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ABSTRACT

In genetically engineered mouse models of lung adenocarcinoma (LUAD),
tumors become more heterogeneous and dysregulate cell identities as they progress
and evolve. In this thesis, single-cell RNA-sequencing technology was utilized to
understand dynamic changes that occur during tumor evolution both with respect to
tumor cells and tumor-specific cytotoxic CD8 T cells. In tumor cells, expression of Etv4
and Etv5, which belong to the Pea3 family of transcription factors, vary as a
consequence of tumor progression. Etv5 regulates the identity of the cells that give rise
to KP tumors, and its expression is lost as tumors evolve. Conversely, Etv4 is not
expressed in the adult lung, but becomes latently expressed in aggressive tumors.
Interestingly, we find that both Etv4 and Etv5 are required for lung tumor initiation. In
addition, we also profile CD8 T cells that specifically recognize experimentally defined
tumor neoantigens and provide evidence for an antigen dominance hierarchy that
creates competition between T cell responses to tumor neoantigens. Critically, we find
that this hierarchy influences the functionality of CD8 T cells and describe novel

differentiation trajectories that distinguish subdominant and dominant antigen



responses. Together, findings from these studies were used to propose analytical

methodologies to model tumor evolution.
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Discoveries about developmental and homeostatic biological processes have
been largely connected to advancements in cancer biology. The opportunity to compare
healthy and cancerous tissues provides an ideal experimental system to identify critical
regulatory processes that prevent or create oncogenic stress. However, identifying the
changes that drive transitions between cell states associated with early stages of
disease progression to those of late stages have been more difficult. Identifying these
changes requires a comparison amongst a continuum of heterogeneous cell states that
arise over an extended period of time. Additionally, differences in how cells of different
tissue types respond to intra- or extracellular changes further highlight the importance of
cell state on disease progression.

Dysregulation of cell identity and differentiation status has long been implicated
in cancer with respect to tumor cells, and manifests clearly in tumor histology. More
recently, processes that lead to differentiation and activation of infiltrating immune cells
have also been implicated in cancer progression. Still, it remains unclear how changes
of cell state occur and contribute to overall disease progression. Developmental and
homeostatic differentiation processes dictate the identity of a cell and can have a large
influence over how it responds to a change or stimulus. Cell state, which is defined by
the transcriptome, epigenome, proteome, and/or behavior of a cell, is a product of
global permutations of gene expression related to cell identity. Genes, transcription
factors, and signaling machinery are typically characterized in experimental systems
that isolate each component as distinct and separable entities. Large datasets produced
by improvements in biological profiling technologies have revealed intricate,

combinatorial, and context-specific regulation of signaling pathways, chromatin
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topology, and gene regulatory networks. Together, they orchestrate higher order
biological systems that control both the behavior and inputs of these systems to
generate a specific biological outcome. As a consequence, it is difficult to predict overt
biological behavior of a given cell state from its transcriptional profile alone.

Consequently, the objectives of my thesis research have been to 1) integrate
findings in developmental biology or non-malignant tissues to better understand the
genetics and context-specific nature of cell biology in cancer, and 2) determine how
these findings affect the hallmarks of cancer which characterize the biology and
progression of the disease. In particular, | have sought to understand how
transcriptional profiles associated with differentiation status of both tumor cells and
immune cells of the tumor microenvironment reflect dysregulated functionality over time
or in response to differentiation signals. Moreover, | have further compared
heterogeneous subpopulations of cells that result from differentiation or loss of cell
identity in the tumor microenvironment with cell states that arise in other biological
contexts, such as embryonic development or chronic viral infection. These findings have
led me to identify transcription factors that may be implicated in regulation of cell states
that ultimately influence and orchestrate the development of tumor heterogeneity.

To begin, | will give a historical context of fundamental discoveries made about
cancer biology and tumor immunology, which have largely occurred by challenging
assumptions made about the underlying nature of these diseases. | will then describe
how these discoveries have influenced experimental models and approaches of
research in tumor biology and immunology. In addition, | will give a background of the

behavior and characteristics of lung adenocarcinoma, the disease | have chosen to
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study. Finally, | will describe approaches taken to elucidate biologically informative
interpretations of high-dimensional data structures produced from high-throughput

sequencing technologies.

CHAPTER 1, PART 1

A History of Tumor Biology and Tumor Heterogeneity

The primary cause of cancer related mortality is complications that arise due to
metastatic disease (Gupta and Massagué 2006). Unfortunately, studies that aim to
understand tumors in the context of longitudinal disease progression are limited by
availability of patient samples. The majority of longitudinal patient biopsy samples are
taken before and after treatment (Rye et al. 2018; Chicard et al. 2018; Hata et al. 2016).
For patients who do not elect to undergo treatment, longitudinal patient biopsies are
rarely acquired due to lack of individual clinical benefit. As a consequence, our
understanding of tumor progression in the absence of therapeutic intervention in many
disease contexts is limited to experimental models of cancer and their associated
technical limitations.

Understanding cancer progression can provide opportunities to develop rationally
designed and biologically informed therapies. In most cases, patients with cancers that
are less progressed have better associated clinical outcomes (Knudsen et al. 2016; de
Koning et al. 2014; Humphrey et al. 2002). By identifying the mechanisms through
which cancer progression occurs, tumor behavior can be better predicted and can

preemptively inform cancer treatments.
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1. Properties of Tumor Heterogeneity

1.1 Classification of mutations that underlie cancer development

Some of the first recorded descriptions of cancer were written circa 1500 BC
(Breasted 1930). Many generations later, cancer was more comprehensively described
and categorized by Henri de Mondeville (Fell 1857). By that time, and in the many years
that followed, surgical excision of tumors became increasingly more recognized as an
effective form of cancer treatment. The associated procedures also became
increasingly more aggressive (Hildanus, n.d.).

For most of human history, the cause of cancer was largely unknown. In the 16th
century, associations were made between observations of cancer incidence and
exposure to industrial chemicals (Hajdu 2011). In some of the earliest reports of
hereditary cancer predisposition, the disease of cancer was mistakenly reported as
contagious (Lusitani, n.d.; Tulp 1716). Until James Nooth challenged this conclusion
and proved cancer is not a contagious disease in humans by injecting himself with
pieces of breast cancer (Hajdu 2012), cancer patients were treated the same as those
with infectious disease. Eventually, additional insight into the causes of cancer was
provided in the late 1800s, when an observation was made about the unusually high
prevalence of breast cancer in a woman’s family (Broca 1866). These observations and
discoveries laid the foundation for later studies of cancer development and progression.
Arguably, some of the most important findings from this early era of cancer research
made clarifications that led to better understandings of what causes cancer and how to

treat it.
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The modern era of cancer research largely began when a theory emerged that
proposed cancer was a result of mitogenic signals that can then cause chromosome
abnormalities (Boveri 1914). Many years later, this theory was inadvertently proven
when it was discovered that a tumor causing avian virus contained DNA that encoded a
mutant version of an endogenous avian gene (Stehelin et al. 1976). The unmutated,
endogenous gene was termed a “proto-oncogene”, and the mutant gene an “oncogene”,
defined its ability to transform a cell (Eva Y. H. P. Lee 2010). Thereafter, cancer became
appreciated as a disease which is caused by abnormal genetic sequences.

Later, oncogenes were discovered to be able to transform a cell even if wild-type
alleles are still expressed, and their behavior was described as genetically dominant.
Shortly thereafter, Rb1, named for its association with retinoblastomas, was discovered
and characterized (Knudson 1971). However, it was distinct from previously
characterized oncogenes because tumor formation required inactivating mutations of
both alleles of Rb (J. M. Dunn et al. 1988). Confusingly, point mutations in other genes
whose wild-type counterparts seemed to play tumor suppressive roles, in some cases,
were able to confer oncogenic phenotypes even when wild-type alleles were still
expressed in the cell (Willis et al. 2004). Later, these mutations were discovered to
produce protein products that act in dominant negative fashion. Genes that, when
deleted, cause formation of tumors and act to suppress proliferative processes were
then later termed “tumor suppressor” genes.

In the years that followed, many other genes went on to be classified as
oncogenes and tumor suppressor genes. Importantly, characterization of tumor

associated mutants compared to their wild-type counterparts led to advancements in
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our understanding of cell signaling machinery, DNA damage, apoptosis, and more
(Hirota 1998; A. J. Wong et al. 1992; Laken et al. 1997; Nigro et al. 1989). Many of
these studies were conducted in the context of development and other biological
settings (Luetteke et al. 1999; Lin, Skapek, and Lee 1996; L. Liu et al. 2002). Generally,
these studies showed that most mutations that underlie development of a tumor act by
disrupting regulatory processes in the cells that give rise to the tumor. Over time, it has
become clear that cancer progression is a manifestation of programs that result from
dysregulation.

Despite these discoveries, many genes, particularly those which control tissue
specific behavior, are poorly understood in development and in disease. Cancer
treatments that were discovered in the mid to late 1900s work by causing tissue
damage (Chabner and Roberts 2005). One of the most effective treatments, radiation
therapy, revolutionized cancer treatment and has become increasingly more effective at
tumor control and better tolerated by patients due to advancements in dosing regimen
and delivery (Yifan Wang et al. 2018). Similar to other treatments, radiation causes
tissue damage and DNA damage (Ward 1986). During this era, many drugs were
discovered on the basis of how they affect cancer cell growth, rather than targeting a
specific gene or process, and several of these are still utilized today. Early iterations of
these therapies were poorly tolerated in patients, and in some cases had side-effects
that made treatment more harmful than beneficial (Laviano and Fanelli 2012). Even
amongst patients who benefited from early therapies, as well as those who benefit from

modern versions of them, these drugs delayed, but did not cure, cancer (Hanahan
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2014). In patients who do respond to these therapies, a fraction of tumor cells almost
invariably become resistant to it.

Modern approaches to drug discovery in cancer research generally aim to create
targeted and less toxic treatments. Many drug discovery methodologies seek to disrupt
features of tumors that are either less important or do not affect normal tissue by
specifically targeting highly recurrent tumor-specific mutations (F. Cheng et al. 2019).
Improvements in our understanding of biology and the genes responsible for biological
processes can then be used to inform approaches to cancer therapy (F. Cheng et al.
2019). Furthermore, cancer treatment has moved away from heuristics that governed
earlier eras of cancer treatment, which promoted highly aggressive, invasive, and
damaging treatments. Today, data driven efforts have stratified patients into groups
based on clinical or epidemiological observations to identify patients that are most likely
to benefit from treatments. These remarkable efforts have informed treatment guidelines
for numerous kinds of cancers and treatments, including pharmacological, surgical, and
radiological treatments (Sparano et al. 2018; Stearns 2018; Hamdy et al. 2016; Temel et
al. 2010).

1.2 Implications of oncogenic mutations

Advancements in DNA sequencing have led to rapid molecular characterization
of tumors across many cancer types. These efforts have revolutionized cancer research
and treatment through identification of tumor-specific (and sometimes therapeutically
actionable) mutations (F. Cheng et al. 2019). Cancer driver genes promote tumor
progression by conferring evolutionarily advantageous phenotypes when mutated,

relative to other cells around it (Martinez-Jiménez et al. 2020). It has recently been
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appreciated that more tissue specific cancer driving genes exist than those that are
found across many different kinds of cancers (Martinez-Jiménez et al. 2020). While
cancers that arise from different tissue types have long been recognized as different
diseases (National Institutes of Health (US) and Biological Sciences Curriculum Study

2007), the tissue specific behavior of some oncogenic mutations is still not well

understood.
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Figure 1. Prevalence of recurrent oncogenic mutations across cancer types. Scatter
plot of cancer driver mutation prevalence within a given cancer type (y axis,
“Prevalence”) versus the number of cancer types a gene acts as a driver gene for (x
axis, “Number of driver tumor types”) (Left). Prevalence of cancer-specific highly
prevalent drivers and cancer-wide drivers are labeled in the scatter plot (left) with
specific breakdowns for each driver gene prevalence (y axis) in each cancer type (x

axis) (right). Derived from (Martinez-Jiménez et al. 2020).
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Many oncogenic signaling pathways are organized in a tissue specific manner
that is specialized for homeostatic processes of that tissue type (A. Sharma and Sen
2013; Feng et al. 2007; K. Luo 2017). With the exception of de-novo activity conferred
by rare gain-of-function mutations and translocation events, the majority of oncogenic
mutations affect signaling and transcriptional networks that govern homeostatic
processes in normal tissue (Martinez-Jiménez et al. 2020). As such, tissue specific
specialization of signaling and transcriptional networks may influence how tissue types
respond to oncogenic mutations. This idea is further supported by the frequency of
mutations of particular genes across cancers of certain tissue types (Figure 1), and is
most evident in phenotypes of hereditary oncogenic mutations that confer
predispositions to specific kinds of cancer (Schneider et al. 2017).

Some widespread cancer driver mutations may confer different phenotypes
across different types of tissues (Schneider et al. 2017; Garber and Offit 2005). Still, the
effects of any individual oncogenic driver mutation all share an ability to give rise to a
tumor in at least one tissue. Many of the phenotypes associated with cancer driver
mutations in cancer cells are described as hallmarks of cancer, which are repeatedly
observed across many different kinds of tumors (Hanahan and Weinberg 2011). Thus,
although most cancer driver mutations do exhibit tissue specificity (Martinez-Jiménez et
al. 2020), their associated phenotypes do share similarities that are frequently observed
in many kinds of cancers (Hanahan and Weinberg 2011). Still, the mechanism by which
cancer driver genes produce these phenotypes (Hanahan and Weinberg 2011) may be

different.
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Despite recognized and central regulatory roles in cell proliferation, some
widespread cancer drivers, such as TP53 and RB, are thought to act in pathways with
many functionally redundant regulators (Lipinski and Jacks 1999; Hanahan and
Weinberg 2011; Ghebranious and Donehower 1998). Many of these genes drive several
cancer types and are recognized as ubiquitous regulators of system stability and
regulatory processes (Martinez-Jiménez et al. 2020), particularly those involved in
proliferation. This finding is not surprising given that the defining feature of cancer is
uncontrolled cell division (Weinberg 2013). However, these genes still have some
degree of cancer type specificity (Martinez-Jiménez et al. 2020) (Figure 1). The roles of
these genes in tissue homeostasis, which is defined as biological systems designed to
respond to signals and maintain normal state of the tissue (Cannon 1929), and
development is extremely important. In many cases, other genes in prevalent driver
gene pathways or regulatory circuits can act in a functionally redundant manner
(Schmale and Bamberger 1997; Van Nostrand et al. 2017). In these circumstances,
functional redundancy must be overcome in order for the phenotypic effects of these
mutations to manifest in cancer cells. Even the most widespread cancer driving
mutations exhibit some degree of tissue specificity, suggesting that proliferation, or any
processes implicated in widely shared hallmarks of cancer are at least partially
regulated in a tissue specific manner (Castellano and Santos 2011). If functional
redundancy of key regulatory genes is achieved through tissue specific gene
expression, the mechanisms by which this redundancy is overcome in cancer cells may

also be tissue specific. As such, some tissues may be more sensitive to a particular
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oncogenic driver mutation than another, and could explain the prevalence of oncogenic
driver genes across cancer types.

Components of oncogenic signalling networks are expressed broadly across
tissue types. In most cases, there is very little understanding of how these networks are
specialized for certain tissue types and it is not understood why certain mutations are
able to transform some tissues but not others. It is possible that further characterization
of cancer-specific driver genes may lead to further insight into the specialization of
tissue specific gene expression and signaling networks. For more prevalent driver
genes, a better understanding of tissue specific regulatory architecture and topology
may also lead to insights of tissue specific functional redundancy.

One of the shared features of cancer driver genes commonly found across
cancers of many tissue types is their involvement in processes that stabilize some
aspect of a cell. As an example, P53 and DNA repair machinery confer genomic stability
(Agarwal et al. 1998). In any case, dysregulation of these homeostatic processes
creates opportunities for cancer cells to acquire new mutations or modify gene
expression which can be advantageous to the cell or tumor by diversifying responses to
selection pressures. Importantly, this can facilitate adaptation to changes in the
environment of the tumor.

1.3 The Dynamic Tumor Microenvironment

For many cancer types, a tumor mass consists of tumor cells and a wide variety
of other cell types (Whiteside 2008; M.-Z. Jin and Jin 2020). These include fibroblasts,
blood vessels, nerves, and immune infiltrating cells (M.-Z. Jin and Jin 2020). Jointly,

cells of the tumor microenvironment create chemical microenvironments that can impart
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selective pressures on tumor cells and otherwise influence the behavior of other,
non-cancerous adjacent cells. Additional biophysical or mechanical features of the
microenvironment that are dictated by the organs where a tumor develops can also
influence cells of the tumor microenvironment (X. Li and Wang 2020).

Tissue microenvironments are formed by an array of diverse cell types. As
tumors grow and progress, the tumor microenvironment changes as a consequence of
changes in physical properties, nutrient availability, metabolites, oxygenation, pH, etc.
(M.-Z. Jin and Jin 2020). Many of these are a result of having an imbalance of cells
proliferating or obstructing tissue structures, or tumor-mediated dysregulation of
untransformed cells (Sugimoto et al. 2006; F. R. Balkwill, Capasso, and Hagemann
2012). In any case, as tumors grow the tissue they arise in is progressively pushed to a
state of disequilibrium.

The tumor microenvironment, defined as the environment where tumors form and
develop, exposes tumor cells to interactions with many different kinds of cells that
constitute homeostatic regulatory systems. Importantly, this environment is thought to
impart strong enough selective pressures on tumor cells that continually lead to
selection of tumor cells which can exploit non-cancer cells of the tumor
microenvironment for tumor-promoting functions (Baghban et al. 2020). Intercellular
communication between tumor cells and cells of the tumor microenvironment is
mediated through secretion of molecules which affect survival, inflammation, matrix
remodeling, growth, and more (Baghban et al. 2020). Consequently, it is important to
understand how cells of the tumor microenvironment respond to changes that result

from tumor development and progression.
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Many of the regulatory systems implicated in cancer conventionally act in
tumor-suppressive ways, including as a surveillance mechanism for aberrant cells
(Swann and Smyth 2007). As such, it is fascinating that tumor cells adapt to the effects
of these systems in a manner that not only allows tumor cells to evade detection by
these regulatory systems, but also exploit them (Hanahan and Weinberg 2011). The
contrast between overt regulatory responses that are canonically anti-tumor with those
that are tumor-promoting suggests that tumor progression requires changes in dynamic
interactions to redefine their functional relationships. Thus, the tumor microenvironment
has a strong influence over how a tumor progresses; iterative changes in the interaction
between tumor cells and cells of the microenvironment likely govern tumor evolutionary
processes (Lorusso and Riegg 2008). Importantly, this creates the need to characterize
cells of the tumor microenvironment in a longitudinal fashion, or in the context of tumor
progression. Conversely, tumor cells should be characterized in the context of the
changing tumor microenvironment when studying tumor progression.

1.4 Perspectives of Tumor Heterogeneity

Over the course of tumor progression, changes in the tumor microenvironment
impart dynamically changing selective pressures on tumor cells. As such, mutations or
changes in gene expression which can lead to further destabilization of the cell promote
plasticity of cancer cell states; tumor cells with destabilized states may have better
evolutionary fitness than those which do not (Hanahan and Weinberg 2011; Nemanja D.
Marjanovic, Weinberg, and Chaffer 2013). Over time, this may lead to cells with
dysregulated or destabilized states outcompeting those which are more stable. Because

the tumor microenvironment is not uniform, the tumor cells which are favored in one part
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of the microenvironment may not be favored in others. Additionally, this phenotypic
diversification can lead to co-evolution of tumor clones which play functionally distinct
roles in tumors (Tabassum and Polyak 2015). Globally, this leads to evolution of
heterogeneous tumors and provides a possible explanation for variation in tumor
therapeutic responses. In order for a productive therapeutic response, cancer therapies
must simultaneously target multitudes of functionally distinct populations in a
heterogeneous tumor. Overall, selective pressures and dysregulation of cell state
together orchestrate changes which underlie tumor heterogeneity, evolution, and
progression.

Histological heterogeneity in tumors has been observed for many years
(Hanahan and Weinberg 2011) and is generally described as a feature of tumors that is
dependent on time or tumor progression (Janiszewska 2020). Functionally, clonal
subpopulations of heterogeneous tumors were known to have different characteristics
before mutational heterogeneity was widely described (Heppner and Miller 1983).
Tumor heterogeneity has been most heavily implicated in and studied in the context of
therapeutic resistance (Dagogo-Jack and Shaw 2018) because tumor heterogeneity is
intricately related to tumor cell plasticity and adaptation to selective pressures of
therapeutic treatment. In the absence of therapeutic intervention, selective pressures
from the tumor microenvironment, from other subclonal tumor cell populations, or from
other sources, act dynamically. Thus, tumor heterogeneity has an extensive relationship
with tumor progression. As such, understanding the processes by which tumors become

heterogeneous is crucial to understanding how tumors progress.
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1.4.1 Mutational Intra-Tumoral Heterogeneity

Loss of genome stability is one of the most widely recognized mechanisms by
which tumors acquire heterogeneous mutations. It has multiple causes; however,
irrespective of how genomic instability occurs, it produces a positive effect on the overall
fitness of the tumor (Dagogo-Jack and Shaw 2018), within a certain limit. Several
people have proposed that in certain contexts, genomic instability is required for tumor
formation (Negrini, Gorgoulis, and Halazonetis 2010). In models for many kinds of
cancer, tumor formation is thought to require a sequential series of defined mutations
(Martincorena and Campbell 2015) that arise across many cell divisions and is a
process by which intra-tumor heterogeneity inherently becomes created (P. C. Nowell
1976).

Because mutations are heritable, when a mutation arises in an evolutionary
branch during tumor progression, it creates a clone. Clonal evolution in cancer is largely
believed to occur through the Nowell model of tumor progression, in which sequential
mutations create complex branched mutational trajectories (Greaves and Maley 2012)
that are driven by selective pressures (Figure 2). Through studies of clonal mutations in
cancer with whole exome sequencing and next generation DNA sequencing, in contexts
where strong selective pressures exist, this model for subclonal selection has been
supported (A. W. Zhang et al. 2018; Janiszewska et al. 2015). In some specific cancers,
tumor progression has been defined by sequential acquisition of mutations which drive
cancer (Martincorena and Campbell 2015). However, in reality, not all mutations confer
an effect on the evolutionary fitness of a cell, but still arise in a clonal manner alongside

mutations which do affect cell fitness. These mutations which do not affect cell fithess
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are classified as passenger mutations (McFarland et al. 2017). In models of neutral
evolution, after acquiring the mutations required for transformation, subclone evolution
occurs through acquisition of passenger mutations (M. J. Williams et al. 2016), and the
observed allelic frequencies of mutations which define subclones are driven by
probability and exponential growth. In this neutral evolution model, these subclones do
not evolve through selection. Notably, this model assumes there are no strong selective

pressures which drive evolution during timescales in which neutral growth dynamics are

observed.

Figure 2. Clonal evolutionary tree of tumor cells. Adapted from (P. C. Nowell 1976).
Tumor subclones are denoted as T1-T6. Cells in light grey depict subclones which

undergo negative selection.
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For many years, it was difficult to distinguish mutations in cancer driver genes
from passenger mutations. While these efforts are largely ongoing, advancements in
DNA sequencing technologies have afforded greater resolution of mutational patterns
and their temporal dynamics in tumors (Goodwin, McPherson, and McCombie 2016).
Clonal outgrowth of tumor cells which acquire mutations in cancer driving genes gives
cells a selective advantage relative to those without these mutations (Martinez-Jiménez
et al. 2020). Modern approaches to molecular profiling of mutations in tumors utilize the
prevalence of a given mutation in clonal expansion of a tumor or its prevalence across
patients to identify these cancer driving genes. Thereafter, the frequency at which these
candidate driver genes are observed are compared to those expected for passenger
and driver mutations in computational models of clonal evolutionary dynamics (Foo et
al. 2015). In combination with these models, data derived from other sources (e.g.
across multiple patients with the same cancer type) help to prioritize mutations in
putative driver genes that are highly recurrent across patients and those known to play
functionally important roles in cancer progression (Raphael et al. 2014). Today, many
genetic mutations observed in cancer have been classified in a systematic manner.

The assumptions that underlie many models of tumor evolution limit their utility in
describing generalized processes of tumor evolution, because tumors can evolve
through a variety of mechanisms that are not mutually exclusive (Martincorena and
Campbell 2015). In addition, the effect of selective pressures on tumor cells may not be
constant throughout the course of tumor evolution. It is possible tumor cells evolve as
an adaptation to selective pressures; in the absence of additional selective pressures,

subclones may reach a point of equilibrium in which neutral evolution accurately models
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tumor progression (M. J. Williams et al. 2016). However, additional selective pressures
develop in response to therapy, in response to changes in the microenvironment that
result from expansion of the tumor or disruption of its surrounding tissue, in response to
the influence of latent variables that are unknown, or in response to the effects of
spontaneously arising mutations which alter the fithess landscape of tumor cells. As
such, when additional selective pressures are imposed upon tumors after a period of
neutral growth, tumor evolution may instead follow the Nowell model until the tumor has
adapted. Still, these models of tumor evolution have been essential in current
understandings of tumor dynamics, heterogeneity, and evolution.
1.4.2 Functional Tumor Heterogeneity

Additional models of tumor evolution have more recently emerged that are
formed on the basis that tumor subclones may have variable functional and phenotypic
plasticity. The cancer stem cell model proposes that cancer stem cells are a functionally
plastic group of cells within a tumor that produce and differentiate into populations that
form subclones of the tumor (Clevers 2011). With respect to mutational status, under
this model, mutations which define a subclone are generated in and from parental
cancer stem cells (Greaves and Maley 2012). This model has been particularly
influential in studying resistance to therapy (N. Y. Frank, Schatton, and Frank 2010;
Ishikawa et al. 2007). In some cases, cancer stem cells have been implicated as a
source of genetic diversity in a tumor (Greaves 2010) that can underlie therapeutic
resistance (J.-K. Kim, Jeon, and Kim 2015). Cancer stem cells are defined by their
functional plasticity, which can be a consequence of genomic instability, but can also

arise through changes in gene expression that are not driven by mutations (Kreso and
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Dick 2014). In fact, not all histological heterogeneity can be explained by heterogeneity
in genetic mutations (Hlubek et al. 2007; Stanta and Bonin 2018).

Irrespective of mutation status, under the cancer stem cell model, a cancer stem
cell has the capacity to give rise to functionally distinct subclones, each of which can
promote, facilitate, and/or drive tumor progression (Shackleton et al. 2009). Classically,
a single cancer stem cell must also be able to give rise to all of the cell types that are
observed in a heterogeneous tumor (Shackleton et al. 2009). From mutational status
alone, it is difficult to distinguish cancer stem cell driven tumor heterogeneity from
subclonal selection without empirical knowledge of the functional plasticity of parental
subclones. For this reason, the cancer stem cell model is largely ignored in studies of
intra-tumoral mutational heterogeneity. Instead, gene expression of tumor
subpopulations have been used to further interrogate the cancer stem cell model of
tumor evolution.

In cancers such as leukemia, this model was largely supported when it was
found that only a small subpopulation of tumor cells, cancer stem cells, had the capacity
to form new tumors (Bonnet and Dick 1997). Cancer stem cells have been extensively
implicated in disease recurrence (J.-K. Kim, Jeon, and Kim 2015) and putative cancer
stem cells in some contexts have exhibited gene expression profiles which promote

resistance to chemotherapy and radiation (J.-K. Kim, Jeon, and Kim 2015).
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Figure 3. Adapted from (Bonnet and Dick 1997; A. Singh and Settleman 2010).

Non-malignant stem cells (green) that can give rise to differentiated cells (orange)
undergo transformation to become a cancer stem cell (CSC, red). Cancer stem cells
can reversibly give rise to multiple cell types of a tumor (shades of grey).

Measuring gene expression in individual tumor cells is a widely accepted
approach for studying tumor heterogeneity (M. Li et al. 2020) and is one of the most
prevalent ways in which functional heterogeneity in tumors has been described. The
revolutionary discovery that cancer cells can latently reactivate an embryonic
developmental program, the epithelial-to-mesenchymal transition (EMT), generated
strong support for the cancer stem cell hypothesis (Mani et al. 2008). This program was
canonically described during formation of the primitive streak in chick embryos, a
process that is important for embryonic gastrulation (Hay 1995). Cells which have
undergone EMT during development have the ability to differentiate into many cell
types. Importantly, these cells are known to have better migratory potential as a
consequence of change in polarization and subsequently in overall morphology (A.

Singh and Settleman 2010).


https://paperpile.com/c/XSr7BR/aqIDN+KEYtL
https://paperpile.com/c/XSr7BR/s9Kl8
https://paperpile.com/c/XSr7BR/5bBPX
https://paperpile.com/c/XSr7BR/lUwMj
https://paperpile.com/c/XSr7BR/KEYtL
https://paperpile.com/c/XSr7BR/KEYtL

41

Across many tumor types, particularly those which arise in the breast and
nervous system, there is extensive evidence for the existence of cancer stem cells and
the importance of their roles in tumor progression (Bjerkvig et al. 2005). Amongst these
kinds of tumors, questions still remain about the origin of cancer stem cells. Many
tumors are thought to arise from tissues that are terminally differentiated (Sell 2010).
Widely accepted models of cell differentiation in development postulate that cells which
are more differentiated have less potential to give rise to different cell types than those
which are less differentiated. This forms the basis for the Waddington model of cell
differentiation (J. Wang et al. 2011). As such, the notion that a multipotent stem cell
could evolve from a terminally differentiated somatic cell challenged the Waddington
model. With the discovery that terminally differentiated somatic cells can be artificially
reprogrammed into pluripotent stem cells (Kyttala et al. 2016), it became more widely
appreciated that it is possible for terminally differentiated cells to become
reprogrammed and afforded greater plausibility to the cancer stem cell model.

While this model has been extremely useful in understanding the progression of
several cancer types, it is considered controversial. Many criticisms of the cancer stem
cell model are based upon the expected prevalence of stem cells in a tumor, and in
most studies, is reported to be a rare subpopulation of a tumor (Shackleton et al. 2009).
If cancer stem cells are the only populations within a tumor that are able to proliferate,
then observed tumor growth kinetics are inconsistent with the cancer stem cell model
(Shackleton et al. 2009). At the same time, cases of resistance to cancer therapy have

provided strong supporting evidence for the model. Frequently, a less controversial


https://paperpile.com/c/XSr7BR/lGEOl
https://paperpile.com/c/XSr7BR/yP09
https://paperpile.com/c/XSr7BR/0AHWo
https://paperpile.com/c/XSr7BR/h8PRi
https://paperpile.com/c/XSr7BR/2teR7
https://paperpile.com/c/XSr7BR/2teR7

42

stance is taken to the cancer stem cell model and it is often reported to be well
supported in some cancer types, but not others (Shackleton et al. 2009).

In any case, studies concerning stem cells in cancer created extensive
discussion about the differentiation state of cancer cells, with particular importance on
the developmental history of a cell. Striking evidence arose implicating transcription
factors known to play essential roles during embryonic development, even outside of
the context of the EMT, in cancer progression (Mani et al. 2008). Later studies that drew
associations between gene expression programs and tumor progression status,
particularly the capacity to seed metastases, further characterized how differentiation
status in solid tumors becomes dysregulated in tumor evolution (Winslow et al. 2011). In
many cases, cells not only progressively lose their original identities, but also
simultaneously adopt hallmarks of different tissues (Snyder et al. 2013). Because cell
differentiation is thought to be driven by progressive epigenetic modification, profiling
chromatin accessibility in cancer cells has more recently become a focal point of cancer
research.

1.4.3 Tumor Heterogeneity and Metastasis

Metastasis is the primary cause of complications which lead to death in cancer
patients (Christofori 2006). The end-state of cancer progression has conventionally
been distant metastatic spread; when cancer has progressed to this point, therapeutic
intervention is generally considered non-curative (Croker and Allan 2008; L. Dong et al.
2019; Révész et al. 2017). Tumor heterogeneity is a likely mechanism through which
cancer cells metastasize because it generates a diverse array of tumor subclones with

varying functions, phenotypes, and capabilities. Some fraction of these subclones either
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may promote metastasis or may themselves be capable of metastatic spread (Révész
et al. 2017).

A widely accepted model of metastatic spread in cancer is frequently referred to
as the Metastatic Cascade (Hapach et al. 2019). In this model (J. Yang et al. 2004)
(Figure 4), epithelial lesions (carcinomas) develop at the primary site and then begin to
disrupt the tissue. Invasive lesions arise by invading through the basement membrane,
which defines the boundaries of epithelial tissues, in a process known as cell migration.
Thereafter, these lesions become invasive carcinomas and are considered to be
malignant. Malignant cells can continue to expand and proliferate in the primary site,
and can also eventually intravasate into the surrounding vasculature and lymphatic
vessels, after which they become circulating tumor cells. This process is thought to
occur through multiple mechanisms; the first of which involves invasion and circulation
of an individual cell. The second model for this process involves multiple cells that
facilitate different processes associated with intravasation and the remaining steps of
the metastatic cascade, and is termed collective cell migration (Yang Yang et al. 2019).
After gaining access to the bloodstream, if these circulating tumor cells survive, some
fraction of them will extravasate from the circulatory or lymphatic system and infiltrate
organs that can be close to the primary site (local metastasis) or far away (distant
metastasis). In the final step of the metastatic process, some of these infiltrating cells

colonize these sites,resulting in micro-, and eventually, macro-metastases.
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Figure 4. The Metastatic Cascade. Adopted from (J. Yang et al. 2004).

The functional requirements for completion of the metastatic cascade are
numerous, and as a consequence, metastasis is believed to be an inherently inefficient
process (Hapach et al. 2019). These inefficiencies are compounded by diverse selective
pressures that act upon cancer cells in the different environments associated with the
metastatic cascade, particularly in the circulatory system, where cells are exposed to
circulating lymphocytes. A number of mechanisms have been proposed to address how
circulating tumor cells survive these selective pressures (Q. Liu, Liao, and Zhao 2016;
Raimondi et al. 2017; Lo et al. 2020). In general, circulating tumor cells are thought to
be short lived (Krog and Henry 2018) and must overcome selective pressures in short
time scales. Consequently, negative selection during cancer cell dissemination is
thought to create a strong bottle-neck and very few cells are thought to survive this
process. Furthermore, additional selective pressures in the tissues that circulating tumor
cells eventually infiltrate cause an additional bottleneck in metastasis (Massagué and
Obenauf 2016). Many cells which reach distant organs may lie dormant for many years,

not actively proliferating (Massagué and Obenauf 2016). In some cases, these
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infiltrating tumor cells are unable to seed a macro-metastatic lesion (Massagué and
Obenauf 2016).

Ultimately, tumor heterogeneity is implicated in metastasis because it generates
phenotypic diversity which can allow cancer cells to overcome selective pressures of
the metastatic cascade. Although inefficient, cells disseminate from the primary tumor
frequently (Celia-Terrassa and Kang 2016). The rate at which these cells survive and
complete the metastatic cascade may be low, but over time, the low probabilities of
survival are effectively cumulative (Szczurek et al. 2020). The statistical likelihood that
an individual cancer cell can generate distant or local metastasis is low, but with respect
to overt disease progression, the likelihood that a disseminating tumor cell will
successfully seed a metastatic lesion effectively increases as more cells migrate away
from the primary tumor over time (Szczurek et al. 2020). In addition, changes in the
composition of the primary tumor, which are also largely dependent on time, can
increase the likelihood of metastasis by creating a microenvironment that generates
tumor subclones which can overcome selective pressures of metastasis (Szczurek et al.
2020).

