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Abstract The increased use of drones and air-taxis is ex-
pected to make airspace resources more congested, necessi-
tating the use of Unmanned Aircraft Systems Traffic Man-
agement (UTM) initiatives to ensure safe and efficient op-
erations. Typically, strategic UTM involves solving an opti-
mization problem that ensures that proposed flight schedules
do not exceed airspace and vertiport capacities. However,
the dynamic nature and low lead-time of applications such
as on-demand delivery and urban air mobility traffic may re-
duce the efficiency and fairness of strategic UTM. We first
discuss the adaptation of three fairness metrics into a traffic
flow management problem (TFMP). Then, with computa-
tional simulations of a drone package delivery scenario in
Toulouse, we evaluate trade-offs in the TFMP between ef-
ficiency and fairness, as well as between different fairness
metrics. We show that system fairness can be improved with
little loss in efficiency. We also consider two approaches to
the integrated scheduling of both high lead-time flights (i.e.,
flights with a schedule known in advance) and low lead-
time flights in a rolling horizon optimization framework. We
compare the performance of both approaches for different
horizon lengths and under varying proportions of high and
low lead-time flights.
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1 Introduction

The increasing demand for Unmanned Aircraft Systems (UAS)
and Urban Air Mobility (UAM) applications, such as pack-
age delivery and air taxis, is expected to transform the skies.
Recent studies estimate a demand for over 170,000 package-
delivery drone flights/hour over Paris by the year 2035, with
some urban areas projected to see a 200× increase in UAS
operations, and a 30× increase in UAM operations [1, 2].
With increasing traffic, there is a need for congestion man-
agement algorithms to ensure the safe operation of these ve-
hicles. Further, due to the dynamic and unpredictable nature
of flight traffic, UAS Traffic Management (also referred to
as UTM) will require both tactical (i.e., near real-time) and
strategic (i.e., minutes or hours in advance) management.

In this paper, we focus on the strategic aspects of UTM.
The starting point of our research is the classic air traffic
flow management (ATFM) problem. The key idea behind
ATFM is to proactively manage congestion by anticipating
traffic demand and predicting the usage of various airspace
and airport resources, with respect to their capacities. De-
lays are then assigned to aircraft, either before departure (on
the ground) or in the air (through airborne holds or speed
changes), to meet resource capacity constraints. An inte-
ger program (IP) formulation called the traffic flow man-
agement problem (TFMP) is used to assign delays, based on
resource capacity constraints, aircraft performance charac-
teristics (e.g., maximum hold times), and desired flight tra-
jectories. The overarching objective of ATFM, and the cor-
responding IP, is to improve system efficiency by absorbing
unavoidable delays on the ground, where they are less costly,
rather than in the air.
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In the quest for efficiency, fairness can often be sacri-
ficed. Fairness has been recognized as a key consideration
by industry stakeholders and regulators [3]. Incorporating
fairness can minimize strategic behavior like exaggerating
vehicle limitations or filing overly conservative flight plans,
and can improve competitiveness by preventing the monop-
olization of the airspace. In this paper, we consider three
well-established fairness measures from ATFM, namely re-
versals, overtaking, and time-ordered deviation. There are,
however, several unique characteristics of UTM that neces-
sitate the development of new algorithms beyond those used
in present-day commercial aviation. Contributing factors in-
clude a higher density of operations, low-endurance of flights,
autonomous vehicles, and dynamic flight operations.

Of these factors, the dynamic and unpredictable nature
of the flight traffic is most significant. Because of the need to
sell tickets to passengers in advance, present-day commer-
cial air traffic is highly predictable with schedules filed at
least a few weeks before departure. This enables the imple-
mentation of strategic congestion mitigation strategies such
as re-routes, and speed or altitude changes for known flight
schedules, hours in advance of their departure times. How-
ever, on-demand aerial services where flight destinations and
routes are decided minutes, rather than months, in advance
make strategic planning challenging. Our paper quantita-
tively explores the effect of dynamic demand on the effi-
ciency and fairness of the TFMP solution in greater detail.
More formally, we investigate the effect of increasing the
proportion of flights that are “pop-ups” (i.e., flights that have
a low file-ahead time such that they were not included in ear-
lier horizons). Finally, we propose two candidate approaches
to incorporate flights with low lead-times in our traffic flow
management framework, and identify conditions under which
they will be beneficial.

1.1 Problem description

Our paper focuses on the design of strategic air traffic flow
management frameworks for highly dynamic flight traffic.
The standard TFMP formulation has been shown to find ef-
ficient solutions [4]. However, efficient solutions may sac-
rifice fairness between flights and operators. For example,
an efficient solution may require that a flight f1 arrives at a
resource before another flight f2, even though f2 was orig-
inally scheduled to arrive at that resource before f1. This
“schedule reversal” is one example notion of fairness. Other
notions of fairness are discussed in Section 2. Balancing be-
tween efficiency (low system-wide delay costs) and fairness
(equitable distribution of delays) can be achieved for TFMP
by appropriately modifying the objective of the optimization
problem [5, 6].

