductively,
the same bounds hold for | T T leoy t = 1,2,...,¢(h). And since T} = JF, we have

178/2lle = 175 110 = I T2l < K/(1 —).
O

Lemma 3.2.2 There exists a constant c, independent of o and ¢, such that t(h) <
c/|log |, for h = ho/2,ho/4,.

63

Proof Fix some h € {ho/4,ho/8,...,hs} and let J = Tt(Zh) o sne (Thus, J is the
function available just before the last iteration at gnd-—level 2h.) Then, Eq. (3.2.4)
yields

2K'h
a(l —a)’
Using the triangle inequality and Eq. (3.2.9), and Theorem 2.4.2, we have

| Tond — J | < (3.2.9)

1T Tond — Tand || o
S NTwTond — TTond |leo + | TTend — TonTond l|oo + || TenTond — Tonloo
<N TwTond = TTond oo + (| TTond — TonTond ||oo + ol Tond — Iloo
2K'h
a(l —a)’
(3.2.10)

We have | Tond |0 = ||JF|lee < 7%= (cf. Lemma 3.2.1). Using this inequality in
Eq. (3.2.10), we obtain

< (K1 + oKy || Tond ||oo)b + (K1 + aKo||Tond]|eo)2k + o

K

! !
)h+ 2K'h < 5K
—a

l-a) " 1-a

where the last inequality follows from the fact K’ = K, + K, K [cf Theorem 2.4.2].
Note that the left-hand side of Eq. (3.2.11) is equal to || ThJf — J{|[co. Therefore,
using Eq. (3.2.11) and the fact that T} is a contraction operator, with contraction
factor a, we obtain

|1 T Tond — Ton|loo < 3(K: + aK - h, (3.2.11)

. . - 5K’
1T, — T4 e < @ T = Jiflen < 021

Te——h. (3.2.12)

In particular, if ¢ is chosen so that 5a' < 1, then the termination condition of
Eq. (3.2.4) is satisfied. This shows that ¢(h) is no larger than the smallest ¢ such
that 5a‘ < 1 and, therefore, t(h) < ¢/|log a|, where ¢ = log 5.

The proof for the case h = hy/2 is identical, provided that we define J = Jh /2=
Jr,. We then have | Tond — Jlw = (T I, — Ji |l = 0 and inequality (3.2. 4) is
trivially true. The rest of the argument holds without any changes. O

Note that at each grid-level h we start with a function J{ that is simple on S,
and, therefore, simple on Sj. Since only simple functions are involved, Lemma 3.1.1
provides an estimate of the complexity of each iteration. Using also Lemma 3.2.2
to estimate the number of iterations at each grid-level, the total complexity of the
algorithm is

Cyun(a,€) = 0 (“0; 7 [(1/R)m ™ 4 (1/2Rh 2+ 4 (1/4hg)2m4m .. .])

1 1 11
=0(|loga| [h_f] [1+_2_+Z+.”])

64

=© (no; e M) | G219

[The last step in Eq. (3.2.13) uses the relation 2y = Q(e(1 — a)?) which is a conse-
quence of the termination criterion (3.2.6).] Note that we have ignored the compu-
tations involved at the first grid-level ho. This is justifiable because we can compute
Jii, with a number of operations that is independent of o and € (for example, using
linear programming or policy iteration) and let JF = j,*;o. In practice, we might only
compute an approximation of j,:o, for example, by using the successive approxima-
tion algorithm at grid-level ho. It is easily verified that such a modification does not
change our complexity estimate.

The Special Case

We now assume that Assumption A.4 is in effect and the problem satisfies a k-stage
ergodicity condition. The algorithm is almost the same except for the following
differences. The initial grid-size ho is chosen to satisfy ho < hj, where A is the
constant of Theorem 2.4.1. Furthermore, at any grid level A, we do the following.
Starting with an initial estimate J{, we compute T¥**'J{ for t = 1,2,...,t(h), where
t(h) is the smallest positive integer such that

2K"h

T t(h

where K" is the constant of Theorem 2.4.3. We let [cf. Egs. (3.1.7)]

Fkt(h @ kt(h —kt(h
JF = T:t()+1J’{ n T —a) [ght(1y Cht()+1] ,

which is our final estimate at the current grid-level. Then Eq. (3.1.8) yields

17t = IF e < =& gt e gry < G=0)® g Is-
“2(l—-a)'h h = 2(1-a)

The termination criterion of Eq. (3.2.6) is replaced by

K'h €
< = 3.2.14
l—a~ 2’ ()
The proof of termination is the same as in the general case (except that we use II-1ls
instead of || - ||co). Correctness of the algorithm also follows similarly, except that we

have to invoke Theorem 2.4.3 instead of Theorem 2.4.2. We now bound the number
of iterations at each grid-level.

Lemma 3.2.3 For h € {ho,ho/2...,hs} and every t € {1,2,...,¢(h)}, we have
| TE+1 Il < 2(k + 1)K/p. In particular, |JF||s < 2(k + 1)K/p.

65

Proof The proof is similar to the proof of Lemma 3.2.1, except tha_t we use
Lemma 3.1.3 instead of Lemma 3.1.2 and the fact that ||J 5lls = [|J3 plls <
2(k+1)K/p. 0O

Lemma 3.2.4 Under the ergodicity condition (Assumption E.3), there exists a con-
stant ¢, independent of a and €, such that t(h) < ¢, for h = ho/2,ho/4,..., k.

Proof The proof is identical with the proof of Lemma 3.2.2. The only differences

are that, under Assumption A.4 and the k-stage ergodicity condition, Eq. (3.2.12)
gets replaced by

IR T = TRt Jillls < (1= p)||Tndi — Jills-

As a is replaced by the absolute constant 1 — p, it follows that ¢(k) is also bounded
by an absolute constant independent of a. O

We now use Lemma 3.2.2 to estimate the complexity of the algorithm. We obtain

Crrie(a, €) = O ((1/hg)™™ + (1/2hs)™ 4 (1/4hy)24 4 ..)
o (] b5
2n+m
-0 ([(1—1a>e]) ‘

We have used in the last step the fact hy = (e(1 — @)) which is a consequence of
Eq. (3.2.14). We summarize our conclusions:

Theorem 3.2.2 There holds
1 1 2n+m
C'en(ay 6) = O (llog al [(1 — a)zf]) H (3.2.15)

Cuu(a,€) = O ([ﬁ] mm) . (3.2.16)

Furthermore, the complexity of the multigrid successive approzimation algorithms pre-
sented in this section is within these bounds.

A comparison of Theorems 3.2.1 and 3.2.2 shows that the multigrid algorithm is an
improvement over its single-grid counterpart.

66

3.2.3 A Comparison with Other Multigrid Algorithms

We now compare our multigrid algorithm with other multigrid algorithms reported in
the literature and make some observations First, we compare our multigrid algorithm
with the algorithms reported by Akian, et al (1988) and Hoppe (1986). The main
differences are as follows:

1. The problems solved in these references are continuous-time problems that lead
to an elliptic partial differential equation, while we are dealing with discrete-
time problems that lead to an integral equation.

2. The algorithms of Akian, et al (1988) and Hoppe (1986) are based on policy
iteration, whereas we use successive approximation. The policy iteration algo-
rithm involves a “policy evaluation” step which amounts to solving the linear
equation 7,J, = J,, where p is a certain policy. It is then suggested that the
solution of this equation be carried out using a multigrid algorithm. Whereas an
algorithm similar to ours could be suitable for that task, the multigrid algorithm
of Akian, et al, (1988) and Hoppe (1986) is radically different. OQurs proceeds
from coarser to finer grids; in contrast the algorithm in these references moves
repeatedly up and down between different grids. This latter strategy is certainly
appropriate for the solution of certain partial differential equations, but it is un-
clear if it could be beneficial (theoretically) for the solution of discounted-cost,
discrete-time problems.

3. The complexity analysis in Akian, et al (1988) is carried out only for a spe-
cific example. Furthermore, the analysis is based on a heuristic correspondence
between policy iteration and Newton’s method, together with an implicit as-
sumption that Newton’s method converges very fast. [There is no complexity
analysis in Hoppe (1986), only the proof of convergence is shown.]

We now compare our multigrid algorithm with the adaptive aggregation and dis-
aggregation algorithm of Bertsekas and Castanon (1986).

1. The algorithm of Bertsekas and Castanon is for general finite-state problems
whereas ours is for finite-state problems which arise from the discretization of
Lipschitz continuous MDP’s.

2. Again their algorithm moves up and down the “grid”—the different aggregation
classes correspond to changes in grid-size—whereas ours only go from coarse to
fine.

3.2.4 Notes

Our multigrid algorithm is often called a one-way multigrid algorithm in the sense
that it only proceeds from coarse to fine grid. To use the algorithm for practical
problems, it should be modified (based on the problem) to exploit the special structure

67

of the problem. However, this algorithm, as it is, suits our purpose because it is easy
to analyze.

There may be practical reasons for choosing policy iteration over successive ap-
proximation. If policy iteration is employed, our multigrid algorithm may be still
used for policy evaluation. We will explore this topic further in Section 4.2.

On the other hand we only make use of the contraction property of the dynamic
programming operator. Thus our multigrid algorithm is applicable to general non-
linear fixed point problems. (This is the topic addressed in Chapter 5.) This may
not be the case with the other algorithms (based on policy iteration).

There is a simple intuitive reason for our grid-refinement criterion—we always
iterate until the discretization error is comparable to the approximation error. The
reason is that we should always iterate on the coarsest grid (which is also the cheapest
per iteration) until the discretization error of the grid makes it not worthwhile to work
on that grid. (This seems to be a general rule.) We will discuss this issue further in
Chapter 5.

3.3 The Information-Based Complexity of Markov
Decision Processes

In this section, we establish lower bounds on the computational complexity of com-
puting e-optimal cost functions of MDP’s and show that the multigrid successive
approximation algorithm described in Section 3.2 has optimal complexity in its de-
pendence on the accuracy parameter € and nearly optimal in the discount factor a.
Our results also show that the discretization error bounds of Section 2.4 are optimal.
First, we introduce the notion of information-based complexity.

3.3.1 Information-Based Complexity

Recall that the complexity of an algorithm is defined as the sum of
(a) the number of oracle queries made by the algorithm, and
(b) the number of arithmetic operations performed by the algorithm.

A very fruitful method for establishing lower bounds on the complexity of any algo-
rithm consists of lower bounding the number of queries that have to be submitted
for the desired accuracy to be attainable. The typical argument here is that if the
number of queries is small then the available information on the problem being solved
is insufficient. Accordingly, the least number of queries necessary is often called the
information-based complexity of the problem.

To distinguish the information-based complexity from the total complexity C, we
will use the superscript “info”; in particular, C** < C,

68

3.3.2 Simplifying Assumptions

We now introduce some simplifying assumptions which will be used throughout this
chapter. We consider the special case where the state space S = [0,1]" and U(z) =
U = [0,1]™ for all z € S. (Assumption A.3 is trivially satisfied by the assumption
that U(z) = U for all z.)

We also replace Assumptions A.2 and A.5 by the following (stronger) Assumption
A.8 |P(y|z,u)— Py |=',v)| < K||(y,z,u) — (¢, 2, 4')]|le, Vy,z€ S,ucl.

Throughout this section we will impose Assumption A.6. The problems considered
in Section 3.2 are more general than the special cases studied here; thus, the lower
bound to be derived in Section 3.3.4 apply more generally.

Finally we rewrite Assumption E.1 as follows:

E.1 There exists a constant p > 0 such that

/_-;ze’s?ii‘eu P(y|e,u)dy>p, YecSucl. (3.3.1)

[Under Assumption A.6, it can be shown that min,es, vev P(- | ,u) is a Lipschitz
continuous function on § and that Assumption E.1 above is equivalent to the As-
sumption E.1 given earlier in Section 2.6.]

Our computational task is completely determined by the functions P and g, the
discount factor , and the desired accuracy e. Accordingly, a tuple (P, g, a, ¢) will be
called an instance. In this context, a problem is a class of instances.

In this section, we will consider three different problems:

(a) Problem P,, that consists of all instances that satisfy Assumption A.4. [In
particular, P(- | z,u) is a probability measure for all (z,u).]

(b) Problem 7P.;,, that consists of all instances that satisfy Assumptions A.4 and
E.1. (That is, an ergodicity condition is also in effect.)

(c¢) Problem P,,,, that consists of all instances that satisfy Assumptions A.4' and
E.1. [That is, the ergodicity condition is still in effect, but P(- | z,u) is a
subprobability measure.]

3.3.3 Information-Based Upper Bounds

Let the dimensions n, m of the state and control spaces be fixed and let us view the
constants K and p of the assumptions as absolute constants.

Let us fix some € and a. The following upper bounds, together with discretization
procedures that stay within these bounds, are derived in Section 2.4:

C"(a,¢) = O (!) . (3.3.2)

(1= ape™

69

C2i(e) = O () (333)

Note that the upper bounds of Eq. (3.3.2) apply to C"F and C? as well, and the
upper bounds of Eq. (3.3.3) apply to C

info
mix1°®

3.3.4 Information-Based Lower Bounds

We now prove that the upper bounds of Egs. (3.3.2)-(3.3.3) are tight, by establishing
the corresponding lower bounds. Our results rest on an “adversary” argument that is
very common in the study of information-based complexity [Traub, et al (1988)]. The
outline of the argument is as follows. Suppose that a certain algorithm makes at most
A queries. We consider a particular instance (P, g,a,¢) and we let X be the set of
triples (y,z,u) sampled by the algorithm when presented with that instance. We then
construct an alternative instance (P, §,a,¢) such that P(y | ¢,u) = P(y | z,u) and
g9(z,u) = §(z,u), for all (y,z,u) € X. The algorithm has no means of distinguishing
between the two instances and must produce the same output J in both cases. Let
J* and J* be the optimal cost functions for the two problems. If we can manage
so that ||J* — J*||w > 2¢, then at least one of the inequalities ||J — J*||o > € and
|J — J*|le > € must hold. Tt follows that the algorithm cannot succeed for all
problem instances, and therefore the information-based complexity of the problem is
larger than the cardinality of A.

Theorem 3.3.1 (Lower bound under Assumptions A.4 and E.1) For any K > 0,
p € (0,1), m, and n, we have

Cre () = 9([@] m) -

curr-a(af)

Proof We only prove the result for the case K = 1 and p = 1/2. The proof for the
general case is identical except for a minor modification discussed at the end of the
proof. Let us also fix the dimensions m, n of the problem. Throughout the proof, an
absolute constant will stand for a constant that can only depend on m, n, but not on
any other parameters.

We fix some € > 0 and some a € (1/2,1). Let us consider some algorithm that is
correct for the problem P,;,, and suppose that the number of queries is at most A for
every instance with those particular values of a and ¢. We will derive a lower bound
on A.

We choose a positive scalar § so that 1/ is an integer multiple of 16 and such
that

It follows that

1

< —
_6()

1
=< + 16, (3.3.4)
bo

| =

70

where § satisfies

1

A= ——.
Ira

(3.3.5)

We partition the set § x § x U into cubic cells of volume §2**™. (In particular,
there will be 1/62"*™ cells.) This is done by first specifying the “centers” of the cells.
Let S be the set of all z = (z1,...,2,) € S such that each component z; is of the
form z; = (t + (1/2))é, where ¢ is a nonnegative integer smaller than 1/§. Similarly,
we let U7 be the set of all © = (#1,...,um) € U such that each u; is of the form
u; = (t 4+ (1/2))8, where again ¢ is a nonnegative integer smaller than 1/§. For any
(7,%,4) € § x S x U, we define the cell 4,4 by letting

L §
Coaa={(v,2,u) € Sx S x U | ||(3,2,4) — (§,3,) |0 < 5}

Clearly, the cardinality of S and U is 1/6™ and 1/6™, respectively. It follows that
there is a total of 1/ 62"j‘m cells. Note that distinct cells are disjoint.

For any (§,%,4) € § x § x U, we define a function Egz4: S x S x U — R, by
letting

0 if (y,z,u) ¢ Cyz.4;
Ejsa = .. - e T 3.3.6
wea(y | 2) {% — (s 2y u) = (9, 2,4)||0 if (y,z,u) € Cpea- ()
Thus, Egz,q is just a “pyramid” of height §/2 whose base is the cell C ;4. The triangle
inequality applied to the norm || - ||o shows that for all (y,z,u), (y',2',u') € Cyz.4,

|Egsa(y | 2,u) — Egaa(y’ | 2',v) < [|(y,2,u) — (¢, &', u') | oo

Thus, Ey ;4 satisfies the Lipschitz continuity Assumption A.6 with Lipschitz constant
K =1, on the set Cy;z 4. The function Ey; 4 is continuous at the boundary of Cy s 4
and is zero outside Cy s 4. Thus, Ey; 4 is obtained by piecing together in a continuous
manner a Lipschitz continuous function and a constant function. It follows that Egs.4
is Lipschitz continuous on the set S x S x U, with Lipschitz constant 1.

We define an instance (P, g, a,¢€) by letting

g9(z,u) = x4, V(z,u) € S x U, (3.3.7)
and
P(y | z,u) =1, Y(y,z,u) € S xS x U. (3.3.8)

It is easily seen that this instance satisfies Assumptions A.1-A2, A.4, A.6, and E.1
with K =1 and p = 1/2.

Bellman’s equation reads

J(e) = o1+ a [J(y)dy. (3.3.9)
s
A simple calculation shows that the function J* defined by
(z) = _
JH(z) = o1 + o) (3.3.10)

71

is a solution of (3.3.9) and according to the discussion of Section 2.2, it is the unique
fixed point of T.

Let X be the set of points (y, z,u) sampled by the particular algorithm we are con-
sidering, when it is faced with the instance (P, g, a,€). In particular, the cardinality
of X is at most A. Using the definition of § [cf. Egs. (3.3.4)~(3.3.5)], the cardinality
of X is at most 1/(46%"+™).

We say that a cell Cy s, is sampled if the intersection of X and Cy 4 4 is nonempty.
Otherwise, we say that Cy s g is unsampled. We say that some (#,4) € § x U is well-
sampled if there exist at least 1/(26") elements § of S for which the cell Cj ;4 is
sampled. Otherwise, we say that (Z,%) is badly sampled. Since the total number
of samples is bounded by 1/(46?"*™), there exist at most 1/(26"*™) well-sampled
elements (#,4) € S x U. Therefore, there are at least 1/(26"*™) badly sampled
(#,). For each & € § there are at most 1/6™ possible choices of @ such that (Z,)
is badly sampled. This shows that there exists a set SBAD C S of cardinality 1/(26™)
such that for each # € S5, there exists some ji(z) € U for which (%, i(£)) is badly
sampled.

We will now construct a second instance. The cost function g is left unchanged
[cf. Eq. (3.3.7)], but we modify the probability density on some of the unsampled
cells. This is done as follows. Let us fix some & € Sg,p. By the definition of Sy, and
(&), if we keep & fixed and vary §, we find at least 1/(26™) unsampled cells of the
form Cy s s(z)- We sort these unsampled cells in order of increasing §; and we let ¢ be
the median value of ;. We refer to those cells for which §; < ¢ (respectively, §; > c)
as low (respectively, high) cells. Let ¢ = c—(1/16) and € = c+(1/16). We discard all
unsampled cells Cl z 5z) for which ¢ < §; < €. Thus, the number of discarded cells
is bounded by 1/(86™). Since we started with at least 1/(46™) low unsampled cells,
we are left with at least 1/(86™) such cells. By discarding some more low unsampled
cells (if needed), we can assume that we are left with exactly 1/(86") unsampled low
cells. By a similar argument, we can also assume that we are left with exactly 1 /(86™)
unsampled high cells. Let Q%(Z) [respectively, Q¥ (&)] be the set of all § € S such
that Cj s 5(s) is a low (respectively, high) unsampled cell that has not been discarded.
This procedure is carried out for each & € Sy,,.

We define
P(y|z,u)= Py |z,u) + E(y|z,u) =1+ E(y | z,u), (3.3.11)
where
E(y|z,u) = Z Eys,53)(y | T, u) — Z Egs.005)(y | 2 u).

#€3pan, TEQL(2) #€5pap, §EQH(3)
(3.3.12)
In words, we add a pyramid at each low unsampled cell and we subtract a pyramid
at each high unsampled cell. This has the effect of shifting the transition probability
distribution closer to the origin, with a consequent decrease in the cost incurred after
a transition.

We verify that our perturbed instance (f’,_q,a,e) satisfies the required assump-
tions. Since each pyramid is Lipschitz continuous with Lipschitz constant 1, and since
distinct pyramids are supported on distinct cells, it follows that Assumption A.6 is
satisfied with K = 1. Furthermore, for each (z,u), the number of added pyramids is
equal to the number of subtracted pyramids. For this reason, [¢ E(y | z,u)dy = 0
and P satisfies Assumption A.4. Finally, the height of each pyramid is §/2. Since
§ < 1, we have P(y | z,u) > 1 — (§/2) > 1/2. This shows that Assumption A.4 and
Assumptlon E.1 (with p = 1/2) are satisfied.

Our next task is to estimate the optimal cost function J* corresponding to the
perturbed instance (P, g, a, €). Let

B = {:L‘ € S | 3% € Spap such that ||z — 2| < g}

Forany ¢ € B, welet u(z) = ji(#) where & is the element of S ,p for which ||z —&||e <
8/4. For any = ¢ B, we let u(z) = 0. We now consider the quantity

() = [9W)B(y | 2,u(=)) dy (3.3.13)

that can be interpreted as the effect of the perturbation on the expected cost after
the first transition, when the control is chosen according to the function u.

Lemma 8.3.1 For each ¢ € S, we have e(z) < 0. Furthermore, there ezists a
positive absolute constant k such that e(z) < —«8, for all z € B.

Proof Using Egs. (3.3.12) and (3.3.13) and the definition of g, we have

e(z) = > [gylEg,i,ﬁ(i)(y | z,u(z))dy

&#€8pap, 9EQL(%)

- Z /s N Eﬂ,-‘z’:,ﬁ(a"z)(y idz, p(z)) dy.

8#€3gap, JEQH(E)

(3.3.14)

For any z ¢ B, we have pu(z) = 0 which implies that E(y|z,u(z)) =0 and e(z) = 0.
Let us now ﬁx some ¢ € B and let & be the corresponding element of Sy,p. Then,
Eq. (3.3.14) becomes

@)= ¥ [nBeuolnn@)dy— 5 [nBeuny]zue)dy.
geQr(z) geQH(2)

(3.3.15)
Let us consider the summand corresponding to a particular § € QL(z). We only need
to carry out the integration on the set Y(7) = {y € S| ||ly—F|lcc < §/2} (instead of the
entire set §) because Ey ; 5(5)(y | z,u) vanishes when y ¢ Y (§). For y € Y(§), we have
y1 < §1+6/2 < c+6/2 We now use the definition of the function Eys 55y | z, p(z))
[cf. Eq. (3.3.6)], together with the property u(z) = fi(Z), to conclude that

é
[sylEg,i,ﬁ(i)(y |z, u(z)) dy < (Q+ E)I(m)’

73

where
1) = [, (4 - el =l = 71=1) (33.19))

It is clear that the value of I(z) is independent of the choice of §, which justifies our
notation. By a symmetrical argument, each one of the summands corresponding to
g € QH¥(z) is bounded below by (T — §/2)I(z). Since each one of the sets QY (%),
QL(z) has cardinality 1/86™, it follows from Eq. (3.3.14) that

1
< —(c—c¢c— — < -
where the last inequality follows because T— ¢ = 1/4 (by construction) and § <1 /16
(by definition). We now bound I(z) for « € B. We have ||z — Zleo < 8/4 the
integrand is always nonnegative, and is at least §/4 for every y belonging to the set
{yeSily- e < §/4}. Therefore, for ¢ € B, I(z) is bounded below by §/4 times
the volume of the set {y € Sy — dlle < §/4}. This set is an n-dimensional cube,
whose edges have length §/2. Thus, we obtain
6n
Combining with Eq. (3.3.17), we obtain

5
<
(o)< 1o PP

Vz € B, (3.3.17)

which proves the desired result. O

Lemma 3.3.2 There ezists a positive absolute constant k' such that
fB plylau)dy 2 K, Vo €S VuE U.

Proof The function P is bounded below by 1/2, as shown earlier. Thus, it suffices
to show that the volume of B is bounded below by some absolute constant. Note
that B consists of 1/ (26™) cubes of volume (§/2)", and the result follows. m

Let T' be the dynamic programming operator associated with the instance (P,g). We
have

F7(z) = 9(z) + amin [T @)PWIZ W)W
< g(z)+a fs J*(y)P(y |z, u(z)) dY
SN AL R [@Bz, n(=) b
_ (o) +a [T @By @) &

_ () o [nB@leE) & 5y [Bz (o) by
= J*(‘B) + ae(m)a

(3.3.18)

74

where we have used the fact that J* satisfies Eqs. (3.3.9) and (3.3.10), the definition
of e(z) [cf. Eq. (3.3.15)], and the fact that [E(y|z,u(z))dy = 0. It follows that

TJ*(z) < J*(z), Vze€S, (3.3.19)

TJ*(z) < J*(z) — aké, Vz € B, (3.3.20)

where « is the constant of Lemma 3.3.1. Let T be the composition of ¢ copies of T
and let B = {x € S|z ¢ B} be the complement of B. We have

17J*(2) = 9(2) + amip [77" (4)P(y |2,u) dy
< g(2) +a [17'@)P(y|2,u(2)) dy
= g(@) +a [21 WP 2 u(e)) dy + o [TT°(4)Ply| 2, u(2)) dy
< 9(@) + [(J'() = and) P(y| 2, u(2)) dy + a [T"(0)P(y |2, u(z)) dy

= J*(z) + ae(z) — aZNE/B P(y|z,u(z))dy
< J*(z) — a®kéK/, Vz € S. (3.3.21)

[We have used here the equality between the second and the last line of Eq. (3.3.18),
as well as Lemma 3.3.2.] By Proposition 2.2.1(c), we have T(J 4+ d) = ad+ T'J. (Here
the notation J + d should be interpreted as the function which is equal to the sum
of J with a function on S that is identically equal to d.) Using this property and
Eq. (3.3.21), we obtain

T30 () < T2J*(z) — a®kék' < J*(z) — o?k6K' — a3kbK/, Vz € S.
We continue inductively, to obtain
TtJ*(z) < J*(z)—(1+a+a®+---+a'"2)alkér/, t=2,3,..., Ve € 5. (3.3.22)

Taking the limit as ¢ — oo, T*J* converges to the optimal cost function J* of the
perturbed instance, and Eq. (3.3.22) implies that

2

J*(z) < J*(z) — 1‘1

LT Vz € S. (3.3.23)

[0

Note that the perturbed instance coincides with the original one at all points
sampled by the algorithm. For this reason, the algorithm will perform the same
arithmetic operations and will return the same answer for both instances. That
answer must be an e-approximation of both J* and J*. It follows that ||J* — J*||s <
2¢. Therefore,

a?

kK’ < 2e.

