
Cryptographic Simulation Techniques with
Applications to Quantum Zero-Knowledge and

Copy-Protection

by

Rolando L. La Placa Massa

B.A., Harvard University (2014)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Physics

May 21, 2021

Certified by. .
Aram W. Harrow

Associate Professor
Thesis Supervisor

Accepted by .
Deepto Chakrabarty

Associate Department Head

2

Cryptographic Simulation Techniques with Applications to
Quantum Zero-Knowledge and Copy-Protection

by
Rolando L. La Placa Massa

Submitted to the Department of Physics
on May 21, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Bob is stuck doing a crossword puzzle and is starting to think that the puzzle is
impossible to complete. Alice assures Bob that the puzzle can be solved, but she
wants to prove it without revealing a single entry of the puzzle. Their cryptographer
friend, Eve, tells them that Alice can prove it by using a zero-knowledge (ZK) protocol.
These protocols are a cornerstone of modern cryptography, yet most of the work has
been limited to the classical setting. Since Bob has a quantum computer, Alice
needs to be careful choosing the right protocol to make sure it is a quantum zero-
knowledge (QZK) protocol, guaranteeing that quantum Bob cannot learn anything
about the puzzle except that it has a solution.

Proving the security of ZK protocols comes with additional hurdles when ad-
versaries are quantum capable, in part because the main tool used in the classical
setting, rewinding, has additional limitations in the quantum case. While one version
of quantum rewinding introduced by Watrous has been successfully used to construct
QZK protocols, most of the classical ZK results have been challenging to port to the
quantum setting. Ideally, we want quantum secure protocols with the same desirable
properties that have been achieved in the classical literature, like concurrent secu-
rity or low-round complexity. In this thesis, we introduce new quantum simulation
techniques and apply them to construct the following QZK protocols assuming the
quantum hardness of learning with errors (QLWE).

• 𝑂(1)-round black-box QZK classical argument system for NP: We use
techniques developed in the context of ‘tests of quantumness’ to obtain an ex-
traction mechanism that can be leveraged to construct a QZK simulator.

• Public coin bounded concurrent black-box QZK proof system for NP
and QMA: We introduce the technique of block rewinding and use it to obtain
a concurrent QZK simulator.

• Simulatable and extractable quantum proofs of knowledge for NP:
We construct QPoK with desirable properties needed for composability. The
technique combines Watrous’ rewinding with a recently studied cryptographic
tool, statistical receiver-private oblivious transfer. This is the first construction
of QPoK with the desired composability features.

3

We also introduce a new non-black-box knowledge extraction technique using
quantum fully homomorphic encryption (QFHE) and lockable obfuscation. One of
our main results is that we can adapt this non-black-box technique to the setting
of quantum copy-protection to prove that it is impossible to quantum copy-protect
arbitrary unlearnable functions. This resolves a long-standing open problem in the
negative, assuming QLWE and the existence of QFHE.

Our impossibility result states that we can’t construct quantum copy-protection
for arbitrary functions. However, we can hope to do it for restricted families of
functions like point functions or compute-and-compare functionalities. While this
remains an interesting and challenging open question, we show that provable secure
constructions in a standard model (without oracles) are possible if we consider weaker
security guarantees from those of quantum copy-protection. For this purpose, we
introduce the notion of Secure Software Leasing (SSL), and construct an SSL scheme
for a general class of evasive circuits.

Thesis Supervisor: Aram W. Harrow
Title: Associate Professor

4

To my parents, Gladys I. Massa and Rolando R. La Placa.
and

to the memory of my grandfather, Enrique R. La Placa.

6

Acknowledgments

I am lucky to have Aram Harrow as my PhD advisor. Aram has been incredibly
supportive of my research interests, always willing to discuss research ideas and help
me figure out the right approaches to take. He always pushed me to pursue my own
ideas, encouraged me to reach out to others, to travel and go to conferences, and gave
me good advice on any topic I approached him with. I hope that his problem-solving
approach, his attitude towards research, his clear communication ability, his patience
and dedication, among other things, will stay with me long after grad school. He has
been a great mentor to me.

Speaking of great mentors, I will be forever indebted to my biggest collaborator,
Prabhanjan Ananth, who hosted me at UCSB during Fall of 2019. Not only did I
learn a great amount of cryptography thanks to him, I also became a better researcher,
improved my technical writing, learned to persevere when tackling challenging prob-
lems, and discovered how to enjoy the research process while never forgetting about
the curiosity that led me to research in the first place. It has been a pleasure working
with Prabhanjan, and I am grateful for having him as a mentor and friend.

I am thankful for all my other collaborators during my time at MIT: Alex Dalzell,
John Napp, Fernando Brandão, Dax Koh, and Kai-Min Chung. I am especially
grateful for my friendship with Alex and John, and I have to thank them for the
countless times I bothered them with research questions.

I wouldn’t have gotten to the stage of writing a PhD thesis if it wasn’t for all the
amazing mentors I had before grad school. I started along this path thanks to my
high school teachers Rafael Mirabal and Judith Martinez, who introduced me to math
and physics as well as motivate me to learn as much as possible. Héctor Jiménez and
Raúl Portuondo gave me the opportunity and helped me train to compete in physics
olympiads, which cemented my interest in pursuing physics in college. I went into
grad school inspired by everything I learned from Subir Sachdev in college. To all of
you, thank you.

My time at MIT has been shared with many smart and wonderful people who I
had many discussions with. At the risk of missing someone, Nilin Abrahamsen, Eric
Anshuetz, Srinivasan Arunachalam, Shankar Balasubramanian, Shalev Ben-David,
Adam Bene Watts, Matt Hagan, Nicole Yunger Halpern, Linghang Kong, Zi-Wen
Liu, Guang Hao Low, Saeed Mehraban, Anand Natarajan, Elina Sendonaris, Mehdi
Soleimanifar, Ryuji Takagi, Annie Wei, John Wright, and Elton Zhu, it was a joy
having you all around! Thank you to my thesis committee: Isaac Chuang, Aram
Harrow, Yael Kalai, and Peter Shor. It is an honor to have you all in my committee.

Thank you to all of my Boston friends (Ali, Sebi, Paola, David, Jorge, Ana,
Kidhanis, Alan, George, Diego, Ale, Dio, Kathy, Bryan, Pacheco, Jean, Iulia, Sergio,
Bruno, Ricky, Suzy, Barbara, Nick, Gabe, Sophia, Isa, Denise, Carlos...) who have
been there for me through my grad school years. I have been the luckiest grad student
through all these years thanks to my best friend and fiancée, Carolina Fejgielman.
Thank you for believing in me, for all your support, for distracting me from research,
and for indulging me in all my different hobbies. Finally, thank you to my family,
Rebecca, Gladys and Rolando. Mom and dad, the next pages are for you.

7

Financial support. During the work presented in this thesis, I was supported by
NSF grant CCF-1729369, the MIT Physics department, and the MIT EECS depart-
ment.

8

Contents

1 Introduction 17
1.1 Zero-knowledge protocols . 18

1.1.1 Zero-knowledge and the simulation paradigm 18
1.1.2 Challenges in the quantum setting 26
1.1.3 Questions explored in this thesis 27

1.2 Quantum copy-protection . 28
1.3 Our results . 30

1.3.1 Results regarding QZK protocols 30
1.3.2 Results regarding quantum copy-protection 35
1.3.3 New notion: Secure Software Leasing 36

1.4 Technical overview . 38
1.4.1 QZK protocols . 40
1.4.2 Impossibility of quantum copy-protection 44
1.4.3 Construction of SSL . 45

1.5 Related work . 46
1.5.1 (Computational) Quantum zero-knowledge 46
1.5.2 Unclonable Primitives, Copy-Protection, and SSL 48

1.6 Organization and bibliographical information 50

2 Preliminaries 53
2.1 Notation and conventions . 53
2.2 Quantum background . 53

2.2.1 Quantum Zero-Knowledge (QZK) 57
2.2.2 Watrous Rewinding Lemma 57

2.3 Learning with errors . 58
2.4 Cryptographic primitives . 59

2.4.1 Noisy Trapdoor Claw-Free Functions (NTCF) 59
2.4.2 Commitments . 60
2.4.3 Quantum Fully Homomorphic Encryption (QFHE) 61
2.4.4 Cryptographic Obfuscation . 63
2.4.5 Secure Function Evaluation (SFE) 66
2.4.6 Non-Interactive Zero-Knowledge (NIZK) 67
2.4.7 Simulation-Extractable Non-Interactive Zero-Knowledge (seNIZK) 68
2.4.8 Witness Indistinguishability (WI) 70
2.4.9 Post-Quantum Statistical Sender-Private OT 70

9

3 Quantum Extraction Protocols 73
3.1 QEXT definitions . 75
3.2 cQEXT . 77

3.2.1 Overview . 77
3.2.2 Construction of cQEXT . 80

3.3 qQEXT . 90
3.3.1 Overview . 90
3.3.2 Construction of qQEXT . 93

4 Quantum Zero-Knowledge Protocols 103
4.1 Introduction . 103
4.2 Constant round quantum zero-knowledge classical argument system for

NP . 105
4.2.1 Overview . 105
4.2.2 Definition . 106
4.2.3 Construction . 107

4.3 Bounded concurrent quantum zero-knowledge for NP 113
4.3.1 Overview . 113
4.3.2 Definition . 118
4.3.3 Construction . 120

4.4 Bounded concurrent quantum zero-knowledge proof for QMA 133
4.4.1 Overview . 133
4.4.2 Definition . 135
4.4.3 Construction . 136

5 Quantum Proofs of Knowledge 141
5.1 Overview . 141
5.2 Receiver statistical oblivious transfer 147

5.2.1 Definition . 148
5.2.2 Tool: Statistical ZK quantum argument system 149
5.2.3 Post-quantum statistical receiver OT: Construction 154

5.3 Quantum proofs of knowledge . 160
5.3.1 Definition . 160
5.3.2 Construction of (Standalone) QZKPoK 161
5.3.3 Extending to Bounded Concurrent QZK Setting 168

5.4 On proofs of quantum knowledge . 173

6 Impossibility of Quantum Copy-Protection 175
6.1 De-quantumizable Circuits . 176

6.1.1 Constructing de-quantumizable circuits 177
6.2 Impossibility of Copy-Protection and QVBB 184

7 Secure Software Leasing 187
7.1 Introduction . 187

7.1.1 Construction overview . 190

10

7.2 Definition . 195
7.2.1 Security . 196
7.2.2 Infinite-Term Lessor Security 197

7.3 Impossibility of SSL . 198
7.4 Evasive circuits . 199
7.5 SSL for evasive circuits . 201

A Instantiation of qseNIZK 211

B qIHO for compute-and-compare circuits 217

11

12

List of Figures

1-1 ZK protocol for Graph Isomorphism 23
1-2 Extraction example . 25
1-3 FLS Example . 39
1-4 High level idea behind non-black-box extraction 42
1-5 Sequential execution of 𝑀 slots . 42
1-6 Simple OT extraction . 44
1-7 An almost de-quantumizable circuit 45

3-1 Description of the function F associated with the SFE 81
3-2 Quantum Extraction Protocol (S,R) secure against classical receivers 82
3-3 Circuits used in the lockable obfuscation 94
3-4 Description of the function 𝑓 associated with the SFE. 94
3-5 Quantum Extraction Protocol (S,R) 95

4-1 Relation ℛwi associated with ΠWI. 107
4-2 (Classical Prover) Quantum Zero-Knowledge Argument Systems for NP108
4-3 Construction of bounded concurrent QZK for NP 121
4-4 Bounded-Concurrent QZK for QMA 138

5-1 Statistical ZK Quantum Argument System 151
5-2 Post-quantum statistical receiver oblivious transfer protocol 156
5-3 Construction of (standalone) QZKPoK for NP. 162

6-1 De-quantumizable circuit class . 178
6-2 Distribution associated to 𝒞 . 178

13

14

List of Tables

1.1 Summary of classical protocols . 31
1.2 Summary of new simulation methods 31

15

16

Chapter 1

Introduction

This thesis lies at the intersection of quantum physics and cryptography. The idea to
exploit quantum mechanical laws of nature to perform interesting cryptographic tasks
without classical counterparts predates the main advent of quantum computation by
a few decades. In a manuscript from 1968 [Bra05, Wie83], Wiesner proposed to use
quantum mechanics to prepare banknotes that are secure against forgery, i.e. unforge-
able banknotes or quantum money. It is impossible to guarantee unforgeability solely
using classical resources. In principle, classical states (or information stored in a clas-
sical fashion) can be copied; thus, given a $1 dollar bill, it is conceivable that Bob is
able to replicate the exact same bill provided that he has the appropriate tools. In
contrast, the quantum mechanical laws of nature do not let us copy generic quantum
states. This is called the No-Cloning Theorem, and it is the fundamental fact of
quantum mechanics that lets us dream of constructing cryptographic primitives that,
like quantum money, wouldn’t otherwise exist in a purely classical world.

The term quantum cryptography was coined more than a decade later in a paper
from 1982 by Bennett, Brassard, Breidbart, and Wiesner himself [BBBW83]. Not long
after, Bennett and Brassard published their groundbreaking work introducing another
cryptographic notion, quantum key distribution (QKD), whose existence crucially
relies on quantum mechanics [BB83, BB14]. Their protocol, now called the BB84
protocol, allows for two parties, Alice and Bob, to randomly generate a shared secret
key even in the presence of an eavesdropper, Eve. Classically, this would be impossible
to achieve, as any message that Alice communicates to Bob can be intercepted and
copied by Eve without either Alice or Bob detecting her. QKD is arguably the best
known example of a cryptographic task that can be achieved thanks to quantum
effects.

The story of quantum cryptography took an unexpected turn in the 90’s, when
Peter Shor published his seminal algorithm to factor integers [Sho94]. This algorithm
made it clear to cryptographers that quantum mechanics is both a blessing and a
woe. Unfortunately, the security of a lot of public-key cryptosystems rely on com-
putational assumptions that are broken by Shor’s algorithm. This means that their
security cannot be guaranteed against quantum capable adversaries, which becomes
an increasing threat with the growth of quantum computing. While assuming that
it is computationally hard to factor integers is not useful in the quantum case, we

17

still have candidate post-quantum secure computational assumptions, the flagship
being the Learning with Errors (LWE)1 assumption [Reg05, Reg, Pei16]. Nowadays,
many cryptographers (certainly quantum cryptographers!) seek to construct proto-
cols whose security can be proven if the LWE assumption holds also against quantum
computers.

From its inception, most work on quantum cryptography including the work pre-
sented in this thesis, aims to shine light on either of the following questions:

(Q1) Can we construct classical protocols – i.e. protocols that can be
implemented using only classical computation – that are secure against
quantum capable adversaries? Are existing constructions already quantum
secure?
(Q2) Can we use quantum mechanics to achieve new cryptographic proto-
cols (possibly without classical counterparts like QKD or quantum money)?

The goal of this thesis is to study both of these question with respect to two cryp-
tographic primitives. Specifically, we study (Q1) the quantum security of zero-
knowledge (ZK) protocols, and (Q2) the feasibility of quantum copy-protection. While
ZK protocols and quantum copy-protection are generally unrelated topics, we use
similar techniques to obtain most of our results. In particular, the main underlying
technique is that of extraction, whose usefulness is better understood in the context
of ZK protocols and the Ideal/Real world paradigm of cryptography discussed in the
next section.

1.1 Zero-knowledge protocols

1.1.1 Zero-knowledge and the simulation paradigm

Introduced by Goldwasser, Micali, and Rackoff [GMR85], zero-knowledge protocols
are a cornerstone of modern cryptography, where they are not only interesting in their
own right but also serve as a basic ingredient in the construction of more advanced
primitives. Roughly speaking, a ZK protocol is a protocol performed by two parties,
a prover, 𝑃 , and a verifier, 𝑉 , that allows 𝑃 to prove to 𝑉 the validity of a statement
without revealing anything else. For example, 𝑃 can convince 𝑉 that the statement
‘this crossword puzzle can be completed correctly’ is true without revealing a single
entry of the puzzle. Another concrete example is the following scenario. Alice might
have $10,000 in the bank account, and she needs to provide a proof to Bob that
she has more than $1,000. However, Alice does not want to reveal to Bob the exact
amount she owns. To achieve this, Alice and Bob could execute a ZK protocol taking
the roles of 𝑃 and 𝑉 respectively, then Bob would be convinced that she indeed owns
more than $1,000, but he would not learn the exact amount. If Bob trusted Alice in
the first place, then there would be no need for a ZK protocol, as Alice could just tell
Bob: “I have more than $1,000 in the bank”. The power of ZK protocols comes from

1We will denote by QLWE the assumption that LWE is computationally hard also for efficient
quantum algorithms.

18

the fact that the parties involved do not have to trust each other. At the end of the
protocol, there is no way for Alice to convince Bob that she owns more than $1,000,
unless she actually does. Similarly, even if Bob tried to get more information from
Alice besides whether or not she has more than $1,000, he would fail.

This particular example does have a simple zero-knowledge protocol. Alice could
give Bob $1,000.01, and that would be enough to convince Bob. However, this is zero-
knowledge only if we assume that $0.01 is the minimum unit of currency available,
because Bob knowing that Alice has more than $1,000 is the same as Bob knowing
that Alice has at least $1,000.01. Yet, a direct solution like this one does not exist for
most problems, and the goal of cryptographers is to build ZK protocols for as many
cases as possible.

To make the discussion above more rigorous, we can consider the complexity class
NP. A decision problem2 is in NP, if for any YES instance of the problem, a prover
that knows a proof (also called a witness) that the answer is YES is able to convince
a polynomial-time verifier. In contrast, for any NO instance of the problem, any
prover will fail to convince the verifier. In essence, NP is a class that formalizes and
captures computational problems similar to problems like “Does this crossword puzzle
have a solution?” or “Does Alice have more than $1,000 in the bank?” that have a
YES/NO answer and for which a proof can be efficiently verified. A priori it is not
guaranteed that an NP proof does not reveal more than a simple YES or NO to the
verifier, i.e. the validity of the statement. For example, Alice could use her bank
account password as a proof to Bob, but then Bob would learn the exact amount
that Alice has in the bank. It is clear that this ‘proof’ would not be a ZK proof. In
general, if Alice’s only option is to provide a direct proof to Bob, she would not be
able to guarantee that Bob gains zero-knowledge. The key to achieving ZK protocols
is to allow interaction between 𝑃 and 𝑉 . In fact, Goldwasser, Micali, and Wigderson
showed that every language in NP has an interactive ZK protocol [GMW86].

Interactive proofs. Before formally defining zero-knowledge protocols, we need to
understand the concept of interactive proofs that was introduce by Goldwasser, Mi-
cali, and Rackoff also in [GMR85]. The decision problems found in NP can be solved
non-interactively (one-way communication) by definition. In the YES instance case,
there exists a proof that 𝑃 can send to 𝑉 , and there is no need for additional commu-
nication. An interactive proof is a generalization of this scenario to the case where 𝑃
and 𝑉 are allowed multiple rounds of interaction. If they take turns exchanging mes-
sages a total of 𝑘 times3, we say that 𝑃 and 𝑉 are executing a 𝑘-round protocol. In
this terminology, NP contains all the decision problems that have a 1-round protocol.
We formalize the definition of an interactive proof below.

Definition 1 (Interactive Proof System [GMR85]). A prover 𝑃 and a PPT verifier
𝑉 are said to be performing an interactive proof system for a language ℒ with
completeness 𝑐 and soundness 𝑠 if:

2A problem whose answer is either YES or NO.
3We always assume that 𝑃 sends the 𝑘th message (last message).

19

• Completeness: For every 𝑥 ∈ ℒ, it holds that

Pr [1← ⟨𝑃, 𝑉 (𝑥)⟩] ≥ 𝑐

• Soundness: For every 𝑥 /∈ ℒ, and for any prover 𝑃 *, it holds that

Pr [1← ⟨𝑃 *, 𝑉 (𝑥)⟩] ≤ 𝑠

Where ⟨𝑃, 𝑉 (𝑥)⟩ denotes 𝑉 ’s output after interacting with 𝑃 on input 𝑥.

While interactive proofs capture all the possible efficient (polynomial sized) pro-
tocols between 𝑃 and 𝑉 , interactive proofs are not inherently cryptographic. In other
words, interactive proofs do not necessarily provide any sort of security or privacy to
either of the parties besides completeness and soundness. A zero-knowledge proof sys-
tem (or ZK protocol) is an interactive proof system with the additional cryptographic
property called zero-knowledge. When we say that a protocol is a zero-knowledge, we
mean that 𝑃 has the guaranteed that, after the execution of the protocol, 𝑉 did not
learn anything else besides whether the answer to the problem is YES or NO. The
best way to formalize the zero-knowledge property is with the simulation paradigm.

The simulation paradigm [Lin17, Gol07, Gol09]. Many security notions in
cryptography (e.g. semantic security, multi-party computation, ZK) can be stated
using the ‘Real/Ideal’ world paradigm, which is best understood by example. Alice
wants to encrypt a one-bit message, 𝑚 ∈ {0, 1}, using a particular encryption scheme,
(Enc,Dec), and would like to make sure that Bob cannot recover 𝑚. We can use the
‘Real/Ideal’ world paradigm to define what it means for the encryption to be secure.
In the real world, Alice samples a random secret key, sk, and computes a ciphertext,
𝑐 ← Encsk(𝑚), which is then sent to Bob. In an ideal world, when Bob asks Alice
for an encryption of 𝑚, Alice would encrypt a random bit 𝑏 ∈ {0, 1} instead. We
can say that the encryption scheme is secure if Bob cannot distinguish whether he
is in the real world or if he is in the ideal world. This is because in the ideal world,
𝑚 is completely hidden from Bob – the encryption Alice sends is independent of 𝑚.
Indistinguishability of ideal and real worlds would guarantee that 𝑚 is also hidden
from Bob in the real world (otherwise he could distinguish the two worlds).

The ideal world is an example of simulation. In fact, we could rephrase our exam-
ple as follows: the encryption scheme is said to be secure if there exists a simulator
that, without knowing 𝑚, simulates Alice’s behavior such that Bob cannot distin-
guish Alice from the simulator. In the scenario above, the simulator generates the
ciphertext of a random bit. If Bob cannot distinguish Alice from the simulator, the
message 𝑚 is hidden from him.

The same simulation concept, albeit in the more complex interactive setting, is
used to define zero-knowledge. Consider any NP language, ℒ ∈ NP. In the real
world, Alice and Bob exchange messages while executing a particular ZK protocol,
Π𝑍𝐾 . In an ideal world, if 𝑥 ∈ ℒ, Alice could give a witness 𝑤 to a trusted third
party, who in turn would tell Bob that “Alice proved to me that 𝑥 ∈ ℒ ”. This ideal

20

scenario captures exactly what we would like from a zero-knowledge protocol – all
Bob learns is that someone he trusts tells him that 𝑥 ∈ ℒ. Unlike in the encryption
example above, Bob has a simple way to distinguish whether he is in the real or in the
ideal world. In the real world, he had to engage in an interactive protocol, but in the
ideal world someone just told him that 𝑥 ∈ ℒ. In this case, we cannot get away by
arguing that the messages he received in the real world are indistinguishable from the
messages he received in the ideal world; however, it suffices to argue that anything
that Bob can compute in the real world, he can also compute in the ideal world. In
other words, that anything that Bob can compute by interacting with Alice in the
real world, he can compute if he just trusts that 𝑥 ∈ ℒ. We say that the interactive
protocol Π𝑍𝐾 is zero-knowledge if Bob in the ideal world can simulate the Bob from
the real one. If by Bob’s knowledge we mean ‘anything that Bob can compute’, then
all the knowledge he gains from his interaction with Alice, he also gains if he is only
told that 𝑥 ∈ ℒ. This justifies the term zero-knowledge, as he doesn’t gain any more
knowledge by performing the protocol Π𝑍𝐾 with Alice if he already knows that 𝑥 ∈ ℒ.

What does it mean for Bob in the ideal world to simulate Bob from the real world?
We mean that Bob in the ideal world (the simulator) outputs samples from a distri-
bution that is either perfectly, statistically or computationally indistinguishable from
the distribution that Bob outputs in the real world. If such a simulator exists, we say
that the protocol is perfect, statistical, or computational zero-knowledge respectively.
From now on, unless otherwise stated, zero-knowledge will mean computational zero-
knowledge.

Before formally defining ZK proofs, there are a few points worth mentioning.
First, we have implicitly assumed that the simulator (Bob in the ideal world) and
the verifier (Bob in the real world) have the same computational complexity – that
they are probabilistic polynomial-time (PPT) machines. In contrast, the original ZK
definition given by Goldwasser, Micali, and Rackoff allows the simulator to run in
expected polynomial-time instead. While this is not necessary, it is convenient as it
allows the construction of simpler protocols4.

Second, while there are no restrictions on the computational power of the prover
(honest and malicious provers are allowed to be unbounded) in the definition of inter-
active proofs, for practical purposes it is more relevant for the honest parties involved
in a protocol to be efficient. For example, while the soundness guarantee can still
hold against unbounded malicious provers, we would like the honest prover to run
efficiently. In order for this to make sense, we have to assume that the honest prover
is given a witness as auxiliary-information. Without the auxiliary-information, an
efficient 𝑃 might not be able to convince 𝑉 over NP instances unless NP problems
can be solved by PPT machines. If we also restrict the computational power of the
malicious provers by requiring soundness to only hold against malicious PPT provers,
the resulting protocol is called a argument system instead of a proof system.

Third, in cryptography we consider PPT machines that also have auxiliary inputs.
This is needed because protocols are not necessarily being performed in isolation. The

4Constant round and black-box ZK protocols for NP can be constructed with expected PPT
simulators, but not with strict polynomial-time simulation [BL04].

21

parties involved in a protocol might have additional information before engaging in
the protocol, so we generally assume that parties are non-uniform PPT machines.

Finally, as discussed before, the goal of Bob in the ideal world (the simulator) is
to simulate the output of Bob in the real world. While Bob in the real world does
play the role of 𝑉 in the protocol, he can also privately compute anything he wants.
Any such computation done, the simulator has to mimic. For this reason, we always
assume that 𝑉 has a private state, and that its output at the end of the computation
is not just the decision ‘accept’ or ‘reject’. Whatever 𝑉 outputs besides accepting or
rejecting we call the view of 𝑉 in the protocol (denoted by View𝑉). Without loss of
generality, we can assume that the view includes the transcript of the protocol as well
as the verifier’s private state at the end of the protocol.

We present the following definition with these modifications incorporated.

Definition 2 (Zero-Knowledge Proof (Argument) System for NP [GMR85]). Let
ℒ ∈ NP, and ℛ(ℒ) be the associated NP relation5. A PPT prover 𝑃 and a PPT
verifier 𝑉 are said to be performing a zero-knowledge proof (resp. argument)
system for ℒ with completeness 𝑐 and soundness 𝑠 if all the following hold.

• Completeness: For every (𝑥,𝑤) ∈ ℛ(ℒ), it holds that

Pr [1← ⟨𝑃 (𝑥,𝑤), 𝑉 (𝑥)⟩] ≥ 𝑐

• Soundness (resp. computational soundness): For every 𝑥 /∈ ℒ, and for
any prover (resp. PPT prover) 𝑃 *, it holds that

Pr [1← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ 𝑠

• Computational Zero-Knowledge: For every 𝑥 ∈ ℒ, for any auxiliary input
𝑧 ∈ {0, 1}*, and for any PPT verifier 𝑉 *, there exists a probabilistic machine
(the simulator), Sim, running in expected polynomial-time in |𝑥| such that the
following holds:

Sim(𝑉 *, 𝑥, 𝑧) ≈𝑐 View𝑉 *⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝑧)⟩

where ≈𝑐 denotes computationally indistinguishable. That is, for every PPT
distinguisher 𝐷 (polynomial-time in |𝑥|), the following holds:

|Pr [𝐷 (𝑥, 𝑧, Sim (𝑉 *, 𝑥, 𝑧)) = 1]− Pr [𝐷 (𝑥, 𝑧,View𝑉 *⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝑧)⟩) = 1]| ≤ negl(|𝑥|)

where negl is a negligible function.

Remark 3. We say that a simulator Sim is a black-box simulator if it only uses
𝑉 * as a subroutine. In other words, it only needs input-output (query) access to the
next message function of 𝑉 *. If Sim uses the code of 𝑉 * and not just its input-output
behavior, we say that Sim is a non-black-box simulator.

5𝑥 ∈ ℒ iff there exists 𝑤 s.t. (𝑥,𝑤) ∈ ℛ(ℒ).

22

The rewinding technique. Rewinding is the main technique used in the classical
setting to construct ZK simulators. Unlike the prover, the simulator can rewind the
verifier. Recall that the simulator is supposed to capture computation that Bob, who
is playing the role of 𝑉 in the actual ZK protocol, could have done by himself (without
interaction with 𝑃), and Bob can execute the protocol all by himself by pretending
to also be 𝑃 . Indeed, the role of the simulator is to run a pretend protocol, in a way
that is indistinguishable from the actual protocol. But if it is a pretend protocol, the
simulator is playing the role of both 𝑃 and 𝑉 in the protocol, which means that it can
decide to restart the pretend protocol from a previous round (rewind). In contrast,
𝑃 in the actual protocol can’t ever ask 𝑉 to go back. The computational asymmetry
between the simulator and the prover that rewinding provides is enough to construct
ZK protocols.

Example: ZK protocol for Graph Isomorphism. The protocol shown in Fig-
ure 1-1 is a ZK protocol for the Graph Isomorphism problem. Given two graphs
𝐺0 and 𝐺1, (𝐺0, 𝐺1) is a YES instance if 𝐺0 and 𝐺1 are isomorphic, i.e. there is an
isomorphism 𝜋 such that 𝜋(𝐺0) = 𝐺1. Otherwise, (𝐺0, 𝐺1) is a NO instance.

Initial input of prover 𝑃 : (𝐺0, 𝐺1) and 𝜋 if YES instance.
Initial input of verifier 𝑉 : (𝐺0, 𝐺1).

• 𝑃 → 𝑉 : 𝑃 chooses a random isomorphism 𝜎 and a random bit 𝑎 ∈ {0, 1} and
sends 𝐻 = 𝜎(𝐺𝑎) to 𝑉 .

• 𝑉 → 𝑃 : 𝑉 responds with a random bit 𝑏 ∈ {0, 1}.

• 𝑃 → 𝑉 : 𝑃 computes and sends an isomorphism 𝜑 such that 𝜑(𝐺𝑏) = 𝐻.

• 𝑉 accepts if 𝜑(𝐺𝑏) = 𝐻; otherwise, it rejects.

Figure 1-1: ZK protocol for Graph Isomorphism

If (𝐺0, 𝐺1) is a YES instance, then the prover can always compute 𝜑 because 𝐻 is
isomorphic to both 𝐺0 and 𝐺1, hence the verifier will always accept (completeness).
If (𝐺0, 𝐺1) is a NO instance, the prover will only be able to convince the verifier to
accept when 𝑎 = 𝑏, which happens with probability 1

2
(soundness).

To prove that the protocol is zero-knowledge consider the following simulator. Let
𝑉 * be any malicious verifier.

Sim(𝑉 *, 𝐺0, 𝐺1):

1. Choose a random isomorphism 𝜎 and a random bit 𝑎 ∈ {0, 1}. Set 𝐻 = 𝜎(𝐺𝑎).

23

2. Compute 𝑏← 𝑉 *(𝐺0, 𝐺1, 𝐻).

3. If 𝑎 = 𝑏, output (𝐻, 𝑏, 𝜎).

4. If 𝑎 ̸= 𝑏, restart from Step 1.

Suppose that (𝐺0, 𝐺1) is a YES instance, then 𝐻 is independent of 𝑎. From this, we
have that 𝑉 * can only output 𝑎 with probability 1

2
, i.e. that

Pr

[︂
𝑏 = 𝑎 :

𝑎
$←−{0,1}

𝐻←𝜎(𝐺𝑎)
𝑏←𝑉 *(𝐺0,𝐺1,𝐻)

]︂
=

1

2
.

This means that the simulator runs in expected polynomial-time, as it will rewind
once in expectation. Finally, to show that the protocol is (perfect) zero-knowledge,
we have to argue that the output distribution of Sim is exactly the same as the view
of 𝑉 *. To see why this is the case, note that the decision to rewind in Step 4 does not
depend on either 𝐻 or 𝑏, because the probability that 𝑃 computed 𝐻 from 𝐺𝑏 is 1

2

regardless of 𝐻 and 𝑏. But this just means that the triplet (𝐻, 𝑏, 𝜎) that Sim computes
in Step 3 is sampled from the same distribution whether there was rewinding or not;
furthermore, (𝐻, 𝑏, 𝜎) is distributed the same as the view of the verifier.

Remark 4. The simulator described above is an example of a black-box simulator.

Intuitively, the protocol from Figure 1-1 is ZK because when (𝐺0, 𝐺1) is a YES
instance, it is not possible to determine whether 𝐻 was computed from 𝐺0 or from
𝐺1. Furthermore, the isomorphism 𝜑 is randomly distributed as it is either 𝜎, 𝜎 ∘ 𝜋,
or 𝜎 ∘ 𝜋−1. This means that the bit 𝑏 computed by 𝑉 is independent from the bit 𝑎
computed by either 𝑃 or Sim. As a consequence, 𝑉 cannot distinguish whether 𝑎 = 𝑏
or 𝑎 ̸= 𝑏. In the real world, 𝑃 answers regardless of whether 𝑎 = 𝑏 or 𝑎 ̸= 𝑏. Now
consider an alternate world where 𝑃 has magical powers and can predict the future,
but it does not know an isomorphism between 𝐺0 and 𝐺1. This magical prover can
predict what 𝑏 will be and set 𝑎 = 𝑏. Since 𝑉 cannot distinguish the case when
𝑎 = 𝑏 from the case 𝑎 ̸= 𝑏, it can’t distinguish whether it is interacting with the
real prover from when it is interacting with the magical prover that always guesses
𝑏 ahead of time. Because the magical prover never used an isomorphism from 𝐺0

to 𝐺1 (it doesn’t even know one), 𝑉 did not learn an isomorphism from 𝐺0 to 𝐺1

either. While this argument shows why 𝑉 did not learn an isomorphism between
𝐺0 and 𝐺1, it falls shorts in arguing that 𝑉 didn’t learn anything. After all, we
just argued that, by interacting with 𝑃 , it learns as much as it would have learn if
it interacted with the magical prover with supernatural foresight! Fortunately, the
ability to predict the future is not needed to behave as the magical prover would. A
simulator can try to guess 𝑏, and if it fails, it can restart the protocol. Conditioning on
it obtaining 𝑎 = 𝑏, which happens on expectation after two tries, it outputs messages
that are indistinguishable from messages that the magical prover would have sent.
The conclusion is that by interacting with 𝑃 , the verifier 𝑉 learned as much as it
would have learned if it interacted with this final simulator. The key idea behind zero-
knowledge is that this final simulation – guessing 𝑏 when computing 𝑎, outputting

24

the resulting execution if 𝑎 = 𝑏, and restarting otherwise – is something that 𝑉 could
have done by itself.

Extraction via rewinding. One way in which rewinding is used to construct
simulators is to rewind 𝑉 in order to extract secrets from it. Consider the useless
but instructive protocol shown in Figure 1-2. Any party playing the role of 𝑃 in this
protocol would not be able to retrieve sk. Regardless of whether it asks for 𝑏0 or for
𝑏1, the response will be a uniformly random bit. On the other hand, a simulator that
is allowed to rewind 𝑉 can first ask for 𝑏0, restart the protocol, ask for 𝑏1, and recover
sk = 𝑏0 ⊕ 𝑏1.

Verifier 𝑉 has a secret sk hardwired on it.

• 𝑉 chooses a random 𝑟 ∈ {0, 1}, and sets 𝑏0 = 𝑟 and 𝑏1 = 𝑟 ⊕ sk.

• 𝑃 → 𝑉 : 𝑃 sends a bit 𝑎 ∈ {0, 1} to 𝑉 .

• 𝑉 → 𝑃 : 𝑉 sends 𝑏𝑎 to 𝑃 .

Figure 1-2: Extraction example

Why would we want a simulator to extract secrets from 𝑉 ? Leveraging knowledge
extraction in order to construct ZK protocols goes back to the work of Feige, Lapidot
and Shamir [FLS99]. At a high level, the more we know about 𝑉 ’s behavior, the more
we can say about what it’s learning or not. While the simulator is given access to 𝑉
in order to run a pretend protocol, this does not guarantee it has enough information
about 𝑉 for us to argue that 𝑉 does not learn anything. For example, 𝑉 could be
an obfuscated program or a black-box that only allows access to its input-output
behavior. In such an instance, even having access to the code of 𝑉 , there is no way to
guarantee that information like a hard-coded secret sk can be found. In order to say
anything at all about what 𝑉 learned, it is useful to extract additional information
about 𝑉 (from just its input-output behavior). The simulators for the different ZK
protocols presented in this thesis extract secrets from 𝑉 in one form or another.

Extraction and proofs of knowledge. While extraction is not always necessary
for ZK simulators, it is necessary to show that some interactive protocols satisfy a
desirable and stronger soundness6 guarantee called proof of knowledge (PoK) [GMR85,
BG92]. Proofs of knowledge are widely used in the construction of more advanced
primitives. Informally, an interactive proof satisfies the PoK property if for any 𝑃
that convinces 𝑉 to accept, there is a simulator (with access to 𝑃 this time) that
can extract a proof/witness from 𝑃 . In some sense, this property says that if 𝑃 gets

6PoK supersedes soundness.

25

𝑉 to accept in the protocol, then 𝑃 must know a witness. Unlike ZK simulators,
simulators that extract are inherent in the definition of PoK.

1.1.2 Challenges in the quantum setting

There are additional hurdles present when studying ZK protocols in the quantum
setting. In this setting, it is assumed that a malicious verifier has access to a quan-
tum computer. Since quantum computers are believed to be computationally more
powerful than classical computers, this means that we cannot rule out the possibility
that a malicious quantum verifier engaging in a classical ZK protocol learns more
than it should, i.e. breaks the zero-knowledge property. Similar to the classical zero-
knowledge property discussed before, if quantum adversaries do not learn anything
from a protocol except for the validity of the statement being proven, we say that
the protocol is quantum zero-knowledge (QZK) [Wat09]. The formal definition of
QZK is a direct quantum analogue of classical ZK (see Section 2.2.1), and the biggest
difference is that malicious verifiers are now quantum polynomial-time (QPT). As a
consequence, the QZK simulators are also QPT.

The biggest challenge in constructing QZK protocols is that rewinding does not
always work in the quantum setting. While classically the simulator can take a snap-
shot of the state of the computation/protocol at a particular point in time, and then
return back to it later on as needed, this is impossible in the quantum setting due
to the No-Cloning Theorem. Furthermore, if a quantum simulator measures a mes-
sage sent by 𝑉 , it could perturb the private state of 𝑉 , thereby also eliminating
the possibility to rewind to a previous stage of the computation. This is not to say
that quantum rewinding is impossible, but that we have to be more careful. Wa-
trous [Wat09] was the first person to introduce and to study the notion of quantum
zero-knowledge, as well as to point out sufficient conditions for quantum rewinding
to work. While not as general as rewinding in the classical setting, Watrous’ rewind-
ing has proven to be quite useful. Besides Watrous’ work, there have been many
works [ARU14, BJSW16, BG20, BS20, ALP20, VZ20, ABG+20] that consider the
notion of quantum zero-knowledge, and most of them use Watrous’ rewinding in one
way or another.

Quantum Proofs of Knowledge. Quantum rewinding also presents a challenge
when studying PoK’s in the quantum setting. Unruh [Unr12] showed how to use
rewinding in specific cases to construct quantum proofs of knowledge (QPoK) albeit
with a few restrictions that limit their composability, their usage as an ingredient in
other protocols. In particular, Unruh’s QPoK satisfies a weak version of extractability
– the probability that the extractor succeeds is not negligibly close to the acceptance
probability – and more importantly, it does not satisfy simulatability – the prover’s
state after extraction is not statistically close to the prover’s state after interacting
with the actual verifier. There have been other works that present constructions that
satisfy both the above conditions, but the extraction is only against computation-
ally bounded adversaries [HSS11, BS20, ALP20]. It has been an important open

26

problem to design quantum proofs of knowledge (i.e. extraction against unbounded
adversaries) satisfying both of the above conditions.

1.1.3 Questions explored in this thesis

Much of the ZK work in the classical setting aims to construct ZK protocols with ad-
ditional properties beyond the basic ones or to optimize their computational resources
like their round complexity. Protocols with minimal round complexity and negligible
soundness are desirable for practical reasons. Given a ZK protocol, its soundness can
be improved by sequential repetition, but this incurs a polynomial overhead in the
number of rounds. Optimal round complexity for protocols with negligible sound-
ness have already been studied in the classical setting [BCPR16, BBK+16, BKP18,
BKP19]; meanwhile, little is known about the round complexity of quantum zero-
knowledge7. This motivates the following question:

(Q1.1) Are there constant round QZK protocols for NP (with negligible
soundness)?

Besides optimal round complexity, another desirable feature we might want our ZK
protocols to have is concurrency. The basic ZK property guarantees security against
a single verifier, but it says nothing about the security of the protocol in the more
realistic scenario when a prover 𝑃 performs the protocol concurrently with multiple
verifiers, 𝑉1, . . . , 𝑉𝑛. While concurrent zero-knowledge can still be defined using the
simulation paradigm, the simulators of concurrent protocols are more elaborate as
they have to account for new challenges like the possibility that the multiple verifiers
are colluding with each other and taking turns engaging with 𝑃 in whatever order
they want. Concurrency has been widely studied in the classical literature [DS98,
DCO99, Can01, CLOS02, CF01, RK99, BS05, DNS04, PRS02, Lin03, Pas04, PV08,
PTV14, GJO+13, CLP15, FKP19], but none of those simulators or proof techniques
seem quantum friendly. Thus, constructing a concurrent QZK protocol seems to
require new techniques, which leads us to the next question:

(Q1.2) Are there concurrent QZK protocols for NP?

Both (Q1.1) and (Q1.2) arise in part due to the difficulty of rewinding in the
quantum setting, which makes it trickier to construct QZK simulators. This affects
the construction of not only QZK protocols, but also QPoK protocols, where an
extractor has to be exhibited. As discussed in the previous subsection, Unruh has
shown a QPoK protocol for NP. However, his protocol does not satisfy simulatability
– it does not compose well. It has been an important open problem to design quantum
proofs of knowledge satisfying both of the above conditions.

(Q1.3) Are there quantum proofs of knowledge for NP that compose well?
I.e. are there QPoKs for NP that satisfy extractability and simulatability?

In this work, we make significant progress towards answering these three questions.
We present our results in Section 1.3.

7In a recent and concurrent work [BS20], constant round QZK arguments for NP and for QMA
were given using similar techniques as those presented in this thesis.

27

1.2 Quantum copy-protection

One of the main results in this thesis is that extraction techniques developed in
the context of zero-knowledge can be used to answer a longstanding open question
about the feasibility of quantum copy-protection. Quantum copy-protection was in-
troduced by Aaronson [Aar09] to exploit the No-Cloning Theorem in order to formally
study and tackle the problem of software piracy. Roughly speaking, quantum copy-
protection says that given a quantum state computing a function 𝑓 , the adversary
cannot produce two quantum states (possibly entangled) such that each of the states
individually computes 𝑓 . While ad hoc solutions exist in the real world, achieving
this security guarantee against piracy is impossible from classical software alone –
any classical code that computes 𝑓 can be copied, even if the code is obfuscated.

Quantum copy-protection is one of the “best” quantum cryptographic primitive
we could dream to obtain using the No-Cloning Theorem. It would let us embed
functionality in quantum states allowing us to make any functionality unclonable. For
example, by copy-protecting a decryption circuit Decsk, we could obtain unclonable
decryption circuits where only a single party is guaranteed to be able to decrypt
messages being broadcasted. Quantum mechanics would not only give us unclonable
states, but unclonable states that can be functionally used!

We present the formal definition as given by Aaronson.

Definition 5 (Quantum Copy-Protection [Aar09]). Let ℱ𝑛 be a family of Boolean
functions 𝑓 : {0, 1}𝑛 → {0, 1}, where each 𝑓 ∈ ℱ𝑛 is associated with a unique “de-
scription” 𝑑𝑓 ∈ {0, 1}𝑚. A quantum copy-protection is a tuple of QPT algorithms
(Vendor,Run) as follows:

• Vendor(𝑑𝑓): takes as input the description 𝑑𝑓 of a function 𝑓 ∈ ℱ𝑛 and outputs
a state 𝜌𝑓 .

• Run(𝜌𝑓 , 𝑥): takes as input a state 𝜌𝑓 and 𝑥 and attempts to output 𝑓(𝑥).

Correctness: We say that (Vendor,Run) satisfies 𝜀-correctness if for all 𝑓 ∈ ℱ𝑛

and all 𝑥 ∈ {0, 1}𝑛,

Pr
𝜌𝑓←Vendor(𝑑𝑓)

[Run(𝜌𝑓 , 𝑥) = 𝑓(𝑥)] ≥ 1− 𝜀.

Security: Let 𝒟 be a distribution over ℱ𝑛 × {0, 1}𝑛. We say that (Vendor,Run)
satisfies 𝛿-security against 𝒟 if for any QPT algorithms 𝒫 and ℛ and any 𝑘, 𝑟 =
poly(𝑛,𝑚), the following holds.

• 𝒫(𝜌⊗𝑘𝑓): outputs a state 𝜎𝑓 on 𝑘 + 𝑟 registers.

• For all 𝑖 ∈ [𝑘 + 𝑟], let 𝜎𝑖
𝑓 = Tr𝑖(𝜎𝑓). In other words, 𝜎𝑖

𝑓 is the state on the 𝑖𝑡ℎ
register.

28

• For all 𝑖 ∈ [𝑘 + 𝑟], let X𝑖 be an indicator random variable defined as follows:

X𝑖 =

{︃
1, if ℛ(𝜎𝑖

𝑓 , 𝑥) = 𝑓(𝑥)

0, otherwise

Then, averaging over (𝑓, 𝑥) drawn from 𝒟, we have that

E
(𝑓,𝑥)←𝒟

[︃
𝑘+𝑟∑︁
𝑖=1

X𝑖

]︃
≤ 𝑘 + (1− 𝛿)𝑟.

Remark 6. Aaronson [Aar09] points out some subtleties encountered when defining
copy-protection which partly explain why he introduced the notion as in the definition
above. Recent work [ALL+20] introduces a more general definition based on the pro-
jective implementation framework introduced by Zhandry [Zha20]. Our impossibility
result applies to both of these notions.

Unlearnable functions. As Aaronson pointed out, copy-protection only makes
sense for unlearnable functions. If a description of a function 𝑓 can be learned from
its input-output behavior, then 𝑓 cannot be copy-protected. Any pirate that is given
a quantum state that successfully computes 𝑓 a polynomial number of times, can
learn a description for 𝑓 and make as many copies from this description as it wants.
While Aaronson considered a more relaxed definition of quantum unlearnability, we
present here the definition of quantum unlearnability that we will be using in this
thesis.

Definition 7 (Quantum unlearnability). Let 𝒞 be a family of Boolean circuits asso-
ciated to a distribution 𝒟𝒞. We say that (𝒞,𝒟𝒞) is 𝜈-quantum unlearnable with
security parameter 𝜆 if for any QPT adversary 𝒜, the following holds:

Pr
[︁
∀𝑥,Pr[𝑈*(𝜌*, 𝑥) = 𝐶(𝑥)] ≥ 𝜈 :

𝐶←𝒟𝒞
(𝑈*,𝜌*)←𝒜𝐶(·)(1𝜆)

]︁
≤ negl(𝜆)

In [Aar09], Aaronson proved that there is a copy-protection scheme for every un-
learnable function relative to a quantum oracle. He also gave two heuristic candidate
schemes to copy-protect point functions. More recently, Aaronson, Liu, Liu, Zhandry,
and Zhang [ALL+20] improved upon the quantum oracle result obtaining a similar
result but using a classical oracle instead. At the time the work presented in this the-
sis was done, despite a decade since the introduction of copy-protection, these were
the only known results regarding copy-protection. The following question remained
open:

(Q2.1) Is there a quantum copy-protection scheme for every quantum
unlearnable function in a standard model (without oracles)?

In this work we will show that the answer is a (conditional) no. Under reasonable
cryptographic assumptions, there are families of unlearnable functions that cannot
be quantum copy-protected.

29

While it is impossible to copy-protect every unlearnable function, we can ask
whether we can copy-protect restricted families of functions, e.g. point functions.

(Q2.2) Is there a quantum copy-protection scheme for some quantum
unlearnable functions in a standard model (without oracles)?

Unfortunately, constructing provable copy-protection schemes in the standard model
remains challenging even for restricted families. In this thesis, we make partial
progress in this direction by showing that if we weaken the notion of copy-protection,
then we can achieve a provable construction for restricted families. This new notion
is called Secure Software Leasing (SSL), and while weaker than copy-protection, it
still captures the spirit of using the No-Cloning Theorem to tackle software piracy.

1.3 Our results
In this thesis, we use new simulation techniques to construct new QZK protocols
providing partial answers to (Q1.1), (Q1.2), and (Q1.3) discussed in Section 1.1.3.
The ideas developed are then adapted to the setting of quantum copy-protection in
order to (conditionally) answer (Q2.1) from Section 1.2 in the negative. Finally, we
introduce a new quantum cryptographic notion, Secure Software Leasing (SSL), and
show how to construct it for a restricted family of circuits making partial progress
towards answering (Q2.2). While SSL is weaker than quantum copy-protection, this
construction is the first provably secure construction in a standard model in the topic
of quantum copy-protection.

1.3.1 Results regarding QZK protocols

Recall that our goal is to study classical protocols that hold their security guarantees
even against malicious quantum adversaries. We desire protocols that can be imple-
mented today, but will remain secure in the future if quantum computation becomes
a widespread reality.

Remark 8. All the QZK protocols for NP presented in this thesis are classical pro-
tocols. They can be performed by purely classical parties.

A summary of the classical protocols (with quantum security) constructed in this
thesis as well as the new ideas behind the constructions are shown in Table 1.1 and
Table 1.2.
We describe our results in more detail below.

#1 Constant round QZK classical argument system for NP

Our first construction is a QZK classical argument system, i.e. its soundness guaran-
tee only holds against bounded classical (PPT) provers. Ideally we want a construc-
tion that guarantees security against unbounded provers (or even against quantum
provers), but by considering classical argument systems we can construct a protocol

30

Protocol Tools Assumption Rounds
QZK classical argument
(Section 4.2)

•Trapdoor claw-free functions
•Secure function evaluation
•Perf. binding commitments
•WI arguments

QLWE 𝑂(1)

Non-black-box
quantum extraction
(Section 3.3)

•Lockable obfuscation
•QFHE
•Perf. binding commitments
•Secure function evaluation

QLWE
QFHE

𝑂(1)

Bounded concurrent QZK
(Section 4.3)

•Stat. binding commitments
•WI proofs

OWF 𝑂(𝑛𝑐)

Bounded concurrent QZK
with QPoK
(Section 5.3)

•Stat. receiver-private OT
•Bounded concurrent QZK

QLWE 𝑂(𝑛𝑐)

Stat. receiver-private OT
(Section 5.2)

•Stat. sender-private OT
•Stat. ZK quantum argument

QLWE 𝑂(𝑛𝑐)

Table 1.1: Summary of classical protocols

Protocol New Simulation or Extraction Mechanism
QZK classical argument
(Section 4.2)

Simulators succeed if they can pass a ‘test of quantum-
ness’

Non-black-box
quantum extraction
(Section 3.3)

Non-black-box use of QFHE to obtain encryption of
secret followed by decryption using lockable obfuscation

Bounded concurrent QZK
(Section 4.3)

Block rewinding

Bounded concurrent QZK
with QPoK
(Section 5.3)

Combine block rewinding with statistical receiver-
private OT

Stat. receiver-private OT
(Section 5.2)

Use Watrous’ rewinding to argue post-quantum sender
security

Table 1.2: Summary of new simulation methods

with a few interesting features. First, the protocol solely relies on the QLWE assump-
tion. Second, it satisfies quantum-lasting security. Quantum-lasting security [Unr13]
is the guarantee that a classical protocol executed today that is secure against classi-
cal adversaries remains secure if an adversary obtains a quantum computer long after
the execution of the protocol. In other words, quantum-lasting security says that
transcripts of protocols executed today in a classical world would still be secure in
a quantum future. Third, the protocol satisfies black-box QZK– it is the first con-
stant round black-box QZK protocol based solely on QLWE. Finally, the protocol is

31

conceptually interesting as it is an application of tests of quantumness.

Theorem 9 (Constant Round Quantum ZK with Classical Soundness; Informal Ver-
sion of Lemma 69). Assuming quantum hardness of learning with errors (QLWE),
there exists a constant round black-box quantum zero-knowledge system with negligi-
ble soundness against classical PPT algorithms.

Application: Authorization with Quantum Cloud. Soundness holding only
against classical malicious provers is restricting, but as the following example shows,
there are applications for such protocols in the near-term of quantum computation
where we expect only a few big players to have access to quantum resources. Suppose
Eve wants to convince the IBM cloud service that she has the authorization to access
a document residing in the cloud. Since the authorization information could leak
sensitive information about Eve, she would rather use a zero-knowledge protocol to
prove to the cloud that she has the appropriate authorization. While we currently
don’t have scalable implementations of quantum computers, this could change in
the future when organizations like IBM could be the first ones to develop a quantum
computer. They could in principle then use this to break the zero-knowledge property
of Eve’s protocol and learn sensitive information about her. In this case, it suffices
to use a QZK protocol but only requiring soundness against malicious classical users;
it is reasonable to assume that even if IBM gets to develop a full-fledged quantum
computer, in the nearby future, it’ll take a while before every day users will have
access to one. Everyday users can then take the role of the provers in protocols where
soundness is only guaranteed against classical parties.

#2 Non-black-box quantum extraction

The underlying idea behind the construction of Theorem 9 is to first construct an
extraction protocol (defined in Chapter 3), and then leverage it to obtain full-fledged
QZK. While we fall short of carrying the same program to obtain a QZK argument
system with soundness against bounded quantum provers, we show how to achieve
a constant round extraction protocol against such provers. To do this, we introduce
a new non-black-box extraction technique in the quantum setting building upon a
classical non-black-box extraction technique of [BKP19].

Theorem 10 (Non-black-box quantum extraction; Informal Version of Lemma 63).
Assuming quantum hardness of learning with errors (QLWE) and a quantum fully
homomorphic encryption scheme (QFHE) (for arbitrary poly-time computations)8,
satisfying, (1) perfect correctness for classical messages and, (2) ciphertexts of poly-
sized classical messages have a poly-sized classical description, there exists a constant
round quantum extraction protocol secure against quantum poly-time receivers.

We clarify what we mean by perfect correctness. For every public key, every valid
fresh ciphertext of a classical message can always be decrypted correctly. Moreover,

8As against leveled quantum FHE, which can be based on QLWE.

32

we require that for every valid fresh ciphertext, of a classical message, the evaluated
ciphertext can be decrypted correctly with probability negligibly close to 1. We note
that the works of [Mah18a, Bra18] give candidates for quantum fully homomorphic
encryption schemes satisfying the properties needed for Theorem 10.

We view identifying the appropriate classical non-black-box technique to also be a
contribution of our work. A priori it should not be clear whether classical non-black-
box techniques are useful in constructing their quantum analogues. For instance, it is
unclear how to utilize the well known non-black-box technique of Barak [Bar01]; at a
high level, the idea of Barak [Bar01] is to commit to the code of the verifier and then
prove using a succinct argument system that either the instance is in the language or
it has the code of the verifier. In our setting, the verifier is a quantum circuit which
means that we would require succinct arguments for quantum computations which
we currently don’t know how to achieve.

Non-black-box extraction overcomes the disadvantage quantum rewinding poses
in achieving constant round extraction; the quantum rewinding employed by [Wat09]
requires polynomially many rounds (due to sequential repetition) or constant rounds
with non-negligible gap between extraction and verification error [Unr12].

This technique was concurrently developed by Bitansky and Shmueli [BS20] (see Sec-
tion 1.5) and they critically relied upon this to construct a constant-round zero-
knowledge argument system for NP and QMA, thus resolving a long-standing open
problem in the round complexity of quantum zero-knowledge.

#3 Bounded concurrent QZK proof systems for NP and QMA

In our next QZK protocol, we initiate a formal study of concurrent composition in
the quantum setting. In this setting, the prover 𝑃 can interact with many ver-
ifiers 𝑉1, . . . , 𝑉𝑚 while preserving the ZK property. Security is expected to hold
against a malicious quantum adversary 𝑉 * who controls the behavior of any sub-
set of the verifiers. This adversary can entangle the private states of all the veri-
fiers, as well as decide in which order the verifiers will send their messages (decide
their scheduling). As we will discuss in Chapter 4, quantum rewinding these type
of adversaries is harder than in the standalone setting because the rewinding cannot
depend on the scheduling of the verifiers. Nonetheless, we introduce the technique
of block rewinding, which allows us to use Watrous’ rewinding as long as we re-
strict ourselves to the bounded concurrent setting – the prover interacts only with
a bounded number of verifiers where this bound is fixed at the time of protocol
specification. This setting has been well studied in the classical concurrency litera-
ture [Lin03, PR03, Pas04, PTW09]. Moreover, we note that the only other existing
work that constructs quantum zero-knowledge against multiple verifiers (in the par-
allel composition setting), namely [ABG+20], also works in the bounded setting.

Theorem 11 (Bounded concurrent QZK for NP; Informal Version of Theorem 77).
Assuming the existence of post-quantum one-way functions9, there exists a bounded

9That is, one-way functions secure against (non-uniform) quantum polynomial-time algorithms.

33

concurrent quantum zero-knowledge proof system for NP. Additionally, our protocol
is a public coin proof system.

Our construction satisfies quantum black-box zero-knowledge. We note that achieving
public-coin unbounded concurrrent ZK is impossible [PTW09] in the classical setting.
The construction from Theorem 11 is similar from that of [PTW09]; however, we
need to instantiate the protocol with different parameters and to construct a new
QZK simulator.

While we see the construction from Theorem 11 as our main contribution in
the concurrent setting, we also show how to obtain bounded concurrent QZK for
QMA by following the framework introduced by Broadbent, Ji, Song, and Watrous
(BJSW) [BJSW16] and using our bounded concurrent QZK protocol for NP.

Theorem 12 (Bounded concurrent QZK for QMA; Informal Version of Theorem 94).
Assuming post-quantum one-way functions, there exists a bounded concurrent quan-
tum zero-knowledge proof system for QMA.

#4 Statistical receiver-private oblivious transfer

The main ingredient in our construction of quantum proofs of knowledge is statistical
receiver-private oblivious transfer introduced in [GJJM20, DGH+20]. An oblivious
transfer (OT) protocol is a protocol between a sender S and a receiver R. The input
to S is a pair of messages (𝑚0,𝑚1), and the input to R is a bit 𝑏. The goal of OT is for
R to obtain 𝑚𝑏 with the following security guarantees. S does not want to reveal both
of the messages, and R does not want S to learn which message it is retrieving, i.e.
does not want to reveal 𝑏. For the purpose of obtaining QPoKs, we desire an OT pro-
tocol that is secure against computationally unbounded malicious senders and secure
against malicious QPT receivers. The protocols presented in [GJJM20, DGH+20] are
statistical receiver-private, that is, they are secure against unbounded senders. They
are also secure against PPT receivers; however, the sender’s security proofs do not
directly work in the quantum setting. Starting from the ideas in [GJJM20, DGH+20],
we show how to construct a statistical receiver-private OT with post-quantum security
against receivers.

Theorem 13 (Post-quantum statistical receiver-private OT; Informal (Section 5.2.3)).
Assuming quantum hardness of learning with errors (QLWE), there is a statistical
receiver-private oblivious transfer protocol that is secure against malicious QPT re-
ceivers.

#5 Quantum proofs of knowledge

Our bounded concurrent construction only satisfies the standard soundness guarantee.
A more desirable property is quantum proof of knowledge. Roughly speaking, proof
of knowledge states the following: suppose a malicious (computationally unbounded)
prover can convince a verifier to accept an instance 𝑥 with probability 𝜀. Let the state
of the prover at the end of interaction with the verifier be |Ψ⟩. Then there exists an

34

efficient extractor, with black-box access to the prover, that can output a witness 𝑤
for 𝑥 with probability 𝛿. Additionally, it also outputs a quantum state |Φ⟩. Ideally,
we require the following two conditions to hold: (i) |𝜀 − 𝛿| is negligible and, (ii) the
states |Ψ⟩ and |Φ⟩ are close in trace distance; this property is also referred to as
simulatability property. Unruh [Unr12] presented a construction of quantum proofs
of knowledge; their construction satisfies (i) but not (ii). Indeed, the prover’s state,
after it interacts with the extractor, could be completely destroyed. Condition (ii)
is especially important if we were to use quantum proofs of knowledge protocols as
a sub-routine inside larger protocols, for instance in secure multiparty computation
protocols.

We prove the following theorem by combining our bounded concurrent QZK pro-
tocol with our construction of QPoK from statistical receiver-private OT.

Theorem 14 (Bounded concurrent QZK with QPoK; Informal (Section 5.3.3)). As-
suming the quantum hardness of learning with errors (QLWE), there exists a bounded
concurrent quantum zero-knowledge proof system for NP satisfying quantum proofs of
knowledge property.

1.3.2 Results regarding quantum copy-protection

We show how the non-black-box extraction techniques, like those used in Theo-
rem 10, introduced in seemingly different contexts – proving impossibility of ob-
fuscation [BGI+01, BP16, AF16] and constructing zero-knowledge protocols [BKP19,
BS20, ALP20] – are relevant to proving the impossibility of copy-protection.

To demonstrate our impossibility result, we identify a class of classical circuits 𝒞
that we call a de-quantumizable circuit class. This class has the property that given
any QPT 𝑈𝐶 and any auxiliary state 𝜌𝐶 such that for all 𝑥, it holds that 𝑈𝐶(𝜌𝐶 , 𝑥) =
𝐶(𝑥) for a circuit 𝐶 ∈ 𝒞, we can efficiently ‘de-quantumize’ to obtain a classical circuit
𝐶 ′ ∈ 𝒞 that has the same functionality as 𝐶. We call (𝑈𝐶 , 𝜌𝐶) an efficient quantum
implementation of the circuit 𝐶. In other words, a de-quantumizable circuit is one for
which there is no cryptographic advantage to providing a quantum implementation
instead of a classical description of the circuit. If 𝒞 is learnable then, from the
definition of learnability, there could be a QPT algorithm that finds 𝐶 ′. To make the
notion interesting and non-trivial, we add the additional requirement that this class of
circuits is quantum unlearnable. Our main result is the existence of de-quantumizable
circuits under cryptographic assumptions.

Proposition 15 (Existence of de-quantumizable circuits; Informal Version of The-
orem 114). Assuming the quantum hardness of learning with errors (QLWE), and
asssuming the existence of quantum fully homomorphic encryption10 (QFHE), there
exists a de-quantumizable class of circuits.

It is easy to see why de-quantumizable circuits cannot be copy-protected. If a
pirate is given any quantum implementation (𝑈𝐶 , 𝜌𝐶) of the circuit 𝐶, it can recover

10We need additional properties from the quantum fully homomorphic encryption scheme but
these properties are natural and satisfied by existing schemes [Mah18a, Bra18].

35

a classical description of the circuit and copy it. We obtain the desired impossibility
result as a corollary.

Corollary 16 (Impossibility of copy-protection; Informal Version of Corollary 119).
Assuming the quantum hardness of learning with errors (QLWE), and asssuming the
existence of quantum fully homomorphic encryption (QFHE), there exists a class of
quantum unlearnable circuits 𝒞 that cannot be quantum copy-protected.

We will see that our impossibility result is actually stronger than Corollary 16. We
show that even achieving the weaker notion that we will introduce, SSL, is impossible
for arbitrary quantum unlearnable circuits. While the reason is similar, there is no
SSL scheme for our family of de-quantumizable circuits, the formal argument is a bit
more subtle. We defer this discussion until we have defined SSL in Chapter 7. Our
strongest impossibility result is the following.

Theorem 17 (Impossibility of SSL; Informal Version of Theorem 131). Assuming
the quantum hardness of learning with errors (QLWE), and asssuming the existence
of quantum fully homomorphic encryption (QFHE), there exists a class of quantum
unlearnable circuits 𝒞 such that there is no SSL for 𝒞.

Impossibility of Quantum VBB with single unclonable state. One could
hope to use quantum resources to obfuscate classical circuits. In some sense, quan-
tum states are already obfuscated – if we do not know enough about a particular
state, any measurement we do on it might destroy it. This means that we could hope
to somehow embed a Boolean circuit 𝐶 in a quantum state for the purpose of hid-
ing the circuit, and perhaps achieve the strongest notion of circuit obfuscation there
is, virtual black-box obfuscation (VBB). The notion of using quantum resources to
achieve VBB was termed quantum virtual black-box obfuscation (QVBB) by Alagic
and Fefferman [AF16]. They also showed how to extend classical impossibility re-
sults [BGI+01] to the quantum setting . However, the possibility of using a single
unclonable state to achieve QVBB was left open. Our techniques also rule out the
possibility of QVBB for classical circuits.

Proposition 18 (Impossibility of QVBB; Informal Version of Proposition 120). As-
suming the quantum hardness of learning with errors (QLWE) and assuming the exis-
tence of quantum fully homomorphic encryption (QFHE), there exists a circuit class
𝒞 such that any quantum VBB for 𝒞 is insecure.

1.3.3 New notion: Secure Software Leasing

While the impossibility result rules out copy-protection for arbitrary functions, it
might still be possible to obtain copy-protection for restricted family of functions
like point-functions or compare-and-compute families. Unfortunately, even for sim-
ple families like point-functions, we do not know how to construct provably secure
quantum copy-protection in the standard model. This remains a challenging and in-
teresting open problem. Nevertheless, we show that at least if we weaken the notion
of quantum copy-protection, then there are constructions for restricted families.

36

Our first observation is that there are scenarios in which full-blown copy-protection
might be an overkill. For example, Alice might want to lend a program 𝐶 to Bob
with the expectation that sometime in the future he will return it. Alice might
want the security guarantee that Bob cannot keep a copy of the program after he
returned the original copy. Another example would be the following scenario. Alice
wants to pirate and sell (illegal) copies of a program 𝐶; however, not everyone is
willing to buy illegal copies. Bob wants to buy an authenticated (or official) copy.
In this scenario, it is enough to have the security guarantee that Alice cannot forge
authenticated copies. She might be able to make pirated copies, but she will not be
able to fool Bob into buying them. We introduce the notion of Secure Software Leasing
(SSL) to capture these scenarios. The syntax of SSL is similar to copy-protection,
except that the security guarantee only rules out the possibility of a pirate making
two copies both authenticated that evaluate the protected circuit correctly under
a fixed Run algorithm. We use the terminology of leasing, since we see Run as a
proprietary fixed algorithm (like an operating system) for which an authority can
lease software. Furthermore, the leasing terminology also lets us capture the case
where the lessor requires the original software to be returned. We define two security
notions associated to SSL, finite-term and infinite-term security, corresponding to
whether the lessor expects the initial state back or not.

We show that there is an SSL scheme for a general class of evasive circuits11. We
need a few properties from a circuit family 𝒞 in order to be able to construct SSL.
First, 𝒞 has to be searchable – given a circuit 𝐶 ∈ 𝒞, it is possible to find an accepting
input. For example, if 𝒞 is a family of point-functions where each circuit is described
by the accepting point. I.e. the string 𝑧 ∈ 𝒞 represents the Boolean circuit 𝐶𝑧 where
𝐶𝑧(𝑥) = 1 if and only if 𝑥 = 𝑧. This would be a searchable class. We emphasize
that searchability is a property of the description of the circuits. Furthermore, a
description of a circuit 𝐶 does not necessarily lets you find accepting inputs (e.g.
evasive circuits). Searchability is a natural property and is implicit in the description
of the existing constructions of copy-protection by Aaronson [Aar09]. Second, we
need to be able to obfuscate the accepting inputs of 𝒞. Specifically, we need an
algorithm that takes as input a circuit 𝐶 ∈ 𝒞, and outputs a different description, ̃︀𝐶,
of the same circuit that does not reveal the accepting inputs. This notion is called
input-hiding obfuscation [BBC+14]. If 𝒞 is searchable, and it can be obfuscated with
an input-hiding obfuscator, then we show how to construct SSL for 𝒞.

Theorem 19 (SSL for General Evasive Circuits; Informal (Section 7.5)). Let 𝒞 be
a searchable class of circuits. Assuming the existence of: (a) quantum-secure input-
hiding obfuscators [BBC+14] for 𝒞, (b) quantum-secure subspace obfuscators [Zha19]
and, (c) learning with errors (QLWE) secure against sub-exponential quantum algo-
rithms, there exists an SSL scheme in the common reference string model for 𝒞.

Remark 20. The common reference string (CRS) model means that the honest par-
ties have access to a common input produced by a trusted setup. The impossibility
result also holds in this model.

11Boolean circuits for which it is hard to find an accepting input.

37

A class of circuits that satisfies our requirements is searchable compute-and-
compare circuits. A circuit 𝐷𝐶,𝛼 in this class, parametrized by a circuit 𝐶 and a
lock 𝛼, is defined as follows:

𝐷𝐶,𝛼(𝑥) =

{︃
1 if 𝐶(𝑥) = 𝛼

0 otherwise

This circuit class has been studied in the cryptography literature in the context
of constructing program obfuscation [WZ17, GKW17]. Restricting Theorem 19 to
compute-and-compare circuits, we obtain the following result.

Theorem 21. Assuming the existence of: (a) quantum-secure subspace obfusca-
tors [Zha19] and, (b) learning with errors (QLWE) secure against sub-exponential
quantum algorithms, there exists an SSL scheme in the common reference string model
for searchable compute-and-compare circuits.

1.4 Technical overview

Our goal in this section is to give a high level, but still technical, overview of the
ideas and proofs presented in the thesis. Each chapter has a corresponding technical
overview with more details than those presented here.

Technical background: the FLS Paradigm. One powerful framework for con-
structing zero-knowledge protocols is the FLS technique [FLS99]. Suppose we want
to design a protocol for an NP language ℒ. There are two ideas behind the FLS
technique. First, let ℒ′ ∈ NP be a language that we will fix later (ℒ′ will be chosen
so that the rest of the FLS plan works out). Instead of designing a protocol for ℒ, we
design a protocol for the composite language ℒ′′ defined as follows: (𝑥, 𝑥′) ∈ ℒ′′ if and
only if either 𝑥 ∈ ℒ or 𝑥′ ∈ ℒ′. For any ℒ′, completeness is unchanged by this trans-
formation, i.e. if a prover can prove that 𝑥 ∈ ℒ, it can also prove that (𝑥, 𝑥′) ∈ ℒ′′.
For soundness to still hold, a malicious prover shouldn’t be able to prove that 𝑥′ ∈ ℒ′;
otherwise, a malicious prover can make the verifier accept despite 𝑥 /∈ ℒ. This means
we need to fix ℒ′ and design a protocol in such a way that a malicious prover cannot
use a witness 𝑤′ to 𝑥′ ∈ ℒ′. Nevertheless, it should be possible for a simulator to use a
witness 𝑤′ to 𝑥′ ∈ ℒ′. For example, if the only way to obtain (𝑥′, 𝑤′) is by rewinding
the verifier, then a malicious prover wouldn’t be able to break soundness, yet the
simulator is able to convince the verifier. Or maybe, unlike the malicious prover, the
simulator has non-black-box access to the verifier, which allows it to recover (𝑥′, 𝑤′).

The first step discuss above is essentially creating a backdoor for the simulator to
use. While the malicious prover cannot use the language ℒ′ to break soundness, by
having more power via rewinding or non-black-box access, the simulator can use ℒ′.
This is not enough for zero-knowledge. Consider a standard NP protocol for ℒ′′, where
𝑃 just sends a witness to 𝑉 . Then, a witness to (𝑥, 𝑥′′) ∈ ℒ′′ would be either a witness
to 𝑥 ∈ ℒ or a witness to 𝑥′ ∈ ℒ′. Unfortunately, 𝑉 would be able to distinguish the

38

simulator from the prover, because only the simulator sends a witness to 𝑥′ ∈ ℒ′. The
second ingredient needed for the FLS trick is a witness-indistinguishable (WI) proof
system. We say that a proof system for a language 𝐿 is witness-indistinguishable if
for any 𝑥 ∈ 𝐿, and any pair of witness (𝑤,𝑤′), it is not possible to distinguish whether
𝑃 used 𝑤 or 𝑤′ in the protocol. This notion is weaker than zero-knowledge. If we
require 𝑃 and 𝑉 to perform a WI proof for ℒ′′, then 𝑉 wouldn’t be able to distinguish
when a witness for 𝑥 ∈ ℒ is used from when a witness 𝑥′ ∈ ℒ′ is used. In other words,
𝑉 cannot distinguish whether it interacted with the simulator or the real prover. To
summarize the discussion until now: the FLS idea is to design a protocol between
𝑃 and 𝑉 where instead of just proving that 𝑥 ∈ ℒ, the verifier will accept if either
𝑥 ∈ ℒ or 𝑥′ ∈ ℒ′. The real prover will use a witness to 𝑥 ∈ ℒ while only the simulator
can use a witness to 𝑥′ ∈ ℒ′. Finally, WI proofs guarantee that 𝑉 will not be able to
distinguish whether it interacted with prover or simulator.

