
MIT Open Access Articles

Analysis of the Frank–Wolfe method for convex composite
optimization involving a logarithmically-homogeneous barrier

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhao, Renbo and Freund, Robert M. 2022. "Analysis of the Frank–Wolfe method for
convex composite optimization involving a logarithmically-homogeneous barrier."

As Published: https://doi.org/10.1007/s10107-022-01820-9

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/142541

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/142541
https://creativecommons.org/licenses/by/4.0

Mathematical Programming
https://doi.org/10.1007/s10107-022-01820-9

FULL LENGTH PAPER

Series A

Analysis of the Frank–Wolfe method for convex composite
optimization involving a logarithmically-homogeneous
barrier

Renbo Zhao1 · Robert M. Freund2

Received: 18 October 2020 / Accepted: 9 April 2022
© The Author(s) 2022

Abstract
We present and analyze a new generalized Frank–Wolfe method for the composite
optimization problem (P) : minx∈Rn f (Ax)+ h(x), where f is a θ -logarithmically-
homogeneous self-concordant barrier, A is a linear operator and the function h has a
bounded domain but is possibly non-smooth. We show that our generalized Frank–
Wolfe method requires O((δ0 + θ + Rh) ln(δ0)+ (θ + Rh)

2/ε) iterations to produce
an ε-approximate solution, where δ0 denotes the initial optimality gap and Rh is
the variation of h on its domain. This result establishes certain intrinsic connections
between θ -logarithmically homogeneous barriers and the Frank–Wolfemethod.When
specialized to the D-optimal design problem, we essentially recover the complexity
obtained by Khachiyan (Math Oper Res 21 (2): 307–320, 1996) using the Frank–
Wolfe method with exact line-search. We also study the (Fenchel) dual problem of
(P), and we show that our new method is equivalent to an adaptive-step-size mir-
ror descent method applied to the dual problem. This enables us to provide iteration
complexity bounds for the mirror descent method despite the fact that the dual objec-
tive function is non-Lipschitz and has unbounded domain. In addition, we present
computational experiments that point to the potential usefulness of our generalized
Frank–Wolfe method on Poisson image de-blurring problems with TV regularization,
and on simulated PET problem instances.

Keywords Frank–Wolfe method · Composite optimization ·
Logarithmic-homogeneity · Self-concordance · Barrier · Complexity analysis

Research supported by AFOSR Grant No. FA9550-19-1-0240.

B Renbo Zhao
renboz@mit.edu

Robert M. Freund
rfreund@mit.edu

1 MIT Operations Research Center, 77 Massachusetts Avenue, Cambridge, MA 02139, UK

2 MIT Sloan School of Management, 77 Massachusetts Avenue, Cambridge, MA 02139, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01820-9&domain=pdf
http://orcid.org/0000-0002-8226-9243

R. Zhao, R. M. Freund

Mathematics Subject Classification 90C25 · 68Q25

1 Introduction

We present and analyze a new generalized Frank–Wolfe method [8, 14, 18–20, 24,
39] for the following composite optimization problem:

(P) : F∗ := minx∈Rn [F(x) := f (Ax)+ h(x)] (1.1)

where f : R
m → R ∪ {+∞} is an extended real-valued convex function that is

differentiable on its domain dom f := {u ∈ R
m : f (u) < +∞}, A : R

n → R
m

is a linear operator (though not necessarily invertible or surjective) and the function
h : R

n → R ∪ {+∞} is proper, closed and convex (but possibly non-smooth), for
which dom h is a nonempty compact convex set. Furthermore, and in contrast to
the standard setting where f is assumed to be L-smooth on dom F (i.e., its gra-
dient is L-Lipschitz on dom F), our focus is on the setting where f belongs to a
particularly special and important class of functions that arise in practice, namely
θ -logarithmically-homogeneous self-concordant barrier functions (whose definition
and properties will be reviewed below). For convenience we distinguish between
u �→ f (u) and x �→ f (Ax) by defining

f̄ (x) := f (Ax) . (1.2)

The Frank–Wolfe method was developed in 1956 in the seminal paper of Frank
and Wolfe [24] for the case h = ιX , where ιX denotes the indicator function of X
(i.e., ιX (x) = 0 for x ∈ X and +∞ otherwise), and X is a (bounded) polytope.
(In particular, (P) then is the constrained problem minx∈X f̄ (x).) The Frank–Wolfe
method was a significant focus of research up through approximately 1980, during
which time it was generalized to handle more general compact sets X , see e.g., [14,
18–20]. Each iteration of the Frank–Wolfe method computes the minimizer of the
first-order (gradient) approximation of f̄ (x) on X , and constructs the next iterate by
moving towards the minimizer. Just in the last decade, and due to the importance
of optimization in modern computational statistics and machine learning, the Frank–
Wolfe method has again attracted significant interest (see [25–27, 31, 34, 46] among
many others), for at least two reasons. First, in many modern application settings,
X is a computationally “simple” set for which the linear optimization sub-problem
in the Frank–Wolfe method is easier to solve compared to the standard projection
sub-problems requiredbyotherfirst-ordermethods, see e.g., [45]. Secondly, theFrank–
Wolfe method naturally produces “structured” (such as sparse, or low-rank) solutions
in several important settings, which is very useful in the high-dimensional regime in
machine learning. This is because each iterate of the Frank–Wolfe method is a convex
combination of all the previous linear optimization sub-problem solutions, and hence
if the extreme points of X are unit coordinate vectors (for example), then the k-th
iterate will have at most k non-zeroes. This statement can be made more precise in
specific settings, and also generalizes to the matrix setting where X is the nuclear
norm ball [31]—in this setting the k-th (matrix) iterate will have rank at most k.

123

Analysis of the Frank–Wolfe method for convex composite…

More recently, the Frank–Wolfe method has been generalized to the composite
setting, where the function h is a general convex non-smooth function with compact
domainX , see e.g., [4, 27, 46]. In this generalized framework, the sub-problem solved
at iteration k is

minimizex∈Rn 〈∇ f̄ (xk), x〉 + h(x) , (1.3)

which specializes to the standard Frank–Wolfe sub-problem in the case when h = ιX .
In certain situations, this minimization problem admits (relatively) easily computable
solutions despite the presence of the non-smooth function h. For example, if h =
h̄ + ιP , where h̄ is a polyhedral function and P is a polytope, then (1.3) can be
reformulated as a linear optimization problem (LP), which can be solved efficiently if
it has moderate size or a special structure, e.g., network flow structure [31]. For more
such examples we refer the reader to [46].

In addition, there has been recent research work on using the Frank–Wolfe method
to solve the projection sub-problems (which are constrained quadratic problems) that
arise in various optimization algorithms. For example, [40] presents a projected New-
ton method for solving a class of problems that is somewhat different from (but related
to) (1.1); specifically [40] assumes that the linear operator A is invertible and the func-
tion f is self-concordant but is not necessarily a logarithmically-homogeneous barrier.
The Frank–Wolfe method is used therein to solve each projection sub-problem in the
projected Newton method, and [40] shows that the total number of linear minimiza-
tion sub-problems needed is O(ε−(1+o(1))). Another such example is in [17,Section 5],
which develops an affine-invariant trust-region type of method for solving a class of
convex composite optimization problems in a similar form as (1.1), with the key
difference being that in [17] f is assumed to be twice differentiable with Lipschitz
Hessian on dom h. The Frank–Wolfe method is used in [17] to solve each projec-
tion sub-problem, wherein it is shown that the total number of linear minimization
sub-problems needed is O(ε−1).

When analyzing the convergence of the standard or generalized Frank–Wolfe
method, almost all such analyses rely on the L-smooth assumption of the function
f . Perhaps accidentally, the first specific attempt to extend the Frank–Wolfe method
and analysis beyond the case of L-smooth functions is due to Khachiyan [36]. In
the specific case of the D-optimal design problem [23], Khachiyan [36] developed a
“barycentric coordinate descent” method with an elegant computational complexity
analysis, and it turns out that this method is none other than the Frank–Wolfe method
with exact line-search [56, 61]. Khachiyan’s proof of his complexity result (essentially
O(n2/ε) iterations) used clever arguments that do not easily carry over elsewhere, and
hence begged the question ofwhether or not any of the arguments in [36]might underly
any general themes beyond D-optimal design, and if so what might be the mathemat-
ical structures driving any such themes? In this work, we provide affirmative answers
to these questions, by considering the D-optimal design problem as a special instance
of the broader class of composite optimization problem (P). The second attempt was
the recent paper of Dvurechensky et al. [21], which presented and analyzed an adap-
tive step-size Frank–Wolfe method for tackling the problem minx∈X f̄ (x) where f̄ is
assumed to be a non-degenerate (i.e., with positive-definite Hessians) self-concordant

123

R. Zhao, R. M. Freund

function and X is a compact convex set, and was the first paper to study the Frank–
Wolfe method for these special functions. The set-up in [21] can be seen as an instance
of (P) with h being the indicator function of X , namely, h = ιX , and the additional
assumption that f̄ is non-degenerate, which we do not need. (Note that in our setting,
this amounts to assuming that A = I, namely the identity operator or that the linear
operator A is invertible.) However, unlike [21], we additionally assume that f is θ -
logarithmically homogeneous. As our analysis will show, this last property — which
holds true for all applications that we are aware of — is the key property that leads to
relatively simple and natural computational guarantees for the Frank–Wolfe method
in this expanded relevant setting.

Let us now review the formal definition of a θ -logarithmically-homogeneous self-
concordant barrier function. Let K � R

m be a regular cone, i.e., K is closed, convex,
pointed (K contains no line), and has nonempty interior (intK �= ∅). We say that f is
a θ -logarithmically-homogeneous (non-degenerate) self-concordant barrier on K for
some θ ≥ 1 and we write “ f ∈ Bθ (K)”, if f is three-times differentiable and strictly
convex on intK and satisfies the following three properties:

(P1) |D3 f (u)[w,w,w]| ≤ 2(〈H(u)w,w〉)3/2 ∀ u ∈ intK, ∀w ∈ R
m ,

(P2) f (uk) →∞ for any {uk}k≥1 ⊆ intK such that uk → u ∈ bdK, and
(P3) f (tu) = f (u)− θ ln(t) ∀ u ∈ intK, ∀ t > 0 ,

where H(u) denotes the Hessian of f at u ∈ intK. For details on these proper-
ties, we refer readers to Nesterov and Nemirovski [47,Section 2.3.3] and Renegar
[51,Section 2.3.5]. Properties (P1) and (P2) correspond to f being a (standard,
strongly) self-concordant function on intK (cf. [47,Remark 2.1.1]), and property (P3)
corresponds to f being a θ -logarithmically-homogeneous barrier function onK. Here
θ is called the complexity parameter of f in the terminology of Renegar [51]. The
two prototypical examples of such functions are (i) − ln det(U) for U ∈ K := S

k+
and θ = k, and (ii) −∑m

j=1 w j ln(u j) for u ∈ K := R
m+ and θ = ∑m

j=1 w j where
w1, . . . , wn ≥ 1, see [47, 51].

We now present some application examples of (P) where f ∈ Bθ (K), including
the aforementioned D-optimal design problem.

1.1 Applications

1. Poisson image de-blurring with total variation (TV) regularization [10, 15, 33].
Let the m × n matrix X be the true representation of an image, such that each entry
Xi j ≥ 0 represents the intensity of the pixel at location (i, j) ∈ [m] × [n], and
Xi j ∈ {0, 1, . . . , M}, where M := 2b − 1 for b-bit images. In many applications,
ranging from microscopy to astronomy, we observe a blurred image contaminated
by Poisson noise, which we denote by Y , and we wish to estimate the true image
X from Y . The generative model of Y from X is presumed to be as follows. Let
A : R

m×n → R
m×n denote the 2D discrete convolutional (linear) operator with

periodic boundary conditions, which is assumed to be known. This convolutional
operator is defined by a p × p 2D convolutional kernel with a size q := p2 that is
typically much smaller than the size of image N := mn. (For an illustration of the
2D convolution, see [32] for example.) The blurred image Ỹ is obtained by passing X

123

Analysis of the Frank–Wolfe method for convex composite…

throughA, i.e., Ỹ := A(X), and the observed image Y results from adding independent
entry-wise Poisson noise to Ỹ , i.e., Yi j ∼ Poiss(Ỹi j), for all (i, j) ∈ [m] × [n], and
{Yi j }(i, j)∈[m]×[n] are assumed to be independent.

It will be preferable to work with vectors in addition to matrices, whereby we
equivalently describe the above model using vector notation as follows. We denote
X = [x1 · · · xm]�, where x�i denotes the i-th row of X , and let vec : Rm×n → R

mn

denote the vectorization operator that sequentially concatenates X into the column
vector vec(X) := x := [x�1 · · · x�m]�, and let mat(x) denote the inverse operator
of vec, so that mat(x) = X . Define y := vec(Y) and ỹ := vec(Ỹ). In addition, we
represent A in its matrix form A ∈ R

N×N (recall N := mn), such that ỹ := Ax .
Furthermore, let us represent A := [a1 . . . aN]�, where a�l denotes the l-th row of A
for l ∈ [N]. Note that A is a sparse doubly-block-circulant matrix, such that each row
a�l of A has at most q non-zeros, where q � N denotes the size of the 2D convolution
kernel. Finally, we have yl ∼ Poiss(ỹl) for all l ∈ [N], and {yl}l∈[N] are independent.