—

75

Since a > 1/2, we obtain
§ < d(1 — a)e, (3.3.24)

where d is some absolute constant.
For € < 1/(32d), we obtain § < 1/32 or 1/(26) > 16. Thus, using Eq. (3.3.4), we
have 1/80 > (1/8) — 16 > (1/6) — (1/26) = 1/(26), and Eq. (3.3.5) yields

1 v 1 _q (1)
AT T 4(28) T 4(2d(1 — a)e)™™ T \((1 — a)e)™t™)

When the theorem is proved for general values of K and p, it is sufficient to
multiply the pyramidal functions of Eq. (3.3.6) by a factor of min{K,1 — p}. It is
then easily seen that the perturbed problem satisfies Assumptions A.1-A.2, A.4, A.6,
and E.1 for the given values of K and p and the proof goes through verbatim, except
that certain absolute constants are modified. O

A

In our next result, the ergodicity condition, Assumption E.1, is removed. It will be
seen that this allows us to obtain a larger lower bound.

Theorem 3.3.2 (Lower bound under Assumption A.4) For every m, n, there ezists
some K such that

Ci':::(e,a)=9(L);

(1~ a)ze)’™m

Cuu(e,0) = 0 (L) .

(1= e

in particular,

Proof The structure of the proof is similar to the preceding one. We fix n, m, and
some K that will depend on n in a way to be determined later. An absolute constant
is again a constant that depends only on m and n.

We fix some ¢ > 0 and some & € (1/2,1). We consider an algorithm that is correct
for the problem P (for the given values of m, n, K) and suppose that the number of
queries is at most A for every instance with those particular values of a and e.

We choose a positive scalar é so that 1/ is an integer multiple of 9 and such that

1 1

— < =< =409, (3.3.25)
bo

= &

S

where §, satisfies
1 /2\" 1
A=1 (-) . 3.3.26
5\9 6‘3n+m ()

We partition S x S x U into cubic cells of volume 1/§2"*™ exactly as in the proof of
Theorem 3.3.1 and we use the same notations S, U, Cy 5.4, and Ej s 4.

We define the first instance to be considered. Let Fy, F,G : [0,1] — R be the
functions shown in Figure 3.3.1. We define a function H : [0,1] x [0,1] — R by letting

H(y | z) = Fi(y)G(z) + F>(y)(1 - G(z)), Vz,y €[0,1].

76

P

Fi(z) Fy(z G(z),

JERN

= 0 2 =
3

T 0

S
ot
M Ly
wind]
N=IEN) o

ol

Figure 3.3.1: Functions used in the lower bound proof of Py
The functions Fj, F,, and G. The maximum value a of F; and F, is chosen so that
fa Fi(z)dz = [Fo(z)dz = 1. In particular, 3 < a < 9/2.

We finally let

P(y | z,u) = [[H(y: | =), Y(y,z,u) € S x 5 x U, (3.3.27)

i=1

where z; and y; is the ith component of z and y, respectively. As for the cost function
g, we only assume that g(z,u) = 1forall z € [0,1/3]” and u € U, and that g(z,u) = 0
for all z € [2/3,1]" and v € U.

We verify that Assumptions A.1-A.2, A.4, and A.6 are satisfied. The function
P is certainly nonnegative. Furthermore, F; and F; integrate to 1. Consequently,
JoyH(y | z)dy = 1, for all z € [0,1]. Thus, for any z, u, P(- | z,u) is a product of
probability measures [cf. Eq. (3.3.27)] and is itself a probability measure. Note that
Fy, F; and G are Lipschitz continuous. It follows that P is also Lipschitz continuous
with Lipschitz constant K, provided that the absolute constant K is taken large
enough. Concerning the function g, we have not specified it in detail, but it is easily
seen that there exist Lipschitz continuous functions satisfying the requirements we
have imposed on g.

Note that the Markov chain corresponding to P has the property that if the
current state is in the set [0,1/3]" then the state stays forever in that set. The same
property holds for the set [2/3,1]™.

We now estimate J*(z) when = € [0,1/3]". While we could argue directly in
terms of the Bellman’s equation, the argument is much more transparent if we use
the interpretation of J*(z) as the optimal cost expressed as a function of the initial
state. Starting with some initial state in [0,1/3|", the state never exits that set.
Furthermore, g(z) = 1 for every = € [0,1/3]". This implies that

J*(z) = iat - l—i—a Ve € [0,1/3]". (3.3.28)

Lemma 3.3.83 There ezists a set Spap C [0,2/9]"NS of cardinality (2/9)"/(26™) with
the following property: for every & € Spap there ezists some i(&) € U and two sets
QL(z) C [0,2/9" N S, Q¥(z) C [7/9,1]" N S, of cardinality (2/9)™/(26™), such that
the cell Cy s n(s) is unsampled for every § € QX (z) U Q¥ (z).

77

Proof Let Sgoop be the set of all & € [0,2/9]" N S that do not have the desired
property. Since the cardinality of [0,2/9]"N S is (2/9)™ /6" it is sufficient to show that
Scoop has cardinality less than or equal to (2/9)*/(26™). We suppose the contrary,
and we will obtain a contradiction.

Fix some & € Sgoop. Then, for every @ € U we can find at least (2/9)™/(26")
values of § € S such that the cell Cy,s,a 1s sampled. This shows that the total number
of sampled cells is at least (2/9)*"/(46"t™). Using Eqs. (3.3.25) and (3.3.26), this
implies that the number of sampled cells is more than A, a contradiction. |

We now construct a perturbed instance. The cost function g is left unchanged. We

define)
P(y | a:,u) = P(y l w,u)+E(y I m,u),

where

E(y|z,u) = 2 Eysne)(y | z,u) — Z Egs,0)(y | z,u).
#€3pap, GEQH(2) #€3pap, 7EQL(E)
(3.3.29)

In effect, we are giving positive probability to certain transitions from the set [0,2/9]"
to the set [7/9,1]™. On the other hand, the property that the state can never exit
from the set [7/9,1]" is retained. The Llpschltz continuity of F and P implies that
P is Lipschitz continuous. Also P(- | z,u) is nonnegative and integrates to 1, for
reasons similar to those in the proof of Theorem 3.3.1 Thus, Assumptions A.1-A.2,
A.4, and A.6 are satisfied.

Let

B = {:c €[0,1/3]* | 3% € Spap such that ||z — &l < %}
Lemma 3.3.4 For every z € [0,1/3]|", we have

[B lzu)dy > w,
B
where k' is a positive absolute constant.

Proof Fix some z € [0,1/3]". Note that P(y | z,u) =], Fi(y:) > 3" > 3 for
all y € [0,2/9]". Since |[E(y | z,u)| < §/2 < 1, we conclude that P(y | z,u) > 2,
for all y € [0,2/9]". The set B consists of (2/98)"/2 cubes of volume (6§/2)". Thus,
the volume of B is bounded below by some absolute positive constant, and the result
follows. O

Let us now define pu(z) = ji() for all Z € B, where & is chosen so that ||z — || < §/4,
and we let u(z) = 0 for = ¢ B.

Lemma 3.3.5 For every = € B, we have

/ P(y | z,p(z))dy > K,
/3.1

where k is an absolute positive constant.

78

Proof For every § S, let V() = {y € § [y - §lleo < 6/4}. Fix some ¢ € B
and let Z be an element of Sp.p such that |z — Zlloo < 6/4. We have

P T () dy > By s a0 z,u(z))d
Sy 20 1 221(2)) V2 3 oy Faesfu |, ute)) dy

- ﬂEg’:(i) /1"(9) (g ~ max{|jz - Blloo, ||y — 37”«»}) dy

)

> —
seQr(z) 4 /Y (9)

dy.

The set Y(§) is a cube of volume (§/2)", the cardinality of the set Q¥ (z)is (2/96)"/2,
and the result follows.]

We now estimate the cost Jr(z) which is incurred if policy 7 = (u, p, .. .) is used, for
the case where z (0,1/3]". The corresponding Markov process zy evolves as follows.
Whenever z7 ¢ [0,1/3]", there is at least probability «' that the next state belongs
to the set B and there is a further probability of at least x§ that the state after one

more transition is in the set [2/3,1]". Once the latter set is entered, the state stays
forever in that set. We therefore have

Pr(z] ¢ [0,1/3]") < (1 - KK'§)T V> 1.

Since the cost is 1 on the set [0,1/3]" and 0 on the set (2/3,1])", we have
a(2) = 3_a'Pr(a"(t) € [0,1/3]")
t=0

<1+ Zat(l — ms’6)"‘1
=1 (3.3.30)

n a
I - a1 - krré)
14+ arkk's

S Tall sy YeE1/3n

The optimal cost function J* of the perturbed instance satisfies J* < ya and,
using Eq. (3.3.28), we obtain

J"(:z:)—j‘(m)2 1 1+ oakw's
1—-a l—a(l—mc’ﬁ)
s (3.3.31)

TS g TEE L/

Note that the class P..a contains the class P_.,. For this reason, the particular
algorithm being considered here js also a correct algorithm for the problem P

mix] *

In particular, all of the Intermediate results in the proof of Theorem 3.3.] apply to

the algorithm we are considering. We can therefore use Eq. (3.3.25) and conclude
that § < d(1 — a)e, where d is an absolute constant. (Actually, the definition of § is
somewhat different in the two proofs, but this only affects the absolute constant d.)
This implies that for € < 1/(k«'d), we have § < (1 — a)/(k~') or 1 — kk'§ > a. Using
this inequality in Eq. (3.3.31), together with the property @ > 1/2, we obtain

alkk'§ (ks'6)/4 1 kk'S

T(@) =T 2 T 2 (l—ap2 8(-afF

This inequality is similar to inequality (3.3.25) in the proof of Theorem 3.3.1, except
that 1 — o has been replaced by (1 —a)?. The rest of the argument is the same, except
for certain constant factors, and that 1 — « is replaced throughout by (1 — @)?.. O

Theorem 3.3.3 (Lower bound under Assumptions A.4' and E.1) For every m, n,
there is a choice of K and p such that

i) = 8 (e

Conlre) =0 («1 - a;e)’“*’") '

Proof The proof is almost identical to the proof of Theorem 3.3.2, and for this
reason, we argue informally. For convenience, let the state space S be the set [0,1/3]",
instead of [0, 1]”, and let P(y | z,u) be defined on that set as in proof of Theorem 3.3.2.
Then, P is a probability measure on the set [0,1/3]" and the corresponding function
J* is identically equal to 1/(1 — a). Note that P satisfies Assumption E.1. Let P be
as in the proof of Theorem 3.3.2, except that it is defined only for z,y € [0,1/3]".
For this reason, P is now a subprobability measure. The function J* for the current
problem is equal to the optimal expected discounted cost until the termination of the
stochastic process. However, the process considered here terminates exactly when the
process considered in the proof of Theorem 3.3.2 makes a transition from [0,1/3]" to
the zero—cost set [2/3,1]. For this reason, the function J* is the same as the function
J* in the proof of Theorem 3.3.2, and the result follows with the same reasoning. O

in particular,

Remarks:

1. Suppose that we replace the correctness requirement ||J — J*||, < € by the
requirement ||J — J*||, < ¢, where 1 < p < 0o and || - ||, is the usual L,-norm.
Then, Theorems 3.3.1-3.3.3 remain true, with exactly the same proofs. The
reason, is that in all of our proofs we have constructed our perturbed instances
so that J*(z) — J*(z) is “large” on a set whose measure is bounded below by
an absolute constant [cf. Eq. (3.3.23) or Eq. (3.3.31)]. But this implies that
J* — J* is also large when measured by the L,-norm and the proofs remain
valid, except that certain constants have to be changed

80

2. The lower bounds of Theorem 3.3.3 can also be proved for all values of the
constants K and p. The proof is similar except that we should let P(y|z,u) =
3" for all (y,z,u) € § x § x U, so that P satisfies the Lipschitz continuity
assumption for any value of K. Furthermore, the perturbing pyramids should
be multiplied by a factor that ensures that their Lipschitz constant is less than
K and that Assumption E.1 is not violated.

3. We are not able to establish the lower bound of Theorem 3.3.2 for an arbitrary
choice of K. There is a simple reason for that: if K is taken very small, then
Assumption E.1 is automatically satisfied and the best provable lower bound is
the one in Theorem 3.3.1.

3.3.5 Optimality of Multigrid Successive Approximation

The lower bounds of Section 3.3.4 agree with the upper bounds of Section 3.2.3.
Thus, we have completely characterized the information-based complexity of the ap-
proximate computation of J*. This leaves the further question of evaluating the
total complexity of approximating J*, when arithmetic computations are taken into
account (the total complexity).

Recall from Section 3.2 that by using a multigrid version of the iterative algo-
rithm J := T'J we have shown that the total number of arithmetic operations and
comparisons for P,., and P,,, are, respectively, given by

Cen=0 (|10;a| ' [(1 _1a)2€]2"+m)
:()(1_fa-[(1_}aye]h+m); (3.3.32)

Co=0 ([ﬁ} mm) . (3.3.33)

Thus, for problem P,,., we have an optimal algorithm. For the problems PreensPraby
and P,,,, multigrid successive approximation is within a factor of O ('1%3) from the
optimum. One might wish to close this gap but the prospects are not particularly
bright because (i) there are no effective methods for proving lower bounds tighter
than those provided by the information-based approach, and (ii) it will be shown
in Chapter 5 that no algorithm in a certain family of multigrid methods can have
complexity better than the one provided by Eq. (3.3.32).

Finally, we expect that our results can be extended to the cases where bounds
are imposed on second derivatives (more generally, derivatives of order r) of the
functions P and g. Of course, the bounds should change, with the exponent 2n + m
being replaced by a lower exponent, depending on 7.

81

3.4 Computing e-Optimal Policies

In this section, we consider the computation of an e-optimal policy, that is, a station-
ary policy whose expected cost is within € of the optimal. The main result of this
section is that the upper bounds of Section 3.2 and the lower bounds of Section 3.3
are applicable to this problem as well; furthermore, computing an e-optimal policy
is “as hard as” computing an e-optimal cost function (that is, the cost of computing
the former is within a constant factor of the cost of computing the latter, and vice
versa).

3.4.1 A Definition of e-Optimal Policies

Given a value of the discretization parameter h, we consider the set II, of all policies
at grid-level h [see Eq. (2.4.8)]. These policies are easy to deal with computationally
because they are simple functions on S,. Recall that if i € II,, we must have
fi(z) € Un(z) for all z € S. However, this does not always imply that p(z) € U(z);
that is, we have i ¢ II, in general.

To each /i € II,, we associate the operator T : B(S) — B(S) defined by

Tpd (2) 2 g(w, @) + @ [J(v)P(yle, i(e)) dy. (3.4.1)

[Note that, if 4 € II, this definition is consistent with our earlier definition of T}; see
Eq. (2.2. 8)] We also associate to fi the operator T : B(S) — B(S) defined by

Tod () % G (=, i(z)) + a[g J(y) Pu(yz, i(z)) dy. (3.4.2)

Similarly to T}, T, and T are monotone contraction operators and satisfy Proposi-
tion 2.2.1(c). (Under the more general Assumption A.4", T, and T} remain contrac-
tion operators.) Let J; and J be the fixed points of T- and TM, respectively. Note
that J; (respectively, J; 1) can be interpreted as the expected cost function associated
with stationary policy f for the original MDP (respectively, for the discretized MDP).

Finally, let € > 0. A function i : S — C is called an e-optimal policy if there
exists some h > 0 such that fi € I, ||[Jz — J*|lo < ¢, and ||J; — J*||eo < €.

3.4.2 Upper Bounds for Computing ¢-Optimal Policies

We now proceed to analyze the complexity of computing an e-optimal policy. We
will show that computing an e-optimal policy is “no harder than” (within a constant
factor in cost of) computing an e-optimal cost function; thus, the upper bounds of
Theorem 3.2.2 [Eqs. (3.2.15) and (3.2.16)] apply to the computation of an e-optimal
policy as well. To show this, we use the well known fact that the policy used in the
final iteration of successive approximation algorithm is basically an e-optimal policy.
The proof of this result depends on the following lemma (which is stated for the
general case when Assumption A.4" is in effect):

82

Lemma 3.4.1 (Under Assumption A.{") Let J be an element of B(S). Suppose that
fi € I, is a policy that attains the minimum in the formula for TiJ, that is,

ThJ(2) = gu(=,il2)) + @ [J3) Bulylo, fl(z))dy, Ve € 5.
(Equivalently, TpJ = TyJ.) Then for all h € (0, h,] there hold:
() 17 = Jallw < 22N Tnd — oo,

(b) 17z = Jallw < £25 (K1 + aKa|| Jal|eo)R,

where hq is the constant of the discretization conditions D.1 and D.2 (see Section 2.6)
and K, and K, are the constants of Theorem 2.4.2

Proof To prove (a), since T},J = Tﬁj , we have

1T = Jalleo < 195 = Thdlloo + | Tad — Jalleo
(8 - A A (84 - oA a
<_= _ J
S _a”ThJ Il + 7— a”T.uJ J oo

Ps ~ A N
=2 — Jo,
T —)

where we have used Eq. (3.1.2) to obtain the second inequality.
To prove (b), it is clear from the definition of T}, and T (and the proof of Theo-
rem 2.4.2) that

T3] — Tad||lw < (K1 + aKs||T||)h, VJ € B(S).

So, using Lemma 2.4.3 we obtain
- 1
1z = Jalle < 7= (K1 + aKa[|Jll0)b,
as required. O
We note that if Assumption A.4is in effect, then for any scalar ¢, we have Th(J +¢c) =

T-(J + ¢), that is, & is still a minimizing policy if the functlon J is shifted by any
constant. So,

75 — Jalle < 2—||Th(J +e)—(J+)

— (1 — a)¢|oo-

By letting ¢ = 2(1) [supw(ThJ J)(z) + inf (TpJ — J)(a:)] Lemma 3.4.1(a) can be
strengthened to yield

- - o - A -
19k = Jalloo < == IThd = Jls-

[Actually, under Assumption A.4 (or A4 and using a different proof, it can be shown
(see Section 4.2) that ||J} — Jallw < ||Jf — ThJ|lco, which implies the above bound.]

83

Moreover, under Assumption A.4, Lemma 3.4.1(b) can be strengthened to yield

- 1 o,
19a = Jallew < 3—— (K1 + 5 Ka||Jalls)h-

To use Lemma 3.4.1, suppose that we compute an e-optimal cost function for the
general case, using the multigrid successive approximation algorithm of Section 3.2.2.
Let J = T,:Eh’)_IJ,{f, so that Tj, fj corresponds to the last successive approximation
iteration [cf. Eq. (3.2.8)]. Let i be a policy that attains the minimum in Thf J. Then
by Lemma 3.4.1(a),

a4

”j;:, — Jalleo < T ||Th,j — Jlleo < € (3.4.3)

—

where the last inequality follows from Eq. (3.2.8). Furthermore, since ||Ja|jec < 75
we see from Theorem 2.4.2 and Eq. (3.2.7) that
1 K' €
- . < —he < - 4.
By Lemma 3.4.1(b),
. €
172 = Jalleo < 5 (3.4.5)
Lastly, the choice of hy [cf. Eq. (3.4.4)] ensures that the discretization error
* T €
% = Ji, lleo < 3 (3.4.6)
Using the triangle inequality and Egs. (3.4.3), (3.4.5), (3.4.6), we conclude that
* T - T T* T 3
1" = Jallew < 197 = Ji llew + 195, = Jallee < 3, (3.4.7)
17 = Talleo < NJ* = Jalleo + 1Tz = Jallo < 2e. (3.4.8)

(Thus, Egs. (3.4.7)-(3.4.8) show that ji is a 2e-optimal policy.) We note that a similar
reasoning yields the bounds of Eqgs. (3.4.7) and (3.4.8) for the special case where
Assumption A.4 is in effect and the ergodicity condition is satisfied.

We conclude that the work needed to compute an e-optimal policy is no greater
than that of computing an £-optimal cost function, and the upper bounds of Theo-
rem 3.2.2 apply to the computation of an e-optimal policy.

Let us now consider the problem of computing an e-optimal admissible policy,
that is, a policy u € II such that ||J, — J*|l« < €. This can be done, in principle, by
first computing an e-optimal policy (for some smaller €) and approximating it by an
element of II, and using the following lemma:

Lemma 3.4.2 (Under Assumption A.J") Let J € B(S), p € II, ji € 1. Then,

1Tud = Tad lloo < (K + aK || [loo)ll1t ~ &l o

84

Furthermore,
1 -
19 = Jalloo < 7——(K + aK || Tallee) It = ftllco-

For the special case when Assumption A.4 is in effect, the bounds can be strengthened
to yield
o ~
1T = Tadlleo < (K + S K| Ills)lle — lleos

1 o "
190~ Tl < T2 (K + SEal)l — il

Proof The first part of the lemma follows from the fact that |g(z, u(z))—g(z, i(z))|
and |P(y|z,u(z)) — P(y|z, i(z))| are both bounded by K||p — ji||e; the second bound
follows from Lemma 2.4.3.

By shifting J by the constant ¢ = —[sup, J(z)+inf, J(x)]/2, we obtain the second
part of the lemma.]

The computation of an e-optimal admissible policy x proceeds as follows. We first
choose a discretization parameter A which is small enough so that the discretization
error K'h/(1—ca)? is no greater that 5. We use the multigrid successive approximation
algorithm to compute an $-optimal cost function and, according to our earlier discus-
sion, we obtain as a by-product an {-optimal policy i € II; that is, || J* —J;||e < €/2.

We note from Lemma 2.4.1 that there exists some p € II such that ||u — fif|eo <
(K + 1)h; so, by Lemma 3.4.2, ||/, — Jillow < 72 (K + aK||Jalls)(K + 1)h. It
can be seen from the proof of Theorem 2.4.2 that K(K + 1) is less than K, and K.
Proceeding as in Eq. (3.4.4), we obtain ||J, — Js||w < §. So, by the triangle inequality,

€ €
1° = Tulles < 10° = Tallaw + 1z = Tullw < 5+ 5 = 2.
Thus, J,, is indeed an e-optimal admissible policy, as desired.

If the method in the preceding paragraph is to be used, we must be able, given
any i € I, to compute an admissible x € IT such that |2 — pt]|o is smaller than c;h,
for some constant ¢;. This is, in general, impossible under our model of computation;
in fact, it is even impossible, in general, to represent an element of II using a finite
data structure. On the other hand, for problems that arise in practice, the sets U (z)
often have a simple structure and this task is feasible. In those cases, the computation
of an e-optimal admissible policy is no harder than the computation of an e-optimal
cost function.

3.4.3 Lower Bounds for Computing e-Optimal Policies

We observe that an e-optimal policy, by definition, determines the optimal cost func-
tion J* to within ¢; so, the lower bounds of Theorems 3.3.1-3.3.3 apply to the compu-
tation of an e-optimal policy as well. It remains to argue that computing an e-optimal
policy is “no easier than” computing an e-optimal cost function (that is, the cost of
computing latter is within a constant factor of the cost of computing the former).

85

For the special case where an ergodicity condition is imposed, the upper bound for
computing an e-optimal cost function is within a constant factor of the lower bound
[cf. Egs. (3.2.16) and (3.3.33)]. We conclude that computing an e-optimal policy is
no easier than computing an e-optimal cost function. Thus, we have shown that for
problems satisfying an ergodicity condition, computing an e-optimal policy is as hard
as computing an e-optimal cost function.

We now consider the general case. We fix a and concentrate on the dependence
on €. The upper bound for computing an e-optimal cost function is within a constant
factor of the lower bound [cf. Egs. (3.2.15) and (3.3.32)]. Arguing as in the preceding
paragraph, we conclude that, with respect to the dependence on €, computing an
e-optimal policy is as hard as computing an e-optimal cost function. But because of
the “gap” of O (ii_a) between the upper and lower bounds, we cannot draw the same
conclusion for the dependence on aj a different argument is needed.

The basic idea of the argument is as follows. We will show that if an £-optimal
policy is available, then an e-optimal cost function can be quickly computed (with
complexity better than the lower bound). Thus, an algorithm can first compute an
3-optimal policy, then use the policy to compute an e-optimal cost function with
total computational cost within some constant factor of the cost of computing the
policy. It follows that computing an e-optimal policy is no easier than computing an
e-optimal cost function.

To use the method described in the preceding paragraph, additional assumptions
are required. First, we define

1
H(a,e€) = {h € (0,1) | A > W(l —a)ze} , oa,e€(0,1),
where K’ is the constant of Theorem 2.4.2. It is clear from the discussion in Sec-
tion 3.4.2 that, for any discount factor @ < 1 and accuracy parameter € > 0, there
exists some h € H(a,¢€) such that II;, contains an e-optimal policy. We next introduce
the assumptions:

C.1 The dimension of the control space m is at least 1.

C.2 For any ¢, the e-optimal policy i belongs to I, for some h € H(a,¢). [That is,
we consider only e-optimal policies that are simple on a grid of size in H(a,e€).]

Note that Assumption C.1 excludes problems with finite control space. And we “need”
Assumption C.2 to ensure that the policy under consideration is not unnecessarily
complicated and can be used to quickly compute an e-optimal cost function.