Let’s look at the FLS trick through an example. Consider the argument (soundness
against bounded provers) protocol in Figure 1-3. If 𝑥 ∈ ℒ, then 𝑃 will be able to
make 𝑉 accept in the WI protocol. If 𝑥 /∈ ℒ, then a malicious bounded prover will
not be able to prove that 𝑥 ∈ ℒ, and by security of the PRG, it will also not find the
seed 𝑠 satisfying 𝐺(𝑠) = 𝑦. This means that soundness will still hold against bounded
malicious provers. On the other hand, suppose that 𝑥 ∈ ℒ, and suppose that a
simulator Sim is capable of extracting 𝑠 from 𝐺(𝑠) – perhaps Sim is computationally
more powerful than the malicious 𝑃 . Then, Sim will be able to use 𝑠 as a witness
in the WI protocol. By security of WI, the verifier wouldn’t be able to distinguish
whether a witness 𝑤 to 𝑥 ∈ ℒ (the real prover) was used or whether the seed 𝑠 (the
simulator) was used in the WI.

𝑃 ’s input: 𝑥 and 𝑤 if 𝑥 ∈ ℒ
𝑉 ’s input: 𝑥
Let 𝐺 be a PRG.

• 𝑉 → 𝑃 : 𝑉 samples a random seed 𝑠, and sends 𝑦 ← 𝐺(𝑠).

• 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 perform a WI protocol for 𝑃 to prove to 𝑉 that:

either 𝑥 ∈ ℒ or there is 𝑠 s.t. 𝑦 = 𝐺(𝑠)

Figure 1-3: FLS Example

This example falls short of zero-knowledge because we haven’t fully specified the
simulator. In particular, to extract the seed 𝑠, the simulator might have to run
in exponential time and not expected polynomial-time. Nevertheless, this example
shows the main idea behind the FLS trick and behind our QZK constructions. The
goal in constructing QZK protocols starting from the FLS paradigm is to instantiate
the first step appropriately, i.e. to find the right primitives and protocols that allow a

39

simulator to extract the seed 𝑠 while satisfying the desired zero-knowledge properties
like expected polynomial run time.

1.4.1 QZK protocols

The constructions of our two main QZK protocols, (1) the classical argument system
for NP, and (2) the bounded concurrent protocol, follow the FLS paradigm.

QZK classical argument system for NP

As discussed in the previous section, the FLS paradigm relies on the simulator’s
ability to do something that the malicious prover can’t. One way to achieve this is to
restrict to the setting where malicious provers are classical (PPT) while simulators are
quantum (QPT). This exact situation arises when considering QZK protocols where
soundness only has to hold against PPT machines. At a high level, our construction
is an extension of the FLS trick to this setting, where our goal is to take advantage of
the fact that the simulators are QPT. Instead of designing a protocol where 𝑃 proves
to 𝑉 that 𝑥 ∈ ℒ or 𝑥′ ∈ ℒ′, we design a protocol where the 𝑃 proves that

either 𝑥 ∈ ℒ or 𝑃 has quantum capabilities.

For example, we could instantiate the protocol in Figure 1-3 with a PRG that is quan-
tum in-secure but classically secure, then a QPT simulator would be able to extract
the seed 𝑠. We can construct such protocols from quantum in-secure assumptions like
Decisional Diffie-Hellman (DDH) or Factoring, but such protocols wouldn’t satisfy
the strongest security guarantee we would want in this setting. If we restrict any ma-
licious party to be classical, at the very least we can hope to prove that the scheme
remains secure if a malicious party has access to a quantum computer after execut-
ing the protocol. In other words, that no additional information will be obtained
from a transcript of the execution if later everyone has quantum computers. This
is a relevant scenario for the current state of affairs and the near future of quantum
computation. If we use a quantum in-secure assumption, the malicious PPT prover
will not break security of the protocol now, but in a quantum future, it will be able to
get more information from the transcript. Going back to the example in Figure 1-3,
if 𝐺 is quantum in-secure, then the prover in the quantum future will be able to
obtain the seed 𝑠. While this doesn’t seem important in the standalone setting, this
type of ‘future’ leakage could affect composition of protocols. Maybe the verifier had
committed to using this same seed in a future execution of some other protocol, and
by the time this other protocol gets executed, the malicious prover found access to a
quantum computer and broke the transcript to get 𝑠.

The challenge is then to construct a classical argument system for NP solely from
a quantum secure assumption like QLWE. Our main idea is to use QLWE-based
noisy trapdoor claw-free functions (NTCFs), which have been used to construct ‘tests
of quantumness’ [BCM+18]. NTCFs provide the computational asymmetry between
classical and quantum computation. Assuming the security of NTCFs, there is a

40

computational task that a quantum simulator will be able to complete, while the
malicious PPT prover will not be able to. In more details, an NTCF is a pair of
functions (𝑓0, 𝑓1) such that it is computationally hard to find 𝑥0 and 𝑥1 satisfying
𝑓0(𝑥0) = 𝑓1(𝑥1) (a claw). The computational task that a quantum computer can do
is the following. It can first compute a string 𝑦, and later it can do either of the
following things: (1) provide a pre-image 𝑥𝑏 s.t. 𝑓𝑏(𝑥𝑏) = 𝑦 or (2) provide a string
𝑧 s.t. 𝑧 · (𝑥0 ⊕ 𝑥1) = 0. A PPT machine cannot do this – it has to choose whether
to compute (1) or (2) at the time it computes 𝑦. The ability to defer whether to
compute (1) or (2) when computing 𝑦 is a quantum capability. Using NTCFs, we can
construct a protocol that lets 𝑃 prove to 𝑉 that:

(*) either 𝑥 ∈ ℒ or 𝑃 can do the NTCF task.

Recall that the FLS trick is to first have a protocol for a composite (conjunction)
NP statement, and then use a WI proof system. We can’t use a WI proof yet because
the statement (*) above is not an NP statement. To get an NP statement, we can
replace the “𝑃 can do the NTCF task” part in (*) by an NP statement for which 𝑃
can find a witness to if it can do the NTCF task. The transformation is as follows: 𝑉
will commit to a trapdoor td, then 𝑉 will reveal td to 𝑃 if it passes the NTCF task.
Finally, 𝑃 and 𝑉 will engage in a WI proof for 𝑃 to prove that

(**) either 𝑥 ∈ ℒ or 𝑃 knows td.

We are almost done. The issue with the prescription above is that the verifier will
know whether the prover passes the NTCF challenge or not. But the real prover
cannot pass the NTCF challenge, only the simulator can. This means that the verifier
will know it is interacting with the simulator when it sees that the NTCF challenge
was successfully completed. To prevent this from happening, we use secure function
evaluation (SFE). Using an SFE scheme, 𝑃 and 𝑉 can evaluate a functionality that
will output td to the 𝑃 if and only if 𝑃 passes the NTCF challenge. At the same time,
SFE will guarantee the secrecy of 𝑃 ’s input, so 𝑉 will not be able to know whether
the NTCF task was passed or not.

Quantum non-black-box extraction. The novelty in our approach above is to
combine SFE with NTCFs to obtain a constant round extraction mechanism. This
extraction mechanism allows the simulator to extract a trapdoor from the verifier,
and this lets us use WI proof system to obtain the desired QZK protocol. We empha-
size that this technique only works because the malicious prover is restricted to be
PPT. Nevertheless, porting classical non-black-box techniques from [BKP19] to the
quantum setting, we show how to obtain a constant round extraction mechanism in
the full quantum setting (against malicious QPT parties). The high level idea of the
non-black-box technique is shown Figure 1-4. The first step is to not worry about
extracting td, but to extract an encryption of td instead. In the protocol shown in
Figure 1-4, the only way for a QPT 𝑃 to obtain an encryption of td is to receive td
directly from 𝑉 and then to encrypt it. But it will only receive td from 𝑉 if it can find

41

𝑎 first. By the security of the encryption scheme, it cannot find 𝑎. In contrast, a simu-
lator (extractor) that has non-black-box access to 𝑉 will be able to homomorphically
evaluate 𝑉 on ct to obtain an encryption of the trapdoor, QFHE.Encpk(td).

• 𝑉 → 𝑃 : 𝑉 samples a trapdoor td, samples a random string 𝑎, and sends ct←
QFHE.Encpk(𝑎).

• 𝑃 → 𝑉 : 𝑃 sends 𝑏.

• 𝑉 → 𝑃 : If 𝑎 = 𝑏, sends td. Othwerwise, send ⊥.

Figure 1-4: High level idea behind non-black-box extraction

The final step in the extraction mechanism is to design a way to let the extractor
decrypt the QFHE encryption of the trapdoor. This can be achieved by using lockable
obfuscation [WZ17, GKW17]. We defer the rest of the technical details to Chapter 3.

Bounded concurrent QZK for NP

Our bounded concurrent QZK construction is similar to that of [PTW09], which is
also based on the FLS technique. The construction in [PTW09] is as follows. Let 𝑥
be the input to the protocol, and let 𝑀 = poly(|𝑥|) and 𝑇 < 𝑀 be parameters fixed
ahead of time. 𝑃 and 𝑉 perform the protocol in Figure 1-5 below. Each execution of
Steps (1) and (2) is called a slot. We say that the 𝑖𝑡ℎ slot matched if 𝑎𝑖 = 𝑏𝑖. After
performing the 𝑀 slots, 𝑃 and 𝑉 engage in a WI protocol in order for 𝑃 to prove that
either 𝑥 ∈ ℒ or that at least 𝑇 slots matched. If 𝑀 and 𝑇 are chosen appropriately,
the probability that a prover matches at least 𝑇 slots is negligible. On the other
hand, a simulator that is allow to rewind after each slot will be able to match more
than 𝑇 slots.

For 𝑖 ∈ [𝑀]:

1. 𝑃 → 𝑉 : 𝑃 commits to a random bit 𝑎𝑖.

2. 𝑉 → 𝑃 : 𝑉 sends 𝑏𝑖.

Figure 1-5: Sequential execution of 𝑀 slots

It was shown in [PTW09] that if the number of verifiers is known before the
specification of the protocol, then 𝑀 and 𝑇 can be chosen appropriately so that this

42

scheme is a concurrent ZK protocol. The additional challenge in the concurrent setting
is that different verifiers can send their messages at different times, and in particular,
the ordering can be different after each rewinding of the simulator. By specifying the
correct rewinding strategy, [PTW09] exhibited a concurrent ZK simulator. However,
their simulator does not work to show that the protocol is also a QZK protocol,
because the rewinding strategy depends on the scheduling (order of messages) which
in turn depends on the verifiers’ private states. This means that we cannot use
Watrous’ rewinding.

Our idea is to choose different 𝑀 and 𝑇 parameters such that it is possible to
use Watrous’ rewinding even in the concurrent setting. We introduce the concept
of block rewinding, and show how block rewinding is the right rewinding strategy
to construct a QZK simulator. Roughly speaking, block rewinding means that the
simulator rewinds after a fixed number of messages (a block of messages) regardless
of who sends those message. First, we divide all the messages sent between all the
verifiers and the prover into 𝐿 blocks, in a way that guarantees that each block will
contain at least one slot. This means that 𝐿 is chosen so that it is guaranteed that at
least one verifier will receive the commitment to 𝑎𝑖 and will respond with 𝑏𝑖 within a
single block of messages. Then, we rewind each block in order to match one slot within
the rewound block. We show that choosing 𝑀,𝑇 and 𝐿 appropriately that a block
rewinding simulator will match at least 𝑇 slots for all the verifiers. Furthermore,
we can use Watrous’ rewinding because the rewinding strategy is oblivious to the
scheduling – the rewinding strategy is fixed ahead of time.

Quantum proofs of knowledge

Using rewinding to match commitments like in the protocol of Figure 1-5 is widely
used to construct ZK or QZK simulator. We show that if we use an oblivious transfer
protocol instead of commitments, then we can also extract. Recall that the aim in
QPoK is to extract from the prover. For this purpose, suppose we only want to extract
a single secret bit 𝑠. Figure 1-6 shows our extraction idea. The real verifier will only
obtain 𝑠 with probability 1

2
12. On the other hand, a simulator that is allowed to

rewind the prover will be able to rewind until it matches 𝑐 = 𝑏, and obtain 𝑠 with
probability negligibly close to 1.

Because we want to use OT in order to extract from an unbounded prover, we
require the OT to have security against malicious unbounded senders. This is called
statistical receiver-private OT [GJJM20, DGH+20]. We need this security guarantee
to make sure that the prover does not know which bit the verifier is retrieving, thus
it will not be able to detect when it is interacting with the simulator that always
retrive the secret 𝑠. This is what gives us the desired simulability property, because
the prover cannot detect whether it is interacting with an extractor (that always
guess correctly 𝑐 = 𝑏) or with a verifier (that only guesses 𝑐 = 𝑏 with probability 1

2
).

Finally, to make sure that a malicious QPT verifier cannot obtain 𝑠 with probability
better than 1

2
, we need the OT scheme to be secure against malicious QPT receivers.

12We will later reduce this to be negligible.

43

Input of 𝑃 : 𝑠

• 𝑃 chooses random bits 𝑎 and 𝑏. If 𝑏 = 0, it sets (𝑚0,𝑚1) = (𝑠, 𝑎). If 𝑏 = 1, it
sets (𝑚0,𝑚1) = (𝑎, 𝑠).

• 𝑉 chooses a random bit 𝑐.

• 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 perform an OT protocol where 𝑃 takes the role of the sender
and 𝑉 takes the role of the receiver. The input of 𝑃 in the OT protocol is
(𝑚0,𝑚1) and the input of 𝑉 is 𝑐.

• 𝑃 → 𝑉 : 𝑃 sends 𝑏.

Figure 1-6: Simple OT extraction

In Chapter 4, we show how to construct an OT protocol with the desired security
guarantees starting from the ideas in [GJJM20, DGH+20]. We also show how to
use block rewinding in order to combine QPoK with our bounded concurrent QZK
simulator to obtain bounded concurrent QZK with the additional QPoK property.

1.4.2 Impossibility of quantum copy-protection

We have seen in the previous section that extraction is the main underlying theme in
our QZK results. In the context of QZK, we designed ways to extract information from
QPT adversaries either in the black-box setting (via rewinding or NTCFs) or in the
non-black-box setting (via QFHE). Our main observation is that we can extend these
techniques to the setting of copy-protection. Specifically, we notice that if adversaries
can extract useful information from any QPT implementation (𝑈𝐶 , 𝜌𝐶) of a Boolean
circuit 𝐶, then they might be able to generate many copies of 𝐶. This would be the
case if the circuit is de-quantumizable, i.e. if the information extracted is already
a classical description of 𝐶. Our starting point for constructing de-quantumizable
circuits is similar to the starting point for the non-black-box technique (Figure 1-4).

Construction of de-quantumizable circuits. Consider the circuit in Figure 1-
7. Given any QPT implementation (𝑈𝐶 , 𝜌𝐶), we can evaluate 𝐶(0 . . . 0) to obtain
ct = QFHE.Encpk(𝑎). If (𝑈𝐶 , 𝜌𝐶) is reusable (i.e. if we can use it to evaluate 𝐶
many times), then we can also homomorphically evaluate the circuit on ct to obtain
a ciphertext QFHE.Encpk(𝑏). If we are additionally given a black-box 𝒪sk,𝑏 that on a
ciphertext of 𝑏, outputs the secret key sk, then we can recover a complete classical
description of 𝐶 – i.e., we can recover 𝑎, 𝑏 and ct. With the help of 𝒪sk,𝑏, this would
be a de-quantumizable circuit.

In the meantime, it can be shown that 𝐶 is quantum unlearnable. To show this, we

44

𝐶𝑎,𝑏,ct(𝑥):

• If 𝑥 = 0 . . . 0, output ct := QFHE.Encpk(𝑎).

• If 𝑥 = 𝑎, output 𝑏.

• Otherwise, output 0 . . . 0

Figure 1-7: An almost de-quantumizable circuit

first argue that with only oracle access to 𝐶, it is not possible to obtain a ciphertext
of 𝑏. If 𝐶 is not quantum unlearnable, and we can compute a QPT implementation
(𝑈𝐶 , 𝜌𝐶) just from oracle access to 𝐶, then we would be able to obtain a ciphertext
of 𝑏. This would be a contradiction. Our goal then is to show that from oracle access
alone it is not possible to find a ciphertext of 𝑏. But with oracle access alone, it
is not possible to homomorphically evaluate 𝐶, which means that the only way to
compute anything about 𝑏 is by querying the oracle on 𝑎. However, security of QFHE
guarantees that 𝑎 is hidden from us.

The final step is to instantiate the black-box circuit𝒪sk,𝑏 which we do with lockable
obfuscation. We also let 𝐶 output 𝒪sk,𝑏 as well as QFHE.Encpk(𝑎) when evaluated at
𝑥 = 0 . . . 0.

1.4.3 Construction of SSL

One reason for why copy-protection is hard to provably construct even for restricted
families of circuits is because of malleability. To explain what we mean by malleability
being challenging, consider the setting of quantum money. Given a state |$𝑠⟩ along
with a serial number 𝑠, we can check whether |$𝑠⟩ is valid with respect to the serial
number 𝑠. Suppose the correspondence between states and serial numbers is one-to-
one, that is, for each serial number there is a unique state corresponding to it. An
adversary that wants to attack this scheme would need to be able to produce two
identical copies |$𝑠⟩ or to generate a completely new state |$𝑠′⟩ corresponding to a
different serial number 𝑠′. The latter it cannot do because only the bank is allowed
to generate new valid states, and the former it cannot do because of the No-Cloning
Theorem. If there were more valid states associated to a serial number 𝑠, we would
need to argue that the adversary cannot maul |$𝑠⟩ into two valid states |$′𝑠⟩⊗|$′′𝑠⟩ also
with serial number 𝑠. This means that the No-Cloning Theorem wouldn’t be enough
to argue security. The same scenario arises in copy-protection where we not only need
to argue that the pirate cannot clone the initial state, but also that it cannot maul it
into any two states that evaluate the same circuit.

Our main insight is that we can use classical cryptographic primitives to tackle
the challenge of malleability, at least in the weaker setting of SSL. The idea is as

45

follows. In the SSL setting, our goal is to guarantee that a pirate cannot produce
two states that both correctly evaluate 𝐶 under a fixed QPT algorithm Run. By
fixing the Run algorithm, we can restrict the type of states that are useful to evaluate
correctly, e.g. the Run algorithm can first check that the input state satisfies certain
properties before evaluating the circuit 𝐶. This authentication performed by Run
restricts the type of mauling that a pirate can do. Once we have restricted the states
that a pirate has to prepare in order to break the security, we can use classical non-
malleable primitives to argue that such mauling cannot happen. This would mean
that the only way the pirate succeeds is by making two identical copies of a state of
the initial state, which it cannot do due to the No-Cloning Theorem.

We design the Run algorithm so that it expects states of the form (|𝜓𝑠⟩, 𝑑𝑠, 𝑠, 𝐶),
where |𝜓𝑠⟩ is some state associated with a string 𝑠, and 𝑑𝑠 is a classical string also
associated with 𝑠, and 𝐶 is the Boolean circuit being SSL protected. There are two
properties needed: (1) 𝑑𝑠 is non-malleable, i.e. it is not possible for an adversary
to output 𝑑𝑠′ for some other 𝑠′ ̸= 𝑠13, and (2) we can check that both |𝜓𝑠⟩ and 𝑑𝑠
correspond to 𝑠 (similar to quantum money). Condition (1) will protect us against
maulers, and condition (2) will protect us against cloners14. Suppose that given a
state 𝜌𝑠, a pirate outputs two states 𝜎1 and 𝜎2 both of the form that Run expects.
Then there are two cases, either both states have the same string 𝑠 as 𝜌𝑠 (pirate
is a cloner), or at least one of the copies, say 𝜎2, have a different 𝑠′ ̸= 𝑠 (pirate
is a mauler). By making sure that the 𝑑𝑠 part of the input is non-malleable, the
latter case cannot happen, because the pirate cannot prepare a different 𝑑𝑠′ . We
deal with the former case by choosing our states (|𝜓𝑠⟩, 𝑠) the same way Zhandry
does in [Zha19] to construct public-key quantum money from indistinguishability
obfuscation. By [Zha19], an adversary will not be able to clone these states, so the
pirate cannot be a cloner either.

1.5 Related work

The following is an overview of the literature that is closely related to this thesis. A
general survey of quantum cryptography can be found in [BS16]. See [VW16] for a
general treatment on quantum proofs and quantum zero-knowledge.

1.5.1 (Computational) Quantum zero-knowledge

Quantum zero-knowledge was first studied by Watrous [Wat09]. He proved how to
achieve QZK for all of NP using quantum concealing commitments. His protocol
does not have negligible soundness, so we have to sequentially repeat it in order to
improve the soundness. The resulting protocol would be a polynomial round QZK
protocol with negligible soundness. The main idea behind his proof is the use of
Watrous’ rewinding. Soon after, some classical ZK results were generalized to the

13You can think of 𝑑𝑠 here as a non-malleable signature of 𝑠.
14Maulers are adversaries that intend to make a new copy with a different 𝑠′ from the original 𝑠.

Cloners or duplicators are adversaries that intend to make copies with the same 𝑠 as the original.

46

quantum setting. Kobayashi [Kob08] showed that some of the known classical ZK
results also hold in the quantum setting: (a) any honest verifier QZK protocol can
be made into a malicious verifier QZK protocol, (b) any QZK protocol can be made
into a public-coin QZK protocol, (c) any QZK protocol can be made to have perfect
completeness, and (d) any QZK protocol can be made into a 3-round public-coin QZK
with perfect completeness (but not negligible soundness). Jain, Kolla, Midrijanis,
and Reichardt [JKMR06] showed how to generalize the classical impossibility result
of Goldreich and Krawczyk [GK96b] to the quantum setting. They showed that there
are no 3-round or constant round public-coin black-box QZK proof systems for NP
unless BQP ⊆ NP.

A different type of quantum rewinding was introduced by Unruh in [Unr12], where
he introduced quantum proofs of knowledge and showed that under certain conditions
(‘special’ and ‘strict’ soundness) his rewinding can be applied to get QPoK for NP
from existing Σ-protocols. Unfortunately, his QPoK protocol does not satisfy ex-
tractability – there is no extractor that is also a simulator for a malicious prover,
so it cannot be generally used inside other protocols. Simulability and extractabily
was achieved against bounded quantum adversaries in follow-up work [HSS11, LN11]
using stronger assumptions (mixed commitments) than those used by Unruh. QFHE-
based non-black-box extraction techniques [BS20, ALP20] could be used to achieve
extractability, but they would also work only against bounded quantum adversaries.
Unruh’s techniques were extended to get arguments of knowledge based on a collapse
binding commitments in [Unr16].

The inherent difficulties of applying Watrous’ or Unruh’s rewinding to show that
existing classical protocols are quantum secure were studied in [ARU14]. Relative to
an oracle, they showed that many classical protocols are actually quantum insecure,
and that in some sense, the conditions needed to apply Watrous’ or Unruh’s rewinding
seem necessary to argue quantum security of existing ZK or PoK protocols.

The first constant round QZK argument system for NP (and for QMA) was con-
structed by Bitansky and Shmueli [BS20] assuming both QLWE and QFHE. They
concurrently developed a similar non-black-box technique (using QFHE and lockable
obfuscation) to the one we present in Chapter 3. While we only show how to get an
extraction protocol (where in particular, the malicious sender is semi-malicious) using
the non-black-box techniques, they show how to deal with malicious, possibly abort-
ing, verifiers in order to get full QZK. They make crucial use of Watrous’ rewinding
to do this.

Constant round ZK protocols have been known in the classical setting since the
work of Goldreich and Kahan [GK96a]. Unlike the QZK protocol of [BS20], Goldreich
and Kahan’s protocol is a black-box ZK protocol constructed from collision-resistant
hash functions. A quantum version of Goldreick and Kahan was developed by Chia,
Chung, and Yamakawa [CCY20] using collapse binding hash functions, albeit for
a weaker notion called quantum 𝜖-ZK. It turns out that the existence of constant
round black-box ZK protocols appears to only hold in the classical setting. Recently,
Chia, Chung, Liu, and Yamakawa [CCLY21] showed that there are no constant round

47

black-box QZK proofs or quantum arguments15 for NP unless NP ⊆ BQP.
QZK protocols with different security properties beyond the basic QZK definition

have been recently developed. Extending the non-black-box techniques of [BS20,
ALP20], Agarwal, Bartusek, Goyal, Khurana, and Malavolta [ABG+20] construct
constant round QZK protocols that are secured under parallel composition in the
bounded setting, i.e. where the prover is interacting in parallel with a number of
quantum verifiers that is fixed before the protocol’s specification. Another notion that
have been studied in the classical setting, resettably-sound ZK protocols [BGGL01],
have been extended to the QZK setting by Bitansky, Kellner, and Shmueli [BKS21].
Starting from the non-black-box QZK protocol [BS20], they construct resettably-
sound QZK quantum arguments for NP. They also show an alternate proof of the
impossibility of result of [JKMR06]. Curiously enough, they also show that the
existence of a resettably-sound QZK protocol for NP implies the impossibility of
quantum VBB, providing an alternate proof of our impossibility result presented
in Chapter 6 and independently obtained by [ABDS20].

QZK for QMA. The first QZK protocol for QMA was constructed by Broadbent,
Ji, Song, and Watrous [BJSW16]. Their main idea is to use a quantum authentication
scheme that allows them to reduce the construction of a QZK protocol for QMA to us-
ing a QZK protocol for NP. A different QZK protocol for QMA that has the commit-
and-open structure found in the classical ZK protocols and a non-interactive QZK
protocol in the secret parameter setting were recently constructed in [BG20]. Concur-
rently, Coladangelo, Vidick, and Zhang [CVZ20] also constructed a non-interactive
QZK protocol for QMA but in the pre-processing model. Both [BG20, CVZ20] defined
and constructed proofs of quantum knowledge for QMA (PoQK). These are analo-
gous to QPoKs except that the witness is a QMA witness so the extractor has the
task of extracting a quantum state. Their PoQK protocols have similar limitations
to Unruh’s QPoK. Combining the techniques develop in the context of verification of
quantum computation [Mah18b] with the BJSW framework [BJSW16], Vidick and
Zhang showed how to construct a classical ZK argument system for QMA where the
verification is fully classical [VZ20]. Their argument system was made non-interactive
via a Fiat-Shamir type of transformation in the quantum random oracle model by
Alagic, Childs, Grilo, and Hung [ACGH20]. While other flavors of non-interactive
QZK for QMA have been studied: (1) multi-theorem designated verifiers [Shm20],
and (2) dual-mode classically verifiable with preprocessing [MY21], we still do not
know how to achieve NIQZK solely from QLWE.

1.5.2 Unclonable Primitives, Copy-Protection, and SSL

The study of unclonable primitives has picked up paced over the last decade. A few
constructions [Aar09, LAF+09, Gav12, FGH+12, AC12] achieved quantum money
with various features and very recently, in a breakthrough work, Zhandry [Zha19]
shows how to construct publicly-verifiable quantum money from cryptographic as-

15QPT provers

48

sumptions. Zhandry also introduced a stronger notion of quantum money, which he
coined quantum lightning, and constructed it from cryptographic assumptions.

Unclonability has also been studied in the context of encryption schemes. The
work of Gottesman [Got03] studies the problem of quantum tamper detection. Alice
can use a quantum state to send Bob an encryption of a classical message 𝑚 with
the guarantee that any eavsdropper could not have cloned the ciphertext. After
Bob receives the ciphertext, he can check if the state has been tampered with, and
if this is not the case, he would know that a potential eavsdropper did not keep
a copy of the ciphertext. In recent work, Broadbent and Lord [BL19] introduced
the notion of unclonable encryption. Roughly speaking, an unclonable encryption
allows Alice to give Bob and Charlie an encryption of a classical message 𝑚, in the
form of a quantum state 𝜎(𝑚), such that Bob and Charlie cannot ‘split’ the state
among them. Ananth and Kaleoglu [AK21] extended the construction of unclonable
encryption to the setting where the encryption key can be re-used multiple times. On
the other hand, Majenz, Schaffner, and Tahmasbi [MST21] studied the limitations
of unclonable encryption in the information-theoretic setting. The related notion of
unclonable decryption keys was studied in [GZ20].

In a follow-up work, Broadbent and Islam [BI19], construct a one-time use encryp-
tion scheme with certifiable deletion. An encryption scheme has certifiable deletion,
if there is an algorithm to check that a ciphertext was deleted. The security guar-
antee is that if an adversary is in possession of the ciphertext, and it then passes
the certification of deletion, the issuer of the encryption can now give the secret key
to the adversary. At this point, the adversary still can’t distinguish which plaintext
correspond to the ciphertext it was given.

One-shot or one-time primitives provide one of the strongest version of unclonabil-
ity. Arguably, the most well-known one-time primitive is one-time programs [GKR08].
Quantum one-time programs, that use only quantum information, are not possible
even under computational assumptions [BGS13]. This rules out the possibility of
having a copy-protection scheme where a single copy of the software is consumed by
the evaluation procedure. Despite the lack of quantum one-time programs, there are
constructions of secure signature tokens and one-shot signatures in the oracle models
[BDS16, AGKZ20]. A quantum token for signatures is a quantum state that would
let anyone in possession of it to sign an arbitrary document, but only once. The token
is destroyed in the signing process.

Quantum copy-protection was introduced by Aaronson [Aar09]. He constructed
a copy-protection scheme for arbitrary unlearnable functions in the quantum oracle
model, and he provided two heuristic constructions (i.e. without security proofs) for
copy-protecting point functions. An earlier version of [ALL+20] improved the result to
get copy-protection in the classical oracle model. They also proved that the existence
of copy-protection implies public-key quantum money assuming QLWE.

Follow-Up Work. There has been many follow-ups since our introduction of SSL.
While our construction of SSL makes it seem that you might need public-key quan-
tum money to get SSL, Kitagawa, Nishimaki, and Yamakawa [KNY21] showed that

49

this is not the case. They introduce a relaxed version of quantum lightning, which
they called two-tier quantum lightning, and show how to use this to achieve finite-
term SSL for PRFs (under QLWE) and for a subclass of evasive functions (under
sub-exponential QLWE). Coladangelo, Majenz, and Poremba [CMP20] showed how
to obtain SSL for our same class of evasive circuits but in the quantum random or-
acle model. Recently, Broadbent, Jeffery, Lord, Podder, and Sundaram [BJL+21]
showed how to achieve SSL for compute-and-compare circuits without any assump-
tions. Specifically, they define a stronger notion than SSL, honest-malicious copy-
protection, where a pirate wins if it generates two copies that evaluated correctly and
at least one copy is an authenticated copy (whereas in SSL both copies have to be
authenticated). A similar notion to infinite-term SSL, called quantum copy-detection,
was introduced in [ALL+20]. They show that this notion is achievable for circuits
that can be watermarked [KW17, CHN+16].

Concurrent Work on QVBB. Our construction of de-quantumizable circuits also
rules out the existence of quantum VBB for classical circuits assuming QFHE and
QLWE; this was stated as an open problem by Alagic and Fefferman [AF16]. Con-
currently, [ABDS20] also rule out quantum virtual black-box obfuscation under the
assumption of QLWE; unlike our work they don’t additionally assume the existence
of QFHE.

In hindsight, it shouldn’t be surprising that non-black box techniques developed
in the context of quantum zero-knowledge [BS20, ALP20] are relevant to proving
the impossibility of quantum obfuscation; the breakthrough work of Bitansky and
Paneth [BP13] show how to construct (classical) zero-knowledge protocols with non-
black box simulation using techniques developed in the context of (classical) obfus-
cation.

1.6 Organization and bibliographical information

This thesis is based on work done in collabration with Prabhanjan Ananth and already
presented in the following papers: ‘Secure Quantum Extraction Protocols’ [ALP20]16

(in TCC ‘20), and ‘Secure Software Leasing’ [ALP21]17 (in EUROCRYPT ‘21 and QIP
‘21), and ‘On the Concurrent Composition of Quantum Zero-Knowledge’ [ACLP21]18

(in submission) also in collaboration with Kai-Min Chung.

• Chapter 2 contains all the preliminary definitions and conventions used through-
out the thesis.

• Chapter 3 reproduces the definition and construction of quantum extraction
protocols (QEXT) from [ALP20]. There are two types of QEXT protocols de-
pending on whether the malicious receiver is classical (cQEXT) or quantum

16arXiv:1911.07672
17arXiv:2005.05289
18arXiv:2012.03139

50

(qQEXT). The construction of cQEXT is used to get the QZK classical argu-
ment system for NP in Chapter 4.

• Chapter 4 reproduces the work done in [ALP20, ACLP21]. This chapter con-
tains the construction of 𝑂(1)-round QZK classical arguments for NP, and the
bounded concurrent QZK proof systems for NP and QMA.

• Chapter 5 reproduces work in [ACLP21]. It contains a construction of post-
quantum statistical receiver-private OT, which is then used to construct quan-
tum proofs of knowledge. We also show how to extend QPoKs to the bounded
concurrent setting.

• Chapters 6 and 7 reproduce the work done in [ALP21]. Chapter 6 contains the
construction of de-quantumizable circuits and the impossibility results. Chap-
ter 7 is fully dedicated to our new SSL notion.

51

52

Chapter 2

Preliminaries

2.1 Notation and conventions

We assume that the reader is familiar with basic cryptographic notions such as neg-
ligible functions and computational indistinguishability (see [G+05]). As much as
possible, we will be consistent with the papers where the work in this thesis was
presented, so sometimes a quantum-secure primitive 𝑋 will be explicitly denoted by
q-𝑋. However, we assume that all the primitives are quantum secure unless otherwise
stated.

The security parameter is always denoted by 𝜆 and we denote negl(𝜆) to be a
negligible function in 𝜆. We denote (classical) computational indistiguishability of
two distributions 𝒟0 and 𝒟1 by 𝒟0 ≈𝑐,𝜀 𝒟1. In the case when 𝜀 is negligible, we drop
𝜀 from this notation.

Whenever we talk about polynomial-time (PPT) or quantum polynomial-time
(QPT) adversaries, we assume they take auxiliary inputs (i.e. they are non-uniform).

2.2 Quantum background

For completeness, we present some of the basic quantum definitions, for more details
see [NC02].

Quantum states and channels. Letℋ be any finite Hilbert space, and let 𝐿(ℋ) :=
{ℰ : ℋ → ℋ} be the set of all linear operators from ℋ to itself (or endomorphism).
Quantum states over ℋ are the positive semidefinite operators in 𝐿(ℋ) that have
unit trace, we call these density matrices, and use the notation 𝜌 or 𝜎 to stand for
density matrices when possible. Quantum channels or quantum operations acting on
quantum states over ℋ are completely positive trace preserving (CPTP) linear maps
from 𝐿(ℋ) to 𝐿(ℋ′) where ℋ′ is any other finite dimensional Hilbert space. We use
the trace distance, denoted by ‖𝜌− 𝜎‖tr, as our distance measure on quantum states,

‖𝜌− 𝜎‖tr =
1

2
Tr
[︂√︁

(𝜌− 𝜎)† (𝜌− 𝜎)

]︂
53

A state over ℋ = C2 is called a qubit. For any 𝑛 ∈ N, we refer to the quantum
states over ℋ = (C2)⊗𝑛 as 𝑛-qubit quantum states. To perform a standard basis mea-
surement on a qubit means projecting the qubit into {|0⟩, |1⟩}. A quantum register
is a collection of qubits. A classical register is a quantum register that is only able to
store qubits in the computational basis.

A unitary quantum circuit is a sequence of unitary operations (unitary gates)
acting on a fixed number of qubits. Measurements in the standard basis can be
performed at the end of the unitary circuit. A (general) quantum circuit is a unitary
quantum circuit with 2 additional operations: (1) a gate that adds an ancilla qubit
to the system, and (2) a gate that discards (trace-out) a qubit from the system.
A quantum polynomial-time algorithm (QPT) is a uniform collection of quantum
circuits {𝐶𝑛}𝑛∈N. As stated before, we always assume that the QPT adversaries are
non-uniform – a QPT adversary 𝒜 acting on 𝑛 qubits could be given a quantum
auxiliary state with poly(𝑛) qubits.

Quantum Computational Indistinguishability. When we talk about quan-
tum distinguishers, we need the following definitions, which we take from [Wat09,
BJSW16].

Definition 22 (Indistinguishable collections of states). Let 𝐼 be an infinite subset 𝐼 ⊂
{0, 1}*, let 𝑝 : N→ N be a polynomially bounded function, and let 𝜌𝑥 and 𝜎𝑥 be 𝑝(|𝑥|)-
qubit states. We say that {𝜌𝑥}𝑥∈𝐼 and {𝜎𝑥}𝑥∈𝐼 are quantum computationally
indistinguishable collections of quantum states if for every QPT ℰ that outputs
a single bit, any polynomially bounded 𝑞 : N→ N, and any auxiliary 𝑞(|𝑥|)-qubits state
𝜈, and for all 𝑥 ∈ 𝐼, we have that

|Pr [ℰ(𝜌𝑥 ⊗ 𝜈) = 1]− Pr [ℰ(𝜎𝑥 ⊗ 𝜈) = 1]| ≤ 𝜖(|𝑥|)

for some function 𝜖 : N→ [0, 1]. We use the following notation

𝜌𝑥 ≈𝑄,𝜖 𝜎𝑥

and we ignore the 𝜖 when it is understood that it is a negligible function.

Definition 23 (Indistinguishability of channels). Let 𝐼 be an infinite subset 𝐼 ⊂
{0, 1}*, let 𝑝, 𝑞 : N → N be polynomially bounded functions, and let 𝒟𝑥,ℱ𝑥 be quan-
tum channels mapping 𝑝(|𝑥|)-qubit states to 𝑞(|𝑥|)-qubit states. We say that {𝒟𝑥}𝑥∈𝐼
and {ℱ𝑥}𝑥∈𝐼 are quantum computationally indistinguishable collection of
channels if for every QPT ℰ that outputs a single bit, any polynomially bounded
𝑡 : N→ N, any 𝑝(|𝑥|) + 𝑡(|𝑥|)-qubit quantum state 𝜌, and for all 𝑥 ∈ 𝐼, we have that

|Pr [ℰ ((𝒟𝑥 ⊗ Id)(𝜌)) = 1]− Pr [ℰ ((ℱ𝑥 ⊗ Id)(𝜌)) = 1]| ≤ 𝜖(|𝑥|)

for some function 𝜖 : N→ [0, 1]. We will use the following notation

𝒟𝑥(·) ≈𝑄,𝜖 ℱ𝑥(·)

54

and we ignore the 𝜖 when it is understood that it is a negligible function.

Quantum Fourier Transform and Subspaces. Our main construction uses
the same type of quantum states (superpositions over linear subspaces) considered
by [AC12, Zha19] in the context of constructing quantum money.

We recall some key facts from these works relevant to our construction. Consider
the field Z𝜆

𝑞 where 𝑞 ≥ 2,and let FT denote the quantum fourier transfrom over Z𝜆
𝑞 .

For any linear subspace 𝐴, let 𝐴⊥ denote its orthogonal (dual) subspace,

𝐴⊥ = {𝑣 ∈ Z𝜆
𝑞 |⟨𝑣, 𝑎⟩ = 0}.

Let |𝐴⟩ = 1√
|𝐴|

∑︀
𝑎∈𝐴
|𝑎⟩. The quantum fourier Transform, FT, does the following:

FT|𝐴⟩ = |𝐴⊥⟩.

Since (𝐴⊥)⊥ = 𝐴, we also have FT|𝐴⊥⟩ = |𝐴⟩.
Let Π𝐴 =

∑︀
𝑎∈𝐴
|𝑎⟩⟨𝑎|, then as shown in Lemma 21 of [AC12],

FT(Π𝐴⊥)FTΠ𝐴 = |𝐴⟩⟨𝐴|.

Almost As Good As New Lemma. We use the Almost As Good As New Lemma
[Aar04], restated here verbatim from [AC12].

Lemma 24 (Almost As Good As New). Let 𝜌 be a mixed state acting on C𝑑. Let 𝑈
be a unitary and (Π0,Π1 = 1−Π0) be projectors all acting on C𝑑 ⊗ C𝑑. We interpret
(𝑈,Π0,Π1) as a measurement performed by appending an acillary system of dimension
𝑑′ in the state |0⟩⟨0|, applying 𝑈 and then performing the projective measurement
{Π0,Π1} on the larger system. Assuming that the outcome corresponding to Π0 has
probability 1− 𝜀, i.e., Tr[Π0(𝑈𝜌⊗ |0⟩⟨0|𝑈 †)] = 1− 𝜀, we have

‖𝜌− ̃︀𝜌‖tr ≤ √𝜀,
where ̃︀𝜌 is state after performing the measurement and then undoing the unitary 𝑈
and tracing out the ancillary system:

̃︀𝜌 = Tr𝑑′
(︀
𝑈 †
(︀
Π0𝑈 (𝜌⊗ |0⟩⟨0|)𝑈 †Π0 + Π1𝑈 (𝜌⊗ |0⟩⟨0|)𝑈 †Π1

)︀
𝑈
)︀

We use this Lemma to argue that whenever a QPT algorithm 𝒜 on input 𝜌,
outputs a particular bit string 𝑧 with probability 1− 𝜀, then 𝒜 can be performed in a
way that also lets us recover the initial state. In particular, given the QPT description
for 𝒜, we can implement 𝒜 with an acillary system, a unitary, and only measuring in
the computational basis after the unitary has been applied, similarly to Lemma 24.
Then, it is possible to uncompute in order to also obtain ̃︀𝜌.

55

Interactive Models. We model an interactive protocol between a prover, 𝑃 , and a
verifier, 𝑉 , as follows. There are 2 registers R𝑃 and R𝑉 corresponding to the prover’s
and the verifier’s private registers, as well as a message register, RM, which is used
by both 𝑃 and 𝑉 to send messages. In other words, both prover and verifier have
access to the message register. We denote the size of a register R by |R| – this is the
number of bits or qubits that the register can store. We have 3 different notions of
interactive computation.

1. Classical protocol: An interactive protocol is classical if R𝑃 , R𝑉 , and RM are
classical, and 𝑃 and 𝑉 can only perform classical computation.

2. Quantum protocol with classical messages: An interactive protocol is
quantum with classical messages if either one of R𝑃 or R𝑉 is a quantum reg-
ister, and RM is classical. 𝑃 and 𝑉 can perform quantum computations if the
respective private register is quantum, but they can only send classical messages.

3. Quantum protocol: An interactive protocol is fully quantum if all the regis-
ters are quantum. 𝑃 and 𝑉 can perform quantum operations.

When a protocol has classical messages, we can assume that the adversarial party will
also send classical messages. This is without loss of generality, because the honest
party can enforce this condition by always measuring the message register in the
computational basis before proceeding with its computations.

Non-Black-Box Access. Let 𝑆 be a QPT party (e.g. either prover or verifier in
the above descriptions) involved in specific quantum protocol. In particular, 𝑆 can
be seen as a collection of QPTs, 𝑆 = (𝑆1, ..., 𝑆ℓ), where ℓ is the number of rounds of
the protocol, and 𝑆𝑖 is the quantum operation that 𝑆 performs on the 𝑖th round of
the protocol.

We say that a QPT 𝑄 has non-black-box access to 𝑆, if 𝑄 has access to an efficient
classical description for the operations that 𝑆 performs in each round, (𝑆1, ..., 𝑆ℓ), as
well as access to the initial auxiliary inputs of 𝑆.

Interaction Channel and Quantum View. For any protocol (𝑃, 𝑉), the inter-
action between 𝑃 and 𝑉 on input 𝑥 induces a quantum channel ℰ𝑥 acting on their
private input states, 𝜌𝑃 and 𝜎𝑉 . We denote the view of 𝑉 when interacting with 𝑃
by

View𝑉 ⟨𝑃 (𝑥, 𝜌𝑃) , 𝑉 (𝑥, 𝜎𝑉)⟩ ,

and this view is defined as the verifiers output. Specifically, the view is defined as

View𝑉 ⟨𝑃 (𝑥, 𝜌𝑃) , 𝑉 (𝑥, 𝜎𝑉)⟩ := TrR𝑃
[ℰ𝑥 (𝜌𝑃 ⊗ 𝜎𝑉)] .

From the verifier’s point of view, the interaction induces the channel

ℰ𝑥,𝑉 (𝜎) = TrR𝑃
[ℰ𝑥(𝜎 ⊗ 𝜌𝑃)]

on its private input state.

56

2.2.1 Quantum Zero-Knowledge (QZK)

Quantum zero-knowledge was initially defined by Watrous as follows.

Definition 25 (Quantum Zero-Knowledge [Wat09]). An interactive proof system
(𝑃, 𝑉) for a promise problem 𝒜 = 𝒜yes ∪ 𝒜no is quantum computational zero-
knowledge (QZK) if for any QPT verifier 𝑉 * with a private register of size poly(|𝑥|),
there exists a QPT simulator Sim such that the following holds.

{View𝑉 *⟨𝑃, 𝑉 *(𝑥, ·)⟩}𝑥∈𝒜yes
≈𝑄 {Sim(𝑉 *, 𝑥, ·)}𝑥∈𝒜yes

In other words, that the collection of channels induced on the private state of 𝑉 * by the
interaction with 𝑃 on input 𝑥 is computationally indistinguishable from the collection
of channels induced by the simulator Sim on input 𝑥.

When convenient in terms of exposition or writing, we will also use the following
equivalent definition in terms of indistinguishability of quantum states.

Definition 26 (Alternative definition of QZK). An interactive proof system (𝑃, 𝑉) for
a promise problem 𝒜 = 𝒜yes ∪ 𝒜no is quantum computational zero-knowledge
(QZK) if for any QPT verifier 𝑉 *, there exists a QPT simulator Sim such that the
following holds. For all 𝑥 ∈ 𝒜yes, for any poly(|𝑥|)-qubits bipartite state, 𝜌𝐴𝐵, on
registers 𝐴 and 𝐵,

View𝑉 *⟨𝑃, 𝑉 *(𝑥, 𝜌𝐴𝐵)⟩ ≈𝑄 Sim(𝑉 *, 𝑥, 𝜌𝐴𝐵)

where 𝑉 * and Sim only have access to register 𝐴. In other words, only the identity is
performed on register 𝐵.

Remark 27. We could restate these definitions using a security parameter 𝜆 instead.
In that case, we would also have 1𝜆 as an input to 𝑉 *. The size of the advice state 𝜌
would be poly(𝜆) instead and the indistinguishability parameter would be a negligible
function in the security parameter, 𝜖(𝜆). The definitions would be the same whenever
𝜆 = poly(|𝑥|) as is usually assumed.

2.2.2 Watrous Rewinding Lemma

We will make heavy use of the following lemma due to Watrous [Wat09].

Lemma 28 (Watrous Rewinding Lemma). Suppose 𝑄 be a quantum circuit acting
on 𝑛+ 𝑘 qubits such that for every 𝑛-qubit state |𝜓⟩, the following holds:

𝑄|𝜓⟩|0⊗𝑘⟩ =
√︀
𝑝(𝜓) |0⟩|𝜑0(𝜓)⟩+

√︀
1− 𝑝(𝜓) |1⟩|𝜑1(𝜓)⟩

Let 𝑝0, 𝑝1 ∈ (0, 1) and 𝜀 ∈ (0, 1/2) be real numbers such that:

• |𝑝(𝜓)− 𝑝1| ≤ 𝜀

• 𝑝0(1− 𝑝0) ≤ 𝑝1(1− 𝑝1), and

57

• 𝑝0 ≤ 𝑝(𝜓)

for all 𝑛-qubit states. Then there exists a general quantum circuit 𝑅 of size 𝑂
(︁

log(1/𝜀)size(𝑄)
𝑝0(1−𝑝0)

)︁
satisfying the following property:

⟨𝜑0(𝜓)|𝜌(𝜓)|𝜑0(𝜓)⟩ ≥ 1− 16𝜀
log2(1/𝜀)

𝑝20(1− 𝑝0)2

In this case, we define 𝑅 to be Amplifier(𝑄, 𝜀). If 𝜀 is a negligible function in the
security parameter, we omit this from the algorithm.

2.3 Learning with errors
We consider the decisional learning with errors (LWE) problem, introduced by Regev [Reg09].
We define this problem formally below.

The problem (𝑛,𝑚, 𝑞, 𝜒)-LWE, where 𝑛,𝑚, 𝑞 ∈ N and 𝜒 is a distribution
supported over Z, is to distinguish between the distributions (A,As + e)

and (A,u), where A
$←− Z𝑚×𝑛

𝑞 , s
$←− Z𝑛×1

𝑞 , e
$←− 𝜒𝑚×1 and u← Z𝑚×1

𝑞 .

The above problem has been believed to be hard against classical PPT algorithms –
also referred to as LWE assumption – has had many powerful applications in cryp-
tography. In this work, we conjecture the above problem to be hard even against
QPT algorithms; this conjecture referred to as QLWE assumption has been useful
in the constructions of interesting primitives such as quantum fully-homomorphic
encryption [Mah18a, Bra18]. We refer to this assumption as QLWE assumption.

QLWE assumption: This assumption is parameterized by 𝜆. Let 𝑛 =
poly(𝜆), 𝑚 = poly(𝑛 · log(𝑞)) and 𝜒 be a discrete Gaussian distribution1

with parameter 𝛼𝑞 > 0, where 𝛼 can set to be any non-negative number.

Any QPT distinguisher (even given access to polynomial-sized advice
state) can solve (𝑛,𝑚, 𝑞, 𝜒)-LWE only with probability negl(𝜆), for some
negligible function negl.

Remark 29. We drop the notation 𝜆 from the description of the assumption when it
is clear.

(𝑛,𝑚, 𝑞, 𝜒)-LWE is shown [Reg09, PRSD17] to be as hard as approximating short-
est independent vector problem (SIVP) to within a factor of 𝛾 = 𝑂̃(𝑛/𝛼) (where 𝛼
is defined above). The best known quantum algorithms for this problem run in time
2𝑂̃(𝑛/ log(𝛾)).

For our construction of SSL, we require a stronger version of QLWE that is secure
even against sub-exponential quantum adversaries. We state this assumption formally
below.

1Refer [Bra18] for a definition of discrete Gaussian distribution.

58

𝑇 -Sub-exponential QLWE Assumption: This assumption is parame-
terized by 𝜆 and time 𝑇 . Let 𝑛 = 𝑇 + poly(𝜆), 𝑚 = poly(𝑛 · log(𝑞)) and 𝜒
be a discrete Gaussian distribution with parameter 𝛼𝑞 > 0, where 𝛼 can
set to be any non-negative number.

Any quantum distinguisher (even given access to polynomial-sized advice
state) running in time 2

̃︀𝑂(𝑇) can solve (𝑛,𝑚, 𝑞, 𝜒)-LWE only with proba-
bility negl(𝜆), for some negligible function negl.

2.4 Cryptographic primitives

2.4.1 Noisy Trapdoor Claw-Free Functions (NTCF)

Noisy trapdoor claw-free functions is a useful tool in quantum cryptography. Most
notably, they are a key ingredient in the construction of certifiable randomness pro-
tocols [BCM+18], classical client quantum homomorphic encryption [Mah18a], and
classifal verification of quantum computation [Mah18b]. We present the formal defi-
nition directly from [BCM+18].

Definition 30 (Noisy Trapdoor Claw-Free Functions). Let 𝒳 and 𝒴 be finite sets,
let 𝐷𝒴 be the set of distributions over 𝒴, and let 𝒦 be a finite set of keys. A collection
of functions {𝑓k,𝑏 : 𝒳 → 𝐷𝒴}k∈𝒦,𝑏∈{0,1} is noisy trapdoor claw-free if

• (Key-Trapdoor Generation): There is a PPT Gen(1𝜆) to generate a key and
a corresponding trapdoor, k, tdk ← Gen(1𝜆).

• For all k ∈ 𝒦

– (Trapdoor): For all 𝑏 ∈ {0, 1}, and any distinct 𝑥, 𝑥′ ∈ 𝒳 , we have that
Supp(𝑓k,𝑏(𝑥))∩ Supp(𝑓k,𝑏(𝑥

′)) = ∅. There is also an efficient deterministic
algorithm Inv, that for any 𝑦 ∈ Supp(𝑓k,𝑏(𝑥)), outputs 𝑥← Inv(tdk, 𝑏, 𝑦).

– (Injective Pair): There exists a perfect matching ℛk ⊆ 𝒳 ×𝒳 such that
𝑓k,0(𝑥0) = 𝑓k,1(𝑥1) if and only if (𝑥0, 𝑥1) ∈ ℛk

• (Efficient Range Superposition): For all k ∈ 𝒦 and 𝑏 ∈ {0, 1}, there exists
functions 𝑓 ′k,𝑏 : 𝒳 → 𝐷𝒴 such that the following holds.

– For all (𝑥0, 𝑥1) ∈ ℛk, and all 𝑦 ∈ Supp(𝑓 ′k,𝑏(𝑥𝑏)), the inversion algorithm
still works, i.e. 𝑥𝑏 ← Inv(tdk, 𝑏, 𝑦) and 𝑥𝑏⊕1 ← Inv(tdk, 𝑏⊕ 1, 𝑦).

– There is an efficient deterministic checking algorithm Chk : 𝒦 × {0, 1} ×
𝒳 × 𝒴 → {0, 1} such that Chk(k, 𝑏, 𝑥, 𝑦) = 1 iff 𝑦 ∈ Supp(𝑓 ′k,𝑏(𝑥))

– For every k ∈ 𝒦 and 𝑏 ∈ {0, 1},

E
𝑥←𝒳

(︀
𝐻2
(︀
𝑓k,𝑏(𝑥), 𝑓 ′k,𝑏(𝑥)

)︀)︀
≤ 𝜇(𝜆)

for some negligible function 𝜇, and where 𝐻2 is the Hellinger distance.

59

– For any k ∈ 𝒦 and 𝑏 ∈ {0, 1}, there exists an efficient way to prepare the
superposition

1√︀
|𝒳 |

∑︁
𝑥∈𝒳 ,𝑦∈𝒴

√︁
𝑓 ′k,𝑏(𝑥)(𝑦)|𝑥⟩|𝑦⟩

• (Adaptive Hardcore Bit): for all keys k ∈ 𝒦, for some polynomially bounded
𝑤 : N→ N, the following holds.

– For all 𝑏 ∈ {0, 1} and for all 𝑥 ∈ 𝒳 there exists a set 𝐺k,𝑏,𝑥 ⊆ {0, 1}𝑤(𝜆),
s.t. Pr

𝑑←{0,1}𝑤(𝜆)
[𝑑 /∈ 𝐺k,𝑏,𝑥] ≤ negl(𝜆). Furthermore, membership in 𝐺k,𝑏,𝑥

can be checked given 𝑡k,k, 𝑏 and 𝑥.
– There is an efficiently computable injection 𝐽 : 𝒳 → {0, 1}𝑤(𝜆), that can

be inverted efficiently in its range, and for which the following holds. Let

𝐻k := {(𝑏, 𝑥𝑏, 𝑑, 𝑑 · (𝐽(𝑥0)⊕ 𝐽(𝑥1))) |𝑏 ∈ {0, 1}, (𝑥0, 𝑥1) ∈ ℛk, 𝑑 ∈ 𝐺k,0,𝑥0 ∩𝐺k,1,𝑥1}

𝐻k := {(𝑏, 𝑥𝑏, 𝑑, 𝑐) |(𝑏, 𝑥, 𝑑, 𝑐⊕ 1) ∈ 𝐻k}

For any QPT 𝒜 there is a negligible function 𝜇 s.t.⃒⃒⃒⃒
Pr
k,tdk

[𝒜(k) ∈ 𝐻k]− Pr
k,tdk

[︀
𝒜(k) ∈ 𝐻k

]︀⃒⃒⃒⃒
≤ 𝜇(𝜆)

Instantiation. The work of [BCM+18] presented a construction of noisy trapdoor
claw-free functions from learning with errors.

2.4.2 Commitments

Perfectly Binding Commitments

A commitment scheme consists a classical PPT algorithm Comm that takes as input
security parameter 1𝜆, input message 𝑥 and outputs the commitment c. Typically,
there is an opening algorithm associated with Comm, but we do not make use of this
algorithm in our work.

There are two properties that need to be satisfied by a commitment scheme:
binding and hiding. In this work, we are interested in commitment schemes that are
perfectly binding and computationally hiding; we define both these notions below.
We adapt the definition of computational hiding to the quantum setting.

Definition 31 (Perfect Binding). A commitment scheme Comm is said to be per-
fectly binding if for every security parameter 𝜆 ∈ N, there does not exist two mes-
sages 𝑥, 𝑥′ with 𝑥 ̸= 𝑥′ and randomness 𝑟, 𝑟′ such that Comm(1𝜆, 𝑥; 𝑟) = Comm(1𝜆, 𝑥′; 𝑟′).

Definition 32 (Quantum-Computational Hiding/Concealing). A commitment scheme
Comm is said to be quantum computationally hiding or concealing if for suf-
ficiently large security parameter 𝜆 ∈ N, for any two messages 𝑥, 𝑥′, the following
holds: {︀

Comm
(︀
1𝜆, 𝑥

)︀}︀
≈𝑄

{︀
Comm

(︀
1𝜆, 𝑥′

)︀}︀
60

Instantiation. A construction of perfectly binding non-interactive commitments
was presented in the works of [GHKW17, LS19] assuming the hardness of learning
with errors.

Statistically Binding

We employ a two-message commitment scheme that satisfies the following two prop-
erties.

Definition 33 (Statistically Binding). A two-message commitment scheme between
a committer, Comm, and a receiver R, both running in probabilistic polynomial time,
is said to satisfy statistical binding property if the following holds for any adversary
𝒜:

Pr

⎡⎣ (c,𝑟1,𝑥1,𝑟2,𝑥2)←𝒜⋀︀
Comm(1𝜆,r,𝑥1;𝑟1)=Comm(1𝜆,r,𝑥2;𝑟2)=c⋀︀

𝑥1 ̸=𝑥2

: r← R(1𝜆)

⎤⎦ ≤ negl(𝜆),

for some negligible function negl.

Definition 34 (Quantum-Computationall Hiding/Concealing). A two-message com-
mitments schemes,(Comm,R), is said to be quantum computational hiding or
concealing if the following holds. Suppose 𝒜 be a non-uniform QPT algorithm and
let r be the message generated by 𝒜(1𝜆). We require that 𝒜 cannot distinguish the
two distributions, {Comm(1𝜆, r, 𝑥)} and {Comm(1𝜆, r, 𝑥′)}, for any two inputs 𝑥, 𝑥′.

Remark 35. We only considered two message protocols in the above definition for
simplicity in the constructions.

Instantiation. We can instantiate statistically binding and quantum-concealing
commitments from post-quantum one-way functions [Nao91].

2.4.3 Quantum Fully Homomorphic Encryption (QFHE)

A fully homomorphic encryption scheme allows for publicly evaluating an encryp-
tion of 𝑥 using a function 𝑓 to obtain an encryption of 𝑓(𝑥). Traditionally 𝑓 has
been modeled as classical circuits but in this work, we consider the setting when 𝑓
is modeled as quantum circuits and when the messages are quantum states. This
notion is referred to as quantum fully homomorphic encryption (QFHE). We state
our definition verbatim from [BJ15].

Definition 36. Letℳ be the Hilbert space associated with the message space (plain-
texts), 𝒞 be the Hilbert space associated with the ciphertexts, and ℛ𝑒𝑣𝑘 be the Hilbert
space associated with the evaluation key. A quantum fully homomorphic encryp-
tion scheme is a tuple of QPT algorithms QFHE = (Gen,Enc,Dec,Eval) satisfying

• QFHE.Gen(1𝜆): outputs a a public and a secret key, (pk, sk), as well as a quan-
tum state 𝜌𝑒𝑣𝑘, which can serve as an evaluation key.

61

• QFHE.Enc(pk, ·) : 𝐿(ℳ)→ 𝐿(𝒞): takes as input a state 𝜌 and outputs a cipher-
text 𝜎

• QFHE.Dec(sk, ·) : 𝐿(𝒞) → 𝐿(ℳ): takes a quantum ciphertext 𝜎, and outputs a
state 𝜌 in the message space 𝐿(ℳ).

• QFHE.Eval(ℰ , ·) : 𝐿(ℛ𝑒𝑣𝑘 ⊗ 𝒞⊗𝑛) → 𝐿(𝒞⊗𝑚): takes as input a quantum circuit
ℰ : 𝐿(ℳ⊗𝑛) → 𝐿(ℳ⊗𝑚), and a ciphertext in 𝐿(𝒞⊗𝑛) and outputs a ciphertext
in 𝐿(𝒞⊗𝑚), possibly consuming the evaluation key 𝜌𝑒𝑣𝑘 in the proccess.

Semantic security and compactness are defined analogously to the classical setting,
and we defer to [BJ15] for a full definition. In our work, we only use QFHE to encrypt
classical messages, so the security notion that is enough for us is the following:

Semantic security of classical plaintexts. We say that QFHE satisfies semantic
security of classical messages if for any QPT adversary 𝒜, and any messages 𝑚0 and
𝑚1, the following holds when (pk, sk, 𝜌𝑒𝑣𝑘)← QFHE.Gen(1𝜆),

|Pr [𝒜(pk, 𝜌𝑒𝑣𝑘,QFHE.Encpk(𝑚0)) = 1]−Pr [𝒜(pk, 𝜌𝑒𝑣𝑘,QFHE.Encpk(𝑚1))] | ≤ negl(𝜆).

We use QFHE in our non-black-box extraction construction as well as in our
construction of de-quantumizable circuits. In both of these cases, we require addi-
tional properties from the QFHE schemes. In the non-black-box construction we
require both of the properties described below to hold, while in the construction of
de-quantumizable circuits, we only require the classical ciphertexts condition.

1. (Perfect) Correctness of classical messages. We require the following prop-
erties to hold: for every quantum circuit ℰ acting on ℓ qubits, message 𝑥, every
𝑟1, 𝑟2 ∈ {0, 1}poly(𝜆),

• Pr[𝑥← QFHE.Decsk(QFHE.Encpk(𝑥)) : (pk, sk)← QFHE.Gen(1𝜆)] = 1

• Pr[QFHE.Decsk(QFHE.Eval(pk, ℰ , ct)) = ℰ(𝑥)] ≥ 1 − negl(𝜆), for some negli-
gible function negl, where: (1) (pk, sk) ← QFHE.Setup(1𝜆; 𝑟1) and, (2) ct ←
QFHE.Encpk(𝑥; 𝑟2). The probability is defined over the randomness of the eval-
uation procedure.

2. Classical ciphertexts. We require a QFHE scheme where ciphertexts of classical
plaintexts are also classical. Given any 𝑥 ∈ {0, 1}, we want QFHE.Encpk(|𝑥⟩⟨𝑥|) to
be a computational basis state |𝑧⟩⟨𝑧| for some 𝑧 ∈ {0, 1}𝑙 (here, 𝑙 is the length of
ciphertexts for 1-bit messages). In this case, we write QFHE.Encpk(𝑥). We also want
the same to be true for evaluated ciphertexts, i.e. if ℰ(|𝑥⟩⟨𝑥|) = |𝑦⟩⟨𝑦| for some
𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑚, then

QFHE.Encpk(𝑦)← QFHE.Eval(𝜌𝑒𝑣𝑘, ℰ ,QFHE.Encpk(𝑥))

62

is a classical ciphertext of 𝑦. Finally, it should be possible to decrypt classical cipher-
texts with a classical circuit, i.e. it should be possible to compute Decsk(𝑐) with a clas-
sical circuit if 𝑐 is a classical ciphertext. In the QFHE schemes from [Mah18a, Bra18],
ciphertexts are of the form QFHE.Encpk(|𝜓⟩) = FHE.Encpk(𝑎, 𝑏) ⊗𝑋𝑎𝑍𝑏|𝜓⟩ where 𝑋
and 𝑍 are the Pauli operations and FHE is a classical FHE scheme. In particular,
when |𝜓⟩ is a computational basis state, we have:

QFHE.Encpk(𝑥) = FHE.Encpk(𝑎, 𝑏)⊗ |𝑎⊕ 𝑥⟩

Ciphertexts of this form have a classical description: (QFHE.Encpk(𝑎, 𝑏), 𝑎 ⊕ 𝑥). It
is also clear that decryption of these ciphertexts can be done classically by using
FHE.Decpk.

Instantiation. The works of [Mah18a, Bra18] give lattice-based candidates for
quantum fully homomorphic encryption schemes; we currently do not know how to
base this on QLWE alone2. The desirable properties required from the quantum FHE
schemes are satisfied by both candidates [Mah18a, Bra18].

2.4.4 Cryptographic Obfuscation

In this work, we use different notions of cryptographic obfucation. We review all the
required notions below, but first we recall the functionality of obfuscation.

Definition 37 (Functionality of Obfuscation). Consider a class of circuits 𝒞. An
obfuscator 𝒪 consists of two PPT algorithms Obf and Eval such that the following
holds: for every 𝜆 ∈ N, circuit 𝐶 ∈ 𝒞, 𝑥 ∈ {0, 1}poly(𝜆), we have 𝐶(𝑥) ← Eval(̃︀𝐶, 𝑥)

where ̃︀𝐶 ← Obf(1𝜆, 𝐶).

Lockable Obfuscation

In the impossibility result, we will make use of program obfuscation schemes that are
(i) defined for compute-and-compare circuits and, (ii) satisfy distributional virtual
black box security notion [BGI+01]. Such obfuscation schemes were first introduced
by [WZ17, GKW17] and are called lockable obfuscation schemes. We recall their
definition, adapted to quantum security, below.

Definition 38 (Quantum-Secure Lockable Obfuscation). An obfuscation scheme (LO.Obf, LO.Eval)
for a class of circuits 𝒞 is said to be a quantum-secure lockable obfuscation
scheme if the following properties are satisfied:

• It satisfies the functionality of obfuscation.

2Brakerski [Bra18] remarks that the security of their candidate can be based on a circular security
assumption that is also used to argue the security of existing constructions of unbounded depth
multi-key FHE [CM15, MW16, PS16, BP16].

63

• Compute-and-compare circuits: Each circuit C in 𝒞 is parameterized by
strings 𝛼 ∈ {0, 1}poly(𝜆), 𝛽 ∈ {0, 1}poly(𝜆) and a poly-sized circuit 𝐶 such that on
every input 𝑥, C(𝑥) outputs 𝛽 if and only if 𝐶(𝑥) = 𝛼.

• Security: For every polynomial-sized circuit 𝐶, string 𝛽 ∈ {0, 1}poly(𝜆),for ev-
ery QPT adversary 𝒜 there exists a QPT simulator Sim such that the following
holds: sample 𝛼 $←− {0, 1}poly(𝜆),{︀

LO.Obf
(︀
1𝜆,C

)︀}︀
≈𝑄,𝜀

{︀
Sim

(︀
1𝜆, 1|𝐶|

)︀}︀
,

where C is a circuit parameterized by 𝐶, 𝛼, 𝛽 with 𝜀 ≤ 1
2|𝛼| .

Instantiation. The works of [WZ17, GKW17, GKVW20] construct a lockable ob-
fuscation scheme based on polynomial-security of learning with errors (see Section 2.3).
Since learning with errors is conjectured to be hard against QPT algorithms, the
obfuscation schemes of [WZ17, GKW17, GKVW20] are also secure against QPT al-
gorithms.

q-Input-Hiding Obfuscators

One of the main tools used in our construction is q-input-hiding obfuscators. The
notion of input-hiding obfuscators was first defined in the classical setting by Barak,
Bitansky, Canetti, Kalai, Paneth, and Sahai [BBC+14]. We adopt the same notion
except that we require the security of the primitive to hold against QPT adversaries.

The notion of q-input-hiding obfuscators states that given an obfuscated circuit,
it should be infeasible for a QPT adversary to find an accepting input; that is, an
input on which the circuit outputs 1. Note that this notion is only meaningful for the
class of evasive circuits.

The definition below is suitably adapted from [BBC+14]; in particular, our security
should hold against QPT adversaries.

Definition 39 (q-Input-Hiding Obfuscators [BBC+14]). An obfuscator qIHO = (Obf,Eval)
for a class of circuits associated with distribution 𝒟𝒞 is q-input-hiding if for every
non-uniform QPT adversary 𝒜, for every sufficiently large 𝜆 ∈ N,

Pr

[︃
𝐶(𝑥) = 1 :

𝐶←𝒟𝒞(𝜆),̃︀𝐶←Obf(1𝜆,𝐶),

𝑥←𝒜(1𝜆, ̃︀𝐶)

]︃
≤ negl(𝜆).

Subspace Hiding Obfuscators

Another ingredient in our construction is subspace hiding obfuscation. Subspace
hiding obfuscation is a notion of obfuscation introduced by Zhandry [Zha19], as a
tool to build pulic-key quantum money schemes. This notion allows for obfuscating
a circuit, associated with subspace 𝐴, that checks if an input vector belongs to this
subspace 𝐴 or not. In terms of security, we require that the obfuscation of this circuit

64

is indistinguishable from obfuscation of another circuit that tests membership of a
larger random (and hidden) subspace containing 𝐴.

Definition 40 ([Zha19]). A subspace hiding obfuscator for a field F and dimen-
sions 𝑑0, 𝑑1, 𝜆 is a tuple (shO.Obf, shO.Eval) satisfying:

• shO.Obf(𝐴): on input an efficient description of a linear subspace 𝐴 ⊂ F𝜆 of
dimensions 𝑑 ∈ {𝑑0, 𝑑1} outputs an obfuscator shO(𝐴).

• Correctness: For any 𝐴 of dimension 𝑑 ∈ {𝑑0, 𝑑1}, it holds that

Pr[∀𝑥, shO.Eval(shO(𝐴), 𝑥) = 1𝐴(𝑥) : shO(𝐴)← shO.Obf(𝐴)] ≥ 1− negl(𝜆),

where: 1𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 0, otherwise.

• Quantum-Security: Any QPT adversary 𝒜 can win the following challenge
with probability at most negligibly greater than 1

2
.

1. 𝒜 chooses a 𝑑0-dimensional subspace 𝐴 ⊂ F𝜆.

2. Challenger chooses uniformly at random a 𝑑1-dimensional subspace 𝑆 ⊇ 𝐴.
It samples a random bit 𝑏. If 𝑏 = 0, it sends ̃︀𝑔0 ← shO.Obf(𝐴). Otherwise,
it sends ̃︀𝑔1 ← shO.Obf(𝑆)

3. 𝒜 receives ̃︀𝑔𝑏 and outputs 𝑏′. It wins if 𝑏′ = 𝑏.

Instantiation. Zhandry presented a construction of subspace obfuscators from in-
distinguishability obfuscation [BGI+01, GGH+16] secure against QPT adversaries.

Quantum Virtual Black-Box Obfuscation (QVBB)

One of our results is that quantum virtual black-box obfuscation (QVBB) of classical
circuits is impossible for arbitrary classical circuits. QVBB was introduce by Alagic
and Fefferman [AF16], as a quantum generalization of VBB. For completeness, we
present their definition.

Definition 41 (QVBB [AF16]). A black-box quantum obfuscator is a tuple of
QPT algorithms, (𝒪,𝒥) where:

• 𝒪: takes as input an 𝑛-qubits quantum circuit, 𝐶, and outputs an 𝑚 = poly(𝑛)-
qubits quantum state.

• 𝒥 : takes as input a state 𝒪(𝐶) and a state 𝜌, and attempts to outputs 𝑈𝐶𝜌𝑈
†
𝐶

where 𝑈𝐶 is a unitary implementation of 𝐶.

We say that (𝒪,𝒥) satisfies functional equivalence if for all 𝑛-qubit quantum
circuits 𝐶, and all 𝑛-qubit states 𝜌, the following holds⃦⃦⃦

𝒥 (𝒪(𝐶)⊗ 𝜌)− 𝑈𝐶𝜌𝑈
†
𝐶

⃦⃦⃦
tr
≤ negl(𝑛).

