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Abstract: Metasurfaces have enabled precise electromagnetic wave manipulation with strong 

potential to obtain unprecedented functionalities and multifunctional behavior in flat optical 

devices. These advantages in precision and functionality come at the cost of tremendous 

difficulty in finding individual meta-atom structures based on specific requirements (commonly 

formulated in terms of electromagnetic responses), which makes the design of multifunctional 

metasurfaces a key challenge in this field. In this paper, we present a Generative Adversarial 

Networks (GAN) that can tackle this problem and generate meta-atom/metasurface designs to 

meet multifunctional design goals. Unlike conventional trial-and-error or iterative optimization 

design methods, this new methodology produces on-demand free-form structures involving 

only a single design iteration. More importantly, the network structure and the robust training 

process are independent of the complexity of design objectives, making this approach ideal for 

multifunctional device design. Additionally, the ability of the network to generate distinct 

classes of structures with similar electromagnetic responses but different physical features 

could provide added latitude to accommodate other considerations such as fabrication 

constraints and tolerances. We demonstrate the network’s ability to produce a variety of 

multifunctional metasurface designs by presenting a bifocal metalens, a polarization-
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multiplexed beam deflector, a polarization-multiplexed metalens and a polarization-

independent metalens. 

Metasurfaces, the two dimensional (2D) versions of metamaterials, are planar/conformal 

devices composed of subwavelength structures, called meta-atoms,[1, 2] which are capable of 

tailoring amplitude, phase, polarization and angular momentum of incident waves.[3-5] By 

manipulating the geometry of the individual meta-atom, independent phase and amplitude 

control of electromagnetic (EM) field can be achieved. Recently, metasurfaces consisting of 

all-dielectric meta-atoms have drawn enormous attention, [4, 6, 7] due to their unique capability 

of supporting EM multipole resonances and significantly lower losses as compared to their 

metallic counterparts.[8-11] The multipole responses in a meta-atom can be highly complicated, 

even for simple shapes, and thus an arbitrary meta-atom’s response to an incident EM wave is 

difficult to predict. Traditional design approach relies on empirical reasoning or trial-and-

error,[4, 7] which is inefficient and often ineffective, since this approach involves tremendous 

numerical full-wave simulations (e.g. finite-element method (FEM), finite-difference time-

domain (FDTD) method and finite integration technique (FIT)), which provide accurate 

predictions but are extremely time consuming. Therefore, it can be time-consuming and 

laborious to find an appropriate set of meta-atoms for a specific design. Meanwhile, 

multifunctional metasurfaces such as multi-wavelength metasurfaces,[8, 9, 12, 13] multi-

polarization metasurfaces[14] or reconfigurable metasurfaces based on phase change 

materials,[15-17] have presented another major design challenge due to the difficulty in exploring 

vast parameter spaces containing meta-atoms that possess sufficient complexity to satisfy 

restrictive design requirements. Therefore, in addition to exploring meta-atoms with basic 

shapes such as rings,[8, 9] cubes[13, 18] or cylinders,[19] previous works have also adopted 

evolutionary algorithms (EA) to search for meta-atoms and metasurface with free-form 

patterns[12, 14, 20, 21] which provides additional degrees of freedom (DOF). Nevertheless, the 
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capability of this approach largely depends on the quality of the initial guess, which limited 

their stability and efficacy as the complexity of the problem grows. 

To address the challenges in designing non-intuitive meta-atom and metasurfaces, several deep 

neural network (DNN) based approaches have been proposed and investigated since 2018. A 

“tandem” network structure[22-33] combining a pre-trained simulator with another model 

generator overcomes the issue of non-unique solutions (common to all inverse design problems), 

and allows the inverse neural network to converge steadily. However, there are several 

limitations to this approach. First, the designs constructed via tandem networks are dealing with 

variations of simple canonical geometries defined by a few parameters. The examples of such 

geometries include planar layers[22], metallic bars[25], dielectric spheres[26] and cylinders.[27] The 

lack of available DOF restricts functionality and performance of the designed metasurface. 

Training of the tandem networks can be extremely difficult, if not impossible, for meta-atoms 

with free-form geometries because of the dimension mismatch between the small number of 

EM response inputs (1D spectrum) and large design parameter outputs (2D images). Therefore, 

such tandem inverse design networks can only generate a single design based on each input 

setting, which suggests that the networks are “memorizing” the results rather than “learning” 

the design mechanisms and “composing” new solutions.  

GANs provide a promising solution to mitigate these limitations. Since GANs were first 

introduced in 2014,[34] they have been widely applied in the field of image processing, due to 

their unique ability to reveal the hidden distributions behind enormous training datasets and 

compose complex and diverse designs based on limited inputs. Through Conditional Generative 

Adversarial Nets (CGAN)[35] (a GAN variant that is able to generate required designs 

conditioned on class labels), several design networks have been developed for realizing metallic 

metasurface filters with defined transmittance spectra[23] and dielectric meta-gratings with 

specified beam deflection angles and working frequencies.[36-38] However, these existing GAN-
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enabled metasurface design networks deal with either only amplitude responses [23, 39-43] or with 

reduced dimensionality structures (1D meta-grating designs at a supercell level [36, 37, 44]). Due 

to the hardly-predictable phase jumps caused by electromagnetic poles,[36] a GAN-enabled 

meta-atom design approach that deals with both amplitude and phase responses has been 

challenging and until this work, has remained an open question. This challenge significantly 

limit the efficacy of GAN-enabled design approaches, since most optical metasurfaces reshape 

the wavefront of the incident light by introducing local variations in both phase and amplitude.  