For the remainder of the discussion, Assumptions C.1-C.2 will be in effect. Let
be an {-optimal policy and J°(z) = 0 for all z € S. From the successive approxima-
tion error bounds [cf. Eq. (3.1.2)], if J¢ = T£J°, then

t _ t
|Z5° = I < =

15 = THleo < —

T (1-aw aK’

86

where we have used the fact that ||T;J%| < K.
We now apply T, on J° for t times, where ¢ is the smallest integer such that
i—_aK < 5. This ensures that ||J; — J!|| < £, and by the triangle inequality,

17 = Jtllee < JI1I* = Jalleo + 1z = Tl < €.

Thus, J* is an e-optimal cost function, as desired.
To bound the complexity of computing J*, it is seen (cf. Section 3.2.1) that

t:o(w).

l—«a

And by Lemma 3.1.1, the cost of an iteration of T} is O (h‘(”"'"‘)), which by As-

sumption C.2 is O (=) Thus, using the $-optimal policy, we can compute an
e-optimal cost function with cost

0 log ({I=a)e a)e mm
l—a (1- a)2 ’

which is less than the lower bound ([H%)’?] 2n+m) . This completes the proof that

under Assumptions C.1 and C.2, computing an e-optimal policy is no easier than
computing an e-optimal cost function. Hence, we have shown that for problems not
assumed to satisfy an ergodicity condition, computing an e-optimal policy (under
Assumptions C.1 and C.2) is as hard as computing an e-optimal cost function.

3.5 Extensions

We have completely characterized the computational complexity of MDP’s—both the
information-based and the total complexity. We have shown that multigrid successive
approximation is within a factor of O ('1%&) from the information-based lower bound
and is actually optimal when the MDP satisfies certain ergodicity conditions. We
have also shown that computing an e-optimal policy is in a certain sense as hard
as computing an e-optimal cost function. We discuss here certain extensions of our
results.

3.5.1 Fredholm Equations of the Second Kind

A Fredholm equation of the second kind is an equation of the form

9(2) + [Gla,0)I(y) dy = I(v),
where § is a bounded subset of R™, g and G are given functions, and J is the unknown.

87

The numerical solution of this equation has been well studied (see, for exam-
ple, Hackbusch (1985), Schippers (1979), and Werschulz (1985) and the references
therein). Let us assume that G is a bounded function and that [4|G(z,y)|dy < o
for all z € S, where o € (0,1). If we let P(y|z) = G(z,y)/«, it is clear that we
are dealing with the general problem when Assumption A.4" is in effect, except that
the the control variable u is absent. (Thus, m = 0.) It follows that (under Lip-
schitz continuity assumptions) our multigrid algorithm can be used to compute an
e-approximation of the solution and has complexity

0 (Ilo;al [(1 -laye]h) |

Furthermore, the lower bound becomes

([m]):

and therefore our algorithm is optimal as far as the dependence on ¢ is concerned.
Multigrid algorithms for Fredholm’s equation can also be found in Hackbusch
(1985) and Schippers (1979), and they are different in the following respects. First,
the algorithms in these references are more general because they do not require a
contraction assumption. Furthermore, these algorithms perform computations on
fine grids and then use certain coarse-grid corrections. This is in contrast to our
method that only proceeds from coarse to fine grids. According to our results, for the
problems we are considering, our method has optimal dependence on the accuracy
parameter € and close to optimal dependence on a. (Note that a can be viewed as a
measure of ill-conditioning of the problem.) It is unclear what the a dependence of

the algorithms in Hackbusch (1985) is.

3.5.2 Different Error Criteria
Let us consider the L,-norm on B(S) defined by

171, % [1wpa]”, pe oo

Since the volume of S is bounded by 1, it is easily shown that |[J||, < ||J||e for
any J € B(S) and any p € [1,00). For this reason, the function J returned by our
algorithms automatically satisfies ||J — J*||, < e.

We have shown in Section 3.3 that the lower bounds on the computational com-
plexity of the problem do not change when L,-norms are used to measure the error
J — J*. It follows such a different choice of norm does not affect the optimality
properties of our algorithms.

88

Chapter 4
Further Results

In this chapter we present some further results on the computational aspects of
Markov Decision Processes (MDP’s). The results here are of an exploratory nature,
suggesting potential future research.

An outline of this chapter is as follows. In Section 4.1, we introduce another model
of discrete-time stochastic control that is more general than the model discussed in
Chapters 2 and 3. We show that this model is computational harder. In Section 4.2,
we discuss the policy iteration algorithm and look at some unresolved issues regard-
ing the complexity of a policy-iteration-based multigrid algorithm. In Section 4.3, we
discuss average-cost problems. We show that these problems are, in general, compu-
tationally ill-posed. We give a condition for well-posedness, and show that multigrid
successive approximation is optimal under this condition. In Section 4.4, we discuss
some simple numerical experiments comparing single-grid and multigrid successive
approximations. In Section 4.5, we summarize the main open problems in the first
part of this report (Chapters 2-4) and pose some questions that will be addressed in
the second part (Chapter 5).

4.1 Another Discrete-Time Stochastic Control Model

In this section, we discuss another discrete-time stochastic model which we call the
f-model. Although for finite-state problems, this model is equivalent to the model
studied in Chapters 2 and 3 (which we call the P-model), the f-model is computa-
tionally “harder”.

Before discussing the f-model, we first look at another class of discrete-time control
problems—deterministic problems.

4.1.1 Deterministic Problems

In Section 2.4, we have seen that the presence of noise (an ergodicity condition)
reduces discretization error; we now show that its absence increases the error.

In deterministic problems, the dynamics of the system with state space S and
control space C are described by a mapping f : $ x C — S, and the cost function by
a real-valued function g : § x C'— R. Let II denote the set of all policies x : S — C.

89

(We can also introduce constraint sets as in MDP’s.) The optimal cost function is
given by

oo

J*(zo) = min Zatg(:ct,ut(a:t)), zo € S,

(moype1) €M i—o

subject to ¢y = f(z¢,u,) for all integer ¢ > 0. It should be clear that the P-model
does not include deterministic problemns as a special case. (Assumption A.2 excludes
them.)

We now show that the discretization error bounds of Section 2.4 do not apply to
deterministic problems.

To keep things simple, let § = [0,1] and C' = {0} (no control). Let

_JKz ifz<1/K
f(z) = { 1 otherwise,

and g(z) =z, forall z € S. If a K > 1, we show that the optimal cost function J* is
not Lipschitz continuous at z = 0.
To see this, let §; = K~*, for some positive integer ¢. It is clear that J*(0) =0
and we have -
J(8) =Y ot [K's A 1]
t=0

=5i(1+(aI{)+...+(QK)i~l)+ia¢

t=1
/¢ i 7
= 61.(ch1_ + L
(aK)~1 1-a
Therefore, there cannot exist a constant L, such that
[J*(z) — J*(0)| < Lz, Vz € [0,1].

Thus, J* is not Lipschitz continuous at z = 0 and the discretization error bounds of
Section 2.4 do not apply.

4.1.2 The f-Model

We now discuss the more general f-model which includes deterministic problems as
a special case. For the f-model, the dynamics are described by f:SxCxDw~ S
where, as before, S and C are the state and control spaces, respectively; D is the
disturbance space (which is a measurable space).

For any integer ¢ > 0, the dynamics are given by

Ty = f(wt,ut,wt), Tiy1,2s € S, U € C, wy € D.

The variable w; represents the noise and has probability density P(- | z;,u,).
The optimal cost function is given by

J*(z) = inf E {Z o' g(zs, () | o = w} , z €S,
t=0

(#0,21,...) €T

90

where g : § x C' — R is the cost function.

It is clear that even if we impose Lipschitz continuity conditions on g, f, and
P, the f-model includes deterministic problems as a special case—just let f(z,u,w)
be independent of w. Therefore we conclude that the discretization error bounds of
Section 2.4 do not apply to the f-model. This opens up many questions for future
research, which we now discuss.

4.1.3 Future Research

1. One research problem is to obtain tight discretization error bounds for general
Lipschitz continuous f-models. This involves obtaining both discretization error
upper bounds and information-based lower bounds. (It seems that determinis-
tic problems have the worst discretization error—therefore, we should consider
them first to obtain upper bounds.)

2. The information-based lower bounds in Section 3.3 show that the piecewise
constant discretization procedures (of Sections 2.4-2.5) are optimal for the P-
model; moreover, adaptation does not help. However, this may not be the
case for the f-model. So, linear interpolation or adaptive discretization schemes
might improve discretization error bounds.

3. Finally, the most interesting problem is to find conditions that guarantee a
Lipschitz continuous optimal cost function and lead to a linear discretization
error bound for the f-model. Ergodicity and controllability conditions are the
natural candidates.

4.2 Multigrid Policy Iteration

In this section we discuss an alternative method for computing an approximation
of the optimal cost function—policy iteration. This algorithm (which at each step
involves solving a linear equation) is often the method of choice in practice because
of its fast convergence rate (and the wide availability of linear equation solvers).

However, we have not been able to fully analyze the computational complexity
of a multigrid version of this algorithm—in particular, its dependence on . We will
discuss some preliminary observations. [The main reason for considering this multi-
grid algorithm is to explore the possibility of closing the O (1/(1 — a)) “complexity
gap” between the upper bounds of Section 3.2 and the lower bounds of Section 3.3.

An outline of the section is as follows. First, we describe policy iteration. We
show that it converges as fast as successive approximation. Second, we consider how
policy iteration may be incorporated into a multigrid algorithm and identify some of
the issues that must be addressed before we can fully analyze the complexity of the
multigrid policy-iteration algorithm.

91

4.2.1 Basic Ideas

We now discuss the basic ideas of policy iteration. The algorithm proceeds as follows.
Given any initial policy p € II, we can compute its cost function J, by solving the
following linear equation:

gp, + aPpJ - J, (4.2.1)

where g,(z) = g(z,pn(z)) and P,J(z) = [s P(y | z,u)J(y)dy. If the state space is
finite (the integral is replaced by a sum), we can solve Eq. (4.2.1) exactly using a
direct method such as Gaussian elimination.

Suppose that at the ¢-step of the algorithm we have p, and have solved for J,,.
We can obtain a better policy piy1 € II by letting p,y; be the minimizing policy in
TJ,,; that is,

TJH: = Tu¢+1 He* (42'2)

Once we have ;1 we can solve for J,,,,, and so on.

A simple stopping criterion is g;41 = g, in which case u, is an optimal policy (and
Ju, is the optimal cost function). Another stopping criterion is when J,,,,, is within
some desired threshold of J*. However, unlike successive approximation, there are no
“nice” error bounds for ||J* — J,,,,|l. But it is known that the sequence of {J,,}
converges to J* as fast as the iterates of successive approximation. We now review
this fact. [For a proof of a more general result, see Denardo (1967).)

By definition, we have

J* < Jg,.

Using the monotonicity of T', we obtain

J=TJ* <TJ, =T, Ju < Jo.

He41 Y B

More generally, we have

Jr< ... <T?

Htg1

Jm S TM:+1Jm S J#:'

Since T:H]Jm converges to Jy,, ., as ¢ T co, we have J* < J,,,,, < J,, and

”J* - Jm+1 ”°° S “J‘ - Tm+1 ']m||°°
= [|J* = Tl
<allJ* = Tl (4.2.3)

Thus, J,,,, converges to J* linearly with rate a.

Note that the above argument requires the monotonicity of T' and, therefore,
requires Assumption A.4' or A.4. In particular, the multigrid policy-iteration which
we will discuss next does not apply to P,., (where Assumption A.4" is in effect)—in
contrast with the multigrid successive approximation algorithm of Section 3.2.

92

4.2.2 A Policy-Iteration-Based Multigrid Algorithm

We now discuss how policy iteration may be incorporated into a multigrid algorithm.
Fix a grid-level h. Recall that in the multigrid successive approximation algorithm
(Section 3.2), we start with an initial estimate J{ and we want to compute a final
estimate JF (before going to a finer grid-level) such that
Vi = T lleo < 21 = T (4.2.4)
for some L > 1. (That is, we want to reduce the approximation error by some constant
factor at each grid-level.) Also recall that in multigrid successive approximation, the
number of iterations at each grid-level is O (1/(1 — a)).

We can incorporate policy iteration in the multigrid algorithm by using policy
iteration instead of successive approximation to compute the final estimate JF. The
idea is that given the initial estimate J{ we can compute an initial policy ji, by
letting ThJ,f = T,,Ji. We then use policy iteration to compute the final estimate
JF = Ja, for some i, € I, so that Eq. (4.2.4) is satisfied. [This algorithm has
been suggested and studied in the context of continuous-time stochastic control by
Akian, et al (1988) and Hoppe (1986). But the complexity of the algorithm has not

been rigorously analyzed.] To analyze the complexity of this algorithm, there are two
questions which must be addressed.

1. Given a policy i € I, can we solve for J; with O (1/h*™*™) operations?

2. Can policy iteration reduce the number of policy-iteration steps at each grid-

level from O (1/(1 — a)) to O(1)?

[Note that each policy iteration step involves a successive approximation iteration,
which requires O (1/h?**™) operations.] We will address these two issues separately.

Solving For The Cost Function of A Policy
At grid-level h, the linear equation

§ﬁ+apﬂJ=J) ﬂeﬁh’

consists of the “vector” g; with O (1/h") entries and the “matrix” P, with O (1/h?")
entries. Using Gaussian elimination, we can solve for J; in O (1/ h3") operations. If
n > m this is certainly within O (1/ hz’”’m)

On the other hand we do not need to solve for J; exactly. We only need to
compute it approximately. Using a Full-Multigrid V-cycle [see B6hmer and Stetter
(1984) and Briggs (1987)], one can solve for J; to within an accuracy of O (k) (which
seems to be the accuracy needed) with O (1/ th) operations. However, the analysis
assumes certain special structure in Pﬂ, and it is not clear whether P, has the assumed
structure; therefore, the analysis may not be applicable. Moreover we also do not
know the a dependence of the algorithm.

93

Another approach is to use Tﬁ: +1jm, for some i > 0, as an estimate of J, +1- [See
L’Ecuyer (1989) and the references therein for related algorithms.] At grid-level A,

each iteration of T,,, costs O (1/A?"); furthermore, we have

”J/-Lc+1 T:q.,.l']il:”m S ai”'jﬂ:“ - jﬂ¢”°°‘

If we use a threshold such as
- 1 -
”Jﬁt+1 p¢+1 Jm“m = 9r ”Jh - JI{HOO

[cf. Eq. (4.2.4)], then it is seen that i = O (1/(1 — «)); that is, we only need to reduce
||.fﬁ,+l — Jz]leo by a constant factor. Hence, the total complexity of the algorithm is
O (1/[(1 — a)h?"]). For m > 1, this is less than O (1/h?"*™) [since h ~ (1 — a)e, with
ergodicity, or A ~ (1—a)?¢, in general.] However, a more detailed analysis is needed to
determine how accurately we should approximate Jj, 41 (the actual threshold needed)
and the overall impact of approximating J;
the convergence of the multigrid algorithm.

.1 (instead of computing it exactly) on

The Convergence of Policy Iteration

We now consider the number of policy-iteration steps needed at each grid-level and
whether we can close the “complexity gap” O(1/1 — a) in multigrid successive ap-
proximation. For the rest of the discussion we assume that we can solve J exactly
with complexity no more that O (1/h27+™),

It is clear that the linear convergence bound on policy iteration [cf. Eq. (4.2.3)] is
not good enough since it requires O (1/1 — a) steps. However, under certain convexity
and differentiability conditions, the rate of convergence of policy iteration can be
shown to be superlinear or even quadratic [Puterman and Brumelle (1979)]. Some of
the issues that need to be resolved are: (i) how a superlinear or quadratic convergence
rate affects the number of iterations at each grid-level, (ii) the a dependence of the
convergence rate of policy iteration, and (iii) how do the convexity and differentiability
conditions affect the information-based lower bounds [cf. Theorems 3.3.1-3.3.3].

4.3 Average Cost Problems

In this section, we consider Markov Decision Processes (MDP’s) with the average
cost criterion. These MDP’s are called average cost problems, in contrast with the
discounted cost problems considered in the preceding chapters. The results (and their
derivations) are similar to those in Chapters 2 and 3. For this reason, we argue
informally, keeping the proofs simple. The notation in this section, unless otherwise
stated, remains the same as before.

An outline of the section is as follows. First, we formulate the average cost prob-
lems and define the various problem classes. Second, we show that average cost
problems are, in general, computationally ill-posed—that is, the information-based

94

complexity of determining the optimal average-cost to within € is unbounded in e.
(This means that there cannot exist any discretization error bound for these prob-
lems.) Third, we show that if the dynamics of the problem satisfy a k-stage er-
godicity condition (Assumption E.3), then the problem is well-posed; moreover, the
multigrid successive approximation algorithm of Section 3.2.2 can be used to com-
pute an e-approximation of the optimal average cost. Furthermore, the complexity
(e dependence) of the algorithm is within a constant factor of the information-based
lower bound; thus, the algorithm is optimal. Similar optimality results hold for the
computation of an e-optimal policy.

4.3.1 Problem Formulation

We now define the average cost problems and their problem classes. Average cost
problems are in every respect similar to the discounted cost problems introduced
in Chapter 2 and studied in Chapter 3. The only difference is that instead of the
discounted-cost criterion [Eq. (2.2.3)], we use the following average cost criterion:

An(z) % Jim & E{ Z g(af, pe(x])

g::c}, nell,z € S. (4.3.1)

[If the limit in Eq. (4.3.1) is not known to exist, then “lim sup” is used instead.] The
optimal average cost is given by

A (z) & 1€1th Ar(z), z€S. (4.3.2)

The function A*(z) corresponds to the long term cost per stage (the average cost) of
operating the system starting at the initial state z, and with actions chosen optimally.
For most problems of interest, A* is actually a scalar, independent of the state—this
is why we call A* a “cost” instead of a “cost function.” The problem is to compute
an e-approximation to A* (with respect to the sup-norm).

It is well known that average cost problems are “harder” than their discounted cost
counterparts; moreover, some measurability issues are still unresolved [see Bertsekas
and Shreve (1978)]. We do not address these issues here; instead, we focus on the
computational aspects of the problem.

Problem Classes

We now define different classes of average cost problems. The definitions here are
similar to those for discounted-cost problems. One difference is that « is no longer a
parameter of the problem; therefore our definitions and notation will have to reflect
this. For simplicity, we will keep the same notation.

We define the problem class P, similarly as in Section 3.1.2—it denotes the class
of all average-cost MDP’s that satisfy Assumptions A.1-A.5 (see Section 2.6). We
also define C,,; as in Section 3.1.2.

95

1 1 1-46' 1

6 >0

Cost 1 Cost 0 Cost 1 Cost 0

(P,g) (P,9)

Figure 4.3.1: Two instances illustrating the ill-posedness of Pstd

In addition, we consider the following three problem classes in this section: the
class P, where a k-stage ergodicity condition is assumed (Assumption E.3); P,...,
where Assumption A.4' and a l-stage ergodicity condition (Assumption E.1) are in
effect; and P,,,,, where Assumptions A.4 and E.1 are in effect. The definitions of Craixs
C,.t1, and C,_,,, are similar to those for discounted-cost problems (see Section 3.1.2
for details).

4.3.2 1Ill-Posed Average Cost Problems

We now show that C,,s(¢) and C,,,(¢) are unbounded in ¢; that is, no (finite) number
of oracle queries can determine an e-approximation of the optimal average cost for
P.,.a and P,.,,. The proofs for these two results parallel the proofs of Theorems 3.3.2
and 3.3.3, respectively. Therefore, instead of repeating the proofs we argue informally
(with the help of some pictures)

Theorem 4.3.1 (Ill-posedness under Assumption A.4) For every m, n, there exists
some K such that Cy(¢) is unbounded in ¢; therefore, the problem class P,,, is ill-
posed.

Proof In the proof of Theorem 3.3.2, we have constructed two instances of P.a- The
differences between these two instances [denoted by (P,g) and (P, g)] are illustrated
in Figure 4.3.1.

These two instances agree on all the points sampled by the computer. For the
first instance, (P, g), it is clear that the optimal average cost is 1 on S; and 0 on 5,
(see Figure 4.3.1). To construct the second instance, (P, g), we perturb the dynamics
of the first instance by channeling some of the probability from S to Sz. It is clear
that if the process starts in S; it eventually enters S, (in finite steps) and stays there
forever with 0 cost. Thus, the average cost for the second instance is 0 on both
S1 and §;. This result holds no matter how many points the algorithm samples.

96

1 1-¢' 1

Cost 1

(P,g)

Figure 4.3.2: Two instances illustrating the ill-posedness of Pg,p;

Therefore, the (maximum) difference between the average costs of the two problems
info

is 1, independent of the number of oracle queries. Thus, Ci*°(¢) is unbounded in € as
required. a

Theorem 4.3.2 (Ill-posedness under Assumptions A.{' and E.1) For every m, n,
K >0, pe€(0,1), Crb (€) is unbounded in €; therefore, the problem P,,,, is ill-posed.

Proof The proof of this result is similar to the proof of Theorem 3.3.3. We con-
struct two instances [(P, g) and (P, g)] that agree on all the points sampled. The key
differences between these two instances are illustrated in Figure 4.3.2.

In Figure 4.3.2, the dynamics of the first instance are described by a uniform prob-
ability density P on the whole state space S. [Therefore, it satisfies all the Lipschitz
continuity assumptions and also the 1-stage ergodicity condition (Assumption E.1)]
The cost is 1 on the whole state space; therefore the average cost is 1.

In the second instance, P is a subprobability density, where we have removed
some probability at those points not sampled by the algorithm. We can view this
system as equivalent to another system with an augmented state S’ and the missing
probability is being channeled into S’. The augmented state is absorbing and has 0
cost. Following the same reasoning as in the proof of Theorem 4.3.1, we conclude
that the average cost for the second instance is 0; this shows the (computational)
ill-posedness of P,.,. O

4.3.3 Well-Posed Average Cost Problems

We now show that P, the set of average cost problems (under Assumption A.4)
that satisfy a k-stage ergodicity condition (Assumption E.3) is well-posed. Moreover,
the multigrid successive approximation algorithm of Section 3.2.2 can be used to
compute an e-approximation of the optimal average cost with total complexity upper

97

bounded by O (1/ e‘(z’”‘"‘)). We also show that the information-based complexity

is lower bounded by Q (1/ e‘(z""'"‘)); therefore, the multigrid algorithm is optimal.
Similar optimality results hold for the computation of e-optimal policies.

The results here are similar to the results in Chapter 3. To avoid repetitions, the
proofs in this section are especially brief. For the rest of the section, Assumptions
A.1-A.5 are in effect.

An outline of this subsection is as follows. First, we introduce the average-cost
version of the dynamic programming equation—the optimality equation. We show
that this equation is always satisfied, when the problem satisfies a k-stage ergodic-
ity condition. Second, we obtain discretization error bounds for approximating the
optimal average cost. This shows the computational well-posedness of the problem.
Third, we show how the single-grid and multigrid successive approximation algo-
rithms of Section 3.2 can be used for approximating the optimal average cost. We
analyze the complexity of these algorithms. Fourth, we derive a lower bound on
the information-based complexity and show the optimality of multigrid successive
approximation. Finally, we discuss the problem of computing an e-optimal policy.

The Optimality Equation

For average cost problems, the dynamic programming operator T : B(S) — B(S) is
given by

TJ(z) = 51615‘ {g(w,u) + /SJ(y)P(y | z,u) dy} , T€S’s.

By letting a = 1 in the proof of Lemma 2.2.1, we see that T maps B(S) into C(S).
For any (stationary) policy p € II, we write A, instead of A, [cf. Eq. (4.3.1)],
where ™ = (p,p,...). The operator T,, : B(S) — B(S) is given by

T,J(z) = g(z, u(z)) + /S J(y)P(y | z,u(z))dy, z€S.

Note that the definitions of T' and T, are the same as the definitions for discounted-
cost problems [cf. Eqgs. (2.2.4) and (2.2.8)], except that a = 1.

The following theorem is well known; it gives an alternative characterization of
the optimal average cost and a condition for the existence of a stationary policy.

Theorem 4.3.3 (Under Assumption A.}) Suppose that there exists a scalar ** and
a function J* € B(S) such that

A+ Jz) =TJ*(z), forallzeS.
Then

1. M* <infrene Jo(z) for all © € S; equivalently A** < *.
2. If p* € I is a (stationary) policy such that

A"+ JN(z2) =T J*(z), forallzeS, (4.3.3)
(equivalently, TJ* = T,,.J*), then X** = \,.; in particular, ** = *.

98

Proof See Hernéndez-Lerma (1989) or Bertsekas (1987). O

[Note that the important assumption in Theorem 4.3.3 is that A** is a scalar.]
Equation (4.3.3) is the average-cost version of the dynamic programming equa-
tion, also called the optimality equation. Some of the questions in (continuous-state)
average-cost problems are under what conditions the following results are true: (i)
there exists a solution pair to the optimality equation; namely, there exist a scalar
A** and a function J* € B(S) satisfying Eq. (4.3.3), and (ii) there exists an optimal
stationary policy. The following theorem gives an answer to these questions.

Theorem 4.3.4 (Under Assumption A.4) If the problem satisfies a k-stage ergodicity
condition (Assumption E.3), then there ezist a scalar A** and a J* € C(S) satisfy the
optimality equation [Eq. (4.3.3)]. Furthermore, there exists a stationary policy u* € 11
such that TJ* = T,.J*. In particular, A** is the optimal average cost and p* is an
optimal stationary policy.

Proof It follows from the ergodicity condition (Assumption E.3) that T is a k-stage
contraction operator on the Banach space (C(S),||-||s). By the Banach’s fixed-point
theorem (Proposition 2.1.1), there exists a J* € C(S) such that | TJ* — J*||s = 0
Equivalently, there exists a scalar A** such that A** 4 J* = T'J*; hence the optimality
equation is satisfied.

Furthermore, by the measurable selection theorem (Proposition 2.2.3), there exists
a p* € II such that T),.J* = T'J*. It follows from Theorem 4.3.3 that A ,. = ** = *,
as required. O

When A** = A*, J* is called the optimal differential cost function. For the rest of
this section, we will assume that Assumption E.3 is in effect; therefore, ** and *
are identical.

Note that for discounted cost problems, J* denotes the optimal total (discounted)
cost function; but for average cost problems, J* denotes the optimal differential cost
function.