65

We say that (𝒪,𝒥) satisfies virtual black-box security if for every QPT 𝒜 there
exists a QPT simulator Sim with quantum black-box access to 𝑈𝐶 such that⃒⃒

Pr [𝒜(𝒪(𝐶)) = 1]− Pr
[︀
Sim𝑈𝐶 (|0⊗𝑛⟩⟨0⊗𝑛|) = 1

]︀⃒⃒
≤ negl(𝑛)

2.4.5 Secure Function Evaluation (SFE)

As a building block in our construction, we consider a secure function evaluation
protocol [GHV10] for classical functionalities. A secure function evaluation protocol
is a two message two party secure computation protocol; we designate the parties as
sender and receiver (who receives the output of the protocol). Unlike prior works, we
require the secure function evaluation protocol to be secure against polynomial time
quantum adversaries.

Security. We require malicious (indistinguishability) security against a quantum
adversary R and semantic security against a quantum adversary S. We define both
of them below.

First, we define an indistinguishability security notion against malicious R. To do
that, we employ an extraction mechanism to extract R’s input 𝑥*1. We then argue
that R should not be able to distinguish whether S uses 𝑥02 or 𝑥12 in the protocol as
long as 𝑓(𝑥*1, 𝑥

0
2) = 𝑓(𝑥*1, 𝑥

1
2). We don’t place any requirements on the computational

complexity of the extraction mechanism.

Definition 42 (Indistinguishability Security: Malicious Quantum R). Consider a
secure function evaluation protocol for a functionality 𝑓 between a sender S and a
receiver R. We say that the secure evaluation protocol satisfies indistinguishability
security against malicious R* if for every adversarial QPT R*, there is an extrac-
tor Ext (not necessarily efficient) such the following holds. Consider the following
experiment:

Expt(1𝜆, 𝑏):

• R* outputs the first message msg1.

• Extractor Ext on input msg1 outputs 𝑥*1.

• Let 𝑥02, 𝑥12 be two inputs such that 𝑓(𝑥*1, 𝑥
0
2) = 𝑓(𝑥*1, 𝑥

1
2). Party S on input msg1

and 𝑥𝑏2, outputs the second message msg2.

• R* upon receiving the second message outputs a bit out.

• Output out.

We require that,⃒⃒
Pr[1← Expt(1𝜆, 0)]− Pr[1← Expt(1𝜆, 1)]

⃒⃒
≤ negl(𝜆),

for some negligible function negl.

66

We now define semantic security against S. We insist that S should not be able to
distinguish which input S used to compute its messages. Note that S does not get to
see the output recovered by the receiver.

Definition 43 (Semantic Security against Quantum S*). Consider a secure function
evaluation protocol for a functionality 𝑓 between a sender S and a receiver R where R
gets the output. We say that the secure function evaluation protocol satisfies semantic
security against S* if for every adversarial QPT S*, the following holds: Consider
two strings 𝑥01 and 𝑥11. Denote by 𝒟𝑏 the distribution of the first message (sent to S*)
generated using 𝑥𝑏1 as R’s input. The distributions 𝒟0 and 𝒟1 are computationally
indistinguishable.

Instantiation. A secure function evaluation protocol can be built from garbled
circuits and oblivious transfer that satisfies indistinguishability security against ma-
licious receivers. Garbled circuits can be based on the hardness of learning with
errors by suitably instantiating the symmetric encryption in the construction of
Yao’s garbled circuits [Yao86] with one based on the hardness of learning with er-
rors [Reg09]. Oblivious transfer with indistinguishability security against malicious
receivers based on learning with errors was presented in a recent work of Brakerski
and Döttling [BD18].

2.4.6 Non-Interactive Zero-Knowledge (NIZK)

One tool that we use in some of our constructions is that of non-interactive zero-
knowledge (NIZK) proofs or arguments . A NIZK is defined between a classical PPT
prover 𝑃 and a verifier 𝑉 . The goal of the prover is to convince the verifier 𝑉 to
accept an instance 𝑥 using a witness 𝑤 while at the same time, not revealing any
information about 𝑤. Moreover, any malicious prover should not be able to falsely
convince the verifier to accept a NO instance. Since we allow the malicious parties to
be QPT, sometimes we term this NIZK as qNIZK.

We make use of two types of NIZK: (1) statistical ZK quantum argument system,
and (2) simulation-extractable NIZKs. They both have the same syntax but different
security properties. A NIZK (in common reference string model) for an NP relation
is a triplet of PPT algorithms defined as follows:

• CRSGen(1𝜆): On input security parameter 𝜆, it outputs the common reference
string crs. When crs is generated according to the uniform distribution, we call
this the common random string model, and use Gen instead of CRSGen.

• 𝑃 (crs, 𝑥, 𝑤): On input common reference string crs, NP instance 𝑥, witness 𝑤,
it outputs the proof 𝜋.

• 𝑉 (crs, 𝑥, 𝜋): On input common reference string crs, instance 𝑥, proof 𝜋, it out-
puts accept or reject. This is a deterministic algorithm.

67

We define NIZK argument systems in the common random string model below. In
the next section, we define simulation-extractable NIZKs in the common reference
string model.

Definition 44 (Non-interactive statistical ZK argument system). A NIZK argu-
ment system, ΠNIZK, for an NP relation ℛ(ℒ) is said to satisfy completeness if
the following holds:

• Completeness: For all (𝑥,𝑤) ∈ ℛ(ℒ),

Pr
[︁
crs←Gen(1𝜆)
𝜋←𝑃 (crs,𝑥,𝑤)

: 𝑉 (crs, 𝑥, 𝜋) = 1
]︁

= 1

ΠNIZK is said to satisfy (quantum computational) soundness if the following
holds:

• (Quantum Computational) Soundness: For all 𝑥 /∈ ℒ, for any QPT 𝑃 *

and auxiliary poly(𝜆)-qubits state 𝜌,

Pr
[︁

crs←Gen(1𝜆)
𝜋←𝑃 *(crs,𝑥,𝜌) : 𝑉 (crs, 𝑥, 𝜋) = 1

]︁
= negl(𝜆)

ΠNIZK is said to satisfy statistical zero-knowledge if the following holds:

• Statistical Zero-Knowledge: There exists a QPT simulator Sim such that
for all (𝑥,𝑤) ∈ ℛ(ℒ), the following two distributions are statistically close:

1. Sample crs← Gen(1𝜆), sample 𝜋 ← 𝑃 (crs, 𝑥, 𝑤). Output (crs, 𝜋).
2. Sample (crs*, 𝜋*)← Sim(1𝜆, 𝑥). Output (crs*, 𝜋*).

Instantiation. The work of [PS19] shows how to construct statistical NIZK ar-
guments for NP in the LWE. We note that the same construction and proof can
be ported to the quantum setting to demonstrate a construction of statistical NIZK
quantum argument system for NP from QLWE. A discussion on the quantum security
of [PS19] can be found in [CVZ20].

2.4.7 Simulation-Extractable Non-Interactive Zero-Knowledge
(seNIZK)

A simulation-extractable NIZK is a NIZK that satisfies a stronger property called
simulation extractability. We call a NIZK satisfying this stronger property to be
q-simulation-extractable NIZK (qseNIZK).

Definition 45 (Completeness). A non-interactive protocol qseNIZK for a NP lan-
guage 𝐿 is said to be complete if the following holds: for every (𝑥,𝑤) ∈ ℛ(𝐿), we
have the following:

Pr
[︁
𝑉 (crs, 𝑥, 𝜋) accepts :

crs←CRSGen(1𝜆)

𝜋←𝑃 (crs,𝑥,𝑤)

]︁
= 1

68

q-Simulation-Extractability. We now describe the simulation-extractability prop-
erty. Suppose there exists an adversary who upon receiving many proofs 𝜋1, . . . , 𝜋𝑞 on
all YES instances 𝑥1, . . . , 𝑥𝑞, can produce a proof 𝜋′ on instance 𝑥′ such that: (a) 𝑥′
is different from all the instances 𝑥1, . . . , 𝑥𝑞 and, (b) 𝜋′ is accepting with probability
𝜀. Then, this notion guarantees the existence of two efficient algorithms Sim1 and
Sim2 such that all the proofs 𝜋1, . . . , 𝜋𝑞, are now simulated by Sim1, and Sim2 can
extract a valid witness for 𝑥′ from (𝑥′, 𝜋′) produced by the adversary with probability
negligibly close to 𝜀.

Definition 46 (q-Simulation-Extractability). A non-interactive protocol qseNIZK for
a language 𝐿 is said to satisfy q-simulation-extractability if there exists a non-
uniform QPT adversary 𝒜 = (𝒜1,𝒜2) such that the following holds:

Pr

⎡⎢⎢⎢⎣
𝑉 (crs,𝑥′,𝜋′) accepts⋀︀

(∀𝑖∈[𝑞],(𝑥𝑖,𝑤𝑖)∈ℛ(ℒ))⋀︀
(∀𝑖∈[𝑞], 𝑥′ ̸=𝑥𝑖)

:

crs←CRSGen(1𝜆),

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st𝒜)←𝒜1(crs)

∀𝑖∈[𝑞], 𝜋𝑖←𝑃 (crs,td,𝑥𝑖)

(𝑥′,𝜋′)←𝒜2(st𝒜,𝜋1,...,𝜋𝑞)

⎤⎥⎥⎥⎦ = 𝜀

Then there exists QPT algorithms FkGen and Sim = (Sim1, Sim2) such that the fol-
lowing holds:⃒⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑉 (crs,𝑥′,𝜋′) accepts⋀︀
(∀𝑖∈[𝑞],(𝑥𝑖,𝑤𝑖)∈ℛ(ℒ))⋀︀

(𝑥′,𝑤′)∈ℛ(𝐿)⋀︀
(∀𝑖∈[𝑞], 𝑥′ ̸=𝑥𝑖)

:

(crs,td)←FkGen(1𝜆),

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st𝒜)←𝒜1(crs)

(𝜋1,...,𝜋𝑞 ,stSim)←Sim1(crs,td,{𝑥𝑖}𝑖∈[𝑞])
(𝑥′,𝜋′)←𝒜2(st𝒜,𝜋1,...,𝜋𝑞)

𝑤′←Sim2(stSim,𝑥
′,𝜋′)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜀

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
≤ negl(𝜆)

We call a non-interactive argument system satisfying q-simulation-extractability prop-
erty to be a qseNIZK system.

If q-simulation-extractability property holds against quantum adversaries running
in time 2𝑂̃(𝑇) (𝑂̃(·) notation suppresses additive factors in 𝑂(log(𝜆))) then we say
that (CRSGen, 𝑃, 𝑉) is a 𝑇 -sub-exponential qseNIZK system.

Remark 47. The definition as stated above is weaker compared to other definitions
of simulation-extractability considered in the literature. For instance, we can consider
general adversaries who also can obtain simulated proofs for false statements which
is disallowed in the above setting. Nonetheless, the definition considered above is
sufficient for our application.

Instantiation of qseNIZKs. In the classical setting, simulation-extractable NIZKs
can be obtained by generically [Sah99, DSDCO+01] combining a traditional NIZK
(satisfying completeness, soundness and zero-knowledge) with a public-key encryp-
tion scheme satisfying CCA2 security. We observe that the same transformation can
be ported to the quantum setting as well, by suitably instantiating the underlying

69

primitives to be quantum-secure. These primitives in turn can be instantiated from
QLWE. Thus, we can obtain a q-simulation-extractable NIZK from QLWE.

For our construction of SSL, it turns out that we need a q-simulation-extractable
NIZK that is secure against quantum adversaries running in sub-exponential time.
Fortunately, we can still adapt the same transformation but instead instantiating the
underlying primitives to be sub-exponentially secure.

In Appendix A we prove the following lemma.

Lemma 48. Consider a language ℒℓ ∈ 𝑁𝑃 such that every 𝑥 ∈ ℒℓ is such that
|𝑥| = ℓ.

Under the ℓ-sub-exponential QLWE assumption, there exists a q-simulation-extractable
NIZKs for ℒℓ satisfying perfect completeness.

2.4.8 Witness Indistinguishability (WI)

We also consider witness indistinguishable (WI) argument systems for NP languages
secure against quantum verifiers. We define this formally below.

Definition 49 (Quantum WI for an ℒ ∈ NP). An argument or proof system (𝑃, 𝑉)
for an NP language ℒ is quantum witness indistinguishable if the following hold.

• Quantum WI: Let 𝑝 : N → N be any polynomially bounded function. For
every 𝑥 ∈ ℒ, for any two valid witnesses w1 and w2, for any QPT 𝑉 * that on
instance 𝑥 has private quantum register of size |R𝑉 *| = 𝑝(|𝑥|), we require that

View𝑉 *(⟨𝑃 (𝑥,w1), 𝑉
*(𝑥, ·)⟩) ≈𝑄 View𝑉 *(⟨𝑃 (𝑥,w2), 𝑉

*(𝑥, ·)⟩).

Instantiation. By suitably instantiating the constant round WI argument system
of Blum [Blu86] with perfectly binding quantum computational hiding commitments,
we achieve a constant round quantum WI classical argument system assuming quan-
tum hardness of learning with errors.

2.4.9 Post-Quantum Statistical Sender-Private OT

The tool we use in this construction is a two-round oblivious transfer protocol that
has computational security against senders and statistical security against receivers.
We define this tool below. We instantiate this primitive with the QLWE-based con-
struction in [BD18].

Definition 50 (Post-Quantum Statistical Sender-Private OT). A two-round obliv-
ious transfer is a tuple of algorithms (OT1,OT2,OT3) which specifies the following
protocol.

Round 1. The receiver R, on input security parameter 𝜆, bit 𝛽, computes (ot1, st𝑅)←
OT1(1

𝜆, 𝛽) and sends ot1 to the sender S.

70

Round 2. The sender S, on input ot1 and message bits (𝑚0,𝑚1), computes ot2 ←
OT2(1

𝜆,OT1, (𝑚0,𝑚1)). It sends ot2 to the receiver 𝑅.

Reconstruction. The receiver computes 𝑚′ ← OT3(1
𝜆, ot1, ot2, st𝑅).

Correctness. For any 𝛽 ∈ {0, 1}, (𝑚0,𝑚1) ∈ {0, 1}2, we have:

Pr

[︂
(ot1,st𝑅)←OT1(1𝜆,𝛽)

ot2←OT2(1𝜆,ot1,(𝑚0,𝑚1))

𝑚′←OT3(1𝜆,ot1,ot2,st𝑅)
: 𝑚′ = 𝑚𝛽

]︂
= 1

Post-Quantum Receiver-Privacy. The following holds:

{OT1(1
𝜆, 0)} ≈𝑐,𝑄 {OT1(1

𝜆, 1)}

Statistical Sender-Privacy. There exists a computationally unbounded extractor
such that for every the first round message ot1, it outputs a bit 𝑏 ∈ {0, 1} such that
the following holds for every (𝑚0,𝑚1) ∈ {0, 1}:

SD(OT2(1
𝜆, ot1, (𝑚0,𝑚1)),OT2(1

𝜆, ot1, (𝑚𝑏,𝑚𝑏))) ≤ negl(𝜆),

where SD denotes statistical distance and negl is a negligible function.

71

72

Chapter 3

Quantum Extraction Protocols

The main technique used through this thesis is that of extraction. Concretely, we use
different techniques to extract information from (possibly obfuscated) QPT circuits.
In the QZK case, our goal is to extract from malicious QPT verifiers, 𝑉 *. In the
copy-protection case, we extract from efficient QPT circuits that compute a boolean
circuit 𝐶. Extraction by itself might not be very useful (e.g. example in Figure 1-
2), but in follow-up chapters we will see how to leverage the ideas introduce in the
context of extraction to achieve primitives like QZK and de-quantumizable circuits.
For this reason, we believe that extraction techniques are worth studying by them-
selves especially in the quantum setting where rewinding is much more restricted. To
formally study extraction in the quantum setting, we introduce the notion of secure
quantum extraction protocols (QEXT).

A secure quantum extraction protocol for an NP relationℛ is a classical interactive
protocol between a sender and a receiver, where the sender gets as input the instance
𝑥 and witness w while the receiver only gets the instance 𝑥 as input. There are two
properties associated with a secure quantum extraction protocol: (a) Extractability:
for any efficient quantum polynomial-time (QPT) adversarial sender, there exists a
QPT extractor that can extract a witness w′ such that (𝑥,w′) ∈ ℛ and, (b) Zero-
Knowledge: a malicious receiver, interacting with the sender, should not be able to
learn any information about w.

We study and construct two flavors of secure quantum extraction protocols.

• Security against QPT malicious receivers (qQEXT): We consider the
setting when the malicious receiver is a QPT adversary. In this setting, we con-
struct a secure quantum extraction protocol for NP assuming the existence of
QFHE satisfying some mild properties (already satisfied by existing construc-
tions [Mah18a, Bra18]) and QLWE. The novelty of our construction is a new
non-black-box technique in the quantum setting.

• Security against classical PPT malicious receivers (cQEXT): We also
consider the setting when the malicious receiver is a classical probabilistic poly-
nomial time (PPT) adversary. In this setting, we construct a secure quantum
extraction protocol for NP solely based on QLWE. Furthermore, our construc-
tion satisfies quantum-lasting security: a malicious receiver cannot later, long

73

after the protocol has been executed, use a quantum computer to extract a valid
witness from the transcript of the protocol.

Both the above extraction protocols are constant round protocols. We will use the
cQEXT construction in Chapter 4 to achieve a constant round QZK classical argument
systems for NP. The ideas from the qQEXT protocol will be used to prove the
impossibility of copy-protection in Chapter 6.

Extraction protocols are intended to be used as ingredients in other (bigger) pro-
tocols whenever they can be used for the following two properties.

• Extractability: A QPT algorithm (the extractor) can extract a valid witness
from an adversarial sender. We model the adversarial sender as a QPT algo-
rithm that follows the protocol but is allowed to choose its randomness; in the
classical setting, this is termed as semi-malicious and we call this semi-malicious
quantum adversaries1.

We also require indistinguishability of extraction: that is, the adversarial sender
cannot distinguish whether it’s interacting with the honest receiver or an ex-
tractor. In QZK applications, this property is used to argue that the adversary
cannot distinguish whether it’s interacting with the honest party or the simu-
lator.

• Zero-Knowledge: A malicious receiver should not be able to extract a valid
witness after interacting with the sender. The malicious receiver can either be
a classical probabilistic polynomial time algorithm or a quantum polynomial
time algorithm. Correspondingly, there are two notions of quantum extraction
protocols we study: quantum extraction protocols secure against quantum ad-
versarial receivers (qQEXT) and quantum extraction protocols secure against
classical adversarial receivers (cQEXT).

There are two reasons why we only formalize and study extraction against semi-
malicious adversaries, instead of malicious adversaries (who can arbitrarily deviate
from the protocol): first, even extracting from semi-malicious adversaries turns out
to be challenging and we view this as a first step towards extraction from malicious
adversaries and second, in the classical setting, there are works that show how to
leverage extraction from semi-malicious adversaries to achieve zero-knowledge proto-
cols [BCPR16, BKP19] or secure two-party computation protocols [AJ17].

Quantum extraction protocols are interesting even if we only consider classical
adversaries, as they present a new method for proving quantum zero-knowledge. For
instance, to demonstrate zero-knowledge, we need to demonstrate a simulator that has
a computational capability that a malicious prover doesn’t have. Allowing quantum
simulators in the classical setting [KK19] is another way to achieve this asymmetry
between the power of the simulator and the adversary besides the few mentioned
before (rewinding, superpolynomial, or non-black-box). Furthermore, quantum sim-
ulators capture the notion of knowledge that could be learnt if a malicious verifier

1In the literature, this type of semi-malicious adversaries are also referred to as explainable
adveraries.

74

had access to a quantum computer.

Quantum-Lasting Security. A potential concern regarding the security of cQEXT
protocols is that the classical malicious receiver participating in the cQEXT protocol
could later, long after the protocol has been executed, use a quantum computer to
learn the witness of the sender from the transcript of the protocol and its own private
state. For instance, the transcript could contain an ElGamal encryption of the witness
of the sender; while a malicious classical receiver cannot break it, after the protocol
is completed, it could later use a quantum computer to learn the witness. This is
especially interesting in the event (full-fledged) quantum computers might become
available in the future. First introduced by Unruh [Unr13], we study the concept of
quantum-lasting security; any QPT adversary given the transcript and the private
state of the malicious receiver, should not be able to learn the witness of the sender.
Our construction will satisfy this security notion and thus our protocol is resilient
against the possibility of quantum computers being accessible in the future.

3.1 QEXT definitions

The definition of QEXT provided below resembles the concept of zero-knowledge
argument of knowledge (ZKAoK) systems. There are two important differences:

• Firstly, we do not impose any completeness requirement on our extraction pro-
tocol.

• In ZKAoK systems, the prover can behave maliciously (i.e., deviates from the
protocol) and the argument of knowledge property states that the probabil-
ity with which the extractor can extract is negligibly close to the probability
with which the prover can convince the verifier. In our definition, there is no
guarantee of extraction if the sender behaves maliciously.

Definition 51 (Quantum extraction protocols secure against quantum adversaries).
A quantum extraction protocol secure against quantum adversaries, denoted
by qQEXT is a classical protocol between two classical PPT algorithms, sender S and
a receiver R and is associated with an NP relation ℛ. The input to both the parties
is an instance 𝑥 ∈ ℛ(ℒ). In addition, the sender also gets as input the witness w
such that (𝑥,w) ∈ ℛ. At the end of the protocol, the receiver gets the output w′. The
following properties are satisfied by qQEXT:

• Quantum Zero-Knowledge: Let 𝑝 : N → N be any polynomially bounded
function. For every (𝑥,w) ∈ ℛ, for any QPT algorithm R* with private quan-
tum register of size |RR* | = 𝑝(𝜆), for any large enough security parameter 𝜆 ∈ N,
there exists a QPT simulator Sim such that,

ViewR*
⟨︀
S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)

⟩︀
≈𝑄 Sim(1𝜆,R*, 𝑥, ·).

75

• Semi-Malicious Extractability: Let 𝑝 : N→ N be any polynomially bounded
function. For any large enough security parameter 𝜆 ∈ N, for every (𝑥,w) ∈
ℛ(ℒ), for every semi-malicious2 QPT S* with private quantum register of size
|RS* | = 𝑝(𝜆), there exists a QPT extractor Ext = (Ext1,Ext2) (possibly using the
code of S* in a non-black box manner), the following holds:

– Indistinguishability of Extraction:

ViewS*
⟨︀
S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)

⟩︀
≈𝑄 Ext1

(︀
1𝜆, S*, 𝑥, ·

)︀
– The probability that Ext2 outputs w′ such that (𝑥,w′) ∈ ℛ is negligibly

close to 1.

Definition 52 (Quantum extraction protocols secure against classical adversaries).
A quantum extraction protocol secure against classical adversaries cQEXT
is defined the same way as in Definition 51 except that instead of quantum zero-
knowledge, cQEXT satisfies classical zero-knowledge property defined below:

• Classical Zero-Knowledge: Let 𝑝 : N→ N be any polynomially bounded func-
tion. For any large enough security parameter 𝜆 ∈ N, for every (𝑥,w) ∈ ℛ, for
any classical PPT algorithm R* with auxiliary information aux ∈ {0, 1}poly(𝜆),
there exists a classical PPT simulator Sim such that

ViewR*
⟨︀
S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)

⟩︀
≈𝑐 Sim(1𝜆,R*, 𝑥, aux).

Quantum-Lasting Security. A desirable property of cQEXT protocols is that a
classical malicious receiver, long after the protocol has been executed cannot use
a quantum computer to learn the witness of the sender from the transcript of the
protocol along with its own private state. We call this property quantum-lasting
security; first introduced by Unruh [Unr13]. We formally define quantum-lasting
security below.

Definition 53 (Quantum-Lasting Security). A cQEXT protocol is said to be quantum-
lasting secure if the following holds: for any large enough security parameter 𝜆 ∈ N,
for any classical PPT R*, for any QPT adversary 𝒜*, for any auxiliary information
aux ∈ {0, 1}poly(𝜆), for any auxiliary state of polynomially many qubits, 𝜌, there exist
a QPT simulator Sim* such that:

𝒜*
(︀
ViewR*

⟨︀
S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)

⟩︀
, 𝜌
)︀
≈𝑄 Sim*(1𝜆, 𝑥, aux, 𝜌)

2A QPT algorithm is said to be semi-malicious in the quantum extraction protocol if it follows
the protocol but is allowed to choose the randomness for the protocol.

76

3.2 cQEXT

3.2.1 Overview

We start with the overview of quantum extraction protocols with security against
classical receivers.

Starting Point: Noisy Trapdoor Claw-Free Functions. Our main idea is to
turn the “test of quantumness” from [BCM+18] into an extraction protocol. Our start-
ing point is a noisy trapdoor claw-free function (NTCF) family [Mah18a, Mah18b,
BCM+18], parameterized by key space 𝒦, input domain 𝒳 and output domain 𝒴 . Us-
ing a key k ∈ 𝒦, NTCFs allows for computing the functions, denoted by 𝑓k,0(𝑥) ∈ 𝒴
and 𝑓k,1(𝑥) ∈ 𝒴 3, where 𝑥 ∈ 𝒳 . Using a trapdoor td associated with a key k, any
𝑦 in the support of 𝑓k,𝑏(𝑥), can be efficiently inverted to obtain 𝑥. Moreover, there
are "claw" pairs (𝑥0, 𝑥1) such that 𝑓k,0(𝑥0) = 𝑓k,1(𝑥1). Roughly speaking, the secu-
rity property states that it is computationally hard even for a quantum computer to
simultaneously produce 𝑦 ∈ 𝒴 , values (𝑏, 𝑥𝑏) and (𝑑, 𝑢) such that 𝑓k,𝑏(𝑥𝑏) = 𝑦 and
⟨𝑑, 𝐽(𝑥0) ⊕ 𝐽(𝑥1)⟩ = 𝑢, where 𝐽(·) is an efficienctly computable injective function
mapping 𝒳 into bit strings. What makes this primitive interesting is its quantum
capability that we will discuss when we recall below the test of [BCM+18].

Test of Quantumness [BCM+18]. Using NTCFs, [BCM+18] devised the follow-
ing test4:

• The classical client, who wants to test whether the server it’s interacting with is
quantum or classical, first generates a key k along with a trapdoor td associated
with a noisy trapdoor claw-free function (NTCF) family. It sends k to the server.

• The server responds back with 𝑦 ∈ 𝒴 .

• The classical client then sends a challenge bit a to the server.

• If a = 0, the server sends a pre-image 𝑥𝑏 along with bit 𝑏 such that 𝑓k,𝑏(𝑥𝑏) = 𝑦.
If a = 1, the server sends a vector 𝑑 along with a bit 𝑢 satisfying the condition
⟨𝑑, 𝐽(𝑥0)⊕ 𝐽(𝑥1)⟩ = 𝑢, where 𝑥0, 𝑥1 are such that 𝑓k,0(𝑥0) = 𝑓k,1(𝑥1) = 𝑦.

The client can check if the message sent by the server is either a valid pre-image or a
valid 𝑑 that is correlated with respect to both the pre-images.

Intuitively, since the (classical) server does not know, at the point when it sends
𝑦, whether it will be queried for (𝑏, 𝑥𝑏) or (𝑑, 𝑢), by the security of NTCFs, it can
only answer one of the queries. While the quantum capability of NTCFs allows for
a quantum server to maintain a superposition of a claw at the time it sent 𝑦 and
depending on the query made by the verifier it can then perform the appropriate
quantum operations to answer the client; thus it will always pass the test.

3The efficient implementation of 𝑓 only approximately computes 𝑓 and we denote this by 𝑓 ′. We
ignore this detail for now.

4As written, this test doesn’t have negligible soundness but we can achieve negligible soundness
by parallel repetition.

77

From Test of Quantumness to Extraction. A natural attempt to achieve ex-
traction is the following: the sender takes the role of the client and the receiver takes
the role of the server and if the test passes, the sender sends the witness to the
receiver. We sketch this attempt below.

• Sender on input instance-witness pair (𝑥,w) and receiver on input instance 𝑥
run a “test of quantumness” protocol where the receiver (taking the role of the
server) needs to convince the sender (taking the role of the classical client) that
it is a quantum computer.

• If the receiver succeeds in the “test of quantumness” protocol then the sender
sender w, else it aborts.

Note that a quantum extractor can indeed succeed in the test of quantumness protocol
and hence, it would receive w while a malicious classical adversary will not.

However, the above solution is not good enough for us. It does not satisfy indis-
tinguishability of extraction: the sender can detect whether it’s interacting with a
quantum extractor or an honest receiver.

Achieving Indistinguishability of Extraction. To ensure indistinguishability of
extraction, we rely upon a tool called secure function evaluation [GHV10, BCPR16]
that satisfies quantum security. A secure function evaluation (SFE) allows for two
parties 𝑃1 and 𝑃2 to securely compute a function on their inputs in a such a way
that only one of the parties, say 𝑃2, receives the output of the function. In terms of
security, we require that: (i) 𝑃2 doesn’t get information about 𝑃1’s input beyond the
output of the function and, (ii) 𝑃1 doesn’t get any information about 𝑃2’s input (in
fact, even the output of the protocol is hidden from 𝑃1).

The hope is that by combining SFE and test of quantumness protocol, we can
guarantee that a quantum extractor can still recover the witness by passing the test
of quantumness as before but the sender doesn’t even know whether the receiver
passed or not. To implement this, we assume a structural property from the un-
derlying test of quantumness protocol: until the final message of the protocol, the
client cannot distinguish whether it’s talking to a quantum server or a classical server.
This structural property is satisfied by the test of quantumness protocol [BCM+18]
sketched above.

Using this structural property and SFE, here is another attempt to construct
a quantum extraction protocol: let the test of quantumness protocol be a 𝑘-round
protocol.

• Sender on input instance-witness pair (𝑥,w) and receiver on input instance
𝑥 run the first (𝑘 − 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking the
role of the receiver) that it can perform quantum computations.

• Sender and receiver then run a SFE protocol for the following functionality 𝐺:
it takes as input w and the first (𝑘 − 1) rounds of the test of quantumness

78

protocol from the sender, the 𝑘𝑡ℎ round message from the receiver5 and outputs
w if indeed the test passed, otherwise output ⊥. Sender will take the role of 𝑃1

and the receiver will take the role of 𝑃2 and thus, only the receiver will receive
the output of 𝐺.

Note that the security of SFE guarantees that the output of the protocol is hidden
from the sender and moreover, the first (𝑘 − 1) messages of the test of quantumness
protocol doesn’t reveal the information about whether the receiver is a quantum
computer or not. These two properties ensure the sender doesn’t know whether the
receiver passed the test or not. Furthermore, the quantum extractor still succeeds in
extracting the witness w since it passes the test.

The only remaining property to prove is zero-knowledge.

Challenges in Proving Zero-Knowledge. How do we ensure that a malicious
classical receiver was not able to extract the witness? The hope would be to invoke
the soundness of the test of quantumness protocol to argue this. However, to do this,
we need all the 𝑘 messages of the test of quantumness protocol.

To understand this better, let us recall how the soundness of the test of quantum-
ness works: the client sends a challenge bit a = 0 to the server who responds back
with (𝑏, 𝑥𝑏), then the client rewinds the server and instead sends the challenge bit
a = 1 and it receives (𝑑, 𝑢): this contradicts the security of NTCFs since a classical
PPT adversary cannot simultaneously produce both a valid pre-image (𝑏, 𝑥𝑏) and a
valid correlation vector along with the prediction bit (𝑑, 𝑢).

Since the last message is fed into the secure function evaluation protocol and
inaccessible to the simulator, we cannot use this rewinding strategy to prove the
zero-knowledge of the extraction protocol.

Final Template: Zero-Knowledge via Extractable Commitments [PRS02,
PW09]. To overcome this barrier, we force the receiver to commit, using an ex-
tractable commitment scheme, to the 𝑘𝑡ℎ round of the test of quantumness protocol
before the SFE protocol begins. An extractable commitment scheme is one where
there is an extractor who can extract an input 𝑥 being committed from the party
committing to 𝑥. Armed with this tool, we give an overview of our construction
below.

• Sender on input instance-witness pair (𝑥,w) and receiver on input instance
𝑥 run the first (𝑘 − 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking the
role of the receiver) that it can perform quantum computations.

• The 𝑘𝑡ℎ round of the test of quantumness protocol is then committed by the
receiver, call it c, using the extractable commitment scheme6.

5It follows without loss of generality that the server (and thus, the receiver of the quantum
extraction protocol) computes the final message of the test of quantumness protocol.

6In the technical sections, we use a specific construction of extractable commitment scheme
by [PRS02, PW09] since we additionally require security against quantum adversaries.

79

• Finally, the sender and the receiver then run a SFE protocol for the following
functionality 𝐺: it takes as input w and the first (𝑘 − 1) rounds of the test of
quantumness protocol from the sender, the decommitment of c from the receiver
and outputs w if indeed the test passed, otherwise output ⊥. Sender will take
the role of 𝑃1 and the receiver will take the role of 𝑃2 and thus, only the receiver
will receive the output of 𝐺.

Let us remark about zero-knowledge since we have already touched upon the other
properties earlier. To argue zero-knowledge, we construct a simulator that interacts
honestly with the malicious receiver until the point the extraction protocol is run.
Then, the simulator runs the extractor of the commitment scheme to extract the
final message of the test of quantumness protocol. It then rewinds the test of quan-
tumness protocol to the point where the simulator sends a different challenge bit (see
the informal description of [BCM+18] given before) and then runs the extractor of
the commitment scheme once again to extract the 𝑘𝑡ℎ round message of the test of
quantumness protocol. Recall that having final round messages corresponding to two
different challenge bits is sufficient to break the security of NTCFs; the zero-knowledge
property then follows.

A couple of remarks about our simulator. Firstly, the reason why our simulator is
able to rewind the adversary is because the adversary is a classical PPT algorithm.
Secondly, our simulator performs double rewinding – not only does the extractor of
the commitment scheme perform rewinding but also the test of quantumness protocol
is rewound.

3.2.2 Construction of cQEXT

In this section, we show how to construct quantum extraction protocols secure against
classical adversaries based solely on QLWE.

Tools.

• Quantum-secure computationally-hiding and perfectly-binding non-interactive
commitments, Comm (Section 2.4.2).

We instantiate the underlying commitment scheme in [PW09] using Comm to
obtain a quantum-secure extractable commitment scheme. Instead of present-
ing a definition of quantum-secure extractable commitment scheme and then
instantiating it, we directly incorporate the construction of [PW09] in the con-
struction of the extraction protocol.

• Noisy trapdoor claw-free functions {𝑓k,𝑏 : 𝒳 → 𝐷𝒴}k∈𝒦,𝑏∈{0,1} (Section 2.4.1).

• Quantum-secure secure function evaluation protocol SFE = (SFE.S, SFE.R) (
Section 2.4.5).

80

F

Input of sender:
(︂{︁

c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1 , (𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

)′, (d
(𝑗)
𝑖,𝑤𝑖

)′, td𝑖,k𝑖, 𝑦𝑖, 𝑣𝑖, 𝑤
(𝑗)
𝑖

}︁
𝑖,𝑗∈[𝑘]

,w

)︂
Input of receiver:

(︂{︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖
,d

(𝑗)
𝑖,𝑤𝑖

}︁
𝑖,𝑗∈[𝑘]

)︂

• If for any 𝑖, 𝑗 ∈ [𝑘], c
(𝑗)
𝑖,𝑤𝑖

̸= Comm
(︁

1𝜆, (𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

)′; (d
(𝑗)
𝑖,𝑤𝑖

)′
)︁

or c
(𝑗)
𝑖,𝑤𝑖

̸=

Comm
(︁

1𝜆, 𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

;d
(𝑗)
𝑖,𝑤𝑖

)︁
, output ⊥.

• For every 𝑖 ∈ [𝑘], let (𝑥𝑖,0, 𝑥𝑖,1)← Inv(k𝑖, td𝑖, 𝑦𝑖).

– Check if the commitments commit to the same message: Output ⊥ if the
following does not hold: for every 𝑗, 𝑗′ ∈ [𝑘], we have

(︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

)︁′
⊕ 𝑠ℎ(𝑗)𝑖,𝑤𝑖

=(︁
𝑠ℎ

(𝑗′)
𝑖,𝑤𝑖

)︁′
⊕ 𝑠ℎ(𝑗

′)
𝑖,𝑤𝑖

.

– If 𝑣𝑖 = 0: let (𝑏𝑖, 𝐽(𝑥′𝑖,𝑏𝑖)) = (𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

)′ ⊕ 𝑠ℎ(𝑗)𝑖,𝑤𝑖
, where 𝐽(·) is the injection in

the definition of NTCF. Since 𝐽(·) can be efficiently inverted, recover 𝑥′𝑖,𝑏𝑖 .
If 𝑥′𝑖,𝑏𝑖 ̸= 𝑥𝑖,𝑏𝑖 , output ⊥.

– If 𝑣𝑖 = 1: let (𝑢𝑖, 𝑑𝑖) =
(︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

)︁′
⊕ 𝑠ℎ(𝑗)𝑖,𝑤𝑖

. If ⟨𝑑𝑖, 𝐽(𝑥𝑖,0) ⊕ 𝐽(𝑥𝑖,1)⟩ ≠ 𝑢𝑖, or
if 𝑑𝑖 /∈ 𝐺k𝑖,0,𝑥𝑖,0

∩𝐺k𝑖,1,𝑥𝑖,1
output ⊥.

• Otherwise, output w.

Figure 3-1: Description of the function F associated with the SFE

Construction. We present the construction of the quantum extraction protocol
(S,R) in Figure 3-2 for an NP language ℒ.

Lemma 54. Assuming the quantum security of Comm, SFE and NTCFs, the protocol
(S,R) is a quantum extraction protocol secure against classical adversaries for NP,
and it is also quantum-lasting secure.

Proof.

Classical Zero-Knowledge. Let R* be a classical PPT algorithm. We first de-
scribe a classical simulator Sim such that R* cannot distinguish whether it’s interact-

81

Input of sender: (𝑥,w).
Input of receiver: 𝑥

• S→ R: Compute ∀𝑖 ∈ [𝑘], (k𝑖, td𝑖)← Gen(1𝜆; 𝑟𝑖), where 𝑘 = 𝜆. Send
(︀
{k𝑖}𝑖∈[𝑘]

)︀
.

• R→ S: For every 𝑖 ∈ [𝑘], choose a random bit 𝑏𝑖 ∈ {0, 1} and sample a random
𝑦𝑖 ← 𝑓 ′k𝑖,𝑏𝑖

(𝑥𝑖,𝑏𝑖), where 𝑥𝑖,𝑏𝑖
$←− 𝒳 . Send {𝑦𝑖}𝑖∈[𝑘]. (Recall that 𝑓 ′k,𝑏(𝑥) is a

distribution over 𝒴.)

• S→ R: Send bits (𝑣1, . . . , 𝑣𝑘), where 𝑣𝑖
$←− {0, 1} for 𝑖 ∈ [𝑘].

• R→ S: For every 𝑖, 𝑗 ∈ [𝑘], compute the commitments c
(𝑗)
𝑖,0 ←

Comm(1𝜆, 𝑠ℎ
(𝑗)
𝑖,0 ;d

(𝑗)
𝑖,0) and c

(𝑗)
𝑖,1 ← Comm(1𝜆, 𝑠ℎ

(𝑗)
𝑖,1 ;d

(𝑗)
𝑖,1), where 𝑠ℎ

(𝑗)
𝑖,0 , 𝑠ℎ

(𝑗)
𝑖,1

$←−

{0, 1}poly(𝜆) for 𝑖, 𝑗 ∈ [𝑘]. Send
(︂{︁

c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1

}︁
𝑖,𝑗∈[𝑘]

)︂
.

Note: The reason why we have 𝑘2 commitments above is because we repeat (in
parallel) the test of quantumness protocol 𝑘 times and for each repetition, the
response of the receiver is committed using 𝑘 commitments; the latter is due
to [PW09].

• S→ R: For every 𝑖, 𝑗 ∈ [𝑘], send random bits 𝑤(𝑗)
𝑖 ∈ {0, 1}.

• R→ S: Send
(︂{︁

(𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

)′, (d
(𝑗)
𝑖,𝑤𝑖

)′
}︁

𝑖,𝑗∈[𝑘]

)︂
.

• S and R run SFE, associated with the two-party functionality F defined in
Figure 3-1; S takes the role of SFE.S and R takes the role of SFE.R. The

input to SFE.S is
(︂{︁

c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1 , (𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

)′, (d
(𝑗)
𝑖,𝑤𝑖

)′, td𝑖,k𝑖, 𝑦𝑖, 𝑣𝑖, 𝑤
(𝑗)
𝑖

}︁
𝑖,𝑗∈[𝑘]

,w

)︂
and

the input to SFE.R is
(︂{︁

𝑠ℎ
(𝑗)
𝑖,𝑤𝑖
,d

(𝑗)
𝑖,𝑤𝑖

}︁
𝑖,𝑗∈[𝑘]

)︂
.

Figure 3-2: Quantum Extraction Protocol (S,R) secure against classical receivers

ing with S or with Sim.

Description of Sim.

• Until the SFE protocol is executed, it behaves as the honest sender would. That
is,

82

– For every 𝑖 ∈ [𝑘], it computes (k𝑖, td𝑖)← Gen(1𝜆; 𝑟𝑖). Send
(︀
{k𝑖}𝑖∈[𝑘]

)︀
.

– It receives {𝑦𝑖}𝑖∈[𝑘] from R*.

– It sends bits (𝑣1, . . . , 𝑣𝑘), where 𝑣𝑖
$←− {0, 1} for 𝑖 ∈ [𝑘].

– It receives
(︂{︁

c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1

}︁
𝑖,𝑗∈[𝑘]

)︂
from R*.

– For every 𝑖, 𝑗 ∈ [𝑘], it sends random bits 𝑤(𝑗)
𝑖 ∈ {0, 1}.

– It receives
(︂{︁

(𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

)′, (d
(𝑗)
𝑖,𝑤𝑖

)′
}︁

𝑖,𝑗∈[𝑘]

)︂
from R*.

• It then executes SFE with R*, associated with the two-party functionality F
defined in Figure 3-1; the input of Sim in SFE is ⊥.

We prove the following by a sequence of hybrids. For some arbitrary auxiliary infor-
mation aux ∈ {0, 1}poly(𝜆),

ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
≈𝑄 Sim(1𝜆,R*, 𝑥, aux),

In other words, that no QPT distinguisher can distinguish between the view of R*
when interacting with S from the output of Sim. This is stronger than what we need
to argue classical ZK, as it would be enough to show that R*, a PPT machine (not
QPT), cannot distinguish. However, the stronger indistinguishability result makes it
easier to show that the scheme is quantum-lasting secure.

Hybrid1: The output of this hybrid is ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
.

Hybrid2: Consider the following sender, Hybrid2.S, that behaves as follows:

1. R*: Sends {𝑦𝑖}𝑖∈[𝑘].

2. Hybrid2.S: Sends (𝑣1, . . . , 𝑣𝑘) uniformly at random. If R* aborts in this step,
Hybrid2.S aborts.

3. R*: Sends
{︁(︁

c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1

)︁}︁
𝑖,𝑗∈[𝑘]

. If R* aborts in this step, Hybrid2.S aborts.

4. Hybrid2.S: Sends 𝑤(𝑗)
𝑖 ∈ {0, 1} uniformly at random for all 𝑖, 𝑗 ∈ [𝑘].

5. R*: Opens up the commitments queried,
{︁(︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖
,d

(𝑗)
𝑖,𝑤𝑖

)︁}︁
𝑖,𝑗∈[𝑘]

. If R* aborts in

this step, Hybrid2.S aborts. If c(𝑗)𝑖,𝑤𝑖
̸= Comm(1𝜆, 𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

;d
(𝑗)
𝑖,𝑤𝑖

) for any 𝑖, 𝑗 ∈ [𝑘],
continue the execution of the protocol as in Step 11.

6. Hybrid2.S: Keep rewinding (poly(𝑘) times) to Step 4, until it is able to recover
another commitment accepting transcript. A commitment accepting transcript
is one for which all the commitments opened in Step 5 are valid, i.e. that
c
(𝑗)
𝑖,𝑤𝑖

= Comm(1𝜆, 𝑠ℎ
(𝑗)
𝑖,𝑤𝑖

;d
(𝑗)
𝑖,𝑤𝑖

). Let {(𝑤(𝑗)
𝑖)′} be the queries sent in the second

83

recovered commitment accepting transcript. If for any 𝑖 ∈ [𝑘], it is the case that
for every 𝑗 ∈ [𝑘], it holds that (𝑤

(𝑗)
𝑖)′ = 𝑤

(𝑗)
𝑖 , then abort.

7. If Hybrid2.S did not abort in the previous step, then for every 𝑖 ∈ [𝑘], there
is 𝑗𝑖 ∈ [𝑘], s.t. (𝑤

(𝑗𝑖)
𝑖)′ ̸= 𝑤

(𝑗𝑖)
𝑖 . From these two transcripts, it extracts the

committed value.

8. Hybrid2.S: (We call this step the NTCF condition check). From the commited
values recovered, check if they satisfy the desired NTCF conditions. I.e. for
every 𝑖 ∈ [𝑘], if 𝑣𝑖 = 0, check if the decommited value if a valid preimage
(𝑏𝑖, 𝐽(𝑥𝑖,𝑏𝑖)), and if 𝑣𝑖 = 1 check if the decommited value is a valid correlation
(𝑢𝑖, 𝑑𝑖). If the check do not pass, continue as before. If the check pass,

• Keep rewinding (poly(𝑘) times) until Step 2, repeating the proccess above,
including the rewinding phase for the commitment challenges. The rewind-
ing continues until we get another transcript, for which the NTCF check
passes. Let (𝑣′1, . . . , 𝑣

′
𝑘) be the messages sent at Step 2 in the new tran-

script.

9. Hybrid2.S: If (𝑣1, . . . , 𝑣𝑘) and (𝑣′1, . . . , 𝑣
′
𝑘) are different in less than 𝜔(log(𝑘))

coordinates, then abort.

10. If Hybrid2.S has not aborted so far, let 𝑆 be the set of indices at which both
(𝑣1, . . . , 𝑣𝑘) and (𝑣′1, . . . , 𝑣

′
𝑘) differ. For 𝑖 ∈ 𝑆, let (𝑏𝑖, 𝑥𝑖) and (𝑑𝑖, 𝑢𝑖) be the

values recovered from the commitment accepting transcripts associated with
bits 𝑣𝑖 and 𝑣′𝑖. Denote 𝑇 = {(𝑏𝑖, 𝑥𝑖, 𝑑𝑖, 𝑢𝑖) : 𝑖 ∈ 𝑆}. Moreover, |𝑇 | = 𝜔(log(𝑘))

11. Now, continue the execution of the protocol on the original thread; i.e., when
the Hybrid2.S queries (𝑤1, . . . , 𝑤𝑘) and (𝑣1, . . . , 𝑣𝑘).

The only difference between Hybrid1 and Hybrid2 is that Hybrid2.S aborts on some
transcripts; conditioned on Hybrid2.S not aborting, the transcript produced by the
receiver when interacting with S is identical to the transcript produced by Hybrid2.S.
We claim that the probability that Hybrid2.S aborts, conditioned on the event that
R* does not abort, is negligibly small.

Claim 55. Pr[Hybrid2.S aborts|R* does not abort] = negl(𝑘)

Proof. To argue this, we first establish some terminology. Let 𝑝1 be the probability
with which R* produces a commitment accepting transcript and 𝑝2 be the probability
with which R* passes the NTCF condition check. We call the rewinding performed
in Step 4 to be "inner rewinding" and the the rewinding performed in Step 8 to be
"outer rewinding".

In the rest of the proof, we condition on the event that R* does not abort. Consider
the following claims.

Claim 56. The probability that the number of outer rewinding operations performed
is greater than 𝑘 is negligible.

84

Proof. Note that the outer rewinding is performed till the point it can recover a
transcript that passes the NTCF check. Since the probability that R* produces a
transcript that passes the NTCF check is 𝑝2, we have that the expected number of
outer rewinding operations to be (1− 𝑝2) + 𝑝2 · 1

𝑝2
≤ 2. By Chernoff, the probability

that the number of outer rewinding operations is greater than 𝑘 is negligible.

Claim 57. The probability that the number of inner rewinding operations performed
is greater than 𝑘2 is negligible.

Proof. Note that for every NTCF transcript, Comm is rewound many times until
Hybrid2.S can indeed recover another commitment-accepting transcript. For a given
NTCF transcript, since the probability that R* produces a commitment accepting
transcript is 𝑝1, we have that the expected number of inner rewinding operations
to be (1 − 𝑝1) + 𝑝1 · 1

𝑝1
≤ 2. And thus by Chernoff, for a given NTCF transcript,

the probability that the number of inner rewinding operations is greater than 𝑘 is
negligible. Since the number NTCF transcripts produced is at most 𝑘 with probability
negligibly close to 1, we have that the total number of inner rewinding operations is
at most 𝑘2 with probability neglibly close to 1.

We now argue about the probability that Hybrid2.S aborts on an NTCF transcript
(Step 9) and the probability that it aborts on the transcript of Comm (Step 6).

Claim 58. The probability that Hybrid2.S aborts in Step 9 is negligible.

Proof. Note that Hybrid2.S aborts in Step 9 only if: (i) it received a valid transcript
on the original thread of execution, (ii) it rewinds until the point it receives another
valid NTCF transcript and, (iii) the challenge (𝑣′1, . . . , 𝑣

′
𝑘) on which the second tran-

script was accepted differs from (𝑣1, . . . , 𝑣𝑘) only in 𝜔(log(𝑘)) co-ordinates. Thus, the
probability that it aborts is the following quantity:

𝑝2(𝑝2 + 𝑝2(1− 𝑝2) + 𝑝2(1− 𝑝2)2 + · · ·) · Pr[(𝑣1,...,𝑣𝑘) and (𝑣′1,...,𝑣
′
𝑘)

differ in less than 𝜔(log(𝑘)) co-ordinates]

≤ 𝑝22

(︂
1

𝑝2

)︂
· Pr[(𝑣1,...,𝑣𝑘) and (𝑣′1,...,𝑣

′
𝑘)

differ in less than 𝜔(log(𝑘)) co-ordinates]

= 𝑝2 · negl(𝑘) (By Chernoff Bound)

Claim 59. The probability that Hybrid2.S aborts in Step 6 is negligible.

Proof. Since step 6 is executed for multiple NTCF transcripts, we need to argue
that for any of NTCF transcripts, the probability that Hybrid2.S aborts in Step 6 is
negligible. Since we already argued in Claim 57 that the number of inner rewinding
operations is poly(𝑘), by union bound, it suffices to argue the probability that for any
given NTCF transcript, the probability that Hybrid2.S aborts in Step 6 is negligible.
This is similar to the argument in Claim 58: the probability that Hybrid2.S aborts in

Step 6 is 𝑝21 · 1
𝑝1
· Pr

[︂
∃𝑖 ∈ [𝑘],∀𝑗 ∈ [𝑘] :

(︁
𝑤

(𝑗)
𝑖

)︁′
=
(︁
𝑤

(𝑗)
𝑖

)︁]︂
= 𝑝1 · 2−𝑘.

85

Observe that Hybrid2.S only aborts in Steps 6 and 9; recall that we have already
conditioned on the even that R* does not abort. Thus, we have the proof of the
claim.

This claim shows that Hybrid1 and Hybrid2 are indistinguishable:

ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid2.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
.

Hybrid3: In this hybrid, Hybrid3.S will do as Hybrid2.S except as follows: once it gets
to step 8, if the NTCF check passes, it continues as usual, but if the NTCF check
does not pass, it inputs ⊥ in the SFE.

The indistinguishability of Hybrid2 and Hybrid3 follows from the security of the SFE
against malicious quantum receivers, and we have:

ViewR*
(︀
⟨Hybrid2.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid3.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
,

This is because the following holds in the event that the above check does not pass:

F

(︂(︂{︁
c
(𝑗)
𝑖,0 , c

(𝑗)
𝑖,1 , (𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

)′, (d
(𝑗)
𝑖,𝑤𝑖

)′, td𝑖,k𝑖, 𝑦𝑖, 𝑣𝑖, 𝑤
(𝑗)
𝑖

}︁
𝑖,𝑗∈[𝑘]

,w

)︂
,

(︂{︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

,d
(𝑗)
𝑖,𝑤𝑖

}︁
𝑖,𝑗∈[𝑘]

)︂)︂

= F

(︂
(⊥) ,

(︂{︁
𝑠ℎ

(𝑗)
𝑖,𝑤𝑖

,d
(𝑗)
𝑖,𝑤𝑖

}︁
𝑖,𝑗∈[𝑘]

)︂)︂
.

Hybrid4: In this hybrid, Hybrid4.S always inputs ⊥ in the SFE.

We have the following:

ViewR*
(︀
⟨Hybrid3.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid4.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
This is because either Hybrid3.S inputs⊥ into the SFE or it can find 𝑇 = {(𝑏𝑖, 𝑥𝑖, 𝑢𝑖, 𝑑𝑖) :
𝑖 ∈ 𝑆} (see Hybrid2) such that both (𝑏𝑖, 𝑥𝑖) and (𝑢𝑖, 𝑑𝑖) pass the NTCF checks cor-
responding to the 𝑖𝑡ℎ instantiation. Moreover, recall that |𝑇 | = 𝜔(log(𝑘)). This
contradicts the security of NTCFs: by the adaptive hardcore bit property of the
NTCF, a PPT classical adversary can break a given instantiation with probability
negligibly close to 1/2 and thus, it can break 𝜔(log(𝑘)) instantiations only with neg-
ligible probability.

Hybrid5: Now the hybrid sender, Hybrid5.S does as Hybrid4.S, but it does not rewind R*.

86

The statistical distance between Hybrid4 and Hybrid5 is negligible in 𝑘; this follows
from Claim 55.

Quantum-Lasting Security. We have shown that for any auxiliary information
aux ∈ {0, 1}poly(𝜆),

ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
≈𝑄 Sim(1𝜆,R*, 𝑥, aux).

Let𝒜* be any QPT adversary that is given the transcript, ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
.

Consider the Sim* that first runs Sim(1𝜆,R*, 𝑥, aux), and then runs 𝒜*, i.e. Sim* is
the QPT that on a polynomial sized quantum states 𝜌 acts as

Sim*
(︀
1𝜆,𝒜*,R*, 𝑥, aux, 𝜌

)︀
= 𝒜*

(︀
Sim(1𝜆,R*, 𝑥, aux), 𝜌

)︀
.

Since 𝒜* is QPT, it can’t distinguish if it is given the actual transcript or the output
of Sim. In particular, we have that

𝒜*
(︀
ViewR*

(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, aux)⟩

)︀
, 𝜌
)︀
≈𝑄 Sim*

(︀
1𝜆,𝒜*,R*, 𝑥, aux, 𝜌

)︀
.

Extractability. Let S* be the semi-malicious sender. We define our quantum ex-
tractor Ext as follows.

Description of Ext. The input to Ext is the instance 𝑥.

• Run S* to obtain {k𝑖}𝑖∈[𝑘].

• For all 𝑖 ∈ [𝑘],

– Prepare the superpostion

1√︀
2|𝒳 |

∑︁
𝑏,𝑥∈𝒳 ,𝑦∈𝒴

√︁
𝑓 ′k𝑖,𝑏

(𝑥)(𝑦)|𝑏, 𝑥, 𝑦⟩

which can be done efficiently by the required properties of NTCF.

– Measure the 𝑦 register, to obtain outcome 𝑦𝑖. Denote the postmeasurement
quantum state by |Ψ𝑖⟩. By NTCF,

|Ψ𝑖⟩ =
|0, 𝑥𝑖,0⟩+ |1, 𝑥𝑖,1⟩√

2

where (𝑥𝑖,0, 𝑥𝑖,1)← Inv(k𝑖, td𝑖, 𝑦𝑖).

– Compute 𝐽 into a new register, |𝑏, 𝑥, 0⟩ → |𝑏, 𝑥, 𝐽(𝑥)⟩, and then uncompute
the register containing 𝑥 by performing 𝐽−1, i.e. |𝑏, 𝑥, 𝐽(𝑥)⟩ → |𝑏, 𝑥 ⊕
𝐽−1(𝐽(𝑥)), 𝐽(𝑥)⟩. The resulting transformation is |𝑏, 𝑥, 0⟩ → |𝑏, 0, 𝐽(𝑥)⟩.

87

– Discard the second register, and keep the first register containing 𝑏 and
the third register with 𝐽(𝑥). At this point, the extractor has the states

|Ψ′𝑖⟩ =
|0, 𝐽(𝑥𝑖,0)⟩+ |1, 𝐽(𝑥𝑖,1)⟩√

2

• Send {𝑦𝑖}𝑖∈[𝑘] to S*, and let {𝑣𝑖}𝑖∈[𝑘] be the message received from S*.

• For all 𝑖 ∈ [𝑘]:

– if 𝑣𝑖 = 0, measure |Ψ′𝑖⟩ in the standard basis, to obtain (𝑏𝑖, 𝐽(𝑥𝑖,𝑏𝑖)).

– if 𝑣𝑖 = 1, apply the Hadamard transformation to |Ψ′𝑖⟩, and measure in
standard basis to obtain (𝑢𝑖, 𝑑𝑖)

• For all 𝑖, 𝑗 ∈ [𝑘], choose the shares (𝑠ℎ
(𝑗)
𝑖,0 , 𝑠ℎ

(𝑗)
𝑖,1) uniformly at random conditioned

on either (𝑏𝑖, 𝐽(𝑥𝑖,𝑏𝑖)) = 𝑠ℎ
(𝑗)
𝑖,0 ⊕ 𝑠ℎ

(𝑗)
𝑖,1 or (𝑢𝑖, 𝑑𝑖) = 𝑠ℎ

(𝑗)
𝑖,0 ⊕ 𝑠ℎ

(𝑗)
𝑖,1 if 𝑣𝑖 = 0 or 𝑣𝑖 = 1

respectively.

• Perform the rest of the protocol as the honest receiver would. Output the
outcome of the SFE protocol.

Claim 60. Assuming NTCFs, perfect correctness and security of SFE, the probability
that Ext extracts from the semi-malicious sender ie negligibly close to 1.

Proof. We first claim that with probability negligibly close to 1, the following is
satisfied for every 𝑣𝑖 ∈ [𝑘]:

• If 𝑣𝑖 = 0, let (𝑏𝑖, 𝐽(𝑥𝑖,𝑏𝑖)) be the value obtained by measuring |Ψ′𝑖⟩ in the standard
basis. Then, 𝑓 ′k𝑖,𝑏𝑖

(𝑥𝑖,𝑏) = 𝑦𝑖,

• If 𝑣𝑖 = 1, let (𝑢𝑖, 𝑑𝑖) be the value obtained by applying the Hadamard trans-
formation to |Ψ′𝑖⟩, and measuring it in the standard basis. Then ⟨𝑑𝑖, 𝐽(𝑥𝑖,0) ⊕
𝐽(𝑥𝑖,1)⟩ = 𝑢𝑖 and 𝑑𝑖 /∈ 𝐺k𝑖,0,𝑥𝑖,0

∩𝐺k𝑖,1,𝑥𝑖,1
.

This follows from the union bound and Lemma 5.1 of the protocol of [BCM+18]. By
perfect correctness of SFE, it follows that if the extractor inputs shares 𝑠ℎ(𝑗)𝑖,0 , 𝑠ℎ

(𝑗)
𝑖,1

that answer correctly each challenge, the output it will receive from the SFE will be
the witness w.

Claim 61. ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)⟩

)︀
≈𝑄 Ext1

(︀
1𝜆, S*, 𝑥, ·

)︀
Proof. Consider the following hybrids.

Hybrid1: The output of this hybrid is ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)⟩

)︀
.

Hybrid2: We define a hybrid receiver Hybrid2.R who sets the input to SFE to be ⊥.

88

The following holds from the semantic security of SFE against QPT senders:

ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)⟩

)︀
≈𝑄 ViewS*

(︀
⟨S*(1𝜆, 𝑥,w, ·),Hybrid2.R(1𝜆, 𝑥)⟩

)︀
Hybrid3: We define a hybrid receiver Hybrid3.R that behaves as Hybrid2.R, but it sam-
ples {𝑦𝑖}𝑖∈[𝑘] as the extractor would, by preparing the claw-free superpositions, and
then measuring the 𝑦 register. We claim that the distribution over 𝑦𝑖’s is the same in
Hybrid2 and Hybrid3. To see this, note that Hybrid3 samples from the distribution 𝑦𝑖
from the distribution: 1

2|𝒳 |
∑︀

𝑏∈{0,1},𝑥∈𝑋
𝑓 ′k𝑖,𝑏

(𝑥)(𝑦). To sample from this distribution, we

can first sample 𝑏 ∈ {0, 1}, then an 𝑥𝑖,𝑏 ∈ 𝒳 and then sampling 𝑦𝑖 from the distribu-
tion 𝑓 ′k𝑖,𝑏

(𝑥𝑖,𝑏).

Hybrid4: We define a hybrid receiver Hybrid4.R who computes {𝑦𝑖}𝑖∈[𝑘] by performing
the quantum operations that the extractor does, and then computes, for all 𝑖 ∈ [𝑘],
either (𝑏𝑖, 𝐽(𝑥𝑖,𝑏𝑖)) or (𝑢𝑖, 𝑑𝑖) according to whether 𝑣𝑖 = 0 or 𝑣𝑖 = 1 respectively. In
other words, Hybrid4.R compute correct answers to the test of quantumness, then it
commits to appropriate shares,

𝑠ℎ
(𝑗)
𝑖,0 ⊕ 𝑠ℎ

(𝑗)
𝑖,1 =

{︃
(𝑏𝑖, 𝐽(𝑥𝑖,𝑏)) if 𝑣𝑖 = 0

(𝑢𝑖, 𝑑𝑖) if 𝑣𝑖 = 1

Hybrid4.R uses these shares for commitment c
(𝑗)
𝑖,0 = Comm(1𝜆, 𝑠ℎ

(𝑗)
𝑖,0 ;d

(𝑗)
𝑖,0) and c

(𝑗)
𝑖,1 =

Comm(1𝜆, 𝑠ℎ
(𝑗)
𝑖,1 ;d

(𝑗)
𝑖,1) The rest of the steps are the same as Hybrid3.R.

The following holds from the computational hiding property of Comm by a similar
argument to the one in [PW09]:

ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),Hybrid3.R(1𝜆, 𝑥)⟩

)︀
≈𝑄 ViewS*

(︀
⟨S*(1𝜆, 𝑥,w, ·),Hybrid4.R(1𝜆, 𝑥)⟩

)︀
Hybrid5: We define a hybrid receiver Hybrid5.R who sets the input in SFE to be(︂{︁

𝑠ℎ
(𝑗)
𝑖,𝑤𝑖
,d

(𝑗)
𝑖,𝑤𝑖

}︁
𝑖∈[𝑘]

)︂
, where {𝑤𝑖}𝑖∈[𝑘] are the bit queried by S* when asking the re-

ceiver to reveal commitments. Note that the output distribution of Hybrid5.R is
identical to that of the extractor Ext.

The following holds from the semantic security of SFE against quantum senders:

ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),Hybrid4.R(1𝜆, 𝑥)⟩

)︀
≈𝑄 ViewS*

(︀
⟨S*(1𝜆, 𝑥,w, ·),Hybrid5.R(1𝜆, 𝑥)⟩

)︀
≡ Ext1

(︀
1𝜆, S*, 𝑥, ·

)︀

89

Indistinguishability of Extraction Against Malicious Senders. We observe
that our construction satifies a stronger property than claimed. Our protocol sat-
isfies indistinguishability of extraction against malicious senders, and not just semi-
malicious senders. However, the extractability is still required against semi-malicious
senders.

We formalize this in the claim below.

Claim 62. The quantum extraction protocol (𝑆,𝑅) described in Figure 3-2 satisfies
indistinguishability of extraction (Definition 51) against malicious senders.

We omit the proof of the above claim since it is identical to the proof of Claim 61.
The indistinguishability of the hybrids in the proof of Claim 61 already hold against
malicious senders; in the proof, we never used the fact that the sender was semi-
malicious.

The only caveat missing in the proof of Claim 61 but comes up in the proof of the
above claim is the fact that the malicious sender could abort. If the malicious sender
aborts, then so does the extractor; since the extractor is straightline, the view of the
sender until that point will still be indistinguishable from the view of the sender when
interacting with the honest receiver.

3.3 qQEXT

3.3.1 Overview

We show how to construct extraction protocols where we prove security against quan-
tum receivers. At first sight, it might seem that quantum extraction and quantum
zero-knowledge properties are contradictory since the extractor has the same compu-
tational resources as the malicious receiver. However, we provide more power to the
extractor by giving the extractor non-black-box access to the semi-malicious sender.
There is a rich literature on non-black-box techniques in the classical setting starting
with the work of [Bar01].

Quantum Extraction via Circular Insecurity of QFHE. The main tool we
employ in our protocol is a fully homomorphic encryption QFHE scheme that allows
for public homomorphic evaluation of quantum circuits. Typically, we require a fully
homomorphic encryption scheme to satisfy semantic security. However, for the current
discussion, we require that QFHE to satisfy a stronger security property called 2-
circular insecurity:

Given QFHE.Encpk1(𝑆𝐾2) (i.e., encryption of 𝑆𝐾2 under pk1), QFHE.Enc𝑃𝐾2(sk1),
where (pk1, sk1) and (𝑃𝐾2, 𝑆𝐾2) are independently generated public key-
secret key pairs, we can efficiently recover sk1 and 𝑆𝐾2.

Later, we show how to get rid of 2-circular insecurity property by using lockable
obfuscation [GKW17, WZ17]. Here is our first attempt to construct the extraction
protocol:

90

• The sender, on input instance 𝑥 and witness w, sends three ciphertexts: ct1 ←
QFHE.Encpk1(td), ct2 ← QFHE.Encpk1(w) and ct3 ← QFHE.Enc𝑃𝐾2(sk1).

• The receiver sends td′.

• If td′ = td then the sender sends 𝑆𝐾2.

A quantum extractor with non-black-box access to the private (quantum) state of the
semi-malicious sender 𝑆 does the following:

• It first encrypts the private (quantum) state of 𝑆 under public key pk1.

• Here is our main insight: the extractor can homomorphically evaluate the next
message function of 𝑆 on ct1 and the encrypted state of 𝑆. The result is ct*1 =
QFHE.Encpk1(𝑆(td)). But note that 𝑆(td) is nothing but 𝑆𝐾2; note that 𝑆 upon
receiving td′ = td outputs 𝑆𝐾2. Thus, we have ct*1 = QFHE.Encpk1(𝑆𝐾2).

• Now, the extractor has both ct3 = QFHE.Enc𝑃𝐾2(sk1) and ct*1 = QFHE.Encpk1(𝑆𝐾2).
It can then use the circular insecurity of QFHE to recover sk1, 𝑆𝐾2.

• Finally, it decrypts ct2 to obtain the witness w!

The correctness of extraction alone is not sufficient; we need to argue that the sender
cannot distinguish whether it’s interacting with the honest receiver or the extractor.
This is not true in our protocol since the extractor will always compute the next
message function of 𝑆 on td′ = td whereas an honest receiver will send td′ = td only
with negligible probability.

Indistinguishability of Extraction: SFE strikes again. We already encoun-
tered a similar issue when we were designing extraction protocols with security against
classical receivers and the tool we used to solve that issue was secure function evalu-
ation (SFE); we will use the same tool here as well.

Using SFE, we make another attempt at designing the quantum extraction pro-
tocol.

• The sender, on input instance 𝑥 and witness w, sends three ciphertexts: ct1 ←
QFHE.Encpk1(td), ct2 ← QFHE.Encpk1(w) and ct3 ← QFHE.Enc𝑃𝐾2(sk1).

• The sender and the receiver executes a secure two-party computation protocol,
where the receiver feeds td′ and the sender feeds in (td,w). After the protocol
finishes, the receiver recovers w if td′ = td, else it recovers ⊥. The sender
doesn’t receive any output.

The above template guarantees indistinguishability of extraction property7.
7There is a subtle point here that we didn’t address: the transcript generated by the extractor

is encrypted under QFHE. But after recovering the secret keys, the extractor could decrypt the
encrypted transcript.

91

We next focus on zero-knowledge. To do this, we need to argue that the td′ input
by the malicious receiver can never be equal to td. One might falsely conclude that the
semantic security of QFHE would imply that td is hidden from the sender and hence
the argument follows. This is not necessarily true; the malicious receiver might be
able to “maul" the ciphertext ct1 into the messages of the secure function evaluation
protocol in such a way that the implicit input committed by the receiver is td′. We
need to devise a mechanism to prevent against such mauling attacks.

Preventing Mauling Attacks. We prevent the mauling attacks by forcing the
receiver to commit to random strings (𝑟1, . . . , 𝑟ℓ) in the first round, where |td| = ℓ,
even before it receives the ciphertexts (ct1, ct2, ct3) from the sender. Once it receives
the ciphertexts, the receiver is supposed to commit to every bit of the trapdoor using
the randomness 𝑟1, . . . , 𝑟ℓ; that is, the 𝑖𝑡ℎ bit of td is committed using 𝑟𝑖.

Using this mechanism, we can then provably show that if the receiver was able to
successfully maul the QFHE ciphertext then it violates the semantic security of QFHE
using a non-uniform adversary.

Replacing Circular Insecurity with Lockable Obfuscation [GKW17, WZ17].
While the above protocol is a candidate for quantum extraction protocol secure
against quantum receivers; it is still unsatisfactory since we assume a quantum FHE
scheme satisfying 2-circular insecurity. We show how to replace 2-circular insecure
QFHE with any QFHE scheme (satisfying some mild properties already satisfied by
existing candidates) and lockable obfuscation for classical circuits. A lockable obfus-
cation scheme is an obfuscation scheme for a specific class of functionalities called
compute-and-compare functionalities; a compute-and-compare functionality is pa-
rameterized by 𝐶, 𝛼 (lock), 𝛽 such that on input 𝑥, it outputs 𝛽 if 𝐶(𝑥) = 𝛼. As
long as 𝛼 is sampled uniformly at random and independently of 𝐶, lockable obfusca-
tion completely hides the circuit 𝐶, 𝛼 and 𝛽. The idea to replace 2-circular insecure
QFHE with lockable obfuscation8 is as follows: obfuscate the circuit, with secret key
𝑆𝐾2, ciphertext QFHE.Enc𝑆𝐾2(𝑟) hardwired, that takes as input QFHE.Encpk1(𝑆𝐾2),
decrypts it to obtain 𝑆𝐾 ′2, then decrypts QFHE.Enc𝑆𝐾2(𝑟) to obtain 𝑟′ and outputs sk1
if 𝑟′ = 𝑟. If the adversary does not obtain QFHE.Encpk1(𝑆𝐾2) then we can first invoke
the security of lockable obfuscation to remove sk1 from the obfuscated circuit and
then it can replace QFHE.Encpk1(w) with QFHE.Encpk1(⊥). The idea of using fully
homomorphic encryption along with lockable obfuscation to achieve non-black-box
extraction was first introduced, in the classical setting, by [BKP19].

Unlike our cQEXT construction, the non-black-box technique used for qQEXT
does not directly give us a constant round quantum zero-knowledge protocol for NP.
This is because an adversarial verifier that aborts can distinguish between the extrac-
tor or the honest prover (receiver in qQEXT). The main issue is that the extractor
runs the verifier homomorphically, so it cannot detect if the verifier aborted at any

8It shouldn’t be too surprising that lockable obfuscation can be used to replace circular insecurity
since one of the applications [GKW17, WZ17] of lockable obfuscation was to demonstrate counter-
examples for circular security,

92

point in the protocol without decrypting. But if the verifier aborted, the extractor
wouldn’t be able to decrypt in the first place – it could attempt to rewind but then
this would destroy the initial quantum auxiliary state.

3.3.2 Construction of qQEXT

We present a construction of quantum extraction protocols secure against quantum
adversaries, denoted by qQEXT. First, we describe the tools used in this construction.

Tools.

• Quantum-secure computationally-hiding and perfectly-binding non-interactive
commitments Comm (Section 2.4.2).

• Quantum fully homomorphic encryption scheme with some desired properties,
(QFHE.Gen,QFHE.Enc,QFHE.Dec,QFHE.Eval) (Section 2.4.3).

– It admits homomorphic evaluation of arbitrary computations,

– It admits perfect correctness,

– The ciphertext of a classical message is also classical.

• Quantum-secure two-party secure computation SFE with the following proper-
ties (Section 2.4.5):

– Only one party receives the output. We designate the party receiving the
output as the receiver SFE.R and the other party to be SFE.S.

– Security against quantum passive senders.

– IND-Security against quantum malicious receivers.

• Quantum-secure lockable obfuscation LObf = (LO.Obf, LO.Eval) for 𝒞, where
every circuit C, parameterized by (r,k, sk1, ct

*), in 𝒞 is defined in Figure 3-3.
Note that 𝒞 is a compute-and-compare functionality (Section 2.4.4).

