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Abstract

Purpose: Fetal brain Magnetic Resonance Imaging suffers from unpredictable and unconstrained 

fetal motion that causes severe image artifacts even with half-Fourier single-shot fast spin 

echo (HASTE) readouts. This work presents the implementation of a closed-loop pipeline that 

automatically detects and reacquires HASTE images that were degraded by fetal motion without 

any human interaction.

Methods: A convolutional neural network that performs automatic image quality assessment 

(IQA) was run on an external GPU-equipped computer that was connected to the internal network 

of the MRI scanner. The modified HASTE pulse sequence sent each image to the external 

computer, where the IQA convolutional neural network evaluated it, and then the IQA score was 

sent back to the sequence. At the end of the HASTE stack, the IQA scores from all the slices 

were sorted, and only slices with the lowest scores (corresponding to the slices with worst image 

quality) were reacquired.
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Results: The closed-loop HASTE acquisition framework was tested on 10 pregnant mothers, 

for a total of 73 acquisitions of our modified HASTE sequence. The IQA convolutional neural 

network, which was successfully employed by our modified sequence in real time, achieved an 

accuracy of 85.2% and area under the receiver operator characteristic of 0.899.

Conclusion: The proposed acquisition/reconstruction pipeline was shown to successfully 

identify and automatically reacquire only the motion degraded fetal brain HASTE slices in the 

prescribed stack. This minimizes the overall time spent on HASTE acquisitions by avoiding the 

need to repeat the entire stack if only few slices in the stack are motion-degraded.
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1 | INTRODUCTION

Fetal Magnetic Resonance Imaging (MRI) has become a well-established procedure that 

serves as an important adjunct to ultrasound when diagnostic doubts remain after the 

ultrasound exam.1,2 The field of fetal brain MRI has been dominated by the use of 

single-shot encoding techniques such as half-Fourier acquisition single-shot turbo spin echo 

(HASTE) imaging, considered the workhorse of fetal MRI because of its ability to delineate 

cerebral anatomy and provide images with reduced artifacts due to fetal motion when 

compared to other T2-weighted techniques.3 Although typical readout lengths are ~500 ms 

(for voxel sizes = 1.3 × 1.3 × 3 mm3, in-plane acceleration R = 2, partial Fourier = 5/8, echo 

spacing of ~6 ms), repetition times (TRs) can be more than 3 times longer (typical TR is 

~1.8 s) due to specific absorption rate constraints. Therefore, it usually takes more than a 

minute to acquire a stack of ~40 slices to cover the entire fetal brain. Even with the relatively 

efficient readouts, unpredictable and random fetal motion still degrades image quality and 

introduces slice-to-slice variations of the imaging plane, resulting in double-oblique slices 

that are hard to interpret clinically. This significantly lengthens the fetal MRI sessions 

because the MRI technologist “chases” the fetal head in an attempt to obtain images in the 

standard 3 orthogonal planes, resulting in repetition of the entire HASTE stack if sufficient 

slices in the stack are motion-degraded or become double oblique. Thus, the current fetal 

imaging workflow depends on the experience of the MRI technologists performing the scan 

and their rapid assessment of the image stack quality in order to decide whether the entire 

stack should be repeated if enough slices are of bad quality.

In research settings, solutions such as the super-resolution slice-to-volume reconstruction4–6 

have been successfully used to generate high-quality fetal brain HASTE volumes, enabling 

further understanding of human brain development across gestation.7–11 Slice-to-volume 

reconstruction methods treat the 3D volume reconstruction from 2D HASTE slices as 

an optimization problem and rely on oversampling of the fetal brain. Depending on the 

image quality, 6–12 orthogonal 2D HASTE stacks are typically required. Furthermore, 

most implementations require manual segmentation of the fetal head and visual selection 

of a good-quality HASTE stack as reference. Recent variants employ convolutional neural 

networks (CNN) to eliminate manual interaction by automating brain segmentation and 

outlier rejection12 and even estimate the initial slice-to-volume transformations in real 
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time via CNN-based tracking.13 Nevertheless, none of the methods to date address the 

unnecessary oversampling of HASTE stacks and image artifacts of the individual slices. 