The majority of the work presented throughout this thesis is primarily concerned
with time-dependent changes in the primary tumor, as these changes are major
determinants of productive metastasis. Importantly, understanding dynamic changes of
primary tumors can still lead to meaningful insight on metastatic processes. Some
studies conducted on primary tumors have proposed that certain cancer cells may
become poised to metastasize to particular regions of the body while still located in the

primary tumor, which is often described as formation of a pre-metastatic niche (Peinado
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et al. 2017). While this body of work focuses on the primary tumor, it is important to note
that later steps of the metastatic cascade are equally important in driving overall
disease progression.

1.5 Emerging Evidence for the Role of the Epigenome in Tumor Heterogeneity

Gene expression is a product of chemical modifications of the genome that
control accessibility of DNA without changing its sequences, termed epigenetics
(Holliday 1987). Epigenetics is important in biology primarily because it facilitates cell
fate commitment and maintenance of cell identity (Morris and Daley 2013). The aberrant
epigenomic landscape of cancer cells has been described for many years in cancer
research (Jian Cao and Yan 2020). Epigenetic dysregulation is not surprising, given that
many tumors have hallmarks of increasingly more aberrant differentiation as they
progress. Further, dysregulation of chromatin structure can lead to further regulatory
instability (Reinberg and Vales 2018) and may be a mechanism of cancer cell plasticity.
Chromatin accessibility is thought to be a determinant of gene expression, and has
therefore been an important topic of interest in biology.

Chromatin accessibility is regulated through multiple forms of epigenetic
modifications. DNA itself can be directly modified through methylation (Feinberg and
Vogelstein 1983) of regulatory sequences frequently found at the 5’ end of genes, many
of which exhibit tissue specific expression (Esteller 2008). Additionally, chemical
modification of histones, proteins that package DNA, also affect chromatin accessibility
(Cavalli and Heard 2019). There is also evidence that chromatin structure can be
regulated through other mechanisms, including through non-coding RNAs, to influence

‘higher-order’ chromatin structure. Together, epigenetic modifications orchestrate
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complex, 3-dimensional chromatin topologies which are heritable and are believed to
ultimately be responsible for regulation of gene expression and cell identity (Cavalli and
Heard 2019). Our understanding of how DNA sequences define, regulate, and/or control
biological processes (E. T. Liu 2008) is largely the result of advancements in functional
genomics. In particular, chromatin accessibility at transcription factor binding sites,
which varies across different tissues, is one of the ways cell identity is thought to be
regulated (Deplancke, Alpern, and Gardeux 2016). Functionally, it is well established
that epigenetic state regulates gene expression (Gibney and Nolan 2010). As such,
associations between gene expression and epigenetic features have led to recent
computational advancements that aim to identify regions of the genome that are
regulated to control cellular identity (Shim et al. 2020).

Chromatin structure and topology are extraordinarily complex and highly
regulated (Esteller 2008). Our mechanistic understanding of epigenetics and how
chromatin topology or accessibility act to regulate gene expression networks has been
largely restricted by technical limitations of measuring epigenetic modifications or
chromatin structure. Until recently, the vast majority of epigenetic profiling was
conducted through identification of sites in the genome where a particular epigenetic
modification is located, which is measured in material isolated from a large number of
cells (Buenrostro et al. 2015). While the effects of many epigenetic modifications are
well characterized in isolation, they act in a combinational fashion to regulate chromatin
accessibility. As such, it is not always possible to predict chromatin accessibility by
mapping particular epigenetic modifications (Kouzarides 2007). For this reason, the

development of assays which allow epigenomic profiling that are not dependent on
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interpreting epigenetic modifications themselves have been crucial in epigenetics.
Advancements in these assays led to the development of ATAC-seq, Assay for
Transposase-Accessible Chromatin with high-throughput sequencing (Buenrostro et al.
2015).

As our mechanistic understanding of oncogenic mutations has improved, it has
become increasingly more widely accepted that cancer progression is driven by
mutations in a limited number of genes and is dependent on epigenetic changes (Klein
and Klein 1985; Vogelstein et al. 2013; Martinez-Jiménez et al. 2020). Early studies of
DNA modifications in cancer found that hypermethylation of tumor suppressor gene
promoters that results in gene silencing could be a mechanism by which tumor
suppressor genes are inactivated and has otherwise been implicated in destabilizing the
genome and cell state (Esteller 2008). Conversely, loss of these modifications in other
areas of the genome has also been implicated in genomic instability as well as aberrant
expression of embryonic and tissue restricted genes (Esteller 2008).

Perhaps the most compelling evidence for epigenetic dysregulation in cancer is
that many genes which modify chromatin accessibility are highly mutated across a
variety of cancer types (C. Plass et al. 2013). The epigenomic landscape of cancer is
highly dysregulated (Jones and Baylin 2007), both in terms of DNA methylation and
histone modification. Furthermore, the precisely regulated epigenetic landscape in
pluripotent embryonic stem cells (Viré et al. 2006; S. Sharma, Kelly, and Jones 2010) is
largely responsible for their plasticity and differentiation potential. Indeed, epigenetic
reprogramming is the primary mechanism by which terminally differentiated cells can be

made into induced pluripotent stem cells (Okita, Ichisaka, and Yamanaka 2007). This
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lends support for studies of epigenetic dysregulation in cancer stem cells (Toh, Lim, and
Chow 2017), but also may be a mechanism by which differentiation status becomes
dysregulated in tumor types which do not conform to the cancer stem cell model.

Notably, some experimental cancer models exist that reliably recapitulate clinical
disease but are generated through experimentally defined mutations. In many of these
models, mutational burden of tumors can differ from those observed in clinical disease
(Westcott et al. 2015). Other features of disease progression, such as tumor histology,
are quite similar to human disease. This suggests that other changes in tumor cells, and
chromatin accessibility in particular, may be partially responsible for the observed
changes in gene expression between normal and cancerous tissues. This, in part,
created a precedent for the importance of epigenetic dysregulation in cancer
progression.
1.6 An Evolutionary Approach to Characterize Tumor Heterogeneity

Although tumor heterogeneity makes tumors difficult to treat and to study, it can
be exploited by analytical approaches which have led to many insights about how
tumors evolve and progress. Distinct subclones with different functionality within a tumor
are thought to arise in response to dynamic selective pressures that, by extension,
constrain and influence tumor evolution. Estimation of variant allele frequencies of
tumor-specific mutations have permitted more rigorous testing of theoretical models for
evolution of mutational heterogeneity, discussed in earlier subsections. Because
mutational heterogeneity influences overall evolution of a tumor by affecting gene
expression and chromatin accessibility, models of mutational heterogeneity may inform

generalized models of tumor evolution. Despite widespread recognition that epigenetic
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dysregulation is equally as important as DNA mutations in cancer, few studies exist to
describe how this dysregulation can be incorporated into and refine existing models of
tumor evolution.

Several studies provide evidence that tumor cell epigenomes become
dysregulated in a heterogeneous and stochastic manner (M. Guo et al. 2019; LaFave et
al. 2020). Epigenetic dysregulation is likely to drive and itself become a manifestation of
tumor heterogeneity. As stated in the previous section, there is substantial evidence for
epigenetic dysregulation in settings where cancer stem cells have been identified and
described. However, the majority of quantitative models of mutational tumor evolution
are consistent with, but do not explicitly describe, the cancer stem cell model. In turn,
this creates a disconnect between models of tumor evolution which explicitly incorporate
epigenetic dysregulation with those which cannot. This is due, in part, to experimental
limitations in profiling cancer cell epigenomes. As ATACseq becomes more prevalent, it
is likely that enough data will be generated such that quantitative modeling will become
possible.

Perhaps the biggest confounding limitation in studies of tumor heterogeneity and
evolution is the variation in time over which disease progression occurs. In clinical
settings, cancer progression occurs with varying kinetics across different patients. For
some of these cases, this variation can at least be partially attributed to variation in
responses to treatment, both in efficacy and duration of response (Mitsudomi et al.
1996). However, even amongst patients which do not elect to receive treatment,
variation in disease kinetics is still observed (Crispen et al. 2009). Some explanations

have proposed this variation is a result of stochastic mutational processes (Hao, Wang,
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and Di 2016), but this does not explain variation in cancer progression kinetics across
all kinds of cancer. This could be partially related to the fact that some cancers appear
to be driven by epigenetic, rather than genomic, dysregulation.

An additional confounding limitation is the reliability through which patients and
their tumors are stratified into subtypes of cancer. Data-driven analyses and molecular
profiling have led to dramatic improvements in how patients can be stratified according
to subtype and clinical behavior (McVeigh et al. 2014), and these data can also be used
to predict therapeutic outcomes amongst other patients. In spite of these
advancements, many additional questions remain about both the underlying causes of
variation between patients, as well as the temporal behavior of disease progression.
Thus, the ability to accommodate variation in tumor profiling data that is caused by
underlying variation in disease kinetics or disease type is relatively limited.

Although this variation remains, many efforts are being made to generate more
data on tumor cells using cutting-edge technologies such as ATAC sequencing. This is
important because evidence is still being collected to assess the nature of epigenetic
dysregulation that occurs across many kinds of cancer. As these data accumulate, they
allow refinements in models for epigenetic and transcriptional trajectories in tumor
progression and may ideally be used to describe deterministic changes in cell state.
Such a model must account for the fact that chromatin accessibility is a product of the
cumulative and combinatorial effects of many epigenetic regulators that can be
influenced through multiple ways. While the role of epigenomic and transcriptional
dysregulation is widely accepted as being at least partially responsible for tumor

progression, the complex nature through which chromatin accessibility is regulated and
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the dynamic processes that drive changes in epigenetic landscapes are quite poorly
understood. In many cases, it is not possible to reliably predict the functional
consequences of an individual, or combinatorial, epigenetic mark in terms of effective
chromatin accessibility (Santos-Rosa et al. 2002). As a consequence, this has driven
efforts to get improved resolution of transcriptional and epigenomic states to create a
basis for mathematical modeling that will inform how cell state changes occur during
cancer progression.

Efforts to profile the effective phase space of cancer cells have been further
complicated by epigenetic and transcriptional heterogeneity in tumors. One important
distinction between interpretation of mutational heterogeneity and epigenetic or
transcriptional heterogeneity is the degree of independence between mutational and
transcriptional or epigenetic changes. Mutations are mostly thought to occur at random
loci, barring some notable exceptions (de la Chapelle 2003). In contrast, epigenetic
marks are believed to be deposited through the concerted efforts of large, multi-protein
chromatin modifying complexes which are directed through a series of networked
interactions and activities (L. Y. Wang et al. 2011). Transcription is also regulated in
dynamic networks with topologies that are thought to be highly tissue specific (He and
Tan 2016). Therefore, a single regulatory change can manifest through a cascade of
genes that are connected in a transcriptional (or regulatory) network. Additionally,
changes in transcription of an individual gene cannot be assumed to be independent
from changes in another. Consequently, evolution of tumor cell transcriptional state
occurs in a coordinated manner that is dependent on underlying genetic and regulatory

networks. The constraints imposed by these networks are latent determinants of the
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topologies of accessible transcriptional states of a tumor cell. Because these networks
are strongly influenced by cell identity (Shining Ma, Jiang, and Jiang 2018), which
becomes dysregulated over time, the influence of these network constraints is also
dynamic over tumor evolutionary processes.

Mutational heterogeneity can be effectively modeled in tumors through the
assumption that mutations are stochastic and arise independently. However, these
assumptions cannot necessarily be extended to models of transcriptional and epigenetic
heterogeneity. Changes of cell identity, which may occur stochastically, can cause
effective rewiring of intracellular circuits that allow cells to respond to changes in their
environment (Irish et al. 2004). To understand how changes occur in the epigenetic and
transcriptional states of tumor cells over time, the constraints of these networks need to
be defined (Bandara et al. 2009). However, these constraints change over disease
progression and are themselves subject to the variation in disease kinetics observed
across patients.

While these sources of variation have restricted models of tumor evolution to be
primarily descriptive, rather than quantitative, the inherent heterogeneity of tumors
creates analytical advantages. Variation in disease kinetics makes it essentially
impossible to reproducibly sample tumor evolutionary processes at a precise point in
time. This can be exploited when looking across individual cells, because an individual
tumor contains heterogeneous cells that occupy a mosaic of observable accessible
states which can be loosely, but not precisely, associated with time. In turn, this
decreases the number of time points over which tumor progression must be sampled in

order to generate complete coverage of cell states which arise during tumor evolution,
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because the subclones of a heterogeneous tumor can reflect its evolutionary history,
present, and future. Thus, profiling a single tumor at a single point in time can produce
rich amounts of data about the cells it contains that together reflect a set of cell states
which reflect more than just a single point in time during tumor progression. Still, tumor
evolution is affected by multiple systems which exert selective pressures on a tumor. An
explicit model of tumor evolutionary processes with respect to cell state must
incorporate higher order interactions between systems that exist within and between

cells.

2. Tumor immunology

2.1 Inflammation and cancer

Immune cell infiltration into solid tumors has long been recognized as being
positively associated with increased overall survival, most notably in human melanoma
(Clemente et al. 1996; Galon et al. 2006; L. Zhang et al. 2003; Fridman et al. 2012).
This association is likely related to the fact that the immune system is responsible for
surveillance, detection, and elimination of malignant cells. The immune system works
through coordinated activity of many different kinds of cells which each play diverse, but
defined, roles to generate an immune response. In order for a tumor to develop, it must
either evade or adapt to overcome the tumor suppressive actions of the immune system
(Hanahan and Weinberg 2011). There are multiple mechanisms by which the immune
system can detect and suppress cancer; reciprocally, there are thought to be multiple
mechanisms through which tumors suppress and evade these responses (Hanahan and
Weinberg 2011). Although it is well accepted that the immune system can be tumor

suppressive, some of the early observations about how immune responses are related
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to cancer progression suggested that inflammation can promote tumor formation (F.
Balkwill and Mantovani 2001). Still, other early observations also associated
inflammation with tumor suppressive activity (Hoption Cann et al. 2002).

The relationship between cancer and inflammation remained largely ambiguous
until it was discovered that mice which had previously been able to eradicate a
transplanted tumor could more effectively eliminate tumors that were transplanted after
the first tumor had regressed. The behavior of these responses were remarkably
consistent with that of an adaptive immune response and further suggested that tumors
must continuously evade the adaptive immune system in order to develop and progress
(G. P. Dunn, Old, and Schreiber 2004; Gross 1943; Silverstein 2001). In addition,
inflammation creates a microenvironment that stimulates cell proliferation and
remodeling of the surrounding extracellular matrix and vasculature in response to a
wound. This led to connections that were made about the similarity between the wound
healing response and many hallmarks of cancer, and further clarified how the immune
system can also promote cancer. As such, it was proposed that tumors exploit these
programs and sustain this microenvironment to grow and progress (Flier, Underhill, and
Dvorak 1986; Coussens and Werb 2002).

One of the other widely accepted mechanisms of tumor-immune evasion causes
immune cells to become dysfunctional in response to tumors that have established an
immunosuppressive microenvironment (A. A. Wu et al. 2015). This occurs by hijacking
homeostatic programs of immunosuppression that canonically exist to prevent
autoimmunity and other harmful immune reactions (Liston and Gray 2014). Notably,

immunosuppressive microenvironments can be produced through a variety of different
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mechanisms and can affect multiple types of immune cells that coordinate the overall
immune response to a tumor (D. Wang and DuBois 2015).
2.2 Influence of solid tumor biology on immune response

Recent evidence has emerged to suggest that tumor regions with higher
mutational heterogeneity may drive greater immune responses relative to tumor regions
with lower mutational heterogeneity (AbdulJabbar et al. 2020), suggesting tumor
mutational heterogeneity may have a meaningful influence on the overall tumor-immune
response. This is not surprising, because mutations create abnormal protein products of
mutant proteins that can be presented on the surface of tumor cells to immune cells as
tumor-specific neoantigens.

Evasion of the immune system can occur in tumors through multiple ways. One
of the most widely recognized ways this occurs is through dysregulation of the antigen
presentation machinery, but this does not occur across all tumors (Hanahan and
Weinberg 2011). The majority of tumor-specific neoantigens arise from passenger
mutations which are dispensable in tumor progression (Jhunjhunwala, Hammer, and
Delamarre 2021). As such, passenger mutations which create immune reactive
neoantigens can undergo immunoediting, wherein these mutations are deleted or
silenced in response to selective pressure from immune cells responding to their
associated neoantigens (R. D. Schreiber, Old, and Smyth 2011). Antigens are loaded
and presented on the surface of tumor cells or immune antigen presenting cells after
being processed in the immunoproteasome (Jhunjhunwala, Hammer, and Delamarre
2021), which is induced by inflammatory signals of the microenvironment (G. H. Wong

and Clark-Lewis 1983).
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While many kinds of immune cells play important roles in response to tumors, the
majority of the work presented in this thesis will focus on CD8 T cells, which are
discussed in the following sections.

2.3 Characterization of cytotoxic T cell dysfunction
2.3.1 Differentiation of cytotoxic T cells

T cells are lymphocytes that play a major role in cell mediated responses to
antigens, or molecules that elicit an immune response (Institute and National Cancer
Institute 2020). They differentiate from thymocytes, which are T cell precursors that
have differentiated from hematopoietic stem cells in the bone marrow. They are defined
by expression of T Cell Receptor (TCR) proteins, which are created as T cells mature in
the thymus through recombination of Variable, Diversity, and Joining gene fragments to
produce TCRs that can recognize a wide diversity of antigens (Schatz and Ji 2011) on
the surface of antigen presenting cells. When TCRs are engaged with their cognate
antigens, intracellular signaling networks orchestrate T cell expansion and differentiation
into T cells that mediate inflammation (T-helper), immune suppression (T-regs), memory
(T-memory) and cytotoxicity (T-effector) (Viola and Lanzavecchia 1996; Youngblood et
al. 2017; Speiser, Ho, and Verdeil 2016).

Cytotoxic T cells, marked by expression of CD8, will proliferate when activated to
generate a clonally expanded pool of effector cells that have the ability to secrete
cytokines and proteins which can induce cell death. They are most often characterized
for mediating control over pathogen infection and cancer cells (Zhou et al. 2010;
Waldman, Fritz, and Lenardo 2020). Priming or activation of cytotoxic T cells is a tightly

regulated process and is thought to have multiple requirements to become fully
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“licensed” (Thaiss et al. 2011) for effector and memory function. These include
engagement of the TCRs of CD8 cells with antigens presented on MHC-I, the binding of
costimulatory molecules, cytokine signaling, and chemokine gradients (Thaiss et al.
2011). Collectively, these signals are processed through networks of signaling
transduction pathways to produce transcriptional outputs that mediate functional
differentiation (Viola and Lanzavecchia 1996; Smith-Garvin, Koretzky, and Jordan
2009). These networks are also influenced by co-inhibitory receptors which primarily
serve to dampen immune responses and prevent auto-immunity (Chen and Flies 2013).

The complexity of the signals and the components of these networks permit
precise, multifaceted control over signaling outcomes which ultimately influence the fate
of functionally differentiating cytotoxic T cells (Chen and Flies 2013). Naive CD8 T cells
have not been exposed to the antigen their TCRs are specific for. After antigen
exposure and activation, CD8 T cells functionally differentiate into different
subpopulations. Profiling of tumor-reactive CD8 T cells revealed these cells can occupy
a number of differentiation states along a continuum of differentiation states, including
naive, effector, memory, and exhausted states (van der Leun, Thommen, and
Schumacher 2020).

After naive T cells develop in the thymus, they circulate around the body and
infiltrate different organ systems in search of immune cells which have presented their
cognate antigen on MHC molecules (Mandl et al. 2012; Smith-Garvin, Koretzky, and
Jordan 2009). Once a TCR binds an antigen-MHC complex, the process of T cell
activation begins (Smith-Garvin, Koretzky, and Jordan 2009). However, engagement of

a cell's TCR without additional activation signals cannot fully license a T cell to undergo
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functional differentiation; instead, cells which receive a TCR activation signal in the
absence of other required activating signals become anergic, and are unable to
proliferate or secrete inflammatory signals in response to antigen. Importantly, this
anergic state can be reversed through exposure of inflammatory signals (Appleman and
Boussiotis 2003).

The additional signals required for activation can come from and be influenced by
a variety of other immune cells. One of the most well described mechanisms of
activation occurs through engagement of CD28 on the surface of T cells through binding
of costimulatory ligands on antigen presenting cells (Harding et al. 1992). This process
can be further facilitated by Helper T cells CD4+ T cells in a manner that permits
precise tuning of functional differentiation to promote immune memory that is
characteristic of adaptive immunity (S. Zhang, Zhang, and Zhao 2009). The output of
these systems can also be modulated by inflammatory signals of the microenvironment
that can be produced by a variety of cell types that also facilitate functional activities of
differentiated cells (J. M. Curtsinger et al. 1999). Importantly, some of the other signals
which affect T cell activation create negative feedback to control activation signals and
are induced as a consequence of T cell activation. A notable example of these feedback
signals are ‘checkpoint molecules’, such as CTLA-4 and PD-1, both of which negatively
regulate TCR signaling.

Activated T cells will proliferate and expand until their targets are cleared from
the system and will subsequently undergo programmed cell death. The actions of these
cells is one of the primary ways that infection is cleared or malignant cells are

eliminated (Kaech and Cui 2012). A smaller subset of CD8 T cells will differentiate into
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memory cells that persist after cytotoxic T cells have cleared their targets and then
mediate efficient immune responses to their cognate antigen following subsequent
exposure. The progenitor CD8 cells that canonically differentiate into memory subsets
are marked by expression of TCF-1, the protein product of the gene Tcf7 (Jiaxue Zhang
et al. 2021), (Zhou et al. 2010).

Importantly, CD8 T cells can also functionally differentiate into a variety of
subsets which have been implicated in mediating tissue specific immune compartments,
context-specific viral responses, and more (Mittricker, Visekruna, and Huber 2014). For
the most part, these T cell subsets are functionally distinguished by a specific
permutation of interleukin and cytokine receptors as well as transcription factors which
are responsible for changes in gene expression that mediate different functional roles of
each subset. These T cell subsets can be transcriptionally quite similar and have subtle,
but important, differences in functionality.

One example of these subsets, termed Tc17 cells, are induced by TGF-Beta and
IL-6 or IL-21 signaling. They are also distinguished from other T cell subsets by
expression of ROR-gammaT and ROR-alpha (Hamada et al. 2009). Tc17 cells are
similar to conventional cytotoxic T cells because they also produce cytotoxic molecules,
but do so at a reduced level and therefore are known to have lower relative cytotoxic
activity (Hamada et al. 2009). Tc17 cells are functionally important for driving
inflammation and mediating control over diseases in which T cells are persistently
exposed to antigens, such as in chronic viral infection or in tumor development

(Mittricker, Visekruna, and Huber 2014).
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2.3.2 Hallmarks of T cell dysfunction and exhaustion

T cell exhaustion is defined by reduction in cytokine production and increased
expression of co-inhibitory receptors (Welten et al. 2020) that ultimately cause depletion
of resources that can be utilized to sustain an immune response (Thangavelu,
Smolarchuk, and Anderson 2010). It is conventionally described in the context of
chronic viral infection and is characterized by loss of effector function and reduction in
clonal expansion (Thommen and Schumacher 2018). There are many parallels between
immune responses to tumors (Baitsch et al. 2011) and chronic viral infection (Wherry et
al. 2007). Persistent antigen exposure, in particular, is largely responsible for similarities
between exhausted T cells in both settings because it induces sustained expression of
co-inhibitory proteins (Thommen and Schumacher 2018).

For a T cell to become exhausted, it must have sustained expression of multiple
co-inhibitory receptors (Chen and Flies 2013). Importantly, expression of co-inhibitory
proteins is a programmed output of interactions with cells which serve to dampen
immune responses, such as Tregs, as well as signaling associated with functional
differentiation and stimulation of T cells. Expression of co-inhibitory receptors and
ligands serve as mechanisms of intra- and inter-cellular negative feedback (Thangavelu,
Smolarchuk, and Anderson 2010). As such, transient expression of co-inhibitory
molecules also occurs as a consequence of signaling associated with activation
(Thangavelu, Smolarchuk, and Anderson 2010). Sustained activation signals therefore
cause accumulated expression of co-inhibitory molecules which, in turn, act to suppress

the immune response. In some cases, this can lead to abnormalities in T cell
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differentiation that produce dysfunctional T cells that phenotypically resemble exhausted
T cells (Schietinger and Greenberg 2014; Wherry et al. 2007).

In the context of tumor immunology, T cells of the tumor microenvironment that
phenotypically resemble exhausted T cells are described as dysfunctional because T
cell responses can sometimes be invigorated with therapeutic treatment (Wei, Duffy,
and Allison 2018) and thus do not completely fulfill requirements of exhaustion because
dysfunction can be rescued. Co-inhibitory receptors perform non-redundant roles in
immune suppression (Thangavelu, Smolarchuk, and Anderson 2010) and are
expressed in a context-dependent manner. As such, it is not surprising that
dysfunctional tumor associated T cells show similar, but distinct, gene expression
signatures relative to exhausted T cells in the context of chronic infection (Thommen
and Schumacher 2018). Ultimately, these co-inhibitory molecules regulate signaling
networks associated with T cell activation in a manner that can influence expression of
transcription factors which dictate functional differentiation of T cells.

Differentiation of Tc17 cells and many other CD8 T cell subsets have been
extensively studied in the context of chronic viral infection (Paley et al. 2012; Intlekofer
et al. 2008; Wherry and John Wherry 2011). Despite the differences between this setting
and that of tumor progression, there are many transcriptional similarities between T cell
states of these settings that have formed the basis for current understandings of how T
cell differentiation is impaired in cancer (Wherry, John Wherry, and Kurachi 2015).
Importantly, it has been shown that CD8 T cells are responsible for controlling chronic
viral infections, and abnormalities in CD8 T cell differentiation can result in collapse of

immune responses (Paley et al. 2012). This is thought to occur invariably in clinically
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detectable tumors; as such, many more recent studies have made comparisons
between chronic viral infection and tumor-mediated T cell dysfunction in order to identify
distinguishing features of T cell responses to tumors that may be responsible for
immune suppression and evasion in cancer (Paley et al. 2012; Z. Zhang et al. 2020).
Functional differentiation of T cells has been specifically implicated as the primary
mechanism of T cell dysfunction because it was found that healthy donor T cells can
respond to specific antigens that do not generate responses from dysfunctional T cells
(Strgnen et al. 2016). In short, the primary mechanism through which T cells are
thought to become dysfunctional in tumors occurs when progenitor CD8 T cell
populations undergo abnormal functional differentiation.
2.4 A Brief History of Immunotherapy

One of the earliest described treatments to invigorate immune cell responses to
cancer was administration of Coley toxin, which contained mixtures of live and
inactivated pathogens that had been previously associated with spontaneous tumor
regression in patients (Dobosz and Dziecigtkowski 2019; Decker et al. 2017; Coley
2014; McCarthy 2006). However, skepticism regarding the risk and mechanism
associated with Coley toxin, compounded by skepticism of the scientist who developed
it, caused these discoveries to become dormant for many years (Dobosz and
Dziecigtkowski 2019).

Later, other forms of immunotherapy were developed such as therapeutic
utilization of monoclonal antibodies specific for genes that are upregulated in cancer
cells. This revolutionized treatment of immune cell malignancies in particular.

Eventually, this therapeutic strategy was also extended to malignancies that did not
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arise from immune cells, most notably with the development of trastuzumab, which
targets a receptor that is upregulated on the surface of breast cancer cells, ERBB2
(HER2) (Dean and Kane 2015). Still, even in cancers which respond well to monoclonal
antibody therapy, many tumors become recalcitrant to these therapies. These
therapeutic limitations drove development of other forms of immunotherapy.

As dysfunction of immune cells became more widely implicated in cancer
progression, adoptive T cell therapies were developed which sought to address
deficiencies in endogenous immune responses to cancer by providing functional
immune cells that were produced or activated through artificial means (June 2007).
Some of these therapeutic strategies specifically targeted antigens which are present
across many different patients (van der Bruggen et al. 1991), and clinical indications for
these therapies have become increasingly more refined as mutation status in tumors
has become more prevalent in molecular diagnostics of cancer (Rosenberg and Restifo
2015). In addition, there have been many efforts to produce therapeutic vaccines to
facilitate activation and functional differentiation of productive tumor-specific immune
cell subsets (Bowen et al. 2018). Some of these vaccines are developed in a highly
personalized manner using material that is isolated from individual patients (Shemesh et
al. 2021; Timmerman and Levy 2000), while others seek to target highly recurrent tumor
neoantigens (Xu et al. 2014).

One of the biggest limitations in the development of these therapies has been the
associated costs (June 2007; Bowen et al. 2018), which for many patients is prohibitive.
Furthermore, in many settings it has been difficult to identify neoantigens which can

elicit responses without prohibitive toxicity in patients, and some responses to
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immunogenic epitopes can cause auto-immune reactions in healthy tissues (J. C. Yang
2015). Neoantigens for vaccination can be selected by their binding affinity for MHC
molecules (McMahan et al. 2006), but this approach largely relies upon computational
predictions of peptide-MHC binding affinities, which in many cases can be unreliable
(Phloyphisut et al. 2019). In addition, the properties that constitute immunogenicity of an
epitope are poorly understood (McGranahan and Swanton 2019).

2.5 Immune Checkpoint Blockade

Many other efforts to develop immunotherapies for cancers were based upon the
idea that functional differentiation of T cells could be altered to boost productive
anti-cancer immune responses through therapeutic intervention. The earliest versions of
these therapies attempted to do this through administration of systemic cytokines that
were otherwise implicated in T cell differentiation as ‘immune checkpoints’, but they
were highly toxic and largely ineffective (Robert 2020). A revolutionizing breakthrough
was later made with monoclonal antibodies that could be used to block interactions of
co-inhibitory receptors on T cells and ultimately divert functional T cell differentiation to
generate durable and essentially curative responses in some cancer patients (Ledford,
Else, and Warren 2018).

To date, the most successful checkpoint blockade therapies are monoclonal
antibodies targeting CTLA-4, PD-1 or its ligand PD-L1 and they have been shown to
reduce dysfunction in cytotoxic CD8 T cells (Kumagai et al. 2020). While these have
revolutionary benefits in some patients, many patients have transient responses or do
not respond at all, even when receiving a combination of these treatments (Kumagai et

al. 2020). In addition, many questions remain about the mechanism of action that


https://paperpile.com/c/XSr7BR/BQzzP
https://paperpile.com/c/XSr7BR/BQzzP
https://paperpile.com/c/XSr7BR/8MnNp
https://paperpile.com/c/XSr7BR/uGj7o
https://paperpile.com/c/XSr7BR/TAX0z
https://paperpile.com/c/XSr7BR/sYdvf
https://paperpile.com/c/XSr7BR/Yrqo0
https://paperpile.com/c/XSr7BR/Yrqo0
https://paperpile.com/c/XSr7BR/Y7kVa
https://paperpile.com/c/XSr7BR/Y7kVa
https://paperpile.com/c/XSr7BR/Y7kVa

66

underlies these differentiation outcomes. It is reasonable to expect that improving the
understanding of these processes may lead to improvements in therapies that can
create more durable responses and benefit a wider range of patients.

2.5.1 Predicting Response to Checkpoint Blockade

Many efforts have been made to identify clinically observable measurements that
are predictive of response to checkpoint blockade therapy (Carbone et al. 2017; Rizvi et
al. 2015) in order to better identify candidates that will respond well to it. Some initial
studies showed that expression of PD-1 on tumor cells was partially, but not fully,
predictive of checkpoint response (Carbone et al. 2017). For many years, it was thought
that the relationships between tumor mutational burden and the subsequent diversity of
the tumor-specific neoantigen repertoire could be used to predict patient response to
immunotherapy. In light of recent evidence suggesting tumor mutational burden fails to
predict patient response to immunotherapy (McGrail et al. 2021), the relevance of
mutational burdens in tumors in predicting immune responses have become
controversial (Strickler, Hanks, and Khasraw 2021).

In parallel, more observable features of tumors that are predictive of checkpoint
response are being identified, which include dysregulation of antigen presentation
machinery (Montesion et al. 2021), gene expression programs (Z. Wang, Li, and Xu
2021), metabolic activity (van Wilpe et al. 2021), inflammation (Kauffmann-Guerrero et
al. 2021), and more. However, in nearly all cases, the predictive power of these features
are limited. Further studies to identify what specific changes occur in response to
checkpoint blockade may illuminate other features of T cells and tumors that predict

productive responses to checkpoint blockade.
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2.5.2 CD8 T Cell Progenitors are the Target of Immune Checkpoint Blockade Therapy
Currently, checkpoint blockade therapy is thought to act by altering differentiation
of CD8 T cells (B. C. Miller et al. 2019a). A subset of progenitor CD8 T cells express
moderate levels of PD-1 and other co-inhibitory markers that are then upregulated to
high levels of expression as cells differentiate, termed ‘progenitor exhausted’ and
‘terminally exhausted’ CD8 T cells, respectively (Utzschneider et al. 2016; Im et al.
2016). Because these co-inhibitory markers are expressed in progenitor subsets and
their respective heterogeneous functionally differentiated subsets, it is still unclear which
CD8 populations mediate response to checkpoint blockade, although progenitor CD8 T
cells which express TCF1 expand in response to checkpoint blockade (B. C. Miller et al.
2019a); however, this has been further complicated by emerging evidence for multiple

TCF1+ progenitor CD8 T cell subsets (Beltra et al. 2020).
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CHAPTER 1, PART 2

Non-Small Cell Lung Cancer

1. Clinical Characteristics of Non-Small Cell Lung Cancer

1.1 Epidemiology

Lung cancer is the leading cause of cancer related deaths amongst men and
women in both the United States and abroad (Duma, Santana-Davila, and Molina 2019;
Fitzmaurice et al. 2015). Approximately 85-90% of these cases are thought to be related
to primary or secondary exposure to cigarette smoke (Alberg and Samet 2003), which
has prompted lung cancer screenings amongst smokers (Moyer and U.S. Preventive
Services Task Force 2014). Still, there are many cases of lung cancer that are not
thought to be associated with smoking and do not carry its associated mutational
signature (Alexandrov et al. 2016).

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases
and is a broad classification that encompasses adenocarcinomas, squamous cell
carcinoma, and large cell carcinomas (Duma, Santana-Davila, and Molina 2019). In
patients with European ancestry, NSCLC is most prevalent amongst smoking men. In
contrast, in patients with East Asian ancestry, NSCLC is most common amongst
nonsmoking women (Jain et al. 2015). Notably, however, lung cancer incidence and
mortality is the lowest amongst Asian-American, Pacific Islander, and Hispanic women,
but is highest amongst Black men in the US (Siegel, Miller, and Jemal 2018). Generally,

the earlier NSCLC is diagnosed, the better a patient’s prognosis (Table 1). Overall, the
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average 5-year survival rate of patients diagnosed with NSCLC is 25% for NSCLC and
is 19% for all lung cancers (National Comprehensive Cancer Network 2021).

Table 1. Diagnostic frequency and survival of NSCLC across different disease stages.
Adapted from (National Comprehensive Cancer Network 2021).