Construction. We construct a protocol (S,R) in Figure 3-5 for a NP language ℒ,
and the following lemma shows that (S,R) is a quantum extraction protocol.

Lemma 63. Assuming the quantum security of Comm, SFE, QFHE, and LObf , (S,R)
is a quantum extraction protocol for ℒ secure against quantum adversaries.

Proof.

Quantum Zero-Knowledge. Let (𝑥,w) ∈ ℛ, and let R* be a QPT malicious
receiver. Associated with R* is the QPT algorithm Sim – in fact, Sim is a classical
PPT algorithm that only uses R* as a black-box – defined below.

93

C

Input: ct
Hardwired values: r (lock),k, sk1, ct

*.

• sk′2 ← QFHE.Dec(sk1, ct)

• r′ ← QFHE.Dec(sk′2, ct
*)

• If r′ = r, output k. Else, output ⊥.

Figure 3-3: Circuits used in the lockable obfuscation

𝑓

Input of sender: (td, c, c*1, . . . , c
*
ℓ , sk2)

Input of receiver: (d, 𝑟1, . . . , 𝑟ℓ)

• If
(︀
c← Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︀ (︀
∀𝑖 ∈ [ℓ], c*𝑖 ← Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
, output

sk2. Here, td𝑖 denotes the 𝑖𝑡ℎ bit of td.

• Otherwise, output ⊥.

Figure 3-4: Description of the function 𝑓 associated with the SFE.

Description of Sim.

• It first receives c from R*. It performs the following operations:

– Compute the QFHE.Setup to obtain (pk1, sk1).
– Compute ct1 ← QFHE.Encpk1(⊥).

– Compute the obfuscated circuit ̃︀C← LObf.Sim
(︀
1𝜆, 1|C|

)︀
.

– Sample otp
$←− {0, 1}|sk1|.

Send (ct1, ̃︀C, otp).

• It then receives (c*1, . . . , c
*
ℓ) from the receiver.

• It executes SFE with R*; Sim takes the role of SFE.S with the input ⊥.

94

Input of sender: (𝑥,w).
Input of receiver: 𝑥

• R→ S: sample (𝑟1, . . . , 𝑟ℓ)
$←− {0, 1}ℓ·poly(𝜆). Compute c ←

Comm
(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀
, where ℓ = 𝜆 and d is the randomness used to

compute c. Send c to S.

• S→ R:

– Compute the QFHE.Setup twice; (pk𝑖, sk𝑖) ← QFHE.Setup(1𝜆) for 𝑖 ∈
{1, 2}.

– Compute ct1 ← QFHE.Encpk1(td||w), where td
$←− {0, 1}𝜆.

– Compute ̃︀C ← LO.Obf(1𝜆,C[r,k, sk1, ct
*]), where r

$←− {0, 1}𝜆 and k
$←−

{0, 1}𝜆, ct* is defined below and C[r,k, sk1, ct
*] is defined in Figure 3-3.

∗ ct* ← QFHE.Encpk2 (r)

Send msg1 =
(︁
ct1, ̃︀C, otp := k⊕ sk1

)︁
.

• R→ S: compute c*𝑖 ← Comm
(︀
1𝜆, 0; 𝑟𝑖

)︀
for 𝑖 ∈ [ℓ]. Send (c*1, . . . , c

*
ℓ) to S.

• S and R run SFE, associated with the two-party functionality 𝑓 defined in
Figure 3-4; S takes the role of SFE.S and R takes the role of SFE.R. The
input to SFE.S is (td, c, c*1, . . . , c

*
ℓ , sk2) and the input to SFE.R is (d, 𝑟1, . . . , 𝑟ℓ).

Figure 3-5: Quantum Extraction Protocol (S,R)

• Finally, it outputs the final state of R*.

We show below that the view of R* when interacting with the honest sender is indis-
tinguishable, by a QPT distinguisher, from the output of Sim. Consider the following
hybrids:

Hybrid1: In this hybrid, R* is interacting with the honest sender S. The output of this
hybrid is the output of R*.

Hybrid2: In this hybrid, we define a hybrid sender, denoted by Hybrid2.S: it behaves
exactly like S except that in SFE, the input of SFE.S is ⊥.

Consider the following claim.

Claim 64. ViewR*
(︀
⟨S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid2.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
.

95

Proof. To prove this claim, we first need to show that the probability that the receiver
R* commits to w is negligible. Consider the following claim.

Claim 65. Assuming the quantum security of Comm, LObf and QFHE, the following
holds:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∃𝑟1,...,𝑟ℓ,d,

(c=Comm(1𝜆,(𝑟1,...,𝑟ℓ);d))⋀︀
(∀𝑖∈[ℓ],c*𝑖=Comm(1𝜆,td𝑖;𝑟𝑖))=1

:

c←R*(1𝜆,𝑥,·)

td
$←−{0,1}𝜆

(pk𝑖,sk𝑖)←QFHE.Setup(1𝜆),∀𝑖∈{1,2}
ct1←QFHE.Encpk1 (td||w)

r
$←−{0,1}𝜆

k
$←−{0,1}|sk1|

ct*←QFHE.Encpk2 (r)̃︀C←LO.Obf(1𝜆,C[r,k,sk1,ct*])
otp=k⊕sk1

(c*1,...,c
*
ℓ)←R*(1𝜆,𝑥,·)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(𝜆),

for some negligible function negl.

Proof. We define the event BAD1 as follows:

BAD1 = 1 if there exists 𝑟1, . . . , 𝑟ℓ,d such that(︀
c = Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︁(︀
∀𝑖 ∈ [ℓ], c*𝑖 = Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
= 1,

where:

• c← R*(1𝜆, 𝑥, ·),
• ct1 ← QFHE.Encpk1(td||w), where (pk𝑖, sk𝑖) ← QFHE.Setup(1𝜆),∀𝑖 ∈
{1, 2} and td

$←− {0, 1}𝜆,

• ̃︀C ← LO.Obf(1𝜆,C[r,k, sk1, ct
*]), where r

$←− {0, 1}𝜆, k $←− {0, 1}|sk1|
and ct* ← QFHE.Encpk2(r),

• otp = k⊕ sk1 and,

• R*(1𝜆, 𝑥, ·) on input (ct, ̃︀C, otp) outputs (c*1, . . . , c
*
ℓ).

Otherwise, BAD1 = 0.

Define p1 to be p1 = Pr[BAD1 = 1].

We define a hybrid event BAD1.1 as follows:

BAD1.1 = 1 if there exists 𝑟1, . . . , 𝑟ℓ,d such that(︀
c = Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︁(︀
∀𝑖 ∈ [ℓ], c*𝑖 = Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
= 1,

where:

• c← R*(1𝜆, 𝑥, ·),

96

• ct1 ← QFHE.Encpk1(td||w), where (pk𝑖, sk𝑖) ← QFHE.Setup(1𝜆),∀𝑖 ∈
{1, 2} and td

$←− {0, 1}𝜆,

• ̃︀C ← LO.Obf(1𝜆,C[r,k, sk1, ct
*]), where r

$←− {0, 1}𝜆, k $←− {0, 1}|sk1|
and
ct* ← QFHE.Encpk2(⊥),

• otp = k⊕ sk1 and,

• R*(1𝜆, 𝑥, ·) on input (ct, ̃︀C, otp) outputs (c*1, . . . , c
*
ℓ).

Otherwise, BAD1.1 = 0.

We define p1.1 as p1.1 = Pr[BAD1.1 = 1].
From the quantum security of QFHE, it holds that |p1 − p1.1| ≤ negl(𝜆) for some

negligible function negl. Note that we crucially rely on the fact that SFE, that re-
quires the sender to input sk2, is only executed after the receiver sends (c*1, . . . , c

*
ℓ).

We define a hybrid event BAD1.2 as follows:

BAD1.2 = 1 if there exists 𝑟1, . . . , 𝑟ℓ,d such that(︀
c = Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︁(︀
∀𝑖 ∈ [ℓ], c*𝑖 = Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
= 1,

where:

• c← R*(1𝜆, 𝑥, ·),
• ct1 ← QFHE.Encpk1(td||w), where (pk𝑖, sk𝑖) ← QFHE.Setup(1𝜆),∀𝑖 ∈
{1, 2} and td

$←− {0, 1}𝜆,
• ̃︀C← LObf.Sim

(︀
1𝜆, 1|C|

)︀
,

• otp = k⊕ sk1 and,

• R*(1𝜆, 𝑥, ·) on input (ct, ̃︀C, otp) outputs (c*1, . . . , c
*
ℓ).

Otherwise, BAD1.2 = 0.

We define p1.2 as p1.2 = Pr[BAD1.2 = 1]. From the quantum security of LObf , it
follows that |p1.1 − p1.2| ≤ negl(𝜆). Note that we crucially use the fact that the lock
r is uniformly sampled and independently of the function that is obfuscated.

We define a hybrid event BAD1.3 as follows:

BAD1.3 = 1 if there exists 𝑟1, . . . , 𝑟ℓ,d such that(︀
c = Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︁(︀
∀𝑖 ∈ [ℓ], c*𝑖 = Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
= 1,

where:

• c← R*(1𝜆, 𝑥, ·),

97

• ct1 ← QFHE.Encpk1(td||w), where (pk𝑖, sk𝑖) ← QFHE.Setup(1𝜆),∀𝑖 ∈
{1, 2} and td

$←− {0, 1}𝜆,

• ̃︀C← LObf.Sim
(︀
1𝜆, 1|C|

)︀
,

• otp
$←− {0, 1}|sk1| and,

• R*(1𝜆, 𝑥, ·) on input (ct, ̃︀C, otp) outputs (c*1, . . . , c
*
ℓ).

Otherwise, BAD1.3 = 0.

We define p1.3 as p1.3 = Pr[BAD1.3 = 1]. Observe that p1.2 = p1.3.

We define a hybrid event BAD1.4 as follows:

BAD1.4 = 1 if there exists 𝑟1, . . . , 𝑟ℓ,d such that(︀
c = Comm

(︀
1𝜆, (𝑟1, . . . , 𝑟ℓ);d

)︀)︀⋀︁(︀
∀𝑖 ∈ [ℓ], c*𝑖 = Comm

(︀
1𝜆, td𝑖; 𝑟𝑖

)︀)︀
= 1,

where:

• c← R*(1𝜆, 𝑥, ·),
• ct1 ← QFHE.Encpk1(⊥), where (pk𝑖, sk𝑖)← QFHE.Setup(1𝜆),∀𝑖 ∈ {1, 2}

and td
$←− {0, 1}𝜆,

• ̃︀C← LObf.Sim
(︀
1𝜆, 1|C|

)︀
,

• otp
$←− {0, 1}|sk1| and,

• R*(1𝜆, 𝑥, ·) on input (ct, ̃︀C, otp) outputs (c*1, . . . , c
*
ℓ).

Otherwise, BAD1.4 = 0.

We define p1.4 as p1.4 = Pr[BAD1.4 = 1]. From the quantum security of QFHE,
it follows that |p1.3 − p1.4| ≤ negl(𝜆). Moreover, note that p1.4 = 2−𝜆 since td is
information-theoretically hidden from R*. Thus, we have that p1 ≤ negl(𝜆).

We now use Claim 65 to prove Claim 64. Conditioned on BAD1 ̸= 1, it holds that the
view of R* after its interaction with S is indistinguishable (by a QPT algorithm) from
the view of R* after its interaction with Hybrid2.S; this follows from the IND-security of
SFE against quantum receivers since 𝑓((td, c, c*1, . . . , c

*
ℓ , sk2), (d, 𝑟1, . . . , 𝑟ℓ)) = 𝑓((⊥), (d, 𝑟1, . . . , 𝑟ℓ)).

Hybrid3: We define a hybrid sender, denoted by Hybrid3.S: it behaves exactly like
Hybrid2.S except that ct* in ̃︀C is generated as ct* ← QFHE.Encpk2(⊥).

Assuming the quantum security of QFHE, we have:

ViewR*
(︀
⟨Hybrid2.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid3.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
98

Hybrid4: We define a hybrid sender, denoted by Hybrid4.S: it behaves exactly like
Hybrid3.S except that ̃︀C is generated as ̃︀C← LObf.Sim

(︀
1𝜆, 1|C|

)︀
.

Assuming the quantum security of LObf , we have:

ViewR*
(︀
⟨Hybrid3.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
≡ ViewR*

(︀
⟨Hybrid4.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
Hybrid5: We define a hybrid sender, denoted by Hybrid5.S: it behaves exactly like
Hybrid4.S except that otp is generated uniformly at random.

The following holds unconditionally:

ViewR*
(︀
⟨Hybrid4.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
≡ ViewR*

(︀
⟨Hybrid5.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
Hybrid6: We define a hybrid sender, denoted by Hybrid6.S: it behaves exactly like
Hybrid5.S except that ct1 is generated as ct1 ← QFHE.Encpk1(⊥).

Assuming the quantum security of QFHE, we have:

ViewR*
(︀
⟨Hybrid5.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 ViewR*

(︀
⟨Hybrid6.S(1𝜆, 𝑥,w),R*(1𝜆, 𝑥, ·)⟩

)︀
Since Hybrid6.S is identical to Sim, the proof of quantum zero-knowledge follows.

Extractability. Let S* = (S*1, S
*
2) be a semi-malicious QPT, where 𝑆*2 is the QPT

involved in SFE. Denote by R = (R1,R2,R3) the PPT algorithms of the honest
receiver. In particular, R3 is the algorithm that the receiver runs in SFE protocol.
Let

ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*) :=
⟨︀
R3(1

𝜆,d, 𝑟1, . . . , 𝑟ℓ), S
*
2(1

𝜆, td,w, c, c*, ·)
⟩︀

be the interaction channel induced on the private quantum input of S* by the interac-
tion with R in the SFE protocol for the functionality 𝑓 with inputs d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*.
Without loss of generality, assume that this channel also outputs the classical message
output of SFE.

Consider the following extractor Ext, that takes as input the efficient quantum
circuit description of S*(1𝜆, 𝑥,w, ·), and the instance 𝑥.

Ext(1𝜆, 𝑆*, 𝑥, ·):

• Run R1 to compute c, d, and 𝑟1, . . . , 𝑟ℓ.

• Apply the channel 𝑆*1(1𝜆, 𝑥,w, c, ·).

• Let (ct1, ̃︀C, otp) denote the classical messages outputted by 𝑆*1 , and let 𝜌 denote
the rest of the state.

• With ct1, homomorphically commit to td, obtaining

QFHE.Encpk1(c
* := Comm(1𝜆, td)).

99

• Encrypt (d, c, 𝑟1, . . . , 𝑟ℓ), and 𝜌, and homomorphically apply the channel

ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*).

• Let QFHE.Encpk1(SFE.Out ⊗ 𝜌′) be the output of the previous step, where
SFE.Out is the classical output of the SFE protocol.

• Apply ̃︀C to the QFHE encryption of SFE.Out. Note that we are assuming that
classical messages have classical ciphertexts, so this computation is a classical
one. Let 𝑘 be the output of ̃︀C (︀QFHE.Encpk1(SFE.Out))︀.

• Let sk1 := 𝑘⊕ otp, and decrypt ct1 with sk1. If the decryption is successful and
the message w is recovered, let Ext2 output w.

• Use sk1 to decrypt the ciphertext QFHE.Encpk1(SFE.Out⊗𝜌
′), and let Ext1 output

𝜌′.

Claim 66. ViewS*
(︀
⟨S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)⟩

)︀
≈𝑄 Ext1

(︀
1𝜆, S*, 𝑥, ·

)︀
Proof. Let R𝒟 be the quantum register of a distinguisher 𝒟. Let ℱ : R𝒟 → R𝒟 be
the following channels, parametrized by d, 𝑟1, ..., 𝑟ℓ, td,w, c, c

*,

ℱ(𝜌;d, 𝑟1, ..., 𝑟ℓ,w, c, c
*) :=

(︀[︀
ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*) ∘ 𝑆*1(1𝜆, 𝑥,w, c, ·)

]︀
⊗ Id

)︀
(𝜌) .

The identity is acting on the distinguisher’s private state, and the composition

ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*) ∘ 𝑆*1(1𝜆, 𝑥,w, c, ·)

acts on the private state of S*. We do not write td as a parameter to ℱ , because td is
generated by 𝑆*1 and assumed to be part of the sender’s private state. We do add it
as a parameter to ℰSFE to be consistent and to remind ourselves that the td is input
into the SFE protocol.

Note that when d, 𝑟1, . . . , 𝑟ℓ, c and c* are generated by the honest R in the protocol,
we have

ℱ(𝜌;d, 𝑟1, ..., 𝑟ℓ,w, c, c
*) =

(︀
ViewS*

(︀
⟨S*(1𝜆, 𝑥,w, ·),R(1𝜆, 𝑥)⟩

)︀
⊗ Id

)︀
(𝜌)

We will show that when d, 𝑟1, . . . , 𝑟ℓ, c are generated the same way as the honest
R would generate them in the first round R1, but the commitment c* = c*1, . . . , c

*
ℓ is

a commitment to the trapdoor, instead, we have

ℱ(𝜌;d, 𝑟1, ..., 𝑟ℓ,w, c, c
*
td) =

(︀
Ext1

(︀
1𝜆, S*, 𝑥, ·

)︀
⊗ Id

)︀
(𝜌)

Our goal is to show that these two cases, c* and c*td, are quantum computationally
indistinguishable.

To see why this last equation is true, we are using the perfect correctness of both
the QFHE scheme and of the lockable obfuscator, as well as the fact that the S* is
semi-malicious, which means it has to follow the protocol. This means that when 𝑆*1

100

outputs (ct1, ̃︀C, otp), the extractor has a valid ciphertext ct1 encrypted with a key
pk1, which in turn is one-time padded, sk1⊕ 𝑘 = otp. Furthermore, the one-time pad
value 𝑘 is the output of ̃︀C if an input releases the lock, and ̃︀C is a correct lockable
obfuscation of the desired circuit.

After this, the extractor performed ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c
*
td) homomorphi-

cally, which results in the extractor having an encryption of sk2 under pk1. This is
true because the extractor is able to commit to the trapdoor inside the encryption,
and the semi-malicious sender has to engage correctly in the SFE. Since the extrac-
tor can now use the ̃︀C to obtain sk1, we can summarize the whole operation of the
extractor as follows. Let (ct1, ̃︀C, otp) ⊗ 𝜌′ be the state of the distinguisher after 𝑆*1 .
Then, the extractor performs

((Dec(sk1, ·) ∘ Eval (ℰSFE (· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*td) , ·) ∘ Enc(pk1, c*td, ·))⊗ Id) (𝜌′)

By correctness of the QFHE scheme, this is the same as the extractor performing(︀[︀
ℰSFE(· ;d, 𝑟1, ..., 𝑟ℓ, td,w, c, c*td) ∘ 𝑆*1(1𝜆, 𝑥,w, c, ·)

]︀
⊗ Id

)︀
(𝜌)

on the distinguisher’s state.
Next, we show that the view of the sender when interacting with the honest re-

ceiver is indistinguishable (against QPT algorithms) from the view of the sender when
interacting with the extractor.

Hybrid1: The output of this hybrid is the view of the sender when interacting with
the honest receiver.

Hybrid2: We define a hybrid receiver Hybrid2.R that behaves like the honest receiver
except that the input of Hybrid2.R in SFE is ⊥. The output of this hybrid is the view
of the sender when interacting with Hybrid2.R.

The quantum indistinguishability of Hybrid1 and Hybrid2 follows from the semantic
security of SFE against QPT adversaries.

Hybrid3: We define a hybrid receiver Hybrid3.R that behaves like Hybrid2.R except
that it sets c to be c = Comm(1𝜆, 0;d). The output of this hybrid is the view of the
receiver when interacting with Hybrid3.R.

The quantum indistinguishability of Hybrid2 and Hybrid3 follows from the quantum
computational hiding of Comm.

Hybrid4: We define a hybrid receiver Hybrid4.R that sets c*𝑖 = Comm(1𝜆, td𝑖; 𝑟𝑖), for
every 𝑖 ∈ [ℓ], where td is extracted inefficiently.

To prove that Hybrid3 and Hybrid4 are indistinguishable, we first establish some
notation. Let 𝑝𝑥 be the probability that the sender samples td = 𝑥, and let 𝜀𝑥 denote
the probability that the sender distinguishes Hybrid3 and Hybrid4 when td = 𝑥. Let
𝐸𝑥 denote the event that sender chooses td = 𝑥 and that it distinguishes correctly.

Suppose a QPT distinguisher can distinguish Hybrid3 and Hybrid4. Then it follows

101

that Pr[∪𝑥𝐸𝑥] is non-negligible. Moreover, we have the following:

Pr[∪𝑥𝐸𝑥] =
∑︁
𝑥

𝑝𝑥𝜀𝑥

≤ max
𝑥

(𝜀𝑥)

where we used the fact that {𝐸𝑥} are mutually exclusive events. Since Pr[∪𝑥𝐸𝑥] is
non-negligible, this means that there exists an 𝑥 such that 𝜀𝑥 is non-negligible. This
further implies that Comm(0) and Comm(𝑥) are distinguishable with non-negligible
probability, thus contradicting the quantum computational hiding security of Comm.

Thus, the computational indistinguishability of Hybrid3 and Hybrid4 follows from
the quantum computational hiding of Comm.

Hybrid5: We define a hybrid receiver Hybrid5.R that behaves as Hybrid4.R except that
it sets c to be c = Comm(1𝜆, (𝑟1, . . . , 𝑟ℓ);d), where 𝑟𝑖 is the randomness used in the
commitment c*𝑖 .

The quantum indistinguishability of Hybrid4 and Hybrid5 follows from the quantum
computational hiding of Comm.

Hybrid6: The output of this hybrid is the output of the extractor.
The quantum indistinguishability of Hybrid5 and Hybrid6 follows from the semantic

security of SFE against polynomial time quantum adversaries.

102

Chapter 4

Quantum Zero-Knowledge Protocols

4.1 Introduction
Zero-knowledge [GMR85] is one of the foundational concepts in cryptography. A zero-
knowledge system for NP is an interactive protocol between a prover 𝑃 , who receives
as input an instance 𝑥 and a witness 𝑤, and a verifier 𝑉 who receives as input an
instance 𝑥. The (classical) zero-knowledge property roughly states that the view of the
malicious probabilistic polynomial-time verifier 𝑉 * generated after interacting with
the prover 𝑃 can be simulated by a PPT simulator, who doesn’t know the witness
𝑤. The goal when constructing ZK protocols is to design protocols with additional
desirable properties. Two properties that stand out for practical reasons are: (1) low
round complexity, and (2) concurrency. In real life, implementing ZK protocols can be
quite computationally expensive, so it is important to construct protocols that need
the least amount of resources possible. Furthermore, in real life protocols are not
executed in isolation. For this reason, concurrent secure protocols have been widely
studied in the classical literature [DS98, DCO99, Can01, CLOS02, CF01, RK99, BS05,
DNS04, PRS02, Lin03, Pas04, PV08, PTV14, GJO+13, CLP15, FKP19].

Our goal is to study to what extend it is possible to construct low-round complexity
or concurrent protocols in the quantum setting. In this chapter we will present
two different QZK protocols. The first QZK protocol is an 𝑂(1)-round classical
argument system for NP, while our second protocol is a bounded concurrent QZK
proof system. Both of this protocols are classical protocols, i.e. they do not require
quantum resources. We then show how to obtain a bounded concurrent QZK proof
system for QMA.

Round Complexity in the Quantum Setting. Protocols with neglible sound-
ness and optimal (constant) round complexity have been already achieved in the
classical setting [BCPR16, BBK+16, BKP18, BKP19]. In contrast, the first constant
round QZK protocol was constructed very recently in concurrent work [BS20]. Their
work provides a positive answer to the question we set out to study:

(Q1.1) Are there constant round QZK protocols for NP (with negligible
soundness)?

103

by exhibiting a QZK argument system for NP (and QMA). Their protocol uses non-
black-box techniques similar to those from Chapter 3, so it relies on QLWE as well as
QFHE. There are still many open questions related to QZK protocols with low round
complexity. For example, are there protocols whose security solely relies on QLWE?
In this chapter we will present a black-box constant round QZK construction that
solely relies on QLWE, although it is a classical argument system1.

Protocol Composition in the Quantum Setting. Most of the work in quan-
tum zero-knowledge have been done in the standalone setting. These constructions
work under the assumption that the designed protocols work in isolation. That is, a
standalone protocol is one that only guarantees security if the parties participating
in an execution of this protocol do not partake in any other protocol execution. This
is an unrealistic assumption.

A natural question to ask is whether there exist quantum zero-knowledge proto-
cols (without any setup) that still guarantee security under composition. Barring a
few works [Unr10, JKMR06, ABG+20], this direction has largely been unaddressed.
The couple of works [JKMR06, ABG+20] that do address composition only focus
on parallel composition; in this setting, all the verifiers interacting with the prover
should send the 𝑖𝑡ℎ round messages before the (𝑖 + 1)𝑡ℎ round begins. The setting
of parallel composition is quite restrictive; it disallows the adversarial verifiers from
arbitrarily interleaving their messages with the prover. A more reasonable scenario,
also referred to as concurrent composition, would be to allow the adversarial verifiers
to choose the scheduling of their messages in any order they desire. So far, there has
been no work that addresses concurrent composition in the quantum setting.

In the concurrent setting, quantum zero-knowledge is defined as follows: there
is a single prover, who on input instance-witness pair (𝑥,𝑤), can simultaneously
interact with multiple verifiers, where all these verifiers are controlled by a single
malicious quantum polynomial-time adversary. All the verifiers can potentially share
an entangled state. Moreover, they can arbitrarily interleave their messages when
they interact with the prover. For example, suppose the prover sends a message to
the first verifier, instead of responding, it could let the second verifier send a message,
after which the third verifier interacts with the prover and so on.

We say that zero-knowledge in this setting holds if there exists a quantum polynomial-
time simulator (with access to the initial quantum state of all the verifiers) that can
simultaneously simulate the interaction between the prover and all the verifiers.

Towards answering the following question, in this chapter we present a construc-
tion of a bounded concurrent QZK proof system.

(Q1.2) Are there concurrent QZK proof systems for NP?

1Its soundness only holds against classical PPT provers.

104

4.2 Constant round quantum zero-knowledge classi-
cal argument system for NP

4.2.1 Overview

We want to construct a constant round QZK protocol where soundness only holds
against malicious PPT receivers. Before formally define this notion in Section 4.2.2,
we begin with an overview of the construction. We will show how to turn the con-
struction of cQEXT (Section 3.2) into a QZK protocol.

From Quantum Extraction to Quantum Zero-Knowledge. As a starting
point, we consider the quantum analogue of the seminal FLS technique [FLS99] to
transform a quantum extraction protocol into a quantum ZK protocol. A first at-
tempt to construct quantum ZK is as follows: let the input to the prover be instance
𝑥 and witness 𝑤 while the input to the verifier is 𝑥.

• The verifier commits to some trapdoor td. Call the commitment c and the
corresponding decommitment d.

• The prover and verifier then execute a quantum extraction protocol with the
verifier playing the role of the sender, on input (c,d), while the prover plays
the role of the receiver on input c.

• The prover and the verifier then run a witness-indistinguishable protocol where
the prover convinces the verifier that either 𝑥 belongs to the language or it
knows td.

At first sight, it might seem that the above template should already give us the
result we want; unfortunately, the above template is insufficient. The verifier could
behave maliciously in the quantum extraction protocol but the quantum extraction
protocol only guarantees security against semi-malicious senders. Hence, we need an
additional mechanism to protect against malicious receivers. Of course, we require
witness-indistinguishability to hold against quantum verifiers and we do know candi-
dates satisfying this assuming quantum hardness of learning with errors [Blu86, LS19].

Handling Malicious Behavior in QEXT. To check that the verifier behaved
honestly in the quantum extraction protocol, we ask the verifier to reveal the inputs
and random coins used in the quantum extraction protocol. At this point, the prover
can check if the verifier behaved honestly or not. Of course, this would then violate
soundness: the malicious prover upon receiving the random coins from the verifier can
then recover td and then use this to falsely convince the verifier to accept its proof.
We overcome this by forcing the prover to commit (we again use the extractable
commitment scheme of [PW09]) to some string td′ just before the verifier reveals the
inputs and random coins used in the quantum extraction protocol. Then we force the
prover to use the committed td′ in the witness-indistinguishable protocol; the prover

105

does not gain any advantage upon seeing the coins of the verifier and thus, ensuring
soundness.

One aspect we didn’t address so far is the aborting issue of the verifier: if the
verifier aborts in the quantum extraction protocol, the simulator still needs to produce
a transcript indistinguishable from that of the honest prover. Luckily for us, the
quantum extraction protocol we constructed before already allows for simulatability
of aborting adversaries.

To summarise, our ZK protocol consists of the following steps: (i) first, the prover
and the verifier run the quantum extraction protocol, (ii) next the prover commits to
a string td′ using [PW09], (iii) the verifier then reveals the random coins used in the
extraction protocol and, (iv) finally, the prover and the verifier run a quantum WI
protocol where the prover convinces the verifier that it either knows a trapdoor td′

or that 𝑥 is a YES instance.

4.2.2 Definition

The following section contains the construction of a quantum zero-knowledge, classical
prover, argument system for NP secure against quantum verifiers; that is, the protocol
is classical, the malicious prover is also a classical adversary but the malicious verifier
can be a polynomial time quantum algorithm. To formally define this notion, consider
the following definition.

Definition 67 (Classical arguments for NP). A classical interactive protocol (𝑃, 𝑉)
is a classical argument system for an NP language ℒ, associated with an NP
relation ℛ(ℒ), if the following holds:

• Completeness: For any (𝑥,𝑤) ∈ ℛ(ℒ), we have that Pr[⟨𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 (1𝜆, 𝑥)⟩ =
1] ≥ 1− negl(𝜆), for some negligible function negl.

• Soundness: For any 𝑥 /∈ ℒ, any PPT classical adversary 𝑃 *, and any polynomial-
sized auxiliary information aux, we have that Pr[⟨𝑃 *(1𝜆, 𝑥, aux), 𝑉 (1𝜆, 𝑥)⟩ =
1] ≤ negl(𝜆), for some negligible function negl.

We say that a classical argument system for NP is a QZK (quantum zero-knowledge)
classical argument system for NP if in addition to the above properties, the classical
interactive protocol satisfies zero-knowledge against malicious verifiers.

Definition 68 (QZK classical argument system for NP). A classical interactive pro-
tocol (𝑃, 𝑉) is a quantum zero-knowledge classical argument system for a
language ℒ, associated with an NP relation ℛ(ℒ) if both of the following hold.

• (𝑃, 𝑉) is a classical argument for ℒ (Definition 67).

• Quantum Zero-Knowledge: For all (𝑥,𝑤) ∈ ℛ(ℒ), for any QPT 𝑉 * with
private register of size poly(|𝑥|), there exist a QPT Sim such that

{View𝑉 *⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, ·)⟩}(𝑥,𝑤)∈ℛ(ℒ) ≈𝑄 {Sim(𝑉 *, 𝑥, ·)}(𝑥,𝑤)∈ℛ(ℒ)

106

4.2.3 Construction

We present a construction of constant round quantum zero-knowledge classical argu-
ment system for NP.

Tools.

• Perfectly-binding and quantum-computational hiding non-interactive commit-
ments Comm (Section 2.4.2).

• Quantum extraction protocol secure against classical adversaries cQEXT =
(S,R) (Section 3.2) associated with the relation ℛEXT below. More generally,
cQEXT could be any quantum extraction protocol secure against classical adver-
saries satisfying Claim 62 (indistinguishability of extraction against malicious
senders).

ℛEXT =
{︀

(c, (d, td)) : c = Comm(1𝜆, td;d)
}︀

• Quantum witness indistinguishable classical argument system ΠWI = (ΠWI.𝑃,
ΠWI.𝑉) for the relation ℛwi (Definition 49).

Instance:
(︂
𝑥, td,

{︁
(c

(𝑗)
0)*, (c

(𝑗)
1)*

}︁
𝑗∈[𝑘]

)︂
Witness:

(︂
𝑤,
{︁

(𝑠ℎ
(𝑗)
0 ,d

(𝑗)
0 , 𝑠ℎ

(𝑗)
1 ,d

(𝑗)
1)
}︁

𝑗∈[𝑘]

)︂
NP verification: Accept if one of the following two conditions are satisfied:

• (𝑥,𝑤) ∈ ℛ.

• If for every 𝑗 ∈ [𝑘], it holds that(︁
(c

(𝑗)
0)* = Comm(1𝜆, 𝑠ℎ

(𝑗)
0 ;d

(𝑗)
0)
)︁⋀︁(︁

(c
(𝑗)
1)* = Comm(1𝜆, 𝑠ℎ

(𝑗)
1 ;d

(𝑗)
1)
)︁⋀︁(︁

td = 𝑠ℎ
(𝑗)
0 ⊕ 𝑠ℎ

(𝑗)
1

)︁

Figure 4-1: Relation ℛwi associated with ΠWI.

Construction. Let ℒ be an NP language. We describe a classical interactive pro-
tocol (𝑃, 𝑉) for ℒ in Figure 4-2.

Lemma 69. The classical interactive protocol (𝑃, 𝑉) is a quantum zero-knowledge,
classical prover, argument system for NP.

Proof. The completeness is straightforward. We prove soundness and zero-knowledge
next.

107

• Trapdoor Committment Phase: 𝑉 → 𝑃 : sample td ← {0, 1}𝜆. Compute
c ← Comm(1𝜆, td;d), where d ← {0, 1}poly(𝜆) is the randomness used in the
commitment. Send c to 𝑃 .

• Trapdoor Extraction Phase: 𝑃 and 𝑉 run the quantum extraction protocol
cQEXT with 𝑉 taking the role of the sender cQEXT.S and 𝑃 taking the role
of the receiver cQEXT.R. The input of cQEXT.S is (1𝜆, c, (d, td); rqext) and the
input of cQEXT.R is

(︀
1𝜆, c

)︀
, where rqext is the randomness used by the sender in

cQEXT. Let the transcript generated during the execution of cQEXT be 𝒯𝑉→𝑃 .

Note: The trapdoor extraction phase will be used by the simulator, while proving
zero-knowledge, to extract the trapdoor from the malicious verifier.

• 𝑃 → 𝑉 : Let 𝑘 = 𝜆. For every 𝑗 ∈ [𝑘], 𝑃 sends (c
(𝑗)
0)* = Comm(1𝜆, 𝑠ℎ

(𝑗)
0 ;d

(𝑗)
0)

and (c
(𝑗)
1)* = Comm(1𝜆, 𝑠ℎ

(𝑗)
1 ;d

(𝑗)
1), where 𝑠ℎ(𝑗)0 , 𝑠ℎ

(𝑗)
1

$←− {0, 1}poly(𝜆).

• 𝑉 → 𝑃 : For every 𝑗 ∈ [𝑘], 𝑉 sends bit 𝑏(𝑗) $←− {0, 1} to 𝑃 .

• 𝑃 → 𝑉 : 𝑃 sends (𝑠ℎ
(𝑗)

𝑏(𝑗)
,d

(𝑗)

𝑏(𝑗)
) to 𝑉 .

• 𝑉 → 𝑃 : 𝑉 sends rqext,d, td to 𝑃 . Then 𝑃 checks the following:

– Let 𝒯𝑉→𝑃 be (𝑚𝑆
1 ,𝑚

𝑅
1 , . . . ,𝑚

𝑆
𝑡′ ,𝑚

𝑅
𝑡′), where the message 𝑚𝑅

𝑖 (resp., 𝑚𝑆
𝑖)

is the message sent by the receiver (resp., sender) in the 𝑖𝑡ℎ round2 and
𝑡′ is the number of rounds of cQEXT. Let the message produced by
cQEXT.S

(︀
1𝜆, c, (d, td); rqext

)︀
in the 𝑖𝑡ℎ round be ̃︀𝑚𝑆

𝑖 .

– If for any 𝑖 ∈ [𝑡′], ̃︀𝑚𝑆
𝑖 ̸= 𝑚𝑆

𝑖 then 𝑃 aborts If c ̸= Comm(1𝜆, td;d) then
abort.

• Execute Quantum WI: 𝑃 and 𝑉 run ΠWI with 𝑃 taking the role of ΠWI

prover ΠWI.𝑃 and 𝑉 taking the role of ΠWI verifier ΠWI.𝑉 . The input to ΠWI.𝑃

is the security parameter 1𝜆, instance
(︂
𝑥, td,

{︁
(c

(𝑗)
0)*, (c

(𝑗)
1)*

}︁
𝑗∈[𝑘]

)︂
and wit-

ness (𝑤,⊥). The input to ΠWI.𝑉 is the security parameter 1𝜆 and instance(︂
𝑥, td,

{︁
(c

(𝑗)
0)*, (c

(𝑗)
1)*

}︁
𝑗∈[𝑘]

)︂
.

• Decision step: 𝑉 computes the decision step of ΠWI.𝑉 .

Figure 4-2: (Classical Prover) Quantum Zero-Knowledge Argument Systems for NP

Soundness. Let 𝑃 * be a classical PPT algorithm. We prove that 𝑃 *(1𝜆, 𝑥, aux),
for 𝑥 /∈ ℒ and auxiliary information aux, can convince 𝑉 (1𝜆, 𝑥) with only negligible

108

probability. Consider the following hybrids.

Hybrid1: The output of this hybrid is the view of the prover View𝑃 *(⟨𝑃 *(1𝜆, 𝑥, aux), 𝑉 (1𝜆, 𝑥)⟩)
along with the decision bit of 𝑉 .

Hybrid2: We consider the following hybrid verifier Hybrid2.𝑉 which executes the trap-
door commitment phase and the trapdoor extraction phase with 𝑃 * honestly. It
then receives {((c(𝑗)0)*, (c

(𝑗)
1)*))}𝑗∈[𝑘] from the prover. Hybrid2.𝑉 sends random bits

{𝑏(𝑗)}𝑗∈[𝑘] to 𝑃 * and it then receives (𝑠ℎ
(𝑗)

𝑏(𝑗)
,d

(𝑗)

𝑏(𝑗)
). At this point, Hybrid2.𝑉 will rewind

until it can extract td* from the commitments; if it extracted multiple values or it
didn’t extract any value, set td* = ⊥. This is done similarly to the cQEXT case and
the argument from [PW09].

The output distribution of this hybrid is identical to the output distribution of
Hybrid1.
The following holds:

Pr
[︀
1← ⟨𝑃 *(1𝜆, 𝑥, aux),Hybrid2.𝑉 (1𝜆, 𝑥)⟩

]︀
= Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid2.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td
⋁︀

td* ̸=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂

≤ Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid2.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
⏟ ⏞

𝜀1

+Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid2.𝑉 (1𝜆,𝑥)⟩⋀︀

(td* ̸=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
⏟ ⏞

𝜀2

We prove the following claims.

Claim 70. 𝜀1 ≤ negl(𝜆), for some negligible function negl.

Proof. Consider the following hybrids.

Hybrid3: We define a hybrid verifier Hybrid3.𝑉 that performs the trapdoor commitment
phase honestly. In the trapdoor extraction phase, it executes QEXT1.Sim(1𝜆), instead
of QEXT1.S(1𝜆, c, (d, td)), while interacting with 𝑃 *. The rest of the steps of Hybrid3.𝑉
is as defined in Hybrid2.𝑉 .

Let td* be the trapdoor extracted as before. From the zero-knowledge property
of cQEXT, the following holds:

𝜀1 ≤ Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid3.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
+ negl(𝜆) (4.1)

Hybrid4: We define the hybrid verifier Hybrid4.𝑉 that performs the same steps as
Hybrid3.𝑉 execpt that it computes c as Comm(1𝜆,0;d) instead of Comm(1𝜆, td;d),

109

where 0 is a 𝜆-length string of all zeroes.
Let td* be the trapdoor extracted as before. From the quantum hiding property

of Comm, the following holds:

Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid3.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
(4.2)

≤ Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid4.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
+ negl(𝜆) (4.3)

Hybrid5: We define the hybrid verifier Hybrid5.𝑉 that performs the same steps as
Hybrid4.𝑉 except that it samples td after it completes its interaction with the 𝑃 *.

Note that the output distributions of Hybrid4 and Hybrid5 are identical. Moreover,
the probability that Hybrid5.𝑉 accepts and td* = td is at most 1

2𝜆
. Thus we have,

Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid4.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
= Pr

[︂
1←⟨𝑃 *(1𝜆,𝑥,aux),Hybrid5.𝑉 (1𝜆,𝑥)⟩⋀︀

(td*=td)
: td* ← Ext(1𝜆, 𝜌aux)

]︂
≤ negl(𝜆)

From the above hybrids, it follows that 𝜀1 ≤ negl(𝜆).

Claim 71. 𝜀2 ≤ negl(𝜆), for some negligible function negl.

Proof. Since the trapdoor td* extracted from 𝑃 * is not equal to td, this means that
there is a 𝑗 ∈ [𝑘] s.t. 𝑠ℎ(𝑗)0 ⊕ 𝑠ℎ

(𝑗)
1 ̸= td, where 𝑠ℎ(𝑗)0 and 𝑠ℎ

(𝑗)
1 are the unique values

(uniqueness follows from perfect binding) committed to in (c
(𝑗)
0)* and (c

(𝑗)
1)* respec-

tively.
From the soundness of ΠWI, it then follows that the probability that the verifier

accepts is negligible.

Quantum Zero-Knowledge. Let 𝑉 * be the malicious QPT verifier. We describe
the simulator Sim as follows.

• It receives c from 𝑉 *.

• Suppose Ext be the extractor of cQEXT associated with cQEXT.S*, where cQEXT.S*
is the adversarial sender algorithm computed by 𝑉 *. Compute Ext(1𝜆, cQEXT.S*, ·)
to obtain td*. At any time, if 𝑉 * aborts, Sim also aborts with the output, the
current private state of 𝑉 *.

• For every 𝑗 ∈ [𝑘], it samples 𝑠ℎ(𝑗)0 , 𝑠ℎ
(𝑗)
1 uniformly at random subject to 𝑠ℎ(𝑗)0 ⊕

𝑠ℎ
(𝑗)
1 = td*. It then computes (c

(𝑗)
0)* = Comm(1𝜆, 𝑠ℎ

(𝑗)
0 ;d

(𝑗)
0) and (c

(𝑗)
1)* =

Comm(1𝜆, 𝑠ℎ
(𝑗)
1 ;d

(𝑗)
1) and sends ((c

(𝑗)
0)*, (c

(𝑗)
1)*) to 𝑉 *.

• It receives bits {𝑏(𝑗)}𝑗∈[𝑘] from 𝑉 *.

110

• It sends (𝑠ℎ
(𝑗)

𝑏(𝑗)
,d

(𝑗)

𝑏(𝑗)
) from 𝑉 *.

• It receives (rqext,d, td) from 𝑉 *. It then checks the following:

– Let 𝒯𝑉→𝑃 be (𝑚𝑆
1 ,𝑚

𝑅
1 , . . . ,𝑚

𝑆
𝑡′ ,𝑚

𝑅
𝑡′), where the message 𝑚𝑅

𝑖 (resp., 𝑚𝑆
𝑖)

is the message sent by the receiver (resp., sender) in the 𝑖𝑡ℎ round3 and
𝑡′ is the number of rounds of cQEXT. Let the message produced by
cQEXT.S

(︀
1𝜆, c, (d, td); rqext

)︀
in the 𝑖𝑡ℎ round be ̃︀𝑚𝑆

𝑖 .

– If for any 𝑖 ∈ [𝑡′], ̃︀𝑚𝑆
𝑖 ̸= 𝑚𝑆

𝑖 then Sim aborts. If td ̸= td* then Sim aborts.

• Sim executes ΠWI with 𝑉 * on input instance
(︂
𝑥, td,

{︁
(c

(𝑗)
0)*, (c

(𝑗)
1)*

}︁
𝑗∈[𝑘]

)︂
. The

witness Sim uses in ΠWI is
(︂
⊥,
{︁

(𝑠ℎ
(𝑗)
0 ,d

(𝑗)
0 , 𝑠ℎ

(𝑗)
1 ,d

(𝑗)
1)
}︁

𝑗∈[𝑘]

)︂
. If 𝑉 aborts at

any point in time, Sim also aborts and outputs the current state of the verifier.

• Otherwise, output the current state of the verifier.

We prove the indistinguishability of the view of the verifier when interacting with
the honest prover versus the view of the verifier when interacting with the simulator.
Consider the following hybrids.

Hybrid1: The output of this hybrid is the view of 𝑉 * when interacting with 𝑃 . That
is, the output of the hybrid is View𝑉 *

(︀
⟨𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)⟩

)︀
.

Hybrid2: We define a hybrid prover Hybrid2.𝑃 as follows: it first receives c from
𝑉 *. It computes Ext(1𝜆, cQEXT.S*, ·) to obtain td*. It then sends (c

(𝑗)
0)* and (c

(𝑗)
1)*,

where (c
(𝑗)
0)* and (c

(𝑗)
1)* are commitments of 𝑠ℎ(𝑗)0 , 𝑠ℎ

(𝑗)
1 respectively and 𝑠ℎ

(𝑗)
0 , 𝑠ℎ

(𝑗)
1

are sampled uniformly at random. It receives 𝑏 from 𝑉 *. It then sends (𝑠ℎ
(𝑗)
𝑏 ,d

(𝑗)
𝑏) to

𝑉 *. It then receives (rqext,d, td) from 𝑉 *. It then checks the following:

• Let 𝒯𝑉→𝑃 be (𝑚𝑆
1 ,𝑚

𝑅
1 , . . . ,𝑚

𝑆
𝑡′ ,𝑚

𝑅
𝑡′), where the message 𝑚𝑅

𝑖 (resp., 𝑚𝑆
𝑖) is the

message sent by the receiver (resp., sender) in the 𝑖𝑡ℎ round and 𝑡′ is the number
of rounds of cQEXT. Let the message produced by cQEXT.S

(︀
1𝜆, c, (d, td); rqext

)︀
in the 𝑖𝑡ℎ round be ̃︀𝑚𝑆

𝑖 .

• If for any 𝑖 ∈ [𝑡′], ̃︀𝑚𝑆
𝑖 ̸= 𝑚𝑆

𝑖 then Hybrid2.𝑃 aborts. If td ̸= td* then Hybrid2.𝑃
aborts.

Hybrid2.𝑃 finally executes ΠWI with 𝑉 *; it still uses 𝑤 in ΠWI.
We claim the following holds:

View𝑉 *
(︀
⟨𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 View𝑉 *

(︀
Hybrid2.𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)

)︀
There are two cases:

3We remind the reader that in every round, only one party speaks.

111

• cQEXT.S* does not behave according to the protocol (i.e., not semi-malicious):
The view of the verifier when interacting with Hybrid2.𝑃 is indistinguishable
from the view of the verifier when interacting with the honest prover, from the
indistinguishability of extraction against malicious senders property (Claim 62).

• cQEXT.S* behaves according to the protocol (i.e., it is semi-malicious): In this
case, cQEXT.Ext is able to extract td with probability negligibly close to 1.
Moreovoer, as before, the view of the verifier when interacting with the honest
prover is indistinguishable from Hybrid2.𝑃 from Claim 62.

Hybrid3: We define a hybrid prover Hybrid3.𝑃 as follows: it behaves exactly like
Hybrid2.𝑃 except that it computes the commitments (c

(𝑗)
0)* and (c

(𝑗)
1)* as commit-

ments of 𝑠ℎ(𝑗)0 and 𝑠ℎ(𝑗)1 , where 𝑠ℎ(𝑗)0 ⊕ 𝑠ℎ
(𝑗)
1 = td.

The following holds from the quantum-computational hiding property of Comm
following the same argument as [PW09]:

View𝑉 *
(︀
⟨Hybrid2.𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 View𝑉 *

(︀
Hybrid3.𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)

)︀
Hybrid4: We define a hybrid prover Hybrid4.𝑃 as follows: it behaves exactly like
Hybrid3.𝑃 except that it uses the witness (⊥, (𝑠ℎ(𝑗)0 ,d

(𝑗)
0 , 𝑠ℎ

(𝑗)
1 ,d

(𝑗)
1)) in ΠWI instead of

(𝑤,⊥). Note that the description of Hybrid4.𝑃 is identical to the description of Sim.
The following holds from the quantum witness indistinguishability property of

ΠWI:

View𝑉 *
(︀
⟨Hybrid3.𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)⟩

)︀
≈𝑄 View𝑉 *

(︀
Hybrid4.𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 *(1𝜆, 𝑥, ·)

)︀
≡ Sim(1𝜆, 𝑥, ·)

On Classical Verifiers

A desirable property from a QZK protocol is if the verifier is classical then so is the
simulator. Our protocol as described above doesn’t satisfy this property. That is, our
simulator is still a QPT algorithm even if the malicious verifier is classical. However,
we can do a simple modification to our QZK protocol (Figure 4-2) to satisfy this
desired property.

The modification is as follows: in addition to the cQEXT protocol, also sequen-
tially execute a constant round classical extractable commitment scheme satisfying
perfectly binding [PW09]. In the classical scheme, the verifer takes the role of the
committer committing to c and d; note that these are the same values it commits
to in the cQEXT protocol as well. Note that this wouldn’t affect soundness; the
classical malicious prover will still be unable to learn d from the classical extractable
commitment scheme, from its hiding property.

112

To argue zero-knowledge, first consider the following two simulators:

• Sim𝑐: This simulator runs the extractor in the classical extractable commitment
scheme to extract d. It then runs the honest receiver to interact with the verifier
in the cQEXT protocol. The rest of the steps is identical to the simulator
described in the proof of Lemma 69.

• Sim𝑞: This simulator runs the honest receiver to interact with the verifier in
the classical extractable commitment scheme. It then runs the extractor in the
cQEXT protocol to extract d. The rest of the steps is identical to the simulator
described in the proof of Lemma 69.

If the malicious verifier is classical PPT then Sim𝑐 can successfully carry out the
simulation whereas if the malicious verifier is QPT then Sim𝑞 is successful. While we
wouldn’t know whether the malicious verifier is classical PPT or not, we know for a
fact that one of two simulators will succeed.

4.3 Bounded concurrent quantum zero-knowledge for
NP

4.3.1 Overview

Our goal is to construct a bounded concurrent QZK proof system for NP (see Sec-
tion 4.3.2 for the formal definition). In the bounded setting, the number of verifiers,
𝑄, is known before specifying the protocol.

Black Box QZK via Watrous Rewinding. The traditional rewinding technique
that has been used to prove powerful results on classical zero-knowledge cannot be
easily ported to the quantum setting. The fundamental reason behind this difficulty
is the fact that to carry out rewinding, it is necessary to clone the state of the verifier.
While cloning comes for free in the classical setting, the no-cloning theorem of quan-
tum mechanics prevents us from being able to clone arbitrary states. Nonetheless,
the seminal work of Watrous [Wat09] demonstrates that there are rewinding tech-
niques that are amenable to the quantum setting. Watrous used this technique to
present the first construction of quantum zero-knowledge for NP. This technique is
so powerful that all quantum zero-knowledge protocols known so far (including the
ones with non-black box simulation [BS20, ABG+20]!) either implicitly or explicitly
use this technique.

We can abstractly think of Watrous technique as follows: to prove that a classical
protocol is quantum zero-knowledge, first come up with a (classical) PPT simulator
that simulates a (classical) malicious PPT verifier. The classical simulator needs to
satisfy the following two conditions:

• Oblivious Rewinding: There is a distribution induced on the decision bits of
the simulator to rewind in any given round 𝑖. This distribution could potentially
depend on the randomness of the simulator and also the state of the verifier.

113

The oblivious rewinding condition requires that this distribution should be in-
dependent of the state of the verifier. That is, this distribution should remain
the same irrespective of the state of the verifier4.

• No-recording: Before rewinding any round, the simulator could record (or
remember) the transcript generated so far. This recorded transcript along with
the rewound transcript will be used for simulation. For instance, in Goldreich
and Kahan [GK96a], the simulator first commits to garbage values and then
waits for the verifier to decommit its challenges. The simulator then records
the decommitments before rewinding and then changing its own commitments
based on the decommitted values.

The no-recording condition requires the following to hold: in order for the
simulator to rewind from point 𝑖 to point 𝑗 (𝑖 > 𝑗), the simulator needs to
forget the transcript generated from 𝑗𝑡ℎ round to the 𝑖𝑡ℎ round. Note that the
simulator of [GK96a] does not satisfy the no-recording condition.

Once such a classical simulator is identified, we can then simulate quantum verifiers
as follows: run the classical simulator and the quantum verifier5 in superposition and
then at the end of each round, measure the appropriate register to figure out whether
to rewind or not. The fact that the distribution associated with the decision bits are
independent of the verifier’s state is used to argue that the state, after measuring the
decision register, is essentially not disturbed. Using this fact, we can then reverse the
computation and go back to an earlier round. Once the computation is reversed (or
rewound to an earlier round), the simulator forgets all the messages exchanged from
the point – to which its being rewound to – until the current round.

Incompatibility of Existing Concurrent ZK Techniques. To realize our goal
of building bounded concurrent QZK, a natural direction to pursue is to look for clas-
sical concurrent ZK protocols with the guarantee that the classical simulator satisfies
both the oblivious rewinding and no-recording conditions. However, most known clas-
sical concurrent ZK techniques are such that they satisfy one of these two conditions
but not both. For example, the seminal work of [PRS02] proposes a concurrent ZK
protocol and the simulator they describe satisfies the oblivious rewinding condition
but not the no-recording condition. More relevant to our work is the work of Pass,
Tseng, and Wikström [PTW09], who construct a bounded concurrent ZK protocol
whose simulator satisfies the no-recording condition but not the oblivious rewinding
condition.

In more detail, at every round, the simulator (as described in [PTW09]) makes a
decision to rewind based on which session verifier sends a message in that round. This
means that the probability of whether the simulator rewinds any given round depends
on the scheduling of the messages of the verifiers. Unfortunately, the scheduling itself

4A slightly weaker property where the distribution is “approximately" independent of the state
of the verifier also suffices.

5Without loss of generality, we can consider verifiers whose next message functions are imple-
mented as unitaries and they perform all the measurements in the end.

114

could be a function of the state of the verifier. The malicious verifier could look at
the first bit of its auxiliary state. If it is 0, it will ask the first session verifier to send
a message and if it is 1, it will ask the second session verifier to send a message and
so on. This means that a simulator’s decision to rewind could depend on the state of
the verifier.

Bounded Concurrent QZK. We now discuss our construction of bounded con-
current QZK and how we overcome the aforementioned difficulties. Our construction
is identical to the bounded concurrent (classical) ZK construction of Pass, Tseng, and
Wikström [PTW09], modulo the setting of parameters. We recall their construction
below.

The protocol is divided into two phases. In the first phase, a sub-protocol, referred
to as slot, is executed many times. We will fix the number of executions later when
we do the analysis. In the second phase, the prover and the verifier execute a witness-
indistinguishable proof system.

In more detail, one execution of a slot is defined as follows:

• Prover sends a commitment of a random bit 𝑏 to the verifier. This commitment
is generated using a statistically binding commitment scheme that guarantees
hiding property against quantum polynomial-time adversaries (also referred to
as quantum concealing).

• The verifier then sends a uniformly random bit 𝑏′ to the prover.

We say that a slot is matched if 𝑏 = 𝑏′.
In the second phase, the prover convinces the verifier that either the instance is

in the language or there is a large fraction, denoted by 𝜏 , of matched slots. This
is done using a proof system satisfying witness-indistinguishability property against
efficient quantum verifiers. Of course, 𝜏 needs to be carefully set such that the
simulator will be able to satisfy this constraint while a malicious prover cannot.
Before we discuss the precise parameters, we first outline the simulator’s strategy to
prove zero-knowledge. As remarked earlier, the classical simulation strategy described
in [PTW09] is incompatible with Watrous rewinding. We first discuss a new classical
simulation strategy, that we call block rewinding, for this protocol and then we discuss
how to combine this strategy along with Watrous rewinding to prove quantum zero-
knowledge property of the above protocol.

Block Rewinding. Suppose 𝑄 be the number of sessions the malicious verifier
initiates with the simulator. Since this is a bounded concurrent setting, 𝑄 is known
even before the protocol is designed. Let ℓprot be the number of messages in the
protocol. Note that the total number of messages exchanged in all the sessions is
at most ℓprot · 𝑄. We assume for a moment that the malicious verifier never aborts.
Thus, the number of messages exchanged between the prover and the verifier is exactly
ℓprot ·𝑄.

The simulator partitions the ℓprot · 𝑄 messages into many blocks with each block
being of a fixed size (we discuss the parameters later). The simulator then runs the

115

verifier till the end of first block. At this point, it checks if this block contains a
slot. Note that the verifier can stagger the messages of a particular session across the
different blocks such that the first message of a slot is in one block but the second
message of this slot could be in a different block. The simulator only considers those
slots such that both the messages of these slots are contained inside the first block.
Let the set of all the slots in the first block be denoted by 𝜇(𝐵1), where 𝐵1 denotes
the first block. Now, the simulator picks a random slot from the set 𝜇(𝐵1). It then
checks if this slot is matched or not. That is, it checks if the bit committed in the slot
equals the bit sent by the verifier. If indeed they are equal, it continues to the next
block, else it rewinds to the beginning of the first block and then executes the first
block again. Before rewinding, it forgets the transcript collected in the first block.
It repeats this process until the slot it picked is matched. The simulator then moves
on to the second block and repeats the entire process. When the simulator needs to
compute a witness-indistinguishable proof for a session, it first checks if the fraction
of matched slots for that particular session is at least 𝜏 . If so, it uses this information
to complete the proof. Otherwise, it aborts.

It is easy to see why the no-recording condition is satisfied: the simulator never
stores the messages sent in a block. Let us now analyze why the oblivious rewinding
condition is satisfied. Suppose we are guaranteed that in every block there is at least
one slot. Then, we claim that the probability that the simulator rewinds is 1

2
±negl(𝜆),

where negl is a negligible function and 𝜆 is the security parameter. This is because
the simulator rewinds only if the slot is not matched and the probability that a slot
is not matched is precisely 1

2
± negl(𝜆), from the hiding property of the commitment

scheme. If we can show that every block contains a slot, then the oblivious rewinding
condition would also be satisfied.

Absence of Slots and Aborting Issues: We glossed over a couple of issues
in the above description. Firstly, the malicious verifier could abort all the sessions
in some block. Moreover, it can also stagger the messages across blocks such that
there are blocks that contain no slots. In either of the above two cases, the simulator
will not rewind these blocks and this violates the oblivious rewinding condition: the
decision to rewind would be based on whether the verifier aborted or whether there
were any slots within a block. In turn, these two conditions could depend on the state
of the verifier.

To overcome these two issues, we fix the simulator as follows: at the end of every
block, it checks if there are any slots inside this block. If there are slots available, then
the simulator continues as detailed above. Otherwise, it performs a dummy rewind:
it picks a bit uniformly at random and rewinds only if the bit is 0. If the bit is 1, it
continues its execution. This ensures that the simulator will rewind with probability
1
2
± negl(𝜆) irrespective of whether there are any slots inside a block. Thus, with this

fix, the oblivious rewinding condition is satisfied as well.

Parameters and Analysis: We now discuss the parameters associated with the
system. We set the number of slots in the system to be 120𝑄7𝜆. We set 𝜏 to be
⌊60𝑄7𝜆+𝑄4𝜆

120𝑄7𝜆
⌋. We set the number of blocks to be 24𝑄6𝜆. Thus, the size of each block

116

is ⌊120𝑄7𝜆
24𝑄6𝜆

⌋. Recall that the reason why we need to set these parameters carefully is to
ensure that the malicious prover cannot match more than 𝜏 slots with better than neg-
ligible probability whereas the simulator can beat this threshold with overwhelming
probability.

We now argue that the classical simulator can successfully simulate all the 𝑄
sessions. To simulate any given session, say the 𝑖𝑡ℎ session, the number of matched
slots needs to be at least 60𝑄7𝜆 + 𝑄4𝜆. Note that the number of blocks is 24𝑄6𝜆;
the best case scenario is that each of these blocks contain at least one slot of the 𝑖𝑡ℎ
session and the simulator picks this slot every time. Even in this best case scenario,
the simulator can match at most 24𝑄6𝜆 slots and thus, there still would remain
60𝑄7𝜆+𝑄4𝜆− 24𝑄6𝜆 number of slots to be matched. Moreover, even the likelihood
of this best case scenario is quite low.

Instead, we argue the following:

• The simulator only needs to match 3𝑄4𝜆 number of slots for the 𝑖𝑡ℎ session. We
argue that with overwhelming probability, there are 3𝑄4𝜆 blocks such that (i)
there is at least one slot from the 𝑖𝑡ℎ session and, (ii) the simulator happens to
choose a slot belonging to this session in each of these blocks.

• Roughly, 120𝑄7𝜆−3𝑄4𝜆
2

≫ 60𝑄7𝜆−2𝑄4𝜆 number of slots are matched by luck, even
without the simulator picking these slots and trying to match. This follows from
the fact that with probability 1

2
, a slot is matched and the number of remaining

slots that need to be matched are 120𝑄7𝜆− 3𝑄4𝜆.

From the above two bullet points, it follows that with overwhelming probability, the
total number of slots matched is at least 60𝑄7𝜆+𝑄4𝜆.

We note that although the simulation strategy of Pass, Tseng, and Wikström [PTW09]
is quite different, their analysis follows the same template as above.

Simulation of Quantum Verifiers: So far we have demonstrated a simula-
tor that can simulate classical verifiers. We describe, at a high level, how to simulate
quantum verifiers. The quantum simulator runs the classical simulator in superposi-
tion. At the end of every block, it measures a single-qubit register, denoted by Dec,
which indicates whether the simulator needs to rewind this block or not. If this reg-
ister has 0, the simulator does not rewind, otherwise it rewinds. We can show that,
no matter what the auxiliary state of the malicious verifier is, at the end of a block,
the quantum state is of the following form:

√
𝑝|0⟩Dec|ΨGood⟩+

√︀
1− 𝑝|1⟩Dec|ΨBad⟩,

where |ΨGood⟩ is a superposition of all the transcripts where the chosen slot is matched
and on the other hand, |ΨBad⟩ is a superposition of all the transcripts where the chosen
slot is not matched. Moreover, using the hiding property of the commitment scheme,
we can argue that |𝑝 − 1

2
| ≤ negl(𝜆). Then we can apply the Watrous rewinding

lemma, to obtain a state that is close to |ΨGood⟩. This process is repeated for every
block. At the end of the protocol, the simulator measures the registers containing the
transcript of the protocol and outputs this along with the private state of the verifier.

117

4.3.2 Definition

In this section we define bounded concurrent QZK protocols for NP. The definition
of bounded concurrent QZK for QMA can be found in Section 4.4.2. We start by
recalling the definitions of the completeness and soundness properties of a classical
interactive proof system.

Definition 72 (Proof System). Let Π be an interactive protocol between a classical
PPT prover 𝑃 and a classical PPT verifier 𝑉 . Let ℛ(ℒ) be the NP relation associated
with Π.

Π is said to satisfy completeness if the following holds:

• Completeness: For every (𝑥,𝑤) ∈ ℛ(ℒ),

Pr[Accept← ⟨𝑃 (𝑥,𝑤), 𝑉 (𝑥)⟩] ≥ 1− negl(𝜆),

for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

• Soundness: For every prover 𝑃 * (possibly computationally unbounded), every
𝑥 /∈ ℛ(ℒ),

Pr [Accept← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ negl(𝜆),

for some negligible function negl.

Remark 73. In Section 5.3, we define a stronger property called proof of knowledge
property that subsumes the soundness property.

To define (bounded) concurrent QZK, we first define 𝑄-session adversarial verifiers.
Roughly speaking, a 𝑄-session adversarial verifier is one that invokes 𝑄 instantiations
of the protocol and in each instantiation, the adversarial verifier interacts with the
honest prover. In particular, the adversarial verifier can interleave its messages from
different instantiations.

Definition 74 (𝑄-session Quantum Adversary). Let 𝑄 ∈ N. Let Π be an interactive
protocol between a (classical) PPT prover and a (classical) PPT verifier 𝑉 for the
relation ℛ(ℒ). Let (𝑥,𝑤) ∈ ℛ(ℒ). We say that an adversarial non-uniform QPT
verifier 𝑉 * is a 𝑄-session adversary if it invokes 𝑄 sessions with the prover 𝑃 (𝑥,𝑤).

Moreover, we assume that the interaction of 𝑉 * with 𝑃 is defined as follows:
denote by 𝑉 *𝑖 to be the verifier algorithm used by 𝑉 * in the 𝑖𝑡ℎ session and denote by
𝑃𝑖 to be the 𝑖𝑡ℎ invocation of 𝑃 (𝑥,𝑤) interacting with 𝑉 *𝑖 . Every message sent by 𝑉 *
is of the form

(︀
(1,msg1) , . . . ,

(︀
𝑄,msg𝑄

)︀)︀
, where msg𝑖 is defined as:

msg𝑖 =

{︂
N/A, if 𝑉 *𝑖 doesn’t send a message,
(𝑡, 𝑧), if 𝑉 *𝑖 sends 𝑧 in the round 𝑡

𝑃𝑖 responds to msg𝑖. If msg𝑖 = N/A then it sets msg′𝑖 = N/A. If 𝑉 *𝑖 has sent
the messages in the correct order6, then 𝑃𝑖 applies the next message function on

6That is, it has sent (1, 𝑧1) first, then (2, 𝑧2) and so on.

118

its own private state and msg𝑖 to obtain 𝑧′ and sets msg′𝑖 = (𝑡 + 1, 𝑧′). Otherwise,
it sets msg′𝑖 = (⊥,⊥). Finally, 𝑉 * receives

(︀
(1,msg′1), . . . , (𝑄,msg′𝑄)

)︀
. In total, 𝑉 *

exchanges ℓprot · 𝑄 number of messages, ℓprot is the number of the messages in the
protocol.

While the above formulation of the adversary is not typically how concurrent ad-
versaries are defined in the concurrency literature, we note that this formulation is
without loss of generality and does capture all concurrent adversaries.

We define quantum ZK for NP in the concurrent setting below.

Definition 75 (Concurrent Quantum ZK for NP). An interactive protocol Π between
a (classical) PPT prover 𝑃 and a (classical) PPT verifier 𝑉 for a language ℒ ∈ NP
is said to be a concurrent quantum zero-knowledge (QZK) proof system if it
satisfies completeness, unconditional soundness and the following property:

• Concurrent Quantum Zero-Knowledge: For every sufficiently large 𝜆 ∈ N, every
polynomial 𝑄 = 𝑄(𝜆), every 𝑄-session QPT adversary 𝑉 * there exists a QPT
simulator Sim such that for every (𝑥,𝑤) ∈ ℛ(ℒ), poly(𝜆)-qubit bipartite advice
state, 𝜌𝐴𝐵, on registers 𝐴 and 𝐵, the following holds:

View𝑉 * ⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌𝐴𝐵)⟩ ≈𝒬 Sim(𝑥, 𝜌𝐴𝐵)

where 𝑉 * and Sim only have access to register 𝐴. In other words, only the
identity is performed on register 𝐵.

In this work, we consider a weaker setting, called bounded concurrency. The number
of sessions, denoted by 𝑄, in which the adversarial verifier interacts with the prover is
fixed ahead of time and in particular, the different complexity measures of a protocol
can depend on 𝑄.

Definition 76 (Bounded Concurrent Quantum ZK for NP). Let 𝑄 ∈ N. An in-
teractive protocol between a (classical) probabilistic polynomial time (in 𝑄) prover
𝑃 and a (classical) probabilistic polynomial time (in 𝑄) verifier 𝑉 for a language
ℒ ∈ NP is said to be a bounded concurrent quantum zero-knowledge (QZK)
proof system if it satisfies completeness, unconditional soundness and the following
property:

• Bounded Concurrent Quantum Zero-Knowledge: For every sufficiently large
𝜆 ∈ N, every 𝑄-session concurrent QPT adversary 𝑉 *, there exists a QPT
simulator Sim such that for every (𝑥,𝑤) ∈ ℛ(ℒ), poly(𝜆)-qubit bipartite advice
state, 𝜌𝐴𝐵, on registers 𝐴 and 𝐵, the following holds:

View𝑉 * ⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌𝐴𝐵)⟩ ≈𝒬 Sim(𝑥, 𝜌𝐴𝐵)

where 𝑉 * and Sim only have access to register 𝐴. In other words, only the
identity is performed on register 𝐵.

119

4.3.3 Construction

We present the construction of quantum zero-knowledge proof system for NP in the
bounded concurrent setting in Figure 4-3. As remarked earlier, the construction is the
same as the classical bounded concurrent ZK by Pass, Tseng, and Wikström [PTW09],
whereas our proof strategy is significantly different from that of [PTW09].

The relation associated with the bounded concurrent system will be denoted by
ℛ(ℒ), with ℒ being the associated NP language. Let 𝑄 be an upper bound on the
number of sessions.

Tools.

• Statistically-binding and quantum-concealing commitment protocol (Section 2.4.2),
denoted by (Comm,R).

• Four round quantum witness-indistinguishable proof system ΠWI (Definition 49).
The relation associated with ΠWI, denoted by ℛWI, is defined as follows:

ℛWI =

{︃(︀(︀
𝑥, r1, c1, 𝑏

′
1, . . . , r120𝑄7𝜆, c120𝑄7𝜆, 𝑏

′
120𝑄7𝜆

)︀
; (𝑤, 𝑟1, . . . , 𝑟120𝑄7𝜆)

)︀
: (𝑥,𝑤) ∈ ℛ(ℒ)

⋁︁
⎛⎝∃𝑗1, . . . , 𝑗60𝑄7𝜆+𝑄4𝜆 ∈ [120𝑄7𝜆] s.t.

60𝑄7𝜆+𝑄4𝜆⋀︁
𝑖=1

Comm(1𝜆, r𝑗𝑖 , 𝑏
′
𝑗𝑖

; 𝑟𝑗𝑖) = c𝑗𝑖

⎞⎠}︃

Observe that our construction is also a public-coin system. This follows from the fact
that the instantiation of the four-round witness-indistinguishable proof system is a
public-coin system. We are now ready to prove the following theorem.

Theorem 77. Assuming the quantum security of (Comm,R) and ΠWI, the construc-
tion in Figure 4-3 is a bounded concurrent QZK proof system.

Proof. We prove the completeness, soundness and the quantum zero-knowledge prop-
erties.

Completeness. This follows from the completeness of ΠWI.

Before we prove soundness and quantum zero-knowledge, we first give the following
useful definition.

Definition 78 (Matched Slot). We say that a slot is matched if the bit committed by
𝑃 equals 𝑉 ’s response.

120

Input of 𝑃 : Instance 𝑥 ∈ ℒ along with witness 𝑤.
Input of 𝑉 : Instance 𝑥 ∈ ℒ.

Stage 1: For 𝑗 = 1 to 120𝑄7𝜆,

• 𝑃 ↔ 𝑉 : Sample 𝑏𝑗
$←− {0, 1} uniformly at random. 𝑃 commits to 𝑏𝑗

using the statistical-binding commitment scheme. Let the verifier’s
message (verifier plays the role of the receiver) be r𝑗 and let the
prover’s message be c𝑗.

• 𝑉 → 𝑃 : Sample 𝑏′𝑗
$←− {0, 1} uniformly at random. Respond with

𝑏′𝑗.

// We refer to one execution as a slot. So, 𝑃 and 𝑉 execute 120𝑄7𝜆
number of slots.

Stage 2: 𝑃 and 𝑉 engage in ΠWI with the common input being the
following:

(𝑥, r1, c1, 𝑏
′
1, . . . , r120𝑄7𝜆, c120𝑄7𝜆, 𝑏

′
120𝑄7𝜆)

Additionally, 𝑃 uses the witness (𝑤,⊥, . . . ,⊥).

Figure 4-3: Construction of bounded concurrent QZK for NP

Soundness. To argue soundness, we need to argue that with probability negligibly
close to 1, the number of matched slots in a transcript, associated with an instance
not in the language, is less than 60𝑄7𝜆+𝑄4𝜆.

Let 𝑃 * be the malicious prover and let 𝑥 /∈ ℒ. Denote by c1, . . . , c120𝑄7𝜆, the
commitments produced by 𝑃 * in Stage 1.

