
  

Interrogation   of   Changes   in   Cell   State   during   Tumor   
Evolution   of   a   Genetically   Engineered   Mouse   Model   of   

Lung   Adenocarcinoma   
  

by   

Amanda   Margarita   Cruz   

B.S.   Cell   Biology   
University   of   California,   Davis,   2016   

  
Submitted   to   the   Department   of   Biology   

In   Partial   Fulfillment   of   the   Requirements   for   the   Degree   of   
  

Doctor   of   Philosophy   
at   the   

MASSACHUSETTS   INSTITUTE   OF   TECHNOLOGY   
September   2021   

  
©   2021   Massachusetts   Institute   of   Technology.   All   Rights   Reserved   

  

Signature   of   Author   .……………………………………………………………………………..   
Department   of   Biology   

Sept   7,   2021   
  
  
  

Certified   by   ………………………………………………………………………………………..   
Tyler   Jacks   

David   H.   Koch   Professor   of   Biology   
Daniel   K.   Ludwig   Scholar   for   Cancer   Research   

  
  
  

Accepted   by   ……………………………………………………………………………………..   
Amy   Keating   

Professor   of   Biology   and   Biological   Engineering   
Co-Director,   Biology   Graduate   Committee     

  



2   

Interrogation   of   Changes   in   Cell   State   during   Tumor   Evolution   of   a   Genetically   

Engineered   Mouse   Model   of   Lung   Adenocarcinoma   

by   

Amanda   Margarita   Cruz   

Submitted   to   the   Department   of   Biology   on   September   7,   2021   in   Partial   Fulfillment   of   
the   Requirements   for   the   Degree   of   Doctor   of   Philosophy   in   Biology   

  

ABSTRACT  

In   genetically   engineered   mouse   models   of   lung   adenocarcinoma   (LUAD),   

tumors   become   more   heterogeneous   and   dysregulate   cell   identities   as   they   progress   

and   evolve.   In   this   thesis,   single-cell   RNA-sequencing   technology   was   utilized   to   

understand   dynamic   changes   that   occur   during   tumor   evolution   both   with   respect   to   

tumor   cells   and   tumor-specific   cytotoxic   CD8   T   cells.   In   tumor   cells,   expression   of    Etv4   

and    Etv5 ,   which   belong   to   the   Pea3   family   of   transcription   factors,   vary   as   a   

consequence   of   tumor   progression.    Etv5    regulates   the   identity   of   the   cells   that   give   rise   

to   KP   tumors,   and   its   expression   is   lost   as   tumors   evolve.   Conversely,    Etv4    is   not   

expressed   in   the   adult   lung,   but   becomes   latently   expressed   in   aggressive   tumors.   

Interestingly,   we   find   that   both    Etv4    and    Etv5    are   required   for   lung   tumor   initiation.   In   

addition,   we   also   profile   CD8   T   cells   that   specifically   recognize   experimentally   defined   

tumor   neoantigens   and   provide   evidence   for   an   antigen   dominance   hierarchy   that   

creates   competition   between   T   cell   responses   to   tumor   neoantigens.   Critically,   we   find   

that   this   hierarchy   influences   the   functionality   of   CD8   T   cells   and   describe   novel   

differentiation   trajectories   that   distinguish   subdominant   and   dominant   antigen   
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responses.   Together,   findings   from   these   studies   were   used   to   propose   analytical   

methodologies   to   model   tumor   evolution.     
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Discoveries   about   developmental   and   homeostatic   biological   processes   have   

been   largely   connected   to   advancements   in   cancer   biology.   The   opportunity   to   compare   

healthy   and   cancerous   tissues   provides   an   ideal   experimental   system   to   identify   critical   

regulatory   processes   that   prevent   or   create   oncogenic   stress.   However,   identifying   the   

changes   that   drive   transitions   between   cell   states   associated   with   early   stages   of   

disease   progression   to   those   of   late   stages   have   been   more   difficult.   Identifying   these   

changes   requires   a   comparison   amongst   a   continuum   of   heterogeneous   cell   states   that   

arise   over   an   extended   period   of   time.   Additionally,   differences   in   how   cells   of   different   

tissue   types   respond   to   intra-   or   extracellular   changes   further   highlight   the   importance   of  

cell   state   on   disease   progression.     

Dysregulation   of   cell   identity   and   differentiation   status   has   long   been   implicated   

in   cancer   with   respect   to   tumor   cells,   and   manifests   clearly   in   tumor   histology.   More   

recently,   processes   that   lead   to   differentiation   and   activation   of   infiltrating   immune   cells   

have   also   been   implicated   in   cancer   progression.   Still,   it   remains   unclear   how   changes   

of   cell   state   occur   and   contribute   to   overall   disease   progression.   Developmental   and   

homeostatic   differentiation   processes   dictate   the   identity   of   a   cell   and   can   have   a   large   

influence   over   how   it   responds   to   a   change   or   stimulus.   Cell   state,   which   is   defined   by   

the   transcriptome,   epigenome,   proteome,   and/or   behavior   of   a   cell,   is   a   product   of   

global   permutations   of   gene   expression   related   to   cell   identity.   Genes,   transcription   

factors,   and   signaling   machinery   are   typically   characterized   in   experimental   systems   

that   isolate   each   component   as   distinct   and   separable   entities.   Large   datasets   produced   

by   improvements   in   biological   profiling   technologies   have   revealed   intricate,   

combinatorial,   and   context-specific   regulation   of   signaling   pathways,   chromatin   
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topology,   and   gene   regulatory   networks.   Together,   they   orchestrate   higher   order   

biological   systems   that   control   both   the   behavior   and   inputs   of   these   systems   to   

generate   a   specific   biological   outcome.   As   a   consequence,   it   is   difficult   to   predict   overt   

biological   behavior   of   a   given   cell   state   from   its   transcriptional   profile   alone.     

Consequently,   the   objectives   of   my   thesis   research   have   been   to   1)   integrate   

findings   in   developmental   biology   or   non-malignant   tissues   to   better   understand   the   

genetics   and   context-specific   nature   of   cell   biology   in   cancer,   and   2)   determine   how   

these   findings   affect   the   hallmarks   of   cancer   which   characterize   the   biology   and   

progression   of   the   disease.   In   particular,   I   have   sought   to   understand   how   

transcriptional   profiles   associated   with   differentiation   status   of   both   tumor   cells   and   

immune   cells   of   the   tumor   microenvironment   reflect   dysregulated   functionality   over   time   

or   in   response   to   differentiation   signals.   Moreover,   I   have   further   compared   

heterogeneous   subpopulations   of   cells   that   result   from   differentiation   or   loss   of   cell   

identity   in   the   tumor   microenvironment   with   cell   states   that   arise   in   other   biological   

contexts,   such   as   embryonic   development   or   chronic   viral   infection.   These   findings   have   

led   me   to   identify   transcription   factors   that   may   be   implicated   in   regulation   of   cell   states   

that   ultimately   influence   and   orchestrate   the   development   of   tumor   heterogeneity.     

To   begin,   I   will   give   a   historical   context   of   fundamental   discoveries   made   about   

cancer   biology   and   tumor   immunology,   which   have   largely   occurred   by   challenging   

assumptions   made   about   the   underlying   nature   of   these   diseases.   I   will   then   describe   

how   these   discoveries   have   influenced   experimental   models   and   approaches   of   

research   in   tumor   biology   and   immunology.   In   addition,   I   will   give   a   background   of   the   

behavior   and   characteristics   of   lung   adenocarcinoma,   the   disease   I   have   chosen   to   
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study.   Finally,   I   will   describe   approaches   taken   to   elucidate   biologically   informative   

interpretations   of   high-dimensional   data   structures   produced   from   high-throughput   

sequencing   technologies.   

  

CHAPTER   1,   PART   1   

A   History   of   Tumor   Biology   and   Tumor   Heterogeneity   

The   primary   cause   of   cancer   related   mortality   is   complications   that   arise   due   to   

metastatic   disease    (Gupta   and   Massagué   2006) .   Unfortunately,   studies   that   aim   to   

understand   tumors   in   the   context   of   longitudinal   disease   progression   are   limited   by   

availability   of   patient   samples.   The   majority   of   longitudinal   patient   biopsy   samples   are   

taken   before   and   after   treatment    (Rye   et   al.   2018;   Chicard   et   al.   2018;   Hata   et   al.   2016) .   

For   patients   who   do   not   elect   to   undergo   treatment,   longitudinal   patient   biopsies   are   

rarely   acquired   due   to   lack   of   individual   clinical   benefit.   As   a   consequence,   our   

understanding   of   tumor   progression   in   the   absence   of   therapeutic   intervention   in   many   

disease   contexts   is   limited   to   experimental   models   of   cancer   and   their   associated   

technical   limitations.     

Understanding   cancer   progression   can   provide   opportunities   to   develop   rationally   

designed   and   biologically   informed   therapies.   In   most   cases,   patients   with   cancers   that   

are   less   progressed   have   better   associated   clinical   outcomes    (Knudsen   et   al.   2016;   de   

Koning   et   al.   2014;   Humphrey   et   al.   2002) .   By   identifying   the   mechanisms   through   

which   cancer   progression   occurs,   tumor   behavior   can   be   better   predicted   and   can   

preemptively   inform   cancer   treatments.    

  

https://paperpile.com/c/XSr7BR/aTmsm
https://paperpile.com/c/XSr7BR/sKeab+vSDgM+msRIj
https://paperpile.com/c/XSr7BR/7QFab+WFa1y+pTmSM
https://paperpile.com/c/XSr7BR/7QFab+WFa1y+pTmSM


24   

1.   Properties   of   Tumor   Heterogeneity   

1.1   Classification   of   mutations   that   underlie   cancer   development   

Some   of   the   first   recorded   descriptions   of   cancer   were   written   circa   1500   BC   

(Breasted   1930) .   Many   generations   later,   cancer   was   more   comprehensively   described   

and   categorized   by   Henri   de   Mondeville    (Fell   1857) .   By   that   time,   and   in   the   many   years   

that   followed,   surgical   excision   of   tumors   became   increasingly   more   recognized   as   an   

effective   form   of   cancer   treatment.   The   associated   procedures   also   became   

increasingly   more   aggressive    (Hildanus,   n.d.) .     

For   most   of   human   history,   the   cause   of   cancer   was   largely   unknown.   In   the   16th   

century,   associations   were   made   between   observations   of   cancer   incidence   and   

exposure   to   industrial   chemicals    (Hajdu   2011) .   In   some   of   the   earliest   reports   of   

hereditary   cancer   predisposition,   the   disease   of   cancer   was   mistakenly   reported   as   

contagious    (Lusitani,   n.d.;   Tulp   1716) .   Until   James   Nooth   challenged   this   conclusion   

and   proved   cancer   is   not   a   contagious   disease   in   humans   by   injecting   himself   with   

pieces   of   breast   cancer    (Hajdu   2012) ,   cancer   patients   were   treated   the   same   as   those   

with   infectious   disease.   Eventually,   additional   insight   into   the   causes   of   cancer   was   

provided   in   the   late   1800s,   when   an   observation   was   made   about   the   unusually   high   

prevalence   of   breast   cancer   in   a   woman’s   family    (Broca   1866) .   These   observations   and   

discoveries   laid   the   foundation   for   later   studies   of   cancer   development   and   progression.   

Arguably,   some   of   the   most   important   findings   from   this   early   era   of   cancer   research   

made   clarifications   that   led   to   better   understandings   of   what   causes   cancer   and   how   to   

treat   it.     
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The   modern   era   of   cancer   research   largely   began   when   a   theory   emerged   that   

proposed   cancer   was   a   result   of   mitogenic   signals   that   can   then   cause   chromosome   

abnormalities    (Boveri   1914) .   Many   years   later,   this   theory   was   inadvertently   proven   

when   it   was   discovered   that   a   tumor   causing   avian   virus   contained   DNA   that   encoded   a   

mutant   version   of   an   endogenous   avian   gene    (Stehelin   et   al.   1976) .   The   unmutated,   

endogenous   gene   was   termed   a   “proto-oncogene”,   and   the   mutant   gene   an   “oncogene”,  

defined   its   ability   to   transform   a   cell    (Eva   Y.   H.   P.   Lee   2010) .   Thereafter,   cancer   became   

appreciated   as   a   disease   which   is   caused   by   abnormal   genetic   sequences.   

Later,   oncogenes   were   discovered   to   be   able   to   transform   a   cell   even   if   wild-type   

alleles   are   still   expressed,   and   their   behavior   was   described   as   genetically   dominant.  

Shortly   thereafter,   Rb1,   named   for   its   association   with   retinoblastomas,   was   discovered   

and   characterized    (Knudson   1971) .   However,   it   was   distinct   from   previously   

characterized   oncogenes   because   tumor   formation   required   inactivating   mutations   of   

both   alleles   of   Rb    (J.   M.   Dunn   et   al.   1988) .   Confusingly,   point   mutations   in   other   genes   

whose   wild-type   counterparts   seemed   to   play   tumor   suppressive   roles,   in   some   cases,   

were   able   to   confer   oncogenic   phenotypes   even   when   wild-type   alleles   were   still  

expressed   in   the   cell    (Willis   et   al.   2004) .   Later,   these   mutations   were   discovered   to   

produce   protein   products   that   act   in   dominant   negative   fashion.   Genes   that,   when   

deleted,   cause   formation   of   tumors   and   act   to   suppress   proliferative   processes   were   

then   later   termed   “tumor   suppressor”   genes.     

In   the   years   that   followed,   many   other   genes   went   on   to   be   classified   as   

oncogenes   and   tumor   suppressor   genes.   Importantly,   characterization   of   tumor   

associated   mutants   compared   to   their   wild-type   counterparts   led   to   advancements   in   
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our   understanding   of   cell   signaling   machinery,   DNA   damage,   apoptosis,   and   more   

(Hirota   1998;   A.   J.   Wong   et   al.   1992;   Laken   et   al.   1997;   Nigro   et   al.   1989) .   Many   of   

these   studies   were   conducted   in   the   context   of   development   and   other   biological   

settings    (Luetteke   et   al.   1999;   Lin,   Skapek,   and   Lee   1996;   L.   Liu   et   al.   2002) .   Generally,   

these   studies   showed   that   most   mutations   that   underlie   development   of   a   tumor   act   by   

disrupting   regulatory   processes   in   the   cells   that   give   rise   to   the   tumor.   Over   time,   it   has   

become   clear   that   cancer   progression   is   a   manifestation   of   programs   that   result   from   

dysregulation.     

Despite   these   discoveries,   many   genes,   particularly   those   which   control   tissue   

specific   behavior,   are   poorly   understood   in   development   and   in   disease.   Cancer   

treatments   that   were   discovered   in   the   mid   to   late   1900s   work   by   causing   tissue   

damage    (Chabner   and   Roberts   2005) .   One   of   the   most   effective   treatments,   radiation   

therapy,   revolutionized   cancer   treatment   and   has   become   increasingly   more   effective   at   

tumor   control   and   better   tolerated   by   patients   due   to   advancements   in   dosing   regimen   

and   delivery    (Yifan   Wang   et   al.   2018) .   Similar   to   other   treatments,   radiation   causes   

tissue   damage   and   DNA   damage    (Ward   1986) .   During   this   era,   many   drugs   were   

discovered   on   the   basis   of   how   they   affect   cancer   cell   growth,   rather   than   targeting   a   

specific   gene   or   process,   and   several   of   these   are   still   utilized   today.   Early   iterations   of   

these   therapies   were   poorly   tolerated   in   patients,   and   in   some   cases   had   side-effects   

that   made   treatment   more   harmful   than   beneficial    (Laviano   and   Fanelli   2012) .   Even   

amongst   patients   who   benefited   from   early   therapies,   as   well   as   those   who   benefit   from   

modern   versions   of   them,   these   drugs   delayed,   but   did   not   cure,   cancer    (Hanahan   
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2014) .   In   patients   who   do   respond   to   these   therapies,   a   fraction   of   tumor   cells   almost   

invariably   become   resistant   to   it.    

Modern   approaches   to   drug   discovery   in   cancer   research   generally   aim   to   create   

targeted   and   less   toxic   treatments.   Many   drug   discovery   methodologies   seek   to   disrupt   

features   of   tumors   that   are   either   less   important   or   do   not   affect   normal   tissue   by   

specifically   targeting   highly   recurrent   tumor-specific   mutations    (F.   Cheng   et   al.   2019) .   

Improvements   in   our   understanding   of   biology   and   the   genes   responsible   for   biological   

processes   can   then   be   used   to   inform   approaches   to   cancer   therapy    (F.   Cheng   et   al.   

2019) .   Furthermore,   cancer   treatment   has   moved   away   from   heuristics   that   governed   

earlier   eras   of   cancer   treatment,   which   promoted   highly   aggressive,   invasive,   and   

damaging   treatments.   Today,   data   driven   efforts   have   stratified   patients   into   groups   

based   on   clinical   or   epidemiological   observations   to   identify   patients   that   are   most   likely   

to   benefit   from   treatments.   These   remarkable   efforts   have   informed   treatment   guidelines   

for   numerous   kinds   of   cancers   and   treatments,   including   pharmacological,   surgical,   and   

radiological   treatments    (Sparano   et   al.   2018;   Stearns   2018;   Hamdy   et   al.   2016;   Temel   et   

al.   2010) .   

1.2   Implications   of   oncogenic   mutations   

Advancements   in   DNA   sequencing   have   led   to   rapid   molecular   characterization   

of   tumors   across   many   cancer   types.   These   efforts   have   revolutionized   cancer   research   

and   treatment   through   identification   of   tumor-specific   (and   sometimes   therapeutically   

actionable)   mutations    (F.   Cheng   et   al.   2019) .   Cancer   driver   genes   promote   tumor   

progression   by   conferring   evolutionarily   advantageous   phenotypes   when   mutated,   

relative   to   other   cells   around   it    (Martínez-Jiménez   et   al.   2020) .   It   has   recently   been   
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appreciated   that   more   tissue   specific   cancer   driving   genes   exist   than   those   that   are   

found   across   many   different   kinds   of   cancers    (Martínez-Jiménez   et   al.   2020) .   While   

cancers   that   arise   from   different   tissue   types   have   long   been   recognized   as   different   

diseases    (National   Institutes   of   Health   (US)   and   Biological   Sciences   Curriculum   Study   

2007) ,   the   tissue   specific   behavior   of   some   oncogenic   mutations   is   still   not   well   

understood.     

  

Figure   1 .   Prevalence   of   recurrent   oncogenic   mutations   across   cancer   types.   Scatter   

plot   of   cancer   driver   mutation   prevalence   within   a   given   cancer   type   (y   axis,   

“Prevalence”)   versus   the   number   of   cancer   types   a   gene   acts   as   a   driver   gene   for   (x   

axis,   “Number   of   driver   tumor   types”)   (Left).   Prevalence   of   cancer-specific   highly   

prevalent   drivers   and   cancer-wide   drivers   are   labeled   in   the   scatter   plot   (left)   with   

specific   breakdowns   for   each   driver   gene   prevalence   (y   axis)   in   each   cancer   type   (x   

axis)   (right).   Derived   from    (Martínez-Jiménez   et   al.   2020) .   
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Many   oncogenic   signaling   pathways   are   organized   in   a   tissue   specific   manner   

that   is   specialized   for   homeostatic   processes   of   that   tissue   type    (A.   Sharma   and   Sen   

2013;   Feng   et   al.   2007;   K.   Luo   2017) .   With   the   exception   of   de-novo   activity   conferred   

by   rare   gain-of-function   mutations   and   translocation   events,   the   majority   of   oncogenic   

mutations   affect   signaling   and   transcriptional   networks   that   govern   homeostatic   

processes   in   normal   tissue    (Martínez-Jiménez   et   al.   2020) .   As   such,   tissue   specific   

specialization   of   signaling   and   transcriptional   networks   may   influence   how   tissue   types   

respond   to   oncogenic   mutations.   This   idea   is   further   supported   by   the   frequency   of   

mutations   of   particular   genes   across   cancers   of   certain   tissue   types   ( Figure   1 ),   and   is   

most   evident   in   phenotypes   of   hereditary   oncogenic   mutations   that   confer   

predispositions   to   specific   kinds   of   cancer    (Schneider   et   al.   2017) .     

Some   widespread   cancer   driver   mutations   may   confer   different   phenotypes   

across   different   types   of   tissues    (Schneider   et   al.   2017;   Garber   and   Offit   2005) .   Still,   the   

effects   of   any   individual   oncogenic   driver   mutation   all   share   an   ability   to   give   rise   to   a   

tumor   in   at   least   one   tissue.   Many   of   the   phenotypes   associated   with   cancer   driver   

mutations   in   cancer   cells   are   described   as   hallmarks   of   cancer,   which   are   repeatedly   

observed   across   many   different   kinds   of   tumors    (Hanahan   and   Weinberg   2011) .   Thus,   

although   most   cancer   driver   mutations   do   exhibit   tissue   specificity    (Martínez-Jiménez   et   

al.   2020) ,   their   associated   phenotypes   do   share   similarities   that   are   frequently   observed   

in   many   kinds   of   cancers    (Hanahan   and   Weinberg   2011) .   Still,   the   mechanism   by   which   

cancer   driver   genes   produce   these   phenotypes    (Hanahan   and   Weinberg   2011)    may   be   

different.     
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Despite   recognized   and   central   regulatory   roles   in   cell   proliferation,   some   

widespread   cancer   drivers,   such   as   TP53   and   RB,   are   thought   to   act   in   pathways   with   

many   functionally   redundant   regulators    (Lipinski   and   Jacks   1999;   Hanahan   and   

Weinberg   2011;   Ghebranious   and   Donehower   1998) .   Many   of   these   genes   drive   several   

cancer   types   and   are   recognized   as   ubiquitous   regulators   of   system   stability   and   

regulatory   processes    (Martínez-Jiménez   et   al.   2020) ,   particularly   those   involved   in   

proliferation.   This   finding   is   not   surprising   given   that   the   defining   feature   of   cancer   is   

uncontrolled   cell   division    (Weinberg   2013) .   However,   these   genes   still   have   some   

degree   of   cancer   type   specificity    (Martínez-Jiménez   et   al.   2020)    ( Figure   1 ).   The   roles   of   

these   genes   in   tissue   homeostasis,   which   is   defined   as   biological   systems   designed   to   

respond   to   signals   and   maintain   normal   state   of   the   tissue    (Cannon   1929) ,   and   

development   is   extremely   important.   In   many   cases,   other   genes   in   prevalent   driver   

gene   pathways   or   regulatory   circuits   can   act   in   a   functionally   redundant   manner   

(Schmale   and   Bamberger   1997;   Van   Nostrand   et   al.   2017) .   In   these   circumstances,   

functional   redundancy   must   be   overcome   in   order   for   the   phenotypic   effects   of   these   

mutations   to   manifest   in   cancer   cells.   Even   the   most   widespread   cancer   driving   

mutations   exhibit   some   degree   of   tissue   specificity,   suggesting   that   proliferation,   or   any   

processes   implicated   in   widely   shared   hallmarks   of   cancer   are   at   least   partially   

regulated   in   a   tissue   specific   manner    (Castellano   and   Santos   2011) .   If   functional   

redundancy   of   key   regulatory   genes   is   achieved   through   tissue   specific   gene   

expression,   the   mechanisms   by   which   this   redundancy   is   overcome   in   cancer   cells   may   

also   be   tissue   specific.   As   such,   some   tissues   may   be   more   sensitive   to   a   particular   
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oncogenic   driver   mutation   than   another,   and   could   explain   the   prevalence   of   oncogenic   

driver   genes   across   cancer   types.   

Components   of   oncogenic   signalling   networks   are   expressed   broadly   across   

tissue   types.   In   most   cases,   there   is   very   little   understanding   of   how   these   networks   are   

specialized   for   certain   tissue   types   and   it   is   not   understood   why   certain   mutations   are   

able   to   transform   some   tissues   but   not   others.   It   is   possible   that   further   characterization   

of   cancer-specific   driver   genes   may   lead   to   further   insight   into   the   specialization   of   

tissue   specific   gene   expression   and   signaling   networks.   For   more   prevalent   driver   

genes,   a   better   understanding   of   tissue   specific   regulatory   architecture   and   topology   

may   also   lead   to   insights   of   tissue   specific   functional   redundancy.     

One   of   the   shared   features   of   cancer   driver   genes   commonly   found   across   

cancers   of   many   tissue   types   is   their   involvement   in   processes   that   stabilize   some   

aspect   of   a   cell.   As   an   example,   P53   and   DNA   repair   machinery   confer   genomic   stability   

(Agarwal   et   al.   1998) .   In   any   case,   dysregulation   of   these   homeostatic   processes   

creates   opportunities   for   cancer   cells   to   acquire   new   mutations   or   modify   gene   

expression   which   can   be   advantageous   to   the   cell   or   tumor   by   diversifying   responses   to   

selection   pressures.   Importantly,   this   can   facilitate   adaptation   to   changes   in   the   

environment   of   the   tumor.   

1.3   The   Dynamic   Tumor   Microenvironment   

For   many   cancer   types,   a   tumor   mass   consists   of   tumor   cells   and   a   wide   variety   

of   other   cell   types    (Whiteside   2008;   M.-Z.   Jin   and   Jin   2020) .   These   include   fibroblasts,   

blood   vessels,   nerves,   and   immune   infiltrating   cells    (M.-Z.   Jin   and   Jin   2020) .   Jointly,   

cells   of   the   tumor   microenvironment   create   chemical   microenvironments   that   can   impart   
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selective   pressures   on   tumor   cells   and   otherwise   influence   the   behavior   of   other,   

non-cancerous   adjacent   cells.   Additional   biophysical   or   mechanical   features   of   the   

microenvironment   that   are   dictated   by   the   organs   where   a   tumor   develops   can   also   

influence   cells   of   the   tumor   microenvironment    (X.   Li   and   Wang   2020) .     

Tissue   microenvironments   are   formed   by   an   array   of   diverse   cell   types.   As   

tumors   grow   and   progress,   the   tumor   microenvironment   changes   as   a   consequence   of   

changes   in   physical   properties,   nutrient   availability,   metabolites,   oxygenation,   pH,   etc.   

(M.-Z.   Jin   and   Jin   2020) .   Many   of   these   are   a   result   of   having   an   imbalance   of   cells   

proliferating   or   obstructing   tissue   structures,   or   tumor-mediated   dysregulation   of   

untransformed   cells    (Sugimoto   et   al.   2006;   F.   R.   Balkwill,   Capasso,   and   Hagemann   

2012) .   In   any   case,   as   tumors   grow   the   tissue   they   arise   in   is   progressively   pushed   to   a   

state   of   disequilibrium.     

The   tumor   microenvironment,   defined   as   the   environment   where   tumors   form   and   

develop,   exposes   tumor   cells   to   interactions   with   many   different   kinds   of   cells   that   

constitute   homeostatic   regulatory   systems.   Importantly,   this   environment   is   thought   to   

impart   strong   enough   selective   pressures   on   tumor   cells   that   continually   lead   to   

selection   of   tumor   cells   which   can   exploit   non-cancer   cells   of   the   tumor   

microenvironment   for   tumor-promoting   functions    (Baghban   et   al.   2020) .   Intercellular   

communication   between   tumor   cells   and   cells   of   the   tumor   microenvironment   is   

mediated   through   secretion   of   molecules   which   affect   survival,   inflammation,   matrix   

remodeling,   growth,   and   more    (Baghban   et   al.   2020) .   Consequently,   it   is   important   to   

understand   how   cells   of   the   tumor   microenvironment   respond   to   changes   that   result   

from   tumor   development   and   progression.     
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Many   of   the   regulatory   systems   implicated   in   cancer   conventionally   act   in   

tumor-suppressive   ways,   including   as   a   surveillance   mechanism   for   aberrant   cells   

(Swann   and   Smyth   2007) .   As   such,   it   is   fascinating   that   tumor   cells   adapt   to   the   effects   

of   these   systems   in   a   manner   that   not   only   allows   tumor   cells   to   evade   detection   by   

these   regulatory   systems,   but   also   exploit   them    (Hanahan   and   Weinberg   2011) .   The   

contrast   between   overt   regulatory   responses   that   are   canonically   anti-tumor   with   those   

that   are   tumor-promoting   suggests   that   tumor   progression   requires   changes   in   dynamic   

interactions   to   redefine   their   functional   relationships.   Thus,   the   tumor   microenvironment   

has   a   strong   influence   over   how   a   tumor   progresses;   iterative   changes   in   the   interaction   

between   tumor   cells   and   cells   of   the   microenvironment   likely   govern   tumor   evolutionary   

processes    (Lorusso   and   Rüegg   2008) .   Importantly,   this   creates   the   need   to   characterize   

cells   of   the   tumor   microenvironment   in   a   longitudinal   fashion,   or   in   the   context   of   tumor   

progression.   Conversely,   tumor   cells   should   be   characterized   in   the   context   of   the   

changing   tumor   microenvironment   when   studying   tumor   progression.   

1.4   Perspectives   of   Tumor   Heterogeneity   

Over   the   course   of   tumor   progression,   changes   in   the   tumor   microenvironment   

impart   dynamically   changing   selective   pressures   on   tumor   cells.   As   such,   mutations   or   

changes   in   gene   expression   which   can   lead   to   further   destabilization   of   the   cell   promote   

plasticity   of   cancer   cell   states;   tumor   cells   with   destabilized   states   may   have   better   

evolutionary   fitness   than   those   which   do   not    (Hanahan   and   Weinberg   2011;   Nemanja   D.   

Marjanovic,   Weinberg,   and   Chaffer   2013) .   Over   time,   this   may   lead   to   cells   with  

dysregulated   or   destabilized   states   outcompeting   those   which   are   more   stable.   Because   

the   tumor   microenvironment   is   not   uniform,   the   tumor   cells   which   are   favored   in   one   part   
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of   the   microenvironment   may   not   be   favored   in   others.   Additionally,   this   phenotypic   

diversification   can   lead   to   co-evolution   of   tumor   clones   which   play   functionally   distinct   

roles   in   tumors    (Tabassum   and   Polyak   2015) .   Globally,   this   leads   to   evolution   of   

heterogeneous   tumors   and   provides   a   possible   explanation   for   variation   in   tumor   

therapeutic   responses.   In   order   for   a   productive   therapeutic   response,   cancer   therapies   

must   simultaneously   target   multitudes   of   functionally   distinct   populations   in   a   

heterogeneous   tumor.   Overall,   selective   pressures   and   dysregulation   of   cell   state   

together   orchestrate   changes   which   underlie   tumor   heterogeneity,   evolution,   and   

progression.     

Histological   heterogeneity   in   tumors   has   been   observed   for   many   years   

(Hanahan   and   Weinberg   2011)    and   is   generally   described   as   a   feature   of   tumors   that   is   

dependent   on   time   or   tumor   progression    (Janiszewska   2020) .   Functionally,   clonal   

subpopulations   of   heterogeneous   tumors   were   known   to   have   different   characteristics   

before   mutational   heterogeneity   was   widely   described    (Heppner   and   Miller   1983) .   

Tumor   heterogeneity   has   been   most   heavily   implicated   in   and   studied   in   the   context   of   

therapeutic   resistance    (Dagogo-Jack   and   Shaw   2018)    because   tumor   heterogeneity   is   

intricately   related   to   tumor   cell   plasticity   and   adaptation   to   selective   pressures   of   

therapeutic   treatment.   In   the   absence   of   therapeutic   intervention,   selective   pressures   

from   the   tumor   microenvironment,   from   other   subclonal   tumor   cell   populations,   or   from   

other   sources,   act   dynamically.   Thus,   tumor   heterogeneity   has   an   extensive   relationship   

with   tumor   progression.   As   such,   understanding   the   processes   by   which   tumors   become   

heterogeneous   is   crucial   to   understanding   how   tumors   progress.     
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1.4.1   Mutational   Intra-Tumoral   Heterogeneity   

Loss   of   genome   stability   is   one   of   the   most   widely   recognized   mechanisms   by   

which   tumors   acquire   heterogeneous   mutations.   It   has   multiple   causes;   however,   

irrespective   of   how   genomic   instability   occurs,   it   produces   a   positive   effect   on   the   overall   

fitness   of   the   tumor    (Dagogo-Jack   and   Shaw   2018) ,   within   a   certain   limit.   Several   

people   have   proposed   that   in   certain   contexts,   genomic   instability   is   required   for   tumor   

formation    (Negrini,   Gorgoulis,   and   Halazonetis   2010) .   In   models   for   many   kinds   of   

cancer,   tumor   formation   is   thought   to   require   a   sequential   series   of   defined   mutations   

(Martincorena   and   Campbell   2015)    that   arise   across   many   cell   divisions   and   is   a   

process   by   which   intra-tumor   heterogeneity   inherently   becomes   created    (P.   C.   Nowell   

1976) .     

Because   mutations   are   heritable,   when   a   mutation   arises   in   an   evolutionary   

branch   during   tumor   progression,   it   creates   a   clone.   Clonal   evolution   in   cancer   is   largely   

believed   to   occur   through   the   Nowell   model   of   tumor   progression,   in   which   sequential   

mutations   create   complex   branched   mutational   trajectories    (Greaves   and   Maley   2012)   

that   are   driven   by   selective   pressures   ( Figure   2 ).   Through   studies   of   clonal   mutations   in   

cancer   with   whole   exome   sequencing   and   next   generation   DNA   sequencing,   in   contexts   

where   strong   selective   pressures   exist,   this   model   for   subclonal   selection   has   been   

supported    (A.   W.   Zhang   et   al.   2018;   Janiszewska   et   al.   2015) .   In   some   specific   cancers,   

tumor   progression   has   been   defined   by   sequential   acquisition   of   mutations   which   drive   

cancer    (Martincorena   and   Campbell   2015) .   However,   in   reality,   not   all   mutations   confer   

an   effect   on   the   evolutionary   fitness   of   a   cell,   but   still   arise   in   a   clonal   manner   alongside   

mutations   which   do   affect   cell   fitness.   These   mutations   which   do   not   affect   cell   fitness   
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are   classified   as   passenger   mutations    (McFarland   et   al.   2017) .   In   models   of   neutral   

evolution,   after   acquiring   the   mutations   required   for   transformation,   subclone   evolution   

occurs   through   acquisition   of   passenger   mutations    (M.   J.   Williams   et   al.   2016) ,   and   the   

observed   allelic   frequencies   of   mutations   which   define   subclones   are   driven   by   

probability   and   exponential   growth.   In   this   neutral   evolution   model,   these   subclones   do   

not   evolve   through   selection.   Notably,   this   model   assumes   there   are   no   strong   selective   

pressures   which   drive   evolution   during   timescales   in   which   neutral   growth   dynamics   are   

observed.     

  

Figure   2.    Clonal   evolutionary   tree   of   tumor   cells.   Adapted   from    (P.   C.   Nowell   1976) .   

Tumor   subclones   are   denoted   as   T1-T6.   Cells   in   light   grey   depict   subclones   which   

undergo   negative   selection.   
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For   many   years,   it   was   difficult   to   distinguish   mutations   in   cancer   driver   genes   

from   passenger   mutations.   While   these   efforts   are   largely   ongoing,   advancements   in   

DNA   sequencing   technologies   have   afforded   greater   resolution   of   mutational   patterns   

and   their   temporal   dynamics   in   tumors    (Goodwin,   McPherson,   and   McCombie   2016) .   

Clonal   outgrowth   of   tumor   cells   which   acquire   mutations   in   cancer   driving   genes   gives   

cells   a   selective   advantage   relative   to   those   without   these   mutations    (Martínez-Jiménez   

et   al.   2020) .   Modern   approaches   to   molecular   profiling   of   mutations   in   tumors   utilize   the   

prevalence   of   a   given   mutation   in   clonal   expansion   of   a   tumor   or   its   prevalence   across   

patients   to   identify   these   cancer   driving   genes.   Thereafter,   the   frequency   at   which   these   

candidate   driver   genes   are   observed   are   compared   to   those   expected   for   passenger   

and   driver   mutations   in   computational   models   of   clonal   evolutionary   dynamics    (Foo   et   

al.   2015) .   In   combination   with   these   models,   data   derived   from   other   sources   (e.g.   

across   multiple   patients   with   the   same   cancer   type)   help   to   prioritize   mutations   in   

putative   driver   genes   that   are   highly   recurrent   across   patients   and   those   known   to   play   

functionally   important   roles   in   cancer   progression    (Raphael   et   al.   2014) .   Today,   many   

genetic   mutations   observed   in   cancer   have   been   classified   in   a   systematic   manner.   

The   assumptions   that   underlie   many   models   of   tumor   evolution   limit   their   utility   in   

describing   generalized   processes   of   tumor   evolution,   because   tumors   can   evolve   

through   a   variety   of   mechanisms   that   are   not   mutually   exclusive    (Martincorena   and   

Campbell   2015) .   In   addition,   the   effect   of   selective   pressures   on   tumor   cells   may   not   be   

constant   throughout   the   course   of   tumor   evolution.   It   is   possible   tumor   cells   evolve   as   

an   adaptation   to   selective   pressures;   in   the   absence   of   additional   selective   pressures,   

subclones   may   reach   a   point   of   equilibrium   in   which   neutral   evolution   accurately   models   
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tumor   progression    (M.   J.   Williams   et   al.   2016) .   However,   additional   selective   pressures   

develop   in   response   to   therapy,   in   response   to   changes   in   the   microenvironment   that   

result   from   expansion   of   the   tumor   or   disruption   of   its   surrounding   tissue,   in   response   to   

the   influence   of   latent   variables   that   are   unknown,   or   in   response   to   the   effects   of   

spontaneously   arising   mutations   which   alter   the   fitness   landscape   of   tumor   cells.   As   

such,   when   additional   selective   pressures   are   imposed   upon   tumors   after   a   period   of   

neutral   growth,   tumor   evolution   may   instead   follow   the   Nowell   model   until   the   tumor   has   

adapted.   Still,   these   models   of   tumor   evolution   have   been   essential   in   current   

understandings   of   tumor   dynamics,   heterogeneity,   and   evolution.   

1.4.2   Functional   Tumor   Heterogeneity   

Additional   models   of   tumor   evolution   have   more   recently   emerged   that   are   

formed   on   the   basis   that   tumor   subclones   may   have   variable   functional   and   phenotypic   

plasticity.   The   cancer   stem   cell   model   proposes   that   cancer   stem   cells   are   a   functionally   

plastic   group   of   cells   within   a   tumor   that   produce   and   differentiate   into   populations   that   

form   subclones   of   the   tumor    (Clevers   2011) .   With   respect   to   mutational   status,   under   

this   model,   mutations   which   define   a   subclone   are   generated   in   and   from   parental   

cancer   stem   cells    (Greaves   and   Maley   2012) .   This   model   has   been   particularly   

influential   in   studying   resistance   to   therapy    (N.   Y.   Frank,   Schatton,   and   Frank   2010;   

Ishikawa   et   al.   2007) .   In   some   cases,   cancer   stem   cells   have   been   implicated   as   a   

source   of   genetic   diversity   in   a   tumor    (Greaves   2010)    that   can   underlie   therapeutic   

resistance    (J.-K.   Kim,   Jeon,   and   Kim   2015) .   Cancer   stem   cells   are   defined   by   their   

functional   plasticity,   which   can   be   a   consequence   of   genomic   instability,   but   can   also   

arise   through   changes   in   gene   expression   that   are   not   driven   by   mutations    (Kreso   and   
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Dick   2014) .   In   fact,   not   all   histological   heterogeneity   can   be   explained   by   heterogeneity   

in   genetic   mutations    (Hlubek   et   al.   2007;   Stanta   and   Bonin   2018) .     

Irrespective   of   mutation   status,   under   the   cancer   stem   cell   model,   a   cancer   stem   

cell   has   the   capacity   to   give   rise   to   functionally   distinct   subclones,   each   of   which   can   

promote,   facilitate,   and/or   drive   tumor   progression    (Shackleton   et   al.   2009) .   Classically,   

a   single   cancer   stem   cell   must   also   be   able   to   give   rise   to   all   of   the   cell   types   that   are   

observed   in   a   heterogeneous   tumor    (Shackleton   et   al.   2009) .   From   mutational   status   

alone,   it   is   difficult   to   distinguish   cancer   stem   cell   driven   tumor   heterogeneity   from   

subclonal   selection   without   empirical   knowledge   of   the   functional   plasticity   of   parental   

subclones.   For   this   reason,   the   cancer   stem   cell   model   is   largely   ignored   in   studies   of   

intra-tumoral   mutational   heterogeneity.   Instead,   gene   expression   of   tumor   

subpopulations   have   been   used   to   further   interrogate   the   cancer   stem   cell   model   of   

tumor   evolution.     

In   cancers   such   as   leukemia,   this   model   was   largely   supported   when   it   was   

found   that   only   a   small   subpopulation   of   tumor   cells,   cancer   stem   cells,   had   the   capacity   

to   form   new   tumors    (Bonnet   and   Dick   1997) .   Cancer   stem   cells   have   been   extensively   

implicated   in   disease   recurrence    (J.-K.   Kim,   Jeon,   and   Kim   2015)    and   putative   cancer   

stem   cells   in   some   contexts   have   exhibited   gene   expression   profiles   which   promote   

resistance   to   chemotherapy   and   radiation    (J.-K.   Kim,   Jeon,   and   Kim   2015) .   
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Figure   3 .   Adapted   from    (Bonnet   and   Dick   1997;   A.   Singh   and   Settleman   2010) .   

Non-malignant   stem   cells   (green)   that   can   give   rise   to   differentiated   cells   (orange)   

undergo   transformation   to   become   a   cancer   stem   cell   (CSC,   red).   Cancer   stem   cells   

can   reversibly   give   rise   to   multiple   cell   types   of   a   tumor   (shades   of   grey).     

Measuring   gene   expression   in   individual   tumor   cells   is   a   widely   accepted   

approach   for   studying   tumor   heterogeneity    (M.   Li   et   al.   2020)    and   is   one   of   the   most   

prevalent   ways   in   which   functional   heterogeneity   in   tumors   has   been   described.   The   

revolutionary   discovery   that   cancer   cells   can   latently   reactivate   an   embryonic   

developmental   program,   the   epithelial-to-mesenchymal   transition   (EMT),   generated   

strong   support   for   the   cancer   stem   cell   hypothesis    (Mani   et   al.   2008) .   This   program   was   

canonically   described   during   formation   of   the   primitive   streak   in   chick   embryos,   a   

process   that   is   important   for   embryonic   gastrulation    (Hay   1995) .   Cells   which   have   

undergone   EMT   during   development   have   the   ability   to   differentiate   into   many   cell   

types.   Importantly,   these   cells   are   known   to   have   better   migratory   potential   as   a   

consequence   of   change   in   polarization   and   subsequently   in   overall   morphology    (A.   

Singh   and   Settleman   2010) .   
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Across   many   tumor   types,   particularly   those   which   arise   in   the   breast   and   

nervous   system,   there   is   extensive   evidence   for   the   existence   of   cancer   stem   cells   and   

the   importance   of   their   roles   in   tumor   progression    (Bjerkvig   et   al.   2005) .   Amongst   these   

kinds   of   tumors,   questions   still   remain   about   the   origin   of   cancer   stem   cells.   Many   

tumors   are   thought   to   arise   from   tissues   that   are   terminally   differentiated    (Sell   2010) .   

Widely   accepted   models   of   cell   differentiation   in   development   postulate   that   cells   which   

are   more   differentiated   have   less   potential   to   give   rise   to   different   cell   types   than   those  

which   are   less   differentiated.   This   forms   the   basis   for   the   Waddington   model   of   cell   

differentiation    (J.   Wang   et   al.   2011) .   As   such,   the   notion   that   a   multipotent   stem   cell   

could   evolve   from   a   terminally   differentiated   somatic   cell   challenged   the   Waddington   

model.   With   the   discovery   that   terminally   differentiated   somatic   cells   can   be   artificially   

reprogrammed   into   pluripotent   stem   cells    (Kyttälä   et   al.   2016) ,   it   became   more   widely   

appreciated   that   it   is   possible   for   terminally   differentiated   cells   to   become   

reprogrammed   and   afforded   greater   plausibility   to   the   cancer   stem   cell   model.   

While   this   model   has   been   extremely   useful   in   understanding   the   progression   of   

several   cancer   types,   it   is   considered   controversial.   Many   criticisms   of   the   cancer   stem   

cell   model   are   based   upon   the   expected   prevalence   of   stem   cells   in   a   tumor,   and   in   

most   studies,   is   reported   to   be   a   rare   subpopulation   of   a   tumor    (Shackleton   et   al.   2009) .   

If   cancer   stem   cells   are   the   only   populations   within   a   tumor   that   are   able   to   proliferate,   

then   observed   tumor   growth   kinetics   are   inconsistent   with   the   cancer   stem   cell   model   

(Shackleton   et   al.   2009) .   At   the   same   time,   cases   of   resistance   to   cancer   therapy   have   

provided   strong   supporting   evidence   for   the   model.   Frequently,   a   less   controversial   
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stance   is   taken   to   the   cancer   stem   cell   model   and   it   is   often   reported   to   be   well   

supported   in   some   cancer   types,   but   not   others    (Shackleton   et   al.   2009) .     

In   any   case,   studies   concerning   stem   cells   in   cancer   created   extensive   

discussion   about   the   differentiation   state   of   cancer   cells,   with   particular   importance   on   

the   developmental   history   of   a   cell.   Striking   evidence   arose   implicating   transcription   

factors   known   to   play   essential   roles   during   embryonic   development,   even   outside   of   

the   context   of   the   EMT,   in   cancer   progression    (Mani   et   al.   2008) .   Later   studies   that   drew   

associations   between   gene   expression   programs   and   tumor   progression   status,   

particularly   the   capacity   to   seed   metastases,   further   characterized   how   differentiation   

status   in   solid   tumors   becomes   dysregulated   in   tumor   evolution    (Winslow   et   al.   2011) .   In   

many   cases,   cells   not   only   progressively   lose   their   original   identities,   but   also   

simultaneously   adopt   hallmarks   of   different   tissues    (Snyder   et   al.   2013) .   Because   cell   

differentiation   is   thought   to   be   driven   by   progressive   epigenetic   modification,   profiling   

chromatin   accessibility   in   cancer   cells   has   more   recently   become   a   focal   point   of   cancer   

research.   

1.4.3   Tumor   Heterogeneity   and   Metastasis   

Metastasis   is   the   primary   cause   of   complications   which   lead   to   death   in   cancer   

patients    (Christofori   2006) .   The   end-state   of   cancer   progression   has   conventionally   

been   distant   metastatic   spread;   when   cancer   has   progressed   to   this   point,   therapeutic   

intervention   is   generally   considered   non-curative    (Croker   and   Allan   2008;   L.   Dong   et   al.   

2019;   Révész   et   al.   2017) .   Tumor   heterogeneity   is   a   likely   mechanism   through   which   

cancer   cells   metastasize   because   it   generates   a   diverse   array   of   tumor   subclones   with   

varying   functions,   phenotypes,   and   capabilities.   Some   fraction   of   these   subclones   either   
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may   promote   metastasis   or   may   themselves   be   capable   of   metastatic   spread    (Révész   

et   al.   2017) .     

A   widely   accepted   model   of   metastatic   spread   in   cancer   is   frequently   referred   to   

as   the   Metastatic   Cascade    (Hapach   et   al.   2019) .   In   this   model    (J.   Yang   et   al.   2004)   

( Figure     4 ),   epithelial   lesions   (carcinomas)   develop   at   the   primary   site   and   then   begin   to   

disrupt   the   tissue.   Invasive   lesions   arise   by   invading   through   the   basement   membrane,   

which   defines   the   boundaries   of   epithelial   tissues,   in   a   process   known   as   cell   migration.   

Thereafter,   these   lesions   become   invasive   carcinomas   and   are   considered   to   be   

malignant.   Malignant   cells   can   continue   to   expand   and   proliferate   in   the   primary   site,   

and   can   also   eventually   intravasate   into   the   surrounding   vasculature   and   lymphatic   

vessels,   after   which   they   become   circulating   tumor   cells.   This   process   is   thought   to   

occur   through   multiple   mechanisms;   the   first   of   which   involves   invasion   and   circulation   

of   an   individual   cell.   The   second   model   for   this   process   involves   multiple   cells   that   

facilitate   different   processes   associated   with   intravasation   and   the   remaining   steps   of   

the   metastatic   cascade,   and   is   termed   collective   cell   migration    (Yang   Yang   et   al.   2019) .   

After   gaining   access   to   the   bloodstream,   if   these   circulating   tumor   cells   survive,   some   

fraction   of   them   will   extravasate   from   the   circulatory   or   lymphatic   system   and   infiltrate   

organs   that   can   be   close   to   the   primary   site   (local   metastasis)   or   far   away   (distant   

metastasis).   In   the   final   step   of   the   metastatic   process,   some   of   these   infiltrating   cells   

colonize   these   sites,resulting   in   micro-,   and   eventually,   macro-metastases.     
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Figure   4.    The   Metastatic   Cascade.   Adopted   from    (J.   Yang   et   al.   2004) .   

The   functional   requirements   for   completion   of   the   metastatic   cascade   are   

numerous,   and   as   a   consequence,   metastasis   is   believed   to   be   an   inherently   inefficient   

process    (Hapach   et   al.   2019) .   These   inefficiencies   are   compounded   by   diverse   selective   

pressures   that   act   upon   cancer   cells   in   the   different   environments   associated   with   the   

metastatic   cascade,   particularly   in   the   circulatory   system,   where   cells   are   exposed   to   

circulating   lymphocytes.   A   number   of   mechanisms   have   been   proposed   to   address   how   

circulating   tumor   cells   survive   these   selective   pressures    (Q.   Liu,   Liao,   and   Zhao   2016;   

Raimondi   et   al.   2017;   Lo   et   al.   2020) .   In   general,   circulating   tumor   cells   are   thought   to   

be   short   lived    (Krog   and   Henry   2018)    and   must   overcome   selective   pressures   in   short   

time   scales.   Consequently,   negative   selection   during   cancer   cell   dissemination   is   

thought   to   create   a   strong   bottle-neck   and   very   few   cells   are   thought   to   survive   this   

process.   Furthermore,   additional   selective   pressures   in   the   tissues   that   circulating   tumor   

cells   eventually   infiltrate   cause   an   additional   bottleneck   in   metastasis    (Massagué   and   

Obenauf   2016) .   Many   cells   which   reach   distant   organs   may   lie   dormant   for   many   years,   

not   actively   proliferating    (Massagué   and   Obenauf   2016) .   In   some   cases,   these   
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infiltrating   tumor   cells   are   unable   to   seed   a   macro-metastatic   lesion    (Massagué   and   

Obenauf   2016) .     

