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Abstract. Fetal motion is unpredictable and rapid on the scale of con-
ventional MR scan times. Therefore, dynamic fetal MRI, which aims
at capturing fetal motion and dynamics of fetal function, is limited to
fast imaging techniques with compromises in image quality and resolu-
tion. Super-resolution for dynamic fetal MRI is still a challenge, espe-
cially when multi-oriented stacks of image slices for oversampling are not
available and high temporal resolution for recording the dynamics of the
fetus or placenta is desired. Further, fetal motion makes it difficult to
acquire high-resolution images for supervised learning methods. To ad-
dress this problem, in this work, we propose STRESS (Spatio-Temporal
Resolution Enhancement with Simulated Scans), a self-supervised super-
resolution framework for dynamic fetal MRI with interleaved slice acqui-
sitions. Our proposed method simulates an interleaved slice acquisition
along the high-resolution axis on the originally acquired data to gen-
erate pairs of low- and high-resolution images. Then, it trains a super-
resolution network by exploiting both spatial and temporal correlations
in the MR time series, which is used to enhance the resolution of the orig-
inal data. Evaluations on both simulated and in utero data show that
our proposed method outperforms other self-supervised super-resolution
methods and improves image quality, which is beneficial to other down-
stream tasks and evaluations.

Keywords: Fetal MRI · Image super-resolution · Self-supervised learn-
ing · Deep learning.

1 Introduction

Fetal magnetic resonance imaging (MRI) is an important approach for studying
the development of fetal brain in utero [18] and monitoring fetal function [15].
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Due to unpredictable and rapid fetal motion, dynamic fetal MRI, which aims at
capturing fetal motion and dynamics of fetal function, is limited to fast imag-
ing techniques, such as single-shot Echo-planar imaging (EPI) [2], with severe
compromises in signal-to-noise ratio (SNR) and image resolution.

Super-resolution (SR) methods is frequently applied to fetal MRI to improve
image quality. One well-established category of super-resolution methods for fetal
MRI is based on slice-to-volume registration (SVR) [12,21,5]. In these methods,
multiple stacks of slices at different orientations are acquired, which are then
registered to reconstruct a static and motion-free volume of the chosen region of
interest (ROI). However, multi-oriented stacks for oversampling the ROI may not
available. Besides, in some applications, instead of a static ROI, a time series
of MR volumes capturing the dynamics of fetal brain, body or placenta is of
interest [11,23,15,20]. For example, in [23] and [15], interleaved multi-slice EPI
time series are used for fetal body pose tracking and placental function analysis
respectively. Thus, it is a still a challenge to enhance the resolution in dynamic
fetal MRI.

Although supervised super-resolution methods achieved state-of-the-art re-
sults in natural images [14,24], the acquisition of HR MRI data with adequate
SNR is time consuming and prone to motion artifacts, especially in fetal MRI.
To avoid the need for HR data in supervised leanring, self-supervised super-
resolution (SSR) methods have been developed, which utilize internal informa-
tion from LR images for super-resolution. For instance, the ZSSR [19] method
downsample the LR images to generate lower resolution (LR2) images and train
a network to learn a mapping from LR2 to LR, which is then applied to the
original LR images to estimate the HR images. Similar ideas are also explored
in the field of MRI [9,25]. Zhao et al. extended [9] and proposed SMORE [25] for
SSR of MR volume with anisotropic resolution where the information along the
LR axis are learned from the other two HR axes. They blur the volume along the
one of the HR axes, extract pairs of training samples to train a network and use
it to enhance resolution along the LR axis. However, these methods only applied
to a single slice or a stack of images and cannot utilize the temporal information
in dynamic imaging.

In this work, we propose a SSR framework for dynamic fetal MRI with inter-
leaved acquisition, named STRESS (Spatio-Temporal Resolution Enhancement
with Simulated Scans). Using the characteristic of interleaved slice acquisition,
we perform simulated acquisitions on the originally acquired data to generate
pairs of low- and high-resolution images. We then train a SR network on the ex-
tracted data, which exploits both internal spatial information within each frame
and temporal correlation between adjacent frames. A optional self-denoising net-
work is also introduced to this framework, when input images are of low SNR.
We evaluate the STRESS framework on both simulated and in utero data to
demonstrate that it can not only enhance resolution of dynamic fetal imaging
but also improve performance of downstream tasks.
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Fig. 1. The proposed STRESS workflow. A: Interleaved MRI acquisitions, e.g., NI = 3.
B: Acquired MR data are binned into different time frames. These frames are interpo-
lated and transposed to produce a simulated object with motion. Then, we simulate
a interleaved MR scan on this object and extract low- and high-resolution pairs from
them C: We train the denoising network (optional) and super-resolution network in
self-supervised manners. D: We apply the trained models to the originally or newly
acquired data to generate a high-resolution MR volume series, which can be further
used for other downstream tasks.