The maximum likelihood (ML) estimator of X from the observed image Y is the
optimal solution of the following optimization problem:

min
x∈RN

−
N∑

l=1
yl ln(a

�
l x)+ (

N∑

l=1
al)
�x s. t. 0 ≤ x ≤ Me , (1.4)

where e denotes the vector with all entries equal to one. In addition, following [52],
in order to recover a smooth image with sharp edges, we add Total Variation (TV)
regularization to the objective function in (1.4), which yields the following regularized
ML estimation problem:

minx∈RN F̄(x) := −∑N
l=1 yl ln(a�l x)+ (

∑N
l=1 al)�x + λT V (x)

s. t. 0 ≤ x ≤ Me , (1.5)

where

T V (x) :=∑m
i=1

∑n−1
j=1

∣
∣[mat(x)]i, j − [mat(x)]i, j+1

∣
∣

+∑m−1
i=1

∑n
j=1

∣
∣[mat(x)]i, j − [mat(x)]i+1, j

∣
∣

:=∑m
i=1

∑n−1
j=1

∣
∣Xi, j − Xi, j+1

∣
∣+∑m−1

i=1
∑n

j=1
∣
∣Xi, j − Xi+1, j

∣
∣

is a standard formulation of the total variation. Here we see that (1.5) is an instance of
(P)with f (u) := −∑N

l=1 yl ln
(
ul),K := R

N+ , h(x) := (
∑N

l=1 al)�x+λT V (x)+ιX
where X = {x ∈ R

N : 0 ≤ x ≤ Me}, A is defined by (Ax)l := a�l x , l = 1, . . . , N ,

and θ = ∑N
l=1 yl . We note that yl ≥ 1 whenever yl �= 0 for all l ∈ [N], and hence

f ∈ Bθ (K). In Sect. 4.1 we will discuss how the Frank–Wolfe sub-problem (1.3)
associated with (1.5) can be efficiently solved.

2. Positron emission tomography (PET) [6, 54]. PET is a medical imaging tech-
nique that measures the metabolic activities of human tissues and organs. Typically,
radioactive materials are injected into the organ of interest, and these materials emit

123

R. Zhao, R. M. Freund

(radioactive) events that can be detected by PET scanners. The mathematical model
behind this process is described as follows. Suppose that an emission object (e.g., a
human organ) has been discretized into n voxels. The number of events emitted by
voxel i (i ∈ [n]) is a Poisson random variable X̃i with unknown mean xi ≥ 0 and so
X̃i ∼ Poiss(xi), and furthermore {X̃i }ni=1 are assumed to be independent. We also
have a scanner array with m bins. Each event emitted by voxel i has a known proba-
bility pi j of being detected by bin j (j ∈ [m]), and we assume that

∑m
j=1 pi j = 1,

i.e., the event will be detected by exactly one bin. Let Ỹ j denote the total number of
events detected by bin j , whereby

E[Ỹ j] := y j :=∑n
i=1 pi j xi . (1.6)

By Poisson thinning and superposition, it follows that {Ỹ j }mj=1 are independent random
variables and Ỹ j ∼ Poiss(y j) for all j ∈ [m].

We seek to perform maximum-likelihood (ML) estimation of the unknown means
{xi }ni=1 based on observations {Y j }mj=1of the random variables {Ỹ j }mj=1. From the

model above, we easily see that the log-likelihood of observing {Y j }mj=1 given {X̃i }ni=1
is (up to some constants)

l(x) := −∑n
i=1 xi +

∑m
j=1 Y j ln

(∑n
i=1 pi j xi

)
, (1.7)

and therefore an ML estimate of {xi }ni=1 is given by an optimal solution x∗ of

maxx≥0 l(x) . (1.8)

It follows from the first-order optimality conditions that any optimal solution x
must satisfy

∑n
i=1 xi = S := ∑m

j=1 Y j , (1.9)

and by incorporating (1.9) into (1.8) and defining the re-scaled variable z := x/S,
(1.8) can be equivalently written as

minz L(z) := −∑m
j=1 Y j ln

(∑n
i=1 pi j zi

)
s. t. z ∈ �n , (1.10)

where �n := {z ∈ R
n : ∑n

i=1 zi = 1, z ≥ 0} is the unit simplex in R
n . Here we

see that (1.10) is an instance of (1.1) with f (u) := −∑m
j=1 Y j ln

(
u j), K := R

m+,
h := ι�n , A defined by (Az) j := ∑n

i=1 pi j zi , j = 1, . . . ,m, and θ = ∑m
j=1 Y j . We

note that Y j ≥ 1 whenever Y j �= 0 for all j ∈ [m], and hence f ∈ Bθ (K).
3. Poisson phase retrieval [48]. In Poisson phase retrieval, we seek to estimate an
unknown unit complex signal x ∈ C

n , namely ‖x‖2 := (xH x)1/2 = 1 where xH

denotes the conjugate transpose of x . We estimate x usingm linear measurements that
are subject to Poisson noise; for j ∈ [m], the j-th measurement vector is denoted by
a j ∈ C

n , and the measurement outcome y j is a Poisson random variable such that

123

Analysis of the Frank–Wolfe method for convex composite…

y j ∼ Poiss(ỹ j), where ỹ j := |〈a j , x〉|2. Oder et al. [48] proposed to estimate x by
solving the following matrix optimization problem:

minX −∑m
j=1 y j ln〈a jaH

j , X〉 + 〈∑m
j=1 a jaH

j , X〉
s. t. X ∈ X := {X ∈ H

n+ : tr(X) ≤ c} , (1.11)

where 〈·, ·〉 denotes the Frobenius matrix inner product, H
n+ denotes the set of com-

plex Hermitian positive semi-definite matrices of order n, tr(X) denotes the trace of
X , and the parameter c > 0 is typically chosen as c = (1/m)

∑m
j=1 y j . Let X∗ be the

optimal solution of (1.11). One then computes a unit eigenvector x̄ associated with
the largest eigenvalue of X∗ and uses x̄ as the estimate of x . Note that (1.11) has a
similar form to (1.10) except in two ways: first, the objective function in (1.11) has an
additional linear term, and second, the constraint set is the intersection of a nuclear
norm ball with the positive semi-definite cone, instead of a simplex. Therefore, using
the same arguments as above, we see that (1.11) is an instance of (1.1). To solve (1.11),
[48] proposed a Frank–Wolfe method with a pre-determined step-size sequence, and
showed that this method converges with rate O(C/k), whereC depends on several fac-
tors including (i) the diameter of X under the spectral norm, (ii) max j∈[m] ‖a j‖22, (iii)
max j∈[m]maxX∈X 〈a jaH

j , X〉, and (iv) min j∈[m]〈a jaH
j , X0〉 where X0 ∈ X denotes

the starting point of the Frank–Wolfe method.
4. Optimal expected log investment [1, 12, 59]. In this problem we consider n stocks in
the market, and let Ri denote the random per-unit capital return on investing in stock
i , for i ∈ [n]. The random vector R := (R1, . . . , Rn) has unknown distribution P .
An investor allocates her investment capital over these n stocks, and let wi denote the
(nonnegative) proportion of capital invested in stock i , whereby wi ≥ 0 for all i ∈ [n]
and

∑n
i=1 wi = 1. Definew := (w1, . . . , wn). The goal of the investor is to maximize

her expected log return f (w) := ER∼P [ln(w�R)] subject to the constraint w ∈ �n

where �n := {w ∈ R
n : w ≥ 0, eTw = 1}. The naturalness of this objective can

be justified from several perspectives involving the principle that money compounds
multiplicatively rather than additively, see the discussion and references in [1, 12].
Since P is unknown, one can use a (historical) data-driven empirical distribution such
as P̂m := ∑m

j=1 p jδr j , where p j > 0,
∑m

j=1 p j = 1, r j ∈ R
n is a realization of R

and δr j denotes the unit point mass at r j for j ∈ [m]. Under this empirical distribution,
the investor instead solves the problem:

minw∈�n −
∑m

j=1 p j ln(r�j w) . (1.12)

Note that (1.12) has the same basic format as the PET problem in (1.10). Indeed, both
of these problems fall under a more general class of problems called “positive linear
inverse problems” [59]. Define pmin := min j∈[m]{p j } > 0 and consider re-scaling
the objective function of (1.12) by 1/pmin, which ensures the coefficient in front of
each ln(·) term is at least 1. Then this re-scaled problem is an instance of (P) with
f (u) := −∑m

j=1(p j/pmin) ln(u j),K := R
m+, h := ι�n , A defined by (Aw) j := r�j w

for j ∈ [m], θ = 1/pmin, and f ∈ Bθ (K).

123

R. Zhao, R. M. Freund

5. Computing the analytic center [44]. Given a nonempty solid polytope Q = {x ∈
R
n : a�i x ≥ di , i = 1, . . . ,m}, the function

b(x) := −∑m
i=1 ln(a�i x − di), x ∈ Q , (1.13)

is an m-self-concordant barrier Q, see [47]. We wish to compute the analytic center
of Q under b, which is the optimal solution to the problem minx∈Q b(x). We can
transform this problem into an instance of (P) as follows. Define

f (x, t) := −∑m
i=1 ln(a�i x − tdi) = −∑m

i=1 ln(a�i (x/t)− di)− m ln(t),

(1.14)

which is a m-logarithmically-homogeneous self-concordant barrier on the conic hull
of Q, denoted by cone (Q) and defined by

cone (Q) := cl {(x, t) ∈ R
n+1 : x/t ∈ Q, t > 0}

= {x ∈ R
n : a�i x ≥ tdi , i = 1, . . . ,m, t ≥ 0} .

Then we can formulate the analytic center problem as

min(x,t)∈Rn+1 f (x, t) s. t. (x, t) ∈ cone (Q), t = 1 ,

which is an instance of (P) with f (u) := −∑m
i=1 ln(ui), K := R

m+, h = ιX where
X = {(x, t) ∈ R

n+1 : x ∈ Q, t = 1}, A defined by (A(x, t))i := a�i x − tdi for
i ∈ [m], and θ = m.

The above formulation can be generalized to any nonempty convex compact set
Q ⊆ R

n equipped with a (standard strongly) ϑ-self-concordant barrier b onQ. From
[47,Proposition 5.1.4], there exists a constant c ≤ 20 for which

f (x, t) := c2(b(x/t)− 2ϑ ln t) (1.15)

is a (2c2ϑ)-logarithmically-homogeneous self-concordant barrier on cone (Q). There-
fore using (1.15) the analytic center problem can be formulated as an instance of (P)

in a similar way as above.
6. D-optimal design [23]. Given m points a1, . . . , am ∈ R

n whose affine hull is R
n ,

the D-optimal design problem is:

min h(x) := − ln det
(∑m

i=1 xiaiaTi
)

s. t. x ∈ �m . (1.16)

In the domain of statistics the D-optimal design problem corresponds to maximiz-
ing the determinant of the Fisher information matrix E(aaT), see [37], [2], as well
as the exposition in [7]. And in computational geometry, D-optimal design arises
as a Lagrangian dual problem of the minimum volume covering ellipsoid (MVCE)
problem, which dates back at least 70 years to [35], see Todd [57] for a modern treat-
ment. Indeed, (1.16) is useful in a variety of different application areas, for example,
computational statistics [13] and data mining [38].

123

Analysis of the Frank–Wolfe method for convex composite…

A recent extension of (1.16) is the design of a supervised learning pipeline for new
datasets to maximize the Fisher information, see the recent paper by Yang et al. [60].
The optimization problem they consider is the following variant of (1.16):

min h(x) := − ln det
(∑m

i=1 xiai aTi
)

(1.17)

s. t.
∑n

i=1 t̄i xi ≤ τ (1.18)

xi ∈ [0, 1] for i ∈ [m] , (1.19)

where the decision variable xi models the decision to fit model i or not, t̄i is the
estimated pipeline running time of pipeline i , τ is the runtime limit, and ai is the
vector of latent meta-features of model i for i ∈ [m]. The constraints (1.19) are
a linear relaxation of the (computationally unattractive) desired combinatorial con-
straints xi ∈ {0, 1}, i ∈ [m]. We refer the interested reader to [60] for further details
and model variations. Here we see that (1.17)–(1.19) is an instance of (1.1) with
f (U) := − ln det(U), θ = n, Ax := ∑m

i=1 xiai aTi , and h is the indicator function of
the feasible region of the constraints (1.18)–(1.19).

As mentioned earlier, the D-optimal design problem was one of the primary moti-
vators for the research in this paper. Indeed, Khachiyan proved that his “barycentric
coordinate descent” method for this problem—which turns out to be precisely the
Frank–Wolfe method (with exact line search)—has a computational guarantee that
is essentially O

(
n2/ε

)
iterations to produce an ε-approximate solution. What has

been surprising about this result is that the D-optimal design problem violates the
basic assumption underlying the premise for the analysis of the Frank–Wolfe method,
namely L-smoothness. Khachiyan’s proof used original and rather clever arguments
that do not easily carry over elsewhere, which has begged the question of whether
or not any of Khachiyan’s arguments might underlie any general themes beyond D-
optimal design, and if so what might be the mathematical structures driving any such
themes? We will answer these questions in the affirmative in Sect. 2 by showing that
the Frank–Wolfe method achieves essentially O((θ + Rh)

2/ε) iteration complexity
when used to tackle any problem of the form (1.1), where Rh is the variation of h on its
domain (Rh := maxx,y∈X |h(x)− h(y)|) and f is a θ -logarithmically homogeneous
self-concordant barrier. When specialized to the D-optimal design problem, we have
Rh = 0 (since h is an indicator function), and θ = n, wherebywe recover Khachiyan’s
O(n2/ε) dependence on ε. In this respect, our results reveal certain intrinsic connec-
tions between θ -logarithmic homogeneity and the Frank–Wolfe method.

Interestingly, we note that historically the theory of self-concordant functions was
initially developed to present a general underlying theory for Newton’s method for
barrier methods in convex optimization. However, the results in this paper indicate
that a subclass of self-concordant functions, namely the class of θ -logarithmically
homogeneous self-concordant barriers, are also tied to an underlying theory for the
Frank–Wolfe method.

By way of concluding this discussion, we note that the relevant literature contains
some first-order methods other than Frank–Wolfe have been proposed to solve prob-
lems similar to (1.1). For example, [58] considered (1.1) with the linear operator A
being invertible and the function f being standard self-concordant but not necessar-

123

R. Zhao, R. M. Freund

ily a logarithmically-homogeneous barrier. The authors in [58] proposed a proximal
gradient method for solving this problem, and showed that the method globally and
asymptotically converges to the unique optimal solution. However, the global conver-
gence rate of this method was not shown.