Ultimately,   tumor   heterogeneity   is   implicated   in   metastasis   because   it   generates   

phenotypic   diversity   which   can   allow   cancer   cells   to   overcome   selective   pressures   of   

the   metastatic   cascade.   Although   inefficient,   cells   disseminate   from   the   primary   tumor   

frequently    (Celià-Terrassa   and   Kang   2016) .   The   rate   at   which   these   cells   survive   and   

complete   the   metastatic   cascade   may   be   low,   but   over   time,   the   low   probabilities   of   

survival   are   effectively   cumulative    (Szczurek   et   al.   2020) .   The   statistical   likelihood   that   

an   individual   cancer   cell   can   generate   distant   or   local   metastasis   is   low,   but   with   respect   

to   overt   disease   progression,   the   likelihood   that   a   disseminating   tumor   cell   will   

successfully   seed   a   metastatic   lesion   effectively   increases   as   more   cells   migrate   away   

from   the   primary   tumor   over   time    (Szczurek   et   al.   2020) .   In   addition,   changes   in   the   

composition   of   the   primary   tumor,   which   are   also   largely   dependent   on   time,   can   

increase   the   likelihood   of   metastasis   by   creating   a   microenvironment   that   generates   

tumor   subclones   which   can   overcome   selective   pressures   of   metastasis    (Szczurek   et   al.   

2020) .     

The   majority   of   the   work   presented   throughout   this   thesis   is   primarily   concerned   

with   time-dependent   changes   in   the   primary   tumor,   as   these   changes   are   major   

determinants   of   productive   metastasis.   Importantly,   understanding   dynamic   changes   of   

primary   tumors   can   still   lead   to   meaningful   insight   on   metastatic   processes.   Some   

studies   conducted   on   primary   tumors   have   proposed   that   certain   cancer   cells   may   

become   poised   to   metastasize   to   particular   regions   of   the   body   while   still   located   in   the   

primary   tumor,   which   is   often   described   as   formation   of   a   pre-metastatic   niche    (Peinado   
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et   al.   2017) .   While   this   body   of   work   focuses   on   the   primary   tumor,   it   is   important   to   note   

that   later   steps   of   the   metastatic   cascade   are   equally   important   in   driving   overall   

disease   progression.     

1.5   Emerging   Evidence   for   the   Role   of   the   Epigenome   in   Tumor   Heterogeneity   

Gene   expression   is   a   product   of   chemical   modifications   of   the   genome   that   

control   accessibility   of   DNA   without   changing   its   sequences,   termed   epigenetics   

(Holliday   1987) .   Epigenetics   is   important   in   biology   primarily   because   it   facilitates   cell   

fate   commitment   and   maintenance   of   cell   identity    (Morris   and   Daley   2013) .   The   aberrant   

epigenomic   landscape   of   cancer   cells   has   been   described   for   many   years   in   cancer   

research    (Jian   Cao   and   Yan   2020) .   Epigenetic   dysregulation   is   not   surprising,   given   that   

many   tumors   have   hallmarks   of   increasingly   more   aberrant   differentiation   as   they   

progress.   Further,   dysregulation   of   chromatin   structure   can   lead   to   further   regulatory   

instability    (Reinberg   and   Vales   2018)    and   may   be   a   mechanism   of   cancer   cell   plasticity.   

Chromatin   accessibility   is   thought   to   be   a   determinant   of   gene   expression,   and   has   

therefore   been   an   important   topic   of   interest   in   biology.     

Chromatin   accessibility   is   regulated   through   multiple   forms   of   epigenetic   

modifications.   DNA   itself   can   be   directly   modified   through   methylation    (Feinberg   and   

Vogelstein   1983)    of   regulatory   sequences   frequently   found   at   the   5’   end   of   genes,   many   

of   which   exhibit   tissue   specific   expression    (Esteller   2008) .   Additionally,   chemical   

modification   of   histones,   proteins   that   package   DNA,   also   affect   chromatin   accessibility   

(Cavalli   and   Heard   2019) .   There   is   also   evidence   that   chromatin   structure   can   be   

regulated   through   other   mechanisms,   including   through   non-coding   RNAs,   to   influence   

‘higher-order’   chromatin   structure.   Together,   epigenetic   modifications   orchestrate   
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complex,   3-dimensional   chromatin   topologies   which   are   heritable   and   are   believed   to   

ultimately   be   responsible   for   regulation   of   gene   expression   and   cell   identity    (Cavalli   and   

Heard   2019) .   Our   understanding   of   how   DNA   sequences   define,   regulate,   and/or   control   

biological   processes    (E.   T.   Liu   2008)    is   largely   the   result   of   advancements   in   functional   

genomics.   In   particular,   chromatin   accessibility   at   transcription   factor   binding   sites,   

which   varies   across   different   tissues,   is   one   of   the   ways   cell   identity   is   thought   to   be   

regulated    (Deplancke,   Alpern,   and   Gardeux   2016) .   Functionally,   it   is   well   established   

that   epigenetic   state   regulates   gene   expression    (Gibney   and   Nolan   2010) .   As   such,   

associations   between   gene   expression   and   epigenetic   features   have   led   to   recent   

computational   advancements   that   aim   to   identify   regions   of   the   genome   that   are   

regulated   to   control   cellular   identity    (Shim   et   al.   2020) .     

Chromatin   structure   and   topology   are   extraordinarily   complex   and   highly   

regulated    (Esteller   2008) .   Our   mechanistic   understanding   of   epigenetics   and   how   

chromatin   topology   or   accessibility   act   to   regulate   gene   expression   networks   has   been   

largely   restricted   by   technical   limitations   of   measuring   epigenetic   modifications   or   

chromatin   structure.   Until   recently,   the   vast   majority   of   epigenetic   profiling   was   

conducted   through   identification   of   sites   in   the   genome   where   a   particular   epigenetic   

modification   is   located,   which   is   measured   in   material   isolated   from   a   large   number   of   

cells    (Buenrostro   et   al.   2015) .   While   the   effects   of   many   epigenetic   modifications   are   

well   characterized   in   isolation,   they   act   in   a   combinational   fashion   to   regulate   chromatin   

accessibility.   As   such,   it   is   not   always   possible   to   predict   chromatin   accessibility   by   

mapping   particular   epigenetic   modifications    (Kouzarides   2007) .   For   this   reason,   the   

development   of   assays   which   allow   epigenomic   profiling   that   are   not   dependent   on   
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interpreting   epigenetic   modifications   themselves   have   been   crucial   in   epigenetics.   

Advancements   in   these   assays   led   to   the   development   of   ATAC-seq,   Assay   for   

Transposase-Accessible   Chromatin   with   high-throughput   sequencing    (Buenrostro   et   al.   

2015) .     

As   our   mechanistic   understanding   of   oncogenic   mutations   has   improved,   it   has   

become   increasingly   more   widely   accepted   that   cancer   progression   is   driven   by   

mutations   in   a   limited   number   of   genes   and   is   dependent   on   epigenetic   changes    (Klein   

and   Klein   1985;   Vogelstein   et   al.   2013;   Martínez-Jiménez   et   al.   2020) .   Early   studies   of   

DNA   modifications   in   cancer   found   that   hypermethylation   of   tumor   suppressor   gene   

promoters   that   results   in   gene   silencing   could   be   a   mechanism   by   which   tumor   

suppressor   genes   are   inactivated   and   has   otherwise   been   implicated   in   destabilizing   the   

genome   and   cell   state    (Esteller   2008) .   Conversely,   loss   of   these   modifications   in   other   

areas   of   the   genome   has   also   been   implicated   in   genomic   instability   as   well   as   aberrant   

expression   of   embryonic   and   tissue   restricted   genes    (Esteller   2008) .   

Perhaps   the   most   compelling   evidence   for   epigenetic   dysregulation   in   cancer   is   

that   many   genes   which   modify   chromatin   accessibility   are   highly   mutated   across   a   

variety   of   cancer   types    (C.   Plass   et   al.   2013) .   The   epigenomic   landscape   of   cancer   is   

highly   dysregulated    (Jones   and   Baylin   2007) ,   both   in   terms   of   DNA   methylation   and   

histone   modification.   Furthermore,   the   precisely   regulated   epigenetic   landscape   in   

pluripotent   embryonic   stem   cells    (Viré   et   al.   2006;   S.   Sharma,   Kelly,   and   Jones   2010)    is   

largely   responsible   for   their   plasticity   and   differentiation   potential.   Indeed,   epigenetic   

reprogramming   is   the   primary   mechanism   by   which   terminally   differentiated   cells   can   be   

made   into   induced   pluripotent   stem   cells    (Okita,   Ichisaka,   and   Yamanaka   2007) .   This   
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lends   support   for   studies   of   epigenetic   dysregulation   in   cancer   stem   cells    (Toh,   Lim,   and   

Chow   2017) ,   but   also   may   be   a   mechanism   by   which   differentiation   status   becomes   

dysregulated   in   tumor   types   which   do   not   conform   to   the   cancer   stem   cell   model.     

Notably,   some   experimental   cancer   models   exist   that   reliably   recapitulate   clinical   

disease   but   are   generated   through   experimentally   defined   mutations.   In   many   of   these   

models,   mutational   burden   of   tumors   can   differ   from   those   observed   in   clinical   disease   

(Westcott   et   al.   2015) .   Other   features   of   disease   progression,   such   as   tumor   histology,   

are   quite   similar   to   human   disease.   This   suggests   that   other   changes   in   tumor   cells,   and  

chromatin   accessibility   in   particular,   may   be   partially   responsible   for   the   observed   

changes   in   gene   expression   between   normal   and   cancerous   tissues.   This,   in   part,   

created   a   precedent   for   the   importance   of   epigenetic   dysregulation   in   cancer   

progression.   

1.6   An   Evolutionary   Approach   to   Characterize   Tumor   Heterogeneity   

Although   tumor   heterogeneity   makes   tumors   difficult   to   treat   and   to   study,   it   can   

be   exploited   by   analytical   approaches   which   have   led   to   many   insights   about   how   

tumors   evolve   and   progress.   Distinct   subclones   with   different   functionality   within   a   tumor   

are   thought   to   arise   in   response   to   dynamic   selective   pressures   that,   by   extension,   

constrain   and   influence   tumor   evolution.   Estimation   of   variant   allele   frequencies   of   

tumor-specific   mutations   have   permitted   more   rigorous   testing   of   theoretical   models   for   

evolution   of   mutational   heterogeneity,   discussed   in   earlier   subsections.   Because   

mutational   heterogeneity   influences   overall   evolution   of   a   tumor   by   affecting   gene   

expression   and   chromatin   accessibility,   models   of   mutational   heterogeneity   may   inform   

generalized   models   of   tumor   evolution.   Despite   widespread   recognition   that   epigenetic   
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dysregulation   is   equally   as   important   as   DNA   mutations   in   cancer,   few   studies   exist   to   

describe   how   this   dysregulation   can   be   incorporated   into   and   refine   existing   models   of   

tumor   evolution.     

Several   studies   provide   evidence   that   tumor   cell   epigenomes   become   

dysregulated   in   a   heterogeneous   and   stochastic   manner    (M.   Guo   et   al.   2019;   LaFave   et   

al.   2020) .   Epigenetic   dysregulation   is   likely   to   drive   and   itself   become   a   manifestation   of   

tumor   heterogeneity.   As   stated   in   the   previous   section,   there   is   substantial   evidence   for   

epigenetic   dysregulation   in   settings   where   cancer   stem   cells   have   been   identified   and   

described.   However,   the   majority   of    quantitative    models   of   mutational   tumor   evolution   

are   consistent   with,   but   do   not   explicitly   describe,   the   cancer   stem   cell   model.   In   turn,   

this   creates   a   disconnect   between   models   of   tumor   evolution   which   explicitly   incorporate   

epigenetic   dysregulation   with   those   which   cannot.   This   is   due,   in   part,   to   experimental   

limitations   in   profiling   cancer   cell   epigenomes.   As   ATACseq   becomes   more   prevalent,   it   

is   likely   that   enough   data   will   be   generated   such   that   quantitative   modeling   will   become   

possible.     

Perhaps   the   biggest   confounding   limitation   in   studies   of   tumor   heterogeneity   and   

evolution   is   the   variation   in   time   over   which   disease   progression   occurs.   In   clinical   

settings,   cancer   progression   occurs   with   varying   kinetics   across   different   patients.   For   

some   of   these   cases,   this   variation   can   at   least   be   partially   attributed   to   variation   in   

responses   to   treatment,   both   in   efficacy   and   duration   of   response    (Mitsudomi   et   al.   

1996) .   However,   even   amongst   patients   which   do   not   elect   to   receive   treatment,   

variation   in   disease   kinetics   is   still   observed    (Crispen   et   al.   2009) .   Some   explanations   

have   proposed   this   variation   is   a   result   of   stochastic   mutational   processes    (Hao,   Wang,   
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and   Di   2016) ,   but   this   does   not   explain   variation   in   cancer   progression   kinetics   across   

all    kinds   of   cancer.   This   could   be   partially   related   to   the   fact   that   some   cancers   appear   

to   be   driven   by   epigenetic,   rather   than   genomic,   dysregulation.     

An   additional   confounding   limitation   is   the   reliability   through   which   patients   and   

their   tumors   are   stratified   into   subtypes   of   cancer.   Data-driven   analyses   and   molecular   

profiling   have   led   to   dramatic   improvements   in   how   patients   can   be   stratified   according   

to   subtype   and   clinical   behavior    (McVeigh   et   al.   2014) ,   and   these   data   can   also   be   used   

to   predict   therapeutic   outcomes   amongst   other   patients.   In   spite   of   these   

advancements,   many   additional   questions   remain   about   both   the   underlying   causes   of   

variation   between   patients,   as   well   as   the   temporal   behavior   of   disease   progression.   

Thus,   the   ability   to   accommodate   variation   in   tumor   profiling   data   that   is   caused   by   

underlying   variation   in   disease   kinetics   or   disease   type   is   relatively   limited.     

Although   this   variation   remains,   many   efforts   are   being   made   to   generate   more   

data   on   tumor   cells   using   cutting-edge   technologies   such   as   ATAC   sequencing.   This   is   

important   because   evidence   is   still   being   collected   to   assess   the   nature   of   epigenetic   

dysregulation   that   occurs   across   many   kinds   of   cancer.   As   these   data   accumulate,   they   

allow   refinements   in   models   for   epigenetic   and   transcriptional   trajectories   in   tumor   

progression   and   may   ideally   be   used   to   describe   deterministic   changes   in   cell   state.   

Such   a   model   must   account   for   the   fact   that   chromatin   accessibility   is   a   product   of   the   

cumulative   and   combinatorial   effects   of   many   epigenetic   regulators   that   can   be   

influenced   through   multiple   ways.   While   the   role   of   epigenomic   and   transcriptional   

dysregulation   is   widely   accepted   as   being   at   least   partially   responsible   for   tumor   

progression,   the   complex   nature   through   which   chromatin   accessibility   is   regulated   and   
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the   dynamic   processes   that   drive   changes   in   epigenetic   landscapes   are   quite   poorly   

understood.   In   many   cases,   it   is   not   possible   to   reliably   predict   the   functional   

consequences   of   an   individual,   or   combinatorial,   epigenetic   mark   in   terms   of   effective   

chromatin   accessibility    (Santos-Rosa   et   al.   2002) .   As   a   consequence,   this   has   driven   

efforts   to   get   improved   resolution   of   transcriptional   and   epigenomic   states   to   create   a   

basis   for   mathematical   modeling   that   will   inform   how   cell   state   changes   occur   during   

cancer   progression.   

Efforts   to   profile   the   effective   phase   space   of   cancer   cells   have   been   further   

complicated   by   epigenetic   and   transcriptional   heterogeneity   in   tumors.   One   important   

distinction   between   interpretation   of   mutational   heterogeneity   and   epigenetic   or   

transcriptional   heterogeneity   is   the   degree   of   independence   between   mutational   and   

transcriptional   or   epigenetic   changes.   Mutations   are   mostly   thought   to   occur   at   random   

loci,   barring   some   notable   exceptions    (de   la   Chapelle   2003) .   In   contrast,   epigenetic   

marks   are   believed   to   be   deposited   through   the   concerted   efforts   of   large,   multi-protein   

chromatin   modifying   complexes   which   are   directed   through   a   series   of   networked   

interactions   and   activities    (L.   Y.   Wang   et   al.   2011) .   Transcription   is   also   regulated   in   

dynamic   networks   with   topologies   that   are   thought   to   be   highly   tissue   specific    (He   and  

Tan   2016) .   Therefore,   a   single   regulatory   change   can   manifest   through   a   cascade   of   

genes   that   are   connected   in   a   transcriptional   (or   regulatory)   network.   Additionally,   

changes   in   transcription   of   an   individual   gene   cannot   be   assumed   to   be   independent   

from   changes   in   another.   Consequently,   evolution   of   tumor   cell   transcriptional   state   

occurs   in   a   coordinated   manner   that   is   dependent   on   underlying   genetic   and   regulatory   

networks.   The   constraints   imposed   by   these   networks   are   latent   determinants   of   the   
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topologies   of   accessible   transcriptional   states   of   a   tumor   cell.   Because   these   networks   

are   strongly   influenced   by   cell   identity    (Shining   Ma,   Jiang,   and   Jiang   2018) ,   which   

becomes   dysregulated   over   time,   the   influence   of   these   network   constraints   is   also   

dynamic   over   tumor   evolutionary   processes.     

  Mutational   heterogeneity   can   be   effectively   modeled   in   tumors   through   the   

assumption   that   mutations   are   stochastic   and   arise   independently.   However,   these   

assumptions   cannot   necessarily   be   extended   to   models   of   transcriptional   and   epigenetic   

heterogeneity.   Changes   of   cell   identity,   which   may   occur   stochastically,   can   cause   

effective   rewiring   of   intracellular   circuits   that   allow   cells   to   respond   to   changes   in   their   

environment    (Irish   et   al.   2004) .   To   understand   how   changes   occur   in   the   epigenetic   and   

transcriptional   states   of   tumor   cells   over   time,   the   constraints   of   these   networks   need   to   

be   defined    (Bandara   et   al.   2009) .   However,   these   constraints   change   over   disease   

progression   and   are   themselves   subject   to   the   variation   in   disease   kinetics   observed   

across   patients.   

  While   these   sources   of   variation   have   restricted   models   of   tumor   evolution   to   be   

primarily   descriptive,   rather   than   quantitative,   the   inherent   heterogeneity   of   tumors   

creates   analytical   advantages.   Variation   in   disease   kinetics   makes   it   essentially   

impossible   to   reproducibly   sample   tumor   evolutionary   processes   at   a   precise   point   in   

time.   This   can   be   exploited   when   looking   across   individual   cells,   because   an   individual   

tumor   contains   heterogeneous   cells   that   occupy   a   mosaic   of   observable   accessible   

states   which   can   be   loosely,   but   not   precisely,   associated   with   time.   In   turn,   this   

decreases   the   number   of   time   points   over   which   tumor   progression   must   be   sampled   in   

order   to   generate   complete   coverage   of   cell   states   which   arise   during   tumor   evolution,   
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because   the   subclones   of   a   heterogeneous   tumor   can   reflect   its   evolutionary   history,   

present,   and   future.   Thus,   profiling   a   single   tumor   at   a   single   point   in   time   can   produce   

rich   amounts   of   data   about   the   cells   it   contains   that   together   reflect   a   set   of   cell   states   

which   reflect   more   than   just   a   single   point   in   time   during   tumor   progression.   Still,   tumor   

evolution   is   affected   by   multiple   systems   which   exert   selective   pressures   on   a   tumor.   An   

explicit   model   of   tumor   evolutionary   processes   with   respect   to   cell   state   must   

incorporate   higher   order   interactions   between   systems   that   exist   within   and   between   

cells.     

2.   Tumor   immunology   

2.1   Inflammation   and   cancer   

Immune   cell   infiltration   into   solid   tumors   has   long   been   recognized   as   being   

positively   associated   with   increased   overall   survival,   most   notably   in   human   melanoma   

(Clemente   et   al.   1996;   Galon   et   al.   2006;   L.   Zhang   et   al.   2003;   Fridman   et   al.   2012) .   

This   association   is   likely   related   to   the   fact   that   the   immune   system   is   responsible   for   

surveillance,   detection,   and   elimination   of   malignant   cells.   The   immune   system   works   

through   coordinated   activity   of   many   different   kinds   of   cells   which   each   play   diverse,   but   

defined,   roles   to   generate   an   immune   response.   In   order   for   a   tumor   to   develop,   it   must   

either   evade   or   adapt   to   overcome   the   tumor   suppressive   actions   of   the   immune   system   

(Hanahan   and   Weinberg   2011) .   There   are   multiple   mechanisms   by   which   the   immune   

system   can   detect   and   suppress   cancer;   reciprocally,   there   are   thought   to   be   multiple   

mechanisms   through   which   tumors   suppress   and   evade   these   responses    (Hanahan   and   

Weinberg   2011) .   Although   it   is   well   accepted   that   the   immune   system   can   be   tumor   

suppressive,   some   of   the   early   observations   about   how   immune   responses   are   related   
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to   cancer   progression   suggested   that   inflammation   can   promote   tumor   formation    (F.   

Balkwill   and   Mantovani   2001) .   Still,   other   early   observations   also   associated   

inflammation   with   tumor   suppressive   activity    (Hoption   Cann   et   al.   2002) .     

The   relationship   between   cancer   and   inflammation   remained   largely   ambiguous   

until   it   was   discovered   that   mice   which   had   previously   been   able   to   eradicate   a   

transplanted   tumor   could   more   effectively   eliminate   tumors   that   were   transplanted   after   

the   first   tumor   had   regressed.   The   behavior   of   these   responses   were   remarkably   

consistent   with   that   of   an   adaptive   immune   response   and   further   suggested   that   tumors   

must   continuously   evade   the   adaptive   immune   system   in   order   to   develop   and   progress   

(G.   P.   Dunn,   Old,   and   Schreiber   2004;   Gross   1943;   Silverstein   2001) .   In   addition,   

inflammation   creates   a   microenvironment   that   stimulates   cell   proliferation   and   

remodeling   of   the   surrounding   extracellular   matrix   and   vasculature   in   response   to   a   

wound.   This   led   to   connections   that   were   made   about   the   similarity   between   the   wound   

healing   response   and   many   hallmarks   of   cancer,   and   further   clarified   how   the   immune  

system   can   also   promote   cancer.   As   such,   it   was   proposed   that   tumors   exploit   these   

programs   and   sustain   this   microenvironment   to   grow   and   progress    (Flier,   Underhill,   and   

Dvorak   1986;   Coussens   and   Werb   2002) .   

One   of   the   other   widely   accepted   mechanisms   of   tumor-immune   evasion   causes   

immune   cells   to   become   dysfunctional   in   response   to   tumors   that   have   established   an  

immunosuppressive   microenvironment    (A.   A.   Wu   et   al.   2015) .   This   occurs   by   hijacking   

homeostatic   programs   of   immunosuppression   that   canonically   exist   to   prevent   

autoimmunity   and   other   harmful   immune   reactions    (Liston   and   Gray   2014) .   Notably,   

immunosuppressive   microenvironments   can   be   produced   through   a   variety   of   different   
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mechanisms   and   can   affect   multiple   types   of   immune   cells   that   coordinate   the   overall   

immune   response   to   a   tumor    (D.   Wang   and   DuBois   2015) .   

2.2   Influence   of   solid   tumor   biology   on   immune   response   

Recent   evidence   has   emerged   to   suggest   that   tumor   regions   with   higher   

mutational   heterogeneity   may   drive   greater   immune   responses   relative   to   tumor   regions   

with   lower   mutational   heterogeneity    (AbdulJabbar   et   al.   2020) ,   suggesting   tumor  

mutational   heterogeneity   may   have   a   meaningful   influence   on   the   overall   tumor-immune   

response.   This   is   not   surprising,   because   mutations   create   abnormal   protein   products   of   

mutant   proteins   that   can   be   presented   on   the   surface   of   tumor   cells   to   immune   cells   as   

tumor-specific   neoantigens.     

Evasion   of   the   immune   system   can   occur   in   tumors   through   multiple   ways.   One   

of   the   most   widely   recognized   ways   this   occurs   is   through   dysregulation   of   the   antigen   

presentation   machinery,   but   this   does   not   occur   across   all   tumors    (Hanahan   and   

Weinberg   2011) .   The   majority   of   tumor-specific   neoantigens   arise   from   passenger   

mutations   which   are   dispensable   in   tumor   progression    (Jhunjhunwala,   Hammer,   and   

Delamarre   2021) .   As   such,   passenger   mutations   which   create   immune   reactive   

neoantigens   can   undergo   immunoediting,   wherein   these   mutations   are   deleted   or   

silenced   in   response   to   selective   pressure   from   immune   cells   responding   to   their   

associated   neoantigens    (R.   D.   Schreiber,   Old,   and   Smyth   2011) .   Antigens   are   loaded   

and   presented   on   the   surface   of   tumor   cells   or   immune   antigen   presenting   cells   after   

being   processed   in   the   immunoproteasome    (Jhunjhunwala,   Hammer,   and   Delamarre   

2021) ,   which   is   induced   by   inflammatory   signals   of   the   microenvironment    (G.   H.   Wong   

and   Clark-Lewis   1983) .     
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While   many   kinds   of   immune   cells   play   important   roles   in   response   to   tumors,   the   

majority   of   the   work   presented   in   this   thesis   will   focus   on   CD8   T   cells,   which   are   

discussed   in   the   following   sections.     

2.3   Characterization   of   cytotoxic   T   cell   dysfunction   

2.3.1   Differentiation   of   cytotoxic   T   cells   

T   cells   are   lymphocytes   that   play   a   major   role   in   cell   mediated   responses   to   

antigens,   or   molecules   that   elicit   an   immune   response    (Institute   and   National   Cancer   

Institute   2020) .   They   differentiate   from   thymocytes,   which   are   T   cell   precursors   that   

have   differentiated   from   hematopoietic   stem   cells   in   the   bone   marrow.   They   are   defined   

by   expression   of   T   Cell   Receptor   (TCR)   proteins,   which   are   created   as   T   cells   mature   in   

the   thymus   through   recombination   of    V ariable,    D iversity,   and    J oining   gene   fragments   to   

produce   TCRs   that   can   recognize   a   wide   diversity   of   antigens    (Schatz   and   Ji   2011)    on   

the   surface   of   antigen   presenting   cells.   When   TCRs   are   engaged   with   their   cognate   

antigens,   intracellular   signaling   networks   orchestrate   T   cell   expansion   and   differentiation   

into   T   cells   that   mediate   inflammation   (T-helper),   immune   suppression   (T-regs),   memory  

(T-memory)   and   cytotoxicity   (T-effector)    (Viola   and   Lanzavecchia   1996;   Youngblood   et   

al.   2017;   Speiser,   Ho,   and   Verdeil   2016) .     

Cytotoxic   T   cells,   marked   by   expression   of   CD8,   will   proliferate   when   activated   to   

generate   a   clonally   expanded   pool   of   effector   cells   that   have   the   ability   to   secrete   

cytokines   and   proteins   which   can   induce   cell   death.   They   are   most   often   characterized   

for   mediating   control   over   pathogen   infection   and   cancer   cells    (Zhou   et   al.   2010;   

Waldman,   Fritz,   and   Lenardo   2020) .   Priming   or   activation   of   cytotoxic   T   cells   is   a   tightly   

regulated   process   and   is   thought   to   have   multiple   requirements   to   become   fully   

  

https://paperpile.com/c/XSr7BR/57qXs
https://paperpile.com/c/XSr7BR/57qXs
https://paperpile.com/c/XSr7BR/tsJJN
https://paperpile.com/c/XSr7BR/rE1vF+BLGnK+bJnec
https://paperpile.com/c/XSr7BR/rE1vF+BLGnK+bJnec
https://paperpile.com/c/XSr7BR/9JQq2+D6TDE
https://paperpile.com/c/XSr7BR/9JQq2+D6TDE


58   

“licensed”    (Thaiss   et   al.   2011)    for   effector   and   memory   function.   These   include  

engagement   of   the   TCRs   of   CD8   cells   with   antigens   presented   on   MHC-I,   the   binding   of   

costimulatory   molecules,   cytokine   signaling,   and   chemokine   gradients    (Thaiss   et   al.   

2011) .   Collectively,   these   signals   are   processed   through   networks   of   signaling   

transduction   pathways   to   produce   transcriptional   outputs   that   mediate   functional   

differentiation    (Viola   and   Lanzavecchia   1996;   Smith-Garvin,   Koretzky,   and   Jordan   

2009) .   These   networks   are   also   influenced   by   co-inhibitory   receptors   which   primarily   

serve   to   dampen   immune   responses   and   prevent   auto-immunity    (Chen   and   Flies   2013) .     

The   complexity   of   the   signals   and   the   components   of   these   networks   permit   

precise,   multifaceted   control   over   signaling   outcomes   which   ultimately   influence   the   fate   

of   functionally   differentiating   cytotoxic   T   cells    (Chen   and   Flies   2013) .   Naive   CD8   T   cells   

have   not   been   exposed   to   the   antigen   their   TCRs   are   specific   for.   After   antigen   

exposure   and   activation,   CD8   T   cells   functionally   differentiate   into   different   

subpopulations.   Profiling   of   tumor-reactive   CD8   T   cells   revealed   these   cells   can   occupy   

a   number   of   differentiation   states   along   a   continuum   of   differentiation   states,   including   

naive,   effector,   memory,   and   exhausted   states    (van   der   Leun,   Thommen,   and   

Schumacher   2020) .   

After   naive   T   cells   develop   in   the   thymus,   they   circulate   around   the   body   and   

infiltrate   different   organ   systems   in   search   of   immune   cells   which   have   presented   their   

cognate   antigen   on   MHC   molecules    (Mandl   et   al.   2012;   Smith-Garvin,   Koretzky,   and   

Jordan   2009) .   Once   a   TCR   binds   an   antigen-MHC   complex,   the   process   of   T   cell   

activation   begins    (Smith-Garvin,   Koretzky,   and   Jordan   2009) .   However,   engagement   of   

a   cell’s   TCR   without   additional   activation   signals   cannot   fully   license   a   T   cell   to   undergo   
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functional   differentiation;   instead,   cells   which   receive   a   TCR   activation   signal   in   the   

absence   of   other   required   activating   signals   become   anergic,   and   are   unable   to   

proliferate   or   secrete   inflammatory   signals   in   response   to   antigen.   Importantly,   this   

anergic   state   can   be   reversed   through   exposure   of   inflammatory   signals    (Appleman   and   

Boussiotis   2003) .     

The   additional   signals   required   for   activation   can   come   from   and   be   influenced   by   

a   variety   of   other   immune   cells.   One   of   the   most   well   described   mechanisms   of   

activation   occurs   through   engagement   of   CD28   on   the   surface   of   T   cells   through   binding   

of   costimulatory   ligands   on   antigen   presenting   cells    (Harding   et   al.   1992) .   This   process   

can   be   further   facilitated   by   Helper   T   cells   CD4+   T   cells   in   a   manner   that   permits   

precise   tuning   of   functional   differentiation   to   promote   immune   memory   that   is   

characteristic   of   adaptive   immunity    (S.   Zhang,   Zhang,   and   Zhao   2009) .   The   output   of   

these   systems   can   also   be   modulated   by   inflammatory   signals   of   the   microenvironment   

that   can   be   produced   by   a   variety   of   cell   types   that   also   facilitate   functional   activities   of   

differentiated   cells    (J.   M.   Curtsinger   et   al.   1999) .   Importantly,   some   of   the   other   signals   

which   affect   T   cell   activation   create   negative   feedback   to   control   activation   signals   and   

are   induced   as   a   consequence   of   T   cell   activation.   A   notable   example   of   these   feedback   

signals   are   ‘checkpoint   molecules’,   such   as   CTLA-4   and   PD-1,   both   of   which   negatively   

regulate   TCR   signaling.   

Activated   T   cells   will   proliferate   and   expand   until   their   targets   are   cleared   from   

the   system   and   will   subsequently   undergo   programmed   cell   death.   The   actions   of   these   

cells   is   one   of   the   primary   ways   that   infection   is   cleared   or   malignant   cells   are   

eliminated    (Kaech   and   Cui   2012) .   A   smaller   subset   of   CD8   T   cells   will   differentiate   into   
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memory   cells   that   persist   after   cytotoxic   T   cells   have   cleared   their   targets   and   then   

mediate   efficient   immune   responses   to   their   cognate   antigen   following   subsequent   

exposure.   The   progenitor   CD8   cells   that   canonically   differentiate   into   memory   subsets   

are   marked   by   expression   of   TCF-1,   the   protein   product   of   the   gene   Tcf7    (Jiaxue   Zhang   

et   al.   2021) ,    (Zhou   et   al.   2010) .     

Importantly,   CD8   T   cells   can   also   functionally   differentiate   into   a   variety   of   

subsets   which   have   been   implicated   in   mediating   tissue   specific   immune   compartments,   

context-specific   viral   responses,   and   more    (Mittrücker,   Visekruna,   and   Huber   2014) .   For   

the   most   part,   these   T   cell   subsets   are   functionally   distinguished   by   a   specific   

permutation   of   interleukin   and   cytokine   receptors   as   well   as   transcription   factors   which   

are   responsible   for   changes   in   gene   expression   that   mediate   different   functional   roles   of   

each   subset.   These   T   cell   subsets   can   be   transcriptionally   quite   similar   and   have   subtle,   

but   important,   differences   in   functionality.     

One   example   of   these   subsets,   termed   Tc17   cells,   are   induced   by   TGF-Beta   and   

IL-6   or   IL-21   signaling.   They   are   also   distinguished   from   other   T   cell   subsets   by   

expression   of   ROR-gammaT   and   ROR-alpha    (Hamada   et   al.   2009) .   Tc17   cells   are   

similar   to   conventional   cytotoxic   T   cells   because   they   also   produce   cytotoxic   molecules,   

but   do   so   at   a   reduced   level   and   therefore   are   known   to   have   lower   relative   cytotoxic   

activity    (Hamada   et   al.   2009) .   Tc17   cells   are   functionally   important   for   driving   

inflammation   and   mediating   control   over   diseases   in   which   T   cells   are   persistently   

exposed   to   antigens,   such   as   in   chronic   viral   infection   or   in   tumor   development   

(Mittrücker,   Visekruna,   and   Huber   2014) .     
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2.3.2   Hallmarks   of   T   cell   dysfunction   and   exhaustion   

T   cell   exhaustion   is   defined   by   reduction   in   cytokine   production   and   increased   

expression   of   co-inhibitory   receptors    (Welten   et   al.   2020)    that   ultimately   cause   depletion   

of   resources   that   can   be   utilized   to   sustain   an   immune   response    (Thangavelu,   

Smolarchuk,   and   Anderson   2010) .   It   is   conventionally   described   in   the   context   of   

chronic   viral   infection   and   is   characterized   by   loss   of   effector   function   and   reduction   in   

clonal   expansion    (Thommen   and   Schumacher   2018) .   There   are   many   parallels   between   

immune   responses   to   tumors    (Baitsch   et   al.   2011)    and   chronic   viral   infection    (Wherry   et   

al.   2007) .   Persistent   antigen   exposure,   in   particular,   is   largely   responsible   for   similarities   

between   exhausted   T   cells   in   both   settings   because   it   induces   sustained   expression   of   

co-inhibitory   proteins    (Thommen   and   Schumacher   2018) .     

  For   a   T   cell   to   become   exhausted,   it   must   have   sustained   expression   of   multiple   

co-inhibitory   receptors    (Chen   and   Flies   2013) .   Importantly,   expression   of   co-inhibitory   

proteins   is   a   programmed   output   of   interactions   with   cells   which   serve   to   dampen   

immune   responses,   such   as   Tregs,   as   well   as   signaling   associated   with   functional   

differentiation   and   stimulation   of   T   cells.   Expression   of   co-inhibitory   receptors   and   

ligands   serve   as   mechanisms   of   intra-   and   inter-cellular   negative   feedback    (Thangavelu,   

Smolarchuk,   and   Anderson   2010) .   As   such,   transient   expression   of   co-inhibitory   

molecules   also   occurs   as   a   consequence   of   signaling   associated   with   activation   

(Thangavelu,   Smolarchuk,   and   Anderson   2010) .   Sustained   activation   signals   therefore   

cause   accumulated   expression   of   co-inhibitory   molecules   which,   in   turn,   act   to   suppress   

the   immune   response.   In   some   cases,   this   can   lead   to   abnormalities   in   T   cell   
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differentiation   that   produce   dysfunctional   T   cells   that   phenotypically   resemble   exhausted   

T   cells    (Schietinger   and   Greenberg   2014;   Wherry   et   al.   2007) .    

In   the   context   of   tumor   immunology,   T   cells   of   the   tumor   microenvironment   that   

phenotypically   resemble   exhausted   T   cells   are   described   as   dysfunctional   because   T   

cell   responses   can   sometimes   be   invigorated   with   therapeutic   treatment    (Wei,   Duffy,   

and   Allison   2018)    and   thus   do   not   completely   fulfill   requirements   of   exhaustion   because   

dysfunction   can   be   rescued.   Co-inhibitory   receptors   perform   non-redundant   roles   in   

immune   suppression    (Thangavelu,   Smolarchuk,   and   Anderson   2010)    and   are   

expressed   in   a   context-dependent   manner.   As   such,   it   is   not   surprising   that   

dysfunctional   tumor   associated   T   cells   show   similar,   but   distinct,   gene   expression   

signatures   relative   to   exhausted   T   cells   in   the   context   of   chronic   infection    (Thommen   

and   Schumacher   2018) .   Ultimately,   these   co-inhibitory   molecules   regulate   signaling   

networks   associated   with   T   cell   activation   in   a   manner   that   can   influence   expression   of   

transcription   factors   which   dictate   functional   differentiation   of   T   cells.     

Differentiation   of   Tc17   cells   and   many   other   CD8   T   cell   subsets   have   been   

extensively   studied   in   the   context   of   chronic   viral   infection    (Paley   et   al.   2012;   Intlekofer   

et   al.   2008;   Wherry   and   John   Wherry   2011) .   Despite   the   differences   between   this   setting   

and   that   of   tumor   progression,   there   are   many   transcriptional   similarities   between   T   cell   

states   of   these   settings   that   have   formed   the   basis   for   current   understandings   of   how   T   

cell   differentiation   is   impaired   in   cancer    (Wherry,   John   Wherry,   and   Kurachi   2015) .   

Importantly,   it   has   been   shown   that   CD8   T   cells   are   responsible   for   controlling   chronic   

viral   infections,   and   abnormalities   in   CD8   T   cell   differentiation   can   result   in   collapse   of   

immune   responses    (Paley   et   al.   2012) .   This   is   thought   to   occur   invariably   in   clinically   
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detectable   tumors;   as   such,   many   more   recent   studies   have   made   comparisons   

between   chronic   viral   infection   and   tumor-mediated   T   cell   dysfunction   in   order   to   identify   

distinguishing   features   of   T   cell   responses   to   tumors   that   may   be   responsible   for   

immune   suppression   and   evasion   in   cancer    (Paley   et   al.   2012;   Z.   Zhang   et   al.   2020) .  

Functional   differentiation   of   T   cells   has   been   specifically   implicated   as   the   primary   

mechanism   of   T   cell   dysfunction   because   it   was   found   that   healthy   donor   T   cells   can   

respond   to   specific   antigens   that   do   not   generate   responses   from   dysfunctional   T   cells   

(Strønen   et   al.   2016) .   In   short,   the   primary   mechanism   through   which   T   cells   are   

thought   to   become   dysfunctional   in   tumors   occurs   when   progenitor   CD8   T   cell   

populations   undergo   abnormal   functional   differentiation.     

2.4   A   Brief   History   of   Immunotherapy   

One   of   the   earliest   described   treatments   to   invigorate   immune   cell   responses   to   

cancer   was   administration   of   Coley   toxin,   which   contained   mixtures   of   live   and   

inactivated   pathogens   that   had   been   previously   associated   with   spontaneous   tumor   

regression   in   patients    (Dobosz   and   Dzieciątkowski   2019;   Decker   et   al.   2017;   Coley   

2014;   McCarthy   2006) .   However,   skepticism   regarding   the   risk   and   mechanism   

associated   with   Coley   toxin,   compounded   by   skepticism   of   the   scientist   who   developed   

it,   caused   these   discoveries   to   become   dormant   for   many   years    (Dobosz   and   

Dzieciątkowski   2019) .     

Later,   other   forms   of   immunotherapy   were   developed   such   as   therapeutic   

utilization   of   monoclonal   antibodies   specific   for   genes   that   are   upregulated   in   cancer   

cells.   This   revolutionized   treatment   of   immune   cell   malignancies   in   particular.   

Eventually,   this   therapeutic   strategy   was   also   extended   to   malignancies   that   did   not   
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arise   from   immune   cells,   most   notably   with   the   development   of   trastuzumab,   which   

targets   a   receptor   that   is   upregulated   on   the   surface   of   breast   cancer   cells,   ERBB2   

(HER2)    (Dean   and   Kane   2015) .   Still,   even   in   cancers   which   respond   well   to   monoclonal   

antibody   therapy,   many   tumors   become   recalcitrant   to   these   therapies.   These   

therapeutic   limitations   drove   development   of   other   forms   of   immunotherapy.     

As   dysfunction   of   immune   cells   became   more   widely   implicated   in   cancer   

progression,   adoptive   T   cell   therapies   were   developed   which   sought   to   address   

deficiencies   in   endogenous   immune   responses   to   cancer   by   providing   functional   

immune   cells   that   were   produced   or   activated   through   artificial   means    (June   2007) .   

Some   of   these   therapeutic   strategies   specifically   targeted   antigens   which   are   present   

across   many   different   patients    (van   der   Bruggen   et   al.   1991) ,   and   clinical   indications   for   

these   therapies   have   become   increasingly   more   refined   as   mutation   status   in   tumors   

has   become   more   prevalent   in   molecular   diagnostics   of   cancer    (Rosenberg   and   Restifo   

2015) .   In   addition,   there   have   been   many   efforts   to   produce   therapeutic   vaccines   to   

facilitate   activation   and   functional   differentiation   of   productive   tumor-specific   immune   

cell   subsets    (Bowen   et   al.   2018) .   Some   of   these   vaccines   are   developed   in   a   highly   

personalized   manner   using   material   that   is   isolated   from   individual   patients    (Shemesh   et   

al.   2021;   Timmerman   and   Levy   2000) ,   while   others   seek   to   target   highly   recurrent   tumor   

neoantigens    (Xu   et   al.   2014) .     

One   of   the   biggest   limitations   in   the   development   of   these   therapies   has   been   the   

associated   costs    (June   2007;   Bowen   et   al.   2018) ,   which   for   many   patients   is   prohibitive.   

Furthermore,   in   many   settings   it   has   been   difficult   to   identify   neoantigens   which   can   

elicit   responses   without   prohibitive   toxicity   in   patients,   and   some   responses   to   
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immunogenic   epitopes   can   cause   auto-immune   reactions   in   healthy   tissues    (J.   C.   Yang   

2015) .   Neoantigens   for   vaccination   can   be   selected   by   their   binding   affinity   for   MHC   

molecules    (McMahan   et   al.   2006) ,   but   this   approach   largely   relies   upon   computational  

predictions   of   peptide-MHC   binding   affinities,   which   in   many   cases   can   be   unreliable   

(Phloyphisut   et   al.   2019) .   In   addition,   the   properties   that   constitute   immunogenicity   of   an   

epitope   are   poorly   understood    (McGranahan   and   Swanton   2019) .     

2.5   Immune   Checkpoint   Blockade   

Many   other   efforts   to   develop   immunotherapies   for   cancers   were   based   upon   the   

idea   that   functional   differentiation   of   T   cells   could   be   altered   to   boost   productive   

anti-cancer   immune   responses   through   therapeutic   intervention.   The   earliest   versions   of  

these   therapies   attempted   to   do   this   through   administration   of   systemic   cytokines   that   

were   otherwise   implicated   in   T   cell   differentiation   as   ‘immune   checkpoints’,   but   they   

were   highly   toxic   and   largely   ineffective    (Robert   2020) .   A   revolutionizing   breakthrough   

was   later   made   with   monoclonal   antibodies   that   could   be   used   to   block   interactions   of   

co-inhibitory   receptors   on   T   cells   and   ultimately   divert   functional   T   cell   differentiation   to   

generate   durable   and   essentially   curative   responses   in   some   cancer   patients    (Ledford,   

Else,   and   Warren   2018) .   

To   date,   the   most   successful   checkpoint   blockade   therapies   are   monoclonal   

antibodies   targeting   CTLA-4,   PD-1   or   its   ligand   PD-L1   and   they   have   been   shown   to   

reduce   dysfunction   in   cytotoxic   CD8   T   cells    (Kumagai   et   al.   2020) .   While   these   have   

revolutionary   benefits   in   some   patients,   many   patients   have   transient   responses   or   do   

not   respond   at   all,   even   when   receiving   a   combination   of   these   treatments    (Kumagai   et   

al.   2020) .   In   addition,   many   questions   remain   about   the   mechanism   of   action   that   
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underlies   these   differentiation   outcomes.   It   is   reasonable   to   expect   that   improving   the   

understanding   of   these   processes   may   lead   to   improvements   in   therapies   that   can   

create   more   durable   responses   and   benefit   a   wider   range   of   patients.     

2.5.1   Predicting   Response   to   Checkpoint   Blockade   

Many   efforts   have   been   made   to   identify   clinically   observable   measurements   that   

are   predictive   of   response   to   checkpoint   blockade   therapy    (Carbone   et   al.   2017;   Rizvi   et   

al.   2015)    in   order   to   better   identify   candidates   that   will   respond   well   to   it.   Some   initial   

studies   showed   that   expression   of   PD-1   on   tumor   cells   was   partially,   but   not   fully,   

predictive   of   checkpoint   response    (Carbone   et   al.   2017) .   For   many   years,   it   was   thought   

that   the   relationships   between   tumor   mutational   burden   and   the   subsequent   diversity   of   

the   tumor-specific   neoantigen   repertoire   could   be   used   to   predict   patient   response   to   

immunotherapy.   In   light   of   recent   evidence   suggesting   tumor   mutational   burden   fails   to   

predict   patient   response   to   immunotherapy    (McGrail   et   al.   2021) ,   the   relevance   of   

mutational   burdens   in   tumors   in   predicting   immune   responses   have   become   

controversial    (Strickler,   Hanks,   and   Khasraw   2021) .     

In   parallel,   more   observable   features   of   tumors   that   are   predictive   of   checkpoint   

response   are   being   identified,   which   include   dysregulation   of   antigen   presentation   

machinery    (Montesion   et   al.   2021) ,   gene   expression   programs    (Z.   Wang,   Li,   and   Xu   

2021) ,   metabolic   activity    (van   Wilpe   et   al.   2021) ,   inflammation    (Kauffmann-Guerrero   et   

al.   2021) ,   and   more.   However,   in   nearly   all   cases,   the   predictive   power   of   these   features   

are   limited.   Further   studies   to   identify   what   specific   changes   occur   in   response   to   

checkpoint   blockade   may   illuminate   other   features   of   T   cells   and   tumors   that   predict   

productive   responses   to   checkpoint   blockade.     
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2.5.2   CD8   T   Cell   Progenitors   are   the   Target   of   Immune   Checkpoint   Blockade   Therapy   

Currently,   checkpoint   blockade   therapy   is   thought   to   act   by   altering   differentiation   

of   CD8   T   cells    (B.   C.   Miller   et   al.   2019a) .   A   subset   of   progenitor   CD8   T   cells   express   

moderate   levels   of   PD-1   and   other   co-inhibitory   markers   that   are   then   upregulated   to   

high   levels   of   expression   as   cells   differentiate,   termed   ‘progenitor   exhausted’   and   

‘terminally   exhausted’   CD8   T   cells,   respectively    (Utzschneider   et   al.   2016;   Im   et   al.   

2016) .   Because   these   co-inhibitory   markers   are   expressed   in   progenitor   subsets   and  

their   respective   heterogeneous   functionally   differentiated   subsets,   it   is   still   unclear   which   

CD8   populations   mediate   response   to   checkpoint   blockade,   although   progenitor   CD8   T   

cells   which   express   TCF1   expand   in   response   to   checkpoint   blockade    (B.   C.   Miller   et   al.   

2019a) ;   however,   this   has   been   further   complicated   by   emerging   evidence   for   multiple  

TCF1+   progenitor   CD8   T   cell   subsets    (Beltra   et   al.   2020) .     
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CHAPTER   1,   PART   2   

Non-Small   Cell   Lung   Cancer   

1.   Clinical   Characteristics   of   Non-Small   Cell   Lung   Cancer   

1.1   Epidemiology   

Lung   cancer   is   the   leading   cause   of   cancer   related   deaths   amongst   men   and   

women   in   both   the   United   States   and   abroad    (Duma,   Santana-Davila,   and   Molina   2019;   

Fitzmaurice   et   al.   2015) .   Approximately   85-90%   of   these   cases   are   thought   to   be   related   

to   primary   or   secondary   exposure   to   cigarette   smoke    (Alberg   and   Samet   2003) ,   which   

has   prompted   lung   cancer   screenings   amongst   smokers    (Moyer   and   U.S.   Preventive   

Services   Task   Force   2014) .   Still,   there   are   many   cases   of   lung   cancer   that   are   not   

thought   to   be   associated   with   smoking   and   do   not   carry   its   associated   mutational   

signature    (Alexandrov   et   al.   2016) .     