However, this optimization problem relies on the advance
knowledge of proposed flight trajectories along with airspace

and airport capacities for the planning time horizon. When
there is a lack of certainty on proposed flight plans due to
the on-demand nature of the system, our experiments show
that this approach is not as effective (Section 5.2). This can
be easily explained by reasoning about the scope of the op-
timization problem. When flight schedules are known well
in advance, the TFMP optimization can be run over longer
time-horizons with more flights to find a globally optimal
solution. In contrast, when flight schedules are known with
low lead times, the planning horizon is smaller and it is
not possible to proactively plan as many trajectories at once
to minimize delay costs and maximize fairness. We expect,
though, that there is still a benefit to strategic traffic man-
agement over relying solely on a tactical system, like First-
Come-First-Serve (FCFS).

1.2 Prior works

The efficient allocation of constrained airspace and airport
resources has been studied extensively. The problem of man-
aging congestion by assigning delays on the ground, through
the Ground Delay Program, is a simplified version of the
traffic flow management problem. Initial studies focused on
the optimization formulation for the case of a single airport
[7] or groups of airports [8]. The ATFM problem, which
considers both airspace and ground resources, is more chal-
lenging to address; however, significant progress has been
made in solving this problem over the past two decades [9,
4, 10]. Other works have studied fairness in air traffic flow
management. Fairness and equity have been considered in
the context of arrivals at a capacity-constrained airport [11,
12]. In the context of trajectory-based operations, max-min
fairness [13], cost-based penalization for fairness and equity
[14], and accrued delay [15] have been considered. Within
the TFMP, fairness has previously been defined in terms
of three popular metrics: reversals (change in arrival order
among flights at resources relative to schedule) and overtak-
ings (magnitude of reversals) [5], and time-ordered devia-
tion [6] (excess delay beyond maximum expected delay for
each flight). These will be described in-depth in Section 2.
In addition, the trade-off between efficiency and notions of
flight/passenger fairness was explored in [16]. Our previous
work in [17] looked at efficiency and fairness when opera-
tors have different preferences and market shares.

Efficiency and fairness of the TFMP in a UTM context
is an area of growing interest [18]. Proposed ideas for con-
gestion management include airspace auctions [19] or de-
centralized algorithms [20]. While a large focus has been
on developing tactical conflict resolution algorithms, very
limited work attempts to solve a strategic global conges-
tion management problem [10]. The key difference between
our focus and prior works is in the extension of the clas-
sic traffic flow management optimization into a framework
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best suited for dynamic traffic demands. Past work suggests
that, in a strategic decentralized FCFS setting, flights with
a lower file-ahead time may experience significantly more
delay than flights with higher file-ahead times. [20].

Lastly, stochastic optimization [21, 22, 23], robust op-
timization [24, 25], and chance-constrained programming
[26] are other popular frameworks for decision making un-
der uncertainty. However, these works only consider uncer-
tainty in travel times or airport capacity and do not consider
uncertain traffic demand. Additionally, these formulations
only focus on efficiency and ignore fairness considerations.

1.3 Contributions and findings

The contributions of this paper are threefold. First, we iden-
tify the nuances of the UTM context that prevent the direct
application of ATFM solutions. Second, our work empha-
sizes that there is no all encompassing metric of fairness, and
that the choice of metric may be critical in determining the
optimal allocation of resources. Finally, we use realistic sim-
ulations, including trajectory data from an Airbus simulator,
battery-life-based flight time constraints, dynamic demand
with low file-ahead times, and a rolling horizon implemen-
tation to evaluate the trade-offs between efficient and fair
solutions in a practical UTM setting. Our major findings are
as follows:

1. For the three fairness metrics studied (reversals, over-
taking, and time-order deviation), a significant improve-
ment in fairness can be obtained in exchange for little to
no decrease in system efficiency.

2. Incorporating reversals can increase time-order devia-
tion (improving one fairness metric, but deteriorating an-
other), whereas incorporating time-order deviation can
decrease reversals/overtaking (improving two metrics).

3. Demand with low file-ahead times (“pop-ups”) can be
incorporated in the TFMP when using a rolling horizon.
Pop-ups can either be inserted or forced to wait until the
next horizon. With a high pop-up fraction, using shorter
horizons and inserting pop-ups into the schedule is best.
With a low pop-up fraction, using longer horizons is
acceptable as long as pop-ups are inserted, and shorter
horizons perform well when either inserting pop-ups or
delaying them until the next planning horizon.

1.4 Outline

In Section 2 we present the traffic flow management prob-
lem (TFMP) in its baseline form, as well as with fairness
metrics of reversals, overtaking, or time-order deviation in-
corporated. In Section 3 we describe the two alternative ap-
proaches to handling dynamic demand: inserting pop-ups

and delaying pop-ups until the next horizon. We then de-
scribe the Toulouse package delivery scenario that we used
and the experiments we performed to evaluate the trade-offs
between fairness and efficiency, and the impact of dynamic
demand. In Section 5 we present our experimental results
before summarizing this paper in Section 6.

2 The Traffic Flow Management Problem (TFMP)

In this section, we present the main formulation for the traf-
fic flow management problem. We describe three metrics to
measure fairness and show how they can be incorporated
into the optimization. We first build off of the classical traf-
fic flow management problem (TFMP) formulation [9].