1.2 Contributions

We summarize our contributions as follows:

1. We propose a generalized Frank–Wolfe method for solving (P) with f ∈ Bθ (K).
We show that the Frank–Wolfe method requires O((δ0 + θ + Rh) ln(δ0) + (θ +
Rh)

2/ε) iterations to produce an ε-approximate solution of (P), namely x ∈
dom F such that F(x)−F∗ ≤ ε, where δ0 denotes the initial optimality gap and Rh

denotes the variation of h on its domain. This iteration complexity bound depends
on just three (natural) quantities associated with (P): (i) the initial optimality gap
δ0, (ii) the complexity parameter θ of f , and (iii) the variation of h on X . When h
is the sum of a convex quadratic function and an indicator function, our algorithm
specializes to that in Dvurechensky et al. [21]. However, our iteration complexity
bounds are quite different from that in [21]—in particular our bounds are affine
invariant, more naturally interpretable, and are typically easy to estimate and can
yield an a priori bound on the number of iterations needed to guarantee a desired
optimality tolerance ε. These issues are discussed in details in Remark 3.

2. Our analysis also yields O((δ0+θ+Rh) ln(δ0)+(θ+Rh)
2/ε) iteration complexity

to produce x ∈ dom F whoseFrank–Wolfe gap (defined in (2.3) below) is no larger
than ε. Since the Frank–Wolfe gap is constructed at each iteration and is often
used as the stopping criterion for the Frank–Wolfe method, our result provides a
further constructive bound on the number of iterations required to detect a desired
optimality tolerance.

3. When specialized to the D-optimal design problem, our general algorithm almost
exactly recovers the iteration complexity of Khachiyan’s specialized method for
D-optimal design in [36]. Indeed, the complexities of these twomethods have iden-
tical dependence on ε, namely n2/ε. However, Khachiyan’s specialized method
has an improved “fixed” term over our general method by a factor of ln(m/n); see
Remark 2 for details.

4. Wepresent amirror descentmethodwith adaptive step-size applied to the (Fenchel)
dual problem (D) of (P). The dual problem (D) shares a somewhat similar struc-
ture to (P) in that its objective function is non-smooth and non-Lipschitz.However,
unlike (P), the objective function has unbounded domain. Although these features
make the direct analysis of mirror descent rather difficult, through the duality of
mirror descent and the Frank–Wolfemethodwe provide a computational complex-
ity bound for this mirror descent method via the Frank–Wolfe method applied to
(P). An application of ourmirror descentmethod for (D) arises in the sub-problem
in Bregman proximal-point methods.

5. We apply our method to the TV-regularized Poisson image de-blurring problem.
We present computational experiments that point to the potential usefulness of our
generalized Frank–Wolfe method on this imaging problem in Sect. 4.1.

123

Analysis of the Frank–Wolfe method for convex composite…

1.3 Outline and notation

Outline. The paper is organized as follows. In Sect. 2 we present and analyze our
generalized Frank–Wolfe method for (P) when f ∈ Bθ (K), using an adaptive step-
size strategy that is a natural extension of the strategy developed in [21]. In Sect. 3
we study the (Fenchel) dual (D) of (P) and derive and analyze a dual mirror descent
method for solving (D) based on the generalized Frank–Wolfemethod for solving (P).
InSect. 4wepresent computational experiments that point to the potential usefulness of
our generalized Frank–Wolfe method on Poisson image de-blurring problemswith TV
regularization, and we also present computational experiments on the PET problem.
Notation. Let R

n+ := {x ∈ R
n : x ≥ 0} and R

n++ := {x ∈ R
n : x > 0}. The set of

integers {1, . . . , n} is denoted by [n]. The domain of a convex function f is denoted by
dom f := {x ∈ R

n : f (x) <∞}. We use H(x) to denote the Hessian of the function
f . The interior and relative interior of a setS are denoted by intS and riS, respectively.
We use e to denote the vector with entries all equal to 1, diag (x) to denote the diagonal
matrix whose diagonal entries correspond to those of x , and�n to denote the standard
(n − 1)-dimensional simplex in R

n , namely �n := {x ∈ R
n : ∑n

i=1 xi = 1, x ≥ 0}.
We use S

n+ (Sn++) to denote the set of n× n symmetric positive semidefinite (positive
definite) matrices, and write B ∈ S

n+ as B � 0 and B ∈ S
n++ as B � 0. The p-norm

of a vector x ∈ R
n is denoted and defined by ‖x‖p = (

∑n
i=1 |xi |p)1/p.

2 A generalized Frank–Wolfe method for (P)when f is a
�-logarithmically-homogeneous self-concordant barrier

In this section we present and analyze a generalized Frank–Wolfe method for the
composite optimization problem (P) in the case when f ∈ Bθ (K), using an adaptive
step-size strategy that is a natural extension of the strategy developed in Dvurechensky
et al. [21]. We assume throughout that X := dom h is a convex and compact set, and
that A(X)∩dom f �= ∅. These two assumptions together with the differentiability of
f on intK ensure that (P) has at least one optimal solution which we denote by x∗
and hence F∗ = F(x∗).

Let us introduce some important notation. For any u ∈ intK, the Hessian H(u) of
f is used to define the local (Hilbert) norm ‖ · ‖u defined by:

‖w‖u :=
√〈w, H(u)w〉 for all w ∈ R

m .

The Dikin ball D(u, 1) at u ∈ intK is defined by

D(u, 1) := {v ∈ K : ‖v − u‖u < 1} ,

and it can be shown that D(u, 1) ⊆ intK, see Nesterov and Nemirovski
[47,Theorem 2.1.1]. The self-concordant function f is well-behaved inside the Dikin
ball as we will review shortly. Define the univariate function ω and its Fenchel conju-
gate ω∗ as follows:

123

R. Zhao, R. M. Freund

ω(a) := −a − ln(1− a) ∀ a < 1 , and ω∗(a) := a − ln(1+ a) ∀ a > −1.
(2.1)

It turns out that f can be nicely upper-bounded inside the Dikin ball, namely:

f (v) ≤ f (u)+ 〈∇ f (u), v − u〉 + ω (‖v − u‖u) ∀ u ∈ intK, ∀ v ∈ D(u, 1) ,

(2.2)

see Nesterov [44,Theorem 4.1.8].
We now develop our generalized Frank–Wolfe method for the composite opti-

mization problem (P) under the condition that f ∈ Bθ (K), and whose formal rules
are presented in Algorithm 1. First, we choose any starting point x0 ∈ X such that
Ax0 ∈ dom f (= intK), namely x0 ∈ X̄ := X ∩ A−1(dom f). Indeed, from the
description below, we will see that the whole sequence of iterates {xk}k≥0 generated
by our method lies in X̄ . Given the current iterate xk ∈ X̄ , the method first com-
putes the gradient ∇ f (Axk) and then solves for a minimizer vk of the generalized
Frank–Wolfe sub-problem given by

vk ∈ arg minx∈Rn 〈∇ f (Axk),Ax〉 + h(x) .

The next iterate is then determined as a convex combination of xk and vk : xk+1 ←
xk + αk(v

k − xk) for some αk ∈ [0, 1], where αk is the step-size at iteration k. For
L-smooth functions f , the step-size can be chosen by a variety of strategies, including
simple rules such as αk = 2

(k+2) , exact line-search to minimize f (xk+α(vk− xk)) on
α ∈ [0, 1], or an adaptive strategy based on curvature information, etc. Herewe present
an adaptive strategy based on the upper bound model (2.2), which can also be viewed
as an extension of the adaptive strategy used in [21] and which itself is an extension
of the adaptive strategy in Demyanov and Rubinov [14]. Define the Frank–Wolfe gap
(“FW-gap") Gk by

Gk := 〈∇ f (Axk),A(xk − vk)〉 + h(xk)− h(vk) , (2.3)

and the optimality gap δk := F(xk) − F∗. Note that Gk ≥ 0 and in fact by the
convexity of f it holds that

δk = (f (Axk)− f (Ax∗))+ (h(xk)− h(x∗))
≤ 〈∇ f (Axk),A(xk − x∗)〉 + (h(xk)− h(x∗))
≤ 〈∇ f (Axk),A(xk − vk)〉 + (h(xk)− h(vk)) = Gk , (2.4)

henceGk is indeed an upper bound on the optimality gap δk . Denoting Dk := ‖A(vk−
xk)‖Axk , we then have that for any α ≥ 0,

f (Axk + αA(vk − xk)) ≤ f (Axk)− α〈∇ f (Axk),A(xk − vk)〉 + ω (αDk) .

(2.5)

123

Analysis of the Frank–Wolfe method for convex composite…

Algorithm1 (generalized) Frank-WolfeMethod for composite optimization involving
f ∈ Bθ (K) with adaptive step-size

Input: Starting point x0 ∈ X̄ := X ∩ A−1(dom f)
At iteration k ∈ {0, 1, . . .}:

1. Compute ∇ f (Axk) and vk ∈ argminx∈Rn 〈∇ f (Axk),Ax〉 + h(x)
2. Compute Gk := 〈∇ f (Axk),A(xk − vk)〉 + h(xk) − h(vk) and Dk := ‖A(vk − xk)‖Axk , and
compute the step-size:

αk := min

{
Gk

Dk (Gk + Dk)
, 1

}

(2.8)

3. Update xk+1 := xk + αk (v
k − xk)

(Note that if α < 1/Dk , then (2.5) follows from (2.2); otherwise, by the definition of
ω in (2.1), we have ω (αDk) = +∞ and (2.5) still holds.) Also, by the convexity of
h, we have

h(xk + α(vk − xk)) ≤ (1− α)h(xk)+ αh(vk) = h(xk)− α(h(xk)− h(vk)).

(2.6)

Adding (2.5) and (2.6) together, we obtain

F(xk + α(vk − xk)) ≤ F(xk)− αGk + ω (αDk) , ∀α ≥ 0 , (2.7)

and optimizing the right-hand-side over α ∈ [0, 1] yields the step-size:

αk := min

{
Gk

Dk(Gk + Dk)
, 1

}

.

Notice that this step-size specializes precisely to the adaptive step-size developed in
[21] in the case when the function h is the indicator function ιX of a compact convex
set X , since in this case h(xk) = h(vk) = 0 for all k and hence Gk turns out to be
the standard “gap function” 〈∇ f (Axk),A(xk − vk)〉 as used in [21]. In addition, note
that the step-size αk ensures that xk+1 ∈ X̄ .

Before presenting our analysis of Algorithm 1 we make two remarks. First, notice
that the complexity parameter θ of f is not needed to run Algorithm 1, but it will
play a central role in analyzing the iteration complexity of the algorithm. In a sense,
Algorithm 1 automatically adapts to the value of θ . Second, for most applications—
including all of the applications discussed in Sect. 1.1—the computational cost of
computing Dk (in Step 2) is of the same order as computing Gk , and grows linearly
in the ambient dimension of the variable x . (Note that here our discussion focuses
on the dependence of the computational cost on the dimension of x only.) To see
this, let us fix any v, x ∈ dom F . For the first application in Sect. 1.1 (where N
denotes the dimension), both u := Ax and w := Av can be computed in O(qN)

time, due to the fact that the matrix representation of A has only O(qN) nonzeros.

123

R. Zhao, R. M. Freund

Since D2
k =

∑N
l=1(ul − wl)

2/u2l , it can be computed in O(qN) time. Using similar
reasoning, we easily see that for the second, third and fourth applications (where n
denotes the dimension), Dk can be computed in O(mn) time. For the last application
(namely the D-optimal design problem), where the dimension is denoted by m, Dk

can be computed in O(mn2+n3) time for k = 0 and O(n2) time for k ≥ 1; for details
see Appendix 1.

2.1 Computational guarantees for Algorithm 1

We now present our computational guarantees for Algorithm 1. These guarantees
depend on only three natural quantities associated with (P): (i) the initial optimality
gap δ0, (ii) the complexity parameter θ of f , and (iii) the variation of h on X , which
is defined as:

Rh := maxx,y∈X |h(x)− h(y)| . (2.9)

Regarding the variation Rh we mention two cases in particular:

1. when h = ιX , we have Rh = 0, and
2. whenh is L-Lipschitz onX with respect to somenorm‖·‖,wehave Rh ≤ LDX ,‖·‖,

where

DX ,‖·‖ := supx,x ′∈X ‖x − x ′‖ < +∞ (2.10)

is the diameter of X under ‖ · ‖. And in particular if h = ‖ · ‖, then Rh ≤ DX ,‖·‖.

Theorem 1 Suppose that f ∈ Bθ (K) and that Algorithm 1 is initiated at x0 ∈ X̄ . Let
δ0 denote the initial optimality gap.

1. At iteration k of Algorithm 1 the following hold:

(a) If Gk > θ + Rh, then the optimality gap decreases at least linearly at the
iteration:

δk+1 ≤
(

1− 1

5.3(δ0 + θ + Rh)

)

δk , (2.11)

(b) If Gk ≤ θ+Rh, then the inverse optimality gap increases by at least a constant
at the iteration:

1

δk+1
≥ 1

δk
+ 1

12(θ + Rh)2
, and (2.12)

(c) The number of iterations KLin where Gk > θ + Rh occurs is bounded from
above as follows: KLin ≤ �5.3(δ0 + θ + Rh) ln(10.6δ0)�.

123

Analysis of the Frank–Wolfe method for convex composite…

2. Let Kε denote the number of iterations required by Algorithm 1 to obtain δk ≤ ε.
Then:

Kε ≤ �5.3(δ0 + θ + Rh) ln(10.6δ0)� +
⌈

12(θ + Rh)
2 max

{
1

ε
− 1

δ0
, 0

}⌉

.

(2.13)

3. Let FWGAPε denote the number of iterations required by Algorithm 1 to obtain
Gk ≤ ε. Then:

FWGAPε ≤ �5.3(δ0 + θ + Rh) ln(10.6δ0)� +
⌈
24(θ + Rh)

2

ε

⌉

. (2.14)

��

Beforewe present our proof, let usmake a few remarks about the results in Theorem
1.