2 Methods

Fig. 1 shows the workflow of the proposed STRESS method, which can be divided
into four parts: 1) interleaved slice acquisition, 2) simulated acquisition, 3) self-
supervised training, and 4) inference. The details of each part are described in
the following sections.

2.1 Interleaved acquisition

Interleaved slice acquisition is a widely used technique to avoid cross-excitation
artifacts [3]. The number of slices skipped between two consecutive slice acquisi-
tions is often referred to as the interleave parameter [16], NI . For example, when
NI = 2, even slices are acquired after odd slices. Each image stack in interleaved
acquisition are divided into NI interleaved subsets. In dynamic imaging, mul-
tiple stacks are acquired. For simplicity, we refer to the i-th subset in the j-th
stack as time frame Fk, where the index k = NI × (i − 1) + j. The acquisition
time of each frame is only 1/NI of the whole stack, making inter-slice motion
artifacts within each frame milder. However, the spatial resolution of each frame
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along the interleaved axis is also reduced by a factor of NI . Therefore the inter-
leave parameter can be considered as a trade-off between between spatial and
temporal resolutions.

Our goal is to improve the spatial resolution of each frame to generate a
HR MR series that has enough temporal resolution to capture fetal dynamics.
Let Vt(x, y, z) be the 3D dynamic object to be scanned, where t is time and
(x, y, z) are the spatial variables. The acquisition of a slice at time t and location
z is Vt(·, ·, z) Therefore, the k-th frame can be written as a set of slices, Fk =
{Vt(·, ·, z)|t = t(k, z), z ∈ Zk}, where t(k, z) is the time when the slice at location
z of the k-th frame is acquired, and Zk is the set of slice locations in the k-th
frame.

2.2 Simulated interleaved acquisition

To generate HR and LR pairs for training a SSR network, we simulate the
interleaved MR acquisition process with the acquired data. For each frame Fk,
we interpolate it to make it an isotropic 3D volume denoted by F̃k(x, y, z).

Then we swap the x- and z- axis1 and result in a new 3D function F̃T
k , i.e.,

F̃T
k (x, y, z) = F̃k(z, y, x). F̃T

k (x, y, z) is an object of high resolution along the
z-axis and having motion similar to Vt. Therefore, we can simulate interleaved
acquisition along the z-axis to produce training pairs. The acquired frame in the
simulated scan can be written as Sk = {F̃T

k (·, ·, z)|z ∈ Zk}. Let S̃k be the volume
generated by interpolating Sk along the z-axis. We can see that the y-z planes
of S̃k and F̃k, i.e., S̃k+l(x, ·, ·) and F̃T

k (x, ·, ·) are pairs of LR and HR images.
Besides, it is worth noting that the adjacent time frames provide contexts for
estimating the missing slices in the target frame (Fig. 1 B). Therefore, it would

be easier to learn a mapping from {S̃k+l(x, ·, ·)}Ll=−L to F̃T
k (x, ·, ·), where L is

the number of time frames used from each side.

2.3 Self-supervised training

Super-resolution: We extract image patches with size of P×P from the series
of images, {S̃k+l(x, ·, ·)}Ll=−L, and concatenate them along the channel dimension

to form input tensors ILR ∈ RP×P×(2L+1). Patches at the same spatial locations
are also extracted from F̃T

k (x, ·, ·) as targets and denoted as IHR ∈ RP×P . A
network f is trained to learn the mapping between ILR and IHR. L1 loss is
used to improve the output sharpness, i.e., L = ||f(ILR)− IHR||1. We adopt the
EDSR [14] architecture for the SSR network f , with 16 residual blocks [8] and
64 feature channels.

Blind-spot denoising: Many fast imaging techniques for capturing fetal
dynamics, e.g., EPI, suffer from low SNR [4]. Applying super-resolution algo-
rithms to noisy images tends to emphasize image noise and results in images of

1 We use x-axis here to keep the notation simple. In fact any axis within the x-y plane
can be used.
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low quality. To address this problem, we introduce an optional denoising net-
work h to our framework, which can be apply when the original acquired images
are of low SNR. The network h is a blind-spot denoising network (BDN) [13],
i.e., the receptive field of h doesn’t contain the central pixel. Therefore, when
we train the network h to recover the input image I by minimizing the mean
squared error, ||h(I) − I||22, the network will not become the identity function.
Instead, h(I) will approximate the mean of I, so that h(I) can be considered as
the denoised image. If BDN is enabled, we first train the denoising network h
with images I = F̃T

k (x, ·, ·). Then, when training the SSR network f , we replace
the target IHR with h(IHR) and the loss becomes L = ||f(ILR)− h(IHR)||1.