Non-small   cell   lung   cancer   (NSCLC)   accounts   for   85%   of   all   lung   cancer   cases   

and   is   a   broad   classification   that   encompasses   adenocarcinomas,   squamous   cell   

carcinoma,   and   large   cell   carcinomas    (Duma,   Santana-Davila,   and   Molina   2019) .   In   

patients   with   European   ancestry,   NSCLC   is   most   prevalent   amongst   smoking   men.   In   

contrast,   in   patients   with   East   Asian   ancestry,   NSCLC   is   most   common   amongst   

nonsmoking   women    (Jain   et   al.   2015) .   Notably,   however,   lung   cancer   incidence   and   

mortality   is   the   lowest   amongst   Asian-American,   Pacific   Islander,   and   Hispanic   women,   

but   is   highest   amongst   Black   men   in   the   US    (Siegel,   Miller,   and   Jemal   2018) .   Generally,   

the   earlier   NSCLC   is   diagnosed,   the   better   a   patient’s   prognosis   ( Table   1 ).   Overall,   the   
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average   5-year   survival   rate   of   patients   diagnosed   with   NSCLC   is   25%   for   NSCLC   and   

is   19%   for   all   lung   cancers    (National   Comprehensive   Cancer   Network   2021) .     

Table   1 .   Diagnostic   frequency   and   survival   of   NSCLC   across   different   disease   stages.   
Adapted   from    (National   Comprehensive   Cancer   Network   2021) .     
  

  
  

According   to   the   World   Health   Organization,   Lung   adenocarcinoma   is   the   

predominant   form   of   NSCLC   and   accounts   for   approximately   40%   of   all   NSCLC   cases   

(Travis,   Brambilla,   Burke,   et   al.   2015) .   The   work   that   is   presented   in   this   thesis   

exclusively   studies   lung   adenocarcinoma,   but   most   clinical   guidelines   and   observations   

for   NSCLC,   briefly   discussed   below,   are   not   necessarily   specific   for   lung   

adenocarcinoma   and   are   generalized   across   NSCLC.   It   should   be   noted,   however,   that   

different   subtypes   of   NSCLC   have   distinct   survival   rates    (Reck   et   al.   2019;   Ramalingam   

et   al.   2020;   Pacheco   et   al.   2019;   Shaw   et   al.   2019) .   

1.2   Disease   Characteristics   and   Staging   

NSCLC   staging   follows   TNM   guidelines   set   by   American   Joint   Committee   on   

Cancer   and   considers   the   primary   tumor   ( T ),   involvement   of   lymph   nodes   ( N ),   and   

metastasis   ( M )    (Lancia,   Merizzoli,   and   Filippi   2019) ,   wherein   each   disease   stage   has   a   

characteristic   patient   prognosis   that   decreases   with   disease   progression.   NSCLC   is   

  

Disease   State   Diagnostic   Frequency   (%)   5   year   survival   (%)   

Localized   Disease   19%   61.4%   

Regionally   Invasive   
Disease   

24%   34.5%   

Metastatic   55%   6.1%   

Unknown   2%   14.6%   
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considered   to   be   relatively   early   stage   when   patients   are   diagnosed   with   stage   II   

disease   and   lower.   When   tumors   have   invaded   the   mediastinal   lymph   node,   which   is   the   

closest   lymph   node   to   the   lung,   patients   are   considered   stage   III.     

Histological   features   of   patient   biopsies   are   used   to   further   classify   lung   tumors   

according   to   guidelines   established   by   the   World   Health   Organization   in   2015    (Travis,   

Brambilla,   Nicholson,   et   al.   2015) .   In   general,   poor   histological   differentiation   is   

correlated   with   higher   overall   risk   of   death    (National   Comprehensive   Cancer   Network   

2021;   Travis,   Brambilla,   Nicholson,   et   al.   2015) .   Amongst   adenocarcinomas   alone,   

many   histological   subtypes   exist   that   are   distinguished   from   one   another   by   

morphological   patterns.   Adenocarcinomas   are   frequently   distinguished   from   other   

subtypes   of   lung   cancer   by   positive   staining   for   TTF-1,   known   in   research   settings   as   

NKX2-1    (Travis,   Brambilla,   Nicholson,   et   al.   2015) .   Approximately   70-90%   of   lung   

adenocarcinomas   stain   positive   for   NKX2-1    (National   Comprehensive   Cancer   Network   

2021) .   

In   patients   that   present   with   advanced   lung   adenocarcinomas,   molecular   

subtyping   is   frequently   utilized   to   identify   therapeutically   actionable   mutations   that   can   

inform   therapeutic   strategies    (National   Comprehensive   Cancer   Network   2021) .   The   

majority   of   these   mutations   have   been   previously   identified   as   oncogenic   driver   

mutations   in   NSCLC    (Martínez-Jiménez   et   al.   2020)    ( Table   2 ).   Of   note,   the   mutational   

frequency   of   oncogenic   drivers   is   most   often   reported   from   data   collected   from   patients   

of   European   descent.   However,   the   prevalence   of   oncogenic   driver   mutations   may   differ   

in   patients   with   different   geographic   locations,   ethnic   backgrounds,   age   of   diagnosis,   

and   smoking   status.   For   example,   in   one   study   of   patients   less   than   20   years   of   age   
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diagnosed   with   lung   adenocarcinoma,   EGFR   mutations   were   more   common   amongst   

East   Asian   patients    (Jain   et   al.   2015;   Shi   et   al.   2014)    and   less   common   in   patients   from   

India    (Shi   et   al.   2014) .   In   this   study,   EGFR   mutation   frequency   was   found   to   be   

associated   with   ethnic   group   and   smoking   status    (Shi   et   al.   2014) ,   and   Alk   

rearrangements   may   be   more   prevalent   in   nonsmoking   Chinese   patients    (W.   Luo   et   al.   

2018) .   Also,    Table   2    does   not   include   mutations   in   other   genes   with   meaningful   roles   in   

lung   adenocarcinoma   progression,   such   as   TP53,   PIK3CA,   MET,   KEAP1,   NF1,   RB1,   

CDKN2A,   ARID1A,   SMARCA4,   RBM10,   U2AF1,   MGA,   and   MYC    (Cancer   Genome   

Atlas   Research   Network   2014) ,   whose   status   is   not   currently   evaluated   in   diagnostic   

settings.     

Table   2.   Therapeutically   Actionable   Mutations   in   NSCLC.    Biomarkers   considered   in   
clinical   evaluation   of   NSCLC,   as   reported   by   the   National   Comprehensive   Cancer   
Network   (NCCN).   Adopted   from   (1)    (National   Comprehensive   Cancer   Network   2021)   
;(2)    (Cancer   Genome   Atlas   Research   Network   2014;   C.   Wang   et   al.   2018) ;   (4)    (Kwak   et   
al.   2010) ;   (5)    (Chuang   et   al.   2017)    (6)    (Hong   et   al.   2020)   

  

  

Biomarker   Biomarker   Type 1   Frequency   Preferred   
Therapies 1   

KRAS   Activating   Point   
Mutation   at   Codon   

12,   13,   and   60   

~8-33%   of   
adenocarcinomas   

2,3   

Sotorasib 6   

EGFR   Exon   19   deletion   
and   Insertion   

~14-52%   of   
adenocarcinomas   

2,3   

Erlotinib   
Gefitinib   
Afatinib   

Osimertinib   
dacomitinib   

EGFR   Activating   Point   
Mutation   in   Exon   21  

ALK   Rearrangement   /   
Fusions   

2-7%   of   NSCLC   
cases 4   

Alectinib   
Brigatinib   
Crizotinib   
ceritinib   
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The   two   oncogenic   driver   mutations   most   frequently   observed   in   lung   

adenocarcinoma   are   the   epidermal   growth   factor   receptor   (EGFR),   which   is   often   

treated   with   tyrosine   kinase   inhibitors,   and   KRAS,   which   currently   only   has   one   form   of   

targeted   therapy   that   targets   a   specific   point   mutation   (G12C)   in   KRAS    (Hong   et   al.   

2020) .   In   general,   patients   with   KRAS   mutations   have   a   poorer   prognosis   than   those   

without    (National   Comprehensive   Cancer   Network   2021) .   KRAS   mutational   status   can   

be   determined   by   sequencing,   high-resolution   melting   analysis,   PCR,   allele-specific   

hybridization,   RT-PCR   and   can   be   assessed   at   codon   12,   13,   or   61    (Cagle   et   al.   2014) .   

Overall,   many   oncogenic   driver   mutations,   including   EGFR   and   KRAS,   occur   in   a   

mutually   exclusive   manner    (Cancer   Genome   Atlas   Research   Network   2014;   C.   Wang   et   

al.   2018) .   

  

ROS1   Rearrangement   /   
Fusions   

~   1-2%   of   NSCLC   
cases 2   

Crizotinib   
Ceritinib   

Enterectinib   

BRAF   V600E   Activating   
Point   Mutation   

~10%   of   NSCLC   
cases 2   

Dabrafenib   +   
trametinib   

MET   Exon   14   Skipping   7%   of   lung   
adenocarcinomas 2   

Crizotinib     
Capmatinib   

NTRK   Fusions   0.2%   of   NSCLC 1   Larotrectinib   
Entrectinib   

ERBB2   Amplification   1-2%   of   lung   
adenocarcinomas 5   

Afatinib   

Trastuzumab   

RET   Fusions   1-2%   of   NSCLCs   Cabozantinib   
Pralsetinib   

Selpercatinib   
Vandetanib   
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Today,   biomarkers   that   inform   therapeutic   strategies   encompass   more   than   

genetic   mutations.   Expression   of   PD-1    (Brody   et   al.   2017)    can   be   used   to   predict   and   is   

a   clinical   indication   for   response   to   immune   checkpoint   blockade.   Some   studies   have   

suggested   that   PD-1   status   does   not   correlate   with   a   particular   oncogenic   driver   

mutation    (Brody   et   al.   2017) ,   when   looking   specifically   at   East   Asian   patients,   it   was   

found   that   a   particular   mutational   signature   (MS3)   with   a   high   frequency   of   EGFR   

mutations   was   associated   with   B   lymphocyte   infiltration    (C.   Wang   et   al.   2018)    and   

observed   most   frequently   in   female   Chinese   never-smoker   patients.   Discoveries   such   

as   this   highlight   the   importance   of   precise   epidemiological   stratification   in   molecular   

profiling   of   lung   adenocarcinomas,   which   may   uncover   other   mutational   signatures   

associated   with   immune   infiltration   and   tumor-specific   immune   response.     

1.3   Treatment   

In   general,   NSCLC   is   treated   through   different   permutations   of   chemotherapies,   

radiotherapy   approaches,   surgical   resection,   targeted   therapy,   image-guided   thermal   

ablation   therapy,   and   immunotherapy    (National   Comprehensive   Cancer   Network   2021) .   

Today,   standard-of-care   for   NSCLC   patients   that   present   with   different   subtypes,   stages   

of   disease   progression,   and   pathologies   is   highly   stratified.   The   guidelines   for   cancer   

treatment   are   continuously   updated   and   re-evaluated   to   optimize   patient   outcomes.     

Most   patients   with   NSCLC   are   not   symptomatic   until   tumors   are   extensively   

progressed.   In   patients   that   are   diagnosed   with   earlier   stages   of   disease   progression,   

which   is   approximately   19%   of   patients,   surgical   resection   of   lung   tissue   that   contains   

the   primary   tumor   is   preferred    (National   Comprehensive   Cancer   Network   2021) .   In   

settings   of   more   advanced   disease,   the   clinical   benefits   of   surgical   resection   are   
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controversial    (Duma,   Santana-Davila,   and   Molina   2019;   Martins   et   al.   2012) .   Another   

method   of   local   treatment   for   tumors   is   image-guided   thermal   ablation   therapy,   which   

can   be   performed   through   radiofrequency   ablation,   microwave   ablation,   and   

cryoablation    (National   Comprehensive   Cancer   Network   2021) .   It   is   often   performed   in   

patients   who,   for   a   variety   of   reasons,   are   not   good   candidates   for   surgical   resection   but   

is   considered   to   be   a   local   therapy   that   is   often   only   indicated   for   patients   presenting   

with   earlier   stages   of   disease   progression.     

In   contrast,   radiotherapy   is   clinically   indicated   for   many   patients   across   all   stages   

of   NSCLC   and   is   most   often   used   to   maintain   control   over   tumor   growth   in   a   manner   

that   minimizes   associated   toxicity    (National   Comprehensive   Cancer   Network   2021) .   

Radiotherapy   can   be   administered   preoperatively,   postoperatively,   alone,   or   in   

combination   with   chemotherapy   or   targeted   therapy.   Similarly,   platinum-based   

chemotherapy   is   utilized   across   stages   of   NSCLC   under   specific   clinical   indications   

(National   Comprehensive   Cancer   Network   2021) .   It   is   often   delivered   as   a   secondary   

form   of   treatment,   either   before   the   primary   tumor   is   surgically   removed   or   in   

conjunction   with   chemotherapy.   Cisplatin   and   carboplatin   are   frequently   used   in   

combination   with   other   chemotherapies    (National   Comprehensive   Cancer   Network   

2021) .   Patients   with   advanced   disease   that   initially   respond   well   to   chemotherapy   are   

also   eligible   to   receive   anti-PD-1   checkpoint   therapy,   durvalumab,   concurrently   with   

chemoradiation    (Antonia   et   al.   2018)   

In   the   absence   of   therapeutically   actionable   mutations,   patients   positive   for   PD-1   

will   typically   receive   chemotherapy   alongside   single-agent   or   dual-agent   checkpoint   

blockade   therapy.   Some   forms   of   chemotherapy   are   thought   to   be   immunogenic   by   
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creating   secondary   mutations   in   response   to   therapeutic   DNA   damage,   such   as   

cyclophosphamide,   and   are   believed   to   cause   cell   death   through   an   immunogenic   cell   

death   pathway   that   can   then   elicit   a   productive   immune   response    (J.   Wu   and   Waxman   

2018) .   The   impact   of   immunogenic   chemotherapy   has   yet   to   be   re-evaluated   inlight   of   

recent   evidence   that   has   questioned   how   reliably   predictive   tumor   mutational   burden   is   

for   response   to   immune   checkpoint   blockade    (McGrail   et   al.   2021) .   

2.   Lung   Development   

2.1   Physiology   

The   distal   lung   epithelium   is   the   primary   site   of   gas   exchange   in   the   lung,   and   is   

composed   of   alveolar   air   sacs   that   contain   epithelial   cells   with   distinct   functional   roles   

(Rawlins   et   al.   2009) .   Alveolar   type   I   (AT1)   cells,   otherwise   known   as   Type   I   

pneumocytes,   are   terminally   differentiated   epithelial   cells   that   mediate   gas   and   ion   

exchange   with   characteristically   high   surface   area    (M.   C.   Williams   2003) .   Alveolar   type   

II   (AT2)   cells,   also   known   as   Type   II   pneumocytes,   are   responsible   for   production   of   

surfactant   proteins.   Surfactants   are   composed   of   a   combination   of   lipids   and   

phospholipids,   which   reduce   surface   tension,   as   well   as   surfactant   apoproteins,   which   

facilitate   molecule   adherence   (adsorption).   In   the   lung   alveolus,   this   mixture   acts   to   

prevent   lung   collapse   during   periodic   biophysical   changes   associated   with   breathing   

(Ingenito   et   al.   1999) .     

AT1   cells   make   up   the   majority   of   the   lung   alveolus    (Mason   2006) ,   and   as   a   

result,   are   the   primary   target   of   lung   tissue   damage.   During   development,   both   AT1   and   

AT2   cells   are   thought   to   differentiate   from   common   progenitors    (D.   B.   Frank   et   al.   2019) .   

After   development,   AT2   cells,   which   comprise   only   a   minority   of   the   lung   alveolus,   
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mediate   regenerative   stability   of   the   lung   alveolus   and   replenish   AT1   cells    (Mason   2006;   

Evans   et   al.   1975) ,   particularly   in   the   context   of   lung   injury.   For   this   reason,   AT2   cells   

are   believed   to   be   the   primary   source   of   AT1   cells    (Desai,   Brownfield,   and   Krasnow   

2014)    in   adult   animals.   More   recently,   a   transcriptionally   distinct   stem   cells   that   exist   

between   the   bronchus   and   alveoli,   termed   bronchioalveolar   stem   cells   (BASCs),   have   

also   been   described   and   are   believed   to   be   responsible   for   regeneration   of   AT2   and   

club   cells    (Salwig   et   al.   2019) .   Specifically,   AT2   cells   have   been   described   as   the   

primary   source   of   AT1   cells   for   homeostatic   regeneration,   whereas   BASC   cells   are   

thought   to   contribute   to   distal   airway   renewal   following   severe   lung   injury,   but   also   have   

a   minor   contribution   to   homeostatic   renewal    (Salwig   et   al.   2019) .   

2.2   Anatomy   

To   generate   the   complex   branching   pattern   of   the   lung,   development   of   lung   

airways   occurs   through   three   dimensional   branching   processes    (Metzger   et   al.   2008) .   

The   bronchial   tree   is   formed   through   initial   branching   events   from   the   bronchus   (primary   

branching)   followed   by   repeated,   smaller   branching   events   (secondary   branching   

events)   that   extend   the   airways   to   the   surrounding   mesenchyme    (Warburton   et   al.   

2010) .   

  Multiple   patterning   events   govern   three   dimensional   branch   formation   that   

manifest   through   three   branching   modes.   The   first,   domain   branching,   generates   

branches   that   are   arranged   as   rows   and   arise   as   a   result   of   signaling   circuitry   that   

dictate   branching   periodicity   and   domain   positioning    (Metzger   et   al.   2008) .   The   two   

remaining   branching   modes   are   distinguished   from   domain   branching   because   

branching   occurs   at   the   tip.   Of   these   two   modes,   planar   bifurcation   occurs   through   
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sequential   branching   of   lung   buds   that   are   formed   after   primary   branching   events   

(Metzger   et   al.   2008) .   This   process   creates   proximal-distal   patterning   of   the   lung   bud   

and   serves   to   create   branches   that   exist   in   the   same   plane.   Similarly,   orthogonal   

bifurcation   occurs   towards   the   end   of   branching   processes   but   generates   branches   that   

are   normal   (perpendicular)   to   one   another,   and   is   largely   responsible   for   generating   

three-dimensional   branching   patterns    (Metzger   et   al.   2008) .   

2.3   Genetics   of   development   

The   lung   airway   is   composed   of   multiple   tissue   types,   most   notably   epithelial   

cells,   which   are   responsible   for   gas   exchange   and   surfactant   production,   as   well   as   

endothelial   cells   which   form   the   vasculature   required   for   gas   exchange    (Cardoso   and   

Whitsett   2008) .   Other   cell   types   of   the   lung,   such   as   neuroendocrine   cells,   have   distinct   

developmental   origins   from   those   of   epithelial   cells    (Perl   et   al.   2002) .   However,   most   cell   

types   of   the   lung   airway   develop   from   common   progenitors   during   development    (Perl   et   

al.   2002) .   Notably,   the   final   steps   of   lung   maturation,   during   which   surfactant   production   

begins,   occurs   very   late   in   embryonic   development   and   continues   postnatally   

(Warburton   et   al.   2010) .   

During   embryonic   development,   lung   tissue   is   specified   during   differentiation   of   

the   endoderm.   Co-expression   of    Nkx2-1 ,   a   transcription   factor   that   is   otherwise   known   

as    Ttf-1    or    Titf-1 ,   and   the   forkhead   transcription   factor,    Foxa2     (Maeda,   Davé,   and   

Whitsett   2007)    distinguishes   lung   tissue   from   other   fates   of   the   gut   tube,   which   include   

thyroid,   liver,   and   pancreas.   Importantly,   both   of   these   transcription   factors   have   

extensive   interactions   with   other   transcription   factors   that   mediate   progressive   

differentiation   of   different   tissue   types   of   the   lung   and   also   play   important   roles   in   
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differentiation   of   other   gut   tube   derived   tissues    (C.   M.-C.   Li   et   al.   2015;   Warren   et   al.   

2020;   C.   S.   Lee   et   al.   2005) .     

Differentiation   of   tissues   that   make   up   the   lung   airway   are   highly   dependent   on   

proximal-distal   patterning   of   the   developing   lung.   When   these   patterns   are   established,   

cells   fated   to   become   part   of   the   airway   proliferate   in   an   undifferentiated   state   in   

response   to   Wnt   induced   effectors    (Okubo   et   al.   2005;   Shu   et   al.   2005) .   During   tissue   

patterning   and   branching,   processes   that   lead   to   differentiation   of   cells   fated   to   become   

various   cell   types   of   lung   alveoli   are   highly   interdependent.   Together,   these   interactions   

orchestrate   a   network   of   signaling   pathways   and   transcription   factors    (Maeda,   Davé,   

and   Whitsett   2007)    which   acts   across   multiple   tissues   that   dictate   their   development.     

In   particular,   Fgf10   is   a   morphogen   expressed   in   the   mesenchyme   adjacent   to   

the   differentiating   endoderm   that   directs   lung   bud   formation,   outgrowth,   and   proliferation   

(Bellusci   et   al.   1997;   Abler,   Mansour,   and   Sun   2009) .   It   primarily   mediates   signaling   

through   activation   of   the   fibroblast   growth   factor   receptor   2,   Fgfr2    (Abler,   Mansour,   and   

Sun   2009) .   Fgf10   expression   is   largely   regulated   through   interactions   with   surrounding   

tissues;   in   the   mesenchyme,   for   example,   it   is   positively   regulated   by   the   growing   distal   

endoderm    (Bellusci   et   al.   1997) .   Additionally,   Fgf10   signaling   induces   expression   of   

genes   and   activity   of   signaling   pathways   that   serve   to   restrict   and   dampen   further   Fgf   

signaling.   This   feedback   is   of   particular   importance   because   branching   events   are   

thought   to   occur   in   the   absence   of   Fgf10    (Abler,   Mansour,   and   Sun   2009) .   These   

feedback   signals   include   Sonic   Hedgehog   (Shh)   signaling,   bone   morphogenic   proteins   

(BMPs)    (Hyatt,   Shangguan,   and   Shannon   2004) ,   and   Sprouty   expression    (Mailleux   et   

al.   2001) .     
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Negative   feedback   for   Fgf10   signaling   occurs   through   multiple   mechanisms.   In   

the   case   of   Sprouty   proteins,   which   act   intracellularly   to   inhibit   FGFR   kinase   activity,   

they   negatively   regulate   Ras   signaling   downstream   of   FGF   signaling    (Perl   et   al.   2003) .   

Mechanistically,   they   can   initiate   and   regulate   branching   induced   by   Fgf10    (Tefft   et   al.   

1999) .   In   contrast,   Shh   signaling   primarily   affects   the   surrounding   mesenchyme   of   the   

developing   lung   bud   rather   than   the   lung   bud   itself    (L.-A.   D.   Miller   et   al.   2004)    despite   its   

requirement   for   proper   lung   branching   and   patterning    (Pepicelli,   Lewis,   and   McMahon   

1998) .   Shh   signaling   is   canonically   activated   when   a   Shh   ligand   binds   and   inactivates   

its   receptor,   Patched,   which   ultimately   results   in   translocation   of   effector   Gli   transcription   

factors   to   the   nucleus    (Carballo   et   al.   2018) .   When   overexpressed   in   the   developing   

lung,   Fgf10   becomes   downregulated    (Bellusci   et   al.   1997) .   Further   mechanistic   studies   

have   demonstrated   that   Shh   acts   to   restrict   Fgf10   expression   to   the   distal   end   of   the   

lung   bud    (Kugler   et   al.   2015) .     

While   Bmp4   has   consistently   been   shown   to   be   a   critical   regulator   of   lung   

development,   the   precise   nature   of   its   behavior   has   been   less   clear.   In   genetic   studies,   

manipulation   of   Bmp4   causes   disruption   of   lung   branching   events;   overexpression   of   

Bmp4   reduces   the   number   of   terminal   buds    (Lu   et   al.   2001) ,   while   overexpression   of   a   

BMP   inhibitor   causes   defects   in   distal   differentiation    (Weaver   et   al.   1999) .   Together,   it   is   

thought   that   the   effects   of   Bmp4   seem   to   vary   as   a   function   of   its   effective   concentration   

(Weaver,   Dunn,   and   Hogan   2000;   Weaver   et   al.   1999)    and   are   dependent   on   

interactions   with   the   surrounding   mesenchyme    (Warburton   et   al.   2005) .   Further,   Bmp4   

expression   is   tightly   regulated   by   multiple   signaling   pathways,   including   Wnt   and   Fgf   

(Shu   et   al.   2005) .   
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These   genes   and   pathways   form   a   genetic   circuit   that   ultimately   coordinates   

branching   processes   of   the   distal   lung.    (Maeda,   Davé,   and   Whitsett   2007)    Importantly,   

because   cell   type   differentiation   is   exquisitely   linked   to   patterning,   this   genetic   circuitry   

not   only   influences   lung   anatomy,   but   also   differentiation.   It   should   be   noted   that   

postnatal   development   of   the   lung   also   occurs   and   is   distinct   from   prenatal   

development.   For   example,   RAS   expression   in   the   lung   occurs   mostly   in   postnatal   

development    (Thrane   et   al.   1997) .   This   expression   pattern   is   not   surprising,   given   that   

lung   development   occurs   late   during   fetal   development   and   continues   through   the   first   

few   days   after   birth    (Warburton   et   al.   2010) .   

2.4   Lung   Development   and   Non-Small   Cell   Lung   Cancer   

In   terms   of   histopathology,   the   differentiation   state   of   a   tumor   has   long   been   

recognized   to   be   prognostic   of   tumor   behavior   and   patient   survival    (Jögi   et   al.   2012) .   

Loss   of   differentiation   status   intuitively   correlates   with   patient   prognosis;   the   more   

differentiated   a   tumor   is,   the   more   it   resembles   the   tissue   that   it   arises   from.   

Mechanistically,   the   relationship   between   differentiation   status   and   hallmarks   of   tumor   

progression   has   been   less   clear.   The   discovery   and   characterization   of   the   EMT   

program    (Brabletz   et   al.   2018)    in   the   context   of   carcinomas   offered   clarity   on   this   

relationship,   as   EMT   was   specifically   implicated   in   metastasis.   However,   loss   of   

differentiation   in   carcinomas   that   arise   from   different   tissue   types   occurs   through   tissue   

specific   mechanisms   that   are   poorly   understood.   The   importance   of   the   developmental   

context   under   which   a   tumor   forms   is   made   evident   through   comparison   of   how   tumors   

with   different   origins   behave   and   respond   to   therapy.   Notably,   these   associations   can   be   

complicated   by   the   fact   that   histopathology   is   not   always   indicative   of   the   tissue   a   tumor   
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arises   from    (Visvader   2011) .   Overall,   the   relationship   between   differentiation   status   and   

disease   behavior   is   highly   context-specific.   

Differentiation   status   is   of   particular   importance   for   non-small   cell   lung   cancer.   

One   of   the   features   considered   when   determining   the   histological   grade   of   a   tumor,   

which   robustly   stratifies   patient   survival,   is   histological   differentiation   of   the   tumor   

(Yasukawa   et   al.   2018) .   Aggressive,   high   grade   tumors   are   characterized   by   lack   of   

differentiation.   Expression   of   NKX2-1,   a   master   regulator   of   lung   identity,   is   often   

assessed   in   clinical   specimens   to   identify   tumors   that   originate   from   the   lung.   In   

agreement   with   the   associations   made   with   differentiation   status   and   patient   prognosis,   

expression   of   NKX2-1   is   associated   with   improved   prognosis   relative   to   patients   with   

low   expression   of   NKX2-1    (Moisés   et   al.   2017) .   Despite   this   association,   NKX2-1   is   

frequently   amplified   in   lung   cancer    (Kwei   et   al.   2008)    and   is   described   in   some   contexts   

as   a   lineage-specific   oncogene.   However,   mechanistic   studies   have   suggested   that   

NKX2-1   suppresses   metastatic   disease   progression    (Winslow   et   al.   2011) .   

3.   Genetically   Engineered   Mouse   Model   of   Lung   Adenocarcinoma   

3.1   The   KP   Model   

3.1.1   Kras   

The   RAS   family,   which   is   the   most   frequently   mutated   family   of   genes   in   cancer,   

includes   HRAS,   KRAS,   and   NRAS.   Of   the   RAS   family,   KRAS   is   mutated   the   most   

frequently    (Waters   and   Der   2018) .   WHen   bound   to   GTP,   RAS   proteins   activate   a   variety   

of   intracellular   signaling   networks   that   generally   promote   cell   proliferation    (Cox   and   Der   

2010) .   Point   mutations   at   glycine-12,   glycine-13,   or   glutamine-61   have   been   implicated   

as   gain-of-function   mutations   which   render   KRAS   constitutively   active   in   the   KRAS-GTP   
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state,   and   thereby   drive   uncontrolled   proliferation   and   transformation    (Tchernitsa   et   al.  

2004) .   The   oncogenic   effects   of   point   mutant   KRAS G12D    have   been   extensively   modeled   

in   the   mice   of   lungs,   and   it   was   found   that   spontaneous   expression   of   Kras G12D    will   

invariably   lead   to   the   development   of   lung   tumors    (Johnson   et   al.   2001) .   

Histopathologies   of   the   resultant   lesions   of   the   lung   recapitulate   human   NSCLC   

progression,   from   hyperplasia   to   carcinoma    (Johnson   et   al.   2001) ,   and   as   such,   

experimental   introduction   of   oncogenic   KRAS G12D    in   the   lung   has   become   a   widespread   

genetically   engineered   mouse   model   of   cancer.     

Oncogenic    Kras G12D    has   been   engineered   into   an   allele   that   allows   expression   of   

oncogenic   KRAS G12D    following   removal   of   a   transcriptional   stop   element   in   a  

Cre-recombinase   dependent   manner    (E.   L.   Jackson   et   al.   2001) .   Lung   specific   

expression   of   Cre   recombinase   can   be   achieved   through   intranasal   or   intratracheal   

administration   of   an   adenovirus   containing   Cre    (E.   L.   Jackson   et   al.   2001;   DuPage,   

Dooley,   and   Jacks   2009)    and   results   in   multifocal   tumors   of   the   lung.    Kras    is   required   for   

embryonic   development   but   is   haplosufficient,   thus,   this   allele   can   only   be   bred   

heterozygously   into   viable   animals.   Importantly,   these   tumors   do   not   progress   through   

late   histological   stages   of   NSCLC   progression,   which   led   to   incorporation   of   other   Cre   

conditional   oncogenic   alleles.     

3.1.2   Trp53   

The   tumor   suppressor   P53   is   one   of   the   most   extensively   studied   and   

characterized   genes   in   cancer    (Vousden   and   Lane   2007) .   It   has   been   an   identified   

regulator   of   many   systems   within   a   cell   that   become   dysregulated   in   tumor   cells,   

including   cell   death,   proliferation,   genomic   stability,   and   senescence    (Vousden   and   Lane   
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2007) .   The   mechanisms   behind   P53   functionality   occur   both   through   its   activity   as   a   

transcription   factor   and   its   direct   signaling   pathway   activity    (Yu   and   Zhang   2003) .   It   is   

regulated   through   modulation   of   its   activity,   stability,   and   localization   in   response   to   cell   

cycle   arrest   and   apoptotic   signals    (Vousden   and   Lane   2007) .   A   conditional   null   allele   of   

TP53   was   generated   through   insertion   of   LoxP   sites,   which   become   recombined   by   Cre   

recombinase,   in   locations   flanking   exons   2   through   10   of   TP53.   

  In   clinical   cases   of   NSCLC,   KRAS   and   TP53   mutations   frequently   occur   

together,   and   as   such,   these   Cre-conditional    Kras    and    Trp53    alleles   were   combined.   

This   produced    Kras LSL-G12D/+ ; Trp53 fl/fl    mice   that   produce   tumors   similar   to   those   of   

Kras LSL-G12D    alone   (K   only)   but   better   reflected   more   progressed   histological   stages   of   

NSCLC   with   reduced   tumor   latencies    (Jackson   et   al.   2005) .   This   model   has   been   well   

characterized   and   is   hereafter   referred   to   as   the   KP   model.     

3.1.1   Behavior   of   the   KP   model   

Both   the   K   only   and   KP   model   of   lung   cancer   have   variable   progression   kinetics   

across   mice   that   are   infected   with   the   same   viral   dose    (DuPage,   Dooley,   and   Jacks   

2009) .   This   has   been   observed   with   respect   to   histological   tumor   progression,   

metastasis,   and   survival   of   KP   mice    (DuPage,   Dooley,   and   Jacks   2009) ,   and   with   

multiple   forms   of   viral   delivery.   For   example,   at   6   weeks   post-infection   with   adenoviral   

Cre,   approximately   50%   of   tumors   are   grade   1,   40%   of   tumors   are   grade   2,   ~17%   of   

cells   grade   3,   and   the   remaining   fraction   grade   4.   20   weeks   later,   almost   half   of   tumors   

are   grade   3,   more   than   20%   grade   4   or   grade   2,   and   a   small   minority   of   grade   1   or   

grade   5   tumors    (Jackson   et   al.   2005) .   Interestingly,   KP   tumor   progression   is   not   
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currently   believed   to   be   driven   by   acquisition   of   additional   mutations    (DuPage   et   al.   

2011) .   

While   lentiviruses   used   to   generate   tumors   can   be   flexibly   generated   in-house   

and   have   viral   genomes   that   can   be   experimentally   modified   with   ease,   they   infect   a   

wide   variety   of   cell   types,   including   macrophages    (Buckley   et   al.   2008) .   Importantly,   

there   is   no   evidence   that    Kras    and    Tp53    alleles   cause   transformation   of   tissues   except   

those   of   the   lung   epithelium.   While   tissue   specific   promoters   can   be   used   to   drive   

expression   of   Cre   recombinase,   many   of   these   promoters   are   too   large   to   be   

encapsulated   by   lentiviral   packaging   proteins.   Instead,   Cre   expression   in   alveolar   type   II   

cells   can   be   achieved   by   utilizing   the   promoter   for   surfactant   protein   C   ( Sftpc )   to   drive   

expression   of   Cre   recombinase   with   adenoviruses    (DuPage,   Dooley,   and   Jacks   2009;   

Tippimanchai   et   al.   2018) .     

3.1.2   Cell   of   origin   in   the   KP   model   

Multiple   epithelial   cells   of   the   lung   can   give   rise   to   KP   lung   adenocarcinomas.   KP   

lung   adenocarcinomas   can   be   generated   with   viruses   that   contain   Cre   driven   by   

promoters   that   are   specific   for   multiple   cell   types   of   the   lung,   including   AT2   cells   and   

Clara   cells    (Sutherland   et   al.   2014) .   Although   both   tissues   can   give   rise   to   

adenocarcinomas,   the   tumors   differ   in   kinetics   and   expression    (Sutherland   et   al.   2014) .   

Some   rare   cells   of   the   lung   that   express   Clara   Cell   markers   and   AT2   markers   

simultaneously,   termed   Bronchioalveolar   Stem   Cells   (BASCs),   can   give   rise   to    Kras   

driven   tumors   as   well    (C.   F.   B.   Kim   et   al.   2005) .   However,   it   is   now   appreciated   that   

tumors   that   arise   from   these   cell   types   differ   from   those   of   AT2-derived   tumors    (C.   F.   B.   

Kim   et   al.   2005) .   The   tumors   that   will   be   described   in   the   forthcoming   sections   will   focus   
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on   AT2-derived   tumors,   which   are   believed   to   be   the   predominant   tumors   that   result   

from   intratracheal   lentiviral   Cre.   

3.2   Developments   in   experimental   tools   for   studying   the   KP   model  

The   flexibility   afforded   by   lentiviral   mediated   delivery   of   Cre   recombinase   permits   

integration   of   sequences   which,   beyond   controlling   expression   of   Cre   recombinase,   can   

mediate   alterations   in   other   genes   or   drive   ectopic   expression   of   a   transgene.   In   

particular,   incorporation   of   CRISPR   machinery   to   create   double   stranded   DNA   breaks   at   

target   loci   in   the   genome   has   made   introduction   of   additional   mutations   at   the   onset   of   

tumor   initiation   very   efficient    (Sánchez-Rivera   et   al.   2014) .   Additionally,   lentiviruses   can   

be   incredibly   powerful   tools   to   study   the   immune   response   to   a   strong   neoantigen   by   

inducing   ectopic   antigen   expression   in   a   tumor-specific   fashion    (DuPage   et   al.   2011) .   By   

expressing   LucOS,   a   fusion   of   luciferase   to   two   peptides,   T   cells   that   recognize   the   

antigens   of   LucOS   can   be   isolated   and   characterized   via   tetramer   staining    (DuPage   et   

al.   2011) .   By   staining   for   T   cells   that   specifically   recognize   LucOS   antigens,   longitudinal   

responses   to   a   tumor-specific   antigen   can   be   measured.   

Furthermore,   through   introduction   of   additional   Cre   responsive   alleles   to   the   

Rosa26    locus   of   KP   mice,   even   further   flexibility   is   introduced.   This   is   particularly   

advantageous   in   settings   where   lentiviruses   are   not   preferred,   and   allows   for   expression   

of   Cas9,   fluorophores,   and   more    (Ng   et   al.   2020) .     
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CHAPTER   1,   PART   3   

High-Dimensional   Biological   Data   

1.   Technological   Advancements   in   Sequencing   Technology   

The   development   of   next-generation   sequencing   technologies,   which   have   made   

DNA   sequencing   increasingly   more   cost   and   labor   efficient,   has   undoubtedly   changed   

the   nature   of   biological   research.   Widespread   utilization   of   this   technology   has   led   to   

unprecedented   production   of   biological   data   at   a   scale   that   is   difficult   to   make   

meaningful   conclusions   from,   in   even   a   single   biological   setting.   Until   recently,   the   

materials   sequenced   through   these   technologies   were   isolated   from   pools   of   cells.   

Advancements   in   droplet-based,   microfluidic,   and   barcoding   technologies   have   now   

made   it   possible   to   sequence   material   isolated   from   individual   cells    (Zheng   et   al.   2017;   

Macosko   et   al.   2015;   Amini   et   al.   2014) .     

As   technologies   have   advanced,   it   has   become   more   efficient   to   sequence   a   

larger   number   of   cells   in   a   manner   that   produces   higher   quality   data   at   a   lower   per-cell   

cost.   Subsequently,   large-scale   efforts   have   sponsored   utilization   of   single-cell   

technologies   to   characterize   cells   of   different   tissues,   in   various   biological   contexts,   

across   many   organisms    (Rozenblatt-Rosen   et   al.   2017;   Regev   et   al.   2017,   2018;   

Consortium   et   al.   2018;   Z.-J.   Cao   et   al.   2020;   Packer   et   al.   2019) .   These   data   generated   

from   these   experiments   have   been   aggregated   and   made   publicly   available   in   a   way   

that   has   brought   biological   research   into   a   new   era,   wherein   biological   processes   are   

characterized   and   studied   at   single-cell   resolution.     
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Single-cell   technologies   have   allowed   measurement   of   RNA   and   protein   

expression   in   individual   cells.   single-cell   DNA   sequencing   has   also   become   more   

prevalent;   however,   it   is   difficult   to   perform   this   technique   in   a   manner   that   yields   

sufficient   coverage   and   resolution   of   a   cell’s   genome.   As   such,   many   of   the   more   widely   

adopted   single-cell   technologies   provide   better   relative   coverage   of   sequenced   material   

through   targeted   capture   of   RNA   and   DNA    (Yong   Wang   and   Navin   2015) .   While   some   

single-cell   technologies   designed   to   assay   protein   expression   utilize   DNA   sequencing   

based   readouts,   all   are   dependent   on,   and   limited   by,   the   availability   of   validated   

antibodies    (Stoeckius   et   al.   2017;   Han   et   al.   2018) .   

Single-cell   RNA   sequencing   (scRNA-seq)   is   a   widely   utilized   single-cell-omic   

technology,   primarily   due   to   widespread   adoption   of   the   10X   Genomics   platform    (Zheng   

et   al.   2017) ,   which   allows   for   efficient   and   simultaneous   measurement   of   3’   and   5’   

mRNA   in   up   to   thousands   of   cells.   It   has   now   incorporated   other   technologies   to   allow   

for   immune-cell   related   readouts,   spatial   measurement,   and   chromatin   accessibility   

readout   simultaneously   with   gene   expression.   Additionally,   chromatin   accessibility,   

which   is   measured   through   assay   for   transposase-accessible   chromatin   using   

sequencing   (ATAC-seq),   has   also   become   increasingly   more   popular   and   can   be   

performed   with   the   10X   Platform   or   by   single-cell   combinatorial   indexing   (sciATAC-seq)   

(Cusanovich   et   al.   2015) .   Transcriptional   and   chromatin   accessibility   states   serve   as   

reliable   proxies   for   overall   cell   state   because   they   are   collectively   responsible   for   

determining   cell   behavior.   Thus,   these   technologies   have   now   permitted   generation   of   

high-dimensional   biological   data   that   describes   biological   state   at   single-cell   resolution.     
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2.   Structures   of   High-Dimensional   Biological   Data   

2.1   Advancements   in   discovery   of   complex   data   structures   

When   biological   data   is   produced   from   assays   with   single-cell   resolution,   each   

cell   is   considered   a   “variable”   and   each   entity   measured   (e.g.   each   mRNA   in   

scRNA-seq)   is   considered   an   “observation”.   Each   variable   is   measured   for   each   

observation   or   cell,   and   this   produces   high-dimensional   biological   data.   Analytically,   

many   challenges   exist   when   interpreting   this   kind   of   data,   which   are   typically   discussed   

as   ‘the   curse   of   dimensionality’   or   the   ‘dimensionality   problem’    (Donoho   and   Others   

2000) .   The   curse   of   dimensionality   refers   to   the   inability   to   approximate   the   underlying   

structure   of   data   that   is   created   with   complete   accuracy.   In   other   words,   the   data   cannot   

be   interpreted   in   its   true   form.   

  To   overcome   this   challenge,   implementations   of   multivariate   statistics   and   

probability   theory   have   been   utilized   in   computational   algorithms   to   approximate   data   

structures   on   a   manifold,   which   is   sometimes   described   as   a   topological   space    (Martin   

2002) .   In   single-cell   analysis,   projections   of   these   manifolds   are   often   made   in   

low-dimensional   (usually   2-dimensional)   space   to   visualize   latent   data   structures.   In   

each   approximation   approach,   assumptions   are   made   or   artifacts   can   be   created   which   

can   lead   to   obstruction   of   true   underlying   structures   and   even   misrepresent   some   

relationships.   The   optimal   analytic   approach   is   usually   determined   on   a   case-by-case   

basis   and   is   largely   dependent   on   the   assumptions   made   about   underlying   data   

structures    (Luecken   and   Theis   2019) .   In   addition,   hyperparameter   selection   can   have   a   

big   impact   on   the   performance   of   various   analytical   approaches.     
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2.2   Relationships   between   data   structures   and   underlying   noise   

Some   single-cell   analysis   techniques   require   handling   that   can   lead   to   substantial   

technical   and   batch   related   artifacts,   which   was   particularly   true   for   early   forms   of   

scRNA-seq    (Xiliang   Wang   et   al.   2021) .   In   some   cases,   these   effects   can   be   strong   

enough   to   entirely   obstruct   underlying   structures   of   data.   In   many   instances,   metadata   

for   plate   or   batch   origin   is   recorded   for   each   cell,   which   can   be   used   to   approximate   the   

extent   to   which   batch   identity   can   explain   variation   observed   in   data.   This   can   be   easily   

performed   through   comparison   of   expected   and   observed   genes   that   show   the   most   

variation   across   a   dataset    (Xiliang   Wang   et   al.   2021) .   When   comparing   datasets   

empirically   known   to   contain   functionally   distinct   cell   types,   where   subtle   differences   in   

observations   are   expected,   it   can   be   difficult   to   distinguish   batch   effects   from   true   

underlying   biology.   This   is   compounded   by   variation   produced   from   ‘drop-out’,   which   

occurs   when   the   utilized   technology   fails   to   capture   expression   of   a   gene   and   typically   

occurs   most   frequently   amongst   lowly   expressed   genes    (Kharchenko,   Silberstein,   and   

Scadden   2014) .   Dropout   is   usually   most   apparent   when   two   highly   similar   cells   show   

moderate   to   high   expression   of   a   particular   gene   in   one   cell,   but   not   of   another.   In   

single-cell   data,   dropout   requires   analytical   approaches   of   single-cell   data   to   be   able   to   

tolerate   noise   generated   from   resulting   sparse   data.   This   is   the   primary   reason   why   

batch   correction   techniques   utilized   in   bulk   RNA-seq   analysis,   which   are   not   plagued   by   

sparsity,   have   seldom   been   extended   to   the   single-cell   setting    (H.   T.   N.   Tran   et   al.   

2020) .   

Batch   correction   of   single-cell   data   can   be   approached   through   multiple   ways.   

Some   of   the   most   popular   forms   of   batch   correction   depend   on   construction   of   nearest   
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neighbor   graphs    (Lun   2019;   Jialin   Liu   et   al.   2020) ,   while   others   ‘align’   data   by   drawing   

correlations   between   them    (Hardoon,   Szedmak,   and   Shawe-Taylor   2004) .   All   of   these   

algorithms   depend   on   similarities   that   exist   between   cells   across   batches   that   are   being   

corrected   for.   If   similarity   is   expected   between   some,   but   not   all,   cells   across   different   

batches,   this   can   lead   to   loss   of   true   underlying   biological   variation.   Some   techniques   

explicitly   state   that   at   least   one   cell   type   must   be   shared   amongst   batches    (H.   T.   N.   Tran   

et   al.   2020) .   Other   important   statistical   assumptions   are   also   made   for   some   of   these   

algorithms,   particularly   about   the   behavior   of   underlying   variation   in   the   data.   

  In   many   cases,   it   must   be   determined   whether   or   not   batch   correction   is   

appropriate   and,   if   indicated,   which   algorithm   is   optimal.   Some   batch   correction   

techniques   also   employ   methodologies   that   can   be   extended   to   integrate   

high-dimensional   data   structures   that   are   generated   through   different   techniques   or   

modalities    (Jialin   Liu   et   al.   2020) ,   but   batch   correction   is   still   primarily   used   in   the   setting   

of   a   singular   kind   of   data   (e.g.   mRNA,   chromatin   accessibility).   While   some   techniques   

tend   to   perform   better   than   others   across   many   forms   of   data,   there   is   currently   no   

“one-size-meets-all”   solution   for   batch   correction    (H.   T.   N.   Tran   et   al.   2020) .     

3.   Dimensionality   Reductions   and   Interpretability   

3.1   Modern   approaches   to   dimensionality   reduction   in   biology   

The   general   premise   of   dimensionality   reduction   in   biological   data   is   to   effectively   

reduce   the   number   of   dimensions,   or   variables   of   gene   expression,   across   which   

variation   can   be   studied.   Like   batch   correction   algorithms,   the   techniques   utilized   in   

dimensionality   reduction   generally   perform   optimally   in   some,   but   not   all,   settings   and   

each   have   associated   statistical   assumptions    (Luecken   and   Theis   2019)    which   are   not   
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appropriate   for   all   biological   settings.   Most   conventional   approaches   to   single-cell  

analysis   currently   utilize   multiple   forms   of   dimensionality   reduction   to   increase   

computational   and   processing   speed,   which   are   briefly   outlined   in   the   subsections   

below.   

Importantly,   construction   of   these   transcriptional   or   epignomic   phase   spaces   are   

independent   from   and   do   not   explicitly   consider   external   biological   metadata   such   as   

time,   genetic   context,   genotype,   gender,   etc,   except   when   these   covariates   are   

empirically   known   and   explicitly   controlled   for   through   batch   correction.   These   identities   

create   variation   in   biological   data,   and   the   extent   of   their   influence   has   been   

demonstrated   in   settings   where   this   metadata   is   explicitly   recorded   and   defined    (Peng  

et   al.   2021) .   While   this   can   pose   challenges   of   interpretability,   this   can   also   be   extremely   

useful.   The   identities   that   are   not   considered   in   your   dimensionality   reduction   can   be   

used   as   “ground   truths”   to   benchmark   the   reliability   of   your   analysis   for   your   specific   use   

case   against   empirically   known   relationships   and   patterns   of   variation.   

3.1.1   Linear   Dimensionality   Reduction   

Principal   Component   Analysis   (PCA),   entails   linear   transformation   of   data   in   a   

manner   that   maximizes   differences   between   features   of   the   data    (Turk   and   Pentland   

1991) .   Its   applications   for   analysis   of   biological   data   have   allowed   biologists   to   make   

meaningful   observations   of   relatively   low   dimensional   data,   such   as   those   from   bulk   

RNA   sequencing   experiments    (Yeung   and   Ruzzo   2001;   Shuangge   Ma   and   Dai   2011) .   

Identified   principal   components,   which   can   be   interpreted   as   describing   different   forms   

of   variation   in   data,   are   evaluated   by   genes   which   vary   the   most   across   a   given   

component.   The   use   of   PCA   set   a   precedent   in   biology   for   application   of   mathematical   
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approaches   for   analysis   of   high-dimensional   data,   which   became   particularly   

advantageous   for   analysis   of   single-cell   RNA   sequencing   data   that   produces   datasets   

with   dimensionality   that   can   be   multiple   orders   of   magnitude   larger   than   bulk   RNA-seq   

datasets.     

When   applied   to   high-dimensional   data,   the   limitations   of   PCA   and   similar   linear   

transformations   are   more   pronounced    (Sun   et   al.   2019) .   In   many   cases,   the   first   two   

principal   components   capture   a   fraction,   but   not   all,   of   the   variation   in   a   dataset.   