2.1 Setup and Notations

We consider a discrete-time traffic flow management prob-
lem, which uses the following notation described below.

T : Set of time periods {1, . . . , T}
∆T : Length of each time period
A : Set of all vertiports
S : Set of all airspace sectors
F : Set of all flights

C(s, t) : Capacity of sector s ∈ S at time t
A(a, t) : Arrival capacity of vertiport a at time t
D(a, t) : Departure capacity of vertiport a at time t

af : Scheduled arrival time for flight f ∈ F
df : Scheduled departure time for flight f ∈ F
Sf : Sequence of sectors in flight f ’s trajectory
Sfj : Next sector after j in flight f ’s trajectory
Pfj : Sector preceding j in flight f ’s trajectory

origf : Origin vertiport for flight f
destf : Destination vertiport for flight f
lf,s : Minimum time spent by flight f in sector s
M : Maximum delay for each flight
T fj : Set of feasible time periods for flight f to

arrive at resource j ∈ S ∪ A (vertiport or
sector)

T
f

j : Latest time in the set T fj
Tfj : Earliest time in the set T fj
wfj,t : A binary variable that is 1 when flight f ∈

F has arrived at resource j ∈ A ∪ S at or
before time t

2.2 Baseline TFMP

We impose a maximum delay across all flights (M ) such
that no single flight is overly penalized. M is used to con-
struct T fj , the feasible arrival times at each resource. The ob-
jective function minimizes the total delay cost (TDC). The
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expression for (TDC) is assumed to be of the form TDC =

β(GD1+ε+αAD1+ε), where GD is ground delay, AD is air-
borne delay, β is delay to cost scale factor, and α ≥ 1 is the
ratio of airborne delay cost to ground delay cost. Note that
ε makes these costs super-linear in the delay duration, as we
prefer even distribution of delays across flights over skewed
delay distributions. For example, setting ε to be a small pos-
itive number (≤ 0.05) guides the optimization solver to al-
locate 2 minutes of delay each for two flights rather than 4
minutes of delay to a single flight, even though the total de-
lay would be the same for both solutions. In other words,
this super-linear cost structure breaks ties between solutions
that result in the same total delay cost. Without loss of gen-
erality, we set β = 1. Since TD = AD + GD, we have:

TDC = αTD1+ε + (1− α)GD1+ε (1)

If a flight departs at time t, then its ground delay (GD)
is (t− df ). Also, if this flight lands at time t, the total delay
(TD) is (t− af ). Thus, TDC can be re-written as below.

TDC =
∑
f∈F

(
∑

t∈T f
destf

α(t− af )1+ε(wfdestf ,t − w
f
destf ,t−1)

−
∑

t∈T f
origf

(α− 1)(t− df )1+ε(wforigf ,t − w
f
origf ,t−1))

(2)

The key aspect of the formulation that lends computa-
tional tractability to larger-scale problems is the choice of
the decision variable wfj,t, which is a binary variable that is
non-decreasing in time (Constraints (3g) and (3h)). Flight f
is said to enter a resource i (which could be a vertiport or
a sector) at time t if (wfi,t − wfi,t−1) = 1. The following
constraints must be satisfied:∑
f∈F : origf=k

(wfk,t − w
f
k,t−1) ≤ D(k, t), ∀k ∈ A, t ∈ T

(3a)∑
f∈F : destf=k

(wfk,t − w
f
k,t−1) ≤ A(k, t), ∀k ∈ A, t ∈ T

(3b)∑
f∈F : i∈Sf ,j=Sf

i

(wfi,t − w
f
j,t−1) ≤ C(j, t), ∀t ∈ T (3c)

wfi,t = 0, ∀f ∈ F , t = Tfj−1, i = S ∪ A (3d)

wfi,t = 1, ∀f ∈ F , t = T
f

j , i = S ∪ A (3e)

wfi,t − w
f
j,t−lf,j ≤ 0, ∀f ∈ F , t ∈ T fi ,

i ∈ Sf : i 6= origf , j = P
f
j

(3f)

wfi,t−1 − w
f
i,t ≤ 0, ∀f ∈ F , i ∈ Sf , t ∈ T fi (3g)

wfi,t ∈ {0, 1}, ∀f ∈ F , i ∈ S
f , t ∈ T fi (3h)

Constraint (3a) enforces departure capacity for each ver-
tiport at each timestep by summing across all flights that de-
parted. Constraint (3b) does the same for arrivals, and con-
straint (3c) does the same for enroute sectors by tracking
the current location of each flight f based on values of wfs,t
for consecutive s in Sf , the list of sectors that f traverses.
Constraint (3d) ensures that a flight does not reach a sec-
tor before the earliest feasible time. Analogously, constraint
(3e) enforces that a flight must arrive at a sector before the
latest feasible time. The minimum time to be spent in each
sector is described in Constraint (3f).

2.3 Fairness Metrics

We focus on three candidate notions of fairness, which we
describe qualitatively below. We then incorporate them into
the baseline TFMP formulation.

2.3.1 Reversals and overtaking [5]

According to this notion, a fair solution is one in which the
relative ordering of arrivals at any resource is preserved ac-
cording to published schedules. More precisely, a flip in the
ordering of flight arrivals at a sector or a vertiport with re-
spect to the original schedule is called a reversal, and the
magnitude of the reversal, in terms of the difference in ar-
rival times is referred to as overtaking. Two additional sets
for reversals and overtaking are defined below.