The optimal differential cost function J* has the following interpretation. The
difference |J*(z) — J*(y)| represents the difference in total costs starting at state z
and starting at state y [see Bertsekas (1987)]. This difference |J*(z) — J*(y)| makes
sense only when z and y have the same optimal average cost. Finally, note that J*
can only be determined up to a constant [since T'(J* + 1) = TJ* + 1].

Discretization Error Bounds

We now derive discretization error bounds for the average-cost problems. We use the
same discretization procedures used for discounted-cost problems (see Section 2.4).
We also define the discretized dynamic programming operator T, as in Eq. (2.4.7),
but with o = 1.

Let A, and J; denote the solution pair to the optimality equation associated with
Ty Similarly to Theorem 2.4.3, we have the following discretization error bounds.

99

Theorem 4.3.5 (Under Assumption A.4) Let hy, be the constant of Theorem 2.4.1.
If the problem satisfies a k-stage ergodicity condition (Assumption E.3) with ergodicity
rate 2p, then there ezists a constant K" (depending only on K, k, and p) such that

IA* =X < K"h, Vhe(0,hs)

Proof Fix an h € (0,h;]. By letting o = 1 in Theorem 2.4.3, we have

. K
ITT = TnT oo < (K1 + S T]|s)h

Using the fact that || - ||s < 2|| « ||e, We have
ITT — T lls < (2Ky + K| T|s)h.

It follows from Theorem 2.4.1 that T}, is a k-stage contraction operator, with contrac-
tion factor (1 — p), on (B(S), || - ||s)-

Using Lemma 2.4.3, we have

- k. -
17 = Jills < 2™ - I*lls
k
= ;(2K1 + K[| ls)h.
It follows from Lemma 2.4.5 that ||J*||s < kK /p. Therefore,

- k

Since J* is determined only up to a constant, we can choose J* such that J*(z) =
Jp(x) for some z € S. In particular,

a3~

IJ* = il < ||J* = T3 |ls < =(2K; + kK K3/p)h.

)

From the optimality equation [Eq. (4.3.3)] we have * = TJ*—J* and A}, = T,J; — J;.
Therefore using the triangle inequality, we have

A =N = I1TT* = T = ThJi + Ji e
S|TI* = Thdilleo + 177 = Jilloo
<SNTT* = Tad oo + I1Thd* ~ Tidilleo + 17* = Jilleo

K -~
< (K + TZIIJ*Ils)h +2(J* = T o
< K"h

for a suitable constant K"'. The result follows. O

100

Successive Approximation Algorithms

We now consider the computation of an e-approximation of *. Similarly to the
successive approximation algorithm introduced in Section 3.1.3, for the average-cost
problems, we have the following successive approximation algorithm.

Lemma 4.3.1 (Under Assumptions A.{ and E.3) For all h € (0, hy), there holds

meigl{Tz“J(m) ~TH(2)} < A < meagc{Tﬁ‘”J(w) — TtJ(z)}, Vt>0,J € B(S).

(4.3.4)
In particular, if Ty, is a k-stage contraction operator on (B(S), |l - ||s) with contraction
Jactor (1 — p) and we let

AL [mmin{fl-’,:“J(a:) — TiJ(2)} + max{T{+J(z) — TﬁJ(m)}] /2, (4.3.5)

then
N = N < 1T — T
< (1=)M Td — J|ls, VE> 0,7 € B(S).
Proof See Bertsekas (1987). O

We now describe the successive approximation algorithms for the average-cost
problems. Recall that if the continuous problem satisfies a k-stage ergodicity con-
dition with ergodicity rate 2p, then for all h € (0, hy], the discretized problem with
discretization parameter h also satisfies a k-stage ergodicity condition with ergodicity
rate p; in particular, T}, is a k-stage contraction operator on (B(S), || -||s)- Also recall
(from Lemma 3.1.1) that each iteration of T}, costs O (1/h2ntm),

The single-grid algorithm for the average cost problems is identical to the single-
grid algorithm in Section 3.2.1. We choose a grid-size h; such that I/\,";! - /\"| < €/2;
we iterate on grid-level A; to get an estimate within €/2 of)\,‘:‘f. The only difference
is that the algorithm returns the scalar Ak, given by Eq. (4.3.5)]. The termination

criterion is the same, and the complexity of algorithm is O (log(1/ e)e‘(z’””‘)?.

The multigrid algorithm for the average cost problems is also identical to the
multigrid algorithm of Section 3.2.2. The grid-refinement criterion at each grid-level
is to iterate until the successive approximation error bound is no more than the
discretization error bound. Following the same complexity analysis, we obtain a
complexity of O (e‘(2"+m)) for the algorithm. We summarize our results by the
following theorem

Theorem 4.3.6 (Under Assumptions A./ and E. 3) To compute an e-approzimation
of A*, the complexity of single-grid successive approzimation is O (log(l / e)e‘(2"+m))

and the complezity of multigrid successive approzimation is O (e‘(z"+m)).

101

Information-Based Bounds

We now show the optimality of the multigrid algorithin. We note that from the
discretization error bounds, the information-based upper bound for P,,, C(¢) =
0 (e‘(2"+'“)) - We now show that the information-based lower bound is e‘(2"+m));
it follows that the multigrid algorithm is optimal. The following theorem is analogous
to Theorem 3.3.1, and the proof is almost identical except for the changes noted.

Theorem 4.3.7 (Lower bound under Assumption A.4 and E.1) For any K > 0,
p €(0,1), m, and n, we have

Cini‘ol(e) -Q (6—(2n+m)) ;

mix

in particular,

Crin(€) = Q (e7@v+m) |

Proof The proof is similar to the proof of Theorem 3.3.1 (except that o = 1).
The construction of the two instances are the same. It is easy to see that for the
first instance (P, g), we have the optimal average cost A* = 1/2 (and the differential
optimal cost function J*(z) = z, Vz € S, modulus a constant difference). We now
bound the optimal average cost for the second instance (13 »d). We proceed as in the
proof of Theorem 3.3.1. Instead of Eq. (3.3.22), we have

TtI*(z) < J*(zx) + EA* — (t — 2)s6, VE>2.c € S. (4.3.6)

Since differential cost functions are determined only up to a constant, we can choose
the diflerential cost for the second instance J* < 0; in particular, J* < J*. Using the
monotonicity of T', we have

TtJ*(z) > TtJ* ()
=t* +J*(z), Vt>0,z¢8S. (4.3.7)
Combining Eqgs. (4.3.6) and (4.3.7), we obtain
tA* + J*(z) < J*(z) +EX = (t—2)k6, VE>2,z€S.
Dividing both sides of the equation by ¢ and letting ¢ T oo, we obtain

A <At — k6.

a

A* — X*| < 2¢, therefore we need k§ < 2. And using the same

argument as in the proof of Theorem 3.3.1, we obtain C"° (¢) = (e‘(z""‘"‘)), as

mix1

required. 0

Since we want

Therefore, the discretization procedures of Sections 2.4-2.5 and the multigrid succes-
sive approximation algorithm are optimal for the average cost problem P_,,.

102

4.3.4 Other Results

We formulate the problem of computing an e-optimal policy as in Section 3.4.1. As
before, for any ji € II,, we define T; and T} as in Egs. (3.4.1) and (3.4.2), respectively
(but with o = 1). We let A; and), denote the optimal average costs corresponding
to the operators T; and Tﬁ, respectively. We have the following definition. Let ¢ > 0.
An e-optimal policy (for the average cost problems) is a discretized policy i € II,
for some h > 0, such that [A* —);| and l)\' - iﬂ| are both no greater than e.

We follow the derivation for the discounted-cost problem P, (see Section 3.4
for details) and obtain similar results. The main result is that the total complex-
ity of using multigrid successive approximation to compute an e-optimal policy is
0 e‘(2”+’"§), which is also the information-based complexity of the problem. There-
fore, for problems in P,,, computing an e-optimal policy is “as hard as” computing
an e-optimal average cost.

4.3.5 Notes

The computational ill-posedness of continuous-state average cost problems illustrates
the technical difficulties of such problems. But if a k-stage ergodicity condition is
assumed then the problem is well-posed; moreover, we have an optimal algorithm
algorithm for problem. However, it seems that there should be weaker conditions
for the well-posedness. For example, in finite-state average-cost problems, weaker
conditions are known for the existence of solution to the optimality equation [see
Bertsekas (1987)]. These conditions are ergodicity conditions on the dynamics of the
problem (but are weaker than the k-stage ergodicity of Assumption E.3). A problem
for future research is to find similar conditions for the well-posedness of continuous-
state average cost problems.

Based on the proof of Theorems 4.3.1 and 4.3.2 y we can construct a family of
average-cost problems (P, g) and another problem (P, g) such that || P, — P||,, — 0 as
¢t — oo but the average cost A} does not converge to A*. The theorems also illustrate
why it is important to normalize the discretized dynamics P, when Assumption A.4
is in effect. If such a normalization is not performed, the successive approximation
algorithin of Section 4.3.3 may not converge.

We are not able to establish Theorem 4.3.1 for all K because if K is sufficiently
small then the problem satisfies a 1-stage ergodicity condition.

In the actual implementation of the successive approximation algorithm we can
keep TtJ bounded by shifting it by a constant after each iteration.

4.4 Numerical Results

In this section, we present some simple numerical results comparing multigrid suc-
cessive approximation with single-grid successive approximation. The purpose of this
section is to understand some of the practical issues involved in the implementation

103

of multigrid successive approximation, and not to find the most efficient algorithm
for solving MDP’s.
Before we discuss the numerical results we first make the following observations.

4.4.1 Some Observations

1. Since J* is a Lipschitz continuous function, a piecewise constant approximation
(although is theoretically optimal in our framework) is a bad approximation
scheme in practice. For example, if the slope of J* is 1, then using a piecewise
constant approximation scheme would require a grid-size A ~ 0.01 to obtain
an accuracy € = 0.01. [Actually a much smaller grid-size is needed since € ~
h/(1 — a)?, in general; and ¢ ~ h/(1 — a), with ergodicity.] Therefore, in
practice, it is always better to use a linear or higher order interpolation scheme.
[See L’Ecuyer (1989) and the references therein for some practical interpolation
schemes.|

2. The discretization error bounds of Section 2.4 are always too pessimistic in prac-
tice. (More precisely, the theoretical estimates of the constants in the bounds
are too pessimistic.)

3. The approximate solution of MDP’s is computationally expensive. For example,
consider a 1-dimensional control and 1-dimensional state space problem with a
discount factor 0.90, and to be solved to an accuracy of 0.01; wehaven =m =1,
@ = 0.90, and € = 0.01. The number of grid-points needed is O (1/[(1 — a)’e]?),
which is ~ 10'? (and with a large constant factor in front of it). If the state
space has dimension n = 2, then the number of grid-points needed is ~ 1029,

4. There are practical limitations on the number of grid-levels a multigrid algo-
rithm can have.

4.4.2 A Numerical Example

We use as our test example a discounted-cost inventory control problem where daily
customers’ demands for an inventory are stochastic and the ob jective is to replenish
the inventory at the beginning of each day to meet the expected demands of the
day. There is a cost for unsold inventory at the end of a day and for unable to meet
customers’ demands; moreover, unmet demands are lost. [See Bertsekas (1987) for
more details.] We choose this example because it is well-studied and we can check
our numerical results with the known properties of the solution.

We consider a problem with state space S = [0,1] and control space C' = [0,1].
The constraint set is given by U(z) = [0,1 —z], z € S. We assume that the demands
are exponentially distributed so that the transition density is as shown in Figure 4.4.1.
[In Figure f4.4.1, z) denotes the inventory level and u, denotes the replenishment (at
the beginning of the k-th day). Customers’ demands on the k-th day are denoted by
wk.]

104

} P2k | Toyur)
y 4 de~ ki1
Tl = (:l:k + up — wk) Vo
impulse
1Y \‘
0 Tr + up 1 Th41

Figure 4.4.1: the transition density of an inventory control example

Let gi(z,u,w) = c1u + cz(z + u — w)?, where z,u € [0,1], w € [0,00), and
w ~ Ae~*?. The cost function is given by

9(z,u) = Ey, {g1(z, u,w)}
= au+ c((z +u)’ — 2(z + u)/A + 2/)?).

Our choice for these parameters is ¢; = 2, ¢, = 6 ,and A = 2.5,

4.4.3 Implementation

We implemented the standard (Jacobi) versions of the single-grid and multigrid suc-
cessive approximation algorithms. For simplicity, we used a uniform grid-size and a
piecewise constant approximation of g and P. (The “impulse” at # = 0 in P was
handled separately.)

We did not use the discretization error bounds of Section 2.4 in the algorithms;
instead, we simply chose a suitable constant times the grid-size as the discretization
error bound. The final grid-level and a threshold €, on the successive approxima-
tion error bounds on this level determined the stopping criterion of the multigrid
algorithm.

4.4.4 Results
The results are tabulated in Figure 4.4.2.

105

N €a MG Running times | SG Running Times

4 0.25 0.04 (4) 0.02 (4)

8 0.125 0.16 (3) 0.22 (5)

16 | 0.0625 1.06 (4) 1.36 (6)

32 0.03125 6.66 (4) 10.16 (7)

64 | 0.015625 59.08 (5) 72.70 (7)
a=0.99

N € MG Running Times | SG Running Times

4 0.25 0.04 (4) 0.04 (4)

8 0.125 0.24 (5) 0.22 (6)

16 | 0.0625 1.32 (5) 1.80 (8)

32| 0.03125 9.88 (6) 13.16 (9)

64 | 0.015625 69.76 (4) 94.06 (9)
a = 0.999

N € MG Running Times | SG Running Times

4 0.25 0.06 (4) 0.04 (4)

8 0.125 0.30 (6) 0.28 (7)

16 | 0.0625 1.74 (7) 2.04 (9)

32| 0.03125 11.36 (7) 14.68 (10)

64 | 0.015625 80.24 (7) 115.12 (11)
Remarks:

1. N =1/h ~ maximum number of grid-points per dimension.

Total number of grid points ~ N3,

2. The parameter ¢, is the successive approximation error at the finest grid-level,
which we use as the termination criterion for both successive approximation
algorithms.

3. (Total) Running Times are in seconds on a Sun 3/260 with a Motorola MC68881
floating point processor.

4. In parenthesis is the number of iterations at the finest grid-level.

Figure 4.4.2: Numerical data showing MG versus SG

106

Notes

1. Our example satisfies Assumptions A.1-A.4 and a 1-stage ergodicity condition
(Assumption E.1); moreover, for z € (0,1], the transition density P satisfies
Assumption A.5. Since we handle the “impulse” at z = 0 separately, the
discretization error hound of Theorem 2.4.3 applies to the example.

2. Since ||J*||c ~ 1/(1 — @), if the problem satisfies an ergodicity condition, then
its percentage error ||J* — J||/||J*|lc ~ k, independent of a. [In general,
the percentage error is ~ h/(1 — a).] Therefore, to get a 1% accuracy in our
example, we need h ~ 0.01 or N ~ 100.

3. The Gauss-Seidel version of the successive approximation algorithm [see Bert-
sekas (1987) for details] is often used in practice, instead of the standard (J acobi)
version. This is because the former has a better convergence rate than the lat-
ter. [But one drawback of the Gauss-Seidel version is that it does not give any
“nice” approximation error bound, as in the standard version. So the latter is
often incorporated into the algorithm, whenever such error bounds are needed.|
We have not implemented the Gauss-Seidel versions of single-grid and multigrid
successive approximation algorithms. If we had, we expect the multigrid algo-
rithm would be better than the single-grid algorithm, and the savings would be
similar to the Jacobi versions (which we implemented).

4.4.5 Conclusions

Multigrid successive approximation is easy to implement and grid-level changes are
of negligible computational cost. Multigrid successive approximation improves on
single-grid successive approximation by 10-20% in running times. [This is far less
than the theoretical estimates, which predict a factor of 2-3 improvement; that is,
a factor of O (|log[(1 — a)e]|).] We expect the savings to be more substantial if the
multigrid algorithm is better tuned, and the problem has a larger discount factor and
has to be solved at a higher accuracy.

The cost of an iteration of successive approximation at the finest grid-level is
about an order of magnitude more than the cost on the preceding grid-level. Thus,
the savings in multigrid is directly correlated to the reduction in the number of
iterations at the finest grid-level.

We have observed that the policy converges to an optimal policy in the first
few iterations. This suggests that a policy-iteration-based multigrid algorithm may
perform better in practice.

However, the dominant computational cost is simply from the number of grid-
points needed to discretize the problem (not the number of iterations). Therefore,
a more promising approach, where more substantial savings in computational costs
can be expected, is to use a higher order interpolation scheme. For example, if we
use a linear interpolation scheme on a problem that is twice differentiable and has
bounded first and second derivatives, then we expect a discretization error bound

107

with ¢ = O(h/(1 — @)?) in general. And the total number of grid-points needed
is O ([(1 — a)%e]=(27+m)/2) instead of O ([(1 - a)ze]‘(z"""”)). Even more substantial
savings can be expected if the problem has bounded higher derivatives and we use a
higher order interpolation scheme.

4.5 Conclusions

We now conclude our discussion with a summary of the main open problems in the
first part of the report. This discussion also serves to motivate the results of Chapter 5.

The open problemns we have are of two types. The first type is related to obtaining
the computational complexity of other discrete-time stochastic control models. For
example, finding weaker conditions for the well-posedness of average-cost problems
(see Section 4.3 for details) and finding conditions to ensure linear discretization error
bounds for the f-model (see Section 4.1 for details).

The second type of problems is related to closing the O (1/(1 — a)) “complexity
gap” between the multigrid successive approximation algorithin of Section 3.2.2 and
the information-based lower bounds of Section 3.4.3. One approach is to find an
algorithm with a better complexity than the multigrid algorithm we have.

We have taken this approach in Section 4.2; we have considered a multigrid
policy-iteration algorithm and discussed some unresolved issues related to analyz-
ing the complexity (a dependence) of the algorithm. But it seems unlikely that
there exists any algorithm that can close the O (1/ (1 — @)) “complexity gap” with-
out additional assumptions (such as ergodicity or differentiability condition) on the
problem. [Note that even for the 1-dimensional Fredholm equation of the second kind
(see Section 3.5.1), this problem has not been resolved.] This motivates a different
approach—proving another kind of lower bounds.

In Chapter 5, we will prove algorithmic-based lower bounds; that is, we will prove
that within a certain family of multigrid algorithms, there is no algorithm with a bet-
ter complexity than the multigrid successive approximation algorithm of Section 3.2.2.

It is intuitively clear that if we consider algorithms that use only the discretized
dynamic programming operators {T}}, then it is unlikely there exists any algorithm
with a better complexity than the multigrid successive approximation of Section 3.2.2.
In Chapter 5, we will make precise this intuition. Furthermore, it seems that a
multigrid algorithm should be one-way (from coarse to fine). In Section 5.4, we will
also show that one-way multigrid algorithms are, in a certain sense, optimal.

Lastly, another question we will address in Chapter 5 is how to apply multigrid
algorithms to problems where the discretization error bounds are O (h?), O (h®), or
O (h*) for some s > 0. Such situations arise when we use higher order interpolation
schemes (see Section 4.4.5). The question is how to apply multigrid successive ap-
proximation to these problems? Is there a multigrid principle for designing optimal
multigrid algorithms? We will give an answer to this question in Section 5.2.

108

Chapter 5

Multigrid Algorithms and Complexity
Results For General Fixed-Point
Problems

In this chapter, we develop an abstract framework for studying and analyzing multi-
grid algorithms for the approximate solution of a general fixed-point problem. We
assume that we can discretize the problem to various levels of accuracy. And at each
grid (or discretization) level we have an iterative algorithm for solving the discretized
problem. There are three grid-level dependent parameters: (i) the rate of conver-
gence of the iterative algorithm, (ii) the accuracy of the discretized solution, and (iii)
the iteration cost of the algorithm. The objective is to find the most cost-efficient
way of computing an approximation of the solution to the original problem, by per-
forming iterations on different grid-levels, and at the same time minimize the total
computational cost.

We first give an informal overview of the basic results in this chapter. Consider a
fixed-point equation

Az =z,

where A4 is a contraction mapping [on a metric space (M,d)] with fixed point z*.
Suppose that we can discretize A and obtain a family of fixed-point equations

Awz=z he(0,1]

where Ay is a contraction mapping with fixed point zj,. (Our convention is that A
denotes the grid-size; that is, a smaller & implies a more accurate discretization.)
We make the following assumptions:

1. The discretization error d(z*,z}) is bounded by a function D(h), where D(h) ~
h* for some s > 0.

2. The contraction factor of A is ap ~ 1 — h9 for some q>0.
3. The cost of an iteration of Ay is C(h) ~ h~ for some r > 0.

We are interested in computing an e-approximation of z*, using only the contraction
mappings {Ax} and, at the same time, minimizing the total computational cost.

109

We show (in Section 5.2.2) that the complexity of a single-grid algorithm is
0) (ln(l/e)[l/e](‘”")/’) and (in Section 5.2.3) that the complexity of a one-way multi-

grid algorithm is O ([1 [e](atr)/ ’). We show the optimality of the one-way multigrid
algorithm by proving an algorithmic-based lower bound (see Section 5.2.4). We also
show the optimality of one-way multigrid algorithms in general, under certain mono-
tonicity conditions on ay and C(h) (see Section 5.4).

We introduce a number of extensions to the basic results. We let aj, = 1 — fihe,
C(h) = foh=", and D(h) = f3h*, for some positive constants f1, f2, and f3; we also
analyze the dependence of the algorithms on these constants. We introduce this
extension to model (see Section 5.3.1) the discount-factor dependence of the discrete-
time stochastic control problem of Chapters 2-3.

To model an even more general class of problems, we introduce the notion of a
“contraction process”, which has the property that for all z,

d(z;, Ajz) < af ad(z}, z), Vvt > 0,
hy A h h

where @ is the delay factor. The delay factor allows us to model algorithms with
eventual geometric convergence but possibly unpredictable initial behavior. This
extension is needed to model the simulated annealing problem (see Section 5.3.2).
[However, for the most of Chapter 5, the delay factor can be ignored (by letting it be
1).]

The presentation in this chapter is especially formal because we are proving a new
type of lower bounds: algorithmic-based lower bounds. The interpretations of these
lower bounds are quite specific to the framework, therefore it is important to define
the framework precisely.

An outline of this chapter is as follows: In Section 5.1, we introduce the notion
of contraction processes. They are generalizations of contraction mappings and allow
us to model different types of iterative algorithms. We then develop the general
framework and introduce a minimum computational cost problem. This minimum
cost problem models the problem of finding the most cost-efficient way of computing
an approximate solution to the fixed-point problem. In Section 5.2, we consider some
special cases of the minimumn cost problems, propose a single-grid algorithm and a
multigrid algorithm for them. We show that multigrid is an improvement of the
single-grid algorithm, and is in a certain sense optimal. In Section 5.3, we apply the
algorithms and the analyses of Section 5.2 to various practical problems; in particular,
we apply the results to the fixed-point problem studied in the first part of this report.
In Section 5.4, we prove some general results about the framework. In Section 5.5,
we state our conclusions and suggest future research.

5.1 A Minimum Computational Cost Problem

In this section we develop an abstract framework for studying multigrid algorithms.
This is the framework we will use throughout the chapter.

110

An outline of the section is as follows. First, we introduce the notion of contraction
processes; they are generalizations of contraction mappings and model the behavior of
many algorithms. Second, we develop a framework for studying multigrid algorithms
and introduce a minimum computational cost problem. Third, we formalize the
objective of the minimum computational cost problem. Finally, we close the section
with some observations.

5.1.1 Contraction Processes

In this subsection we introduce the notion of contraction processes. We begin by
introducing the basic notation of this chapter.

Basic Notation

Let Z° (respectively, Z*) denote the set of non-negative (respectively, positive) inte-
gers; let RO (respectively, R*) denote the set of non-negative (respectively, positive)
real numbers. We use T (respectively, T+) to denote either Z° or R® (zespectively,
either Z* or R*). If « and y are real numbers, then = Ay (respectively, z Vy) denotes
the minimum (respectively, maximum) of z and y.

Let (M, d) denote a metric space with metric d. Elements of M are called points.
Throughout this chapter, the pair (M,d) will denote a given metric space and the
word “points” is used exclusively for elements of M.

The Definition of a Contraction Process

A mapping A : T x M +— M is called a contraction process on (M, d) if there exists
an a € [0,1), an a € [1,00), and a (unique) point z*, such that

d(z*, A(t,z)) < a’ad(z*, z), Vte T,z € M. (5.1.1)

We call a the contraction factor, a the delay factor, and z* the fized point of A. [Note
that the uniqueness of z* follows from Eq. (5.1.1).] f T = Z° (respectively, T = R"),
we call A a discrete-time (respectively, continuous-time) contraction process.

A contraction process can be viewed as a family of mappings {A(t,-)}, from M into
itself, parametrized by ¢ € 7. For brevity, we will write Atz instead of A(t,z). When
a contraction process is applied to an initial point x, it generates a family of points
(A*z);cr which (eventually) converges to z* geometrically with rate a. The delay
factor a allows a contraction process to model iterative algorithms with unpredictable
initial behaviors. In general, the delay factor may depend on the initial point z.

Composition of Contraction Processes

We now consider the composition of contraction processes. Let A; and A, be two
contraction processes on (M,d). For any t,,t, € T, we define a mapping AL AL .

111

M = M, called a composition of A; and A,, by letting
AP A%z = AlY(A%z), Yz e M.

More generally, for any contraction processes A;, A,, ... ,A;on M and any ¢y,¢,,...,¢ €
T, we can form the composition A A% ... A¥ : M — M, where the order of compo-
sition is always right associative. If A’ and A" are two mappings from M into itself,
we write A' = A" iff A’z = A"z for all z = M.

An Example

We now look at an example of a (discrete-time) contraction process—a contraction
mapping. Let T be a contraction mapping on (M,d) with contraction factor o (see
Section 2.1.3). If the fixed point of T', denoted by z*, exists (which is always the case
when M is complete), then T satisfies

d(z*,T*z) < a*d(z*, z), Vte Z% z e M,

where T denotes the composition of ¢ copies of 7. Thus, T is a contraction process
with delay factor 1.