In this work, we present a novel approach for designing free-form all-dielectric metasurface 

devices by combining the CGAN with the Wasserstein Generative Adversarial Networks 

(WGAN).[45, 46] As another widely-adopted GAN variant, WGAN introduces Earth-Mover 

distance as a loss evaluation method, which not only stabilizes the training process, but also 

qualifies the network for handling comprehensive metasurface design problems. Moreover, the 

proposed approach handles multiple inputs in parallel, meaning that the complexity is not 

affected by the size of the inputs. This feature further positions this GAN-based approach as 

the preferred solution in tackling multifunctional inverse design problems. Based on this highly 

efficient network, we have designed and verified several multifunctional metasurfaces, 

including a bifocal lens, a polarization-multiplexed beam deflector and two multifunctional 

metalenses in order to illustrate the versatility and scalability of the proposed method (some of 

these results are included in the Supporting Information). The presented examples substantiate 

that our approach demonstrates several important milestones as 1) the first free-form all-

dielectric meta-atom design network; 2) the first free-form multifunctional metasurface design 

network and 3) the first metasurface lens designed by GANs. 

 

Network architecture. The proposed network (Figure 1) combines the WGAN structure with 

the method of a CGAN, which trains a generator that maps a set of design conditions, 𝑥𝑥 , 
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combined with a Gaussian noise vector, 𝑧𝑧, to produce a target design (or fake samples), 𝑦𝑦’, 

defined as: 𝑦𝑦′ = 𝐺𝐺(𝑧𝑧|𝑥𝑥). We treated each meta-atom as a 2D image and all meta-atoms are of 

the same height. In general, the conditions 𝑥𝑥 can be any kind of auxiliary information. In this 

case, 𝑥𝑥  carries the electromagnetic responses obtained from numerical simulations of real 

samples 𝑦𝑦. The discriminator calculates the Wasserstein distance between the real samples 𝑦𝑦 

and the generated fake ones 𝑦𝑦’, then it inversely tunes the parameters within the generator/ 

discriminator network to minimize/maximize the Wasserstein distance by using a gradient 

descent algorithm. The Wasserstein distance between a target design 𝑦𝑦 ∈  𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , and a 

generated one 𝑦𝑦′ ∈ 𝑃𝑃𝐺𝐺 , is defined as : 

 𝑊𝑊(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑃𝑃𝐺𝐺) ≈  sup 
‖𝐷𝐷‖𝐿𝐿≤1

�𝔼𝔼𝑦𝑦~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐷𝐷(𝑦𝑦|𝑥𝑥)]− 𝔼𝔼𝑦𝑦′~𝑃𝑃𝐺𝐺[𝐷𝐷(𝑦𝑦′|𝑥𝑥)]� (1) 

where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and  𝑃𝑃𝐺𝐺  are the sets of electromagnetic responses extracted from the training data 

and produced by the generator, respectively; 𝔼𝔼  stands for the expected value and 𝐷𝐷  is the 

Wasserstein distance given by the discriminator. 

The parameter optimizations for the generator and the discriminator are processed in turns, 

aiming for opposite objectives: the generator 𝐺𝐺 is trained to produce samples that cannot be 

distinguished by the discriminator, while the discriminator is trained to detect generated 

samples as fake. After the network is fully trained, the losses of both generator and 

discriminator, defined as: 

 𝐿𝐿𝑔𝑔 = −𝔼𝔼𝑦𝑦′~𝑃𝑃𝐺𝐺[𝐷𝐷(𝑦𝑦′|𝑥𝑥)] (2) 

 𝐿𝐿𝑑𝑑 = 𝔼𝔼𝑦𝑦′~𝑃𝑃𝐺𝐺[𝐷𝐷(𝑦𝑦′|𝑥𝑥)] − 𝔼𝔼𝑦𝑦~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐷𝐷(𝑦𝑦|𝑥𝑥)] (3) 

are minimized and stabilized. Once both generator and discriminator are constructed with 

enough capacity, the stabilized losses indicate that their performance has plateaued, because Pg 

already equals Pdata. At this point, the generator can generate samples, 𝑦𝑦’, virtually identical to 

the real samples, 𝑦𝑦, (under the conditions 𝑥𝑥) such that the discriminator is unable to differentiate 
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between them. Detailed flow diagrams of the discriminator and generator are shown in Fig. 1b. 

We used the Leaky ReLu-BatchNorm-transposed convolution modules[47, 48] for the generator, 

and the ReLu-BatchNorm-convolution modules for the discriminator (see Supporting 

Information Section 1 for detailed network architectures).  

 
Figure 1. Network architecture of the generative meta-atom design network. (a) Schematic 
diagram of the proposed network. The discriminator network measures the Wasserstein 
distance between real and fake samples and aims to maximize the distance between them. The 
generator network attempts to confuse the discriminator by transforming target conditions 
combined with noise prior to producing fake samples that resemble real ones. Both components 
approach the ground truth through parameter tuning during this adversarial process. (b) Flow 
diagram of the generator and discriminator: detailed network structures, including kernel size 
and output tensor shapes are included in the Supporting Information, Section 1. (c) An example 
of the design process employing the well-trained model. The desired functionalities (lens, 
deflector, etc.) are translated into phase and amplitude masks, and later fed into the generator 
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to generate actual meta-atom arrays satisfying the design goals. (d) Rendered illustration of an 
exemplary metasurface design assembled with GAN-designed meta-atoms. 