Rj : Pairs of reversible flights
T rf,f ′,j : Set of time periods common for flights f

and f ′ where a reversal could occur at re-
source j

λr : Penalty factor for reversals
λo : Penalty factor for overtaking

For reversals, we define a new variable sf,f ′,j which is 1
if flight f ′ arrives before flight f at resource j, where f was
scheduled to arrive before f ′, and 0 otherwise. In the objec-
tive function, we sum the previously defined TDC with the
total number of reversals multiplied by a weight λr.

min TDC + λr
∑

j∈S,(f,f ′)∈Rj

sf,f ′,j (4)

The following constraint must be satisfied:

sf,f ′,j = max (0, wf
′

j,t − w
f
j,t) ∀t ∈ T

r
f,f ′,j (5)

For overtaking, we define a new variable sif,f ′,j which
is 1 if flight f ′ arrives but flight f does not arrive by time
Tfj + i in resource j, where f was scheduled to arrive before
f ′, and 0 otherwise. The objective function looks similar to
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incorporating reversals, but note that sif,f ′,j is summed over
the cardinality of T rf,f ′,j .

min TDC + λo

|T r
f,f′,j |∑

j∈S,(f,f ′)∈Rj

sif,f ′,j (6)

The following constraint must be satisfied:

sif,f ′,j = max (0, wf
′

j,Tf
j +i
− wf

j,Tf
j +i

) (7)

2.3.2 Time-order deviation [6]

In this section, we describe the time-order deviation met-
ric used to quantify fairness. We calculate the first-come
first-serve (FCFS) arrival time FCFSfi for each flight f at
resource i that it goes through, assuming that i was the only
constrained resource. With first-come first-serve, arrival slots
are assigned to flights according to the original schedule
ordering. For each flight, we then calculate the maximum
FCFS delay dFCFS

f .

FCFSfi : First-come first-serve arrival time for
flight f at resource i assuming that i
was the only constrained resource (i ∈
S ∪ A)

dFCFS
f : Maximum FCFS delay for flight f

cfTODA(t) : Additional delay cost when flight f is
delayed for time t

λt : Penalty factor for time-order deviation
The intuition behind time-order deviation is as follows.

When there are multiple constrained resources, each flight
should not expect to incur any less delay than it would incur
as a result of only the most constrained resource along its
route. In other words, there is a notion of expected delay,
that every flight is inherently entitled to be assigned, and
only delays beyond this expected delay should be equalized
among the multiple flights. Thus, for every flight f ∈ F , the
maximum delay that it would have been assigned as a result
of only the most constraining resource is

dFCFS
f , max

i∈S∪A
FCFSfi (8)

Thus, the modified optimization problem is

min TDC + λt
∑
f

T∑
t=af

cfTODA(t)(w
f
destf ,t − w

f
destf ,t−1),

where cfTODA(t) = (max{0, t− af − dFCFS
f })1+ε. (9)

3 Method: Incorporating dynamic demand

Typically, the input demand to the standard TFMP formu-
lation is not only deterministic, but also known well in ad-
vance such that the TFMP is only solved once. Given the
on-demand nature of many UTM applications, this is not a
realistic assumption. One way around this challenge is to
implement a rolling horizon version of the TFMP. With a
rolling horizon of length H (in time-periods, as defined in
Section 2.1), we intend to solve the TFMP once for every
horizon (i.e., every H time-periods). If we solve a horizon
at time t, we solve the TFMP for flights with scheduled de-
parture times in the range [t, t + H − 1]. Once a flight is
assigned a revised schedule, it is fixed and acts as a con-
straint for flights in the next horizon. The time that a flight
files its trajectory is denoted by rf , and its scheduled depar-
ture time is df . The difference between the scheduled de-
parture time and the filing time is called the file-ahead time,
and is expressed as ∆f = df − rf . Note that ∆f ≥ 0, since
df > rf . The starting time of the horizon that contains the
scheduled departure time of flight f is denoted as hf . The
rolling horizon implementation thus far works if the follow-
ing conditions hold for every flight f :

hf = max(H ∗ i) | H ∗ i < df , where i = 1, 2, 3, ... (10)

∆f > df − hf (11)

Thus, if a flight wants to depart toward the end of a horizon
(i.e, df − hf is large), then its ∆f must be high.

In some settings, it may be reasonable to require that
all flights have sufficient file-ahead times. However, it may
be unfair or unreasonable to require flights to file their tra-
jectories before the start of a horizon, particularly for long
horizons that require a high ∆f . We expect that while some
flights will have sufficiently high file-ahead times, others
will not. This raises the question of how to incorporate flights
with a low file-ahead time in the TFMP framework. We call
a flight a pop-up if equation (10) and (11) do not hold. A
pop-up flight files its trajectory after the start of the horizon
that it wants to depart in. There are many ways to account
for this dynamic demand. An extreme way is to abandon the
strategic TFMP framework and tactically schedule flights in
the order that they file, but this would remove the benefits
of scheduling multiple flights at once. Instead, we prefer to
incorporate the dynamic demand in the existing framework.
We consider two such options for handling pop-ups below:

1. Insert pop-ups: Consider a pop-up flight f with a de-
parture time df such that hf < df < hf + H . By the
time flight f files its trajectory, non pop-up flights sched-
uled to depart between hf and hf +H will have already
been scheduled. When a pop-up files its flight plan, we
run a one-flight TFMP with vertiport and sector capaci-
ties reduced to account for previously scheduled flights.
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Note that we are not modifying previously scheduled
flights, so the TFMP will have to find available capac-
ity for the pop-up. If the maximum delay M for flight f
is not high enough and demand is very high, the TFMP
may be infeasible. We do not consider such cases.