However, if T is a k-stage contraction mapping with contraction factor a (see
Section 2.1.3), then

d(z*,T'z) < a**a~'d(z*, z), Vte Z%z c M.

Here, T is a contraction process with contraction factor a!’* and delay factor a~!.

Summary

Discrete-time contraction processes are generalizations of contraction mappings. [Sim-
ilarly, it is seen that continuous-time contraction processes are generalizations of
(continuous-time) semi-groups of contraction mappings.] The reasons for considering
contraction processes are as follows: (i) A contraction process “contracts” the distance
between the fixed point and any point, whereas a contraction mapping “contracts”
the distance between any two points. The latter may not be true or is hard to verify in
some cases. (ii) A contraction process can model algorithms with “memory”, whereas
a contraction mapping is “memoryless”. For example, if T is a contraction mapping,
then T**'z depends only on the previous point T"z; in contrast, for a contraction pro-
cess A, the point A**'z may possibly depend on all earlier points, A'z, ..., Alz, z.
(iii) Delay factors allow the general case of eventual geometric convergence, whereas
a contraction mapping contracts a at each step.

5.1.2 The General Framework

We now introduce a framework for studying multigrid algorithms that arise in the ap-
proximate solution of a certain fixed-point problem. We assume that we can discretize

112

the problem at various grid-levels so that at each grid-level we have a discretized prob-
lem; furthermore, we have an iterative algorithm for approximating the solution (of
the discretized problem) at that grid-level. The salient feature of the framework is
that the following parameters are grid-dependent: (i) the rate of convergence of the
iterative algorithm, (ii) the iteration cost of the algorithm, and (iii) the distance
between the solutions of the discretized problem and the original problem.

A multigrid algorithm computes an approximation of the original problem to
within some specified accuracy. This algorithm uses algorithms at different grid-levels
for the computation. The objective is to choose the grid-levels and the duration at
each grid-level so that we obtain the desired approximation. We are interested in
finding a multigrid algorithm that compute the approximation and at the same time
minimize the total cost incurred.

We now present the general framework to model this minimum computational
cost problem.

A Family of Contraction Processes

Let H be a subset of (0,1]. The parameter h € H denotes the grid-size or grid-level,
with the convention that a smaller A represents a finer grid.

We model the algorithms at various grid-levels by a family of contraction processes
{Ah}hEH' Each Aj is a contraction process on (M, d) with contraction factor oy, and
fixed point z}. The contraction factor ay is a function of the grid-level, and the
fixed point z;, denotes the solution of the discretized problem at grid-level h. We let
z* € M denote the solution to the original problem. And we adopt the convention
that 23 2* and Ho % H U {0}.

We also introduce delay factors* in the contraction processes. The delay factors
are described by a function a : H x Ho — [1,00). And forallt € T, h € H, b’ € Ho,
xz € M the following bounds hold:

d(zh, Ahzh) < aha(h, h')d(z}, z7); (5.1.2)
d(z}, AL Alz) < aja(h, h')d(z;, A},). (5.1.3)
[And for general z € M, d(z}, ALz) < ot Suppicy,{a(h, h')}d(z*,z).] The delay fac-

tor a(h,h') allows us to model various interactions between different grid-levels (see
Section 5.1.4). For brevity, we will write a}!’ instead of a(h,h').

Iteration Cost and Grid-Transfer Error Bound

To model the computational cost, we assume that to use Ay, for a duration of t € T+
(that is, applying A!) incurs a cost of tC(h). Here, C : H — R is the iteration cost.
To bound the discretized solution and the original solution, we assume that

d(z*,z;) < D(h), Yh € H, (5.1.4)

*Delay factors are needed to model simulated annealing (Section 5.3.2). For the most of our
discussion, delay factors can be ignored by letting them be 1.

113

where D : H — R°. We call d(z*, z}) the discretization error and D(k) the discretiza-

tion error bound. We adopt the convention that D(0) % 0.
More generally, we assuine that

d(z},zh) < B(h, k'), Vh,h' € Ho, (5.1.5)

where B : Ho x Ho — R® and B(0,h) < D(h). We call d(z},z},) the grid-transfer
error and B(h,h') the grid-transfer error bound.
Since d is a metric, we have

d(z;wm;ﬂ) < d(wi,w*) + d(w*,:z:,:,)
< D(R) + D(R’). (5.1.6)

Therefore, we can assume that
B(k, k') < D(h) + D(') = B(h,0) + B(0, h'). (5.1.7)

More generally, we assume that B is a metric on Ho; namely, for all A,h', k" € H,y, B
satisfies the triangle inequality,

B(h, k') < B(h,h") + B(h", '); (5.1.8)

is symmetric, B(k, k') = B(h/, h); and satisfies B(h,h) = 0.

Problems and Instances

Finally, a Minimum Computational Cost Problem (MCCP) is specified by
(T, H, an, a’,:', B(h, h')v C(h))’

where h,h' € Ho. If T = Z° (respectively, T = R?), then the problem is a discrete-
time (respectively, a continuous-time) problem.

An MCCP, denoted by P(T,H, an,a},B(k,h'),C(k)), actually represents a class
of instances. We call . = (M,d, {An}ren, {-’U}:}he‘ﬂo) an instance of the MCCP, written
¢ € P(T,H,n,al ,B(h,h'),C(h)), if ¢ satisfies the following requirements:

1. For every h € 'H, A is a contraction process on (M,d) with fixed point z},
contraction factor oy, and delay factor af' that satisfies Eqs. (5.1.2) and (5.1.3).

2. For every h,h' € Mo, the distance d(z},z},) is bounded by B(h,h'); that is,
Eq. (5.1.5) holds.

114

The Objective

Let h,ho € Ho. For any ¢ > 0, an ¢ € M is called an e-approximation of zf,
if d(z},2z) < e. In an MCCP we are interested in computing an e-approximation
of z*, starting at some initial point zj, - We use the contraction processes for the
computation. The problem is to choose the grid-levels and a duration at each grid-
level (for using the contraction process) so that we eventually obtain the desired
approximation of z*. The objective is to choose the grid-levels and the durations to
minimize the total computation cost incurred. We will give a more precise formulation
of the problem’s objective after we define the notion of an algorithm.

5.1.3 Problem Definition

In this subsection we define the objective of an MCCP. We first introduce the notion
of “control trajectories”, which are used to described algorithms. We then formalize
the notion of algorithms and define the objective. Finally, we introduce a way of
bounding distances that is valid for all instances.

For the rest of this subsection, let us fix an MCCP

P(T,H,an,a} ,B(h,h'),C(R)).

Control Trajectories

We can compute an e-approximation of z* using the family of contraction processes.
The reason for introducing “control trajectories” is that we can think of “controlling”
the contraction processes through a choice of grid-levels and durations on the grid-
levels; each choice corresponds to a control trajectory.

More formally, let hy,ks,...,h; € H denote some i choices of grid-levels; let
t1,t2,...,¢; € T denote the corresponding durations; and let

n = (i k), (ticty hica)s - (1, ha). (5.1.9)

[The indices are in a reversed order for a reason which will be explained later.] Such
a sequence is called a control trajectory (or simply a trajectory). The length of 7,
denoted by |9}, is i. The trajectory is multigrid if || > 2; otherwise, it is single-grid.
The set of grid-levels of 7 is {h;, hi_y,...,h1}; its initial grid-level is h, and its
final grid-level is h;. We call n one-way ifh; < h;_; <...< h1, namely, the grid-levels
only go from coarse to fine; it is strictly one-way if all the inequalities are strict.
Furthermore, we use the notation AJ, to represent the composition A Af:',‘_ll e AR
[This is why we have written the indices in Eq. (5.1.9) in the reversed order.] We say
that A7z is the result of applying 7 to the initial point z. The total cost of using 7 is

]

Ch S 1,C(h;). (5.1.10)
j=1

115

Finally, let
AZ U (T xH) and A% AU {0}, (5.1.11)
=1
where 0 denotes the zero-length trajectory, which is called the null trajectory. For
the null trajectory we have C3, = 0 and A%z = = for all z € M. Suppose that

5= ((t;-,h;),(t;-_l,h;_l),...,(t’l,h'l)).

The composition of 7 and 7 results in a new trajectory given by

fion= ((t;.,h;-),...,(t'l,h’l),(t,-,hi),...,(tl,hl)).

It is clear that
Al = AL AL and CI7=CL+CY, Vi€ A

Therefore, control trajectories provide a concise notation of describing the composi-
tions of contraction processes and their associated costs.

Algorithms

We now give a precise definition of an algorithm. By an algorithm for an MCCP
that computes an e-approximation to z*, we mean a prescription, for each ¢ > 0,
of a trajectory which, when used to operate the contraction processes, gives an e-
approximation to z*.! We assume that the parameters (T, M, on,a},B(h,h"),C(R))
are also available to the algorithm.

More generally, for any h, ho € Ho, an algorithm that computes an e-approximation
to x}, starting from an initial point z},_, is a mapping v : R* — 4, such that for all
instances and all € > 0,

d(z}, Af{Vz;) < e.

The set of all such algorithms is denoted by G(z},, ,h).

An algorithm 7 is said to be single-grid if |y(e)| < 1 for all otherwise, it is
multigrid. We call v a (strictly) one-way algorithm if v(€) is a (strictly) one-way
trajectory for all €. The total cost of using 7 is a function of € denoted by

CEO)EQY, e>o.

[The function C7(-) is the complexity of v, and we have omitted the subscript H since
there is no ambiguity.]

'In general, such trajectories may not exist. Therefore, an assumption such as 0 is a limit point of
‘H and limp o D(h) = 0 is needed to ensure their existence. Indeed, this assumption is sufficient to
guarantee the existence of the desired trajectories—namely, choose an & such that D(h) < €/2 and
apply Ap to the initial point until the successive approximation error is also less than e/2—the
single-grid method.

116

The objective is to find an algorithm with the “best complexity” in the limit as
€ "\, 0. To this effect we introduce the complezity of the MCCP

C(zny,zhi)™ inf C'e), ho,h € Hoye> 0,

'yGG(z;o,m;)
which is a lower bound on the complexity of any algorithm. For the remaining of

this subsection, we introduce a way of bounding d(zf, A%z) that is valid for all
instances.

The Basic Bound

For any n € A, ho, h € Ho, we would like to bound d(z}, Ajz;,) for all instances. We
can achieve this by using the triangle inequality and what we know about the general
problem. We now describe a particular way of doing this.
Using the triangle inequality, the grid-transfer error bound, and the contraction
property of A;, we obtain
d(zh, AL ART, - AR ah,) < d(ef,2h,) +d(af,_,, AS AL .. AL g)
< B(h,hi) + afiapitd(ar, |, AR - Al 3}).(5.1.12)
By recursively expanding the right-hand side of Eq. (5.1.12), we obtain an upper

bound on d(z;, Aji A" ... A}l z}) in terms of af’s, al'’s, and B(h,R')’s.

To facilitate the writing of this upper bound, let
1= ((ti-1, hic1), .., (81, ha)),
and define a mapping P : Hy x Ao X Hox — R° recursively as follows
P(R, ((ti, ki) - 1, ho) & B(h,) + ali i P(hsy n, ho); (5.1.13)
P(h,0, ko) % B(h, ho). (5.1.14)

We now introduce a shorthand notation for writing P; this notation also serves as
a reminder that P(h,n, ko) is an upper bound on d(z}, A7z},). We let

p(zh, A7 e;,) = P(hyn, ko), hyho € Ho,n € Ao. (5.1.15)

Therefore, it follows that
p(eh, AN)72}) = p(ah, zn,) + af ahi=p(et,, Al); (5.1.16)
P(wZa :3710) = B(ha hO) (5117)

[We can view Egs. (5.1.16)—(5.1.17) as an alternative definition of p.] Therefore
we have a particular way of upper bounding d(z}, A7z},) that is independent of
the instance. We call p(zj, Ajz;,) the basic bound for d(zy, Az). Note that
d(z},, A%z}) < € holds for all instances, if p(zf, Adzr) <.

Finally, comparing Eq (5.1.12) with Eqs. (5.1.13)-(5.1.17), we sumimnarize our
results so far by the following lemma.
Lemma 5.1.1 For any instance « € P(T,H, an,al, B(h, k'), C(h)) there holds,

d(zy, Afi,) < p(zh, ALy,), Vho,h € Hyy € A

117

5.1.4 Notes

First, note that we make an MCCP P(T,H, o, a}, B(k, k'), C(h)) “harder” (by en-
larging it) if we replace ap by a “larger” function. For example, consider another
MCCP 'ﬁ(T,'H,c‘xh,aﬁ',B(h,h'),C(h)) where a, < &, for all h € H. Then an algo-
rithm 5 for the second problem [namely, v € G(z},z},)] is also an algorithm for the
first problem [namely, v € G(z},=},)]; thus, G(2},2}) C G(z},z,). It follows that
the complexities of the two problems satisfy

C*(zh,zhse) < C(ah,zhse), VR, A' € Hy.

Similarly, we can also make P(T, ™M, oy, al’, B(h, A’), C(k)) “harder” (thereby in-
creasing the problem’s complexity) by making any of the following changes: (i) replace
T = R° by T = Z° (ii) replace M by a subset, (iii) replace a}'by a larger function,
or (iv) replace B(k, h') by a larger function. We can also increase the complexity by
replacing C(k) by a larger function.

Second, we let an MCCP be specified by P(T,H,an,ap,B(h,h'),C(h)) because
it is supposed to reflect what we know about the problem. In many cases of interest,
we also know the metric space (M, d). For these cases we denote the class of instances
by

P(T,H,an,a ,B(h,k'),C(R) | M,d),

and an instance ¢ = ({Ah}he‘ﬂ, {wi}hem) satisfies the same requirements [Eqs. (5.1.2),

(5.1.3), and (5.1.5)], except that (M, d) is specified by the problem. Thus, it is trivially
true that

P(T,H,an,ay ,B(h, k'), C(R) | M,d) C P(T, H,an,ah ,B(h, k'), C(R)).

When we develop algorithms for an MCCP, we want the algorithm to be applicable
to the largest class of instances. On the other hand, when we derive lower bounds for
the complexity of an MCCP, the lower bound is strongest if it belongs to the most
restrictive class.

Finally, the delay factor a}!' can model diverse applications. For example, in certain
applications the metric space M is decomposed into a family of subsets {My}),. The
contraction processes Ay, is only defined on M. In order to change from one grid-level
to another, there is a grid-transfer mapping I} : My, — My, so that we use AL TN AL,
instead of A} A},. There may be computational costs or extra errors associated with
using the grid-transfer mapping. The general framework can model such applications
as follows:

1. Make the grid-transfer mapping implicit; that is, if = € M;, then Alz will
implicitly mean A{I}'z.

2. Use the delay factors to model (multiplicative) errors introduced by the grid-

transfer mapping; for example, d(z},I}'z) < a}'d(zf,z). [Cf. Egs. (5.1.2)-
(5.1.3).]

118

3. Use the delay factors to model the cost of using I}'; for example, choose aﬁi so
that aja}’ = 1, in which case the cost of using I} is essentially ¢tC(h).

5.2 Algorithms and Their Complexities

In this section, we consider three special cases of the Minimum Computational Cost
Problems (MCCP’s). We first introduce the assumptions and define the three cases.
We then introduce two algorithms for these problems: a single-grid and a multigrid
algorithm. We analyze the complexity (computational cost) of these algorithms and
obtain upper bounds on the problems’ complexities (minimum computational cost).
We next establish lower bounds on the problems’ complexities and show that the
multigrid algorithm is in a certain sense optimal. Finally, we discuss the application
of Bellman’s optimality principle to MCCP’s.

5.2.1 Special Cases
We consider three special cases of the MCCP P(T,H, ap,al, B(h,k'),C(k)) which

model many practical problems of interest. We begin by stating the assumptions for
the first case.

Assumptions

S.1 T =12°

S.2 H={1/2"|: e Z°}.

S.3 ap = e f1" Vh € H, where f; € (0,1] and ¢ > 0 are constants independent of h.
S.4 o} < ag,Vh,h' € H, where ag > 1 is a constant independent of h,h'.

8.5 B(h,h') = fsh® + fsh'*,Vh £ k' € Ho [B(h,h) = 0,Vh € Ho], where f3 > 1 and
s > 0 are constants independent of A and A'.

5.8 C(h) = foh™",Vh € H, where f, > 0,7 > 0 are constants independent of h.

We now discuss each of the above assumptions. By letting 7 = Z° in Assumption S.1,
we are choosing a discrete-time MCCP instead of an “easier” continuous-time problem
(see Section 5.1.4). Assumption S.2 says that we have a family of increasingly fine
grid-levels with grid-size at each level half that of the preceding level. Assumption S.3
says that the contraction factor increases to 1 as the grid-size goes to 0. We have
restricted the value of f; < 1 because we are primarily interested in the case where the
contraction factor is large (close to 1). (A larger contraction factor makes the problem
“harder”.) Assumption S.4 bounds the delay factor by a constant. Assumption S.5
says that the grid-transfer error goes to 0 as kb — A'; in particular, it says that the
discretization error bound D(h) = B(0,k) = fsh* goes to 0 as the grid-size becomes

119

smaller. (It is easy to check that B is a metric on Ho.) In this assumption we
have restricted fs > 1 because we are primarily interested in the case where the
discretization error is not too small. (A smaller discretization error only makes the
problem “easier”.) Finally, Assumption S.6 says that the iteration cost increases with
decreasing grid-size.

Three Types of MCCP’s

We now define the three special cases of MCCP’s. For the first case (called Type I),
Assumptions S.1-5.6 are in effect. A Type I MCCP is specified by (f1y f2, f3, 4,7y 8, 00)
and is denoted by

Pl(fla f2, f3a q,7, 38, a’0)7

where we have used the subscript I to specify that it is a Type I problem.
For the second case (called Type II), we use the same assumptions as before except
that we replace S.3 by

S.3" ap = (1— f1h?),Yh € H where f, € (0,1],q > 0 are constants independent of A.
An MCCP of Type Il is denoted by

Pu(f1, fos f3,9,7, 8, a0).

For the last case (called Type III), we make the same assumptions as in Type 11
except that we replace S.3' by

S.3" ap = a,Vh € H, where a € [1/e,1) is independent of h.

A Type III problem is denoted by
Pa(.fZ, f3$ Ty S, aO)’

where we have used the subscript a (instead of III) to specify that it is a Type 111
problem.

A Type III problem can be viewed as a special case of a Type I problem, by letting
¢ = 0 and f; = —Ina. However, we consider it separately because it is the most
relevant to the discrete-time stochastic control problem in the first part of this report
and, in practice, is also the most basic and most often encountered.

The Objective

For each of the three types of problems, we are interested in finding a minimal cost
algorithm for computing an e-approximation of z* starting from some initial point zj,_,
ho € H. More precisely, we are interested in finding some algorithm vy € G(z}, ,z*)
with the minimum complexity C7(e) and, thereby, obtaining a good upper bound on
the complexity of the problem C*(z},, %5 €).

We are mainly interested in the e dependence of these cost functions [CV(e€) for
Y € G(z},,z*) and C*((z} ,z*;¢€)] in the limit as ¢ \, 0. It is clear that this €

120

dependence is independent of the initial point z} . Therefore, we will, without loss
of generality, use z} as the initial point, and write C*(¢) instead of C*(z?,z*; €).

Furthermore, we are also interested in the dependence on a, fi, fa, and f5. To
simplify the complexity analysis, we introduce the following “order of magnitude”
notation.

Order of Magnitude Notation

Let X3, Xs,..., X, be some subsets of R®. Let f,g: R®x X; x X5 X +-- x X, — R,
We write f(e | z1,23,...,2.) = O(g(e | z1,22,...,,)) [or simply f = O (g), when it
is clear what the variables are| iff there exists some constants ¢, ey > 0 such that

flelzy, .. @) <cgle] @y,...,20), Va1 € Xu,... 2, € Xnye € (0,).

We write f = (g) iff g = O(f); we write f = O (g) iff f = Q(g) and g = O ().

An Observation

Comparing problems of Type I and Type II, we observe that for any given f; and q,
(1— f1h?) < e=fi7 for all h € H. Therefore, it follows (see Section 5.1.4) that for the
same set of parameters a problem of Type I is “harder” than that of Type II; that is

’PII(fI’fZ,fZ’nq’T"S,aO) C PI(fl’fZ’f3’q7r’sva0)a
Gi(z1,2%) C Gu(z3,z*), and Cj(e) > Cjy(e).

So an algorithm for a Type I problem is also an algorithm for the corresponding
Type II problem. Furthermore, since Type III problems are special cases of Type I
problems, we only need to develop algorithms for Type I problems.

In the next two subsections, we will look at some approximation algorithms for
problems of Type I; we consider a single-grid algorithm and a multigrid algorithm, and
analyze the complexities of these algorithms. We show that the multigrid algorithm
has a better complexity than single-grid. Furthermore, in Section 5.2.4, we show that
the multigrid algorithm is in a certain sense optimal.

5.2.2 The Single-Grid Algorithm

We now consider a single-grid algorithm and analyze its complexity for a Type I
problem. This algorithm is called the single-grid algorithm and is the traditional
algorithm of choice. The algorithm is based on the following observation.

An Observation

Let v € G*(z},z*). Given an ¢ > 0, suppose that we use v to compute an e-
approximation of z*. Let the final grid-level y(e) = h,. We observe that there are
two sources of errors:

121

1. The successive approximation error [d(z} o A;’i('):c’{)] which we can bound by the
successive approximation error bound [p(z}, , Alt(e):c{)].

2. The discretization error [d(z*,},)] which we can bound by the discretization
error bound [D(hk,) = B(0, h¢)].

The Main Idea

The main idea of the single-grid algorithm is as follows. First choose h; so that the
discretization error bound is at most €/2. Second, apply A}, on z}, for some t € Z¥,
until the successive approximation error bound is also at most €/2. Thus, by the
triangle inequality the distance between z* and the final estimate A ,Z1 is given by

d(z*, 4},27) < p(z*, 4}, 27)
= P(w*, m;ll) + p(:c;;.t’ A:‘Llw;)
<€/24+¢€¢/2=c¢.
We now show that this algorithm “works”: First, by Assumptions S.2 and S.5, we
can always pick an h, > 0 that satisfies the requirement D(k,) < €/2. It follows from

Assumption 5.3 that ay, < 1; therefore, the algorithm must terminate for some finite
t.

The Algorithm

We now give a more precise description of the algorithm. Given any € > 0, the algo-
rithm picks the largest by € H for which D(h,) < €/2. Therefore, by Assumption S.5,

fshy < €/2, (5.2.1)

and

fa(2he)" > €/2. (5.2.2)
It follows from Eq. (5.2.2) that

/s

1 2]’

— < - . b

Ry = 2 [p] (5.2.3)

The algorithm applies Ax, on z} for ¢ iterations. From Assumption S.5, we have
D(h¢) < D(1) = f3. Using Assumption S.4, we have

P(TBL, Aiuw;) = afuaop(x;pz;)
< aj,,a0 [D(he) 4 D(1)]
< aj, [2a0f3] -

122

We want to choose t € Z* so that p(;,, Af,,x}) < €/2; hence, it suffices if o}, [2a0f3] <
¢/2. Using Assumption S.3, we have

¢ < In [4aof3/€] +

< 1
‘ln of,
_ In [4a‘of3/€] 41, (5.2.4)

fihi
Complexity Analysis

We now proceed to analyze the complexity of the single-grid algorithm. We will use
the symbol SG to denote the algorithm.
From Assumption S.6, the iteration cost of Ay, is

1 r
Clhe) = f2 [77] : (5.2.5)
¢
Using Eqs. (5.2.4)-(5.2.5) and Eq. (5.2.3), we obtain the total computational cost
(:ISG(E l .f17f27f3) = tc(hl)

< (%3/—6]+ 1) f2 [Blj]

In [4Gof3/€] 2f3 /s q 2f3 /e »
< f2 (_—fl_ [T] 2 +1) [T] 2

=0 (% [é](qﬁ)/,) |

As we have discussed earlier, the above upper bound applies to C3C(e | f1y foy fa)
as well. And to specialize the results for problems of Type IIT, we let ¢ = 0 and
fi = [Ina|. Therefore, we have proved the following Theorem.

Theorem 5.2.1 There holds

> In [3' (g+7)/s
C?G(elfl,fz,fs):o(% fﬂ);

el [£.]0atm)/e
CISIG(flfl,fz,fs)=O(% i);

CS(e | for fo) = O (—fz In [£s/€] [fo] ,,..) .

nal |[e€]

5.2.3 The Basic Multigrid Algorithm

We now look at a one-way multigrid algorithm and analyze its complexity. This al-
gorithm is called the basic multigrid algorithm. This algorithm has better complexity
than the single-grid version and is based on the following observation.

123

An Observation

As the grid-level ~ |, 0 both the contraction factor and the iteration cost become
worse. But since the initial error is large, we can save computational cost by starting
the initial iterations on a coarse grid and use finer and finer grids as the estimate
becomes more accurate. Based on this observation we have the following multigrid
principle.

Multigrid Principle: To save computations, start at a coarse grid-
level and iterate on that grid-level until the successive approximation error
(bound) is comparable to the discretization error (bound) before changing
to a finer grid-level.

We note that once the discretization and approximation errors are comparable, there
is no reason to iterate any more on that grid-level, since the grid-level cannot provide
more information for approximating z*.