Remark 1 [Discussion of complexity results] Theorem 1 indicates that if f ∈ Bθ (K),
then the iteration complexity to obtain an ε-optimal solution using Algorithm 1 is

O
(
(δ0 + θ + Rh) ln(δ0)+ (θ + Rh)

2/ε
)
, (2.15)

which only depends on three measures, namely (i) the logarithmic homogeneity con-
stant (also known as the “complexity value”) θ of f , (ii) the initial optimality gap δ0,
and (iii) the variation Rh of h on its domain, in addition to the desired optimality gap
ε. Furthermore, in most of the applications discussed in Sect. 1.1 (namely applications
(2.), (4.), (5.), and (6.)) we have h = ιX for some X and hence Rh = 0, and so the
iteration complexity depends only on θ and δ0.

It is interesting to note in the case when h = ιX is the indicator function of a
compact region X , that the iteration complexity bound (2.15) does not rely on any
measure of size of the feasible region X , since in this case Rh = 0. And even when
Rh > 0, the complexity bound (2.15) has no specific dependence on the behavior
of f̄ on X . In this way we see that the only way that the behavior of f̄ enters into
the iteration complexity is simply through the value of θ . (This is in contrast to the
traditional set-up of the Frank–Wolfe method for L-smooth optimization, where the
fundamental iteration complexity depends on a bound on the curvature of the function
f̄ on the feasible region X – which we will discuss later in Remark 3 – which in turn
can grow quadratically in the diameter of the feasible region, see for example [25,
34].)

We also note that the iteration complexity bound (2.15) is also independent of
any properties of the linear operator A, and in this way its dependence on a specific
data instance A is only through the initial optimality gap δ0. Therefore (2.15) is data-
instance independent except for the way that the data A affects the initial optimality
gap.

123

R. Zhao, R. M. Freund

Remark 2 [Comparison with Khachiyan [36] for D-optimal design] Let us specialize
the complexity bound in (2.15) to the D-optimal design problem in (1.16), and compare
it with the complexity bound in Khachiyan [36]. Note that for the problem in (1.16)
we have θ = n, i.e., the dimension of the ambient space of the points a1, . . . , am . In
addition, if we choose the starting point p0 = (1/m)e, where e := (1, . . . , 1) ∈ R

m ,
then

δ0 ≤ n ln(m/n) (2.16)

(which we show in Appendix 1), and then based on (2.16) and Rh = 0, the itration
complexity bound in (2.15) becomes

O
(
n ln(m/n)(ln n + ln ln(m/n))+ n2/ε

)
. (2.17)

Using the same starting point, Khachiyan’s Frank–Wolfe method [36] uses exact line-
search (based on a clever observation from the Inverse Matrix Update formula [30]),
and attains the complexity bound

O
(
n(ln n + ln ln(m/n))+ n2/ε

)
. (2.18)

Observe that (2.17) has the exact same dependence on ε as (2.18), namely O(n2/ε),
but its first term is inferior to (2.18) by the factor O(ln(m/n)). The improvement in
the first term of Khachiyan’s bound over the bound in (2.17) is due to his improved
estimate of the linear convergence rate in the caseGk > θ in Algorithm 1, which arises
from exploiting an exact line-search on f . This is in contrast with our method, which
only does an exact line-search on the upper bound model of f in (2.7). A detailed
analysis of this last point is given in Remark 4 at the end of this section.

Remark 3 [ComparisonwithDvurechensky et al. [21]] The recentworkofDvurechen-
sky et al. [21] considers the Frank–Wolfe method for the problem minx∈X F̄(x),
where X is nonempty, convex and compact and F̄ is a non-degenerate (strongly) M-
self-concordant function for some M > 0. This means F̄ is convex and three-times
differentiable on dom F̄ , ∇2 F̄(x) � 0 for all x ∈ dom F̄ (this is the definition that F̄
is non-degenerate), and

|D3 F̄(x)[z, z, z]| ≤ 2M−1/2(〈∇2 F̄(x)z, z〉)3/2 ∀ x ∈ dom F̄ , ∀ z ∈ R
n .

(2.19)

For convenience of comparison, henceforth let M = 1. When h is the sum of a convex
quadratic function and an indicator function, i.e., h(x) = 1

2 〈x, Qx〉 + ξ�x + ιX (x)
for some Q � 0 and ξ ∈ R

n , then our method coincides with that in Dvurechensky et
al. [21] with F̄(x) = f (Ax)+ 1

2 〈x, Qx〉 + ξ�x . The complexity bound developed in
[21] for computing an ε-optimal solution is:

O

(
√
L(x0)DX ,‖·‖2 ln

(
δ0

√
L(x0)DX ,‖·‖2

)

+ L(x0)D2
X ,‖·‖2

ε

)

, (2.20)

123

Analysis of the Frank–Wolfe method for convex composite…

where

S(x0) := {
x ∈ dom F̄ ∩ X : F̄(x) ≤ F̄(x0)

}
, and (2.21)

L(x0) := maxx∈S(x0) λmax(∇2 F̄(x)) < +∞ . (2.22)

In (2.22) λmax(∇2 F̄(x)) denotes the largest eigenvalue of ∇2 F̄(x), and in [21] it is
further assumed that F̄ is non-degenerate (which necessarily presumes that rank(A) =
n) in order to ensure the compactness of S(x0), and hence the finiteness of L(x0).

It is instructive to compare the two iteration complexity bounds (2.15) and (2.20),
and we note the following:

– Affine invariance. Affine invariance is an important structural property of certain
algorithms; for instance Newton’s method is affine invariant whereas the steepest
descent method is not. It is well known that the Frank–Wolfe method is affine
invariant. Current state-of-the-art complexity analysis of the Frank–Wolfe method
for L-smooth functions yields an appropriate affine-invariant complexity bound
by utilizing the so-called curvature constant CF̄ of Clarkson [11] defined by

CF̄ := max
x,y∈X ,α∈[0,1]

2

α2 (F̄(x + α(y − x))− F̄(x)− α〈∇ F̄(x), y − x〉),
(2.23)

which is a finite affine-invariant quantity [11] when F̄ is L-smooth. (This is the
same curvature which was alluded to in Remark 1.) Of course CF̄ is not typically
finite when F̄ is self-concordant. The complexity bound in (2.20) depends on
measures that are tied to the Euclidean inner product and norm, namely DX ,‖·‖2
and L(x0), and are not affine-invariant, even though the Euclidean norm plays no
part in the algorithm. (Under an invertible affine transformation of the variables
these measures will change but the performance of the Frank–Wolfe method will
not change.) In contrast, all the quantities in our complexity bounds, namely δ0, θ
and Rh are affine-invariant, therefore the complexity bounds in (2.15) are affine-
invariant.

– Interpretability. Apart from ε, our complexity result only depends on δ0, θ , and
Rh , all of which admit natural behavioral interpretations. Specifically, δ0 measures
the initial sub-optimality gap, θ is the “complexity parameter” of the barrier f (in
the lexicon of Renegar [51]), and Rh measures the variation of h over the set X .

– Ease of parameter estimation.Note that all of the three parameters δ0, θ , and Rh in
our complexity bound (2.15) are either easy to knowor easy to appropriately bound.
Given a logarithmically-homogeneous self-concordant barrier f , its complexity
value θ is typcially known a priori or can be easily determined using (P7) of
Lemma 1. Since δ0 ≤ G0, a natural upper bound on δ0 is the initial FW-gap G0,
which is computed in the second step at iteration k = 0 of Algorithm 1. Regarding
Rh , note that Rh = 0 when h is the indicator function of a convex set X , namely
h = ιX . In the case when h(x) := ξ�x + ιX (x) then Rh can be computed exactly
as the difference of two linear optimization optimal values on X or can be upper

123

R. Zhao, R. M. Freund

bounded using

Rh = maxx,x ′∈X |ξ�(x − x ′)| ≤ ‖ξ‖∗DX ,‖·‖ ,

in the case when the norm ‖ · ‖ can possibly be chosen to yield easily computable
values of DX ,‖·‖. Apart from this case, there also exist many other cases where
the simple nature of h and X yield easily computable upper-bounds on Rh .

2.2 Proof of Theorem 1

Wefirst state some facts about θ -logarithmically homogeneous self-concordant barrier
functions.

Lemma 1 [see Nesterov and Nemirovskii [47,Corollary 2.3.1, Proposition 2.3.4, and
Corollary 2.3.3]] If f ∈ Bθ (K), then for any u ∈ intK, we have

(P4) |〈∇ f (u), w〉| ≤ √θ‖w‖u ∀w ∈ R
m,

(P5) ‖v‖u ≤ −〈∇ f (u), v〉 ∀ v ∈ K,
(P6) 〈∇ f (u), w〉 = −〈H(u)u, w〉 ∀w ∈ R

m,
(P7) 〈∇ f (u), u〉 = −θ , and
(P8) θ ≥ 1. ��

We also introduce some properties of the function ω∗ (cf. (2.1)) and present an
“old” property of the logarithm function.

Proposition 1 The function ω∗ is strictly increasing on [0,+∞), and

ω∗(s) ≥ s2/3 ∀s ∈ [0, 1/2] , and (2.24)

ω∗(s) ≥ s/5.3 ∀s ≥ 1/2 . (2.25)

Proof See Appendix 1. ��
Proposition 2

ln(1+ s) ≥ s − s2

2(1− |s|) ∀ s ∈ (−1, 1). (2.26)

Proof See Appendix 1. ��
We have the following inequality concerning values of Dk and Gk computed in

Step 2 of Algorithm 1. For convenience, in the following, define

G̃k := 〈∇ f (Axk),A(xk − vk)〉 and βk := h(xk)− h(vk) ,

so that Gk = G̃k + βk . Also, by the definition of Rh , we know that |βk | ≤ Rh .

Proposition 3 For all k ≥ 0 it holds that

Dk ≤ Gk + θ + Rh . (2.27)

123

Analysis of the Frank–Wolfe method for convex composite…

Proof We have:

D2
k = 〈H(Axk)Avk,Avk〉 − 2〈H(Axk)Axk,Avk〉 + 〈H(Axk)Axk,Axk〉 . (2.28)

By (P5) we see that

〈H(Axk)Avk,Avk〉 ≤ 〈∇ f (Axk),Avk〉2 = (−G̃k + 〈∇ f (Axk),Axk〉)2
= (G̃k + θ)2, (2.29)

where the last equality above uses (P7). In addition, from (P6) and (P7) we have

−2〈H(Axk)Axk,Avk〉 + 〈H(Axk)Axk,Axk〉 = 2〈∇ f (Axk),Avk〉 − 〈∇ f (Axk),Axk〉
= −2G̃k + 〈∇ f (Axk),Axk〉
= −2G̃k − θ . (2.30)

Combining (2.28), (2.29) and (2.30), we have

D2
k ≤ (G̃k + θ)2 − 2G̃k − θ

= (Gk − βk + θ)2 + 2βk − (2Gk + θ)

≤ (Gk + θ)2 + β2
k − 2βk(Gk + θ − 1) (2.31)

≤ (Gk + θ)2 + R2
h + 2Rh(Gk + θ) (2.32)

= (Gk + θ + Rh)
2 , (2.33)

where in (2.31) we use 2Gk + θ ≥ 0 and in (2.32) we use |βk | ≤ Rh and Gk + θ ≥
θ ≥ 1. ��

The basic iteration improvement inequality for the Frank–Wolfe was presented in
(2.5), and the step-size in Algorithm 1 is given by (2.8). In the case when αk < 1,
it follows from substituting αk = Gk

Dk (Gk+Dk)
from (2.8) into (2.7) that the iteration

improvement bound is

F(xk+1) ≤ F(xk)− ω∗
(
Gk

Dk

)

. (2.34)

Using the notation �k := F(xk)− F(xk+1) = δk − δk+1, we can write this improve-
ment as:

�k = δk − δk+1 = F(xk)− F(xk+1) ≥ ω∗
(
Gk

Dk

)

≥ 0 when αk < 1 . (2.35)

Let us now prove (2.11) and part 1 of Theorem 1. Since Gk > θ + Rh , by (P4) in
Lemma 1 we have

Dk = ‖Avk − Axk‖Axk ≥ |〈∇ f (Axk),Avk − Axk〉|/√θ

123

R. Zhao, R. M. Freund

≥ G̃k/
√

θ = (Gk − βk)/
√

θ ≥ (Gk − Rh)/
√

θ >
√

θ ≥ 1 .

(2.36)

As a result, αk = Gk
Dk (Gk+Dk)

< 1. Consequently, by (2.35) we have

F(xk+1) ≤ F(xk)− ω∗
(
Gk

Dk

)

≤ F(xk)− ω∗
(

Gk

Gk + θ + Rh

)

, (2.37)

where the last inequality uses (2.27) and the monotonicity of ω∗. Now notice from the
condition Gk > θ + Rh that Gk/(Gk + θ + Rh) > 1/2, whereby invoking (2.25) we
have

�k = δk − δk+1 = F(xk)− F(xk+1) ≥ ω∗
(

Gk

Gk + θ + Rh

)

≥ Gk

5.3(Gk + θ + Rh)
.

(2.38)

In addition we have

Gk

5.3(Gk + θ + Rh)
≥ δk

5.3(δk + θ + Rh)
≥ δk

5.3(δ0 + θ + Rh)
, (2.39)

where the first inequality uses the strict monotonicity of the function c �→ c/(c +
θ + Rh) on [0,+∞), and the second inequality uses the monotonicity of the sequence
{δk}k≥0 (see (2.35)). Combining (2.38) and (2.39), we obtain

δk+1 ≤
(

1− 1

5.3(δ0 + θ + Rh)

)

δk , (2.40)

which proves (2.11). Furthermore, Gk > θ + Rh implies that

δk ≥ �k ≥ Gk

5.3(Gk + θ + Rh)
>

Gk

5.3(Gk + Gk)
= 1

10.6
. (2.41)

Now let KLin denote the number of iterations of Algorithm 1 where Gk > θ + Rh

occurs. By (2.40) and (2.41) it follows that

1

10.6
< δ0

(

1− 1

5.3(δ0 + θ + Rh)

)KLin−1
, (2.42)

which then implies that KLin ≤ �5.3(δ0+ θ+ Rh) ln(10.6δ0)� and thus proving part 1
of Theorem 1.

