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ABSTRACT 

Optical phase change materials (PCMs) are a unique class of materials which exhibit extraordinarily large optical property 
change (e.g. refractive index change > 1) when undergoing a solid-state phase transition, and they have witnessed 
increasing adoption in active integrated photonics and metasurface devices in recent years. Here we report integration of 
chalcogenide phase change materials in the Lincoln Laboratory 8-inch Si foundry process and the demonstration of 
electrothermally switched phase-change photonic devices building on a wafer-scale silicon-on-insulator heater platform. 

Keywords: Phase change materials, reconfigurable photonics, integrated photonics, metasurfaces 
 

1. OPTICAL PHASE CHANGE MATERIALS FOR ACTIVE PHOTONICS 
Chalcogenide phase change materials1 have been exploited for a plethora of emerging optical applications including optical 
switching2–11, photonic memory12–14, optical computing15–18, active metamaterial/metasurface19–30, reflective display31–33, 
and thermal camouflage34–36. Electrical pulsing is often a preferred option for switching these PCM devices: unlike furnace 
annealing, it is capable of reversible switching of PCMs; and compared to laser switching, it can be readily integrated with 
nanophotonic devices to enable chip-scale reconfigurable optical platforms. Electrical switching via heaters made of 
metal37,38, ITO4,6,39, graphene40,41, and doped Si42–44 have been demonstrated. 

Despite the major strides on PCM-based photonic devices and electrical switching, integration of PCMs into the standard 
photonics foundry process represents an essential technical milestone for PCMs. Foundry process integration not only is 
the practical route toward scalable manufacturing of PCM devices, but also eases access to PCM components for the entire 
photonics community. Notably, PCMs are readily poised for CMOS backend integration with their non-epitaxial nature 
and low processing temperatures, evidenced by their seamless integration in the 3D XPoint memory architecture. We 
foresee that achieving the milestone will significantly expedite PCMs’ integration into large switching matrices and open 
up emerging applications such as arbitrary wavefront synthesis, energy-efficient optical switching and routing, quantum 
optical networks, as well as scalable neuromorphic computing. 
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Here we report integration of chalcogenide phase change materials in the Lincoln Laboratory 8-inch Si foundry process 
and the demonstration of electrothermally switched phase-change photonic devices building on a wafer-scale silicon-on-
insulator (SOI) heater platform. We also significantly advance the state-of-the-art by demonstrating integration of low-
loss PCMs, Ge2Sb2Se4Te1 (GSST)45,46 and Sb2Se3

47–49, with the foundry-processed SOI heaters. 

2. DEVICE FABRICATION 

 

Figure 1. Schematic fabrication process flow for the PCM-based integrated photonic devices 

The schematic fabrication process flow for the PCM-based integrated photonic devices is illustrated in Fig. 1. 220 nm SOI 
wafers were fabricated with varying n-doping concentrations using the 90-nm CMOS line in Lincoln Laboratory’s 200 
mm wafer foundry. The doping of silicon was carried out using ion implantation of phosphorous with varying dose and 
implantation energy. The n++ region was formed with a dose of 1016 cm2 and an ion energy of 80 keV. The n region of ~4 
× 1018 cm-3 was formed with a dose of 1014 cm-2 and an ion energy of 80 keV. The contact was fabricated with a Ti/TiN 
barrier following a metallization with aluminum and passivation with SiO2. 500 nm-wide SOI waveguides and PCM cells 
were fabricated following two electron beam lithography fabrication steps on an Elionix ELS-F125 system. The 
waveguides were patterned using ZEP 520A positive photoresist followed by chlorine etching of half the silicon thickness. 
A lift-off process with polymethyl methacrylate (PMMA) resist was used to open the windows for the subsequent thermal 
evaporation of PCM. The film deposition was performed using thermal evaporation from PCM bulk materials following 
previously established protocols. Bulk starting PCMs were synthesized using a standard melt-quench technique from high-
purity (99.999%) raw elements50. The samples were annealed in an argon environment before depositing 15 nm of Al2O3 
by atomic layer deposition to obtain a conformal protective layer. The metasurface devices were fabricated using a similar 
process, with the only differences being that: 1) in step 14 in Fig. 1, the entire heater is blanket etched to a target thickness 
of 80 nm; and 2) the wafer backside was mechanically polished to enable metasurface devices operating in a transmissive 
mode. The devices were subsequently wire bonded (using 0.8 mil 99% Al-1% Si wires) and mounted onto a custom-
designed PCB, which allowed for reproducible electrical contact (as compared to using contact probes). 