The Algorithm

The basic multigrid algorithm uses the following implementation of the multigrid
principle. The algorithm chooses the finest grid-level h, € H,¢ € Z*+ (as in SQ)
so that h, is the coarsest grid-level that satisfies fahy < €/2. Therefore, h, satisfies
Eq. (5.2.3). The algorithm uses the following grid-levels

hi =1/2,, i=1,2,... ¢

The algorithm starts at the initial grid-level h;, and does ¢; € Z* iterations
of An, until p(z} , A 2}) < D(h;). [Namely, the successive approximation error
bound is not more than the discretization error bound]. This is the grid-refinement
criterion. Once this criterion is met, the algorithm changes to grid-size h, using A}l 3
as the initial estimate on the grid-level. The algorithm applies Ap, on the estimate
for ¢, iterations until the grid-refinement criterion for grid-level h, is met; that is,
Pl A%, Al) < D(hs)

More generally, let n € A denote the trajectory associated with the basic multigrid
algorithm when the grid-refinement criterion on grid-level h;_; is met. Therefore, the

final grid-level of is h;_; and
P(zh,_,, A7z1) < D(hiy). (5.2.6)

The algorithm now proceeds to grid-level h; and applies ¢; iterations of Ap; to Az}
until the grid-refinement criterion on grid-level &; is met; that is,

p(z},, Aj Aj]) < D(hs). (5.2.7)

Eventually the algorithm reaches grid-level k, and does ¢, iterations of Ap, until
the grid-refinement criterion is met. The algorithm terminates and returns the final
estimate A7z}, where

n" = ((te,he)y - . -5 (82, h2), ($1, 1))

124

denotes the trajectory of the algorithm.
Therefore, using the definition of p, the grid-refinement criterion [cf. Eq. (5.2.7)],
and Eq. (5.2.1) we obtain

d(e*, A%z}) < p(z*, Afe})
= P(‘E*7m;¢) + p(.’ll}:l, %-’BI)

= D(h¢) + p(z},, AL z})
< 2D(hy) <e.

Thus, A'}t"c; is an e-approximation of z* as required.

The convergence of the basic multigrid algorithms follows simply from the fact
that the grid-level is always halved each time the algorithm moves to the next grid-
level; after £ — 1 grid-refinements the algorithm reaches grid-level A,. Moreover, at
each grid-level, the grid-refinement criterion is met after a finite number of iteration
because a, < 1,Vh € H (by Assumption S.3).

We now upper bound the number of iterations on each grid-level. Suppose that
the algorithm has just moved into grid-level k; and let n be its trajectory so far. The
algorithm does t; iteration on this grid-level until Eq. (5.2.7) is satisfied. Using the
definition of p, Eq. (5.2.6), Assumption S.3 we obtain

P(zh,, A%, Afz}) = ofiao [B(hi, hist) + p(a}, , , Alyat)]
S af;;_ao [D(h,) + 2D(h,_1)]
= i [ao(1 +2°1)] D(hy).

[We let ho = 1, so the above bound holds for i = 1.]
To satisfy the grid-refinement criterion on grid-level k; [Eq. (5.2.7)], it suffices to
have o’ [ag(1 + 2°*1)] < 1. Thus,

< Infao(l+2°41)]

t < 1
—lnah,.
In [ao(1 + 2°+1 ,
- “[“"(fl;:? Vi1, vie 1,2,...,L. (5.2.8)

Complexity Analysis

We now analyze the complexity of the basic multigrid algorithm. We will use the
symbol MG to denote the algorithm.
First, by our choice of grid-levels, we have

i S P

i=1 i=1

1 xzf-1]
_ [h_c] Y2

125

-2’
Using Egs. (5.2.8), (5.2.9), and (5.2.3), we obtain the following bound on the total

computational cost of using MG

i] L veso (5.2.9)
ht

¢
r(e] f1, f2, f3) = Ztic(hi)

_ g In [ao(; Z"TH) + 1] f2 [.—hl_]r
= ao(l + 2] i [7:‘] T i [hi”

In [ao(l 4 29H1)] (a+r) 1 17 1
([h,] 2@ [E] 1—2-r
(ln [ao(l +2,+1)] [2]‘](q+r)/a o(g+r) [2f3])

1—2-r

1 — 2-(a+r)
_0 _2 [é](ﬁ"‘)/"
file

Hence, we have obtained an upper bound on CMS(e | fi, fa, fs) and, consequently,
an upper bound on Ci(e | fi, f2, fa). By the same argument given earlier for SG,
the bound also applies to problems of Types II and ITI. The results are summarized

below.
f3 ('H'")/"
=)

Theorem 5.2.2 There holds
(g47)/s
CII('flaf21f3 ([])

cetmin-o (il 2]

Furthermore, the above complexity bounds are attained by MG, the basic multigrid-
algorithm.

Note that in MG we only need al,, < ao for all A € H instead of a?, < ag for all
] hj2 = h
h,h' € H.

CI(EIfl,fZ:fS) (

el e N b

Discussion

In our analysis, we have assumed that H = {1,1/2,1/4,...}. In general, we could
have assumed H = {1/z* | i € Z°}, for any z > 1. The algorithms, SG and MG

126

are easily adapted to this choice of grid-levels; moreover, the complexities of the
adapted algorithms (Theorems 5.2.1 and 5.2.2) remain unchanged. (Note that using
a “larger” H only makes the problem “easier”.) In practice, there is a preference for
choosing z an integer (more generally, h;/h;_; an integer). The is because it is often
preferable to use a “uniform” grid; for example, in the finite difference discretization
scheme, a uniform grid is usually assumed. [By choosing z (depending on ¢, r, and
s) appropriately, it is possible to obtain a multigrid algorithm (for continuous-time
MCCP’s) that is also optimal in the dependence on g, 7, and s.]

Comparing the results of Theorems 5.2.1 and 5.2.2, we note that MG improves
on the complexity of SG by a factor of In[fs/€]. The natural question is this: Is
there is an algorithm with a better complexity than MG? The answer is no. (At least
not with respect to the dependence on o, f1, fs, fa,¢.) We will show this in the next
subsection.

5.2.4 Lower Bounds

In this subsection we show, for the problems of Types I-III, that the basic multigrid
algorithm, MG, is optimal in its dependence on a, fy, f5, f3, € no algorithm can imn-
prove on the complexity of MG. We first show the result for problems of Type I and
then apply the result to problems of Types II and I1I. For the rest of this subsection
we will focus on showing the result for a Type I problem.

An outline of this subsection is as follows. We first introduce some simplifying
assumptions and present the main ideas of the proof. We then construct an instance
whose minimum computational cost function (] is a solution to a certain optimal
control problem. Next, we solve the optimal control problem and obtain a lower
bound on Cj. Finally we apply the results to problems of Types II and III.

Simplifying Assumptions

Since we prove lower bound on complexity, the result is “strongest” if we prove this
lower bound for an “easiest” problem. For this reason we replace Assumptions S.1,
5.2, S.4, and S.5 by the following assumptions.

S.1' T = R°.

S.2' H = (0,1].

S.4' a!' =1 for all K",k € H.

S.5' B(h, k') = |fah® — foh'*|,Vh, k' € Ho.

It is clear that letting 7 = R°, H = (0,1], and a}' = 1 only makes the problem
easier. And it is clear that the grid-transfer error bound in Assumption S.5' (is a
metric on Ho and) is smaller than the bound in Assumption $.5; therefore, this also
makes the problem easier. For the rest of this subsection, Assumptions S.1', S.2', 5.4,
and 5.5’ are in effect; furthermore, let us fix a Type I problem Pi(f1, f2, f3, 9,7, 8) for
our discussion.

127

Main Ideas

We now give the main ideas of the lower bound construction. We first construct
an instance of Pi(fi, fo, f3,4,7,3) and show that its minimum cost corresponds to
the solution of a certain continuous-time optimal control problem. After relaxing
certain constraints for that problem, we get a new optimal control problem. We then
obtain a closed-form solution to the new optimal control problem by solving a certain
Hamilton-Jacobi-Bellman (HJB) equation. As a result we obtain a lower bound on
the minimum computational cost for the instance, thereby, obtain a lower bound on
the problem’s complexity Cj. Finally, by comparing the lower bound with the upper
bound of Theorem 5.1.2, we prove the optimality of MG.

The Instance

We construct the instance by first constructing the metric space. Let M = [0, f3] and
the metric d(z,y) = |z — y|,Vz,y € M.

We now construct the family of contraction processes. Let z;, = f3h*,Yh € [0,1],
and let

Ai:l! = Qz(:l! - fah") + fgha, t Z 0, h € (O, 1], T € M, (5.210)

where aj, = e=f1"*_ Tt follows that
d(4hz, Aly) = ajd(z,y), VE>0,h € H,z,y € M.

Hence, A, is a (continuous-time) semi-group of contraction mappings on M with
contraction factor «y and fixed-point z}; therefore, {A,} is the required family of
contraction processes.

The minimum cost function for computing an e-approximation to z* — 0, starting
from the initial point ©] = fa, is given by

Ci(e) = nién}o % (5.2.11)
subject to d(z*, Af,x}) = AL f; < e.

A Continuous-Time Optimal Control Problem

We can view Eq. (5.2.10) as a description of the law of motion of a certain dynamical
system. Let z(t) € M denote the “state” of the system at time ¢. Fixing the grid-level
h, we can rewrite Eq. (5.2.10) as a differential equation as follows:

é(t) = Jim, (ARte(t) - 2(t)) /At
— 1 (a’et - ag) t hs
= A e [a(t) — feh?]
=Inay - [z(t) - f3h?]
= — fik%2(t) + f, fsh**, (5.2.12)

128

[Note that Alit]{IID(A,?t — I)/At is the infinitesimal generator of A.] It is clear that

Eq (5.2.10) is the solution to the dynamical system described by Eq. (5.2.12).

Let G% {u: 0, 00) — H | such that u is a Borel measurable function}. By let-
ting A = u(t) be a control variable, we obtain the following control equation

&(t) = — fru?(t)z(t) + fifsu?(t), weG. (5.2.13)

Eq. (5.2.13) can be viewed as the state equation of a dynamical system controlled by
u.

For any control function u € G, let z¥(t),t € [0,00) denote the state trajectory
when the system [Eq. (5.2.13)] is operated with w. We now formulate an optimal
control problem. Given the initial state of the system z(0) = f3h3 and a final state
fsh}, the problem is to choose some control function u € G so that at some time
t € [0,00), ¥(t) = fshj. The time when the state first reaches fsh} is called the
terminal time of u and is denoted by T. More formally,

TE inf {t|e“(t) = fshi}.
Jut (¢ 2%(6) = fehi}
[The terminal time of w is infinite if the final state is never reached.] The objective is
to minimize the cost needed (as a result of using u) to drive the system from fshj to
fah}. More precisely, we are interested in

C*(Faht fah) % ing 1 [T 1 Td
(fs O’fsl)_%%g onZ(T) T

where T' is the terminal time of u. For later reference, the above optimal control
problem is denoted by OCP.

We now return to the original minimum cost problem [Eq. (5.2.11)]. For any
control trajectory 7 € Ag, there exists a control function © € G and some terminal

time T' such that z*(0) = f3, z*(T) = A}, fs, and

vl

[Namely, for any n we choose u to be a piecewise constant function with grid-levels
and durations matching 7.] Therefore

Ci(f3,0;5€) > C*(f3,¢), Ve> 0.

z*(0) = fshg,z*(T) = fahZ} ,

The main reason for considering OCP, is that we can obtain a closed form solution
to C**, by solving the following Hamilton-Jacobi-Bellman (HJB) equation.

0= inf {f2 [1] L 9Vity) | 9V(t,y) _a_:(t)}

ueH u at Jy
_ 11", 9V(ty) 9V(t,y) . atr
—uér(lofll{fz [;] R T T [~ frwty + ffsut™] b, (5.2.14)

129

where V (t,y) is the cost-to-go function when the system, at time ¢, is in state y. [See,
for example, Bryson and Ho (1961) and Flemming (1975) for a discussion of such
problems.] The boundary condition for the HJB equation is V(t, fshi) = 0,Yt > 0;
that is, the cost-to-go is 0 once the system reaches the final state fah;.

Instead of solving the HJB equation directly, we will use a heuristic derivation to
obtain a closed form solution to C**. We then verify that it is indeed the solution by
showing that it satisfies the HJB equation.

A Heuristic Derivation

We now give a non-rigorous derivation of the solution to OCP. In the next subsection
we will verify that we have indeed obtained the solution.

To simplify the algebra, we make a change of variable by letting y = f3h*; in
particular, yo = f3h3, y, = fahj. The OCP can be rewritten as

C**(yo,) = ;gfo {/OT f2 [u(lf)] dr

©EG
Let @ € G denote the optimal control function, which we assume to exist. Let &
denote the corresponding optimal state trajectory. [That is, #(-) = z%(-).] Suppose
that at some time ¢ € [0, T] the system is at grid-level & and that the optimal state
and control are Z(t) = f3h* and 4(t) = @, € H, respectively.
Consider the changes in the state and in the cost from time # to # + At, for some
At > 0 very small. The “distance moved”

Ay = z(t + At) — z(t)
= z(t) - At
= fi[~aifsh® + faugt] - At
= fi [~y + fsus*] - At

z*(0) = yo,z*(T) = yg} .

and the increase in cost

AC™ = C(yo,y + Ay) — C**(yo,y)
1 T
= f2 ['_—] - At.
Uy
Therefore, the “increase in cost/distance moved” is given by

an-(yo’y) _ lim AC&:

dy ~ AyNoO Ay
fa 1
= E —ﬁ§+ry Al (5.2.15)

If @, is the optimal control at time ¢, then it should minimize dC** /dy or, equiva-
lently, maximize the expression [—u%+"y + faudt7+2]. (This is actually the “differential

130

form” of the optimality principle in dynamic programming; we will say more in Sec-
tion 5.2.5.) To get the optimum control @, we let

_ d(_u'H-ry + fsuq+'r+s)
N du
= —(g+ w7y + fa(g+ 7 + s)uttrHel,

0

It follows that

oy 1/s
ﬁy - m] y (5.2.16)

where o & (¢ + 7)/s. Substituting Eq. (5.2.16) into Eq. (5.2.15) we obtain

- o \° o\t ™
dcC (g:o,y) _ ff;s [_ (m) + (a+ 1) +] [?]

f2 [o]"1 (0+1)” [fs]a-H
— ~1+4 = 5.2.17
fifa o+1 o Yy ()
B f2(0'+1) (O'-I-l)d l:fgjlﬁ-l
—fifs 4 Y '
Integrating Eq. (5.2.17) with respect to y and using the fact that C**(yo,%0) =0, we
obtain f RNTIAT P\
+1\° 3 3
C*(Yo,9) = = (0) [(—) - (—)] 5.2.18
(0,9) i\ o Y Yo ()

Optimal State and Control Trajectories

To complete the derivation, we will obtain the optimal state and control trajectories
as functions of ¢t. Let @(t) = #, and Z(¢) = y. From Eq. (5.2.16), we have

a(t) = (ULH)I/’ [% 1/’. (5.2.19)

Substituting Eq. (5.2.19) into Eq. (5.2.13), we obtain,

0= (75)" [%] " O+ 1 ()" [% v

/s
— ~q/s L)q [_1 d]—q/s+1t
fits <0'+1 M O

—q/s a/s
= ‘{;fi) (aj—l) 0
& fify" (o)q/-' i

za/o+1 (c+1)\o+1

(5.2.20)

131

We consider two cases: First, suppose that ¢ # 0. Then integrating Eq. (5.2.20) from
t =0 to ¢, we obtain

. o e B fs,_q/’fl o q/s
E[m /(t)——.’c /(0)] = (0 +1) (a+1) b

Since the initial condition is #(0) = f3h, we have

s/q
o 9f1 (4)q/’
Et)=fs [ho + o) \o T t , telo,T). (5.2.21)
Substituting Eq. (5.2.21) into Eq. (5.2.19), we obtain
_ o\ qf1 o\ 17
at) = (a+1) [h0+ s(oc+1) (O'-I—l) g » telnT] (5.2.22)

where T is the terminal time of @. [It is clear that @ € G.]
Second, if ¢ = 0 (which corresponds to a problem of Type III), from Eq. (5.2.20)
we have

dz _ f18
gE r + s’
= #(t) = fshie A, te[0,T]. (5.2.23)

Substituting Eq. (5.2.23) into Eq. (5.2.19), we have

1/s
ﬁ(t):(id) hoe~35t, ¢ € [0,T). (5.2.24)

Finally, the terminal time T is given by #(T) = fshj.

5.2.5 Verification

We now show that C**(yo,y,) is indeed the optimal cost function for OCP.

It suffices to show that V(t,y) = C**(y, y,) satisfies the HJB equation [Eq. (5.2.14)].
And to verify that @, [Eq. (5.2.16)] is the optimal control, it suffices to show that the
infimum in Eq. (5.2.14) is attained by 4,.

First, we check that V(t,y,) = C**(y¢,y¢) = 0, Vt. Therefore, V(t,ye) satisfies the
boundary condition. Second, since C**(y,ye) is independent of ¢, we have

V(t,y)
ot
And from Eq. (5.2.18), we have
6V(tvy) — dC“(yayl) — _dC**(yan)
dy dy dy

132

Therefore, the HIB equation becomes

) 1 r dcux , .
o= (5l -l b pae]} Gam)

and we are required to show that the infimum in Eq. (5.2.25) is attained by

. —L]l/s
¢ (c+1)fs .

The verification that C** and 4, are the optimal cost function and the optimal
control, respectively, is reduced to showing that

iC(yy) _ fo 1
dy T fi | —uetr . y + fauatr+s ety)

Comparing with Egs. (5.2.15)-(5.2.16), we see that Eq. (5.2.26) holds, as required.
We also see that the heuristic derivation of dC**(yo,y)/dy actually uses Eq. (5.2.26)
as the starting point of the derivation [cf. Eq. (5.2.15)], and that we choose the value
of @, to minimize the right-hand side of Eq. (5.2.26).

(5.2.26)

5.2.6 Summary of Results
From Eq. (5.2.18), we have

C*(foy€) = % (a: 1)a+1 [(%)a) 1] |
Therefore,

Ci(e| fi, f2, f3) > C*(fay€)

_ (q+r " s)<q+f+’>/’ (fs)(‘”')/’ 1
B f qg+r €)

_q é[é](ﬁ'")/-’
file
Specializing our results to problems of Type III (by letting ¢ = 0 and f; = —Ina)
we obtain :

) BN AK
o o [4).

To obtain the results for problems of Type II, we note that there exists some
hy € (0,1) such that

e 2fh <1 £k, Vh € [0,hy).

133

Therefore, if we consider a problem of Type I Pi(2f1, f2, f3,9,7,$) and a problem of
Type 1l Pl[(fls f2 f37q""5‘9)7 we have

Cl*l(wl*u’w*;e | f13f21f3) 2 c{(m;pm‘;e l f17f2a.f3)
> C*(fshi, €)

fz gtr+s (g+r+s)/s fs (g+r)/s (1)(q+r)
T 2f (g+r) (?) Rk '

3 fz f3 (g+r)/s
- (E o)

Since the asymptotic dependence on € is independent of the initial point, we have

(g+r)/e
Chle | f1, fas f3) =0 (% [%]) .

We summarize the results of this subsection by the following theorem:

f (g47)/s

E7):

(a+r)/s

Cile | fiy fay fa) = ([])

Cile| fa, fa) = (Ilna| [fs])

It follows that MG, the basic multigrid algorithm, attains the above complexity bounds;
hence, it is optimal with respect to the dependence on a, fi, fa, fs, €.

Theorem 5.2.3 There holds

@w

Cl(elfl,fz,fs (

sh S5
o3

Note that for those cases where the metric space is specified by the problem, we can
still use the same lower bound construction, provided we can isometrically imbed
the interval [0, f5] into the specified metric space. It is always possible to do the
imbedding for any normed vector space (of non-zero dimension).

5.2.7 Discussion

In this subsection we discuss some implications of the results. Our heuristic derivation
of the minimum cost function of C** is based on the optimality principle in dynamic
programming. [See Bertsekas (1987) for more details.] The optimality principle is
best illustrated by the following example: Let u € G be the optimal control function
that drives the system from the initial state zq to the final state zr. Let z¥(-) be
state trajectory corresponding to u. Therefore z*(0) = zo and z%(T') = 1, where T

134

is the terminal time of w. Then the optimality principle says that for all ¢ € (0,T),
u must also be the optimal control function that drives the system from z, to the
intermediate state z, = z¥(¢).!

The reason is that if there is a better control function v € @ that drives the system
from state z, to z,, then one can improve on u by first using v(t),t € [0,T"), where
T" is the terminal time of v, to drive the system to z,; then use u(t),t € [¢,T) to
drive the system from z, to zr. This contradicts the optimality of u. (This argument
is possible because the iteration cost f2(1/u]" and the cost-to-go function are time
independent.)

It is clear from the optimality principle that the optimal state and control tra-
jectories, #(t) and @(t) [Eqs. (5.2.21)~(5.2.24)], are independent of the final state.
Moreover, if we express @ as a function of only the state [cf. Eq. (5.2.16)], then is
independent of both the initial and the final states.

The heuristic derivation of dC**(yo,y)/dy in based on the “differentjal form” of
the optimality principle. That is if « € G is the optimal control function, then
the derivative dC**(y0,y)/dy evaluated at u must be minimized for all ¢ ¢ [0, T].
Assuming the contrary and supposing that the minimum in dC**(yo,y)/dy is attained
by 1o # u(t) at some ¢, then we can reduce the cost by operating the system with u
fort € [0,t ~ AtJU[t + At,T] and use uo during [t — At, ¢ + At] thereby reducing the
cost. This contradicts the optimality of u.

The multigrid principle can be viewed as an imprecise statement of the optimality
principle. At each grid-level the algorithm decides the duration on the grid-level
before grid-refinement and chooses the next grid-level. The choice of the duration
and the next grid-level is based on minimizing AC/Ah, that is, minimizing the cost
incurred per improvement in approximation error. It turns out that for problems of
Types I-111, iterating until the successive approximation error bound is no more than
the discretization error bound, and choosing the next grid-size 1/2 of the current
grid-size is sufficient to guarantee the asymptotic optimality of the algorithm with
respect to € (and a, fi, fa, fs).

5.3 Applications

In this section, we look at some applications of the general framework introduced in
Section 5.1 and of the complexity results in Section 5.2. We consider three areas of
applications: (i) the discrete-time stochastic control problem addressed in the first
part of this thesis, (ii) simulated annealing, and (iii) boundary value problems. We
will only present the main ideas rather than showing every step.

'Here, we are talking about the “forward” optimality principle, which is applicable to certain special

cases like ours. The usual, more generally applicable, “backward” optimality says something
weaker—that for all ¢ € (0, T), u must be the optimal control that drives the system from z, at
time 2 to zp.

135

5.3.1 Discrete-Time Stochastic Control

The problem is to compute an e-approximation to the solution of Bellman’s equation
TJ =J,

where T is the dynamic programming operator introduced in Chapter 2. This problem
is the focus of the first part of this report. The application of the general framework to
this problem is of special significance for the following reason: It is this problem that
motivated our development of the general framework. One of the original motivations
is to separate the complexity analysis of the algorithms from the specific details of
the problems, such as measurability issues and discretization methods. The general
framework allows us to do that.

The basic ideas of discrete-time stochastic control problems are discussed in Chap-
ter 2. We now show how this problem is modeled by a Type III problem. The notation
used here is the same as in Part I of this report.

The Metric Space

The metric space M = B(S), where B(S) is the space of all bounded Borel-measurable
functions on the state space S. (For more details see Chapters 2 and 3.) The metric
d(z,y) = ||z - yllw, ®,y € B(S), where || - || is the sup-norm on B(S). We have
shown (in Section 2.2) that T is a contraction operator on B(S) with contraction
factor a € (0,1) and has a unique fixed point J*. Here, a is the discount factor and
J* is the optimal cost function.

The Family of Contraction Processes

In Section 2.4, we constructed a family of contraction operators {Th}heﬂ, where
H = (0, h,] for some h, € (0,1]. Each T}, has contraction factor a and can be thought
of as a piecewise constant approximation of T [cf. Theorem 2.4.2]. The fixed-point of
Th, denoted by J}, is a simple function on S.

Error Bounds

By Theorem 2.4.2, we have || J* — It oo < K'h/(1 - a)?,Vh € H, for some constant
K' > 1. By letting A, = T, and z} = J};, the discretization error bound is D(h) =
K'h/(1 — a)?. Therefore,

KI
fa = —(1 o) and s=1.

We let the grid-transfer error bound B(h,h') = fah® + fsh'* for h # h'.

136

The Iteration Cost

The cost per iteration of T}, is the number of arithmetic operations needed in one
iteration of T},. It is clear (cf. Lemma 3.1.1) that the iteration cost C(h) = coh=(2ntm),
for some constant c; > 1 and where n and m are the dimensions of the state and the
control spaces, respectively. Therefore,

fo=c; and 7 =2n+m.

Complexity Analysis

The above problem belongs to Pu(f2, f3,7,8), with T = Z°, H = (0,h,], and the
values of a, f3, f3,7,s are given above. We can use the single-grid and the multigrid
algorithms of Section 5.2; by Theorems 5.2.1 and 5.2.2, we have (keeping only the
dependence on a and ¢, as € \, 0)

(=0 (1“ [1/(1 =)] [1]2"+m) |

llog a| (1 —a)Ze

Ca%(e)=0 (|1o; al [(1 *la)“] Mm) |

This is in agreement with the results of Section 3.2.

Lower Bounds

Since B(S) is a Banach space, the lower bound construction of Theorem 5.2.3 applies.
[We can isometrically imbed the interval [0, f3] into B(S).] Therefore, we have

Cale) =9 (|10g1;a| [(1 —la)2€]2n+m) .

But the information-based lower bound (cf. Theorem 3.3.2) is

it -0 [2])-

Note that even though there is a gap of order O (1/|log |) between the upper and the
information-based lower bound, the algorithmic-based lower bound shows that MG
is optimal within the class of all algorithms of the form fl.’,fi T,f; e T,::J using only the
operators in {T},}. We conclude that no choice of grid-levels and durations can close
the O (1/(1 — a)) “gap” between the upper bound and the information-based lower.

The general framework can also be used to analyze the complexity of the special
case where a mixing condition is in effect.

137

5.3.2 Simulated Annealing

We now look at another area of application—simulated annealing; we will use the
framework to solve the optimal cooling schedule problem. This application is inter-
esting because there has been a lot of research on this subject recently. Using the
general framework, we do not obtain any new results; but we get another view of
the results. Again we will not discuss this application in detail; for more details see
Hajek (1988) and Tsitsiklis (1989).

