
Data set contents

Title: Small spherical and projective codes

Author: Henry Cohn

List of files, types, and sizes:

File name Type Size

angles.txt plain text 95 KB
angles.csv plain text 65 KB
coordinates.txt plain text 1.6 MB
exact.txt plain text 323 MB
rigor.txt plain text 14 KB

Originally posted in 2022. Updated in 2023 with improved N -point spherical codes in Rn for (n,N) ∈
{(8, 32), (9, 25), (10, 30), (11, 25)} and in 2024 for (n,N) = (4, 31).

Notes:

This data set describes the best spherical codes that are known (to the best of my knowledge) with at
most 32 points and the best real projective codes with at most 16 lines. The spherical code problem asks how
to arrange N points x1, . . . , xN in the unit sphere Sn−1 in Rn so that the minimal angle between them is
maximized. Equivalently, the goal is to minimize the maximal inner product maxi<j⟨xi, xj⟩, which is the
cosine of this angle. The real projective code problem asks how to maximize the minimal angle between N
lines through the origin in Rn. It’s equivalent to maximizing the minimal angle in an antipodal 2N -point
spherical code.

The data set includes all spherical codes with n ≥ 3 and 2n+ 1 ≤ N ≤ 32 and all real projective codes
with n ≥ 3 and n+ 1 ≤ N ≤ 16. The spherical codes with N ≤ 2n are omitted because the answer is known
[22]: the optimal inner product is −1/(N − 1) for 2 ≤ N ≤ n+ 1 and 0 for n+ 2 ≤ N ≤ 2n. Similarly, the
real projective codes with N ≤ n have optimal inner product 0, and the spherical and projective codes with
n = 2 are simply regular N -gons.

These codes are not always unique. One simple case is when the code has rattlers, points with no neighbors
at the minimal distance, so they can be moved freely. However, even rigid codes may not be unique; for
example, two seemingly optimal spherical codes of 15 points in R3 are known [13].

The files provided in the data set are described below. Note that they are not intended to be especially
convenient for humans to read, but rather just to record the data. For a friendlier presentation, see
https://cohn.mit.edu/spherical-codes.

angles.txt

For each code in the data set, this file lists the dimension n, number N of points or lines, minimal angle in
degrees, cosine of the minimal angle, number of rattlers, and whether the code is known to be optimal, as
well as the minimal polynomial of the cosine in many cases and references for codes that had been found
previously or proofs of optimality (the list of references is given below). The cosines are all rounded up
and the angles are rounded down, so that it can be rigorously checked using interval arithmetic that a code
matching these parameters exists. Whenever a minimal polynomial is listed, the file exact.txt gives a proof
that there exists a code with this exact angle, not just the numerical approximation listed in angles.txt.

angles.csv

This file provides the same data as angles.txt (except for the references) as comma-separated values,
intended to be parsed as easily as possible by computer programs. Each line begins with “spherical” or
“projective” to indicate what sort of code it is, and then provides the remaining data in the same order as in
angles.txt. When no minimal polynomial is available, it is listed as 0. Note also that angles.csv uses *
for multiplication in polynomials, for convenience when using computer algebra systems, while angles.txt
indicates multiplication by juxtaposition.
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coordinates.txt

This file provides approximate coordinates for each code, to sufficient precision to obtain the numerical angle
listed in angles.txt.

exact.txt

In each case that includes the minimal polynomial, this file provides the data needed for a straightforward
existence proof using a computer algebra system. The format is designed for PARI/GP but is straightforward
to adapt to other systems. The proof works by specifying the Gram matrix, i.e., the matrix of inner products.
For all the non-rattlers, the Gram matrix entries will be algebraic numbers. The rattlers are a little more
subtle, but they are handled using interval arithmetic.

Each line of exact.txt is a list [n,G, p, a, b, q, c, d, L] of nine elements between square brackets and
separated by commas. The first entry n is the dimension of the ambient space Rn, and G is the Gram matrix
for the non-rattlers. This Gram matrix of the M non-rattlers is given as a list of entries

[G1,1, G1,2, . . . , G1,M ;G2,1, G2,2, . . . , G2,M ; . . . ;GM,1, GM,2, . . . , GM,M ],

in which rows are separated by semicolons and entries within a row are separated by commas. Note that M
is determined implicitly by the format. Each entry Gi,j is a polynomial in a variable x with exact rational
coefficients, where x represents a generator over Q of the number field containing these entries. The third
entry p in the line [n,G, p, a, b, q, c, d, L] is the minimal polynomial of this generator, and a and b are rational
upper and lower bounds for it. More precisely, the generator is the unique root of p in the rational interval
[a, b). As part of the verification of the proof, one must check that p is irreducible and that it has a unique
root in this interval. The next three entries q, c, and d are the minimal polynomial q of the cosine of the
minimal angle in the code and the endpoints of a rational interval [c, d) containing it. In many cases q = p,
but not always. Finally, L is a list in square brackets (possibly the empty list), where each entry of L is a list
of M rational numbers in square brackets. These entries of L correspond to the rattlers, as described below.

To prove the existence of the code, first one must check that the Gram matrix G is valid. In other words, it
must be symmetric, have diagonal entries all equal to 1, be positive semidefinite, and have rank at most n. To
check the rank, one can compute the characteristic polynomial of G as a polynomial of degree M in a variable
t with coefficients given by polynomials in x modulo p. Checking that the rank is at most n amounts to
verifying that the coefficients of 1, t, . . . , tM−n−1 all vanish. To show that it is positive semidefinite, it suffices
to check that the remaining coefficients alternate in sign. The final step in analyzing G is to determine the
greatest off-diagonal entries (in absolute value in the real projective case) and check that they are described
by q, c, and d. Determining the greatest entries and checking the sign alternation for the coefficients amount
to verifying inequalities between polynomials in x given p, a, and b. To determine whether a given polynomial
is positive or negative, one can use Sturm’s theorem to check that it has no roots in the interval [a, b)
and then determine the sign by setting x = (a + b)/2. The net effect is that all these inequalities can be
straightforwardly determined as long as the interval [a, b) is small enough, and that is the case in this file.

The computations in the previous paragraph provide a rigorous proof that there exists a code of size M in
n dimensions as described. In most cases there are no rattlers and the proof is therefore complete, but rattlers
are a special case. When L is non-empty, each element of L is a list of M rational coefficients c1, . . . , cM . If
v1, . . . , vM are the non-rattlers specified by the above data, then the rattler determined by the coefficients
is given by renormalizing c1v1 + · · ·+ cMvM to have length 1. Using interval arithmetic and the entries of
the Gram matrix G, one can check that the resulting non-rattlers stay far enough from v1, . . . , vM and each
other that they are indeed rattlers. The total number of points in the code is M plus the length of the list L.

Note that this format was chosen for simplicity, not efficiency. For example, each entry of G is listed
individually, and one could achieve substantial compression by taking into account that many of them are
the same.

rigor.txt

This file contains PARI/GP code that implements the rigorous verification described above. Specifically, the
functions verifyproofspherical and verifyproofprojective take a list [n,G, p, a, b, q, c, d, L] as input
and verify the existence of the corresponding spherical or real projective code.

https://pari.math.u-bordeaux.fr
https://pari.math.u-bordeaux.fr
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