We first observe that (𝑥, r1, c1, 𝑏
′
1, . . . , r120𝑄7𝜆, c120𝑄7𝜆, 𝑏

′
120𝑄7𝜆) /∈ ℛWI with prob-

ability negligibly close to 1. By the statistical binding property of the underlying
commitment scheme, we have that for every 𝑗 ∈ [60𝑄7𝜆+𝑄4𝜆], there exists a 𝑏𝑗 such
that c𝑗 (prover’s message in the 𝑗𝑡ℎ slot) is a commitment of 𝑏𝑗 with respect to some
randomness. Let X𝑗 be a random variable such that X𝑗 = 1 if 𝑏𝑗 = 𝑏′𝑗, where 𝑏′𝑗 is the

121

bit sent by 𝑉 . The following holds (over the randomness of the verifier):

Pr

⎡⎣∃𝑗1, . . . , 𝑗60𝑄7𝜆+𝑄4𝜆 ∈ [120𝑄7𝜆] s.t.
60𝑄7𝜆+𝑄4𝜆⋀︁

𝑖=1

(︁
Comm(1𝜆, r𝑗𝑖 , 𝑏𝑗𝑖 ; 𝑟𝑗𝑖) = c𝑗𝑖

⋀︁
𝑏𝑗𝑖 = 𝑏′𝑗𝑖

)︁⎤⎦
= Pr

⎡⎣120𝑄7𝜆∑︁
𝑗=1

X𝑗 ≥ 60𝑄7𝜆+𝑄4𝜆

⎤⎦
≤ 𝑒

− (𝑄4𝜆)2

3(60𝑄7𝜆) (By Chernoff Bound)

= 𝑒−
𝑄𝜆
180

= negl(𝜆)

The above observation, combined with the fact that 𝑥 /∈ ℒ, proves the following holds:

(𝑥, r1, c1, 𝑏
′
1, . . . , r120𝑄7𝜆, c120𝑄7𝜆, 𝑏

′
120𝑄7𝜆) /∈ ℛWI

with probability negligibly close to 1.

Quantum Zero-Knowledge

Let the malicious QPT verifier be 𝑉 *. We start by describing some notation.

Parameters.

• ℓprot denotes the number of messages in any given protocol.

• We divide the messages exchanged by the simulator with all the sessions into
blocks. Let 𝐿 denote the number of blocks. We set 𝐿 = 24𝑄6𝜆.

• ℓslot denotes the number of slots in Stage 1 of the protocol. That is, ℓslot =
120𝑄7𝜆. Note that every slot contains three messages. We have ℓprot = 3ℓslot+4.

• ℓ𝐵 denotes the number of messages contained inside one block. Note that ℓ𝐵 =
ℓprot·𝑄

𝐿
.

• 𝐵𝑖 denote the 𝑖𝑡ℎ block.

• N𝑖 to be number of blocks containing at least one slot of the 𝑖𝑡ℎ verifier.

Registers used by the simulator: The quantum simulator uses the following registers:

• R𝑡, for 𝑡 ∈ [ℓprot ·𝑄]: it contains the input and randomness used by the simulator
to compute the 𝑡𝑡ℎ message in the transcript; a transcript consists of all the
messages in the 𝑄 sessions.

• Sim𝑡, for 𝑡 ∈ [ℓprot ·𝑄]: it contains the 𝑡𝑡ℎ message if it is sent by the simulator.

122

• Ver𝑡, for 𝑡 ∈ [ℓprot ·𝑄]: it contains the 𝑡𝑡ℎ message if it is sent by the malicious
verifier 𝑉 *.

• M𝑖, for 𝑖 ∈ [𝐿]: it contains the matched slots of the 𝑖𝑡ℎ block.

• B𝑖, for 𝑖 ∈ [𝑄]: this is a single-qubit register that contains a bit that indicates
whether the simulator needs to use the witness or the matched slots to compute
the 𝑖𝑡ℎ WI proof (where the ordering is determined based on the point of arrival
of WI messages).

• W: it contains the NP witness.

• Aux: it contains the private state of the verifier. It is initialized with the
auxiliary state of the verifier.

• Dec: it contains the decision register that indicates whether to rewind or not.

• X: this is a poly(𝜆)-qubit ancillary register.

Description of Sim𝑉 *
(1𝜆, 𝑥, |Ψ⟩) :

1. For any 𝑤, let |Ψ0,𝑤⟩ denote the following state:

|Ψ0,𝑤⟩ =

(︃
ℓprot·𝑄⨂︁
𝑡=1

|0⟩R𝑡 |0⟩Sim𝑡|0⟩Ver𝑡

)︃
⊗

(︃
𝐿⨂︁

𝑗=1

|0⟩M𝑗

)︃
⊗

(︃
𝑄⨂︁
𝑖=1

|0⟩B𝑖

)︃
⊗|𝑤⟩W⊗|Ψ⟩Aux⊗|0⟩Dec⊗|0⊗poly(𝜆)⟩X

Initialize the state |Ψ0,⊥⟩.

2. For all 𝑗 = {1, 2, . . . , 𝐿}, let 𝑈𝑉 *
𝑗 be the unitary that performs the following

operations ((a) and (b)) in superposition.

(a) For all integers 𝑡 ∈ [(𝑗 − 1)ℓ𝐵 + 1, 𝑗ℓ𝐵]:

• If the 𝑡𝑡ℎ message is a Stage 1 message from the prover responding
to the first session message of a slot, apply the following operation in
superposition over the receiver’s message7:

|r⟩Ver𝑡 |0⟩R𝑡 |0⟩Sim𝑡 →
1√
2𝜆+1

∑︁
𝑏∈{0,1},𝑟∈{0,1}𝜆

|r⟩Ver𝑡 |𝑏, 𝑟⟩R𝑡|Comm(1𝜆, r, 𝑏; 𝑟)⟩Sim𝑡 ,

while leaving all the other registers intact. Note that we can prepare
this state efficiently by first applying 𝐻⊗(𝜆+1) to the R𝑡 register fol-
lowed by applying Comm in superposition and storing the output in
the Sim𝑡 register.

7We assume without loss of generality that the length of the sender’s randomness in the commit-
ment scheme is 𝜆.

123

• If the 𝑡𝑡ℎ message is a verifier’s message, apply 𝑉 * on the registers
corresponding to the transcript of the protocol until the 𝑡𝑡ℎ message
(i.e. registers {(Sim𝑖)}𝑖≤𝑡, {Ver𝑖}𝑖<𝑡, Aux) and on Aux register that
corresponds to the verifier’s private state, and output in the register
Ver𝑡.

• If the 𝑡𝑡ℎ message is a Stage 2 message from the prover responding to
the 𝑖𝑡ℎ WI initiated by the verifier (this just means that so far, (𝑖− 1)
WIs from (𝑖−1) sessions have already been initiated in the transcript),
let 𝑤 be the string in the register W. Let 𝑐𝑖 be the bit in register B𝑖.
If 𝑐𝑖 = 1, use 𝑤 as the witness to the WI proof. If 𝑐𝑖 = 0, check if
at least ℓslot

2
+ 𝑄4𝜆 matched slots corresponding to the session whose

WI message is being computed. If so, compute the WI of Stage 2
using these matched slots. Otherwise, abort and output ⊥ on register
Sim𝑡

8.

(b) Let 𝑇 contain the transcript of messages sent in block 𝐵𝑗 along with the
input and randomness used by the simulator to create these messages (i.e.
the string stored in the registers {(R𝑡,Sim𝑡,Ver𝑡)}𝑖∈𝐵𝑗

), and let 𝜇(𝑇)
denote the set of all slots that are inside 𝐵𝑗 in the transcript 𝑇 . In su-
perposition, perform the unitary 𝑈 ′ defined below. Let 𝐼 be a register
containing a subset of qubits in X. We omit the subscripts of the registers
associated with the transcript 𝑇 .

𝑈 ′|𝑇 ⟩|0⟩M𝑗
|0⟩Dec|0⊗|𝐼|⟩𝐼

≈ |𝑇 ⟩ ⊗

⎛⎝ 1√︀
|𝜇(𝑇)|

∑︁
(c,𝑏′)∈𝜇(𝑇)

|c, 𝑏′⟩M𝑗
|1⊕Match(𝑇, c, 𝑏′))⟩Dec|𝜑c,𝑏′⟩𝐼

⎞⎠ if 𝜇(𝑇) ̸= ∅

= |𝑇 ⟩|0⟩M𝑗
|+⟩Dec|0⊗|𝐼|⟩𝐼 if 𝜇(𝑇) = ∅

where Match(𝑇, c, 𝑏′) = 1 if c is a commitment to 𝑏′ and 0 otherwise.
|𝜑c,𝑏′⟩ is some auxiliary state. Note that 𝑇 , in addition to containing the
transcript of messages exchanged in 𝐵𝑗, also contains the input and the
randomness used by the simulator to create these messages.
By ≈, we mean the following: we say |𝜑0⟩ ≈ |𝜑1⟩ if both the states |𝜑0⟩
and |𝜑1⟩ are exponentially close (in trace distance) to each other. To
see how we can obtain the above state, the unitary 𝑈 ′ creates uniform
superpositions over [1], [2], . . . , [|𝑇 |]. Then, 𝑈 ′ determines 𝜇(𝑇) and uses
the uniform superposition over [|𝜇(𝑇)|] to create a uniform superposition
over |c, 𝑏′⟩.

Let𝑊𝑗 = Amplifier
(︀
𝑈𝑉 *
𝑗

)︀
; where Amplifier is the circuit guaranteed by Lemma 28.

Simulator computes |Ψ𝑗,⊥⟩ = 𝑊𝑗|Ψ𝑗−1,⊥⟩.

8It may not be clear why we need this register. However, having this register would help us in
the presentation of the hybrids.

124

3. For all 𝑡 ∈ {1, ..., ℓprot · 𝑄}, measure all the Sim𝑡 and Ver𝑡 registers in the
computational basis, and output the measurement outcomes along with the
resulting state in the Aux register. In other words, let 𝑌 be the measurement
outcome after measuring the registers corresponding to the protocol’s transcript.
Then, output 𝑌 along with

̃︀𝜌 =
Traux [Π𝑌 |Ψ𝐿,⊥⟩⟨Ψ𝐿,⊥|Π𝑌]

Tr [Π𝑌 |Ψ𝐿,⊥⟩⟨Ψ𝐿,⊥|Π𝑌]

where Π𝑌 projects the registers (Sim1,Ver1, . . . ,Simℓprot·𝑄,Verℓprot·𝑄) onto 𝑌 .
By Traux[·], we mean the operation of tracing out all the registers except aux.

Remark 79. Using the description of the unitaries 𝑈𝑉 *
𝑖 as above, note that for any

(𝑥,𝑤) ∈ ℛ(ℒ), if the prover and the verifier ran their protocol in superposition (and
never measured), their combined output would be 𝑈𝑉 *

𝐿 · · ·𝑈𝑉 *
1

(︀
𝐼 ⊗𝑋⊗𝑗∈[𝑄]B𝑗

)︀
|Ψ0,𝑤⟩,

where 𝑋⊗𝑗∈[𝑄]B𝑗 is Pauli X’s applied to the {B𝑖}𝑖∈[𝑄] registers and 𝐼 is the identity
operator applied on the rest of the registers. On the other hand, the state obtained by
the simulator just before the final partial measurement is 𝑊𝐿 · · ·𝑊1|Ψ0,⊥⟩.

We will show that for any verifier’s auxiliary state |Ψ⟩, the output of this simulator
is indistinguishable from the output of the verifier when interacting with the honest
prover.

Lemma 80. For any (𝑥,𝑤) ∈ ℛ(ℒ), and for any auxiliary poly(𝜆)-qubits state9 |Ψ⟩,
the output of Sim𝑉 *

(1𝜆, 𝑥, |Ψ⟩) is computationally indistinguishable from View𝑉 * ⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, |Ψ⟩)⟩.

Proof. We will proceed with a series of hybrids.

Hybrid0: The output of this hybrid is the output of the verifier when interacting with
the honest prover.

Hybrid1: Define a hybrid simulator Hybrid1.Sim
𝑉 *

(𝑥,𝑤, |Ψ⟩) that behaves like the hon-
est prover, but performs the execution of the prover and the verifier in all the sessions
in superposition. This simulator first prepares the state 𝑈𝑉 *

𝐿 . . . 𝑈𝑉 *
1

(︀
𝐼 ⊗𝑋⊗𝑗∈[𝑄]B𝑗

)︀
|Ψ0,𝑤⟩,

then, it measures the registers corresponding to the transcript (that is, {(Sim𝑡,Ver𝑡)}𝑡∈[ℓprot]])
and outputs the measurement outcome along with the resulting verifier’s private state.

The distribution of outputs in Hybrid0 and Hybrid1 are identical, since measurements
can be deferred to the end by the principle of deferred measurement.

Hybrid2.𝑖, for 𝑖 = 1 to 𝐿: Consider the following sequence of hybrid simulators, Hybrid2.𝑖.Sim
𝑉 *

(𝑥,𝑤),
that behaves like Hybrid1.Sim

𝑉 *
(𝑥,𝑤), but perform Watrous’ rewinding on blocks

𝐵1, . . . , 𝐵𝑖. In other words, instead of performing the unitary 𝑈𝑉 *
𝑖 , it performs

9We can assume without of generality, via the process of purification, that the input state of the
verifier is a pure state.

125

𝑊𝑖 = Amplifier
(︀
𝑈𝑉 *
𝑖

)︀
. This means that Hybrid2.𝑖.Sim

𝑉 *
(𝑥,𝑤, |Ψ⟩) computes:

𝑈𝑉 *

𝐿 · · ·𝑈𝑉 *

𝑖+1𝑊𝑖 · · ·𝑊1

(︀
𝐼 ⊗𝑋⊗𝑗∈[𝑄]B𝑗

)︀
|Ψ0,𝑤⟩

The final partial measurement is performed as in the previous hybrid.

We defer the proof of the following claim.

Claim 81. Assuming that Comm satisfies hiding against quantum polynomial-time
adversaries, the output distributions of the verifier in Hybrid2.𝑖 is computationally
indistinguishable from the output distribution of the verifier in Hybrid2.𝑖+1.

Hybrid3.𝑖 for 𝑖 ∈ [𝑄]: Define a hybrid simulator Hybrid3.𝑖.Sim
𝑉 *

that behaves like Hybrid2.𝐿
except that it does not applies the initial bit flip 𝑋 on registers B𝑘 for all 𝑘 ≤ 𝑖. For-
mally, hybrid Hybrid3.𝑖 computes:

𝑊𝐿𝑊𝐿−1 . . .𝑊1

(︀
𝐼 ⊗𝑋⊗𝑗>𝑖B𝑗

)︀
|Ψ0,𝑤⟩.

This change means that in Stage 2 of the protocol, for the sessions that initiate the
first 𝑖 WI protocols, the hybrid simulator Hybrid3.𝑖.Sim will use matched slots instead
of the actual witness to compute the WI proof. For the rest of the sessions, the hybrid
simulator still uses the witness 𝑤 to produce the WI proof.

We defer the proof of the following claim.

Claim 82. Assuming the witness-indistinguishability property of ΠWI, the output dis-
tributions of the hybrids Hybrid3.𝑖 and Hybrid3.𝑖+1 are computationally indistinguish-
able.

Hybrid4: The output of this hybrid is the output of the simulator.

The output distributions of Hybrid3.𝑄 and Hybrid4 are identical.

Proof of Claim 81

We prove this in the following steps:

1. First, we reduce proving the indistinguishability of Hybrid2.𝑖 and Hybrid2.𝑖−1 to
proving the following statement: the following two distributions are computa-
tionally indistinguishable.

• 𝒟1: Measure the {Sim𝑡,Ver𝑡}𝑡≤𝑖 registers at the end of execution of the
block 𝐵𝑖 in Hybrid2.𝑖−1 and output the measurement outcome along with
the residual state in the register Aux.

• 𝒟2: Measure the {Sim𝑡,Ver𝑡}𝑡≤𝑖 registers at the end of execution of the
block 𝐵𝑖 in Hybrid2.𝑖 and output the measurement outcome along with the
residual state in the register Aux.

126

2. Next, we show the indistinguishability of 𝒟1 and 𝒟2 by using Watrous rewinding
and quantum-concealing property of the commitments.

Bullet 1 follows from the fact that the registers {Sim𝑡,Ver𝑡}𝑡≤𝑖 are never written
upon after the execution of Block 𝐵𝑖 and hence measurement operators applied on
these registers in the end commute with the unitaries applied after the execution of
𝐵𝑖.

For Bullet 2, we first make some observations on the state obtained in Hybrid2.𝑖
after applying Watrous rewinding.

Applying Watrous Rewinding. Let |Ψ𝑖−1
0,𝑤 ⟩ = 𝑊𝑖−1 . . .𝑊1

(︀
𝐼 ⊗𝑋⊗𝑗∈[𝑄]B𝑗

)︀
|Ψ0,𝑤⟩.

Without loss of generality, we can write 𝑈𝑉 *
𝑖 |Ψ𝑖−1

0,𝑤 ⟩ the following way:

𝑈𝑉 *

𝑖 |Ψ𝑖−1
0,𝑤 ⟩ =

√
𝑞|Φ𝑖,noslot⟩|+⟩Dec +

√︀
(1− 𝑞)|Φ𝑖,slot⟩

where:

• |Φ𝑖,noslot⟩ is a superposition of all the transcripts containing no slot in the 𝑖𝑡ℎ
block 𝐵𝑖. This is defined on all the registers except the Dec register.

• |Φ𝑖,slot⟩ is a superposition of all the transcripts containing at least one slot in
the 𝑖𝑡ℎ block 𝐵𝑖. This is defined on all the registers.

Furthermore, |Φ𝑖,slot⟩ can be written as
√︀
𝑝(Φ𝑖,slot)|Φyes⟩|0⟩Dec+

√︀
1− 𝑝(Φ𝑖,slot)|Φno⟩|1⟩Dec,

for some states |Φyes⟩, |Φno⟩ and some function 𝑝(·). We first claim the following.

Claim 83. Assuming quantum concealing property of (Comm,R), the following holds:⃒⃒⃒⃒
𝑝(Φ𝑖,slot)−

1

2

⃒⃒⃒⃒
≤ negl(𝜆)

Proof. By the quantum-concealing property of Comm, any QPT adversary 𝒜, with
auxiliary state |Φ⟩, can win the following game with probability negligibly close to 1

2
:

given a commitment 𝑐 = Comm(𝑏; 𝑟), where 𝑏 $←− {0, 1} and 𝑟 $←− {0, 1}𝜆, we say that
𝒜 wins if it outputs 𝑏′ = 𝑏.

We execute the above experiment in superposition:

• 𝒜 sends the first commitment message, r.

• Challenger prepares the following state (omitting the register containing r):

1√
2𝜆+1

∑︁
𝑏∈{0,1},𝑟∈{0,1}𝜆

|𝑏, 𝑟⟩𝑋 |Comm(1𝜆, 𝑏, r; 𝑟)⟩𝑌 |0⟩𝑍 |Φ⟩Aux|0⟩Dec

127

• 𝒜 is computed (over the registers 𝑌, 𝑍,Aux) in superposition:

1√
2𝜆+1

∑︁
𝑏∈{0,1},𝑟∈{0,1}𝜆

|𝑏, 𝑟⟩𝑋 |Comm(1𝜆, r, 𝑏; 𝑟)⟩𝑌 |𝒜(Comm(𝑏; 𝑟))⟩𝑍 |Φ′⟩Aux|0⟩Dec

• The challenger computes the following:

1√
2𝜆+1

∑︁
𝑏∈{0,1},𝑟∈{0,1}𝜆

|𝑏, 𝑟⟩𝑋 |Comm(1𝜆, r, 𝑏; 𝑟)⟩𝑌 |𝒜(Comm(1𝜆, r, 𝑏; 𝑟))⟩𝑍 |Φ′⟩Aux|𝑏⊕𝒜(Comm(𝑏; 𝑟))⟩Dec

We can rewrite the above state as follows:√︀
𝑝′|𝜑0⟩|0⟩Dec +

√︀
1− 𝑝′|𝜑1⟩|1⟩Dec

From the above game, it follows that 𝑝′ is negligibly close to 1
2
. Moreover, if we

suitably instantiate 𝒜 (using the verifier) and |Φ⟩, it follows that |Φyes⟩ = |𝜑0⟩ and
|Φno⟩ = |𝜑1⟩. Thus, we have 𝑝(Φ𝑖,slot) to be negligibly close to 1

2
.

Using above, we write 𝑈𝑉 *
𝑖 |Ψ𝑖−1

0,𝑤 ⟩ as follows:

𝑈𝑉 *

𝑖 |Ψ𝑖−1
0,𝑤 ⟩ =

√︁
𝑝(Φ𝑖,slot)|Ψ𝑖,Good⟩|0⟩Dec +

√︁
1− 𝑝(Φ𝑖,slot)|Ψ𝑖,Bad⟩|1⟩Dec,

where |Ψ𝑖,Good⟩ is a superposition over transcripts such that either one of the following
two conditions are satisfied: (i) the slot chosen in the 𝑖𝑡ℎ block is matched or, (ii)
the verifier aborts and the simulator decides to not rewind. Similarly, we can define
|Ψ𝑖,Bad⟩. Define 𝑝1 = 1

2
and 𝑝0 = 0.49. We note that the following holds:

• |𝑝(Φ𝑖,slot)− 𝑝1| ≤ 𝜀, where 𝜀 = 𝜈(𝜆), for some negligible function 𝜈(·) and,

• 𝑝0(1− 𝑝0) ≤ 𝑝1(1− 𝑝1) and,

• 𝑝0 ≤ 𝑝(Φ𝑖,slot).

Thus, from the Watrous rewinding lemma (Lemma 28), Amplifier
(︀
𝑈𝑉 *
𝑖

)︀
outputs a

circuit 𝑊𝑖, of polynomial size, such that 𝑊𝑖 on input the state |Ψ𝑖−1
0,𝑤 ⟩, outputs a state

|Ψ𝑖
0,𝑤⟩ that is exponentially (in 𝜆) close in trace distance to the state |Ψ𝑖,Good⟩. This

means that, in hybrid Hybrid2.𝑖+1, the state obtained after the execution of block 𝐵𝑖

is exponentially close in trace distance to the state |Ψ𝑖,Good⟩|0⟩Dec.

Indistinguishability of 𝒟1 and 𝒟2. We just argued above that the intermediate
state obtained in Hybrid2.𝑖 is |Ψ𝑖,Good⟩|0⟩Dec. On the other hand, the intermediate
state obtained in Hybrid2.𝑖−1 is |Ψ𝑖−1

0,𝑤 ⟩ is 𝑈𝑉 *
𝑖 |Ψ𝑖−1

0,𝑤 ⟩ =
√︀
𝑝(Φ𝑖,slot)|Ψ𝑖,Good⟩|0⟩Dec +√︀

1− 𝑝(Φ𝑖,slot)|Ψ𝑖,Bad⟩|1⟩Dec. We need to argue that the distribution of measurements
of the registers {Sim𝑡,Ver𝑡} along with the residual state Aux register in both the
cases are computationally indistinguishable.

128

Note that for any 𝜌0, 𝜌1 such that 𝜌0 ≈𝑐 𝜌1
10, then for any 𝑝 ≥ 0 we have that

𝜌0 = 𝑝 · 𝜌0 + (1 − 𝑝)𝜌 ≈𝑐 𝑝 · 𝜌0 + (1 − 𝑝) · 𝜌1. In our case we have, 𝜌0 is the
post-measurement state on the registers {Sim𝑡,Ver𝑡}𝑡≤𝑖,Aux after measuring the
{Sim𝑡,Ver𝑡}𝑡≤𝑖 registers of the state |ΨGood⟩. Similarly, we define 𝜌1 with respect to
|ΨBad⟩. In Hybrid2.𝑖−1, the intermediate state is a mixture of 𝜌0 and 𝜌1 and in Hybrid2.𝑖,
the intermediate state is 𝜌0.

Thus, it suffices to show that with probability neglibly close to 1, the post-
measurement states 𝜌0 and 𝜌1 are computationally indistinguishable. This follows
from the quantum-concealing property of commitment schemes and is similar to the
proof of Claim 83; if the verifier can distinguish a matched slot versus an unmatched
slot then this verifier is violating the quantum-concealing property of the commitment
scheme.

This proves that hybrids Hybrid2.𝑖 and Hybrid2.𝑖+1 are computationally indistinguish-
able.

Proof of Claim 82

Before we prove Claim 82, we first give an auxiliary definition and some claims.

Auxiliary Definition and Claims.

Definition 84 (Partitioning). We define a partitioning of a protocol transcript (con-
sisting of messages from all the sessions) 𝒮 to be {𝐵1, . . . , 𝐵𝐿} associated with pa-
rameter ℓ𝐵 as follows: 𝐵1 consists of the first ℓ𝐵 messages of 𝑆, 𝐵2 consists of the
second ℓ𝐵 messages of 𝑆 and so on. If |𝑆| − ℓ𝐵 · (𝐿− 1) < ℓ𝐵 then the last block 𝐵𝐿

will just contain the remaining |𝑆| − ℓ𝐵 · (𝐿− 1) messages.

The following claim lower bounds the number of blocks that will contain a full slot
for any given verifier. In particular, with our chosen parameters, we can show that
the number of such blocks is at least 6𝑄5𝜆. This will turn out to be enough number
of blocks for the simulator to be able to obtain more than 60𝑄7𝜆 + 𝑄4𝜆 matched
commitments, with probability neglibly close to 1, for every verifier before starting
Stage 2.

Claim 85. For any transcript 𝒮 of 𝑄 verifiers 𝑉1, . . . , 𝑉𝑄 with partitioning {𝐵1, . . . , 𝐵𝐿},
for every verifier 𝑉𝑖, we have N𝑖 ≥ 6𝑄5𝜆; that is, there are at least 6𝑄5𝜆 number of
blocks containing at least one slot of 𝑉𝑖.

Proof. Fix a verifier 𝑉𝑖. Note that the number of blocks containing at least 4 messages
of 𝑉𝑖 lower bounds N𝑖. Denote 𝜇𝑖 be the number of blocks containing at least 4
messages of 𝑉𝑖.

Let 𝑏1, . . . , 𝑏𝜇𝑖
be the number of messages of 𝑉𝑖 in each of these 𝜇𝑖 blocks. Let the

number of messages in the remaining 𝐿− 𝜇𝑖 blocks be denoted by 𝑎1, . . . , 𝑎𝐿−𝜇𝑖
.

10By 𝜌0 ≈𝑐 𝜌1, we mean that the state sampled according to 𝜌0 is computationally indistinguish-
able from the state sampled according to 𝜌1.

129

The following holds:
∑︀𝜇𝑖

𝑖=1 𝑏𝑖 +
∑︀𝐿−𝜇𝑖

𝑖=1 𝑎𝑖 = 2(ℓprot−1)
3

. Since
∑︀𝜇𝑖

𝑖=1 𝑏𝑖 ≤ ℓ𝐵𝜇𝑖,∑︀𝐿−𝜇𝑖

𝑖=1 𝑎𝑖 ≤ 3(𝐿− 𝜇𝑖) and ℓ𝐵 = ℓprot·𝑄
𝐿

, we have:

𝜇𝑖ℓ𝐵 + 3(𝐿− 𝜇𝑖) ≥
2(ℓprot − 1)

3
≥ ℓprot

2

From this, we can determine 𝜇𝑖 to be at least
ℓprot
2
−3𝐿

ℓ𝐵−3
. We can now lower bound the

number of blocks containing at least 4 messages as follows.

N𝑖 ≥ 𝜇𝑖 ≥

(︃
ℓprot
2
− 3𝐿

ℓprot𝑄

𝐿
− 3

)︃

≥
ℓprot
2
− 3𝐿

ℓprot
· 𝐿
𝑄

≥
[︂
1− 6𝐿

ℓprot

]︂
𝐿

2𝑄

≥
[︂
1− 6𝐿

3ℓslot

]︂
𝐿

2𝑄

≥
[︂
1− 2

5𝑄

]︂
𝐿

2𝑄

≥
(︂

1− 1

2

)︂
12𝜆𝑄5 (∵ 𝐿 = 24𝑄6𝜆, ℓslot = 120𝑄7𝜆)

≥ 6𝜆𝑄5

The following claim lower bounds the expected number of slots that will be rigged by
the simulator (i.e., these are the slots the simulator matches by rewinding) for any
given verifier before starting Stage 2. Specifically, it bounds the number of slots that
it will be able to match thanks to block rewinding.

Claim 86 (Matching by Rigging). Let 𝒮 be a scheduling of 𝑄 verifiers 𝑉1, . . . , 𝑉𝑄.
Let {𝐵1, . . . , 𝐵𝐿} be the partitioning associated with 𝒮.

Consider the following process: for 𝑖 = 1, . . . , 𝐿,

• Let 𝑇𝑖 be such that all the verifiers {𝑉𝑗}𝑗∈𝑇𝑖
have a slot in 𝐵𝑖.

• Pick 𝑗* $←− 𝑇 .

• Finally, pick a slot of 𝑉𝑗* in block 𝐵𝑖 uniformly at random.

Let X𝑖,𝑗 be a random variable defined to be 1 if in the 𝑗𝑡ℎ block, a slot of 𝑉𝑖 is picked.

130

Then, for any 𝑖 ∈ [𝑄], E[
∑︀

𝑗∈[𝐿] X𝑖,𝑗] ≥ 6𝜆𝑄4. Furthermore, we have that

Pr

⎡⎣∃𝑖 ∈ [𝑄],
∑︁
𝑗∈[𝐿]

X𝑖,𝑗 ≤ 3𝜆𝑄4

⎤⎦ ≤ negl(𝜆)

.

Proof. Let 𝑏𝑖,𝑗 be such that 𝑏𝑖,𝑗 = 1 if the 𝑖𝑡ℎ verifier has a slot in the 𝑗𝑡ℎ block, else
its set to 0. Then, we have E[

∑︀
𝑗∈[𝐿] X𝑖,𝑗] ≥

∑︀
𝑗∈[𝐿] 𝑏𝑖,𝑗 ·

1
𝑄

. Note that |{𝑗 : 𝑏𝑖,𝑗 ̸= 0}| =
N𝑖. Thus, we have E[

∑︀
𝑗∈[𝐿] X𝑖,𝑗] ≥ 1

𝑄
· N𝑖. Further applying Claim 85, we have

E[
∑︀

𝑗∈[𝐿] X𝑖,𝑗] ≥ 6𝜆𝑄4. To finish the proof of the claim, first notice that by Chernoff
bound, we have that for any 𝑖 ∈ [𝑄],

Pr

⎡⎣∑︁
𝑗∈[𝐿]

X𝑖,𝑗 ≤ 3𝜆𝑄4

⎤⎦ ≤ 𝑒−
3
4
𝑄4𝜆.

By the union bound, we obtain that

Pr

⎡⎣∃𝑖 ∈ [𝑄],
∑︁
𝑗∈[𝐿]

X𝑖,𝑗 ≤ 3𝜆𝑄4

⎤⎦ ≤ 𝑄𝑒−
3
4
𝑄4𝜆

While the above claim provides a lower bound on the number of rigged slots, the
following claim lower bounds the number of slots matched by luck. Combining the
above and the below claim, it follows that with overwhelming probability, the number
of matchd slots is at least 60𝑄7𝜆+𝑄4𝜆.

Claim 87 (Matching by Luck). Let 𝒮 be a transcript of the 𝑄 verifiers 𝑉1, . . . , 𝑉𝑄.
For any 𝑖 ∈ [𝑄] let 𝑍𝑖,1, ...𝑍𝑖,120𝑄7𝜆 be binary random variables such that 𝑍𝑖,𝑗 = 1 iff
Comm(𝑏′𝑗; 𝑟𝑗) = c𝑗 where 𝑏′𝑗 is the 𝑗𝑡ℎ response of the 𝑖𝑡ℎ verifier to commitment c𝑗 by
the prover. Let 𝑋𝑖,𝑗 be as defined in Claim 86. The following holds:

Pr

⎡⎣∃𝑇𝑖 ⊆ [𝐿], (∀𝑗 ∈ 𝑇𝑖, 𝑋𝑖,𝑗 = 1)
⋀︁⎛⎝ ∑︁

𝑗∈[𝐿]∖𝑇𝑖

𝑍𝑖,𝑗 ≥ 60𝑄7𝜆− 2𝑄4𝜆

⎞⎠⎤⎦ ≥ 1− 𝜈(𝜆),

for some negligible function 𝜈(·).

Proof. By the previous Claim, we have that with probability neglible close to 1, for
all 𝑖 ∈ [𝑄], there exists 𝑇𝑖 satisfying the desired properties, what is left is to show
that ∑︁

𝑗∈[𝐿]∖𝑇𝑖

𝑍𝑖,𝑗 ≥ 60𝑄7𝜆− 2𝑄4𝜆

for all 𝑖 ∈ [𝑄].

131

For any 𝑖 ∈ [𝑄], we have that E[
∑︀

𝑗∈[𝐿]∖𝑇𝑖
𝑍𝑖,𝑗] = 60𝑄7𝜆− 3

2
𝑄4𝜆, and by Chernoff

bound:

Pr

⎡⎣ ∑︁
𝑗∈[𝐿]∖𝑇𝑖

𝑍𝑖,𝑗 ≤ 60𝑄7𝜆− 2𝑄4𝜆

⎤⎦ = Pr

⎡⎣ ∑︁
𝑗∈[𝐿]∖𝑇𝑖

𝑍𝑖,𝑗 ≤
(︂

60𝑄7𝜆− 3

2
𝑄4𝜆

)︂
− 1

2
𝑄4𝜆

⎤⎦
≤ exp

(︂
−

(1
2
𝑄4𝜆)2

2(60𝑄7𝜆− 3
2
𝑄4𝜆)

)︂
≤ exp

(︂
−

(1
2
𝑄4𝜆)2

2(60𝑄7𝜆)

)︂
= 𝑒−

𝑄𝜆
480 .

Again, by union bound, we have that

Pr

⎡⎣∃𝑖 ∈ [𝑄],
∑︁

𝑗∈[𝐿]∖𝑇𝑖

𝑍𝑖,𝑗 ≤ 60𝑄7𝜆− 2𝑄4𝜆

⎤⎦ ≤ 𝑄𝑒−
𝑄𝜆
480 .

Combining these last two claims we conclude that the probability that there is a
session 𝑉 *𝑖 for which the simulator does not have more than 60𝑄7𝜆 + 𝑄4𝜆 matched
commitments is negligibly small in 𝜆.

Finishing Proof of Claim 82. We use the auxiliary claims from the previous
section to complete the proof.

We prove this via the following hybrid argument.

Hybrid
(1)
3.𝑖 : This is identical to the hybrid Hybrid3.𝑖.

Hybrid
(2)
3.𝑖 : This is the same as the previous hybrid except that the simulator sets it

responses, to the 𝑖𝑡ℎ session, as ⊥ if the number of matched slots for the 𝑖𝑡ℎ session is
< 60𝑄7𝜆+𝑄4𝜆.

From Claim 87, we have that the probability that this hybrid aborts is negligible
in 𝜆. Conditioned on this hybrid not aborting, the output distributions of Hybrid(1)3.𝑖

and Hybrid
(2)
3.𝑖 are identical.

Hybrid
(3)
3.𝑖 : This is identical to the hybrid Hybrid3.𝑖+1.

To argue that Hybrid
(3)
3.𝑖 and Hybrid

(2)
3.𝑖 are computationally indistinguishable we

will use the quantum witness indistinguishable property of ΠWI. Suppose that there
is an adversary 𝒜 that distinguishes the output distributions of these two hybrids.
We define the following QPT ℬ𝑖 that breaks the security of ΠWI. That is, ℬ𝑖 is a
QPT verifier, in the WI experiment, that can distinguish whether the prover used
one witness versus another. ℬ𝑖 is given as auxiliary advice a transcript (and verifier’s

132

private state) of Hybrid
(2)
3.𝑖 executed until the verifier’s first message of the 𝑖𝑡ℎ WI

execution in the transcript. In particular, conditioned on not aborting, this transcript
has enough number of matching slots corresponding to the 𝑖𝑡ℎ execution (in the order
of arrival of messages) of WI. Then, ℬ𝑖 interacts with the verifier 𝑉 * as in the protocol
with 𝑃 from then on, but forwards the verifier’s messages corresponding to the 𝑖𝑡ℎ
WI execution to the prover of WI. The output of ℬ𝑖 is the same as the output of the
verifier 𝑉 *.

Firstly, from the security of WI, the output distribution of ℬ𝑖 when the prover
uses 𝑤 is computationally indistinguishable from the output distribution of ℬ𝑖 when
the prover uses the other witness, i.e., decommitments of matched slots.

If the prover used the witness 𝑤, then the output distribution of ℬ𝑖 is compu-
tationally indistinguishable from the output of Hybrid(2)3.𝑖 . To see why, note that the
only difference between ℬ𝑖 and Hybrid

(2)
3.𝑖 is that in ℬ𝑖, all the blocks starting from the

𝑖𝑡ℎ WI are not rewound. But we already showed, assuming security of commitments,
that 𝑉 * cannot distinguish the case when the block is being rewound versus the case
when it is not.

Furthermore, similarly, when the prover is using the decommitments of matched
slots, the output distribution of ℬ𝑖 is computationally indistinguishable from the
output of Hybrid(3)3.𝑖 .

Thus, the output distributions of Hybrid(2)3.𝑖 and Hybrid
(3)
3.𝑖 are computationally in-

distinguishable.

4.4 Bounded concurrent quantum zero-knowledge proof
for QMA

4.4.1 Overview

We show a construction of bounded concurrent QZK for QMA. Our starting point is
the QZK protocol for QMA from [BJSW16], which constructs QZK for QMA from
QZK for NP, a commitment scheme and a coin-flipping protocol. We first simplify the
protocol of [BJSW16] as follows: their protocol requires security of the coin-flipping
protocol to hold against malicious adversaries whereas we only require the security
to hold against adversaries who don’t deviate from the protocol specification. Once
we simplify this step, the resulting protocol will satisfy the property that the QZK
simulator only rewinds during the execution of the underlying simulator simulating
the QZK protocol for NP. This modification makes it easier for us to extend this
protocol to the bounded concurrent setting. We simply instantiate the underlying
QZK for NP protocol with its bounded concurrent version.

Lets recall the QZK for QMA construction from [BJSW16]. Their protocol is
specifically designed for the QMA promise problem called 𝑘-local Clifford Hamilto-
nian, which they showed to be QMA-complete for 𝑘 = 5. We restate it here for
completeness.

Definition 88 (𝑘-local Clifford Hamiltonian Problem [BJSW16]). For all 𝑖 ∈ [𝑚],

133

let 𝐻𝑖 = 𝐶𝑖|0⊗𝑘⟩⟨0⊗𝑘|𝐶†𝑖 be a Hamiltonian term on 𝑘-qubits where 𝐶𝑖 is a Clifford
circuit.

• Input: 𝐻1, 𝐻2, . . . , 𝐻𝑚 and strings 1𝑝, 1𝑞 where 𝑝 and 𝑞 are positive integers
satisfying 2𝑝 > 𝑞.

• Yes instances (𝒜𝑦𝑒𝑠): There exists an 𝑛-qubit state such that Tr[𝜌
∑︀

𝑖𝐻𝑖] ≤ 2−𝑝

• No instances (𝒜𝑛𝑜): For every 𝑛-qubit state 𝜌, the following holds: Tr[𝜌
∑︀

𝑖𝐻𝑖] ≥
1
𝑞

BJSW Encoding. A key idea behind the construction from [BJSW16] is for the
prover to encode its witness, |𝜓⟩, using a secret-key quantum authentication code
(that also serves as an encryption) that satisfies the following key properties needed
in the protocol. For any state |𝜓⟩, denote the encoding of |𝜓⟩ under the secret-key 𝑠
by E𝑠(|𝜓⟩).

1. Homomorphic evaluation of Cliffords. Given E𝑠(|𝜓⟩), and given any Clifford
circuit 𝐶, it is possible to compute E𝑠′(𝐶|𝜓⟩) efficiently. Moreover, 𝑠′ can be
determined efficiently by knowing 𝐶 and 𝑠.

2. Homomorphic measurements of arbitrary Clifford basis. For any Clifford circuit
𝐶 and any state |𝜓⟩, a computational basis measurement on 𝐶|𝜓⟩ can be recov-
ered from a computational basis measurement on E𝑠′(𝐶|𝜓⟩) along with 𝐶 and 𝑠.
Formally, there is a classically efficiently computable function 𝑔 such that if 𝑦 is
sampled from the distribution induced by measuring the state E𝑠′(𝐶|𝜓⟩) in the
computational basis, then 𝑔(𝑠, 𝐶, 𝑦) is sampled from the distribution induced
by measuring the state 𝐶|𝜓⟩ in the computational basis.

3. Authentication of measurement outcomes. For any 𝑠 and any clifford 𝐶, there is
a set 𝒮𝑠,𝐶 such that for any state |𝜓⟩, and any computational basis measurement
outcome 𝑦 performed on E𝑠′(𝐶|𝜓⟩), it holds that 𝑦 ∈ 𝒮𝑠,𝐶 . Furthermore, for any
𝑦, given 𝑠 and 𝐶, it can be efficiently checked whether 𝑦 ∈ 𝒮𝑠,𝐶 .

4. Simulatability of authenticated states: there exists an efficient QPT algorithm 𝐵
such that for any adversary 𝒜, every 𝑥 ∈ 𝒜yes along with witness |𝜓⟩, poly(𝜆)-
qubit advice 𝜌, the following holds: the probability that 𝒫(𝑠, 𝐶†𝑟* ,𝒜(E𝑠(|𝜓⟩)))
outputs 1 is negligibly close to the probability that 𝒫(𝑠, 𝐶†𝑟* ,𝒜(𝐵(𝑥, 𝑠, 𝑟*))))
outputs 1, where 𝒫 is defined below.

𝒫(𝑠, 𝐶†, 𝑦) =

{︃
1 if 𝑔(𝑠, 𝐶†, 𝑦) ̸= 0

0 otherwise

In both the events, 𝑠 and 𝑟* are chosen uniformly at random.

134

The QMA verifier of the 𝑘-local Clifford Hamiltonian problem measures terms of
the form 𝐶|0⊗𝑘⟩⟨0⊗𝑘|𝐶† where 𝐶 is a Clifford circuit on a witness |𝜓⟩. Specifically,
a verifier will first apply 𝐶† and then measure in the computational basis. If the
outcome of the measurement is the 0 string, it rejects. Otherwise, it accepts. In the
zero-knowledge case, the witness will be encoded, E𝑠(|𝜓⟩), but the verifier can still
compute E𝑠(𝐶

†|𝜓⟩) and measure to obtain some string 𝑦. Then, the prover can prove
to the verifier (in NP) that 𝑦 corresponds to a non-zero outcome on a measurement
of 𝐶†|𝜓⟩ instead using the predicate 𝒫 .

We follow the approach of BJSW [BJSW16], except that we instantiate the coin-
flipping protocol in a specific way in order to get concurrency when instantiating the
underlying QZK for NP with our bounded concurrent construction.

4.4.2 Definition

We start by recalling the definitions of completeness and soundness properties of a
quantum interactive proof system for promise problems.

Definition 89 (Interactive Quantum Proof System for QMA). Π is an interactive
proof system between a QPT prover 𝑃 and a QPT verifier 𝑉 , associated with a promise
problem 𝒜 = 𝒜yes ∪ 𝒜no ∈ QMA, if the following two conditions are satisfied.

• Completeness: For all 𝑥 ∈ 𝒜yes, there exists a poly(|𝑥|)-qubit state |𝜓⟩ such
that the following holds:

Pr[Accept← ⟨𝑃 (𝑥, |Ψ⟩), 𝑉 (𝑥)⟩] ≥ 1− negl(|𝑥|),

for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

• Soundness: For every prover 𝑃 * (possibly computationally unbounded), every
𝑥 ∈ 𝒜no, the following holds:

Pr [Accept← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ negl(|𝑥|),

for some negligible function negl.

To define bounded concurrent QZK for QMA, we first define the notion of 𝑄-sesssion
adversaries.

Definition 90 (Q-session adversary for QMA). Let 𝑄 ∈ N≥1. Let Π be a quantum
interactive protocol between a QPT prover and a QPT verifier 𝑉 for a QMA promise
problem 𝒜 = 𝒜yes ∪ 𝒜no. We say that an adversarial non-uniform QPT verifier 𝑉 *
is a Q-session adversary if it invokes 𝑄 sessions with the prover 𝑃 (𝑥, |𝜓⟩).

As in the case of concurrent verifiers for NP, we assume that the interaction of
𝑉 * with 𝑃 is defined as follows: denote by 𝑉 *𝑖 to be the verifier algorithm used by 𝑉 *
in the 𝑖𝑡ℎ session and denote by 𝑃𝑖 to be the 𝑖𝑡ℎ invocation of 𝑃 (𝑥,𝑤) interacting with

135

𝑉 *𝑖 . Every message sent by 𝑉 * is of the form
(︀
(1,msg1) , . . . ,

(︀
𝑄,msg𝑄

)︀)︀
, where msg𝑖

is defined as:

msg𝑖 =

{︂
N/A, if 𝑉 *𝑖 doesn’t send a message,
(𝑡, 𝜌), if 𝑉 *𝑖 sends the state 𝜌 in the round 𝑡

𝑃𝑖 responds to msg𝑖. If msg𝑖 = N/A then it sets msg′𝑖 = N/A. If 𝑉 *𝑖 has sent the mes-
sages in the correct order, 𝑃𝑖 applies the next message function (modeled as a quantum
circuit) on msg𝑖 and its private quantum state to obtain 𝜌′ and sets msg′𝑖 = (𝑡+ 1, 𝜌′).
Otherwise, it sets msg′𝑖 = (⊥,⊥). Finally, 𝑉 * receives

(︀
(1,msg′1), . . . , (𝑄,msg′𝑄)

)︀
. In

total, 𝑉 * exchanges ℓprot · 𝑄 number of messages, where ℓprot is the number of the
messages in the protocol.

Remark 91. To invoke 𝑄 different sessions, we assume that the prover has 𝑄 copies
of the witness state.

Remark 92. We assume, without loss of generality, the prover will measure the
appropriate registers to figure out the round number for each verifier. This is because
the malicious verifier can always send the superposition of the ordering of messages.

We define quantum ZK for QMA in the bounded concurrent setting below.

Definition 93 (Bounded Concurrent QZK for QMA). Let 𝑄 ∈ N. An interactive
protocol Π between a QPT prover 𝑃 (running in time polynomial in 𝑄) and a QPT
verifier 𝑉 (running in time polynomial in 𝑄) for a QMA promise problem 𝒜 =
𝒜yes ∪ 𝒜no is a bounded concurrent QZK proof system for QMA if it satisfies
completeness, unconditional soundness and the following property:

• Bounded Concurrent Quantum Zero-Knowledge: For every sufficiently
large 𝜆 ∈ N, for every 𝑄-session QPT adversary 𝑉 *, there exists a QPT simula-
tor Sim such that for every 𝑥 ∈ 𝒜yes and any witness |𝜓⟩, poly(𝜆)-qubit bipartite
advice state, 𝜌𝐴𝐵, on registers 𝐴 and 𝐵, the following holds:

View𝑉 * ⟨𝑃 (𝑥, |𝜓⟩), 𝑉 *(𝑥, 𝜌𝐴𝐵)⟩ ≈𝒬 Sim(𝑥, 𝜌𝐴𝐵)

where 𝑉 * and Sim only have access to register 𝐴. In other words, only the
identity is performed on register 𝐵.

4.4.3 Construction

We use the following ingredients in our construction:

Tools.

• Statistical-binding and quantum-concealing commitment scheme, (Comm,R) (
Section 2.4.2).

136

• Bounded concurrent QZK proof system, denoted by ΠNP, for the following lan-
guage (Section 4.3).

ℒ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩((r, c, r′, c′, 𝑟*, 𝑦, 𝑏) ; (𝑠, ℓ, 𝑎, ℓ′)) :

𝒫(𝑠,𝐶†
𝑟* ,𝑦)=1⋀︀

Comm(1𝜆,r,𝑠;ℓ)=c⋀︀
Comm(1𝜆,r′,𝑎;ℓ′)=c′⋀︀

𝑎⊕𝑏=𝑟*

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Let 𝑄 be the maximum number of sessions associated with the protocol.

We describe the construction of bounded concurrent QZK for QMA (with bound 𝑄)
in Figure 4.4.3. We prove the following.

Theorem 94. Assuming that ΠNP satisfies the definition of bounded concurrent QZK
for NP, the protocol given in Figure 4.4.3 is a bounded concurrent QZK protocol for
QMA with soundness 1

poly
.

Remark 95. The soundness of the above protocol can be amplified by sequential
repetition. In this case, the prover needs as many copies of the witness as the number
of repetitions.

Proof Sketch. Completeness follows from [BJSW16].

Soundness. Once we argue that 𝑟* produced in the protocol is uniformly dis-
tributed, even when the verifier is interacting with the malicious prover, we can then
invoke the soundness of [BJSW16] to prove the soundness of our protocol.

Suppose the verifier accepts the ΠNP proof produced during the execution of the
above protocol. From the soundness of ΠNP, we have that 𝑟* = 𝑎 ⊕ 𝑏 where 𝑎 is
the string that the prover initially committed to in c′. By the statistical binding
security of the commitment, and the fact that 𝑏 is chosen at random after 𝑎 has been
committed to, we have that 𝑟* is sampled uniformly from [𝑀].

Bounded-Concurrent Quantum Zero-Knowledge. Suppose 𝑥 ∈ 𝐴yes. Sup-
pose 𝑉 * is a non-uniform malicious QPT 𝑄-session verifier. Then we construct a
QPT simulator Sim as follows.

Description of Sim: it starts with the registers X𝑧𝑘,X𝑎𝑛𝑐,M,Aux. The register X𝑧𝑘

is used by the simulator of the bounded concurrent QZK protocol, X𝑎𝑛𝑐 is an ancil-
lary register, M is used to store the messages exchanged between the simulator and
the verifier and finally, the register Aux is used for storing the private state of the
verifier. Initialize the registers X𝑧𝑘,M with all zeroes. Initialize the register X𝑎𝑛𝑐

with (
⨂︀𝑄

𝑗=1 |𝑠𝑗⟩⟨𝑠𝑗|)⊗ (
⨂︀𝑄

𝑗=1 |𝑟*𝑗 ⟩⟨𝑟*𝑗 |)⊗ (
⨂︀𝑄

𝑗=1 𝜌𝑗)⊗ |0⊗poly⟩⟨0⊗poly|, where 𝑠𝑖, 𝑟*𝑖 are
generated uniformly at random and 𝜌𝑗 ← 𝐵(𝑥, 𝑠𝑗, 𝑟

*
𝑗) is defined in bullet 4 under

BJSW encoding.
Sim applies the following unitary for 𝑄 times on the above registers. This unitary

is defined as follows: it parses the message ((1,msg1), . . . , (𝑄,msg𝑄)) in the register

137

Instance: A 𝑘-local Clifford Hamiltonian, 𝐻 =
𝑀∑︀
𝑟=1

𝐶𝑟|0⊗𝑘⟩⟨0⊗𝑘|𝐶†𝑟 .

Witness: |𝜓⟩

• 𝑃 ↔ 𝑉 : Prover 𝑃 samples a secret-key 𝑠
$←− {0, 1}poly(𝑘,𝑀), and commits to 𝑠

using the commitment protocol (Comm,R). Let r be the first message of the
receiver (sent by 𝑉) and c be the commitment.

// We call this commitment, the secret-key commitment.

• 𝑃 → 𝑉 : 𝑃 sends E𝑠(|𝜓⟩).

• 𝑃 ↔ 𝑉 : Prover samples a random string 𝑎 $←− {0, 1}log(𝑀), and commits to 𝑎
using the commitment protocol (Comm,R). Let r′ be the first message of the
receiver and c′ be the commitment.

// We call this commitment, the coin-flipping commitment.

• 𝑉 → 𝑃 : Verifier samples a random string 𝑏 $←− {0, 1}log(𝑀). Verifier sends 𝑏 to
the prover.

• 𝑃 → 𝑉 : Prover sends 𝑟* := 𝑎⊕ 𝑏 to the verifier.

• 𝑉 → 𝑃 Verifier computes Eval
(︁
𝐶†𝑟* ,E𝑠(|Ψ⟩)

)︁
→ E𝑠(𝐶

†
𝑟*|𝜓⟩) and measures in the

computational basis. Let 𝑦 denote the measurement outcome. Verifier sends 𝑦
to the prover.

• Prover checks that 𝑦 ∈ 𝒮𝑠,𝐶†
𝑟*

and that 𝒫(𝑠, 𝐶†𝑟* , 𝑦) = 1. If not, it aborts.

• 𝑃 ↔ 𝑉 : Prover and verifier engage in a QZK protocol for NP, ΠNP, for the
statement (r, c, r′, c′, 𝑟*, 𝑦, 𝑏) and the witness (𝑠, ℓ, 𝑎, ℓ′).

Figure 4-4: Bounded-Concurrent QZK for QMA

M. For every round of conversation, it does the following: if it is 𝑉 *’s turn to talk,
it applies 𝑉 * on Aux and M. Otherwise,

• Let 𝑆1 be the set of indices such that for every 𝑖 ∈ 𝑆1, msg𝑖 is a message in the
protocol ΠNP. Finally, let 𝑆2 = [𝑄]∖𝑆1.

• It copies ((1,msg1), . . . , (𝑄,msg𝑄)) into X𝑧𝑘 (using many CNOT operations)
and for every 𝑖 /∈ 𝑆1, replaces msg𝑖 with N/A. We note that msg𝑖 is a quantum
state (for instance, it could be a superposition over different messages).

138

• For every 𝑖 ∈ 𝑆2, if msg𝑖 is the first prover’s message of the 𝑖𝑡ℎ session, then
set msg′𝑖 to be |c𝑖⟩⟨c𝑖| ⊗ 𝜌𝑖, where c𝑖 is the secret-key commitment of 0. If msg𝑖
corresponds to the coin-flipping commitment, then set msg′𝑖 to be |c′𝑖⟩⟨c′𝑖| where
c′𝑖 is a commitment to 0.

• It applies the simulator of ΠNP on X𝑧𝑘 to obtain ((1,msg′1,𝑧𝑘), . . . (𝑄,msg′𝑄,𝑧𝑘)).
The 𝑖𝑡ℎ session simulator of ΠNP takes as input (r𝑖, c𝑖, r

′
𝑖, c
′
𝑖, 𝑟
*
𝑖 , 𝑦𝑖, 𝑏𝑖), where 𝑟*𝑖

was generated in the beginning and r𝑖, c𝑖, r
′
𝑖, c
′
𝑖, 𝑦𝑖, 𝑏𝑖 are generated as specified

in the protocol.

• Determine ((1,msg′1), . . . , (𝑄,msg′𝑄)) as follows. Set msg′𝑖 = msg𝑖,zk, if 𝑖 ∈ 𝑆1.
Output of this round is ((1,msg′1), . . . , (𝑄,msg′𝑄)).

We claim that the output distribution of Sim (ideal world) is computationally in-
distinguishable from the output distribution of 𝑉 * when interacting with the prover
(real world).

Hybrid1: This corresponds to the real world.

Hybrid2: This is the same as Hybrid1 except that the verifier 𝑉 * is run in superposition
and the transcript is measured at the end.

The output distributions of Hybrid1 and Hybrid2 are identical.

Hybrid3: Simulate the zero-knowledge protocol ΠNP simultaneously for all the sessions.
Other than this, the rest of the hybrid is the same as before.

The output distributions of Hybrid2 and Hybrid3 are computationally indistinguish-
able from the bounded concurrent QZK property of ΠNP.

Hybrid4.𝑖 for 𝑖 ∈ [𝑄]: For every 𝑗 ≤ 𝑖, the coin-flipping commitment in the 𝑗𝑡ℎ session
is a commitment to 0 instead of 𝑎𝑖. For all 𝑗 > 𝑖, the commitment is computed as in
the previous hybrid.

The output distributions of Hybrid4.𝑖−1 (or Hybrid3 if 𝑖 = 1) and Hybrid4.𝑖 are com-
putationally indistinguishable from the quantum concealing property of (Comm,R).

Hybrid5.𝑖 for 𝑖 ∈ [𝑄]: For every 𝑗 ≤ 𝑖, the secret-key commitment in the 𝑗𝑡ℎ session is
a commitment to 0. For all 𝑗 > 𝑖, the commitment is computed as in the previous
hybrid.

The output distributions of Hybrid5.𝑖−1 (or Hybrid4.𝑄 if 𝑖 = 1) and Hybrid5.𝑖 are com-
putationally indistinguishable from the quantum concealing property of (Comm,R).

Hybrid6.𝑖 for 𝑖 ∈ [𝑄]: For every 𝑗 ≤ 𝑖, the encoding of the state is computed instead
using 𝐵(𝑥, 𝑠𝑖, 𝑟

*
𝑖), where 𝑠𝑖, 𝑟*𝑖 is generated uniformly at random.

The output distributions of Hybrid6.𝑖−1 and Hybrid6.𝑖 are statistically indistinguish-
able from simulatability of authenticated states property of BJSW encoding (bullet
4). This follows from the following fact: conditioned on the prover not aborting, the

139

output distributions of the two worlds are identical. Moreover, the property of sim-
ulatability of authenticated states shows that the probability of the prover aborting
in the previous hybrid is negligibly close to the probability of the prover aborting in
this hybrid.

Hybrid7: This corresponds to the ideal world.
The output distributions of Hybrid6.𝑄 and Hybrid7 are identical.

140

Chapter 5

Quantum Proofs of Knowledge

Proof of knowledge (PoK) is a strengthening of the soundness condition in interactive
protocols. In a proof of knowledge, the goal is for the prover to convince the verifier
that it knows something. If the verifier accepts in a PoK protocol for a language
ℒ ∈ NP, then it is convinced that the prover knows a witness. Unruh [Unr12]
introduced quantum proofs of knowledge (QPoK) where the verifiers are allowed to
be quantum. He also constructed a QPoK protocol for NP, but his protocol does not
compose well as it does not quite satisfy the same properties found in classical PoK
constructions (simulatability and extractability). We want to construct QPoK with
these properties; furthermore, we would like to have concurrent QZK protocols with
the QPoK property. In this chapter, we show how to achieve both of these goals.
The key ingredient in our construction is statistical receiver-private OT which were
recently studied in [GJJM20, DGH+20]. For our purposes, we need a post-quantum
secure statistical receiver-private OT, which we also construct in this chapter.

5.1 Overview
We start with an overview of our constructions.

Standalone Quantum Proofs of Knowledge

Towards building a bounded-concurrent QZK system satisfying quantum proof of
knowledge property, we first focus on the standalone QZK setting. The quantum
proof of knowledge property roughly says the following: for every unbounded prover
convincing a verifier to accept an instance 𝑥 with probability 𝑝, there exists an ex-
tractor that outputs a witness 𝑤 with probability negligibly close to 𝑝 and it also
outputs a state |Φ⟩ that is close (in trace distance) to the output state of the real
prover.

Our approach is to design a novel extraction mechanism that uses oblivious trans-
fer to extract a bit from a quantum adversary.

Main Tool: Statistical Receiver-Private Oblivious Transfer. Our starting
point is an oblivious transfer (OT) protocol [Rab05]. This protocol is defined between

141

two entities: a sender and a receiver. The sender has two bits (𝑚0,𝑚1) and the
receiver has a single bit 𝑏. At the end of the protocol, the receiver receives the bit
𝑚𝑏.

The security against malicious senders (receiver privacy) states that the sender
should not be able to distinguish (with non-negligible probability) whether the re-
ceiver’s bit is 0 or 1. The security against malicious receivers (also called sender
privacy) states that there is a bit 𝑏′ such that the receiver cannot distinguish (with
non-negligible probability) the case when the sender’s input is (𝑚0,𝑚1) versus the
setting when the sender’s input is (𝑚𝑏′ ,𝑚𝑏′).

We require receiver privacy to hold against unbounded senders while we require
sender privacy to hold against quantum polynomial-time receivers. The reason we
require receiver privacy against unbounded senders is because our goal is to design
extraction mechanism against computationally unbounded provers.

We postpone discussing the construction of statistical receiver-private oblivious
transfer. We will now see how to use this to achieve extraction.

One-bit Extraction with
(︀
1
2
± negl

)︀
-error. We begin with a naive attempt to

design the extraction mechanism for extracting a single secret bit, say 𝑠1. The prover
and the verifier execute the OT protocol; prover takes on the role of the OT sender
and the verifier takes on the receiver’s role. The prover picks bits 𝑏 and 𝛼 uniformly
at random and then sets the OT sender’s input to be (𝑠, 𝛼) if 𝑏 = 0, otherwise if
𝑏 = 1, it sets the OT sender’s input to be (𝛼, 𝑠). The verifier sets the receiver’s bit to
be 0. After the OT protocol ends, the prover sends the bit 𝑏. Note that if the bit 𝑏
picked by the prover was 0 then the verifier can successfully recover 𝑠, else it recovers
𝛼.

We first discuss the classical extraction process. The quantum extractor runs the
classical extractor in superposition as we did in the case of quantum zero-knowledge.
The extraction process proceeds as follows: the extractor picks a bit ̃︀𝑏 uniformly at
random and sets ̃︀𝑏 to be the receiver’s bit in the OT protocol. By the statistical
receiver privacy property of OT, it follows that the probability that the extractor
succeeds in recovering 𝑠 is negligibly close to 1

2
. Moreover, the success probability

is independent of the initial state of the prover. This means that we can apply the
Watrous rewinding lemma and amplify the success probability.

Malicious Provers: However, we missed a subtle issue: the malicious prover could
misbehave. For instance, the prover can set the OT sender’s input to be (𝑟, 𝑟) and
thus, not use the secret bit 𝑠 at all.

We resolve this issue by additionally requiring the prover to prove to the verifier
that one of its inputs in the OT protocol is the secret bit2 𝑠. This is realized by using
a quantum zero-knowledge protocol, denoted by Π.

1For instance, 𝑠 could be the firt bit of the witness.
2For now, assume that there exists a predicate that can check if 𝑠 is a valid secret bit.

142

Error amplification. A malicious verifier can successfully recover the secret 𝑠 with
probability 1

2
. To reduce the verifier’s success probability, we execute the above

process (i.e., first executing the OT protocol and then executing the ZK protocol) 𝜆
number of times, where 𝜆 is the security parameter. First, the prover will additively
secret share the bit 𝑠 into secret shares 𝑠ℎ1, . . . , 𝑠ℎ𝜆. It also samples the bits 𝑏1, . . . , 𝑏𝜆
uniformly at random. In the 𝑖𝑡ℎ execution, it sets the OT sender’s input to be (𝑠ℎ𝑖, 𝛼𝑖)
if 𝑏𝑖 = 0, otherwise it sets the OT sender’s input to be (𝛼𝑖, 𝑠ℎ𝑖), where 𝛼𝑖 is sampled
uniformly at random. After all the OT protocols are executed, the prover is going
to prove using a QZK protocol Π, as considered above, that the messages in the OT
protocols were correctly computed.

We first argue that even in this protocol, the extraction still succeeds with over-
whelming probability. In each OT execution, the extractor applies Watrous rewinding,
as before, to extract all the shares 𝑠ℎ1, . . . , 𝑠ℎ𝜆. From this, it can recover 𝑠. All is left
is to argue that this template satisfies quantum zero-knowledge property. It turns
out that arguing this is challenging3.

Challenges in Proving QZK and Distinguisher-Dependent Hybrids. We
first define the simulator as follows:

• The simulator uses (𝛼𝑖, 𝛼𝑖) as the sender’s input in the 𝑖𝑡ℎ OT execution, where
𝛼𝑖 is sampled uniformly at random.

• It then simulates the protocol Π.

To prove that the output distribution of the simulated world is computationally in-
distinguishable from the real world, we adopt a hybrid argument. The first hybrid,
Hybrid1, corresponds to the real world. In the second hybrid, Hybrid2, simulate the
protocol Π. The indistinguishability of Hybrid1 and Hybrid2 follows from the QZK
property of Π. Next, we define the third hybrid, Hybrid3, that executes the simulator.
To prove the indistinguishability of Hybrid2 and Hybrid3, we consider a sequence of
intermediate hybrids, denoted by {Hybrid2.𝑗}𝑗∈[𝜆]. Using this sequence of hybrids, we
change the inputs in all the 𝜆 OT executions one at a time. Finally, we define the third
hybrid, Hybrid3, that corresponds to the ideal world. Proving the indistinguishability
of the consecutive hybrids, Hybrid2.𝑗 and Hybrid2.𝑗+1, in this sequence turns out to be
challenging.

The main issue is the following: suppose we are in the 𝑗𝑡ℎ intermediate hybrid
Hybrid2.𝑗, for 𝑗 ≤ 𝜆. At this point, we have changed the inputs to the first 𝑗 OT
executions and we are about to change the input to the (𝑗+1)𝑡ℎ OT. But what exactly
are the inputs we are using for the first 𝑗 OT executions? It is unclear whether we

3We would like to point out that we are designing the standalone PoK protocol as a stepping
stone towards the bounded concurrent PoK protocol. If one were to be interested in just the
standalone setting, then it might be possible to avoid the subtleties described above by making
use of a simulation-secure OT rather than an indistinguishable-secure OT. The reason why we use
an indistinguishable-secure OT in the concurrent PoK setting instead of a simulation-secure OT is
because we want to avoid using more than one simulator in the analysis; otherwise, we would have
multiple simulators trying to rewind the verifier, making the analysis significantly complicated.

143

use the input (𝑠ℎ𝑖, 𝑠ℎ𝑖) or the input (𝛼𝑖, 𝛼𝑖), for 𝑖 ≤ 𝑗, in the 𝑖𝑡ℎ OT execution. Note
that the OT security states that we can either switch the real sender’s inputs to either
(𝑠ℎ𝑖, 𝑠ℎ𝑖) or (𝛼𝑖, 𝛼𝑖), based on the sender’s and the distinguisher’s randomness. And
hence, we define an inefficient intermediate hybrid, which is a function (not necessarily
computable), that determines for every 𝑖, where 𝑖 ≤ 𝑗, whether to use (𝑠ℎ𝑖, 𝑠ℎ𝑖) or
(𝛼𝑖, 𝛼𝑖). Moreover, this hybrid depends on the distinguisher, that distinguishes the
two intermediate hybrids.

The indistinguishability of the consecutive pair of inefficient hybrids, say Hybrid2.𝑗
and Hybrid2.𝑗+1, is proven by a non-uniform reduction that receives as input the advice
corresponding to the first 𝑗 executions of OT, where the sender’s inputs are correctly
switched to either (𝑠ℎ𝑖, 𝑠ℎ𝑖) or (𝛼𝑖, 𝛼𝑖), for 𝑖 ≤ 𝑗. This in turn depends on the
distinguisher distinguishing these two hybrids. Then, the reduction uses the (𝑗+ 1)𝑡ℎ

OT execution in the protocol to break the sender privacy property of OT. If the two
hybrids can be distinguished with non-negligible probability then the reduction can
succeed with the same probability.

In the hybrid Hybrid2.𝜆−1, we additionally include an abort condition: if the inputs
in the first 𝜆−1 OT executions are all switched to (𝑠ℎ𝑖, 𝑠ℎ𝑖) then we abort. We show
that the probability that Hybrid2.𝜆−1 aborts is negligible. This is necessary to argue
that the verifier does not receive all the shares of the secret.

Note that only the intermediate hybrids, namely {Hybrid2.𝑗}𝑗∈[𝜆], are inefficient,
and in particular, the final hybrid Hybrid3 is still efficient.

Extraction of Multiple Bits. To design a quantum proof of knowledge protocol,
we need to be able to extract not just one bit, but multiple bits. To achieve this, we
design the prover as follows: on input a witness 𝑤, it sequentially executes the above
extraction template for each bit of the witness. That is, for every 𝑖 ∈ [ℓ𝑤], where ℓ𝑤 is
the length of 𝑤, it additively secret shares 𝑤𝑖 into the shares (𝑠ℎ𝑖,1, . . . , 𝑠ℎ𝑖,𝜆). It then
invokes ℓ𝑤 · 𝜆 number of OT executions, where in the (𝑖, 𝑗)𝑡ℎ execution, it chooses
the input (𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗) if 𝑏𝑖,𝑗 = 0, or the input (𝛼𝑖,𝑗, 𝑠ℎ𝑖,𝑗) if 𝑏𝑖,𝑗 = 1, where 𝛼𝑖,𝑗, 𝑏𝑖,𝑗
are sampled uniformly at random. Finally, it uses a QZK protocol to prove that it
behaved honestly in the earlier OT executions.

The proofs of quantum proof of knowledge and the QZK properties follow along
the same lines as the single-bit extraction case.

Statistical Receiver-Private OT with Post-Quantum Security

All that is left is to construct an oblivious transfer protocol that guarantees statis-
tical indistinguishability property against malicious senders and indistinguishability
property against QPT malicious receivers. We denote the protocol that we intend to
construct to be ΠSROT.

The starting point of our construction is another oblivious transfer protocol, de-
noted by ΠSSOT, that has its properties flipped. That is, ΠSSOT satisfies statistical
indistinguishability property against malicious receivers and indistinguishability prop-
erty against QPT malicious senders. The reason we start with this protocol is that we

144

do know how to achieve this; Brakerski-Döttling [BD18] constructed such a protocol
from QLWE.

Our approach is inspired from previous works [KKS18, GJJM20, DGH+20] that
show how to construct statistical receiver-private OT from statistical sender-private
OT.

Our first attempt to construct ΠSROT is the following:

• The sender of ΠSSOT samples a random bit 𝑟 $←− {0, 1}. It takes the role of the
receiver in the underlying ΠSROT. It then sends the first message of ΠSROT with
the receiver’s message set to be 𝑟.

• The receiver of ΠSSOT, on input choice bit 𝛽, samples another random bit 𝑟′.
It takes the role of the sender in the underlying protocol ΠSSOT. It then sends
the sender’s message in ΠSSOT, where the sender’s input in ΠSSOT is set to be
(𝑟′, 𝑟′ ⊕ 𝛽).

• After the end of the execution of ΠSSOT, the sender on input (𝑚0,𝑚1), does
the following: it recovers the message ̃︀𝑟 from the underlying OT. It then sends
(̃︀𝑟 ⊕𝑚0, ̃︀𝑟 ⊕ 𝑟 ⊕𝑚1) to the receiver.

If 𝛽 = 0 then ̃︀𝑟 = 𝑟′ and so, the receiver can recover 𝑚0. If 𝛽 = 1 then ̃︀𝑟 = 𝑟′⊕ 𝑟 and
so, the receiver can recover 𝑚1.

The receiver privacy against computationally unbounded senders follows from the
statistical sender privacy of the underlying two-round oblivious transfer protocol.

To prove sender privacy against QPT receivers, first let us make the previously
described security notion more precise. The malicious receiver 𝑅*, on input state
|Ψ⟩, interacts with the sender and produces an auxiliary state |̃︀Ψ⟩. During this
interaction, the sender does not use (𝑚0,𝑚1). The sender uses (𝑚0,𝑚1) to compute
the final round message. We define two games: in the first game, the adversary
tries to distinguish (𝑚0,𝑚1) versus (𝑚0,𝑚0) and in the second game, the adversary
tries to distinguish (𝑚0,𝑚1) versus (𝑚1,𝑚1). We say that oblivious transfer satisfies
post-quantum computational sender privacy property if the malicious receiver cannot
succeed in both the games with non-negligible advantage.

A natural approach to prove that the malicious receiver cannot win both the
games is to extract the bit 𝛽 from the malicious receiver; if 𝛽 = 0 then the receiver
will not be able to succeed in the second game if 𝛽 = 1 then the receiver will not
succeed in the first game. To ensure that we can extract the bit 𝛽 from the receiver,
we additionally introduce an extraction phase to the protocol.

Extraction Phase: To design the extraction phase, we use the same technique we
introduced earlier. The main difference is that instead of using statistical receiver-
private OT, we instead use a statistical sender-private OT for extraction.

In the extraction phase of ΠSROT, the sender and the receiver do the following:

• As before, the sender of ΠSROT, plays the role of the receiver of ΠSSOT and the
receiver of ΠSROT plays the role of the sender of ΠSSOT.

145

• The sender does the following: it samples a bit 𝑏 uniformly at random. It sets
the ΠSSOT’s receiver’s bit to be 𝑏.

• The receiver, on the other hand, samples 𝛼 $←− {0, 1} and sets the ΠSSOT’s
sender’s input to be (𝛽, 𝛼) with probability 1

2
and (𝛼, 𝛽) with probability 1

2
.

• At the end of the execution of ΠSSOT, the receiver reveals the location of 𝛽 –
i.e., it sends 0 if (𝛽, 𝛼) was used in ΠSSOT or it sends 1 if (𝛼, 𝛽) was used.

Note that if the location matched with 𝑏 then the sender can recover 𝛽, otherwise
it cannot. With probability at most 1

2
, the sender can recover 𝛽. We can use the

same error amplification technique (via secret sharing) introduced earlier to reduce
the probability of success of the malicious sender to be negligible. On the other hand,
we can design an extractor that uses Watrous rewinding, as mentioned earlier to re-
cover the bit 𝛽 with probability close to 1.

Template. Using the above ingredients, we now summarise the template to con-
struct a statistical receiver-private oblivious transfer.