Disease State Diagnostic Frequency (%) 5 year survival (%)
Localized Disease 19% 61.4%
Regionally Invasive 24% 34.5%

Disease
Metastatic 55% 6.1%
Unknown 2% 14.6%

According to the World Health Organization, Lung adenocarcinoma is the
predominant form of NSCLC and accounts for approximately 40% of all NSCLC cases
(Travis, Brambilla, Burke, et al. 2015). The work that is presented in this thesis
exclusively studies lung adenocarcinoma, but most clinical guidelines and observations
for NSCLC, briefly discussed below, are not necessarily specific for lung
adenocarcinoma and are generalized across NSCLC. It should be noted, however, that
different subtypes of NSCLC have distinct survival rates (Reck et al. 2019; Ramalingam
et al. 2020; Pacheco et al. 2019; Shaw et al. 2019).

1.2 Disease Characteristics and Staging

NSCLC staging follows TNM guidelines set by American Joint Committee on
Cancer and considers the primary tumor (T), involvement of lymph nodes (N), and
metastasis (M) (Lancia, Merizzoli, and Filippi 2019), wherein each disease stage has a

characteristic patient prognosis that decreases with disease progression. NSCLC is
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considered to be relatively early stage when patients are diagnosed with stage Il
disease and lower. When tumors have invaded the mediastinal lymph node, which is the
closest lymph node to the lung, patients are considered stage lII.

Histological features of patient biopsies are used to further classify lung tumors
according to guidelines established by the World Health Organization in 2015 (Travis,
Brambilla, Nicholson, et al. 2015). In general, poor histological differentiation is
correlated with higher overall risk of death (National Comprehensive Cancer Network
2021; Travis, Brambilla, Nicholson, et al. 2015). Amongst adenocarcinomas alone,
many histological subtypes exist that are distinguished from one another by
morphological patterns. Adenocarcinomas are frequently distinguished from other
subtypes of lung cancer by positive staining for TTF-1, known in research settings as
NKX2-1 (Travis, Brambilla, Nicholson, et al. 2015). Approximately 70-90% of lung
adenocarcinomas stain positive for NKX2-1 (National Comprehensive Cancer Network
2021).

In patients that present with advanced lung adenocarcinomas, molecular
subtyping is frequently utilized to identify therapeutically actionable mutations that can
inform therapeutic strategies (National Comprehensive Cancer Network 2021). The
majority of these mutations have been previously identified as oncogenic driver
mutations in NSCLC (Martinez-Jiménez et al. 2020) (Table 2). Of note, the mutational
frequency of oncogenic drivers is most often reported from data collected from patients
of European descent. However, the prevalence of oncogenic driver mutations may differ
in patients with different geographic locations, ethnic backgrounds, age of diagnosis,

and smoking status. For example, in one study of patients less than 20 years of age
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diagnosed with lung adenocarcinoma, EGFR mutations were more common amongst

East Asian patients (Jain et al. 2015; Shi et al. 2014) and less common in patients from

India (Shi et al. 2014). In this study, EGFR mutation frequency was found to be

associated with ethnic group and smoking status (Shi et al. 2014), and Alk

rearrangements may be more prevalent in nonsmoking Chinese patients (W. Luo et al.

2018). Also, Table 2 does not include mutations in other genes with meaningful roles in

lung adenocarcinoma progression, such as TP53, PIK3CA, MET, KEAP1, NF1, RB1,

CDKNZ2A, ARID1A, SMARCA4, RBM10, U2AF1, MGA, and MYC (Cancer Genome

Atlas Research Network 2014), whose status is not currently evaluated in diagnostic

settings.

Table 2. Therapeutically Actionable Mutations in NSCLC. Biomarkers considered in
clinical evaluation of NSCLC, as reported by the National Comprehensive Cancer
Network (NCCN). Adopted from (1) (National Comprehensive Cancer Network 2021)
;(2) (Cancer Genome Atlas Research Network 2014; C. Wang et al. 2018); (4) (Kwak et
al. 2010); (5) (Chuang et al. 2017) (6) (Hong et al. 2020)

Biomarker Biomarker Type' Frequency Preferred
Therapies'
KRAS Activating Point ~8-33% of Sotorasib®
Mutation at Codon | adenocarcinomas
12,13, and 60 23
EGFR Exon 19 deletion ~14-52% of Erlotinib
and Insertion adenocarcinomas Gefitinib
2.3 Afatinib
EGFR Activating Point Osimertinib
Mutation in Exon 21 dacomitinib
ALK Rearrangement / 2-7% of NSCLC Alectinib
Fusions cases* Brigatinib
Crizotinib
ceritinib
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ROS1 Rearrangement / ~ 1-2% of NSCLC Crizotinib
Fusions cases? Ceritinib
Enterectinib
BRAF V600E Activating ~10% of NSCLC Dabrafenib +
Point Mutation cases? trametinib
MET Exon 14 Skipping 7% of lung Crizotinib
adenocarcinomas? Capmatinib
NTRK Fusions 0.2% of NSCLC' Larotrectinib
Entrectinib
ERBB2 Amplification 1-2% of lung Afatinib
adenocarcinomas® Trastuzumab
RET Fusions 1-2% of NSCLCs Cabozantinib
Pralsetinib
Selpercatinib
Vandetanib

The two oncogenic driver mutations most frequently observed in lung

adenocarcinoma are the epidermal growth factor receptor (EGFR), which is often

treated with tyrosine kinase inhibitors, and KRAS, which currently only has one form of

targeted therapy that targets a specific point mutation (G12C) in KRAS (Hong et al.

2020). In general, patients with KRAS mutations have a poorer prognosis than those

without (National Comprehensive Cancer Network 2021). KRAS mutational status can

be determined by sequencing, high-resolution melting analysis, PCR, allele-specific

hybridization, RT-PCR and can be assessed at codon 12, 13, or 61 (Cagle et al. 2014).

Overall, many oncogenic driver mutations, including EGFR and KRAS, occur in a

mutually exclusive manner (Cancer Genome Atlas Research Network 2014; C. Wang et

al. 2018).


https://paperpile.com/c/XSr7BR/cy2ZB
https://paperpile.com/c/XSr7BR/cy2ZB
https://paperpile.com/c/XSr7BR/O9DCN
https://paperpile.com/c/XSr7BR/sR4tC
https://paperpile.com/c/XSr7BR/YGZa2+bBsN5
https://paperpile.com/c/XSr7BR/YGZa2+bBsN5

73

Today, biomarkers that inform therapeutic strategies encompass more than
genetic mutations. Expression of PD-1 (Brody et al. 2017) can be used to predict and is
a clinical indication for response to immune checkpoint blockade. Some studies have
suggested that PD-1 status does not correlate with a particular oncogenic driver
mutation (Brody et al. 2017), when looking specifically at East Asian patients, it was
found that a particular mutational signature (MS3) with a high frequency of EGFR
mutations was associated with B lymphocyte infiltration (C. Wang et al. 2018) and
observed most frequently in female Chinese never-smoker patients. Discoveries such
as this highlight the importance of precise epidemiological stratification in molecular
profiling of lung adenocarcinomas, which may uncover other mutational signatures
associated with immune infiltration and tumor-specific immune response.

1.3 Treatment

In general, NSCLC is treated through different permutations of chemotherapies,
radiotherapy approaches, surgical resection, targeted therapy, image-guided thermal
ablation therapy, and immunotherapy (National Comprehensive Cancer Network 2021).
Today, standard-of-care for NSCLC patients that present with different subtypes, stages
of disease progression, and pathologies is highly stratified. The guidelines for cancer
treatment are continuously updated and re-evaluated to optimize patient outcomes.

Most patients with NSCLC are not symptomatic until tumors are extensively
progressed. In patients that are diagnosed with earlier stages of disease progression,
which is approximately 19% of patients, surgical resection of lung tissue that contains
the primary tumor is preferred (National Comprehensive Cancer Network 2021). In

settings of more advanced disease, the clinical benefits of surgical resection are
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controversial (Duma, Santana-Davila, and Molina 2019; Martins et al. 2012). Another
method of local treatment for tumors is image-guided thermal ablation therapy, which
can be performed through radiofrequency ablation, microwave ablation, and
cryoablation (National Comprehensive Cancer Network 2021). It is often performed in
patients who, for a variety of reasons, are not good candidates for surgical resection but
is considered to be a local therapy that is often only indicated for patients presenting
with earlier stages of disease progression.

In contrast, radiotherapy is clinically indicated for many patients across all stages
of NSCLC and is most often used to maintain control over tumor growth in a manner
that minimizes associated toxicity (National Comprehensive Cancer Network 2021).
Radiotherapy can be administered preoperatively, postoperatively, alone, or in
combination with chemotherapy or targeted therapy. Similarly, platinum-based
chemotherapy is utilized across stages of NSCLC under specific clinical indications
(National Comprehensive Cancer Network 2021). It is often delivered as a secondary
form of treatment, either before the primary tumor is surgically removed or in
conjunction with chemotherapy. Cisplatin and carboplatin are frequently used in
combination with other chemotherapies (National Comprehensive Cancer Network
2021). Patients with advanced disease that initially respond well to chemotherapy are
also eligible to receive anti-PD-1 checkpoint therapy, durvalumab, concurrently with
chemoradiation (Antonia et al. 2018)

In the absence of therapeutically actionable mutations, patients positive for PD-1
will typically receive chemotherapy alongside single-agent or dual-agent checkpoint

blockade therapy. Some forms of chemotherapy are thought to be immunogenic by
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creating secondary mutations in response to therapeutic DNA damage, such as
cyclophosphamide, and are believed to cause cell death through an immunogenic cell
death pathway that can then elicit a productive immune response (J. Wu and Waxman
2018). The impact of immunogenic chemotherapy has yet to be re-evaluated inlight of
recent evidence that has questioned how reliably predictive tumor mutational burden is

for response to immune checkpoint blockade (McGrail et al. 2021).

2. Lung Development

2.1 Physiology

The distal lung epithelium is the primary site of gas exchange in the lung, and is
composed of alveolar air sacs that contain epithelial cells with distinct functional roles
(Rawlins et al. 2009). Alveolar type | (AT1) cells, otherwise known as Type |
pneumocytes, are terminally differentiated epithelial cells that mediate gas and ion
exchange with characteristically high surface area (M. C. Williams 2003). Alveolar type
Il (AT2) cells, also known as Type Il pneumocytes, are responsible for production of
surfactant proteins. Surfactants are composed of a combination of lipids and
phospholipids, which reduce surface tension, as well as surfactant apoproteins, which
facilitate molecule adherence (adsorption). In the lung alveolus, this mixture acts to
prevent lung collapse during periodic biophysical changes associated with breathing
(Ingenito et al. 1999).

AT1 cells make up the majority of the lung alveolus (Mason 2006), and as a
result, are the primary target of lung tissue damage. During development, both AT1 and
AT2 cells are thought to differentiate from common progenitors (D. B. Frank et al. 2019).

After development, AT2 cells, which comprise only a minority of the lung alveolus,
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mediate regenerative stability of the lung alveolus and replenish AT1 cells (Mason 2006;
Evans et al. 1975), particularly in the context of lung injury. For this reason, AT2 cells
are believed to be the primary source of AT1 cells (Desai, Brownfield, and Krasnow
2014) in adult animals. More recently, a transcriptionally distinct stem cells that exist
between the bronchus and alveoli, termed bronchioalveolar stem cells (BASCs), have
also been described and are believed to be responsible for regeneration of AT2 and
club cells (Salwig et al. 2019). Specifically, AT2 cells have been described as the
primary source of AT1 cells for homeostatic regeneration, whereas BASC cells are
thought to contribute to distal airway renewal following severe lung injury, but also have
a minor contribution to homeostatic renewal (Salwig et al. 2019).
2.2 Anatomy

To generate the complex branching pattern of the lung, development of lung
airways occurs through three dimensional branching processes (Metzger et al. 2008).
The bronchial tree is formed through initial branching events from the bronchus (primary
branching) followed by repeated, smaller branching events (secondary branching
events) that extend the airways to the surrounding mesenchyme (Warburton et al.
2010).

Multiple patterning events govern three dimensional branch formation that
manifest through three branching modes. The first, domain branching, generates
branches that are arranged as rows and arise as a result of signaling circuitry that
dictate branching periodicity and domain positioning (Metzger et al. 2008). The two
remaining branching modes are distinguished from domain branching because

branching occurs at the tip. Of these two modes, planar bifurcation occurs through
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sequential branching of lung buds that are formed after primary branching events
(Metzger et al. 2008). This process creates proximal-distal patterning of the lung bud
and serves to create branches that exist in the same plane. Similarly, orthogonal
bifurcation occurs towards the end of branching processes but generates branches that
are normal (perpendicular) to one another, and is largely responsible for generating
three-dimensional branching patterns (Metzger et al. 2008).

2.3 Genetics of development

The lung airway is composed of multiple tissue types, most notably epithelial
cells, which are responsible for gas exchange and surfactant production, as well as
endothelial cells which form the vasculature required for gas exchange (Cardoso and
Whitsett 2008). Other cell types of the lung, such as neuroendocrine cells, have distinct
developmental origins from those of epithelial cells (Perl et al. 2002). However, most cell
types of the lung airway develop from common progenitors during development (Perl et
al. 2002). Notably, the final steps of lung maturation, during which surfactant production
begins, occurs very late in embryonic development and continues postnatally
(Warburton et al. 2010).

During embryonic development, lung tissue is specified during differentiation of
the endoderm. Co-expression of Nkx2-1, a transcription factor that is otherwise known
as Ttf-1 or Titf-1, and the forkhead transcription factor, Foxa2 (Maeda, Davé, and
Whitsett 2007) distinguishes lung tissue from other fates of the gut tube, which include
thyroid, liver, and pancreas. Importantly, both of these transcription factors have
extensive interactions with other transcription factors that mediate progressive

differentiation of different tissue types of the lung and also play important roles in
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differentiation of other gut tube derived tissues (C. M.-C. Li et al. 2015; Warren et al.
2020; C. S. Lee et al. 2005).

Differentiation of tissues that make up the lung airway are highly dependent on
proximal-distal patterning of the developing lung. When these patterns are established,
cells fated to become part of the airway proliferate in an undifferentiated state in
response to Wnt induced effectors (Okubo et al. 2005; Shu et al. 2005). During tissue
patterning and branching, processes that lead to differentiation of cells fated to become
various cell types of lung alveoli are highly interdependent. Together, these interactions
orchestrate a network of signaling pathways and transcription factors (Maeda, Davé,
and Whitsett 2007) which acts across multiple tissues that dictate their development.

In particular, Fgf10 is a morphogen expressed in the mesenchyme adjacent to
the differentiating endoderm that directs lung bud formation, outgrowth, and proliferation
(Bellusci et al. 1997; Abler, Mansour, and Sun 2009). It primarily mediates signaling
through activation of the fibroblast growth factor receptor 2, Fgfr2 (Abler, Mansour, and
Sun 2009). Fgf10 expression is largely regulated through interactions with surrounding
tissues; in the mesenchyme, for example, it is positively regulated by the growing distal
endoderm (Bellusci et al. 1997). Additionally, Fgf10 signaling induces expression of
genes and activity of signaling pathways that serve to restrict and dampen further Fgf
signaling. This feedback is of particular importance because branching events are
thought to occur in the absence of Fgf10 (Abler, Mansour, and Sun 2009). These
feedback signals include Sonic Hedgehog (Shh) signaling, bone morphogenic proteins
(BMPs) (Hyatt, Shangguan, and Shannon 2004), and Sprouty expression (Mailleux et

al. 2001).
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Negative feedback for Fgf10 signaling occurs through multiple mechanisms. In
the case of Sprouty proteins, which act intracellularly to inhibit FGFR kinase activity,
they negatively regulate Ras signaling downstream of FGF signaling (Perl et al. 2003).
Mechanistically, they can initiate and regulate branching induced by Fgf10 (Tefft et al.
1999). In contrast, Shh signaling primarily affects the surrounding mesenchyme of the
developing lung bud rather than the lung bud itself (L.-A. D. Miller et al. 2004) despite its
requirement for proper lung branching and patterning (Pepicelli, Lewis, and McMahon
1998). Shh signaling is canonically activated when a Shh ligand binds and inactivates
its receptor, Patched, which ultimately results in translocation of effector Gli transcription
factors to the nucleus (Carballo et al. 2018). When overexpressed in the developing
lung, Fgf10 becomes downregulated (Bellusci et al. 1997). Further mechanistic studies
have demonstrated that Shh acts to restrict Fgf10 expression to the distal end of the
lung bud (Kugler et al. 2015).

While Bmp4 has consistently been shown to be a critical regulator of lung
development, the precise nature of its behavior has been less clear. In genetic studies,
manipulation of Bmp4 causes disruption of lung branching events; overexpression of
Bmp4 reduces the number of terminal buds (Lu et al. 2001), while overexpression of a
BMP inhibitor causes defects in distal differentiation (Weaver et al. 1999). Together, it is
thought that the effects of Bmp4 seem to vary as a function of its effective concentration
(Weaver, Dunn, and Hogan 2000; Weaver et al. 1999) and are dependent on
interactions with the surrounding mesenchyme (Warburton et al. 2005). Further, Bmp4
expression is tightly regulated by multiple signaling pathways, including Wnt and Fgf

(Shu et al. 2005).
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These genes and pathways form a genetic circuit that ultimately coordinates
branching processes of the distal lung. (Maeda, Davé, and Whitsett 2007) Importantly,
because cell type differentiation is exquisitely linked to patterning, this genetic circuitry
not only influences lung anatomy, but also differentiation. It should be noted that
postnatal development of the lung also occurs and is distinct from prenatal
development. For example, RAS expression in the lung occurs mostly in postnatal
development (Thrane et al. 1997). This expression pattern is not surprising, given that
lung development occurs late during fetal development and continues through the first
few days after birth (Warburton et al. 2010).

2.4 Lung Development and Non-Small Cell Lung Cancer

In terms of histopathology, the differentiation state of a tumor has long been
recognized to be prognostic of tumor behavior and patient survival (Jogi et al. 2012).
Loss of differentiation status intuitively correlates with patient prognosis; the more
differentiated a tumor is, the more it resembles the tissue that it arises from.
Mechanistically, the relationship between differentiation status and hallmarks of tumor
progression has been less clear. The discovery and characterization of the EMT
program (Brabletz et al. 2018) in the context of carcinomas offered clarity on this
relationship, as EMT was specifically implicated in metastasis. However, loss of
differentiation in carcinomas that arise from different tissue types occurs through tissue
specific mechanisms that are poorly understood. The importance of the developmental
context under which a tumor forms is made evident through comparison of how tumors
with different origins behave and respond to therapy. Notably, these associations can be

complicated by the fact that histopathology is not always indicative of the tissue a tumor
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arises from (Visvader 2011). Overall, the relationship between differentiation status and
disease behavior is highly context-specific.

Differentiation status is of particular importance for non-small cell lung cancer.
One of the features considered when determining the histological grade of a tumor,
which robustly stratifies patient survival, is histological differentiation of the tumor
(Yasukawa et al. 2018). Aggressive, high grade tumors are characterized by lack of
differentiation. Expression of NKX2-1, a master regulator of lung identity, is often
assessed in clinical specimens to identify tumors that originate from the lung. In
agreement with the associations made with differentiation status and patient prognosis,
expression of NKX2-1 is associated with improved prognosis relative to patients with
low expression of NKX2-1 (Moisés et al. 2017). Despite this association, NKX2-1 is
frequently amplified in lung cancer (Kwei et al. 2008) and is described in some contexts
as a lineage-specific oncogene. However, mechanistic studies have suggested that

NKX2-1 suppresses metastatic disease progression (Winslow et al. 2011).

3. Genetically Engineered Mouse Model of Lung Adenocarcinoma

3.1 The KP Model
3.1.1 Kras

The RAS family, which is the most frequently mutated family of genes in cancer,
includes HRAS, KRAS, and NRAS. Of the RAS family, KRAS is mutated the most
frequently (Waters and Der 2018). WHen bound to GTP, RAS proteins activate a variety
of intracellular signaling networks that generally promote cell proliferation (Cox and Der
2010). Point mutations at glycine-12, glycine-13, or glutamine-61 have been implicated

as gain-of-function mutations which render KRAS constitutively active in the KRAS-GTP
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state, and thereby drive uncontrolled proliferation and transformation (Tchernitsa et al.
2004). The oncogenic effects of point mutant KRAS®'?°® have been extensively modeled
in the mice of lungs, and it was found that spontaneous expression of Kras®'?® will
invariably lead to the development of lung tumors (Johnson et al. 2001).
Histopathologies of the resultant lesions of the lung recapitulate human NSCLC
progression, from hyperplasia to carcinoma (Johnson et al. 2001), and as such,
experimental introduction of oncogenic KRAS®'?® in the lung has become a widespread
genetically engineered mouse model of cancer.

Oncogenic Kras®'?? has been engineered into an allele that allows expression of
oncogenic KRAS®'?P following removal of a transcriptional stop element in a
Cre-recombinase dependent manner (E. L. Jackson et al. 2001). Lung specific
expression of Cre recombinase can be achieved through intranasal or intratracheal
administration of an adenovirus containing Cre (E. L. Jackson et al. 2001; DuPage,
Dooley, and Jacks 2009) and results in multifocal tumors of the lung. Kras is required for
embryonic development but is haplosufficient, thus, this allele can only be bred
heterozygously into viable animals. Importantly, these tumors do not progress through
late histological stages of NSCLC progression, which led to incorporation of other Cre
conditional oncogenic alleles.

3.1.2 Trp53

The tumor suppressor P53 is one of the most extensively studied and
characterized genes in cancer (Vousden and Lane 2007). It has been an identified
regulator of many systems within a cell that become dysregulated in tumor cells,

including cell death, proliferation, genomic stability, and senescence (Vousden and Lane
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2007). The mechanisms behind P53 functionality occur both through its activity as a
transcription factor and its direct signaling pathway activity (Yu and Zhang 2003). It is
regulated through modulation of its activity, stability, and localization in response to cell
cycle arrest and apoptotic signals (Vousden and Lane 2007). A conditional null allele of
TP53 was generated through insertion of LoxP sites, which become recombined by Cre
recombinase, in locations flanking exons 2 through 10 of TP53.

In clinical cases of NSCLC, KRAS and TP53 mutations frequently occur
together, and as such, these Cre-conditional Kras and Trp53 alleles were combined.
This produced Kras--¢'20™*: Trp 5371 mice that produce tumors similar to those of
Kras-S-¢'?P alone (K only) but better reflected more progressed histological stages of
NSCLC with reduced tumor latencies (Jackson et al. 2005). This model has been well
characterized and is hereafter referred to as the KP model.

3.1.1 Behavior of the KP model

Both the K only and KP model of lung cancer have variable progression kinetics
across mice that are infected with the same viral dose (DuPage, Dooley, and Jacks
2009). This has been observed with respect to histological tumor progression,
metastasis, and survival of KP mice (DuPage, Dooley, and Jacks 2009), and with
multiple forms of viral delivery. For example, at 6 weeks post-infection with adenoviral
Cre, approximately 50% of tumors are grade 1, 40% of tumors are grade 2, ~17% of
cells grade 3, and the remaining fraction grade 4. 20 weeks later, almost half of tumors
are grade 3, more than 20% grade 4 or grade 2, and a small minority of grade 1 or

grade 5 tumors (Jackson et al. 2005). Interestingly, KP tumor progression is not


https://paperpile.com/c/XSr7BR/8nDOr
https://paperpile.com/c/XSr7BR/0xK3r
https://paperpile.com/c/XSr7BR/8nDOr
https://paperpile.com/c/XSr7BR/l4vkT
https://paperpile.com/c/XSr7BR/hxnhL
https://paperpile.com/c/XSr7BR/hxnhL
https://paperpile.com/c/XSr7BR/hxnhL
https://paperpile.com/c/XSr7BR/l4vkT

84

currently believed to be driven by acquisition of additional mutations (DuPage et al.
2011).

While lentiviruses used to generate tumors can be flexibly generated in-house
and have viral genomes that can be experimentally modified with ease, they infect a
wide variety of cell types, including macrophages (Buckley et al. 2008). Importantly,
there is no evidence that Kras and Tp53 alleles cause transformation of tissues except
those of the lung epithelium. While tissue specific promoters can be used to drive
expression of Cre recombinase, many of these promoters are too large to be
encapsulated by lentiviral packaging proteins. Instead, Cre expression in alveolar type Il
cells can be achieved by utilizing the promoter for surfactant protein C (Sftpc) to drive
expression of Cre recombinase with adenoviruses (DuPage, Dooley, and Jacks 2009;
Tippimanchai et al. 2018).
3.1.2 Cell of origin in the KP model

Multiple epithelial cells of the lung can give rise to KP lung adenocarcinomas. KP
lung adenocarcinomas can be generated with viruses that contain Cre driven by
promoters that are specific for multiple cell types of the lung, including AT2 cells and
Clara cells (Sutherland et al. 2014). Although both tissues can give rise to
adenocarcinomas, the tumors differ in kinetics and expression (Sutherland et al. 2014).
Some rare cells of the lung that express Clara Cell markers and AT2 markers
simultaneously, termed Bronchioalveolar Stem Cells (BASCs), can give rise to Kras
driven tumors as well (C. F. B. Kim et al. 2005). However, it is now appreciated that
tumors that arise from these cell types differ from those of AT2-derived tumors (C. F. B.

Kim et al. 2005). The tumors that will be described in the forthcoming sections will focus
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on AT2-derived tumors, which are believed to be the predominant tumors that result
from intratracheal lentiviral Cre.
3.2 Developments in experimental tools for studying the KP model

The flexibility afforded by lentiviral mediated delivery of Cre recombinase permits
integration of sequences which, beyond controlling expression of Cre recombinase, can
mediate alterations in other genes or drive ectopic expression of a transgene. In
particular, incorporation of CRISPR machinery to create double stranded DNA breaks at
target loci in the genome has made introduction of additional mutations at the onset of
tumor initiation very efficient (Sanchez-Rivera et al. 2014). Additionally, lentiviruses can
be incredibly powerful tools to study the immune response to a strong neoantigen by
inducing ectopic antigen expression in a tumor-specific fashion (DuPage et al. 2011). By
expressing LucOS, a fusion of luciferase to two peptides, T cells that recognize the
antigens of LucOS can be isolated and characterized via tetramer staining (DuPage et
al. 2011). By staining for T cells that specifically recognize LucOS antigens, longitudinal
responses to a tumor-specific antigen can be measured.

Furthermore, through introduction of additional Cre responsive alleles to the
RosaZ26 locus of KP mice, even further flexibility is introduced. This is particularly
advantageous in settings where lentiviruses are not preferred, and allows for expression

of Cas9, fluorophores, and more (Ng et al. 2020).
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CHAPTER 1, PART 3

High-Dimensional Biological Data

1. Technological Advancements in Sequencing Technology

The development of next-generation sequencing technologies, which have made
DNA sequencing increasingly more cost and labor efficient, has undoubtedly changed
the nature of biological research. Widespread utilization of this technology has led to
unprecedented production of biological data at a scale that is difficult to make
meaningful conclusions from, in even a single biological setting. Until recently, the
materials sequenced through these technologies were isolated from pools of cells.
Advancements in droplet-based, microfluidic, and barcoding technologies have now
made it possible to sequence material isolated from individual cells (Zheng et al. 2017;
Macosko et al. 2015; Amini et al. 2014).

As technologies have advanced, it has become more efficient to sequence a
larger number of cells in a manner that produces higher quality data at a lower per-cell
cost. Subsequently, large-scale efforts have sponsored utilization of single-cell
technologies to characterize cells of different tissues, in various biological contexts,
across many organisms (Rozenblatt-Rosen et al. 2017; Regev et al. 2017, 2018;
Consortium et al. 2018; Z.-J. Cao et al. 2020; Packer et al. 2019). These data generated
from these experiments have been aggregated and made publicly available in a way
that has brought biological research into a new era, wherein biological processes are

characterized and studied at single-cell resolution.
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Single-cell technologies have allowed measurement of RNA and protein
expression in individual cells. single-cell DNA sequencing has also become more
prevalent; however, it is difficult to perform this technique in a manner that yields
sufficient coverage and resolution of a cell's genome. As such, many of the more widely
adopted single-cell technologies provide better relative coverage of sequenced material
through targeted capture of RNA and DNA (Yong Wang and Navin 2015). While some
single-cell technologies designed to assay protein expression utilize DNA sequencing
based readouts, all are dependent on, and limited by, the availability of validated
antibodies (Stoeckius et al. 2017; Han et al. 2018).

Single-cell RNA sequencing (scRNA-seq) is a widely utilized single-cell-omic
technology, primarily due to widespread adoption of the 10X Genomics platform (Zheng
et al. 2017), which allows for efficient and simultaneous measurement of 3’ and 5’
mMRNA in up to thousands of cells. It has now incorporated other technologies to allow
for immune-cell related readouts, spatial measurement, and chromatin accessibility
readout simultaneously with gene expression. Additionally, chromatin accessibility,
which is measured through assay for transposase-accessible chromatin using
sequencing (ATAC-seq), has also become increasingly more popular and can be
performed with the 10X Platform or by single-cell combinatorial indexing (sciATAC-seq)
(Cusanovich et al. 2015). Transcriptional and chromatin accessibility states serve as
reliable proxies for overall cell state because they are collectively responsible for
determining cell behavior. Thus, these technologies have now permitted generation of

high-dimensional biological data that describes biological state at single-cell resolution.
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2. Structures of High-Dimensional Biological Data

2.1 Advancements in discovery of complex data structures

When biological data is produced from assays with single-cell resolution, each
cell is considered a “variable” and each entity measured (e.g. each mRNA in
scRNA-seq) is considered an “observation”. Each variable is measured for each
observation or cell, and this produces high-dimensional biological data. Analytically,
many challenges exist when interpreting this kind of data, which are typically discussed
as ‘the curse of dimensionality’ or the ‘dimensionality problem’ (Donoho and Others
2000). The curse of dimensionality refers to the inability to approximate the underlying
structure of data that is created with complete accuracy. In other words, the data cannot
be interpreted in its true form.

To overcome this challenge, implementations of multivariate statistics and
probability theory have been utilized in computational algorithms to approximate data
structures on a manifold, which is sometimes described as a topological space (Martin
2002). In single-cell analysis, projections of these manifolds are often made in
low-dimensional (usually 2-dimensional) space to visualize latent data structures. In
each approximation approach, assumptions are made or artifacts can be created which
can lead to obstruction of true underlying structures and even misrepresent some
relationships. The optimal analytic approach is usually determined on a case-by-case
basis and is largely dependent on the assumptions made about underlying data
structures (Luecken and Theis 2019). In addition, hyperparameter selection can have a

big impact on the performance of various analytical approaches.
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2.2 Relationships between data structures and underlying noise

Some single-cell analysis techniques require handling that can lead to substantial
technical and batch related artifacts, which was particularly true for early forms of
scRNA-seq (Xiliang Wang et al. 2021). In some cases, these effects can be strong
enough to entirely obstruct underlying structures of data. In many instances, metadata
for plate or batch origin is recorded for each cell, which can be used to approximate the
extent to which batch identity can explain variation observed in data. This can be easily
performed through comparison of expected and observed genes that show the most
variation across a dataset (Xiliang Wang et al. 2021). When comparing datasets
empirically known to contain functionally distinct cell types, where subtle differences in
observations are expected, it can be difficult to distinguish batch effects from true
underlying biology. This is compounded by variation produced from ‘drop-out’, which
occurs when the utilized technology fails to capture expression of a gene and typically
occurs most frequently amongst lowly expressed genes (Kharchenko, Silberstein, and
Scadden 2014). Dropout is usually most apparent when two highly similar cells show
moderate to high expression of a particular gene in one cell, but not of another. In
single-cell data, dropout requires analytical approaches of single-cell data to be able to
tolerate noise generated from resulting sparse data. This is the primary reason why
batch correction techniques utilized in bulk RNA-seq analysis, which are not plagued by
sparsity, have seldom been extended to the single-cell setting (H. T. N. Tran et al.
2020).

Batch correction of single-cell data can be approached through multiple ways.

Some of the most popular forms of batch correction depend on construction of nearest
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neighbor graphs (Lun 2019; Jialin Liu et al. 2020), while others ‘align’ data by drawing
correlations between them (Hardoon, Szedmak, and Shawe-Taylor 2004). All of these
algorithms depend on similarities that exist between cells across batches that are being
corrected for. If similarity is expected between some, but not all, cells across different
batches, this can lead to loss of true underlying biological variation. Some techniques
explicitly state that at least one cell type must be shared amongst batches (H. T. N. Tran
et al. 2020). Other important statistical assumptions are also made for some of these
algorithms, particularly about the behavior of underlying variation in the data.

In many cases, it must be determined whether or not batch correction is
appropriate and, if indicated, which algorithm is optimal. Some batch correction
techniques also employ methodologies that can be extended to integrate
high-dimensional data structures that are generated through different techniques or
modalities (Jialin Liu et al. 2020), but batch correction is still primarily used in the setting
of a singular kind of data (e.g. mMRNA, chromatin accessibility). While some techniques
tend to perform better than others across many forms of data, there is currently no

“one-size-meets-all” solution for batch correction (H. T. N. Tran et al. 2020).

3. Dimensionality Reductions and Interpretability

3.1 Modern approaches to dimensionality reduction in biology

The general premise of dimensionality reduction in biological data is to effectively
reduce the number of dimensions, or variables of gene expression, across which
variation can be studied. Like batch correction algorithms, the techniques utilized in
dimensionality reduction generally perform optimally in some, but not all, settings and

each have associated statistical assumptions (Luecken and Theis 2019) which are not
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appropriate for all biological settings. Most conventional approaches to single-cell
analysis currently utilize multiple forms of dimensionality reduction to increase
computational and processing speed, which are briefly outlined in the subsections
below.

Importantly, construction of these transcriptional or epignomic phase spaces are
independent from and do not explicitly consider external biological metadata such as
time, genetic context, genotype, gender, etc, except when these covariates are
empirically known and explicitly controlled for through batch correction. These identities
create variation in biological data, and the extent of their influence has been
demonstrated in settings where this metadata is explicitly recorded and defined (Peng
et al. 2021). While this can pose challenges of interpretability, this can also be extremely
useful. The identities that are not considered in your dimensionality reduction can be
used as “ground truths” to benchmark the reliability of your analysis for your specific use
case against empirically known relationships and patterns of variation.

3.1.1 Linear Dimensionality Reduction

Principal Component Analysis (PCA), entails linear transformation of data in a
manner that maximizes differences between features of the data (Turk and Pentland
1991). Its applications for analysis of biological data have allowed biologists to make
meaningful observations of relatively low dimensional data, such as those from bulk
RNA sequencing experiments (Yeung and Ruzzo 2001; Shuangge Ma and Dai 2011).
Identified principal components, which can be interpreted as describing different forms
of variation in data, are evaluated by genes which vary the most across a given

component. The use of PCA set a precedent in biology for application of mathematical
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approaches for analysis of high-dimensional data, which became particularly
advantageous for analysis of single-cell RNA sequencing data that produces datasets
with dimensionality that can be multiple orders of magnitude larger than bulk RNA-seq
datasets.

When applied to high-dimensional data, the limitations of PCA and similar linear
transformations are more pronounced (Sun et al. 2019). In many cases, the first two
principal components capture a fraction, but not all, of the variation in a dataset.
Additionally, PCA does not preserve local structures of data (van der Maaten 2008).
Such limitations have led analysis approaches to instead utilize algorithms that are
designed to better preserve both the local and global relationships between data (van
der Maaten 2008). Still, PCA is widely recognized as a reliable method for estimation of
global data structures. It is often used to preprocess data prior to nonlinear
dimensionality reduction (Zappia, Phipson, and Oshlack 2018) and is also useful for
reducing computational resources required for downstream analysis (Tsuyuzaki et al.
2020). In addition, it can be performed only on genes that are highly variable across the
data through feature selection that occurs prior to PCA (Xiliang Wang et al. 2021).