Additionally,   PCA   does   not   preserve   local   structures   of   data    (van   der   Maaten   2008) .   

Such   limitations   have   led   analysis   approaches   to   instead   utilize   algorithms   that   are   

designed   to   better   preserve   both   the   local   and   global   relationships   between   data    (van   

der   Maaten   2008) .   Still,   PCA   is   widely   recognized   as   a   reliable   method   for   estimation   of   

global   data   structures.   It   is   often   used   to   preprocess   data   prior   to   nonlinear   

dimensionality   reduction    (Zappia,   Phipson,   and   Oshlack   2018)    and   is   also   useful   for   

reducing   computational   resources   required   for   downstream   analysis    (Tsuyuzaki   et   al.   

2020) .   In   addition,   it   can   be   performed   only   on   genes   that   are   highly   variable   across   the   

data   through   feature   selection   that   occurs   prior   to   PCA    (Xiliang   Wang   et   al.   2021) .   

Dimensionality   techniques   that   rely   on   linear   transformation   of   data   inherently   

assume   that   the   underlying   ‘subspace’   (or   gene   expression   space)   is   linear.   However,   

most   biological   data   have   nonlinear   data   structures    (Y.   Cheng   and   Newell   2016;   

Schulte-Schrepping   et   al.   2020)    and,   as   a   consequence,   most   linear   dimensionality   

techniques   perform   poorly   on   high-dimensional   data.     
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3.2.2   Nonlinear   Dimensionality   Reduction   

Functionally,   nonlinear   dimensionality   reductions   create   an   intangible   “space”   

that   is   unique   to   the   form   of   data,   i.e.   topologies   transcriptional   space   or   chromatin   

accessibility   space,   through   a   generalized   approach   of   manifold   learning    (X.   Huang,   

Wu,   and   Ye   2019) .     

Nearest   neighbor   graphs   generate   data   structures   that   identify   positions   for   data   

points   that   are   most   similar   to   another   given   data   point,   and   are   often   created   to   data   

that   has   been   transformed   into   a   Euclidean   subspace    (Andoni   and   Indyk   2006) .   

Because   PCA   produces   approximations   of   distance   between   data   in   Euclidean   space,   

many   algorithms   construct   nearest   neighbor   graphs   in   principal   component   space.   

Nearest   neighbor   graphs   can   be   constructed   in   multidimensional   space,   often   on   a   

fraction   of   selected   principal   components   produced   during   preprocessing    (Tsuyuzaki   et   

al.   2020)    that   collectively   capture   most   of   the   variation   observed   across   a   dataset.     

The   t-stochastic   neighbor   embedding   (tSNE)   projection   is   one   of   the   most   widely   

utilized   embeddings   for   single-cell   analysis.   It   works   by   approximating   nearest   neighbor   

graphs   through   construction   of   probability   distributions   from   Euclidean   distances   

between   data    (van   der   Maaten   2008) .   It   acts   to   reduce   dimensionality   by   then   finding   an   

arrangement   for   data   in   lower   (usually   2   or   3)   dimensional   space.   Distances   between   

data   arranged   in   lower   dimensional   space   can   be   used   to   generate   probability   

distributions   (specifically,   student   t-distributions)   and   compared   to   those   generated   in   

high-dimensional   space.    

This   is   then   performed   iteratively   to   find   and   evaluate   an   arrangement   for   the   

data   in   lower   dimensional   space   that   generates   probabilities   most   similar   to   those   
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constructed   on   data   in   high-dimensional   space.   A   given   arrangement   in   lower   

dimensional   space   is   considered   to   be   optimal   when   Kullback-Leibler   divergence   across   

all   datapoints   is   minimized.   A   tSNE   projection   will   specifically   preserve   local   distances   

between   data   points   by   prioritizing   optimal   arrangements   between   data   points   that   are   

close   together   at   the   expense   of   those   which   are   far   apart   when   evaluating   lower   

dimensional   arrangements   of   data   points.   Notably,   in   datasets   where   most   data   points   

are   similarly   distanced   from   one   another,   this   will   create   artifacts   that   will   manifest   as   

crowding   of   data   points   and   distortion   of   underlying   data   structures.   Additionally,   this   will   

cause   poor   performance   in   datasets   with   highly   variable   underlying   manifolds    (van   der   

Maaten   2008) .     

Uniform   Manifold   Approximation   and   Projection   (UMAP)   has   become   a   widely   

adopted   method   of   visualizing   high-dimensional   data   and   is   often   a   preferred   alternative   

to   tSNE   embeddings    (McInnes   et   al.   2018) .   Mechanistically,   it   is   similar   to   that   of   tSNE,   

but   takes   different   approaches   to   calculate   neighbor   graphs   and   approximate   them   in   

lower   dimensional   space    (McInnes,   Healy,   and   Melville   2018) .   When   a   UMAP   

dimensionality   reduction   is   performed,   a   k-nearest-neighbor   graph   for   each   individual   

cell   is   constructed   by   approximating   distance   between   neighboring   cells   with   a   

Reimannian   metric.   The   resulting   graphs   for   all   cells   in   the   data   are   then   iteratively   

merged   or   “patched”   together   to   form   a   global   space,   represented   by   a   k-nearest   

neighbor   graph,   that   approximates   the   topology   of   the   data   on   a   uniform   manifold.   In   a   

manner   that   is   conceptually   similar,   but   mechanistically   distinct   from   tSNE   embeddings,   

a   low   dimensional   (2D   or   3D)   UMAP   embedding   is   generated   by   finding   an   optimal   

arrangement   for   cells   data   in   lower   dimensional   space   that   generates   probabilities   most   
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similar   to   those   constructed   on   data   in   high-dimensional   space.   This   differs   from   the   

approach   utilized   in   tSNE   embeddings   in   the   features   of   the   probability   distributions   that   

are   compared   and   optimized   upon.   The   cost   function   used   to   find   an   optimal   2   or   3   

dimensional   embedding,   cross   entropy,   is   also   distinct   from   that   of   tSNE    (McInnes,   

Healy,   and   Melville   2018) .   UMAP   is   favored   in   most   circumstances   over   tSNE   because   

it   better   approximates   global   and   local   structures   of   data    (McInnes   et   al.   2018) .   

3.2   Limitations   of   dimensionality   reductions   

Although   dimensionality   reduction   is   a   powerful   and   necessary   tool   in   

interpretation   of   high-dimensional   data,   it   always   comes   at   a   cost:   information   must   be   

lost    (Donoho   and   Others   2000) .   Optimally,   dimensionality   reduction   will   result   in   

preservation   of   meaningful   forms   of   variation   across   data   in   low   dimensional   space.   In   

most   use   cases,   the   exact   nature   of   the   variation   in   a   dataset   is   not   necessarily   known   

ahead   of   time,   and   this   can   confound   interpretations   of   dimensionality   projections.   

Further,   it   can   impact   the   reproducibility   and   robustness   of   data   interpretation   across   

parameters   and   analytical   approaches.   In   many   cases,   multiple   approaches   to   

dimensionality   are   taken   when   performing   an   initial   analysis   of   single-cell   data.   

Across   published   studies   of   scRNA-seq   and   other   forms   of   single-cell   analysis,   

there   is   no   single   broadly   accepted   approach   to   data   analysis   because   selection   of   

analytical   methodologies   is   entirely   dependent   on   the   objectives   of   the   study   and   the   

nature   of   the   underlying   structure   of   the   high-dimensional   data   that   is   produced.   In   most   

experimental   settings,   this   underlying   cannot   be   accurately   determined,   so,   the   optimal   

methodology   for   dimensionality   reduction   cannot   be   selected   in   a   straightforward   or   

standardized   manner    (Luecken   and   Theis   2019) .   A   low   dimensional   embedding   is   an   
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approximation,   and   the   degree   to   which   an   embedding   reliably   depicts   the   variation   in   

data   that   is   of   interest   is   dependent   on   the   use   case.   For   example,   distinguishing   one   

cell   type   from   another   may   be   more   easily   or   robustly   achieved   than   distinguishing   

highly   similar   cells   with   nuanced   differences.   Ultimately,   multiple   approaches   are   

frequently   utilized   to   determine   an   optional   dimensionality   reduction   and   embedding   that   

are   dependent   on   the   objectives   of   the   study   and   the   underlying   structure   of   the   data.     

4.   Clustering   and   Classification   of   Cell   Types   

One   of   the   most   widely   used   analytical   approaches   used   to   make   interpretations   

of   single-cell   data   has   been   to   cluster   cells   based   on   their   transcriptional   or   chromatin   

accessibility   profiles   in   an   unsupervised   manner    (Kiselev,   Andrews,   and   Hemberg   

2019) .   In   experiments   that   produce   data   structures   where   distinct   clusters   of   cells   are   

expected,   many   of   which   have   profiled   transcriptional   differences   between   distantly   

related   cell   types    (Rozenblatt-Rosen   et   al.   2017) ,   these   clustering   algorithms   perform   

well.   Many   clustering   algorithms   have   been   developed,   which   have   been   iteratively   

improved   by   benchmarking   their   ability   to   correctly   assign   cells   to   empirically   defined   

groups.     

Most   clustering   algorithms   are   dependent   on   dimensionality   reduction   and   are   

sensitive   to   transformations   of   data   during   preprocessing   steps,   including   normalization   

and   batch   correction    (Krzak   et   al.   2019) .   While   many   different   algorithms   to   cluster   

high-dimensional   data   have   been   developed,   the   majority   of   which   were   developed   for   

applications   outside   of   biology    (Krzak   et   al.   2019) .   In   recent   scRNA-seq   studies,   cell   

clustering   is   predominantly   performed   through   Louvain   clustering    (Meo   et   al.   2011) .   

Louvain   clustering   is   a   network   modularity   algorithm   that   generates   communities,   or   
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clusters,   using   information   from   global   and   local   network   information    (J.   H.   Levine   et   al.   

2015) .     

As   cell   types   of   individual   tissues   have   become   better   characterized,   it   has   

become   widely   appreciated   that   transcriptional   heterogeneity   amongst   cells   of   a   

particular   tissue   is   common   across   multiple   biological   settings    (Z.   Wu   and   Wu   2020) .   

Because   cell   clustering   is   conventionally   performed   based   on   differences   in   gene   

expression   alone,   there   is   no   way   to   predict   the   boundaries   between   groups   of   cells   that   

functionally   distinguish   heterogeneous   populations   of   a   tissue.   As   such,   it   is   impossible   

to   distinguish   clusters   that   are   driven   by   functional   or   phenotypic   differences   between   

cells   from   clusters   that   are   driven   by   variation   in   gene   expression   data   that   reflects   

biological   noise.   This   is   particularly   relevant   when   analyzing   data   that   is   highly   

continuous.   In   these   situations,   one   popular   way   that   this   has   been   overcome   is   through   

identification   of   gene   modules   or   topics   that   appear   to   be   co-regulated,   which   are   based   

upon   algorithms   designed   for   natural   language   processing    (X.   Wu,   Wu,   and   Wu   2021) .   

Importantly,   the   ‘topics’   that   are   formed   from   these   kinds   of   analysis   can   incorporate   

genes   that   are   represented   in   many   other   ‘topics’   and   perform   well   on   data   that   cannot   

be   reliably   or   robustly   clustered.     

Gene   expression   modules   and   cell   clusters   are   functionally   treated   as   equal   and   

independent   entities.   However,   differentiation   of   cell   types   occur   in   a   hierarchical   

manner,   and   gene   expression   programs   change   in   a   manner   that   is   constrained   by   

gene   regulatory   networks    (S.   Huang   2012;   Z.   Wu   and   Wu   2020) .   In   situations   of   

development,   this   may   be   particularly   of   importance   because   cell   differentiation   occurs   

in   a   semi-hierarchical   manner    (Packer   et   al.   2019;   Fincher   et   al.   2018;   M.   Plass   et   al.   
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2018) .   The   data   produced   in   many   of   these   biological   settings   can   be   both   clustered   

and   continuous,   which   may   be   reflective   of   differentiation   programs   that   connect   

different   populations   of   cells,   but   may   also   suggest   that   clustering   methods   may   perform   

well   even   in   settings   that   contain   continuous   data.   Although   many   clustering   algorithms   

have   been   compared   through   benchmarking   studies,   there   are   very   few   ways   to   

evaluate   the   clustering   schematic   of   a   dataset   in   the   absence   of   reference   labels    (Z.   Wu   

and   Wu   2020) .   Most   clusters   are   annotated   through   referencing   and   correlation   to   

previously   described   gene   expression   signatures    (Stuart   et   al.   2019) .     

In   practice,   clustering   schematics   and   annotations   are   evaluated   through   manual   

interpretation   of   genes   differentially   expressed   in   a   cluster   and   through   comparison   to   

gene   signatures   described   in   other   biological   settings.   While   denoising   is   inherent   in   

many   transformations   of   high-dimensional   single-cell   data    (van   der   Maaten   2008;   

McInnes   et   al.   2018;   Smolander   et   al.   2021) ,   even   after   data   has   been   denoised,   many   

latent   variables   can   still   create   variation   across   measurements.   Specifically,   when   

clustering   based   methods   generate   groups   of   cells   with   gene   expression   patterns   that   

have   not   been   previously   described,   or   in   situations   where   a   model   does   not   exist   for   a   

biological   process,   it   is   extremely   difficult   to   determine   if   the   resulting   clusters   from   data   

are   driven   by   technical   or   biological   noise.   As   such,   conclusions   made   from   clustering   

schemas   of   single-cell   data   are   often   considered   unreliable   without   empirically   derived   

data   to   support   them.     
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5.   Biological   Variation   

5.1   Biological   Noise   

Much   of   the   data   produced   in   biological   experiments   cannot   be   explained   by   

technical   handling   or   explicitly   defined   experimental   variables,   even   in   the   most   

simplified   systems    (Elowitz   et   al.   2002;   Eling,   Morgan,   and   Marioni   2019) .   Stochastic   

processes   govern   many   systems   that   are   relevant   in   biology,   ranging   from   those   that   

dictate   molecular   thermodynamics   to   those   that   dictate   gene   expression    (Tsallis   1988;   

Elowitz   et   al.   2002)    and   beyond.     

In   animal   models,   many   attempts   are   made   to   control   for   experimental   variables   

that   can   produce   noise   in   experiments.   Through   careful   selection   of   animals   with   a   

particular   genetic   background,   age,   and   gender,   these   variables   can   be   experimentally   

defined.   Other   sources   of   biological   variation   such   as   diet    (Y.   Yang   et   al.   2014) ,   

circadian   rhythm    (Wager-Smith   and   Kay   2000) ,   and   pathogen   exposure    (León   et   al.   

2009)    can   be   controlled   through   adoption   of   standardized   care   and   housing   of   

experimental   animals    (Voelkl   et   al.   2020) .   Additional   variation   that   is   inherent   for   

aging-related   processes    (“Know   Thy   Mouse:   Variability   in   Aged   Mice”   n.d.;   Bahar   et   al.   

2006) ,   hormone   fluctuations    (T.   Liu   et   al.   2020) ,   and   genetic   circuitry    (Kaern   et   al.   2005)   

also   produce   biological   noise   that   can   be   partially,   but   not   completely,   controlled   for.     

In   some   tissue   contexts,   and   in   the   lung   in   particular,   there   are   periodic   changes   

associated   with   normal   organ   function,   such   as   breathing,   which   can   also   drive   

biological   noise.   Breathing   rhythms   directly   cause   periodic   changes   in   pressure   and  

biomechanical   force   within   the   thoracic   cavity    (Ferris   and   Pollard   1960;   Zamprogno   et   

al.   2021) .   Further,   the   phase   and   amplitude   of   breathing   rate   also   varies   such   that   
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equilibrium   can   be   achieved   in   response   to   dynamic   changes   in   pH   and   oxygen   or   

carbon   dioxide   concentrations   of   the   blood    (Serna   et   al.   2018) .     

Although   all   of   these   processes   occur   in   a   regular   manner,   the   time   scales   over   

which   they   act   vary   with   biological   context.   Systems   that   exhibit   periodic   behavior   can   

undergo   phase   shifts,   changes   in   amplitude   or   frequency.   Even   amongst   stochastic   

processes,   such   as   aging,   characteristic   reproducibility   is   observed    (J.   W.   Curtsinger   et   

al.   1995) .   In   many   cases,   these   influences   can   create   variations   in   biological   data   that   

are   ultimately   observed   as   noise.     

5.2   Biological   Metadata   

As   previously   discussed,   biological   identities,   which   are   treated   as   metadata   for   a   

tumor   or   cell,   often   serve   as   biological   ground   truths   to   ensure   we   are   interpreting   the   

data   with   respect   to   the   things   that   matter   to   us.   This   method   is   reliable   because   

metadata   is   typically   information   that   is   collected   about   a   cell   or   tumor   independently   

from   the   assay   used   for   analysis.     

In   the   context   of   KP   tumors,   these   identities   can   reflect   the   mouse   a   tumor   

develops   in,   the   time   point   a   sample   was   harvested   at,   genotype,   or   an   explicitly   defined   

experimental   variable.   Likewise,   in   studies   of   T   cell   responses   to   antigens,   this   can   be   

the   cognate   antigen   of   the   cell.   In   most   cases,   even   when   a   study   has   a   clearly   defined   

objective   and   underlying   hypothesis,   the   ultimate   purpose   of   that   study   is   to   either   refute   

or   support   a   theory   that   explains   a   biological   process.   Often,   we   seek   to   understand   

how   biological   metadata   influences   a   biological   process.     

In   tumor   evolution,   the   most   pertinent   biological   metadata   is   the   time   point   a   

sample   was   harvested   at,   with   the   ultimate   goal   of   understanding   changes   in   the   tumor   
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microenvironment,   changes   within   a   tumor,   and   changes   within   a   tumor   cell   as   cancer   

progresses.   Tumor   progression   is   a   time-dependent   process   that   occurs   reproducibly,   

but   with   some   variation   in   kinetics    (Jackson   et   al.   2005) .   Although   this   particular   feature   

of   the   model   makes   an   absolute   time   point   less   reliable,   an   estimation   can   still   be   made   

about   the   distribution   of   tumor   states   at   a   given   time   point.   This   combination   of   

reproducibility   and   kinetic   variation   is   also   observed   amongst   immune   cells   in   these   

tumor   models    (DuPage   et   al.   2011) .   

5.3   Biological   Pseudotime   

Absolute   time   is   an   intangible   dimension    (Hoefer   and   Ray   1992)    that   is   entirely   

independent   from   tumor   progression.   It   is   symmetric   and   is   invariably   defined   by   

intervals   of   a   constant   size.   Stated   plainly,   absolute   time   is   what   is   usually   referred   to   in   

time,   and   is   measured   by   seconds,   minutes,   etc.   The   kinetics   of   biological   processes   

vary,   and   as   such,   the   changes   which   occur   during   those   processes   can   also   be   thought   

to   progress   on   an   axis   of   time   that   is   rescaled   according   to   the   dynamics   of   an   individual   

process.   Mathematically,   this   is   often   termed   biological   “pseudotime”,   which   is   treated   

as   an   intangible   dimension   and   largely   follows   the   philosophical   frameworks   proposed   

by   Substantivalism    (Sklar   1976) ,   in   which   relative   and   gradual   biological   changes   occur   

on   an   axis   that   is   an   ontology   of   absolute   time,   or   rescaled   time.   In   other   words,   

pseudotime   is   an   axis   that   is   defined   by   sequential   changes   that   occur   during   some   sort   

of   biological   process,   rather   than   the   time   required   for   those   changes   to   occur.   

  Units   on   this   axis   are   defined   by   distance   in   an   informational   space   that   governs   

an   overt   biological   phenotype,   rather   than   absolute   time.   For   example,   a   cell   may   

undergo   rapid   change   in   transcriptional   state   upon   transformation   with   respect   to   
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absolute   time.   However,   subsequent   transcriptional   changes   or   progression   through   a   

transcriptional   space   during   tumor   progression   may   occur   more   slowly.   In   this   example,   

the   axis   of   pseudotime   would   be   defined   by   the   specific   transcriptional   changes   

between   a   cell   before   transformation   and   cells   from   well-progressed   tumors.   If   the   

amount   of   transcriptional   change   observed   in   early   transformation   is   equivalent   to   the   

amount   of   change   observed   between   cells   at   later   stages   of   tumor   progression,   the   

pseudotime   distance   between   these   cells   may   be   equal,   even   though   the   time   that   is   

required   for   these   changes   may   be   entirely   different.     

Although   there   have   been   many   proposed   ways   of   calculating   pseudotime   in   

single-cell   data,   they   all   operate   on   a   similar   principle   of   pseudotime   theory.   Statistically,   

pseudotime   can   be   modeled   by   gaussian   mixture   models    (Lönnberg   et   al.   2017) ,   

differentiation   potential    (S.   Jin   et   al.   2018) ,   optimal   transport    (Schiebinger   et   al.   2019) ,   

and   minimal   spanning   trees    (Trapnell   et   al.   2014) .   All   of   these   algorithms   exploit   the   

continuity   of   cell   state,   transcriptional   or   otherwise,   to   generate   these   models   of   

differentiation   trajectories.   Settings   where   cells   undergo   gradual   transcriptional   changes   

during   differentiation   produce   a   continuum   of   cell   states,   and   in   single-cell   data,   can   

produce   highly   continuous   data   structures    (M.   Plass   et   al.   2018;   Fawkner-Corbett   et   al.   

2021) .   Often,   subsets   of   data   produced   from   biological   settings   where   continuous   

developmental   cell   states   are   observed   can   also   produce   highly   clustered   data   

structures.   As   such,   many   of   these   algorithms   are   relatively   limited   to   situations   where   

continuity   in   cell   state   is   observed.   Importantly,   many   of   these   algorithms   are   extremely   

sensitive   to   artifacts   of   dimensionality   reduction,   batch   correction,   and   in   some   cases   

clustering   schemas.   Some   software   provides   the   option   to   determine   the   ancestral   
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populations   computationally,   although   these   predictions   are   rarely   robust;   in   most   

cases,   these   algorithms   perform   most   optimally   when   ancestral   states   are   empirically   

known   or   defined.   

Many   biological   processes   associated   with   disease   are   not   programmed.   In   

contrast,   developmental   processes   and   differentiation   are   highly   conserved   programs   

that   have   evolved   as   a   consequence   of   Darwinian   selection.   This   reasoning   can   be   

extended   to   all   processes   designed   to   protect   evolutionary   fitness   and   are   tightly   

regulated    (“Evolutionary   Bioscience   as   Regulatory   Systems   Biology”   2011) .   However,   

cancer   and   many   diseases   occur   as   a   consequence   from   loss   of   regulatory   processes   

that   result   from   somatic   mutation,   epigenomic,   and/or   genomic   instability.   Intriguingly,   

many   of   these   diseases   progress   with   a   surprising   degree   of   reproducibility   across   

individuals    (Hanahan   and   Weinberg   2011) .   This   reproducibility   forms   the   basis   for   

patient   stratification   in   modern   medicine.     

Cancer   progression   is   largely   dependent   on   stochastic   and   unprogrammed   

changes,   which   is   why   its   progression   is   not   entirely   deterministic    (“A   Stochastic   Model   

in   Tumor   Growth”   2006) .   The   probability   that   these   stochastic   changes   will   occur   is   a   

function   of   many   factors,   including   number   of   cell   divisions,   replication   error,   and   

stability   of   cell   state.   Because   the   likelihood   of   these   events   accumulates   with   time,   this   

forms   the   basis   through   which   time   plays   a   causative   role   in   cancer   progression.   The   

influence   of   time   on   the   progression   of   a   tumor   is   thought   to   be   probabilistic   in   nature   

(“Permanence   and   Extinction   of   a   Stochastic   Hybrid   Model   for   Tumor   Growth”   2019) .   As   

such,   metrics   of   time   may   be   largely   unreliable   when   studying   disease   across   

organisms.   Instead,   characterization   of   tumor   evolution   with   respect   to   pseudotime   
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eliminates   the   variations   observed   at   a   given   time   point,   because   it   occurs   on   an   axis   

that   is   unaffected   by   the   asynchronous   nature   of   tumor   progression    (Trapnell   et   al.   

2014) .   

Several   precedents   exist   to   support   the   fact   that   the   developmental   history   of   a   

cell   is   closely   influenced   by   its   transcriptional   state    (Packer   et   al.   2019;   S.   Huang   2012) .   

Every   trajectory   an   entity   (e.g.   a   tumor   or   cell)   may   have   through   an   informational   space   

(e.g.   transcriptional   space)   will   progress   along   a   path   that   reflects   changes   of   cell   state   

and   is    specific    to   the   biological   process.   The   states   that   are   connected   by   these   

trajectories   are   defined   by   the   starting   and   ending   populations    (Trapnell   et   al.   2014)    of   

the   biological   process.   In   the   context   of   tumors,   these   trajectories   can   be   thought   of   as   

adaptations   to   selective   pressures   of   the   tumor   microenvironment.   

Cell   states   are   heterogeneous   for   both   tumor   cells   and   cells   of   the   tumor   

microenvironment;   the   global   trajectory   a   tumor   and   its   related   cells   will   take   is   the   

aggregate   product   of   the   individual   trajectories   associated   with   each   cell   state   change   in   

the   tumor   and   its   microenvironment    (“Tumor   Functional   Heterogeneity   Unraveled   by  

scRNA-Seq   Technologies”   2020) .   This   is   complicated   by   the   fact   that   tumors   are   

thought   to   arise   from   a   single   cell    (Peter   C.   Nowell   1978) ,   so   all   tumor   cells   are   thought   

to   have   some   sort   of   ancestral   relationship.   As   a   consequence,   it   is   likely   that   tumor   

cells   progress   through   many   trajectories   that   ultimately   give   rise   to   the   variation   in   

phenotypes   observed   in   a   heterogeneous   tumor    (Peter   C.   Nowell   1978;   P.   C.   Nowell   

1976) .   The   degree   of   heterogeneity   observed   in   tumor   cells   themselves   are   not   

constant   throughout   tumor   evolution.   Cells   of   the   tumor   microenvironment,   in   contrast,   

do   not   undergo   changes   during   tumor   progression   in   a   clonal   manner,   as   many   of   these   
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tissues   are   heterogeneous   under   normal   homeostatic   conditions.   Still,   non-tumor   cells   

of   the   microenvironment   undergo   phenotypic   changes   during   tumor   progression.   In   

these   situations,   ancestral   cell   states   are   not   empirically   known   and   cannot   be   

assumed,   and   limits   the   utility   of   pseudotime   based   approaches.     
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ABSTRACT  

In   lung   adenocarcinoma   (LUAD),   aberrant   expression   of   genes   canonically   

expressed   during   embryonic   development   identifies   highly   metastatic   and   poorly   

differentiated   primary   lung   tumors   of   genetically   engineered   mouse   models   (GEMMS)   

and   of   human   LUAD   patients.   Through   analysis   of   scRNA-seq   data   generated   from   

longitudinally   sampled   individual   cells   of   lung   adenocarcinomas   and   adenomas,   we   

determined   that   tumor   evolution   occurs   reproducibly   across   mice   and   tumors.   

Pseudotime   based   analysis   identified   that   the    Pea3    transcription   factor   family   becomes   

aberrantly   expressed   during   lung   tumor   evolution.    Etv4 ,   an   embryonic-restricted   

transcription   factor,   is   silenced   in   the   normal   lung   epithelium   but   becomes   latently   

expressed   in   tumors.    Etv5 ,   a   master   regulator   of   alveolar   type   II   cell   (AT2)   identity,   is   

co-expressed   with    Etv4    during   embryonic   lung   morphogenesis   and   its   expression   is   

maintained   through   adulthood.   Etv4   and   Etv5   play   essential   roles   during   stages   of   early   

transformation.   Manipulation   of   both   genes   at   the   onset   of   transformation   events   

drastically   diminish   the   frequency   of   tumorigenesis,   but   are   likely   dispensable   in   later   

stages   of   tumor   evolution.   

INTRODUCTION   

Solid   tumors   are   ecosystems   of   cells   that   share   a   common   ancestor   and   

evolutionarily   diverge   from   transformation   of   a   single   cell    (Greaves   and   Maley   2012) .   As   

these   cells   evolve   during   tumor   progression,   they   will   phenotypically   and   functionally   

diverge   to   form   multiple   subclones   within   a   tumor   with   differing   levels   of   evolutionary   

fitness   that   can   affect   both   the   subclone   alone   or   the   tumor   as   a   whole.   Importantly,   this   
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heterogeneity   is   believed   to   be   the   primary   mechanism   of   tumor   plasticity   and   ultimately   

makes   tumors   difficult   to   treat   or   entirely   eliminate    (Lawson   et   al.   2018) .     

Lung   adenocarcinoma   (LUAD),   which   is   the   most   common   form   of   non-small   cell   

lung   cancer,   is   believed   to   predominantly   arise   from   a   cell   type   of   the   distal   lung   

epithelium   that   produces   surfactants,   known   as   alveolar   type   II   (AT2)   cells    (Mainardi   

2013;   Sutherland   et   al.   2014) .   Two   of   the   most   common   oncogenic   mutations   observed   

in   clinical   LUAD   are   activating   gain-of-function   mutations   in   KRAS   and   loss   of   function   

mutations   in   the   tumor   suppressor   TP53    (Sutherland   et   al.   2014;   Jackson   et   al.   2005;   E.   

L.   Jackson   et   al.   2001) .   In   mice,   expression   of    Kras G12D    is   sufficient   to   drive   

transformation   of   cells   in   the   lung   epithelium,   frequently   producing   lesions   which   

histologically   recapitulate   hyperplasias   and   adenomas    (E.   L.   Jackson   et   al.   2001) .   By   

introducing   an   additional   oncogenic   hit   during   transformation   with   homozygous   loss   of   

Tp53 ,   lung   lesions   will   progress   to   histological   adenocarcinomas   with   the   capacity   to   

metastasize    (Jackson   et   al.   2005) ,   which   occurs   rarely   with    Kras G12D  
   alone.   These   

adenocarcinomas,   both   in   mice   and   humans,   are   distinguished   from   adenomas   by   

characteristic   morphological   features   that   are   indicative   of   highly   dysregulated   cell   

identity    (DuPage,   Dooley,   and   Jacks   2009) .   Therefore,   LUAD   can   be   faithfully   modeled   

in   immune   competent   genetically   engineered   mice   in   an   autochthonous   manner.     

Multi   focal   tumors   can   be   selectively   initiated   in   the   lungs   of   mice   harboring   Cre   

recombinase   conditional   alleles   that   permit   expression   of   heterozygous    K ras LSL-G12D     ( K ),   

driven   by   its   endogenous   promoter,   and   homozygous   deletion   of    Tr p 53 fl/fl     ( P )   through   

intratracheal   delivery   of   viral   Cre   recombinase    (DuPage,   Dooley,   and   Jacks   2009) .   

Importantly,   although   oncogenic   mutations   in    Kras    and    Trp53    (KP)   occur   simultaneously,   
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tumor   progression   kinetics   and   disease   latency   are   somewhat   variable    (Jackson   et   al.   

2005) .   The   cells   that   are   believed   to   give   rise   to   lung   adenocarcinomas   and   adenomas   

are   alveolar   type   II   (AT2)   cells    (Sutherland   et   al.   2014) ,   which   are   found   in   the   distal   

lung   epithelium   and   are   primarily   responsible   for   surfactant   production.   The   other   

epithelial   cell   type   of   the   distal   lung   is   known   as   an   alveolar   type   I   cell   (AT1)   and   is   

responsible   for   gas   exchange   in   the   alveolus    (Little   et   al.   2021) .   Despite   their   functional   

differences,   these   two   cell   types   have   intertwined   developmental   relationships;   both   cell   

types   arise   from   a   common   progenitor,   and   AT2   cells   can   regeneratively   differentiate   

into   AT1   cells   upon   injury    (Barkauskas   et   al.   2013) .   

Previously,   metastasis   of   lung   tumors   in   KP   mice   has   been   characterized   through   

bulk   gene   expression   studies,   which   led   to   the   discovery   that    Nkx2-1 ,   a   

well-characterized   transcriptional   regulator   of   lung   identity    (Yuan   et   al.   2000) ,   is   

frequently   downregulated   in   poorly   differentiated   high   grade   primary   lung   

adenocarcinomas   and   their   metastases    (Winslow   et   al.   2011;   C.   M.-C.   Li   et   al.   2015) .   

Loss   of    Nkx2-1    will   cause   tumor   cells   to   lose   their   lung   identity   and   instead   adopt   a   

gastric-like   phenotype   that   is   partially,   but   not   fully,   responsible   for   driving   gene   

expression   associated   with   late   stage   and   metastatic   tumors    (Winslow   et   al.   2011;   C.   

M.-C.   Li   et   al.   2015;   Snyder   et   al.   2013) .   Until   recently,   developmental    Nkx2-1   

expression   was   believed   to   be   selectively   retained   in   AT2   cells   compared   to   AT1   cells   

once   lung   development   is   complete,   but   it   has   since   been   found   to   be   required   for   AT1   

transcriptional   and   morphological   identity   as   well   as   their   quiescent   behavior    (Little   et   al.   

2019) .   When   deleted,    Nkx2-1    null   embryos   display   drastic   defects   of   tracheal   and   lung   
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morphogenesis,   and   specifically   do   not   generate   surfactant   producing   AT2   cells      (Minoo   

et   al.   1999) .     

The   Pea3   subfamily,   which   consists   of    Etv4 ,    Etv5 ,   and    Etv1 ,   plays   a   crucial   role   

during   lung   morphogenesis   by   creating   primary   and   secondary   branching   events   in   the   

developing   lung   bud.   Importantly,   these   branching   events   ultimately   establish   proximal   

and   distal   patterning   in   the   lung    (Cardoso   and   Lü   2006) .    Etv4    and    Etv5    in   particular   are   

co-expressed   at   the   distal   end   of   the   developing   lung   bud,   while    Etv1    is   expressed   in   

the   surrounding   mesenchyme.   Although   co-expressed,    Etv4    and    Etv5    have   

non-redundant   roles   during   development.   The   PEA3   family   is   expressed   in   the   mouse   

both   during   development   and   in   adult   cells    (Hollenhorst,   Jones,   and   Graves   2004;   

Chotteau-Lelievre   et   al.   2001;   Y.   Liu   et   al.   2003) .     

In   the   early   stages   of   murine   development,    Pea3    transcription   factors   are   

ubiquitously   expressed.   As   development   progresses,   their   expression   becomes   

restricted   to   tissues   whose   differentiation   relies   upon   extensive   interactions   between   the   

epithelium   and   mesenchyme    (Cardoso   and   Lü   2006) .   Their   expression   is   largely   

associated   with   cell   migration,   proliferation,   and   remodeling   of   the   surrounding   

extracellular   matrix    (Chotteau-Lelièvre   et   al.   1997) .   Upon   maturation   of   the   distal   lung   

bud,   expression   of    Etv4    is   silenced,   while    Etv5    expression   persists    (Y.   Liu   et   al.   2003;   

Chotteau-Lelièvre   et   al.   1997) .    Etv4    and    Etv5    are   believed   to   create   lung   bud   branches   

through   regulating   periodic   interactions   between   the   Fibroblast   growth   factor   (Fgf)   and   

Sonic   Hedgehog   signaling   pathways.    Etv4    and    Etv5    are   nuclear   targets   of   Fgf10   and   

induce   Fibroblast   growth   factor   signaling,   and   promote   Sonic   Hedgehog   signaling   

(Herriges   et   al.   2015) .   In   turn,   a   branching   event   occurs   when   Shh   signaling   creates   a   
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temporal   delay   in   Fgf   signaling    (Herriges   et   al.   2015) .   In   the   context   of   oncogenic   

Kras G12D ,    Etv5    is   required   to   maintain   normal   AT2   identity;   deletion   of    Etv5    disrupts   lung   

tissue   regeneration   following   bleomycin-induced   injury   and   inhibits   oncogenic   

transformation   by    Kras G12D    in   the   lung    (Z.   Zhang   et   al.   2017) .   Importantly,   in   lesions   with   

heterozygous   deletion   of    Etv5 ,    Etv4    is   upregulated,   suggesting   they   are   mechanistically   

redundant   for   early   stages   of   transformation    (Z.   Zhang   et   al.   2017) .     

Therefore,   aberrant   expression   patterns   of    Etv5    and    Nkx2-1 ,   which   have   been   

implicated   in   both   early   and   late   stages   of    Kras G12D    transformation,   respectively,   

demonstrate   the   functional   implications   of   dysregulation   of   cell   identity   throughout    Kras   

mutant   lung   tumor   progression.   In   order   to   understand   how   cell   identity   becomes   

dysregulated   in   Kras   mutant   tumors   as   they   progress,   a   single-cell   RNA-sequencing   

(scRNA-seq)   study    (Marjanovic   et   al.   2020)    was   conducted   on   longitudinally   sampled   

Kras   mutant   lung   tumor   cells,   and   a   single-cell   combinatorial   indexing   ATAC-sequencing   

study   was   conducted   on   late   stage   tumors   and   their   metastases    (LaFave   et   al.   2020) .   

Using   these   data,   I   identified   putative   transcriptional   regulators   that   are   known   to   affect   

cell   identity.     

  

RESULTS   

KP   Tumor   progression   occurs   reproducibly   over   time   across   mice   and   tumors   

Through   introduction   of   a    Cre -conditional   fluorescent   reporter   allele   to   the   

Rosa26    safe   harbor   locus,    Rosa26 LSL-tdTomato ,   the   cells   that   are   transduced   by   viral    Cre   

and   give   rise   to   Kras   mutant   lung   lesions   can   be   isolated   from   other   lung   tissue   through   

fluorescence-activated   cell   sorting.   Additionally,   further   specificity   over   Cre   expression   
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can   be   achieved   through   intratracheal   delivery   of   adenovirus,   which   drives   expression   

of   Cre   using   an   AT2   specific   promoter,    Sftpc ,   a   surfactant   gene    (Sutherland   et   al.   2014) .   

With   this   methodology,   to   landscape   transcriptional   evolution   of   Kras   mutant   lung   tumor   

cells   throughout   disease   progression,   adenoviral   Sftpc-Cre   (AdSPC-Cre)   was   used   to   

infect   the   lungs   of   Kras LSL-G12D/+ ,Rosa26 LSL-tdTomato/+ ;Trp53 fl/fl    (KP)   and   

Kras LSL-G12D/+ ,Rosa26 LSL-tdTomato/+ ;Trp53 +/+    (K)   mice   and   generate   transformed   cells   that   

were   longitudinally   sampled   after   tumor   initiation   that   reflect   hyperplasias,   adenomas,   

and   adenocarcinomas    (Jackson   et   al.   2005) .   As   a   control,   

Kras +/+ ,Rosa26 LSL-tdTomato/+ ;Trp53 +/+     (T)   mice,   which   do   not   harbor   tumor   initiating   alleles,   

were   included   in   these   experiments   to   empirically   characterize   the   cells   that    are   

infected   by   AdSPC-Cre   and   give   rise   to   tumors   in   K   and   KP   mice.   TdTomato +    cells   were   

then   isolated   from   the   lungs   of   these   animals   at   various   time   points   (0,   2,   4,   12,   18,   20,   

and   30   weeks)   after   tumor   initiation,   sorted   by   flow   cytometry   to   specifically   isolate   

non-immune   cells,   and   then   assayed   by   SMART-Seq2,   a   plate-based   scRNA   

sequencing   technology    (Marjanovic   et   al.   2020) .     

The   following   exploration   of   this   scRNA-seq   experiment   will   utilize   data   that   was   

originally   produced   and   described   by    (Marjanovic   et   al.   2020) ,   which   has   been   

reanalyzed   with   slightly   different   methodologies   (see   Methods)   than   those   originally   

described,   for   the   following   discussions.   For   visual   inspection   of   transcriptional   profiles,   

the   structure   of   data   from   scRNA   seq   was   approximated   on   a   uniform   manifold   with   

Uniform   Manifold   Approximation   and   Projection   (UMAP)    (McInnes   et   al.   2018;   Becht   et   

al.   2018)    and   on   a   hyperbolic   manifold   with   scPHERE    (Ding   and   Regev   2021) .   In   both   

embeddings,   the   transcriptional   state   of   cells   isolated   from   control   T   mice   and   from   early   
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time   points   after   tumor   initiation   (2   and   4   weeks)   appear   to   have   minimal   transcriptional   

heterogeneity,   but   continually   diverge   by   12   weeks   and   beyond,   as   expected   ( Figure   

1A,   1B ).   Across   these   timepoints,   very   few   genes   selectively   distinguish   cells   harvested   

at   one   time   point   from   another   ( Figure   1C ),   and   most   marker   genes   appear   to   have   

similar,   but   variable,   expression   across   time   points.   These   data   suggest   that,   when   

aggregating   cells   at   an   individual   time   point,   the   primary   feature   that   distinguishes   cells   

isolated   at   different   time   points   is   the   degree   of   transcriptional   heterogeneity   observed,   

rather   than   global   transcriptional   changes.   Still,   there   are   some   transcriptional   states   

observed,   albeit   variably,   in   cells   isolated   from   late   timepoints   (18,   20,   and   30   weeks   

after   tumor   initiation)   that   are   rarely,   if   ever,   reflected   in   cells   isolated   at   earlier   time   

points.   With   respect   to   transcriptional   state,   despite   variation   observed   at   individual   time   

points,   evolution   of   Kras   mutant   tumor   cells   over   time   have   characteristic,   but   

heterogeneous,   features   that   can   generally   distinguish   between   tumor   cells   isolated   

from   early   and   late   time   points.   Importantly,   these   observations   largely   agree   with   and   

have   also   been   discussed   by    (Marjanovic   et   al.   2020) .     

Tumor   cells   isolated   from   K   mice   are   assumed   to   predominantly   reflect   cell   states   

of   histological   hyperplasias   and   adenomas,   while   cells   isolated   from   KP   mice   are   

assumed   to   reflect   adenomas   and   adenocarcinomas    (Jackson   et   al.   2005) .   To   visualize   

transcriptional   states   that   distinguish   these   genotypes,   and   by   proxy   their   associated   

histological   stages,   we   compared   positions   of   cells   isolated   from   T,   K,   and   KP   mice   

( Figure   1D,   1E )   in   the   same   embeddings   described   in    Figure   1AB .   There   was   a   clear   

overlap   of   transcriptional   states   that   appear   to   be   most   similar   to   control   AT2   cells   of   T   

mice,   which   are   reflected   in   cells   of   early,   late,   and   intermediate   time   points   ( Figure   
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1AB ).   However,   transcriptional   states   which   are   predominantly   observed   at   late   time   

points   in   KP   tumor   cells,   but   less   frequently   in   K   tumor   cells,   reflect   a   clear   divergence   

of   evolutionary   trajectories   between   these   cells   with   K   and   KP   genotypes,   as   is   reflected   

most   clearly   in    Figure   1E .     

The   genes   that   distinguish   these   transcriptional   trajectories   may   include   genes   

that   drive   transitions   to   histological   adenocarcinomas,   and   as   such,   I   assessed   bulk   

expression   of   marker   genes   that   are   characteristic   of   K,   KP,   and   T   cells   and   visualized   

them   across   these   genotypes   ( Figure   1F,   Figure   S1A-D ).   As   expected,   many   of   the   

identified   marker   genes   robustly   distinguish   transformed   (K   &   KP)   tumor   cells   from   

control   AT2   cells   (T),   and   other   genes   distinguish   KP   from   K   and   T   cells,   consistent   with   

the   transcriptional   overlap   and   divergence   observed   in   low   dimensional   embeddings.   

These   transcriptional   states   are   observed   recurrently   and   reproducibly   across   mice   

within   the   same   genotype,   and   provide   additional   evidence   for   the   meaningful   impact   

oncogenic   driver   mutations   can   have   on   transcriptional   trajectories   of   tumor   cells   over   

disease   progression.     

Despite   the   fact   that   tumor   progression   is   generally   believed   to   be   a   stochastic   

process    (M.   Guo   et   al.   2019) ,   both   with   respect   to   mutations   and   epigenetic   state,   there   

is   a   striking   degree   of   reproducibility   observed   in   transcriptional   state   of   KP   tumor   cells.   

Nearly   all   of   the   states   observed   during   tumor   progression   are   observed   in   multiple   

tumors   ( Figure   1G ).   Similarly,   the   genes   with   the   greatest   variable   expression   across   

the   entire   dataset   have   highly   similar   bulk   expression   between   individual   tumors   or   lung   

samples   of   a   given   genotype   ( Figure   1H ).     
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In   agreement   with   the   general   behavior   of   transcriptional   evolution   during   KP  

lung   tumor   progression   with   respect   to   genotype   and   time   point,   unbiased   hierarchical   

clustering   with   Canberra   distances   between   expression   of   highly   variable   genes   across   

individual   tumors   roughly   arranged   individual   tumors   in   a   manner   that   reflects   variations   

and   similarities   of   tumor   progression   kinetics   observed   across   time   points   and   

genotypes   ( Figure   1H ).   Particularly,   in   agreement   with    Figure   1D-F,    K   tumors   are   

generally   most   similar   to   cells   of   T   mice   and   early   to   intermediate   time   point   KP   tumors.   

The   divergence   in   overall   tumor   state   was   maximal   between   KP   tumors   and   T   samples.     

In   addition,   transcriptional   states   of   individual   cells   are   also   highly   reproducible   

across   mice   ( Figure   1I ).   The   variation   in   expression   of   highly   variable   genes   in   the   

dataset   observed   across   tumors   in    Figure   1H    are   similar   to   those   observed   across   

aggregate   gene   expression   of   cells   derived   from   an   individual   mouse     ( Figure   1J );   the   

variation   observed   can   be   primarily   attributed   to   genotype   of   the   mouse   and   the   time   

point   the   mouse   was   sacrificed   at.   Additionally,   reproducibility   is   observed   between   

male   and   female   mice   ( Figure   S1E-G )   and,   following   batch   correction,   across   days   

batches   were   processed   ( Figure   S1H ).     

  



116   

    



117   

Figure   1.    KP   Tumor   progression   occurs   reproducibly   over   time   across   mice   and   
tumors.     
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.   The   rows   in   all   heatmaps   of   
this   figure   are   arranged   by   complete   linkage   hierarchical   clustering   of   their   euclidean   
distances.   
( A-B )   ( A)    UMAP   or   ( B )   hyperbolic   scPHERE   embedding   of   scRNA-seq   gene   
expression   data   cells   harvested   at   0   weeks   (n   =   3,   162   cells),   2   weeks   (n   =   5,   142   cells),   
4   weeks   (n   =   2,   44   cells),   12   weeks   (n   =   6,   946   cells),   18   weeks   (n   =   2,   103   cells),   20   
weeks   (n   =   3,   435   cells),   and   30   (n   =   15,   2,059   cells)   weeks   post-tumor   initiation.   Total   n   
=   24   mice,   3,891   cells.     
( C )   Heatmap   depicting   continuity   of   mean   log-normalized   expression   of   the   top   4   
marker   genes   for   each   time   point,   ranked   by   q-value.  
( D-E )   ( D)    UMAP   or   ( E )   hyperbolic   scPHERE   embedding   of   scRNA-seq   gene   
expression   data   of   cells   harvested   from   mice   without   an   oncogenic   mutation   (“T”,   n   =   5,   
206   cells),   with   Kras G12D/+    (“K”,   n   =   9,   1,071   cells),   and   with   Kras G12D ;Tp53 Δ/Δ    (“KP”,   n   =   
16,   2,614   cells),   post-tumor   initiation.   Total   n   =   36   mice,   3,891   cells.     
( F )   Heatmap   depicting   continuity   of   mean   expression   of   the   top   8   marker   genes   for   each   
genotype,   ranked   by   q-value.   
( G )   UMAP   embedding   of   scRNA-seq   gene   expression   data   of   cells   harvested   from   each   
sampled   tumor.   (“T”,   29   samples),   with   Kras G12D/+    (“K”,   66   tumors),   and   with   
Kras G12D ;Tp53 Δ/Δ    (“KP”,   80   tumors),   post-tumor   initiation.   Total   n   =   146   tumors.   
( H,   J )   Heatmap   depicting   mean   log-normalized   expression   of   the   top   2000   highly   
variable   genes   across   (I)   tumors   or   (K)   mice.   Genotype   and   Timepoint   metadata   is   
annotated   above   the   heatmap.   Canberra   distances   between   mouse   or   tumor   samples   
(columns)   are   hierarchically   clustered   by   complete   linkage.     
( J )   UMAP   embedding   of   scRNA-seq   gene   expression   data   of   cells   harvested   from   each   
Mouse.   
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Figure   S1.    KP   Tumor   progression   occurs   reproducibly   over   time   across   mice   and  
tumors.     
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.   The   rows   in   all   heatmaps   of   
this   figure   are   arranged   by   complete   linkage   hierarchical   clustering   of   their   euclidean   
distances.   
( A-D )      UMAP   embedding   of   scRNA-seq   gene   expression   data   depicting   expression   of   
(A)   Oncogenic    Kras G12D ,   (B)    Trp53 ,   (C)    tdTomato ,   and   (D)   wild-type    Kras .   
( E-F )   ( E)    UMAP   or   ( F )   hyperbolic   scPHERE   embedding   of   scRNA-seq   gene   
expression   data   of   cells   harvested   from   female   mice   (n   =   5   mice,   650   cells),   male   mice   
(n   =   20   mice,   2,073   cells)   or   mice   with   unassigned   genders   (n   =   5   mice,   538   cells).   
( G )   Heatmap   depicting   continuity   of   log-normalized   mean   expression   of   the   top   8   
marker   genes   for   each   genotype,   ranked   by   q-value.   
( H )   Heatmap   depicting   mean   log-normalized   expression   of   the   top   2000   highly   variable   
genes   across   dates   when   cells   were   processed.     
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Biological   pseudotime   approximates   gene   expression   changes   in   KP   lung   tumor   

progression   

Transcriptional   changes   during   progression   of   KP   tumors   that   are   thought   to   

have   the   greatest   translational   relevance   are   those   that   occur   between   early   stage   

hyperplasias   and   metastatic   tumors.   As   such,   to   develop   a   framework   for   studying   

tumor   progression   in   the   KP   model,   we   utilized   expression   of   two   previously   

characterized   markers   of   late-stage   tumor   cells,    Hmga2     (Winslow   et   al.   2011)    and   

Runx2    (LaFave   et   al.   2020)    to   identify   tumor   cells   in   transcriptional   space   that   are   

believed   to   give   rise   to   metastases   ( Figure   2A) .   Although   the   methodologies   of   the   

analyses   of   this   thesis   are   different   from   those   originally   used   to   analyze   this  

scRNA-seq   data,   the   transcriptional   similarity   observed   in   the   cell   clusters   identified   by   

(Marjanovic   et   al.   2020)    generally   agree   with   those   observed   in   this   analysis   ( Figure   

2B-C ).   One   notable   exception   to   this   agreement   are   the   relative   positions   and   distances   

of   cells   assigned   to   Marjanovic   cluster   9   in   low-dimensional   space   in   comparison   to   

cells   of   other   clusters,   which   vary   dramatically   across   different   embeddings   and   

projections   ( Figure   2B-C ,    (Marjanovic   et   al.   2020) .   Thus,   it   is   entirely   likely   that   the   

bonafide   transcriptional   similarities   between   cells   of   cluster   9   and   other   cells   in   the   

dataset   are   distorted   by   dimensionality   reduction.   