2. Delay pop-ups: Consider the same situation above. Rather
than insert the pop-up into the schedule, we delay the
pop-up until the next horizon. The scheduled departure
time at the origin and the scheduled arrival times at the
enroute sectors and destination remain the same. How-
ever, the feasible times (e.g., earliest departure time) for
the pop-up are updated to reflect its initial delay because
of its shift to the next horizon. The initial pop-up de-
lay is equal to hf +H − rf with the following bounds:
0 < hf + H − rf < H . In the worst case, the pop-up
will file right after the start of the horizon (rf −hf ≈ 0)
and incur a delay close to H .

There are qualitative trade-offs between the two pop-up
options. Option 1 (inserting pop-ups) may lead to an inef-
ficient schedule for the current horizon that exacerbates de-
lay in the next horizon. Option 2 (delaying pop-ups) allows
the pop-up to be batched with the flights of the next hori-
zon, but forces pop-ups to incur an initial delay before be-
ing solved by the TFMP. We will quantify the differences
between these two options in experiments described in the
next section.

4 Experimental Setup

4.1 Scenario generation

We use a package delivery scenario created by Airbus where
four operators in Toulouse, France have warehouses on the
outskirts of the city and make deliveries in locations ran-
domly distributed around the city [27]. The vertiport traf-
fic is determined through a Poisson process. Each flight has
a desired 4D trajectory (three spatial dimensions with time
as the fourth dimension). For simplicity, only the outbound
flight segments, from the warehouse to the delivery site, are
considered. We used two demand scenarios: 50 flights/hour
and 25 flights/hour per vertiport. Fig. 1 shows the scenario
with 50 flights/hour.

One of the key requirements of the TFMP formulation
is that time is discretized into timesteps. We rounded sector
entry and exit times to the nearest 60 s, while ensuring that
each flight spent at least one timestep in each sector. We
set a sector time discretization threshold of 3 s, and omit a
sector from a flight’s trajectory if it spent less than 3 s in it.
Also, the TFMP formulation requires that a flight may only
traverse through a sector once. We smoothed the trajectory
in eight instances where a flight entered a sector multiple
times. For example, a flight that entered sector A, briefly

Fig. 1 Flight trajectories shown from 4 vertiports in a 16 km× 14 km
region, with axis ticks along the border denoting 1 km sector bound-
aries.

left to sector B, then reentered sector A would be modified
to stay in sector A.

An additional factor that we accounted for was max-
imum battery life, which we assumed to be 20 min. We
used the remaining battery life and the unimpeded time-to-
destination to calculate an upper-bound on airborne delay
for each flight at each sector. Table 1 lists some additional
parameters used for the experiment. One important param-
eter is the ratio of airborne delay cost to ground delay cost,
represented by α. With higher values of α, airborne delay
will be more penalized relative to ground delay. Thus, to
minimize airborne delay, the total delay (ground + airborne
delay) may increase. In contrast, with lower values of α, the
TFMP solution will approach the minimum total delay solu-
tion. We took this ratio to be three based on [28], although
different values of α could easily be justified. For an analysis
of the effect of different α values on fairness, see [17].

Table 1 List of Parameters

Parameter Value

Timestep Size 60 s
Sector X-Y Dimensions 1 km × 1 km
Sector Z Dimension (Height) 65 m
Sector Capacity 1 per sector
Departure Capacity 2 per timestep
Sector Discretization Threshold 3 s
Maximum Battery Life 20 min.
Airborne Delay Cost
to Ground Delay Cost Ratio α = 3
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4.2 Fairness-Efficiency Tradeoff

We seek to evaluate the fairness-efficiency tradeoff when
incorporating one of three fairness metrics: reversals, over-
taking, or time-order deviation. Recall that the weight that
a fairness metric is given is represented by λr, λo, or λt.
We vary these values to generate fairness-efficiency curves.
There are four main variations of the TFMP objective func-
tion that we use: total delay cost only (“baseline”) and to-
tal delay cost with penalization of reversals, overtaking, or
time-order deviation. We use total delay cost as a measure of
efficiency (refer to equation (2)). Note that total delay cost is
distinct from total delay, as it penalizes airborne delay three
times more than ground delay. In this initial round of ex-
periments, we assume that the TFMP is only solved once.
This means that there are no pop-ups, as all flights have suf-
ficiently large file-ahead times such that the system is aware
of them at the beginning of the experiment.