Dimensionality techniques that rely on linear transformation of data inherently
assume that the underlying ‘subspace’ (or gene expression space) is linear. However,
most biological data have nonlinear data structures (Y. Cheng and Newell 2016;
Schulte-Schrepping et al. 2020) and, as a consequence, most linear dimensionality

techniques perform poorly on high-dimensional data.
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3.2.2 Nonlinear Dimensionality Reduction

Functionally, nonlinear dimensionality reductions create an intangible “space”
that is unique to the form of data, i.e. topologies transcriptional space or chromatin
accessibility space, through a generalized approach of manifold learning (X. Huang,
Wu, and Ye 2019).

Nearest neighbor graphs generate data structures that identify positions for data
points that are most similar to another given data point, and are often created to data
that has been transformed into a Euclidean subspace (Andoni and Indyk 2006).
Because PCA produces approximations of distance between data in Euclidean space,
many algorithms construct nearest neighbor graphs in principal component space.
Nearest neighbor graphs can be constructed in multidimensional space, often on a
fraction of selected principal components produced during preprocessing (Tsuyuzaki et
al. 2020) that collectively capture most of the variation observed across a dataset.

The t-stochastic neighbor embedding (tSNE) projection is one of the most widely
utilized embeddings for single-cell analysis. It works by approximating nearest neighbor
graphs through construction of probability distributions from Euclidean distances
between data (van der Maaten 2008). It acts to reduce dimensionality by then finding an
arrangement for data in lower (usually 2 or 3) dimensional space. Distances between
data arranged in lower dimensional space can be used to generate probability
distributions (specifically, student t-distributions) and compared to those generated in
high-dimensional space.

This is then performed iteratively to find and evaluate an arrangement for the

data in lower dimensional space that generates probabilities most similar to those


https://paperpile.com/c/XSr7BR/Ee8lG
https://paperpile.com/c/XSr7BR/Ee8lG
https://paperpile.com/c/XSr7BR/9gzjw
https://paperpile.com/c/XSr7BR/7XxOc
https://paperpile.com/c/XSr7BR/7XxOc
https://paperpile.com/c/XSr7BR/gNhbQ

94

constructed on data in high-dimensional space. A given arrangement in lower
dimensional space is considered to be optimal when Kullback-Leibler divergence across
all datapoints is minimized. A tSNE projection will specifically preserve local distances
between data points by prioritizing optimal arrangements between data points that are
close together at the expense of those which are far apart when evaluating lower
dimensional arrangements of data points. Notably, in datasets where most data points
are similarly distanced from one another, this will create artifacts that will manifest as
crowding of data points and distortion of underlying data structures. Additionally, this will
cause poor performance in datasets with highly variable underlying manifolds (van der
Maaten 2008).

Uniform Manifold Approximation and Projection (UMAP) has become a widely
adopted method of visualizing high-dimensional data and is often a preferred alternative
to tSNE embeddings (Mclnnes et al. 2018). Mechanistically, it is similar to that of tSNE,
but takes different approaches to calculate neighbor graphs and approximate them in
lower dimensional space (Mclnnes, Healy, and Melville 2018). When a UMAP
dimensionality reduction is performed, a k-nearest-neighbor graph for each individual
cell is constructed by approximating distance between neighboring cells with a
Reimannian metric. The resulting graphs for all cells in the data are then iteratively
merged or “patched” together to form a global space, represented by a k-nearest
neighbor graph, that approximates the topology of the data on a uniform manifold. In a
manner that is conceptually similar, but mechanistically distinct from tSNE embeddings,
a low dimensional (2D or 3D) UMAP embedding is generated by finding an optimal

arrangement for cells data in lower dimensional space that generates probabilities most
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similar to those constructed on data in high-dimensional space. This differs from the
approach utilized in tSNE embeddings in the features of the probability distributions that
are compared and optimized upon. The cost function used to find an optimal 2 or 3
dimensional embedding, cross entropy, is also distinct from that of tSNE (Mclnnes,
Healy, and Melville 2018). UMAP is favored in most circumstances over tSNE because
it better approximates global and local structures of data (Mclnnes et al. 2018).

3.2 Limitations of dimensionality reductions

Although dimensionality reduction is a powerful and necessary tool in
interpretation of high-dimensional data, it always comes at a cost: information must be
lost (Donoho and Others 2000). Optimally, dimensionality reduction will result in
preservation of meaningful forms of variation across data in low dimensional space. In
most use cases, the exact nature of the variation in a dataset is not necessarily known
ahead of time, and this can confound interpretations of dimensionality projections.
Further, it can impact the reproducibility and robustness of data interpretation across
parameters and analytical approaches. In many cases, multiple approaches to
dimensionality are taken when performing an initial analysis of single-cell data.

Across published studies of scRNA-seq and other forms of single-cell analysis,
there is no single broadly accepted approach to data analysis because selection of
analytical methodologies is entirely dependent on the objectives of the study and the
nature of the underlying structure of the high-dimensional data that is produced. In most
experimental settings, this underlying cannot be accurately determined, so, the optimal
methodology for dimensionality reduction cannot be selected in a straightforward or

standardized manner (Luecken and Theis 2019). A low dimensional embedding is an
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approximation, and the degree to which an embedding reliably depicts the variation in
data that is of interest is dependent on the use case. For example, distinguishing one
cell type from another may be more easily or robustly achieved than distinguishing
highly similar cells with nuanced differences. Ultimately, multiple approaches are
frequently utilized to determine an optional dimensionality reduction and embedding that

are dependent on the objectives of the study and the underlying structure of the data.

4. Clustering and Classification of Cell Types

One of the most widely used analytical approaches used to make interpretations
of single-cell data has been to cluster cells based on their transcriptional or chromatin
accessibility profiles in an unsupervised manner (Kiselev, Andrews, and Hemberg
2019). In experiments that produce data structures where distinct clusters of cells are
expected, many of which have profiled transcriptional differences between distantly
related cell types (Rozenblatt-Rosen et al. 2017), these clustering algorithms perform
well. Many clustering algorithms have been developed, which have been iteratively
improved by benchmarking their ability to correctly assign cells to empirically defined
groups.

Most clustering algorithms are dependent on dimensionality reduction and are
sensitive to transformations of data during preprocessing steps, including normalization
and batch correction (Krzak et al. 2019). While many different algorithms to cluster
high-dimensional data have been developed, the majority of which were developed for
applications outside of biology (Krzak et al. 2019). In recent scRNA-seq studies, cell
clustering is predominantly performed through Louvain clustering (Meo et al. 2011).

Louvain clustering is a network modularity algorithm that generates communities, or
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clusters, using information from global and local network information (J. H. Levine et al.
2015).

As cell types of individual tissues have become better characterized, it has
become widely appreciated that transcriptional heterogeneity amongst cells of a
particular tissue is common across multiple biological settings (Z. Wu and Wu 2020).
Because cell clustering is conventionally performed based on differences in gene
expression alone, there is no way to predict the boundaries between groups of cells that
functionally distinguish heterogeneous populations of a tissue. As such, it is impossible
to distinguish clusters that are driven by functional or phenotypic differences between
cells from clusters that are driven by variation in gene expression data that reflects
biological noise. This is particularly relevant when analyzing data that is highly
continuous. In these situations, one popular way that this has been overcome is through
identification of gene modules or topics that appear to be co-regulated, which are based
upon algorithms designed for natural language processing (X. Wu, Wu, and Wu 2021).
Importantly, the ‘topics’ that are formed from these kinds of analysis can incorporate
genes that are represented in many other ‘topics’ and perform well on data that cannot
be reliably or robustly clustered.

Gene expression modules and cell clusters are functionally treated as equal and
independent entities. However, differentiation of cell types occur in a hierarchical
manner, and gene expression programs change in a manner that is constrained by
gene regulatory networks (S. Huang 2012; Z. Wu and Wu 2020). In situations of
development, this may be particularly of importance because cell differentiation occurs

in a semi-hierarchical manner (Packer et al. 2019; Fincher et al. 2018; M. Plass et al.
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2018). The data produced in many of these biological settings can be both clustered
and continuous, which may be reflective of differentiation programs that connect
different populations of cells, but may also suggest that clustering methods may perform
well even in settings that contain continuous data. Although many clustering algorithms
have been compared through benchmarking studies, there are very few ways to
evaluate the clustering schematic of a dataset in the absence of reference labels (Z. Wu
and Wu 2020). Most clusters are annotated through referencing and correlation to
previously described gene expression signatures (Stuart et al. 2019).

In practice, clustering schematics and annotations are evaluated through manual
interpretation of genes differentially expressed in a cluster and through comparison to
gene signatures described in other biological settings. While denoising is inherent in
many transformations of high-dimensional single-cell data (van der Maaten 2008;
Mclnnes et al. 2018; Smolander et al. 2021), even after data has been denoised, many
latent variables can still create variation across measurements. Specifically, when
clustering based methods generate groups of cells with gene expression patterns that
have not been previously described, or in situations where a model does not exist for a
biological process, it is extremely difficult to determine if the resulting clusters from data
are driven by technical or biological noise. As such, conclusions made from clustering
schemas of single-cell data are often considered unreliable without empirically derived

data to support them.
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5. Biological Variation

5.1 Biological Noise

Much of the data produced in biological experiments cannot be explained by
technical handling or explicitly defined experimental variables, even in the most
simplified systems (Elowitz et al. 2002; Eling, Morgan, and Marioni 2019). Stochastic
processes govern many systems that are relevant in biology, ranging from those that
dictate molecular thermodynamics to those that dictate gene expression (Tsallis 1988;
Elowitz et al. 2002) and beyond.

In animal models, many attempts are made to control for experimental variables
that can produce noise in experiments. Through careful selection of animals with a
particular genetic background, age, and gender, these variables can be experimentally
defined. Other sources of biological variation such as diet (Y. Yang et al. 2014),
circadian rhythm (Wager-Smith and Kay 2000), and pathogen exposure (Leén et al.
2009) can be controlled through adoption of standardized care and housing of
experimental animals (Voelkl et al. 2020). Additional variation that is inherent for
aging-related processes (“Know Thy Mouse: Variability in Aged Mice” n.d.; Bahar et al.
2006), hormone fluctuations (T. Liu et al. 2020), and genetic circuitry (Kaern et al. 2005)
also produce biological noise that can be partially, but not completely, controlled for.

In some tissue contexts, and in the lung in particular, there are periodic changes
associated with normal organ function, such as breathing, which can also drive
biological noise. Breathing rhythms directly cause periodic changes in pressure and
biomechanical force within the thoracic cavity (Ferris and Pollard 1960; Zamprogno et

al. 2021). Further, the phase and amplitude of breathing rate also varies such that
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equilibrium can be achieved in response to dynamic changes in pH and oxygen or
carbon dioxide concentrations of the blood (Serna et al. 2018).

Although all of these processes occur in a regular manner, the time scales over
which they act vary with biological context. Systems that exhibit periodic behavior can
undergo phase shifts, changes in amplitude or frequency. Even amongst stochastic
processes, such as aging, characteristic reproducibility is observed (J. W. Curtsinger et
al. 1995). In many cases, these influences can create variations in biological data that
are ultimately observed as noise.

5.2 Biological Metadata

As previously discussed, biological identities, which are treated as metadata for a
tumor or cell, often serve as biological ground truths to ensure we are interpreting the
data with respect to the things that matter to us. This method is reliable because
metadata is typically information that is collected about a cell or tumor independently
from the assay used for analysis.

In the context of KP tumors, these identities can reflect the mouse a tumor
develops in, the time point a sample was harvested at, genotype, or an explicitly defined
experimental variable. Likewise, in studies of T cell responses to antigens, this can be
the cognate antigen of the cell. In most cases, even when a study has a clearly defined
objective and underlying hypothesis, the ultimate purpose of that study is to either refute
or support a theory that explains a biological process. Often, we seek to understand
how biological metadata influences a biological process.

In tumor evolution, the most pertinent biological metadata is the time point a

sample was harvested at, with the ultimate goal of understanding changes in the tumor
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microenvironment, changes within a tumor, and changes within a tumor cell as cancer
progresses. Tumor progression is a time-dependent process that occurs reproducibly,
but with some variation in kinetics (Jackson et al. 2005). Although this particular feature
of the model makes an absolute time point less reliable, an estimation can still be made
about the distribution of tumor states at a given time point. This combination of
reproducibility and kinetic variation is also observed amongst immune cells in these
tumor models (DuPage et al. 2011).
5.3 Biological Pseudotime

Absolute time is an intangible dimension (Hoefer and Ray 1992) that is entirely
independent from tumor progression. It is symmetric and is invariably defined by
intervals of a constant size. Stated plainly, absolute time is what is usually referred to in
time, and is measured by seconds, minutes, etc. The kinetics of biological processes
vary, and as such, the changes which occur during those processes can also be thought
to progress on an axis of time that is rescaled according to the dynamics of an individual
process. Mathematically, this is often termed biological “pseudotime”, which is treated
as an intangible dimension and largely follows the philosophical frameworks proposed
by Substantivalism (Sklar 1976), in which relative and gradual biological changes occur
on an axis that is an ontology of absolute time, or rescaled time. In other words,
pseudotime is an axis that is defined by sequential changes that occur during some sort
of biological process, rather than the time required for those changes to occur.

Units on this axis are defined by distance in an informational space that governs

an overt biological phenotype, rather than absolute time. For example, a cell may

undergo rapid change in transcriptional state upon transformation with respect to
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absolute time. However, subsequent transcriptional changes or progression through a
transcriptional space during tumor progression may occur more slowly. In this example,
the axis of pseudotime would be defined by the specific transcriptional changes
between a cell before transformation and cells from well-progressed tumors. If the
amount of transcriptional change observed in early transformation is equivalent to the
amount of change observed between cells at later stages of tumor progression, the
pseudotime distance between these cells may be equal, even though the time that is
required for these changes may be entirely different.

Although there have been many proposed ways of calculating pseudotime in
single-cell data, they all operate on a similar principle of pseudotime theory. Statistically,
pseudotime can be modeled by gaussian mixture models (Lénnberg et al. 2017),
differentiation potential (S. Jin et al. 2018), optimal transport (Schiebinger et al. 2019),
and minimal spanning trees (Trapnell et al. 2014). All of these algorithms exploit the
continuity of cell state, transcriptional or otherwise, to generate these models of
differentiation trajectories. Settings where cells undergo gradual transcriptional changes
during differentiation produce a continuum of cell states, and in single-cell data, can
produce highly continuous data structures (M. Plass et al. 2018; Fawkner-Corbett et al.
2021). Often, subsets of data produced from biological settings where continuous
developmental cell states are observed can also produce highly clustered data
structures. As such, many of these algorithms are relatively limited to situations where
continuity in cell state is observed. Importantly, many of these algorithms are extremely
sensitive to artifacts of dimensionality reduction, batch correction, and in some cases

clustering schemas. Some software provides the option to determine the ancestral
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populations computationally, although these predictions are rarely robust; in most
cases, these algorithms perform most optimally when ancestral states are empirically
known or defined.

Many biological processes associated with disease are not programmed. In
contrast, developmental processes and differentiation are highly conserved programs
that have evolved as a consequence of Darwinian selection. This reasoning can be
extended to all processes designed to protect evolutionary fitness and are tightly
regulated (“Evolutionary Bioscience as Regulatory Systems Biology” 2011). However,
cancer and many diseases occur as a consequence from loss of regulatory processes
that result from somatic mutation, epigenomic, and/or genomic instability. Intriguingly,
many of these diseases progress with a surprising degree of reproducibility across
individuals (Hanahan and Weinberg 2011). This reproducibility forms the basis for
patient stratification in modern medicine.

Cancer progression is largely dependent on stochastic and unprogrammed
changes, which is why its progression is not entirely deterministic (“A Stochastic Model
in Tumor Growth” 2006). The probability that these stochastic changes will occur is a
function of many factors, including number of cell divisions, replication error, and
stability of cell state. Because the likelihood of these events accumulates with time, this
forms the basis through which time plays a causative role in cancer progression. The
influence of time on the progression of a tumor is thought to be probabilistic in nature
(“Permanence and Extinction of a Stochastic Hybrid Model for Tumor Growth” 2019). As
such, metrics of time may be largely unreliable when studying disease across

organisms. Instead, characterization of tumor evolution with respect to pseudotime
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eliminates the variations observed at a given time point, because it occurs on an axis
that is unaffected by the asynchronous nature of tumor progression (Trapnell et al.
2014).

Several precedents exist to support the fact that the developmental history of a
cell is closely influenced by its transcriptional state (Packer et al. 2019; S. Huang 2012).
Every trajectory an entity (e.g. a tumor or cell) may have through an informational space
(e.g. transcriptional space) will progress along a path that reflects changes of cell state
and is specific to the biological process. The states that are connected by these
trajectories are defined by the starting and ending populations (Trapnell et al. 2014) of
the biological process. In the context of tumors, these trajectories can be thought of as
adaptations to selective pressures of the tumor microenvironment.

Cell states are heterogeneous for both tumor cells and cells of the tumor
microenvironment; the global trajectory a tumor and its related cells will take is the
aggregate product of the individual trajectories associated with each cell state change in
the tumor and its microenvironment (“Tumor Functional Heterogeneity Unraveled by
scRNA-Seq Technologies” 2020). This is complicated by the fact that tumors are
thought to arise from a single cell (Peter C. Nowell 1978), so all tumor cells are thought
to have some sort of ancestral relationship. As a consequence, it is likely that tumor
cells progress through many trajectories that ultimately give rise to the variation in
phenotypes observed in a heterogeneous tumor (Peter C. Nowell 1978; P. C. Nowell
1976). The degree of heterogeneity observed in tumor cells themselves are not
constant throughout tumor evolution. Cells of the tumor microenvironment, in contrast,

do not undergo changes during tumor progression in a clonal manner, as many of these
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tissues are heterogeneous under normal homeostatic conditions. Still, non-tumor cells
of the microenvironment undergo phenotypic changes during tumor progression. In
these situations, ancestral cell states are not empirically known and cannot be

assumed, and limits the utility of pseudotime based approaches.
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ABSTRACT

In lung adenocarcinoma (LUAD), aberrant expression of genes canonically
expressed during embryonic development identifies highly metastatic and poorly
differentiated primary lung tumors of genetically engineered mouse models (GEMMS)
and of human LUAD patients. Through analysis of ScRNA-seq data generated from
longitudinally sampled individual cells of lung adenocarcinomas and adenomas, we
determined that tumor evolution occurs reproducibly across mice and tumors.
Pseudotime based analysis identified that the Pea3 transcription factor family becomes
aberrantly expressed during lung tumor evolution. Etv4, an embryonic-restricted
transcription factor, is silenced in the normal lung epithelium but becomes latently
expressed in tumors. Etv5, a master regulator of alveolar type Il cell (AT2) identity, is
co-expressed with Etv4 during embryonic lung morphogenesis and its expression is
maintained through adulthood. Etv4 and Etv5 play essential roles during stages of early
transformation. Manipulation of both genes at the onset of transformation events
drastically diminish the frequency of tumorigenesis, but are likely dispensable in later

stages of tumor evolution.
INTRODUCTION

Solid tumors are ecosystems of cells that share a common ancestor and
evolutionarily diverge from transformation of a single cell (Greaves and Maley 2012). As
these cells evolve during tumor progression, they will phenotypically and functionally
diverge to form multiple subclones within a tumor with differing levels of evolutionary

fitness that can affect both the subclone alone or the tumor as a whole. Importantly, this
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heterogeneity is believed to be the primary mechanism of tumor plasticity and ultimately
makes tumors difficult to treat or entirely eliminate (Lawson et al. 2018).

Lung adenocarcinoma (LUAD), which is the most common form of non-small cell
lung cancer, is believed to predominantly arise from a cell type of the distal lung
epithelium that produces surfactants, known as alveolar type Il (AT2) cells (Mainardi
2013; Sutherland et al. 2014). Two of the most common oncogenic mutations observed
in clinical LUAD are activating gain-of-function mutations in KRAS and loss of function
mutations in the tumor suppressor TP53 (Sutherland et al. 2014; Jackson et al. 2005; E.
L. Jackson et al. 2001). In mice, expression of Kras®'? is sufficient to drive
transformation of cells in the lung epithelium, frequently producing lesions which
histologically recapitulate hyperplasias and adenomas (E. L. Jackson et al. 2001). By
introducing an additional oncogenic hit during transformation with homozygous loss of
Tpb53, lung lesions will progress to histological adenocarcinomas with the capacity to
metastasize (Jackson et al. 2005), which occurs rarely with Kras®’?° alone. These
adenocarcinomas, both in mice and humans, are distinguished from adenomas by
characteristic morphological features that are indicative of highly dysregulated cell
identity (DuPage, Dooley, and Jacks 2009). Therefore, LUAD can be faithfully modeled
in immune competent genetically engineered mice in an autochthonous manner.

Multi focal tumors can be selectively initiated in the lungs of mice harboring Cre
recombinase conditional alleles that permit expression of heterozygous Kras-S-¢"?P (K),
driven by its endogenous promoter, and homozygous deletion of Trp53"" (P) through
intratracheal delivery of viral Cre recombinase (DuPage, Dooley, and Jacks 2009).

Importantly, although oncogenic mutations in Kras and Trp53 (KP) occur simultaneously,
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tumor progression kinetics and disease latency are somewhat variable (Jackson et al.
2005). The cells that are believed to give rise to lung adenocarcinomas and adenomas
are alveolar type Il (AT2) cells (Sutherland et al. 2014), which are found in the distal
lung epithelium and are primarily responsible for surfactant production. The other
epithelial cell type of the distal lung is known as an alveolar type | cell (AT1) and is
responsible for gas exchange in the alveolus (Little et al. 2021). Despite their functional
differences, these two cell types have intertwined developmental relationships; both cell
types arise from a common progenitor, and AT2 cells can regeneratively differentiate
into AT1 cells upon injury (Barkauskas et al. 2013).

Previously, metastasis of lung tumors in KP mice has been characterized through
bulk gene expression studies, which led to the discovery that Nkx2-1, a
well-characterized transcriptional regulator of lung identity (Yuan et al. 2000), is
frequently downregulated in poorly differentiated high grade primary lung
adenocarcinomas and their metastases (Winslow et al. 2011; C. M.-C. Li et al. 2015).
Loss of Nkx2-1 will cause tumor cells to lose their lung identity and instead adopt a
gastric-like phenotype that is partially, but not fully, responsible for driving gene
expression associated with late stage and metastatic tumors (Winslow et al. 2011; C.
M.-C. Li et al. 2015; Snyder et al. 2013). Until recently, developmental Nkx2-1
expression was believed to be selectively retained in AT2 cells compared to AT1 cells
once lung development is complete, but it has since been found to be required for AT1
transcriptional and morphological identity as well as their quiescent behavior (Little et al.

2019). When deleted, Nkx2-1 null embryos display drastic defects of tracheal and lung


https://paperpile.com/c/XSr7BR/l4vkT
https://paperpile.com/c/XSr7BR/l4vkT
https://paperpile.com/c/XSr7BR/e9OM4
https://paperpile.com/c/XSr7BR/Qw4Mt
https://paperpile.com/c/XSr7BR/w6t1V
https://paperpile.com/c/XSr7BR/rvHIN
https://paperpile.com/c/XSr7BR/It1nl+1ldeG
https://paperpile.com/c/XSr7BR/It1nl+1ldeG+fwjPn
https://paperpile.com/c/XSr7BR/It1nl+1ldeG+fwjPn
https://paperpile.com/c/XSr7BR/YOEHU
https://paperpile.com/c/XSr7BR/YOEHU

110

morphogenesis, and specifically do not generate surfactant producing AT2 cells (Minoo
et al. 1999).

The Pead subfamily, which consists of Etv4, Etv5, and Etv1, plays a crucial role
during lung morphogenesis by creating primary and secondary branching events in the
developing lung bud. Importantly, these branching events ultimately establish proximal
and distal patterning in the lung (Cardoso and Lu 2006). Etv4 and Etv5 in particular are
co-expressed at the distal end of the developing lung bud, while Etv1 is expressed in
the surrounding mesenchyme. Although co-expressed, Etv4 and Etv5 have
non-redundant roles during development. The PEA3 family is expressed in the mouse
both during development and in adult cells (Hollenhorst, Jones, and Graves 2004;
Chotteau-Lelievre et al. 2001; Y. Liu et al. 2003).

In the early stages of murine development, Pea3 transcription factors are
ubiquitously expressed. As development progresses, their expression becomes
restricted to tissues whose differentiation relies upon extensive interactions between the
epithelium and mesenchyme (Cardoso and LU 2006). Their expression is largely
associated with cell migration, proliferation, and remodeling of the surrounding
extracellular matrix (Chotteau-Lelievre et al. 1997). Upon maturation of the distal lung
bud, expression of Etv4 is silenced, while Etv5 expression persists (Y. Liu et al. 2003;
Chotteau-Lelievre et al. 1997). Etv4 and Etv5 are believed to create lung bud branches
through regulating periodic interactions between the Fibroblast growth factor (Fgf) and
Sonic Hedgehog signaling pathways. Etv4 and Etv5 are nuclear targets of Fgf10 and
induce Fibroblast growth factor signaling, and promote Sonic Hedgehog signaling

(Herriges et al. 2015). In turn, a branching event occurs when Shh signaling creates a
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temporal delay in Fgf signaling (Herriges et al. 2015). In the context of oncogenic
Kras®'?®| Etv5 is required to maintain normal AT2 identity; deletion of Etv5 disrupts lung
tissue regeneration following bleomycin-induced injury and inhibits oncogenic
transformation by Kras®’?? in the lung (Z. Zhang et al. 2017). Importantly, in lesions with
heterozygous deletion of Etv5, Etv4 is upregulated, suggesting they are mechanistically
redundant for early stages of transformation (Z. Zhang et al. 2017).

Therefore, aberrant expression patterns of Etv5 and Nkx2-1, which have been
implicated in both early and late stages of Kras®’?° transformation, respectively,
demonstrate the functional implications of dysregulation of cell identity throughout Kras
mutant lung tumor progression. In order to understand how cell identity becomes
dysregulated in Kras mutant tumors as they progress, a single-cell RNA-sequencing
(scRNA-seq) study (Marjanovic et al. 2020) was conducted on longitudinally sampled
Kras mutant lung tumor cells, and a single-cell combinatorial indexing ATAC-sequencing
study was conducted on late stage tumors and their metastases (LaFave et al. 2020).
Using these data, | identified putative transcriptional regulators that are known to affect

cell identity.

RESULTS

KP Tumor progression occurs reproducibly over time across mice and tumors
Through introduction of a Cre-conditional fluorescent reporter allele to the

Rosa26 safe harbor locus, Rosa26-S-19mate  the cells that are transduced by viral Cre

and give rise to Kras mutant lung lesions can be isolated from other lung tissue through

fluorescence-activated cell sorting. Additionally, further specificity over Cre expression
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can be achieved through intratracheal delivery of adenovirus, which drives expression
of Cre using an AT2 specific promoter, Sftpc, a surfactant gene (Sutherland et al. 2014).
With this methodology, to landscape transcriptional evolution of Kras mutant lung tumor
cells throughout disease progression, adenoviral Sftpc-Cre (AdSPC-Cre) was used to
infect the lungs of Kras-S-¢120"* Rosa26-S-tdTemate’ Trp 53 (KP) and

Kras'S-C12D/* Rosa26-St-tdfematol Trpn53** (K) mice and generate transformed cells that
were longitudinally sampled after tumor initiation that reflect hyperplasias, adenomas,
and adenocarcinomas (Jackson et al. 2005). As a control,
Kras**,Rosa26-SttdTomatot - Trn 53** (T) mice, which do not harbor tumor initiating alleles,
were included in these experiments to empirically characterize the cells that are
infected by AASPC-Cre and give rise to tumors in K and KP mice. TdTomato* cells were
then isolated from the lungs of these animals at various time points (0, 2, 4, 12, 18, 20,
and 30 weeks) after tumor initiation, sorted by flow cytometry to specifically isolate
non-immune cells, and then assayed by SMART-Seq2, a plate-based scRNA
sequencing technology (Marjanovic et al. 2020).

The following exploration of this scRNA-seq experiment will utilize data that was
originally produced and described by (Marjanovic et al. 2020), which has been
reanalyzed with slightly different methodologies (see Methods) than those originally
described, for the following discussions. For visual inspection of transcriptional profiles,
the structure of data from scRNA seq was approximated on a uniform manifold with
Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al. 2018; Becht et
al. 2018) and on a hyperbolic manifold with scPHERE (Ding and Regev 2021). In both

embeddings, the transcriptional state of cells isolated from control T mice and from early
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time points after tumor initiation (2 and 4 weeks) appear to have minimal transcriptional
heterogeneity, but continually diverge by 12 weeks and beyond, as expected (Figure
1A, 1B). Across these timepoints, very few genes selectively distinguish cells harvested
at one time point from another (Figure 1C), and most marker genes appear to have
similar, but variable, expression across time points. These data suggest that, when
aggregating cells at an individual time point, the primary feature that distinguishes cells
isolated at different time points is the degree of transcriptional heterogeneity observed,
rather than global transcriptional changes. Still, there are some transcriptional states
observed, albeit variably, in cells isolated from late timepoints (18, 20, and 30 weeks
after tumor initiation) that are rarely, if ever, reflected in cells isolated at earlier time
points. With respect to transcriptional state, despite variation observed at individual time
points, evolution of Kras mutant tumor cells over time have characteristic, but
heterogeneous, features that can generally distinguish between tumor cells isolated
from early and late time points. Importantly, these observations largely agree with and
have also been discussed by (Marjanovic et al. 2020).

Tumor cells isolated from K mice are assumed to predominantly reflect cell states
of histological hyperplasias and adenomas, while cells isolated from KP mice are
assumed to reflect adenomas and adenocarcinomas (Jackson et al. 2005). To visualize
transcriptional states that distinguish these genotypes, and by proxy their associated
histological stages, we compared positions of cells isolated from T, K, and KP mice
(Figure 1D, 1E) in the same embeddings described in Figure 1AB. There was a clear
overlap of transcriptional states that appear to be most similar to control AT2 cells of T

mice, which are reflected in cells of early, late, and intermediate time points (Figure
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1AB). However, transcriptional states which are predominantly observed at late time
points in KP tumor cells, but less frequently in K tumor cells, reflect a clear divergence
of evolutionary trajectories between these cells with K and KP genotypes, as is reflected
most clearly in Figure 1E.

The genes that distinguish these transcriptional trajectories may include genes
that drive transitions to histological adenocarcinomas, and as such, | assessed bulk
expression of marker genes that are characteristic of K, KP, and T cells and visualized
them across these genotypes (Figure 1F, Figure S1A-D). As expected, many of the
identified marker genes robustly distinguish transformed (K & KP) tumor cells from
control AT2 cells (T), and other genes distinguish KP from K and T cells, consistent with
the transcriptional overlap and divergence observed in low dimensional embeddings.
These transcriptional states are observed recurrently and reproducibly across mice
within the same genotype, and provide additional evidence for the meaningful impact
oncogenic driver mutations can have on transcriptional trajectories of tumor cells over
disease progression.

Despite the fact that tumor progression is generally believed to be a stochastic
process (M. Guo et al. 2019), both with respect to mutations and epigenetic state, there
is a striking degree of reproducibility observed in transcriptional state of KP tumor cells.
Nearly all of the states observed during tumor progression are observed in multiple
tumors (Figure 1G). Similarly, the genes with the greatest variable expression across
the entire dataset have highly similar bulk expression between individual tumors or lung

samples of a given genotype (Figure 1H).
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In agreement with the general behavior of transcriptional evolution during KP
lung tumor progression with respect to genotype and time point, unbiased hierarchical
clustering with Canberra distances between expression of highly variable genes across
individual tumors roughly arranged individual tumors in a manner that reflects variations
and similarities of tumor progression kinetics observed across time points and
genotypes (Figure 1H). Particularly, in agreement with Figure 1D-F, K tumors are
generally most similar to cells of T mice and early to intermediate time point KP tumors.
The divergence in overall tumor state was maximal between KP tumors and T samples.

In addition, transcriptional states of individual cells are also highly reproducible
across mice (Figure 11). The variation in expression of highly variable genes in the
dataset observed across tumors in Figure 1H are similar to those observed across
aggregate gene expression of cells derived from an individual mouse (Figure 1J); the
variation observed can be primarily attributed to genotype of the mouse and the time
point the mouse was sacrificed at. Additionally, reproducibility is observed between
male and female mice (Figure S1E-G) and, following batch correction, across days

batches were processed (Figure S1H).
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Figure 1. KP Tumor progression occurs reproducibly over time across mice and
tumors.

Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures. The rows in all heatmaps of
this figure are arranged by complete linkage hierarchical clustering of their euclidean
distances.

(A-B) (A) UMAP or (B) hyperbolic scPHERE embedding of scRNA-seq gene
expression data cells harvested at 0 weeks (n = 3, 162 cells), 2 weeks (n = 5, 142 cells),
4 weeks (n = 2, 44 cells), 12 weeks (n = 6, 946 cells), 18 weeks (n = 2, 103 cells), 20
weeks (n = 3, 435 cells), and 30 (n = 15, 2,059 cells) weeks post-tumor initiation. Total n
= 24 mice, 3,891 cells.

(C) Heatmap depicting continuity of mean log-normalized expression of the top 4
marker genes for each time point, ranked by g-value.

(D-E) (D) UMAP or (E) hyperbolic scPHERE embedding of scRNA-seq gene
expression data of cells harvested from mice without an oncogenic mutation (“T”, n = 5,
206 cells), with Kras®'?* (“K”, n = 9, 1,071 cells), and with Kras®'?’;Tp53~2 (“KP”, n =
16, 2,614 cells), post-tumor initiation. Total n = 36 mice, 3,891 cells.

(F) Heatmap depicting continuity of mean expression of the top 8 marker genes for each
genotype, ranked by g-value.

(G) UMAP embedding of scRNA-seq gene expression data of cells harvested from each
sampled tumor. (“T”, 29 samples), with Kras®'??* (“K”, 66 tumors), and with

Kras®'?; Tp53~2 (“KP”, 80 tumors), post-tumor initiation. Total n = 146 tumors.

(H, J) Heatmap depicting mean log-normalized expression of the top 2000 highly
variable genes across () tumors or (K) mice. Genotype and Timepoint metadata is
annotated above the heatmap. Canberra distances between mouse or tumor samples
(columns) are hierarchically clustered by complete linkage.

(J) UMAP embedding of scRNA-seq gene expression data of cells harvested from each
Mouse.
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Figure S1. KP Tumor progression occurs reproducibly over time across mice and
tumors.

Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures. The rows in all heatmaps of
this figure are arranged by complete linkage hierarchical clustering of their euclidean
distances.

(A-D) UMAP embedding of scRNA-seq gene expression data depicting expression of
(A) Oncogenic Kras®'?, (B) Trp53, (C) tdTomato, and (D) wild-type Kras.

(E-F) (E) UMAP or (F) hyperbolic scPHERE embedding of scRNA-seq gene
expression data of cells harvested from female mice (n = 5 mice, 650 cells), male mice
(n =20 mice, 2,073 cells) or mice with unassigned genders (n = 5 mice, 538 cells).

(G) Heatmap depicting continuity of log-normalized mean expression of the top 8
marker genes for each genotype, ranked by g-value.