The sender, on input (𝑚0,𝑚1), and the receiver of ΠSROT on input 𝛽, do the
following:

• The sender and the receiver execute the extraction phase described above. The
receiver uses its bit 𝛽 in the extraction phase.

• The sender and the receiver then execute ΠSSOT, where each party play the
opposite role. The sender sets the input of the receiver in ΠSSOT to be 𝑟, where
𝑟

$←− {0, 1} and the receiver sets the input of the sender in ΠSSOT to be (𝑟′, 𝑟′⊕𝛽),
where 𝑟′ $←− {0, 1}. After the end of the execution of ΠSSOT, the sender recovers̃︀𝑟.

• Of course, the receiver could have cheated and used a different 𝛽 in both the
extraction phase and in the execution of ΠSSOT. To ensure that the receiver does
not cheat, we force the receiver to prove that it used 𝛽 consistently. We use a
computational argument system satisfying statistical zero-knowledge property
for this step.

• Once the sender gets convinced that the receiver did not cheat, it sends (̃︀𝑟 ⊕
𝑚0, ̃︀𝑟 ⊕ 𝑟 ⊕𝑚1) to the receiver.

Finally, we show how to implement computational argument system satisfying sta-
tistical zero-knowledge property from QLWE. The idea is to start with a statistical
NIZK computational argument system in the CRS model and then generate the CRS
using a coin flipping protocol.

146

Quantum PoK in the Bounded Concurrent Setting

Our construction of bounded concurrent quantum proof of knowledge is the same as
the one described in Section 5.1, except that we instantiate Π using the bounded
concurrent QZK protocol that we constructed in Section 4.3.34.

However, proving the bounded concurrent QZK protocol turns out to be even
more challenging than the standalone setting. To grasp the underlying difficulties, let
us revisit the proof of QZK in Section 5.1. To prove the indistinguishability of the real
and the ideal world, we first simulated the protocol Π. Since we are in the bounded
concurrent setting, the simulator of Π is now simultaneously simulating multiple
sessions of the verifier. Then using a sequence of intermediate hybrids, we changed
the inputs used in the OT executions of all the sessions one at a time. However, in the
bounded concurrent setting, the OT messages can be interleaved with QZK messages.
This means that the simulator of QZK could be rewinding the OT messages along
with the QZK messages. This makes it difficult to invoke the security of OT.

To reduce the indistinguishability of hybrids to breaking OT, we will carefully
design the security reduction such that it does not rewind the blocks (the definition
of a block is the same as the one described in Section 4.3) containing the messages of
the OT protocol. This ensures that we can embed the messages exchanged with the
external challenger (in the OT game) without the fear of being rewound. Of course, we
need to be cautious: the decision to not rewind a specific block could leak information
about the private state of the verifier and this could affect the zero-knowledge propety
of the underlying QZK protocol. To overcome this issue, for a block containing the
OT messages, we perform a dummy rewind where the transcript of conversation in
this block does not change. Thus, we can still interact with the external challenger
using the messages in this block. Another issue that arises is that we might end
up not rewinding as many blocks as the round complexity of the underlying OT
protocol, which is polynomially many rounds. We show that the simulator of the
bounded concurrent QZK we constructed in Section 4.3 can be modified in such a
way that it can successfully simulate all the sessions even if polynomially many blocks
are ignored.

5.2 Receiver statistical oblivious transfer

We begin by presenting the definition of statistical receiver oblivious transfer with
post-quantum security. We consider a natural adaption of the definition of [GJJM20]
(see also [DGH+20]), who originally defined in the classical setting.

The definition we provide is written this way to make it compatible with the 3-
round OT definition from [GJJM20]. The main difference is that we allow for an
interactive phase instead of the sender’s first message in [GJJM20].

4We emphasize that we use the specific bounded concurrent QZK protocol that we constructed
earlier and we do not know how to provide a generic transformation.

147

5.2.1 Definition

Definition 96 (Post-Quantum Statistical Receiver-Private Oblivious Transfer). An
oblivious transfer protocol, Π𝑂𝑇 , is an interactive protocol between a PPT sender
and a PPT receiver (S,R), and a triplet of algorithms (OT2,OT3,OT4) such that

Interactive Phase. S and 𝑃 interact for poly(𝜆) rounds. The receiver’s input is 𝜆
and a bit 𝛽 ∈ {0, 1}. The sender’s input is 𝜆. Let ot1 be the transcript generated in
this round, and let st𝑆 and st𝑅 be the private state of the sender and receiver (respec-
tively) at the end of the round.

Receiver’s Final Message. The receiver 𝑅 computes (ot2, st
′
𝑅)← OT2(1

𝜆, ot1, 𝛽, st𝑅)

Sender’s Final Message. S with input (𝑚0,𝑚1) ∈ {0, 1}2 computes (ot3, st
′
𝑆) ←

OT3(1
𝜆, ot2, st𝑆,𝑚0,𝑚1), and it sends ot3 to R.

Reconstruction. The receiver computes 𝑚′ ← OT4(1
𝜆, ot3, st

′
𝑅). Output 𝑚′.

Correctness. For any 𝛽 ∈ {0, 1}, (𝑚0,𝑚1) ∈ {0, 1}2, we have:

Pr

⎡⎣ (ot1,st𝑆 ,st𝑅)←⟨S(1𝜆),R(1𝜆,𝛽)⟩
(ot2,st′𝑅)←OT2(1𝜆,ot1,𝛽,st𝑅)

(ot3,st′𝑆)←OT3(1𝜆,ot2,st𝑆 ,𝑚0,𝑚1)

𝑚′←OT4(1𝜆,ot3,st′𝑅)

: 𝑚′ = 𝑚𝛽

⎤⎦ = 1

Statistical Receiver-Privacy. For any sender 𝑆*, denote (ot
(0)
1 , st

(0)
𝑅)← ⟨𝑆*(1𝜆), 𝑅(1𝜆, 0)⟩

and (ot
(1)
1 , st

(1)
𝑅)← ⟨𝑆*(1𝜆), 𝑅(1𝜆, 1)⟩. Furthermore, let (ot

(0)
2 , (st

(0)
𝑅)′)← OT2(1

𝜆, ot
(0)
1 , 0, st

(0)
𝑅)

and let (ot
(1)
2 , (st

(1)
𝑅)′)← OT2(1

𝜆, ot
(1)
1 , 1, st

(1)
𝑅).

Then the statistical distance between the marginal distributons {(ot(0)1 , ot
(0)
2)} and

{(ot(1)1 , ot
(1)
2)} is a negligible function in 𝜆.

Post-Quantum Sender-Privacy. For any non-uniform QPT distinguisher 𝒜 and
any malicious receiver R*, which receives as input state that is possibly entangled with
the input state of 𝒜, we define the following games.

Interact with R*. The challenger plays the role of an honest sender in the interactive
phase with R*. Then the receiver R* outputs a state in a register B and a message 𝑧.
The message 𝑧 is sent to the challenger. The register B is given to 𝒜.

Game 𝐺0(𝑚0,𝑚1): The challenger samples 𝑏0 ← {0, 1} at random and computes
𝑜𝑡3 ← OT3(1

𝜆, 𝑧, st𝑆,𝑚𝑏0 ,𝑚1). Then, 𝑜𝑡3 is sent to 𝒜. Finally, 𝒜 outputs two bits 𝑏′0
and 𝑏′1. If 𝑏0 = 𝑏′0 then we say that 𝒜 wins the game 𝐺0.

Game 𝐺1(𝑚0,𝑚1): The challenger samples 𝑏1
$←− {0, 1} at random, and then com-

putes 𝑜𝑡3 ← OT3(1
𝜆, 𝑧, st𝑆,𝑚0,𝑚𝑏1). Then, 𝑜𝑡3 is sent to 𝒜. Finally, 𝒜 outputs two

148

bits 𝑏′0 and 𝑏′1. If 𝑏1 = 𝑏′1 then we say that 𝒜 wins the game 𝐺1.

We define the advantage as follows:

Adv(𝒜,R*,𝑚0,𝑚1) = EView𝑅* [min {𝑝0, 𝑝1}] ,

where:

• 𝑝0 =
⃒⃒
Pr[𝒜 wins G0(𝑚0,𝑚1)]− 1

2

⃒⃒
• 𝑝1 =

⃒⃒
Pr[𝒜 wins G1(𝑚0,𝑚1)]− 1

2

⃒⃒
We say that the oblivious transfer scheme is (quantum) computational sender-
secure if for every 𝑚0,𝑚1 ∈ {0, 1}, we have Adv(𝒜,R*,𝑚0,𝑚1) to be negligible in
𝜆.

5.2.2 Tool: Statistical ZK quantum argument system

To construct a statistical receiver-private oblivious transfer, we use two tools: (i) a
statistical zero-knowledge argument system and, (ii) statistical sender-private oblivi-
ous transfer (Section 2.4.9).

In this section, we show how to obtain a statistical ZK quantum argument start-
ing from a statistical NIZK (Section 2.4.6). We start by definining a statistical ZK
quantum argument system.

Definition 97 (Statistical ZK Quantum Argument System). Let Π be an interactive
protocol between a classical PPT prover 𝑃 and a classical PPT verifier 𝑉 . Let ℛ(ℒ)
be the NP relation associated with Π.

Π is said to satisfy completeness if the following holds:

• Completeness: For every (𝑥,𝑤) ∈ ℛ(ℒ),

Pr[Accept← ⟨𝑃 (𝑥,𝑤), 𝑉 (𝑥)⟩] ≥ 1− negl(𝜆),

for some negligible function negl.

Π is said to satisfy (quantum computational) soundness if the following
holds:

• (Quantum Computational) Soundness: For every QPT adversary 𝑃 *, ev-
ery 𝑥 /∈ ℛ(ℒ), every poly(𝜆)-qubit advice 𝜌,

Pr [Accept← ⟨𝑃 *(𝑥, 𝜌), 𝑉 (𝑥)⟩] ≤ negl(𝜆),

for some negligible function negl.

Π is said to satisfy statistical zero-knowledge if the following holds:

149

• Statistical Zero-Knowledge:For every sufficiently large 𝜆 ∈ N, every com-
putationally unbounded adversary 𝑉 *, there exists a QPT simulator Sim such
that for every (𝑥,𝑤) ∈ ℛ(ℒ), the state output by 𝑉 * is close in trace distance
to the state output by Sim.

To construct a statistical ZK quantum argument system, we will use a non-
interactive (statistical) ZK protocol for NP (NIZK).

Construction

In order to construct a statistical ZK quantum argument system for an NP relation
ℛ(ℒ), we use the following ingredients.

Tools.

• A quantum zero-knowledge protocol Πzk for the NP relation ℛ(ℒzk). We de-
scribed the relation ℛ(ℒzk), parametrized by security parameter 𝜆, described
below:

ℛ(ℒzk) = {((𝑐𝑟𝑠, c, 𝑏); (𝑎, r)) :
𝑐𝑟𝑠=𝑎⊕𝑏⋀︀

c=Comm(1𝜆,𝑎;r)
}

• A perfectly binding and quantum computationally hiding commitment scheme,
Comm, where the length of randomness is 𝜆 (Section 2.4.2).

• A non-interactive statistical zero-knowledge argument system ΠNIZK for ℛ(ℒ),
where the length of the CRS is 𝑞(𝜆) (Section 2.4.6).

We present a construction in Figure 5-1.

Completeness. The completeness follows from the completeness of Πzk and ΠNIZK.

Quantum Computational Soundness. Let 𝑥 /∈ ℒ. Suppose 𝑃 * be a QPT prover
that on input (𝑥, 𝜌), for some poly(𝜆)-qubit advice 𝜌, convinces the verifier 𝑉 * to ac-
cept 𝑥 with probability 𝜀. We prove that 𝜀 is negligible using a hybrid argument.

Hybrid1: This corresponds to the execution of 𝑃 * and 𝑉 . The probability that 𝑉
accepts is 𝜀.

Hybrid2.𝑖 for 𝑖 ∈ [𝑞(𝜆)]: We consider a hybrid verifier Hybrid2.𝑖.𝑉 that executes the
simulator Sim in the 𝑖𝑡ℎ execution of Πzk, instead of running the real prover. Except
this change, the hybrid verifier Hybrid2.𝑖.𝑉 behaves the same as Hybrid2.𝑖−1.𝑉 if 𝑖 > 1
or as 𝑉 if 𝑖 = 1.

From the (computational) quantum zero-knowledge property of Πzk, the proba-
bility that Hybrid2.𝑖.𝑉 accepts is negligibly close to 𝜀.

Hybrid3.𝑖, for 𝑖 ∈ [𝑞(𝜆)]: We consider a hybrid verifier Hybrid3.𝑖.𝑉 that computes the
𝑖𝑡ℎ commitment c𝑖 as follows: c𝑖 ← Comm(1𝜆, 0). Except this change, the hybrid

150

Instance: 𝑥.
Witness: 𝑤.

• 𝑉 samples a
$←− {0, 1}𝜆.

• For every 𝑖 ∈ [𝑞(𝜆)], 𝑃 and 𝑉 perform the following operations:

– 𝑉 → 𝑃 : 𝑉 computes c𝑖 ← Comm(1𝜆, 𝑎𝑖; r𝑖), where r𝑖
$←− {0, 1}𝜆 and 𝑎𝑖 is

the 𝑖𝑡ℎ bit of a. 𝑉 sends c𝑖 to 𝑃 .

– 𝑃 → 𝑉 : 𝑃 sends 𝑏𝑖 to 𝑉 , where 𝑏𝑖
$←− {0, 1}.

– 𝑉 → 𝑃 : 𝑉 sends 𝑐𝑟𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 to 𝑃 .

– 𝑉 ↔ 𝑃 : 𝑃 and 𝑉 will execute Πzk, with 𝑃 playing the role of verifier in
Πzk and 𝑉 plays the role of the prover. The instance is (𝑐𝑟𝑠𝑖, c𝑖, 𝑏𝑖) and
the witness is (𝑎𝑖, r𝑖).

• Set crs =
(︀
𝑐𝑟𝑠1, . . . , 𝑐𝑟𝑠𝑞(𝜆)

)︀
.

• 𝑃 → 𝑉 : 𝑃 computes a proof 𝜋 on input common random string crs, instance 𝑥
and witness 𝑤 using ΠNIZK. It sends 𝜋 to 𝑉 .

• 𝑉 computes the verifier of ΠNIZK on input (crs, 𝑥, 𝜋). It outputs the decision bit
of the verifier of ΠNIZK.

Figure 5-1: Statistical ZK Quantum Argument System

verifier Hybrid3.𝑖.𝑉 behaves the same as Hybrid3.𝑖−1.𝑉 if 𝑖 > 1 or as Hybrid2.𝑞(𝜆).𝑉 if
𝑖 = 1.

From the quantum-concealing property of Comm, the probability that Hybrid3.𝑖.𝑉
accepts is negligibly close to 𝜀.

Hybrid4: We consider a hybrid verifier Hybrid4.𝑉 , which is essentially the same as

Hybrid3.𝑞(𝜆).𝑉 , except that it generates crs
$←− {0, 1}𝑞(𝜆) and sends crs to 𝑃 .

Since the hybrids Hybrid3.𝑞(𝜆).𝑉 and Hybrid4.𝑉 are identical, the probability that
Hybrid4.𝑉 accepts is negligibly close to 𝜀.

From the computational soundness of ΠNIZK, the probability that Hybrid4.𝑉 accepts
is negligible. Thus, 𝜀 is negligible.

Statistical Zero-Knowledge. Let 𝑉 * be a computationally unbounded verifier
and let |Ψ⟩ be the initial state of 𝑉 *. Before we describe the simulator we first define

151

the following registers. For 𝑖 = 1, . . . , 𝑞(𝜆):

• B𝑖: it contains the bit sent by the simulator in the 𝑖𝑡ℎ iteration.

• R𝑖: it contains the receiver’s commitment and the 𝑖𝑡ℎ bit of crs sent during the
𝑖𝑡ℎ iteration.

• IZ𝑖: it contains the messages of zero-knowledge exchanged during the 𝑖𝑡ℎ itera-
tion.

• Dec: it contains the decision bit.

• Aux: it contains the auxiliary state of the verifier.

• NZ: it contains the final NIZK proof sent by the simulator.

• C: it contains the common reference string.

• X: this is a poly(𝜆)-qubit ancillary register.

Description of Simulator:

• The simulator prepares the following state:

|Ψ1⟩ =

(︂
𝑞(𝜆)

⊗
𝑖=1
|0⟩R𝑖

|0⟩B𝑖
|0⟩IZ𝑖

)︂
⊗ |0⟩NZ|0⟩X|0⟩C|Ψ⟩Aux|0⟩Dec

• It runs the NIZK simulator, (̂︁crs, ̂︀𝜋) ← ΠNIZK.Sim(1𝜆, 𝑥), to compute ̂︁crs. It
stores ̂︁crs in the register C, and it stores ̂︀𝜋 in NZ.

• For all 𝑖 = 1, . . . , 𝑞(𝜆), let 𝑈𝑖 be the unitary that performs the following opera-
tions in superposition.

– It first applies 𝑉 * on the registers {B𝑗,R𝑗, IZ𝑗,Aux}𝑗<𝑖,R𝑖.

– It then maps |0⟩B𝑖
to |+⟩B𝑖

.

– It then applies 𝑉 * on the registers {B𝑗,R𝑗, IZ𝑗,Aux}𝑗<𝑖,R𝑖,B𝑖.

– It then performs the 𝑖𝑡ℎ iteration of Πzk with 𝑉 * in superposition. The
transcript is stored in IZ𝑖.

– It then applies the following unitary ̂︀𝑈 :

̂︀𝑈 |𝑏𝑖⟩B𝑖
|c𝑖 𝑐𝑟𝑠𝑖⟩R𝑖

|𝜏𝑖⟩IZ𝑖
|̂︁crs⟩C|0⟩Dec =

{︂
|𝑏𝑖⟩B𝑖

|c𝑖 𝑐𝑟𝑠𝑖⟩R𝑖
|𝜏𝑖⟩IZ𝑖

|̂︁crs⟩C|1⊕ 𝜃𝑖⟩Dec, if 𝜏𝑖 is valid,
|𝑏𝑖⟩B𝑖

|c𝑖 𝑐𝑟𝑠𝑖⟩R𝑖
|𝜏𝑖⟩IZ𝑖

|̂︁crs⟩C|+⟩Dec, othewise

We define 𝜃𝑖 = 1 if the 𝑖𝑡ℎ bit of ̂︁crs is the same as 𝑐𝑟𝑠𝑖, where 𝑐𝑟𝑠𝑖 is the 𝑖𝑡ℎ bit
of crs computed by 𝑉 * in the register R𝑖. Furthermore, we define 𝜏𝑖 to be valid
if the verifier in the 𝑖𝑡ℎ execution of Πzk accepts.

152

• Let 𝑊𝑖 = Amplifier (𝑈𝑖); where Amplifier is the circuit guaranteed by Lemma 28.
Simulator computes |Ψ𝑖⟩ = 𝑊𝑖|Ψ𝑖−1⟩.

• Finally, it uses ̂︀𝜋 stored in NZ as the proof for the NIZK step.

• Measure all the registers except for Aux.

We now prove the statistical indistinguishability of the real and the ideal world using
a hybrid argument. Consider the following hybrids.

Hybrid1: This corresponds to the real execution between 𝑃 and 𝑉 *.

Hybrid2.𝑖 for 𝑖 ∈ [𝑞(𝜆)]: We define a hybrid prover as follows: sample crs ← Gen(1𝜆).
Note that crs is generated according to the uniform distribution. Prepare the state
|Ψ1⟩ as given in the description of the simulator. Apply 𝑊𝑖 · · ·𝑊1|Ψ1⟩ to obtain
|Ψ𝑖⟩. That is, perform Watrous rewinding for the first 𝑖 iterations of the OT protocol,
similarly to the way the simulator does, but using crs, instead of ̂︁crs. Then, the hybrid
prover uses the real prover to interact with 𝑉 *, that receives as input |Ψ𝑖⟩, to perform
the operations for the rest of the protocol.

We now show that the output distributions of the hybrids Hybrid2.𝑖−1 and Hybrid2.𝑖
are computationally indistinguishable. In order to show this, we use a similar argu-
ment that was used in the proof of Claim 81. It suffices to argue that the following
distributions are statistically close:

• 𝒟1: Measure the registers {R𝑖, IZ𝑖}𝑖∈[𝑞(𝜆)],NZ after the 𝑖𝑡ℎ iteration in Hybrid2.𝑖−1
and output the measurement outcome along with the residual state in Aux.

• 𝒟2: Measure the registers {R𝑖, IZ𝑖}𝑖∈[𝑞(𝜆)],NZ after the 𝑖𝑡ℎ iteration in Hybrid2.𝑖
and output the measurement outcome along with the residual state in Aux.

We prove this in two steps: first, we apply Watrous rewinding and analyze the state
obtained after the 𝑖𝑡ℎ iteration in Hybrid2.𝑖. In the next step, we use this to argue the
indistinguishability of 𝒟1 and 𝒟2.

Applying Watrous Rewinding. Suppose |Ψ𝑖−1⟩ = 𝑊𝑖−1 · · ·𝑊1|Ψ1⟩. Consider
the following:

𝑈𝑖|Ψ𝑖−1⟩ =
√
𝑞
(︁√

𝑝|𝜑good⟩|0⟩Dec +
√︀

1− 𝑝|𝜑bad⟩|1⟩Dec

)︁
+
√︀

1− 𝑞|𝜑invalid⟩|+⟩Dec,

=
√
𝑝
(︁√

𝑞|𝜑good⟩+
√︀

1− 𝑞|𝜑invalid⟩
)︁
|0⟩Dec +

√︀
1− 𝑝

(︁√
𝑞|𝜑bad⟩+

√︀
1− 𝑞|𝜑invalid⟩

)︁
|1⟩Dec,

where:

• 𝑞 is the probability with which 𝑉 * convinces 𝑃 in the 𝑖𝑡ℎ execution of Πzk,

•
⃒⃒
𝑝− 1

2

⃒⃒
≤ negl(𝜆): this follows from a similar argument as in the proof of

Claim 83,

153

• |𝜑invalid⟩ (defined on all the registers except the Dec register) is a superposi-
tion over the messages containing the 𝑖𝑡ℎ iteration Πzk transcripts that are not
accepted by the verifier of Πzk,

• |𝜑good⟩ (defined on all the registers except the Dec register) is a superposition
over the messages of the 𝑖𝑡ℎ iteration containing 𝑐𝑟𝑠𝑖 = crs𝑖 and,

• |𝜑bad⟩ (defined on all the registers except the Dec register) is a superposition
over the messages of the 𝑖𝑡ℎ iteration containing 𝑐𝑟𝑠𝑖 ̸= crs𝑖.

Once we apply Lemma 28, the resulting state will be𝑊𝑖|Ψ𝑖−1⟩ =
(︀√

𝑞|𝜑good⟩+
√

1− 𝑞|𝜑invalid⟩
)︀
|0⟩Dec

with probability negligibly close to 1.

Indistinguishability of 𝒟1 and 𝒟2. As in the proof of Claim 81, it suffices to
argue that the distribution of measurements of {R𝑖, IZ𝑖}𝑖∈[𝑞(𝜆)],NZ in |𝜑good⟩ along
with the residual state in Aux is computationally indistinguishable from the distri-
bution of measurements of {R𝑖, IZ𝑖}𝑖∈[𝑞(𝜆)],NZ in |𝜑bad⟩ along with the residual state
in Aux. This follows from the perfect binding property of Comm and the statistical
soundness property of Πzk using a similar argument used in Claim 83: if the verifier is
not computed in superposition then the verifier cannot distinguish whether 𝑐𝑟𝑠𝑖 = crs𝑖
or whether 𝑐𝑟𝑠𝑖 ̸= crs𝑖. Moreover, this is true even if the verifier is computed in su-
perposition and measuring the transcript registers in the end.

Hybrid3: Execute the simulator on input the state |Ψ⟩.
From the statistical zero-knowledge property of ΠNIZK, it follows that the state

output by 𝑉 * in the hybrid Hybrid2.𝑞(𝜆) is close in trace distance to the state output
by 𝑉 * in the hybrid Hybrid3.

5.2.3 Post-quantum statistical receiver OT: Construction

The ingredients needed for our construction are the following.

Tools.

• A 2-round post-quantum statistical sender-private OT, Π𝑂𝑇 = (𝑂𝑇1, 𝑂𝑇2, 𝑂𝑇3) (Sec-
tion 2.4.9). Without loss of generality, we assume that the length of the ran-
domness is 𝜆.

We say that a transcript 𝜏 , consisting of messages (msg1,msg2), is valid with
respect to sender’s randomness 𝑟 and its input bits (𝑚0,𝑚1) if the following
holds: (msg2, st)← OT2(1

𝜆,msg1,𝑚0,𝑚1; 𝑟).

• A statistical zero-knowledge quantum argument system, Πzk, for the NP relation
ℛ(ℒzk) (Section 5.2.2). We described the relation ℛ(ℒzk), parametrized by
security parameter 𝜆, described below:

154

ℛ (ℒzk) =

{︃(︂(︁
𝜏 *OT, {𝜏

(𝑖,𝑗)
OT , 𝑏𝑖,𝑗}𝑖∈[𝜆+2],𝑗∈[𝜆]

)︁
;

(︂
𝑟′, 𝛽, 𝑟*OT,

{︁
𝑟
(𝑖,𝑗)
OT , 𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗

}︁
𝑖∈[𝜆+2],𝑗∈[𝜆]

)︂)︂
:

⎛⎜⎝
∀𝑖∈[𝜆+2],𝑗∈[𝜆],

𝜏
(𝑖,𝑗)
OT is valid w.r.t

𝑟
(𝑖,𝑗)
OT and (((1−𝑏𝑖,𝑗)𝑠ℎ𝑖,𝑗+𝑏𝑖,𝑗 ·𝛼𝑖,𝑗), (𝑏𝑖,𝑗𝑠ℎ𝑖,𝑗+(1−𝑏𝑖,𝑗)·𝛼𝑖,𝑗))⋀︀

𝜏*OT is valid w.r.t 𝑟*OT and (𝑟′,𝑟′⊕𝛽)

⎞⎟⎠⋀︁(︁
∀𝑖∈[𝜆+2],

⊕𝜆
𝑗=1𝑠ℎ𝑖,𝑗=𝑤𝑖

)︁⋀︁
𝑤 = (𝑟′, 𝛽, 𝑟*OT)

}︃

We show that the construction in Figure 5-2 is a post-quantum statistical receiver
oblivious transfer protocol.

Correctness. The correctness of our protocol follows from the correctness of Π𝑂𝑇

and the completeness of Πzk.

Statistical Receiver Privacy. Let 𝑆* be a computationally unbounded sender.
Instead of proving that the sender cannot distinguish receiver’s bit to be 0 versus
receiver’s bit to be 1 with non-negligible probability, we instead prove the following:
suppose receiver chooses its bit uniformly at random then the probability that the
malicious sender can output 𝛽 with probability negligibly close to 1

2
. We prove this

via a hybrid argument. In the first hybrid, the receiver behaves honestly and uses the
receiver’s bit to be 𝛽, where 𝛽 is chosen uniformly at random. We define a sequence
of hybrids and show computational indistinguishability of every pair of consecutive
hybrids. In the final hybrid, the receiver’s bit will be information-theoretically hidden
in the messages exchanged with 𝑆*, which will prove the statistical receiver privacy
property.

Hybrid1: In this hybrid, the receiver uses the bit 𝛽.
Let 𝜀 be the probability that 𝑆* outputs 𝛽.

Hybrid2: Let Simzk be the simulator associated with Πzk. Instead of 𝑅 playing the
role of the prover in Πzk, it executes Simzk.

From the statistical zero-knowledge property of Πzk, the output distributions of
𝑆* in the hybrids Hybrid1 and Hybrid2 are statistically close. The probability that 𝑆*
outputs 𝛽 is negligibly close to 𝜀 in this hybrid.

Hybrid3.(𝑖,𝑗), for 𝑖 ∈ [𝜆+ 2], 𝑗 ∈ [𝜆]: In the (𝑖, 𝑗)𝑡ℎ execution of Π𝑂𝑇 , perform inefficient
extraction to extract 𝑏′𝑖,𝑗 from 𝑅′𝑂𝑇 . Recall that 𝑆* plays the role of 𝑅′𝑂𝑇 . If 𝑏′𝑖,𝑗 = 𝑏𝑖,𝑗
then set the input of the sender 𝑆 ′𝑂𝑇 to be (𝑠ℎ𝑖,𝑗, 𝑠ℎ𝑖,𝑗) and if 𝑏′𝑖,𝑗 ̸= 𝑏𝑖,𝑗 then set the
input of the sender 𝑆 ′𝑂𝑇 to be (𝛼𝑖,𝑗, 𝛼𝑖,𝑗).

The statistical indistinguishability of this hybrid and the previous hybrid follows
from the statistical sender-privacy property of Π𝑂𝑇 . The probability that 𝑆* outputs
𝛽 is negligibly close to 𝜀 in this hybrid.

155

Input of sender 𝑆: (𝑚0,𝑚1).
Input of receiver 𝑅: 𝛽.

• 𝑅 generates 𝑟′ $←− {0, 1} uniformly at random. 𝑅 samples 𝑟*𝑂𝑇
$←− {0, 1}𝜆.

• Let 𝑤 = (𝑟′, 𝛽, 𝑟*𝑂𝑇). For every 𝑖 ∈ [𝜆 + 2], 𝑅 generates shares 𝑠ℎ𝑖,1, . . . , 𝑠ℎ𝑖,𝜆
uniformly at random conditioned on ⊕𝜆

𝑗=1𝑠ℎ𝑖,𝑗 = 𝑤𝑖.

• For 𝑖 ∈ [𝜆+ 2], 𝑅 also generates bits 𝛼𝑖,1, . . . , 𝛼𝑖,𝜆 uniformly at random.

• For 𝑖 ∈ [𝜆+ 2], 𝑗 ∈ [𝜆], do the following:

– 𝑆 ↔ 𝑅: 𝑆 and 𝑅 execute Π𝑂𝑇 with 𝑆 playing the role of the receiver,
denoted by 𝑅′𝑂𝑇 , in Π𝑂𝑇 and 𝑅 playing the role of the sender, denoted by
𝑆 ′𝑂𝑇 , in ΠOT. The input of the receiver 𝑅′𝑂𝑇 in this protocol is 0, while the
input of the sender 𝑆 ′𝑂𝑇 is set to be (𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗) if 𝑏𝑖,𝑗 = 0, otherwise it is
set to be (𝛼𝑖,𝑗, 𝑠ℎ𝑖,𝑗) if 𝑏𝑖,𝑗 = 1, where the bit 𝑏𝑖,𝑗 is sampled uniformly at
random by 𝑆 ′𝑂𝑇 . We call this execution as (𝑖, 𝑗)𝑡ℎ execution of Π𝑂𝑇 .
Call the resulting transcript of the protocol to be 𝜏 (𝑖,𝑗)𝑂𝑇 and let 𝑟(𝑖,𝑗)𝑂𝑇 be the
randomness used by the sender 𝑆 ′𝑂𝑇 in Π𝑂𝑇 .

– 𝑅→ 𝑆: 𝑅 sends 𝑏𝑖,𝑗 to 𝑆.

• 𝑆 samples 𝑟 $←− {0, 1}.

• 𝑆 ↔ 𝑅: 𝑆 and 𝑅 execute Π𝑂𝑇 with 𝑆 playing the role of the receiver, denoted
by 𝑅′𝑂𝑇 , in Π𝑂𝑇 and 𝑅 playing the role of the sender, denoted by 𝑆 ′𝑂𝑇 , in ΠOT.
The input of the receiver 𝑅′𝑂𝑇 is 𝑟 and the input of the sender is (𝑟′, 𝑟′ ⊕ 𝛽).
Let ̃︀𝑟 be the bit recovered by 𝑅′𝑂𝑇 at the end of the protocol.

We call this execution the main execution of Π𝑂𝑇 . Call the resulting transcript
of the protocol to be 𝜏 *𝑂𝑇 and let 𝑟*𝑂𝑇 be the randomness used by the sender
𝑆 ′𝑂𝑇 in Π𝑂𝑇 .

• 𝑆 ↔ 𝑅: 𝑆 and 𝑅 execute Πzk with 𝑅 playing the role of
the prover 𝑃 of Πzk and 𝑆 playing the role of the verifier 𝑉 of

Πzk. The instance is
(︂
𝜏 *𝑂𝑇 ,

{︁
𝜏
(𝑖,𝑗)
𝑂𝑇 , 𝑏𝑖,𝑗

}︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︂
and the witness is(︂

𝑟′, 𝛽, 𝑟*𝑂𝑇 ,
{︁
𝑟
(𝑖,𝑗)
𝑂𝑇 , 𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗

}︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︂
. If the verifier in Πzk rejects, then 𝑆

aborts.

• 𝑆 sends (̃︀𝑟 ⊕𝑚0, ̃︀𝑟 ⊕ 𝑟 ⊕𝑚1).

Figure 5-2: Post-quantum statistical receiver oblivious transfer protocol

156

Hybrid4: If there exists 𝑖 ∈ [𝜆+ 2], such that for every 𝑗 ∈ [𝜆], 𝑏𝑖,𝑗 = 𝑏′𝑖,𝑗 then abort.
The probability that this hybrid aborts is at most 𝜆+2

2𝜆
. Conditioned on this hybrid

not aborting, this hybrid is identical to the previous one. The probability that 𝑆*
outputs 𝛽 is negligibly close to 𝜀 in this hybrid.

Hybrid5: In the main execution of Π𝑂𝑇 , perform inefficient extraction to extract 𝑟
from Π𝑂𝑇 . If 𝑟 = 0, then set the input of the sender 𝑆 ′𝑂𝑇 to be (𝑟′, 𝑟′) and if 𝑟 = 1,
then set the input of the sender to be (𝑟′ ⊕ 𝛽, 𝑟′ ⊕ 𝛽).

The statistical indistinguishability of Hybrid4 and Hybrid5 follows from the statis-
tical sender-privacy property of Π𝑂𝑇 . The probability that 𝑆* outputs 𝛽 is negligibly
close to 𝜀 in this hybrid.

Note that in Hybrid5, the receiver’s bit 𝛽 is information-theoretically hidden in the
messages exchanged with 𝑆*. Thus, the probability that 𝑆* guesses 𝛽 in Hybrid5 is 1

2
.

This proves that the probability that the receiver outputs 𝛽 in Hybrid1 is negligibly
close to 1

2
.

Post-Quantum Sender Privacy. Let 𝑅* be a QPT receiver and 𝒜 be a QPT
adversary such that the following holds for some 𝑚0 ∈ {0, 1},𝑚1 ∈ {0, 1},

EView𝑅* [min {𝑝0, 𝑝1}] ≥ 𝜈(𝜆),

where:

• View𝑅* is the view of 𝑅*.

• 𝑝0 =
⃒⃒
Pr[𝒜 wins G0(𝑚0,𝑚1)]− 1

2

⃒⃒
• 𝑝1 =

⃒⃒
Pr[𝒜 wins G1(𝑚0,𝑚1)]− 1

2

⃒⃒
for some non-negligible fucntion 𝜈(𝜆), where 𝐺0, 𝐺1 are defined with respect to 𝑅*

and 𝒜 as in Section 5.2.1. We define 𝑝(i)0 to be the absolute difference of the proba-
bility that 𝒜 wins in the game 𝐺0 and 1

2
in the hybrid Hybridi. Similarly, we define 𝑝(i)1 .

Consider the following hybrids.

Hybrid1: This hybrid corresponds to the real execution of the protocol.
By our initial assumption, we have EView𝑅* [min {𝑝0, 𝑝1}] ≥ 𝜈(𝜆).

Hybrid2: In this hybrid, defer the measurements of the receiver until the end.

The output distributions of Hybrid1 and Hybrid2 are identical. Thus, EView𝑅*

[︁
min

{︁
𝑝
(2)
0 , 𝑝

(2)
1

}︁]︁
≥

𝜈(𝜆).

Hybrid3.(𝑖,𝑗) for every 𝑖 ∈ [𝜆+ 2], 𝑗 ∈ [𝜆]: Instead of computing 𝑆, perform the follow-
ing hybrid extractor as follows.
We first give a description of the registers used in the system.

157

• R𝑖,𝑗 for 𝑖 ∈ [𝜆+ 2], 𝑗 ∈ [𝜆]: this consists of the sender 𝑆 – recall that 𝑆 is taking
the role of the receiver 𝑅′ of the (𝑖, 𝑗)𝑡ℎ execution of the OT – randomness used
by the extractor in the (𝑖, 𝑗)𝑡ℎ executions of ΠOT.

• B𝑖,𝑗, for 𝑖 ∈ [𝜆 + 2], 𝑗 ∈ [𝜆]: this is a single-qubit register that contains a bit
that is used by the extractor in the (𝑖, 𝑗)𝑡ℎ execution of the OT protocol.

• Dec: it contains the decision register that indicates whether to rewind or not.

• Aux: this is initialized with the auxiliary state of the receiver.

• T𝑖,𝑗, for 𝑖 ∈ [𝜆+ 2], 𝑗 ∈ [𝜆]: it contains the transcripts of the (𝑖, 𝑗)𝑡ℎ executions
of the OT protocol.

• T*: it contains the transcript of the protocol Πzk.

• X: this is a poly(𝜆)-qubit ancillary register.

Description of Hybrid3.(𝑖,𝑗).Ext(𝑥, |Ψ⟩): The state of the extractor is initialized as fol-
lows:

⎛⎝ ⨂︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

|0⟩B𝑖,𝑗
|0⟩R𝑖,𝑗

|0⟩T𝑖,𝑗

⎞⎠⊗ |0⟩T* ⊗ |Ψ⟩Aux ⊗ |0⟩Dec ⊗ |0⊗poly(𝜆)⟩X

• For 𝑖′ ∈ [𝜆+2], 𝑗′ ∈ [𝜆] such that (𝑖′, 𝑗′) ≥ (𝑖, 𝑗), perform the following operations
in superposition:

– Let |̃︀Ψ⟩ be the state of the system at the beginning of the (𝑖, 𝑗)𝑡ℎ execution.
– Prepare the following state5:

|0⟩B𝑖,𝑗
|0⟩R𝑖,𝑗

→ 1√
2𝜆+1

∑︁
𝛽𝑖,𝑗∈{0,1},𝑠

(𝑖,𝑗)
OT ∈{0,1}𝜆

|𝛽𝑖,𝑗⟩B𝑖,𝑗
|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗

– It then performs the (𝑖, 𝑗)𝑡ℎ execution of ΠOT along with the 𝑅*’s message
immediately after the (𝑖, 𝑗)𝑡ℎ execution of ΠOT in superposition. The re-
sulting transcript is stored in the register T𝑖,𝑗. We denote the unitary that
performs this step to be 𝑈 (1)

𝑖,𝑗 .
– After 𝑅* sends the message immediately after the (𝑖, 𝑗)𝑡ℎ execution of ΠOT,

apply the unitary 𝑈 (2)
𝑖,𝑗 defined as follows:

𝑈
(2)
𝑖,𝑗 |𝛽𝑖,𝑗⟩B𝑖,𝑗

|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗
|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗

|0⟩Dec

=

⎧⎨⎩
|𝛽𝑖,𝑗⟩B𝑖,𝑗

|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗
|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗

|Match𝑖,𝑗⟩Dec if acc𝑖,𝑗 = 1,

|𝛽𝑖,𝑗⟩B𝑖,𝑗
|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗

|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗
|+⟩Dec, otherwise

5We will assume, without loss of generality, that the length of the random strings used in the OT
protocol be 𝜆.

158

Here, Match𝑖,𝑗 = 0 if and only if 𝛽𝑖,𝑗 = 𝑏𝑖,𝑗, where 𝑏𝑖,𝑗 is the bit sent by 𝑅*
after the (𝑖, 𝑗)𝑡ℎ execution of the OT protocol. Moreover, acc𝑖,𝑗 = 1 only if
𝑅* has not aborted in (𝑖, 𝑗)𝑡ℎ OT execution.

Let 𝑊𝑖,𝑗 = Amplifier
(︁
𝑈

(2)
𝑖,𝑗 𝑈

(1)
𝑖,𝑗

)︁
, where Amplifier is defined in Lemma 28.

Perform 𝑊𝑖,𝑗|̃︀Ψ⟩ to obtain |Ψ𝑖,𝑗⟩.

• For 𝑖′ ∈ [𝜆+ 2], 𝑗′ ∈ [𝜆], such that (𝑖′, 𝑗′) < (𝑖, 𝑗) perform the (𝑖′, 𝑗′)𝑡ℎ execution
of Π𝑂𝑇 as in the previous hybrid.

• Perform the main execution of Π𝑂𝑇 in superposition.

• Perform the execution of Πzk in superposition.

• Measure all the registers except Aux. Perform the OT reconstruction on input
the measured transcript 𝜏 𝑖,𝑗OT, for 𝑖 ∈ [𝜆 + 2], 𝑗 ∈ [𝜆], measured randomness 𝑠𝑖,𝑗OT

and receiver’s bit 𝑏𝑖,𝑗. Call the resulting reconstruction output to be ̃︂𝑠ℎ𝑖,𝑗. Let̃︀𝑢𝑖 = ⊕ℓ𝑤
𝑗=1
̃︂𝑠ℎ𝑖,𝑗. Let (𝑟′, 𝛽, 𝑟*𝑂𝑇) be the concatenation of all the ̃︀𝑢𝑖 bits. If either

the 𝑆 ′𝑂𝑇 ’s inputs to the main execution of Π𝑂𝑇 is not (𝑟′, 𝑟′ ⊕ 𝛽) or if 𝑆 ′𝑂𝑇 ’s
randomness is not 𝑟*𝑂𝑇 then abort. Otherwise output the state in Aux along
with 𝑤.

From the post-quantum computational receiver privacy of Π𝑂𝑇 , it holds that Hybrid3.(𝑖,𝑗)
and the previous hybrid are computationally indistinguishable. Thus, the following
holds:

EView𝑅*

[︁
min

{︁
𝑝
(3.(𝑖,𝑗))
0 , 𝑝

(3.(𝑖,𝑗))
1

}︁]︁
≥ 𝜈3.(𝑖,𝑗)(𝜆), where 𝜈3.(𝑖,𝑗) is a non-negligible func-

tion.

Hybrid4: In the main execution of Π𝑂𝑇 , the input of 𝑅′𝑂𝑇 is set to be 0. Recall that
in the previous hybrids, the input of 𝑅′𝑂𝑇 was 𝑟.

From the post-quantum computational receiver privacy of Π𝑂𝑇 , it holds that the
hybrids Hybrid4 and Hybrid3.(𝜆+2,𝜆) are computationally indistinguishable. Thus, the
following holds:

EView𝑅*

[︁
min

{︁
𝑝
(4)
0 , 𝑝

(4)
1

}︁]︁
≥ 𝜈4(𝜆), where 𝜈4 is a non-negligible function.

Hybrid5: Sample 𝑢 $←− {0, 1}. If 𝛽 = 1, set the last message to be (𝑢, 𝑟′ ⊕𝑚1). Else if
𝛽 = 0, set the last message to be (𝑟′ ⊕𝑚0, 𝑢).

From the computational soundness of Πzk, it follows that 𝛽 extracted from all
the (𝑖, 𝑗)𝑡ℎ, for 𝑖 ∈ [𝜆 + 2], 𝑗 ∈ [𝜆], executions of Π𝑂𝑇 is the same as the 𝛽 used
by the receiver in the main execution of Π𝑂𝑇 with probability negligibly close to
1. This further implies that the bit reconstructed by 𝑅′𝑂𝑇 in the main execution
is ̃︀𝑟 = 𝑟′ ⊕ (𝑟 · 𝛽). Thus, the last message sent by 𝑆 can be rewritten as follows:
(̃︀𝑟 ⊕𝑚0, ̃︀𝑟 ⊕ 𝑟 ⊕𝑚1) = (𝑟′ ⊕ (𝑟 · 𝛽) ⊕𝑚0, 𝑟

′ ⊕ (𝑟 · 𝛽) ⊕ 𝑟 ⊕𝑚1). If 𝛽 = 1, we have
the message sent by 𝑆 to be (𝑟′ ⊕ 𝑟 ⊕𝑚0, 𝑟

′ ⊕𝑚1). If 𝛽 = 0, we have the message

159

sent by 𝑆 to be (𝑟′ ⊕ 𝑚0, 𝑟
′ ⊕ 𝑟 ⊕ 𝑚1). We now use the fact that 𝑟 is information-

theoretically hidden from the receiver 𝑅* to show that the hybrids Hybrid4 and Hybrid5
are computationally indistinguishable. Thus, the following holds:

EView𝑅*

[︁
min

{︁
𝑝
(5)
0 , 𝑝

(5)
1

}︁]︁
≥ 𝜈5(𝜆), where 𝜈5 is a non-negligible function.

But one of the two sender’s inputs are information-theoretically hidden from the
malicious receiver; in one of the two games 𝐺0 or 𝐺1, the adversary can win only
with negligible probability. This contradicts the fact that EView𝑅*

[︁
min

{︁
𝑝
(5)
0 , 𝑝

(5)
1

}︁]︁
is

non-negligible. Thus, our construction satisfies post-quantum sender privacy.

5.3 Quantum proofs of knowledge

5.3.1 Definition

We present the definition of quantum proof of knowledge; this is the traditional
notion of proof of knowledge, except that the unbounded prover could be a quantum
algorithm and specifically, its intermediate states could be quantum states.

Definition 98 (Quantum Proof of Knowledge). We say that an interactive proof
system (𝑃, 𝑉) for a NP relation ℛ satisfies (𝜀, 𝛿)-proof of knowledge property if the
following holds: suppose there exists a malicious (possibly computationally unbounded
prover) 𝑃 * such that for every 𝑥, and quantum state 𝜌 it holds that:

Pr
[︁
(̃︀𝜌, decision)← ⟨𝑃 *(𝑥, 𝜌), 𝑉 (𝑥)⟩

⋀︁
decision = accept

]︁
= 𝜀

Then there exists a quantum polynomial-time extractor Ext, such that:

Pr
[︁
(̃︀𝜌′, decision, 𝑤)← Ext (𝑥, 𝜌)

⋀︁
decision = accept

]︁
= 𝛿

Moreover, we require 𝑇 (̃︀𝜌, ̃︀𝜌′) = negl(|𝑥|), where 𝑇 (·, ·) denotes the trace distance and
negl is a negligible function.

We drop (𝜀, 𝛿) from the notation if |𝛿 − 𝜀| ≤ negl(|𝑥|), for a negligible function
negl.

Remark 99 (Comparison with Unruh’s Proof of Knowledge [Unr12]). Our defini-
tion is a special case of Unruh’s quantum proof of knowledge definition. Any proof
system satisfying our definition is a quantum proof of knowledge system (according to
Unruh’s definition) with knowledge error 𝜅, for any 𝜅. Moreover, in Unruh’s defini-
tion, the extraction probability is allowed to be polynomially related to the acceptance
probability whereas in our case, the extraction probability needs to be negligibly close
to the acceptance probability.

Definition 100 (Concurrent Quantum ZK PoK). We say that a concurrent (resp.,
bounded) quantum ZK is a concurrent (resp., bounded) QZKPoK if it satisfies proof
of knowledge property.

160

5.3.2 Construction of (Standalone) QZKPoK

In the next section, we construct a bounded concurrent QZK satisfying quantum proof
of knowledge property assuming post-quantum statistical receiver-private oblivious
transfer. We first start with a simpler case: we present a construction of quantum
proof of knowledge for a standalone quantum ZK proof system for NP. We then show
how to extend this construction to the bounded concurrent QZK setting.

We construct a (standalone) QZKPoK (𝑃, 𝑉) for an NP relation ℛ(ℒ). The
following tools are used in our construction.

Tools.

• A post-quantum statistical receiver-private oblivious transfer protocol, ΠOT =
(S,R) (Section 5.2) satisfying perfect correctness property.

We say that a transcript 𝜏 is valid with respect to sender’s randomness 𝑟 and its
input bits (𝑚0,𝑚1) if 𝜏 can be generated with a sender that uses 𝑟 as randomness
for the protocol and uses (𝑚0,𝑚1) as inputs.

• A (standalone) QZK proof system Πzk for ℛ(ℒzk). We describe the relation
ℛ(ℒzk), parameterized by security parameter 𝜆, below.

ℛ (ℒzk) =

{︃(︂(︁
𝑥, {𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗}𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︁
;

(︂
𝑤,
{︁
𝑟
(𝑖,𝑗)
OT , 𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗

}︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︂)︂
:

(︃
∀𝑖∈[ℓ𝑤],𝑗∈[𝜆],

𝜏
(𝑖,𝑗)
OT is valid w.r.t

𝑟
(𝑖,𝑗)
OT and (((1−𝑏𝑖,𝑗)𝑠ℎ𝑖,𝑗+𝑏𝑖,𝑗 ·𝛼𝑖,𝑗), (𝑏𝑖,𝑗𝑠ℎ𝑖,𝑗+(1−𝑏𝑖,𝑗)·𝛼𝑖,𝑗))

)︃⋀︁(︁
∀𝑖∈[ℓ𝑤],

⊕𝜆
𝑗=1𝑠ℎ𝑖,𝑗=𝑤𝑖

)︁⋀︁
(𝑥,𝑤) ∈ ℛ(ℒ)

}︃
In other words, the relation checks if the shares {𝑠ℎ𝑖,𝑗} used in all the OT exe-
cutions so far are defined to be such that the XOR of the shares 𝑠ℎ𝑖,1, . . . , 𝑠ℎ𝑖,𝜆
yields the bit 𝑤𝑖. Moreover, the relation also checks if 𝑤1 · · ·𝑤ℓ𝑤 is the witness
to the instance 𝑥.

We describe the construction in Figure 5-3.

Completeness. The completeness follows by the completeness of Πzk.

Quantum Proof of Knowledge. Let 𝑃 * be a malicious prover, that on input
(𝑥, 𝜌), can convince 𝑉 to accept 𝑥 with non-negligible probability 𝜀. Before we con-
struct a QPT extractor Ext, we first give a description of the registers used in the
system.

• R𝑖,𝑗 for 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆]: this consists of the receiver randomness used by the
extractor in the (𝑖, 𝑗)𝑡ℎ executions of ΠOT.

161

Input of 𝑃 : Instance 𝑥 ∈ ℒ along with witness 𝑤. The length of 𝑤 is denoted to be
ℓ𝑤.
Input of 𝑉 : Instance 𝑥 ∈ ℒ.

• For every 𝑖 ∈ [ℓ𝑤], 𝑃 samples the shares 𝑠ℎ𝑖,1, . . . , 𝑠ℎ𝑖,𝜆 uniformly at random
conditioned on ⊕𝜆

𝑗=1𝑠ℎ𝑖,𝑗 = 𝑤𝑖, where 𝑤𝑖 is the 𝑖𝑡ℎ bit of 𝑤.

• For every 𝑖 ∈ [ℓ𝑤], 𝑃 samples the bits 𝛼𝑖,1, . . . , 𝛼𝑖,𝜆 uniformly at random.

• For 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆], do the following:

– 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 execute ΠOT with 𝑉 playing the role of the receiver in
ΠOT and 𝑃 playing the role of the sender in ΠOT. The input of the receiver
in this protocol is 0, while the input of the sender is set to be (𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗)
if 𝑏𝑖,𝑗 = 0, otherwise it is set to be (𝛼𝑖,𝑗, 𝑠ℎ𝑖,𝑗) if 𝑏𝑖,𝑗 = 1, where the bit 𝑏𝑖,𝑗
is sampled uniformly at random.
Call the resulting transcript of the protocol to be 𝜏 (𝑖,𝑗)OT and let 𝑟(𝑖,𝑗)OT be the
randomness used by the sender in OT.

– 𝑃 → 𝑉 : 𝑃 sends 𝑏𝑖,𝑗 to 𝑉 .

• 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 execute Πzk with 𝑃 playing the role of the prover of Πzk and 𝑉

playing the role of the verifier of Πzk. The instance is
(︂
𝑥,
{︁
𝜏
(𝑖,𝑗)
OT , 𝑏𝑖,𝑗

}︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︂
and the witness is

(︂
𝑤,
{︁
𝑟
(𝑖,𝑗)
OT , 𝑠ℎ𝑖,𝑗, 𝛼𝑖,𝑗

}︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

)︂
. If the verifier in Πzk rejects,

then 𝑉 rejects.

Figure 5-3: Construction of (standalone) QZKPoK for NP.

• B𝑖,𝑗, for 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆]: this is a single-qubit register that contains a bit that
is used by the extractor in the (𝑖, 𝑗)𝑡ℎ execution of the OT protocol.

• Dec: it contains the decision register that indicates whether to rewind or not.

• Aux: this is initialized with the auxiliary state of the prover.

• T𝑖,𝑗, for 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆]: it contains the transcripts of the (𝑖, 𝑗)𝑡ℎ executions of
the OT protocol.

• T*: it contains the transcript of the protocol Πzk.

• X: this is a poly(𝜆)-qubit ancillary register.

162

Description of Ext(𝑥, |Ψ⟩): The state of the extractor is initialized as follows:

⎛⎝ ⨂︁
𝑖∈[ℓ𝑤],𝑗∈[𝜆]

|0⟩B𝑖,𝑗
|0⟩R𝑖,𝑗

|0⟩T𝑖,𝑗

⎞⎠⊗ |0⟩T* ⊗ |Ψ⟩Aux ⊗ |0⟩Dec ⊗ |0⊗poly(𝜆)⟩X

• For all 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆], perform the following operations in superposition:

– Let |̃︀Ψ⟩ be the state of the system at the beginning of the (𝑖, 𝑗)𝑡ℎ execution.

– Prepare the following state6:

|0⟩B𝑖,𝑗
|0⟩R𝑖,𝑗

→ 1√
2𝜆+1

∑︁
𝛽𝑖,𝑗∈{0,1},𝑠OT

𝑖,𝑗∈{0,1}𝜆
|𝛽𝑖,𝑗⟩B𝑖,𝑗

|𝑠OT
𝑖,𝑗 ⟩R𝑖,𝑗

– It then performs the (𝑖, 𝑗)𝑡ℎ execution of ΠOT along with the 𝑃 *’s message
immediately after the (𝑖, 𝑗)𝑡ℎ execution of ΠOT in superposition. The re-
sulting transcript is stored in the register T𝑖,𝑗. We denote the unitary that
performs this step to be 𝑈 (1)

𝑖,𝑗 .

– After 𝑃 * sends the message immediately after the (𝑖, 𝑗)𝑡ℎ execution of ΠOT,
apply the unitary 𝑈 (2)

𝑖,𝑗 defined as follows:

𝑈
(2)
𝑖,𝑗 |𝛽𝑖,𝑗⟩B𝑖,𝑗

|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗
|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗

|0⟩Dec

=

⎧⎨⎩
|𝛽𝑖,𝑗⟩B𝑖,𝑗

|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗
|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗

|Match𝑖,𝑗⟩Dec if acc𝑖,𝑗 = 1,

|𝛽𝑖,𝑗⟩B𝑖,𝑗
|𝑠(𝑖,𝑗)OT ⟩R𝑖,𝑗

|𝜏 (𝑖,𝑗)OT , 𝑏𝑖,𝑗⟩T𝑖,𝑗
|+⟩Dec, otherwise

Here, Match𝑖,𝑗 = 0 if and only if 𝛽𝑖,𝑗 = 𝑏𝑖,𝑗, where 𝑏𝑖,𝑗 is the bit sent by 𝑃 *
after the (𝑖, 𝑗)𝑡ℎ execution of the OT protocol. Moreover, acc𝑖,𝑗 = 1 only if
𝑃 * has not aborted in (𝑖, 𝑗)𝑡ℎ OT execution.

Let 𝑊𝑖,𝑗 = Amplifier
(︁
𝑈

(2)
𝑖,𝑗 𝑈

(1)
𝑖,𝑗

)︁
, where Amplifier is defined in Lemma 28.

Perform 𝑊𝑖,𝑗|̃︀Ψ⟩ to obtain |Ψ𝑖,𝑗⟩.

• Perform the execution of Πzk in superposition.

• Measure all the registers except Aux. Perform the OT reconstruction on input
the measured transcript 𝜏OT

𝑖,𝑗 , measured randomness 𝑠OT
𝑖,𝑗 and receiver’s bit 𝑏𝑖,𝑗.

Call the resulting reconstruction output to be ̃︂𝑠ℎ𝑖,𝑗. Let ̃︀𝑤𝑖 = ⊕ℓ𝑤
𝑗=1
̃︂𝑠ℎ𝑖,𝑗. Let 𝑤

be the concatenation of the bits ̃︀𝑤1, . . . , ̃︀𝑤ℓ𝑤 . If 𝑤 is not a witness for 𝑥, abort.
Otherwise output the state in Aux along with 𝑤.

6We will assume, without loss of generality, that the length of the random strings used in the OT
protocol be 𝜆.

163

We now argue that our protocol satisfies the proof of knowledge property. We assume
that there is some total ordering defined on (𝑖, 𝑗), for 𝑖 ∈ [ℓ𝑤] and 𝑗 ∈ [𝜆]. Without
loss of generality, we assume that (1, 1) is the least element in this total ordering.

Hybrid1: In this hybrid, 𝑃 * interacts with the honest verifier 𝑉 . The verifier 𝑉 accepts
the proof with probability 𝜀.

Hybrid2.(𝑖,𝑗), for 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆]: We define a hybrid verifier Hybrid.𝑉𝑖,𝑗 as follows. Let
|Φ⟩ be the initial state of the system. Compute |Ψ𝑖,𝑗⟩ =

∏︀
(𝑖′,𝑗′)≤(𝑖,𝑗)

𝑊𝑖′,𝑗′ |Φ⟩. From

here on, the rest of the iterations of ΠOT are computed by interacting with 𝑃 * inter-
acting honestly as specified in the real execution. The protocol Πzk is computed by
interacting with 𝑃 * honestly as in the real execution. Finally, Hybrid.𝑉𝑖,𝑗 outputs its
decision.

The probability that Hybrid.𝑉𝑖,𝑗 accepts is negligibly close to 𝜀. Moreover, from
the statistical security against senders, it follows that the state output by 𝑃 * in this
hybrid is close in trace distance to the state output by 𝑃 * in the previous hybrid.
We omit the proof since it essentially follows the same line of argument used in Sec-
tion 4.3.3.

Hybrid3: We define a hybrid verifier Hybrid.𝑉3 as follows. Let |Φ⟩ be the initial state
of the system. Compute |Ψ𝑖,𝑗⟩ =

∏︀
(𝑖∈[ℓ𝑤],𝑗∈[𝜆])

𝑊𝑖,𝑗|Φ⟩. The protocol Πzk is computed by

interacting with 𝑃 * honestly as in the real execution. Finally, Hybrid.𝑉3 outputs its
decision.

The probability that Hybrid.𝑉3 accepts is negligibly close to 𝜀. This follows from
the fact that Hybrid.𝑉3 is identical to Hybrid.𝑉𝑖*,𝑗* , where (𝑖*, 𝑗*) is the highest element
in the total ordering.

Moreover, the state output by 𝑃 * in this hybrid is the same as the state output
by 𝑃 * in the previous hybrid.

Hybrid4: Define a hybrid verifier Hybrid.𝑉4 as follows: it executes the hybrid verifier
Hybrid.𝑉3 until the step just before it outputs its decision. Let ̃︂𝑠ℎ𝑖,𝑗 be the share
output by the reconstruction algorithm of the receiver of ΠOT. Let ̃︀𝑤𝑖 = ⊕ℓ𝑤

𝑗=1
̃︂𝑠ℎ𝑖,𝑗.

Let 𝑤 be the concatenation of the bits ̃︀𝑤1, . . . , ̃︀𝑤ℓ𝑤 . If 𝑤 is not a witness for 𝑥, abort.
Otherwise, output the decision of Hybrid.𝑉3.

The probability that Hybrid.𝑉4 accepts is negligibly close to 𝜀. To see this, note
that it is sufficient to argue that |𝑝3 − 𝑝4| ≤ negl(𝜆), where 𝑝3 is the probability with
which Hybrid.𝑉3 aborts and 𝑝4 is the probability with which Hybrid.𝑉4 aborts. This
fact follows from the soundness of Πzk. Moreover, the output state of the prover in
Hybrid3 is the same as the output state of the prover in Hybrid4.

Note that the probability that the extractor Ext outputs a valid witness 𝑤 is the
same as the probability that the hybrid verifier Hybrid.𝑉4 accepts. Moreover, the
state output by 𝑃 * when interacting with Ext is exactly the same as the state output

164

by 𝑃 * in Hybrid4.

(Standalone) Quantum Zero-Knowledge

Suppose (𝑥,𝑤) ∈ ℛ(ℒ). Suppose 𝑉 * is a QPT verifier, that on input (𝑥, |Ψ⟩), in-
teracts with the honest prover 𝑃 (𝑥,𝑤). We construct a simulator Sim that takes as
input (𝑥, |Ψ⟩) such that the output distribution of the simulator is computationally
indistinguishable from the output distribution of 𝑉 *.

Description of Sim(𝑥, |Ψ⟩):

• For every 𝑖 ∈ [ℓ𝑤], Sim samples 𝑠ℎ𝑖,1, . . . , 𝑠ℎ𝑖,𝜆 uniformly at random.

• For 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆], do the following:

– Sim and 𝑉 * execute ΠOT. The verifier 𝑉 * takes the role of the receiver
of ΠOT and Sim takes the role of the sender. The input of the sender is
(𝑠ℎ𝑖,𝑗, 𝑠ℎ𝑖,𝑗).

– Sim samples a random bit 𝑏𝑖,𝑗 and sends to 𝑉 *.

• Let the state of the verifier, at this point of this protocol, be ̃︁|Ψ⟩. Let Simzk be
the Πzk simulator associated with the Πzk verifier ̃︁𝑉 *, where ̃︁𝑉 * is the code used
by 𝑉 * in the execution of the protocol Πzk. Compute Simzk on input the statẽ︁|Ψ⟩ and the instance

(︁
𝑥,
{︁
𝜏
(𝑖,𝑗)
OT , 𝑏𝑖,𝑗

}︁)︁
.

• Output the transcript of the protocol along with the private state of the verifier
𝑉 *.

We now prove that the state output by 𝑉 * when interacting with the honest prover
𝑃 (𝑥,𝑤) is computationally indistinguishable from the state output by Sim(𝑥, |Ψ⟩).
Consider the following hybrids. As before we consider a total ordering on (𝑖, 𝑗), for
𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆].

Hybrid1: In this hybrid, 𝑃 and 𝑉 * interact with each other. The output of this hybrid
is the output of 𝑉 *.

Hybrid2: We define another hybrid prover Hybrid2.𝑃 that behaves as follows: it sim-
ulates the protocol Πzk using the simulator Simzk as given in the description of Sim.
The rest of the protocol is the same as in the hybrid Hybrid1.

The computational indistinguishability of Hybrid1 and Hybrid2 follows from the
quantum zero-knowledge property of Πzk.

Hybrid3: The output of this hybrid is the output of Sim(𝑥, |Ψ⟩).

Claim 101. Assuming the post-quantum sender-privacy of ΠOT, the output of Hybrid2
is computationally indistinguishable from the output of Hybrid3.

165

Proof. Let 𝒜 be the distinguisher distinguishing Hybrid2 and Hybrid3. We are going
to prove that 𝒜 can only distinguish with negligible probability. Consider the inter-
mediate hybrids.

Hybrid2.1: This is identical to Hybrid2.

We now consider a series of hybrids that are defined with respect to 𝒜.

Hybrid𝒜2.2.(𝑖*,𝑗*) for 𝑖* ∈ [ℓ𝑤], 𝑗* ∈ [𝜆− 1]: We say that a hybrid prover Hybrid2.2.(𝑖*,𝑗*).𝑃 ,

uses
(︂{︁̂︀𝑏𝑖,𝑗}︁

(𝑖,𝑗)≤(𝑖*,𝑗*)

)︂
, if the following holds: it executes the prover as in Hybrid2.1,

except, for (𝑖, 𝑗) ≤ (𝑖*, 𝑗*), it uses the input (𝑠ℎ𝑖,𝑗, 𝑠ℎ𝑖,𝑗) if ̂︀𝑏𝑖,𝑗 ̸= 𝑏𝑖,𝑗 or uses the input
(𝛼𝑖,𝑗, 𝛼𝑖,𝑗) if ̂︀𝑏𝑖,𝑗 = 𝑏𝑖,𝑗.

Now, execute the above hybrid prover Hybrid2.2.(𝑖*,𝑗*).𝑃 by adaptively choosing(︂{︁̂︀𝑏𝑖,𝑗}︁
(𝑖,𝑗)≤(𝑖*,𝑗*)

)︂
(as a function of the current state of the verifier and 𝒜) such

that the output distributions of Hybrid2.2.(𝑖*,𝑗*).𝑃 and Hybrid2.2.(𝑖*,𝑗*)−1.𝑃 cannot be
distinguished by 𝒜. If such a set of bits cannot be adaptively chosen then abort.
Otherwise, this hybrid prover interacts with the verifier and the output of this hybrid
is set to be the output of the verifier.

Claim 102. The hybrid Hybrid𝒜2.2.(𝑖*,𝑗*) aborts with negligible probability.

Proof. We prove this by induction.

Base Case: (𝑖*, 𝑗*) = (1, 1). We prove that Hybrid𝒜2.2.(1.1) aborts with negligible
probability. From the post-quantum sender privacy property of ΠOT (Definition 96),
it follows that upon fixing the view of the verifier until the last message of execution
of (1, 1)𝑡ℎ OT protocol, there exists a bit ̂︀𝑏, with probability negligibly close to 1, such
that the adversary cannot win the Game 𝐺̂︀𝑏

(︁
𝑚

(1,1)
0 ,𝑚

(1,1)
1

)︁
(specified in Definition 96)

where,
(︁
𝑚

(1,1)
0 ,𝑚

(1,1)
1

)︁
= (𝑠ℎ1,1, 𝛼1,1) is 𝑏1,1 = 0 and

(︁
𝑚

(1,1)
0 ,𝑚

(1,1)
1

)︁
= (𝛼1,1, 𝑠ℎ1,1) is

𝑏1,1 = 1.

Induction Hypothesis. Suppose this statement is true for all (𝑖, 𝑗) < (𝑖*, 𝑗*). We
prove this statement to be true even for (𝑖*, 𝑗*) using proof by contradiction.

Suppose Hybrid2.2.(𝑖*,𝑗*) aborts with non-negligible probability then we design a
QPT adversary ℬ = (ℬ1,ℬ2), that receives as input non-uniform quantum advice,
and breaks the post-quantum sender privacy property of ΠOT.

We first define the non-uniform advice as follows: it computes the interaction be-
tween the hybrid prover Hybrid2.2.(𝑖*,𝑗*)−1.𝑃 and the verifier 𝑉 *, until the ((𝑖*, 𝑗*)−1)𝑡ℎ

execution of OT. It outputs the private state of Hybrid2.2.(𝑖*,𝑗*)−1.𝑃 and the private
state of 𝑉 *. Call this state |Ψ𝑎𝑑𝑣⟩.

166

ℬ1, upon receiving |Ψ𝑎𝑑𝑣⟩, takes the role of the receiver and interacts with the exter-
nal challenger until the receiver’s last message of the (𝑖*, 𝑗*)𝑡ℎ execution of ΠOT. ℬ1
uses the code of 𝑉 * to interact with the external challenger. The external challenger
on the other receives as input 𝑚(𝑖*,𝑗*)

0 = 𝑠ℎ𝑖*,𝑗* and 𝑚
(𝑖*,𝑗*)
1 = 𝛼𝑖*,𝑗* if 𝑏𝑖*,𝑗* = 0 or

𝑚
(𝑖*,𝑗*)
1 = 𝑠ℎ𝑖*,𝑗* and 𝑚

(𝑖*,𝑗*)
0 = 𝛼𝑖*,𝑗* if 𝑏𝑖*,𝑗* = 1, from ℬ1, where 𝑠ℎ𝑖*,𝑗* , 𝛼𝑖*,𝑗* , 𝑏𝑖*,𝑗*

are generated as in Hybrid2.1. It then outputs the state |Ψ1⟩ of 𝑉 * obtained after the
receiver sends the last message in the (𝑖*, 𝑗*)𝑡ℎ execution of ΠOT.

ℬ2, upon receiving |Ψ1⟩, computes the rest of the executions of ΠOT and Πzk by emu-
lating the interaction between the hybrid prover Hybrid2.2.(𝑖*,𝑗*).𝑃 and the verifier 𝑉 *.
It then inputs the final state of 𝑉 * to 𝒜. The output of ℬ2 is set to be the output of 𝒜.

Our initial assumption was that the Hybrid2.2.(𝑖*,𝑗*) aborts with non-negligible prob-
ability. This means that the adversary 𝒜 can distinguish with non-negligible proba-
bility (over the view of the verifier until the (𝑖*, 𝑗*)𝑡ℎ OT execution) both the games
– that is, distinguishing (𝑚

(𝑖*,𝑗*)
0 ,𝑚

(𝑖*,𝑗*)
1) from (𝑚

(𝑖*,𝑗*)
1 ,𝑚

(𝑖*,𝑗*)
1) (Game 0) as well as

distinguishing (𝑚
(𝑖*,𝑗*)
0 ,𝑚

(𝑖*,𝑗*)
1) from (𝑚

(𝑖*,𝑗*)
0 ,𝑚

(𝑖*,𝑗*)
0) (Game 1) – with probability

significantly greater than 1
2
. This in turn means that ℬ can break the post-quantum

sender privacy property of ΠOT with non-negligible probability. Thus, we arrived at
a contradiction.

Hybrid𝒜2.3: This hybrid is the same as Hybrid2.2.(ℓ𝑤,𝜆−1), except that the hybrid prover
will abort if for there is 𝑖 ∈ [ℓ𝑤] such that for all 𝑗 ∈ [𝜆− 1], it holds that 𝑏𝑖,𝑗 ̸= ̂︁𝑏𝑖,𝑗.
Claim 103. The hybrids Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) and Hybrid𝒜2.3 can be distinguished by 𝒜 with
only negligible probability.

Proof. To prove this, we consider an alternate hybrid prover in Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) which

samples, for any 𝑖, 𝑏𝑖,𝑗
$←− {0, 1} at the end of first (𝜆− 1) iterations of ΠOT. It then

sets the input to the 𝜆𝑡ℎ iteration of ΠOT to be
(︁
⊕𝜆−1

𝑗=1𝑚
(𝑖,𝑗)
𝑏𝑖,𝑗

, 𝑢
)︁

with probability 1
2

or(︁
𝑢,⊕𝜆−1

𝑗=1𝑚
(𝑖,𝑗)
𝑏𝑖,𝑗

)︁
with probability 1

2
, where 𝑢 $←− {0, 1} and {𝑚(𝑖,𝑗)

0 ,𝑚
(𝑖,𝑗)
1 }𝑗∈[𝜆−1] are the

inputs used in the first 𝜆− 1 iterations of ΠOT. Note that the output distribution of
Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) remains the same even with this change.

Since the 𝑏𝑖,𝑗’s, for 𝑗 ≤ 𝜆 − 1, are sampled after the ̂︀𝑏𝑖,𝑗’s are decided, the prob-
ability that ̂︀𝑏𝑖,𝑗 ̸= 𝑏𝑖,𝑗 is 1

2
for any 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆 − 1]. Thus, the probability that(︁

∃𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆− 1], 𝑏𝑖,𝑗 ̸= ̂︀𝑏𝑖,𝑗)︁ is≤ ℓ𝑤
2𝜆−1 . Conditioned on this bad event, the output

distributions of Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) and Hybrid2.3 are identical. Thus, 𝒜 cannot distin-
guish the hybrids Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) and Hybrid𝒜2.3.

Hybrid𝒜2.4.𝑖* for all 𝑖 ∈ [ℓ𝑤]: This hybrid is the same as Hybrid𝒜2.3 except that the hy-

167

brid prover Hybrid2.4.𝑖* .𝑃 is additionally parameterized by
(︂{︁̂︀𝑏𝑖,𝜆}︁

𝑖≤𝑖*

)︂
. The only

change from the previous hybrid is that the hybrid prover, for 𝑖 ≤ 𝑖*, use the input
(𝑠ℎ𝑖,𝜆, 𝑠ℎ𝑖,𝜆) if ̂︀𝑏𝑖,𝜆 ̸= 𝑏𝑖,𝜆 or use (𝛼𝑖,𝜆, 𝛼𝑖,𝜆) if ̂︀𝑏𝑖,𝜆 = 𝑏𝑖,𝜆.