Without loss of generality, the all-dielectric meta-atom under consideration is made by 

patterning a 1-μm-thick film of dielectric material with a refractive index of 5 placed on a 

dielectric substrate with a refractive index of 1.4. The unit cell size was set to be 2.8 × 2.8 μm2, 

which is designed to operate in the 5-10 μm spectral range (Fig. 1b, left side). Each meta-atom 

was generated with the “needle drop” approach to maximize the accessible pattern diversity 

(see Supporting Information Section 2). As part of the preprocessing, 2D cross-sections of all 

meta-atom from the training dataset were rescaled into 64 × 64 pixel images and binarized 

(dielectric parts to ones and voids to zeros) prior being fed into the discriminator for evaluation. 

The 2D dimensions of each image gradually decreased when passed through (2, 2) stride 

convolutional layers. The output of each layer is batch-normalized and passed through a ReLU 

activation function before it is sent to the next layer. The generator takes the conditioned prior 

noise (𝑧𝑧|𝑥𝑥) as an input which is then provided to seven consecutive transposed convolutional 

layers. Each layer is followed by a leaky ReLU activation function for conditioned image 

generation. After the last transposed convolutional layer, a tanh activation function generates 

an image ready for evaluation. Finally, a pre-trained prediction neural network (PNN)[49] 

characterizes these output images and eliminates the unqualified meta-atom designs.  

Conditions of the proposed generative network structure are formed with single or multiple 

correlated/uncorrelated EM targets, and therefore this network is uniquely applicable to 

multifunctional meta-atom/metasurface designs. To explore the potential of our network 

architecture, we constructed and trained a single wavelength meta-atom design network and a 

multifunctional metasurface design network, which were used for design and verification of a 

bifocal lens, a polarization-multiplexed deflector, a polarization-multiplexed lens and a 

polarization-independent lens (some of these devices are presented in the Supporting 

Information). 
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Meta-atom design network. A meta-atom design network was developed to generate meta-

atom patterns based on conditioned phase and amplitude profiles following the proposed 

network architecture. Due to the phase-related design difficulties as mentioned in ref.[27], a 

preprocessing layer that translates relative phase and amplitude responses into complex 

transmission coefficients was added before the first layer of inputs. The real and imaginary 

parts of the transmission coefficients form the conditions 𝑥𝑥 , such that 𝑥𝑥 = [𝑇𝑇𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟(𝑦𝑦),

𝑇𝑇𝑖𝑖𝑖𝑖𝑑𝑑𝑔𝑔(𝑦𝑦)] . Specifically customized for the meta-atom design task, a novel gradient penalty 

approach was also adopted to further stabilize the training process (see Supporting Information 

Section 3). Without loss of generality, the operating frequency was set to be 50 THz (6 μm 

wavelength). After 1,500 epochs of training, both the discriminator and generator losses were 

minimized and stabilized (Hyperparameters and training curves are included in Supporting 

Information Section 4), indicating that the network is fully trained. Unlike traditional GANs, 

which largely rely on the tuning of the hyperparameters to stabilize the training, the proposed 

network is highly stable and easily converges. Common training problems with GANs, like 

gradient explosions and vanishings, were not experienced during the training process regardless 

of the learning rate, optimizer type, number of layers, etc. 

Several randomly selected phase and amplitude combinations were chosen to test the trained 

network model. For each phase and amplitude combination, we employed the well trained GAN 

to consecutively generate 100 qualified designs to check the generation stability and efficiency 

of the proposed approach. Figure 2 presents several randomly selected phase and amplitude 

combinations (marked with red dots). The electromagnetic responses of the generated patterns 

were computed using full-wave simulation tools and are labeled with blue dots. We set a 

minimum threshold of ±0.1 amplitude error and ±10° phase error, as outlined by red lines in 

each polar plot of Fig. 2. The qualified designs for each target are highlighted in yellow, while 

designs with performance that fall outside the red outlines are left dark. As shown in Fig. 2, 
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given the specific amplitude and phase targets, numerous qualified meta-atom designs of 

various shapes can be generated within a few seconds, manifesting the proposed design 

approach is highly time efficient. Having only one unqualified design among 600 extracted 

meta-atoms (Fig. 2c) indicates the network’s high generalization stability and accuracy. 

 
Figure 2. Meta-atom designs generated using a fully-trained conditional WGAN model. 100 
meta-atom designs were produced for each combined condition of amplitude and phase: (a) 0.5 
+ 180°, (b) 0.9 + 90°, (c) 0.7 + 0°, (d) 0.6 + 45°, (e) 0.3 + 200° and (f) 0.8 + 180°, respectively. 
In the polar charts the radial and angular coordinates correspond to the transmission amplitude 
and phase. Blue dots represent EM responses of generated designs, red dots represent the 
targeted amplitude and phase conditions. 2D patterns of meta-atoms from each design group 
are shown on the right side of each subplot. Red outlines indicate the bounds of the allowed 
phase-amplitude values, while the corresponding qualified patterns are highlighted in yellow. 
Illumination of each meta-atom is performed from with an x-polarized plane wave from the 
substrate side. 

The ability to design on demand meta-atom geometries with the specified phase and amplitude 

responses enables various striking applications, including multi-focal metalenses[9], beam 

deflectors[50], holograms[3] and airy beam generators[9, 11]. Using the trained network, we 
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designed a bifocal metalens operating at 50THz, which requires simultaneous amplitude and 

phase modulations of each meta-atom within the metalens. To reduce the complexity of full-

wave based verification process, the size of this metalens is limited to 50 × 50 meta-atoms (140 

μm by 140 μm). For the designed bifocal lens with two focal points (𝑓𝑓1 and 𝑓𝑓2) aligned laterally, 

the phase and amplitude profiles at (𝑥𝑥0,𝑦𝑦0) on the metalens are given by: 

 a(𝑥𝑥0,𝑦𝑦0)𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥0,𝑦𝑦0) =
𝑎𝑎1
𝑑𝑑1
𝑒𝑒𝑥𝑥𝑒𝑒𝑗𝑗