(H) Heatmap depicting mean log-normalized expression of the top 2000 highly variable
genes across dates when cells were processed.
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Biological pseudotime approximates gene expression changes in KP lung tumor
progression

Transcriptional changes during progression of KP tumors that are thought to
have the greatest translational relevance are those that occur between early stage
hyperplasias and metastatic tumors. As such, to develop a framework for studying
tumor progression in the KP model, we utilized expression of two previously
characterized markers of late-stage tumor cells, Hmga2 (Winslow et al. 2011) and
Runx2 (LaFave et al. 2020) to identify tumor cells in transcriptional space that are
believed to give rise to metastases (Figure 2A). Although the methodologies of the
analyses of this thesis are different from those originally used to analyze this
scRNA-seq data, the transcriptional similarity observed in the cell clusters identified by
(Marjanovic et al. 2020) generally agree with those observed in this analysis (Figure
2B-C). One notable exception to this agreement are the relative positions and distances
of cells assigned to Marjanovic cluster 9 in low-dimensional space in comparison to
cells of other clusters, which vary dramatically across different embeddings and
projections (Figure 2B-C, (Marjanovic et al. 2020). Thus, it is entirely likely that the
bonafide transcriptional similarities between cells of cluster 9 and other cells in the
dataset are distorted by dimensionality reduction.

The clusters identified by (Marjanovic et al. 2020) were named in the order they
were believed to arise during tumor evolution and “begin” at Cluster 1, which contains
untransformed AT2 cells from T mice. The positions of “early” clusters (1-4) in UMAP
and hyperbolic embeddings largely agree with the dynamics originally proposed by

(Marjanovic et al. 2020). For “late” clusters, the ordering of these clusters appears less
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robust. Still, the cells assigned to “late” clusters are highly connected, supporting that
tumor cells progress into and between these states. As such, | reasoned that we might
better be able to order these states with greater resolution and confidence through
computationally predicting transcriptional trajectories in nearest-neighbor space created
by UMAP, which is well suited for continuous data. While there are many suggested
methodologies to computationally infer the ancestral or starting population of an
evolutionary process, during tumor progression, tumor cells become progressively less
differentiated and have transcriptional profiles that resemble stem populations observed
during development. A prominent example of this behavior is HmgaZ2 expression in
met-like cells, as HmgaZ2 is otherwise silenced in the mature lung epithelium and
restricted to embryonic and early postnatal development (I. Singh et al. 2014).
Consequently, many pseudotime algorithms fail to reproducibly and robustly infer tumor
cell trajectories in these data.

This concern is alleviated by the experimental design that produced this
scRNA-seq dataset, which included cells derived from T mice to empirically identify the
cell-of-origin for this particular setting of lung tumor evolution. As such, | elected to
construct transcriptional trajectories and generate approximations of biological
pseudotime using Monocle3 (Qiu et al. 2017; Trapnell et al. 2014). This software was
also intentionally chosen because it was able to robustly predict a trajectory that
connects AT2 cells with metastatic-like HmgaZ2® Runx2* cells (Figure 1D) and that is
consistent with other studies characterizing KP lung tumor evolution (Winslow et al.
2011; C. M.-C. Li et al. 2015). By specifying cells derived from T only mice as the

ancestral population of KP tumor cells, otherwise termed as the “root node” (Figure
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1D), this “anchored” these pseudotime predictions in an empirical biological truth.
Consequently, the approximated positions of individual cells across pseudotime (Figure
1E) are largely consistent with these previously published studies.

The pseudotime approximations for cells assigned to Marjanovic cluster 9
provide further evidence for distortions in the relationships between these cells with
other known populations of the dataset; despite having close positions in 2D-UMAP
space, the cells which would otherwise appear to “connect” cells of Marjanovic cluster 9
with met-like HmgaZ2* cells are estimated to have very different positions in biological
pseudotime (Figure 1E). While it is entirely possible that the branched trajectories
predicted by Monocle3 that connect Cluster 9 cells and with untransformed AT2 cells
are a computational artifact, at minimum, their relative positions in hyperbolic
embeddings do provide further support for the evolutionary distance between these
populations (Ding and Regev 2021) (Figure 1E). This is not surprising, given that
multiple dimensionality reduction techniques fail to robustly approximate the position of
cells in Cluster 9 in high-dimensional space. As such, for downstream
pseudotime-based analyses, calculations were performed on a subset of cells which
excluded those along the trajectories connecting Cluster 9 and the starting AT2
population.

Pseudotime-dependent terms estimated by linear regression of gene expression
changes as a function of pseudotime with Monocle3 identified many genes that have
been previously characterized to be important in KP lung tumor or lung adenocarcinoma
progression, including Hmga2, Tigit (Marjanovic et al. 2020), S100a6 (De Petris et al.

2009), and Hnf4a (Snyder et al. 2013) (Figure 2F). Unbiased hierarchical clustering of
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the average expression of these pseudotime-dependent genes across individual tumors
(Figure 2F, left) arranged tumors in a manner that is consistent with observations made
about kinetics of tumor progression observed in Figure 2 and (Jackson et al. 2005);
Early time point K tumors are most similar to T only control cells, and late time point K
tumors are most similar to KP tumors (Figure 2F). While this may appear to suggest
that bulk expression of these genes can be used as an estimation of tumor progression,
it should be noted that many early stage tumor cells were too small to be individual
plucked from lung tissue, and are instead isolated via sorting cells by tdTomato
fluorescence (Marjanovic et al. 2020). Hierarchical clustering fails to arrange individual
cells in a meaningful order with respect to their genotypes or associated time points
(Figure 2F), but this is expected given the magnitude of transcriptional heterogeneity

between KP tumor cells.
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Figure 2. Biological pseudotime approximates gene expression changes in KP
lung tumor progression.

Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures.

(A) UMAP (left) or hyperbolic scPHERE embedding (right) of log-normalized scRNA-seq
gene expression of Hmga2 and Runx2.
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(B-C) (B) UMAP or (C) hyperbolic scPHERE embedding of scRNA-seq data with cells
colored by cluster identities originally published and characterized by (Marjanovic et al.
2020).

(D) UMAP embedding of scRNA-seq data depicting trajectories inferred by Monocle3
(black line), with cells colored by their respective time points. The root node for
pseudotime analyses is shown with an arrow.

(E) UMAP (top) or hyperbolic scPHERE embedding (bottom) of scRNA-seq data with
cells colored by predicted pseudotime values generated from (D).

(F) Heatmaps depicting expression of the top-ranked (q < 1E-180)
pseuodotime-dependent terms across individual tumors (left) and across individual cells
(right). Rows of the heatmaps are arranged by complete linkage hierarchical clustering
of their euclidean distances. Cells and tumors are annotated (top) with their respective
genotypes and associated time points.

Sequential changes in cell identity occur throughout KP lung tumor cell evolution
and progression.

The objectives of this study were to identify genes that drive evolution of cell
state in tumor cells. Because tumor cells are known to have dysregulated cell identity
that is also indicative of disease progression and prognosis in clinical settings
(Yasukawa et al. 2018), our approach towards interpretation of pseudotime-dependent
terms was conducted with a particular emphasis on transcription factors that are
hallmarks of cell identity in lung and foregut-derived tissues. Consistent with
observations made in the past about KP lung tumor progression (DuPage, Dooley, and
Jacks 2009), tumor cells gradually lose hallmarks of AT2 cell identity, including Etv5,
Sftpc, and then Nkx2-1 over pseudotime (Figure 3A-C).

Although cells from Cluster 9 are excluded from these analyses, it is interesting
to note that these cells upregulate Sftpc, but not Etv5, even though they are
conventionally expressed in the same context and Etv5 is known to bind the promoters

of surfactant genes and regulate their expression (Z. Zhang et al. 2017). As such,
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expression of Sfipc may be driven by different mechanisms and provides further insight
to the ambiguous cell states observed in Cluster 9. Expression of Sftpc and other
epithelial markers is surprising amongst these cells (Supplemental Figure 3), because
they predominantly arise from late time points (Figure 1A). Furthermore, these cells are
well separated from early time point cells in the hyperbolic embedding, and also express
markers associated with AT1 identity, such as S100a6 (“Website” n.d.; Beauchemin
2016) (Figure 3D). Thus, the transcription profiles of cells in Cluster 9 are similar, but
distinct compared to those observed at early time points. These similarities likely
underlie inconsistencies observed with Cluster 9 across dimensionality reduction
techniques.

Expression of S100a6 and other hallmark genes of AT1 identity, including Ager,
appears to occur simultaneously with downregulation of AT2 genes (Figure 3D).
Interestingly, expression of these genes seems to be “turned on” at positions which
resemble a “saddle point” that manifests in both UMAP and hyperbolic embeddings
(Figure 3D). Further, beyond this “saddle point”, very few K tumor cells are observed,
and the remaining transcriptional states beyond this point are predominantly derived
from KP tumor cells (Figure 1D-E, Figure 3D). Functionally, S100A6 is known to bind
P53 to coordinate cell division and apoptosis (A. J. Levine 1997) and has been
extensively described as a tumor suppressor in lung adenocarcinoma (P. Li et al. 2019;
T. Wang, Han, and Du 2021; Orre et al. 2007; De Petris et al. 2009). Together, this may
suggest that expression of S7100a6 reflects oncogenic stress induced by loss of Trp53
function. After this point, cells appear to transcriptionally diverge, and have lost many

hallmarks of lung identity. Instead, they adopt a gastric-like state, marked by expression
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of Hnf4a, which has been previously identified as a transcriptional consequence of
Nkx2-1 loss (Snyder et al. 2013) (Figure 3E). Thereafter, cells upregulate Hmga2 and
other markers associated with metastasis in lung adenocarcinoma and KP tumors
(Figure 3F).

An important assumption made with these analyses is that transcriptional
changes are continuous (Trapnell et al. 2014), which is generally not observed in
settings of selective pressure or terminal differentiation. Although there are several
branched trajectories predicted by Monocle3 (Figure 2E), unlike the primary trajectory
that proceeds continuously from untransformed AT2 cells to metastatic-like Hmga2*
cells, these branches are not predicted robustly and are quite sensitive to the
parameters used for graph construction. Still, along this primary trajectory, cells are
assumed to arise from cells that precede them. The stochastic nature of tumor
progression would otherwise suggest that evolution along this trajectory for any given
individual tumor is an inherently inefficient process, which likely underlies the variation
in kinetics observed in the model. However, the reproducibility observed across many
tumors in this dataset (Figure 1G-H) suggests that although there is transcriptional
noise which is consistent with this stochastic behavior, these evolutionary trajectories
macroscopically reflect deterministic behavior of tumor evolution. As such, the
aggregate behavior produced from selection that would otherwise manifest as some
form of a critical point is “smoothed” out across many individual tumors, and is assumed

to satisfy this requirement for continuity.
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Figure 3. Sequential changes in cell identity occur throughout KP lung tumor cell
evolution and progression.

Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures.

UMAP (Column 1, left) or hyperbolic scPHERE embedding (Column 2, second from
the left) of log-normalized scRNA-seq gene expression of cell identity markers identified
by Monocle3. Log-normalized expression is plotted against pseudotime across
individual cells (Column 3, Column 4, right), with each point representing a cell that is
colored by its respective time point (Column 3) or genotype (Column 4).
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(A) Etvb, a regulator of AT2 identity maintenance.

(B) Sftpc, a marker of AT2 identity and functionality.

(C) Nkx2-1, a marker of lung identity that marks both AT2 and AT1 cells.

(D) S100a6, a regulatory partner of p53 associated with early AT1 identity. (A. J. Levine
1997; Beauchemin 2016)

(E) Hnf4a, a marker of gastric identity.

(F) HmgaZ2, a marker of metastatic-like KP tumor cells.

Akr1b3

Supplemental Figure 3. Expression of epithelial markers associated with
metastasis in non-small cell lung cancer.

Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures.

Log normalized expression is depicted in UMAP (Top) or hyperbolic (Bottom)
embeddings. Genes are identified by (Jiewei Liu et al. 2012; Ruan et al. 2020).
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Evaluation of Pea3 transcription factors in KP lung tumor progression.

In human lung adenocarcinoma, ETV4 transcript is expressed in NSCLC tumors,
but not in the normal lung (Hiroumi et al. 2001), which is consistent with the patterns of
Etv4 expression observed in KP tumors (Figure 4C). In addition, ETV4 has been
implicated in activation of the Rho pathway, which contributes to the metastatic potential
of NSCLC (Hakuma et al. 2005). In contrast, Etv5 is required to maintain alveolar type Il
cell identity in the context of oncogenic Kras. Loss of Etv5 is also known to promote
change in chromatin accessibility of AT2 identity genes, and AT2 cells deficient for Etv5
partially adopt alveolar type | cell identity (Z. Zhang et al. 2017). The role of Etv1 in lung
cancer is less well described, but has been shown to promote stromal expansion and
tumor cell metastasis in pancreatic cancer (“ETS-Transcription Factor ETV1 Regulates
Stromal Expansion and Metastasis in Pancreatic Cancer” 2016). Additionally, Etv1 has
been shown to be regulated by miRNAs that are frequently dysregulated in lung cancer
(X. Jin et al. 2017).

In consideration of their extensively described roles during lung morphogenesis
and development, we sought to further investigate the role of the Pea3 transcription
factors in KP lung tumor progression. CRISPR/Cas9 technology has somewhat recently
been extended to genetically engineered mouse models and to the KP model in
particular (Sanchez-Rivera et al. 2014), which allows for generation of rapid genetic
knockout of targeted genes by introducing sgRNAs alongside Cre recombinase and
Cas9 to initiate KP lung tumors. In later generations of this technology, Cas9 is
expressed in the lungs of KP mice via a Cre-conditional Cas9 transgene into the

Rosa26 locus (Platt et al. 2014) to allow for targeted knockout of genes at the onset of
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tumor initiation through viral delivery of an sgRNA and Cre recombinase alone (pUSEC,
Figure 4D) (Romero et al. 2020). An important limitation to this system is that it is
largely dependent on utilization of lentiviruses, which transduce a wide range of cell
types, but cannot accommodate AT2 specific promoters for Cre recombinase. As such,
because Etv1 is expressed in many cell types of the normal lung, is not restricted to
alveolar cells, and is known to drive meaningful changes in surrounding stromal cells
that can affect tumor progression (Thul et al. 2017), we have chosen to narrow our
focus to Etv4 and EtvS.

To model the impact of Etv4 and Etv5 in KP lung tumor progression, | utilized
Kras*-S--6120% Rosa26-SttdTomatolLSL-Cass - Ty 531 (K pCasdlomate) mjce to knockout Etv4 and
Etv5 when initiating tumors. In this schematic, expression of Cas9 and tdTomato are
induced by Cre recombination. Importantly, because the LSL-Cas9 allele is in the
germline of KP mice, introducing Cas9 in this manner is not believed to be antigenic,
which addresses a vital limitation of the earlier generation in vivo CRISPR technologies
(Crudele and Chamberlain 2018). Expression of tdTomato further aids in isolation of
individual tumors under the dissecting microscope for further analysis. Multiple sgRNAs
were used to target Etv4 (Figure 4E) and Etv5 (Figure 4F), primarily in the DNA binding
ETS domain, to produce loss-of-function frameshift mutations through non-homologous
end joining and error-prone double stranded DNA damage repair. The selected guides
were validated to produce efficient knockout of Etv4 and Etv5 in vitro using KP tumor

cell lines and assessed with TIDE via Sanger Sequencing (Brinkman et al. 2014).
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Figure 4. Evaluation of Pea3 transcription factors in KP lung tumor progression.
Data used for these analyses has been previously published (Marjanovic et al. 2020)
and were independently analyzed to produce these figures.

(A) UMAP (top) or hyperbolic scPHERE embedding (bottom) of log-normalized
scRNA-seq gene expression of Pea3 transcription factors, Etv5, Etv4, and Etv1.

(B) Lentiviral CRISPR construct, pUSEC, designed to deliver Cre and sgRNAs to the
distal lung epithelium of mice harboring a Cre conditional Cas9 transgene (Kras®'??*,
Rosa26!-St-tdTematolLSL-Cas9. T 537 Previously described by (Romero et al. 2020).

(E-F) Visualization of sgRNA targeting locations for (E) Etv4 and (F) Etv5.
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Etv5 is required for KP lung tumor initiation in vivo but not in vitro.

We attempted to generate Etv5 knockout (KO) tumors using the pUSEC system
in KPCcas¥Temate mice (Figure 4D), utilizing an sgRNA targeting OIfr102 that was
previously shown to behave neutrally in KP tumor cells (Romero et al. 2020). In the first
cohort of mice used for this study, tumors were harvested at 13 and 17 weeks post
infection. The loci targeted by Etv5 sgRNAs was amplified from genomic DNA isolated
from plucked tumors by polymerase chain reaction (PCR), and then further analyzed by
Sanger sequencing and TIDE analysis. Although tumors did arise in animals that
received virus containing sgRNAs against Etv5, invariably, all plucked tumors were
wild-type for Etv5 (data not shown).

In a second cohort, mice were sacrificed uniformly at 26 weeks post-infection, but
again, no editing was observed at the Etv5 locus in any of the resulting lesions. We
reasoned that the selection bias imparted through plucking tumors, namely selection of
tumors that are large enough to pluck, may explain why no Etv5 edited tumors were
observed. To determine ETV5 status in lesions too small to pluck, we validated that
ETVS5 can be selectively stained for via immunohistochemistry (IHC) in KP lung tumor
tissue (Figure 5A). In KP tumors, ETVS staining is nuclear, but variable in intensity
across tumor cells, reflecting heterogenous expression, which given findings in Figure
4A, was expected. This was observed across all mice, irrespective of the sgRNA
delivered in pUSEC. No tumors were observed that clearly and uniformly did not
express ETV5. We reasoned that it could be possible loss of ETV5 produces small
lesions that cannot be plucked, and larger lesions produced from Etv5 targeting

lentiviruses may be a consequence of tumor cells escaping CRISPR editing of ETV5. To
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further investigate this possibility, we sought to determine whether a relationship exists
between the size of a lesion produced from a lentivirus targeting ETVS and the
percentage of cells within it that express ETVS. If Etv5 edited lesions grew more slowly
than control lesions, this would suggest that the absence of CRISPR-edited Etv5
sequences with DNA sequencing is attributable to selection bias of lesions that can be
plucked. We quantified relative tumor areas by determining the ratio of total area with
normal lung tissue to that of tumor tissue, and further quantified the number of cells in
each tumor that had positive nuclear staining of ETV5 (Figure 5B). However, no
correlations were observed between relative tumor area and ETVS staining, and there
appeared to be no difference in the distribution of tumor sizes across lesions produced
from Etv5-targeting lentiviruses compared to control lesions. To further examine whether
the fraction of cells in each tumor expressing ETV5 varied as a consequence of
transduction with pUSEC-sgEtv5, the percentage of tumor cells expressing ETV5 was
compared across viruses. While a minor difference was observed between control
animals and those receiving sgEtv5, unexpectedly, slightly fewer ETV5+ cells were
observed in control animals than sgEtv5 (Figure 5C).

In KP tumors, in vivo CRISPR editing efficiency is known to be sensitive to
selective pressures (Rogers et al. 2018). As such, we hypothesized that selection
against Etv5 loss occurred in the pUSEC system. To circumvent these issues, we bred
a Cre conditional Etv5 floxed allele to KP mice (Z. Zhang et al. 2009) and initiated
tumors in KP Etv5™" KP Etv5", and KP Etv5"* animals with AJSPC-Cre to determine
the effect of Etv5 KO. Mice were sacrificed at 18 weeks post infection. In Etv5" mice,

across nearly all mice, very few lesions were found in the lung (Figure 5D). In contrast,
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many tumors were observed in Etv5"" animals. Mice heterozygous for Etv5 showed an
intermediate tumor burden in comparison to Etv5"* animals, which demonstrates a clear
dose-dependent phenotype that results from loss of Etv5 (Figure 5D). Knockout of Etvd
affected both the observed tumor number and tumor burden, which suggests that Etv5
is required for transformation of KP tumors in vivo.

To further characterize the nature of the selective pressure that acts against Etv5
KO cells, we utilized a recently developed alveolar organoid culture model (Naranjo and
Cabana, Manuscript in preparation) that can be used to grow untransformed AT2 cells
in 3D culture that can then be transformed in vitro to study early stages of KP
transformation. With this system, we expanded untransformed AT2 organoids from KP
mice that did not harbor any additional Cre-conditional alleles. In this regime,
CRISPR/Cas9 technology can be transiently introduced into cells via adenoviral
transduction. A modification of the pUSEC construct (Figure 4D) was made that
replaces Cre recombinase with EGFP, pUSEG and was used to make lentivirus to
deliver sgRNAs to organoids that become stably expressed alongside EGFP. Staggered
transduction of adenoviral Cre, adenoviral Cas9, and Lentiviral pUSEG thereby permits
the ability to precisely control transformation and Cas9 editing events.

When untransformed KP AT2 cells were simultaneously transduced with
Adenoviral Cas9 and pUSEG-sgEtv5.2, the genomic locus targeted by sgEtv5.2 was
unedited across multiple passages, despite retaining expression (>90%) of pUSEG, as
assessed by FACS analysis of EGFP+ cells. In contrast, when KP AT2 cells were
simultaneously transformed with adenoviral Cre, adenoviral Cas9, and lentiviral

pUSEG-sgEtv5.2, a dominant in-frame deletion (-9) was observed at an estimated
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frequency of 69.2% after two passages. When transformation was decoupled from Cas9
editing by first transforming KP AT2 cells with adenoviral Cre and then subsequently
transducing them with lentiviral pUSEG-sgEtv5.2 and adenoviral Cas9, a +1 frameshift
mutation was observed after the first passage at an estimated frequency of 51.1%, and
after two passages, 24.8% (Figure 5E). Together, these results suggest that Etv5 can
be efficiently knocked out during early KP transformation in vitro but not in vivo. Notably,
widespread loss of ETV5 does occur in overt KP adenocarcinomas during normal KP
tumor progression (Figure 5F).

The primary differences between settings in which Etv5 editing can or cannot be
conducted efficiently are the environments of KP Etv5 KO cells. At early stages of
transformation in vivo, transformed tumor cells are believed to be subject to intense
selective pressure from cells of their microenvironment, including immune cells. In
contrast, when cultured and transformed in vitro, the environment of KP Etv5 KO cells is
experimentally defined, and Etv5 KO is more efficient (Figure 5E). ETV5 is likely to be
dispensable in more advanced tumors, as expression of ETV5 is widely lost in many of
these tumors (Figure 5F). It is possible that the microenvironment produced by higher
grade tumors elicit conditions that allow cells to tolerate loss of ETVS5. However, the
selective pressures that result in elimination of Etv5 KO cells are unlikely to come
entirely from the tumor microenvironment, as loss of Etv5 is not well tolerated in vitro
when KP cells are not transformed. Thus, the role of Etv5 is dependent on the context

of the tumor microenvironment and tumor progression.
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Figure 5. Etv5 is required for KP lung tumor initiation in vivo but not in vitro.

(A) IHC of ETV5 in KP lung tumors validates expression of Etv5.

(B) Expression of ETVS in KP lung tumors does not correlate with tumor size. For each
individual tumor in sections of KP lung tumors, the percentage of nuclei staining
positively for ETV5 are plotted against its tumor area relative to normal lung tissue.
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(C) CRISPR mediated knockout of Etv5 does not meaningfully affect expression of
ETVS.

(D) Cre-recombinase mediated knockout of Etv5 suggests that Etv5 is required for
formation of KP lung tumors. Relative lung tumor area compared to normal surrounding
lung tissue area is plotted for mice with homozygous or heterozygous knockout of Etvs
compared to control mice wild-type for Etv5.

(E) Knockout of Etvs during transformation of KP lung cells can be achieved in vitro via
CRISPR-mediated knockout of Etv5 (sgEtv5.2). Approximate proportions of edited allele
frequency are shown at the beginning of the experiment (passage 0) and at the end
(passage 2).

(F) Validation that ETV5 expression is lost in normal KP lung tumor progression and is
dispensable at later stages of disease progression. IHC of ETV5 in KP lung tumors
validates expression of Etv5.
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The ETS domain of Etv4 is likely required for KP lung tumor initiation in vivo.

Unlike Etv5, Etv4 can be knocked out when sgRNAs targeting Etv4 are
introduced during transformation by pUSEC (Figure 4D), again alongside a neutral
control guide targeting Olfr102. Mice were sacrificed at 20 weeks after tumor initiation,
and the loci targeted by Etv4 sgRNAs (Figure 4E) was PCR amplified from genomic
DNA isolated from plucked tumors, sequenced, and then analyzed by TIDE as
described above. The overall editing efficiency in each tumor was dependent on the
sgRNA. Approximately half of the tumors generated with pUSEC-sgEtv4.1, which
targets a region spanning the Pea3 N-terminal domain and the DNA binding ETS
domain, were wild-type at the Etv4.1 locus. The sgEtv4.1 tumors that were edited for
Etv4 had a relatively high overall editing efficiency, and a mixture of mutations were
observed across these tumors (Figure 6A).

Similarly, the tumors generated with pUSEC-sgEtv4.2, which targets the
C-terminus of ETV4, had a higher overall editing efficiency (Figure 6B). In some of
these edited tumors, a dominant mutation is clearly observed (e.g. G33), but in others, a
greater diversity of mutations is observed (e.g. G37). Still, some tumors without
mutations at the Etv4.2 locus were still observed.

In contrast to the tumors generated with pUSEC-sgEtv4.1 and sgEtv4.2, out of
the nine mice infected with pUSEC-sgEtv4.3, only one lung lesion was observed
(Figure 6C). As a result, genotyping of transformed KP sgEtv4.3 KO cells was not
possible. Importantly, out of the three sgRNAs targeting Etv4, sgEtv4.3 most directly
targets the DNA binding ETS domain. As such, it is not entirely surprising that the

phenotypes generated from sgEtv4.3 have greater penetrance than those of sgEtv4.1
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and sgEtv4.2. This manifests most apparently in the relative tumor areas of lungs
harvested from these mice (Figure 6D), in which mice that received sgEtv4.3 uniformly
had the lowest relative tumor area. The relative tumor areas of lungs from mice that
received sgEtv4.1 or sgEtv4.2 appear to be bimodally distributed; approximately half of
the sgEtv4.1 mice and one quarter of the sgEtv4.2 mice had comparatively low relative
tumor areas (< 5%) (Figure 6D). The sgEtv4.1 guide targets the sequences connecting
the most N-terminal Pea3 domain with the ETS domain, and produced a phenotype
seemingly intermediate to that of sgEtv4.2 and sgEtv4.3. Notably, the mutations
produced with the sgEtv4.1 guide predominantly produced deletion mutations. The
remaining fractions of sgEtv4.2 and sgEtv4.1 mice had very similar relative tumor areas
as control sgOIf102 mice.

Interestingly, out of the three methodologies used to assess selective pressures
from knockout of Etv5, when these assays were performed with sgEtv4.1, no editing
was observed amongst any of the three schematics. As such, further work is required to
assess the role of Etv4 in KP lung tumor evolution. It is extremely important to note that
no commercially available Etv4 antibodies have been robustly validated. Intriguingly, the
antibody utilized in the Human Protein Atlas appears to selectively stain the nucleolar
regions of cells, and there is emerging published data that supports this staining pattern
using different Etv4 antibodies (Cosi et al. 2020). Still, in our hands, no commercially
available antibodies were able to robustly and selectively stain for ETV4 in KP lung
tumors. In addition, no commercially available Cre-conditional Etv4 KO mouse strains
exist and further limit the tools available to study the role of Etv4 in KP lung tumor

evolution.
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Figure 6. The ETS domain of Etv4 is required for KP lung tumor initiation in vivo.
(A-B) Heatmaps depicting estimated allelic distribution of CRISPR mediated Etv4
mutations in plucked KP lung tumors, produced by Sanger Sequencing followed by
TIDE analysis. Overall editing efficiency is denoted for each tumor in bar graph
annotations on the right of the heatmap. A position of “0” is a wild-type sequence,
denoted by the black arrow. (A) Mutations produced by sgEtv4.1, targeting the Pea3
N-terminal domain. (B) Mutations produced by sgEtv4.2, targeting the C-terminal region
of Etv4.

(C) Representative images of the rare histological lesions observed in mice infected
with virus containing sgEtv4.3. Scale bar is 200 uM.

(D) Relative tumor areas of lung sections from mice infected with pUSEC-Etv4 viruses:
sgEtv4.1 (n = 8 mice), sgEtv4.2 (n = 8 mice), sgEtv4.3 (n = 9 mice) compared to
sgControl (n = 6 mice). (C) CRISPR mediated knockout of Etv5 does not meaningfully
affect expression of ETVS5.
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(D) Cre-recombinase mediated knockout of Etv5 suggests that Etv5 is required for
formation of KP lung tumors. Relative lung tumor area compared to normal surrounding
lung tissue area is plotted for mice with homozygous or heterozygous knockout of Etvs
compared to control mice wild-type for Etv5.

DISCUSSION

In the KP model, at a given time point, the tumors of the lung have a spectrum of
histological grades that change as time progresses, with lower grade tumors being most
abundant at early time points, and higher grade tumors more abundant at late time
points (Jackson et al. 2005). This heterogeneity has made it possible to
comprehensively profile KP lung tumor evolution across limited time points that span
many weeks. As more cells were collected from different mice and tumors, very few
transcriptional states emerged that were not previously captured from existing data,
which leads us to believe that this dataset captures the majority of transcriptional states
that arise in primary KP lung tumor progression. The reproducibility observed in tumor
evolution across tumors (Figure 1G-H) and mice (Figure 11-J) is striking. If tumor cells
truly became entirely dysregulated, it would be more likely to observe stochastic
trajectories of tumor cell states as tumors progress over time. Instead, cell states
convergently evolve into states associated with metastasis as well as HmgaZ2 and
Runx2 expression (Figure 2A). However, these interpretations do not explicitly consider
terminal trajectories within the confines of the primary tumor, or if it is possible for them
to regress to other cell states observed in tumor evolution.

The pseudotime trajectories predicted by Monocle3 in UMAP space as well as
connectivity in hyperbolic space (Figure 2E) suggest that a small population of cells will

begin to express Nkx2-1 and many other markers of AT2 cell identity after previously


https://paperpile.com/c/XSr7BR/l4vkT

144

silencing it and expressing Hmga?2 (Figure 3B). Importantly, Nkx2-1 and Hmga?2 still
exhibit mutually exclusive patterns of gene expression amongst this group of cells
(Figure 3C, 3F). This interpretation is supported by the fact that the majority of the cells
in this group are derived from tumors harvested at late timepoints (30 weeks) (Figure
3F). However, this proposed model of tumor evolution is largely generated by
predictions, and further experimentation will be required to generate empirical evidence
for these gene expression patterns. If true, many questions come into focus; in
particular, it is not clear why it would be beneficial for these tumor cells to re-adopt
hallmarks of their original identities in advanced and metastatic tumors. It is possible
this occurs as a consequence of selection, but it is not immediately clear why such a
selective pressure exists.

Many of the late-stage tumor cells that appear to express Nkx2-1 after having
expressed HmgaZ2 that are most apparently distinguished from other tumor cells in
hyperbolic space were assigned to Cluster 9 of (Marjanovic et al. 2020). In their work,
they annotate this cluster as ‘biosynthetic mixed activity’. However, this annotation
seems to be driven by the cells assigned to Cluster 9 that are separated from those that
express Nkx2-1 in hyperbolic space. Interestingly, these cells express many genes that
have been proposed to be important in non-small cell lung cancer metastasis (Jiewei
Liu et al. 2012; Ruan et al. 2020) (Supplemental Figure 3). Amongst these genes,
Krt18 expression has been previously proposed to be predictive of lymph node
metastasis (H. Zhang et al. 2014). Krt18 has also been found to be predictive of

metastasis in colorectal cancer (Jingfeng Zhang, Hu, and Li 2019) and has further been
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shown to be predictive of unfavorable clinical outcomes in both lung and pancreatic
cancer in the human protein atlas (Uhlén et al. 2015; Thul et al. 2017).

We largely assume that the observed tumor cell states are reflective of the
selective pressures that a cell experiences. There is extensive evidence that supports
this assumption, but if it were the sole determinant of cell state, we would expect that
circulating tumor cells (CTCs) across different kinds of cancer would have similar gene
expression profiles because they experience similar selection pressures after
extravasating from primary tumors. Empirically, there are some generalized similarities
in CTCs across different cancers, but there are also many differences (Ruan et al.
2020). Taken together, these speculations further suggest the developmental context of
a tumor cell must be at least partially a determinant of cell states in different
microenvironments outside of the primary site.

If cells assigned to Cluster 9 do indeed represent cells that are poised to become
circulating tumor cells, this study of KP Lung Tumors supports the observations made in
clinically derived non-small cell lung cancer CTCs (Ruan et al. 2020). Subpopulations of
tumors with intrinsic propensity to become a CTC has been long theorized and is most
often discussed as a “pre-metastatic niche” (Kaplan et al. 2005; Eccles and Welch
2007) in primary tumors. TThe KP tumor cells profiled in this study are derived from
primary tumors; as such, these cells are unlikely to represent those that have already
entered the bloodstream. Instead, the similarity in the gene expression profiles between
these cells and circulating tumor cells can be interpreted to suggest that Cluster 9 cells

may represent those poised to intravasate into the bloodstream and become circulating
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tumor cells. However, additional experimental evidence that compares transcriptional
states of empirically identified CTCs to primary tumor cells are required.

In contrast with the findings published by (Marjanovic et al. 2020), the analyses
that are presented in this chapter do not appear to provide supporting evidence for a
singular high-plasticity stem cell state, annotated as Marjanovic cluster 5 (Figure 2B-C).
Although (Marjanovic et al. 2020)suggest that cells that correspond to Cluster 5 and
Cluster 9 are observed ‘in every tumor after adenomas’, while it is possible these cells
are indeed present at all time points, these states may predominantly arise in late
stages of KP tumor progression but may be infrequently found in early stage tumors.
This could be attributed to the extensive heterogeneity of tumor progression kinetics
observed in K and KP tumors (Jackson et al. 2005; E. L. Jackson et al. 2001).
Furthermore, the data structures depicted in Figure 1 do not necessarily support the
idea that Cluster 5 or Cluster 9 can “seed” all of the other tumor cell states (Marjanovic
et al. 2020). However, they do support the fact that Cluster 5 is highly connected with
many other cell states and clusters.

Many studies have characterized transcriptional networks and signaling
pathways in a general sense, particularly in the context of cancer. In development, it is
well known that these pathways also regulate differentiation and produce vastly different
transcriptional outcomes in different tissues. In cancer, because tumor cell identity often
becomes dysregulated, this hinders the ability for us to understand how these pathways
contribute to tumor evolution beyond functional evaluation of biological outcomes such
as cell proliferation and migration. In particular, although loss of Nkx2-1 expression has

been shown to induce gastric programs in the context of KP lung adenocarcinomas
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(Snyder et al. 2013) and strongly correlates with metastatic spread (Winslow et al.
2011), the effects of experimental loss of Nkx2-1 do not fully recapitulate transcriptional
profiles of poorly differentiated, metastatic tumors (Snyder et al. 2013; Winslow et al.
2011). Of the genes that differ in expression between cells that do not metastasize and
those that are likely to metastasize, changes in expression of Etv4 and Etv5 occur
independently of Nkx2-1 loss, as assessed through shRNA knockdown of Nkx2-1
(Winslow et al. 2011).