Now, consider a hybrid prover Hybrid2.4.𝑖* .𝑃 , parameterized by
(︂{︁̂︀𝑏𝑖,𝑗}︁

(𝑖≤𝑖*)∨(𝑗≤𝜆−1)

)︂
,

where
(︂{︁̂︀𝑏𝑖,𝑗}︁

(𝑖,𝑗)≤(𝑖*,𝑗*)

)︂
, is defined to be such that the output distributions of

Hybrid2.𝑖* .𝑃 and Hybrid2.4.𝑖*−1.𝑃 cannot be distinguished by 𝒜. If such a hybrid prover
does not exist, then abort. Otherwise, this hybrid prover interacts with the verifier
and the output of this hybrid is set to be the output of the verifier.

Claim 104. The hybrid Hybrid2.4.𝑖* aborts with negligible probability.

We omit the proof of the above claim since it uses the same inductive argument as
the proof of Claim 102.

Hybrid2.5: This hybrid is the same as Hybrid3, i.e. the output of the simulator.
Conditioned on Hybrid2.4.ℓ𝑤 not aborting, the output distributions of Hybrid2.4.ℓ𝑤

and Hybrid2.5 are the same. This follows from the fact that if Hybrid2.4.ℓ𝑤 does not
abort then the distribution of the inputs used in all the OT executions in the hy-
brids Hybrid2.4.ℓ𝑤 and Hybrid2.5 are the same. Thus, 𝒜 can distinguish Hybrid2.4.ℓ𝑤 and
Hybrid2.5 only with negligible probability.

From the above hybrids, it follows that 𝒜 can distinguish the hybrids Hybrid2.1 and
Hybrid2.5 with only negligible probability.

5.3.3 Extending to Bounded Concurrent QZK Setting

We show how to adopt the construction in Section 5.3.2 to the bounded concurrent
setting.

Construction

The construction of bounded concurrent quantum proof of knowledge system is the
same as Figure 5-3, except that we instantiate Πzk with a modified version of the
bounded concurrent QZK for NP construction in Section 4.3.

Modified Bounded Concurrent QZK for NP Construction. We modify the
construction in Section 4.3 as follows: Let 𝑀 be the round complexity of the statis-
tical receiver private OT protocol and let 𝑀 = 𝜆𝑐 for some constant 𝑐, where 𝜆 is the
security parameter used in the OT protocol. Let 𝜆′ denote a different security param-
eter used in Πzk such that 𝜆′−𝑀 ≥ 𝜆. We set the threshold of matched slots needed
in the WI protocol from Section 4.3, to instead be, 60𝑄7𝜆′ +𝑄4𝜆′ −𝑀 , provided we
set 𝜆′ ≫𝑀 .

168

The completeness and soundness proofs of this modified construction are the same
as the ones in Section 4.3. Even the quantum zero-knowledge property is the same
as before. However, we will need the simulator to satisfy a stronger property defined
next.

Strong QZK Simulator. We explain the differences between the strong QZK
simulator and the simulator Sim defined in Section 4.3. The strong simulator proceeds
as follows:

1. It simulates block-by-block similarly to Sim, but instead of using |+⟩Dec only
in the decision bit of the registers that aborted, it can choose to use |+⟩Dec on
other transcripts as well. This decision is based on an efficiently computable
function 𝑓 . For example, on a transcript 𝑡, it can set Dec to |+⟩Dec conditioned
on 𝑓(𝑡) = 1.

2. After rewinding a block, it measures the transcript of that block instead of wait-
ing until the end to measure. Furthermore, it keeps tracks of the total number
of blocks on which the measurement outcomes correspond to a transcript in
which it used |+⟩Dec.

3. If at any point, the number of block measurement outcomes that correspond to
|+⟩Dec transcripts is greater than 𝑀 , it aborts.

Conditioned on the strong simulator not aborting in Step 3, its output is compu-
tationally indistinguishable from the output of Sim.

Arguing Bounded Concurrent Quantum Zero-Knowledge for Figure 5-3.
In the proof of bounded concurrent quantum zero-knowledge, we now need to handle
𝑄-session verifiers, where 𝑄 is the number of sessions associated with the protocol.

The description of the simulator is the same as in the description of the simulator
in Section 5.3.2 except that we now execute the bounded concurrent strong simulator
described above for Πzk instead of the standalone ZK simulator.

We describe the hybrids below. Our description of hybrids and the proofs of
indistinguishability between the hybrids closely follows the structure of the proof
in Section 5.3.2 and hence we only highlight the main differences.

Hybrid1: Same as Hybrid1 in Section 5.3.2.

Hybrid2: We define another hybrid prover Hybrid2.𝑃 that behaves as follows: it simu-
lates the protocol Πzk using the bounded concurrent simulator Simzk as given in the
description of Sim. The rest of the protocol is the same as in the hybrid Hybrid1.

The computational indistinguishability of Hybrid1 and Hybrid2 follows from the
bounded concurrent quantum zero-knowledge property of Πzk.

Hybrid3: The output of this hybrid is the output of the simulator.

169

Claim 105. Assuming the post-quantum sender-privacy of ΠOT, the output of Hybrid2
is computationally indistinguishable from the output of Hybrid3.

Proof. Let 𝒜 be the distinguisher distinguishing Hybrid2 and Hybrid3. We are going
to prove that 𝒜 can only distinguish with negligible probability. Consider the inter-
mediate hybrids.

Hybrid2.1: This is identical to Hybrid2.

We now consider a sequence of hybrids. Each hybrid in this sequence is parameter-
ized by the number of OT executions and the number of sessions. We first replace
the inputs of all the OTs corresponding to one session before we move on to the
next session. That is, each hybrid is of the form Hybrid2.2.𝑖.𝑗.𝑘. We first start with
𝑖 = 1, 𝑗 = 1, 𝑘 = 1. We then iterate over 𝑗 = 1, . . . , 𝜆 − 1, and then we increment 𝑖.
We keep doing this, until we reach the hybrid Hybrid2.2.ℓ𝑤.𝜆−1.𝑘. The next hybrid is
Hybrid2.3.𝑘. After this, we have the hybrid, Hybrid2.4.𝑖.𝑘, where 𝑖 = 1 and 𝑘 = 1. We
then iterate over 𝑖 = 1, . . . , ℓ𝑤. Immediately after the hybrid Hybrid2.4.ℓ.𝑘, we have
the hybrid Hybrid2.5.𝑘. At this point, all the OTs corresponding to the first session
have been replaced. Immediately after this hybrid, we then move on to the hybrid
Hybrid2.2.𝑖.𝑗.𝑘, where 𝑖 = 1, 𝑗 = 1, 𝑘 = 2. We then continue as above, until we reach
the hybrid Hybrid2.5.𝑄. The hybrid that follows Hybrid2.5.𝑄 is the hybrid Hybrid2.6.

Hybrid𝒜2.2.𝑖.𝑗.𝑘 for 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆− 1], 𝑘 ∈ [𝑄]: We say that a prover, uses
(︂{︁̂︀𝑏𝑗}︁

𝑗≤𝑖

)︂
in a particular transcript, if the following holds: in superposition, execute the prover
as in Hybrid2.1, except that in the first 𝑗 ≤ 𝑖 OT executions to end in the transcript
being generated, it uses the input (𝑠ℎ𝑗, 𝑠ℎ𝑗) if ̂︀𝑏𝑗 ̸= 𝑏𝑗 or uses the input (𝛼𝑗, 𝛼𝑗) if̂︀𝑏𝑗 = 𝑏𝑗.

We define a hybrid prover Hybrid2.2.𝑖.𝑗.𝑘.𝑃 as follows:

• For 𝑘′ < 𝑘, it chooses the input to the (𝑖, 𝑗)𝑡ℎ execution of the 𝑘′-session to be
(𝛼𝑖,𝑗, 𝛼𝑖,𝑗), where 𝛼𝑖,𝑗 is sampled uniformly at random.

• For 𝑘′ > 𝑘, it chooses the inputs to the OT executions as done by the prover in
Hybrid2.1.

• For 𝑘′ = 𝑘, the hybrid prover, in superposition, adaptively uses
(︂{︁̂︀𝑏(𝑖′,𝑗′)}︁

(𝑖′,𝑗′)≤(𝑖,𝑗)

)︂
such that the output distributions of Hybrid2.2.(𝑖,𝑗).𝑘.𝑃 and Hybrid2.2.(𝑖,𝑗)−1.𝑘.𝑃 (if
(𝑖, 𝑗) = (1, 1) then the hybrid Hybrid2.2.(𝑖,𝑗).𝑘.𝑃 is defined to be Hybrid2.4.𝑘−1.𝑃)
cannot be distinguished by 𝒜. That is, since the whole protocol is being ex-
ecuted in superposition, as a function of each term in the superposition, the

bits
(︂{︁̂︀𝑏(𝑖′,𝑗′)}︁

(𝑖′,𝑗′)≤(𝑖,𝑗)

)︂
are adaptively determined and stored in a separate

register to be used by the hybrid prover. If the entire sequence of bits cannot
be determined, then store ⊥ in the same register. At the end of the protocol,

170

we measure this register. If the outcome is ⊥ then abort, otherwise, measure
the registers storing the transcript, trace out all the registers except the register
containing the auxiliary state of the verifier and output the measured transcript
along with the residual auxiliary state of the verifier.

Claim 106. The hybrid Hybrid𝒜2.2.𝑖.𝑗.𝑘 aborts with negligible probability.

Proof. We prove this by induction.

Base Case: (𝑖, 𝑗) = (1, 1). We prove that Hybrid𝒜2.2.1.1.𝑘 aborts with negligible proba-
bility. Suppose not. We demonstrate a reduction that breaks the sender privacy prop-
erty of OT with non-negligible probability. The goal of the reduction is to win in both
the games with non-negligible probability: in the first game, it needs to distinguish
the case when the challenger uses the input (𝑚0,𝑚1), where (𝑚0,𝑚1) = (𝑠ℎ1,1, 𝛼1,1)
with probability 1

2
and (𝑚0,𝑚1) = (𝛼1,1, 𝑠ℎ1,1) or when it uses the input (𝑠ℎ1,1, 𝑠ℎ1,1).

In the second game, it needs to distinguish the case when the challenger uses the
input (𝑚0,𝑚1), where (𝑚0,𝑚1) is defined as above, versus the case when it uses the
input (𝛼1,1, 𝛼1,1).

We describe a reduction that does the following: just like the simulator of the
bounded concurrent QZK, it divides the entire protocol transcript into blocks𝐵1, . . . , 𝐵𝐿,
where 𝐿 is as defined in Πzk. For every block 𝐵𝑖, it does the following: it executes the
simulator in superposition. If it encounters a message of (1, 1)𝑡ℎ OT, it stops simulat-
ing the rest of the block. It then puts |+⟩ state in the decision register. Otherwise,
it continues the simulation until the end of the block. It then performs Watrous
rewinding. At the end, it measures the trascript. There are two cases:

• If the block 𝐵𝑖 has completed it’s execution and if no message in the (1, 1)𝑡ℎ

OT execution has been encountered so far, then continue to the block 𝐵𝑖+1.

• If a message in the (1, 1)𝑡ℎ OT execution has been encountered then forward
to the challenger of the OT protocol. Use the response by the challenger to
continue the execution of 𝐵𝑖, albeit by interacting 𝑉 *, rather running 𝑉 * in
superposition. Once this is completed, move on to the block 𝐵𝑖+1.

Finally, after all the blocks are executed, the transcript along with the final private
state of the verifier is input to 𝒜. Note that there will be at most 𝑀 (the round
complexity of the statistical receiver private OT protocol) blocks where the simulator’s
decision to rewind gets changed to |+⟩ instead of using the rewinding decision that
it was using previously. This is why we change the parameters of the zero-knowledge
simulator to make sure that there are still enough blocks being appropriately rewound
as needed for the simulation to execute correctly.

If the challenger uses the input (𝑚0,𝑚1) then it corresponds to the hybrid Hybrid2.4.𝑘−1
(if 𝑘 = 1, then Hybrid2.4.𝑘−1 is the hybrid Hybrid2.1) and if the challenger uses the input
(𝑠ℎ1,1, 𝑠ℎ1,1) or the input (𝛼1,1, 𝛼1,1) then it corresponds to the hybrid Hybrid2.2.1.1.𝑘.

If 𝒜 can distinguish the hybrids Hybrid2.2.1.1.𝑘 and Hybrid2.4.𝑘−1 with non-negligible
probability then the reduction can break the sender privacy property with non-
negligible probability.

171

Induction Hypothesis. Suppose this statement is true for all (𝑖′, 𝑗′) < (𝑖, 𝑗). We
then show this to be true even for (𝑖, 𝑗).

Suppose this is not true. We then design a reduction that violates the sender pri-
vacy of OT with non-negligible probability. The reduction essentially is defined along
the same lines as the base case, except that the first ((𝑖, 𝑗)− 1) OT executions of the
𝑘𝑡ℎ verifier are generated as non-uniform advice. That is, the advice generation algo-
rithm executes the protocol in superposition and in each term of the superposition,
it halts after the final ((𝑖, 𝑗) − 1)𝑡ℎ execution of the 𝑘𝑡ℎ. Until this point, the inputs
to the (𝑖′, 𝑗′)𝑡ℎ OT execution, for (𝑖′, 𝑗′) < (𝑖, 𝑗), is set to be either (𝑠ℎ(𝑖′,𝑗′), 𝑠ℎ(𝑖′,𝑗′)) or
(𝛼(𝑖′,𝑗′), 𝛼(𝑖′,𝑗′)), depending on the distinguishing probability of 𝒜. Finally, the advice
generation measures the transcript and outputs the transcript along with the residual
state.

The reduction then performs block-by-block execution of the protocol and inter-
acts with the challenger as in the base case. The final state of the verifier along with
the transcript of the entire protocol is input to 𝒜.

As in the base case, if 𝒜 can distinguish the two hybrids with non-negligible
probability then the reduction can also violate the sender privacy property with non-
negligible probability.

Hybrid𝒜2.3.𝑘 for 𝑘 ∈ [𝑄]: This hybrid is the same as Hybrid2.2.ℓ𝑤,𝜆−1.𝑘, except that the
hybrid prover will abort if there is 𝑖 ∈ [ℓ𝑤] such that for all 𝑗 ∈ [𝜆− 1], it holds that
𝑏𝑖,𝑗 ̸= ̂︁𝑏𝑖,𝑗.
Claim 107. The hybrids Hybrid𝒜2.2.ℓ𝑤,𝜆−1.𝑘 and Hybrid𝒜2.3.𝑘 can be distinguished by 𝒜
with only negligible probability.

Proof. To prove this, we consider an alternate hybrid prover in Hybrid𝒜2.2.ℓ𝑤,𝜆−1.𝑘 which

samples, for any 𝑖, 𝑏𝑖,𝑗
$←− {0, 1} at the end of first (𝜆− 1) iterations of ΠOT. It then

sets the input to the 𝜆𝑡ℎ iteration of ΠOT to be
(︁
⊕𝜆−1

𝑗=1𝑚
(𝑖,𝑗)
𝑏𝑖,𝑗

, 𝑢
)︁

with probability 1
2

or(︁
𝑢,⊕𝜆−1

𝑗=1𝑚
(𝑖,𝑗)
𝑏𝑖,𝑗

)︁
with probability 1

2
, where 𝑢 $←− {0, 1} and {𝑚(𝑖,𝑗)

0 ,𝑚
(𝑖,𝑗)
1 }𝑗∈[𝜆−1] are the

inputs used in the first 𝜆− 1 iterations of ΠOT. Note that the output distribution of
Hybrid𝒜2.2.(ℓ𝑤,𝜆−1) remains the same even with this change.

Since the 𝑏𝑖,𝑗’s, for 𝑗 ≤ 𝜆 − 1, are sampled after the ̂︀𝑏𝑖,𝑗’s are decided, the prob-
ability that ̂︀𝑏𝑖,𝑗 ̸= 𝑏𝑖,𝑗 is 1

2
for any 𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆 − 1]. Thus, the probability that(︁

∃𝑖 ∈ [ℓ𝑤], 𝑗 ∈ [𝜆− 1], 𝑏𝑖,𝑗 ̸= ̂︀𝑏𝑖,𝑗)︁ is ≤ ℓ𝑤
2𝜆−1 . Conditioned on this bad event, the out-

put distributions of Hybrid𝒜2.2.ℓ𝑤.𝜆−1.𝑘 and Hybrid𝒜2.3.𝑘 are identical. Thus, 𝒜 cannot
distinguish the hybrids Hybrid𝒜2.2.ℓ𝑤.𝜆−1.𝑘 and Hybrid𝒜2.3.𝑘.

Hybrid𝒜2.4.𝑖*.𝑘 for all 𝑖* ∈ [ℓ𝑤], 𝑘 ∈ [𝑄]: This hybrid is the same as Hybrid𝒜2.3.𝑘 except that

the hybrid prover Hybrid2.4.𝑖*.𝑘.𝑃 is additionally parameterized by
(︂{︁̂︀𝑏𝑖,𝜆}︁

𝑖≤𝑖*

)︂
. The

172

only change from the previous hybrid is that the hybrid prover, for 𝑖 ≤ 𝑖*, use the
input (𝑠ℎ𝑖,𝜆, 𝑠ℎ𝑖,𝜆) if ̂︀𝑏𝑖,𝜆 ̸= 𝑏𝑖,𝜆 or use (𝛼𝑖,𝜆, 𝛼𝑖,𝜆) if ̂︀𝑏𝑖,𝜆 = 𝑏𝑖,𝜆.

Now, consider a hybrid prover Hybrid2.4.𝑖*.𝑘.𝑃 , parameterized by
(︂{︁̂︀𝑏𝑖,𝑗}︁

(𝑖≤𝑖*)∨(𝑗≤𝜆−1)

)︂
,

where
(︂{︁̂︀𝑏𝑖,𝑗}︁

(𝑖,𝑗)≤(𝑖*,𝑗*)

)︂
, is defined to be such that the output distributions of

Hybrid2.4.𝑖*.𝑘.𝑃 and Hybrid2.4.𝑖*−1.𝑘.𝑃 cannot be distinguished by 𝒜. If such a hy-
brid prover does not exist, then abort. Otherwise, this hybrid prover interacts with
the verifier and the output of this hybrid is set to be the output of the verifier.

Claim 108. The hybrid Hybrid2.4.𝑖*.𝑘 aborts with negligible probability.

We omit the proof of the above claim since it uses the same inductive argument as
the proof of Claim 106.

Hybrid2.5.𝑘 for 𝑘 ∈ [𝑄]: We define a hybrid prover that does the following:

• For 𝑘′ ≤ 𝑘, it chooses the input to the (𝑖, 𝑗)𝑡ℎ execution to be (𝛼𝑖,𝑗, 𝛼𝑖,𝑗), where
𝛼𝑖,𝑗 is sampled uniformly at random.

• For 𝑘′ > 𝑘, it chooses the inputs to the OT executions as done by the prover in
Hybrid2.1.

Conditioned on Hybrid2.4.ℓ𝑤.𝑘 not aborting, the output distributions of Hybrid2.4.ℓ𝑤.𝑘

and Hybrid2.5.𝑘 are the same. This follows from the fact that if Hybrid2.4.ℓ𝑤 does not
abort then the distribution of the inputs used in all the OT executions in the hybrids
Hybrid2.4.ℓ𝑤.𝑘 and Hybrid2.5.𝑘 are the same. Thus, 𝒜 can disitnguish Hybrid2.4.ℓ𝑤.𝑘 and
Hybrid2.5.𝑘 only with negligible probability.

Hybrid2.6: This hybrid is the same as Hybrid3, i.e. the output of the simulator.
The output distributions of Hybrid2.5.𝑄 and Hybrid2.6 are identical.

From the above hybrids, it follows that 𝒜 can distinguish the hybrids Hybrid2.1 and
Hybrid2.6 with only negligible probability.

5.4 On proofs of quantum knowledge

We can define an anologous notion of proof of knowledge in the context of interactive
protocols for QMA. This notion is called proof of quantum knowledge. See [CVZ20]
for a definition of this notion. Coladangelo, Vidick and Zhang [CVZ20] show how
to achieve quantum proof of quantum knowledge generically using quantum proof of
classical knowledge. Their protocol builds upon [BJSW16] to achieve their goal. We
can adopt their idea to achieve proof of quantum knowledge property for a bounded

173

concurrent QZK for QMA system. In Figure 4.4.3, include a quantum proof of clas-
sical knowledge system for NP (for instance, the one we constructed in Section 5.3.2)
just after the prover sends encoding of the witness state |Ψ⟩, encoded using the key
𝑠. Using the quantum proof of classical knowledge system, the prover convinces the
verifier of its knowledge of the 𝑠. The rest of the protocol is the same as Figure 4.4.3.
To see why this satisfies proof of quantum knowledge, note that an extractor can
extract 𝑠 with probability negligibly close to the acceptance probability and using 𝑠,
can recover the witness |Ψ⟩.

For the first time, we get proof of quantum knowledge (even in the standalone
setting) with (1 − negl)-quality if the acceptance probability is negligibly close to
1, where the quality denotes the closeness to the witness state. Previous proof of
quantum knowledge [BG20, CVZ20] achieved only 1 − 1

poly
qualitiy; this is because

these works use Unruh’s quantum proof of classical knowledge technique [Unr12]
and the extraction probability in Unruh is not negligibly close to the acceptance
probability.

174

Chapter 6

Impossibility of Quantum
Copy-Protection

A circuit 𝐶 for which there would be no copy-protection would be one where, given
any QPT algorithm 𝑈𝐶 and an auxiliary state 𝜌𝐶 , it is possible to recover a classical
description of 𝐶. Note that this wouldn’t mean that 𝐶 is a quantum learnable circuit,
because having access to (𝑈𝐶 , 𝜌𝐶) is qualitatively different than having quantum oracle
access to 𝐶. This is similar to the black-box and non-black-box distinction in the
context of QZK protocols. In particular, we could hope to have a quantum unlearnable
circuit 𝐶 and to use non-black-box techniques that would allow us to recover secrets
from (𝑈𝐶 , 𝜌𝐶). We introduce the notion of de-quantumizable circuits to capture this
scenario. These are quantum unlearnable circuits where access to (𝑈𝐶 , 𝜌𝐶) is enough
to recover a classical functionally equivalent circuit to 𝐶.

It is not clear a priori whether such circuits exist or not. The goal of recovering a
classical description from (𝑈𝐶 , 𝜌𝐶) is similar to the goal of extracting secret informa-
tion from a QPT verifier 𝑉 given non-black-box access to 𝑉 . Thus, it is reasonable
to assume that extraction mechanism designed in the context of QZK can help us
construct de-quantumizable circuits. Our main result is to show that this is indeed
the case – we combine lockable obfuscation and QFHE, as done in Section 3.3, to
construct a de-quantumizable circuit class.

Before defining de-quantumizable circuits, we start by recalling what we mean by
an efficient quantum implementation of a circuit 𝐶.
Definition 109 (Quantum Implementation). We say that a collection of QPT al-
gorithms, {𝑈𝐶 , 𝜌𝐶}𝐶∈𝒞, computes the circuit class 𝒞 if for any 𝐶 ∈ 𝒞, with input
length 𝑛 and output length 𝑚, 𝜌𝐶 is a poly(𝑛)-qubits auxiliary state, and 𝑈𝐶 a QPT
algorithm satisfying that for all 𝑥 ∈ {0, 1}𝑛,

Pr[𝑈𝐶(𝜌𝐶 , 𝑥) = 𝐶(𝑥)] ≥ 1− negl(𝜆),

where the probability is over the measurement outcomes of 𝑈𝐶. We also refer to
(𝑈𝐶 , 𝜌𝐶) as an efficient quantum implementation of 𝐶.
In other words, an efficient quantum implementation of a circuit 𝐶 is a pair, (𝑈𝐶 , 𝜌𝐶),
of a QPT algorithm 𝑈𝐶 and a quantum state 𝜌𝐶 , that lets you evaluate 𝐶.

175

6.1 De-quantumizable Circuits

A de-quantumizable class of circuits 𝒞 is a class of circuits for which there is a QPT
algorithm that given any quantum implementation that computes a circuit 𝐶 ∈ 𝒞, it
finds a (possibly different) classical circuit 𝐶 ′ ∈ 𝒞 with the same functionality as 𝐶.
Of course if 𝒞 is learnable, then it could be possible to just observe the input-output
behavior of the quantum circuit to find such a 𝐶 ′. To make this notion meaningful,
we additionally impose the requirement that 𝒞 needs to be quantum unlearnable.

Definition 110 (De-quantumizable circuits). A class of classical circuits 𝒞, associ-
ated with a distribution 𝒟𝒞, is said to be de-quantumizable if the following holds:

• Efficient de-quantumization: There is a QPT algorithm ℬ such that, for
any {𝑈𝐶 , 𝜌𝐶}𝐶∈𝒞 that computes 𝒞, the following holds:

Pr

[︂
𝐶′∈𝒞⋀︀

∀𝑥∈{0,1}𝑛,𝐶(𝑥)=𝐶′(𝑥)
:

𝐶←𝒟𝒞

𝐶′(𝑥)←ℬ(𝑈𝐶 ,𝜌𝐶)

]︂
≥ 1− negl(𝜆)

• 𝜈-Quantum Unlearnability: For any QPT adversary 𝒜, the following holds:

Pr
[︁
∀𝑥,Pr[𝑈*(𝜌*, 𝑥) = 𝐶(𝑥)] ≥ 𝜈 :

𝐶←𝒟𝒞
(𝑈*,𝜌*)←𝒜𝐶(·)(1𝜆)

]︁
≤ negl(𝜆)

Remark 111. By the Almost As Good As New Lemma, we can assume that the QPT
algorithm 𝑈𝐶 also outputs a state 𝜌′𝐶,𝑥 that is negligibly close in trace distance to 𝜌𝐶,
i.e. for all 𝐶 ∈ 𝒞 and 𝑥 ∈ {0, 1}𝑛 it holds that

Pr[𝑈𝐶(𝜌𝐶 , 𝑥) = (𝜌′𝐶,𝑥, 𝐶(𝑥))] ≥ 1− negl(𝜆)

and
⃦⃦
𝜌′𝐶,𝑥 − 𝜌𝐶

⃦⃦
tr
≤ negl(𝜆).

Remark 112. We emphasize that the efficient de-quantumization property requires
that the circuit 𝐶 ′ output by the adversary should be in the same circuit class 𝒞.

Remark 113. We can relax the unlearnability condition in the above definition to
instead have a distribution over the inputs and have the guarantee that the adversary
has to output a circuit (𝑈*, 𝜌*) such that it agrees with 𝐶 only on inputs drawn from
this distribution. Our impossibility result will also rule out this relaxed unlearnabil-
ity condition; however, for simplicity of exposition, we consider the unlearnability
condition stated in the above definition.

Impossibility of copy-protection. From the definition above, we can see why a
de-quantumizable class 𝒞 cannot be copy-protected, as there is a QPT ℬ that takes
any (𝑈𝐶 , 𝜌𝐶) efficiently computing 𝐶, and outputs a functionally equivalent classical
circuit 𝐶 ′, which can be copied. We leave the formal details of the impossibility result
after we have constructed de-quantumizable circuits.

176

6.1.1 Constructing de-quantumizable circuits

We turn our attention to the construction of a de-quantumizable circuits class (𝒞,𝒟𝒞).
Our family has the property that every circuit in the support of 𝒟𝒞 has a unique
representation in 𝒞1.

Constructing de-quantumizable circuits: Challenges. The starting point is
the seminal work of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and
Yang [BGI+01], who demonstrated a class of functions, where each function is as-
sociated with a secret key sk, such that: (a) Non-black-box secret extraction: given
non-black-box access to any classical circuit implementation of this function, the key
can be efficiently recovered, (b) Classical unlearnability of secrets: but given black-
box access to this circuit, any classical adversary who can only make polynomially
many queries to the oracle cannot recover the key.

While the result of Barak et al. has the ingredients suitable for us, it falls short
in many respects:

• The proof of non-black-box secret extraction crucially relies upon the fact that
we are only given a classical obfuscated circuit. In fact there are inherent diffi-
culties that we face in adapting Barak et al. to the quantum setting; see [AF16].

• As is the case with many black-box extraction techniques, the proof of Barak et
al. involves evaluating the obfuscated circuit multiple times in order to recover
the secret. As is typically the case with quantum settings, evaluating the same
circuit again and again is not always easy – the reason being that evaluating a
circuit once could potentially destroy the state thus rendering it impossible to
run it again.

• Barak et al. only guarantees extraction of secrets given non-black-box access to
the classical circuit implementation of the function. However, our requirement is
qualitatively different: given a quantum implementation of the classical circuit,
we need to find a (possible different) classical circuit with the same functionality.

• Barak et al.’s unlearnability result only ruled out adversaries who make classical
queries to the oracle. On the other hand, we need to argue unlearnability against
QPT adversaries who can perform superposition queries to the oracle.

Nonetheless, we show that the techniques introduced in a simplified version of Barak2

can be suitably adapted for our purpose by using the two tools we already used in
Section 3.3: quantum fully homomorphic encryption (QFHE) and lockable obfusca-
tion.

1This property will be relevant when extending the impossibility result to SSL.
2See [BP13] for a description of this simplified version.

177

Construction. We present the construction of de-quantumizable circuits.

Theorem 114. Assuming the quantum hardness of learning with errors (QLWE), and
assuming that there is a QFHE that supports evaluation of arbitrary polynomial-sized
quantum circuits, and has the following two properties: (a) ciphertexts have classical
plaintexts have classical descriptions and, (b) classical ciphertexts can be decrypted
using a classical circuit,

there exists a de-quantumizable class of circuits (𝒞,𝒟𝒞).

Proof. We define a de-quantumizable class of circuits 𝒞 = {𝒞𝜆}𝜆∈N, where every cir-
cuit in 𝒞𝜆 is defined as shown in Figure 6-1. The circuits are assumed to be suitably
padded with zeroes such that all the inputs (resp., outputs) are of the same length
𝑛 (resp., of the same length 𝑚). The distribution associated to 𝒞 is described in
Figure 6-2.

𝐶𝑎,𝑏,𝑟,pk,𝒪(𝑥):

1. If 𝑥 = 0 · · · 0, output QFHE.Enc (pk, 𝑎; 𝑟) |𝒪|pk.

2. Else if 𝑥 = 𝑎, output 𝑏.

3. Otherwise, output 0 · · · 0

Figure 6-1: De-quantumizable circuit class

𝒟𝒞(𝜆):

1. Sample 𝑎, 𝑏, 𝑟 $←− {0, 1}𝜆.

2. Compute (pk, sk)← QFHE.Gen(1𝜆).

3. Compute 𝒪 ← LO.Obf(C[QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)]) where C is a compute-and-
compare circuit (see Definition 38).

4. Output (𝑎, 𝑏, 𝑟, pk,𝒪).

Figure 6-2: Distribution associated to 𝒞

We show that with respect to the distribution in Figure 6-2: (a) 𝒞 is quantum
unlearnable (Proposition 115) and, (b) 𝒞 is efficiently de-quantumizable (Proposi-
tion 118).

178

Proposition 115. For any non-negligible 𝜈, the circuit class 𝒞 is 𝜈-quantum un-
learnable with respect to 𝒟𝒞.

Proof. We first rule out QPT adversaries, who given black-box access to the circuit,
can find the secret key sk with non-negligible probability. Once we rule out this type
of adversaries, we then show how to reduce a QPT adversary who breaks the quantum
unlearnability property of the de-quantumizable class of circuits to one who finds the
secret key sk; thus completing the proof.

Claim 116. For any QPT 𝒜 with quantum oracle access to 𝐶𝑎,𝑏,𝑟,pk,𝒪(·) (where the
adversary is allowed to make superposition queries), we have

Pr
(𝑎,𝑏,𝑟,pk,𝒪)←𝒟𝒞

[︀
sk← 𝒜𝐶𝑎,𝑏,𝑟,pk,𝒪

(︀
1𝜆
)︀]︀
≤ negl(𝜆)

Proof. Towards proving this, we make some simplifying assumptions; this is only for
simplicity of exposition and they are without loss of generality.

Simplifying Assumptions. Consider the following oracle 𝑂𝑎,𝑏,𝑟,pk,𝒪:

𝑂𝑎,𝑏,𝑟,pk,𝒪|𝑥⟩|𝑧⟩ =

⎧⎨⎩
|𝑥⟩|𝑧 ⊕ 𝐶𝑎,𝑏,𝑟,pk,𝒪(𝑥)⟩, if 𝑥 ̸= 0 · · · 0

|𝑥⟩|𝑧⟩, if 𝑥 = 0 · · · 0

The first simplifying assumption is that the adversary 𝒜 is given access to the oracle
𝑂𝑎,𝑏,𝑟,pk,𝒪, instead of the oracle 𝐶𝑎,𝑏,𝑟,pk,𝒪. In addition, 𝒜 is given Enc(pk, 𝑎; 𝑟), pk,
and 𝒪 as auxiliary input.

The second simplifying assumption is that 𝒜 is given some auxiliary state |𝜉⟩, and
that it only performs computational basis measurements right before outputting (i.e.
𝒜 works with purified states).

Overview. Our proof follows the adversary method proof technique [Amb02]. We
prove this by induction on the number of queries. We show that after every query
the following invariant is maintained: the state of the adversary has little amplitude
over 𝑎. More precisely, we argue that the state of the adversary after the 𝑡𝑡ℎ query,
is neglibly close to the state just before the 𝑡𝑡ℎ query, denoted by |𝜓𝑡⟩. After the
adversary obtains the response to the 𝑡𝑡ℎ query, it then applies a unitary operation
to obtain the state |𝜓𝑡+1⟩, which is the state of the adversary just before the (𝑡+ 1)𝑡ℎ

query. This observation implies that there is another state |𝜑𝑡+1⟩ that: (a) is close to
|𝜓𝑡+1⟩ (here, we use the inductive hypothesis that |𝜑𝑡⟩ is close to |𝜓𝑡⟩) and, (b) can
be prepared without querying the oracle at all.

Let 𝑈𝑖 denote the unitary that 𝒜 performs right before its 𝑖𝑡ℎ query, and let A,X,
and Y denote the private, oracle input, and oracle output registers of 𝒜, respectively.

Just before the 𝑡𝑡ℎ query, we denote the state of the adversary to be:

|𝜓𝑡⟩ := 𝑈𝑡𝑂 · · ·𝑂𝑈1|𝜓0⟩

179

where |𝜓0⟩ = |𝜉⟩|Enc(pk, 𝑎; 𝑟),𝒪, pk⟩|0 · · · 0⟩X|0 · · · 0⟩Y is the initial state of the ad-
versary. Let Π𝑎 = (|𝑎⟩⟨𝑎|)X ⊗ 𝐼Y,A.

Note that any 𝒜 that outputs sk with non-negligible probability can also query the
oracle on a state |𝜓⟩ satisfying Tr[Π𝑎|𝜓⟩⟨𝜓|] ≥ non-negl(𝜆) with non-negligible proba-
bility. Since 𝒜 outputs sk with non-negligible probability, it can decrypt Enc(pk, 𝑎; 𝑟),
to find 𝑎 and then query the oracle on 𝑎. In other words, if there is an adversary 𝒜
that finds sk with non-negligible probability, then there is an adversary that at some
point queries the oracle with a state |𝜓⟩ satisfying Tr[Π𝑎|𝜓⟩⟨𝜓|] ≥ non-negl(𝜆) also
with non-negligible probability.

Hence, it suffices to show that for any adversary 𝒜 that makes at most 𝑇 = poly(𝜆)
queries to the oracle, it holds that

Pr[∀𝑗,Tr[Π𝑎|𝜓𝑗⟩⟨𝜓𝑗|] ≤ negl(𝜆)] ≥ 1− negl(𝜆).

This would then imply that 𝒜 cannot output sk with non-negligible probability, thus
proving Claim 116.

Towards proving the above statement, consider the following claim that states
that if 𝒜 has not queried the oracle with a state that has large overlap with Π𝑎, then
its next query will also not have large overlap with Π𝑎.

Claim 117 (No Good Progress). Let 𝑇 be any polynomial in 𝜆. Suppose for all
𝑡 < 𝑇 , the following holds:

Tr
[︀
Π𝑎|𝜓𝑡⟩⟨𝜓𝑡|

]︀
≤ negl(𝜆)

Then, Pr[Tr[Π𝑎|𝜓𝑇 ⟩⟨𝜓𝑇 |] ≤ negl(𝜆)] ≥ 1− negl(𝜆).

Proof. For all 𝑗, let |𝜑𝑗⟩ = 𝑈𝑗𝑈𝑗−1...𝑈1|𝜓0⟩.
We will proceed by induction on 𝑇 . Our base case is 𝑇 = 1 (just before the first

query to the oracle); that is, |𝜓1⟩ = |𝜑1⟩. Suppose the following holds:

Pr[Tr[Π𝑎|𝜓1⟩⟨𝜓1|] ≥ non-negl(𝜆)] ≥ non-negl(𝜆).

The first step is to argue that if 𝒜 can prepare a state such that Tr[Π𝑎|𝜓1⟩⟨𝜓1|] ≥
non-negl(𝜆) given Enc(pk, 𝑎; 𝑟), pk and 𝒪 ← LO.Obf(C [QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)])
without querying the oracle, then it can also prepare a state with large overlap with
Π𝑎 if its given the simulator of the lockable obfuscation instead. We will use 𝒜 (specif-
ically, the first unitary that 𝒜 applies, 𝑈1) to construct an adversary ℬ that breaks the
security of lockable obfuscation. ℬ is given 𝑎, Enc(pk, 𝑎; 𝑟), pk and 𝒪 as well as aux-
iliary state |𝜉⟩. It the prepares |𝜓1,𝒪⟩ = 𝑈1|𝜉⟩|Enc(pk, 𝑎; 𝑟),𝒪, pk⟩|0 · · · 0⟩X|0 · · · 0⟩Y,
and measures in computational basis. If the output of this measurement is 𝑎, it
outputs 1; otherwise, it outputs 0.

Consider the following hybrids.

180

∙Hyb1 In this hybrid, ℬ is given 𝑎, Enc(pk, 𝑎; 𝑟), pk,𝒪 ← LO.Obf(C[QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)]).

∙Hyb2: In this hybrid, ℬ is given 𝑎, Enc(pk, 𝑎; 𝑟), pk and 𝒪 ← Sim(1𝜆).

Since the lock 𝑏 is chosen uniformly at random, by security of lockable obfuscation,
the probability that ℬ outputs 1 in the first hybrid is negligibly close to the prob-
ability that ℬ outputs 1 in the second hybrid. This means that if Tr[Π𝑎|𝜓1,𝒪⟩⟨𝜓1,𝒪|] ≥
non-negl(𝜆) with non-negligible probability when𝒪 ← LO.Obf(C[QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)]),
then this still holds when 𝒪 ← Sim(1𝜆).

But we show that if Tr[Π𝑎|𝜓1,𝒪⟩⟨𝜓1,𝒪|] ≥ non-negl(𝜆), when 𝒪 is generated as
𝒪 ← Sim(1𝜆), then QFHE is insecure.

• Consider the following QFHE adversary who is given |𝜉⟩ as auxiliary informa-
tion, and chooses two messages 𝑚0 = 0 · · · 0 and 𝑚1 = 𝑎, where 𝑎 is sampled
uniformly at random from {0, 1}𝜆. It sends (𝑚0,𝑚1) to the challenger.

• The challenger of QFHE then generates ct𝑑 = Enc(pk,𝑚𝑑), for some bit 𝑑 ∈
{0, 1} and sends it to the QFHE adversary.

• The QFHE adversary computes 𝒪 ← Sim(1𝜆).

• The QFHE adversary then prepares the state |𝜓𝑑⟩ = 𝑈1 (|𝜉⟩|ct𝑑,𝒪, pk⟩|0 · · · 0⟩X|0 · · · 0⟩Y)
and measures register X in the computational basis.

If 𝑑 = 0, the probability that the QFHE adversary obtains 𝑎 as outcome is neg-
ligible; since 𝑎 is independent of 𝑈1, pk, |𝜉⟩, and 𝒪. But from our hypothesis
(Pr[Tr[Π𝑎|𝜓1⟩⟨𝜓1|] ≥ non-negl(𝜆)] ≥ non-negl(𝜆)), the probability that the QFHE
adversary obtains 𝑎 as outcome is non-negligible for the case when 𝑑 = 1. This con-
tradicts the security of QFHE as the adversary can use 𝑎 to distinguish between these
two cases.
To prove the induction hypothesis, suppose that for all 𝑡 < 𝑇 , the following two
conditions hold:

1. Tr[Π𝑎|𝜓𝑡⟩⟨𝜓𝑡|] ≤ negl(𝜆)

2. |⟨𝜑𝑡|𝜓𝑡⟩| = 1− 𝛿𝑡
for some negligible 𝛿1, ..., 𝛿𝑇−1. We can write

|⟨𝜑𝑇 |𝜓𝑇 ⟩| = |⟨𝜑𝑇−1|𝑂|𝜓𝑇−1⟩|

By hypothesis (2) above, we have |𝜑𝑇−1⟩ = (1−𝛿𝑇−1)𝑒𝑖𝛼|𝜓𝑇−1⟩+
√︁

2𝛿𝑇−1 − 𝛿2𝑇−1| ̃︀𝜓𝑇−1⟩,

here 𝛼 is some phase, and | ̃︀𝜓𝑇−1⟩ is some state orthogonal to |𝜓𝑇−1⟩. Then

|⟨𝜑𝑇 |𝜓𝑇 ⟩| = |(1− 𝛿𝑇−1)𝑒𝑖𝛼⟨𝜓𝑇−1|𝑂|𝜓𝑇−1⟩+
√︁

2𝛿𝑇−1 − 𝛿2𝑇−1⟨ ̃︀𝜓𝑇−1|𝑂|𝜓𝑇−1⟩|

≥ |(1− 𝛿𝑇−1)𝑒𝑖𝛼⟨𝜓𝑇−1|𝑂|𝜓𝑇−1⟩| −
√︁

2𝛿𝑇−1 − 𝛿2𝑇−1

≥ (1− 𝛿𝑇−1)|⟨𝜓𝑇−1|𝑂|𝜓𝑇−1⟩| −
√︁

2𝛿𝑇−1 − 𝛿2𝑇−1

181

By hypothesis (1) above, and since the oracle acts non-trivially only on 𝑎, we have
|⟨𝜓𝑇−1|𝑂|𝜓𝑇−1⟩| ≥ 1− negl(𝜆), which gives us

|⟨𝜑𝑇 |𝜓𝑇 ⟩| ≥ 1− negl(𝜆).

Now we want to show that Tr[Π𝑎|𝜓𝑇 ⟩⟨𝜓𝑇 |] ≤ negl(𝜆). This follows from the
security of lockable obfuscation and QFHE similarly to 𝑇 = 1 case. Since |⟨𝜑𝑇 |𝜓𝑇 ⟩| ≥
1− negl(𝜆), we have that

Tr[Π𝑎|𝜑𝑇 ⟩⟨𝜑𝑇 |] ≤ negl(𝜆) =⇒ Tr[Π𝑎|𝜓𝑇 ⟩⟨𝜓𝑇 |] ≤ negl(𝜆).

From a similar argument to the 𝑇 = 1 case but using 𝑈𝑇𝑈𝑇−1 · · ·𝑈1 instead of just
𝑈1, we have that Pr[Tr[Π𝑎|𝜑𝑇 ⟩⟨𝜑𝑇 |] ≤ negl(𝜆)] ≥ 1− negl(𝜆).

Let 𝐸𝑖 denote the event that Tr[Π𝑎|𝜓𝑖⟩⟨𝜓𝑖|] ≤ negl(𝜆). Let 𝑝𝑇 be the probability that
Tr[Π𝑎|𝜓𝑡⟩⟨𝜓𝑡|] ≤ negl(𝜆) for all the queries 𝑡 ≤ 𝑇 . Using the previous claim, we have
that

𝑝𝑇 =
𝑇∏︁
𝑡=1

Pr[𝐸𝑡|∀𝑗 < 𝑡, 𝐸𝑗]

≥ (1− negl(𝜆))𝑇

≥ (1− 𝑇 · negl(𝜆))

Suppose that there is a QPT ℬ that can learn 𝒞 with respect to 𝒟𝒞 with non-
negligible probability 𝛿. In other words, for all inputs 𝑥,

Pr
[︁
𝑈(𝜌, 𝑥) = 𝐶𝑎,𝑏,𝑟,pk,𝒪(𝑥) :

𝐶𝑎,𝑏,𝑟,pk,𝒪←𝒟𝒞

(𝑈,𝜌)←ℬ𝐶𝑎,𝑏,𝑟,pk,𝒪 (1𝜆)

]︁
= 𝛿

We use ℬ𝐶𝑎,𝑏,𝑟,pk,𝒪 to construct a QPT 𝒜𝐶𝑎,𝑏,𝑟,pk,𝒪 that can find sk with probability
neglibly close to 𝛿, contradicting Claim 116. To do this, 𝒜 first prepares (𝑈, 𝜌) ←
ℬ𝐶𝑎,𝑏,𝑟,pk,𝒪(1𝜆). Then, 𝒜𝐶𝑎,𝑏,𝑟,pk,𝒪 queries the oracle on input 0 · · · 0, obtaining ct1 =
QFHE.Enc(pk, 𝑎; 𝑟) along with pk and 𝒪 = LO.Obf(C[QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)]). Fi-
nally, it homomorphically computes ct2 ← QFHE.Eval(𝑈(𝜌, ·), ct1). Then it computes
sk′|𝑟′ = 𝒪(ct2), and outputs sk′.

By the correctness of the QFHE and because 𝑈(𝜌, 𝑎) = 𝑏 holds with probability
𝛿, we have that QFHE.Decsk(ct2) = 𝑏 with probability negligibly close to 𝛿. By cor-
rectness of lockable obfuscation 𝒪(ct2) will output the right message sk. This means
that output of 𝒜 is sk with probability negligibly close to 𝛿.

Proposition 118. (𝒞,𝒟𝒞) is efficiently de-quantumizable.

182

Proof. We will start with an overview of the proof.

Overview : Given a quantum circuit (𝑈𝐶 , 𝜌𝐶) that computes 𝐶𝑎,𝑏,𝑟,pk,𝒪(·), first compute
on the input 𝑥 = 0 · · · 0 to obtain QFHE.Enc(pk, 𝑎; 𝑟)|𝒪|pk. We then homomorphi-
cally evaluate the quantum circuit on QFHE.Enc(pk, 𝑎; 𝑟) to obtain QFHE.Enc(pk, 𝑏′),
where 𝑏′ is the output of the quantum circuit on input 𝑎; this is part where we cru-
cially use the fact that we are given (𝑈𝐶 , 𝜌𝐶) and not just black-box access to the
functionality computing (𝑈𝐶 , 𝜌𝐶). But 𝑏′ is nothing but 𝑏! Given QFHE encryption
of 𝑏, we can then use the lockable obfuscation to recover sk; since the lockable obfus-
cation on input a valid encryption of 𝑏 outputs sk. Using sk we can then recover the
original circuit 𝐶𝑎,𝑏,𝑟,pk,𝒪(·). Formal details follow.

For any 𝐶 ∈ 𝒞, let (𝑈𝐶 , 𝜌𝐶) be any QPT algorithm (with auxiliary state 𝜌𝐶) satisfying
that for all 𝑥 ∈ {0, 1}𝑛,

Pr
[︀
𝑈𝐶(𝜌𝐶 , 𝑥) =

(︀
𝜌′𝐶,𝑥, 𝐶(𝑥)

)︀]︀
≥ 1− negl(𝜆),

where the probability is over the measurement outcomes of 𝑈𝐶 , and 𝜌′𝐶,𝑥 is neglibly
close in trace distance to 𝜌𝐶 (see Remark 111). We will show how to constuct a QPT
ℬ to de-quantumize (𝒞,𝒟𝒞).
ℬ will perform a QFHE evaluation, which we describe here. Given QFHE.Enc(pk, 𝑥),

we want to homomorphically evaluate 𝐶(𝑥) to obtain QFHE.Enc(pk, 𝐶(𝑥)). To do this,
first prepare QFHE.Enc(pk, 𝜌𝐶 , 𝑥), then evaluate 𝑈𝐶 homomorphically to obtain the
following:

QFHE.Enc(pk, 𝜌′𝐶,𝑥, 𝐶(𝑥)) = QFHE.Enc(pk, 𝜌′𝐶,𝑥)
⃒⃒
QFHE.Enc(pk, 𝐶(𝑥))

Consider the following QPT algorithm ℬ that is given (𝑈𝐶 , 𝜌𝐶) for any 𝐶 ∈ 𝒞.

ℬ(𝑈𝐶 , 𝜌𝐶):

1. Compute (𝜌′, ct1|𝒪′|pk′)← 𝑈𝐶(𝜌𝐶 , 0 · · · 0).

2. Compute 𝜎|ct2 ← QFHE.Eval(𝑈𝐶(𝜌′, ·), ct1)

3. Compute sk′|𝑟′ ← 𝒪(ct2)

4. Compute 𝑎′ ← QFHE.Dec(sk′, ct1), 𝑏′ ← QFHE.Dec(sk′, ct2).

5. Output 𝐶𝑎′,𝑏′,𝑟′,pk′,𝒪′ .

We claim that with probability negligibly close to 1, (𝑎′, 𝑏′, 𝑟′, pk′,𝒪′) = (𝑎, 𝑏, 𝑟, pk,𝒪)
when 𝐶 := 𝐶𝑎,𝑏,𝑟,pk,𝒪 ← 𝒟𝒞. This would finish our proof.

Lets analyze the outputs of ℬ step-by-step.

• After Step (1), with probability neglibibly close to 1, we have that ct1 =
QFHE.Enc(pk, 𝑎; 𝑟) , pk′ = pk, and𝒪′ = 𝒪 ← LO.Obf(C[QFHE.Dec(sk, ·), 𝑏, (sk|𝑟)]).
Furthermore, we have that 𝜌′ is negligibly close in trace distance to 𝜌𝐶 .

183

• Conditioned on Step (1) computing 𝐶(0 · · · 0) correctly, we have that QFHE.Eval(
𝑈𝐶(𝜌′, .), ct1) computes correctly with probability negligibly close to 1. This is
because ‖𝜌′ − 𝜌𝐶‖tr ≤ negl(𝜆), and by correctness of both QFHE and (𝑈𝐶 , 𝜌𝐶).
Conditioned on ct1 = QFHE.Enc(pk, 𝑎; 𝑟), when Step (2) evaluates correctly, we
have ct2 = QFHE.Enc(pk, 𝐶(𝑎)) = QFHE.Enc(pk, 𝑏)

• Conditioned on ct2 = QFHE.Enc(pk, 𝑏), by correctness of lockable obfuscation,
we have that 𝒪(ct2) outputs sk|𝑟. Furthermore, by correctness of QFHE, de-
cryption is correct: QFHE.Dec(sk, ct1) outputs 𝑎 with probability neglibly close
to 1, and QFHE.Dec(sk, ct2) outputs 𝑏 with probability neglibly close to 1.

With probability negligibly close to 1, we have shown that (𝑎′, 𝑏′, 𝑟′, pk′,𝒪′) = (𝑎, 𝑏, 𝑟, pk,𝒪).
Note that it is also possible to recover 𝜌′′ that is neglibly close in trace distance

to 𝜌𝐶 . This is because 𝜎 = QFHE.Enc(pk, 𝜌′′) for some 𝜌′′ satisfying ‖𝜌′′ − 𝜌𝐶‖tr.
Once sk′ = sk has been recovered, it is possible to also decrypt 𝜎 and obtain 𝜌′′. To
summarize, we have shown a QPT ℬ satisfying

Pr[ℬ(𝑈𝐶 , 𝜌𝐶) = (𝜌′′, 𝐶) : 𝐶 ← 𝒟𝒞] ≥ 1− negl(𝜆)

where ‖𝜌′′ − 𝜌𝐶‖tr ≤ negl(𝜆).

6.2 Impossibility of Copy-Protection and QVBB

We have constructed a class 𝒞 and an associated distribution 𝒟𝒞 that is efficient de-
quantumizable. In particular, this means that there is no copy-protection for 𝒞. If for
all inputs 𝑥, there is a QPT (𝑈𝐶 , 𝜌𝐶) to compute 𝑈𝐶(𝜌𝐶 , 𝑥) = 𝐶(𝑥) with probability
1 − 𝜀 for some negligible 𝜀, then it is possible to find, with probability close to 1, a
circuit 𝐶 ′ that computes the same functionality as 𝐶. We also proved that (𝒞,𝒟𝒞) is
quantum unlearnable. We summarize the result in the following corollary,

Corollary 119. There is (𝒞,𝒟𝒞) that is quantum unlearnable, but 𝒞 cannot be copy-
protected against 𝒟𝒞. Specifically, for any 𝐶 ← 𝒟𝒞 with input length 𝑛, and for any
QPT algorithm (𝑈𝐶 , 𝜌𝐶) satisfying that for all 𝑥 ∈ {0, 1}𝑛,

Pr[𝑈𝐶(𝜌𝐶 , 𝑥) = 𝐶(𝑥)] ≥ 1− 𝜀

for some negligible 𝜀, there is a QPT algorithm (pirate) that outputs a circuit 𝐶 ′,
satisfying 𝐶 ′(𝑥) = 𝐶(𝑥) for all 𝑥 ∈ {0, 1}𝑛, with probability negligibly close to 1.

Further Discussion. Notice that in our proof that 𝒞 is efficient de-quantumizable,
we just need to compute 𝑈𝐶(𝜌𝐶 , 𝑥) at two different points 𝑥1 = 0 · · · 0 and 𝑥2 = 𝑎,
where the evaluation at 𝑥2 is done homomorphically. This means that any scheme
that lets a user evaluate a circuit 𝐶 at least 2 times (for 2 possibly different inputs)
with non-negligible probability cannot be copy-protected. Such a user would be able

184

to find all the parameters of the circuit, (𝑎, 𝑏, 𝑟, pk,𝒪), succesfully with non-negligible
probability, hence it can prepare as many copies of a functionally equivalent circuit
𝐶 ′.

In our proof, we make use of the fact that (𝑈𝐶 , 𝜌𝐶) evaluates correctly with prob-
ability close to 1. This is in order to ensure that the pirate can indeed evaluate at 2
points by uncomputing after it computes 𝐶(0 · · · 0). Since any copy-protection scheme
can be amplified to have correctness neglibly close to 1 by providing multiple copies of
the copy-protected states, our result also rules out copy-protection for non-negligible
correctness parameter 𝜀. As long as the correctness of (𝑈𝐶 , 𝜌𝐶) can be amplified to
neglibily close to 1 by providing 𝜌⊗𝑘𝐶 for some 𝑘 = poly(𝜆), a pirate can get a hold of
many copies and evaluate at the 2 points necessary to break the scheme.

Impossibility of Quantum VBB with single unclonable state. Our tech-
niques also rule out the possibility of quantum VBB for classical circuits. In particu-
lar, this rules the possibility of quantum VBB for classical circuits with the obfucated
circuit being a single unclonable state, thus resolving an open problem by Alagic and
Fefferman [AF16].

Proposition 120. Assuming the quantum hardness of learning with errors and as-
suming that there is a QFHE satisfying the properties described in Theorem 114,

there exists a circuit class 𝒞 such that any quantum VBB for 𝒞 is insecure.

Proof. We construct a circuit class 𝒞 = {𝒞𝜆}𝜆∈N, where every circuit in 𝒞𝜆 is of the
form 𝐶𝑎,𝑏,𝑟,pk,𝒪 defined in the proof of Theorem 114.

Given any quantum VBB of 𝐶𝑎,𝑏,𝑟,pk,𝒪, there exists an adversary 𝒜 that recovers
𝑏 and outputs the first bit of 𝑏. The adversary 𝒜 follows steps 1-4 of ℬ defined in
the proof of Proposition 118 and then outputs the first bit of 𝑏′. In the same proof,
we showed that the probability that 𝑏′ = 𝑏 is negligibly close to 1 and thus, the
probability it outputs the first bit of 𝑏 is negligibly close to 1.

On the other hand, any QPT simulator Sim with superposition access to 𝐶𝑎,𝑏,𝑟,pk,𝒪
can recover 𝑏 with probability negligibly close to 1/2. To prove this, we rely upon the
proof of Claim 116. We will start with the same simplifying assumptions as made in
the proof of Claim 116. Suppose 𝑇 is the number of superposition queries made by
Sim to 𝐶𝑎,𝑏,𝑟,pk,𝒪. Let |𝜓0⟩ is the initial state of Sim and more generally, let |𝜓𝑡⟩ be
the state of Sim after 𝑡 queries, for 𝑡 ≤ 𝑇 .

We define an alternate QPT simulator Sim′ which predicts the first bit of 𝑏 with
probability negligibly close to Sim. Before we describe Sim′, we give the necessary
preliminary background. Define |𝜑𝑡⟩ = 𝑈𝑡𝑈𝑡−1 · · ·𝑈1|𝜓0⟩. We proved the following
claim.

Claim 121. |⟨𝜑𝑡|𝜓𝑡⟩| = 1− 𝛿𝑡 for every 𝑡 ∈ [𝑇].

Sim′ starts with the initial state |𝜓0⟩. It then computes |𝜑𝑇 ⟩. If 𝑈 is a unitary matrix
Sim applies on |𝜓𝑇 ⟩ followed by a measurement of a register D then Sim′ also performs
𝑈 on |𝜑𝑇 ⟩ followed by a measurement of D. By the above claim, it then follows that
the probability that Sim′ outputs 1 is negligibly close to the probability that Sim

185

outputs 1. But the probability that Sim′ predicts the first bit of 𝑏 is 1/2. Thus, the
probability that Sim predicts the first bit of 𝑏 is negligibly close to 1/2.

186

Chapter 7

Secure Software Leasing

7.1 Introduction

Almost all proprietary software requires a legal document, called software license, that
governs the use against illegal distribution of software, also referred to as pirating.
The main security requirement from such a license is that any malicious user no
longer has access to the functionality of the software after the lease associated with
the software license expires. While ad hoc solutions existed in the real world, for
a long time, no theoretical treatment of this problem was known. This was until
Aaronson, who in his seminal work [Aar09] introduced and formalized the notion
of quantum software copy-protection, a quantum cryptographic primitive that uses
quantum no-cloning techniques to prevent pirating of software by modeling software
as boolean functions. Quantum copy-protection would prevent a pirate from being
able to create a new software from his own copy and re-distribute it; of course it can
circulate its own copy to others but it will lose access to its own copy.

Need for Alternate Notions. While quantum copy-protection does provide a
solution for software piracy, constructing quantum copy-protection has been notori-
ously difficult. Despite being introduced more than a decade ago, not much is known
on the existence of quantum copy-protection. There are no known provably secure
constructions of quantum copy-protection for any class of circuits. All the exist-
ing constructions of quantum copy-protection are either proven in an oracle model
[Aar09, ALL+20] or are heuristic1 candidates for very simple functions such as point
functions [Aar09]. In a recent blog post, Aaronson [Aar] even mentioned construct-
ing quantum copy-protection from cryptographic assumptions as one of the five big
questions he wishes to solve.

This not only prompted us to explore the possibility of copy-protection but also
look for alternate notions to protect against software piracy. Specifically, we look for
application scenarios where the full power of quantum copy-protection is not needed
and it suffices to settle for weaker notions. Let us consider one such example.

1That is, there is no known reduction to concrete cryptographic assumptions.

187

Example: Anti-Piracy Solutions for Microsoft Office. Microsoft Office is one
of the most popular software tools used worldwide. Since Microsoft makes a sizeable
portion of their revenue from this tool [rev], it is natural to protect Microsoft Office
from falling prey to software piracy. A desirable requirement is that pirated copies
cannot be sold to other users such that these copies can run successfully on other
Microsoft Windows systems. Importantly, it does not even matter if the pirated
copies can be created as long as they cannot be executed on other Windows systems;
this is because, only the pirated copies that run on Windows systems are the ones
that bite into the revenue of Microsoft. Indeed, there are open source versions of
Office publicly available but our aim is to prevent these open source versions from
being sold off as authentic versions of Microsoft Office software.

This suggests that instead of quantum copy-protection – which prevents the adver-
sary from creating any pirated copy of the copy-protected software – we can consider
a weaker variant that only prevents the adversary from being able to create authen-
ticated pirated copies (for instance, that runs only on specific operating systems). To
capture this, we present a new definition called secure software leasing.

Our Work: Secure Software Leasing (SSL). Roughly speaking, a secure leasing
scheme allows for an authority (the lessor2) to lease a classical circuit 𝐶 to a user (the
lessee3) by providing a corresponding quantum state 𝜌𝐶 . The user can execute 𝜌𝐶 to
compute 𝐶 on any input it desires. Leases can expired, requiring 𝜌𝐶 to be returned
at a later point in time, specified by the lease agreement. After it returns the state,
we require the security property that the lessee can no longer compute 𝐶.

In more detail, a secure software leasing scheme (SSL) for a family of circuits 𝒞 is
a collection, (Gen, Lessor,Run,Check), of quantum polynomial-time algorithms (QPT)
satisfying the following conditions. Gen(1𝜆), on input a security parameter 𝜆, outputs
a secret key sk that will be used by a lessor to validate the states being returned after
the expiration of the lease. For any circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 in 𝒞, Lessor(sk, 𝐶)
outputs a quantum state 𝜌𝐶 , where 𝜌𝐶 allows Run to evaluate 𝐶. Specifically, for
any 𝑥 ∈ {0, 1}𝑛, we want that Run(𝜌𝐶 , 𝑥) = 𝐶(𝑥); this algorithm is executed by the
lessee. Finally, Check(sk, 𝜌𝐶) checks if 𝜌𝐶 is a valid leased state. Any state produced
by the lessor is a valid state and will pass the verification check.

A SSL scheme can have two different security guarantees depending on whether
the leased state is supposed to be returned or not.

• Infinite-Term Lessor Security : In this setting, there is no time duration as-
sociated with the leased state and hence, the user can keep this leased state
forever4. Informally, we require the guarantee that the lessee, using the leased
state, cannot produce two authenticated copies of the leased state. Formally
speaking, any (malicious) QPT user 𝒜 holding a leased state 𝒜(𝜌𝐶) (produced
using classical circuit 𝐶) cannot output a (possibly entangled) bipartite state

2The person who leases the software to another.
3The person to whom the software is being leased to.
4Although the lessor will technically be the owner of the leased state.

188

𝜎* such that both 𝜎*1 = Tr2[𝜎*] and 𝜎*2 = Tr1[𝜎*] can be used to compute 𝐶
with Run.

• Finite-Term Lessor Security : On the other hand, we could also consider a
weaker setting where the leased state is associated with a fixed term. In this
setting, the lessee is obligated to return back the leased state after the term
expires. We require the property that after the lessee returns back the state, it
can no longer produce another authenticated state having the same functionality
as the leased state.

Formally speaking, we require that any (malicious) QPT user 𝒜 holding a leased
state 𝜌𝐶 (produced using 𝐶) cannot output a (possibly entangled) bipartite
states 𝜎* such that 𝜎*1 := Tr2[𝜎*]5 passes the lessor’s verification (Check(sk, 𝜎*1) =
1) and such that the the resulting state, after the first register has been verified
by the lessor, on the second register, 𝜎*2, can also be used to evaluate 𝐶 with
the Run algorithm, Run(𝜎*2, 𝑥) = 𝐶(𝑥).

A SSL scheme satisfying infinite-term security would potentially be useful to tackle
the problem of developing anti-piracy solutions for Microsoft Office. However, there
are scenarios where finite-term security suffices. We mention two examples below.

Trial Versions. Before releasing the full version of a program 𝐶, a software vendor
might want to allow a selected group of people6 to run a beta version of it, 𝐶𝛽, in
order to test it and get user feedback. Naturally, the vendor would not want the
beta versions to be pirated and distributed more widely. Again, they can lease the
beta version 𝐶𝛽, expecting the users to return it back when the beta test is over. At
this point, they would know if a user did not return their beta version and they can
penalize such a user according to their lease agreement.

Subscription Models. Another example where finite-term SSL would be useful is
for companies that use a subscription model for their revenue. For example, Microsoft
has a large library of video games for their console, the Xbox, which anyone can have
access to for a monthly subscription fee. A malicious user could subscribe in order
to have access to the collection of games, then make copies of the games intending to
keep them after cancelling the subscription. The same user will not be able to make
another copy of a game that also runs on Xbox.

Remark 122. Following our work, other weakenings of copy-protection (similar to
SSL) have been studied. Security guarantee against a pirate that intents to prepare
two copies, one that can be maliciously evaluated and one that has to be honestly
evaluated, was studied in [BJL+21]. In this context, SSL can be seen as having a
security guarantee when both copies have to be evaluated honestly. In [ALL+20], the

5This denotes tracing out the second register.
6For instance, they could be engineers assigned to test whether the beta version contains bugs.

189

notion of copy-detection was defined using the framework of projective implementa-
tions from [Zha20]. While the syntax/definition is slightly different, copy-detection is
similar to SSL with infinite-term security.

7.1.1 Construction overview

While we construct SSL with infinite-term security, in this overview we will use the
syntax of finite-term lessor security. Our ideas can be easily adapted to the infinite-
term lessor security.

To construct a SSL scheme in the setup model (Setup,Gen, Lessor,Run,Check)
against arbitrary quantum poly-time (QPT) pirates, we first focus on two weaker
class of adversaries, namely, duplicators and maulers. Duplicators are adversaries
who, given 𝜌𝐶 generated by the lessor for a circuit 𝐶 sampled from a distribution 𝒟𝒞,
produce 𝜌⊗2𝐶 ; that is, all they do is replicate the state. Maulers, who given 𝜌𝐶 , output
𝜌𝐶 ⊗𝜌*𝐶 , where 𝜌*𝐶 is far from 𝜌𝐶 in trace distance and 𝜌𝐶 is the copy returned by the
mauler back to the lessor; that is the second copy it produces is a modified version of
the original copy.

While our construction is secure against arbitrary pirates, it will be helpful to
first focus on these restricted type of adversaries. We propose two schemes: the
first scheme is secure against QPT maulers and the second scheme against QPT
duplicators. Once we discuss these schemes, we will then show how to combine the
techniques from these two schemes to obtain a construction secure against arbitrary
pirates.

SSL against Maulers. To protect SSL against a mauler, we attempt to construct
a scheme using only classical cryptographic techniques. The reason why it could be
possible to construct such a scheme is because maulers never produce a pirated copy
𝜌*𝐶 that is the same as the original copy 𝜌𝐶 .

A natural attempt to construct a SSL scheme is to use virtual black-box obfus-
cation [BGI+01] (VBB): this is a compiler that transforms a circuit 𝐶 into another
functionally equivalent circuit ̃︀𝐶 such that ̃︀𝐶 only leaks the input-output behavior of
𝐶 and nothing more. This is a powerful notion and implies almost all known crypto-
graphic primitives. We generate the leased state 𝜌𝐶 to be the VBB obfuscation of 𝐶,
namely ̃︀𝐶. The hope is that a mauler will not output another leased state 𝜌*𝐶 that is
different from ̃︀𝐶.

Unfortunately, this scheme is insecure. A mauler on input ̃︀𝐶, obfuscates ̃︀𝐶 once
more to obtain ̃︀̃︀𝐶 and outputs this re-obfsuscated circuit. Moreover, note that the
resulting re-obfuscated circuit still computes 𝐶. This suggests that program obfus-
cation is insufficient for our purpose. In hindsight, this should be unsurprising: VBB
guarantees that given an obfuscated circuit, an efficient adversary should not learn
anything about the implementation of the circuit, but this doesn’t prevent the adver-
sary from being able to re-produce modified copies of the obfuscated circuit.

To rectify this issue, we devise the following strategy:

190

• Instead of VBB, we start with a different obfuscation scheme that has the follow-
ing property: given an obfuscated circuit ̃︀𝐶, where 𝐶 corresponds to an evasive
function, it is computationally infeasible to determine an accepting input for 𝐶.

• We then combine this with a special proof system that guarantees the property:
suppose an adversary, upon receiving ̃︀𝐶 and a proof, outputs a different but
functionally equivalent obfuscated circuit ̃︀𝐶* along with a new proof. Then
we can extract an accepting input for ̃︀𝐶 from the adversary’s proof. But this
would contradict the above bullet and hence, it follows that its computationally
infeasible for the adversary to output a different circuit ̃︀𝐶*.

To realize the above strategy, we need two separate cryptographic tools, that we de-
fine below.

Input-Hiding Obfuscators [BBC+14]: We recall the notion of input-hiding obfusca-
tors [BBC+14]. An input-hiding obfuscator guarantees that given an obfuscated
circuit ̃︀𝐶, any efficient adversary cannot find an accepting input 𝑥, i.e., an input
𝑥 such that ̃︀𝐶(𝑥) = 1. Of course this notion is only meaningful for an evasive class
of functions: a function is evasive if given oracle access to this function, any efficient
adversary cannot output an accepting point. The work of Barak, Bitansky, Canetti,
Kalai, Paneth, and Sahai [BBC+14] proposed candidates for input-hiding obfuscators.

Simulation-Extractable NIZKs [Sah99, DSDCO+01]: Another primitive we consider is
simulation-extractable non-interactive zero-knowledge [Sah99, DSDCO+01] (seNIZKs).
A seNIZK system is a non-interactive protocol between a prover and a verifier with
the prover trying to convince the verifier that a statement belongs to the NP language.
By non-interactive we mean that the prover only sends one message to the verifier
and the verifier is supposed to output the decision bit: accept or reject. Moreover,
this primitive is defined in the common reference string model. In this model, there
is a trusted setup that produces a common reference string and both the prover and
the verifier have access to this common reference string.

As in a traditional interactive protocol, we require a seNIZK to satisfy the com-
pleteness property. Another property we require is simulation-extractability. Simulation-
extractability, a property that implies both zero-knowledge and soundness, guarantees
that if there exists an efficient adversary 𝒜 who upon receiving a simulated proof7
for an instance 𝑥, produces an accepting proof for a different instance 𝑥′, i.e., 𝑥′ ̸= 𝑥,
then there also exists an adversary ℬ that given the same simulated proof produces
an accepting proof for 𝑥′ along with simultaneously producing a valid witness for 𝑥′.

7A simulated proof is one that is generated by an efficient algorithm, called a simulator, who has
access to some private coins that was used to generate the common reference string. Moreover, a
simulated proof is indistinguishable from an honestly generated proof. A simulator has the capability
to generate simulated proofs for YES instances even without knowing the corresponding witness for
these instances.

191

Combining Simulation-Extractable NIZKs and Input-Hiding Obfuscators: We now
combine the two tools we introduced above to obtain a SSL scheme secure against
maulers. Our SSL scheme will be associated with searchable circuits; given a de-
scription of a searchable circuit 𝐶, an input 𝑥 can be determined efficiently such that
𝐶(𝑥) = 1.

To lease a circuit 𝐶, do the following:

• Compute an input-hiding obfuscation of 𝐶, denoted by ̃︀𝐶,

• Produce a seNIZK proof 𝜋 that proves knowledge of an input 𝑥 such that
𝐶(𝑥) = 1. Note that we can find this input using the searchability property.

Output (̃︀𝐶, 𝜋) as the leased circuit. To evaluate on any input 𝑥, we first check if 𝜋 is
a valid proof and if so, we compute ̃︀𝐶 on 𝑥 to obtain 𝐶(𝑥).

To see why this scheme is secure against maulers, suppose an adversary 𝒜 given
(̃︀𝐶, 𝜋) produces (̃︀𝐶*, 𝜋*), where ̃︀𝐶* ̸= ̃︀𝐶. Since 𝒜 is a valid mauler we are guar-
anteed that ̃︀𝐶* is functionally equivalent to 𝐶. We first run the seNIZK simulator
to simulate 𝜋 and once this is done, we no longer need 𝑥 to generate 𝜋. Now, we
invoke the simulation-extractability property to convert 𝒜 into one who not only pro-
duces (̃︀𝐶*, 𝜋*) but also simultaneously produces 𝑥 such that ̃︀𝐶*(𝑥) = 1. Since ̃︀𝐶* is
functionally equivalent to 𝐶, it follows that 𝐶(𝑥) = 1 as well. But this violates the
input-hiding property which says that no efficient adversary given ̃︀𝐶 can produce an
accepting input.

Issue: Checking Functional Equivalence. There is a subtlety we skipped in the proof
above. The maulers that we consider have multi-bit output which is atypical in the
cryptographic setting where the focus is mainly on boolean adversaries. This causes
an issue when we switch from the honestly generated proof to a simulated proof.
Upon receiving the honestly generated proof, 𝒜 outputs (̃︀𝐶*, 𝜋*) such that ̃︀𝐶* is
functionally equivalent to 𝐶 but upon receiving the simulated proof, the adversary
outputs (̃︀𝐶*, 𝜋*) where ̃︀𝐶* differs from 𝐶 on one point. From 𝒜, we need to extract
one bit that would help distinguish the real and simulated proofs. To extract this
bit, we rely upon sub-exponential security. Given ̃︀𝐶*, we run in time 2𝑛, where 𝑛 is
the input length, and check if ̃︀𝐶* is still functionally equivalent to 𝐶; if indeed ̃︀𝐶*
is not functionally equivalent to 𝐶 then we know for a fact that the adversary was
given a simulated proof, otherwise it received an honestly generated proof. We set
the security parameter in the seNIZK system to be sufficiently large (for eg, poly(𝑛))
such that the seNIZK is still secure against adversaries running in time 2𝑛.