The   clusters   identified   by    (Marjanovic   et   al.   2020)    were   named   in   the   order   they   

were   believed   to   arise   during   tumor   evolution   and   “begin”   at   Cluster   1,   which   contains   

untransformed   AT2   cells   from   T   mice.   The   positions   of   “early”   clusters   (1-4)   in   UMAP   

and   hyperbolic   embeddings   largely   agree   with   the   dynamics   originally   proposed   by   

(Marjanovic   et   al.   2020) .   For   “late”   clusters,   the   ordering   of   these   clusters   appears   less   
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robust.   Still,   the   cells   assigned   to   “late”   clusters   are   highly   connected,   supporting   that   

tumor   cells   progress   into   and   between   these   states.   As   such,   I   reasoned   that   we   might   

better   be   able   to   order   these   states   with   greater   resolution   and   confidence   through   

computationally   predicting   transcriptional   trajectories   in   nearest-neighbor   space   created   

by   UMAP,   which   is   well   suited   for   continuous   data.   While   there   are   many   suggested   

methodologies   to   computationally   infer   the   ancestral   or   starting   population   of   an   

evolutionary   process,   during   tumor   progression,   tumor   cells   become   progressively   less   

differentiated   and   have   transcriptional   profiles   that   resemble   stem   populations   observed   

during   development.   A   prominent   example   of   this   behavior   is    Hmga2    expression   in   

met-like   cells,   as    Hmga2    is   otherwise   silenced   in   the   mature   lung   epithelium   and   

restricted   to   embryonic   and   early   postnatal   development    (I.   Singh   et   al.   2014) .   

Consequently,   many   pseudotime   algorithms   fail   to   reproducibly   and   robustly   infer   tumor   

cell   trajectories   in   these   data.     

This   concern   is   alleviated   by   the   experimental   design   that   produced   this   

scRNA-seq   dataset,   which   included   cells   derived   from   T   mice   to   empirically   identify   the   

cell-of-origin   for   this   particular   setting   of   lung   tumor   evolution.   As   such,   I   elected   to   

construct   transcriptional   trajectories   and   generate   approximations   of   biological   

pseudotime   using    Monocle3     (Qiu   et   al.   2017;   Trapnell   et   al.   2014) .   This   software   was   

also   intentionally   chosen   because   it   was   able   to   robustly   predict   a   trajectory   that   

connects   AT2   cells   with   metastatic-like    Hmga2 +     Runx2 +    cells   ( Figure   1D )   and   that   is   

consistent   with   other   studies   characterizing   KP   lung   tumor   evolution    (Winslow   et   al.   

2011;   C.   M.-C.   Li   et   al.   2015) .   By   specifying   cells   derived   from   T   only   mice   as   the   

ancestral   population   of   KP   tumor   cells,   otherwise   termed   as   the   “root   node”   ( Figure   
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1D ),   this   “anchored”   these   pseudotime   predictions   in   an   empirical   biological   truth.   

Consequently,   the   approximated   positions   of   individual   cells   across   pseudotime   ( Figure   

1E )   are   largely   consistent   with   these   previously   published   studies.     

The   pseudotime   approximations   for   cells   assigned   to   Marjanovic   cluster   9   

provide   further   evidence   for   distortions   in   the   relationships   between   these   cells   with   

other   known   populations   of   the   dataset;   despite   having   close   positions   in   2D-UMAP   

space,   the   cells   which   would   otherwise   appear   to   “connect”   cells   of   Marjanovic   cluster   9   

with   met-like    Hmga2 +     cells   are   estimated   to   have   very   different   positions   in   biological   

pseudotime   ( Figure   1E ).   While   it   is   entirely   possible   that   the   branched   trajectories   

predicted   by   Monocle3   that   connect   Cluster   9   cells   and   with   untransformed   AT2   cells   

are   a   computational   artifact,   at   minimum,   their   relative   positions   in   hyperbolic   

embeddings   do   provide   further   support   for   the   evolutionary   distance   between   these   

populations    (Ding   and   Regev   2021)    ( Figure   1E ).   This   is   not   surprising,   given   that   

multiple   dimensionality   reduction   techniques   fail   to   robustly   approximate   the   position   of   

cells   in   Cluster   9   in   high-dimensional   space.   As   such,   for   downstream   

pseudotime-based   analyses,   calculations   were   performed   on   a   subset   of   cells   which   

excluded   those   along   the   trajectories   connecting   Cluster   9   and   the   starting   AT2   

population.   

Pseudotime-dependent   terms   estimated   by   linear   regression   of   gene   expression   

changes   as   a   function   of   pseudotime   with   Monocle3   identified   many   genes   that   have   

been   previously   characterized   to   be   important   in   KP   lung   tumor   or   lung   adenocarcinoma   

progression,   including    Hmga2 ,    Tigit    (Marjanovic   et   al.   2020) ,    S100a6    (De   Petris   et   al.   

2009) ,   and    Hnf4a     (Snyder   et   al.   2013)    ( Figure   2F ).   Unbiased   hierarchical   clustering   of   
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the   average   expression   of   these   pseudotime-dependent   genes   across   individual   tumors   

( Figure   2F,    left)   arranged   tumors   in   a   manner   that   is   consistent   with   observations   made   

about   kinetics   of   tumor   progression   observed   in    Figure   2    and    (Jackson   et   al.   2005) ;   

Early   time   point   K   tumors   are   most   similar   to   T   only   control   cells,   and   late   time   point   K   

tumors   are   most   similar   to   KP   tumors   ( Figure   2F ).   While   this   may   appear   to   suggest   

that   bulk   expression   of   these   genes   can   be   used   as   an   estimation   of   tumor   progression,   

it   should   be   noted   that   many   early   stage   tumor   cells   were   too   small   to   be   individual   

plucked   from   lung   tissue,   and   are   instead   isolated   via   sorting   cells   by   tdTomato   

fluorescence    (Marjanovic   et   al.   2020) .   Hierarchical   clustering   fails   to   arrange   individual   

cells   in   a   meaningful   order   with   respect   to   their   genotypes   or   associated   time   points   

( Figure   2F ),   but   this   is   expected   given   the   magnitude   of   transcriptional   heterogeneity   

between   KP   tumor   cells.     
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Figure   2.   Biological   pseudotime   approximates   gene   expression   changes   in   KP   
lung   tumor   progression.     
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.    
( A )   UMAP   (left)   or   hyperbolic   scPHERE   embedding   (right)   of   log-normalized   scRNA-seq   
gene   expression   of    Hmga2    and    Runx2 .     
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( B-C )   ( B)    UMAP   or   ( C )   hyperbolic   scPHERE   embedding   of   scRNA-seq   data   with   cells   
colored   by   cluster   identities   originally   published   and   characterized   by    (Marjanovic   et   al.   
2020) .     
( D )   UMAP   embedding   of   scRNA-seq   data   depicting   trajectories   inferred   by   Monocle3   
(black   line),   with   cells   colored   by   their   respective   time   points.   The   root   node   for   
pseudotime   analyses   is   shown   with   an   arrow.     
( E )   UMAP   (top)   or   hyperbolic   scPHERE   embedding   (bottom)   of   scRNA-seq   data   with   
cells   colored   by   predicted   pseudotime   values   generated   from   ( D ).     
( F )   Heatmaps   depicting   expression   of   the   top-ranked   (q   <   1E-180)   
pseuodotime-dependent   terms   across   individual   tumors   (left)   and   across   individual   cells   
(right).   Rows   of   the   heatmaps   are   arranged   by   complete   linkage   hierarchical   clustering   
of   their   euclidean   distances.   Cells   and   tumors   are   annotated   (top)   with   their   respective   
genotypes   and   associated   time   points.     
  

Sequential   changes   in   cell   identity   occur   throughout   KP   lung   tumor   cell   evolution   

and   progression.     

The   objectives   of   this   study   were   to   identify   genes   that   drive   evolution   of   cell   

state   in   tumor   cells.   Because   tumor   cells   are   known   to   have   dysregulated   cell   identity   

that   is   also   indicative   of   disease   progression   and   prognosis   in   clinical   settings   

(Yasukawa   et   al.   2018) ,   our   approach   towards   interpretation   of   pseudotime-dependent   

terms   was   conducted   with   a   particular   emphasis   on   transcription   factors   that   are   

hallmarks   of   cell   identity   in   lung   and   foregut-derived   tissues.   Consistent   with   

observations   made   in   the   past   about   KP   lung   tumor   progression    (DuPage,   Dooley,   and   

Jacks   2009) ,   tumor   cells   gradually   lose   hallmarks   of   AT2   cell   identity,   including    Etv5 ,   

Sftpc ,   and   then    Nkx2-1    over   pseudotime   ( Figure   3A-C ).     

Although   cells   from   Cluster   9   are   excluded   from   these   analyses,   it   is   interesting   

to   note   that   these   cells   upregulate    Sftpc,    but   not    Etv5 ,   even   though   they   are   

conventionally   expressed   in   the   same   context   and    Etv5    is   known   to   bind   the   promoters   

of   surfactant   genes   and   regulate   their   expression    (Z.   Zhang   et   al.   2017) .   As   such,   
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expression   of    Sftpc    may   be   driven   by   different   mechanisms   and   provides   further   insight   

to   the   ambiguous   cell   states   observed   in   Cluster   9.   Expression   of    Sftpc    and   other   

epithelial   markers   is   surprising   amongst   these   cells   ( Supplemental   Figure   3 ),   because   

they   predominantly   arise   from   late   time   points   ( Figure   1A ).   Furthermore,   these   cells   are   

well   separated   from   early   time   point   cells   in   the   hyperbolic   embedding,   and   also   express   

markers   associated   with   AT1   identity,   such   as    S100a6     (“Website”   n.d.;   Beauchemin   

2016)    ( Figure   3D ).   Thus,   the   transcription   profiles   of   cells   in   Cluster   9   are   similar,   but   

distinct   compared   to   those   observed   at   early   time   points.   These   similarities   likely   

underlie   inconsistencies   observed   with   Cluster   9   across   dimensionality   reduction   

techniques.     

Expression   of    S100a6    and   other   hallmark   genes   of   AT1   identity,   including    Ager ,   

appears   to   occur   simultaneously   with   downregulation   of   AT2   genes   ( Figure   3D ).   

Interestingly,   expression   of   these   genes   seems   to   be   “turned   on”   at   positions   which   

resemble   a   “saddle   point”   that   manifests   in   both   UMAP   and   hyperbolic   embeddings   

( Figure   3D ).   Further,   beyond   this   “saddle   point”,   very   few   K   tumor   cells   are   observed,   

and   the   remaining   transcriptional   states   beyond   this   point   are   predominantly   derived   

from   KP   tumor   cells   ( Figure   1D-E,   Figure   3D ) .    Functionally,   S100A6   is   known   to   bind   

P53   to   coordinate   cell   division   and   apoptosis    (A.   J.   Levine   1997)    and   has   been   

extensively   described   as   a   tumor   suppressor   in   lung   adenocarcinoma    (P.   Li   et   al.   2019;   

T.   Wang,   Han,   and   Du   2021;   Orre   et   al.   2007;   De   Petris   et   al.   2009) .   Together,   this   may   

suggest   that   expression   of    S100a6    reflects   oncogenic   stress   induced   by   loss   of    Trp53   

function.   After   this   point,   cells   appear   to   transcriptionally   diverge,   and   have   lost   many   

hallmarks   of   lung   identity.   Instead,   they   adopt   a   gastric-like   state,   marked   by   expression   
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of    Hnf4a,    which   has   been   previously   identified   as   a   transcriptional   consequence   of   

Nkx2-1    loss    (Snyder   et   al.   2013)    ( Figure   3E ).   Thereafter,   cells   upregulate    Hmga2    and   

other   markers   associated   with   metastasis   in   lung   adenocarcinoma   and   KP   tumors   

( Figure   3F ).     

An   important   assumption   made   with   these   analyses   is   that   transcriptional   

changes   are   continuous    (Trapnell   et   al.   2014) ,   which   is   generally   not   observed   in   

settings   of   selective   pressure   or   terminal   differentiation.   Although   there   are   several   

branched   trajectories   predicted   by   Monocle3   ( Figure   2E ),   unlike   the   primary   trajectory   

that   proceeds   continuously   from   untransformed   AT2   cells   to   metastatic-like    Hmga2 +  

cells,   these   branches   are   not   predicted   robustly   and   are   quite   sensitive   to   the   

parameters   used   for   graph   construction.   Still,   along   this   primary   trajectory,   cells   are   

assumed   to   arise   from   cells   that   precede   them.   The   stochastic   nature   of   tumor   

progression   would   otherwise   suggest   that   evolution   along   this   trajectory   for   any   given   

individual   tumor   is   an   inherently   inefficient   process,   which   likely   underlies   the   variation   

in   kinetics   observed   in   the   model.   However,   the   reproducibility   observed   across   many   

tumors   in   this   dataset   ( Figure   1G-H )   suggests   that   although   there   is   transcriptional   

noise   which   is   consistent   with   this   stochastic   behavior,   these   evolutionary   trajectories   

macroscopically   reflect   deterministic   behavior   of   tumor   evolution.   As   such,   the   

aggregate   behavior   produced   from   selection   that   would   otherwise   manifest   as   some   

form   of   a   critical   point   is   “smoothed”   out   across   many   individual   tumors,   and   is   assumed   

to   satisfy   this   requirement   for   continuity.     
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Figure   3.   Sequential   changes   in   cell   identity   occur   throughout   KP   lung   tumor   cell   
evolution   and   progression.     
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.    
UMAP   ( Column   1 ,   left)   or   hyperbolic   scPHERE   embedding   ( Column   2 ,   second   from   
the   left)   of   log-normalized   scRNA-seq   gene   expression   of   cell   identity   markers   identified   
by   Monocle3.   Log-normalized   expression   is   plotted   against   pseudotime   across   
individual   cells   ( Column   3,   Column   4 ,   right),   with   each   point   representing   a   cell   that   is   
colored   by   its   respective   time   point   ( Column   3 )   or   genotype   ( Column   4 ).   
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( A )    Etv5 ,   a   regulator   of   AT2   identity   maintenance.     
( B )    Sftpc ,   a   marker   of   AT2   identity   and   functionality.   
( C )    Nkx2-1 ,   a   marker   of   lung   identity   that   marks   both   AT2   and   AT1   cells.     
( D )    S100a6 ,   a   regulatory   partner   of   p53   associated   with   early   AT1   identity.    (A.   J.   Levine   
1997;   Beauchemin   2016)   
( E )    Hnf4a ,   a   marker   of   gastric   identity.   
( F )    Hmga2 ,   a   marker   of   metastatic-like   KP   tumor   cells.     
  

  
Supplemental   Figure   3.   Expression   of   epithelial   markers   associated   with   
metastasis   in   non-small   cell   lung   cancer.     
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.    
Log   normalized   expression   is   depicted   in   UMAP   (Top)   or   hyperbolic   (Bottom)   
embeddings.   Genes   are   identified   by    (Jiewei   Liu   et   al.   2012;   Ruan   et   al.   2020) .     
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Evaluation   of   Pea3   transcription   factors   in   KP   lung   tumor   progression.   

In   human   lung   adenocarcinoma,   ETV4   transcript   is   expressed   in   NSCLC   tumors,   

but   not   in   the   normal   lung    (Hiroumi   et   al.   2001) ,   which   is   consistent   with   the   patterns   of   

Etv4    expression   observed   in   KP   tumors   ( Figure   4C ).   In   addition,   ETV4   has   been   

implicated   in   activation   of   the   Rho   pathway,   which   contributes   to   the   metastatic   potential   

of   NSCLC    (Hakuma   et   al.   2005) .   In   contrast,    Etv5    is   required   to   maintain   alveolar   type   II   

cell   identity   in   the   context   of   oncogenic    Kras .   Loss   of    Etv5    is   also   known   to   promote   

change   in   chromatin   accessibility   of   AT2   identity   genes,   and   AT2   cells   deficient   for    Etv5   

partially   adopt   alveolar   type   I   cell   identity    (Z.   Zhang   et   al.   2017) .   The   role   of   Etv1   in   lung   

cancer   is   less   well   described,   but   has   been   shown   to   promote   stromal   expansion   and   

tumor   cell   metastasis   in   pancreatic   cancer    (“ETS-Transcription   Factor   ETV1   Regulates   

Stromal   Expansion   and   Metastasis   in   Pancreatic   Cancer”   2016) .   Additionally,   Etv1   has   

been   shown   to   be   regulated   by   miRNAs   that   are   frequently   dysregulated   in   lung   cancer   

(X.   Jin   et   al.   2017) .     

In   consideration   of   their   extensively   described   roles   during   lung   morphogenesis   

and   development,   we   sought   to   further   investigate   the   role   of   the    Pea3    transcription   

factors   in   KP   lung   tumor   progression.   CRISPR/Cas9   technology   has   somewhat   recently   

been   extended   to   genetically   engineered   mouse   models   and   to   the   KP   model   in   

particular    (Sánchez-Rivera   et   al.   2014) ,    which   allows   for   generation   of   rapid   genetic   

knockout   of   targeted   genes   by   introducing   sgRNAs   alongside    Cre    recombinase   and   

Cas9   to   initiate   KP   lung   tumors.   In   later   generations   of   this   technology,    Cas9    is  

expressed   in   the   lungs   of   KP   mice   via   a   Cre-conditional   Cas9   transgene   into   the   

Rosa26   locus    (Platt   et   al.   2014)    to   allow   for   targeted   knockout   of   genes   at   the   onset   of   
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tumor   initiation   through   viral   delivery   of   an   sgRNA   and    Cre    recombinase   alone   (pUSEC,   

Figure   4D )    (Romero   et   al.   2020) .   An   important   limitation   to   this   system   is   that   it   is   

largely   dependent   on   utilization   of   lentiviruses,   which   transduce   a   wide   range   of   cell   

types,   but   cannot   accommodate   AT2   specific   promoters   for    Cre    recombinase.   As   such,   

because    Etv1    is   expressed   in   many   cell   types   of   the   normal   lung,   is   not   restricted   to   

alveolar   cells,   and   is   known   to   drive   meaningful   changes   in   surrounding   stromal   cells   

that   can   affect   tumor   progression    (Thul   et   al.   2017) ,   we   have   chosen   to   narrow   our   

focus   to    Etv4    and    Etv5 .     

To   model   the   impact   of    Etv4    and    Etv5    in   KP   lung   tumor   progression,   I   utilized   

Kras LSL-G12D/+ ,Rosa26 LSL-tdTomato/LSL-Cas9 ;Trp53 fl/fl    (KP Cas9/Tomato )   mice   to   knockout    Etv4    and   

Etv5    when   initiating   tumors.   In   this   schematic,   expression   of    Cas9    and    tdTomato    are   

induced   by   Cre   recombination.   Importantly,   because   the   LSL-Cas9   allele   is   in   the   

germline   of   KP   mice,   introducing   Cas9   in   this   manner   is   not   believed   to   be   antigenic,   

which   addresses   a   vital   limitation   of   the   earlier   generation    in   vivo    CRISPR   technologies   

(Crudele   and   Chamberlain   2018) .   Expression   of   tdTomato   further   aids   in   isolation   of   

individual   tumors   under   the   dissecting   microscope   for   further   analysis.   Multiple   sgRNAs   

were   used   to   target    Etv4    ( Figure   4E )   and    Etv5    ( Figure   4F ),   primarily   in   the   DNA   binding   

ETS   domain,   to   produce   loss-of-function   frameshift   mutations   through   non-homologous   

end   joining   and   error-prone   double   stranded   DNA   damage   repair.   The   selected   guides   

were   validated   to   produce   efficient   knockout   of    Etv4    and    Etv5     in   vitro    using   KP   tumor   

cell   lines   and   assessed   with   TIDE   via   Sanger   Sequencing    (Brinkman   et   al.   2014) .     
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Figure   4.   Evaluation   of   Pea3   transcription   factors   in   KP   lung   tumor   progression.  
Data   used   for   these   analyses   has   been   previously   published    (Marjanovic   et   al.   2020)   
and   were   independently   analyzed   to   produce   these   figures.    
( A )   UMAP   (top)   or   hyperbolic   scPHERE   embedding   (bottom)   of   log-normalized   
scRNA-seq   gene   expression   of   Pea3   transcription   factors,    Etv5 ,    Etv4 ,   and    Etv1 .     
( B )   Lentiviral   CRISPR   construct,   pUSEC,   designed   to   deliver   Cre   and   sgRNAs   to   the   
distal   lung   epithelium   of   mice   harboring   a   Cre   conditional   Cas9   transgene   ( Kras G12D/+ ,   
Rosa26 LSL-tdTomato/LSL-Cas9 ;   Trp53 fl/f l ).   Previously   described   by    (Romero   et   al.   2020) .   
( E-F)    Visualization   of   sgRNA   targeting   locations   for   ( E )    Etv4    and   ( F )    Etv5 .     
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Etv5    is   required   for   KP   lung   tumor   initiation    in   vivo    but   not    in   vitro .   
  

We   attempted   to   generate    Etv5    knockout   (KO)   tumors   using   the   pUSEC   system   

in   KP Cas9/Tomato    mice   ( Figure   4D ),   utilizing   an   sgRNA   targeting   Olfr102   that   was   

previously   shown   to   behave   neutrally   in   KP   tumor   cells    (Romero   et   al.   2020) .   In   the   first   

cohort   of   mice   used   for   this   study,   tumors   were   harvested   at   13   and   17   weeks   post   

infection.   The   loci   targeted   by    Etv5    sgRNAs   was   amplified   from   genomic   DNA   isolated   

from   plucked   tumors   by   polymerase   chain   reaction   (PCR),   and   then   further   analyzed   by   

Sanger   sequencing   and   TIDE   analysis.   Although   tumors   did   arise   in   animals   that   

received   virus   containing   sgRNAs   against    Etv5 ,   invariably,   all   plucked   tumors   were   

wild-type   for    Etv5    (data   not   shown).     

In   a   second   cohort,   mice   were   sacrificed   uniformly   at   26   weeks   post-infection,   but   

again,   no   editing   was   observed   at   the    Etv5    locus   in   any   of   the   resulting   lesions.   We   

reasoned   that   the   selection   bias   imparted   through   plucking   tumors,   namely   selection   of   

tumors   that   are   large   enough   to   pluck,   may   explain   why   no   Etv5   edited   tumors   were   

observed.   To   determine   ETV5   status   in   lesions   too   small   to   pluck,   we   validated   that   

ETV5   can   be   selectively   stained   for   via   immunohistochemistry   (IHC)   in   KP   lung   tumor   

tissue   ( Figure   5A ).   In   KP   tumors,   ETV5   staining   is   nuclear,   but   variable   in   intensity   

across   tumor   cells,   reflecting   heterogenous   expression,   which   given   findings   in    Figure   

4A ,   was   expected.   This   was   observed   across   all   mice,   irrespective   of   the   sgRNA   

delivered   in   pUSEC.   No   tumors   were   observed   that   clearly   and   uniformly   did   not   

express   ETV5.   We   reasoned   that   it   could   be   possible   loss   of   ETV5   produces   small   

lesions   that   cannot   be   plucked,   and   larger   lesions   produced   from   Etv5   targeting   

lentiviruses   may   be   a   consequence   of   tumor   cells   escaping   CRISPR   editing   of   ETV5.   To   
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further   investigate   this   possibility,   we   sought   to   determine   whether   a   relationship   exists   

between   the   size   of   a   lesion   produced   from   a   lentivirus   targeting   ETV5   and   the   

percentage   of   cells   within   it   that   express   ETV5.   If    Etv5    edited   lesions   grew   more   slowly   

than   control   lesions,   this   would   suggest   that   the   absence   of   CRISPR-edited    Etv5   

sequences   with   DNA   sequencing   is   attributable   to   selection   bias   of   lesions   that   can   be   

plucked.   We   quantified   relative   tumor   areas   by   determining   the   ratio   of   total   area   with   

normal   lung   tissue   to   that   of   tumor   tissue,   and   further   quantified   the   number   of   cells   in   

each   tumor   that   had   positive   nuclear   staining   of   ETV5   ( Figure   5B ).   However,   no   

correlations   were   observed   between   relative   tumor   area   and   ETV5   staining,   and   there   

appeared   to   be   no   difference   in   the   distribution   of   tumor   sizes   across   lesions   produced   

from    Etv5 -targeting   lentiviruses   compared   to   control   lesions.   To   further   examine   whether   

the   fraction   of   cells   in   each   tumor   expressing   ETV5   varied   as   a   consequence   of   

transduction   with   pUSEC-sgEtv5,   the   percentage   of   tumor   cells   expressing   ETV5   was   

compared   across   viruses.   While   a   minor   difference   was   observed   between   control   

animals   and   those   receiving   sgEtv5,   unexpectedly,   slightly   fewer   ETV5+   cells   were   

observed   in   control   animals   than   sgEtv5   ( Figure   5C ).   

  In   KP   tumors,    in   vivo    CRISPR   editing   efficiency   is   known   to   be   sensitive   to   

selective   pressures    (Rogers   et   al.   2018) .   As   such,   we   hypothesized   that   selection   

against    Etv5    loss   occurred   in   the   pUSEC   system.   To   circumvent   these   issues,   we   bred   

a   Cre   conditional    Etv5    floxed   allele   to   KP   mice    (Z.   Zhang   et   al.   2009)    and   initiated   

tumors   in   KP    Etv5 fl /fl ,   KP    Etv5 fl /+ ,   and   KP    Etv5 +/+    animals   with   AdSPC-Cre   to   determine   

the   effect   of    Etv5    KO.   Mice   were   sacrificed   at   18   weeks   post   infection.   In    Etv5 fl /fl    mice,   

across   nearly   all   mice,   very   few   lesions   were   found   in   the   lung   ( Figure   5D ).   In   contrast,   
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many   tumors   were   observed   in    Etv5 +/+    animals.   Mice   heterozygous   for   Etv5   showed   an   

intermediate   tumor   burden   in   comparison   to    Etv5 +/+    animals,   which   demonstrates   a   clear   

dose-dependent   phenotype   that   results   from   loss   of    Etv5    ( Figure   5D ).   Knockout   of   Etv5   

affected   both   the   observed   tumor   number   and   tumor   burden,   which   suggests   that   Etv5   

is   required   for   transformation   of   KP   tumors    in   vivo .   

To   further   characterize   the   nature   of   the   selective   pressure   that   acts   against    Etv5   

KO   cells,   we   utilized   a   recently   developed   alveolar   organoid   culture   model   (Naranjo   and   

Cabana,   Manuscript   in   preparation)   that   can   be   used   to   grow   untransformed   AT2   cells   

in   3D   culture   that   can   then   be   transformed    in   vitro    to   study   early   stages   of   KP   

transformation.   With   this   system,   we   expanded   untransformed   AT2   organoids   from   KP   

mice   that   did   not   harbor   any   additional   Cre-conditional   alleles.   In   this   regime,   

CRISPR/Cas9   technology   can   be   transiently   introduced   into   cells   via   adenoviral   

transduction.   A   modification   of   the   pUSEC   construct   ( Figure   4D )   was   made   that   

replaces   Cre   recombinase   with   EGFP,   pUSEG   and   was   used   to   make   lentivirus   to   

deliver   sgRNAs   to   organoids   that   become   stably   expressed   alongside   EGFP.   Staggered   

transduction   of   adenoviral   Cre,   adenoviral   Cas9,   and   Lentiviral   pUSEG   thereby   permits   

the   ability   to   precisely   control   transformation   and   Cas9   editing   events.     

When   untransformed   KP   AT2   cells   were   simultaneously   transduced   with   

Adenoviral   Cas9   and   pUSEG-sgEtv5.2,   the   genomic   locus   targeted   by   sgEtv5.2   was   

unedited   across   multiple   passages,   despite   retaining   expression   (>90%)   of   pUSEG,   as   

assessed   by   FACS   analysis   of   EGFP+   cells.   In   contrast,   when   KP   AT2   cells   were   

simultaneously   transformed   with   adenoviral   Cre,   adenoviral   Cas9,   and   lentiviral   

pUSEG-sgEtv5.2,   a   dominant   in-frame   deletion   (-9)   was   observed   at   an   estimated   
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frequency   of   69.2%   after   two   passages.   When   transformation   was   decoupled   from   Cas9   

editing   by   first   transforming   KP   AT2   cells   with   adenoviral   Cre   and   then   subsequently   

transducing   them   with   lentiviral   pUSEG-sgEtv5.2   and   adenoviral   Cas9,   a   +1   frameshift   

mutation   was   observed   after   the   first   passage   at   an   estimated   frequency   of   51.1%,   and   

after   two   passages,   24.8%   ( Figure   5E ).   Together,   these   results   suggest   that    Etv5    can   

be   efficiently   knocked   out   during   early   KP   transformation    in   vitro    but   not    in   vivo .   Notably,   

widespread   loss   of   ETV5   does   occur   in   overt   KP   adenocarcinomas   during   normal   KP   

tumor   progression   ( Figure   5F ).   

The   primary   differences   between   settings   in   which    Etv5    editing   can   or   cannot   be   

conducted   efficiently   are   the   environments   of   KP    Etv5    KO   cells.   At   early   stages   of   

transformation    in   vivo ,   transformed   tumor   cells   are   believed   to   be   subject   to   intense   

selective   pressure   from   cells   of   their   microenvironment,   including   immune   cells.   In   

contrast,   when   cultured   and   transformed    in   vitro ,   the   environment   of   KP    Etv5    KO   cells   is   

experimentally   defined,   and    Etv5    KO   is   more   efficient   ( Figure   5E ).   ETV5   is   likely   to   be   

dispensable   in   more   advanced   tumors,   as   expression   of   ETV5   is   widely   lost   in   many   of   

these   tumors   ( Figure   5F ).   It   is   possible   that   the   microenvironment   produced   by   higher   

grade   tumors   elicit   conditions   that   allow   cells   to   tolerate   loss   of   ETV5.   However,   the   

selective   pressures   that   result   in   elimination   of    Etv5    KO   cells   are   unlikely   to   come   

entirely   from   the   tumor   microenvironment,   as   loss   of    Etv5    is   not   well   tolerated    in   vitro   

when   KP   cells   are   not   transformed.   Thus,   the   role   of    Etv5    is   dependent   on   the   context   

of   the   tumor   microenvironment   and   tumor   progression.   
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Figure   5.   Etv5   is   required   for   KP   lung   tumor   initiation    in   vivo    but   not    in   vitro .   
( A )   IHC   of   ETV5   in   KP   lung   tumors   validates   expression   of    Etv5 .   
( B )   Expression   of   ETV5   in   KP   lung   tumors   does   not   correlate   with   tumor   size.   For   each   
individual   tumor   in   sections   of   KP   lung   tumors,   the   percentage   of   nuclei   staining   
positively   for   ETV5   are   plotted   against   its   tumor   area   relative   to   normal   lung   tissue.     
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( C )   CRISPR   mediated   knockout   of    Etv5    does   not   meaningfully   affect   expression   of   
ETV5.     
( D )   Cre-recombinase   mediated   knockout   of    Etv5    suggests   that    Etv5    is   required   for   
formation   of   KP   lung   tumors.   Relative   lung   tumor   area   compared   to   normal   surrounding   
lung   tissue   area   is   plotted   for   mice   with   homozygous   or   heterozygous   knockout   of    Etv5   
compared   to   control   mice   wild-type   for    Etv5 .   
( E )   Knockout   of    Etv5    during   transformation   of   KP   lung   cells   can   be   achieved    in   vitro    via   
CRISPR-mediated   knockout   of    Etv5   ( sgEtv5.2).   Approximate   proportions   of   edited   allele   
frequency   are   shown   at   the   beginning   of   the   experiment   (passage   0)   and   at   the   end   
(passage   2).     
( F )   Validation   that   ETV5   expression   is   lost   in   normal   KP   lung   tumor   progression   and   is   
dispensable   at   later   stages   of   disease   progression.   IHC   of   ETV5   in   KP   lung   tumors   
validates   expression   of    Etv5 .   
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The   ETS   domain   of   Etv4   is   likely   required   for   KP   lung   tumor   initiation   in   vivo.   

Unlike    Etv5 ,    Etv4    can   be   knocked   out   when   sgRNAs   targeting    Etv4    are   

introduced   during   transformation   by   pUSEC   ( Figure   4D ),   again   alongside   a   neutral   

control   guide   targeting   Olfr102.   Mice   were   sacrificed   at   20   weeks   after   tumor   initiation,   

and   the   loci   targeted   by    Etv4    sgRNAs   ( Figure   4E )   was   PCR   amplified   from   genomic   

DNA   isolated   from   plucked   tumors,   sequenced,   and   then   analyzed   by   TIDE   as   

described   above.   The   overall   editing   efficiency   in   each   tumor   was   dependent   on   the   

sgRNA.   Approximately   half   of   the   tumors   generated   with   pUSEC-sgEtv4.1,   which   

targets   a   region   spanning   the    Pea3    N-terminal   domain   and   the   DNA   binding   ETS   

domain,   were   wild-type   at   the   Etv4.1   locus.   The   sgEtv4.1   tumors   that   were   edited   for   

Etv4    had   a   relatively   high   overall   editing   efficiency,   and   a   mixture   of   mutations   were   

observed   across   these   tumors   ( Figure   6A ).     

Similarly,   the   tumors   generated   with   pUSEC-sgEtv4.2,   which   targets   the   

C-terminus   of   ETV4,   had   a   higher   overall   editing   efficiency   ( Figure   6B ).   In   some   of   

these   edited   tumors,   a   dominant   mutation   is   clearly   observed   (e.g.   G33),   but   in   others,   a  

greater   diversity   of   mutations   is   observed   (e.g.   G37).   Still,   some   tumors   without   

mutations   at   the   Etv4.2   locus   were   still   observed.     

In   contrast   to   the   tumors   generated   with   pUSEC-sgEtv4.1   and   sgEtv4.2,   out   of   

the   nine   mice   infected   with   pUSEC-sgEtv4.3,   only   one   lung   lesion   was   observed   

( Figure   6C ).   As   a   result,   genotyping   of   transformed   KP   sgEtv4.3   KO   cells   was   not   

possible.   Importantly,   out   of   the   three   sgRNAs   targeting    Etv4 ,   sgEtv4.3   most   directly   

targets   the   DNA   binding   ETS   domain.   As   such,   it   is   not   entirely   surprising   that   the   

phenotypes   generated   from   sgEtv4.3   have   greater   penetrance   than   those   of   sgEtv4.1   
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and   sgEtv4.2.   This   manifests   most   apparently   in   the   relative   tumor   areas   of   lungs   

harvested   from   these   mice   ( Figure   6D ),   in   which   mice   that   received   sgEtv4.3   uniformly   

had   the   lowest   relative   tumor   area.   The   relative   tumor   areas   of   lungs   from   mice   that   

received   sgEtv4.1   or   sgEtv4.2   appear   to   be   bimodally   distributed;   approximately   half   of   

the   sgEtv4.1   mice   and   one   quarter   of   the   sgEtv4.2   mice   had   comparatively   low   relative   

tumor   areas   (<   5%)   ( Figure   6D ).   The   sgEtv4.1   guide   targets   the   sequences   connecting   

the   most   N-terminal   Pea3   domain   with   the   ETS   domain,   and   produced   a   phenotype   

seemingly   intermediate   to   that   of   sgEtv4.2   and   sgEtv4.3.   Notably,   the   mutations   

produced   with   the   sgEtv4.1   guide   predominantly   produced   deletion   mutations.   The   

remaining   fractions   of   sgEtv4.2   and   sgEtv4.1   mice   had   very   similar   relative   tumor   areas   

as   control   sgOlf102   mice.   

Interestingly,   out   of   the   three   methodologies   used   to   assess   selective   pressures   

from   knockout   of   Etv5,   when   these   assays   were   performed   with   sgEtv4.1,   no   editing   

was   observed   amongst   any   of   the   three   schematics.   As   such,   further   work   is   required   to   

assess   the   role   of   Etv4   in   KP   lung   tumor   evolution.   It   is   extremely   important   to   note   that   

no   commercially   available   Etv4   antibodies   have   been   robustly   validated.   Intriguingly,   the   

antibody   utilized   in   the   Human   Protein   Atlas   appears   to   selectively   stain   the   nucleolar   

regions   of   cells,   and   there   is   emerging   published   data   that   supports   this   staining   pattern   

using   different   Etv4   antibodies    (Cosi   et   al.   2020) .   Still,   in   our   hands,   no   commercially   

available   antibodies   were   able   to   robustly   and   selectively   stain   for   ETV4   in   KP   lung   

tumors.   In   addition,   no   commercially   available   Cre-conditional    Etv4    KO   mouse   strains   

exist   and   further   limit   the   tools   available   to   study   the   role   of    Etv4    in   KP   lung   tumor   

evolution.   
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Figure   6.   The   ETS   domain   of    Etv4    is   required   for   KP   lung   tumor   initiation    in   vivo .   
( A-B )   Heatmaps   depicting   estimated   allelic   distribution   of   CRISPR   mediated   Etv4   
mutations   in   plucked   KP   lung   tumors,   produced   by   Sanger   Sequencing   followed   by   
TIDE   analysis.   Overall   editing   efficiency   is   denoted   for   each   tumor   in   bar   graph   
annotations   on   the   right   of   the   heatmap.   A   position   of   “0”   is   a   wild-type   sequence,   
denoted   by   the   black   arrow.   ( A )   Mutations   produced   by   sgEtv4.1,   targeting   the    Pea3   
N-terminal   domain.   ( B )   Mutations   produced   by   sgEtv4.2,   targeting   the   C-terminal   region   
of    Etv4 .     
( C )   Representative   images   of   the   rare   histological   lesions   observed   in   mice   infected   
with   virus   containing   sgEtv4.3.   Scale   bar   is   200   uM.     
( D )   Relative   tumor   areas   of   lung   sections   from   mice   infected   with   pUSEC-Etv4   viruses:   
sgEtv4.1   (n   =   8   mice),   sgEtv4.2   (n   =   8   mice),   sgEtv4.3   (n   =   9   mice)   compared   to   
sgControl   (n   =   6   mice).   ( C )   CRISPR   mediated   knockout   of    Etv5    does   not   meaningfully   
affect   expression   of   ETV5.     
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( D )   Cre-recombinase   mediated   knockout   of    Etv5    suggests   that    Etv5    is   required   for   
formation   of   KP   lung   tumors.   Relative   lung   tumor   area   compared   to   normal   surrounding   
lung   tissue   area   is   plotted   for   mice   with   homozygous   or   heterozygous   knockout   of    Etv5   
compared   to   control   mice   wild-type   for    Etv5 .   
  

DISCUSSION   

In   the   KP   model,   at   a   given   time   point,   the   tumors   of   the   lung   have   a   spectrum   of   

histological   grades   that   change   as   time   progresses,   with   lower   grade   tumors   being   most   

abundant   at   early   time   points,   and   higher   grade   tumors   more   abundant   at   late   time   

points    (Jackson   et   al.   2005) .   This   heterogeneity   has   made   it   possible   to   

comprehensively   profile   KP   lung   tumor   evolution   across   limited   time   points   that   span   

many   weeks.   As   more   cells   were   collected   from   different   mice   and   tumors,   very   few   

transcriptional   states   emerged   that   were   not   previously   captured   from   existing   data,   

which   leads   us   to   believe   that   this   dataset   captures   the   majority   of   transcriptional   states   

that   arise   in   primary   KP   lung   tumor   progression.   The   reproducibility   observed   in   tumor   

evolution   across   tumors   ( Figure   1G-H )   and   mice   ( Figure   1I-J )   is   striking.   If   tumor   cells   

truly   became   entirely   dysregulated,   it   would   be   more   likely   to   observe   stochastic   

trajectories   of   tumor   cell   states   as   tumors   progress   over   time.   Instead,   cell   states   

convergently   evolve   into   states   associated   with   metastasis   as   well   as    Hmga2     and   

Runx2    expression   ( Figure   2A ).   However,   these   interpretations   do   not   explicitly   consider   

terminal   trajectories   within   the   confines   of   the   primary   tumor,   or   if   it   is   possible   for   them   

to   regress   to   other   cell   states   observed   in   tumor   evolution.     

  The   pseudotime   trajectories   predicted   by   Monocle3   in   UMAP   space   as   well   as   

connectivity   in   hyperbolic   space   ( Figure   2E )   suggest   that   a   small   population   of   cells   will   

begin   to   express    Nkx2-1    and   many   other   markers   of   AT2   cell   identity   after   previously   
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silencing   it   and   expressing    Hmga2    ( Figure   3B ).   Importantly,    Nkx2-1    and    Hmga2    still   

exhibit   mutually   exclusive   patterns   of   gene   expression   amongst   this   group   of   cells   

( Figure   3C,   3F ).   This   interpretation   is   supported   by   the   fact   that   the   majority   of   the   cells   

in   this   group   are   derived   from   tumors   harvested   at   late   timepoints   (30   weeks)   ( Figure   

3F ).   However,   this   proposed   model   of   tumor   evolution   is   largely   generated   by   

predictions,   and   further   experimentation   will   be   required   to   generate   empirical   evidence   

for   these   gene   expression   patterns.   If   true,   many   questions   come   into   focus;   in   

particular,   it   is   not   clear   why   it   would   be   beneficial   for   these   tumor   cells   to   re-adopt   

hallmarks   of   their   original   identities   in   advanced   and   metastatic   tumors.   It   is   possible   

this   occurs   as   a   consequence   of   selection,   but   it   is   not   immediately   clear   why   such   a   

selective   pressure   exists.     

Many   of   the   late-stage   tumor   cells   that   appear   to   express    Nkx2-1    after   having   

expressed    Hmga2    that   are   most   apparently   distinguished   from   other   tumor   cells   in   

hyperbolic   space   were   assigned   to   Cluster   9   of    (Marjanovic   et   al.   2020) .   In   their   work,   

they   annotate   this   cluster   as   ‘biosynthetic   mixed   activity’.   However,   this   annotation   

seems   to   be   driven   by   the   cells   assigned   to   Cluster   9   that   are   separated   from   those   that   

express    Nkx2-1    in   hyperbolic   space.   Interestingly,   these   cells   express   many   genes   that   

have   been   proposed   to   be   important   in   non-small   cell   lung   cancer   metastasis    (Jiewei   

Liu   et   al.   2012;   Ruan   et   al.   2020)    ( Supplemental   Figure   3 ).   Amongst   these   genes,   

Krt18   expression   has   been   previously   proposed   to   be   predictive   of   lymph   node   

metastasis    (H.   Zhang   et   al.   2014) .   Krt18   has   also   been   found   to   be   predictive   of   

metastasis   in   colorectal   cancer    (Jingfeng   Zhang,   Hu,   and   Li   2019)    and   has   further   been   
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shown   to   be   predictive   of   unfavorable   clinical   outcomes   in   both   lung   and   pancreatic   

cancer   in   the   human   protein   atlas    (Uhlén   et   al.   2015;   Thul   et   al.   2017) .     

We   largely   assume   that   the   observed   tumor   cell   states   are   reflective   of   the   

selective   pressures   that   a   cell   experiences.   There   is   extensive   evidence   that   supports   

this   assumption,   but   if   it   were   the   sole   determinant   of   cell   state,   we   would   expect   that   

circulating   tumor   cells   (CTCs)   across   different   kinds   of   cancer   would   have   similar   gene   

expression   profiles   because   they   experience   similar   selection   pressures   after   

extravasating   from   primary   tumors.   Empirically,   there   are   some   generalized   similarities   

in   CTCs   across   different   cancers,   but   there   are   also   many   differences    (Ruan   et   al.   

2020) .   Taken   together,   these   speculations   further   suggest   the   developmental   context   of   

a   tumor   cell   must   be   at   least   partially   a   determinant   of   cell   states   in   different   

microenvironments   outside   of   the   primary   site.     

If   cells   assigned   to   Cluster   9   do   indeed   represent   cells   that   are   poised   to   become   

circulating   tumor   cells,   this   study   of   KP   Lung   Tumors   supports   the   observations   made   in   

clinically   derived   non-small   cell   lung   cancer   CTCs    (Ruan   et   al.   2020) .   Subpopulations   of   

tumors   with   intrinsic   propensity   to   become   a   CTC   has   been   long   theorized   and   is   most   

often   discussed   as   a   “pre-metastatic   niche”    (Kaplan   et   al.   2005;   Eccles   and   Welch  

2007)    in   primary   tumors.   TThe   KP   tumor   cells   profiled   in   this   study   are   derived   from  

primary   tumors;   as   such,   these   cells   are   unlikely   to   represent   those   that   have   already   

entered   the   bloodstream.   Instead,   the   similarity   in   the   gene   expression   profiles   between   

these   cells   and   circulating   tumor   cells   can   be   interpreted   to   suggest   that   Cluster   9   cells   

may   represent   those   poised   to   intravasate   into   the   bloodstream   and   become   circulating   
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tumor   cells.   However,   additional   experimental   evidence   that   compares   transcriptional   

states   of   empirically   identified   CTCs   to   primary   tumor   cells   are   required.   

In   contrast   with   the   findings   published   by    (Marjanovic   et   al.   2020) ,   the   analyses   

that   are   presented   in   this   chapter   do   not   appear   to   provide   supporting   evidence   for   a   

singular   high-plasticity   stem   cell   state,   annotated   as   Marjanovic   cluster   5   ( Figure   2B-C ).   

Although    (Marjanovic   et   al.   2020) suggest   that   cells   that   correspond   to   Cluster   5   and   

Cluster   9   are   observed   ‘in   every   tumor   after   adenomas’,   while   it   is   possible   these   cells   

are   indeed   present   at   all   time   points,   these   states   may   predominantly   arise   in   late   

stages   of   KP   tumor   progression   but   may   be   infrequently   found   in   early   stage   tumors.   

This   could   be   attributed   to   the   extensive   heterogeneity   of   tumor   progression   kinetics   

observed   in   K   and   KP   tumors    (Jackson   et   al.   2005;   E.   L.   Jackson   et   al.   2001) .   

Furthermore,   the   data   structures   depicted   in    Figure   1    do   not   necessarily   support   the   

idea   that   Cluster   5   or   Cluster   9   can   “seed”   all   of   the   other   tumor   cell   states    (Marjanovic   

et   al.   2020) .   However,   they   do   support   the   fact   that   Cluster   5   is   highly   connected   with   

many   other   cell   states   and   clusters.     

Many   studies   have   characterized   transcriptional   networks   and   signaling   

pathways   in   a   general   sense,   particularly   in   the   context   of   cancer.   In   development,   it   is   

well   known   that   these   pathways   also   regulate   differentiation   and   produce   vastly   different   

transcriptional   outcomes   in   different   tissues.   In   cancer,   because   tumor   cell   identity   often   

becomes   dysregulated,   this   hinders   the   ability   for   us   to   understand   how   these   pathways   

contribute   to   tumor   evolution   beyond   functional   evaluation   of   biological   outcomes   such   

as   cell   proliferation   and   migration.   In   particular,   although   loss   of    Nkx2-1    expression   has   

been   shown   to   induce   gastric   programs   in   the   context   of   KP   lung   adenocarcinomas   
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(Snyder   et   al.   2013)    and   strongly   correlates   with   metastatic   spread    (Winslow   et   al.   

2011) ,   the   effects   of   experimental   loss   of    Nkx2-1    do   not   fully   recapitulate   transcriptional   

profiles   of   poorly   differentiated,   metastatic   tumors    (Snyder   et   al.   2013;   Winslow   et   al.   

2011) .   Of   the   genes   that   differ   in   expression   between   cells   that   do   not   metastasize   and   

those   that   are   likely   to   metastasize,   changes   in   expression   of    Etv4    and    Etv5    occur   

independently   of    Nkx2-1    loss,   as   assessed   through   shRNA   knockdown   of   Nkx2-1   

(Winslow   et   al.   2011) .   