Typically, if a certain number of slices in a given stack are of bad quality, the whole stack 

is repeated, resulting in unnecessary reacquisition of all good-quality slices and thus longer 

scan times. Lastly, and most importantly, the use of the slice-to-volume reconstruction 

methods still needs the deployment of computationally heavy postacquisition optimization, 

which precludes their routine use in clinical practice because very few sites have the 

infrastructure to reconstruct high-quality fetal brain HASTE volumes immediately after 

acquisition for diagnostic clinical read.

In this work, we designed and implemented a prototype closed-loop acquisition/

reconstruction pipeline that automatically and without human interaction detects and 

reacquires only the HASTE slices that have been degraded by fetal motion, not the whole 

stack. This modified HASTE sequence makes use of a CNN developed recently by our team, 

which is trained to perform image quality assessment (IQA) on a fetal brain HASTE image 

in ~30 ms when run on a GPU-enabled computer. The feasibility of the proposed methods 

was tested on 10 pregnant mothers, showing that when there were image artifacts, the IQA 

CNN correctly identified the poor quality slices, and the sequence successfully reacquired 

only the slices with the worst IQA scores. Our modified sequence had 2 reacquisition 

modes. In the initially implemented mode, the number of slices to reacquire, NREACQ, was 

defined by the user before the scan started; thus, a fixed number of slices were reacquired. 

In the second, more improved implementation, slices were reacquired only if they had 

an IQA score lower than a user-defined threshold, making NREACQ dependent on how 

much the fetus moved during that particular scan. Both reacquisition modes improve the 

current standard clinical workflow by: (1) enabling savings in the overall scan times because 

only bad slices are reacquired, not the entire stack; and (2) providing objective means of 

determining which slices are nondiagnostic, as opposed to having the MR technologist make 

these decisions in real time.

2 | METHODS

2.1 | Convolutional neural network for image quality assessment

Recent literature14,15 has demonstrated the potential of neural networks to perform image 

quality assessment on MR images. Inspired by these, we have developed a preliminary 

version of a CNN for fast fetal brain HASTE quality assessment16,17 based on a pretrained 

ResNet architecture.18 This initial work served as a starting point to further improve the 

robustness and reliability of the IQA CNN19 applied in this work, and is discussed below.

We formulated the MR quality assessment as an image classification problem, with HASTE 

images being classified as “good” or “diagnostic,” “bad” or “nondiagnostic” (i.e., containing 

image artifacts or partial brain coverage), and those without the fetal brain within the 

acquired field-of-view (FOV). The CNN was initially trained using a dataset of ~11 

thousand manually labeled HASTE images obtained from the clinical fetal MRI archives 

of Boston Children’s Hospital with appropriate institutional review board approval. The 

manual labeling was performed by a graduate student who was trained by an experienced 

neuroradiologist. Double oblique slices that showed no image artifacts were labeled as 
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“good.” Figure 1A shows the distribution of our labeled dataset among the 3 categories, with 

55%, 25%, and 20% of the images being classified as good, bad, and those without a brain 

within the FOV, respectively. Representative images from each category are also shown.

We trained our CNN using semi-supervised learning based on a mean teacher model20 

consisting of 2 networks: a student and a teacher network, both which use the same 

ResNet-34 architecture18 as the backbone network. Using the manually labeled dataset, 

the CNN is trained to minimize the cross-entropy loss between the network prediction 

and the ground truth label, Lcls. Because manual labeling of MR images is difficult and 

time-consuming, a great feature of semi-supervised learning is its ability to make use of 

large unlabeled datasets to improve its accuracy. Therefore, to train our CNN, in addition 

to the ~11 thousand manually labeled HASTE images, we also included more than 200 

thousand unlabeled fetal HASTE images obtained from the clinical fetal MRI archives at 

Boston Children’s Hospital.

Consistency in our model is imposed by minimizing the Kullback-Leibler divergence 

between the outputs of the student and teacher networks, Lcon. Because in fetal 

neuroimaging only the artifacts occurring within the fetal brain region of interest (ROI) 

affect diagnostic quality of the image, we introduce an ROI consistency loss to regularize the 

network so that it focuses on features within the brain ROI.19 The ROI consistency loss,Lroi, 

is defined as the mean squared error between the features extracted from the brain ROI and 

the entire image. During training, the student network is updated by minimizing the total 

loss function L = Lcls + Lcon + Lroi, whereas the teacher network is updated by recalculating 

its weights using moving average of the student network. Specifically, let wt and ws be the 

weights of the teacher and student networks, respectively. After each training step, wt is 

updated to α • wt + (1 − α) • ws, where α = 0.994 is the coefficient for the moving average. 