Training details: We set L = NI/2 and P = 64, if not specifically indicated.
All neural networks are trained on a Nvidia Tesla V100 GPU using an Adam
optimizer [10] with a learning rate of 1 × 10−4 for 30000 iterations. We use
batch sizes of 64 and 16 for network f and h respectively, which depend on
GPU memory. Training images are randomly flipped along the two axes for data
augmentation. Our models are implemented with PyTorch 1.5 [17].

2.4 Inference

After training the models, we can apply them to the original or newly acquired
data. If BDN is enabled, we first perform image denoising on each frame by
applying h to each slice, such that Fk becomes {h(Vt(·, ·, z))|t = t(k, z), z ∈ Zk}.
Then, we interpolate it to generate a volume, F̃k(x, y, z). Finally, the trained

super-resolution network f is applied to the y-z plane of F̃k(x, y, z) and its
neighboring frames, which yields a super-resolved estimate V̂k, i.e., V̂k(x, ·, ·) =

f({F̃k+l(x, ·, ·)}Ll=−L). This process is repeated for all k until we get a HR esti-
mation of the whole series, which can be used for other downstream tasks.

3 Experiments and Results

In the experiments, we apply the following methods to fetal MR volume series: 1)
cubic B-spline interpolation along the interleaved axis; 2) interpolation along the
temporal direction (TI); 3) spatio-temporal interpolation (STI); 4) SMORE [25]
and 5) STRESS. In SMORE, we adopt the same super-resolution network archi-
tecture and the same training hyperparameters as STRESS for fair comparison.
The reference PyTorch implementation for STRESS is available on GitHub2

3.1 CRL fetal dataset

The CRL fetal atlas [6] consist of T2-weighted fetal brain MRI with gestational
age (GA) ranging from 21 to 38 weeks. The images are reconstructed to volume
with size of 135× 189× 155 and isotropic resolution of 1 mm. To simulate fetal
motion, we use the fetal landmark time series in [23]. Specifically, we use two

2 https://github.com/daviddmc/STRESS

https://github.com/daviddmc/STRESS
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eyes and the midpoint of two shoulder to define the fetal pose and apply affine
transformation to the MR volume to generate motion trajectories. There are
77 time series with length from 20 to 30 minutes in the landmark dataset. We
randomly sample 10 1-min intervals from each series then apply the motion to
the volumes, resulting in 18 × 77 × 10 = 13860 data. We use 70% data for
training and validation, 30% for test, data in the test set have different GAs
from training and validation sets. We simulate MR scans with NI = 2, 4 and 6,
in-plane resolution of 1mm× 1mm and slice thickness of 1mm. SR methods are
applied to the noise-free data and also noisy data corrupted by Rician noise [7]
with standard deviation σ = 3% of the maximum intensity. BDN is enabled
when there is noise.

Table 1 shows the peak signal-to-noise ratio (PSNR) and structural similar-
ity index (SSIM) [22] comparing to the ground truth. PSNR and SSIM are com-
puted within a mask of non-background voxels. The proposed STRESS method
outperforms the competing methods at different interleave parameters, with and
without noise. Fig. 2 shows example slices of super-resolution results with NI = 4
and Rician noise. Visual results also indicates that the outputs of STRESS have
better image quality.

Models
NI = 2 NI = 4 NI = 6

w/o noise w/ noise w/o noise w/ noise w/o noise w/ noise
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SI 32.69 .9883 28.42 .8849 23.90 .9049 22.98 .8114 19.71 .7422 19.39 .6686
TI 29.01 .9111 25.31 .8258 29.21 .9076 25.48 .8273 28.60 .9084 25.52 .8288

STI 31.29 .9682 27.94 .8846 26.87 .9390 25.75 .8711 23.89 .8769 23.37 .8182
SMORE 36.19 .9895 30.38 .9006 31.36 .9687 28.57 .8916 25.29 .8703 24.27 .8093
STRESS 36.77 .9921 33.51 .9702 34.56 .9873 32.81 .9655 28.98 .9480 28.24 .9213

Table 1. PSNR and SSIM of the super-resolution results on the CRL dataset, where
’w/ noise’ means adding Rician noise with σ = 3% of the maximum intensity. The best
results are underlined.