2𝜋𝜋
𝜆𝜆 𝑑𝑑1 +

𝑎𝑎2
𝑑𝑑2
𝑒𝑒𝑥𝑥𝑒𝑒𝑗𝑗

2𝜋𝜋
𝜆𝜆 𝑑𝑑2 (4) 

where 𝑑𝑑1 and 𝑑𝑑2 are the distance between the point (𝑥𝑥0,𝑦𝑦0) and two focal points 𝑓𝑓1 and 𝑓𝑓2, 

respectively,  𝑎𝑎1 and 𝑎𝑎2 are the amplitudes for the two focal points. In this demonstration, we 

set 𝑓𝑓1 = 𝑓𝑓2 = 60 μm and 𝑎𝑎1 = 𝑎𝑎2 = 1. Two focal points are separated by a lateral distance 

(along the x-axis) 𝑑𝑑 = 60 μm. The calculated amplitude and phase masks are plotted in Figure 

3a and 3b, respectively, illustrating the requirements for independent amplitude and phase 

control. In order to demonstrate the ideal (theoretical) performance of this dual focal lens, we 

theoretically calculated and plotted the electric field distribution in the X-Z plane at y = 0 (Fig. 

3c) by modeling each meta-atom as a linearly polarized point source with the amplitude and 

phase values taken from Fig. 3a and 3b. The two Ex field maxima occur as expected by the 

design at the two focal spots that are 60 μm away from the metasurface plane.  

The amplitude and phase design targets for each meta-atom are designated as inputs to the GAN, 

while the output qualified meta-atom designs are used to assemble the whole device. The final 

metasurface design, along with the amplitude and phase profiles for each meta-atom as verified 

by numerical simulations, is shown in Fig. 3d and 3e, respectively. The electric field distribution 

produced by this metalens was also modeled using full-wave simulations (Fig. 3f). This design 

demonstration highlights the three key advantages of our approach: 1) over 600 qualified free-

form meta-atoms were generated in less than 1 minute, indicating its time efficiency; 2) the 

excellent agreement between targeted (Fig. 3a, b) and simulated (Fig. 3e) meta-atom 
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performances, as well as the agreement between the theoretical calculation (Fig. 3c) and the 

full-wave simulation result (Fig. 3f), validates its accuracy; and 3) considering almost all target 

functionalities can be decomposed into specific phase and amplitude requirements on the meta-

atom level, this design approach can be easily extended for the design of various other devices 

including beam deflectors, holograms, etc., demonstrating that it is scalable and universal. 

 

Figure 3. A bifocal lens designed with the meta-atom generative network. (a) Target amplitude 
mask and (b) Target phase mask of the designed lateral bifocal metalens at 50 THz with f1 = f2 
= 60 μm. (c) Theoretical Ex field distributions in the X-Z plane calculated with MATLAB. (d) 
Metasurface pattern designed by the meta-atom generative network. Since the target E-field is 
symmetrical along x and y axes, only one quadrant of the metasurface lens was designed, with 
the rest being generated from symmetry by mirroring along the x and y axes. (e) Amplitude and 
phase masks for corresponding meta-atoms in (d). (f) Full-wave simulation results of the Ex 
field in the X-Z plane. 
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Multifunctional meta-atom design networks. Due to the network condition vector’s high 

flexibility, the network structure can be easily adapted to generate meta-atom geometries for 

implementing multifunctional metasurfaces. For example, by enlarging and rearranging the 

condition vector: 𝑥𝑥 = [𝑇𝑇𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟�𝑦𝑦𝑝𝑝1�, 𝑇𝑇𝑖𝑖𝑖𝑖𝑑𝑑𝑔𝑔�𝑦𝑦𝑝𝑝1�,𝑇𝑇𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟�𝑦𝑦𝑝𝑝2�, 𝑇𝑇𝑖𝑖𝑖𝑖𝑑𝑑𝑔𝑔�𝑦𝑦𝑝𝑝2�], the network can be 

configured as a dual-polarization meta-atom design network. Moreover, after being fully 

trained on the data of complex transmission coefficients associated with two orthogonal linear 

polarizations (along x and y axes) (e.g. at 55 THz), the proposed generative network is able to 

compose meta-atom designs based on four distinct inputs: amplitude and phase responses for 

incident waves with two orthogonal polarization directions (in this case x-polarized and y-

polarized). Notably, with a condition vector containing four different design targets, it’s nearly 

impossible to achieve a high-performance design by using the traditional empirical trial-and-

error design approaches, since a slight change in the shape of the meta-atom will affect the four 

design outcomes simultaneously. With the proposed deep learning approach, we were able to 

find qualified designs in seconds. Similarly, as for the meta-atom design network, a 

comprehensive set of phase and amplitude targets for two orthogonal polarizations were chosen 

to test the performance of the trained network model. 

As an example, we set the design goal for a horizontal polarization to a specific amplitude-

phase value (0.9, 0°) and gradually varied the targeted phase for the orthogonal polarization 

from 45° to 315° (with a 90° step). For each amplitude-phase value, we employed the combined 

network to consecutively generate 100 qualified meta-atom geometries to verify its generation 

stability and time efficiency for this type of task. The electromagnetic responses of generated 

meta-atoms were simulated and labeled with red and blue dots in Figures 4a-d. We adopted a 

minimum threshold of ± 0.1 and ± 10° for amplitude and phase errors. The allowed values are 

outlined in red and blue lines in each polar plot of Fig. 4a-d. Evidently, the stricter design targets 

have limited the design DOF and reduced the design space, which led to increased similarities 

between qualified meta-atom shapes in Figs. 4b and 4c. This also increased the difficulty of 
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finding a qualified design, which manifested in a relatively longer pattern generation time (e.g. 