At the inference stage, the student network is used as the IQA network. A schematic of the 

proposed network model is given in Figure 1B.

All neural networks were implemented with PyTorch (version 1.4) and trained for 30 epochs 

using an Adam optimizer with a learning rate of 0.005. When evaluated on a separate testing 

dataset consisting of 1724 images, our semi-supervised CNN achieved 85.2% accuracy for 

ternary classification and area under the receiver operator characteristic for nondiagnostic 

images of 0.899, outperforming the model trained on supervised data only, as shown in 

Figure 1C. For a typical image matrix size of 256 × 256, the inference of the IQA network 

takes 30 ms on a GPU-enabled computer. We define IQAscore = 1 − Pbad, where Pbad is the 

probability of being a nondiagnostic image predicted by the network, resulting in a score 

close to 0 given to images with severe artifacts and a score of 1 given to those with excellent 

quality.

2.2 | Closed loop imaging framework for prospective IQA and reacquisition

The core of this work was the development and implementation of a modified HASTE 

sequence capable of performing prospective quality assessment of the fetal brain HASTE 

images and automated reacquisition of motion degraded slices. Schematic of the overall 

acquisition pipeline is shown in Figure 2. The IQA CNN described above was run on 

an external GPU-equipped (NVIDIA GTX 1050Ti, NVIDIA Corporate, Santa Clara, CA) 
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computer, which was connected to the internal network of the MRI scanner via 1 Gb 

Ethernet hub for efficient communication/feedback between this computer and the scanner's 

computer running our custom HASTE sequence and reconstruction. This setup is similar to 

those used for real-time neurofeedback in fMRI experiments21–23 and prospective motion 

correction in neuroanatomical MRI.24,25

At the beginning of the TR, the HASTE readout is played, and immediately after that the 

reconstructed image is sent to the external computer. Python scripts receive this image, run 

the CNN, and an IQA score is computed in ~30 ms and sent to a buffer. At the scanner, 

a DICOM image is created and displayed, just like while running a standard HASTE scan. 

During the idle time due to specific absorption rate constraints, the sequence requests the 

IQA score, and Python scripts on the external computer send the score back to the sequence. 

This score, along with the slice index, is saved by the sequence for later use. At this point, 

one TR period is concluded. This workflow is repeated for all the slices in the prescribed 

stack. When the prescribed HASTE stack is completed, the sequence sorts all the IQA 

scores from all the slices and reacquires only the slices with the NREACQ worst IQA scores. 

NREACQ can be fixed or variable, depending on the chosen reacquisition mode. In the first 

mode, NREACQ is defined by the user before the scan starts so a fixed number of slices 

are reacquired no matter how many of the slices in the stack were motion-degraded. In 

the second mode, only slices that exceed a user-defined IQA score are reacquired, which 

shortens the reacquisition loop in the case when there is little to no motion. In the case when 

the fetus moves a lot, this mode of operation enforces a user-defined upper limit on the 

number of slices to reacquire. For the purposes of this work, this upper limit was chosen to 

be one half of the number of prescribed slices.

Before replacement of slices, the IQA scores of the reacquired slices are compared to the 

IQA scores of the originally acquired slices to see which score is better. Then, on the 

scanner, 2 different image sets are generated as separate DICOM image series. The first 

one includes the original images from the prescribed stack (i.e., what the standard clinical 

HASTE scan outputs on the scanner), whereas in the second DICOM series HASTE slices 

that received low IQA scores are replaced with the NREACQ reacquired slices. This enables 

direct and immediate comparison of the reacquired slices against the originally acquired 

ones right on the scanner’s console. This concludes a single run of the closed-loop HASTE 

acquisition framework.