Etv4    and    Etv5    belong   to   the   ETS   transcription   factor   family,   which   is   

distinguished   by   a   highly   conserved   DNA   binding   domain   and   is   also   one   of   the   largest   

evolutionarily   conserved   transcription   factor   (TF)   families    (Sizemore   et   al.   2017) .   ETS   

TFs   are   expressed   across   many   tissue   types   but   do   exhibit   some   degree   of   tissue   

specificity   and   are   generally   known   to   have   non-redundant   biological   roles.   Interestingly,   

nearly   all   members   have   the   ability   to   bind   the   ETS   motif,   and   it   is   believed   that   this   

tissue   specific   activity   is   conferred   through   other   functional   protein   domains   that   

mediate   interactions   with   other   proteins   rather   than   the   ETS   binding   domain   itself   

(Findlay   et   al.   2013) .   Importantly,   the   context-specificity   of   ETS   transcription   factor   

activity   complicates   interpretations   of   chromatin   accessibility   at   ETS   consensus   motifs,   

and   dysregulated   transcriptional   activity   of   aberrantly   expressed   ETS   transcription   

factors   may   not   manifest   as   readily   in   sciATAC   data   as   has   been   observed   for   

scRNA-seq   data    (LaFave   et   al.   2020) .   Consensus   motifs   that   appear   to   be   

nonredundant   ETS   sites   are   more   often   accompanied   by   atypical,   low   affinity   ETS   

binding   site   sequences   that   are   proximal   to   other   transcription   factor   binding   sites   

( Wheat   et   al.,   1999 ,    Hollenhorst   et   al.,   2011b ).   Still,   extensive   evidence   exists   that   
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implicates   the   ETS   family   in   the   development   of   cell   states   that   promote   cancer   

progression   across   multiple   cancer   types,   both   through   changes   in   expression   and   

mutation    (Sizemore   et   al.   2017) .     

  The   overlapping   expression   patterns   of    Etv4    and    Etv5    have   historically   been   

discussed   in   the   context   of   embryonic   development   and   AT2   biology   as   evidence   for   

functional   redundancy   of   the   two   genes,   which   was   further   supported   by   their   

involvement   in   similar   biological   processes   and   phenotypes    (Herriges   et   al.   2015;   Z.   

Zhang   et   al.   2017) .   Specifically,   when   originally   characterized,   differential   expression   of   

the    Pea3    subfamily   of   the   ETS   family   across   the   embryos   of   mice   suggested   these   

transcription   factors   play   non-redundant   roles    (Chotteau-Lelièvre   et   al.   1997) .   However,   

the   gene   expression   patterns   suggested   by   the   data   presented   in   this   chapter   provides   

evidence   that   KP   tumor   progression   is   an   example   of   a   setting   in   which   these   genes   

have   distinct   expression   patterns   and   distinct   biological   roles   ( Figure   4A ).     

In   this   study,   we   show   that    Etv5    expression   is   frequently   downregulated   during   

KP   lung   tumor   progression   and   precedes   loss   of    Nkx2-1    ( Figure   3A ).   It   has   previously   

been   shown   that   in   the   context   of   oncogenic   Kras G12D ,   loss   of    Etv5    in   AT2   cells   has   been   

previously   shown   to   generate   a   hybrid   cell   state   characteristic   of   a   distal   progenitor   and   

AT1   cell    (Z.   Zhang   et   al.   2017) .   In   the   same   study,   it   was   also   discovered   that    Etv5    is   

required   for   Kras G12D    mediated   transformation   and   the   rare   lesions   that   do   appear   in   

Kras G12D     Etv5 fl /fl    animals   have   evaded   Cre   recombination    (Z.   Zhang   et   al.   2017) .   

Interestingly,   lesions   which   were   heterozygous   for    Etv5    upregulated    Etv4 .     

Given   that    Etv5    is   lost   during   late   stages   of   normal   KP   tumor   progression,   we   

reasoned   that   loss   of    Etv5    would   be   tolerated   in   settings   with   deletion   of   Trp53   in   

  

https://paperpile.com/c/XSr7BR/e51pt
https://paperpile.com/c/XSr7BR/rODnA+wIEe7
https://paperpile.com/c/XSr7BR/rODnA+wIEe7
https://paperpile.com/c/XSr7BR/IkXp3
https://paperpile.com/c/XSr7BR/wIEe7
https://paperpile.com/c/XSr7BR/wIEe7


149   

Kras G12D ;Trp53 Δ/Δ    cells.   Surprisingly,   we   discovered   that,   although    Etv5    is   required   for   

lung   tumor   initiation    in   vivo    in   KP   mice,   it   can   be   deleted    in   vitro ,   but   only   when   the   cells   

are   transformed   ( Figure   5E ).    In   vitro    culture   of   untransformed   AT2   cells   is   performed   in   

a   defined   media   that   is   designed   to   support   the   growth   and   differentiation   state   of   AT2   

cells   (Naranjo   and   Cabana,   Manuscript   in   Preparation).   As   such,   it   is   not   surprising   that   

loss   of   Etv5   in   untransformed   AT2   cells,   which   has   been   shown   to   destabilize   AT2   

identity,   is   not   tolerated    (Z.   Zhang   et   al.   2017) .   It   is   particularly   interesting   to   note   that,   

although   CRISPR-mediated   deletion   of   Etv5   is   possible    in   vitro ,   there   was   reasonably   

strong   evidence   that   cells   with   Etv5   deletion   were   outcompeted   by   cells   that   have  

evaded   CRISPR-mediated   deletion   of   Etv5   ( Figure   5E ).   Although   the   lung   organoids   

remained   transduced   by   pUSEG,   as   assessed   by   EGFP   expression,   the   predicted   

frequency   of    Etv5    frameshift   +1   mutations   decreased   over   two   passages.   An   important   

caveat   to   these    in   vitro    experiments   is   that   they   were   only   repeated   one   time,   and   as   

such,   further   work   is   required   to   characterize   these    in   vitro    and    in   vivo    selective   

pressures.   If   these   conclusions   are   validated;   it   will   be   interesting   to   determine   whether   

Etv5    null   lesions   are   not   observed    in   vivo    solely   due   to   becoming   outcompeted   by    Etv5   

competent   cells,   or   if   there   are   selective   pressures   unique   to   the    in   vivo   

microenvironment   which   drive   selection   against    Etv5    loss.     

One   of   the   most   unexpected   findings   in   this   study   was   that,   despite   the   fact   that   

Etv4    is   not   expressed   in   normal   AT2   cells   and   does   not   appear   to   be   expressed   in   cell   

states   associated   with   early   stages   after   transformation   ( Figure   4A ),   CRISPR-mediated   

loss   of    Etv4    through   targeting   a   locus   within   its   ETS   domain   almost   entirely   blocks   

tumor   formation   ( Figure   6C-D ).   Previously,   it   was   shown   by   the   Barbacid   group   by   bulk   
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RNA-Seq   that    Etv4    is   upregulated   in   tumor   cells   very   early   after   transformation   in   the   

Kras G12V    mouse   model   of   lung   adenocarcinoma    (Mainardi   2013) .   Similar   to   our   findings   

in   this   study,   when   one   allele   of    Etv4    was   deleted,   the   number   of   overt   tumors   observed   

in   the   lung   is   strongly   diminished    (Mainardi   2013) .   Future   studies   utilizing   lung   organoid   

culture   technology   may   provide   further   insight   about   the   expression   of    Etv4    at   early   

stages   of    Kras    mediated   transformation   in   the   lung.     

Interestingly,   in   bulk   tumors   heterozygous   for    Etv4 ,    Etv5    expression   is   

upregulated    (Mainardi   2013) ,   which   was   previously   interpreted   as   additional   evidence   

that    Etv4    and    Etv5    have   at   least   some   functional   redundancy.   However,   this   conclusion   

is   not   supported   by   the   expression   patterns   observed   for   Pea3   transcription   factors   in   

single   cells   during   KP   lung   tumor   evolution   ( Figure   4A ),   in   which   all   three   genes   have   

distinct   expression   patterns.   It   is   likely   that   the   resolution   possible   by   assessing   

expression   at   the   single-cell   level   afforded   better   resolution   of   the   expression   patterns   of   

the   Pea3   transcription   factors   during   KP   lung   tumor   progression.   Furthermore,   the   

selective   pressures   that   act   on   cells   that   have   lost    Etv4    are   likely   distinct   from   those   that   

act   on   cells   that   have   lost    Etv5 .   When   performing    in   vivo    editing   of    Etv5 ,   many   lesions   

are   found   in   mice   receiving   pUSEC-sgEtv5,   but   all   of   these   resulting   lesions   are   

wild-type   for    Etv5 .   This   is   consistent   with   selective   pressures   observed   against    Etv5   

deleted   cells    in   vitro    ( Figure   5E ).   In   contrast,   when   targeting   the   ETS   binding   domain   of   

Etv4    with   CRISPR/Cas9,   cells   were   not   able   to   evade   CRISPR   editing,   and   very   few   

lesions   were   observed   in   animals   receiving   pUSEC-sgEtv4.3.   In   studies   conducted   by   

Mainardi   et.   al,   loss   of    Etv4    reduced   but   did   not   eliminate    Kras    lung   tumor   initiation   

(Mainardi   2013) .   However,   the   remarkable   absence   of   large   lung   lesions   in   animals   
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receiving   sgEtv4.3   provides   evidence   that   loss   of    Etv4    may   have   greater   importance   in   

Kras    transformation   than   previously   described.   Still,   however,   the   phenotypes   generated   

with   viruses   containing   other   guides   targeting    Etv4    at   different   loci   of   the   gene   that   

either   less   directly   target   the   ETS   domain   of    Etv4    (sgEtv4.1)   or   that   do   not   target   the   

ETS   domain   (sgEtv4.2)   were   largely   consistent   with   the   conclusions   made   by   Mainardi   

et.   al.     

Further   work   remains   to   be   conducted   to   assess   whether   the   differences   

observed   in   the   phenotypes   generated   with   these   sgRNAs   targeting    Etv4    are   a   

consequence   of   differences   in   the   functional   targeting   of    Etv4,    or   whether   these   

differences   are   merely   observed   due   to   guide-intrinsic   differences   in   Cas9   targeting   

efficiency.   Additionally,   further   comparisons   between   loss   of    Etv5    may   provide   additional   

insight   to   the   complex   behavior   of   the    Pea3    transcription   factors   in   KP   lung   tumor   

evolution.   It   is   important   to   note   that   the   sgRNAs   were   tested   in   an   aggressive   and  

metastatic   KP   lung   tumor   cell   line   and   deemed   to   produce   efficient   knockout   of    Etv4    or   

Etv5     in   vitro ,   a   setting   that   is   very   different   from   that   of   early   transformed   cells,   which   

are   modeled   using   an   organoid   culture   system.   Thus,   it   is   possible   that   deletion   of    Etv4   

or    Etv5    may   be   tolerated    ex   vivo ,   once   tumors   have   progressed   and   evolved   sufficiently   

to   tolerate   deletion   of   these   genes.   As   the   tools   for   perturbing   expression   of   genes   in   

genetically   engineered   mouse   models   of   cancer   become   more   advanced,   it   will   be   

worthwhile   to   determine   whether   loss   of    Etv4    in   the   stages   of   tumor   progression   after   

early   transformation   restrict   the   ability   of   KP   tumors   to   progress   along   this   now   

characterized   axis   of   tumor   progression.     
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MATERIALS   AND   METHODS   

scRNA-seq   analysis   

scRNA-seq   data   was   analyzed   primarily   in   R   with   Monocle3   (version   0.2.3.3)   

(Trapnell   et   al.   2014;   Qiu   et   al.   2017) ,   using   integrated   features   of    Monocle3    to   perform   

mutual   nearest   neighbor   (MNN)-based   batch   correction   using    Batchelor    (Haghverdi   et   

al.   2018)    and   dimensionality   reduction   for   pre-processing   via   Principal   Component   

Analysis   (PCA)    (Haghverdi   et   al.   2018)    and   low   dimensional   embeddings   via   Uniform   

Manifold   Approximation   and   Projection   (UMAP)    (Becht   et   al.   2018;   McInnes   et   al.   2018) ,   

with   default   parameters.   100   principal   components   were   used   for   nearest   neighbor   

graph   construction,   however,   it   should   be   noted   that   UMAP   embeddings   and   

pseudotime   and   trajectory   analyses   produced   highly   similar   results   when   less   principal   

components   were   used.   Clustering   was   performed   with   default   parameters   in   Monocle3   

at   a   resolution   of   1E-5   prior   to   trajectory   analysis.     

Hyperbolic   embeddings   were   performed   with   scPhere    (Ding   and   Regev   2021)   

using   default   parameters   in    Python   3.8 .   Visualizations   were   then   produced   in   R   using   

ggplot.     

Gene   expression   in   single   cells   was   calculated   on   a   by-gene   basis   prior   to   

visualization   and   log   normalized   prior   to   visualization.   A   threshold   of   0.1   was   used   as   a   

minimum   expression   value   to   filter   lowly   expressing   cells   as   described   in   Monocle3.   

Markers   of   cell   clusters,   genotypes,   and   timepoints   were   identified   by   the   

top_markers   function   in   Monocle3.   All   marker   genes   were   ranked   by   q-value,   except   

gender   specific   markers,   which   were   ranked   by   pseudoR2.     

  

https://paperpile.com/c/XSr7BR/Ninjl+1qNfp
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https://paperpile.com/c/XSr7BR/kyaEC
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https://paperpile.com/c/XSr7BR/CKOYg
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Highly   variable   genes   were   identified   in   Seurat   using   the   “vst”   method   and   

otherwise   default   parameters.   

Figures   and   Visualizations   

Heatmaps   and   their   annotations   were   produced   in    R    (version   4.0.4)   with   

ComplexHeatmap     (Gu,   Eils,   and   Schlesner   2016) .   Rows   were   hierarchically   clustered   

by   complete   linkage   of   distance   metrics   that   were   employed   in   a   use-case   dependent   

manner,   including   euclidean   distance   and   canberra   distance.     

Mean   log   gene   expression   was   calculated   for   heatmaps   with   a   0.1   pseudocount   

and   scaled   using   various   parameters   (below)   for   each   use   case.   Methodologies   are   

identical   to   that   of   the   plot_genes_by_group   function   in   Monocle3.   

For   genotype   specific   markers,   scale_min   =   -3   and   scale_max   =   3.     

For   timepoint   specific   markers,   scale_min   =   -5   and   scale_max   =   5.     

For   tumor   highly   variable   genes,   scale_min   =   -5   and   scale_max   =   5.   

For   timepoint   highly   variable   genes,   scale_min   =   -5   and   scale_max   =   5.   

For   batch   highly   variable   genes,   scale_min   =   -5   and   scale_max   =   5.   

For   pseudotime-dependent   terms,   scale_min   =   -8   and   scale_max   =   10.   

Bar   plots   and   box   plots   were   generated   with   ggplot2   in   R   or   seaborne   in   Python.     

Lentiviral   Production   

Lentivirus   was   produced   in   HEK293T   cells   cultured   maintained   in   DMEM   (Corning   

#10-013-CV)   supplemented   with   10%   fetal   bovine   serum.   Cells   were   plated   1   day   

before   transfection   and   then   co-transfected   with   lentiviral   constructs   and   packaging   

plasmids   psPAX2   and   pMD2.G   (Addgene   #12260   and   #12259)   with   PEI   or   MirusLTE.   

Viral   supernatant   was   harvested   48   and   72   hours   after   transfection,   filtered   through   a   

  

https://paperpile.com/c/XSr7BR/Qw5zF
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0.45   uM   filter,   concentrated   at   25,000g   for   2   hours   at   4C,   resuspended   in   optiMEM   

overnight,   then   frozen   and   aliquoted   at   -80°C.   

Lentiviral   Titering   

Functional   titering   of   lentiviruses   was   performed   using   Green-Go   cells,   which   

contain   a   Cre-responsive   GFP   cassette.   Cells   were   seeded   in   a   24   well   plate   and   then   

transduced   24   hours   after   plating   with   serial   dilutions   of   concentrated   lentivirus.   The   

percentage   of   GFP+   cells   was   assessed   on   the   Guava   easyCyte   BGR   48   hours   after   

transduction,   which   was   then   used   to   calculate   viral   titers.     

Lentiviral   Vectors   and   sgRNA   Cloning   

pUSEC   and   pUSEG   lentiviral   vectors   and   cloning   strategy   is   previously   described   

(Sánchez-Rivera   et   al.   2014) .   sgRNA   guide   sequences   were   designed   using   GUIDES   

(Meier,   Zhang,   and   Sanjana   2017)    and   the   Broad   sgRNA   design   tool    (Doench   et   al.   

2016;   Sanson   et   al.   2018) .     

CRISPR   Guide   &   Targeting   Validation  

Using   guides   targeting   Etv4   and   Etv5,   we   tested   three   sgRNAs   per   gene   by   

cloning   them   into   LentiCRISPRv2   as   previously   described    (Sanjana,   Shalem,   and   

Zhang   2014) .   Lentivirus   was   then   produced   with   LentiCRISPRv2   vectors,   filtered,   and   

then   used   to   transduce   KP1233   cells    in   vitro .   48   hours   after   transduction,   cells   were   

selected   with   Puromycin   at   10   ug/mL.   An   additional   24   hours   later,   cells   were   collected   

and   used   to   isolate   genomic   DNA.     

Guides   targeting   Etv4   and   Etv5   were   assessed   by   amplifying   gDNA   with   Q5   

polymerase,   using   primers   below,   sanger   sequenced,   and   analyzed   by   TIDE    (Brinkman   

et   al.   2014)    with   large   decomposition   windows   and   parameters   that   allow   detection   of   
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larger   indel   events   when   chromatogram   and   editing   efficiency   were   inconsistent.   

Otherwise,   if   editing   efficiency   and   chromatogram   appeared   consistent   with   default   

parameters,   default   parameters   were   used.   Importantly,   Kapa2G   HotStart   polymerase   

was   also   used   for   TIDE   analysis   of   gDNA   from   tumor   tissue,   as   Q5   performed   poorly   on   

gDNA   from   tissue.   

gDNA   was   isolated   from   cells    in   vitro    using   the   Qiagen   puregene   core   kit   A.   

gDNA   was   isolated   from   tumor   tissue   through   homogenization   of   tissues   in   DNA   

extraction   buffer    (“DNA   Isolation   Buffer”   2019)    with   3   uL   of   proteinase   K   per   tumor   

overnight   at   55C.   Subsequently,   phenol-chloroform   DNA   extraction   was   performed.   

gDNA   with   sufficient   quality   for   further   analyses   were   selected   by   purity   assessed   via   

nanodrop.   

sgRNA   sequences   

  

  

Guide   Target   Sequence   

sgEtv5.1   Etv5   GGGCCTCCTTATCAGAG 
ACG   

sgEtv5.2   Etv5   CATAGTAATAGCGGAGA 
GAG   

sgEtv5.3   Etv5   GTACTTTGATGATACTTG 
CG   

sgEtv4.1   Etv4   GCCGGGGTGCCTTACAA 
CTG   

sgEtv4.2   Etv4   GTTTGACCGGCCAGTCA 
GTG   

sgEtv4.3   Etv4   CATAATAGTATCGCAGCG 
AG   

sgOlfr102   Olfr102   CATCTTTGGCAGTGTCA 
CAG   

https://paperpile.com/c/XSr7BR/DPcCB
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PCR   primers   for   TIDE   analysis   

  

Animal   Studies   

KP   mice   were   infected   as   previously   described    (DuPage,   Dooley,   and   Jacks   

2009) .   For   pUSEC   viruses,   mice   were   infected   with   10,000   Tu   of   virus.   Mice   infected   

with   AdSPC-Cre,   lot   Ad4237,   given   2.5E8   Tu.   Mice   were   sacrificed   at   indicated   time   

points   after   tumor   initiation.   Tumor   tissue   and   lung   tissue   was   fixed   in   zinc   formalin   

overnight   and   then   stored   in   70%   ethanol   for   a   minimum   of   24   hours   before   being   

processed   by   the   KI   histology   core.   All   mice   were   bred   and   handled   according   to   IACUC   

approved   protocols.   

  

  

Primer   F   Primer   R   sgRNA   locus   

AGTGAGAGGGTTGGC 
GATGT   

AACAACCAGCATCGTA 
CAAAACAA   

sgEtv5.1   

GTTACACGGCTACCCC 
AGGT   

AGGTGAAACAGGCCT 
TGGCT   

sgEtv5.2   

ATGTGCCCTTGAACAT 
GTCGTG   

CGCCCGGACTCACCT 
CTTC   

sgEtv5.3   

AAGTCAGGACACTCG 
GGGAAGA   

CTCCCTTCTGGTTCTT 
GTTCACGT   

sgEtv4.1   

TGTGGCCCATGAGAA 
GGGGA   

ACAGGTGAGCCACAG 
CGAAC   

sgEtv4.2   

GCCTAGATTGTCCCCG 
CACC   

TCCGGCTCGCACACA 
AACTT   

sgEtv4.3   

https://paperpile.com/c/XSr7BR/hxnhL
https://paperpile.com/c/XSr7BR/hxnhL
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Antibodies   Used   

An   anti-Etv5   antibody,   purchased   from   Abcam   (ab102010)   was   used   for   both   IHC   and   

western   blots.   Western   blots   were   performed   at   dilutions   of   1:1000,   and   IHC   was   

performed   with   1:500   dilutions,   both   overnight   at   4C.   

Histology   

Hematoxylin   and   eosin   stain   (H&E   stain)   was   performed   with   a   standard   method   by   the   

Hope   Babette   Tang   Histology   Facility   at   Koch   Institute.   
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ABSTRACT  

The   responses   elicited   by   CD8   T   cells   to   different   antigens   occur   simultaneously   but   are   

largely   characterized   in   isolation.   In   mouse   lung   adenocarcinoma,   we   find   that   an   antigen   

dominance   hierarchy   occurs   when   antigens   with   different   pMHC   binding   properties   are   

co-expressed   in   tumors.   CD8   T   Cells   specific   to   the   dominant   antigen,   which   binds   MHC   with   
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the   greatest   stability,   undergo   larger   clonal   expansion   compared   to   cells   specific   to   the   

subdominant   antigen,   which   binds   MHC   with   less   stability.   Interestingly,   T-cells   specific   to   the   

subdominant   antigen   become   enriched   for   a   TCF1+   progenitor   cell   state,   associated   with   

positive   response   to   immune   checkpoint   blockade   (ICB)   therapy,   but   do   not   preferentially   benefit   

from   ICB   compared   to   T-cells   specific   to   the   dominant   antigen.   This   is   because   the   subdominant   

antigen   response   is   differentially   enriched   for   a   dysfunctional   population   of   TCF1+   cells   marked   

by   CCR6   and   Tc17-like   differentiation.   However,   this   population   can   be   eliminated   through   

vaccination,   which   markedly   improves   the   subdominant   antigen   response.   These   findings   

ultimately   may   inform   a   therapeutic   strategy   to   elicit   multi-faceted   neoantigen   responses   in   

tumors.     

  

INTRODUCTION   

The   immune   response   to   solid   tumors   is   largely   driven   by   recognition   and   

targeting   of   cells   expressing   mutant   proteins   that   are   presented   to   immune   cells.   

Neoantigens   are   peptides   produced   by   these   proteins   that   are   then   presented   on   the   

surface   of   cells   when   loaded   onto   major   histocompatibility   (MHC)   molecules   

(Schumacher,   Scheper,   and   Kvistborg   2019) .   CD8   T   cells   are   responsible   for   

introducing   cytotoxic   stress   in   transformed   cells   and   have   otherwise   been   implicated   as   

a   population   that   expands   in   response   to   immune   checkpoint   blockade   (ICB)   therapy,   

specifically,   anti-PD1   or   anti-PDL1    (Pfannenstiel   et   al.   2019) .   Many   forms   of   

immunotherapy   have   been   developed   to   target   tumor-specific   neoantigens   in   patients,   

including   adoptive   T   cell   therapies    (E.   Tran   et   al.   2016)    and   therapeutic   vaccines   

(Hollingsworth   and   Jansen   2019) .   
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Neoantigens   that   are   targeted   by   immunotherapy   are   often   selected   

computationally   by   predicting   immunogenic   epitopes   from   whole   exome   sequencing   

data    (Peters,   Nielsen,   and   Sette   2020;   Wells   et   al.   2020) .   Importantly,   however,   the   vast   

majority   of   these   neoantigens   fail   to   elicit   a   productive   immune   response,   and   reflect   a   

deficit   in   the   understanding   of   which   neoantigens   are   relevant   for   immunotherapy   as   

well   as   an   understanding   of   the   behavior   of   immune   responses   to   them   during   

immunotherapy    (Schumacher,   Scheper,   and   Kvistborg   2019) .   Weak   immune   responses   

to   neoantigens   could   be   due   to   T   cell   evasion   mechanisms   that   create   selective   

pressures   against   neoantigen   expressing   tumor   cells,   driving   neoantigen   loss   or   

immunoediting.   In   any   case,   these   complexities   have   made   selection   of   therapeutically   

actionable   neoantigens   and   characterization   of   the   immune   responses   they   elicit   very   

limited.     

Alternatively,   weak   neoantigen   responses   could   be   influenced   by   antigen   

immunodominance   hierarchies   that   are   established   during   the   immune   anti-tumor   

response    (H.   Schreiber   et   al.   2002) .   In   the   setting   of   acute   viral   infections,   it   has   been   

previously   shown   that   one   or   two   immunogenic   epitopes   saturate   the   T   cell   response,   

thereby   suppressing   responses   to   other   neoantigens    (Yewdell   2006) .   Importantly,   it   was   

shown   that   T   cells   can   respond   to   tumor   neoantigens   that   do   not   drive   immune   

responses   by   endogenous   T   cells    (Strønen   et   al.   2016) ,   which   suggests   that   

endogenous   T   cell   responses   to   neoantigens   are   inhibited.   Importantly,   however,   these   

suppressed   responses   can   be   rescued   in   melanoma   via   therapeutic   vaccination   

(Carreno   et   al.   2015;   Ott   et   al.   2017;   Sahin   et   al.   2017) .   As   such,   it   is   possible   that   the   

immune   responses   to   some   neoantigens   are   suppressed   as   a   consequence   of   
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competition   with   responses   to   other   neoantigens,   which   may   provide   a   therapeutic   

opportunity   to   reinvigorate   endogenous   T   cell   responses   through   therapeutic   

vaccination.   Still,   however,   the   effect   of   immunodominance   hierarchies   has   not   been   

well   characterized   in   the   context   of   tumor   immune   responses.     

The   subset   of   CD8   T   cells   that   expand   in   response   to   ICB   in   mice   and   humans   

have   been   previously   characterized   as   a   progenitor   population   within   the   CD8   

compartment   that   is   marked   by   expression   of   TCF1   ( Tcf7 )    (Kurtulus   et   al.   2019;   Q.   Guo   

et   al.   2019;   Sade-Feldman   et   al.   2019;   Siddiqui   et   al.   2019) .   These   progenitor   CD8   cells   

are   of   particular   importance   to   immunotherapy   because   a   subset   of   them   have   been   

described   as   capable   of   functionally   differentiating   into   dysfunctional   CD8   T   cells    (B.   C.   

Miller   et   al.   2019a) .   In   the   context   of   dominance   hierarchies   of   tumor   neoantigens,   this   

population   of   T   cells   has   not   been   described.   Further,   the   exact   behavior   of   functionally   

differentiating   progenitor   CD8   T   cells   in   response   to   ICB   is   poorly   understood.     

The    K ras LSL-G12D ;Tr p 53 fl/fl    ( P )   model   of   lung   adenocarcinoma,   in   which   multi   focal   

tumors   of   the   lung   are   initiated   through   intratracheal   delivery   of   lentiviral   Cre   (DuPage   et  

al.,   2009)   can   be   harnessed   to   express   experimentally   defined   neoantigens   in   a   

tumor-specific   manner   through   incorporation   of   neoantigens   to   lentiviral   Cre   vectors   

(DuPage   et   al.,   2011).   In   the   absence   of   these   defined   neoantigens,   the   anti-tumor   

immune   response   is   weak   because   KP   tumor   cells   are   transformed   by   experimentally   

defined   mutations   in    Kras    and    Trp53 ,   and   otherwise   do   not   frequently   harbor   mutations   

that   can   elicit   a   T   cell   response   (DuPage   et   al.,   2011).   Expression   of   strong   neoantigens   

in   this   manner   can   drive   a   productive   immune   response   that   eventually   becomes   

diminished   as   tumors   grow   and   adapt   to   this   selective   pressure   (DuPage   et   al.,   2011).   
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Importantly,   this   is   not   believed   to   occur   as   a   result   of   dysregulating   neoantigen   

presentation   pathways   or   neoantigen   loss   (DuPage   et   al.,   2011).   Frequently,   LucOS   is   

expressed   in   tumor   cells   of   KP   mice   to   study   neoantigen   specific   responses.   LucOS   

contains   two   model   CD8   T   cell   antigens,   SIYRYYGL   (SIY),   which   is   a   synthetic   peptide,   

and   SIINFEKL   (SIIN),   which   is   derived   from   chicken   ovalbumin,   that   are   both   expressed   

through   fusions   to   luciferase   protein.     

In   the   KP   model,   tumor   progression   occurs   over   the   course   of   approximately   5   

months,   during   which   tumors   progress   through   histological   grades   that   faithfully   

recapitulate   human   clinical   disease    (Jackson   et   al.   2005;   DuPage,   Dooley,   and   Jacks   

2009) .   The   dynamic   range   afforded   by   this   model   permits   longitudinal   characterization   

of   anti-tumor   immune   responses.   Utilization   of   the   model   antigens   SIIN   and   SIY   also   

allow   for   longitudinal   characterization   of   immune   responses   to   specific   neoantigens,   

because   T   cells   specific   for   these   antigens   can   be   stained   with   tetramer   (Dupage   et.   al,   

2011).   Further,   tumor   progression   kinetics   in   response   to   expression   of   LucOS   have   

been   previously   characterized   (Dupage   et.   al,   2011).   Importantly,   expression   of   LucOS   

confers   simultaneous   expression   of   SIIN   and   SIY   model   antigens,   thereby   making   the   

KP   LucOS   model   system   a   viable   experimental   system   to   evaluate   the   contribution   

each   neoantigen   response   has   on   the   global   anti-tumor   immune   response.   

In   this   study,   we   find   an   antigen   dominance   hierarchy   between   SIIN   and   SIY   that   

ultimately   limits   expansion   of   the   subdominant   SIY   T   cell   response.   Further,   we   find   

progenitor   CD8   T   cell   populations   are   heterogeneous   and   differ   between   SIIN   and   SIY   

responses,   and   additionally   describe   a   dysfunctional   subset   of   progenitor   cells   that   is   

abolished   following   therapeutic   vaccination   against   SIIN   and   SIY.     
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RESULTS   

Temporal   dynamics   of   CD8   neoantigen   response   in   Lung   Adenocarcinoma   

To   characterize   multi-modal   neoantigen   responses   in   the   context   of   lung   

adenocarcinoma,   we   utilized   a   genetically   engineered   mouse   model   of   lung   

adenocarcinoma   in   which   lung   tumors   are   generated    in   situ    through   lentiviral   delivery   of   

Cre   recombinase.   Upon   expression   of   Cre,   oncogenic    Kras G12D    becomes   expressed   and   

Trp53    becomes   deleted,   generating   multifocal   tumors.   tumor-specific   neoantigen   

expression   is   achieved   by   initiating   tumors   in   KP   mice   with   a   lentivirus   that   contains   

LucOS   and   Cre   using   a   lentivirus   that   encodes   LucOS   (Dupage   et.   al   2011)( Figure   1A ).   

Importantly,   we   were   able   to   track   T-cells   that   recognize   SIIN   or   SIY   by   staining   them   

with   H-2K b    peptide-MHC   tetramer   and   assessing   protein   expression   via   flow   cytometry.   

Because   cytotoxicity   mediated   by   CD8   T-cells   play   a   central   role   in   the   immune   

response   to   a   tumor    (Raskov   et   al.   2020) ,   we   sought   to   characterize   the   CD8   SIIN-   and   

SIY-   response   in   KP   lung   tumors.   We   found   that   the   CD8   T   cell   expansion   in   response   

to   SIIN   was   significantly   larger   compared   to   the   SIY   at   5   weeks   after   tumor   initiation,   but   

this   difference   gradually   diminished   at   subsequent   post-tumor   initiation   timepoints   

( Figure   1B ).   Notably,   the   expansion   observed   in   response   to   SIIN   contracted   sharply   

between   5   and   8   weeks,   whereas   the   SIY   response   remains   largely   constant   ( Figure   

1C ).   

  To   further   examine   the   phenotypic   differences   between   SIIN   and   SIY   specific   

CD8   T-cells,   proliferation   was   assessed   by   Ki-67   staining.   There   was   no   significant   

difference   observed   in   the   proportion   of   cells   proliferating   when   comparing   the   SIIN-   and   

  

https://paperpile.com/c/XSr7BR/4pBqX


166   

SIY-   specific   CD8   T-cell   response   at   any   of   the   observed   timepoints   ( Figure   1D ).   

Because   there   are   overall   less   SIY-specific   cells   that   can   be   detected   than   SIIN-specific   

cells,   although   the   proportion   of   Ki67   expressing   cells   is   the   same,   the   absolute   number   

of   proliferating   cells   is   greater   in   the   SIIN   response   compared   to   SIY.     

We   hypothesized   that   these   differences   in   expansion   of   SIIN-   and   SIY-   specific   

cells   may   be   a   consequence   of   CD8   T   cell   functionality,   and   sought   to   measure   

co-expression   of   co-inhibitory   receptors   associated   with   T-cell   dysfunction   and   

exhaustion:   PD-1,   LAG-3,   and   TIM-3.   The   number   of   cells   co-expressing   these   markers   

was   significantly   higher   for   the   SIIN   response   compared   to   SIY   at   5   and   8   weeks   post   

tumor   initiation.   Similar   to   the   absolute   abundance   of   SIIN-   and   SIY-   specific   CD8   

T-cells,   the   difference   in   expression   of   these   co-inhibitory   receptors   between   antigen   

responses   was   not   observed   at   later   time   points,   12   and   20   weeks   ( Figure   1E ).   The   

degree   to   which   T   cell   responses   contract   over   time   clearly   distinguish   global   response   

to   SIIN   and   SIY.   The   absolute   number   of   SIY-specific   cells   stays   relatively   constant   over   

time,   and   contrasts   with   SIIN-specific   cells,   which   become   dramatically   less   abundant   

over   time.   Notably,   however,   the   number   and   proportion   of   cells   co-expressing   inhibitory   

receptors   are   indistinguishable   by   12   weeks,   suggesting   that   although   the   kinetics   of   the   

SIIN-   and   SIY-   response   differ,   both   eventually   become   dysfunctional.      
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Figure   1.   Temporal   dynamics   of   CD8   neoantigen   response   in   Lung   
Adenocarcinoma.   
Data   is   adapted   from   Burger   et.   al   2021.   Data   are   representative   of   ≥   3   independent   
experiments   per   time   point.   Each   data   point   represents   an   individual   mouse,   n   ≥   5   mice   
per   group   in   each   experiment.   Results   here   and   in   the   following   figures   are   expressed   
as   the   mean   +   SD.   Statistics   were   calculated   by   two-tailed   Student’s   t   test:   ns   =   not   
significant,   *p   <   0.05,   **   p   <   0.01,   ***   p   <   0.001.   
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( A)    KP   LucOS   Model.   Lentivirus   containing    Cre    and   SIIN   and   SIY   fused   to   luciferase   
(LucOS)   is   intratracheally   delivered   to   KP   mice   to   initiate   lung   adenomas   and   
adenocarcinomas.     
( B )   Representative   flow   cytometry   plots   depicting   percentages   of   SIIN-   and   SIY-specific   
tissue-resident   CD8   T   cells   (CD8+   CD44+)   isolated   from   KP   lung   tissue.   Specificity   for   
SIIN   and   SIY   is   assessed   by   H-2K b    peptide-MHC   tetrameter   stain.   
( C )   Summary   of   absolute   numbers   of   SIIN-   and   SIY-   specific   CD8   T   cells   over   5,   8,   12,   
and   20   weeks   post   tumor   initiation.     
( D )   Proportion   of   CD8   T   cells   specific   for   SIIN-   and   SIY-   Ki67+   cells   as   assessed   by   flow   
cytometry   at   5,   8,   and   12   weeks   post   tumor   initiation.     
( E )   Proportion   of   dysfunctional   CD8   T   cells   specific   for   SIIN-   and   SIY-   which   co-express   
co-inhibitory   receptors   PD-1,   LAG3,   and   TIM3.     
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SIY-Specific   CD8   T   Cells   are   Enriched   for   a   TCF1+   Progenitor   Phenotype   

To   further   understand   the   phenotypic   differences   between   the   SIIN   and   SIY   

response,   5’   single-cell   RNA-sequencing   (scRNA-seq)   was   performed   on   SIIN-   and   

SIY-specific   CD8   T   cells   isolated   at   5   weeks   after   tumor   initiation,   the   time   point   where   

the   responses   to   the   two   antigens   differs   the   most.   Dimensionality   reduction   was   

performed   on   RNA   expression   data   from   these   antigen   specific   cells   and   visualized   in   a   

Uniform   Manifold   Approximation   and   Projection   (UMAP)   embedding   ( Figure   2A ).   Cells   

were   then   assigned   to   clusters   (C0-C10,   see   Methods)   in   an   unsupervised   manner   

( Figure   2B ).     

To   annotate   cell   clusters   in   a   biologically   informative   manner,   differential   gene   

expression   analysis   was   performed   to   identify   positive   and   negative   markers   for   each   

cluster   ( Figure   2C ).   CD8   T   cell   exhaustion   has   been   extensively   characterized   in   the   

context   of   chronic   viral   infection,   most   prominently   lymphocytic   choriomeningitis   virus   

(LCMV)   infection.   In   this   setting,   gene   signatures   associated   with   progenitors   that   can   

give   rise   to   terminally   exhausted   T   cells   were   derived.   These   signatures   were   then   used   

to   map   the   transcriptional   landscape   of   SIIN-   and   SIY-   specific   cells   by   utilizing   

ProjectTIL   atlases   that   contain   these   signatures    (Raskov   et   al.   2020;   Andreatta   et   al.   

2021)    ( Figure   2D ).   After   consideration   of   previously   published   gene   expression   

signatures   characteristic   of   functionally   different   T   cell   populations   to   those   of   these   cell   

clusters   ( Supplemental   Figure   2 ),   each   cell   cluster   was   then   manually   annotated   

( Figure   2C ).   Taken   together,   we   identified   two   progenitor   clusters   that   were   

transcriptionally   distinct   (C4   and   C8)   as   well   as   two   dysfunctional/exhausted   clusters   

that   were   highly   continuous   with   one   another,   but   reflect   slightly   different   states   of   

  

https://paperpile.com/c/XSr7BR/4pBqX+HeM4y
https://paperpile.com/c/XSr7BR/4pBqX+HeM4y


170   

dysfunction   (C2   and   C3).   A   number   of   cell   clusters   could   be   reliably   annotated   by   

associated   function   of   the   cells   within   it;   for   example,   clusters   with   cell   states   associated   

with   activation   (C0   and   C6),   and   exhaustion   or   memory   (C1,   C2,   and   C3).   With   respect   

to   antigen   specificity,   SIIN-specific   cells   appeared   to   be   enriched   in   several   clusters,   

including   exhausted   clusters   C2   and   C3   ( Figure   2E ).   In   contrast,   other   clusters   were   

enriched   for   SIY-specific   cells,   including   progenitor   clusters   C4   and   C8.     

Still,   gene   expression   in   some   clusters   could   not   be   clearly   associated   with   

previously   described   CD8   T   cell   populations.   This   is   particularly   evident   for   some   

clusters,   such   as   C7,   which   had   expression   of   genes   characteristic   of   naive,   short-lived   

effector,   and   effector   memory   T   cells.   Notably,   C7   in   particular   was   composed   almost   

entirely   of   SIY-specific   cells   ( Figure   2E ).   Initially,   gene   expression   signatures   seemed   to   

suggest   these   cells   may   be   in   a   naive-like   state.   Upon   further   investigation,   it   was   

determined   that   genes   characteristic   of   naive   cells,    Lef1    and    Sell ,   were   not   expressed   in  

these   cells.   Additionally,   activation   markers    Cd69    and    Cd44 ,   which   are   characteristic   of   

effector   cells,   were   lowly   expressed.   ( Supplemental   Figure   2B-C ).   Taken   together,   it   

became   evident   that   C7   may   have   a   gene   expression   signature   that   is   similar,   but   

distinct   relative   to   those   associated   with   previously   characterized   cell   states.   Of   markers   

most   significantly   differentially   expressed   in   C7,   very   few   genes   positively   marked   C7.   

It’s   most   significant   positive   marker   was    AY036118.1 ,   a   transcript   which   is   associated   

with   the   ETS-related   transcription   factor   1,   ERF1.   ERF   is   a   potent   transcriptional   

repressor   that   acts   downstream   of   RAS/MAPK   signaling   to   negatively   regulate   cell   

proliferation    (Grånäs   et   al.   2006) .   Importantly,   many   genes   expressed   in   C7   are   

consistent   with   a   repressed   proliferative   state.   
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Unsurprisingly,   the   transcriptional   profiles   of   SIIN-   and   SIY-   specific   CD8   T   cells   

were   very   similar,   and   all   clusters   contained   at   least   one   cell   specific   to   SIIN   or   SIY   

( Figure   2A ).   However,   most   cell   clusters   were   enriched   for   cells   specific   for   one   antigen   

relative   to   the   other   ( Figure   2E ).   Clusters   that   were   not   significantly   enriched   for   SIIN   or   

SIY-specific   cells,   C9   and   C10,   were   small   clusters   with   gene   expression   signatures   

reflective   of   transient   responses   or   programs,   interferon   signaling   and   proliferation   

( Figure   2C ).   The   markers   associated   with   clusters   that   were   enriched   for   cells   specific   

to   one   antigen   over   the   other   were   largely   related   to   functionality   or   functional   

differentiation   of   T   cells   ( Supplemental   Figure   2A,   Figure   2C ),   and   suggests   that   the   

functionality   of   response   to   SIIN   and   SIY   are   different.   Importantly,   this   is   largely   

congruent   with   observations   made   about   the   behavior   of   tetramer   stained   SIIN-   and   

SIY-specific   T   cells   by   flow   cytometry.   ( Figure   1 ).   The   clusters   that   were   enriched   for   

SIIN-specific   cells   were   generally   reflective   of   activated   cells   with   sustained   exposure   to   

antigen.   The   clusters   that   had   the   largest   enrichment   of   SIIN-specific   cells   were   C1   and   

C2   ( Figure   2E ),   which   contain   cells   that   appear   to   progressively   adopt   gene   expression   

profiles   associated   with   T   cell   exhaustion.   Because   these   cells   of   this   experiment   were   

harvested   at   5   weeks,   which   precedes   contraction   of   the   SIIN-specific   response,   it   is   

likely   that   these   cells   are   indeed   in   the   process   of   becoming   dysfunctional.   In   contrast,   

the   clusters   that   were   enriched   for   cells   specific   for   SIY,   which   is   subdominant   to   SIIN,   

appeared   to   reflect   less   differentiated   cell   states.   Amongst   these   clusters,   C4   and   C8   

contained   cells   that   express   genes   associated   with   TCF1+   progenitor   cells.   This   is   a   

particularly   important   distinction   between   the   SIIN   and   SIY   response,   because   TCF1+   
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progenitor   cells   are   thought   to   give   rise   to   many   of   the   cell   states   reflected   in   

SIIN-enriched   exhausted-like   clusters.     

The   remaining   clusters   that   were   enriched   for   SIY-specific   cells,   C0   and   C7,   

represent   cells   with   contrasting   activation   states.   C0,   which   is   modestly   enriched   for   

SIY-specific   cells,   appears   to   be   reflective   of   cell   states   associated   with   early   responses   

to   productive   activation   signals   and   survival   ( Figure   2C ).   Conversely,   the   repressed   

activation   cluster,   C7,   showed   the   greatest   magnitude   of   enrichment   for   SIY-specific   

cells   and   was   depleted   for   markers   of   activation.   Interestingly,   despite   contrasting   

activation   states   in   C0   and   C7,   both   clusters   have   similar   and   overlapping   positions   in   

UMAP   space   ( Figure   2B ).   It   seems   likely   that   SIY-specific   cells   that   do   not   receive   

enough   activation   signals   as   a   consequence   of   antigen   dominance   hierarchies   enter   the   

cell   state   reflected   in   C7   and   arrest,   rather   than   expand.     
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Figure   2.   SIY-Specific   CD8   T   Cells   are   Enriched   for   a   TCF1+   Progenitor   Phenotype   
(A)    UMAP   projection   of   5’   scRNA-seq   gene   expression   data   of   SIIN-   and   SIY-   specific   
CD8   T   cells   at   5   weeks   after   tumor   initiation.   N   =   10   mice,   4,023   SIIN-specific   and   1,861   
SIY-specific   cells.   
(B )   Clustering   schematic   of   scRNA-seq   data   in   (A)   depicting   C0-C10.     
( C )   Heatmap   of   the   top   10   differentially   expressed   genes   per   cluster   from   (B).   Genes   
highlighted   on   the   right   of   the   heatmap   were   used   to   annotate   clusters   that   are   denoted   
at   the   top   of   the   heatmap.     
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( D )   ProjectTIL   classification   using   lymphocytic   choriomeningitis   virus   (LCMV)   infection   
and   tumor   infiltrating   lymphocyte   (TIL)   signatures   as   reference   atlases.   SIY-specific   cells   
are   enriched   for   progenitor   phenotypes   (TIL   p   =   0.002,   LCMV   p   =   2.51E-15)   and   
SIIN-specific   cells   are   enriched   for   an   exhausted   phenotype   (TIL   p   =   4.01E-17;   LCMV   p  
=   1.52E-10).     
( E ).   Quantification   of   SIIN-   and   SIY-specific   cell   assignments   to   clusters   in   (B).   Brackets   
indicate   clusters   significantly   (p   <   .05)   enriched   for   either   antigen   specific   cell.   SIIN   is   
enriched   in   C2   (p   =   2.9E-9)   and   C3   (p   =   5E-3)   while   SIY   is   enriched   in   C4   (p   =   4.9E-6)   
and   C8   (p   =   3.7E-12).   
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Analysis   of   TCR   Clonotypes   from   SIIN   versus   SIY   scRNA-seq   Data   

Delineates   Relationships   Between   CD8   T   Cell   States   

The   connectivity   of   clusters   C4   and   C8   to   C2   and   C3   on   the   UMAP   ( Figure   2B )   

suggests   transcriptional   similarity   between   these   cell   populations,   consistent   with   the   

previously   proposed   lineage   relationship   between   progenitor   and   exhausted   cells   

( Figure   2B )(Siddiqui   et   al.,   2019).   We   further   examined   this   relationship   by   analyzing   

the   distribution   of   individual   TCR   clonotypes   (with   ≥   5   cells)   containing   at   least   one   cell   

assigned   to   progenitor   clusters   C4   or   C8   ( Supplemental   Figure   3A ).   This   was   also   

performed   across   all   clonotypes   ( Figure   3A ).     

Because   the   observed   clonotypes   were   relatively   small,   we   reasoned   that   

repeated   patterns   of   functional   differentiation   may   stratify   groups   of   clonotypes   in   a   

manner   that   reflected   their   functional   behavior.   Unsupervised   hierarchical   clustering   on   

the   distribution   of   the   clonotypes   across   clusters   C2,   C3,   C4,   and   C8   largely   segregated   

SIY   clonotypes   into   the   top   half   of   the   heatmap   and   SIIN   clonotypes   into   the   bottom   half   

( Supplemental   Figure   3A ;   see   “antigen”   side-bar).   Across   all   clonotypes   ( Figure   3A )   

this   trend   is   also   observed,   however,   many   more   clonotypes   which   did   not   have   cells   

assigned   to   progenitor   clusters   C4   or   C8   appeared   to   have   similar   dynamics   when   

comparing   SIIN-   and   SIY-specific   clonotypes.   Together,   this   indicates   that   SIIN   and   SIY   

clonotypes   that   contain   progenitor   cells   have   unique,   antigen-specific   distribution   

patterns   across   clusters   of   cell   states.   Importantly,   the   SIIN-   and   SIY-specific   clonotypes   

appear   to   be   distributed   across   clusters   equally,   as   assessed   by   Gini   index,   but   do   have   

differences   in   the   clusters   they   are   found   ( Figure   3A ).   Further,   clonotypes   were   scored   
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for   expression   of   key   phenotypic   genes,    Gzmb,   Havcr2,   Cx3cr1,   Tcf7,   Ccr6    and    Il17a ,   

as   a   proxy   for   their   functional   phenotypes   ( Figure   3A ).     

SIIN   clonotypes   that   contained   progenitor   cells   were   distributed   across   most   

clusters,   but   were   enriched   for   cells   assigned   to   exhausted   cluster   C2   ( Supplemental   

Figures   3A   and   Figure   3C );   this   further   supports   a   lineage   relationship   between   

progenitor   and   exhausted   cell   states   and   suggests   that   SIIN   clonotypes   are   

well-progressed   on   the   path   to   exhaustion.   In   contrast,   both   progenitor   cell-containing   

clonotypes   and   total   SIY   clonotypes   were   biased   in   cell   distribution   to   clusters   C4   and   

C8   ( Supplemental   Figures   3A,   Figure   3A   and   Figure   3C ).   Additionally,   while   there   

were   a   similar   number   of   SIIN   and   SIY   clonotypes   (≥   2   cells:   SIIN   153,   SIY   149),   SIY   

clonotypes   were   smaller   in   size   than   SIIN   clonotypes   ( Figures   3B ).   These   observations   

suggest   that   SIY   clonotypes   are   repressed   in   clonal   expansion   and   differentiation   to   an   

exhausted   cell   state   compared   to   SIIN   clonotypes.   Notably,   however,   sampling   bias   due   

to   the   smaller   input   of   SIY   cells   may   also   contribute   to   reduced   SIY   clonotype   size   (see   

methods).   

Flow   cytometric   analysis,   published   in    Burger   et   al,   2021,    confirmed   that   

SIY-specific   cells   were   enriched   for   a   progenitor   cell   phenotype   at   5   weeks,   referred   to   

hereafter   as   “TCF1+   progenitor”   and   defined   as   CD8ɑ+   CD44+   TCF1+   TIM3-   cells.   