32s in Fig. 4a for generating 100 qualified designs) compared to the single-target meta-atom 

designs shown in Fig. 2.    

 

Figure 4. Multifunctional meta-atom designs generated using a fully-trained GAN model. EM 
responses of the generated 100 meta-atoms for two orthogonal polarizations: (a) y-polarization 
(blue dots): 0.9 + 0°, x-polarization (red dots): 0.9 + 45°; (b) y-polarization: 0.9 + 0°, x-
polarization: 0.9 + 135°, (c) y-polarization: 0.9 + 0°, x-polarization: 0.9 + 225°, and (d) y-
polarization: 0.9 + 0°, x-polarization: 0.9 + 315°. Red and blue outlines in each polar plot 
indicate qualified responses under different polarizations, with corresponding patterns 
highlighted in yellow. (e) Top view and (f) 3D view of a polarization-multiplexed beam 
deflector assembled with the designed meta-atoms. (g) Simulated E-field angular radiation 
pattern and Ey field results for a y-polarized plane wave incidence. (h) Simulated E-field 
angular radiation pattern and Ex field results for an x-polarized plane wave incidence. 
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After the proposed multifunctional meta-atom design network has been fully trained, we 

demonstrated its performance through generating several multifunctional meta-device designs 

working in the mid-IR range. Fig. 4e-f displays the top-view and 3D-view of a polarization-

multiplexed beam deflector. The designed beam deflector consists of four meta-atom designs 

selected from each set of 100 geometries in Fig. 4a-d. The four meta-atoms form a supercell 

and are tiled along both the x and y directions with periods of 11.2 μm and 2.8 μm, respectively. 

When illuminated with y-polarized plane waves (Fig. 4g), all meta-atoms have the same phase 

delays and hence no diffraction beyond the 0th order (specular transmission) appears. With x-

polarized plane wave incidence (Fig. 4h), the whole structure acts as a diffractive grating along 

the x-axis due to the 90-degree-step phase gradient (resembling a traditional blazed grating) to 

selectively enhance the first diffraction order while suppressing all others. Simulated E-field 

radiation patterns and E-field amplitude profiles under incidences with different polarization 

directions are plotted in Fig. 4g and 4h. It is clearly shown that under x-polarized incidence 

light, most of the optical power is concentrated in the first transmissive diffraction order (at the 

theoretical deflection angle of 29.14 degrees). 

Lastly, a polarization-multiplexed bifocal metalens was designed using the proposed 

multifunctional meta-atom design network (Figure 5). The metalens was designed with a focal 

length of 60 μm under y-polarized plane wave incidence (Fig. 5a) and 80 μm focal length when 

illuminated with an x-polarized plane wave (Fig. 5b). The target phase maps of the lens under 

both x and y-polarized incidence were calculated separately and used as phase inputs for the 

generative network (first row in Fig. 5d), while the amplitude profiles are kept uniform to 

maximize the focusing efficiency. Actual phase responses under x- and y-polarized incidences 

for each meta-atom are simulated and also presented in Fig. 5d (second row) for comparison. 

The electric fields in the Y-Z plane corresponding to the two different polarization directions 

were computed by full wave simulation and are plotted in Fig. 5e, where a clear focal spot at 
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the desired focal length is observed for each case. The electric fields along the optical axis were 

also simulated and plotted in Fig. 5f, where two distinct electric field peaks can be clearly 

observed at 60 μm and 80 μm, respectively. Similarly, we can also easily design a polarization-

independent lens utilizing the same generative network (Supporting Information Section 5).  

 
Figure 5. A bifocal metasurface lens designed with the dual-polarization meta-atom generative network. 
The lens has a 140 μm × 140 μm aperture size, containing 50 × 50 meta-atoms in total. 3D illustration 
demonstrating the metalens functionality under (a) y- and (b) x-polarized incident light (c) Metasurface 
pattern designed with the dual-polarization meta-atom generative network. Only the top left quadrant of 
the lens was generated, with the rest being duplicated according to the design symmetry. (d) Target (first 
row) and actual simulated (second row) phase masks for the bifocal lens for each polarization incidence. 
(e) Full-wave simulated E-field in y-z plane under y and x-polarized incidence, respectively. The focal 
spot is shifted from z = 60 μm to z = 80 μm when the polarization direction switched from y to x. (f) 
Simulated E-field intensity along the optical axis. 
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Discussion and conclusion. The ability of the proposed network to precisely achieve the 

multifunctional design goals, as shown in Fig. 2 and 4, along with the results of the assembled 

metasurface devices shown in Fig. 3-5, have verified the utility, power, and ease of use for this 

approach. We believe that our approach provides a much more effective means of meta-device 

design compared to trial-and-error or global optimization design approaches since: 1) once the 

training is completed, our GAN generates designs with stable performances with almost zero 

time cost and does not depend on the initial guess of the meta-atoms’ shapes and parameters. 

Furthermore, meta-atom designs derived with the proposed approach can be specified as high-

quality initial designs and further refined with optimization algorithms, which provides a 

potential solution for addressing the local minima optimization problems. 2) By training the 

proposed GAN with data collected from meta-atoms with various refractive indexes, 

thicknesses, lattice sizes, 2D cross sections and loss factors, the proposed approach can be easily 

extended to a variety of metasurface platforms based on different materials and fabrication 

processes. 3) The condition vector in the proposed GANs are highly versatile and can be easily 

customized into various multifunctional design goals, which remains a major challenge to 

traditional design approaches. In addition to the polarization-multiplexed metasurface designs 

presented in the paper, the proposed network structure can also be easily customized for 

designing other multifunctional devices including multi-band meta-atom/metasurfaces, 

wideband meta-filters, tunable meta-devices and many more.  