4.3 Experiments with Pop-ups

In these sets of experiments, we now relax the assumption
that there are no pop-ups. We define the proportion of all
flights that are pop-ups as the pop-up fraction, denoted by
p. Given p, we randomly select the appropriate number of
flights to be pop-ups. For bookkeeping purposes, flights with
departure times that are equal to the start of a horizon are el-
igible to be pop-ups, but their departure times are shifted
to 1 s later. Each pop-up is randomly assigned an integer
file time rf with a discrete uniform distribution on the inter-
val [hf .. df ], Recall that hf is the start time of the horizon
containing flight f , and df is the scheduled departure time
of f . Besides pop-up fraction, there are three other param-
eters we vary. We have two options for handling pop-ups:
Option 1 (inserting pop-ups) and Option 2 (delaying pop-
ups). We also vary the horizon length, with larger horizon
lengths meaning that fewer planning horizons—with several
flights in them—are solved. Finally, we still have the choice
of which TFMP objective function to use. Since the selec-
tion of pop-up flights is random, we can test scenarios with
different sets of pop-up flights. However, when making di-
rect comparisons between horizon lengths, pop-up options,
or TFMP objective function, we use the same random seed
so that the same set of flights are pop-ups.

5 Results

5.1 Fairness-Efficiency Tradeoffs

Incorporating fairness metrics in the objective function re-
sults in an inherent tradeoff between fairness and efficiency,
measured in terms of the total delay cost. In the baseline

formulation, the objective function is simply the total delay
cost, without any fairness considerations. Thus, when incor-
porating fairness metrics in the objective function, the total
delay cost either remains the same or increases as the addi-
tional terms drive the solution away from the optimal delay
cost. In return, we expect fairness to increase. Additionally,
we want to evaluate the effect of incorporating one fairness
metric in the objective on other fairness metrics.

Fig. 2 shows the average number of reversals per flight
and the total delay cost when minimizing total delay cost for
various scenarios. The “Baseline” case minimizes the total
delay cost, and the other three cases (“Reversal”, “Overtak-
ing”, “TODA”) incorporate one of the three fairness met-
rics. Results are shown for a high demand scenario (verti-
port demand of 50 flights/hour) and a low demand scenario
(25 flights/hour). For each scenario, there is one data point
for the baseline case, but several data points for reversals,
overtaking, and TODA, corresponding to different λr, λo,
and λt values, respectively.

We first look at the results of incorporating reversals as
a fairness metric in the low demand scenario (shown as blue
hexagon points). As λr increases, the number of reversals
decreases and the total delay cost increases relative to base-
line (shown as a black square). For small λr values, it is
possible to reduce the number of reversals with no increase
in total delay cost. For example, when λr = 0.4 the number
of reversals per flight decreases to 0.23 (compared to 0.54 in
the baseline) with no increase in total delay cost. With fur-
ther increases in λr, decreases in reversals are smaller and
become increasingly expensive in terms of the total delay
cost. At λr = 10 the optimal solution has only 3 reversals
(equivalent to an average of 0.03 reversals per flight) but an
average delay cost per flight of 1.86 (a 19% increase com-
pared to 1.56 in the baseline). Overall, the average number
of reversals decays exponentially with increasing total delay
cost. This is because to prevent a pair of flights from being
reversed, it may be necessary for one flight to incur excess
delay. In the absence of limitations on the maximum delay a
flight can endure, the number of reversals could be driven to
zero at the cost of very high total delay.

In the high demand scenario, the new baseline (shown
as a black circle) has a higher average number of reversals
and average total delay cost than the previous baseline corre-
sponding to a demand of 25 flights/hour. This is expected, as
more congestion leads to more flight interactions and poten-
tial for reversals. Incorporating reversals in the objective has
a similar effect as doing so with lower demand. The trade-off
curve has a similar shape, and for very high λr, the average
number of reversals approaches zero while the average total
delay cost increases substantially.

Incorporating overtaking produces nearly identical re-
sults as when incorporating reversals. In many cases, they
have identical optimal solutions, not only with regard to fair-
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Fig. 2 Reversals vs. Total Delay Cost (TDC) when incorporating dif-
ferent fairness metrics. The hourly demand level is shown in parenthe-
ses.

ness and efficiency, but also concerning schedule and de-
lay allocation. This is expected since the two fairness met-
rics are intertwined, with overtaking measuring the mag-
nitude of time duration that a given pair of flights was re-
versed. Whereas reversals and overtaking are nearly in lock-
step, time-order deviation behaves differently from reversals
or overtaking. For small λt, incorporating time-order devia-
tion can lead to a decrease in the average number of rever-
sals with little to no increase in the total delay cost, espe-
cially for the high demand scenario. However, incorporating
time-order deviation does not decrease the average number
of reversals as much as explicitly incorporating reversals.
For larger λt, the optimal solution does not change and no
further reductions in reversals are apparent.

Fig. 3 is similar to Fig. 2 but displays average overtaking
(in minutes) instead of the number of reversals on the y-axis.
Since reversals and overtaking are closely related, it comes
as no surprise that the efficiency-fairness tradeoff of both
are similar. Average overtaking decreases exponentially in
relation to the total delay cost, and for very large λr or λo,
it is possible to reduce overtaking to zero, albeit at a great
expense to the total delay cost. Incorporating time-order de-
viation impacts overtaking similarly to the way it impacted
reversals.