Consistent   with   previous   reports   (Miller   et   al.,   2019;   Siddiqui   et   al.,   2019),   the   majority   of   

these   cells   expressed   the   inhibitory   receptor   PD1   ( Figure   S3B ).   Few   expressed   GZMB,   

indicating   that   they   are   generally   not   cytotoxic,   but   were   more   proliferative   than   TCF1-   

cells   and   were   able   to   produce   the   effector   cytokines   IFNɣ   and   TNFɑ   ( Burger   et   al,   

2021 ,    Supplemental   Figure   3C ).   Additionally,   SIY-specific   cells   were   enriched   for   
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TCF1+   progenitor   cells   compared   to   SIIN-specific   cells   at   5   and   8   weeks   

( Supplemental   Figure   3D ).   Notably,   the   absolute   number   of   TCF1+   progenitor   cells   

was   similar   between   the   responses   across   all   time   points.   In   summary,   these   data   

indicate   that   SIY-specific   cells   are   enriched   for   a   less   differentiated,   TCF1+   progenitor   

cell   state   early   in   the   response   to   KP   LucOS   lung   tumors,   while   SIIN-specific   cells   

differentiate   more   rapidly   to   an   exhausted   cell   state.   
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Figure   3.    Analysis   of   TCR   Clonotypes   from   SIIN   versus   SIY   scRNA-seq   Data   Delineates   
Relationships   Between   CD8   T   Cell   States   
( A )   Heatmap   representation   of   the   distribution   of   TCR   clonotypes   (≥   5   cells)   across   all   clusters.   
Proportion   of   cells   scale:   1   =   contains   100%   of   cells   assigned   to   the   clonotype,   0   =   contains   0%   
of   cells   assigned   to   the   clonotype.   Hierarchical   clustering   was   performed   on   clonotypes   (rows)   
and   the   clusters   (columns).   “Clonotype   clusters”,   antigen   and   mouse   assignments,   and   the   
number   of   cells   in   each   clonotype   (size)   are   indicated   on   side-bars.   A   measure   of   the   spread   in   
distribution   of   each   clonotype   across   clusters,   or   “sparsity”   (Gini   index)(Hurley,   2009),   is   also   
included.   Additional   side-bars   show   the   proportion   of   cells   in   each   cluster   expressing   key   
phenotypic   genes:    Gzmb,   Havcr2,   Cx3cr1,   Tcf7,   Ccr6    and    Il17a .   
( B )   UMAP   depicting   clonotype   size   for   individual   cells   belonging   to   SIIN   and   SIY   clonotypes.   
Scale   bar   indicates   the   number   of   cells   in   a   clonotype.   Cells   that   belong   to   very   small   
clonotypes   or   do   not   have   a   clonotype   assignment   are   shown   in   gray.   The   violin   plot   shows   a   
comparison   of   the   size   of   SIIN   versus   SIY   clonotypes   containing   ≥   2   cells.   
( C )   ECDF   plots   depicting   the   distribution   of   SIIN   and   SIY   clonotypes   to   the   indicated   clusters.   
Enrichment   is   expressed   as   p-value   by   KS   test.     
( D )   UMAP   plots   highlighting   cells   assigned   to   each   of   the   clonotype   clusters   depicted   on   the   
clonotype   cluster   side-bar   in   (A).   Clonotype   cluster   7   is   enriched   for   a   Tc17   phenotype.   
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Supplemental   Figure   3.   SIY-specific   CD8    T   cells   are   enriched   for   TCF1+   cells   and   are   
less   differentiated   than   SIIN-specific   CD8   T   Cells.     
(A)   Heatmap   depicting   proportions   of   TCR   clonotypes   (rows)   assigned   to   each   cluster   
(columns),   for   clonotypes   ≥   5   cells   and   ≥   1   cell   assigned   to   Tcf1+   progenitor   clusters   C4   or   C8.   
Annotations   for   antigen   specificity,   mouse/source,   and   size   (cell   numbers)   of   each   clonotype   are   
indicated.   Proportion   of   1   =   100%   of   clonotype.   
( B-C )   Flow   cytometric   analysis   of   PD1   (B)   and   Ki67   (C)   expression   by   TCF1+   TIM3-   (colored)   
versus   TCF1-   (black   line)   SIIN-   and   SIY-specific   CD8   T   cells   at   5   weeks.   The   naïve   population   
(grey)   represents   CD44-   tetramer-   CD8+   T   cells.   Results   are   representative   of   3   independent   
experiments.    
( D)    Percentage   and   absolute   number   of   progenitor   TCF1+   TIM3-   cells   of   SIIN-   and   SIY-specific   
CD8   T   cells   over   time.   Representative   of   ≥   3   independent   experiments.     
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The   Subdominant   CD8   T   Cell   Response   is   Enriched   for   a   CCR6+   

TCF1+   Progenitor   Cell   Subset   with   a   Tc17   Differentiation   Trajectory   

Competition   with   the   SIIN   response   might   continue   to   repress   SIY-specific   

TCF1+   progenitor   cell   differentiation   in   the   context   of   ICB   and   account   for   why   

SIY-specific   cells   do   not   respond   better   than   SIIN-specific   cells   to   treatment.  

Alternatively,   it   may   be   that   SIY-specific   TCF1+   progenitor   cells   are   intrinsically   less   

functional   than   their   SIIN   counterparts.   In   the   scRNA-seq   data,   two   clusters   were   

marked   by   “progenitor”   gene   signatures   (C4   and   C8)   and   were   proximal   to   two   clusters   

marked   by   “exhausted”   gene   signatures   (C2   and   C3).   To   explore   this   apparent   

heterogeneity   in   the   progenitor   and   exhausted   cells,   we   separately   analyzed   the   cells   

contained   within   these   four   clusters   ( Figure   4A ).   Interestingly,   we   found   that   

Tcf7 -expressing   cells   within   C4   and   C8   occupied   distal   regions   of   the   UMAP,   suggesting   

C4   and   C8   contain   distinct   progenitor   cell   populations.   C4   and   C8   were   both   enriched   

for   a   number   of   genes   previously   associated   with   TCF1+   progenitor   cells   (e.g.    Tcf7,   

Xcl1,   Slamf6,   Ccr7) ,   but   were   also   characterized   by   unique   gene   signatures   ( Figure   

4B ).   C8   was   marked   by   genes   associated   with   memory   T   cells,   including   the   trafficking   

regulators    Klf2    and    S1pr1,    as   well   as   the   survival   receptor    Il7r    ( Figure   4B   and   

S4A )(Best   et   al.,   2013).   Conversely,   C4   was   characterized   by   expression   of   markers   of   

T   cell   dysfunction,   tolerance   and   anergy,   and   most   strikingly,   showed   strong   enrichment   

for   a   signature   of   Tc17   cells   ( Figure   S4B,   4B,   S4A   and   S4B )   (Linehan   et   al.,   2018;   

Parish   et   al.,   2009;   Safford   et   al.,   2005).   

Tc17   cells,   marked   by   expression   of   the   chemokine   receptor   CCR6,   are   an   

IL17A-producing   CD8   T   cell   subset   commonly   associated   with   autoimmune   
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inflammation   (Srenathan   et   al.,   2016).    Ccr6    was   highly   expressed   in   C4   and   its   

expression   overlapped   with    Tcf7    expression;   however,   cells   exhibiting   other   hallmarks   of   

differentiated   Tc17   cells,   including   expression   of   the   transcription   factor    Rorc    (i.e.   

RORɣT)     and   the   cytokine    Il17a,    were   predominantly   found   adjacent   to    Tcf7- expressing   

cells   within   C4   ( Figure   4B ).   To   determine   if   these   cells   shared   an   ancestral   relationship   

to    Tcf7 -expressing   cells,   we   used   Monocle3   to   infer   lineage   trajectories   (Cao   et   al.,   

2019;   Trapnell   et   al.,   2014).   This   analysis   predicted   a   trajectory   connecting   

Tcf7 -expressing   cells   in   C4   with   this   putative   Tc17   population   ( Figure   4C ).    Il17a   

expression   was   found   outside   clonotype   cluster   7,   but   in   a   smaller   number   of   clonotypes   

compared   to   expression   of    Ccr6 ,    Tcf7    or   effector/exhaustion   genes    Gzmb,   Cx3cr1    and   

Havcr2   ( Figure   S4A ) .    This   suggests   that   a   subset   of   TCRs   might   preferentially   drive   

differentiation   down   the   Tc17   pathway;   however,   most   of   these   clonotypes   expressed   

Il17a    in   a   small   proportion   of   cells   and   were   distributed   across   multiple   clusters   ( Figure   

3A ),   indicating   that   clonotypes   giving   rise   to   Tc17   cells   also   give   rise   to   other   cell   states.   

Flow   cytometry   analyses   at   5   weeks   later   confirmed   the   presence   of   CCR6+   SIIN-   and   

SIY-specific   cells   and   revealed   enrichment   for   this   population   in   the   SIY   response   

( Burger   et   al   2021) .   Altogether,   these   results   uncover   previously   undescribed   

heterogeneity   amongst   TCF1+   progenitor   cells.   High   expression   of   markers   of   

dysfunction/tolerance,   low   GZMB   expression   and   differentiation   to   a   Tc17   phenotype   

suggest   CCR6+   TCF1+   cells   represent   an   unconventional   TCF1+   population   with   

reduced   functionality.   
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Figure   4.   The   Subdominant   CD8   T   Cell   Response   is   Enriched   for   a   CCR6+   TCF1+  
Progenitor   Cell   Subset   with   a   Tc17   Differentiation   Trajectory   
( A )   Characterization   of   cells   assigned   to   clusters   C2,   C3,   C4   and   C8   from   the   mouse   
scRNA-seq   data   (Figure   2B)   with   a   separate   UMAP   embedding   showing   expression   of    Tcf7    and   
Havcr2 .   
( B )   Expression   (mean   log(expression   +1))   of   genes   associated   with   the   indicated   classifications   
across   clusters   C2,   C3,   C4   and   C8.   
( C )   Scoring   of   individual   cells   from   (A)   for   enrichment   of   a   gene   signature   differentially   
upregulated   in   Tc17   versus   Tc1   CD8   T   cells   in   the   skin   of   mice   infected   with    S.   epidermidis   
(Linehan   et   al.,   2018).   
( D )   Monocle3   lineage   trajectories   that   connect   cells   expressing    Ccr6/Tcf7    and    Rorc/Il17a   
overlaid   with   UMAP   visualizations   of   Tc17-related   gene   expression.   
( E )   UMAP   plots   from   (A)   highlighting   a   group   of   five   TCR   clonotypes   (clonotype   cluster   7,   see   
also   Figure   S4A   and   S4D)   that   fall   predominantly   within   cluster   C4   and   span   cells   expressing   
Ccr6/Tcf7    and    Rorc/IL17a    along   the   Monocle3-predicted   trajectory   in   (D).   
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Supplemental   Figure   4.   Tc17-like   TCF1+   Progenitor   CD8   T   Cells   in   KP   LucOS   
Tumors   
(A)   Expression   of   select   genes   from   the   heatmap   in   Figure   5B   projected   onto   the   UMAP   from   
Figure   4A.   
  (B)   Scoring   of   cells   from   the   mouse   scRNA-seq   analysis   in   Figure   4A   for   expression   of   gene   
signatures   for   Tc17   vs   Tc1   from   skin   cells   of   Imiquimod   treated   mice   (Linehan   et   al.,   2018),   T   
cell   deletional   tolerance   (Parish   et   al.,   2009)   and   T   cell   anergy   (Safford   et   al.,   2005).     
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DISCUSSION   

The   protective   effects   of   T   cells   responding   to   the   tumor-specific   neoantigens,   

SIIN   and   SIY   are   most   evident   at   early   time   points   after   tumor   initiation    (DuPage   et   al.   

2011) .   In   this   study,   we   show   the   response   to   SIIN   dominates   the   response   to   SIY;   

SIIN-specific   T   cells   are   more   abundant   and   more   cytotoxic   than   those   specific   for   SIY   

( Figure   1,   Burger   et.   al   2021 ).   As   such,   the   tumor   protective   effects   are   likely   to   be   

mediated   primarily   by   the   SIIN   response.   At   timepoints   where   T   cells   appear   to   lose   

their   ability   to   restrict   tumor   growth,   the   SIIN   response   also   appears   to   contract   

(DuPage   et   al.   2011) ( Figure   1 ).   This   further   supports   the   notion   that   the   SIIN   response   

not   only   dominates   the   response   to   SIY   in   terms   of   antigen   specific   CD8   T   Cell   

abundance,   but   also   dominates   the   kinetics   and   productivity   of   the   overall   T   cell   

response   to   LucOS.     

At   the   5   week   timepoint,   many   SIIN-specific   cells   have   become   fully   activated,   

cytotoxic,   and   differentiated   ( Figure   1,   Burger   et.   al   2021 ).   At   the   same   time,   many   of   

these   cells   acquire   gene   expression   profiles   indicative   of   progressive   dysfunction   

preceding   terminal   exhaustion.   This   is   not   surprising,   because   the   T   cell   response   to   

SIIN   contracts   shortly   thereafter   ( Figure   1 ).   In   parallel,   the   cells   responding   to   SIY   

appear   to   have   cell   states   with   less   functional   or   suspended   differentiation.   However,   

the   kinetics   of   the   SIIN   and   SIY   response   do   not   just   differ   temporally   ( Figure   1 );   the   

SIY   response   is   never   observed   to   expand   to   the   same   degree   as   the   SIIN   response   

when   co-expressed   with   SIIN.   Later,    Burger   et   al   2021    went   on   to   show   that   when   

antigens   are   expressed   alone,   the   phenotypes   of   SIY-specific   cells   were   lost.   

  

https://paperpile.com/c/XSr7BR/xgnAn
https://paperpile.com/c/XSr7BR/xgnAn
https://paperpile.com/c/XSr7BR/xgnAn


186   

Additionally,   when   SIIN   was   substituted   with   another   neoantigen   epitope   that   is   thought   

to   have   a   lower   affinity   for   MHC   than   SIY,   the   observed   antigen   dominance   hierarchy   

was   reversed,   instead   favoring   SIY   as   the   dominant   antigen   ( Burger   et   al   2021 ).   Taken   

together,   these   observations   suggest   that   the   SIY   antigen   can   elicit   a   meaningful   T   cell   

response,   and   that   the   difference   between   the   SIIN   and   SIY   responses   when   both   

antigens   are   co-expressed   are   specifically   a   consequence   of   co-expression   and   antigen   

dominance.     

While   the   SIY   response   does   not   amount   to   the   same   magnitude   of   response   to   

SIIN   in   the   LucOS   setting,   this   does   not   inherently   mean   that   the   subdominant   SIY   

response   is   incapable   of   doing   so.   Intriguingly,   although   the   SIY   response   never   

undergoes   the   phases   of   expansion   and   contraction   that   are   characteristic   of   CD8   T   cell   

responses,   SIY-specific   cells   do   appear   to   become   dysfunctional.   If   the   primary   

difference   between   the   SIIN   and   SIY   response   are   the   kinetics   of   functional   

differentiation,   it   is   entirely   possible   that   suppression   of   the   SIY   response   is   further   

compounded   by   an   increasingly   immunosuppressive   tumor   microenvironment.   By   the   

time   the   SIIN   response   begins   to   contract,   tumors   are   larger   and   have   already   adapted   

to   selective   pressures   imposed   by   SIIN-specific   cytotoxic   T   cells.   As   such,   when   the   

suppressive   influence   of   the   SIIN   response   becomes   alleviated,   the   SIY   response   may   

be   further   blocked   by   the   tumor   itself.     

  While   absolute   numbers   of   Ki67   expressing   cells   differ   between   the   SIIN   and   

SIY   response   at   5   weeks   post   tumor   initiation   ( Figure   1D ),   multiple   factors   may   

contribute   to   the   difference   in   observed   expansion   of   the   response   to   SIIN   compared   to   

SIY.   This   may   be   a   consequence   of   the   fact   that   observed   CD8   T   cell   expansion   may   
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reflect   both   proliferation   and   expansion   of   tissue   resident   T   cells   as   well   as   peripheral   T   

cells   which   then   infiltrate   into   the   tumor-bearing   lung.   

One   of   the   challenges   associated   with   TCR   clonotype   analysis   is   that   the   

abundance   of   a   clonotype   can   be   influenced   by   technical   factors,   such   as   sequencing   

dropout   or   underlying   biological   abundance   of   a   clonotype.   In   the   case   of   the   SIIN-   and   

SIY-   specific   CD8   T   Cell   response,   we   observed   more   clonotypes   overall   for   the   SIY   

response   ( Figure   3B ),   but   these   clonotypes   were   less   expanded   than   SIIN-specific   

clonotypes.   In   less   expanded   clonotypes,   because   there   are   less   cells,   it   is   more   difficult   

to   determine   the   differentiation   potential   or   distribution   of   cell   states   associated   with   the   

clonotype   when   there   are   inherently   a   small   number   of   cells   to   begin   with.   To   work   

around   this   issue,   clonotypes   were   clustered   according   to   their   observed   distribution   

patterns   across   cell   clusters   ( Figure   3A )   to   aggregate   clonotypes   with   similar   

distribution   patterns.   However,   the   observed   distribution   patterns   are   likely   to   be   less   

robust   for   smaller   clonotypes;   as   such,   we   inherently   have   less   confidence   in   clonotype   

cluster   assignments   of   small   clonotypes.   In   spite   of   this   technical   constraint,   when   cells   

are   pseudocolored   by   their   associated   clonotype   size   ( Figure   3D ),   we   observe   that   

expanded   clonotypes   occupy   different   transcriptional   spaces   than   clonotypes   of   small   

sizes.   If   we   assume   that   sequencing   dropout   occurs   uniformly   across   cells,   then   this   at   

the   minimum   suggests   that   the   degree   of   observed   expansion   for   a   given   clonotype   

does   influence   transcriptional   state.     

It   is   important   to   note   that   interpretation   of   how   descendants   of   a   particular   clone   

are   distributed   across   cell   states   observed   in   this   dataset   is   dependent   on   the   

assumption   that   cells   within   a   clonotype   have   some   sort   of   shared   ancestry.   Functional   
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differentiation   of   lymphocytes   frequently   follow   paradigms   of   multilineage   priming    (Laslo   

et   al.   2006)    in   which   daughter   cells   of   a   given   progenitor   differentiate   into   multiple   cell   

types   simultaneously.   Stated   differently,   the   distribution   of   a   clonotype   across   cell   states   

can   reflect   one   or   many   differentiation   trajectories.   This   is   likely   to   be   most   confounding   

in   very   large,   expanded   clonotypes   which   generally   have   at   least   one   cell   assigned   to   

nearly   all   cell   clusters   described   in   our   data.   

In   addition,   the   observed   clonotype   sizes   of   the   SIIN-   and   SIY-   response   are   

( Figure   3B )   consistent   with   the   number   of   tetramer   stained   SIIN-   and   SIY-   cells   

quantified   in   independent   experiments   by   flow   cytometry   ( Figure   1C ).   In   both   the   SIIN-   

and   SIY-   response,   the   number   of   clonotypes   that   become   very   expanded   relative   to   the   

number   of   clonotypes   detected   is   very   small.   For   both   responses,   the   observed   

distribution   of   clonotype   sizes   are   consistent   with   previously   published   work   which   

suggests   that   antigen   responses,   irrespective   of   antigen   dominance   hierarchies,   are   

dominated   by   certain   clonotypes.   In   other   words,   productive   antigen   responses   

generally   have   low   TCR   diversity   associated   with   them.   This   has   been   reported   in   a   

number   of   different   biological   contexts,   including   aging    (Britanova   et   al.   2014) ,   and   

ankylosing   spondylitis    (Hanson   et   al.   2020) .     

Intriguingly,   the   most   significant   marker   of   C7,    AY036118    is   a   poorly   annotated   

gene   in   the   mm10   reference   genome   primarily   because   it   has   nucleotide   sequences   

that   complicate   read   mapping.   The   gene   contains   a   705   base   pair   sequence   with   95%   

homology   to   18S   rRNA   in   the   3’UTR    (Kong   et   al.   2008)    and   has   conflicting   

computational   annotations.   As   a   consequence,   it   is   annotated   as   a   pseudogene   in   

Ensembl   and   ncRNA   by   NCBI.   In   spite   of   these   annotations,   clear   evidence   exists   to   
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support   protein   expression   of   Erf1    (Lindemann   et   al.   2001;   Grånäs   et   al.   2006) .   Erf1   has   

been   functionally   characterized   as   a   potent   repressor   of   cell   proliferation   and   MAPK   

signaling    (Sgouras   et   al.   1995;   Papadaki   et   al.   2007) .   Many   of   the   genes   differentially   

downregulated   in   C7   were   related   to   cell   proliferation   and   activation;   as   such,   we   

annotated   cells   in   C7   as   having   cell   states   with   Repressed   Activation   ( Figure   2C ).   In   

agreement   with   this   observation,   C7   also   had   very   few   cells   assigned   to   expanded   

clonotypes,   suggesting   that   cells   that   adopt   this   repressed   activation   state   may   be   

unable   to   expand   ( Figure   3B ).   

  In   the   context   of   an   antigen   dominance   hierarchy,   as   reported   here,   this   

generalization   persists.   However,   the   largest   SIY-   specific   clonotypes   are   markedly   

smaller   than   the   most   expanded   SIIN-   specific   clonotypes   ( Figure   3B ).   In   addition,   the   

fact   that   there   are   more   productive   clonotypes   identified   in   the   SIY-   specific   response   

relative   to   the   SIIN-specific   response,   in   spite   of   greater   SIIN-   input   cell   numbers,   further   

suggests   TCR   diversity   may   be   inversely   correlated   with   degree   of   observed   clonotype   

expansion.   However,   it   is   less   clear   whether   or   not   clonotype   expansion   simply   reduces   

the   likelihood   that   the   true   underlying   TCR   sequence   diversity   is   captured,   or   whether   

expansion   of   one   clonotype   is   able   to   influence   expansion   of   another.   In   the   context   of   

antigen   dominance,   further   questions   can   be   raised   about   the   influence   of   expanded   

clonotypes   specific   for   dominant   antigens   on   expansion   of   clonotypes   specific   for   

subdominant   antigens.   

  In   this   study,   the   functionality   of   T   cells   that   respond   to   dominant   and   

subdominant   antigens   was   characterized.   These   associations   could   be   further   extended   

to   observations   made   about   TCR   diversity   and   expansion;   if   associations   between   TCR   
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diversity   and   antigen   response   are   reliable   and   robust,   measures   of   clonotype  

expansion   and   TCR   diversity   could   be   used   to   predict   the   productivity   of   response   to   

associated   neoantigens,   which   may   be   of   particular   utility   in   settings   where   neoantigen   

expression   is   not   experimentally   defined.   These   associations   may   be   especially   useful   

in   clinical   studies   of   neoantigen   responses,   where   it   is   far   more   difficult   to   characterize   

and   assess   neoantigen   responses.     

However,   the   utility   of   these   associations   is   starkly   limited   by   the   inability   to   

associate   a   given   TCR   sequence   with   its   associated   neoantigen.   This   may   be   overcome   

by   computational   algorithms   that   can   predict   TCRs   that   respond   to   the   same   neoantigen   

(Glanville   et   al.   2017)    and   through   empirical   characterization   of   the   relationship   between   

TCR   sequence   identity   and   cognate   neoantigens   identity.   Complementary   efforts   to   

identify   features   of   neoantigens   that   can   elicit   productive   T   cell   responses   may   lead   to   

further   insight   when   characterized   with   respect   to   TCR   diversity   and   expansion.   

Taken   together,   it   is   abundantly   clear   that   the   global   response   to   a   single   

neoantigen   is   dictated   by   heterogeneous   responses   of   TCR   clonotypes   specific   for   that   

neoantigen.   In   the   case   of   the   most   expanded   SIIN-specific   CD8   cells,   observations   

made   of   the   global   response   to   a   given   antigen   may   be   dominated   by   the   behavior   of   

one   or   very   few   clonotypes.   This   may   explain   variation   that   is   often   observed   in   flow   

cytometry   based   analyses.   Notably,   even   SIIN-specific   T   cells   occupy   transcriptional   

states   enriched   for   subdominant   SIY-specific   cells,   suggesting   that   neoantigen   identity   

does   not   entirely   predict,   but   does   influence,   how   T   cells   will   respond   to   it.   It   is   entirely   

possible   that   similarities   between   the   heterogeneous   SIIN-   and   SIY-   responses   are   a   
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result   of   internal   competition   between   clonotypes   that   recognize   the   same   neoantigen,   

and   are   further   compounded   by   competition   between   different   neoantigens.   

  In   work   that   is   not   included   in   this   thesis,   but   is   published   in    Burger   et   al   2021 ,   

further   experiments   were   performed   to   functionally   characterize   the   heterogeneous   

progenitor   populations   observed   in   this   study.   It   was   found   that   expression   of    Ccr6    can   

distinguish   between   CD8   progenitor   populations,   and   these   populations   have   

meaningful   differences   in   their   ability   to   drive   productive   immune   responses.   

Additionally,   it   was   found   that   this   population   of   CCR6+   cells   is   lost   following   therapeutic   

vaccination   against   SIY,   further   providing   evidence   that   SIY   specific   T   cells   are   being   

primed   suboptimally   when   in   competition   with   SIIN.   In   future   studies,   characterization   of   

both   TCRs   and   neoantigens   that   are   capable   of   eliciting   productive   immune   responses   

may   lead   to   more   meaningful   comparison   of   dysfunctional   T   cell   responses.   Stated   

simply,   there   may   be   multiple   manifestations   of   T   cell   responses   that   are   unproductive   

or   dysfunctional   that   cannot   be   stratified   by   associated   neoantigen   identity.   Overall,   

however,   this   work   demonstrates   the   importance   and   influence   that   antigen   dominance   

hierarchies   have   on   functional   differentiation   of   CD8   T   cells.     

  

MATERIALS   AND   METHODS   

Lentiviral   Tumor   Induction   

Tumors   were   induced   in   KP   mice   that   were   at   least   8   weeks   old   through   

intratracheal   delivery   of   lentivirus   containing   Cre   recombinase   and   model   neoantigens   

(2.5   x   10 4    PFU)   as   previously   described    (DuPage   et   al.   2011;   DuPage,   Dooley,   and   

Jacks   2009) .   Mice   were   randomized   for   analysis   and   ICB   and/or   vaccination   therapy.   
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Tissue   Collection   and   Flow   Cytometry   

Analyses   were   performed   on   tissue-resident   immune   cells,   which   were   

distinguished   from   circulating   immune   cells   through   retroorbital   injection   of   an   anti-CD45   

antibody   2-3   minutes   prior   to   euthanasia   (PE-CF594   or   AlexaFluor780;   30-F11;   BD   

Bioscience)    (Anderson   et   al.   2014) .   Lung   tissue   was   harvested   and   dissociated   with   a   

combination   of   manual   cutting   with   spring   scissors   and   a   30   minute   treatment   with   

collagenase   IV   treatment   (125   U/mL)   (Worthington   Biochemical)   combined   with   DNAse   

I   treatment   (40   U/mL)(Sigma-Aldrich)   at   37°C.   Lung   tissue   was   further   dissociated   using   

gentleMACS   dissociator   m_lung_2.0.1   protocol   in   gentleMACS   C   tubes   (Miltenyi   Biotec)   

and   passage   through   a   70   μm   strainer.   For   spleen   and   lymph   node   tissues,   dissociation   

was   performed   with   a   70   μm   cell   strainer   into   RPMI   1640   media   with   1%   

heat-inactivated   fetal   bovine   serum.   For   all   tissues,   cells   were   pelleted   by   centrifugation   

and   resuspended   in   1X   RBC   Lysis   Buffer   (eBioscience)   on   ice   for   10   minutes.   Cells   

were   then   resuspended   in   Phosphate   Buffered   Saline   (PBS)   and   transferred   to   a   

96-well   U-bottom   plate.     

Dead   cells   were   excluded   by   staining   viable   cells   20   minutes   on   ice   with   Zombie   

or   Tonobo   Ghost   Dye   (Invitrogen   and   Tonbo   Biosciences,   respectively).   Subsequently,   

cells   were   stained   for   surface   antibodies   purchased   from   ThermoFisher   Scientific,   BD   

BioSciences,   or   Biolegend   in   PBS   with   1%   Heat-inactivated   FBS   for   15-30   minutes   on   

ice.   Antibodies   used:   CD8ɑ   (53-6.7),   CCR6   (29-2L17),   CX3CR1   (SA011F11),   CXCR3   

(CXCR3-173),   CD44   (IM7),   IL7R   (A7R34),   LAG3   (C9B7W),   PD1   (RMP1-30),   SLAMF6   

(13G3),   TIGIT   (1G9),   TIM3   (RMT3-23),   OX40   (OX-86),   ICOS   (7E.17G9),   CD200   

(OX-90),   CD83   (Michel-19).   During   this   incubation,   cells   were   concurrently   stained   with   
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H-2K b    peptide-MHC   tetramers   specific   to   SIINFEKL,   SIYRYYGL,   SIINYEKL,   mALG8   or   

mLAMA4   (monomer,   NIH   Tetramer   Core   Facility;   PE   and   APC   streptavidin,   Invitrogen).    

Cells   were   fixed   to   permit   intracellular   staining   for   1   hour   at   room   temp   (eBioscience   

Fixation/Permeabilization   Kit,   ThermoFisher   Scientific)   and   then   stained   overnight   at   

4°C   with   antibodies   purchased   from   Cell   Signaling   Technology,   ThermoFisher   Scientific,   

BD   Biosciences,   Biolegend   or   Miltenyi   Biotec.   Antibodies   used:   TCF1/TCF7   (C63D9),   

RORɣT   (B2D),   TBET   (eBio4B10),   Granzyme   B   (GB11),   Ki67   (B56),   TOX   (REA473),   

EGR2   (erongr2).   

All   samples   were   analyzed   on   a   BD   Biosciences   LSR   Fortessa   or   LSR   II   Flow   

Cytometry   Analyzer.   

  Cytokine   production   was   evaluated   following   depletion   of   tumor   and   myeloid   cells  

in   lung   tissue,   identified   by   incubation   with   2   μg   of   purified   antibodies   specific   for   Ly-6G,   

EpCAM,   and   F4/80   (Biolegend)   at   4°C   for   20   minutes.   Cells   were   subsequently   

incubated   with   125   μl   of   sheep   anti-rat   Dynabeads   (Invitrogen)   at   4°C   for   30   minutes   

while   rotating   and   stained   for   CD45.2   (Brilliant   Violet   510,   Biolegend).   Excluded   cells   

were   pelleted   with   a   Dynabeads   magnet   (Invitrogen),   leaving   T   cells   in   the   supernatant   

that   were   then   transferred   to   a   clean   tube,   washed   with   PBS   containing   1%   heat   

inactivated   PBS,   pelleted   by   centrifugation,   and   resuspended   in   T   Cell   media   (RPMI   

1640   with   10%   FBS,   10   mM   HEPES,   1   mM   sodium   pyruvate,   1X   MEM   Non-essential   

amino   acids,   2   mM   L-glutamine,   0.275   mM   beta-mercaptoethanol,   and   50   U/mL   

penicillin-streptomycin).   Cells   were   then   transferred   to   a   96-well   U-bottom   plate,   

pelleted   and   resuspended   in   T   cell   media   plus   1X   Monensin   (Biolegend),   1X   Golgi   Plug   

(BD   Bioscience)   and   SIINFEKL   or   SIYRYYGL   peptide   (167   nM;   New   England   Peptide)   
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to   assay   IFNƔ   and   TNFɑ   production.   Cells   were   stained   for   IL17A   by   resuspending   in   T   

cell   media   with   PMA   (2.5   ng/ml;   EMD   Millipore),   Ionomycin   (1   μM;   Sigma-Aldrich),   1X   

Monensin,   and   1X   Golgi   Plug   and   incubation   at   37°C   for   4-5   hours.   Unstimulated   

controls   were   generated   by   reserving   10%   of   each   aliquot.   The   remaining   90%   of   cells   

in   each   aliquot   were   then   stained   for   viability   and   surface   markers   as   described   above   

through   incubation   with   antibodies   overnight   at   4°C.   Antibodies   used:   IFN-ɣ   (XMG1.2),   

TNFɑ   (MP6-XT22)   and   IL17A   (17B7)   from   ThermoFisher   Scientific,   BD   Biosciences   or   

Biolegend.   

scRNA-seq   Data   Processing   

Base   calls,   mapping/alignment,   and   counts   of   scRNA   seq   5’   RNA   expression   

data   were   performed   using   Cell   Ranger,   version   3.1.0    (Zheng   et   al.   2017) .   Cell   Ranger   

3.1.0   was   also   used   to   map   VDJ   and   Cell   Hashing   libraries.   RNA   expression   data   was   

aligned   to   the   GRCm38/mm10   reference   mouse   transcriptome   (version   3.0.0)   and   VDJ   

sequencing   data   was   aligned   to   the   prebuilt   mouse   (GRCm38/mm10)   VDJ   reference   

supplied   by   10X   Genomics   (version   3.1.0)    (Zheng   et   al.   2017) .   

  Approximately   6,472   cells   and   15,939   genes   were   detected   for   SIIN-specific   

CD8   T-Cell   libraries   at   a   sequencing   depth   of   80.4%.   3,646   cells   and   14,834   genes   

were   detected   for   RNA   SIY-   specific   CD8   T-cells   at   a   sequencing   depth   of   76.9%.   VDJ   

libraries   (containing   TCR   sequences)   captured   an   estimated   4,713   (SIIN)   and   2,705   

cells   (SIY)   with   3,857   (SIIN)   and   2,196   (SIY)   of   those   cells   containing   productive   V-J   

Spanning   Pair.   Cell   Hashing   libraries   captured   approximately   6,073   (SIIN)   and   3,319   

(SIY)   cells   at   a   sequencing   saturation   of   10.3%   (SIIN)   and   13.2%   (SIY)   for   SIIN-   and   

SIY-   specific   CD8   T   Cell   libraries,   respectively.   
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Seurat   (version   4.0.0)   was   used   to   transform   normalized   counts   by   centered-log   

ratio   (CLR)   and   demultiplex   cell   hashing   data    (Butler   et   al.   2018;   Ruf-Zamojski   et   al.   

2018) .   A   positive   quantile   threshold   of   0.98   to   infer   which   mouse   each   cell   was   

harvested   from.   

RNA   expression   counts   were   normalized   and   natural   log-scaled   in   Seurat   

(version   4.0.0).   Seurat   was   also   used   to   select   variable   features,   and   perform   

differential   gene   expression   analysis.   Dying   cells,   probable   doublets,   and   low   quality   

data   were   filtered   out   by   imposing   requirements   for   individual   cells   to   express   at   least   

100   but   less   than   4000   genes   and   have   at   least   20,000   reads,   with   a   maximum   of   5%   of   

reads   aligning   to   the   mitochondrial   genome.   Additionally,   cells   called   as   doublets   by   cell   

hashing   were   also   removed.     

Expression   for   all   genes   in   SIIN-   and   SIY-   libraries   were   first   centered   by   

subtracting   average   expression   of   each   gene   and   subsequently   scaled   by   dividing   gene   

expression   levels   by   their   standard   deviations.   SIIN-   and   SIY-   libraries   were   then   

merged   in   Seurat   (“merge.data   =   TRUE”).   For   each   cell   passing   quality   control   

thresholds,   metadata   assignments   for   V(D)J   clonotypes   and   cell   hashing   (mouse   of   

origin)   were   made   using   Python   with   Pandas   and   Numpy    (McKinney   2017;   Harris   et   al.   

2020)   

Cell   Clustering,   and   Differential   Expression   Analysis   

Dimensionality   reductions   were   performed   using   the   2,000   most   variable   genes,   

selected   in   Seurat   using   the   vst   method    (Butler   et   al.   2018;   Ruf-Zamojski   et   al.   2018) .   

An   estimation   of   principal   components   (PCs)   used   for   further   dimensionality   reduction   

was   estimated   by   performing   Principal   component   analysis   (PCA)   for   the   first   50   PCs   
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and   JackStraw   analysis/elbow   method.   This   estimation   was   further   refined   to   a   final   30   

PCs   through   manual   evaluation   of   features.   These   30   PCs   were   used   to   construct   a   

shared   nearest   neighbor   graph   (SNN,   k   =   20)   and   perform   Louvain   clustering   using   

default   parameters   in   Seurat   (default   parameters,   resolution;    (Meo   et   al.   2011) .   Cells   

were   embedded   into   2-dimensional   space   by   Uniform   Manifold   Approximation   and   

Projection   (UMAP)   algorithm    (McInnes   et   al.   2018;   Butler   et   al.   2018)    with   default   

parameters   in   Seurat.   Genes   differentially   expressed   between   cell   clusters   were   

identified   by   Wilcoxon   Ranked   Sum   test   (FindAllMarkers,   min.pct   =   0.25).     

Heatmaps   with   differentially   expressed   genes   for   each   cluster   were   produced   

using   ComplexHeatmap   (cluster_columns   =   FALSE,   cluster_rows   =   FALSE).   Statistical   

enrichment   was   tested   by   a   hypergeometric   test   in   R   (phyper,   alpha   =   0.05).   Gene   

expression   visualizations   in   UMAP   space   were   generated   in   Seurat   using   the   

FeaturePlot   function   (order   =   TRUE)   or   in   Monocle3   using   the   plot_cells   function.     

Data   from   cells   assigned   to   C2,   C3,   C4   and   C8   were   separately   analyzed   in   Monocle3,   

version   0.2.3.0    (Junyue   Cao   et   al.   2019;   Qiu   et   al.   2017;   Trapnell   et   al.   2014) .   Raw   data   

was   normalized   using   default   parameters.   PCA   was   performed   and   the   first   20   PCs   

were   utilized   to   generate   a   UMAP   embedding   (default   parameters,   except:   

umap.n_neighbors   =   30L,   umap.fast_sgd   =   FALSE,   preprocess_method   =   “PCA”;   

Mclnnes   et   al.,   2018).   Cells   were   grouped   using   leiden   clustering    (Traag,   Waltman,   and   

van   Eck   2019)    for   trajectory   analyses   (resolution   =   0.001)   with   otherwise   default   

parameters.   To   predict   differentiation   trajectories,   a   principal   graph   (visualized   in   UMAP   

space)   was   learned   in   Monocle3   (learn_graph,   use_partition   =   FALSE,   rann.k   =   20).   

Further   visualizations   were   created   by   exporting   UMAP   coordinates   for   these   cells   from   
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Monocle3   to   Seurat   for   gene   expression   and   signature   analysis.   Differentially   expressed   

genes   were   calculated   in   Seurat,   as   described   above.   

Genes   associated   with   CD8   T   cell   functionality   were   identified   through   manual   

consideration   of   genes   differentially   expressed   between   cell   clusters   and   previously   

published   research.   The   methodology   utilized   by   gene   expression   calculations   made   by   

Monocle3’s   plot_cells_by_group   function   was   used   to   score   expression   of   these   

functionality   associated   genes.   Subsequent   gene   expression   scores   were   visualized   in   

heatmaps   produced   by   ComplexHeatmap   in   R   (cluster_columns   =   FALSE,   cluster_rows   

=   FALSE).     

scRNA   seq   T-Cell   Subtype   Classification   

Using   a   reference   tumor-infiltrating   lymphocyte   (TIL)   atlas   and   lymphocytic   

choriomeningitis   virus   (LCMV)-specific   CD8   T   cell   atlas,   individual   cells   were   aligned   

and   annotated   using   ProjecTILs   R   package,   version   0.5.1    (Andreatta   et   al.   2021) .   

Normalized   expression   data   from   Seurat   was   provided   as   input   and   annotations   for   cell   

states   were   created   using   a   nearest-neighbor   algorithm   (“cellstate.predict”)   and   

visualized   “as-is”,   without   a   confidence   threshold,   in   UMAP   space.   These   assignments   

were   further   validated   by   confirming   cell   state   annotations   were   the   same   after   imposing   

a   confidence   score   threshold   of   0.5.     

TIL   and   LCMV   progenitor   state   enrichment   for   SIIN-   and   SIY-   specific   T-cells   

were   analyzed   by   hypergeometric   test   (phyper,   Stats   R   package;   alpha   =   0.05).   

Similarly,   progenitor   or   exhausted   cell   state   enrichment   in   cell   clusters   was   evaluated   by   

a   hypergeometric   test,   described   above.     
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Gene   Signature   Scores   

Individual   cells   were   scored   for   expression   of   previously   published   mouse   gene   

signatures   by   calculating   mean   expression   for   each   signature   subtracted   by   aggregated   

expression   of   control   signatures   in   Seurat   using   the   AddModuleScore   function.   Prior   to   

scoring,   genes   in   signatures   that   were   not   detected   in   mouse   scRNA   seq   data   were  

removed   from   each   published   signature.     

Progenitor   exhausted   and   terminally   exhausted   signatures   were   derived   from    (B.   

C.   Miller   et   al.   2019b) ,   the   deletional   tolerance   signature   was   derived   from    (Parish   et   al.   

2009) ,   and   the   anergy   signature   was   derived   from    (Safford   et   al.   2005) .   Tc17   and   Tc1   

gene   signatures   were   derived   from    (Linehan   et   al.   2018)    and   produced   by   alignment   to   

the   mouse   genome   (NCBI37/mm9)   using   Bowtie   (version   1.2.3) (Langmead   et   al.   2009) ,   

quantification   of   feature   counts   with   rsem   (version   1.3.1) (B.   Li   and   Dewey   2011) ,   mm9   

annotation   with   UCSC   (genome.ucsc.edu),   identification   of   pairwise   differentially   

expressed   genes   with   DESeq2    (Love,   Huber,   and   Anders   2014)    in   R   (version   3.6.0).   

CCR6+TCF7+   and   CCR6-TCF7+   signatures   were   derived   de   novo   in   mouse   

scRNA-seq   data   Signatures   were   then   filtered   genes   as   described   above.   Individual   cell   

scores   were   visualized   in   UMAP   space.     

TCR   Clonotype   Analysis     

Clonotype   identification   and   assignments   to   individual   cells   was   performed   using   

Cell   Ranger   as   described   above.   Clonotypes   are   expected   to   originate   from   a   single   

mouse;   as   such,   rare   clonotypes   (22   of   652)   that   appear   to   originate   from   multiple   mice,   

which   is   determined   by   cell   hashing,   were   identified   using   Pandas   in   Python   and   

excluded   from   downstream   clonotype   analyses.   Most   of   the   identified   clonotypes   were   
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composed   of   less   than   5   cells   (548   of   652)   that   is   likely   a   result   of   their   physiological   

abundance   or   extent   of   clonal   expansion.   Because   it   is   impossible   to   distinguish   

whether   clonotype   sizes   are   a   result   of   biological   abundance   or   from   technical   dropout,   

clonotypes   with   less   than   5   cells   were   removed   from   indicated   analyses.   Ultimately,   103  

clonotypes   remained.     

Distribution   of   cells   assigned   to   each   clonotype   across   cell   clusters   (C0-C10)   was   

evaluated   by   calculating   the   proportion   of   cells   in   each   clonotype   assigned   to   each   

cluster.   This   permits   comparison   of   clonotypes   with   different   sizes.   For   visualization   in   a   

heatmap,   rows   (clonotypes)   of   the   heatmap   were   ordered   by   hierarchical   clustering   

(method   =   “ward.D”)   using   default   pairwise   euclidean   distance   and   columns   (cell   

clusters)   were   ordered   by   hierarchical   complete-linkage   clustering   of   pairwise   Jaccard   

distance   (hclust,   method   =   “ward.D”).   Subsequently,   clonotypes   were   assigned   to   12   

clonotype   clusters   by   hierarchical   clustering,   using   euclidean   distance   as   a   distance   

metric   (h   =   0.6,   cutree,   R).   

  Identity-based   annotations   for   each   clonotype   of   this   heatmap   were   generated   

using   clonotype   metadata.   Gene-expression   based   annotations   for   each   clonotype   were   

generated   by   quantifying   the   proportion   of   cells   with   gene   expression   of   Gzmb,   Havcr2,   

Cx3cr1,   Tcf7,   Ccr6,   and   Il17a   >   0.5.   Clonotypes   statistically   enriched   for   expression   of   

these   genes   were   identified   by   hypergeometric   test   (phyper,   Stats   R   package;   alpha   =   

0.05).   Additionally,   to   provide   a   metric   for   how   equally   distributed   each   clonotype   is   

across   clusters,   we   calculated   the   Gini   index   for   each   clonotype   as   a   measure   of   

sparsity.   
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To   test   statistical   enrichment   of   SIIN-   and   SIY-specific   clonotypes,   a   

2-dimensional   2-sample   KS   test   was   performed;   differences   in   proportion   of   cells   in  

each   cluster   or   combination   of   clusters   were   visualized   with   an   empirical   cumulative   

distribution   plot.     

Clonotype   sizes   were   calculated   in   Python   using   Pandas.   To   further   evaluate   

how   the   size   of   a   clonotype   influences   transcriptional   profile,   we   assigned   each   cell   a   

value   equivalent   to   the   size   of   its   respective   clonotype   and   visualized   these   values   in   

UMAP   space   using   Seurat.     
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CHAPTER   4   

Amanda   M.   Cruz ,   Jose   B.   Cruz,   Tyler   Jacks   

  

SPECULATIONS   AND   FUTURE   DISCUSSIONS   

  

  

Models   for   Evolution   of   Tumor   Heterogeneity  

One   perspective   of   tumor   evolution,   discussed   in   Chapter   1,   can   be   guided   by  

Cancer   Stem   Cell   (CSC)   models   of   tumor   heterogeneity,   which   operate   under   the   

premise   that   a   stem-like   population   can   seed   other   subclones   of   a   tumor.   If   a   singular   

CSC   population   existed   that   was   responsible   for   the   development   of   phenotypic   tumor   

heterogeneity   through   random   and   stochastic   differentiation,   a   brief   period   in   which   very   

little   heterogeneity   is   observed   would   be   expected,   followed   by   a   drastic   increase   in   

heterogeneity   once   a   CSC   population   has   matured.   In   KP   lung   tumors,   discussed   in   

Chapter   2,   our   findings   are   relatively   consistent   with   these   models,   except   that   the   

number   of   cell   states   observed   in   the   primary   tumor   eventually   plateau.   Presumably,   the   

limitation   of   accessible   transcriptional   tumor   cell   states   are   a   consequence   of   selective   

pressures.   Although   the   number   of   transcriptional   subpopulations   of   a   tumor   may   

increase   with   time,   their   associated   transcriptional   trajectories   predicted   by   Monocle3   

largely   converge   towards   a    Hmga2 +     metastatic-like   state.   This   convergence   may   reflect   

increasing     selective   pressure,   or   fine-tuned   adaptation   to   the   tumor   microenvironment.   

An   important   caveat   to   these   speculations   about   selective   pressures   of   the   tumor   
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microenvironment   is   that   the   tumor   microenvironment   changes   dynamically   as   tumors   

progress.   For   example,   in   Chapter   3,   we   demonstrate   that   the   CD8   T   cells   of   the   tumor   

microenvironment   undergo   dynamic   changes   in   functional   differentiation   that   ultimately   

produce   selective   pressures   that   change   over   time.   This   highlights   the   possibility   that   

tumor   cell   subpopulations   that   are   abundant   and   are   positively   selected   for   at   one   stage   

of   tumor   progression   may   be   negatively   selected   against   or   even   eliminated   at   another   

stage   of   tumor   progression.   As   such,   while   computationally   predicted   transcriptional   

trajectories   of   tumor   cells   may   appear   to   converge   towards   an    Hmga2 +    state,   it   is   

possible   that   this   convergence   reflects   “pruning”   of   tumor   cell   subpopulations.     

In   consideration   of   the   dynamically   changing   tumor   microenvironment,   it   is   

entirely   possible   that   multiple   CSC   states   may   be   simultaneously   present   within   a   tumor   

in   order   to   be   better   suited   to   adapt   to   certain   kinds   of   selective   pressures   from   the   

tumor   microenvironment,   but   not   others.   Consequently,   multiple   populations   may   exist   

within   a   tumor   that   are   functionally   distinct,   but   all   have   stem-like   abilities   that   flexibly   

allow   tumors   to   generate   diverse   cell   states   in   order   to   adapt   to   various   forms   of   

selective   pressure.   Conversely,   one   could   imagine   that   a   single   CSC   population   exists,   

but   itself   undergoes   changes   over   time   as   tumors   progress   that   have   meaningful   

functional   implications.   These   hypotheses   have   been   supported   by   the   discovery   of   a   

functionally   distinct   Wnt   producing   niche   in   KP   tumor   cells    (Tammela   et   al.   2017) .   

Many   hypotheses   that   build   upon   the   CSC   model   typically   operate   under   

contexts   where   the   cell   of   origin   of   a   tumor   is   believed   to   have   homeostatic   stem-like   

abilities.   However,   in   many   of   these   cases   and   in   the   case   of   AT2   cells   in   particular,  

which   are   believed   to   be   the   cell   of   origin   in   the   KP   model    (C.   F.   B.   Kim   et   al.   2005) ,   the   
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potential   of   these   stem   cells   are   still   lineage   restricted.   In   order   for   a   stem   cell   to   give   

rise   to   the   diverse   cell   states   and   dysregulated   identities   observed   in   tumors,   they   must   

undergo   extensive   functional   changes   with   respect   to   differentiation   potential   to   

generate   a   heterogeneous   tumor.   Often,   terminally   differentiated   cells   are   thought   to   

have   terminal   evolutionary   trajectories   under   physiological   conditions.   The   associated   

stability   of   transcriptional   states   for   terminally   differentiated   cells   are   often   attributed   to   

heritable   changes   in   epigenetic   landscape   of   terminally   differentiated   cells.     