In addition to its use for meta-device design, the proposed GAN may be a useful tool for 

topological analysis of meta-atom structures. Examination of classes of structures generated by 

the proposed network that share a particular EM response (as shown in Fig. 2) [51, 52] can lead 

to the discovery of underlying physical characteristics. By processing the image through several 

convolutional layers, the neural network can uncover the common traits of these designs; these 

common traits can be used to categorize the designs into the same conditional distribution, 

which is highly non-intuitive. Designs with inclined edges and round corners are generated (Fig. 
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2a-f), despite that training datasets collected with the “Needle Drop” approach are all composed 

of rectangles with straight sharp edges and limited to only 28 × 28 resolution. This result 

highlights the exploratory (learning and composing) nature of the proposed network, which 

utilizes the increased 64 × 64 image resolution to yield design details that are not included in 

the training data and transcend training data limitations. 

To conclude, we have proposed a metasurface design network based on the conditional WGAN 

architecture that is capable of efficiently producing numerous multifunctional meta-device 

designs on demand. The fully-trained network demonstrated this capability through several 

example designs, including a bifocal metalens, a polarization-multiplexed beam deflector, a 

polarization-multiplexed metalens and a polarization-independent metalens. Excellent 

agreement has been achieved between design targets and generated device performance for 

each design. Furthermore, we suggest that the proposed network can be used as a tool for 

topological analysis in uncovering shared physical features within groups of similar 

electromagnetic responses. We envision that this deep-learning-based design approach can be 

readily applied beyond multifunctional metasurfaces/meta-atoms to various types of other 

multifunctional electromagnetic devices, such as microwave components, antennas, and 

integrated optical circuits. 
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1. Detailed network architecture  

Fig. S1 illustrates the network architecture of the proposed neural network, with the data flow details 

included. Input conditions, such as frequency-dependent amplitude and phase responses, polarization-

dependence, and/or material states (e.g. for tunable materials such as phase-change materials) were 

combined with randomly generated noise. The combined input was fed into the generator to produce 

fake meta-atom samples that resemble real ones well enough to confuse the discriminator. The 

discriminator learns by maximizing the Wasserstein distance between the fake and real samples. Both 

modules approach the real data distribution through parameter tuning during this adversarial process. 

More detailed architectures of the generator and discriminator were shown in Fig. S1b and S1c, 

respectively.  
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Figure S1.  Detailed network architectures of the GAN. (a) Illustration of the training process of the GAN. (b) 
Detailed network structure of the discriminator. The discriminator consists of seven consecutive convolution layers. 
The output of each layer is batch-normalized and passed through a ReLU activation function before being passed 
on to the next layer. The initially planar dimensions of an input are decreased while the depths are increased via 
(2, 2) stride convolutional layers. The output tensor of layer #7 is flattened into a 1D array and the reduced sum is 
calculated to represent its Wasserstein distance. (c) Detailed network structure of the generator. Conversely, the 
generator consists of eight consecutive transposed convolution layers for which the depth of an output tensor is 
decreased while gradually being flattened into a 2D meta-atom image. The output of each layer is batch-normalized 
and passed through a Leaky ReLU activation function. After the last transposed convolutional layer, a tanh 
activation function generates a 2D image representing the meta-atom design. Details of each output tensor, shapes 
of the (transposed) convolutional kernels and strides used during convolutions are given in the figure. 

For more design DOF, despite that the original input images (with 28 × 28 pixels resolution) that are 

used to sketch the 2D shape of the meta-atoms from the training dataset, the input images were all 

rescaled into 64 × 64 pixel images before they were processed using convolutional layers. The generator 

and the discriminator were trained alternately: after the discriminator was trained with 3 different 
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batches of training data, values of the hidden neurons in each convolutional layer are updated and fixed. 

The generator was then trained with a new batch of training data with the help of the most up-to-date 

discriminator, and so on, until training completes. Details, including dimensions of each output tensor, 

shapes of the convolutional kernels and strides used during convolutions are given in Fig. S1b and S1c. 

 

Figure S2.  Detailed network architectures of the predicting neural network (PNN). Details including 
dimensions of each output tensors, shapes of the (transposed) convolutional kernels and strides used during 
convolutions are given in the figure. 

Following the approaches introduced in [49], we constructed two PNNs (Fig. S2) to predict the real and 

imaginary parts of the transmission spectrum, respectively. Transmissive amplitude and phase are then 

derived using the predicted real and imaginary parts. Detailed network architecture of the PNN cascaded 

to the GAN is shown in Fig. S2. The PNN was constructed based on a convolutional neural network 

(CNN) architecture. It functions as a critic and examines the performance of the designs generated by 

the proposed GAN. Specifically, the PNN is able to precisely predict the transmission spectrum of free-

form meta-atom designs within the frequency range of 30 to 60 THz. In contrast to full-wave simulation 
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tools, the PNN characterizes the meta-atoms on a one-time calculation basis and, thus, significantly 

speeds up the whole design process. 

2. Training data collection 

Without loss of generality, the all-dielectric meta-atom consists of a 1 μm thick dielectric component 

(preferably with a high refractive index, n1. In this case n1 = 5) sitting on a dielectric substrate (preferably 

with a low refractive index, n2. In this case n2 = 1.4) with a unit cell size of 2.8 × 2.8 μm2 (Fig. S3a). The 

2D pattern of each meta-atom was generated with the “needle drop” approach using the numerical 

computing tool MATLAB. Several (3 to 7) rectangular bars, with a minimum generative resolution of 

0.1 μm, were randomly generated and placed together within a square lattice to form random patterns 

(Fig. S3b). To minimize inter-cell coupling, a minimum spacing of 0.4 μm was applied between adjacent 

meta-atoms. To speed up the data-collection process, the all-dielectric components are only generated 

in the top left quadrant of each unit cell and then symmetrically replicated along x and y axes to form 

the whole pattern. A set of meta-atoms generated in this manner is guaranteed to possess polarization-

diverse performance. 