Basic Ideas

We now give the basic ideas of simulated annealing. Consider a system with NV pos-
sible physical states S = {1,2,...,N}. Associated with the system is an energy
function J : § + [0,00) and a non-negative control parameter T, which represents
the temperature of the system. The system changes state probabilistically, in a man-
ner depending on the temperature. If the temperature is held constant at 7' for a
long time, the system tends to an equilibrium probability distribution 77, where the
probability that the system is in state i is given by

e—J()/T

Pr(state = i) = n7(i) = 7
T

(5.3.1)

where Z7 = TN e JO)/T j5 o normalizing constant.

Let §* %! {1 € §|J(i) < J(j),Vj € S}; that is, $* denotes lowest energy states of
the system. For simplicity, we assume that S* is a singleton. It is easy to see that m,,
the probability distribution when T = 0, is concentrated on S*. However, the speed
of convergence to equilibrium becomes very slow as T \, 0.

Simulated annealing is a probabilistic algorithm for minimizing the cost function J
by simulating the physical system. It can be viewed as a descent-type algorithm with
probabilistic upward transitions. Its main application is in combinatorial problems
[see, for example, Kirkpatrick, et al (1983)].

Modeling

We now describe how the general framework allows us to analyze a simulated anneal-
ing algorithm. The metric space is the set of all probability distributions on §; that
is,

N
M= {176 2 0,370 = 1.
=1
The metric on M is the (discrete) L;-norm; that is

N
d(w,n') = Z v (2) = ='()], =, 7" M.

Instead of using T, we will use the parameter h = e-1/T (h = 0 when T = 0).
Furthermore, let zj, = 77, H = (0,1/e), and A} denotes running the simulation

138

algorithm for the duration ¢ € R*, at temperature T'. Under certain irreducibility
and aperiodicity assumptions (at all T' > 0), it can be shown that the convergence to
equilibrium is geometric. Therefore, we can assume that A, is a contraction process
on M with fixed-point z}. The assumptions we make are as follows:

1. ap = 1 — f1h?, where f; > 0,q > 0 are some constants. [Therefore, we are

assuming that the rate of convergence (as a function of the temperature) is
ar =1 — fle‘Q/T, T > O.]

2. C(h) = 1,Vh; that is, f, = 1, r = 0. [Letting C(h) = 1 makes the minimum
computational cost problem into a minimum time problem; thus, the algorithm
with the minimum cost corresponds to the best cooling schedule.]

3. D(h) = fsh*, for some constants f3,s > 0. [We are assuming that d(m,r) <
fae~*/T; this assumption follows from Eq. (5.3.1), with some additional simpli-
fying assumptions.]

4. a} < ao for some constant ao.[We are assuming that there exists some constant
ao > 1 such that if we fix the temperature at T > 0, then d(wr,7(t)) <
afaed(mwr,n(0)), for all £ > 0, where n(¢) denotes the probability distribution
at time £. This assumption follows from the norm equivalence between finite
dimensional norms—that is, if w(¢) converges to w7 with respect to one norm,
then it also converges, with the same contraction factor, with respect to any
other norms (except that we may have to introduce an appropriate delay factor
in the latter convergence). The key assumption here, is that the delay factor is
independent of the temperature. This is a simplifying assumption we make.]

Under Assumptions 1-4, the above is a Type II problem,

Pu(T,H, f1, f2, f3, 9,7, 9),

where the parameters are described above.

We are interested in the form of the best cooling schedule; namely, the temperature
T as a function of time £, in the limit as ¢ ,” co. We can either use the lower bound
result of Section 5.2.4 or the upper bound result of Section 5.2.3

To use the lower bound result, we note that for N > 2 (N is usually a very large
number), we can always imbed the interval [0, f3] into (M, d); hence, we can construct
the lower bound as in Section 5.2.4. According to Eq. (5.2.22), as t . oo,

het Ve = 71

[The actual meaning of the lower bound to simulated annealing is unclear because of
the special structure of the problem (which may make the lower bound inapplicable).
The lower bound result makes sense if we do not consider the special structure but
consider only the three parameters of the problem.]

139

Alternatively, by Theorem 5.2.2 the minimum time to reach an e-approximation

to m is -0 (E]q/.) |

where the complexity bound is attained by MG. Therefore, using MG, we have ¢ ~
e=9/*. But since ¢ ~ h?*; therefore, t ~ h=9, or equivalently, T ~ ¢/In ¢, which agrees
with the cooling schedule based on the lower bound.

In simulated annealing the variable q represents the “depth” to be climbed to
get to a global minimum. So a larger ¢ should require a slower cooling, which is in
agreement with what we have obtained.

Lastly, note that by the optimality principle, the optimal cooling schedule for
obtaining an e-approximation to 7y must be a “subschedule” of the optimal cooling
schedule for obtaining .

5.3.3 Boundary Value Problems

We now use the general framework to analyze boundary value problems. Instead
of considering the most general problem, we will consider a 1-dimensional two-point
boundary value problem. This model problem captures the main ideas. [See Briggs
(1987) for more details.] We will also show how the general framework can be adapted
for the more specialized analysis used for such problems.

Main Ideas

Consider the domain Q = [0, 1] and the boundary 99 = {0,1}. Let Co(Q) denote
the space of all bounded continuous functions on ! with values equal to 0 at .
Let o be a known positive constant and f be a known function on 0 (of sufficient
smoothness). We consider the following boundary value problem

—u"(z) + ou(z) = f(z), z€/(0,1), (5.3.2)

where u € Co(Q) and is twice differentiable. It can be shown that this differential
equation has a unique solution u*. We are interested in computing an e-approximation
to u*.

Finite Difference Approximation

There are many ways of discretizing Bq. (5.3.2). We will consider a particular way,
using finite differences. Let the discretized domain be Q, = {ih | i = L2,...N -1},
where N is some positive integer. Let B($24) be the set of all (discrete) real-valued
functions on Q. [Therefore elements of B(2) are vectors in RVN-1]

For a fixed the grid-size & = 1 /N, we use the second-order finite difference to
approximate u”, so that Eq. (5.3.2) becomes

[~u(zio1) + 2u(z;) — W(Tip1) A2 + ou(z;) = f(zi), 1<i<N-1,

140

where z; = i{/N,0 < i < N. Ignoring the two end-points [2(0) and »(1)], we can
rewrite this equation as

@ = (24 0h®) Ly + Unla + (2 + 0)h%f,, @€ B(QW), (5.3.3)

where Ly, (respectively, U}) is an (N — 1) X (N — 1) matrix with 1’s just below (re-
spectively, just above) the diagonal, and f, € B.(,) is a vector of f-values evaluated
at z;. Let uj € B.(Q2) denote the solution of Eq. (5.3.3).

Before defining the contraction processes, we first define the grid-transfer (injec-
tion and interpolation) operators. The injection operator I : Co(Q) — B(R,) is given
by

(pu)(z:) = u(x;), Yu € Co(Q),z; € M.
[In particular, f, = I?f.] The interpolation operator I} : B() — Co(R) is defined
by the property that for any @ € B(f2y,), I is a linear interpolation of 4 with value
0 at 0. Note that IPI} is the identity operator on B(Q4).

A Family of Contraction Operators

Let B, = (2 + oh?)-1 [f,h + (7;,] It is easy to show that the induced norm of B, is
1 Billo = (1 +0h2/2)" ~ 1 — %hz'

Therefore, By, is a contraction operator on B(f) with respect to the (discrete) sup-
norm.

We now define the metric space and the family of contraction processes. We begin
by defining the set of grid-levels and the metric space. Let H = {1,1/2,....,s; M =
Co(); My, = {Ita | @ € B(Q)} for each h € H; and the metric d(z,y) = ||z — y||wo
for all z,y € M.

Furthermore, for each h € M, we define an operator Ay, : B(2,) — B(Q),

Apii = Bpii + (2 + o) 'h%f, @ € B(Q).

It is clear that A, is a contraction operator on (B(22%), || - loo) with contraction factor
ap = ||Bpllec ~ 1 — ah?/2.
Finally, we define the family of contraction processes by letting

Alu=IDALI), weM.
It is clear that z} défIg‘ilz is the fixed point of A,; moreover it can be shown that
d(zy, Aju) < ofd(z}, @), Vie Z°ue M.

(It is easy to check that d(z}, I} Ifu) < d(z},u).] Thus, we have constructed a family
of contraction processes with contraction factor aj, ~ 1 — oh? /2 and delay factor 1.

Furthermore, we will assume that the discretization error is O (h2) and the cost
of each iteration of A is O (1/h). (We can use the delay factor to model the compu-
tational cost of the injection and interpolation operators, if necessary.) In summary,
we have

141

1. an =1— f1h?, where f; = 0/2 and ¢ = 2.

2. C(h) = f2h~", where f, is some positive constant and r = 1.
3. D(h) = f3h*, where f; is some positive constant and s = 2.
4. the delay factor af' is chosen accordingly.

[Note that the above construction is to illustrate how to use the general framework to
model the kinds of analyses used in boundary value problems; we are not suggesting
any changes in the actual implementation of the algorithm.]

We are only interested in the dependence on ¢, as € \, 0. Under Assumptions 1-4,
the problem belongs to Class II; therefore, using MG, the basic multigrid algorithm,

we obtain
1 3/2
CMS(e) = O (H) .

Since we can construct the lower bound of Section 5.2.4 in M, the algorithmic-based
lower bound within the framework is

C*(e) = 0 (E] 3/2) .

However, the complexity can be improved by exploiting the special structure of the
problem. We will consider one such improvement.

The Full Multigrid V-Cycle
The complexity of MG is not good compared with the Full Multigrid V-cycle (FMV)

algorithm, which is used in practice. [For more details on the FMV algorithin, see
Briggs (1987), Douglas (1984), or Hackbusch (1985).] The FMV algorithm uses defect
correction to exploit the special structure of the problemn; one obtains a contraction
factor independent of the discretization—a Type III problem. If we now let each
iteration of A, correspond to a V-cycle then everything in the preceding subsection
remains the same, except that the contraction factor a; = a, independent of A
(namely, ¢ = 0). Thus we can apply the analysis in Section 5.2.3 and show that
the complexity is O ([1 /€]t 2) which agrees with the known result [see Briggs (1987)
and Hackbusch (1985).] Thus, we can view the FMV-cycle as a one-way multigrid
algorithm but each iteration is now a V-cycle. This analysis also illustrates the
limitations of the lower bound result of Theorem 5.2.3, the result only hold with
respect to the family of available algorithms and does not rule out using the problems’
special structure to get a better complexity.

Notes

The actual analysis of the FMV-cycle uses the discrete L,-norm to exploit the different
rate of convergence for different frequency components. However, in our framework

142

we use the continuous sup-norm which is the essentially the same as the discrete sup-
norm. And by norm equivalence the convergence rate with respect to the discrete
sup-norm and the discrete L, is the same; but it may take a few iterations before
the convergence with respect to the discrete sup-norm appears. We can handle this
in our framework by an appropriate choice of delay factor. (More study is needed to
determine the proper choice of delay factor.) Alternatively, we can use the continuous
Ljy-norm instead of the sup-norm.

Finally, the general framework may be used to analyze continuous-time stochastic
control problems and model some of the algorithins in Hoppe (1986) and Akian, et
al (1988). (Again more analysis is needed.)

5.3.4 Summary

We have shown that the general framework can model a wide variety of relaxation
problems. However more study is needed to determine how the delay factor should
be chosen to model boundary value and continuous-time stochastic control problems.
The advantage of using the general framework is that we can simply use the results
of Section 5.2 for the complexity analysis, without having to redo the analysis for
each problem. Furthermore, the framework also provides a unifying view of these
problems.

5.4 General Results for MCCP'’s

In this section we present some general results for Minimum Computational Cost
Problems (MCCP’s). First, we show that the basic bound is in a certain sense opti-
mal. Second, we show under certain monotonicity assumptions that one-way multi-
grid algorithms are in a certain sense optimal. Finally, we explore the relationship
between the discretization error bound and the grid-transfer error bound, and prove
an intuitive result (see Theorem and Corollary 5.4.3).

5.4.1 Optimality of The Basic Bound

Recall (see Lemma 5.1.1) that the basic bound p(z}, %},) allows us to upper bound
d(z},, Aj,x},) for all instances. Some of the reasons for using the basic bound are: (i)
it is simple to use, (ii) it gives good results (cf. the optimality results in Section 5.2),
and (iii) it is intuitively clear that it is the best upper bound within the framework.

In this subsection, we reinforce the last reason by showing that the basic bound
is indeed a tight upper bound on d(z}, Aj,z},); thus, providing a mathematical justi-
fication for using the basic bound. Moreover, this result allows us to develop further
results on the MCCP’s, which we will discuss in the later subsections.

143

The Main Idea

We show that the basic bound is a tight upper bound by constructing an instance
for which d(m,‘l,A;’im;o) = p(mz,A%mzo); therefore, in general, there can be no bet.
ter upper bound on d(z}, Az}) than the basic bound (unless more information is
provided about the problem). For the rest of this subsection let us fix an MCCP
P(T7 H, ap, aiiflv B(~, k'), C(h))

The Construction

We now construct the instance , — (M, d, {An}ren, {wi}heﬂo) with the desired prop-
erties. Let My, = {(h, 2,) | 2: € [0,00)}, h € H, Mg = {(0,0)}, M = Uner, My, and
:v; = (h, 0), h e HQ.
The metric is defined, for h, k' ¢ Ho,
d(zh, zh) = B(h, k).

Since B is a metric, we have

d(zf,z},) < d(z;, z}.) + d(zhu, z), Vh, B R" € Ho.
More generally, for ¢ = (hyz3) and y = (A, y2),

(o) = { 2~ if h = b,

T2 + Y2 + d(z;,z},) otherwise.

Let z = (A", z,), then

_ [z — 2| if b = h'";
d(;z:,z) = {-’Ez + 2z, 4 d(l’ia-’ci") otherwise.
_ (Il i B = B
d(z,y) = {Zz +ys + d(m;"’m;ﬂ) otherwise.

We would like to show that

d(z’y) < d('z:’z) + d(zay)a Vw,y,z € M. (542)
By doing a case by case analysis (when b = Ry h =h" B = h", and all the A’s are

distinct) it is easy to verify Eq. (5.4.2).
The contraction process Ay, : M — M, is given by

Alz = (h,atar d(z},z)), te T hh' € Hyz € My, (5.4.3)
It is clear that Ay is a contraction process on M with contraction factor ay, delay

factor @} and fixed point z} = (h,0).

144

It remains to verify that
d(zy, A%y,) = p(z;, ALzh,), Yh,ho € Ho,n € A,. (5.4.4)

For the null trajectory, Eq. (5.4.4) is trivially true. We now assume, as our induction
hypothesis, that Eq. (5.4.4) holds for all trajectories with length ¢ — 1,7 € Z*, and
we show it for trajectories of length .

Let 1 be a trajectory of length ¢ — 1. If 5 is a null trajectory then let a;, = a’,:,’;

otherwise, let a;, = aﬁ:“, where h;_; is the final grid-level of . Using Eqs. (5.4.1)
and (5.4.3), the induction hypothesis, and the definition of p, we obtain
d(z}, Ay Afzr,) = d(eh, z5,) + d(=r,, AR AR 2},)
= d(z}, #},) + ai ey, d(z;,, Alzh,)
= p(ah, zy,) + of app(eh,, ARz,
= p(z;, Ak ALzh,),
which completes the induction step. Thus we have proved the following result.

Proposition 5.4.1 For any MCCP P(T,H,an,al ,B(h,h'),C(Rk)), there exists an
instance ¢« € P(T,H, an,a} ,B(h,h'),C(R)) such that there holds,

d(mh’A'Hmho) = p(wh,A‘Hmhu)a Vh,ho € Ho,n € Ap.

An Extension

If the metric space is specified by the problem, we expect to be able to obtain tighter
bounds on d(z}, A%z},) using our knowledge about the metric space. However, the
result of Proposition 5.4.1 can be extended to these cases whenever we can isometri-
cally imbed the metric space constructed here into the specified metric space. Once
that is done, the rest of the construction and, thus, the optimality of the basic bound
follow.

Significance of The Basic Bound

Fix some MCCP
P(T,H,an,al ,B(h,h'),C(h)).

Note that the bound d(zj, A%x}) < p(z},, A};z;,) holds for all instances. Moreover,
we can always find an instance for which the bound is an equality. Thus, we have
d(z}, A%z},) < € for all instances iff p(z}, A%z}) < e. Therefore, we can define
Ajx}, to be an e-approximation of z;, iff p(z}, Az}) < e. The significance of this
result is that we can work with the basic bound instead of the metric.

Finally, we prove a useful lemma.

Lemma 5.4.1 There holds,

p(:c;;,A"Hz,’:o) < P(wivwi’) + p(ﬂ:;;,,Ag{:B,:o), Vh, h,ahO € Ho,n € Ap.

145

Proof For || = 0 the results follows trivially from the triangle inequality. We now
prove the lemma by induction on |7|. Suppose the results hold for all trajectories 7
with || < i—1. (Let the final grid-level of be h;_, .) We now prove it for trajectories
of length 1.

Using the definition of p [Eqs. (5.1.16)-(5.1.17)] and the fact that B is a metric,
we have

* 4 * * * i hi_ * *
p(wth;;A;’-twho) = p(zy, zp,) + afx.-ah.- p(z,, ALzr,)
* * * * £ hi— * *
< p(zh, zh) + P(2h, h,) + of @i~ p(z;,, Ajzy,)

S p(m;’ il?;;,) + p(w;'t" Af‘.‘, ;lm;lo)’

as required. O

5.4.2 The Optimality of One-Way Multigrid Algorithms

In this subsection we show that, under certain monotonicity assumptions on the prob-
lem parameter, one-way multigrid algorithms (algorithms that proceed from coarse to
fine grid-levels) are in a certain sense optimal; more precisely, one can always replace
a non-one-way algorithm by a one-way (in fact, a strictly one-way) algorithm whose
complexity is just as good as the original, if not better.

We begin by introducing some terminology and the assumptions.

Terminology and Assumptions

Let f be a real-valued function on a subset of the real line. We say that f is monotone
increasing (respectively, monotone decreasing) if f(h) < f(R') [respectively, f(h) >
f(h')] for all A < I'. It is strictly monotone if the inequality is strict.

We now introduce the following assumptions.

G.0 0 is a limit point of H and ’111{1}) D(k) = 0.

G.1 o4 is a monotone decreasing function of A.
G.2 C(h) is a monotone decreasing function of A.
G.3 o} = a}" for all h, k' h" € H.

Note that we can also consider strict versions of Assumptions G.1-G.2, where “mono-
tone” is replaced by “strictly monotone”. And Assumption G.3 says that the delay
factor may depend on the final grid-level but is independent of the initial grid-level.

The following theorem and corollary show the “optimality” of one-way trajectories
and algorithms—they are all that is needed for the minimum computational cost
problem.

Theorem 5.4.1 Suppose that the problem P(T,H,an,a},B(k,h'),C(h)) satisfies As-
sumption G.1-G.3. Then for any € A,, there ezists an 7 € Ao such that

146

1. 1j is a strictly one-way trajectory.

2. The set of grid-levels of i is a subset of that of n; 7 and n have the same final

grid-level; and |7j| < |n|.

3. Cl<C,

4. p(zh, Azzh,) < p(z;, ALz,) for all hyhg € H,.

Proof We can construct 7 from 7 as follows. Start by setting the final duration
and grid-level pair of 77 to be that of 5. Continue doing this for 7, until a duration
grid-level pair that will destroy the monotonicity of 7 is encountered. If so, use
the coarsest grid-level of 4, instead. This construction is the basic idea behind the
following inductive proof.

We will prove the theorem by induction on the length of 5. The result is trivially
true when || < 1. Our induction hypothesis is that the result hold for all trajectories
of length ¢ — 1, where i > 2. We now show it for trajectories of length 3.

Let 7' be a trajectory of length ¢ —1 and with final grid-level h'slet n = ((ti, ki))-n'.
Using the definition of p and the definition of C, we obtain

p(er, Ajeh,) = p(z}, Al AYer,)
= p(zh,2h,) + aliahp(er,, ALer,); (5.4.5)
7 = t:C(h:) + CL. (5.4.6)

From Egs. (5.4.5) and (5.4.6), we see that if we apply our induction hypothesis to 5’
we can assumed that 5’ is a strictly one-way trajectory. And we are done if h; < h'.
Therefore it remains to prove the result when h; > h'.

Let us suppose that ' = ((¢/,h')) - ". And if 5" is a null trajectory, then let
ay, = a',if; otherwise, let ay,, = a%', where A" is the final grid-level of 7",
Using Eq. (5.4.5), the definition of p, Lemma 5.4.1, and the facts an. > 1, ap, <
ap < 1, and aft; = a;, we have
P(zh, Ajz;,) = p(ah, ©h,) + o afy [P(iﬂZ.-, zh) + efuagp(zh, AY i,)]
> p(zi, zh,) + of oafuaf [p(eh,, zh) + p(eh, AL)]
> p(ah, 2h,) + ol oy, [p(e,, AN 2,)]
SR)" .
= p(a}, A),
We now apply the induction hypothesis to ((¢; + t',h;)) - 7" (since its length is
i — 1) to get the required strictly one-way sub-trajectory 7. It remains to verify that

7 satisfies the cost requirements.
From Eq. (5.4.6) and using the monotonicity of C, we have

Cl = t:;C(hs) + t'C(R') + CI,

> (8 + t)C(ha) + C
_ et

=Gy,

147

where the last inequality follows from the induction hypothesis.
O

Note that under the strict version of Assumptions G.1-G.2, if 7 is non-one-way, then
Theorem 5.4.1 can be strengthened, with the inequalities in Parts 2, 3, and 4 replaced
by strict inequalities. In this case one-way trajectories are strictly better than non-
one-way trajectories.

The following corollary follows immediately.

Corollary 5.4.1 Under the hypothesis of Theorem 5.4.1 and Assumption G.0, for
all ho,h € Ho and for any algorithm v € G(z},,}), there exists a strictly one-way
algorithm ¥ € G(z}, ,z},) such that

C'(e) < C'(e), Ve> 0.
In particular,

C*(z},,zr;e) = inf {C"(e) ‘ 7 is strictly one-way}, Vho, h € Ho,e > 0.

'yEG(z,"o zh)

Theorem 5.4.1 is surprising since it only requires the monotonicity of ap and C(h)
[Assumptions G.1-G.2] and does not require any monotonicity in the discretization
error bound D or the grid-transfer error bound B. (We “need” Assumption G.3 to rule
out cases where the delay factor “prohibits” certain grid-level changes.) Moreover,
the “optimality” of one-way algorithm applies to approximating z}, for any h € H,
and starting from any initial point zj . The next theorem clarifies the latter issue.
But we need to introduce the following simplifying restriction on the delay factor.

G.4 a}, = a}, for all h,h',h" € H.

[The above assumption says that the delay factor may depend on the initial grid-level
but is independent of the final grid-level. So, Assumptions G.3-G.4 say that the delay
factor is a constant, independent of the grid-levels.]

Theorem 5.4.2 Under the hypothesis of Theorem 5.4.1 and Assumption G.4, and

for all hyho € Ho, 1 € Ay, there ezists a strictly one-way trajectory i € Ao with final
grid-level no less than h, such that

Proof By Theorem 5.4.1 we can assume that 7 is one-way. Moreover, the result is
trivially true if the final grid-level of % is no less than h; in particular, it is trivially
true for the null trajectory.

Let us suppose that n = ((',A")) - n", where A’ < h. And if 5" is a null trajectory,
let ay, = a}?; otherwise, let ay, = aft/, where A" is the final grid-level of n".

148

Using the definition of p we obtain

"
p(zh, A%zr,) = p(h, @h) + p(zh, Al AY <)
= p(z;,z5) + ofuagp(z;,, AY z},).

We now consider the following two cases: (i) afay, < 1, (ii) af,az, > 1.
For Case (i), we have

p(zh, A7iei,) 2 afianlp(ef, of) + p(ei, A% 2h,)]
> o aj [p(zh, 47, 2},)]
= p(eh, AL 2),
where the last inequality follows from the monotonicity of ap, Assumption G.4, and
Lemma 5.4.1. We now can apply Theorem 5.4.1 to the trajectory ((¢',k)) - 3" to

obtained the desired one-way trajectory 7 (which has final-grid level k).
For Case (ii), we have

p(zh, ALzh,) > p(eh, zi) + p(ah, AY)
> p(zh, A% =,).

Now if the final grid-level of 5" is no less than h, then we are done; otherwise, we
apply the same argument to 5" until either Case (i) occurs or we get a null trajectory.
In both cases the result follows.

a

Note that under the strict versions of Assumption G.1 and G.2 and if the final grid-
level of 7) is less than h, then we can show that 7 is strictly better than 7.
The following corollary is now immediate:

Corollary 5.4.2 Under the hypothesis of Corollary 5.4.1 and Assumption G.4. For
any ho,h € Ho, v € G(z},,;), there exists a strictly one-way algorithm ¥ €
G(z},,}) such that for all € > 0, the final grid-level of ¥(e) is no less than b and
Ci(e) < C(€). In particular,

C*(zp,, z);€) = G(inf){C"(e) | 7 is strictly one-way and the final grid-level
Y€ z;o vm;

of v(e) is no less than h}, Vho,h € Ho,e > 0.

In summary, to compute z}, one can always use a one-way algorithm and without
using any grid-level less than h.

149

Some Observations

We now discuss some implications of Theorem and Corollary 5.4.1. This result is
especially instructive when applied to the following situation:

Suppose that P(T,H, an,al, B(h,h'),C(k)) is an MCCP where the discretization
error bound D(2) = B(0, k) decreases to 0 monotonically as & | 0. We assume that ay,
and C(h) are some arbitrary functions—but such that we can reorder to give a new
problem P(T,H, &, {a}'}, B(h, k'), C(h)) where &, and C(h) now satisfy Assumptions
G.1-G.2. [For example, this can always be done when C(k) is a constant.] We now
apply Theorem and Corollary 5.4.1 to the new problem and conclude that one-way
trajectories and algorithms are “optimal” for approximating z;. But with respect
to the original problem, we make the following conclusion: The choice of grid-level
should always proceed from those with good contraction factor and, by assumption,
low cost to those with worse contraction factor and high cost.