Let us now prove (2.12) of Theorem 1. Towards doing so, we will establish:

Gk ≤ θ + Rh ⇒ �k ≥ G2
k

12(θ + Rh)2
. (2.43)

123

Analysis of the Frank–Wolfe method for convex composite…

We first consider the case where αk = 1, whereby Dk(Gk+Dk) ≤ Gk , which implies
that Dk < 1, and also can be rearranged to yield

Gk ≥ D2
k

1− Dk
. (2.44)

In addition, by (2.7) we obtain

�k = F(xk)− F(xk+1) ≥ Gk − ω(Dk) = Gk + Dk + ln(1− Dk) . (2.45)

By (2.45), Proposition 2, and (2.44), we have

�k ≥ Gk − D2
k

2(1− Dk)
≥ Gk

2
, (2.46)

which then implies that

�k ≥ Gk

2
≥ G2

k

2(θ + Rh)
≥ G2

k

2(θ + Rh)2
≥ G2

k

12(θ + Rh)2
, (2.47)

where the second inequality usedGk ≤ θ+Rh and the third inequality used θ+Rh ≥ 1.
This establishes (2.43) for the case when αk = 1.

We next consider the case where αk < 1, whereby αk = Gk
Dk (Gk+Dk)

, and then by
(2.35) we have

�k = F(xk)− F(xk+1)

≥ ω∗
(
Gk

Dk

)

≥ ω∗
(

Gk

Gk + θ + Rh

)

≥ G2
k

3(Gk + θ + Rh)2
≥ G2

k

12(θ + Rh)2
,

(2.48)

where the second inequality uses (2.27) and themonotonicity ofω∗, the third inequality
uses (2.24) in conjunction with Gk/(Gk + θ + Rh) ≤ 1/2, and the fourth inequality
uses Gk ≤ θ + Rh . This establishes (2.43) for the case when αk < 1, completing the
proof of (2.43). It thus follows for Gk ≤ θ + Rh that

δk − δk+1 = �k ≥ G2
k

12(θ + Rh)2
≥ δkδk+1

12(θ + Rh)2
,

where the last inequality follows from δk+1 ≤ δk ≤ Gk , and dividing both sides by
δkδk+1 and rearranging yields the inequality (2.12).

Wenext prove (2.13) and (2.14). If δ0 ≤ ε the result follows trivially; thusweassume
that δ0 > ε. Let K̄ denote the expression on the right-side of (2.13), and suppose
Algorithm 1 has been run for K̄ iterations. Let N := �12(θ + Rh)

2 (1/ε − 1/δ0)�,
whereby it follows from part 1 of Theorem 1 that among the first K̄ iterations, the

123

R. Zhao, R. M. Freund

number of iterations where Gk ≤ θ + Rh is at least N . Thus from (2.12) it follows
that

1

δKε

≥ 1

δ0
+ N

12(θ + Rh)2
≥ 1

δ0
+

(
1

ε
− 1

δ0

)

= 1

ε
,

and rearranging yields part 1 of Theorem 1.
Let k0 < k1 < k2 < · · · denote indices where Gk ≤ θ + Rh . From (2.43), (2.4),

and the monotonicity of the sequence {δk}k≥0, it follows for all j ≥ 0 that

δk j+1 ≤ δk j+1 ≤ δk j −
G2

k j

12(θ + Rh)2
and Gk j ≥ δk j .

Let d j := δk j and g j := Gk j for all j ≥ 0, then the nonnegative sequences {d j } j≥0
and {g j } j≥0 satisfy for all j ≥ 0:

d j+1 ≤ d j −
g2j

12(θ + Rh)2
and g j ≥ d j .

Thus {d j } j≥0 and {g j } j≥0 satisfy the hypotheses of the following elementary sequence
proposition using M = 12(θ + Rh)

2. (This proposition is a slight extension of the
standard sequence property for Frank–Wolfe type sequences, and we provide a proof
in Appendix 1.)

Proposition 4 Suppose the two nonnegative sequences {d j } j≥0 and {g j } j≥0 satisfy
for all j ≥ 0:

– d j+1 ≤ d j − g2j/M for some M > 0, and
– g j ≥ d j .

Then for all j ≥ 0 the following holds:

d j ≤ M

j + M
d0

<
M

j
, (2.49)

and

min{g0, . . . , g j } <
2M

j
. (2.50)

��
Let FWGAPε be as given in part 1 of Theorem 1, and let K̃ denote the expression
on the right-side of (2.14). Suppose Algorithm 1 has been run for K̃ iterations. Let
Ñ := �24(θ + Rh)

2/ε�, whereby it follows from part 1 of Theorem 1 that among the
first K̃ iterations, the number of iterations where Gk ≤ θ + Rh is at least Ñ . Then, it
follows that

min{G0, . . . ,GK̃ } ≤ min{Gk0 , . . . ,GkÑ
} = min{g0, . . . , gÑ }

123

Analysis of the Frank–Wolfe method for convex composite…

<
2M

Ñ
= 24(θ + Rh)

2

Ñ
≤ ε ,

where the strict inequality uses Proposition 4. This shows (2.14) and completes the
proof of Theorem 1. ��
Remark 4 [Continueddiscussion fromRemark2 comparingTheorem1withKhachiyan
[36] for D-optimal design] Here h = ι�n , whereby Rh = 0, and the rate of linear
convergence for iterates where Gk > θ in (2.11) is order O(1− 1/(n + δ0)) as com-
pared to the rate of O(1− 1/n) proved in [36] specifically for the D-optimal design
problem with exact line-search. Due to the very special structure of the D-optimal
design problem, the exact line-search is in closed-form, and it enables Khachiyan [36]
to show that the optimality gap improvement bound (2.35) is instead

δk+1 ≤ δk − ω

(
Gk

Gk + θ

)

. (2.51)

Notice that ω is larger than ω∗, and all the moreso for larger values of its argument,
which corresponds to Gk > θ ; this then leads to an improved guaranteed linear rate of
Khachiyan’s algorithm in the case when Gk > θ . However, we stress that the stronger
estimate in (2.51) is rather specific to the D-optimal design problem, and we do not
expect it to hold in general for f ∈ Bθ (K).

3 Amirror descent method for the dual problem

In this section we present a mirror descent method with adaptive step-size applied to
the (Fenchel) dual problem of (P). We denote the dual problem of (P) by (D), which
is given by:

(D) : −d∗ := −miny∈Rm [d(y) := f ∗(y)+ h∗(−A∗y)] , (3.1)

where f ∗ and h∗ are the Fenchel conjugates of f and h, respectively, and A∗ : Rm →
R
n denotes the adjoint of A. We observe the following properties related to (D):

1. f ∗ is a θ -logarithmically-homogeneous self-concordant barrier on the polar ofK,
namelyK◦ := {y ∈ R

m : 〈y, u〉 ≤ 0 ∀ u ∈ K}, andK◦ is also a regular cone. This
follows from [47,Theorem 2.4.4].

2. h∗ is Lipschitz (but not necessarily differentiable) on R
n . Indeed, let ‖ · ‖ be a

given norm on the space of x variables, and define RX := maxx∈X ‖x‖. Since
X = dom h is compact and h is closed, it follows that RX < +∞ and h∗ is
RX -Lipschitz on R

n .
3. F∗ = −d∗ and (D) has at least one optimal solution. Indeed, since A(X) ∩

dom f �= ∅ and f is continuous on dom f , the strong duality and attainment
follows from [49,Theorem 3.51].

Although (D) has a similar structure as (P), certain key differences are unattractive in
regards to the application of first-order methods for solving (D). One key difference is

123

R. Zhao, R. M. Freund

that the domain of the dual function d is unbounded, which is in obvious contrast to the
bounded domain of the primal function F . Thismakes it difficult or prohibitive to apply
a Frank–Wolfe type method to solve (D). Furthermore, and similar to (P), ∇ f ∗ does
not satisfy either uniform boundedness or uniform Lipschitz continuity onK◦, thereby
preventing the application of most other types of first-order methods. Nevertheless,
below we present a mirror descent method with adaptive step-size for (D). Although
the lack of good properties prevents the direct analysis of mirror descent in the usual
manner, through the duality ofmirror descent and the Frank–Wolfemethodwe provide
a computational complexity bound for this mirror descent method.

Before presenting our mirror descent method for tackling (D), we first present an
important application of (D) in the Bregman proximal-point method.

Application in the Bregman proximal-point method (BPPM) [3, 9, 22]. Consider
the convex non-smooth optimization problem miny∈Rm+ ξ(y), where ξ : R

m → R is
assumed to be Lipschitz onR

m . At the k-th iteration of BPPM, one solves the following
problem:

yk+1 := argminy∈Rm ξ(y)+ β−1k Dζ (y, y
k) , (3.2)

where yk is the k-th iterate of BPPM, βk > 0 is the step-size, and ζ : R
m++ → R is

the prox function that induces the Bregman divergence

Dζ (y, y
k) := ζ(y)− ζ(yk)− 〈∇ζ(yk), y − yk〉 . (3.3)

As pointed out in [3], one of the standard choices of ζ is ζ(y) = −∑m
i=1 ln(yi), and

under this choice, if y0 ∈ R
m++ = intRm+, then yk ∈ R

m++ for all k ≥ 1, and so the
constraint set R

m+ is automatically taken care of by the prox-function ζ . From (3.2)
and (3.3)we note that (3.2) is in the formof (D)with f ∗(y) := ζ(y) = −∑m

i=1 ln(yi),
A = −I and h∗(−A∗y) = βkξ(y)− 〈∇ζ(yk), y〉.

Our mirror descent method for (D) is shown in Algorithm 2, and is based on using
the function f ∗ itself as the prox function to induce the Bregman divergence:

D f ∗(y, y
k) := f ∗(y)− f ∗(yk)− 〈∇ f ∗(yk), y − yk〉 ,

(When f is L-smooth, similar ideas have appeared in some previous works, for exam-
ple Grigas [28], Bach [4], as well as Lu and Freund [41].) In step 1, we compute a
subgradient of the dual function d at yk , which is denoted by gk . In step 2 we update
the primal variables zk which are used in the method to adaptively determine the
step-size in the next step. In step 3, we compute the step-size γk , which we will show
to be same as the step-size αk in the Frank–Wolfe method (shown in Algorithm 1).
Equipped with yk , gk and γk , in step 4 we perform a Bregman proximal minimization
step to obtain yk+1. We emphasize that different from the classical mirror descent
method (e.g., [43]), in step 4 we use f ∗ (which is part of the objective function) as
the prox function to induce the Bregman divergence D f ∗(·, ·). Also notice that the
domain of the sub-problem (3.7) is intK◦ and it is perhaps not so obvious without
further analysis that (3.7) has an optimal solution.

123

Analysis of the Frank–Wolfe method for convex composite…

Algorithm 2Mirror descent method for solving (D) using f ∗ as the prox function

Input: Starting points y0 ∈ intK◦ and z0 ∈ {z ∈ X : Az = ∇ f ∗(y0)}
At iteration k ∈ {0, 1, . . .}:

1. Let sk ∈ ∂h∗(−A∗yk) and define

gk := ∇ f ∗(yk)− Ask ∈ ∂d(yk) . (3.4)

2. If k ≥ 1, compute

zk := (1− γk−1)zk−1 + γk−1sk−1 . (3.5)

3. Compute Ḡk := 〈gk , yk 〉 + h(zk)− h(sk) and D̄k := ‖gk‖∇ f ∗(yk), and compute the step-size:

γk := min

{
Ḡk

D̄k (Ḡk + D̄k)
, 1

}

. (3.6)

4. Update

yk+1 := argminy∈Rm 〈gk , y〉 + γ−1k D f ∗ (y, yk) . (3.7)

At first glance it appears that Algorithm 2might not be efficient to implement, since
it involves working with a system of linear equations to determine z0 in the Input, and
also involves solving the minimization sub-problem in step 4. However, as we show
below, Algorithm 2 corresponds exactly to the generalized Frank–Wolfe method in
Algorithm 1 for solving (P), which does not involve these computationally expensive
steps. This of course implies that Algorithm 2 can be implemented via Algorithm 1 to
obtain the primal iterate sequence {xk}k≥0, and then the dual iterate sequence {yk}k≥0
is determined by the simple rule yk = ∇ f (Axk) for k ≥ 0.

Theorem 2 Algorithms 1 and 2 are equivalent in the following sense: If the starting
points x0 inAlgorithm1and z0 inAlgorithm2 satisfy x0 = z0 and y0 = ∇ f (Ax0), then
an iterate sequence of either algorithm exactly corresponds to an iterate sequences of
the other.