The full-wave electromagnetic simulations were performed using a commercial FEM simulation tool 

CST. For each meta-atom, perfect electric conducting surface (Et = 0) and perfect magnetic conducting 

surface (Ht = 0) boundary conditions were employed to calculate the transmission and phase shift of a 

square lattice structure. Open boundaries are applied along both the negative and positive z directions, 

while an x-polarized plane wave was illuminated from the substrate side for each meta-atom. To further 

accelerate the full-wave simulations, Et = 0 and Ht = 0 symmetry planes were applied in the center y-z 

plane and x-z plane for each meta-atom, respectively. A total number of 69,000 meta-atoms with 

different shapes were generated and simulated to find their wide-spectrum phase and amplitude 

responses. These simulations were performed on eight servers running in parallel. The data collection 

process was completed in 3 days. After removing similar patterns (to speed up the training), 29,000 

meta-atom structures were selected and documented for further training. 
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Figure S3. Training data collection process. (a) 3D view of a generated meta-atom of arbitrary shape. Lattice 
constant for each meta-atom cell is 2.8 μm, meta-atom height is fixed to be 1 μm. White and black colors represent 
high- and low-index (substrate) dielectric components. (b) Demonstration of the pattern generation process. 2D 
patterns in x-y plane are meshed, each mesh pixel has a dimension of 0.1 by 0.1 μm2. Rectangles outlined in 
different colors represent distinct high-index “needles” that were randomly generated and dropped on the top-left 
quadrant of the substrate canvas. Patterns were completed by mirroring the pattern along the x and y axes. 

3. Customized gradient-penalty method  

The Wasserstein distance is only accurate when the discriminator is a 1-Lipschitz function.[45] To enforce 

this constraint, the original WGAN applied a simple, but rough, value clipping to restrict the maximum 

weight value in each layer of the discriminator.  Instead, WGAN-GP uses a gradient penalty term to 

ensure that the norm of its gradients is equal to 1 almost everywhere [46] so that the discriminator is 1-

Lipschitz. Conditional-Wasserstein distance with a gradient penalty term can be represented as: 

 𝑊𝑊(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑃𝑃𝐺𝐺) ≈  sup 
‖𝐷𝐷‖𝐿𝐿≤1

�𝔼𝔼𝑦𝑦~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐷𝐷(𝑦𝑦|𝑥𝑥)] − 𝔼𝔼𝑦𝑦′~𝑃𝑃𝐺𝐺[𝐷𝐷(𝑦𝑦′|𝑥𝑥)]

− 𝜆𝜆𝔼𝔼𝑦𝑦~𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝[max (0,�𝛻𝛻𝑦𝑦�𝐷𝐷(𝑦𝑦)�� − 1)]� 

(S1) 

Traditional WGAN-GP randomly interpolates between network generated patterns 𝑃𝑃𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑔𝑔𝑟𝑟 and real 

sample patterns 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  to generate gradient penalty samples 𝑃𝑃𝑝𝑝𝑟𝑟𝑔𝑔𝑑𝑑𝑟𝑟𝑑𝑑𝑦𝑦 , as shown in Fig. S4a. The 

interpolation method has an important advantage: as the training progresses and 𝑃𝑃𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑔𝑔𝑟𝑟 approaches 
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𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , the gradient norm of this more widespread distribution 𝑃𝑃𝑝𝑝𝑟𝑟𝑔𝑔𝑑𝑑𝑟𝑟𝑑𝑑𝑦𝑦 , instead of the real sample 

distribution 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, satisfies the Lipschitz constraint, and we can thus conclude that the discriminator is 

1-Lipschitz almost everywhere within 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

 

Figure S4. A novel interpolation method for customized gradient penalty. (a) Schematic diagram of the 
random interpolation process in WGAN-GP. The network randomly interpolates between 𝑃𝑃𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑔𝑔𝑟𝑟  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to 
get 𝑃𝑃𝑝𝑝𝑟𝑟𝑔𝑔𝑑𝑑𝑟𝑟𝑑𝑑𝑦𝑦. (b) Numerical interpolation methods employed by traditional WGAN-GPs. The meta-atom patterns 
are binarized, such that white represents “1” and black represents “0”. (c) The proposed novel geometry 
interpolation method. Random proportions (marked in red) were taken from both fake samples and real samples 
and later combined into a new pattern. 

In our case, with meta-atom patterns as target design goals, the generated outputs can be converted into 

binary images consisting of 1’s that represent the dielectric material and 0’s that represent voids. The 

conventional numerical interpolation process is not applicable for the meta-atom discriminator, because 

generated values between “0” and “1” don’t correspond to any physical structures (Fig. S4b). As a result, 

the discriminator that is trained to satisfy the Lipschitz constraint for this 𝑃𝑃𝑝𝑝𝑟𝑟𝑔𝑔𝑑𝑑𝑟𝑟𝑑𝑑𝑦𝑦  is intuitively 

challenged to yield stable Wasserstein distance results for real samples from 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 during the training. 