Fig. 4 shows the average time-order deviation (in min-
utes) on the y-axis. We first consider how incorporating time-
order deviation in the objective affects the average time-
order deviation per flight. As λt increases, the average time-
order deviation decreases and the average total delay cost
increases. The decreases in time-order deviation are mod-
est, but more pronounced in the high demand scenario, for
which the tradeoff between the average time-order deviation
and the average total delay cost is linear. At λt = 2, the av-
erage time-order deviation decreases by 4.5% and the total
delay cost increases by 3%. The increase in total delay cost

Fig. 3 Overtaking vs. Total Delay Cost (TDC).

happens despite a reduction in total delay (from 208 min in
the baseline to 201 min)––this is because the airborne delay
(which is 3x more costly than ground delay) increases.

Fig. 4 Time-Order Deviation vs. Total Delay Cost (TDC).

While penalizing reversals or overtaking can drive its
value to zero, it is not possible to drive the average time-
order deviation to zero, no matter how large λt gets. This
is inherent to the way time-order deviation is defined (9).
If all flights have delay assigned greater than or equal to
their maximum expected delay, time-order deviation cannot
be reduced by reallocating delay to flights that have delay
assigned less than their maximum expected delay. Instead,
time-order deviation can only be decreased by also decreas-
ing total delay. Thus, when all flights have delay assigned
that is greater than or equal to their maximum expected de-
lay and the total delay has been minimized, then the time-
order deviation is also minimized. This is the case with the
high demand scenario. No flight was assigned delay less
than its maximum expected delay, and minimizing total de-
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lay rather than total delay cost leads to an optimal solution
with the same 201 min of total delay seen with λt = 2. In-
corporating reversals or overtaking results in a 17% increase
in average time-order deviation in the low demand scenario
and a 13% increase in the high demand scenario. In contrast,
incorporating time-order deviation can slightly decrease re-
versals or overtaking.

While the improvement in the average time-order de-
viation when penalizing time-order deviation may appear
modest, there is another benefit. Since the cost coefficient
for time-order deviation is a super-linear function, evenly
distributed time-order deviation is preferred over lopsided
distributions. As such, incorporating time-order deviation
also reduces the standard deviation of time-order deviation
across flights. As λt increases, the standard deviation de-
creases; λt = 2 results in a 27% decrease in the standard de-
viation of time-order deviation relative to the baseline. Fur-
ther, incorporating time-order deviation bounds the loss in
efficiency while remaining robust to the choice of λt. These
observations suggest that time-order deviation may be a suit-
able fairness metric in practice.

5.2 Handling Dynamic Demand

We now turn to the case when we have dynamic demand in
the form of pop-up flights. We experimented with several
different pop-up fractions, horizon lengths, and TFMP ob-
jective functions. Note that in the absence of pop-ups, it is
most efficient for the horizon to be as large as possible so
that the TFMP has knowledge on as many flights as possi-
ble. However, with a larger horizon, flights are forced to file
their flight plans earlier to avoid being pop-ups.

Recognizing that pop-up flights are difficult to eliminate,
we tested two approaches to handling pop-ups: Option 1 (in-
sert pop-ups) and Option 2 (delay pop-ups). We are inter-
ested in the trade-offs between these different parameters.
The following results are with the baseline TFMP objective.
As expected, we find that as the pop-up fraction increases,
efficiency and fairness decrease. Fig. 5 shows the average
total delay cost per flight across the two pop-up options,
two horizon lengths (5 and 30 min) in scenarios with pop-
up fraction 0.1 and 0.5. Each bar is an average of 100 runs.
We start with a pop-up fraction of 0.1. We see that Option
1 with a 30-minute horizon performed the best overall (had
the lowest average total delay cost per flight). Option 2 with
a 30-minute horizon performed poorly because of the high
delay assigned to pop-ups that need to wait until the next
horizon. With a 5-minute horizon, Option 1 and Option 2
performed similarly to each other, with Option 2 having a
very slight edge. Fig. 6 is arranged similarly to Fig. 5 but
shows average reversals per flight rather than average total
delay cost per flight. While inserting pop-ups with a large

horizon (Option 1 with 30-minute horizon) had the best ef-
ficiency, delaying pop-ups with a small horizon (Option 2
with 5-minute horizon) had the fewest reversals per flight.

Fig. 5 Average Total Delay Cost per Flight by Horizon Length and
Pop-up Option.

Moving on to pop-up fraction 0.5, Option 1 with the 5-
minute horizon had the lowest total delay cost and average
reversals. In contrast to with pop-up fraction 0.1 and a 5-
minute horizon, Option 2 had a higher delay cost than Op-
tion 1. In addition, Option 1 with the 30-minute horizon per-
formed worse than with the 5-minute horizon. The best com-
bination was Option 1 with a 5-minute horizon. With more
pop-ups, the TFMP horizon needs to be smaller to reduce the
number of non pop-ups that are scheduled before (and thus
block) each pop-up. Consider a pop-up with desired depar-
ture time of 9:02 and a horizon with a start time hf of 9:00.
With a 30-minute horizon, non pop-ups scheduled to depart
between 9:00 and 9:30 will be scheduled before the pop-up,
but with a 5-minute horizon, only non pop-ups scheduled to
depart between 9:00 and 9:05 will block the pop-up. There
is a break in the y-axis of Fig. 5 and Fig. 6 because Option 2
with a 30-minute horizon has such high delay. We saw with
pop-up fraction 0.1 that Option 2 does not pair well with a
large horizon because of the delay that pop-ups are forced to
incur before they are scheduled. This trend is further high-
lighted with pop-up fraction 0.5.