Fascinatingly,   the   changes   in   differentiation   state   of   tumor   cells   challenge   the   

permanence   of   transcriptional   states   that   are   usually   associated   with   terminally   

differentiated   cells.   Tumor   cells   exploit   the   lack   of   permanence   of   epigenetic   states   in   

order   to   generate   a   greater   diversity   of   transcriptional   states.   The   biological   implication   

of   the   chromatin   landscape   of   a   healthy,   differentiated   cell   is   to   restrict   the   permutations   

of   cellular   machinery,   circuitry,   and   programs   that   are   accessible   to   the   cell   in   order   to   

restrict   cellular   responses   to   change   and   homeostatic   processes   to   ultimately   maintain   

the   tissue   and   its   overall   function   in   the   context   of   the   entire   organism.   As   such,   in   order   

for   these   cells   to   become   capable   of   functionally   differentiating   into   a   diverse   set   of   cell   

states,   many   epigenetic   changes   must   occur.   While   these   epigenomic   states   are   

reversible,   they   are   very   stable,   and   in   order   to   become   plastic,   a   substantial   

destabilizing   force   is   required.   One   of   the   most   apparent   and   widely   accepted   sources   

of   oncogenic   stress   are   those   that   result   from   destabilizing   “hits”   of   oncogenic   

mutations.     
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Tumor   evolution   as   a   chaotic   process   

A   system   is   considered   to   be   chaotic   if   it   is   bounded,   deterministic,   and   has   

characteristic   hypersensitivity   to   perturbations    (Toker,   Sommer,   and   D’Esposito   2020) .     

Tumors   may   evolve   as   a   result   of   sensitivity   to   tumor-initiating   signals   

For   an   organism   to   develop   and   sustain   life,   gene   expression   must   be   tightly   

regulated.   This   has   inherently   led   to   the   evolution   of   genes,   circuitry,   machinery,   and   

multicellular   systems   that   suppress   and   prevent   transformation   or   tumor   formation.   A   

single   mutation   can   confer   subtle   effects   on   these   tumor   suppressive   networks   and   

systems.   Over   time,   the   effects   of   a   single   oncogenic   point   mutation   can   accumulate   to   

cross   a   threshold   that   disrupts   canonical   processes   enough   to   confer   strong   

susceptibility   to   cancer   development    (H.   Lee   et   al.   1999;   J.   M.   Dunn   et   al.   1988;   Lynch   

et   al.   2015) .   To   counteract   this   sensitivity,   regulatory   systems   of   development   and   

homeostasis   exert   control   over   the   biological   processes   that   underlie   cancer   

development   through   surveillance,   repair,   and   feedback    (Filipski   et   al.   2002;   Bruchovsky  

et   al.   1996;   L.   Huang   and   Mellor   2014) .   In   many   cases,   sufficient   control   is   maintained   

long   enough   for   an   organism   to   develop,   mature,   and   age;   when   it   is   not,   cancer   is   likely   

to   occur.   Temporal   feedback   to   perturbation   may   also   occur,   supporting   hypotheses   that   

cells   may   be   transformed   and   progress   to   a   clinically   detectable   tumor   over   relatively   

long   time   scales    (P.   C.   Nowell   1976) .   This   is   further   supported   by   the   clinical   cases   

where   measurable   disease   kinetics,   such   as   primary   tumor   growth   or   rate   of   metastasis,   

progressively   accelerate   over   time.     

Evidence   for   sensitivity   to   transformation   has   been   described   in   the   field   of   

cancer   biology   in   numerous   ways,   particularly   through   characterization   of   individual   
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oncogenic   mutations   and   clonal   outgrowth   of   cells   (i.e.   tumor   progression   begins   with   

change   in   a   single   cell)    (S.   Y.   Luo   and   Lam   2013;   Shlush   and   Hershkovitz   2015;   

Greaves   and   Maley   2012;   H.   Lee   et   al.   1999) ,   which   collectively   provide   evidence   that   a   

single,   or   few,   mutations   can   sufficiently   drive   oncogenic   transformation.   Mathematical   

models   of   tumor   evolution   support   clonal   expansion   of   tumor   subclones   that   contain   

mutations   that   confer   specific   mutational   and   fitness   properties    (Heide   et   al.   2018) .   

However,   not   all   mutations   destabilize   regulatory   systems   enough   to   cause   cancer   

(Martincorena   and   Campbell   2015) ,   which   may   be   a   consequence   of   the   effects   they   

confer,   tissue   specificity    (García-Nieto,   Morrison,   and   Fraser   2019) ,   or   protection   from  

tumor   suppressive   pathways    (Heuer   et   al.   2020;   Xuyi   Wang,   Simpson,   and   Brown   

2015) .   In   turn,   chaotic   behavior   of   evolutionary   trajectories   are   possible   when   regulatory   

systems   become   sufficiently   destabilized.     

Tumor   evolution   is   deterministic   and   bounded   

The   extent   of   variation   in   clinical   and   experimental   observations   made   throughout   

the   course   of   tumor   progression   is   superficially   consistent   with   a   model   for   stochastic,   

rather   than   deterministic,   evolution   throughout   tumor   progression.   In   Chapter   2,   a   

time-series   analysis   of   cell   states   in   KP   lung   tumor   evolution   was   attempted   through   

single-cell   RNA   sequencing.   In   this   study,   the   observed   tumor   cell   states   were   highly   

reproducible   across   mice,   but   varied   in   abundance   across   samples   harvested   from   the   

same   time   point.   This   manifested   in   variation   both   at   the   state   of   the   overall   tumor   and   

of   its   respective   tumor   cells.   

  At   a   given   time   point,   the   overall   grade   of   a   tumor   that   is   harvested   from   the   

lungs   of   the   animal   follows   a   probability   distribution   that   is   dependent   on   time    (Jackson   
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et   al.   2005) .   In   this   way,   the   probability   of   harvesting   a   tumor   that   has   a   high   histological   

grade   is   higher   at   longer   time   points   than   it   is   at   shorter   time   points   after   tumor   initiation.   

Additional   complexity   is   created   by   intra-tumor   heterogeneity   of   cell   states;   abundance   

of   cell   states   observed   in   heterogeneous   tumors   are   a   function   of   tumor   progression   

(Marjanovic   et   al.   2020) .   If   a   higher   grade   tumor   is   harvested,   the   state   of   any   given   cell   

within   that   tumor   follows   probabilistic   distribution   patterns   that   are   dictated   by   the   grade   

or   progression   of   the   tumor   it   belongs   to.     

Notably,   the   distribution   of   tumor   cell   states   at   a   given   time   point    is   still   

dependent    on   time.   As   such,   tumor   evolution   can   be   perceived   as   a   deterministic   

process   at   the   macroscopic   level,   governed   by   biological   noise   generated   at   least   

partially   from   the   stochastic   influence   of   latent   variables.   Although   these   variables   are   

likely   to   affect   tumor   cells   somewhat   stochastically,   across   many   tumors   and   mice,   their   

influence   exhibits   predictable   behavior   and   is   consistent   with   mathematical   models   of   

stochastic   processes    (Ditlevsen   and   Samson   2013) .   These   latent   variables   produce   

variation   in   timescales   associated   with   tumor   evolution,   discussed   in   Chapter   1   Section   

5.1,   such   that   transcriptional   changes   occur   in   tumor   cells   in   a   stochastic   manner.   This   

temporally   manifests   in   evolutionary   behavior   consistent   with   a   nonstationary   process,   a   

function   that   is   influenced   by   a   stochastic   process   that   itself   is   macroscopically   

deterministic   with   properties   that   vary   in   a   time-dependent   manner    (Gagniuc   2017) .   In   

other   words,   the   time   scales   over   which   tumor   evolution   occurs   is   dictated   by   stochastic   

biological   influences   that   ultimately   make   time   series   based   analyses   unreliable.   

However,   the   stochastic   behavior   of   these   biological   influences   have   properties   that   are   

themselves   deterministic,   and   evolve   as   a   function   of   time.   
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Analysis   of   nonstationary   processes   is   a   complex   issue   frequently   encountered   in   

data   forecasting.   Generalizations   made   about   nonstationary   processes   have   suggested   

that   behavior   of   nonstationary   processes   can   be   approximated   by   assuming   local   

stationarity,   proposed   by   Dahlhaus    (Dahlhaus   and   Giraitis   1998) ,   wherein   the   properties   

that   define   the   stochastic   effect   of   biological   influences   on   time   scales   of   tumor   

evolution   are   assumed   constant   across   small   intervals   of   time.   This   approach   inherently   

creates   and   defines   multiple   kinds   of   time   scales   over   which   tumor   evolution   can   be   

examined.   The   first   is   the   absolute   or   chronological   time   scale   of   evolution   of   a   given   

tumor,   and   is   regarded   as   ‘observed   time’   or   ‘absolute   time’.   The   second   is   ‘rescaled   

time’,   which   is   defined   by   deterministic   changes   between   two   states   of   the   system    (Van   

Bellegem   and   von   Sachs   2004) .   Characteristically,   in   between   states   associated   with   

the   beginning   and   end   of   the   process   being   studied,   the   spectrum   of   states   observed   

will   increase   in   an   asymptotic   manner.   This   is   largely   consistent   with   the   observed   

convergent   evolution   of   KP   lung   tumor   cell   states   and   with   bounded   behavior   of   the   

system.     

Biological   pseudotime   is   a   rescaled   unit   of   time   

  If   we   reconstruct   tumor   evolution   on   an   axis   of   pseudotime,   rather   than   absolute   

time,   the   systems   which   dictate   tumor   cell   state   appear   to   change   in   a   dynamical   and   

deterministic   manner.   If   construction   of   pseudotime   across   longitudinally-sampled   tumor   

cells   indeed   corrects   for   the   stochastic   effects   of   latent   variables   that   produce   

confounding   biological   noise,   as   discussed   in   Chapter   1   and   in   the   section   above,   the   

reproducible   nature   of   KP   lung   tumor   evolution   loosely   fits   the   criteria   for   deterministic   

systems.   Pseudotime   can   be   considered   an   “arrow”   of   time   that,   although   governed   by   
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physical   processes   that   proceed   as   a   function   of   absolute   (symmetrical)   time,   described   

in   Chapter   1   Section   5.1,   manifest   in   an   ‘asymmetric’   manner    (Roberts   and   Quispel   

1992) .   Simply,   the   amount   of   time   that   is   required   to   generate   cell   states   with   equal   

distance   along   an   axis   of   biological   pseudotime   is   not   constant   across   tumor   evolution   

( Figure   1 ).   

  

Figure   1 .   A   visualization   of   asymmetry   in   biological   pseudotime.   A   theoretical   model   for   
tumor   evolutionary   trajectories,    f ,   is   differentiable   with   respect   to   absolute   time,    t ,   or   
biological   pseudotime,    p ,   such   that   a   distance,    x ,   can   be   calculated   between   two   cells   
with   different   evolutionary   states.   

   and    x   (t) dt      t =  ∫
 

 
f   (p) dp  xpt =  ∫

 

 
f  

( A)    Assume   two   pairs   of   cell   states   in   tumor   evolution,   (C 1 ,   C 2 )   and   (C 3 ,   C 4 )   exist   with   
equidistant   relative   positions   in   biological   pseudotime   (x pt ).   The   absolute   or   
chronological   time   required   for   a   cell   to   evolve   from   state   C 1    to   C 2   ,    ( B )   given   by   
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can   be   nonequivalent   to   that   of   evolution   from   state   C 3    to   C 4 ,   ( C )   given   by     d(t)     xt =  ∫
C2

C1
t  

    d(t)    xt =  ∫
C4

C3
t  

  

  Evolution   of   tumor   cell   state   is   a   time-dependent   process.   Evidently,   this   implies   

tumor   evolutionary   processes   roughly   follow   behavior   of   a   dynamical   system,   which   is   

defined   by   its   ability   to   be   differentiated   with   respect   to   time    (Katok   and   Hasselblatt   

1995) .   As   it   is   proposed   in   this   thesis,   tumor   evolution   is   also   differentiable   with   respect   

to   biological   pseudotime,   a   variable   scale   of   absolute   time.   Importantly,   pseudotime   is   

differentiable   (or   dependent   on)   absolute   time;   as   such,   biological   pseudotime   likely   can   

be   described   by   a   multivariate   function   that   is   dependent   on   changes   in   gene   

expression   that   occur   as   a   consequence   of   the   passage   of   absolute   time   ( Figure   1 ).     

The   argument   that   tumor   evolution   occurs   in   a   deterministic   manner   seemingly   

contradicts   long-held   models   of   stochastic   tumor   evolution    (Foo,   Leder,   and   Michor   

2011;   Bose   and   Trimper   2009;   M.   J.   Williams   et   al.   2016) .   Notably,   these   models   

functionally   define   cell   state   in   tumor   evolution   by   mutational   status;   in   contrast,   in   this   

work,   tumor   evolutionary   status   is   assessed   by   cell   states   defined   by   transcriptional   or   

chromatin   accessibility   profile.   Tumor   evolution   appears   to   be   macroscopically   

reproducible,   but   occurs   with   a   high   degree   of   variation   from   tumor   to   tumor,   mouse   to   

mouse,   and   possibly   even   cell   to   cell   with   respect   to   time.   For   this   reason,   it   is   likely   that   

the   relationship   between   biological   pseudotime   (tumor   evolution)   and   absolute   time   

cannot   be   defined   in   a   reproducible   manner   without   statistical   modeling,   and   is   therefore   
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stochastic.   Tumor   evolution,   however,   is   deterministic   along   the   axis   of   and   dynamical   

with   respect   to   biological   pseudotime.   

Differentiability   with   respect   to   pseudotime,   a   hallmark   of   dynamical   systems,   

may   seem   counter-intuitive   in   the   context   of   experimental   approaches   often   utilized   in   

biological   research.   Biologists   usually   seek   to   explain   biological   phenomena   with   

respect   to   absolute,   chronological   time,   or   through   time-series.   Systems-level   

approaches   to   modeling   biological   processes   in   these   time   series   led   to   the   emergence   

of   mathematical   models   that   describe   some   of   these   processes   as   having   behavior   

characteristic   of   chaotic   systems,   frequently   in   the   context   of   population   dynamics   and   

enzyme   kinetics    (Olsen   and   Degn   1985;   Parry   1979) .   In   the   era   of   single-cell   

technologies,   biological   phenomena   are   profiled   in   high-dimensional   transcriptional   or   

chromatin   accessibility   space   that   has   created   new   opportunities   to   model   temporal   

dynamics   of   heterogeneous   and   noisy   biological   systems.     

Phenomena   of   asymmetry   in   time   or   variant   time   scales   have   been   repeatedly   

described   in   other   contexts,   particularly   in   physics    (Roberts   and   Quispel   1992) .   Many   

experimental   descriptions   of   chaotic   systems   have   a   similar   behavior   to   that   of   KP   

tumor   evolution,   in   which   chaos   can   be   deterministically   modeled   in   the   absence   of   

stochastic   terms   and   may   manifest   in   bifurcation   of   the   behavior   of   the   system   towards   

stability   or   chaos    (Glass   2009) .   In   this   case,   periods   of   time   or   pseudotime   between   

branch   events   created   through   bifurcation   and   chaotic   behavior   can   be   thought   of   as   the   

time   scales   over   which   assumptions   of   local   stationarity   are   true.   In   other   words,   I   

predict   periods   of   stasis   exist   in   tumor   evolution   in   which   selective   pressures   are   

relatively   constant   and   biological   systems   exist   in   a   state   of   equilibrium.   Further,   
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between   these   time   periods,   and   amongst   time   periods   with   similar   properties   across   

tumor   evolution,   approximations   can   be   made   about   the   behavior   of   evolutionary   

trajectories   that   can   be   described   in   a   piecewise   manner    (Van   Bellegem   and   von   Sachs   

2004) .     

The   remaining   requirement   of   chaotic   systems,   which   require   bounded   behavior,   

is   largely   satisfied   by   dynamics   of   KP   lung   tumor   evolution.   If   transcription   in   tumor   cells   

became   entirely   dysregulated,   trajectories   of   tumor   cells   would   follow   the   dynamics   of   a   

random   walk   across   transcriptional   space   or   a   high-dimensional   manifold.   Stated   

plainly,   gene   expression   in   cells   would   simply   become   random.   Of   course,   not   every   

system   in   a   tumor   cell   becomes   dysregulated.   An   important   caveat   to   this   perspective   is   

that   bounded   behavior   of   accessible   states   may   occur   in    any    biological   process   as   a   

consequence   of   constraints   imposed   by   gene   regulatory   networks    (S.   Huang   2012)    and   

may   not   be   unique   to   tumor   evolution   itself.   Complete   transcriptional   dysregulation   is   

arguably   never   observed   in   a   viable   cell   because   it   would   not   be   able   to   sustain   life.   

That   said,   life   can   still   be   sustained   in   a   wide   variety   of   cell   states   that   are   apparent   in   

comparison   of   cell   states   across   different   tissues.   As   such,   it   is   still   remarkable   that   

reproducibility   can   be   observed   in   KP   lung   tumor   evolution,   particularly   despite   latent  

influences   that   cannot   be   controlled   for   that   generate   biological   noise.     

Comparisons   to   models   of   mutational   tumor   cell   evolution   

Models   of   tumor   evolution   in   the   context   of   mutations   have   been   largely   focused   

on   distinguishing   highly   recurrent   destabilizing   alterations,   whose   fitness   benefits   are   

dependent   on   stochastic   processes   such   as   mutation,   described   in   Chapter   1   Section   
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1.3   and   by    (Hanahan   and   Weinberg   2011;   Dagogo-Jack   and   Shaw   2018)    from   

mutations   that   do   not   confer   selective   advantages.   

Acquisition   of   additional   mutations   are   not   required   for   and   does   not   drive   tumor   

evolution   in   the   KP   model    (DuPage   et   al.   2011) ,   as   such,   stochastic   random   mutation   is   

unlikely   to   have   a   strong   influence   on   tumor   evolutionary   trajectories   in   this   specific   

context.   However,   in   other   studies   of   the   K   and   KP   model,   introduction   of   additional   

mutations   confer   an   effect   on   cell   state   in   a   manner   that   affects   the   evolutionary   fitness,   

and   therefore   trajectories,   of   tumor   cells    (Rogers   et   al.   2018) .   As   such,   conclusions   

generated   from   analysis   of   the   KP   model   are   inherently   limited   in   their   ability   to   model   

response   to   acquisition   of   mutations   in   other   cancer-driving   genes.   That   said,   further   

work   describing   evolutionary   trajectories   in   KP   tumors   with   additional   genetic   mutations   

may   lead   to   insight   on   how   mutations   in   such   genes   may   affect   overall   disease   

progression.     

Despite   the   lack   of   acquired   mutations   in   the   KP   model,   evolution   of   KP   lung   

tumors   may   share   similar   evolutionary   dynamics   to   observed   mutational   trends   in   other   

tumor   contexts.   In   the   context   of   mutational   status,   tumor   evolution   and   heterogeneity   

has   been   previously   proposed   to   be   a   deterministic   process    (M.   J.   Williams   et   al.   2016) ,   

in   which   neutral   evolution   governs   mutational-trajectories   of   tumor   cells,   and   dictates   

equal   growth   rates   of   clones   with   distinguishing   neutral   mutations.   This   model   is   derived   

from   the   Luria-Delbruck   model   of   bacterial   evolution.   Despite   support   for   this   model   in   

studies   with   mice    (Driessens   et   al.   2012) ,   the   interpretation   of   the   data   presented   by   

Williams   et.   al.   drew   criticism   because   it   assumes   a   constant   rate   of   cell   death,   

mutation,   and   proliferation   as   well   as   synchronous   division    (Tarabichi   et   al.   2018) .     
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However,   the   solution   proposed   in   the   Williams   model   agrees   with   convergent   

solutions   generated   from   simulations   in   which   these   parameters   are   stochastically   

defined    (Heide   et   al.   2018) .   When   incorporated   with   models   where   mutation   and   

subsequent   subclone   fitness   is   defined   stochastically,   the   Williams   model   performs   well,   

except   in   extreme   situations.   It   performs   poorly   in   situations   where   a   subclone   either   

acquires   a   mutation   that   confers   a   strong   selective   advantage   but   does   not   decrease   

genomic   stability,   or   when   a   subclone   acquires   a   mutation   with   moderate   selective   

advantage   that   decreases   genomic   stability    (Heide   et   al.   2018) .   In   these   situations   

where   the   model   fails,   subclonal   expansion   is   likely   driven   by   a   selective   advantage.     

Transcriptional   Bursting   May   Underlie   Heterogeneity   of   Cell   State   

Although   the   variation   in   kinetics   of   tumor   progression   creates   analytical   

challenges   in   cancer   biology,   it   is   believed   to   be   caused   by   variables   with   meaningful   

biological   influence.   This   kinetic   variation   is   often   treated   as   biological   noise,   but   

nonlinear   kinetic   processes   are   prevalent   in   biology    (“Nonlinear   Oscillations   in   Chemical   

and   Biological   Systems”   1991) ,   and   latent   variables   that   cause   variation   in   tumor   

progression   kinetics   could   provide   meaningful   changes   or   selective   pressures   that   

ultimately   drive   tumors   to   become   heterogeneous.     

In   this   thesis,   the   majority   of   discussions   of   cell   state   are   based   upon   

transcriptional   profiles   of   individual   cells.   While   it   is   difficult   to   model   transcriptional   

dynamics   in   experimental   systems   that   are   as   complex   as   mouse   models,   several   

pieces   of   evidence   suggest   that   the   kinetics   of   transcription   in   individual   cells   is   

nonlinear   and   subject   to   bursting   behavior   that   is   coordinated   by   precisely   regulated   

systems    (“Enhancer   Control   of   Transcriptional   Bursting”   2016) .     
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While   many   regulatory   systems   in   a   tumor   become   disrupted,   many   studies   have   

suggested   that   topologies   of   intracellular   regulatory   circuitry   are   not   entirely   lost,   but   are   

instead   rewired    (“Gene   Networks   with   Transcriptional   Bursting   Recapitulate   Rare   

Transient   Coordinated   High   Expression   States   in   Cancer”   2020) .   Some   studies   have   

further   suggested   that   bursting   behavior   of   transcriptional   networks   in   a   tumor   have   the   

capacity   to   generate   functionally   distinct   rare   tumor   subpopulations    (Zhao,   Cheng,   and   

Zhao   2017) .   In   this   study,   it   is   proposed   that   highly   connected   gene   regulatory   network   

topologies   result   in   higher   throughput   of   gene   expression   outputs,   both   in   terms   of   

expression   and   duration    (Zhao,   Cheng,   and   Zhao   2017) .   Importantly,   the   amplitude   and   

frequency   of   burst   kinetics   in   this   study   are   generally   constant   and   maintained   

throughout   transcriptional   responses   in   highly   connected   gene   networks.   In   gene   

networks   with   less   connectivity,   this   regularity   is   partially   lost    (Zhao,   Cheng,   and   Zhao   

2017) .   Indeed,   outside   of   biology,   burst   kinetics   have   been   extensively   used   to   model   

network   constraints   of   information   trafficking    (Cruz   1991b) .   In   this   regime,   it   was   

demonstrated   that   engineering   multiple   regulators   within   a   network   with   burst   kinetics   

can   increase   the   throughput   of   the   system    (Cruz   1991a) ,   and   parallels   observations  

made   by    (Zhao,   Cheng,   and   Zhao   2017) .   Taken   together,   if   transcriptional   burst   kinetics   

are   assumed,   rewiring   and   disruption   of   regulatory   networks   in   tumor   cells   may   lead   to   

aberrant   transcription   that   can   drive   evolution   of   heterogeneous   subpopulations   of   cells.     

In   the   KP   lung   tumor   model,   the   AT2   cell   of   origin   is   a   well-differentiated   epithelial   

cell   whose   identity   is   maintained   except   in   response   to   injury    (Paris   et   al.   2020) .   Thus,   

in   untransformed   cells   where   gene   regulatory   networks   are   intact,   transcriptional   

outputs   are   stable   and   result   in   stable,   regulated   expression   of   AT2   identity   genes.   In   
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contrast,   untransformed   T   cells   have   characteristic   functional   heterogeneity   that   is   an   

explicit   feature   of   a   productive   overall   T   cell   response    (Gong,   Linderman,   and   Kirschner   

2014) .   Consequently,   T   cells   have   contrasting   gene   regulatory   dynamics   when   

compared   to   AT2   cells.   In   the   setting   of   the   tumor   microenvironment,   the   factors   that   

control   heterogeneous   functional   differentiation   are   ‘tuned’   in   a   manner   that   can   lead   to   

dysfunctional   T   cells    (Hashimoto   et   al.   2018) .     

In   sum,   these   parallel   observations   suggest   that   transcriptional   heterogeneity   

observed   in   single   cells,   including   both   CD8   T   cells   and   tumor   cells,   may   be   

symptomatic   of   underlying   transcriptional   regulatory   dynamics.   Importantly,   loss   of   

regulators   in   gene   networks   of   tumor   cells   may   result   in   differentiation   (or   change   in   

differentiation   status)   that   ultimately   generates   heterogeneous   subclones   of   a   tumor.   

Analytically,   the   ability   to   fit   the   observed   transcriptional   noise   in   tumor   cells   to   models   

that   describe   multi-level   burst   kinetics   is   currently   extremely   limited.   This   is   due   to   the   

fact   that   there   are   dynamic   changes   in   transcriptional   network   topology   that   occur   in   

response   to   changes   of   regulatory   dynamics.   However,   in   T   cells,   regulatory   dynamics   

are   exploited   and   tuned,   but   transcriptional   network   topology   is   not   necessarily   altered,   

which   has   led   to   emerging   studies   that   describe   the   role   of   transcriptional   bursting   in   T   

cell   differentiation    (DeMarino   et   al.   2020) .     

Relationships   between   Cell   Signaling   and   Cell   Identity   

Signaling   Architecture   

If   we   think   about   applications   of   information   theory   to   understanding   the   changes   

that   result   from   the   onset   of   oncogenic   signaling   -   in   our   model,   driven   by   Kras,   we   can   

think   of   transcriptional   outputs   from   signaling   as   being   constrained   by   channel   capacity   
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of   upstream   signaling   components.   In   the   KP   model,   the   “channel   capacity”   of   KRAS   

can   be   interpreted   to   change   through   an   oncogenic   mutational   event.   Thereafter,   KRAS   

activation   is   no   longer   rate   limiting,   and   provides   a   constant,   saturated   signal   to   

downstream   signaling   components,   such   as   PI3K   and   MAPK   signaling.   This   single   

oncogenic   mutation,   however,   does   not   change   the   “channel   capacity”   of   these   

downstream   signaling   events.   It   is   important   to   note   that   these   “channels”   (i.e.   signaling   

components)   are   not   defined   simply   by   their   biochemical   capacity   to   signal   to   

downstream   effectors   as   intrinsically   defined   through   their   protein   structure.   Instead,   the   

parameters   of   each   signaling   “node”,   such   as   components   of   PI3K   and   MAPK   signaling   

pathways,   are   a   function   of   the   activity   and   availability   of   other   signaling   components   

that   serve   to   change   the   “channel   capacity”   of   signaling   nodes.   Stated   otherwise,   the   

ability   for   downstream   signaling   pathways   of   KRAS   to   respond   to   constant   oncogenic   

signals   from   KRAS G12D    gain-of-function   activity   is   influenced   by   the   architecture   of   

further   downstream   effector   networks.   As   such,   in   a   cellular   signaling   network,   the   

capacity   of   these   channels   are   dynamic.   An   important   limitation   to   this   reasoning   is   that   

signaling   pathways   do   not   act   in   isolation.   Signaling   pathways   downstream   of   KRAS   

activation   are   not   solely   activated   by   RAS   signaling.   They   integrate   both   positive   and   

negative   signals   from   pathways   that   can   act   in   parallel   to   RAS   or   upstream   of   it.   These   

upstream   or   parallel   signaling   pathways   can   provide   feedback   on   pathways   downstream   

of   RAS   to   tune   channel   capacity.   In   isolation,   the   activity   of   downstream   signaling   

components   behave   according   to   their   intrinsic   constraints.   In   practice,   however,   

signaling   pathways   act   within   a   network,   and   the   impacts   of   a   saturating   oncogenic   

signal   will   affect   the   entire   signaling   network.   Importantly,   it   is   very   possible   that   the   
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global   response   to   this   form   of   oncogenic   stress   underlies   differences   in   how   cells   

respond   to   various   forms   of   oncogenic   stress.     

In   AT2   cells,   the   signaling   network   of   a   healthy   and   normal   cell   can   be   thought   to   

be   specialized   to   support   AT2   function.   In   this   manner,   it   is   optimized   for   at   least   3   

purposes:   1)   to   maintain   AT2   cell   identity,   2)   to   respond   to   cellular   stresses   encountered   

by   AT2   cells,   and   3)   to   create   a   “kill-switch”   to   prevent   proliferation   of   cells   with   some   

kind   of   defect.   Cellular   signaling   events   relay   information   about   the   extracellular   

environment   of   the   cell.   The   purpose   of   AT2   cells   is   to   produce   surfactants   to   prevent   

the   lung   from   collapsing   and   to   participate   in   structural   formation   of   the   lung   epithelium   

(see   Chapter   1).   Thus,   the   steady-state   signaling   network   of   AT2   cells   has   been  

optimized   to   perform   these   exact   functions.   These   functions   could   include   detection   of   

biomechanical   stress,   production   of   surfactants,   and   proliferation   in   response   to   injury.   

This   functional   optimization   is   not   mutually   exclusive   with   maintenance   of   cell   identity,  

as   cell   features   of   cell   identity,   particularly   cell   shape,   are   dictated   by   functionality.   

Stated   plainly,   form   fits   function.   Lastly,   the   kill-switch   is   important   to   ensure   

homeostasis   in   the   lung   epithelium,   and   kill   cells   that   have   acquired   DNA   damage.   This   

could   prevent   transformation   or   outgrowth   of   cells   transformed   with   Kras G12D    and   may   

underlie   the   discrepancies   observed   between   the   number   of   cells   infected   with   virus   to   

initiate   tumors   and   the   number   of   over   lesions   and   tumors   that   are   later   observed   in   the   

lungs   of   these   animals.     

An   interesting   nuance   of   AT2   cells   is   that   they   have   been   shown   to   be   able   to   

trans-differentiate   into   AT1   cells   in   response   to   certain   kinds   of   stress   (see   Chapter   1),   

which   represents   an   outcome   characteristic   of   all   of   the   above   described   purposes   of   a   
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cellular   signaling   system.   The   primary   difference   in   this   instance   is   that   the   programmed   

response   to   this   particular   stress   signal   is   a   change   in   cell   identity.   If   a   cell   survives   

acute   saturation   of   activating   signals   in   one   branch   of   its   intracellular   signaling   network,   

it   may   adapt   to   the   signal   through   feedback   that   inherently   changes   the   topology   or   

dynamics   of   the   network   itself.   Because   these   adaptive   changes   of   cellular   signaling   

alter   cell   functionality   and   thus   cell   identity,   it   is   possible   trans-differentiation   is   a   

programmed   mechanism   to   change   the   dynamics   of   cellular   signaling   in   canonical,   

non-transformed   AT2   cells.     

This   is   conflicting   in   some   aspects.   One   of   the   major   purposes   of   the   optimized   

cellular   signaling   dynamics   of   AT2   cells   is   both   to   maintain   cellular   identity,   but   also   to   

provide   a   programmed   response   to   change   cellular   identity.   The   difference   between   the  

two   outcomes   is   a   function   of   stress   signals.   Under   a   highly   simplified   boolean   logic,   the   

absence   of   a   trans-differentiation   stress   signal   could   result   in   maintenance   of   AT2   cell   

identity,   whereas   the   presence   of   this   signal   results   in   trans-differentiation.   Inherent   to   

this   theory   is   the   ability   to   sense   this   stress   signal,   and   that   this   sensing   mechanism   has   

the   capacity   to   change   cellular   signaling   dynamics   as   well   as   transcriptional   and   

epigenomic   state.     

It   is   well   established   that   AT2   cells   and   AT1   cells   have   distinct   transcriptional   

profiles    (Travaglini   et   al.   2020) ,   which   almost   certainly   confer   different   topologies   or   

architectures   of   cellular   signaling   networks.   In   line   with   this   logic,   epigenetic   changes   

are   also   likely   to   mediate   changes   in   these   topologies.   In   contrast   to   the   AT2   and   AT1   

states   observed   in   KP   lung   tumor   evolution,   an   important   distinction   about   stress   

responses   that   induce   differentiation   of   AT2   cells   is   that   cell   state   changes   occur   
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independently   of   mutational   changes   in   signaling   components.   The   intrinsic   biochemical   

nature   of   signaling   components   remains   unchanged.   As   such,   introducing   a   mutation   in   

KRAS   and   thereby   increasing   its   signaling   output   may   exploit   endogenous   and   

programmed   responses   to   stress   signals   that   would   normally   cause   cells   to   differentiate   

into   AT1   cells.   In   the   context   of   transformation,   this   may   initiate   destabilization   of   cell  

state.     

When   oncogenic   KRAS   is   introduced   into   AT2   cells,   the   initial   events   that   follow   

induction   of   oncogenic   KRAS   must   operate   within   the   constraints   of   the   signaling   

network   that   underlies   AT2   cell   identity.   Introduction   of   oncogenic   Kras   inherently   

changes   the   cellular   signaling   network   architecture,   but   only   downstream   of   Kras.   Thus,   

the   “channel   capacity”   for   downstream   signaling   effector   networks   are   unchanged   and   

operate   under   their   normal   endogenous   constraints.   This   implies   2   possible   modes   of   

responses   to   oncogenic   Kras   signaling,   which   are   not   mutually   exclusive:   it   can   be   

interpreted   as   a   stress   signal   to   differentiate   into   AT1   cells,   or,   it   can   cause   endogenous   

feedback   systems   to   respond   to   changes   in   KRAS   signaling   by   activating   a   “kill   switch”.   

If   such   a   kill-switch   response   occurred   invariably,   introduction   of   oncogenic   KRAS,   even   

with   simultaneous   loss   of   P53,   would   invariably   lead   to   cell   death.   Thus,   the   response   to   

oncogenic   KRAS   is   not   unilateral,   despite   the   fact   that   the   oncogenic   signals   it   provides   

are   constant   and   inherent   to   the   gain-of-function   G12D   mutation.   This   may,   in   fact,   

create   selective   pressures   that   drive   dysregulation   of   cell   identity   in   KP   lung   tumor   

evolution:   trans-differentiate,   or   die.     

Etv4    expression   is   induced   at   early   stages   of   tumor   initiation,   although   at   a   low   

level    (Mainardi   2013) .   Although    Etv4    appears   to   be   expressed   relatively   late   in   tumor   
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progression   and   is   not   expressed   in   the   normal   lung,   discussed   in   Chapter   2   and   in   

(Mainardi   2013) ,   cells   which   have   lost    Etv4    appear   to   be   selected   against.   Similarly,   

Etv5    is   also   required   for   Kras   tumor   initiation   in   the   lung    (Z.   Zhang   et   al.   2017) ,   but   is   

expressed   in   untransformed   AT2   cells   and   has   patterns   of   gene   expression   changes   

during   tumor   evolution   that   are   distinct   from   those   of    Etv4 .   The   Pea3   transcription   factor   

subfamily   is   particularly   important   for   processes   important   for   lung   development   and   cell   

identity,   and   are   also   effectors   of   MAPK   signaling    (O’Hagan   and   Hassell   1998;   

“ATXN1L,   CIC,   and   ETS   Transcription   Factors   Modulate   Sensitivity   to   MAPK   Pathway   

Inhibition”   2017) .   Importantly,   the   ETS   transcription   factors   coordinate   with   multiple   

other   transcription   factors   and   are   known   to   influence   cell   identity    (Marra   and   Wingert   

2016;   “A   Systematic   Approach   to   Identify   Candidate   Transcription   Factors   That   Control   

Cell   Identity”   2015) .   Given   the   demonstrated   importance   of   the   Pea3   transcription   

factors   in   KP   lung   tumor   evolution,   it   is   possible   these   transcription   factors   mediate   cell   

identity   changes.   However,   further   characterization   is   required   to   better   understand   the   

relationships   between   the   ETS   transcription   factors   in   KP   lung   tumor   progression.     

Refining   models   of   the   functional   differentiation   of   tumor-specific   CD8   T   Cells   

The   primary   conclusion   from   the   study   discussed   in   Chapter   3   is   that   the   

response   a   CD8   T   cell   has   to   an   antigen   is   more   heterogeneous   than   previously   

thought.   In   fact,   the   influence   of   antigen   dominance   hierarchies   represent   conclusive   

evidence   that   the   functional   behavior   and   differentiation   of   CD8   T-cells   is   partially   

determined   by   the   dynamics   of   the   overall   anti-tumor   response   and   are   not   unilaterally   

determined   by   the   peptide   sequence   of   an   epitope   or   the   neoantigen   itself.   This   agrees   

with   the   discovery   that   exogenous   antigen   specific   CD8   T-cells   have   productive   immune   
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responses   to   antigens   that   endogenous   CD8   T-cells   do   not   respond   to    (Strønen   et   al.   

2016) .     

One   of   the   ways   this   multi-faceted   behavior   of   the   immune   response   manifests   

biologically   is   through   subtle,   but   functionally   important,   transcriptional   changes   that   in   

turn   affect   the   functionality   of   cytotoxic   T-cells.   For   example,   T-cells   specific   to   the   

subdominant   SIY   antigen   have   very   similar   transcriptional   profiles   to   that   of   cells   

specific   to   the   dominant   SIIN   antigen.   Functional   differentiation   trajectories   appear   to   be   

somewhat   stochastic,   but   overall,   SIIN   specific   cells   appear   to   be   poised   to   differentiate   

into   states   that   appear   more   dysfunctional,   whereas   SIY   specific   cells   are   poised   to   

remain   in   a   slightly   less   differentiated   state   that   ultimately   affects   their   cytotoxic   

functions.   Burger   et.   al.   later   went   on   to   show   that   these   phenotypes   are   not   observed   

when   antigens   are   expressed   alone.     

Many   immunology   studies   are   being   conducted   with   intent   to   better   characterize   

properties   of   neoantigens   that   are   capable   of   stimulating   a   productive   anti-tumor  

immune   response.   However,   the   study   presented   in   Chapter   3   provides   clear   evidence   

that   response   to   neoantigens   is   meaningfully   impacted   by   other   neoantigen   responses   

in   anti-tumor   responses.   In   light   of   the   complexity   of   the   CD8   T   cell   response   alone,   

when   the   influence   of   other   tumor-related   lymphocytes   are   considered,   the   

tumor-immune   interaction   dynamics   becomes   extraordinarily   complex.   Research   in   

immunology   has   been   conducted   at   single-cell   resolution   for   many   years   via   flow   

cytometry,   and   it   has   long   been   appreciated   that   responses   are   both   complex   and   

heterogeneous.   Through   many   years   of   characterizing   and   refining   these   

heterogeneous   responses,   enough   of   a   biological   framework   was   provided   to   
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meaningfully   interpret   the   transcriptional   states   of   CD8   tumor   cells   in   Chapter   3.   As   

sources   of   heterogeneity   that   drive   diversity   of   immune   responses   become   better   

understood,   this   will   create   opportunities   for   applications   of   systems   biology   that   can   be   

used   to   create   highly   informed   and   robust   models   of   immune   responses   in   cancer.   

Ultimately,   this   can   be   incorporated   with   models   of   tumor   evolution   to   better   understand   

the   interplay   of   the   immune   system   and   tumor   progression.     

Conclusions   

The   tumor   microenvironment   consists   of   multiple   systems   that   interact   in   a   

dynamic   manner   and   ultimately   determine   how   tumors   evolve   over   time.   Approaches   in   

biological   research   are   largely   reductionist   in   nature,   and   have   been   useful   in   studies   

that   have   allowed   generalizations   about   how   a   gene   acts   in   multiple   biological   contexts.   

However,   this   kind   of   approach   has   inherently   created   limitations   in   the   kinds   of   

discoveries   that   can   be   made   in   these   studies.   A   notable   historical   example   of   these   

limitations   comes   from   efforts   to   characterize   and   understand   cancer   as   a   singular   

disease.   Intuitively,   this   made   sense,   as   many   hallmarks   of   cancer   are   observed   across   

cancers   that   arise   from   different   tissues    (Hanahan   and   Weinberg   2011) .   Today,   and   over   

the   last   few   decades,   it   is   widely   appreciated   that   cancer   is   a   collection   of   diseases   

which   manifest   and   progress   in   a   tissue   specific   manner.   Still,   for   many   years,   repeated   

attempts   were   made   to   discover   “pan-cancer”   driver   genes,   despite   the   fact   that   there   is   

compelling   evidence   for   tissue   specific   behavior   even   amongst   the   most   widespread   

oncogenically   implicated   genes.   Many   oncogenic   signaling   pathways   are   ubiquitous   

across   tissues   of   an   organism,   and   yet   little   efforts   are   made   to   understand   how   

  

https://paperpile.com/c/XSr7BR/VRKL


224   

context-specificity   is   achieved   in   these   systems   or   how   they   become   dysregulated   in   

cancer.   These   specificities   are   largely   ignored   in   cancer   research.     

With   the   resolution   afforded   by   single-cell   technologies,   and   as   biological   

research   is   conducted   at   increasingly   higher   resolution,   many   studies   have   described   

variation   in   the   resulting   high-dimensional   data   that   have   made   it   difficult   to   make   

meaningful   biological   conclusions   from   it.   In   some   cases,   the   variation   captured   at   these  

resolutions   have   explained   conceptual   inconsistencies   between   conclusions   made   from   

bulk   profiling   studies   and   the   behavior   of   the   underlying   biological   system    (Li,   Amy,   and   

Ph.   D.   Massachusetts   Institute   of   Technology   2018) .   Single-cell   profiling   has   made   it   

abundantly   clear   that   biological   processes   are   extraordinarily   heterogeneous   at   the   

single-cell   level,   even   in   homeostatic   processes.   For   this   reason,   it   has   been   particularly   

difficult   to   use   these   data   to   predict   the   functionality   of   cell   states   captured   in   single-cell   

studies.   Additionally,   in   many   single-cell   studies   of   tumor   cells   (including   those   

presented   in   this   thesis),   the   conclusions   made   from   empirical   data   largely   challenge   

existing   models   of   tumor   evolution   and   heterogeneity.   

Models   of   computational   biology   are   frequently   disregarded   by   experimental   

biologists   because   they   often   require   assumptions   that   are   incompatible   with   

experimental   systems.   As   biological   research   generates   increasingly   more   data   on   

biological   processes,   the   field   will,   by   necessity,   become   increasingly   more   dependent   

on   bioinformatic   and   computational   interpretation   of   these   data.   Integration   of   

descriptive   approaches   utilized   by   experimental   biologists   and   explicit   definition   of   

“ground   truths”   is   one   way   that   experimentalists   can   reduce   assumptions   required   for   

computational   modeling   of   biological   processes.   In   turn,   this   will   also   require   scientists   
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responsible   for   interpretation   of   the   data   to   define   and   continuously   challenge   

assumptions   they   make   about   the   biology   of   the   system   they   are   studying.   This   is   

extremely   important   when   handling   high-dimensional   data,   as   the   mathematical   

transformations   required   to   approximate   trends   and   structures   of   high-dimensional   data   

can   impart   artifacts   that   can   lead   to   erroneous   interpretations.     

Importantly,   these   technologies   have   allowed   biologists   the   opportunity   to   make   

meaningful   connections   between   stochastic   behavior   of   biological   systems   and   

biological   processes.   Stochastic   processes   have   been   long   described   in   biology   in   

settings   where   biological   processes   can   be   measured   with   enough   resolution   to   observe   

stochastic   variation    (Toker,   Sommer,   and   D’Esposito   2020) .   Importantly,   the   behavior   of   

these   processes   are   macroscopically   deterministic.   Despite   the   fact   that   many   

single-cell   omic   datasets   have   been   published   to   date   that   profile   biological   processes   

with   similar   properties   to   those   that   are   chaotic,   very   few   interpretations   of   these   data   

attempt   to   define   the   properties   of   these   stochastic   processes.     

In   the   tumor   evolution   study   presented   in   this   thesis,   the   temporal   inter-tumoral   

and   intra-tumor   heterogeneity   of   the   KP   mouse   model,   which   manifests   through   

variation   in   both   cell   state   and   time,   have   permitted   relatively   comprehensive   

longitudinal   profiling   of   evolutionary   processes   in   primary   tumors.   These   analyses   are   

largely   contingent   on   the   assumption   that   the   composition   of   a   heterogeneous   tumor   

simultaneously   reflects   its   evolutionary   past   and   present.   Critically,   this   assumption   is   

supported   by   empirical   evidence   of   tumor   cell   states   generally   associated   with   early   

stages   of   tumor   progression   being   represented   in   the   most   aggressive   and   advanced   

tumors.   The   majority   of   the   cells   profiled   in   this   study   were   derived   from   a   limited   
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number   of   timepoints   that   are   weeks   apart;   the   comprehensive   sampling   of   this   

evolutionary   process   was   largely   an   unexpected   benefit   of   variation   in   the   model.   

Notably,   these   studies   are   conducted   with   syngeneic   mice   in   a   highly   controlled   

environment   and   utilize   experimentally   defined   mutations.   In   spite   of   this   controlled   

environment,   the   KP   lung   tumor   model   still   has   extensive,   but   reproducible   variation.   

With   this   same   reasoning,   it   may   be   possible   to   extend   the   assumption   that   

heterogeneous   cell   states   reflect   the   evolutionary   past   and   present   of   a   tumor   to   

biological   settings   in   which   longitudinal   sampling   is   impossible,   or   in   settings   with   

uncontrolled   environments   (e.g.   patient   derived   tumor   samples).     

To   better   understand   how   heterogeneous   evolutionary   behaviors   of   tumor   cells   

affect   other   cells   of   the   tumor   microenvironment,   the   dynamics   of   response   to   

tumor-specific   antigens   in   CD8   T   cells   was   profiled   in   the   KP   Lung   tumor   LucOS   model.   

Interestingly,   many   of   the   biological   conclusions   made   from   this   study,   which   is   

conducted   at   a   single   time   point   after   tumor   initiation,   agree   with   studies   that   

longitudinally   profiled   many   of   these   same   cells   across   a   series   of   timepoints    (Schenkel   

et   al.   2020) .   Arguably,   these   similarities   are   a   result   of   the   same   temporal   variation   in   

tumor   progression   and   evolution   that   permitted   comprehensive   longitudinal   profiling   of   

the   KP   tumor   cells   themselves.   If   this   is   true,   this   similarity   across   these   datasets   

provides   compelling   evidence   for   the   strength   of   relationships   between   tumor   cells   and   

the   other   biological   systems   they   interact   with,   in   this   case,   CD8   T-cells.     

The   tumor-specific   CD8   T-cell   compartment   represents   only   one   system   of   many   

in   the   tumor   microenvironment,   which   interacts   not   only   with   tumor   cells,   but   also   other   

cells   in   the   immune   system,   endothelial   cells,   and   fibroblasts.   Although   biological   
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systems,   especially   in   autochthonous   models   of   cancer,   are   often   studied   in   isolation,   

the   interactions   between   these   systems   are   always   present   and   introduce   additional   

layers   of   complexity   to   overt   biological   processes   such   as   tumor   evolution.   Interactions   

between   biological   systems   have   been   extensively   modeled   in   reductionist   and   highly   

experimental   biological   settings,   but   have   rarely   been   modeled   in   settings   such   as   

tumor   evolution   beyond   probabilistic   models   of   variant   allele   frequencies.   In   tumor   cells,   

the   topology   of   gene   regulatory   networks   evolve   over   time   and   limit   the   ability   to   model   

intracellular   biological   systems   of   tumor   cells.     

Stated   otherwise,   assuming   the   underlying   variation   observed   in   tumor   

progression   is   entirely   random   will   inherently   limit   discoveries   about   latent   influences   or   

dynamics   that   give   rise   to   heterogeneity   in   cell   state.   Identification   of   these   latent   

variables   is   impossible   if   studying   biological   processes   with   entirely   reductionist   

approaches.   The   conclusions   made   from   studies   in   this   thesis   largely   ignore   the   

influence   of   other   systems   and   simply   treat   the   observed   variation   as   biological   noise.   

However,   through   modeling   networked   interactions   both   inter-   and   intra-cellularly,   the   

underlying   dynamics   that   produce   noise   can   be   identified.   Critically,   these   identified   

dynamics   may   have   meaningful   influences   over   tumor   progression.     

The   other   biological   systems   that   influence   tumor   cells   and   CD8   T   cell   

phenotypic   trajectories   occur   within   individual   cells   and   are   defined   by   intracellular   

signaling,   genetic,   metabolic,   and   mechanical   networks.   The   existing   interpretations   are   

dependent   on   the   treatment   of   observed   cell   states   and   transcriptional   changes   as   a   

network,   but   do   not   explicitly   consider   constraints   of   gene   regulatory   (or   any   other)   

networks,   because   they   have   not   been   characterized   with   the   required   precision.   In   
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future   work,   introduction   of   genetic   perturbations   may   allow   estimation   of   these   network   

constraints   and   may   provide   more   robust   interpretations   or   conclusions.     

While   interactions   between   biological   systems   create   major   analytical   

complications   in   interpretation   of   biological   data,   there   are   many   existing   approaches   

which   make   sense   of   high-dimensional   data   in   non-biological   settings   that   are   also   

influenced   by   other   systems   that   cannot   be   controlled   for.   Moreover,   the   descriptive   and   

speculative   discussions   made   in   the   final   chapter   of   this   thesis   are   derived   from   insights   

made   from   mathematical   modeling   of   complex   data   across   many   different   fields,   

including   particle   physics,   astrophysics,   data   science,   machine   learning,   natural   

language   processing,   computer   vision,   quantum   and   statistical   mechanics,   

macroeconomics,   electrical   engineering,   and   meteorological   forecasting.   This   is   not   to   

say   that   the   phenomena   described   in   these   non-biological   settings   are   the   same   as   

those   in   biological   settings.   Instead,   I   assert   that   greater   importance   should   be   placed   

upon   quantitative   approaches   used   to   interpret   data   from   higher-order   systems   with   

stochastic   behavior,   which   in   turn,   may   provide   systems-level   insights   in   complex   

biological   settings   such   as   tumor   evolution.     
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