There is a simple explanation for the above conclusion. We observe that in com-
puting an e-approximation to xj one need not go below [with respect to the mono-
tonicity of a and C(h)] grid-level A [Cf. Theorem and Corollary 5.4.2.] This is
because, for h # 0, if we take the single-grid algorithm at grid-level h as the “stan-
dard algorithm” there is no reason for going to a grid-level with a worse contraction
and a higher cost; since it will only cost more and introduce an additional grid-transfer
error. However, one may choose a grid-level, say ', with a better contraction factor
and, hence, a lower cost than that of A, provided the improvement is worth the price
in the grid-transfer error. [There is always a grid-transfer error p(x}, z},) because
the final result must be compared at grid-level h—a peculiarity of the basic bound.]
Applying the same reasoning to the grid-level &', one may choose a grid-level with
better contraction factor and lower cost, say A”; again provided the savings is worth
the cost due to the grid-transfer error p(z},,z}.). Using this chain of reasoning we
conclude that the best algorithm must be one-way with respect to the monotonicity
in o and C(h), and the form of D(h) or B(h, k') is irrelevant.

Finally, note that in order for Theorems and Corollaries 5.4.1-5.4.2 to be true,
we need assumptions such as (.3 and G.4 to rule out cases where the delay factor
“prohibits” certain grid-level changes. However, we should be able to prove these
results under weaker conditions (such as monotonicity), and understand better the
effects of the delay factors. This is a topic for future research.

5.4.3 Discretization and Grid-Transfer Error Bounds

In this subsection we explore the connection between the discretization error bound
D(k) and the grid-transfer error bound B(h, h’). This will help us better understand
the structural properties of B(h,A’) and how they relate to the monotonicity of D(A).
We will also prove an intuitive theorem and corollary at the end of the subsection.
Suppose that we are given a discretization error bound D(k). We can form the

150

following grid-transfer error bound B, : Ho x Ho — RO,

otherwise.

It follows from the triangle inequality [cf. Eq. (5.1.6)] that
d(z},z;,) < By(h,h'), Vh,h' € Ho.

Thus, B, is indeed a grid-transfer error bound. (It is easy to see that B, is a metric
on Hy.)

Even though the above bound is, in general, the “best bound” on d(z}, z},.), it is
too “pessimistic”, in practice. A more “optimistic” grid-transfer error bound is

Bo(h, k') |D(R) — D(R')|, Vh,k' € Ho. (5.4.8)

[It is also easy to check that By is a metric on Ho.] This bound is not always valid,
but it is motivated by the observation (from the triangle inequality) that

d(z;,zp) > |d(z;,z*) — d(z*, z},)|, Vh,h' € H. (5.4.9)

And if the discretization error is “tight” [that is, d(z*,z}) ~ D(h)], then the grid-
transfer error bound of Eq. (5.4.8) is indeed “optimistic. [It is also clear from
Eq. (5.4.9) that if d(z},z};,) = 0, then d(z*,z}) = d(z*,z},)—so, the optimistic
bound may be “too optimistic”.]

To model the whole spectrum [Eqs. (5.4.7)-(5.4.8)], we introduce the grid-transfer
parameter 3 € [0,1] and assume that

d(z}, ;) < Bg(h,h'), Vh,h' € Ho,
where Bg : Ho X Ho — R,
Ba(h, h') def { |ID(h) — D(h')| + 28[D(h) AD(R")] if h # A'; (5.4.10)
0 otherwise.

The parameter § parametrizes “the degree of pessimism” in the grid-transfer error
bound. Given the grid-transfer parameter 3 and the discretization error. It clear that

Bo(h, ') < Bg(h, ') < Bi(h, k'), Vh,h'€ Ho,B € [0,1].

Moreover, it is seen that Bg = (1 — 3)Bo + #B; for all 3 € [0, 1]; it follows that Bg is
a metric on Hp (since it is a convex combination of two metrics on Hp). Therefore
Bs is indeed a grid-transfer error bound.

Before we relate the monotonicity properties of D and Bg, we first introduce some
terminology.

151

Left and Right Monotonicity
Let ho, h1, k2, hs € Ho. A function f : Ho x Ho +— R is said to be:

1. right monotone if f(ho,h1) < f(ho,h2) for all ko < hy < h;.
2. left monotone if f(hs,hs) < f(h1,hs) for all hy < hy < hs.
3. monotone if f(hi,hz) < f(ho,hs) for all kg < hy < hg < hs.

[One can consider strict versions of the above definitions by replace the inequalities
by strict inequalities.] It is seen that f is (strictly) monotone iff it is both (strictly)
left and right monotone.

We now state two lemmas relating the monotonicity of Bg to the monotonicity of

D and the value of 3.

Lemma 5.4.2 Bj is a (strictly) right monotone metric iff D is a (strictly) monotone
increasing function.

Proof By the definition of Bz [Eq (5.4.10)] Bg(0,h) = D(h) for all b € Ho, the
(strict) monotonicity of D follows. To prove the converse, we assume assume that D
is (strictly) monotone increasing. Then again by the definition of B, we have

B (hoy h1) = |D(ho) — D(h1)| + 28[D(ho) A D(hy)
= D(hy) ~ D(ho) + 28D(ko)
< D(hs) — D(ho) + 28[D(ho) A D(h2)]
= Bﬁ(h07h2)

as required. (The last inequality is strict if D is strictly monotone). O

Lemma 5.4.3 Let D be a monotone increasing function. There holds,

1. If 3 < 1/2 then Bg is a left monotone metric.
2. If D is strictly monotone, then

Bg is strictly left monotone iff G < 1/2.

Proof To prove Part 1, we have, by definition,

Bs(h2, ha) = |D(hz) — D(hs)| + 28[D(h2) A D(hs)]
= D(h3) — (1 — 26)D(k,)
< D(hs) — (1 — 28)D(hy)
= Bﬁ(hl’h!!)’

as required. By doing a case by case analysis on when the last inequality is strict,
Part 2 follows. O

152

Theorem and Corollary

We now conclude this section with a final theorem and corollary. And to keep the
proofs simple we introduce the following simplifying assumption on the delay factor:

G.5 al =1 for all h,h' € H,.

The theorem and corollary says two things (which we intuitively know). Under
the monotonicity assumptions G.1-G.2 and the appropriate monotonicity assumption
on the grid-transfer error bound B the following can be shown: Let ho,hy,hy € Hy
and ho < hy < h,.

1. Starting at =zj,, it is “easier” to compute an e-approximation of than to
compute an e-approximation of zj, .

2. To compute an e-approximation of zf , it is “easier” to start at z* than to
p PP ho? hy
*
start zj,, .

Theorem 5.4.3 Given an MCCP P(T,H,an,a},B(h,k'),C(k)) that satisfies As-
sumptions G.1-G.2, and G.5. For any ho,h1,hs,hs € Hy such that hg < hy < hy < hy
and for any n € Ao, there ezists a j € Ay such that CJ, < C}, and there holds

1. If B is left monotone, then p(a:};z,A%:c,*u) < p(z},, Azh,).
2. If B is right monotone, then p(m,‘;o,A;—’iwzl) < p(z},, ALz,)-

3. If B is monotone, then p(z}, , A%zh,) < p(zh,, ALz},

Proof By Theorem 5.4.1 we can assume that 7 is one-way; therefore, we will assume
throughout the proof that 7 is one-way.

We now prove Part 1. The main idea is that we will split 5 into two parts: The first
part with grid-level above h, and the second part is the remainder. The trajectory
i} is formed by keeping the first part but replacing the second part by a singe-grid
trajectory on grid-level h,. (We can think of 77 as the result of “clipping” 7 so that it
does not go below h,.)

We begin with the trivial cases. First, the result is trivially true if |5| = 0. Second,
if the final grid-level of 7 is A’ > h,, then 7 = 7 is the required trajectory. This is
because p(z},,z},) < p(z}, ,z},), by left monotonicity assumption of B.

So let 7 = 1, - 170, where the final grid-level of 7, is greater than h, and

= ((t;a h:), (t;—l, h;—l), sy (tlla hll)),
for some A} < h;. And let 7 = ((¢,,hs)) - 7o, where ¢, = j-=1 ti.
the monotonicity of C that CJ, < CJ,. It remains to verify that 7 satisfies the second
requirement.
Since the final grid-level of 7 is greater than h,, it follows (from the left mono-
tonicity of B) that

It is clear from

p(zh,, AR zh,) < p(zs,, Afjz},).- (5.4.11)

153

Using the definition of p, Assumptions G.1-G.2, Eq. (5.4.11) we have
P(w;lz ’ A;"ia:;l.;) = a;z., p(m;'!l.z I A;"gm;l.a)
S a;;'p(.’c,:l ? A;.?-’B,:s)

< o [p(i,, 21, + p(e,, T)b (i, ARa,)]

* : t_ t .
< p(z;,, mh;.) + aZ;. [P(:”Z;, w;;_l) + ah".__ll [ot ahli P(ml:{ ’Agf“’h,)”

= b(ef,, 45z,
as required.

We now prove Part 2. The basic idea is similar to that used in Part 1 but instead
of “clipping” 7 from below, we only use the part of 7 with grid-levels below hy.

As in Part 1, the result is trivially true if [71 = 0 and if initial grid-level of 7,
hy < hy. In the latter case 7 = 7 is the required trajectory. This is because by the
right monotonicity of B, we have, p(w,‘;,. yTh) < p(;c,“;,., z7_), and the result follows from
the definition of p.

Solet yp =g, . Mo, where

M= ((8,h5), ..., (8, 4})),

hi < hl, To = ((t;)’ h:))) ' 77('” and hB_Z hy.
Let = 5. It is clear that C < C; it remains to verify that 7 satisfies the
second requirement. First, note that

P(m;;’w;;l) < P(“"l’:;vmig)
S P ehy) + ot p(ah,, Ay)
= p(ajy, AJBMD 7
= P(w’f‘i » Al x;,).
Lastly, using the above inequality, we obtain
. 5w t! A
P(ehor A3c2,) = Bleh, i) + o [+ 4 i p(ehy, z,)]
x t; t oo
< p(mho,m;;) + ahJJ'. [-+ a;:;P(‘l’h;vAgf‘”;,)]
= P(w;o7 A;Q.now;:z)
= p(z;o’ A;]'tw,:z)’

as required,
Part 3 follows easily from Parts 1 and 2. O

1. If B is left monotone, then

C*(z,,zh,5€) < C*(zh,, zh 5€), Ve 0.
2. If B is right monotone, then

C*(zh,, 2y 5€) < C(z,, zh,5€) Ve 0.
3. If B is monotone, then

C*(zh,,zh s €) < C(z},,zh,3€) Ve> 0.

5.5 Conclusions

The general framework allows us to understand and analyze the behavior of many
relaxation algorithms. In this framework, we only need the following three parameters
(as a function of the grid-level): the contraction factor, the discretization error (or
the grid-transfer error) bound, and the iteration cost. We have analyzed in detail
some specific forms of these parameters in Section 5.2, explored various applications
of the framework in Section 5.3, and proved some general results in Section 5.4. We
now discuss some observations and make some suggestions for future research.

5.5.1 Some Observations

Relation to Continuation Methods

In continuation methods [see, for example, Wacker (1978)] a “hard” problem is solved
by imbedding it into a family of problems, parametrized by s € [0,1]. The family
of problems can be viewed as a homotopy of the original problem, where s = 0
corresponds to some “easy” problem and s = 1 corresponds to the original problem.
The original problem is solved by first obtaining a solution to the easy, s = 0, problem,
and continuously transforming this solution to that of the solution of the s = 1
problem.

Our formulation of the multigrid methods can be viewed as a form of continuation
method. We approximate the solution to a “hard”, computationally expensive (h = 0)
problem by first approximation the solution of some “easy”, computationally cheap
(h = 1) problem and using that as the initial estimate for approximating the solution
to an “intermediate” (for example, h = 1/2) problem. We keep doing that until
we obtain the required approximation. The only difference (from the traditional
continuation method) is that we use a “discrete” sequence of problems (instead of
a continuous homotopy). Moreover, there is a notion of computational cost, so our
framework is an example of computational homotopy, or “compotopy”. We found the
optimality principle of dynamic programming to be an effective tool for tackling such
problems.

155

5.5.2 Future Research

Some suggestions for future research are as follows.

1. One possible area of application of the abstract framework concerns finite-state
relaxation problems, where the state space is large. Many such problems can
be viewed as finding the fixed point of a discrete-time contraction process, say
z} of Ap. For such problems an iteration of Ay can very expensive. If we let
1/h denote the number of states, then we may be able to approximate A4; by
a family of {An }nen, where H C [h,1] and each iteration of A cost less and
that d(z},z},) decreases to 0 as A’ \, h. It remains to find the proper domain
for the framework. Also note from the general results in Section 5.4 that the
algorithms should proceed from coarse to fine grid-levels.

2. More study is needed to determine if the general framework in this chapter
provides a fruitful way of viewing problems in Numerical Analysis, and to de-
termine suitable assumptions on the grid-transfer error bounds and the delay
factor. In particular, more study is needed to determine realistic (monotonicity)
assumptions on the delay factor for which the results of Section 5.4 hold.

3. In our framework, we assume that the contraction process converges geomet-
rically (that is, at a linear rate). One can consider other types of convergence
such as superlinear or quadratic (for example, in Newton’s method) and per-
haps develop a similar framework for these problems. One possible application
of such a framework is in the analysis of inexact Newton Methods for solving
finite (or perhaps infinite) dimensional problems.

It is also interesting to know whether the multigrid principle (which suggests
iterating on each grid-level until the successive approximation error is compa-
rable to the discretization error) still applies in such cases. We expect that
the results of Section 5.4 [in particular, the optimality of one-way multigrid
algorithms]| still hold for such a framework. More importantly, we expect the
optimality principle of dynamic programming to be applicable.

4. Our formulation of the minimum computational cost problem can be viewed
as a one-parameter problem (parametrized by k). In general, we can consider
two (or more) parameter problems; that is, we consider a family of contraction
processes {Ap}, parametrized by some h and [, where the contraction factor,
grid-transfer error bound, and the iteration cost are now functions of » and I. A
possible application of such problem is in general continuous-time, continuous-
state-space problems, where one parameter describes the spatial discretization
and the other parameter describes the temporal discretization. Again we expect
the optimality principle in dynamic programming to be effective for handling
such problems. However, since the parametric space is not one-dimensional,
finding an optimal trajectory may be harder.

156

Chapter 6
Conclusions

We now give a summary of our research and suggest some general areas for future
research.

6.1 Summary

We have looked at algorithms and lower bounds for discrete-time stochastic control,
as well as, for more general fixed-point problems. We looked at a single-grid and
a one-way multigrid algorithm and showed that the multigrid algorithm is an im-
provement of the single-grid algorithm. We showed the optimality of the one-way
multigrid algorithm by proving lower bounds. In the first part of this report, we
proved information-based lower bounds; in the second part, we proved algorithmic-
based lower bounds.

We have seen that the (asymptotic) optimality of multigrid algorithm is the result
of its one-way (coarse to fine) nature; going up and down the grid-levels (for example,
in the Full Multigrid V-cycle algorithm) only improves the convergence rate. In the
context of discrete-time stochastic control, the multigrid algorithm does not have to
go up and down the grid levels because the contraction factor is part of the problem
specification. It is unclear whether going up and down the grid-levels, in our context,
can give a better contraction factor. This is because discrete-time stochastic control
problems do not seem to have any special structure.

A novel feature of our analysis is that we simultaneously consider the dependence
on the accuracy and the discount parameters. We see that the latter dependence
leads to some deeper results. There are three reasons for considering the dependence
on the discount factor (as it increases to one): (i) The closer the discount factor is
to one, the more and more the problem looks like an average cost problem. (ii) This
dependence is sensitive to certain ergodicity conditions on the problem. (iii) In a
continuous-time problem, as the time discretization becomes smaller and smaller the
contraction factor of the corresponding discretized problem increases to one.

Another novel feature of our work is the concept of algorithmic-based lower
bounds. Currently, these lower bounds have rather restricted interpretations. We
expect further research in this area should lead to more refined lower bound results.

In summary, we have presented an in-depth study of a narrow aspect of the con-
nection between control and computation. We believe this area of study is both

157

fundamental and enlightening. It also raises an issue concerning research in con-
trol. Before computers were widely available and used in control, it was justifiable to
develop abstract control models, prove convergence results; but not address the com-
putational aspects of the model. In the light that the use of computers is becoming
prevalent in control, the justification has to be reexamined. Perhaps, one should not
only derive rate of convergence, but also consider the computational aspects of the
model.

6.2 Areas of Future Research

We now suggest some general areas for future research. More specific suggestions
have been given in the earlier sections.

1. We have only considered “worst case” lower bounds, since they are the simplest
to prove. But they are too pessimistic in practice. One area of research is to
prove “average case” lower bounds, which may be more of more practical value.

2. We have only discussed the computational aspects of discrete-time stochastic
control. Another area of research is to carry our a similar study for continuous-
time stochastic control. But there are numerous technical difficulties in the
latter problem, one of which is in finding good discretization results.

3. More study is needed to further develop the abstract framework of Chapter 5.
We have only studied one type of convergence—linear convergence. A future
area of research is to consider other types of convergence, such as superlinear
or quadratic convergence. Furthermore, we have only considered a family of
“homogeneous” operators. It would be interesting to prove lower bound results
for two or more families of “non-homogeneous” operators that can interact in
some non-linear fashion.

158

References

[1]

(2]

3]

(4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

Akian, M., J. P. Quadrat, and J. P. Chancelier (1988). Dynamic Programming
Complexity and Application, Proceedings of the 27th IEEE Conference on Deci-
sion and Control, Austin, Texas, December, 1551-1558.

Ash, R. B. (1972). Measure, Integration, and Functional Analysis. Academic
Press, New York.

Bertsekas, D. P. (1975). Convergence of Discretization Procedures in Dynamic
Programming, IEEE Trans. Automatic Control, AC-20, 415-419.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic
Models. Prentice-Hall, Englewood Cliffs, New Jersey.

Bertsekas, D. P. and D. Castanon (1986). Adaptive Aggregation Methods for
Discounted Dynamic Programming, Proceedings of the 25th IEEE Conference on
Decision and Control, Athens, Greece, December, 1840-1845.

Bertsekas, D. P. and S. E. Shreve (1978). Stochastic Optimal Control: The
Discrete Time Case. Academic Press, New York.

Briggs, B. (1987). A Multigrid Tutorial. SIAM, Philadelphia.

Bohmer, K. and H. J. Stetter (1984). Defect Correction Methods: Theory and
Applications. Springer-Verlag, New York.

Brandt, A. (1986). Multi-level Approaches to Large Scale Problems, Proceedings
of International Congress of Mathematicians, Berkeley, California, August.

Bryson, A. and Y.-C. Ho (1961). Applied Optimal Control. Blaisdel Publishing
Company.

Chatelin, F. and W. L. Miranker (1980). Acceleration by Aggregation of Suc-
cessive Approximation Methods, Linear Algebra Appl. 43, 17-47.

Chow, C.-S. and J. N. Tsitsiklis (1988). An Optimal Multigrid Algorithm for
Continuous State Discrete Time Stochastic Control, 27th IEEE Conference on
Decision and Control, Austin, Texas, December, 1908-1912.

159

[13) Chow, C.-S. and J. N. Tsitsiklis (1989a). The Information-Based Complexity
of Dynamic Programming, Technical Report LIDS-P1863, Laboratory for Infor-
mation and Decision Systems, M.I.T., Cambridge, Massachusetts, April. (To
appear in the J. Complezity, December, 1989.)

[14] Chow, C.-S. and J. N. Tsitsiklis (1989b). An Optimal Multigrid Algorithm for
Discrete-Time Stochastic Control, Technical Report LIDS-P1864, Laboratory for
Information and Decision Systems, M.I.T., Cambridge, Massachusetts, April.
(To appear in the IEEE Trans. Automatic Control.)

[15] Conway, J. (1985). A Course in Functional Analysis. Springer-Verlag, New
York.

[16] Denardo, E. V. (1967). Contraction Mappings in The Theory Underlying Dy-
namic Programming, SIAM Review, 9, 165 — 177.

[17] Douglas, C. C. (1984). Multi-grid algorithms with applications to elliptic boun-
dary-value problems, SIAM J. Numer. Anal. 21, 236-254.

[18] Federgruen, A., P. J. Schweitzer, and H. C. Tijms (1978). Contraction Mappings
Underlying Undiscounted Markov Decision Problems, J. Math. Anal. Appl. 65,
711-730.

[19] Fleming, W. H. and R. W. Rishel (1975). Deterministic and Stochastic Optimal
Control. Springer-Verlag, New York.

[20] Fox, B. L. (1971). Finite-State Approximations to Denumerable-State Dynamic
Programs, J. Math. Anal. Appl. 34, 665-670.

[21] Fox, B. L. (1973). Discretizing Dynamic Programs, J. Opt. Theory and Appl.
11, 228-234.

[22] Goodman, J. and A. D. Sokal (1986). Multigrid Monte Carlo Methods for Lattice
Field Theories, Physical Review Letters, 58, 1015-1018.

(23] Hackbusch, W. (1985). Multi-Grid Methods and Applications. Springer-Verlag,
New York.

[24] Hajek, B. (1988). Cooling Schedules for Optimal Annealing, Math. of Oper. Res.
13, 311-329.

[25] Hartley, R., L. C. Thomas, and D. J. White (eds.) (1980). Recent Developments

in Markov Decision Processes. Academic Press, New York.

[26] Haurie, A. and P. L’Ecuyer (1986). Approximation and Bounds in Discrete Event
Dynamic Programming, IEEE Trans. Automatic Control, AC-31, 227-235.

[27] Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press,
Cambridge, Massachusetts.

160

(28] Hinderer, K. (1976). Estimates for Finite-State Dynamic Programs, J. Math.
Anal. and Appl. 55, 207-238.

[29] Hernandez-Lerma, O. (1989). Adaptive Markov Control Process. Springer-
Verlag, New York.

[30] Hoppe R. H. W. (1986). Multi-Grid Methods for Hamilton-Jacobi-Bellman
Equations, Numerische Mathematik, 49, 239-254.

[31] Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by Simu-
lated Annealing, Science, 220, 621-680.

[32] Kolmogorov, A. N. and S. V. Fomin (1970). Introductory Real Analysis. Dover
Publications.

[33] Langen, H.J. (1981). Convergence of Dynamic Programming Models, Math.
Oper. Res. 6, 493-512.

[34] L’Ecuyer, P. (1989). Computing Approximate Solutions to Markov Renewal
Programs with Continuous State Space, Report no DIUL-RR 8912, Département
d’Informatique, Uni. Laval, Canada.

[35] Lewis, H. R. and C. H. Papadimitriou (1981). Elements of The Theory of Com-
putation. Prentice-Hall, Englewood Cliffs, New Jersey.

[36] Mayr, O. (1970). The origins of feedback control. MIT Press, Cambridge.

[37] Nemirovsky, A. S. and D. B. Yudin (1979). Problem Complezity and Method
Efficiency Optimization (translated by E. R. Dawson 1983). John Wiley & Sons,
New York.

[38] Nummelin, E. (1984). General irreducible Markov chains and non-negative op-
erators. Cambridge University Press, Great Britain.

[39] Papadimitriou, C. H., and J.N. Tsitsiklis (1986). Intractable Problems in Control
Theory, SIAM J. Control and Optimization 24, 639-654.

[40] Papadimitriou, C. H., and J.N. Tsitsiklis (1987). The Complexity of Markov
Decision Processes, Math. of Oper. Res. 12, 441-450.

[41] Puterman, M. L. (editor) (1978). Dynamic Programming and Its Applications.
Academic Press, New York.

(42] Puterman, M. L. and S. L. Brumelle (1979). On the Convergence of Policy
Iteration in Stationary Dynamic Programming, Math. of Oper. Res. 4, 60-69.

[43] Puterman, M. L. and M. C. Shin (1978). Modified Policy Iteration Algorithms
for Discounted Markov Decision Problems, Management Sci. 24, 1127-1137.

161

[44] Royden, W. (1964). Principles of Mathematical Analysis (2nd edition). McGraw-
Hill Book Co., Inc., New York.

[45] Schippers, H. (1979). Multigrid Techniques for the Solution of Fredholm Inte-
gral Equations of the Second Kind, Proceedings of a Colloquium on Numerical
Treatment of Integral Equations, T. Riele, (editor), Mathematisch Centrum, Am-
sterdam.

[46] Seneta, E. (1981). Non-negative Matrices and Markov Chains (2nd edition).
Springer-Verlag, New York.

[47] Schweitzer, P.J., M. L. Puterman, and K. W. Kindle (1985). Iterative Aggregation-
Disaggregation Procedures for Discounted Semi-Markov Reward Processes, Oper.
Res. 33, 589-605.

[48) Schweitzer, P. J., (1988). Contraction Mappings Underlying Undiscounted Markov
Decision Problems—II, J. Math. Anal. Appl. 132, 154-170.

[49] Terzopoulos, D. (1984). Multigrid Relaxation methods and the analysis of light-
ness, shading, and flow, MIT AI Laboratory A.I. Memo No. 803., MIT, Cam-
bridge, Massachusetts.

[50] Tsitsiklis, J. N. (1989). Markov Chains with Rare Transitions and Simulated
Annealing, Math. Oper. Res. 14, 70-90.

[51] Traub, J. F., G. W. Wasilkowski, and H. Wozniakowski (1988). Information-
Based Complezity. Academic Press, New York.

[52] Wacker, H. (editor) (1978). Continuation Methods. Academic Press, New York.

[63] Werschulz, A. G. (1985). What is the Complexity of the Fredholm Problem of
the Second Kind? J. Integral Eq. 9, 213-241.

[64] White, D. (1980). Finite State Approximations for Denumerable State Infinite
Horizon Discounted Markov Decision Processes, J. Math Anal. Appl. 74, 292-
295.

[55] White, D. (1982). Finite State Approximations for Denumerable State Infi-
nite Horizon Discounted Markov Decision Processes with Unbounded Rewards,
J. Math. Anal. Appl. 86.

[66] Whitt, W. (1978). Approximations of Dynamic Programs I, Math. Oper. Res.
3, 231-243.

[57] Whitt, W. (1979). Approximations of Dynamic Programs II, Math. Oper. Res.
4, 179-185.

162