We therefore employed a novel geometry interpolation method that combines random geometry portions 

from both 𝑃𝑃𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑔𝑔𝑟𝑟  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  to form the sample in  𝑃𝑃𝑝𝑝𝑟𝑟𝑔𝑔𝑑𝑑𝑟𝑟𝑑𝑑𝑦𝑦  (Fig. S4c). The interpolated results 

obtained in this manner fully characterize the samples between 𝑃𝑃𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑔𝑔𝑟𝑟  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . This unique 

interpolation method also allows the generator to extrapolate and explore the ground truth distribution 

when the training data is insufficient to cover the whole design space. Training experiments which 
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validate the training stability, design accuracy and extrapolation capability of the proposed gradient-

penalty method are presented in Section 4. 

 4. Hyperparameters and training curves  

Table S1. Hyperparameters used in the training of GANs and PNNs. 

Hyperparameters Meta-atom 
design network 

Dual-polarization 
meta-atom design 

network 

PNN 
for real part 

PNN 
for imaginary part 

Training set size 29,000 29,000 69,000 69,000 

Optimizer 
(learning rate) Adam (1e-4) Adam (1e-4) Adam (1e-4) Adam (1e-4) 

Batch size 64 64 256 256 

Batch Norm. Yes Yes No No 

Nonlinear 
activations 

ReLU for the discriminator, 
Leaky ReLU (alpha = 0.2) for the 

generator, 
tanh for the generator’s last layer 

ReLU 

Penalty coefficient 10 10 NA NA 

Iterations (time) 3,000 (72 h) 3,000 (72 h) 10,000 (6 h) 10,000 (6 h) 

Hyperparameters used during training are shown in Table S1. Training curves for the meta-atom design 

network, dual-polarization meta-atom design network, and PNN are shown in Fig. S5. Despite the 

slightly different structures and training data fed to these networks, their generator losses all decrease 

gradually while discriminator losses remain constant. As shown in Fig. S5 (a-b), after approximately 

3,000 epochs of training, each network converged to a point that both generator and discriminator loss 

stabilized, which means that the generator is able to generate samples that are close enough to the real 

samples that the discriminator is unable to differentiate between real and fake.  
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Figure S5. Training losses of the two GANs and the PNN proposed in the paper. (a) The meta-atom generative 
network operating at 50 THz. (b) The dual-polarization meta-atom generative network working at 55 THz. (c) 
PNN real part prediction. (d) PNN imaginary part prediction.  

Training curves for the two constructed PNNs were included in Fig. S5(c-d). Both networks are trained 

with the same 69,000 groups of training data collected for the training of the GANs. Both networks 

converged well after 10,000 iterations. 

To better visualize how the network learned the meta-atom design principles and actually “evolved” 

during the training process, we recorded the network models during the training process and employed 

several half-trained models to design the same bifocal metalens, presented in Fig. 3, and tested their 

performance by numerical simulations. Four different sets of bifocal metalens designs based on GAN 

models derived after 1, 2, 100 and 3,000 training iterations are presented. The designed metalenses, 

along with their full-wave simulated E-fields, are plotted in Fig. S6. Interestingly, at the beginning of 

the training process, the generated meta-atoms designs have similar shapes with large volumes and 

unclear boundaries (Fig. S6a). As the training proceeds, the GAN models start to generate meta-atom 
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patterns with more diverse shapes and refined details (Fig. S6b-d). The corresponding E-field 

distributions also gradually converged to two sharp focal spots (Fig. S6d), as desired, which firmly 

confirm the increasing learning capability of the proposed GAN model during the training process. 

 
Figure S6. Visualization of the GAN training process. Bifocal metalenses with target amplitude and phase maps 
shown in Fig. 3a and 3b, designed using GAN models trained for (a) 1 iteration, (b) 2 iterations, (c) 100 iterations 
and (d) 3,000 iterations. Several meta-atoms from each metalens design are magnified for a clear view. 
Numerically simulated E-field of each metalens were performed using CST and plotted on the right side of each 
subplot.  
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5. Polarization-independent metalens design 

 

Figure S7. A polarization-independent focusing lens designed with the dual-polarization meta-atom 
generative network. (a) Metasurface pattern designed with the dual-polarization meta-atom generative network.  
Part of the metasurface device circled in red lines was enlarged in (b) for a clear view. (c) Element-wise phase and 
amplitude responses of each designed meta-atom under y and x polarized incidences. (d) Full wave simulated 
amplitude of E-field in y-z plane under two orthogonal polarization incidences. Focal length remained 80 μm while 
polarization direction was switched. (e) Full-wave simulated E-field along optical axis under two orthogonal 
polarization directions.  

To further explore the versatility of the multifunctional meta-atom design network, we utilized our dual-

polarization meta-atom generative network to design a polarization-insensitive transmissive focal lens 

with an equal focal length of 80 μm for both polarizations. One way to achieve this goal is enforcing 

that the phase shifts for x and y polarization are identical, which primarily results in structures that 
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feature 4-fold rotational symmetry, in accordance with their polarization-insensitive nature. The 4-fold 

rotational symmetry requirement can be relaxed by considering that the relative phase difference 

between two polarization states need not be zero, but simply maintained constant. Following this 

approach, with the help of dual-polarization meta-atom generative network, a 90 degree constant phase 

bias (difference) was added to the lens’ phase mask under x-polarized plane wave incidence (versus that 

under y-polarized incidence). For each single cell in the metasurface lens, its target phase profiles under 

both polarization were designated as input of the network and one qualified design was generated to 

assemble the metalens (Fig. S7a). The full wave simulated electric fields in y-z plane for the whole lens 

in Fig. S7a are plotted in Fig. S7d. The E-fields along the optical axis in both cases share the same focal 

length of 80 μm with near-equal magnitude (Fig. S7e), validating the efficacy of proposed design 

approach.  

 