Etv4 and Etv5 belong to the ETS transcription factor family, which is
distinguished by a highly conserved DNA binding domain and is also one of the largest
evolutionarily conserved transcription factor (TF) families (Sizemore et al. 2017). ETS
TFs are expressed across many tissue types but do exhibit some degree of tissue
specificity and are generally known to have non-redundant biological roles. Interestingly,
nearly all members have the ability to bind the ETS motif, and it is believed that this
tissue specific activity is conferred through other functional protein domains that
mediate interactions with other proteins rather than the ETS binding domain itself
(Findlay et al. 2013). Importantly, the context-specificity of ETS transcription factor
activity complicates interpretations of chromatin accessibility at ETS consensus motifs,
and dysregulated transcriptional activity of aberrantly expressed ETS transcription
factors may not manifest as readily in sciATAC data as has been observed for
scRNA-seq data (LaFave et al. 2020). Consensus motifs that appear to be
nonredundant ETS sites are more often accompanied by atypical, low affinity ETS
binding site sequences that are proximal to other transcription factor binding sites

(Wheat et al., 1999, Hollenhorst et al., 2011b). Still, extensive evidence exists that
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implicates the ETS family in the development of cell states that promote cancer
progression across multiple cancer types, both through changes in expression and
mutation (Sizemore et al. 2017).

The overlapping expression patterns of Etv4 and Etv5 have historically been
discussed in the context of embryonic development and AT2 biology as evidence for
functional redundancy of the two genes, which was further supported by their
involvement in similar biological processes and phenotypes (Herriges et al. 2015; Z.
Zhang et al. 2017). Specifically, when originally characterized, differential expression of
the Pea3 subfamily of the ETS family across the embryos of mice suggested these
transcription factors play non-redundant roles (Chotteau-Leliévre et al. 1997). However,
the gene expression patterns suggested by the data presented in this chapter provides
evidence that KP tumor progression is an example of a setting in which these genes
have distinct expression patterns and distinct biological roles (Figure 4A).

In this study, we show that Etv5 expression is frequently downregulated during
KP lung tumor progression and precedes loss of Nkx2-1 (Figure 3A). It has previously
been shown that in the context of oncogenic Kras®'?®, loss of Efv5 in AT2 cells has been
previously shown to generate a hybrid cell state characteristic of a distal progenitor and
AT1 cell (Z. Zhang et al. 2017). In the same study, it was also discovered that Etv5 is
required for Kras®'?® mediated transformation and the rare lesions that do appear in
Kras®'?P Etv5" animals have evaded Cre recombination (Z. Zhang et al. 2017).
Interestingly, lesions which were heterozygous for Etv5 upregulated Etv4.

Given that Etv5 is lost during late stages of normal KP tumor progression, we

reasoned that loss of Etv5 would be tolerated in settings with deletion of Trp53 in
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Kras®'?P; Trp53*% cells. Surprisingly, we discovered that, although Etv5 is required for
lung tumor initiation in vivo in KP mice, it can be deleted in vitro, but only when the cells
are transformed (Figure 5E). In vitro culture of untransformed AT2 cells is performed in
a defined media that is designed to support the growth and differentiation state of AT2
cells (Naranjo and Cabana, Manuscript in Preparation). As such, it is not surprising that
loss of Etv5 in untransformed AT2 cells, which has been shown to destabilize AT2
identity, is not tolerated (Z. Zhang et al. 2017). It is particularly interesting to note that,
although CRISPR-mediated deletion of Etv5 is possible in vitro, there was reasonably
strong evidence that cells with Etv5 deletion were outcompeted by cells that have
evaded CRISPR-mediated deletion of Etv5 (Figure 5E). Although the lung organoids
remained transduced by pUSEG, as assessed by EGFP expression, the predicted
frequency of Etv5 frameshift +1 mutations decreased over two passages. An important
caveat to these in vitro experiments is that they were only repeated one time, and as
such, further work is required to characterize these in vitro and in vivo selective
pressures. If these conclusions are validated; it will be interesting to determine whether
Etv5 null lesions are not observed in vivo solely due to becoming outcompeted by Etv5
competent cells, or if there are selective pressures unique to the in vivo
microenvironment which drive selection against Etv5 loss.

One of the most unexpected findings in this study was that, despite the fact that
Etv4 is not expressed in normal AT2 cells and does not appear to be expressed in cell
states associated with early stages after transformation (Figure 4A), CRISPR-mediated
loss of Etv4 through targeting a locus within its ETS domain almost entirely blocks

tumor formation (Figure 6C-D). Previously, it was shown by the Barbacid group by bulk
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RNA-Seq that Etv4 is upregulated in tumor cells very early after transformation in the
Kras®’?Y mouse model of lung adenocarcinoma (Mainardi 2013). Similar to our findings
in this study, when one allele of Etv4 was deleted, the number of overt tumors observed
in the lung is strongly diminished (Mainardi 2013). Future studies utilizing lung organoid
culture technology may provide further insight about the expression of Etv4 at early
stages of Kras mediated transformation in the lung.

Interestingly, in bulk tumors heterozygous for Etv4, Etv5 expression is
upregulated (Mainardi 2013), which was previously interpreted as additional evidence
that Etv4 and Etv5 have at least some functional redundancy. However, this conclusion
is not supported by the expression patterns observed for Pea3 transcription factors in
single cells during KP lung tumor evolution (Figure 4A), in which all three genes have
distinct expression patterns. It is likely that the resolution possible by assessing
expression at the single-cell level afforded better resolution of the expression patterns of
the Pea3 transcription factors during KP lung tumor progression. Furthermore, the
selective pressures that act on cells that have lost Etv4 are likely distinct from those that
act on cells that have lost Etv5. When performing in vivo editing of Etv5, many lesions
are found in mice receiving pUSEC-sgEtv5, but all of these resulting lesions are
wild-type for Etv5. This is consistent with selective pressures observed against EtvS
deleted cells in vitro (Figure 5E). In contrast, when targeting the ETS binding domain of
Etv4 with CRISPR/Cas9, cells were not able to evade CRISPR editing, and very few
lesions were observed in animals receiving pUSEC-sgEtv4.3. In studies conducted by
Mainardi et. al, loss of Etv4 reduced but did not eliminate Kras lung tumor initiation

(Mainardi 2013). However, the remarkable absence of large lung lesions in animals
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receiving sgEtv4.3 provides evidence that loss of Etv4 may have greater importance in
Kras transformation than previously described. Still, however, the phenotypes generated
with viruses containing other guides targeting Etv4 at different loci of the gene that
either less directly target the ETS domain of Etv4 (sgEtv4.1) or that do not target the
ETS domain (sgEtv4.2) were largely consistent with the conclusions made by Mainardi
et. al.

Further work remains to be conducted to assess whether the differences
observed in the phenotypes generated with these sgRNAs targeting Etv4 are a
consequence of differences in the functional targeting of Etv4, or whether these
differences are merely observed due to guide-intrinsic differences in Cas9 targeting
efficiency. Additionally, further comparisons between loss of Etv5 may provide additional
insight to the complex behavior of the Pea3 transcription factors in KP lung tumor
evolution. It is important to note that the sgRNAs were tested in an aggressive and
metastatic KP lung tumor cell line and deemed to produce efficient knockout of Etv4 or
Etv5 in vitro, a setting that is very different from that of early transformed cells, which
are modeled using an organoid culture system. Thus, it is possible that deletion of Etv4
or Etv5 may be tolerated ex vivo, once tumors have progressed and evolved sufficiently
to tolerate deletion of these genes. As the tools for perturbing expression of genes in
genetically engineered mouse models of cancer become more advanced, it will be
worthwhile to determine whether loss of Etv4 in the stages of tumor progression after
early transformation restrict the ability of KP tumors to progress along this now

characterized axis of tumor progression.
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MATERIALS AND METHODS

scRNA-seq analysis

scRNA-seq data was analyzed primarily in R with Monocle3 (version 0.2.3.3)
(Trapnell et al. 2014; Qiu et al. 2017), using integrated features of Monocle3 to perform
mutual nearest neighbor (MNN)-based batch correction using Batchelor (Haghverdi et
al. 2018) and dimensionality reduction for pre-processing via Principal Component
Analysis (PCA) (Haghverdi et al. 2018) and low dimensional embeddings via Uniform
Manifold Approximation and Projection (UMAP) (Becht et al. 2018; Mclnnes et al. 2018),
with default parameters. 100 principal components were used for nearest neighbor
graph construction, however, it should be noted that UMAP embeddings and
pseudotime and trajectory analyses produced highly similar results when less principal
components were used. Clustering was performed with default parameters in Monocle3
at a resolution of 1E-5 prior to trajectory analysis.

Hyperbolic embeddings were performed with scPhere (Ding and Regev 2021)
using default parameters in Python 3.8. Visualizations were then produced in R using
ggplot.

Gene expression in single cells was calculated on a by-gene basis prior to
visualization and log normalized prior to visualization. A threshold of 0.1 was used as a
minimum expression value to filter lowly expressing cells as described in Monocle3.

Markers of cell clusters, genotypes, and timepoints were identified by the
top_markers function in Monocle3. All marker genes were ranked by g-value, except

gender specific markers, which were ranked by pseudoR2.
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Highly variable genes were identified in Seurat using the “vst” method and
otherwise default parameters.

Fiqures and Visualizations

Heatmaps and their annotations were produced in R (version 4.0.4) with
ComplexHeatmap (Gu, Eils, and Schlesner 2016). Rows were hierarchically clustered
by complete linkage of distance metrics that were employed in a use-case dependent
manner, including euclidean distance and canberra distance.

Mean log gene expression was calculated for heatmaps with a 0.1 pseudocount
and scaled using various parameters (below) for each use case. Methodologies are
identical to that of the plot_genes_by group function in Monocle3.

For genotype specific markers, scale_min = -3 and scale_max = 3.

For timepoint specific markers, scale_min = -5 and scale_max = 5.

For tumor highly variable genes, scale_min = -5 and scale_max = 5.

For timepoint highly variable genes, scale_min = -5 and scale_max = 5.

For batch highly variable genes, scale_min = -5 and scale_max = 5.

For pseudotime-dependent terms, scale_min = -8 and scale_max = 10.

Bar plots and box plots were generated with ggplot2 in R or seaborne in Python.

Lentiviral Production

Lentivirus was produced in HEK293T cells cultured maintained in DMEM (Corning
#10-013-CV) supplemented with 10% fetal bovine serum. Cells were plated 1 day
before transfection and then co-transfected with lentiviral constructs and packaging
plasmids psPAX2 and pMD2.G (Addgene #12260 and #12259) with PEI or MirusLTE.

Viral supernatant was harvested 48 and 72 hours after transfection, filtered through a
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0.45 uM filter, concentrated at 25,0009 for 2 hours at 4C, resuspended in optiMEM
overnight, then frozen and aliquoted at -80°C.

Lentiviral Titering

Functional titering of lentiviruses was performed using Green-Go cells, which
contain a Cre-responsive GFP cassette. Cells were seeded in a 24 well plate and then
transduced 24 hours after plating with serial dilutions of concentrated lentivirus. The
percentage of GFP+ cells was assessed on the Guava easyCyte BGR 48 hours after
transduction, which was then used to calculate viral titers.

Lentiviral Vectors and sgRNA Cloning

pUSEC and pUSEG lentiviral vectors and cloning strategy is previously described
(Sanchez-Rivera et al. 2014). sgRNA guide sequences were designed using GUIDES
(Meier, Zhang, and Sanjana 2017) and the Broad sgRNA design tool (Doench et al.
2016; Sanson et al. 2018).

CRISPR Guide & Targeting Validation

Using guides targeting Etv4 and Etv5, we tested three sgRNAs per gene by
cloning them into LentiCRISPRvV2 as previously described (Sanjana, Shalem, and
Zhang 2014). Lentivirus was then produced with LentiCRISPRv2 vectors, filtered, and
then used to transduce KP1233 cells in vitro. 48 hours after transduction, cells were
selected with Puromycin at 10 ug/mL. An additional 24 hours later, cells were collected
and used to isolate genomic DNA.

Guides targeting Etv4 and Etv5 were assessed by amplifying gDNA with Q5
polymerase, using primers below, sanger sequenced, and analyzed by TIDE (Brinkman

et al. 2014) with large decomposition windows and parameters that allow detection of
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larger indel events when chromatogram and editing efficiency were inconsistent.

Otherwise, if editing efficiency and chromatogram appeared consistent with default

parameters, default parameters were used. Importantly, Kapa2G HotStart polymerase

was also used for TIDE analysis of gDNA from tumor tissue, as Q5 performed poorly on

gDNA from tissue.

gDNA was isolated from cells in vitro using the Qiagen puregene core kit A.

gDNA was isolated from tumor tissue through homogenization of tissues in DNA

extraction buffer (“DNA Isolation Buffer” 2019) with 3 uL of proteinase K per tumor

overnight at 55C. Subsequently, phenol-chloroform DNA extraction was performed.

gDNA with sufficient quality for further analyses were selected by purity assessed via

nanodrop.

SgRNA sequences

Guide Target Sequence

sgEtv5.1 Etvb GGGCCTCCTTATCAGAG
ACG

sgEtv5.2 Etv5 CATAGTAATAGCGGAGA
GAG

sgEtv5.3 Etvb GTACTTTGATGATACTTG
CG

sgEtv4.1 Etv4 GCCGGGGTGCCTTACAA
CTG

sgEtv4.2 Etv4 GTTTGACCGGCCAGTCA
GTG

sgEtv4.3 Etv4 CATAATAGTATCGCAGCG
AG

sgOlIfr102 OIfr102 CATCTTTGGCAGTGTCA
CAG
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Primer F Primer R sgRNA locus
AGTGAGAGGGTTGGC |AACAACCAGCATCGTA |sgEtvs.1
GATGT CAAAACAA
GTTACACGGCTACCCC | AGGTGAAACAGGCCT |sgEtvs.2
AGGT TGGCT

ATGTGCCCTTGAACAT | CGCCCGGACTCACCT |sgEtv5.3
GTCGTG CTTC

AAGTCAGGACACTCG |CTCCCTTCTGGTTCTT |sgEtv4.1
GGGAAGA GTTCACGT
TGTGGCCCATGAGAA |ACAGGTGAGCCACAG |sgEtv4.2
GGGGA CGAAC

GCCTAGATTGTCCCCG | TCCGGCTCGCACACA |sgEtv4.3
CACC AACTT

Animal Studies

KP mice were infected as previously described (DuPage, Dooley, and Jacks

2009). For pUSEC viruses, mice were infected with 10,000 Tu of virus. Mice infected

with AdSPC-Cre, lot Ad4237, given 2.5E8 Tu. Mice were sacrificed at indicated time

points after tumor initiation. Tumor tissue and lung tissue was fixed in zinc formalin

overnight and then stored in 70% ethanol for a minimum of 24 hours before being

processed by the Kl histology core. All mice were bred and handled according to IACUC

approved protocols.
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Antibodies Used

An anti-Etv5 antibody, purchased from Abcam (ab102010) was used for both IHC and
western blots. Western blots were performed at dilutions of 1:1000, and IHC was
performed with 1:500 dilutions, both overnight at 4C.

Histology

Hematoxylin and eosin stain (H&E stain) was performed with a standard method by the

Hope Babette Tang Histology Facility at Koch Institute.
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ABSTRACT

The responses elicited by CD8 T cells to different antigens occur simultaneously but are
largely characterized in isolation. In mouse lung adenocarcinoma, we find that an antigen
dominance hierarchy occurs when antigens with different pMHC binding properties are

co-expressed in tumors. CD8 T Cells specific to the dominant antigen, which binds MHC with
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the greatest stability, undergo larger clonal expansion compared to cells specific to the
subdominant antigen, which binds MHC with less stability. Interestingly, T-cells specific to the
subdominant antigen become enriched for a TCF1+ progenitor cell state, associated with
positive response to immune checkpoint blockade (ICB) therapy, but do not preferentially benefit
from ICB compared to T-cells specific to the dominant antigen. This is because the subdominant
antigen response is differentially enriched for a dysfunctional population of TCF1+ cells marked
by CCR6 and Tc17-like differentiation. However, this population can be eliminated through
vaccination, which markedly improves the subdominant antigen response. These findings
ultimately may inform a therapeutic strategy to elicit multi-faceted neoantigen responses in

tumors.

INTRODUCTION

The immune response to solid tumors is largely driven by recognition and
targeting of cells expressing mutant proteins that are presented to immune cells.
Neoantigens are peptides produced by these proteins that are then presented on the
surface of cells when loaded onto major histocompatibility (MHC) molecules
(Schumacher, Scheper, and Kvistborg 2019). CD8 T cells are responsible for
introducing cytotoxic stress in transformed cells and have otherwise been implicated as
a population that expands in response to immune checkpoint blockade (ICB) therapy,
specifically, anti-PD1 or anti-PDL1 (Pfannenstiel et al. 2019). Many forms of
immunotherapy have been developed to target tumor-specific neoantigens in patients,
including adoptive T cell therapies (E. Tran et al. 2016) and therapeutic vaccines

(Hollingsworth and Jansen 2019).
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Neoantigens that are targeted by immunotherapy are often selected
computationally by predicting immunogenic epitopes from whole exome sequencing
data (Peters, Nielsen, and Sette 2020; Wells et al. 2020). Importantly, however, the vast
majority of these neoantigens fail to elicit a productive immune response, and reflect a
deficit in the understanding of which neoantigens are relevant for immunotherapy as
well as an understanding of the behavior of immune responses to them during
immunotherapy (Schumacher, Scheper, and Kvistborg 2019). Weak immune responses
to neoantigens could be due to T cell evasion mechanisms that create selective
pressures against neoantigen expressing tumor cells, driving neoantigen loss or
immunoediting. In any case, these complexities have made selection of therapeutically
actionable neoantigens and characterization of the immune responses they elicit very
limited.

Alternatively, weak neoantigen responses could be influenced by antigen
immunodominance hierarchies that are established during the immune anti-tumor
response (H. Schreiber et al. 2002). In the setting of acute viral infections, it has been
previously shown that one or two immunogenic epitopes saturate the T cell response,
thereby suppressing responses to other neoantigens (Yewdell 2006). Importantly, it was
shown that T cells can respond to tumor neoantigens that do not drive immune
responses by endogenous T cells (Strgnen et al. 2016), which suggests that
endogenous T cell responses to neoantigens are inhibited. Importantly, however, these
suppressed responses can be rescued in melanoma via therapeutic vaccination
(Carreno et al. 2015; Ott et al. 2017; Sahin et al. 2017). As such, it is possible that the

immune responses to some neoantigens are suppressed as a consequence of
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competition with responses to other neoantigens, which may provide a therapeutic
opportunity to reinvigorate endogenous T cell responses through therapeutic
vaccination. Still, however, the effect of immunodominance hierarchies has not been
well characterized in the context of tumor immune responses.

The subset of CD8 T cells that expand in response to ICB in mice and humans
have been previously characterized as a progenitor population within the CD8
compartment that is marked by expression of TCF1 (Tcf7) (Kurtulus et al. 2019; Q. Guo
et al. 2019; Sade-Feldman et al. 2019; Siddiqui et al. 2019). These progenitor CD8 cells
are of particular importance to immunotherapy because a subset of them have been
described as capable of functionally differentiating into dysfunctional CD8 T cells (B. C.
Miller et al. 2019a). In the context of dominance hierarchies of tumor neoantigens, this
population of T cells has not been described. Further, the exact behavior of functionally
differentiating progenitor CD8 T cells in response to ICB is poorly understood.

The Kras"-¢'2D;Trp53" (P) model of lung adenocarcinoma, in which multi focal
tumors of the lung are initiated through intratracheal delivery of lentiviral Cre (DuPage et
al., 2009) can be harnessed to express experimentally defined neoantigens in a
tumor-specific manner through incorporation of neoantigens to lentiviral Cre vectors
(DuPage et al., 2011). In the absence of these defined neoantigens, the anti-tumor
immune response is weak because KP tumor cells are transformed by experimentally
defined mutations in Kras and Trp53, and otherwise do not frequently harbor mutations
that can elicit a T cell response (DuPage et al., 2011). Expression of strong neoantigens
in this manner can drive a productive immune response that eventually becomes

diminished as tumors grow and adapt to this selective pressure (DuPage et al., 2011).
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Importantly, this is not believed to occur as a result of dysregulating neoantigen
presentation pathways or neoantigen loss (DuPage et al., 2011). Frequently, LucOS is
expressed in tumor cells of KP mice to study neoantigen specific responses. LucOS
contains two model CD8 T cell antigens, SIYRYYGL (SIY), which is a synthetic peptide,
and SIINFEKL (SIIN), which is derived from chicken ovalbumin, that are both expressed
through fusions to luciferase protein.

In the KP model, tumor progression occurs over the course of approximately 5
months, during which tumors progress through histological grades that faithfully
recapitulate human clinical disease (Jackson et al. 2005; DuPage, Dooley, and Jacks
2009). The dynamic range afforded by this model permits longitudinal characterization
of anti-tumor immune responses. Utilization of the model antigens SIIN and SIY also
allow for longitudinal characterization of immune responses to specific neoantigens,
because T cells specific for these antigens can be stained with tetramer (Dupage et. al,
2011). Further, tumor progression kinetics in response to expression of LucOS have
been previously characterized (Dupage et. al, 2011). Importantly, expression of LucOS
confers simultaneous expression of SIIN and SIY model antigens, thereby making the
KP LucOS model system a viable experimental system to evaluate the contribution
each neoantigen response has on the global anti-tumor immune response.

In this study, we find an antigen dominance hierarchy between SIIN and SIY that
ultimately limits expansion of the subdominant SIY T cell response. Further, we find
progenitor CD8 T cell populations are heterogeneous and differ between SIIN and SIY
responses, and additionally describe a dysfunctional subset of progenitor cells that is

abolished following therapeutic vaccination against SIIN and SIY.
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RESULTS

Temporal dynamics of CD8 neoantigen response in Lung Adenocarcinoma

To characterize multi-modal neoantigen responses in the context of lung
adenocarcinoma, we utilized a genetically engineered mouse model of lung
adenocarcinoma in which lung tumors are generated in situ through lentiviral delivery of
Cre recombinase. Upon expression of Cre, oncogenic Kras®'?? becomes expressed and
Trp53 becomes deleted, generating multifocal tumors. tumor-specific neoantigen
expression is achieved by initiating tumors in KP mice with a lentivirus that contains
LucOS and Cre using a lentivirus that encodes LucOS (Dupage et. al 2011)(Figure 1A).
Importantly, we were able to track T-cells that recognize SIIN or SIY by staining them
with H-2K" peptide-MHC tetramer and assessing protein expression via flow cytometry.

Because cytotoxicity mediated by CD8 T-cells play a central role in the immune
response to a tumor (Raskov et al. 2020), we sought to characterize the CD8 SIIN- and
SIY- response in KP lung tumors. We found that the CD8 T cell expansion in response
to SIIN was significantly larger compared to the SIY at 5 weeks after tumor initiation, but
this difference gradually diminished at subsequent post-tumor initiation timepoints
(Figure 1B). Notably, the expansion observed in response to SIIN contracted sharply
between 5 and 8 weeks, whereas the SIY response remains largely constant (Figure
1C).

To further examine the phenotypic differences between SIIN and SIY specific
CD8 T-cells, proliferation was assessed by Ki-67 staining. There was no significant

difference observed in the proportion of cells proliferating when comparing the SIIN- and
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SIY- specific CD8 T-cell response at any of the observed timepoints (Figure 1D).
Because there are overall less SlY-specific cells that can be detected than SlIN-specific
cells, although the proportion of Ki67 expressing cells is the same, the absolute number
of proliferating cells is greater in the SIIN response compared to SIY.

We hypothesized that these differences in expansion of SIIN- and SIY- specific
cells may be a consequence of CD8 T cell functionality, and sought to measure
co-expression of co-inhibitory receptors associated with T-cell dysfunction and
exhaustion: PD-1, LAG-3, and TIM-3. The number of cells co-expressing these markers
was significantly higher for the SIIN response compared to SIY at 5 and 8 weeks post
tumor initiation. Similar to the absolute abundance of SIIN- and SIY- specific CD8
T-cells, the difference in expression of these co-inhibitory receptors between antigen
responses was not observed at later time points, 12 and 20 weeks (Figure 1E). The
degree to which T cell responses contract over time clearly distinguish global response
to SIIN and SIY. The absolute number of SIY-specific cells stays relatively constant over
time, and contrasts with SIIN-specific cells, which become dramatically less abundant
over time. Notably, however, the number and proportion of cells co-expressing inhibitory
receptors are indistinguishable by 12 weeks, suggesting that although the kinetics of the

SIIN- and SIY- response differ, both eventually become dysfunctional.
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Figure 1. Temporal dynamics of CD8 neoantigen response in Lung

Adenocarcinoma.

Data is adapted from Burger et. al 2021. Data are representative of = 3 independent
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experiments per time point. Each data point represents an individual mouse, n = 5 mice
per group in each experiment. Results here and in the following figures are expressed

as the mean + SD. Statistics were calculated by two-tailed Student’s t test: ns = not

significant, *p < 0.05, ** p < 0.01, *** p < 0.001.
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(A) KP LucOS Model. Lentivirus containing Cre and SIIN and SIY fused to luciferase
(LucOS) is intratracheally delivered to KP mice to initiate lung adenomas and
adenocarcinomas.

(B) Representative flow cytometry plots depicting percentages of SIIN- and SlY-specific
tissue-resident CD8 T cells (CD8+ CD44+) isolated from KP lung tissue. Specificity for
SIIN and SIY is assessed by H-2K® peptide-MHC tetrameter stain.

(C) Summary of absolute numbers of SIIN- and SIY- specific CD8 T cells over 5, 8, 12,
and 20 weeks post tumor initiation.

(D) Proportion of CD8 T cells specific for SIIN- and SIY- Ki67+ cells as assessed by flow
cytometry at 5, 8, and 12 weeks post tumor initiation.

(E) Proportion of dysfunctional CD8 T cells specific for SIIN- and SIY- which co-express
co-inhibitory receptors PD-1, LAG3, and TIM3.



169

SIY-Specific CD8 T Cells are Enriched for a TCF1+ Progenitor Phenotype

To further understand the phenotypic differences between the SIIN and SIY
response, 5’ single-cell RNA-sequencing (scRNA-seq) was performed on SIIN- and
SlY-specific CD8 T cells isolated at 5 weeks after tumor initiation, the time point where
the responses to the two antigens differs the most. Dimensionality reduction was
performed on RNA expression data from these antigen specific cells and visualized in a
Uniform Manifold Approximation and Projection (UMAP) embedding (Figure 2A). Cells
were then assigned to clusters (C0-C10, see Methods) in an unsupervised manner
(Figure 2B).

To annotate cell clusters in a biologically informative manner, differential gene
expression analysis was performed to identify positive and negative markers for each
cluster (Figure 2C). CD8 T cell exhaustion has been extensively characterized in the
context of chronic viral infection, most prominently lymphocytic choriomeningitis virus
(LCMV) infection. In this setting, gene signatures associated with progenitors that can
give rise to terminally exhausted T cells were derived. These signatures were then used
to map the transcriptional landscape of SIIN- and SIY- specific cells by utilizing
ProjectTIL atlases that contain these signatures (Raskov et al. 2020; Andreatta et al.
2021) (Figure 2D). After consideration of previously published gene expression
signatures characteristic of functionally different T cell populations to those of these cell
clusters (Supplemental Figure 2), each cell cluster was then manually annotated
(Figure 2C). Taken together, we identified two progenitor clusters that were
transcriptionally distinct (C4 and C8) as well as two dysfunctional/exhausted clusters

that were highly continuous with one another, but reflect slightly different states of


https://paperpile.com/c/XSr7BR/4pBqX+HeM4y
https://paperpile.com/c/XSr7BR/4pBqX+HeM4y
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dysfunction (C2 and C3). A number of cell clusters could be reliably annotated by
associated function of the cells within it; for example, clusters with cell states associated
with activation (CO and C6), and exhaustion or memory (C1, C2, and C3). With respect
to antigen specificity, SIIN-specific cells appeared to be enriched in several clusters,
including exhausted clusters C2 and C3 (Figure 2E). In contrast, other clusters were
enriched for SlY-specific cells, including progenitor clusters C4 and C8.

Still, gene expression in some clusters could not be clearly associated with
previously described CD8 T cell populations. This is particularly evident for some
clusters, such as C7, which had expression of genes characteristic of naive, short-lived
effector, and effector memory T cells. Notably, C7 in particular was composed almost
entirely of SIY-specific cells (Figure 2E). Initially, gene expression signatures seemed to
suggest these cells may be in a naive-like state. Upon further investigation, it was
determined that genes characteristic of naive cells, Lef1 and Sell, were not expressed in
these cells. Additionally, activation markers Cd69 and Cd44, which are characteristic of
effector cells, were lowly expressed. (Supplemental Figure 2B-C). Taken together, it
became evident that C7 may have a gene expression signature that is similar, but
distinct relative to those associated with previously characterized cell states. Of markers
most significantly differentially expressed in C7, very few genes positively marked C7.
It's most significant positive marker was AY0361718.1, a transcript which is associated
with the ETS-related transcription factor 1, ERF1. ERF is a potent transcriptional
repressor that acts downstream of RAS/MAPK signaling to negatively regulate cell
proliferation (Granas et al. 2006). Importantly, many genes expressed in C7 are

consistent with a repressed proliferative state.
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Unsurprisingly, the transcriptional profiles of SIIN- and SIY- specific CD8 T cells
were very similar, and all clusters contained at least one cell specific to SIIN or SIY
(Figure 2A). However, most cell clusters were enriched for cells specific for one antigen
relative to the other (Figure 2E). Clusters that were not significantly enriched for SIIN or
SlY-specific cells, C9 and C10, were small clusters with gene expression signatures
reflective of transient responses or programs, interferon signaling and proliferation
(Figure 2C). The markers associated with clusters that were enriched for cells specific
to one antigen over the other were largely related to functionality or functional
differentiation of T cells (Supplemental Figure 2A, Figure 2C), and suggests that the
functionality of response to SIIN and SIY are different. Importantly, this is largely
congruent with observations made about the behavior of tetramer stained SIIN- and
SlY-specific T cells by flow cytometry. (Figure 1). The clusters that were enriched for
SIIN-specific cells were generally reflective of activated cells with sustained exposure to
antigen. The clusters that had the largest enrichment of SIIN-specific cells were C1 and
C2 (Figure 2E), which contain cells that appear to progressively adopt gene expression
profiles associated with T cell exhaustion. Because these cells of this experiment were
harvested at 5 weeks, which precedes contraction of the SIIN-specific response, it is
likely that these cells are indeed in the process of becoming dysfunctional. In contrast,
the clusters that were enriched for cells specific for SIY, which is subdominant to SIIN,
appeared to reflect less differentiated cell states. Amongst these clusters, C4 and C8
contained cells that express genes associated with TCF1+ progenitor cells. This is a

particularly important distinction between the SIIN and SIY response, because TCF1+
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progenitor cells are thought to give rise to many of the cell states reflected in
SlIN-enriched exhausted-like clusters.

The remaining clusters that were enriched for SlY-specific cells, CO and C7,
represent cells with contrasting activation states. CO, which is modestly enriched for
SlY-specific cells, appears to be reflective of cell states associated with early responses
to productive activation signals and survival (Figure 2C). Conversely, the repressed
activation cluster, C7, showed the greatest magnitude of enrichment for SIY-specific
cells and was depleted for markers of activation. Interestingly, despite contrasting
activation states in CO and C7, both clusters have similar and overlapping positions in
UMAP space (Figure 2B). It seems likely that SlY-specific cells that do not receive
enough activation signals as a consequence of antigen dominance hierarchies enter the

cell state reflected in C7 and arrest, rather than expand.
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Figure 2. SIY-Specific CD8 T Cells are Enriched for a TCF1+ Progenitor Phenotype
(A) UMAP projection of 5° scRNA-seq gene expression data of SIIN- and SIY- specific
CD8 T cells at 5 weeks after tumor initiation. N = 10 mice, 4,023 SIIN-specific and 1,861

SlY-specific cells.

(B) Clustering schematic of scRNA-seq data in (A) depicting C0-C10.

(C) Heatmap of the top 10 differentially expressed genes per cluster from (B). Genes

highlighted on the right of the heatmap were used to annotate clusters that are denoted

at the top of the heatmap.
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(D) ProjectTIL classification using lymphocytic choriomeningitis virus (LCMV) infection
and tumor infiltrating lymphocyte (TIL) signatures as reference atlases. SlY-specific cells
are enriched for progenitor phenotypes (TIL p = 0.002, LCMV p = 2.51E-15) and
SIIN-specific cells are enriched for an exhausted phenotype (TIL p = 4.01E-17; LCMV p
= 1.52E-10).

(E). Quantification of SIIN- and SlY-specific cell assignments to clusters in (B). Brackets
indicate clusters significantly (p < .05) enriched for either antigen specific cell. SIIN is
enriched in C2 (p = 2.9E-9) and C3 (p = 5E-3) while SIY is enriched in C4 (p = 4.9E-6)
and C8 (p = 3.7E-12).
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Analysis of TCR Clonotypes from SIIN versus SIY scRNA-seq Data

Delineates Relationships Between CD8 T Cell States

The connectivity of clusters C4 and C8 to C2 and C3 on the UMAP (Figure 2B)
suggests transcriptional similarity between these cell populations, consistent with the
previously proposed lineage relationship between progenitor and exhausted cells
(Figure 2B)(Siddiqui et al., 2019). We further examined this relationship by analyzing
the distribution of individual TCR clonotypes (with = 5 cells) containing at least one cell
assigned to progenitor clusters C4 or C8 (Supplemental Figure 3A). This was also
performed across all clonotypes (Figure 3A).

Because the observed clonotypes were relatively small, we reasoned that
repeated patterns of functional differentiation may stratify groups of clonotypes in a
manner that reflected their functional behavior. Unsupervised hierarchical clustering on
the distribution of the clonotypes across clusters C2, C3, C4, and C8 largely segregated
SIY clonotypes into the top half of the heatmap and SIIN clonotypes into the bottom half
(Supplemental Figure 3A; see “antigen” side-bar). Across all clonotypes (Figure 3A)
this trend is also observed, however, many more clonotypes which did not have cells
assigned to progenitor clusters C4 or C8 appeared to have similar dynamics when
comparing SIIN- and SlY-specific clonotypes. Together, this indicates that SIIN and SIY
clonotypes that contain progenitor cells have unique, antigen-specific distribution
patterns across clusters of cell states. Importantly, the SIIN- and SlY-specific clonotypes
appear to be distributed across clusters equally, as assessed by Gini index, but do have

differences in the clusters they are found (Figure 3A). Further, clonotypes were scored
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for expression of key phenotypic genes, Gzmb, Havcr2, Cx3cr1, Tcf7, Ccr6 and ll17a,
as a proxy for their functional phenotypes (Figure 3A).

SIIN clonotypes that contained progenitor cells were distributed across most
clusters, but were enriched for cells assigned to exhausted cluster C2 (Supplemental
Figures 3A and Figure 3C); this further supports a lineage relationship between
progenitor and exhausted cell states and suggests that SIIN clonotypes are
well-progressed on the path to exhaustion. In contrast, both progenitor cell-containing
clonotypes and total SIY clonotypes were biased in cell distribution to clusters C4 and
C8 (Supplemental Figures 3A, Figure 3A and Figure 3C). Additionally, while there
were a similar number of SIIN and SIY clonotypes (= 2 cells: SIIN 153, SIY 149), SIY
clonotypes were smaller in size than SIIN clonotypes (Figures 3B). These observations
suggest that SIY clonotypes are repressed in clonal expansion and differentiation to an
exhausted cell state compared to SIIN clonotypes. Notably, however, sampling bias due
to the smaller input of SIY cells may also contribute to reduced SIY clonotype size (see
methods).