Two low-loss PCMs were explored in this work. For metasurface applications, GSST offer enhanced index contrast. This 
is critical to enabling full 2 phase coverage while maintaining an ultra-thin profile amenable to electrothermal switching51. 
For reconfigurable integrated photonic applications at 1550 nm, Sb2Se3 was adopted to realize phase-only modulation, 
since both of amorphous and crystalline states of Sb2Se3 offers vanishingly small losses47. 
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3. PHASE-ONLY WAVEGUIDE MODULATORS 
The quest for efficient programmable photonic circuits requires active optical components with low insertion loss, small 
form factor, and low electrical power consumption52–54. The most common low-loss phase shifter – the key building block 
– employs electrically driven heaters to exploit thermo-optic effects. However, these devices require a constant power 
supply, suffer from thermal crosstalk, and their sizes are typically >100 µm. Here, we demonstrate a novel alternative that 
meets all the aforementioned requirements. We use SOI waveguides with patterned n++ - n - n++ doped-silicon microheaters 
to electro-thermally switch, with a single pulse, a cell of Sb2Se3 between its two optically distinct, nonvolatile states: 
amorphous and crystalline. Sb2Se3 is an emerging PCM at the telecommunications wavelengths while offers a ∆n ≈ 0.77 
upon switching between states with near-zero losses. This unique set of properties allows for phase-only modulation, 
which sets a precedent in a growing PCM photonics field familiar with PCMs for amplitude modulation at the telecom 
band. 

 

Figure 2. (a) Colored SEM image of a π/2 phase shifter – the dotted lines marked the doped region. b) Simulated optical modes for 
Sb2Se3 in both states. c) Reversible and continuous switching in a ring resonator with 3 µm-long Sb2Se3. d) Continuous tuning of an 
unbalanced MZI. e) MZI switch with the four end-point states of the two 6 µm-long Sb2Se3 cells. f) Reversible switching of the top 
phase shifter in an MZI switch with a total of 125 complete cycles shown. 

We used the device shown in Fig. 2a. The heater is built using phosphorus implantation with concentrations n ~ 4 × 1018 
cm-3 and n++ ~ 1020 cm-3. We patterned a 500 nm waveguide on half-etched 220 nm SOI and thermally evaporated and 
annealed Sb2Se3 with 30 nm thickness. The length of Sb2Se3 is defined based on the target phase shift. From mode 
simulations (Fig. 2b), we found a ∆neff ≈ 0.071, which leads to a phase shift of 0.09 π/µm. The non-negligible extinction 
coefficient result from the doped-silicon losses, which theoretically leads to 0.011 dB/µm. Experimentally, the total 
insertion loss was 0.03 dB/µm due to other effects such as scattering. To reversibly switch, we used 3.2 V × 100 µs or 3.2 
V × 1 ms pulses to either crystallize partially or fully, and single 16 V × 1 µs or 21 V × 400 ns to amorphize. We 
demonstrate reversible and continuous (multi-state) switching of a 3 µm-long Sb2Se3 in Fig. 2c, which displays a phase 
shift of π/4, in excellent agreement with the theoretical value. We show a 1.64 phase shift in an MZI in Fig. 2d. We 
further demonstrated a 2 × 2 MZI switch – key in programmable architectures – in which light can be switched between 
two outputs by applying π/2 phase shift in both arms. We achieve this by using an ultra-compact 10 µm-long heater with 
6 µm-long Sb2Se3 (Fig. 2e). Lastly, we show device cyclability over 250 switching events in Fig. 2f. Our results pave the 
way to zero static power consumption programmable photonics for applications in computing, quantum, telecom, and 
others. 
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4. ELECTRICALLY SWITCHABLE PCM METASURFACES 

 

Figure 3. Simulated optical spectra of the PCM metasurface in (left) amorphous and (right) crystalline states 

 

Figure 4. Measured reflectance spectra of the PCM metasurface 

The metasurface consists of a GSST pillar array with a lateral size of 360 nm and a 780 nm square pitch size. Unlike 
devices reported by others where the PCM layer is limited to an ultrathin (< 100 nm) form factor to facilitate rapid 
quenching during re-amorphization and hence switching reversibility, the GSST layer in our device has a total thickness 
of 230 nm. Our previous work has proved that GSST exhibits improved amorphous phase stability compared to the 
classical GeSbTe alloys, which enables a much larger PCM thickness while maintaining fully reversible switching 
capability. The increased PCM volume affords substantially enhanced light confinement and interaction with the PCM 
layer. The simulated optical spectra of the metasurface is presented in Fig. 3. The metasurface is designed to exhibit large 
optical contrasts at the telecom wave band. A Thermo Fisher FTIR6700 Fourier transform infrared spectrometer with an 
attached microscope was used to obtain the reflectance spectra of the devices. The reflectance spectra were calibrated 
using a standard gold mirror. The corresponding measured reflectance spectra upon switching can be seen in Fig. 4. The 
change of 10 dB at 1430 nm shows the potential of such device as an active filter or amplitude modulator if intermediate 
crystallization states can be reliably reached. A Renishaw Invia Reflex micro-Raman system was used for collecting 
Raman spectra on the devices to validate that the observed optical contrast results from phase transformation of the PCM. 
The Raman spectra in Fig. 5 confirms reversible electrothermal switching between amorphous and crystalline states over 
multiple cycles. 
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Figure 5. Measured Raman spectra of the PCM metasurface confirming reversible switching 

5. SUMMARY 
In the scope of this work, we demonstrated electrothermally switched PCM metasurface and waveguide devices, both 
fabricated leveraging standard Si photonic foundry processes. These results enable a new path for scalable manufacturing 
of PCM photonic devices and electrically driven infrared light control for both free-space and integrated photonics 
applications, such as tunable imaging optics, spatial light modulators, tunable spectral filters, subwavelength phased arrays, 
beam steering, and dynamic holography. 
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