Beforewe prove this theorem,wefirst recall some properties of conjugate functions.
Let w : Rp → R∪{+∞} be a closed convex function and let w∗ denote its conjugate
function, which is defined by w∗(g) := maxu{〈g, u〉 − w(u)}. Then w∗ : R

p →
R ∪ {+∞} is a closed convex function, and

g ∈ ∂w(u)⇐⇒ u ∈ ∂w∗(g)⇐⇒ 〈g, u〉 = w(u)+ w∗(g) . (3.8)

Proof of Theorem 2. Let {yk}k≥0 be the sequence of iterates of Algorithm 2, and
let us also collect the sequences {zk}k≥0, {sk}k≥0, {gk}k≥0, {Ḡk}k≥0, {D̄k}k≥0, and
{γ k}k≥0 generated in Algorithm 2, and use these sequences to define the following
five sequences by the simple assignments xk := zk , vk := sk , αk := γ k , Gk := Ḡk ,
Dk := D̄k , for k ≥ 0. We now show that these five sequences correspond to an iterate

123

R. Zhao, R. M. Freund

sequence of Algorithm 1. Our argument will rely on the following identity:

yk = ∇ f (Azk) ∀k ≥ 0 , (3.9)

which we will prove by induction. Notice that (3.9) is true for k = 0 by supposition in
the statement of the theorem. Now let us assume that (3.9) holds for a given iteration
k, and let us examine the properties of our sequences. We have

vk := sk ∈ ∂h∗(−A∗yk) ⇒ −A∗yk ∈ ∂h(vk) (3.10)

 ⇒ vk ∈ arg minx∈Rn 〈∇ f (Axk),Ax〉 + h(x) ,

(3.11)

where (3.10) follows from the conjugacy properties (3.8). This shows that vk satisfies
Step 2 of iteration k in Algorithm 1. We also have

Gk := Ḡk :=〈gk, yk〉 + h(zk)− h(sk) (3.12)

=〈∇ f ∗(yk)− Ask,∇ f (Azk)〉 + h(zk)− h(sk) , (3.13)

=〈Axk − Avk,∇ f (Axk)〉 + h(xk)− h(vk) (3.14)

satisfies the definition of Gk in Step 2 of iteration k of Algorithm 1. Similarly, we have

Dk := D̄k := ‖gk‖∇ f ∗(yk) = ‖∇ f ∗(yk)− Ask‖Azk = ‖Azk − Ask‖Azk
= ‖Axk − Avk‖Axk (3.15)

satisfies the the definition of Dk in Step 2 of iteration k in Algorithm 1, which then
implies similarly for the formula forαk in (2.8) ofAlgorithm1. Last of all, we prove the
inductive step of the equality (3.9). From the optimality conditions of the optimization
problem in (3.7) we have

∇ f ∗(yk+1) = ∇ f ∗(yk)− γkgk

 ⇒ ∇ f ∗(yk+1) = ∇ f ∗(yk)− γkgk = (1− γk)Azk + γkAsk,

where in the last step we use ∇ f ∗(yk) = Azk from (3.9) and (3.4). Since zk+1 :=
(1 − γk)zk + γksk , we have ∇ f ∗(yk+1) = Azk+1 implies yk+1 = ∇ f (Azk+1) by
conjugacy and completes the proof of (3.9). This then shows that an iterate sequence of
Algorithm2corresponds to an iterate sequence ofAlgorithm1.The reverse implication
can also be proved using identical logic as above. ��

We now leverage the equivalence of Algorithms 1 and 2 to analyze the iteration
complexity of Algorithm 2. The following proposition relating the duality gap to the
Frank–Wolfe gap will be useful.

Proposition 5 Gk = d(yk)+ F(xk) for all k ≥ 0.

123

Analysis of the Frank–Wolfe method for convex composite…

Proof We have for all k ≥ 0:

Gk = 〈∇ f (Axk),Axk〉 − 〈∇ f (Axk),Avk〉 + h(xk)− h(vk) (3.16)

= f (Axk)+ h(xk)+ f ∗(yk)+ 〈−A∗yk, vk〉 − h(vk) (3.17)

= f (Axk)+ h(xk)+ f ∗(yk)+ h∗(−A∗yk) = d(yk)+ F(xk) . (3.18)

where in (3.17) we use the conjugacy property in (3.8) and yk = ∇ f (Axk), and
in (3.18) we use −A∗yk ∈ ∂h(vk) (by (3.10) and sk = vk) and (3.8). ��

Since Gk upper bounds the dual optimality gap dk := d(yk)− d(y∗), from part 1
of Theorem 1 we immediately have the following corollary.

Corollary 1 Let DGAPε denote the number of iterations required by Algorithm 2 to
obtain dk ≤ ε. Then:

DGAPε ≤ �5.3(δ0 + θ + Rh) ln(10.6δ0)� +
⌈
24(θ + Rh)

2

ε

⌉

. (3.19)

��
We end this section with some remarks. First, if one considers (D) directly then

its “primitive” objects are f ∗ and h∗, and implementing Algorithm 2 via Algorithm 1
requires knowing h = (h∗)∗ and also the Hessian of f = (f ∗)∗ (used to com-
pute the step-size γk). While these objects are not part of the primitive description
of (D), it follows from conjugacy of self-concordant barriers that ∇ f = (∇ f ∗)−1
and H(·) = H∗(∇ f (·))−1 where H∗ is the Hessian of f ∗ (see [51,Theorem 3.3.4]),
and therefore one can work directly with ∇ f and H through the primitive objects
∇ f ∗ and H∗. Of course, for standard logarithmically-homogeneous barriers f ∗ such
as f ∗(y) = −∑m

i=1 ln yi , where y ∈ R
m++ or f ∗(Y) = − ln det Y , where Y ∈ S

p
++

(and m = p(p + 1)/2), its Fenchel conjugate of f and the Hessian of f are well-
known. In addition, for many simple non-smooth functions h∗, e.g., h∗(w) = ‖w‖p
(p ∈ [1,+∞]), its Fenchel conjugate either is well-known or can be easily computed.
Therefore, for many problems of interest implementing Algorithm 2 via Algorithm 1
is likely to be quite viable. Second, note that the step-size γk used in Algorithm 2 is
adaptive, and is different from a standard step-size that is monotone decreasing in k,
e.g., γk = O(1/

√
k) or γk = O(1/k) (cf. [43]). This poses difficulties in attempt-

ing to directly analyze Algorithm 2 via standard approaches which involves using
D f ∗(yk, y∗) as the potential function (see e.g., [4]). Nevertheless, the convergence
guarantee for Gk derived from Algorithm 1 enables us to analyze the converge of the
dual optimality gap dk in Algorithm 2.

4 Computational experiments

In this section we present the results of some basic numerical experiments where
we evaluate the performance of our generalized Frank–Wolfe method in Algorithm 1

123

R. Zhao, R. M. Freund

on the Poisson image de-blurring problem with TV regularization (Application 1 in
Sect. 1.1), and also on the PET problem (Application 2 of Sect. 1.1).

4.1 First numerical experiment: Poisson image de-blurring with TV regularization

We consider the Poisson image de-blurring problem with TV regularization as
described in Application 1 of Sect. 1.1, where the formulation was presented in equa-
tion (1.5). Observe that f : u �→ −∑N

l=1 yl ln
(
ul) is neither Lipschitz nor L-smooth

on the set {u ∈ R
N : u = Ax, 0 ≤ x ≤ Me}, and T V (·) does not have an efficiently

computable proximal operator, which prevents most standard first-order methods from
being applicable to tackle (1.5). As a result, very few methods have been proposed to
solve (1.5) in the literature. In [15] an ad-hoc expectation-maximization (EM) method
was proposed to solve (1.5), however the method is not guaranteed to converge due to
the non-smoothness of the function T V (·) (see e.g., [50]). Both [33] and [10] proposed
methods to solve a “perturbed” version of (1.5) by adding a small offset to each ln(·)
term, which of course, compromises the original objective function F̄(x) near x = 0.
(Such a perturbed version is not needed for the theoretical analysis in [10], but seems
to be used to improve practical performance.) Using the generalized Frank–Wolfe
method of Algorithm 1, we are able to directly solve formulation (1.5), the details of
which we now describe.

4.1.1 Implementation of generalized Frank–Wolfe method for solving (1.5)

We first re-describe the total variation function T V (x) by introducing some network
definitions and terminology. The TV function penalizes potential differences on the
horizontal and vertical grid arcs of the standardm×n pixel grid. Considering each pixel
location as a node, let V denote these nodes enumerated as V = [N] = {1, . . . , N =
m× n}, and consider the undirected graph G = (V, E) where E is the set of horizontal
and vertical edges of the grid. These horizontal and vertical edges can be described as
Eh and Ev, respectively, where

Eh := {{l, l + 1} : l ∈ [N], l mod n �= 0} and Ev := {{l, l + n} : l ∈ [N − m]}.

With this notation we have

T V (x) =∑
{i, j}∈E |xi − x j | . (4.1)

Based on G, we define the directed graph G̃ = (V, Ẽ)where Ẽ is obtained by replacing
each (undirected) edge in E with two directed edges of opposite directions. Then
from (4.1) we have

T V (x) =∑
(i, j)∈Ẽ max{xi − x j , 0} = min e�r

s. t. ri j ≥ xi − x j , ∀ (i, j) ∈ Ẽ (4.2)

= min e�r

123

Analysis of the Frank–Wolfe method for convex composite…

s. t. r ≥ B�x , (4.3)

where B is the node-arc incidence matrix of the network Ẽ .
The Frank–Wolfe subproblem (1.3) associated with (1.5) is:

minx∈RN 〈∇ f̄ (xk), x〉 + (
∑N

l=1 al)�x + λT V (x) s. t. 0 ≤ x ≤ Me , (4.4)

where

f̄ (x) := −∑N
l=1 yl ln(a�l x) . (4.5)

Based on (4.3), we can rewrite (4.4) as the following linear optimization problem:

min
(x,r)∈RN×R2|E|

〈∇ f̄ (xk), x〉 + (
∑N

l=1 al)�x + λe�r

s. t. 0 ≤ x ≤ Me, r ≥ B�x . (4.6)

This linear problem can be solved as a linear program (LP) using available software,
or as a constrained dual network flow problem using available network flow software.
In our implementation we solved (4.6) using the primal simplex method in Gurobi
[29]. Note that in (4.6), the variable r in the constraint set appears to be unbounded.
However, from the form of the objective function and the definition of B, it is easy
to see that any optimal solution (x∗, r∗) must satisfy 0 ≤ r∗ ≤ Me, and hence (4.6)
always admits an optimal solution.

Given the representation of T V (·) in (4.3), we can also rewrite (1.5) as

min
x∈RN , r∈R2|E|

f̄ (x)+ (
∑N

l=1 al)�x + λe�r

s. t. 0 ≤ x ≤ Me, r ≥ B�x . (4.7)

(Note that the Frank–Wolfe sub-problem (1.3) associated with (4.7) is the same as
that associated with (1.5), which is shown in (4.6).) In the following, we will apply
our Frank–Wolfe method to solve the reformulated problem (4.7). The advantage
of (4.7) lies in that its structure yields an efficient procedure for an exact line-search
to compute the step-size αk . Specifically, given (xk, rk), let (vk, wk) be an optimal
solution of (4.6); then the exact line-search problem using (4.7) is:

αk = argminα∈[0,1] f̄ (xk + α(vk − wk))

+ α
(
(
∑N

l=1 al)�(vk − xk)+ λe�(wk − rk)
)
. (4.8)

The detailed description of the exact line-search procedure for problems of the format
(4.8) are presented inAppendix 1.Henceforth,we denote our generalizedFrank–Wolfe
method for Poisson de-blurring with the adaptive step-size in (2.8) as FW-Adapt, and
we denote our Frank–Wolfe method with exact line-search of (4.8) as FW-Exact.
Note that since in each iteration, FW-Exactmakes no less progress than FW-Adapt

123

R. Zhao, R. M. Freund

Fig. 1 True and noisy 100× 100 versions of the Shepp-Logan phantom image

in terms of the objective value, the computational guarantees in Theorem 1 (which are
proved for FW-Adapt) also apply to FW-Exact.

4.1.2 Results

We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image [53] of
size 100×100 (hence N = 10, 000). The true image X is shown in Fig. 1a; this image
acts as a 2D slice of a representative 3D human brain image, and is a standard test
image in image reconstruction algorithms. We generated the blurred noisy image Y
shown in Fig. 1b using the methodology exactly as described in Sect. 1.1. For both
FW-Adapt and FW-Exact, we chose the starting point x0 = vec(Y), and we set
λ = 0.01. In order to have a accurate computation of optimality gaps, we usedCVXPY
[16] to (approximately) find the optimal objective value F̄∗ of (1.5). All computations
were performed in Python 3.8 on a laptop computer.

Figure 2a, b show (in log-log scale) the empirical optimality gaps F̄(xk) − F̄∗
obtained by FW-Adapt and FW-Exact both as a function of the wall-clock time (in
seconds) and as a function of the iteration counter k, respectively. From the figure we
observe that FW-Exact converges faster than FW-Adapt, although the difference
between the empirical optimality gaps of these two methods gradually lessens. This
is expected since with exact line-search, FW-Exact can take a potentially larger step
at each iteration than FW-Adapt, and likely therefore has faster convergence. The
recovered images computed using FW-Adapt and FW-Exact are shown in Fig. 3a,
b, respectively. We observe that the image recovered by FW-Adapt has similar but
slightly inferior quality compared to that recovered by FW-Exact. This is consistent
with the algorithms’ performance shown Fig. 2, as FW-Adapt has a larger empirical
optimality gap at termination compared to that of FW-Exact.

123

Analysis of the Frank–Wolfe method for convex composite…

Fig. 2 Comparison of empirical optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E) for image
recovery of the Shepp-Logan phantom image [53] of size 100× 100

Fig. 3 Recovered images computed using FW-Adapt and FW-Exact

4.2 Second numerical experiment: positron emission tomography

We consider the positron emission tomography (PET) problem as described in Appli-
cation 2 of Sect. 1.1, where the formulation was presented in equation (1.10). We
generated artificial data instances of this problem according to the following data gen-
eration process. Because the events emitted from each voxel i can only be detected by
a small proportion of bins, it follows that the probability matrix P should be highly
sparse.We chose a sparsity value of 5%. Given the number of voxels n and the number
of bins m, for each i ∈ [n] we randomly chose (without replacement) a subset of [m]
denoted by Ji , such that |Ji | = $m/20%. Next, for all j ∈ Ji we then generated i.i.d.
entries p̄i j ∼ U [0, 1] and normalized the values to obtain pi j := p̄i j/

∑
j ′∈Ji

p̄i j ′ .
For all j /∈ Ji we set pi j = 0. We generated the mean values xi for i ∈ [n] by first
generating i.i.d. values x̄i ∼ N (100, 9) and then set xi = |x̄i | for i ∈ [n]. We then
simulated the event counts Xi at each voxel i by generating Xi ∼ Poisson(xi) for
i ∈ [n]. Finally, using P and {Xi }i∈[n], we generated the number of observed events
Y j detected at bin j by independently generating values Ỹ j ∼ Poisson(y j) with

123

R. Zhao, R. M. Freund

y j := ∑n
i=1 pi j Xi for j ∈ [m]. Since Y j ∈ {0, 1, 2, . . .}, by omitting bins for which

Y j = 0 we ensure that Y j ≥ 1 for all j ∈ [m] in the PET problem (1.10).