Flow cytometric analysis, published in Burger et al, 2021, confirmed that
SlY-specific cells were enriched for a progenitor cell phenotype at 5 weeks, referred to
hereafter as “TCF1+ progenitor” and defined as CD8a+ CD44+ TCF1+ TIM3- cells.
Consistent with previous reports (Miller et al., 2019; Siddiqui et al., 2019), the majority of
these cells expressed the inhibitory receptor PD1 (Figure S3B). Few expressed GZMB,
indicating that they are generally not cytotoxic, but were more proliferative than TCF1-
cells and were able to produce the effector cytokines IFNy and TNFa (Burger et al,

2021, Supplemental Figure 3C). Additionally, SIY-specific cells were enriched for
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TCF1+ progenitor cells compared to SIIN-specific cells at 5 and 8 weeks
(Supplemental Figure 3D). Notably, the absolute number of TCF1+ progenitor cells
was similar between the responses across all time points. In summary, these data
indicate that SlY-specific cells are enriched for a less differentiated, TCF1+ progenitor
cell state early in the response to KP LucOS lung tumors, while SIIN-specific cells

differentiate more rapidly to an exhausted cell state.
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Figure 3. Analysis of TCR Clonotypes from SIIN versus SIY scRNA-seq Data Delineates
Relationships Between CD8 T Cell States

(A) Heatmap representation of the distribution of TCR clonotypes (= 5 cells) across all clusters.
Proportion of cells scale: 1 = contains 100% of cells assigned to the clonotype, 0 = contains 0%
of cells assigned to the clonotype. Hierarchical clustering was performed on clonotypes (rows)
and the clusters (columns). “Clonotype clusters”, antigen and mouse assignments, and the
number of cells in each clonotype (size) are indicated on side-bars. A measure of the spread in
distribution of each clonotype across clusters, or “sparsity” (Gini index)(Hurley, 2009), is also
included. Additional side-bars show the proportion of cells in each cluster expressing key
phenotypic genes: Gzmb, Havcr2, Cx3cr1, Tcf7, Ccr6 and ll17a.

(B) UMAP depicting clonotype size for individual cells belonging to SIIN and SIY clonotypes.
Scale bar indicates the number of cells in a clonotype. Cells that belong to very small
clonotypes or do not have a clonotype assignment are shown in gray. The violin plot shows a
comparison of the size of SIIN versus SIY clonotypes containing = 2 cells.

(C) ECDF plots depicting the distribution of SIIN and SIY clonotypes to the indicated clusters.
Enrichment is expressed as p-value by KS test.

(D) UMAP plots highlighting cells assigned to each of the clonotype clusters depicted on the
clonotype cluster side-bar in (A). Clonotype cluster 7 is enriched for a Tc17 phenotype.
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Supplemental Figure 3. SlY-specific CD8 T cells are enriched for TCF1+ cells and are
less differentiated than SIIN-specific CD8 T Cells.

(A) Heatmap depicting proportions of TCR clonotypes (rows) assigned to each cluster
(columns), for clonotypes = 5 cells and = 1 cell assigned to Tcf1+ progenitor clusters C4 or C8.
Annotations for antigen specificity, mouse/source, and size (cell numbers) of each clonotype are
indicated. Proportion of 1 = 100% of clonotype.

(B-C) Flow cytometric analysis of PD1 (B) and Ki67 (C) expression by TCF1+ TIM3- (colored)
versus TCF1- (black line) SIIN- and SlY-specific CD8 T cells at 5 weeks. The naive population
(grey) represents CD44- tetramer- CD8+ T cells. Results are representative of 3 independent
experiments.

(D) Percentage and absolute number of progenitor TCF1+ TIM3- cells of SIIN- and SlY-specific
CD8 T cells over time. Representative of = 3 independent experiments.
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The Subdominant CD8 T Cell Response is Enriched for a CCR6+

TCF1+ Progenitor Cell Subset with a Tc17 Differentiation Trajectory

Competition with the SIIN response might continue to repress SlY-specific
TCF1+ progenitor cell differentiation in the context of ICB and account for why
SlY-specific cells do not respond better than SIIN-specific cells to treatment.
Alternatively, it may be that SlY-specific TCF1+ progenitor cells are intrinsically less
functional than their SIIN counterparts. In the scRNA-seq data, two clusters were
marked by “progenitor” gene signatures (C4 and C8) and were proximal to two clusters
marked by “exhausted” gene signatures (C2 and C3). To explore this apparent
heterogeneity in the progenitor and exhausted cells, we separately analyzed the cells
contained within these four clusters (Figure 4A). Interestingly, we found that
Tcf7-expressing cells within C4 and C8 occupied distal regions of the UMAP, suggesting
C4 and C8 contain distinct progenitor cell populations. C4 and C8 were both enriched
for a number of genes previously associated with TCF1+ progenitor cells (e.g. Tcf7,
Xcl1, Slamf6, Ccr7), but were also characterized by unique gene signatures (Figure
4B). C8 was marked by genes associated with memory T cells, including the trafficking
regulators KiIf2 and S1pr1, as well as the survival receptor /I7r (Figure 4B and
S4A)(Best et al., 2013). Conversely, C4 was characterized by expression of markers of
T cell dysfunction, tolerance and anergy, and most strikingly, showed strong enrichment
for a signature of Tc17 cells (Figure S4B, 4B, S4A and S4B) (Linehan et al., 2018;
Parish et al., 2009; Safford et al., 2005).

Tc17 cells, marked by expression of the chemokine receptor CCRG6, are an

IL17A-producing CD8 T cell subset commonly associated with autoimmune
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inflammation (Srenathan et al., 2016). Ccr6 was highly expressed in C4 and its
expression overlapped with Tcf7 expression; however, cells exhibiting other hallmarks of
differentiated Tc17 cells, including expression of the transcription factor Rorc (i.e.
RORYyT) and the cytokine //17a, were predominantly found adjacent to Tcf7-expressing
cells within C4 (Figure 4B). To determine if these cells shared an ancestral relationship
to Tcf7-expressing cells, we used Monocle3 to infer lineage trajectories (Cao et al.,
2019; Trapnell et al., 2014). This analysis predicted a trajectory connecting
Tef7-expressing cells in C4 with this putative Tc17 population (Figure 4C). //17a
expression was found outside clonotype cluster 7, but in a smaller number of clonotypes
compared to expression of Ccr6, Tcf7 or effector/exhaustion genes Gzmb, Cx3cr1 and
Havcr2 (Figure S4A). This suggests that a subset of TCRs might preferentially drive
differentiation down the Tc17 pathway; however, most of these clonotypes expressed
I117a in a small proportion of cells and were distributed across multiple clusters (Figure
3A), indicating that clonotypes giving rise to Tc17 cells also give rise to other cell states.
Flow cytometry analyses at 5 weeks later confirmed the presence of CCR6+ SIIN- and
SlY-specific cells and revealed enrichment for this population in the SIY response
(Burger et al 2021). Altogether, these results uncover previously undescribed
heterogeneity amongst TCF1+ progenitor cells. High expression of markers of
dysfunction/tolerance, low GZMB expression and differentiation to a Tc17 phenotype
suggest CCR6+ TCF1+ cells represent an unconventional TCF1+ population with

reduced functionality.
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Figure 4. The Subdominant CD8 T Cell Response is Enriched for a CCR6+ TCF1+
Progenitor Cell Subset with a Tc17 Differentiation Trajectory

(A) Characterization of cells assigned to clusters C2, C3, C4 and C8 from the mouse
scRNA-seq data (Figure 2B) with a separate UMAP embedding showing expression of Tcf7 and
Havcr?2.

(B) Expression (mean log(expression +1)) of genes associated with the indicated classifications
across clusters C2, C3, C4 and C8.

(C) Scoring of individual cells from (A) for enrichment of a gene signature differentially
upregulated in Tc17 versus Tc1 CD8 T cells in the skin of mice infected with S. epidermidis
(Linehan et al., 2018).

(D) Monocle3 lineage trajectories that connect cells expressing Ccr6/Tcf7 and Rorc/ll17a
overlaid with UMAP visualizations of Tc17-related gene expression.

(E) UMAP plots from (A) highlighting a group of five TCR clonotypes (clonotype cluster 7, see
also Figure S4A and S4D) that fall predominantly within cluster C4 and span cells expressing
Ccr6/Tcf7 and Rorc/IL17a along the Monocle3-predicted trajectory in (D).
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(A) Expression of select genes from the heatmap in Figure 5B projected onto the UMAP from

Figure 4A.

(B) Scoring of cells from the mouse scRNA-seq analysis in Figure 4A for expression of gene

signatures for Tc17 vs Tc1 from skin cells of Imiquimod treated mice (Linehan et al., 2018), T
cell deletional tolerance (Parish et al., 2009) and T cell anergy (Safford et al., 2005).
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DISCUSSION

The protective effects of T cells responding to the tumor-specific neoantigens,
SIIN and SIY are most evident at early time points after tumor initiation (DuPage et al.
2011). In this study, we show the response to SIIN dominates the response to SIY;
SlIN-specific T cells are more abundant and more cytotoxic than those specific for SIY
(Figure 1, Burger et. al 2021). As such, the tumor protective effects are likely to be
mediated primarily by the SIIN response. At timepoints where T cells appear to lose
their ability to restrict tumor growth, the SIIN response also appears to contract
(DuPage et al. 2011)(Figure 1). This further supports the notion that the SIIN response
not only dominates the response to SIY in terms of antigen specific CD8 T Cell
abundance, but also dominates the kinetics and productivity of the overall T cell
response to LucOS.

At the 5 week timepoint, many SIIN-specific cells have become fully activated,
cytotoxic, and differentiated (Figure 1, Burger et. al 2021). At the same time, many of
these cells acquire gene expression profiles indicative of progressive dysfunction
preceding terminal exhaustion. This is not surprising, because the T cell response to
SIIN contracts shortly thereafter (Figure 1). In parallel, the cells responding to SIY
appear to have cell states with less functional or suspended differentiation. However,
the kinetics of the SIIN and SIY response do not just differ temporally (Figure 1); the
SIY response is never observed to expand to the same degree as the SIIN response
when co-expressed with SIIN. Later, Burger et al 2021 went on to show that when

antigens are expressed alone, the phenotypes of SlY-specific cells were lost.
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Additionally, when SIIN was substituted with another neoantigen epitope that is thought
to have a lower affinity for MHC than SIY, the observed antigen dominance hierarchy
was reversed, instead favoring SIY as the dominant antigen (Burger et al 2021). Taken
together, these observations suggest that the SIY antigen can elicit a meaningful T cell
response, and that the difference between the SIIN and SIY responses when both
antigens are co-expressed are specifically a consequence of co-expression and antigen
dominance.

While the SIY response does not amount to the same magnitude of response to
SIIN in the LucOS setting, this does not inherently mean that the subdominant SIY
response is incapable of doing so. Intriguingly, although the SIY response never
undergoes the phases of expansion and contraction that are characteristic of CD8 T cell
responses, SlY-specific cells do appear to become dysfunctional. If the primary
difference between the SIIN and SIY response are the kinetics of functional
differentiation, it is entirely possible that suppression of the SIY response is further
compounded by an increasingly immunosuppressive tumor microenvironment. By the
time the SIIN response begins to contract, tumors are larger and have already adapted
to selective pressures imposed by SlIN-specific cytotoxic T cells. As such, when the
suppressive influence of the SIIN response becomes alleviated, the SIY response may
be further blocked by the tumor itself.

While absolute numbers of Ki67 expressing cells differ between the SIIN and
SIY response at 5 weeks post tumor initiation (Figure 1D), multiple factors may
contribute to the difference in observed expansion of the response to SIIN compared to

SlY. This may be a consequence of the fact that observed CD8 T cell expansion may
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reflect both proliferation and expansion of tissue resident T cells as well as peripheral T
cells which then infiltrate into the tumor-bearing lung.

One of the challenges associated with TCR clonotype analysis is that the
abundance of a clonotype can be influenced by technical factors, such as sequencing
dropout or underlying biological abundance of a clonotype. In the case of the SIIN- and
SIY- specific CD8 T Cell response, we observed more clonotypes overall for the SIY
response (Figure 3B), but these clonotypes were less expanded than SIIN-specific
clonotypes. In less expanded clonotypes, because there are less cells, it is more difficult
to determine the differentiation potential or distribution of cell states associated with the
clonotype when there are inherently a small number of cells to begin with. To work
around this issue, clonotypes were clustered according to their observed distribution
patterns across cell clusters (Figure 3A) to aggregate clonotypes with similar
distribution patterns. However, the observed distribution patterns are likely to be less
robust for smaller clonotypes; as such, we inherently have less confidence in clonotype
cluster assignments of small clonotypes. In spite of this technical constraint, when cells
are pseudocolored by their associated clonotype size (Figure 3D), we observe that
expanded clonotypes occupy different transcriptional spaces than clonotypes of small
sizes. If we assume that sequencing dropout occurs uniformly across cells, then this at
the minimum suggests that the degree of observed expansion for a given clonotype
does influence transcriptional state.

It is important to note that interpretation of how descendants of a particular clone
are distributed across cell states observed in this dataset is dependent on the

assumption that cells within a clonotype have some sort of shared ancestry. Functional
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differentiation of lymphocytes frequently follow paradigms of multilineage priming (Laslo
et al. 2006) in which daughter cells of a given progenitor differentiate into multiple cell
types simultaneously. Stated differently, the distribution of a clonotype across cell states
can reflect one or many differentiation trajectories. This is likely to be most confounding
in very large, expanded clonotypes which generally have at least one cell assigned to
nearly all cell clusters described in our data.

In addition, the observed clonotype sizes of the SIIN- and SIY- response are
(Figure 3B) consistent with the number of tetramer stained SIIN- and SIY- cells
quantified in independent experiments by flow cytometry (Figure 1C). In both the SIIN-
and SIY- response, the number of clonotypes that become very expanded relative to the
number of clonotypes detected is very small. For both responses, the observed
distribution of clonotype sizes are consistent with previously published work which
suggests that antigen responses, irrespective of antigen dominance hierarchies, are
dominated by certain clonotypes. In other words, productive antigen responses
generally have low TCR diversity associated with them. This has been reported in a
number of different biological contexts, including aging (Britanova et al. 2014), and
ankylosing spondylitis (Hanson et al. 2020).

Intriguingly, the most significant marker of C7, AY036118 is a poorly annotated
gene in the mm10 reference genome primarily because it has nucleotide sequences
that complicate read mapping. The gene contains a 705 base pair sequence with 95%
homology to 18S rRNA in the 3’'UTR (Kong et al. 2008) and has conflicting
computational annotations. As a consequence, it is annotated as a pseudogene in

Ensembl and ncRNA by NCBI. In spite of these annotations, clear evidence exists to
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support protein expression of Erf1 (Lindemann et al. 2001; Granas et al. 2006). Erf1 has
been functionally characterized as a potent repressor of cell proliferation and MAPK
signaling (Sgouras et al. 1995; Papadaki et al. 2007). Many of the genes differentially
downregulated in C7 were related to cell proliferation and activation; as such, we
annotated cells in C7 as having cell states with Repressed Activation (Figure 2C). In
agreement with this observation, C7 also had very few cells assigned to expanded
clonotypes, suggesting that cells that adopt this repressed activation state may be
unable to expand (Figure 3B).

In the context of an antigen dominance hierarchy, as reported here, this
generalization persists. However, the largest SIY- specific clonotypes are markedly
smaller than the most expanded SIIN- specific clonotypes (Figure 3B). In addition, the
fact that there are more productive clonotypes identified in the SIY- specific response
relative to the SIIN-specific response, in spite of greater SIIN- input cell numbers, further
suggests TCR diversity may be inversely correlated with degree of observed clonotype
expansion. However, it is less clear whether or not clonotype expansion simply reduces
the likelihood that the true underlying TCR sequence diversity is captured, or whether
expansion of one clonotype is able to influence expansion of another. In the context of
antigen dominance, further questions can be raised about the influence of expanded
clonotypes specific for dominant antigens on expansion of clonotypes specific for
subdominant antigens.

In this study, the functionality of T cells that respond to dominant and
subdominant antigens was characterized. These associations could be further extended

to observations made about TCR diversity and expansion; if associations between TCR
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diversity and antigen response are reliable and robust, measures of clonotype
expansion and TCR diversity could be used to predict the productivity of response to
associated neoantigens, which may be of particular utility in settings where neoantigen
expression is not experimentally defined. These associations may be especially useful
in clinical studies of neoantigen responses, where it is far more difficult to characterize
and assess neoantigen responses.

However, the utility of these associations is starkly limited by the inability to
associate a given TCR sequence with its associated neoantigen. This may be overcome
by computational algorithms that can predict TCRs that respond to the same neoantigen
(Glanville et al. 2017) and through empirical characterization of the relationship between
TCR sequence identity and cognate neoantigens identity. Complementary efforts to
identify features of neoantigens that can elicit productive T cell responses may lead to
further insight when characterized with respect to TCR diversity and expansion.

Taken together, it is abundantly clear that the global response to a single
neoantigen is dictated by heterogeneous responses of TCR clonotypes specific for that
neoantigen. In the case of the most expanded SIIN-specific CD8 cells, observations
made of the global response to a given antigen may be dominated by the behavior of
one or very few clonotypes. This may explain variation that is often observed in flow
cytometry based analyses. Notably, even SIIN-specific T cells occupy transcriptional
states enriched for subdominant SlY-specific cells, suggesting that neoantigen identity
does not entirely predict, but does influence, how T cells will respond to it. It is entirely

possible that similarities between the heterogeneous SIIN- and SIY- responses are a
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result of internal competition between clonotypes that recognize the same neoantigen,
and are further compounded by competition between different neoantigens.

In work that is not included in this thesis, but is published in Burger et al 2021,
further experiments were performed to functionally characterize the heterogeneous
progenitor populations observed in this study. It was found that expression of Ccr6 can
distinguish between CD8 progenitor populations, and these populations have
meaningful differences in their ability to drive productive immune responses.
Additionally, it was found that this population of CCR6+ cells is lost following therapeutic
vaccination against SlY, further providing evidence that SIY specific T cells are being
primed suboptimally when in competition with SIIN. In future studies, characterization of
both TCRs and neoantigens that are capable of eliciting productive immune responses
may lead to more meaningful comparison of dysfunctional T cell responses. Stated
simply, there may be multiple manifestations of T cell responses that are unproductive
or dysfunctional that cannot be stratified by associated neoantigen identity. Overall,
however, this work demonstrates the importance and influence that antigen dominance

hierarchies have on functional differentiation of CD8 T cells.

MATERIALS AND METHODS

Lentiviral Tumor Induction

Tumors were induced in KP mice that were at least 8 weeks old through
intratracheal delivery of lentivirus containing Cre recombinase and model neoantigens
(2.5 x 10* PFU) as previously described (DuPage et al. 2011; DuPage, Dooley, and

Jacks 2009). Mice were randomized for analysis and ICB and/or vaccination therapy.
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Tissue Collection and Flow Cytometry

Analyses were performed on tissue-resident immune cells, which were
distinguished from circulating immune cells through retroorbital injection of an anti-CD45
antibody 2-3 minutes prior to euthanasia (PE-CF594 or AlexaFluor780; 30-F11; BD
Bioscience) (Anderson et al. 2014). Lung tissue was harvested and dissociated with a
combination of manual cutting with spring scissors and a 30 minute treatment with
collagenase |V treatment (125 U/mL) (Worthington Biochemical) combined with DNAse
| treatment (40 U/mL)(Sigma-Aldrich) at 37°C. Lung tissue was further dissociated using
gentleMACS dissociator m_lung_2.0.1 protocol in gentleMACS C tubes (Miltenyi Biotec)
and passage through a 70 um strainer. For spleen and lymph node tissues, dissociation
was performed with a 70 ym cell strainer into RPMI 1640 media with 1%
heat-inactivated fetal bovine serum. For all tissues, cells were pelleted by centrifugation
and resuspended in 1X RBC Lysis Buffer (eBioscience) on ice for 10 minutes. Cells
were then resuspended in Phosphate Buffered Saline (PBS) and transferred to a
96-well U-bottom plate.

Dead cells were excluded by staining viable cells 20 minutes on ice with Zombie
or Tonobo Ghost Dye (Invitrogen and Tonbo Biosciences, respectively). Subsequently,
cells were stained for surface antibodies purchased from ThermoFisher Scientific, BD
BioSciences, or Biolegend in PBS with 1% Heat-inactivated FBS for 15-30 minutes on
ice. Antibodies used: CD8a (53-6.7), CCR6 (29-2L17), CX3CR1 (SA011F11), CXCR3
(CXCR3-173), CD44 (IM7), IL7R (A7R34), LAG3 (C9B7W), PD1 (RMP1-30), SLAMF6
(13G3), TIGIT (1G9), TIM3 (RMT3-23), OX40 (OX-86), ICOS (7E.17G9), CD200

(OX-90), CD83 (Michel-19). During this incubation, cells were concurrently stained with
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H-2K" peptide-MHC tetramers specific to SINFEKL, SIYRYYGL, SIINYEKL, mALG8 or
mLAMA4 (monomer, NIH Tetramer Core Facility; PE and APC streptavidin, Invitrogen).
Cells were fixed to permit intracellular staining for 1 hour at room temp (eBioscience
Fixation/Permeabilization Kit, ThermoFisher Scientific) and then stained overnight at
4°C with antibodies purchased from Cell Signaling Technology, ThermoFisher Scientific,
BD Biosciences, Biolegend or Miltenyi Biotec. Antibodies used: TCF1/TCF7 (C63D9),
RORYyT (B2D), TBET (eBio4B10), Granzyme B (GB11), Ki67 (B56), TOX (REA473),
EGR2 (erongr2).

All samples were analyzed on a BD Biosciences LSR Fortessa or LSR Il Flow
Cytometry Analyzer.

Cytokine production was evaluated following depletion of tumor and myeloid cells
in lung tissue, identified by incubation with 2 ug of purified antibodies specific for Ly-6G,
EpCAM, and F4/80 (Biolegend) at 4°C for 20 minutes. Cells were subsequently
incubated with 125 pl of sheep anti-rat Dynabeads (Invitrogen) at 4°C for 30 minutes
while rotating and stained for CD45.2 (Brilliant Violet 510, Biolegend). Excluded cells
were pelleted with a Dynabeads magnet (Invitrogen), leaving T cells in the supernatant
that were then transferred to a clean tube, washed with PBS containing 1% heat
inactivated PBS, pelleted by centrifugation, and resuspended in T Cell media (RPMI
1640 with 10% FBS, 10 mM HEPES, 1 mM sodium pyruvate, 1X MEM Non-essential
amino acids, 2 mM L-glutamine, 0.275 mM beta-mercaptoethanol, and 50 U/mL
penicillin-streptomycin). Cells were then transferred to a 96-well U-bottom plate,
pelleted and resuspended in T cell media plus 1X Monensin (Biolegend), 1X Golgi Plug

(BD Bioscience) and SIINFEKL or SIYRYYGL peptide (167 nM; New England Peptide)
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to assay IFNY and TNFa production. Cells were stained for IL17A by resuspending in T
cell media with PMA (2.5 ng/ml; EMD Millipore), lonomycin (1 uM; Sigma-Aldrich), 1X
Monensin, and 1X Golgi Plug and incubation at 37°C for 4-5 hours. Unstimulated
controls were generated by reserving 10% of each aliquot. The remaining 90% of cells
in each aliquot were then stained for viability and surface markers as described above
through incubation with antibodies overnight at 4°C. Antibodies used: IFN-y (XMG1.2),
TNFa (MP6-XT22) and IL17A (17B7) from ThermoFisher Scientific, BD Biosciences or

Biolegend.

scRNA-seq Data Processing

Base calls, mapping/alignment, and counts of sScRNA seq 5’ RNA expression
data were performed using Cell Ranger, version 3.1.0 (Zheng et al. 2017). Cell Ranger
3.1.0 was also used to map VDJ and Cell Hashing libraries. RNA expression data was
aligned to the GRCm38/mm10 reference mouse transcriptome (version 3.0.0) and VDJ
sequencing data was aligned to the prebuilt mouse (GRCm38/mm10) VDJ reference
supplied by 10X Genomics (version 3.1.0) (Zheng et al. 2017).

Approximately 6,472 cells and 15,939 genes were detected for SIIN-specific
CD8 T-Cell libraries at a sequencing depth of 80.4%. 3,646 cells and 14,834 genes
were detected for RNA SIY- specific CD8 T-cells at a sequencing depth of 76.9%. VDJ
libraries (containing TCR sequences) captured an estimated 4,713 (SIIN) and 2,705
cells (S1Y) with 3,857 (SIIN) and 2,196 (SIY) of those cells containing productive V-J
Spanning Pair. Cell Hashing libraries captured approximately 6,073 (SIIN) and 3,319
(SIY) cells at a sequencing saturation of 10.3% (SIIN) and 13.2% (SIY) for SIIN- and

SIY- specific CD8 T Cell libraries, respectively.


https://paperpile.com/c/XSr7BR/lqohL
https://paperpile.com/c/XSr7BR/lqohL

195

Seurat (version 4.0.0) was used to transform normalized counts by centered-log
ratio (CLR) and demultiplex cell hashing data (Butler et al. 2018; Ruf-Zamojski et al.
2018). A positive quantile threshold of 0.98 to infer which mouse each cell was
harvested from.

RNA expression counts were normalized and natural log-scaled in Seurat
(version 4.0.0). Seurat was also used to select variable features, and perform
differential gene expression analysis. Dying cells, probable doublets, and low quality
data were filtered out by imposing requirements for individual cells to express at least
100 but less than 4000 genes and have at least 20,000 reads, with a maximum of 5% of
reads aligning to the mitochondrial genome. Additionally, cells called as doublets by cell
hashing were also removed.

Expression for all genes in SIIN- and SIY- libraries were first centered by
subtracting average expression of each gene and subsequently scaled by dividing gene
expression levels by their standard deviations. SIIN- and SIY- libraries were then
merged in Seurat (“merge.data = TRUE”). For each cell passing quality control
thresholds, metadata assignments for V(D)J clonotypes and cell hashing (mouse of
origin) were made using Python with Pandas and Numpy (McKinney 2017; Harris et al.

2020)

Cell Clustering, and Differential Expression Analysis

Dimensionality reductions were performed using the 2,000 most variable genes,
selected in Seurat using the vst method (Butler et al. 2018; Ruf-Zamojski et al. 2018).
An estimation of principal components (PCs) used for further dimensionality reduction

was estimated by performing Principal component analysis (PCA) for the first 50 PCs
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and JackStraw analysis/elbow method. This estimation was further refined to a final 30
PCs through manual evaluation of features. These 30 PCs were used to construct a
shared nearest neighbor graph (SNN, k = 20) and perform Louvain clustering using
default parameters in Seurat (default parameters, resolution; (Meo et al. 2011). Cells
were embedded into 2-dimensional space by Uniform Manifold Approximation and
Projection (UMAP) algorithm (Mclnnes et al. 2018; Butler et al. 2018) with default
parameters in Seurat. Genes differentially expressed between cell clusters were
identified by Wilcoxon Ranked Sum test (FindAllMarkers, min.pct = 0.25).

Heatmaps with differentially expressed genes for each cluster were produced
using ComplexHeatmap (cluster_columns = FALSE, cluster_rows = FALSE). Statistical
enrichment was tested by a hypergeometric test in R (phyper, alpha = 0.05). Gene
expression visualizations in UMAP space were generated in Seurat using the
FeaturePlot function (order = TRUE) or in Monocle3 using the plot_cells function.

Data from cells assigned to C2, C3, C4 and C8 were separately analyzed in Monocle3,
version 0.2.3.0 (Junyue Cao et al. 2019; Qiu et al. 2017; Trapnell et al. 2014). Raw data
was normalized using default parameters. PCA was performed and the first 20 PCs
were utilized to generate a UMAP embedding (default parameters, except:
umap.n_neighbors = 30L, umap.fast_sgd = FALSE, preprocess_method = “PCA”;
Mclnnes et al., 2018). Cells were grouped using leiden clustering (Traag, Waltman, and
van Eck 2019) for trajectory analyses (resolution = 0.001) with otherwise default
parameters. To predict differentiation trajectories, a principal graph (visualized in UMAP
space) was learned in Monocle3 (learn_graph, use_partition = FALSE, rann.k = 20).

Further visualizations were created by exporting UMAP coordinates for these cells from
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Monocle3 to Seurat for gene expression and signature analysis. Differentially expressed
genes were calculated in Seurat, as described above.

Genes associated with CD8 T cell functionality were identified through manual
consideration of genes differentially expressed between cell clusters and previously
published research. The methodology utilized by gene expression calculations made by
Monocle3’s plot_cells_by group function was used to score expression of these
functionality associated genes. Subsequent gene expression scores were visualized in
heatmaps produced by ComplexHeatmap in R (cluster_columns = FALSE, cluster_rows
= FALSE).
scRNA seq T-Cell Subtype Classification

Using a reference tumor-infiltrating lymphocyte (TIL) atlas and lymphocytic
choriomeningitis virus (LCMV)-specific CD8 T cell atlas, individual cells were aligned
and annotated using ProjecTILs R package, version 0.5.1 (Andreatta et al. 2021).
Normalized expression data from Seurat was provided as input and annotations for cell
states were created using a nearest-neighbor algorithm (“cellstate.predict”) and
visualized “as-is”, without a confidence threshold, in UMAP space. These assignments
were further validated by confirming cell state annotations were the same after imposing
a confidence score threshold of 0.5.

TIL and LCMV progenitor state enrichment for SIIN- and SIY- specific T-cells
were analyzed by hypergeometric test (phyper, Stats R package; alpha = 0.05).
Similarly, progenitor or exhausted cell state enrichment in cell clusters was evaluated by

a hypergeometric test, described above.
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Gene Signature Scores

Individual cells were scored for expression of previously published mouse gene
signatures by calculating mean expression for each signature subtracted by aggregated
expression of control signatures in Seurat using the AddModuleScore function. Prior to
scoring, genes in signatures that were not detected in mouse scRNA seq data were
removed from each published signature.

Progenitor exhausted and terminally exhausted signatures were derived from (B.
C. Miller et al. 2019b), the deletional tolerance signature was derived from (Parish et al.
2009), and the anergy signature was derived from (Safford et al. 2005). Tc17 and Tc1
gene signatures were derived from (Linehan et al. 2018) and produced by alignment to
the mouse genome (NCBI37/mm9) using Bowtie (version 1.2.3)(Langmead et al. 2009),
quantification of feature counts with rsem (version 1.3.1)(B. Li and Dewey 2011), mm9
annotation with UCSC (genome.ucsc.edu), identification of pairwise differentially
expressed genes with DESeq2 (Love, Huber, and Anders 2014) in R (version 3.6.0).
CCR6+TCF7+ and CCR6-TCF7+ signatures were derived de novo in mouse
scRNA-seq data Signatures were then filtered genes as described above. Individual cell

scores were visualized in UMAP space.

TCR Clonotype Analysis

Clonotype identification and assignments to individual cells was performed using
Cell Ranger as described above. Clonotypes are expected to originate from a single
mouse; as such, rare clonotypes (22 of 652) that appear to originate from multiple mice,
which is determined by cell hashing, were identified using Pandas in Python and

excluded from downstream clonotype analyses. Most of the identified clonotypes were
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composed of less than 5 cells (548 of 652) that is likely a result of their physiological
abundance or extent of clonal expansion. Because it is impossible to distinguish
whether clonotype sizes are a result of biological abundance or from technical dropout,
clonotypes with less than 5 cells were removed from indicated analyses. Ultimately, 103
clonotypes remained.

Distribution of cells assigned to each clonotype across cell clusters (C0-C10) was
evaluated by calculating the proportion of cells in each clonotype assigned to each
cluster. This permits comparison of clonotypes with different sizes. For visualization in a
heatmap, rows (clonotypes) of the heatmap were ordered by hierarchical clustering
(method = “ward.D”) using default pairwise euclidean distance and columns (cell
clusters) were ordered by hierarchical complete-linkage clustering of pairwise Jaccard
distance (hclust, method = “ward.D”). Subsequently, clonotypes were assigned to 12
clonotype clusters by hierarchical clustering, using euclidean distance as a distance
metric (h = 0.6, cutree, R).

Identity-based annotations for each clonotype of this heatmap were generated
using clonotype metadata. Gene-expression based annotations for each clonotype were
generated by quantifying the proportion of cells with gene expression of Gzmb, Havcr2,
Cx3cr1, Tcf7, Ccr6, and 1117a > 0.5. Clonotypes statistically enriched for expression of
these genes were identified by hypergeometric test (phyper, Stats R package; alpha =
0.05). Additionally, to provide a metric for how equally distributed each clonotype is
across clusters, we calculated the Gini index for each clonotype as a measure of

sparsity.
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To test statistical enrichment of SIIN- and SlY-specific clonotypes, a
2-dimensional 2-sample KS test was performed; differences in proportion of cells in
each cluster or combination of clusters were visualized with an empirical cumulative
distribution plot.

Clonotype sizes were calculated in Python using Pandas. To further evaluate
how the size of a clonotype influences transcriptional profile, we assigned each cell a
value equivalent to the size of its respective clonotype and visualized these values in

UMAP space using Seurat.
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CHAPTER 4

Amanda M. Cruz, Jose B. Cruz, Tyler Jacks

SPECULATIONS AND FUTURE DISCUSSIONS

Models for Evolution of Tumor Heterogeneity

One perspective of tumor evolution, discussed in Chapter 1, can be guided by
Cancer Stem Cell (CSC) models of tumor heterogeneity, which operate under the
premise that a stem-like population can seed other subclones of a tumor. If a singular
CSC population existed that was responsible for the development of phenotypic tumor
heterogeneity through random and stochastic differentiation, a brief period in which very
little heterogeneity is observed would be expected, followed by a drastic increase in
heterogeneity once a CSC population has matured. In KP lung tumors, discussed in
Chapter 2, our findings are relatively consistent with these models, except that the
number of cell states observed in the primary tumor eventually plateau. Presumably, the
limitation of accessible transcriptional tumor cell states are a consequence of selective
pressures. Although the number of transcriptional subpopulations of a tumor may
increase with time, their associated transcriptional trajectories predicted by Monocle3
largely converge towards a HmgaZ2* metastatic-like state. This convergence may reflect
increasing selective pressure, or fine-tuned adaptation to the tumor microenvironment.

An important caveat to these speculations about selective pressures of the tumor
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microenvironment is that the tumor microenvironment changes dynamically as tumors
progress. For example, in Chapter 3, we demonstrate that the CD8 T cells of the tumor
microenvironment undergo dynamic changes in functional differentiation that ultimately
produce selective pressures that change over time. This highlights the possibility that
tumor cell subpopulations that are abundant and are positively selected for at one stage
of tumor progression may be negatively selected against or even eliminated at another
stage of tumor progression. As such, while computationally predicted transcriptional
trajectories of tumor cells may appear to converge towards an HmgaZ2® state, it is
possible that this convergence reflects “pruning” of tumor cell subpopulations.

In consideration of the dynamically changing tumor microenvironment, it is
entirely possible that multiple CSC states may be simultaneously present within a tumor
in order to be better suited to adapt to certain kinds of selective pressures from the
tumor microenvironment, but not others. Consequently, multiple populations may exist
within a tumor that are functionally distinct, but all have stem-like abilities that flexibly
allow tumors to generate diverse cell states in order to adapt to various forms of
selective pressure. Conversely, one could imagine that a single CSC population exists,
but itself undergoes changes over time as tumors progress that have meaningful
functional implications. These hypotheses have been supported by the discovery of a
functionally distinct Wnt producing niche in KP tumor cells (Tammela et al. 2017).