We saw similar trends when incorporating reversals, over-
taking, or time-order deviation in the objective. Thus, we do
not show versions of Fig. 5 and Fig. 6 for these objectives.
Instead, Table 5.2 shows the effect of incorporating reversals
on total delay cost and reversals. Each row corresponds to
a combination of pop-up fraction, horizon length, and pop-
up option. Note that the two combinations that were shown
to be impractical are not included (30-minute horizon with
Option 2 for pop-up fraction 0.1; 5 or 30-minute horizon
with Option 2 for pop-up fraction 0.5). Table 5.2 is similar
to Table 5.2 but shows the effect of incorporating time-order
deviation in the objective.
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Fig. 6 Average Reversals per Flight by Horizon Length and Pop-up
Option.

Parameters Penalizing Reversals

Horizon
Length (min)

Pop-up
Option

Pop-up
Fraction

% Change
Total Delay

Cost

% Change
Reversals

5 1 0.1 0.17 -26.8
5 2 0.1 4.54 -26.6
30 1 0.1 6.96 -11.8
5 1 0.5 0.12 -14.9
30 1 0.5 0.57 -2.34

Table 2 Change in total delay cost and reversals when incorporating
reversals in the TFMP. Option 1 is inserting pop-ups; option 2 is delay-
ing pop-ups.

The first takeaway is that even in the rolling horizon set-
ting, incorporating reversals/time-order deviation is effec-
tive in improving fairness. Next, we observe that fairness
improves by a larger relative amount with 0.1 pop-up frac-
tion than with 0.5 pop-up fraction. All else equal, from an
efficiency and fairness perspective, the system benefits from
having fewer pop-ups. We also note that we get larger im-
provements in fairness with a 5-minute horizon rather than
a 30-minute horizon. With a longer horizon, pop-ups are
scheduled after more non pop-ups (in Option 1 and Option
2), and forced to delay longer to wait for the next horizon
(in Option 2 only).

Parameters Penalizing Time-order
Deviation

Horizon
Length (min)

Pop-up
Option

Pop-up
Fraction

% Change
Total Delay

Cost

% Change
Time-order
Deviation

5 1 0.1 3.56 -7.18
5 2 0.1 4.09 -14.83
30 1 0.1 4.60 -1.71
5 1 0.5 3.36 -11.73
30 1 0.5 2.24 -5.56

Table 3 Change in total delay cost and TOD when incorporating TOD
in the TFMP

6 Conclusions

This paper explores incorporating fairness metrics in UTM.
Before deciding the extent to which fairness is implemented,
it is important to choose a metric that defines fairness. From
our analysis, time-order deviation appears to be a promising
metric for fairness as it is robust to the specific choice of
the λ penalty, strives for equality in a relative sense rather
than on an absolute scale, and does not significantly com-
promise efficiency. However, it is also worth remembering
that a significant fraction of the improvements in fairness
and reversals can be obtained for a small penalty in delays
if the appropriate λ is chosen. The UTFM framework can
be used to evaluate the centralized efficiency and fairness
of any trajectory set (e.g., trajectories with different demand
profiles or “geofenced” airspace restrictions).

We also tested our formulations in a rolling horizon frame-
work where not every flight files their flight plan sufficiently
in advance to be considered in the time horizon that contains
their scheduled departure time. We considered two options
for handling pop-ups: inserting them into the schedule, and
delaying them until the next horizon. We found that with
a low occurrence of pop-ups, either using longer horizons
and inserting pop-ups, or using shorter horizons with either
pop-up option, are acceptable. However, with high occur-
rences of pop-ups, it is best to use a short horizon and insert
pop-ups. In our experiments found that it was beneficial to
incorporate fairness into the rolling horizon framework.

Several promising directions for further research remain.
This paper did not consider rerouting, which is common in
commercial aviation and will likely occur in UTM as well.
Airborne flights could choose to reroute around congested
areas, or flights on the ground could choose to alter their
route from the start to reduce the incurred delay. Approaches
like trajectory option sets (TOS) exist for commercial avia-
tion wherein each flight submits a set of unique trajectories
along with acceptable delays, but such research for UTM is
less explored. In addition, the inputs to a UTM optimiza-
tion may not be specific trajectories but may be volumes of
airspace that operators reserve. There are several related re-
search questions on how to manage airspace reservations,
requirements, and constraints on requests for airspace, and
fairness between different-sized operators. Finally, with the
rolling horizon framework, pop-ups are at a disadvantage
because flights with longer file-ahead times are allocated
resources before them. In previous work, researchers have
suggested that limiting the time in advance that resources
can be allocated/reserved would improve fairness between
early-filers and late-filers [20]. The design of such a system,
and the evaluation of its efficiency and fairness, remain open
challenges.
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