4.2.1 Comparison of algorithms

We solved instances of the PET problem (1.10) using the following five algo-
rithms/variants:

– FW-Adapt—our generalized Frank–Wolfe method in Algorithm 1with the adap-
tive step-size as stated in (2.8),

– FW-Exact—our generalized Frank–Wolfe method in Algorithm 1with the adap-
tive step-size (2.8) replaced by an exact line-search as described in detail in
Appendix 1,

– RSGM-Fixed – relatively smooth gradient method with fixed step-size [5, 42],
– RSGM-LSBack – relatively smooth gradient method with backtracking line-
search [55],

– EM – a simple algorithm developed by Cover in 1984 specifically for a problem
that is equivalent to the normalized PET problem [12].

We excludedmirror descent from our computational comparisons because the sparsity
of P violates the basic assumption needed to apply the mirror descent (MD) method
to (1.10) (see e.g., [6]). We now review the relevant details of the three algorithms
RSGM-F, RSGM-LS and EM.
1. RSGM-Fixed [5, 42]. Although the objective function L of (1.10) is differentiable
on its domain, its gradient ∇L is not Lipschitz on the constraint set �n . Therefore
standard gradient methods (or accelerated versions) [45] are not applicable. As a
remedy for this situation, we can use the relatively-smooth gradient method [5, 42] to
solve (1.10), which is designed in particular for problems whose objective functions
have certain types of structured non-smooth gradients. Indeed, as shown in Bauschke
et al. [5], L is Ȳ -smooth relative to the reference function

r(z) := −∑n
i=1 ln(zi) for z ∈ R

n++ := {x ∈ R
n : x > 0} , (4.9)

where Ȳ :=∑m
j=1 Y j . Specifically, this means that

∇2L(z) & Ȳ∇2r(z) ∀ z ∈ R
n++ . (4.10)

Algorithm 3 describes RSGM specified to solve the PET problem (1.10) using the
reference function r with relative-smoothness parameter Ȳ , where ri�n denotes the
relative interior of �n in the Input, and Dr (·, ·) denotes the Bregman divergence
in (4.11) which is defined similarly as in (3.3). We set the step-size αk = 1/Ȳ for all
k ≥ 0 in the fixed-step-size version of the method. Regarding the sub-problem (4.11)
that needs to be solved at each iteration, its optimal solution is unique and lies in ri�n

since the reference function r is Legendre with domain R
n++ (see [5,Section 2.1] for

details). Therefore we have zk ∈ ri�n for all k ≥ 0. To efficiently solve (4.11), we
used the approach in [42,pp. 341–342], which reduces (4.11) to finding the unique
positive root of a strictly decreasing univariate function on (0,+∞).

123

Analysis of the Frank–Wolfe method for convex composite…

Algorithm 3 RSGM for solving the PET problem (1.10)

Input: Starting point z0 ∈ ri�n := {z > 0 : ∑n
i=1 zi = 1}.

At iteration k:

1. Compute ∇L(zk) = ∑m
j=1(Y j /〈p j , zk 〉)p j , where p j is the vector corresponding to the j-th

column of P for j ∈ [m] .
2. Choose step-size αk > 0 and compute

zk+1 = argmaxz∈�n 〈∇L(zk), z〉 − α−1k Dr (z, z
k) . (4.11)

2. RSGM-LSBack [55]. This method is a version of the relatively smooth gradient
method shown in Algorithm 3, with the extension that a backtracking line-search
procedure is employed to compute the local relative-smoothness parameter Ȳk at zk

and then the step-size is chosen as αk = 1/Ȳk at each iteration. (The details of this
procedure can be found in [55,Algorithm 1].) Note that depending on the location of
zk , Ȳk may be (significantly) smaller than the (global) relative-smoothness parameter
Ȳ .
3. EM [12]. This surprisingly simple algorithmwas developed by Cover in 1984 specif-
ically for a problem that is equivalent to the following normalized PET problem (see
[12]):

max L̄(z) :=∑m
j=1 Ȳ j ln

(∑n
i=1 pi j zi

)
s. t. z ∈ �n , (4.12)

where Ȳ j := Y j/
∑m

j ′=1 Y j ′ > 0 for all j ∈ [m] (recall that we have assumed without

loss of generality that Y j ≥ 1 for all j ∈ [m]). The method starts with z0 ∈ ri�n and
at each iteration k updates zk as follows:

zk+1i := zki ∇i L̄(zk) =
m∑

j=1
Ȳ j

pi j zki∑n
l=1 pl j zkl

, ∀ i ∈ [n] . (4.13)

Note that since Ȳ j > 0 for all j ∈ [m], we easily see that zk ∈ ri�n for all k ≥ 0.

4.2.2 Results

We report results for problems of dimensions n = m = 1000, as we observed that the
algorithms’ relative performance were not particularly sensitive to the dimensions m
and n. We ran the algorithms using two different choices of starting points: (i) z0 =
zbd ∈ ri�n chosen very close to bdR

n+ (the boundary of R
n+), and (ii) z0 = zct := 1

n e
which is the barycenter of �n . To determine zbd we first used a greedy heuristic to
determine a low- (or lowest-)cardinality index set I ⊆ [n] for which ∑

i∈I p j > 0,
where p j is the j-th column of P . Define δ̄ := 10−6/n, and we then set

zbdi :=
{

δ̄ for i /∈ I ,

(1− (n − |I|)δ̄)/|I| for i ∈ I .

123

R. Zhao, R. M. Freund

Fig. 4 Comparison of optimality gaps of FW-Adapt (FW-A), FW-Exact (FW-E), RSGM-Fixed
(RSGM-F), RSGM-LSBack (RSGM-LS) and EM, with z0 = zbd

Note that this ensures zbd ∈ ri�n . Similar to Sect. (4.1), we used CVXPY [16] to
(approximately) compute the optimal objective function value L∗ of (1.10) in order to
accurately report optimality gaps. Again, all computations were performed in Python
3.8 on a laptop computer.

Figures 4 and 5 show plots of the empirical optimality gaps L(zk)− L∗ of all five
methods with the starting points zbd and zct, respectively. From Fig. 4 we observe the
following:

(i) The relatively smooth gradient methods, namely RSGM-Fixed and RSGM-
LSBack, make very little progress in reducing the empirical optimality gap. For
RSGM-Fixed, this is because the relative smoothness parameter Ȳ =∑m

j=1 Y j

is typically very large, implying that the step-size 1/Ȳ is very small. Since the
starting point zbd is very close to bdR

n+, where the local relative smoothness
parameter of the objective function L is close to Ȳ , RSGM-LSBack exhibits
similar behavior toRSGM-Fixed. (In other words, the backtracking line-search
does not help much in this case.)

(ii) The two versions of our generalized Frank–Wolfe methods, namely FW-Adapt
andFW-Exact, outperform the relatively smooth gradientmethods. In addition,
FW-Exact converges faster than FW-Adapt initially, but when close to the
optimum (for example, when the empirical optimality gap falls below 10), these
two methods have the same convergence behavior. Indeed, this observation also
appears on the Poisson image de-blurring problem with TV-regularization (see
Sect. 4.1.2).

(iii) The EM algorithm outperforms all the other methods which is rather surprising at
first glance. (And in fact it is unknown from the literaturewhether themethod has
any type of non-asymptotic convergence guarantee.) However, we note that this
method, which uses a multiplicative form of update (see Eq. (4.13)), is specifi-
cally designed for problems with the PET problem structure in (1.10), and it is
not clear how to suitably generalize this method to more general problems of the
form (P) such as the Poisson image de-blurring problemwith TV-regularization
in (1.5).

123

Analysis of the Frank–Wolfe method for convex composite…

Fig. 5 Comparison of optimality gaps of FW-Adapt (FW-A), FW-Exact (FW-E), RSGM-Fixed
(RSGM-F), RSGM-LSBack (RSGM-LS) and EM, with z0 = zct

Figure 5 shows the performance of the five algorithms when z0 = zct is
the barycenter. We observe that the performance of the methods is mostly sim-
ilar to when started at zbd except for one significant difference, namely that
RSGM-LSBack exhibits significantly faster convergence compared to when started
at zct. Indeed, RSGM-LSBack outperforms all the other general purpose methods,
namely RSGM-Fixed, FW-Adapt and FW-Exact. This is likely because on the
“central region” of �n the local relative smoothness parameter of L is probably much
smaller than the global bound Ȳ , and therefore RSGM-LSBack is able to take a much
larger steps. This also indicates that the convergence behavior of RSGM-LSBack is
likely to be sensitive to the choice of starting point, which is not the case for the other
methods (including our generalized Frank–Wolfe methods).

Acknowledgements The authors are grateful to the two anonymous referees for their many constructive
suggestions that have improved the exposition of this work.

Funding Open Access funding provided by the MIT Libraries

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A complexity of computingDk in theD-optimal design problem

Let the objective function f̄ be defined in (1.16), and denote its Hessian at x ∈
dom f̄ as H̄(x). Also denote C := [a1 . . . am] ∈ R

n×m and X := diag (x).
From standard results (e.g., [42,Proposition 2.2]), we know that ∇i f (x) = −Q(x)i i
and H̄(x)i i = Q(x)2i i for i ∈ [m], where Q(x) := C�(CXC�)−1C and hence
Q(x)i i = a�i (CXC�)−1ai . Since the constraint set in (1.16) is �m , we can choose

123

http://creativecommons.org/licenses/by/4.0/

R. Zhao, R. M. Freund

vk = eik , where ik ∈ argmini∈[m]∇i f (xk) and ei denotes the i-th standard coordinate
vector. Let Qk := Q(xk). Now, note that we can write

D2
k = 〈H̄(xk)(xk − vk), xk − vk〉 = 〈H̄(xk)xk , xk〉 − 2〈H̄(xk)xk , vk〉 + 〈H̄(xk)vk , vk〉

(a)= −〈∇ f̄ (xk), xk〉 + 2〈∇ f̄ (xk), eik 〉 + 〈H̄(xk)eik , eik 〉
(b)= n + 2∇ik f̄ (x

k)+ H̄(xk)ik ,ik

= n − 2Qk
ik ,ik +

(
Qk

ik ,ik

)2
.

where in (a) we use (P6) and vk = eik and in (b) we use (P7) and that the complexity
parameter of f̄ is n. Therefore, the computational complexity of Dk is the same as
that of Qk

ik ,ik
= a�ik B

kaik , where Bk := (CXkC�)−1. If k = 0, this can be computed

in O(mn2 + n3) time. In addition, since we have αk < 1 for all k ≥ 0 (because
ei /∈ dom f̄ for any i ∈ [m]), the following holds:

Qk
ik+1,ik+1 = a�ik+1

(
(1− αk)CXkC� + αkaik a

�
ik

)−1
aik+1

(a)= (1− αk)
−1a�ik+1

(

Bk − βk Bkaik a
�
ik
Bk

1+ βka�ik B
kaik

)

aik+1 [where βk := αk/(1− αk)],

= (1− αk)
−1

(

a�ik+1 B
kaik+1 −

(a�ik+1 B
kaik)

2

β−1k + Qk
ik ,ik

)

,

where (a) follows from the Inverse Matrix Update formula [30]. Therefore, given Bk

and Qk
ik ,ik

, Qk
ik+1,ik+1 can be computed in O(n2) time, for all k ≥ 0.

B Proof of Proposition 1

Note that (ω∗)′(s) = s/(1 + s) > 0 for any s > 0, so ω∗ is strictly increasing on
[0,+∞). In addition, 0 ≤ s ≤ 1/2 implies that (ω∗)′(s) ≥ 2

3 s, whereby

ω∗(s) = ω∗(0)+
∫ s

0
(ω∗)′(t)dt ≥

∫ s

0

2
3 t dt = s2/3 for s ∈ [0, 1/2] .

Define the linear function l(s) := (1 − 2 ln(1.5))s, and notice that l(s) = ω∗(s) at
s = 0 and s = 1/2. Therefore from the convexity of ω∗ it follows for s ≥ 1/2 that

ω∗(s) ≥ l(s) = (1− 2 ln(1.5))s ≥ s/5.3 .

��

C Proof of Proposition 2

For any s ∈ (−1, 1), we have

ln(1+ s) = s − s2

2
+ s3

3
− s4

4
+ · · ·

≥ s − |s|
2

2
− |s|

3

2
− |s|

4

2
− · · ·

123

Analysis of the Frank–Wolfe method for convex composite…

= s − |s|
2

2

(
1+ |s| + |s|2 + · · ·

)

= s − |s|2
2(1− |s|) .

��

D Proof of inequality (2.16)

As shown in Khachiyan [36,Lemma 3], with p0 = (1/m)e we have

δ0 ≤ n ln(1+ ε0) where ε0 := m

n
max
i∈[m] a

�
i

(∑m
j=1 a ja�j

)−1
ai − 1 . (D.1)

Define C := [a1 . . . am] ∈ R
n×m and P := C�

(
CC�

)−1
C , and it holds for all

i ∈ [m] that:

a�i
(∑m

j=1 a ja�j
)−1

ai = (ei)�C�
(
CC�

)−1
Cei = ‖Pei‖22 ≤ ‖ei‖22 = 1 , (D.2)

where ei denotes the i-th standard coordinate vector, and the second equality and the
inequality above follow since P is a projection matrix. As a result, ε0 ≤ m/n− 1 and
the proof follows using the left inequality in (D.1). ��

E Proof of Proposition 4

Note that (2.49) follows easily from

1

d j+1
≥ 1

d j
+ 1

M
∀ j ≥ 0 , (E.1)

and so let us prove (E.1). It follows from the hypotheses of Proposition 4 that:

d j+1 ≤ d j −
g2j
M
≤ d j −

d2j
M

, (E.2)

and dividing both sides of (E.2) by d jd j+1 and rearranging yields

1

d j+1
≥ 1

d j
+ d j

Md jd j+1
≥ 1

d j

(

1+ d j

M

)

= 1

d j
+ 1

M
,

where the second inequality uses d j ≥ d j+1.
We next prove (2.50). The result is trivally true for j = 0, so let us consider j ≥ 1.