Many hypotheses that build upon the CSC model typically operate under
contexts where the cell of origin of a tumor is believed to have homeostatic stem-like
abilities. However, in many of these cases and in the case of AT2 cells in particular,

which are believed to be the cell of origin in the KP model (C. F. B. Kim et al. 2005), the
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potential of these stem cells are still lineage restricted. In order for a stem cell to give
rise to the diverse cell states and dysregulated identities observed in tumors, they must
undergo extensive functional changes with respect to differentiation potential to
generate a heterogeneous tumor. Often, terminally differentiated cells are thought to
have terminal evolutionary trajectories under physiological conditions. The associated
stability of transcriptional states for terminally differentiated cells are often attributed to
heritable changes in epigenetic landscape of terminally differentiated cells.

Fascinatingly, the changes in differentiation state of tumor cells challenge the
permanence of transcriptional states that are usually associated with terminally
differentiated cells. Tumor cells exploit the lack of permanence of epigenetic states in
order to generate a greater diversity of transcriptional states. The biological implication
of the chromatin landscape of a healthy, differentiated cell is to restrict the permutations
of cellular machinery, circuitry, and programs that are accessible to the cell in order to
restrict cellular responses to change and homeostatic processes to ultimately maintain
the tissue and its overall function in the context of the entire organism. As such, in order
for these cells to become capable of functionally differentiating into a diverse set of cell
states, many epigenetic changes must occur. While these epigenomic states are
reversible, they are very stable, and in order to become plastic, a substantial
destabilizing force is required. One of the most apparent and widely accepted sources
of oncogenic stress are those that result from destabilizing “hits” of oncogenic

mutations.
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Tumor evolution as a chaotic process

A system is considered to be chaotic if it is bounded, deterministic, and has
characteristic hypersensitivity to perturbations (Toker, Sommer, and D’Esposito 2020).
Tumors may evolve as a result of sensitivity to tumor-initiating signals

For an organism to develop and sustain life, gene expression must be tightly
regulated. This has inherently led to the evolution of genes, circuitry, machinery, and
multicellular systems that suppress and prevent transformation or tumor formation. A
single mutation can confer subtle effects on these tumor suppressive networks and
systems. Over time, the effects of a single oncogenic point mutation can accumulate to
cross a threshold that disrupts canonical processes enough to confer strong
susceptibility to cancer development (H. Lee et al. 1999; J. M. Dunn et al. 1988; Lynch
et al. 2015). To counteract this sensitivity, regulatory systems of development and
homeostasis exert control over the biological processes that underlie cancer
development through surveillance, repair, and feedback (Filipski et al. 2002; Bruchovsky
et al. 1996; L. Huang and Mellor 2014). In many cases, sufficient control is maintained
long enough for an organism to develop, mature, and age; when it is not, cancer is likely
to occur. Temporal feedback to perturbation may also occur, supporting hypotheses that
cells may be transformed and progress to a clinically detectable tumor over relatively
long time scales (P. C. Nowell 1976). This is further supported by the clinical cases
where measurable disease kinetics, such as primary tumor growth or rate of metastasis,
progressively accelerate over time.

Evidence for sensitivity to transformation has been described in the field of

cancer biology in numerous ways, particularly through characterization of individual
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oncogenic mutations and clonal outgrowth of cells (i.e. tumor progression begins with
change in a single cell) (S. Y. Luo and Lam 2013; Shlush and Hershkovitz 2015;
Greaves and Maley 2012; H. Lee et al. 1999), which collectively provide evidence that a
single, or few, mutations can sufficiently drive oncogenic transformation. Mathematical
models of tumor evolution support clonal expansion of tumor subclones that contain
mutations that confer specific mutational and fitness properties (Heide et al. 2018).
However, not all mutations destabilize regulatory systems enough to cause cancer
(Martincorena and Campbell 2015), which may be a consequence of the effects they
confer, tissue specificity (Garcia-Nieto, Morrison, and Fraser 2019), or protection from
tumor suppressive pathways (Heuer et al. 2020; Xuyi Wang, Simpson, and Brown
2015). In turn, chaotic behavior of evolutionary trajectories are possible when regulatory
systems become sufficiently destabilized.
Tumor evolution is deterministic and bounded

The extent of variation in clinical and experimental observations made throughout
the course of tumor progression is superficially consistent with a model for stochastic,
rather than deterministic, evolution throughout tumor progression. In Chapter 2, a
time-series analysis of cell states in KP lung tumor evolution was attempted through
single-cell RNA sequencing. In this study, the observed tumor cell states were highly
reproducible across mice, but varied in abundance across samples harvested from the
same time point. This manifested in variation both at the state of the overall tumor and
of its respective tumor cells.

At a given time point, the overall grade of a tumor that is harvested from the

lungs of the animal follows a probability distribution that is dependent on time (Jackson
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et al. 2005). In this way, the probability of harvesting a tumor that has a high histological
grade is higher at longer time points than it is at shorter time points after tumor initiation.
Additional complexity is created by intra-tumor heterogeneity of cell states; abundance
of cell states observed in heterogeneous tumors are a function of tumor progression
(Marjanovic et al. 2020). If a higher grade tumor is harvested, the state of any given cell
within that tumor follows probabilistic distribution patterns that are dictated by the grade
or progression of the tumor it belongs to.

Notably, the distribution of tumor cell states at a given time point is still
dependent on time. As such, tumor evolution can be perceived as a deterministic
process at the macroscopic level, governed by biological noise generated at least
partially from the stochastic influence of latent variables. Although these variables are
likely to affect tumor cells somewhat stochastically, across many tumors and mice, their
influence exhibits predictable behavior and is consistent with mathematical models of
stochastic processes (Ditlevsen and Samson 2013). These latent variables produce
variation in timescales associated with tumor evolution, discussed in Chapter 1 Section
5.1, such that transcriptional changes occur in tumor cells in a stochastic manner. This
temporally manifests in evolutionary behavior consistent with a nonstationary process, a
function that is influenced by a stochastic process that itself is macroscopically
deterministic with properties that vary in a time-dependent manner (Gagniuc 2017). In
other words, the time scales over which tumor evolution occurs is dictated by stochastic
biological influences that ultimately make time series based analyses unreliable.
However, the stochastic behavior of these biological influences have properties that are

themselves deterministic, and evolve as a function of time.


https://paperpile.com/c/XSr7BR/l4vkT
https://paperpile.com/c/XSr7BR/WRKZp
https://paperpile.com/c/XSr7BR/IkJd
https://paperpile.com/c/XSr7BR/ztB0B

208

Analysis of nonstationary processes is a complex issue frequently encountered in
data forecasting. Generalizations made about nonstationary processes have suggested
that behavior of nonstationary processes can be approximated by assuming local
stationarity, proposed by Dahlhaus (Dahlhaus and Giraitis 1998), wherein the properties
that define the stochastic effect of biological influences on time scales of tumor
evolution are assumed constant across small intervals of time. This approach inherently
creates and defines multiple kinds of time scales over which tumor evolution can be
examined. The first is the absolute or chronological time scale of evolution of a given
tumor, and is regarded as ‘observed time’ or ‘absolute time’. The second is ‘rescaled
time’, which is defined by deterministic changes between two states of the system (Van
Bellegem and von Sachs 2004). Characteristically, in between states associated with
the beginning and end of the process being studied, the spectrum of states observed
will increase in an asymptotic manner. This is largely consistent with the observed
convergent evolution of KP lung tumor cell states and with bounded behavior of the
system.

Biological pseudotime is a rescaled unit of time

If we reconstruct tumor evolution on an axis of pseudotime, rather than absolute
time, the systems which dictate tumor cell state appear to change in a dynamical and
deterministic manner. If construction of pseudotime across longitudinally-sampled tumor
cells indeed corrects for the stochastic effects of latent variables that produce
confounding biological noise, as discussed in Chapter 1 and in the section above, the
reproducible nature of KP lung tumor evolution loosely fits the criteria for deterministic

systems. Pseudotime can be considered an “arrow” of time that, although governed by
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physical processes that proceed as a function of absolute (symmetrical) time, described
in Chapter 1 Section 5.1, manifest in an ‘asymmetric’ manner (Roberts and Quispel
1992). Simply, the amount of time that is required to generate cell states with equal

distance along an axis of biological pseudotime is not constant across tumor evolution

(Figure 1).
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Figure 1. A visualization of asymmetry in biological pseudotime. A theoretical model for
tumor evolutionary trajectories, f, is differentiable with respect to absolute time, ¢, or
biological pseudotime, p, such that a distance, x, can be calculated between two cells
with different evolutionary states.

X = ff(t)dt and Xpr = ff(P)dP
(A) Assume two pairs of cell states in tumor evolution, (C,, C,) and (C,, C,) exist with

equidistant relative positions in biological pseudotime (x,). The absolute or
chronological time required for a cell to evolve from state C, to C, (B) given by
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C2
X = Cffd(f) can be nonequivalent to that of evolution from state C, to C,, (C) given by

1

Evolution of tumor cell state is a time-dependent process. Evidently, this implies
tumor evolutionary processes roughly follow behavior of a dynamical system, which is
defined by its ability to be differentiated with respect to time (Katok and Hasselblatt
1995). As it is proposed in this thesis, tumor evolution is also differentiable with respect
to biological pseudotime, a variable scale of absolute time. Importantly, pseudotime is
differentiable (or dependent on) absolute time; as such, biological pseudotime likely can
be described by a multivariate function that is dependent on changes in gene
expression that occur as a consequence of the passage of absolute time (Figure 1).

The argument that tumor evolution occurs in a deterministic manner seemingly
contradicts long-held models of stochastic tumor evolution (Foo, Leder, and Michor
2011; Bose and Trimper 2009; M. J. Williams et al. 2016). Notably, these models
functionally define cell state in tumor evolution by mutational status; in contrast, in this
work, tumor evolutionary status is assessed by cell states defined by transcriptional or
chromatin accessibility profile. Tumor evolution appears to be macroscopically
reproducible, but occurs with a high degree of variation from tumor to tumor, mouse to
mouse, and possibly even cell to cell with respect to time. For this reason, it is likely that
the relationship between biological pseudotime (tumor evolution) and absolute time

cannot be defined in a reproducible manner without statistical modeling, and is therefore
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stochastic. Tumor evolution, however, is deterministic along the axis of and dynamical
with respect to biological pseudotime.

Differentiability with respect to pseudotime, a hallmark of dynamical systems,
may seem counter-intuitive in the context of experimental approaches often utilized in
biological research. Biologists usually seek to explain biological phenomena with
respect to absolute, chronological time, or through time-series. Systems-level
approaches to modeling biological processes in these time series led to the emergence
of mathematical models that describe some of these processes as having behavior
characteristic of chaotic systems, frequently in the context of population dynamics and
enzyme kinetics (Olsen and Degn 1985; Parry 1979). In the era of single-cell
technologies, biological phenomena are profiled in high-dimensional transcriptional or
chromatin accessibility space that has created new opportunities to model temporal
dynamics of heterogeneous and noisy biological systems.

Phenomena of asymmetry in time or variant time scales have been repeatedly
described in other contexts, particularly in physics (Roberts and Quispel 1992). Many
experimental descriptions of chaotic systems have a similar behavior to that of KP
tumor evolution, in which chaos can be deterministically modeled in the absence of
stochastic terms and may manifest in bifurcation of the behavior of the system towards
stability or chaos (Glass 2009). In this case, periods of time or pseudotime between
branch events created through bifurcation and chaotic behavior can be thought of as the
time scales over which assumptions of local stationarity are true. In other words, |
predict periods of stasis exist in tumor evolution in which selective pressures are

relatively constant and biological systems exist in a state of equilibrium. Further,
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between these time periods, and amongst time periods with similar properties across
tumor evolution, approximations can be made about the behavior of evolutionary
trajectories that can be described in a piecewise manner (Van Bellegem and von Sachs
2004).

The remaining requirement of chaotic systems, which require bounded behavior,
is largely satisfied by dynamics of KP lung tumor evolution. If transcription in tumor cells
became entirely dysregulated, trajectories of tumor cells would follow the dynamics of a
random walk across transcriptional space or a high-dimensional manifold. Stated
plainly, gene expression in cells would simply become random. Of course, not every
system in a tumor cell becomes dysregulated. An important caveat to this perspective is
that bounded behavior of accessible states may occur in any biological process as a
consequence of constraints imposed by gene regulatory networks (S. Huang 2012) and
may not be unique to tumor evolution itself. Complete transcriptional dysregulation is
arguably never observed in a viable cell because it would not be able to sustain life.
That said, life can still be sustained in a wide variety of cell states that are apparent in
comparison of cell states across different tissues. As such, it is still remarkable that
reproducibility can be observed in KP lung tumor evolution, particularly despite latent
influences that cannot be controlled for that generate biological noise.

Comparisons to models of mutational tumor cell evolution

Models of tumor evolution in the context of mutations have been largely focused

on distinguishing highly recurrent destabilizing alterations, whose fitness benefits are

dependent on stochastic processes such as mutation, described in Chapter 1 Section
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1.3 and by (Hanahan and Weinberg 2011; Dagogo-Jack and Shaw 2018) from
mutations that do not confer selective advantages.

Acquisition of additional mutations are not required for and does not drive tumor
evolution in the KP model (DuPage et al. 2011), as such, stochastic random mutation is
unlikely to have a strong influence on tumor evolutionary trajectories in this specific
context. However, in other studies of the K and KP model, introduction of additional
mutations confer an effect on cell state in a manner that affects the evolutionary fitness,
and therefore trajectories, of tumor cells (Rogers et al. 2018). As such, conclusions
generated from analysis of the KP model are inherently limited in their ability to model
response to acquisition of mutations in other cancer-driving genes. That said, further
work describing evolutionary trajectories in KP tumors with additional genetic mutations
may lead to insight on how mutations in such genes may affect overall disease
progression.

Despite the lack of acquired mutations in the KP model, evolution of KP lung
tumors may share similar evolutionary dynamics to observed mutational trends in other
tumor contexts. In the context of mutational status, tumor evolution and heterogeneity
has been previously proposed to be a deterministic process (M. J. Williams et al. 2016),
in which neutral evolution governs mutational-trajectories of tumor cells, and dictates
equal growth rates of clones with distinguishing neutral mutations. This model is derived
from the Luria-Delbruck model of bacterial evolution. Despite support for this model in
studies with mice (Driessens et al. 2012), the interpretation of the data presented by
Williams et. al. drew criticism because it assumes a constant rate of cell death,

mutation, and proliferation as well as synchronous division (Tarabichi et al. 2018).
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However, the solution proposed in the Williams model agrees with convergent
solutions generated from simulations in which these parameters are stochastically
defined (Heide et al. 2018). When incorporated with models where mutation and
subsequent subclone fitness is defined stochastically, the Williams model performs well,
except in extreme situations. It performs poorly in situations where a subclone either
acquires a mutation that confers a strong selective advantage but does not decrease
genomic stability, or when a subclone acquires a mutation with moderate selective
advantage that decreases genomic stability (Heide et al. 2018). In these situations
where the model fails, subclonal expansion is likely driven by a selective advantage.
Transcriptional Bursting May Underlie Heterogeneity of Cell State

Although the variation in kinetics of tumor progression creates analytical
challenges in cancer biology, it is believed to be caused by variables with meaningful
biological influence. This kinetic variation is often treated as biological noise, but
nonlinear kinetic processes are prevalent in biology (“Nonlinear Oscillations in Chemical
and Biological Systems” 1991), and latent variables that cause variation in tumor
progression kinetics could provide meaningful changes or selective pressures that
ultimately drive tumors to become heterogeneous.

In this thesis, the majority of discussions of cell state are based upon
transcriptional profiles of individual cells. While it is difficult to model transcriptional
dynamics in experimental systems that are as complex as mouse models, several
pieces of evidence suggest that the kinetics of transcription in individual cells is
nonlinear and subject to bursting behavior that is coordinated by precisely regulated

systems (“Enhancer Control of Transcriptional Bursting” 2016).
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While many regulatory systems in a tumor become disrupted, many studies have
suggested that topologies of intracellular regulatory circuitry are not entirely lost, but are
instead rewired (“Gene Networks with Transcriptional Bursting Recapitulate Rare
Transient Coordinated High Expression States in Cancer” 2020). Some studies have
further suggested that bursting behavior of transcriptional networks in a tumor have the
capacity to generate functionally distinct rare tumor subpopulations (Zhao, Cheng, and
Zhao 2017). In this study, it is proposed that highly connected gene regulatory network
topologies result in higher throughput of gene expression outputs, both in terms of
expression and duration (Zhao, Cheng, and Zhao 2017). Importantly, the amplitude and
frequency of burst kinetics in this study are generally constant and maintained
throughout transcriptional responses in highly connected gene networks. In gene
networks with less connectivity, this regularity is partially lost (Zhao, Cheng, and Zhao
2017). Indeed, outside of biology, burst kinetics have been extensively used to model
network constraints of information trafficking (Cruz 1991b). In this regime, it was
demonstrated that engineering multiple regulators within a network with burst kinetics
can increase the throughput of the system (Cruz 1991a), and parallels observations
made by (Zhao, Cheng, and Zhao 2017). Taken together, if transcriptional burst kinetics
are assumed, rewiring and disruption of regulatory networks in tumor cells may lead to
aberrant transcription that can drive evolution of heterogeneous subpopulations of cells.

In the KP lung tumor model, the AT2 cell of origin is a well-differentiated epithelial
cell whose identity is maintained except in response to injury (Paris et al. 2020). Thus,
in untransformed cells where gene regulatory networks are intact, transcriptional

outputs are stable and result in stable, regulated expression of AT2 identity genes. In
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contrast, untransformed T cells have characteristic functional heterogeneity that is an
explicit feature of a productive overall T cell response (Gong, Linderman, and Kirschner
2014). Consequently, T cells have contrasting gene regulatory dynamics when
compared to AT2 cells. In the setting of the tumor microenvironment, the factors that
control heterogeneous functional differentiation are ‘tuned’ in a manner that can lead to
dysfunctional T cells (Hashimoto et al. 2018).

In sum, these parallel observations suggest that transcriptional heterogeneity
observed in single cells, including both CD8 T cells and tumor cells, may be
symptomatic of underlying transcriptional regulatory dynamics. Importantly, loss of
regulators in gene networks of tumor cells may result in differentiation (or change in
differentiation status) that ultimately generates heterogeneous subclones of a tumor.
Analytically, the ability to fit the observed transcriptional noise in tumor cells to models
that describe multi-level burst kinetics is currently extremely limited. This is due to the
fact that there are dynamic changes in transcriptional network topology that occur in
response to changes of regulatory dynamics. However, in T cells, regulatory dynamics
are exploited and tuned, but transcriptional network topology is not necessarily altered,
which has led to emerging studies that describe the role of transcriptional bursting in T

cell differentiation (DeMarino et al. 2020).

Relationships between Cell Signaling and Cell Identity

Signaling Architecture
If we think about applications of information theory to understanding the changes
that result from the onset of oncogenic signaling - in our model, driven by Kras, we can

think of transcriptional outputs from signaling as being constrained by channel capacity
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of upstream signaling components. In the KP model, the “channel capacity” of KRAS
can be interpreted to change through an oncogenic mutational event. Thereafter, KRAS
activation is no longer rate limiting, and provides a constant, saturated signal to
downstream signaling components, such as PI3K and MAPK signaling. This single
oncogenic mutation, however, does not change the “channel capacity” of these
downstream signaling events. It is important to note that these “channels” (i.e. signaling
components) are not defined simply by their biochemical capacity to signal to
downstream effectors as intrinsically defined through their protein structure. Instead, the
parameters of each signaling “node”, such as components of PI3K and MAPK signaling
pathways, are a function of the activity and availability of other signaling components
that serve to change the “channel capacity” of signaling nodes. Stated otherwise, the
ability for downstream signaling pathways of KRAS to respond to constant oncogenic
signals from KRAS®'?® gain-of-function activity is influenced by the architecture of
further downstream effector networks. As such, in a cellular signaling network, the
capacity of these channels are dynamic. An important limitation to this reasoning is that
signaling pathways do not act in isolation. Signaling pathways downstream of KRAS
activation are not solely activated by RAS signaling. They integrate both positive and
negative signals from pathways that can act in parallel to RAS or upstream of it. These
upstream or parallel signaling pathways can provide feedback on pathways downstream
of RAS to tune channel capacity. In isolation, the activity of downstream signaling
components behave according to their intrinsic constraints. In practice, however,
signaling pathways act within a network, and the impacts of a saturating oncogenic

signal will affect the entire signaling network. Importantly, it is very possible that the
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global response to this form of oncogenic stress underlies differences in how cells
respond to various forms of oncogenic stress.

In ATZ2 cells, the signaling network of a healthy and normal cell can be thought to
be specialized to support AT2 function. In this manner, it is optimized for at least 3
purposes: 1) to maintain AT2 cell identity, 2) to respond to cellular stresses encountered
by AT2 cells, and 3) to create a “kill-switch” to prevent proliferation of cells with some
kind of defect. Cellular signaling events relay information about the extracellular
environment of the cell. The purpose of AT2 cells is to produce surfactants to prevent
the lung from collapsing and to participate in structural formation of the lung epithelium
(see Chapter 1). Thus, the steady-state signaling network of AT2 cells has been
optimized to perform these exact functions. These functions could include detection of
biomechanical stress, production of surfactants, and proliferation in response to injury.
This functional optimization is not mutually exclusive with maintenance of cell identity,
as cell features of cell identity, particularly cell shape, are dictated by functionality.
Stated plainly, form fits function. Lastly, the kill-switch is important to ensure
homeostasis in the lung epithelium, and kill cells that have acquired DNA damage. This
could prevent transformation or outgrowth of cells transformed with Kras®'?® and may
underlie the discrepancies observed between the number of cells infected with virus to
initiate tumors and the number of over lesions and tumors that are later observed in the
lungs of these animals.

An interesting nuance of AT2 cells is that they have been shown to be able to
trans-differentiate into AT1 cells in response to certain kinds of stress (see Chapter 1),

which represents an outcome characteristic of all of the above described purposes of a
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cellular signaling system. The primary difference in this instance is that the programmed
response to this particular stress signal is a change in cell identity. If a cell survives
acute saturation of activating signals in one branch of its intracellular signaling network,
it may adapt to the signal through feedback that inherently changes the topology or
dynamics of the network itself. Because these adaptive changes of cellular signaling
alter cell functionality and thus cell identity, it is possible trans-differentiation is a
programmed mechanism to change the dynamics of cellular signaling in canonical,
non-transformed AT2 cells.

This is conflicting in some aspects. One of the major purposes of the optimized
cellular signaling dynamics of AT2 cells is both to maintain cellular identity, but also to
provide a programmed response to change cellular identity. The difference between the
two outcomes is a function of stress signals. Under a highly simplified boolean logic, the
absence of a trans-differentiation stress signal could result in maintenance of AT2 cell
identity, whereas the presence of this signal results in trans-differentiation. Inherent to
this theory is the ability to sense this stress signal, and that this sensing mechanism has
the capacity to change cellular signaling dynamics as well as transcriptional and
epigenomic state.

It is well established that AT2 cells and AT1 cells have distinct transcriptional
profiles (Travaglini et al. 2020), which almost certainly confer different topologies or
architectures of cellular signaling networks. In line with this logic, epigenetic changes
are also likely to mediate changes in these topologies. In contrast to the AT2 and AT1
states observed in KP lung tumor evolution, an important distinction about stress

responses that induce differentiation of AT2 cells is that cell state changes occur
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independently of mutational changes in signaling components. The intrinsic biochemical
nature of signaling components remains unchanged. As such, introducing a mutation in
KRAS and thereby increasing its signaling output may exploit endogenous and
programmed responses to stress signals that would normally cause cells to differentiate
into AT1 cells. In the context of transformation, this may initiate destabilization of cell
state.

When oncogenic KRAS is introduced into AT2 cells, the initial events that follow
induction of oncogenic KRAS must operate within the constraints of the signaling
network that underlies AT2 cell identity. Introduction of oncogenic Kras inherently
changes the cellular signaling network architecture, but only downstream of Kras. Thus,
the “channel capacity” for downstream signaling effector networks are unchanged and
operate under their normal endogenous constraints. This implies 2 possible modes of
responses to oncogenic Kras signaling, which are not mutually exclusive: it can be
interpreted as a stress signal to differentiate into AT1 cells, or, it can cause endogenous
feedback systems to respond to changes in KRAS signaling by activating a “kill switch”.
If such a kill-switch response occurred invariably, introduction of oncogenic KRAS, even
with simultaneous loss of P53, would invariably lead to cell death. Thus, the response to
oncogenic KRAS is not unilateral, despite the fact that the oncogenic signals it provides
are constant and inherent to the gain-of-function G12D mutation. This may, in fact,
create selective pressures that drive dysregulation of cell identity in KP lung tumor
evolution: trans-differentiate, or die.

Etv4 expression is induced at early stages of tumor initiation, although at a low

level (Mainardi 2013). Although Etv4 appears to be expressed relatively late in tumor
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progression and is not expressed in the normal lung, discussed in Chapter 2 and in
(Mainardi 2013), cells which have lost Etv4 appear to be selected against. Similarly,
Etv5 is also required for Kras tumor initiation in the lung (Z. Zhang et al. 2017), but is
expressed in untransformed AT2 cells and has patterns of gene expression changes
during tumor evolution that are distinct from those of Etv4. The Pea3 transcription factor
subfamily is particularly important for processes important for lung development and cell
identity, and are also effectors of MAPK signaling (O’Hagan and Hassell 1998;
‘ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway
Inhibition” 2017). Importantly, the ETS transcription factors coordinate with multiple
other transcription factors and are known to influence cell identity (Marra and Wingert
2016; “A Systematic Approach to Identify Candidate Transcription Factors That Control
Cell Identity” 2015). Given the demonstrated importance of the Pea3 transcription
factors in KP lung tumor evolution, it is possible these transcription factors mediate cell
identity changes. However, further characterization is required to better understand the
relationships between the ETS transcription factors in KP lung tumor progression.
Refining models of the functional differentiation of tumor-specific CD8 T Cells
The primary conclusion from the study discussed in Chapter 3 is that the
response a CD8 T cell has to an antigen is more heterogeneous than previously
thought. In fact, the influence of antigen dominance hierarchies represent conclusive
evidence that the functional behavior and differentiation of CD8 T-cells is partially
determined by the dynamics of the overall anti-tumor response and are not unilaterally
determined by the peptide sequence of an epitope or the neoantigen itself. This agrees

with the discovery that exogenous antigen specific CD8 T-cells have productive immune
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responses to antigens that endogenous CD8 T-cells do not respond to (Strgnen et al.
2016).

One of the ways this multi-faceted behavior of the immune response manifests
biologically is through subtle, but functionally important, transcriptional changes that in
turn affect the functionality of cytotoxic T-cells. For example, T-cells specific to the
subdominant SIY antigen have very similar transcriptional profiles to that of cells
specific to the dominant SIIN antigen. Functional differentiation trajectories appear to be
somewhat stochastic, but overall, SIIN specific cells appear to be poised to differentiate
into states that appear more dysfunctional, whereas SIY specific cells are poised to
remain in a slightly less differentiated state that ultimately affects their cytotoxic
functions. Burger et. al. later went on to show that these phenotypes are not observed
when antigens are expressed alone.

Many immunology studies are being conducted with intent to better characterize
properties of neoantigens that are capable of stimulating a productive anti-tumor
immune response. However, the study presented in Chapter 3 provides clear evidence
that response to neoantigens is meaningfully impacted by other neoantigen responses
in anti-tumor responses. In light of the complexity of the CD8 T cell response alone,
when the influence of other tumor-related lymphocytes are considered, the
tumor-immune interaction dynamics becomes extraordinarily complex. Research in
immunology has been conducted at single-cell resolution for many years via flow
cytometry, and it has long been appreciated that responses are both complex and
heterogeneous. Through many years of characterizing and refining these

heterogeneous responses, enough of a biological framework was provided to
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meaningfully interpret the transcriptional states of CD8 tumor cells in Chapter 3. As
sources of heterogeneity that drive diversity of immune responses become better
understood, this will create opportunities for applications of systems biology that can be
used to create highly informed and robust models of immune responses in cancer.
Ultimately, this can be incorporated with models of tumor evolution to better understand

the interplay of the immune system and tumor progression.
Conclusions

The tumor microenvironment consists of multiple systems that interact in a
dynamic manner and ultimately determine how tumors evolve over time. Approaches in
biological research are largely reductionist in nature, and have been useful in studies
that have allowed generalizations about how a gene acts in multiple biological contexts.
However, this kind of approach has inherently created limitations in the kinds of
discoveries that can be made in these studies. A notable historical example of these
limitations comes from efforts to characterize and understand cancer as a singular
disease. Intuitively, this made sense, as many hallmarks of cancer are observed across
cancers that arise from different tissues (Hanahan and Weinberg 2011). Today, and over
the last few decades, it is widely appreciated that cancer is a collection of diseases
which manifest and progress in a tissue specific manner. Still, for many years, repeated
attempts were made to discover “pan-cancer” driver genes, despite the fact that there is
compelling evidence for tissue specific behavior even amongst the most widespread
oncogenically implicated genes. Many oncogenic signaling pathways are ubiquitous

across tissues of an organism, and yet little efforts are made to understand how
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context-specificity is achieved in these systems or how they become dysregulated in
cancer. These specificities are largely ignored in cancer research.

With the resolution afforded by single-cell technologies, and as biological
research is conducted at increasingly higher resolution, many studies have described
variation in the resulting high-dimensional data that have made it difficult to make
meaningful biological conclusions from it. In some cases, the variation captured at these
resolutions have explained conceptual inconsistencies between conclusions made from
bulk profiling studies and the behavior of the underlying biological system (Li, Amy, and
Ph. D. Massachusetts Institute of Technology 2018). Single-cell profiling has made it
abundantly clear that biological processes are extraordinarily heterogeneous at the
single-cell level, even in homeostatic processes. For this reason, it has been particularly
difficult to use these data to predict the functionality of cell states captured in single-cell
studies. Additionally, in many single-cell studies of tumor cells (including those
presented in this thesis), the conclusions made from empirical data largely challenge
existing models of tumor evolution and heterogeneity.

Models of computational biology are frequently disregarded by experimental
biologists because they often require assumptions that are incompatible with
experimental systems. As biological research generates increasingly more data on
biological processes, the field will, by necessity, become increasingly more dependent
on bioinformatic and computational interpretation of these data. Integration of
descriptive approaches utilized by experimental biologists and explicit definition of
“ground truths” is one way that experimentalists can reduce assumptions required for

computational modeling of biological processes. In turn, this will also require scientists
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responsible for interpretation of the data to define and continuously challenge
assumptions they make about the biology of the system they are studying. This is
extremely important when handling high-dimensional data, as the mathematical
transformations required to approximate trends and structures of high-dimensional data
can impart artifacts that can lead to erroneous interpretations.

Importantly, these technologies have allowed biologists the opportunity to make
meaningful connections between stochastic behavior of biological systems and
biological processes. Stochastic processes have been long described in biology in
settings where biological processes can be measured with enough resolution to observe
stochastic variation (Toker, Sommer, and D’Esposito 2020). Importantly, the behavior of
these processes are macroscopically deterministic. Despite the fact that many
single-cell omic datasets have been published to date that profile biological processes
with similar properties to those that are chaotic, very few interpretations of these data
attempt to define the properties of these stochastic processes.

In the tumor evolution study presented in this thesis, the temporal inter-tumoral
and intra-tumor heterogeneity of the KP mouse model, which manifests through
variation in both cell state and time, have permitted relatively comprehensive
longitudinal profiling of evolutionary processes in primary tumors. These analyses are
largely contingent on the assumption that the composition of a heterogeneous tumor
simultaneously reflects its evolutionary past and present. Critically, this assumption is
supported by empirical evidence of tumor cell states generally associated with early
stages of tumor progression being represented in the most aggressive and advanced

tumors. The maijority of the cells profiled in this study were derived from a limited
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number of timepoints that are weeks apart; the comprehensive sampling of this
evolutionary process was largely an unexpected benefit of variation in the model.
Notably, these studies are conducted with syngeneic mice in a highly controlled
environment and utilize experimentally defined mutations. In spite of this controlled
environment, the KP lung tumor model still has extensive, but reproducible variation.
With this same reasoning, it may be possible to extend the assumption that
heterogeneous cell states reflect the evolutionary past and present of a tumor to
biological settings in which longitudinal sampling is impossible, or in settings with
uncontrolled environments (e.g. patient derived tumor samples).

To better understand how heterogeneous evolutionary behaviors of tumor cells
affect other cells of the tumor microenvironment, the dynamics of response to
tumor-specific antigens in CD8 T cells was profiled in the KP Lung tumor LucOS model.
Interestingly, many of the biological conclusions made from this study, which is
conducted at a single time point after tumor initiation, agree with studies that
longitudinally profiled many of these same cells across a series of timepoints (Schenkel
et al. 2020). Arguably, these similarities are a result of the same temporal variation in
tumor progression and evolution that permitted comprehensive longitudinal profiling of
the KP tumor cells themselves. If this is true, this similarity across these datasets
provides compelling evidence for the strength of relationships between tumor cells and
the other biological systems they interact with, in this case, CD8 T-cells.

The tumor-specific CD8 T-cell compartment represents only one system of many
in the tumor microenvironment, which interacts not only with tumor cells, but also other

cells in the immune system, endothelial cells, and fibroblasts. Although biological
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systems, especially in autochthonous models of cancer, are often studied in isolation,
the interactions between these systems are always present and introduce additional
layers of complexity to overt biological processes such as tumor evolution. Interactions
between biological systems have been extensively modeled in reductionist and highly
experimental biological settings, but have rarely been modeled in settings such as
tumor evolution beyond probabilistic models of variant allele frequencies. In tumor cells,
the topology of gene regulatory networks evolve over time and limit the ability to model
intracellular biological systems of tumor cells.

Stated otherwise, assuming the underlying variation observed in tumor
progression is entirely random will inherently limit discoveries about latent influences or
dynamics that give rise to heterogeneity in cell state. Identification of these latent
variables is impossible if studying biological processes with entirely reductionist
approaches. The conclusions made from studies in this thesis largely ignore the
influence of other systems and simply treat the observed variation as biological noise.
However, through modeling networked interactions both inter- and intra-cellularly, the
underlying dynamics that produce noise can be identified. Critically, these identified
dynamics may have meaningful influences over tumor progression.

The other biological systems that influence tumor cells and CD8 T cell
phenotypic trajectories occur within individual cells and are defined by intracellular
signaling, genetic, metabolic, and mechanical networks. The existing interpretations are
dependent on the treatment of observed cell states and transcriptional changes as a
network, but do not explicitly consider constraints of gene regulatory (or any other)

networks, because they have not been characterized with the required precision. In
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future work, introduction of genetic perturbations may allow estimation of these network
constraints and may provide more robust interpretations or conclusions.

While interactions between biological systems create major analytical
complications in interpretation of biological data, there are many existing approaches
which make sense of high-dimensional data in non-biological settings that are also
influenced by other systems that cannot be controlled for. Moreover, the descriptive and
speculative discussions made in the final chapter of this thesis are derived from insights
made from mathematical modeling of complex data across many different fields,
including particle physics, astrophysics, data science, machine learning, natural
language processing, computer vision, quantum and statistical mechanics,
macroeconomics, electrical engineering, and meteorological forecasting. This is not to
say that the phenomena described in these non-biological settings are the same as
those in biological settings. Instead, | assert that greater importance should be placed
upon quantitative approaches used to interpret data from higher-order systems with
stochastic behavior, which in turn, may provide systems-level insights in complex

biological settings such as tumor evolution.
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