2.3 | The MRI experiments

All MRI experiments were done on a 3 Tesla Siemens Skyra system (Siemens Healthcare, 

Erlangen, Germany) at Boston Children’s Hospital using the 30-channel body flex array in 

combination with the spine array (total of ~42–48 receive elements used). The closed-loop 

system was tested on 10 pregnant mothers who signed informed consent forms approved by 

Boston Children’s Hospital’s institutional review board. All fetuses scanned were normally 

developing, and their gestation age ranged between 23 and 38.7 weeks. The HASTE 

readouts had the following imaging parameters: TE = 119 ms, TR = 1.8 s, FOV = 33 × 

33 cm2, matrix size = 256 × 256, 1.3 × 1.3 × 3 mm3 voxels, echo spacing = 5.81 ms, 

partial Fourier = 5/8, and in-plane GRAPPA acceleration of RGRAPPA = 2. A total of 50 
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runs of our modified HASTE sequence were performed among all 10 fetuses using the first 

reacquisition mode for which the number of slices to reacquire was fixed. Further, a total 

of 23 runs were performed on 7 fetuses using the second mode of operation for which only 

slices below an IQA score of 0.9 were reacquired. The value of 0.9 for the threshold was 

chosen to balance the false positive and false negative rates for detecting low-quality images. 

Specifically, a threshold of 0.9 applied to our testing dataset yielded false positive and false 

negative rates of 0.15 and 0.14, respectively.

3 | RESULTS

Figure 3 demonstrates the feasibility of our methods in utero on a 29-gestational week fetus, 

showing the 2 DICOM image series provided as outputs on the scanner by our pipeline. 

The first one (Figure 3A) comprises the original HASTE stack, and the second one (Figure 

3B) (created after the reacquisition loop has finished) substitutes the originally acquired, 

poor-quality images with the ones that were reacquired. The IQA scores are denoted below 

each image. With slices having an IQA scores of less than 0.9 flagged for reacquisition, the 

sequence correctly re-acquired the 7 slices satisfying this criterion (red-flagged in Figure 

3A). In this case, the fetus happened to remain still during the reacquisition of the 7 slices, 

resulting in excellent image quality. With 25 slices needed to cover the whole brain and 7 

reacquired slices, the overall scan time of this HASTE run was 57.6 s (TR = 1.8 s), only 12.6 

s longer compared to the 45 s needed to acquire the whole stack without reacquisition.

Figure 4 shows more in utero results further demonstrating the feasibility of our methods. 

Two examples are shown from 2 separate whole-brain HASTE scans, prescribed axial 

(Figure 4A) and sagittal (Figure 4B) to the brain of a 29.1 gestational week fetus. In both 

cases, the number of slices to reacquire was fixed to NREACQ = 10. Further, Figure 4C,D 

show examples of 2 HASTE scans on a 26.1 and 27.6 gestational week fetuses, respectively. 

For these 2 scans, our sequence reacquired only slices that had an IQA score lower than 0.9. 

All 4 examples show slices in the prescribed stacks that had compromised image quality, as 

reflected by the recorded low IQA scores. During the reacquisition process, image quality 

improved, as reflected by the high IQA scores of the reacquired slices.

4 | DISCUSSION

We have successfully developed and implemented a closed-loop acquisition/reconstruction 

pipeline that prospectively detects and automatically reacquires only poor-quality fetal 

brain HASTE images within the prescribed stack. Whereas prospective reacquisition of 

compromised MRI data has been established in postnatal imaging,26–29 to our knowledge 

this is the first fetal MRI application of prospective reacquisition based on fast, automatic 

imaging quality assessment CNN. The methods demonstrated in this work improve the 

standard clinical fetal MRI workflow by: (1) enabling savings in the overall time the 

pregnant woman needs to be in the scanner because only bad slices are reacquired, 

not the entire stack; and (2) providing objective means of determining which slices are 

motion-degraded and therefore of nondiagnostic quality, eliminating the need for the MRI 

technologist to make these types of decisions in real time.
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The current pipeline was tested on 10 fetuses in 2 reacquisition modes. The first one, in 

which the number of slices to be reacquired was fixed before the scan started, is less favored 

than the one in which only slices above a user-defined IQA score are reacquired. In this 

work, that threshold was chosen to be 0.9 as a balance between false positive and false 

negative rates for detecting low-quality images. Determining a potentially better criterion for 

choosing the optimal value for the IQA score threshold is out of the scope of this feasibility 

study.

Although providing improved workflow compared to the current way of conducting clinical 

fetal brain MRI, due to fetal motion the proposed methods do not necessarily reacquire 

the originally prescribed anatomical slices because the IQA CNN developed in this work 

does not have any information related to the position and orientation of the fetal head. 