For convenience define ḡ j := min{g0, . . . , g j }, and consider some l satisfying some
0 < l ≤ j . We then have

M

l
> dl = d j+1 +

j∑

i=l
di − di+1 ≥ d j+1 +

j∑

i=l

g2i
M
≥ (j − l + 1)

ḡ2j
M

,

123

R. Zhao, R. M. Freund

where the first inequality uses (2.49) and the second inequality is from the first hypoth-
esis of the proposition. If we take l = � j/2�, then j/2 ≤ l ≤ j/2+ 1. Therefore

ḡ2j <
M2

l(j − l + 1)
≤ M2

(j/2)2
=

(
2M

j

)2

,

which then implies (2.50). ��

F Exact line-search procedure to compute ˛k

Let us define

F̄(x) := −∑
i∈[m] yi ln(a�i x)+ ξ�x , (F.1)

where yi ∈ {1, 2, . . .} and ai ∈ R
n for i ∈ [m] and ξ ∈ R

n , and we wish to solve
minx∈X F̄(x). Note that the optimization problems (4.7) and (1.10) both conveniently
fit into the format (F.1). Given x ∈ X ∩ dom F̄ , let d ∈ R

n be a descent direction
at x (namely 〈∇ F̄(x), d〉 < 0) such that x + d ∈ X . The exact line-search problem
involves finding

α∗ := argminα∈[0,1] [ζ(α) := F̄(x + αd)] . (F.2)

Define

I+ := {i ∈ [m] : a�i d > 0} and I− := {i ∈ [m] : a�i d < 0} , (F.3)

so that

ζ(α)
c= −∑

i∈I+ yi ln(a�i x + αa�i d)−∑
i∈I− yi ln(a�i x + αa�i d)+ αξ�d ,

where
c= denotes equality up to a constant independent of α. Consequently, we have

ζ ′(α) = −
∑

i∈I+

yia�i d
a�i x + αa�i d

−
∑

i∈I−

yia�i d
a�i x + αa�i d

+ ξ�d

= −
∑

i∈I+

yi
γi + α

−
∑

i∈I−

yi
γi + α

+ ξ�d ,

where γi = a�i x/a�i d for i ∈ I+∪I−. Clearly, we have γi > 0 for i ∈ I+ and γi < 0
for i ∈ I−. We have the following observations about ζ and ζ ′:

(i) Domain: dom ζ = dom ζ ′ = (γ−, γ+), where γ− := −mini∈I+ γi < 0 and
γ+ := −maxi∈I− γi > 0.

(ii) Monotonicity: Since ζ is strictly convex, ζ ′ is strictly increasing on (γ−, γ+). Also,
ζ ′(0) = 〈∇ F̄(x), d〉 < 0.

123

Analysis of the Frank–Wolfe method for convex composite…

(iii) Behavior as α ↑ +∞: If I− �= ∅, then γ+ < +∞ and ζ ′(α) ↑ +∞ as α ↑ γ+; if
I− = ∅, then γ+ = +∞ and ζ ′(α) ↑ ξ�d as α ↑ +∞.

Based on these observations, our exact line search procedure can be described as
follows:

– I− = ∅: We consider two cases, namely ξ�d ≤ 0 and ξ�d > 0. If ξ�d ≤ 0, then
ζ ′(α) < 0 for all α ≥ 0, and hence α∗ = 1. Otherwise, we have ξ�d > 0, and
hence let usfirst findα′ as the unique solutionof ζ ′(α) = 0, namelyα′ = (ζ ′)−1(0).
If α′ > 1, then ζ ′(α) < 0 for all α ∈ [0, 1] and hence α∗ = 1; otherwise α∗ = α′.
In other words, α∗ = min{α′, 1}.

– I− �= ∅: In this case, by observation 1, we see that ζ ′(α) = 0 must have a unique
solution α′ on (0, γ+). To find such a solution, we can first find j as the largest
integer such that ζ(γ+ − 10 j) > 0, and then use Newton’s method starting from
γ+ − 10 j or bisection over [0, γ+ − 10 j] to find α′. Once we find α′, we can let
α∗ = min{α′, 1}.

References

1. Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-
optimum investment. Ann. Prob. 16(2), 876–898 (1988)

2. Atwood, C.L.: Optimal and efficient designs of experiments. Ann.Math. Stat. 40(5), 1570–1602 (1969)
3. Auslender, A., Teboulle, M., Ben-Tiba, S.: Interior proximal and multiplier methods based on second

order homogeneous kernels. Math. Oper. Res. 24(3), 645–668 (1999)
4. Bach, F.: Duality between subgradient and conditional gradient methods. SIAM J. Optim. 25(1), 115–

129 (2015)
5. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond lipschitz gradient continuity: first-

order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2017)
6. Ben-Tal, A., Margalit, T., Nemirovski, A.: The ordered subsets mirror descent optimization method

with applications to tomography. SIAM J. Optim. 12(1), 79–108 (2001)
7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
8. Canon,M.D., Cullum, C.D.: A tight upper bound on the rate of convergence of Frank–Wolfe algorithm.

SIAM J. Control 6(4), 509–516 (1968)
9. Censor, Y., Zenios, S.: Proximal minimization algorithm with D-functions. J Optim. Theory Appl. 73,

451–464 (1992)
10. Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schónlieb, C.B.: Stochastic primal-dual hybrid gradient

algorithmwith arbitrary sampling and imaging applications. SIAM J. Optim. 28(4), 2783–2808 (2018)
11. Clarkson, K.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. 19th ACM-

SIAM Symposium on Discrete Algorithms pp. 922–931 (2008)
12. Cover, T.: An algorithm formaximizing expected log investment return. IEEETrans. Inf. Theory 30(2),

369–373 (1984)
13. Croux, C., Haesbroeck, G., Rousseeuw, P.J.: Location adjustment for the minimum volume ellipsoid

estimator. Stat. Comput. 12(3), 191–200 (2002)
14. Demyanov, V., Rubinov, A.: The minimization of a smooth convex functional on a convex set. SIAM

J. Control. 5(2), 280–294 (1967)
15. Dey, N., Blanc-Féraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J., Zerubia, J.: Richardson-

Lucy algorithmwith total variation regularization for 3D confocal microscope deconvolution.Microsc.
Res. Tech. 69 (2006)

16. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex optimization. J.
Mach. Learn. Res. 17(83), 1–5 (2016)

17. Doikov, N., Nesterov, Y.: Affine-invariant contracting-point methods for convex optimization.
arXiv:2009.08894 (2020)

18. Dunn, J.: Rates of convergence for conditional gradient algorithms near singular and nonsinglular
extremals. SIAM J. Control Optim. 17(2), 187–211 (1979)

123

http://arxiv.org/abs/2009.08894

R. Zhao, R. M. Freund

19. Dunn, J.: Convergence rates for conditional gradient sequences generated by implicit step length rules.
SIAM J. Control Optim. 18(5), 473–487 (1980)

20. Dunn, J., Harshbarger, S.: Conditional gradient algorithms with open loop step size rules. J. Math.
Anal. Appl. 62, 432–444 (1978)

21. Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of
Frank–Wolfe algorithms. In: Proceedings of ICML, pp. 2814–2824 (2020)

22. Eckstein, J.: Nonlinear proximal point algorithms usingBregman functions,with applications to convex
programming. Math. Oper. Res. 18(1), 202–226 (1993)

23. Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, Cambridge (1972)
24. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110

(1956)
25. Freund, R.M., Grigas, P.: New analysis and results for the Frank–Wolfe method. Math. Program. 155,

199–230 (2016)
26. Freund, R.M., Grigas, P., Mazumder, R.: An extended Frank–Wolfe method with in face directions,

and its application to low-rank matrix completion. SIAM J. Optim. 27(1), 319–346 (2017)
27. Ghadimi, S.: Conditional gradient type methods for composite nonlinear and stochastic optimization.

Math. Program. 173, 431–464 (2019)
28. Grigas, P.: Methods for convex optimization and statistical learning. Ph.D. thesis, Massachusetts Insti-

tute of Technology (2016)
29. Gurobi Optimization, L.: Gurobi optimizer reference manual (2021). http://www.gurobi.com
30. Hager, W.: Updating the inverse of a matrix. SIAM Rev. 31, 221–239 (1989)
31. Harchaoui, Z., Juditsky, A., Nemirovski, A.: Conditional gradient algorithms for norm-regularized

smooth convex optimization. Math. Program. 152, 75–112 (2015)
32. Hariharan, B.: All about convolution (2018). https://www.cs.cornell.edu/courses/cs4670/2018sp/

lec04-filtering2.pdf
33. Harmany, Z.T., Marcia, R.F., Willett, R.M.: This is SPIRAL-TAP: sparse Poisson intensity reconstruc-

tion algorithms-theory and practice. IEEE Trans. Image Process. 21(3), 1084–1096 (2012)
34. Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. In: Proc. ICML, pp.

427–435 (2013)
35. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and essays, pre-

sented to R. Courant on His 60th Birthday, Interscience, New York 30, 187–204 (1948)
36. Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Math. Oper. Res.

21(2), 307–320 (1996)
37. Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Can. J. Math. 12(5), 363–365

(1960)
38. Knorr, E.M., Ng, R.T., Zamar, R.H.: Robust space transformations for distance-based operations. In:

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 126–135. ACM (2001)

39. Levitin, E., Polyak, B.: Constrained minimization methods. USSR Comput. Math. Math. Phys. 6(5),
1–50 (1966)

40. Liu, D., Cevher, V., Tran-Dinh, Q.: A Newton Frank–Wolfe method for constrained self-concordant
minimization. arXiv:2002.07003 (2020)

41. Lu, H., Freund, R.: Generalized stochastic Frank–Wolfe algorithmwith stochastic ”substitute” gradient
for structured convex optimization. Math. Programm. 187, 317–349 (2021)

42. Lu, H., Freund, R.M., Nesterov, Y.: Relatively smooth convex optimization by first-order methods, and
applications. SIAM J. Optim. 28(1), 333–354 (2018)

43. Nemirovskii, A., Yudin, D.: Efficient methods for large-scale convex problems. Ekonomika i Matem-
aticheskie Metody 15, 135–152 (1979). (in Russian)

44. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer, Berlin (2004)
45. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161

(2013)
46. Nesterov, Y.: Complexity bounds for primal-dual methods minimizing the model of objective function.

Math. Program. 171, 311–330 (2018)
47. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM,

New Delhi (1994)

123

http://www.gurobi.com
https://www.cs.cornell.edu/courses/cs4670/2018sp/lec04-filtering2.pdf
https://www.cs.cornell.edu/courses/cs4670/2018sp/lec04-filtering2.pdf
http://arxiv.org/abs/2002.07003

Analysis of the Frank–Wolfe method for convex composite…

48. Odor, G., Li, Y.H., Yurtsever, A., Hsieh, Y.P., Tran-Dinh, Q., Halabi, M.E., Cevher, V.: Frank–Wolfe
works for non-Lipschitz continuous gradient objectives: scalable Poisson phase retrieval. In: Proceed-
ings of ICASSP, pp. 6230–6234 (2016)

49. Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer,
Berlin (2015)

50. de Pierro, A.R.: On the convergence of an em-type algorithm for penalized likelihood estimation in
emission tomography. IEEE Trans. Med. Imag. 14(4), 762–765 (1995)

51. Renegar, J.: AMathematical View of Interior-point Methods in Convex Optimization. SIAM, Philadel-
phia, PA, USA (2001)

52. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D
Nonlinear Phenom. 60(1), 259–268 (1992)

53. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3),
21–43 (1974)

54. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans.
Med. Imag. 1(2), 113–122 (1982)

55. Stonyakin, F., Tyurin, A., Gasnikov, A., Dvurechensky, P., Agafonov, A., Dvinskikh, D., Alkousa, M.,
Pasechnyuk, D., Artamonov, S., Piskunova, V.: Inexact relative smoothness and strong convexity for
optimization and variational inequalities by inexact model. arXiv:2001.09013 (2020)

56. Sun, P., Freund, R.M.: Computation of minimum-volume covering ellipsoids. Oper. Res. 52(5), 690–
706 (2004)

57. Todd, M.J.: Minimum-Volume Ellipsoids: Theory and Algorithms. SIAM, New Delhi (2016)
58. Tran-Dinh, Q., Kyrillidis, A., Cevher, V.: Composite self-concordant minimization. J. Mach. Learn.

Res. 16(12), 371–416 (2015)
59. Vardi, Y., Lee, D.: From image deblurring to optimal investments: maximum likelihood solutions for

positive linear inverse problems. J. R. Stat. Soc. Ser. B 55(3), 569–598 (1993)
60. Yang, C., Fan, J., Wu, Z., Udell, M.: Efficient AutoML pipeline search with matrix and tensor factor-

ization. arXiv:2006.04216 (2020)
61. Yildirim, E.A.: On the minimum volume covering ellipsoid of ellipsoids. SIAM J. Optim. 17(3),

621–641 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2001.09013
http://arxiv.org/abs/2006.04216

	Analysis of the Frank–Wolfe method for convex composite optimization involving a logarithmically-homogeneous barrier
	Abstract
	1 Introduction
	1.1 Applications
	1.2 Contributions
	1.3 Outline and notation

	2 A generalized Frank–Wolfe method for (P) when f is a θ-logarithmically-homogeneous self-concordant barrier
	2.1 Computational guarantees for Algorithm 1
	2.2 Proof of Theorem 1

	3 A mirror descent method for the dual problem
	4 Computational experiments
	4.1 First numerical experiment: Poisson image de-blurring with TV regularization
	4.1.1 Implementation of generalized Frank–Wolfe method for solving (1.5)
	4.1.2 Results

	4.2 Second numerical experiment: positron emission tomography
	4.2.1 Comparison of algorithms
	4.2.2 Results

	Acknowledgements
	A complexity of computing Dk in the D-optimal design problem
	B Proof of Proposition 1
	C Proof of Proposition 2
	D Proof of inequality (2.16)
	E Proof of Proposition 4
	F Exact line-search procedure to compute αk
	References