In addition, we also evaluate the performance of the STRESS method with
and without BDN under different noise levels (σ = 1%, 3%, and 5% of the
maximum intensity). The results are shown in Table 2. We can observe that the
BDN makes a larger contribution to the performance of STRESS as the noise
level increases.

3.2 Fetal EPI dataset

We also evaluate our method with an in utero fetal EPI dataset in [15], which
consist of 111 volumetric MRI time series at a gestational age ranging from 25 to
35 weeks. MRIs were acquired on a 3T Skyra scanner (Siemens Healthcare, Erlan-
gen, Germany). Interleaved, multislice, single-shot, gradient echo EPI sequence
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Fig. 2. Visual results from CRL fetal dataset (NI = 4, Rician noise σ = 3% of the
maximum intensity), numbers in the parentheses are PNSR with ground truth data as
reference.

Models
σ = 1% σ = 3% σ = 5%

PSNR SSIM PSNR SSIM PSNR SSIM

STRESS w/o BDN 33.96 .9764 30.69 .9219 28.29 .8559
STRESS w/ BDN 33.99 .9826 32.81 .9655 31.09 .9425

Table 2. Evaluations of STRESS with and without BDN under different noise levels
(NI = 4).

was used for acquisitions with in-plane resolution of 3mm×3mm, slice thickness
of 3 mm, average matrix size of 120 × 120 × 80; TR=5 − 8s, TE=32 − 38ms,
FA=90◦, NI = 2. Each subject was scanned for 10 to 30 min. We remove half
of the slices at each frame to generate data with NI = 4. We use 92 EPI series
for training and 19 for testing. Due to the large voxel size in acquisition and
the relatively high SNR, we disable BDN on this dataset. Besides, some volumes
have matrix size less than 64, so we use P = 32 in this experiment.

Since ground truth is not available for the in utero dataset, we use the re-
moved slices as reference to compute PSNR and SSIM. To further evaluate the
quality of output images, we use fetal keypoint detection as a downstream task,
where 15 fetal keypoints (ankles, knees, hips, bladder, shoulders, elbows, wrists
and eyes) are detected from each time frame. Ground truth labels are manually
annotated on the original data with NI = 2. We apply a pretrained keypoint de-
tection model [23] to the output volumes of each SR method. The percentage of
correct keypoint (PCK) [1] are computed. PCK(s) = N(s)/N × 100%, where N
is the total number of keypoints and N(s) is the number of predicted keypoints
with error less than threshold s.

Fig. 3 shows the evaluation of super-resolution results on the fetal EPI
dataset. The proposed STRESS method achieves the highest PSNR and SSIM
among all competing methods, which is also shown by the t-test. Besides, when
using the super-resolution results for fetal keypoint detection, the results of
STRESS also have the best performance in terms of PCK, indicating that the
STRESS method is able to generate MR time series with high image quality
which is beneficial to downstream tasks.
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Fig. 3. Evaluation of super-resolution results from fetal EPI data with NI = 4. Left:
PSNR and SSIM comparing to the reference in the NI = 2 data. Error bars show the
corresponding standard deviations. ∗∗: p-value < 10−2, ∗ ∗ ∗: p-value < 10−3. Right:
PCK curves for fetal landmark detection using a pretrained model.

Fig. 4. Visual results from in utero fetal EPI dataset.

Fig. 4 shows example slices of super-resolution results in one frame of the fetal
MR series. We can see that the results of the proposed STRESS method have the
best perceptual quality. The output of SI is very blurred, since it only interpolates
along the z-axis. The TI and STI methods utilize temporal information with
simple interpolation and therefore introduce severe inter-slice misalignment to
the images. Although SMORE achieves better image quality than interpolation
methods, the boundary of fetal brain is unclear in the outputs of SMORE. The
reason is that SMORE only take a single frame as input without the temporal
context, so that it cannot restore the details in the body parts that are corrupted
by fetal motion, such as the fetal brain. STRESS, however, utilizes both spatial
and temporal information of the scan data during the self-supervised training
process, and therefore recovers more image details.

4 Conclusions

This paper presents STRESS, a self-supervised super-resolution framework for
dynamic fetal imaging with interleaved slice acquisition. STRESS trains a SR
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network in a self-supervised manner, where low- and high-resolution training
samples are extracted from simulated interleaved acquisitions. The SR net-
work utilizes both internal spatial information within each frame and tempo-
ral correlation between adjacent frames to improve image quality and restore
details corrupted by fetal motion. Evaluations on both simulated and in utero
data shows that STRESS outperforms other competing methods. The experi-
ments also demonstrate that STRESS is beneficial when serving as a data pre-
processing step for further downstream analysis.
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