Dealing with fetal head motion requires prospective correction of the slice positions based 

on the fetal head motion estimates. Prospective motion mitigation using low-resolution 

echo-planar volumetric navigators has been well developed and established technique 

postnatally, and has been shown to improve image quality in high-resolution volumetric 

structural acquisitions such as T1-weighted MPRAGE and T2-weighted SPACE.26 Our 

future work will build upon our real-time feedback system, as well as our previous work 

embedding echo-planar volumetric navigators in the HASTE sequence,30,31 to not only 

schedule reacquisition based on the IQA scores but also dynamically update the FOV 

coordinates before the acquisition of each HASTE slice in order to achieve complete, 

diagnostic-quality stacks without double obliquities. This also will open up the possibility 

for more complex out-of-plane acquisition schemes aimed at optimizing the slice-to-volume 

reconstruction methods.

5 | CONCLUSION

To our knowledge, this is the first time that prospective image quality assessment and 

automatic reacquisition of motion-degraded images has been employed in fetal brain 

HASTE imaging. Moreover, the implemented acquisition infrastructure serves as a basis 

for our future work and ultimate goal of developing an intelligent framework that “chases” 

the fetal head in real-time in order to obtain high-quality, diagnostic HASTE images of the 

entire fetal brain in the least amount of acquisition time.
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FIGURE 1. 
(A) Distribution of the ~11 thousand HASTE-labeled fetal images into the 3 categories 

(“bad,” “good,” and “without a brain”), along with representative images for each category. 

An image without image artifacts was labeled as “good” even if it is a doubleoblique, as 

seen in the representative example. (B) Schematic of our semi-supervised learning methods 

for fetal brain HASTE image quality assessment. The model consists of a student and a 

teacher network, both of which are ResNet-34. The student network is trained to minimize 

the sum of classification loss, consistency loss, and ROI consistency loss, and the teacher 

network is updated as the moving average of the student network. After training, the 

student network is the one used as the IQA network, which generates the IQA scores. 

(C) Comparison between the performances of the model trained only using supervised 

data and our proposed semi-supervised learning method, showing the superiority of the 

latter. HASTE, half-Fourier acquisition single-shot turbo spin echo; IQA, image quality 

assessment; ROI, region of interest
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FIGURE 2. 
Schematic of the closed-loop acquisition/reconstruction framework of the modified HASTE 

sequence capable of automatically detecting and reacquiring motion-degraded fetal brain 

HASTE images. The scanner’s computer is connected with the external GPU computer via 

a 1GB ethernet hub. The GPU computer receives HASTE images in real time, calculates the 

IQA score for each of them, and sends this score back to the sequence upon request during 

runtime. Once all the slices of the prescribed stack are acquired, the sequence sorts all the 

IQA scores and automatically reacquires NREACQ slices with the lowest scores. NREACQ, 

number of slices to reacquire
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FIGURE 3. 
In utero images from a 29 gestational week fetus using our modified HASTE sequence with 

the reacquisition mode set to reacquire only the slices that have an IQA score lower than 

0.9. The IQA scores are denoted below each image. Our reconstruction pipeline provides 2 

DICOM image series on the MRI console. The images shown in (A) are from the first image 

series, which correspond to 1 complete run over the prescribed stack, where we can see that 

7 slices have met the reacquisition criterion (these are red-flagged). Images shown in (B) are 

from the second image series, which keeps all the slices that had an IQA score greater than 

0.9 but now substitutes the original, degraded slices in (A) with the reacquired, improved 

images. We can see that, in this case, the 7 newly acquired slices were not degraded at 

the time of reacquisition and received high IQA scores. With 25 slices needed to cover the 

whole brain and 7 reacquired slices, the overall sequence time in (B) was 32 TRs, or 57.6 s 

compared to 45 s in (A) using a TR of 1.8 s
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FIGURE 4. 
Examples from 4 separate scans using our closed-loop system performed on 3 different 

fetuses. All scans were prescribed to cover the entire fetal brain. For the acquisitions in 

(A) and (B), the number of slices to reacquire was fixed before the start of the scan to 

NREACQ = 10. For (C) and (D), only slices that had an IQA score lower than 0.9 were 

reacquired. The representative images shown demonstrate cases in which the original images 

are motion-degraded (and thus received a low IQA score), whereas the re-acquired images 

at the same slice locations suffered no motion degradation (and thus received a high IQA 

score)
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