SSL against Duplicators. Next we focus on constructing SSL secure against du-
plicators. If our only goal was to protect against duplicators, we could achieve this
with a simple scheme. The lessor, in order to lease 𝐶, will output (|𝜓⟩, 𝐶) where |𝜓⟩ is
a random quantum state generated by applying a random polynomial sized quantum
circuit 𝑈 on input |0⊗𝜆⟩. Run on input (|𝜓⟩, 𝐶, 𝑥) ignores the quantum state |𝜓⟩,
and outputs 𝐶(𝑥). By quantum no-cloning, an attacker cannot output two copies of
(|𝜓⟩, 𝐶), which means that this scheme is already secure against duplicators.

192

Recall that we focused on designing SSL for duplicators in the hope that it will
be later helpful for designing SSL for arbitrary pirates. But any SSL scheme in which
Run ignores the quantum part would not be useful for obtaining SSL secure against
arbitrary pirates; an attacker can simply replace the quantum state as part of the
leased state with its own quantum state and copy the classical part. To overcome this
insufficiency, we need to design SSL schemes where the Run algorithm only computes
correctly when the input leased state belongs to a sparse set of quantum states. This
suggests that the Run algorithm implicitly satisfies a verifiability property; it should
be able to verify that the input quantum state lies in this sparse set.

Publicly Verifiable Unclonable States. We wish to construct a family of efficiently
preparable states {|𝜓𝑠⟩}𝑠 with the following verifiability property. For any state |𝜓𝑠⟩
in the family, there is a way to sample a classical description 𝑑𝑠 for |𝜓𝑠⟩ in such a
way that it can be verified that 𝑑𝑠 is a corresponding description of |𝜓𝑠⟩. To be more
precise, there should be a verification algorithm Ver(|𝜓𝑠⟩, 𝑑) that accepts if 𝑑 is a
valid description for |𝜓𝑠⟩. Furthermore, we want the guarantee that given a valid pair
(|𝜓𝑠⟩, 𝑑𝑠), no QPT adversary can produce |𝜓𝑠⟩⊗2.

Our requirement has the same flavor as public-key quantum money, but a key
difference is that we do not require any secret parameters associated with the scheme.
Moreover, we allow anyone to be able to generate such tuples (|𝜓𝑠⟩, 𝑑𝑠) and not just
the minting authority (bank).

Given such verifiable family, we can define the Run algorithm as follows,

Run(𝐶, (|𝜓𝑠⟩, 𝑑), 𝑥):

• If Ver(|𝜓𝑠⟩, 𝑑) = 0, output ⊥.

• Otherwise, output 𝐶(𝑥).

Any lessor can now lease a state (|𝜓𝑠⟩, 𝑑𝑠, 𝐶), which would allow anyone to compute
𝐶 using Run. Of course, any pirate that is given (|𝜓𝑠⟩, 𝑑𝑠, 𝐶) can prepare their own
(|𝜓𝑠′⟩, 𝑑𝑠′) and then input (|𝜓𝑠′⟩, 𝑑𝑠′ , 𝐶) into Run. But recall that we are only inter-
ested in ruling out duplicators. From the public verifiable property of the quantum
states, we have the fact that no QPT pirate could prepare |𝜓𝑠⟩⊗2 from (|𝜓𝑠⟩, 𝑑𝑠) and
thus, it is computationally infeasible to duplicate the leased state.

Publicly Verifiable Unclonable States from Subspace Hiding Obfuscation. The no-
tion of publicly verifiable unclonable states was first constructed without oracles by
Zhandry [Zha19]. Zhandry’s idea is to instantiate the quantum money scheme from
hidden subspace [AC12] by introducing a type of obfuscation called subspace hiding
obfuscation. Roughly speaking, a subspace hiding obfuscator (shO) takes as input a
description of a linear subspace 𝐴, and outputs a circuit that computes the member-
ship function for 𝐴, i.e. shO(𝐴)(𝑥) = 1 iff 𝑥 ∈ 𝐴. Zhandry shows that for a uni-
formly random 𝜆

2
-dimensional subspace 𝐴 ⊂ Z𝜆

𝑞 , given |𝐴⟩ := 1√
𝑞𝜆/2

∑︀
𝑎∈𝐴
|𝑎⟩ along with

̃︀𝑔 ← shO(𝐴),̃︁𝑔⊥ ← shO(𝐴⊥), no QPT algorithm can prepare |𝐴⟩⊗2 with non-negligible

193

probability. Nevertheless, because ̃︀𝑔 and ̃︁𝑔⊥ compute membership for 𝐴 and 𝐴⊥ re-
spectively, it is possible to project onto |𝐴⟩⟨𝐴| using (̃︀𝑔,̃︁𝑔⊥). This lets anyone check
the tuple (|𝜓⟩, (̃︀𝑔,̃︁𝑔⊥)) by measuring |𝜓⟩ with the projectors {|𝐴⟩⟨𝐴|, 𝐼 − |𝐴⟩⟨𝐴|}.

Main Template: SSL against Pirates. Our goal is to construct SSL against
arbitrary QPT pirates and not just duplicators or maulers. To achieve this goal, we
combine the techniques we have developed so far.

To lease a circuit 𝐶, do the following:

1. First prepare the state the state |𝐴⟩ = 1√
𝑞𝜆/2

∑︀
𝑎∈𝐴
|𝑎⟩, along with 𝑔 ← shO(𝐴)

and ̃︁𝑔⊥ ← shO(𝐴⊥).

2. Compute an input-hiding obfuscation of 𝐶, namely ̃︀𝐶.

3. Let 𝑥 be an accepting point of 𝐶. This can be determined using the searchability
condition.

4. Compute a seNIZK proof 𝜋 such that: (1) the obfuscations (̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶) were
computed correctly, as a function of (𝐴,𝐴⊥, 𝐶), and, (2) 𝐶(𝑥) = 1.

5. Output |𝜓𝐶⟩ = (|𝐴⟩, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋).

The Run algorithm on input (|𝜓𝐶⟩, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋) and 𝑥, first checks the proof 𝜋, and
outputs ⊥ if it does not accept the proof. If it accepts the proof, it knows that ̃︀𝑔 and̃︁𝑔⊥ are subspace obfuscators for some subspaces 𝐴 and 𝐴⊥ respectively; it can use
them to project |𝜓𝐶⟩ onto |𝐴⟩⟨𝐴|. This checks whether |𝜓𝐶⟩ is the same as |𝐴⟩ or
not. If it is not, then it outputs ⊥. If it has not output ⊥ so far, then it computes ̃︀𝐶
on 𝑥 to obtain 𝐶(𝑥).

Proof Intuition: To prove the lessor security of the above scheme, we consider two
cases depending on the behavior of the pirate:

• Duplicator: in this case, the pirate produces a new copy that is of the form
(𝜎*, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋); that is, it has the same classical part as before. If 𝜎* is close to
|𝐴⟩⟨𝐴|, it would violate the no-cloning theorem. On the other hand, if 𝜎* is far
from |𝐴⟩⟨𝐴|, we can argue that the execution of Run on the copy produced by
the pirate will not compute 𝐶. The reason being that at least one of the two
subspace obfuscators ̃︀𝑔,̃︁𝑔⊥ will output ⊥ on the state 𝜎*.

• Mauler: suppose the pirate produces a new copy that is of the form (𝜎*, ̃︀𝑔*,̃︁𝑔⊥*,̃︀𝐶*, 𝜋*) such that (̃︀𝑔*,̃︁𝑔⊥*, ̃︀𝐶*) ̸= (̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶). We invoke the simulation-extractability
property to find an input 𝑥 such that ̃︀𝐶*(𝑥) = 1. Since ̃︀𝐶* is assumed to have
the same functionality as 𝐶, this means that 𝐶(𝑥) = 1. This would contradict
the security of input-hiding obfuscation, since any QPT adversary even giveñ︀𝐶 should not be able to find an accepting input 𝑥 such that 𝐶(𝑥) = 1.

194

7.2 Definition

We present the definition of secure software leasing schemes. A secure software
leasing (SSL) scheme for a class of circuits 𝒞 = {𝒞𝜆}𝜆∈N consists of the following
QPT algorithms.

• Private-key Generation, Gen(1𝜆): On input security parameter 𝜆, outputs a
private key sk.

• Software Lessor, Lessor (sk, 𝐶): On input the private key sk and a poly(𝑛)-
sized classical circuit 𝐶 ∈ 𝒞𝜆, with input length 𝑛 and output length 𝑚, outputs
a quantum state 𝜌𝐶 .

• Evaluation, Run(𝜌𝐶 , 𝑥): On input the quantum state 𝜌𝐶 and an input 𝑥 ∈
{0, 1}𝑛, outputs 𝑦, and some state 𝜌′𝐶,𝑥.

• Check of Returned Software, Check (sk, 𝜌*𝐶): On input the private key sk
and the state 𝜌*𝐶 , it checks if 𝜌*𝐶 is a valid leased state and if so it outputs 1,
else it outputs 0.

Setup. In this work, we only consider SSL schemes in the setup model. In this
model, all the lessors in the world have access to a common reference string generated
using a PPT algorithm Setup. The difference between Setup and Gen is that Setup
is run by a trusted third party whose output is used by all the lessors while Gen is
executed by each lessor separately. We note that our impossibility result rules out
SSL schemes for all quantum unlearnable class of circuits even in the setup model.

We define this notion below.

Definition 123 (SSL with Setup). A secure software leasing scheme (Gen, Lessor,Run,Check)
is said to be in the common reference string (CRS) model if additionally, it has an
algorithm Setup that on input 1𝜆 outputs a string crs.

Moreover, the algorithm Gen now takes as input crs instead of 1𝜆 and Run addi-
tionally takes as input crs.

We require that a SSL scheme, in the setup model, satisfies the following properties.

Definition 124 (Correctness). A SSL scheme (Setup,Gen, Lessor,Run,Check) for
𝒞 = {𝒞𝜆}𝜆∈N is 𝜀-correct if for all 𝐶 ∈ 𝒞𝜆, with input length 𝑛, the following two
properties holds for some negligible function 𝜀:

• Correctness of Run:

Pr

⎡⎢⎢⎣∀𝑥 ∈ {0, 1}𝑛, 𝑦 = 𝐶(𝑥) :

crs←Setup(1𝜆),
sk←Gen(crs),

𝜌𝐶←Lessor(sk,𝐶)

(𝜌′𝐶,𝑥,𝑦)←Run(crs,𝜌𝐶 ,𝑥)

⎤⎥⎥⎦ ≥ 1− 𝜀

195

• Correctness of Check:

Pr

[︃
Check (sk, 𝜌𝐶) = 1 :

crs←Setup(1𝜆),
sk←Gen(crs)

𝜌𝐶←Lessor(sk,𝐶)

]︃
≥ 1− 𝜀

Reusability. A desirable property of a SSL scheme is reusability: the lessee should
be able to repeatedly execute Run on multiple inputs. A SSL scheme does not neces-
sarily guarantee reusability; for instance, Run could destroy the state after executing
it just once. But fortunately, we can transform this scheme into another scheme that
satisfies reusability.

We define reusability formally.

Definition 125. (Reusability) A SSL scheme (Setup,Gen, Lessor,Run,Check) for 𝒞 =
{𝒞𝜆}𝜆∈N is said to be reusable if for all 𝐶 ∈ 𝒞 and for all 𝑥 ∈ {0, 1}𝑛,⃦⃦

𝜌′𝐶,𝑥 − 𝜌𝐶
⃦⃦

tr
≤ negl(𝜆).

Note that the above requirement
⃦⃦
𝜌′𝐶,𝑥 − 𝜌𝐶

⃦⃦
tr
≤ negl(𝜆) would guarantee that an

evaluator can evaluate the leased state on multiple inputs; on each input, the original
leased state is only disturbed a little which means that the resulting state can be
reused for evaluation on other inputs.

The following proposition states that any SSL scheme can be converted into one
that is reusable.

Proposition 126. Let (Setup,Gen, Lessor,Run,Check) be any SSL scheme (not nec-
essarily satisfying the reusability condition). Then, there is a QPT algorithm Run′

such that (Setup,Gen, Lessor,Run′,Check) is a reusable SSL scheme.

Proof. For any 𝐶 ∈ 𝒞 and for any 𝑥 ∈ {0, 1}𝑛, we have that Run(crs, 𝜌𝐶 , 𝑥) outputs
𝐶(𝑥) with probability 1− 𝜀. By the Almost As Good As New Lemma, there is a way
to implement Run such that it is possible to obtain 𝐶(𝑥), and then recover a state ̃︁𝜌𝐶
satisfying ‖̃︁𝜌𝐶 − 𝜌𝐶‖tr ≤ √𝜀. We let Run′ be this operation.

Thus, it suffices to just focus on the correctness property when constructing a SSL
scheme.

7.2.1 Security

Our notion intends to capture the different scenarios discussed in the introduction.
In particular, we want to capture the security guarantee that given an authorized
(valid) copy 𝜌𝐶 , no pirate can output two authorized copies. We will assume that
these valid copies contain a quantum state and a classical string. The Run algorithm
expects valid copies to have this form; without loss of generality, the classical part
can always be measured before executing Run.

196

Finite-Term Lessor Security

We require the following security guarantee: suppose a QPT adversary (pirate) re-
ceives a leased copy of 𝐶 generated using Lessor; denote this by 𝜌𝐶 . We require
that the pirate cannot produce a bipartite state 𝜎* on registers R1 and R2, such that
𝜎*1 := Tr2[𝜎*] passes the verification by Check, and the resulting post-measurement
state on R2, which we denote by 𝑃2(𝜎

*), still computes 𝐶 by Run(𝑃2(𝜎
*), 𝑥) = 𝐶(𝑥).

Before formally stating the definition, let us fix some notation. We will use the
following notation for the state that the pirate keeps after the initial copy has been
returned and verified. If the pirate outputs the bipartite state 𝜎*, then we will write

𝑃2(sk, 𝜎
) ∝ Tr1 [Π1[Check(sk, ·)1 ⊗ 𝐼2 (𝜎)]]

for the state that the pirate keeps after the first register has been returned and verified.
Here, Π1 denotes projecting the output of Check onto 1, and where Check(sk, ·)1 ⊗
𝐼2(𝜎

*) denotes applying the Check QPT onto the first register, and the identity on
the second register of 𝜎*. In other words, 𝑃2(sk, 𝜎

*) is used to denote the post-
measurement state on R2 conditioned on Check(sk, ·) accepting on R1.

Definition 127 (Finite-Term Perfect Lessor Security). We say that a SSL scheme
(Setup,Gen, Lessor,Run,Check) for a class of circuits 𝒞 = {𝒞𝜆}𝜆∈N is said to satisfy
(𝛽, 𝛾,𝒟𝒞)-perfect finite-term lessor security, with respect to a distribution 𝒟𝒞 on
𝒞, if for every QPT adversary 𝒜 (pirate) that outputs a bipartite (possibly entangled)
quantum state on two registers, R1 and R2, the following holds:

Pr

⎡⎢⎢⎢⎢⎢⎣
Check(sk,𝜎*

1)=1⋀︀
∀𝑥, Pr[Run(crs,𝑃2(sk,𝜎*),𝑥)=𝐶(𝑥)]≥𝛽

:

crs←Setup(1𝜆),
𝐶←𝒟𝒞(𝜆),

sk←Gen(crs),

𝜌𝐶←Lessor(sk,𝐶),

𝜎*←𝒜(crs,𝜌𝐶)

𝜎*
1=Tr2[𝜎*]

⎤⎥⎥⎥⎥⎥⎦ ≤ 𝛾

Remark 128. The reason why we use the word perfect here is because we require
Run(𝑃2(𝜎

*), 𝑥) = 𝐶(𝑥) to hold with probability at least 𝛽 on every input 𝑥. Note that
Run is not necessarily deterministic (for instance, it could perform measurements)
and thus we allow it to output the incorrect value with some probability.

7.2.2 Infinite-Term Lessor Security

In the infinite-term lease case, we want the following security notion: given (𝜎*1, 𝜎
*
2)

generated by a pirate 𝒜(𝜌𝐶), guarantees that if one copy satisfies the correctness,

∀𝑥Pr[Run(crs, 𝜎*1, 𝑥) = 𝐶(𝑥)] ≥ 𝛽

for some non-negligible 𝛽, then after successfully evaluating 𝐶(𝑥) using 𝜎*1 on any
input 𝑥*, it should be the case that the resulting state on the second register, which

197

we will denote by ℰ (2)𝑥* (𝜎*), cannot also satisfy

∀𝑥Pr[Run(crs, ℰ (2)𝑥* (𝜎*), 𝑥) = 𝐶(𝑥)] ≥ 𝛽.

In other words, if one of the copies has already been succesful in computing 𝐶 in Run,
then there will be inputs in which the second copy cannot evaluate 𝐶 with better
than negligible probability.

This security notion would rule out the following scenario. Eve gets a copy of 𝜌𝐶
and gives 𝜎*1 to Alice and 𝜎*2 to Bob. Alice now chooses an input 𝑥𝐴, and Bob an
input 𝑥𝐵. It cannot be the case that for all inputs (𝑥𝐴, 𝑥𝐵) they choose, they will
compute (𝐶(𝑥𝐴), 𝐶(𝑥𝐵)) with non-negligible probability.

Definition 129 (Infinite-term Perfect Lessor Security). We say that a SSL scheme
(Setup,Gen, Lessor,Run,Check) for a class of circuits 𝒞 = {𝐶𝜆}𝜆∈N is said to be
(𝛾, 𝛽,𝒟𝒞)-infinite-term perfect lessor secure, with respect to a distribution 𝒟𝒞,
if for every QPT adversary 𝒜 (pirate) that outputs a bipartite (possibly entangled)
quantum state on two registers, R1 and R2, the following holds:

Pr

⎡⎢⎢⎢⎢⎢⎣∀𝑥,
⎛⎝ Pr[(Run(crs,𝑥,𝜎*

1)=𝐶(𝑥)]≥𝛽⋀︀
∀𝑥′,Pr

[︁
Run(crs,𝑥′,ℰ(2)𝑥 (𝜎*))=𝐶(𝑥′)

]︁
≥𝛽

⎞⎠ :

crs←Setup(1𝜆),
𝐶←𝒟𝒞(𝜆),

sk←Gen(crs),

𝜌𝐶←Lessor(sk,𝐶),

𝜎*←𝒜(crs,𝜌𝐶)

𝜎*
1=Tr2[𝜎*]

⎤⎥⎥⎥⎥⎥⎦ ≤ 𝛾.

Remark 130. Both finite and infinite-term security can be extended to the case where
the pirate is given multiple copies, 𝜌⊗𝑚𝐶 , where 𝜌𝐶 is the output of Lessor on 𝐶. In
the finite-term case, we require the following: if a pirate outputs 𝑚 + 1 copies and
moreover, the 𝑚 initial copies are returned and succesfully checked, computing Run on
the remaining copy (that the pirate did not return) will not be functionally equivalent
to the circuit 𝐶. In the infinite-term case, the pirate cannot output 𝑚+1 copies where
Run on each of the 𝑚+ 1 copies can be used to successfully compute 𝐶.

7.3 Impossibility of SSL
Before presenting our SSL construction, we show how the impossibility of copy-
protection from Chapter 6 extends to SSL. In the following theorem we will show
that if every circuit 𝐶 ∈ 𝒞 have a unique representation in 𝒞, then it is also not pos-
sible to have SSL for this circuit class. To see why we need an additional condition,
lets consider a QPT pirate 𝒜 that wants to break SSL given (Run, 𝜌𝐶) computing
𝐶 ∈ 𝒞. Then, 𝒜 can run ℬ to obtain a circuit 𝐶 ′ ∈ 𝒞, but in the proccess it could
have destroyed 𝜌𝐶 , hence it wouldn’t be able to return the initial copy. If ℬ takes as
input (Run, 𝜌𝐶) and outputs a fixed 𝐶 ′ with probability neglibly close to 1, then by the
Almost As Good As New Lemma, it could uncompute and recover 𝜌𝐶 . The definition
of de-quantumizable class does not guarantee that ℬ will output a fixed circuit 𝐶 ′,
unless each circuit in the family has a unique representation in 𝒞. If each circuit has

198

a unique representation, the pirate would obtain 𝐶 ′ = 𝐶 with probability neglibly
close to 1, and uncompute to recover 𝜌𝐶 . At this point, the pirate can generate its
own leasing keys sk′, and run Lessor(sk′, 𝐶 ′) to obtain a valid leased state 𝜌′𝐶′ . The
pirate was able to generate a new valid leased state for 𝐶, while preserving the initial
copy 𝜌𝐶 , which it can later return to the lessor.

Theorem 131. Let (𝒞,𝒟𝒞) be a de-quantumizable class of circuits in which every
circuit in the support of 𝒟𝒞 has a unique representation in 𝒞. Then there is no SSL
scheme (Setup,Gen, Lessor,Run,Check) (in CRS model) for 𝒞 satisfying 𝜀-correctness
and (𝛽, 𝛾,𝒟𝒞)-perfect finite-term lessor security for any negligible 𝛾, and any 𝛽 ≤
(1− 𝜀).

Proof. Consider the QPT algorithm 𝒜 (pirate) that is given 𝜌𝐶 ← Lessor(sk, 𝐶) for
some 𝐶 ← 𝒟𝒞. The pirate will run ℬ, the QPT that de-quantumizes (𝒞,𝒟𝒞), on
input (Run, 𝜌𝐶) to obtain a functionally equivalent circuit 𝐶 ′ ∈ 𝒞. Because 𝐶 has
a unique representation in 𝒞, we have 𝐶 ′ = 𝐶. Since this succeeds with probability
neglibly close to 1, by the Almost As Good As New Lemma, it can all be done
in a way such that it is possible to obtain 𝐶 and to recover a state ̃︁𝜌𝐶 satisfying
‖̃︁𝜌𝐶 − 𝜌𝐶‖tr ≤ negl(𝜆). At this point, the pirate generates its own key sk′ ← Gen(crs),
and prepares 𝜌′𝐶 ← Lessor(sk′, 𝐶). It outputs ̃︁𝜌𝐶 ⊗ 𝜌′𝐶 .

This means that 𝜌′𝐶 is a valid leased state and by correctness of the SSL scheme,

Pr

[︃
∀𝑥 ∈ {0, 1}𝑛, Run (crs, 𝜌′𝐶 , 𝑥) = 𝐶(𝑥) :

crs←Setup(1𝜆),
sk′←Gen(crs),

𝜌′𝐶←Lessor(sk′,𝐶)

]︃
≥ 1− 𝜀

Furthermore, since ‖̃︁𝜌𝐶 − 𝜌𝐶‖tr ≤ negl(𝜆), the probability that ̃︁𝜌𝐶 passes the return
check is neglibly close to 1. Putting these together, we have

Pr

⎡⎢⎢⎢⎣
Check(sk,̃︁𝜌𝐶)=1⋀︀

∀𝑥, Pr[Run(crs,𝜌′𝐶 ,𝑥)=𝐶(𝑥)]≥1−𝜀
:

crs←Setup(1𝜆),
𝐶←𝒟𝒞(𝜆),

sk←Gen(crs),

𝜌𝐶←Lessor(sk,𝐶),̃︁𝜌𝐶⊗𝜌′𝐶←𝒜(crs,𝜌𝐶)

⎤⎥⎥⎥⎦ ≥ 1− negl(𝜆)

7.4 Evasive circuits

The circuit class we consider in our construction of SSL is a subclass of evasive circuits.
We recall the definition of evasive circuits below.

Evasive Circuits. Informally, a class of circuits is said to be evasive if a circuit
drawn from a suitable distribution outputs 1 on a fixed point with negligible proba-
bility.

199

Definition 132 (Evasive Circuits). A class of circuits 𝒞 = {𝒞𝜆}𝜆∈N, associated with
a distribution 𝒟𝒞, is said to be evasive if the following holds: for every 𝜆 ∈ N, every
𝑥 ∈ {0, 1}poly(𝜆),

Pr
𝐶←𝒟𝒞

[𝐶(𝑥) = 1] ≤ negl(𝜆),

Searchability. For our construction of SSL for 𝒞, we crucially use the fact that
given a circuit 𝐶 ∈ 𝒞, we can read off an input 𝑥 from the description of 𝐶 such that
𝐶(𝑥) = 1. We formalize this by defining a search algorithm 𝒮 that on input a circuit
𝐶 outputs an accepting input for 𝐶. For many interesting class of functions, there
do exist a corresponding efficiently implementable class of circuits associated with a
search algorithm 𝒮.

Definition 133 (Searchability). A class of circuits 𝒞 = {𝒞𝜆}𝜆∈N is said to be 𝒮-
searchable, with respect to a PPT algorithm 𝒮, if the following holds: on input 𝐶,
𝒮(𝐶) outputs 𝑥 such that 𝐶(𝑥) = 1.

In the next section, we will show how to construct SSL for searchable evasive
circuits that have quantum input hiding obfuscators. An example of such a family of
circuits is searchable compute-and-compare circuits. In Appendix B, we show that
there is quantum secure input hiding obfuscators for them.

Compute-and-compare Circuits. A compute-and-compare circuit is of the fol-
lowing form: C[𝐶, 𝛼], where 𝛼 is called a lock and 𝐶 has output length |𝛼|, is defined
as follows:

C[𝐶, 𝛼](𝑥) =
{︁

1, if 𝐶(𝑥)=𝛼,

0, otherwise

Multi-bit compute-and-compare circuits. We can correspondingly define the
notion of multi-bit compute-and-compare circuits. A multi-bit compute-and-compare
circuit is of the following form:

C[𝐶, 𝛼,msg](𝑥) =
{︁

msg, if 𝐶(𝑥)=𝛼,

0, otherwise
,

where msg is a binary string.
We consider two types of distributions as defined by [WZ17].

Definition 134 (Distributions for Compute-and-Compare Circuits). We consider the
following distributions on 𝒞cnc:

• 𝒟unpred(𝜆): For any (C[𝐶, 𝛼]) along with aux sampled from this unpredictable
distribution, it holds that 𝛼 is computationally unpredictable given (𝐶, aux).

• 𝒟pseud(𝜆): For any C[𝐶, 𝛼] along with aux sampled from this distribution, it
holds that HHILL (𝛼|(𝐶, aux)) ≥ 𝜆𝜀, for some constant 𝜖 > 0, where HHILL(·) is
the HILL entropy [HILL99].

Note that with respect to the above distributions, the compute-and-compare class of
circuits 𝒞cnc is evasive.

200

Searchable Compute-and-Compare Circuits: Examples. There are natural
and interesting classes of searchable compute-and-compare circuits. For completeness,
we state them below with additional examples [WZ17].

• Point circuits 𝐶(𝛼, ·): the circuit 𝐶(𝛼, ·) is a point circuit if it takes as input
𝑥 and outputs 𝐶(𝛼, 𝑥) = 1 iff 𝑥 = 𝛼. If we define the class of point circuits
suitably, we can find 𝛼 directly from 𝐶𝛼; for instance, 𝛼 can be the value assigned
to the input wires of 𝐶.

• Conjunctions with wild cards 𝐶(𝑆, 𝛼, ·): the circuit 𝐶(𝑆, 𝛼, ·) is a conjunction
with wild cards if it takes as input 𝑥 and outputs 𝐶(𝑆, 𝛼, 𝑥) = 1 iff 𝑦 = 𝛼, where
𝑦 is such that 𝑦𝑖 = 𝑥𝑖 for all 𝑖 ∈ 𝑆. Again, if we define this class of circuits
suitably, we can find 𝑆 and 𝛼 directly from the description of 𝐶(𝑆, 𝛼, ·). Once
we find 𝑆 and 𝛼, we can find the accepting input.

• Affine Tester: the circuit 𝐶(A, 𝛼, ·) is an affine tester, with A,y where A has
a non-trivial kernel space, if it takes as input x and outputs 𝐶(A, 𝛼,x) = 1 iff
A · x = 𝛼. By reading off A and 𝛼 and using Gaussian elimination we can find
x such that A · x = 𝛼.

• Plaintext equality checker 𝐶(sk, 𝛼, ·): the circuit 𝐶(sk, 𝛼, ·), with hardwired val-
ues decryption key sk associated with a private key encryption scheme, message
𝛼, is a plaintext equality checker if it takes as input a ciphertext ct and outputs
𝐶(sk, 𝛼, ct) = 1 iff the decryption of ct with respect to sk is 𝛼. By reading off 𝛼
and sk, we can find a ciphertext such that ct is an encryption of 𝛼.

7.5 SSL for evasive circuits

In this section, we present the main construction of SSL satisfying infinite-term perfect
lessor security.

Let 𝒞 = {𝒞𝜆} be the class of 𝒮-searchable circuits associated with SSL. We denote
𝑠(𝜆) = poly(𝜆) to be the maximum size of all circuits in 𝒞𝜆. And let 𝒟𝒞 be the
distribution associated with 𝒞.

Tools.

• q-Input-hiding obfuscator qIHO = (qIHO.Obf, qIHO.Eval) for 𝒞 (Section 2.4.4).

• Subspace hiding obfuscation shO = (shO.Obf, shO.Eval) (Section 2.4.4). The
field associated with shO is Z𝑞 and the dimensions will be clear below.

• q-simulation-extractable non-interactive zero-knowledge system qseNIZK = (CRSGen, 𝑃,𝒱)
for NP (Section 2.4.7) with sub-exponential security as guaranteed in Lemma 48.

201

Construction. We describe the scheme of SSL below.
We describe the scheme of SSL below.

• Setup(1𝜆): Compute crs← CRSGen
(︀
1𝜆1
)︀
, where 𝜆1 = 𝜆+ 𝑛 and 𝑛 is the input

length of the circuit. Output crs.

• Gen(crs): On input common reference string crs, choose a random 𝜆
2
-dimensional

subspace 𝐴 ⊂ Z𝜆
𝑞 . Set sk = 𝐴.

• Lessor(sk = 𝐴,𝐶): On input secret key sk, circuit 𝐶 ∈ 𝒞𝜆, with input length 𝑛,

1. Prepare the state |𝐴⟩ = 1√
𝑞𝜆/2

∑︀
𝑎∈𝐴
|𝑎⟩.

2. Compute ̃︀𝐶 ← qIHO.Obf(𝐶; 𝑟𝑜)

3. Compute ̃︀𝑔 ← shO(𝐴; 𝑟𝐴).
4. Compute ̃︁𝑔⊥ ← shO(𝐴⊥; 𝑟𝐴⊥).
5. Let 𝑥 = 𝒮(𝐶); that is, 𝑥 is an accepting point of 𝐶.
6. Let 𝐿 be the NP language defined by the following NP relation.

ℛ𝐿 :=

{︃(︁(︁̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁ , (𝐴, 𝑟𝑜, 𝑟𝐴, 𝑟𝐴⊥ , 𝐶, 𝑥)
)︁ ⃒⃒⃒⃒⃒

̃︀𝑔=shO(𝐴;𝑟𝐴)̃︁𝑔⊥=shO(𝐴⊥;𝑟
𝐴⊥)̃︀𝐶=qIHO.Obf(𝐶;𝑟𝑜),

𝐶(𝑥)=1

}︃
.

Compute 𝜋 ← 𝑃
(︁
crs,
(︁̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁ , (𝐴, 𝑟𝑜, 𝑟𝐴, 𝑟𝐴⊥ , 𝐶, 𝑥)

)︁
7. Output 𝜌𝐶 = |Φ𝐶⟩⟨Φ𝐶 | =

(︁
|𝐴⟩⟨𝐴|, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁.

• Run(crs, 𝜌𝐶 , 𝑥):

1. Parse 𝜌𝐶 as
(︁
𝜌, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁. In particular, measure the last 4 registers.

Note: This lets us assume that the input to those registers is just classical,
since anyone about to perform Run might as well measure those registers
themselves.

2. We denote the operation shO.Eval(̃︀𝑔, |𝑥⟩|𝑦⟩) = |𝑥⟩|𝑦 ⊕ 1𝐴(𝑥)⟩ by ̃︀𝑔[|𝑥⟩|𝑦⟩],
where 1𝐴(𝑥) is an indicator function that checks membership in 𝐴. Com-
pute ̃︀𝑔[𝜌⊗|0⟩⟨0|] and measure the second register. Let 𝑎 denote the outcome
bit, and let 𝜌′ be the post-measurement state.

3. As above, we denote the operation shO.Eval(̃︁𝑔⊥, |𝑥⟩|𝑦⟩) = |𝑥⟩|𝑦⊕1𝐴(𝑥)⟩ bỹ︁𝑔⊥[|𝑥⟩|𝑦⟩]. Compute ̃︁𝑔⊥[FT𝜌′FT†⊗|0⟩⟨0|] and measure the second register.
Let 𝑏 denote the outcome bit.
Note: in Step 2 and 3, Run is projecting 𝜌 onto |𝐴⟩⟨𝐴| if 𝑎 = 1 and 𝑏 = 1.

202

4. Afterwards, perform the Fourier Transform again on the first register of
the post-measurement state, let 𝜌′′ be the resulting state.

5. Compute 𝑐← 𝒱
(︁
crs,
(︁̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁ , 𝜋)︁

6. If either 𝑎 = 0 or 𝑏 = 0 or 𝑐 = 0, reject and output ⊥.

7. Compute 𝑦 ← qIHO.Eval
(︁ ̃︀𝐶, 𝑥)︁.

8. Output
(︁
𝜌′′, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁ and 𝑦.

• Check(sk = 𝐴, 𝜌𝐶):

1. Parse 𝜌𝐶 as
(︁
𝜌, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁.

2. Perform the measurement {|𝐴⟩⟨𝐴|, 𝐼 − |𝐴⟩⟨𝐴|} on 𝜌. If the measurement
outcome corresponds to |𝐴⟩⟨𝐴|, output 1. Otherwise, output 0.

Lemma 135 (Overwhelming probability of perfect correctness). The above scheme
satisfies 𝜖 = negl(𝜆) correctness.

Proof. We first argue that the correctness of Run holds. Since qIHO is perfectly cor-
rect, it suffices to show that Run will not output ⊥. For this to happen, we need to
show that 𝑎, 𝑏, 𝑐 = 1. Since ̃︀𝑔 = shO(𝐴), ̃︁𝑔⊥ = shO(𝐴⊥), and the input state is |𝐴⟩⟨𝐴|,
then 𝑎 = 1 and 𝑏 = 1 with probability negligibly close to 1 by correctness of shO. If
𝜋 is a correct proof, then by perfect correctness of qseNIZK, we have that Pr[𝑐 = 1] = 1.

To see that the correctness of Check also holds, note that the leased state is 𝜌 = |𝐴⟩⟨𝐴|,
which will pass the check with probability 1.

Lemma 136. Fix 𝛽 = 𝜇(𝜆), where 𝜇(𝜆) is any non-negligible function. Assuming the
security of qIHO, qseNIZK and shO, the above scheme satisfies (𝛽, 𝛾,𝒟𝒞)-infinite-term
perfect lessor security, where 𝛾 is a negligible function.

Proof. For any QPT adversary 𝒜, define the following event.

Process(1𝜆):

• crs← Setup
(︀
1𝜆
)︀
,

• sk← Gen(crs),

• 𝐶 ← 𝒟𝒞(𝜆),

•
(︁
𝜌𝐶 =

(︁
|𝐴⟩⟨𝐴|, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁)︁← Lessor (sk, 𝑟)

203

• 𝜌* =
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), 𝜎*

)︁
← 𝒜 (crs, 𝜌𝐶)

That is, 𝒜 outputs two copies; the classical part in the first copy is
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1)

)︁
and the classical part in the second copy is

(︁ ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2)
)︁
. Moreover, it

outputs a single density matrix 𝜎* associated with two registers R1 and R2; the
state in R1 is associated with the first copy and the state in R2 is associated with
the second.

• 𝜎*1 = Tr2[𝜎*]

• 𝜌
(1)
𝐶 =

(︁
𝜎*1,

̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1)
)︁⋀︀

𝜌
(2)
𝐶 =

(︁
Π2(𝜎

*), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2)
)︁

where

Π2(𝜎
*) =

Tr1
[︂
(Π

(̃︂𝑔(1),̃︂𝑔(1)⊥)
⊗ 𝐼)𝜎*

]︂
Tr
[︂
(Π

(̃︂𝑔(1),̃︂𝑔(1)⊥)
⊗ 𝐼)𝜎*

]︂

and where Π
(̃︂𝑔(1),̃︂𝑔(1)⊥)

is the projection onto the subspace obfuscated by (̃︂𝑔(1),̃︂𝑔(1)⊥).

In other words, Π2(𝜎
*) is the quantum state on register 2 conditioned on Run

not outputting ⊥ when applied to register 1.

To prove the lemma, we need to prove the following:

Pr

⎡⎣ ∀𝑥,Pr[(Run(crs,𝑥,𝜎*
1)=𝐶(𝑥)]≥𝛽⋀︀

∀𝑥,𝑥′,Pr
[︁
Run(crs,𝑥′,ℰ(2)𝑥 (𝜎*))=𝐶(𝑥′)

]︁
≥𝛽

: Process
(︀
1𝜆
)︀⎤⎦ ≤ 𝛾.

Note that for all 𝑥, ℰ (2)𝑥 (𝜎*) = Π2(𝜎
*), since the only quantum operation that Run

performs is projecting the first register of 𝜎* onto the subspace corresponding to ̃︀𝑔(1).
Consider the following:

• Define 𝛾1 as follows:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀𝑥,Pr[(Run(crs,𝑥,𝜎*
1)=𝐶(𝑥)]≥𝛽⋀︀

∀𝑥′,Pr[Run(crs,𝑥′,Π2(𝜎*))=𝐶(𝑥′)]≥𝛽⋀︀
(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥)=(̃︀𝐶(1),̃︀𝑔(1),̃︁𝑔⊥(1))⋀︀
(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥)=(̃︀𝐶(2),̃︀𝑔(2),̃︁𝑔⊥(2))

: Process
(︀
1𝜆
)︀
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝛾1

• The other possible case is the case where at least one of the copies
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1))︁

or
(︁ ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2))︁ is not equal to the corresponding resgisters of the original

204

copy. Without loss of generality, we will assume that the the second copy is not
the same. Define 𝛾2 as follows:

Pr

⎡⎢⎢⎢⎣
∀𝑥,Pr[(Run(crs,𝑥,𝜎*

1)=𝐶(𝑥)]≥𝛽⋀︀
∀𝑥′,Pr[Run(crs,𝑥′,Π2(𝜎*))=𝐶(𝑥′)]≥𝛽⋀︀

(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥) ̸=(̃︀𝐶(2),̃︀𝑔(2),̃︁𝑔⊥(2))

: Process
(︀
1𝜆
)︀
⎤⎥⎥⎥⎦ = 𝛾2

Note that 𝛾 = 𝛾1 + 𝛾2. In the next two propositions, we prove that both 𝛾1 and 𝛾2
are negligible which will complete the proof of the lemma.

Proposition 137. 𝛾1 ≤ negl(𝜆)

Proof. The run algorithm first projects 𝜎* into |𝐴⟩⊗2, and outputs ⊥ if 𝜎* is not
(|𝐴⟩⟨𝐴|)⊗2. Suppose that ⟨𝐴|𝜎*1|𝐴⟩ is negligible, then Run will output ⊥ on the first
register with probability negligibly close to 1, and we would have 𝛾1 negligible as
desired.

On the contrary, suppose that ⟨𝐴|𝜎*1|𝐴⟩ is non-negligible, and we have that

Π2(𝜎
*) =

Tr1 [(|𝐴⟩⟨𝐴| ⊗ 𝐼)𝜎*]

Tr [(|𝐴⟩⟨𝐴| ⊗ 𝐼)𝜎*]

i.e. the state in the second register after Run succesfully projects 𝜎*1 onto |𝐴⟩⟨𝐴|.
We will prove the following claim, which implies that at least one of the two copies

will output ⊥ under Run with probability neglibly close to 1.

Claim 138. ⟨𝐴|Π2(𝜎
*)|𝐴⟩ ≤ negl(𝜆)

Proof. Suppose not. Then, we can use 𝒜 to break quantum no-cloning. Specifically,
Zhandry [Zha19] showed that no QPT algorithm on input (|𝐴⟩, ̃︀𝑔 := shO(𝐴),̃︁𝑔⊥ :=
shO(𝐴⊥)) can prepare the state |𝐴⟩⊗2 with non-negligible probability. We will show
that 𝒜 allows us to do exactly this if ⟨𝐴|Π2(𝜎

*)|𝐴⟩ is non-negligible.
Consider the following adversary ℬ′. It runs 𝒜 and then projects the output of 𝒜

onto (|𝐴⟩⟨𝐴|)⊗2; the output of the projection is the output of ℬ′.

ℬ′(𝐶):

1. Compute crs, sk as in the construction

2. Compute 𝜌𝐶 ← Lessor(sk, 𝐶). Let 𝜌𝐶 =
(︁
|𝐴⟩⟨𝐴|, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁.

3. Compute 𝒜(crs, 𝜌𝐶) to obtain
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), 𝜎*

)︁
.

4. Then, project 𝜎* onto (|𝐴⟩⟨𝐴|)⊗2 by using ̃︀𝑔 and ̃︁𝑔⊥. Let 𝑚 be the outcome of
this projection, so 𝑚 = 1 means that the post measured state is (|𝐴⟩⟨𝐴|)⊗2.

5. Output 𝑚.

205

The projection (|𝐴⟩⟨𝐴|)⊗2 can be done by first projecting the first register onto
|𝐴⟩⟨𝐴| and then the second register. Conditioned on the first register not outputting
⊥, means that 𝜎*1 is succesfully projected onto |𝐴⟩⟨𝐴|. By our assumption that
⟨𝐴|𝜎*1|𝐴⟩ is non-negligible, this will happen with non-negligible probability. Condi-
tioned on this being the case, if ⟨𝐴|Π2(𝜎

*)|𝐴⟩ is non-negligible, then projecting the
second register onto |𝐴⟩⟨𝐴| will also succeed with non-negligible probability. This
means that 𝑚 = 1 with non-negligible probability.

Consider the following adversary. It follows the same steps as ℬ′ except in prepar-
ing the states |𝐴⟩ and computing obfuscations ̃︀𝑔, ̃︁𝑔⊥; it gets these quantities as input.
Moreover, it simulates the proof 𝜋 instead of computing the proof using the honest
prover. This is because unlike ℬ′, the adversary ℬ does not have the randomness used
in computing ̃︀𝑔 and ̃︁𝑔⊥ and hence cannot compute the proof 𝜋 honestly.

ℬ(|𝐴⟩, ̃︀𝑔,̃︁𝑔⊥):

1. Sample randomness 𝑟𝑜 and compute 𝐶 ← qIHO.Obf(𝐶; 𝑟𝑜).

2. Let FkGen and Sim be associated with the simulation-extractability propety of
qseNIZK. Compute (̃︁crs, td)← FkGen(1𝜆).

3. Compute (𝜋, st)← Sim
(︁̃︁crs, td,(︁̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁)︁

4. Let 𝜌𝐶 = (|𝐴⟩⟨𝐴|, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)

5. Run 𝒜(̃︁crs, 𝜌𝐶) to obtain
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), ̃︀𝜎*)︁.

6. Then, project ̃︀𝜎* onto (|𝐴⟩⟨𝐴|)⊗2 by using ̃︀𝑔 and ̃︁𝑔⊥. Let 𝑚 be the outcome of
this projection, so 𝑚 = 1 means that the post measured state is (|𝐴⟩⟨𝐴|)⊗2.

7. Output 𝑚.

Note that from the q-simulation-extractability property8 of qseNIZK, it follows that
the probability that ℬ outputs 1 is negligibly close to the probability that ℬ′ outputs 1
because everything else is sampled from the same distribution. This implies that ℬ on
input (|𝐴⟩, ̃︀𝑔,̃︁𝑔⊥) outputs |𝐴⟩⊗2 with non-negligible probability, contradicting [Zha19].

At this point, we want to show that if
(︂̃︂𝑔(2),̃︂𝑔(2)⊥)︂ = (̃︀𝑔,̃︁𝑔⊥), and ⟨𝐴|Π2(𝜎

*)|𝐴⟩ ≤

negl(𝜆), then the probability that Run(crs,Π2(𝜎
*), 𝑥) evaluates 𝐶 correctly is negligi-

ble.
By correctness of shO, we have

Pr[∀𝑥̃︂𝑔(2)(𝑥) = 1𝐴(𝑥)] ≥ 1− negl(𝜆)

8We don’t need the full-fledged capability of q-simulation-extractability to argue this part; we
only need q-zero-knowledge property which is implied by q-simulation-extractability.

206

Pr[∀𝑥̃︂𝑔(2)⊥ (𝑥) = 1𝐴⊥(𝑥)] ≥ 1− negl(𝜆)

This means that with probability negligibly close to 1, the first thing that the

Run algorithm does on input 𝜌(2)𝐶 = (Π2(𝜎
*),̃︂𝑔(2),̃︂𝑔(2)⊥ , ̃︀𝐶, 𝜋) is to measure {|𝐴⟩⟨𝐴|, 𝐼−

|𝐴⟩⟨𝐴|} on Π2(𝜎
*). If 𝐼 − |𝐴⟩⟨𝐴| is obtained, then the Run algorithm will output

⊥. By Claim 138, the probability that this happens is neglibly close to 1. Formally,
when ̃︀𝑔 and ̃︁𝑔⊥ are subspace obfuscations of 𝐴 and 𝐴⊥ respectively, the check 𝑎 = 1
and 𝑏 = 1 performed by the Run algorithm is a projection onto |𝐴⟩⟨𝐴|.

Pr[𝑎 = 1, 𝑏 = 1] = Tr[FT†Π𝐴⊥FTΠ𝐴Π2(𝜎
*)]

= Tr[|𝐴⟩⟨𝐴|Π2(𝜎
*)]

= ⟨𝐴|Π2(𝜎
*)|𝐴⟩

≤ negl(𝜆)

where Π𝐴 =
∑︀
𝑎∈𝐴
|𝑎⟩⟨𝑎| and Π𝐴⊥ =

∑︀
𝑎∈𝐴⊥
|𝑎⟩⟨𝑎|. From this, we have that Pr[Run(crs, 𝜌

(2)
𝐶 , 𝑥) =

⊥] ≥ 1− negl(𝜆), and we have Pr[Run(crs, 𝜌
(2)
𝐶 , 𝑥) = 𝐶(𝑥)] ≤ negl(𝜆) with probability

neglibly close to 1.
This finishes our proof that if 𝛽 is non-negligible, then 𝛾1 ≤ negl(𝜆).

Proposition 139. 𝛾2 ≤ negl(𝜆).

Proof. We consider the following hybrid process.

HybProcess1(1
𝜆):

• (̃︁crs, td)← FkGen
(︀
1𝜆
)︀
,

• sk← Gen(crs),

• 𝐶 ← 𝒟𝒞(𝜆),

• Sample a random 𝜆
2
-dimensionall sub-space 𝐴 ⊂ Z𝜆

𝑞 . Prepare the state |𝐴⟩ =
1√
𝑞𝜆/2

∑︀
𝑎∈𝐴 |𝑎⟩.

• Compute ̃︀𝑔 ← shO (𝐴; 𝑟𝐴),

• Compute ̃︁𝑔⊥ ← shO
(︀
𝐴⊥; 𝑟𝐴⊥

)︀
,

• Compute ̃︀𝐶 ← qIHO.Obf(𝐶; 𝑟𝑜)

• (𝜋, st)← Sim1

(︁
crs, td,

(︁̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁)︁
• Set 𝜌𝐶 =

(︁
|𝐴⟩⟨𝐴|, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁.

•
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), 𝜎*

)︁
← 𝒜 (crs, 𝜌𝐶)

207

• Set 𝜎*1 = Tr2[𝜎*]

• Set 𝜌(1)𝐶 =
(︁
𝜎*1,

̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1)
)︁

and 𝜌(2)𝐶 =
(︁

Π2(𝜎
*), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2)

)︁
•
(︀
𝐴*, 𝑟*𝑜, 𝑟

*
𝐴, 𝑟

*
𝐴⊥ , 𝐶

, 𝑥
)︀
← Sim2

(︁
st,
(︁̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)

)︁
, 𝜋(2)

)︁
.

The proof of the following claim follows from the q-simulation-extractactability prop-
erty of qseNIZK.

Claim 140. Assuming that qseNIZK satisfies q-simulation extractability property se-
cure against QPT adversaries running in time 2𝑛, we have:

Pr

⎡⎢⎢⎢⎢⎣
((̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)), (𝐴*,𝑟*𝑜 ,𝑟

*
𝐴,𝑟*

𝐴⊥ ,𝐶*,𝑥*))∈ℛ(𝐿)⋀︀
∀𝑥′, Pr[Run(crs,𝜌(2),𝑥′)=𝐶(𝑥′)]≥𝛽⋀︀

(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥)̸=(̃︀𝐶(2),̃︀𝑔(2),̃︁𝑔⊥(2))

: HybProcess1
(︀
1𝜆
)︀
⎤⎥⎥⎥⎥⎦ = 𝛿1

Then, |𝛿1 − 𝛾2| ≤ negl(𝜆).

Remark 141. Note that 𝑛 is smaller than the length of the NP instance and thus, we
can invoke the sub-exponential security of the seNIZK system guaranteed in Lemma 48.

Proof of Claim 140. Consider the following qseNIZK adversary ℬ:

• It gets as input crs.

• It samples and computes (𝐶,𝐴, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶) as described in HybProcess1(1
𝜆). It

sends the following instance-witness pair to the challenger of seNIZK:(︁(︁
𝐶,𝐴, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶)︁ , ((𝐴, 𝑟𝑜, 𝑟𝐴, 𝑟𝐴⊥ , 𝐶, 𝑥)

)︁
,

where 𝑟𝑜, 𝑟𝐴, 𝑟𝐴⊥ is, respectively, the randomness used to compute obfuscations̃︀𝑔, ̃︁𝑔⊥ and ̃︀𝐶.

• The challenger returns back 𝜋.

• ℬ then sends
(︁
|𝐴⟩, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁ to 𝒜.

• 𝒜 then outputs
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), 𝜎*

)︁
.

• ℬ sets 𝜎*1 = Tr2[𝜎*].

• Finally, ℬ performs the following checks:

– Verify if the classical parts are different: Check if
(︁ ̃︀𝐶, ̃︀𝑔,̃︁𝑔⊥)︁ =

(︁ ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2))︁;
if so output ⊥, otherwise continue.

208

– Verify if second copy computes 𝐶: If the measurement above does not
output ⊥, set 𝜌(2)𝐶 =

(︁
Π2(𝜎

*), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2)
)︁
. For every 𝑥, check if̃︀𝐶(2)(𝑥) = 𝐶(𝑥). If for any 𝑥, the check fails, output ⊥. // Note that this

step takes time 2𝑂(𝑛+log(𝑛)).

• Output
(︁(︁̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)

)︁
, 𝜋(2)

)︁
.

Note that ℬ is a valid qseNIZK adversary: it produces a proof on an instance different
from one for which it obtained a proof (either real or simulated) and moreover, the
proof produced by ℬ (conditioned on not ⊥) is an accepting proof.

If ℬ gets as input honest CRS and honestly generated proof 𝜋 then this corresponds
to Process1(1

𝜆) and if ℬ gets as input simulated CRS and simulated proof 𝜋 then this
corresponds to HybProcess1(1

𝜆).
Thus, from the security of q-simulation-extractable NIZKs, we have that |𝛾2−𝛿1| ≤

negl(𝜆).

We first prove the following claim.

Claim 142.(︁(︁(︁̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)
)︁
, (𝐴*, 𝑟*𝑜, 𝑟

*
𝐴, 𝑟

*
𝐴⊥ , 𝐶

, 𝑥)
)︁
∈ ℛ(𝐿)

⋀︁
∀𝑥, Pr

[︁
Run

(︁
crs, 𝜌

(2)
𝐶 , 𝑥

)︁
= 𝐶(𝑥)

]︁
≥ 𝛽

)︁
=⇒ 𝐶(𝑥*) = 1,

Proof. We first claim that ∀𝑥, Pr
[︁
Run

(︁
crs, 𝜌

(2)
𝐶 , 𝑥

)︁
= 𝐶(𝑥)

]︁
≥ 𝛽 implies that ̃︀𝐶(2) ≡

𝐶, where ≡ denotes functional equivalence. Suppose not. Let 𝑥′ be an input
such that ̃︀𝐶(2)(𝑥′) ̸= 𝐶(𝑥′) then this means that Run(crs, 𝜌

(2)
𝐶 , 𝑥′) always outputs a

value different from 𝐶(𝑥′); follows from the description of Run. This means that
Pr[Run

(︁
crs, 𝜌

(2)
𝐶 , 𝑥′

)︁
= 𝐶(𝑥′)] = 0, contradicting the hypothesis.

Moreover,
(︁(︁̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)

)︁
,
(︀
𝐴*, 𝑟*𝑜, 𝑟

*
𝐴, 𝑟

*
𝐴⊥ , 𝐶

, 𝑥
)︀)︁
∈ ℛ(𝐿) implies that ̃︀𝐶(2) =

qIHO(1𝜆, 𝐶*; 𝑟*𝑜) and 𝐶*(𝑥*) = 1. Furthermore, perfect correctness of qIHO implies
that ̃︀𝐶(2) ≡ 𝐶*.

So far we have concluded that ̃︀𝐶(2) ≡ 𝐶, ̃︀𝐶(2) ≡ 𝐶* and 𝐶*(𝑥*) = 1. Combining
all of them together, we have 𝐶(𝑥*) = 1.

Consider the following inequalities.

209

𝛿1 = Pr

⎡⎢⎢⎢⎢⎣
((̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)), (𝐴*,𝑟*𝑜 ,𝑟

*
𝐴,𝑟*

𝐴⊥ ,𝐶*,𝑥*))∈ℛ(𝐿)⋀︀
∀𝑥′, Pr

[︁
Run

(︁
crs,𝜌

(2)
𝐶 ,𝑥′

)︁
=𝐶(𝑥′)

]︁
≥𝛽⋀︀

(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥)̸=(̃︀𝐶(2),̃︀𝑔(2),̃︁𝑔⊥(2))

: HybProcess1

⎤⎥⎥⎥⎥⎦

= Pr

[︃ 𝐶(𝑥*)=1⋀︀
(̃︀𝐶,̃︀𝑔,̃︁𝑔⊥)̸=(̃︀𝐶(2),̃︀𝑔(2),̃︁𝑔⊥(2))

: HybProcess1

]︃

≤ Pr [𝐶 (𝑥*) = 1 : HybProcess1]

Let Pr [𝐶 (𝑥*) = 1 : HybProcess1] = 𝛿2.

Claim 143. Assuming the q-input-hiding property of qIHO, we have 𝛿2 ≤ negl(𝜆)

Proof. Suppose 𝛿2 is not negligible. Then we construct a QPT adversary ℬ that
violates the q-input-hiding property of qIHO, thus arriving at a contradiction.
ℬ now takes as input ̃︀𝐶 (an input-hiding obfuscator of 𝐶), computes (̃︁crs, td) ←

FkGen
(︀
1𝜆
)︀

and then computes 𝜌𝐶 =
(︁
|𝐴⟩, ̃︀𝑔,̃︁𝑔⊥, ̃︀𝐶, 𝜋)︁ as computed in HybProcess1. It

sends (̃︁crs, 𝜌𝐶) to 𝒜 who responds with
(︁ ̃︀𝐶(1), ̃︀𝑔(1),̃︁𝑔⊥(1), 𝜋(1), ̃︀𝐶(2), ̃︀𝑔(2),̃︁𝑔⊥(2), 𝜋(2), 𝜎*

)︁
.

Compute
(︀
𝐴*, 𝑟*𝑜, 𝑟

*
𝐴, 𝑟

*
𝐴⊥ , 𝐶

, 𝑥
)︀

by generating Sim2(st, (̃︀𝑔(2),̃︁𝑔⊥(2), ̃︀𝐶(2)), 𝜋(2)), where
st is as defined in HybProcess1. Output 𝑥*.

Thus, ℬ violates the q-input-hiding property of qIHO with probability 𝛿2 and thus
𝛿2 has to be negligible.

Combining the above observations, we have that 𝛾2 ≤ negl(𝜆) for some negligible
function negl. This completes the proof.

210

Appendix A

Instantiation of qseNIZK

Before we prove Lemma 48, we first state the necessary preliminary background.

Definition 144 (q-Non-Interactive Zero-Knowledge). A non-interactive system (CRSGen, 𝑃,𝒱)
defined for a NP language ℒ is said to be q-non-interactive zero-knowledge
(qNIZK) if it satisfies Definition 45 and additionally, satisfies the following proper-
ties:

• Adaptive Soundness: For any malicious QPT prover 𝑃 *, the following holds:

Pr

[︃
𝒱(crs,𝑥,𝜋) accepts⋀︀

𝑥′ /∈ℒ

:
crs←CRSGen(1𝜆)
(𝑥,𝜋)←𝑃 *(crs)

]︃
≤ negl(𝜆)

• Adaptive (Multi-Theorem) Zero-knowledge: For any QPT verifier 𝒱*, there ex-
ists two QPT algorithms FkGen and simulator Sim, such that the following holds:⃒⃒⃒⃒

⃒Pr
[︃

1←𝒱*(st,{𝜋}𝑖∈[𝑞])⋀︀
∀𝑖∈[𝑞], (𝑥𝑖,𝑤𝑖)∈ℛ(ℒ)

:

crs←CRSGen(1𝜆)

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st)←𝒱*(crs)

∀𝑖∈[𝑞], 𝜋𝑖←𝑃 (crs,𝑥𝑖,𝑤𝑖)

]︃

−Pr

⎡⎣ 1←𝒱*(st,{𝜋}𝑖∈[𝑞])⋀︀
∀𝑖∈[𝑞], (𝑥𝑖,𝑤𝑖)∈ℛ(ℒ)

:

(crs,td)←FkGen(1𝜆)

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st)←𝒱*(crs)

{𝜋𝑖}𝑖∈[𝑞]←Sim(crs,td,{𝑥𝑖}𝑖∈[𝑞])

⎤⎦ ⃒⃒⃒⃒⃒ ≤ negl(𝜆)

If both adaptive soundness and adaptive multi-theorem zero-knowledge holds against
quantum adversaries running in time 2𝑂̃(𝑇) then we say that (CRSGen, 𝑃,𝒱) is a 𝑇 -
sub-exponential qNIZK.

Remark 145. q-simulation-extractable NIZKs imply qNIZKs since simulation-extractability
implies both soundness and zero-knowledge properties.

Definition 146 (q-CCA2-secure PKE). A public-encryption scheme (Setup,Enc,Dec)
(defined below) is said to satify q-CCA2-security if every QPT adversary 𝒜 wins
in Expt𝒜 (defined below) only with negligible probability.

211

• Setup(1𝜆): On input security parameter 𝜆, output a public key pk and a decryp-
tion key sk.

• Enc(pk, 𝑥): On input public-key pk, message 𝑥, output a ciphertext ct.

• Dec(sk, ct): On input decryption key sk, ciphertext ct, output 𝑦.

For any 𝑥 ∈ {0, 1}poly(𝜆), we have Dec(sk,Enc(pk, 𝑥)) = 𝑥.

Expt𝒜(1𝜆, 𝑏):

• Challenger generates Setup(1𝜆) to obtain (pk, sk). It sends pk to 𝒜.

• 𝒜 has (classical) access to a decryption oracle that on input ct, outputs Dec(sk, ct).
It can make polynomially many queries.

• 𝒜 then submits (𝑥0, 𝑥1) to the challenger which then returns ct* ← Enc(pk, 𝑥𝑏).

• 𝒜 is then given access to the same oracle as before. The only restriction on 𝒜
is that it cannot query ct*.

• Output 𝑏′ where the output of 𝒜 is 𝑏′.

𝒜 wins in Expt𝒜 with probability 𝜇(𝜆) if Pr
[︂
𝑏 = 𝑏′ : 𝑏

$←−{0,1}
Expt𝒜(1𝜆)

]︂
= 1

2
+ 𝜇(𝜆).

If the above q-CCA2 security holds against quantum adveraries running in time
2𝑂̃(𝑇) then we say that (Setup,Enc,Dec) is a 𝑇 -sub-exponential q-CCA2-secure PKE
scheme.

Remark 147. One could also consider the setting when the CCA2 adversary has su-
perposition access to the oracle. However, for our construction, it suffices to consider
the setting when the adversary only has classical access to the oracle.

Consider the following lemma.

Lemma 148. Consider a language ℒℓ ∈ 𝑁𝑃 such that every 𝑥 ∈ ℒℓ is such that
|𝑥| = ℓ.

Under the ℓ-sub-exponential QLWE assumption, there exists a q-simulation-extractable
NIZKs for ℒℓ satisfying perfect completeness.

Proof. We first state the following proposition that shows how to generically con-
struct a q-simulation-extractable NIZK from qNIZK and a CCA2-secure public-key
encryption scheme.

Proposition 149. Consider a language ℒℓ ∈ 𝑁𝑃 such that every 𝑥 ∈ ℒℓ is such that
|𝑥| = ℓ.

Assuming ℓ-sub-exponential qNIZKs for NP and ℓ-sub-exponential q-CCA2-secure
PKE schemes, there exists a ℓ-sub-exponential qseNIZK system for ℒℓ.

212

Proof. Let qPKE be a ℓ-sub-exponential qCCA2-secure PKE scheme. Let qNIZK be
a ℓ-sub-exponential qNIZK for the following relation.

ℛqNIZK =
{︁

((pk, ct𝑤, 𝑥), (𝑤, 𝑟𝑤)) :
(︁

(𝑥,𝑤) ∈ ℛ(ℒℓ)
⋀︁

ct𝑤 = Enc(pk, (𝑥,𝑤); 𝑟𝑤)
)︁}︁

We present the construction (quantum analogue of [Sah99, DSDCO+01]) of q-simulation-
extractable NIZK for ℒℓ below.

• CRSGen(1𝜆): On input security parameter 𝜆,

– Compute qNIZK.CRSGen(1𝜆1) to obtain qNIZK.crs, where 𝜆1 = poly(𝜆, ℓ)
is chosen such that qNIZK is a ℓ-sub-exponential q-non-interactive zero-
knowledge argument system.

– Compute qPKE.Setup(1𝜆2) to obtain (pk, sk), where 𝜆2 = poly(𝜆, ℓ) is cho-
sen such that qPKE is a ℓ-sub-exponential q-CCA2-secure PKE scheme.

Output crs = (pk, qNIZK.crs).

• 𝑃 (crs, 𝑥, 𝑤): On input common reference string crs, instance 𝑥, witness 𝑤,

– Parse crs as (pk, qNIZK.crs).

– Compute ct𝑤 ← qPKE.Enc(pk, (𝑥,𝑤); 𝑟𝑤), where 𝑟𝑤
$←− {0, 1}poly(𝜆).

– Compute qNIZK.𝜋 ← qNIZK.𝑃 (qNIZK.crs, (pk, ct𝑤, 𝑥), (𝑤, 𝑟𝑤)).

Output 𝜋 = (qNIZK.𝜋, ct𝑤).

• 𝒱(crs, 𝑥, 𝜋): On input common reference string crs, NP instance 𝑥, proof 𝜋,

– Parse crs as (pk, ct, qNIZK.crs).

– Output qNIZK.𝒱 (qNIZK.crs, (pk, ct𝑤, 𝑥), 𝜋).

We prove that the above argument system satisfies q-simulation-extractability. We
describe the algorithms FkGen and Sim = (Sim1.Sim2) below. Let qNIZK.FkGen and
qNIZK.Sim be the QPT algorithms associated with the zero-knowledge property of
qNIZK.

FkGen(1𝜆): Compute (qNIZK.crs, 𝜏)← qNIZK.FkGen
(︀
1𝜆
)︀
. Compute (pk, sk)← qPKE.Setup(1𝜆).

Output crs = (qNIZK.crs, pk, ct) and td = (𝜏, sk).

Sim1

(︀
crs, td, {𝑥𝑖}𝑖∈[𝑞]

)︀
: Compute qNIZK.Sim (qNIZK.crs, 𝜏, (pk, ct, 𝑥𝑖)) to obtain qNIZK.𝜋𝑖,

for every 𝑖 ∈ [𝑞]. Output {qNIZK.𝜋1, . . . , qNIZK.𝜋𝑞} and st =
(︁
td, crs,

(︁
{𝑥𝑖}𝑖∈[𝑞]

)︁)︁
.

Sim2 (st, 𝑥′, 𝜋′): On input st =
(︁
td = (𝜏, sk), crs,

(︁
{𝑥𝑖}𝑖∈[𝑞]

)︁)︁
, instance 𝑥′, proof 𝜋′ =

(qNIZK.𝜋′, ct′𝑤), compute Dec(sk, ct′𝑤′) to obtain 𝑤′. Output 𝑤′.

213

Suppose 𝒜 be a quantum adversary running in time 2
̃︀𝑂(ℓ) such that the following

holds:

Pr

⎡⎢⎢⎢⎣
𝒱(crs,𝑥′,𝜋′) accepts⋀︀

(∀𝑖∈[𝑞], (𝑥𝑖,𝑤𝑖)∈ℛ(ℒ))⋀︀
(∀𝑖∈[𝑞], 𝑥′ ̸=𝑥𝑖)

:

crs←CRSGen(1𝜆),

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st𝒜)←𝒜1(crs)

∀𝑖∈[𝑞], 𝜋𝑖←𝑃 (crs,td,𝑥𝑖)

(𝑥′,𝜋′)←𝒜2(st𝒜,𝜋1,...,𝜋𝑞)

⎤⎥⎥⎥⎦ = 𝜀

Let 𝛿 be such that the following holds:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝒱(crs,𝑥′,𝜋′) accepts⋀︀
(∀𝑖∈[𝑞],(𝑥𝑖,𝑤𝑖)∈ℛ(ℒ))⋀︀

(𝑥′,𝑤′)∈ℛ(𝐿)⋀︀
(∀𝑖∈[𝑞], 𝑥′ ̸=𝑥𝑖)

:

(crs,td)←FkGen(1𝜆),

({(𝑥𝑖,𝑤𝑖)}𝑖∈[𝑞],st𝒜)←𝒜1(crs)

(𝜋1,...,𝜋𝑞 ,stSim)←Sim1(crs,td,{𝑥𝑖}𝑖∈[𝑞])
(𝑥′,𝜋′)←𝒜2(st𝒜,𝜋1,...,𝜋𝑞)

𝑤′←Sim2(stSim,𝑥
′,𝜋′)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝛿

We prove using a standard hybrid argument that |𝛿 − 𝜀| ≤ negl(𝜆).

Hybrid1: 𝒜 is given 𝜋1, . . . , 𝜋𝑞, where 𝜋𝑖 ← 𝑃 (crs, 𝑥𝑖, 𝑤𝑖). Let (𝑥′, 𝜋′) is the output of
𝒜 and parse 𝜋′ = (qNIZK.𝜋′, ct′𝑤). Decrypt ct′𝑤 using sk to obtain (𝑥*, 𝑤′).

From the adaptive soundness of qNIZK, the probability that (𝑥′, 𝑤′) ∈ ℛ(ℒℓ) and
𝑥* = 𝑥′ is negligibly close to 𝜀.

Hybrid2: 𝒜 is given 𝜋1, . . . , 𝜋𝑞, where the proofs are generated as follows: first compute
(qNIZK.𝜋1, . . . , qNIZK.𝜋𝑞)← qNIZK.Sim(crs, td, {𝑥𝑖}𝑖∈[𝑞]), where (crs, td)← qNIZK.FkGen(1𝜆).
Then compute ct𝑤𝑖

← Enc(pk, (𝑥𝑖, 𝑤𝑖)) for every 𝑖 ∈ [𝑞]. Set 𝜋𝑖 = (qNIZK.𝜋𝑖, ct𝑤𝑖
).

The rest of this hybrid is defined as in Hybrid1.
From the adaptive zero-knowledge property of qNIZK, the probability that (𝑥′, 𝑤′) ∈

ℛ(ℒℓ) and 𝑥* = 𝑥′ in the hybrid Hybrid2.𝑗 is still negligibly close to 𝜀.

Hybrid3: This hybrid is defined similar to the previous hybrid except that ct𝑤𝑖
←

Enc(pk, 0), for every 𝑖 ∈ [𝑞].
From the previous hybrids, it follows that ct′𝑤 ̸= ct𝑤𝑖

, for all 𝑖 ∈ [𝑞] with probabil-
ity negligibly close to 𝜀; this follows from the fact that qPKE is perfectly correct and
the fact that 𝑥* = 𝑥′ holds with probability negligibly close to 𝜀. Thus, we can invoke
q-CCA2-security of qPKE, the probability that (𝑥′, 𝑤′) ∈ ℛ(ℒℓ) is still negligibly close
to 𝜀.

But note that Hybrid3 corresponds to the simulated experiment and thus we just
showed that the probability that we can recover 𝑤′ such that (𝑥′, 𝑤′) ∈ ℛ(ℒℓ) is
negligibly close to 𝜀.

The primitives in the above proposition can be instantiated from sub-exponential
QLWE by starting with existing LWE-based constructions of the above primitive and

214

suitably setting the parameters of the underlying LWE assumption. We state the
following propositions without proof.

Proposition 150 ([PS19]). Assuming ℓ-sub-exponential QLWE (Section 2.3), there
exists a ℓ-sub-exponential qNIZK for NP.

Remark 151. To be precise, the work of [PS19] constructs a NIZK system satis-
fying adaptive multi-theorem zero-knowledge and non-adaptive soundness. However,
non-adaptive soundness implies adaptive soundness using complexity leveraging; the
reduction incurs a security loss of 2ℓ.

Proposition 152 ([PW11]). Assuming ℓ-sub-exponential QLWE (Section 2.3), there
exists a ℓ-sub-exponential q-CCA2-secure PKE scheme.

215

216

Appendix B

qIHO for compute-and-compare
circuits

To complement the impossibility result, we present a construction of SSL for a sub-
class of evasive circuits. Specifically, the construction works for circuit classes that
have q-Input-Hiding obfuscators. In the following section, we show that there are
q-Input-Hiding obfuscators for Compute-and-Compare circuits.

Barak, Bitansky, Canetti, Kalai, Paneth, and Sahai [BBC+14] present a construc-
tion of input-hiding obfuscators secure against classical PPT adversaries; however, it
is unclear whether their construction is secure against QPT adversaries. Instead we
present a construction of input-hiding obfuscators (for a class of circuits different from
the ones considered in [BBC+14]) from QLWE. Specifically, we show how to construct
a q-input-hiding obfuscator for compute-and-compare circuits 𝒞cnc with respect to a
distribution 𝒟𝒞 defined in Definition 134.

Lemma 153 (qIHO for Compute-and-Compare Circuits). Consider a class of compute-
and-compare circuits 𝒞cnc associated with a distribution 𝒟𝒞 (Definition 134). Assum-
ing QLWE, there exists qIHO for 𝒞cnc.

Proof. We prove this in two steps: we first construct a qIHO for the class of point
functions and then we use this to build qIHO for compute-and-compare class of cir-
cuits.

qIHO for point functions: To prove this, we use a theorem due to [BBC+14] that
states that an average-case VBB for circuits with only polynomially many accepting
points is already an input-hiding obfuscator for the same class of circuits; their same
proof also holds in the quantum setting. Any q-average-case VBB for circuits with
only polynomially many accepting points is already a qIHO. As a special case, we have
a qIHO for point functions from q-average-case VBB for point functions. Moreover,
we can instantiate q-average-case VBB for point functions from QLWE and thus, we
have qIHO for point functions from QLWE.

We describe the formal details below. First, we recall the definition of average-case
VBB.

217

Definition 154 (q-Average-Case Virtual Black-Box Obfuscation (VBB)). Consider
a class of circuits 𝒞 = {𝒞𝜆}𝜆∈N associated with a distribution 𝒟𝒞. We say that
(Obf,Eval) is said to be a q-average-case virtual black-box obfucsator for 𝒞
if it holds that for every QPT adversary 𝒜, there exists a QPT simulator Sim such
that for every 𝜆 ∈ N, the following holds for every non-uniform QPT distinguisher
𝐷:⃒⃒⃒⃒

Pr

[︂
1← 𝐷

(︁ ̃︀𝐶)︁ :
𝐶←𝒟𝒞(𝜆),̃︀𝐶←Obf(1𝜆,𝐶)

]︂
− Pr

[︁
1← 𝐷

(︁ ̃︀𝐶)︁ : ̃︀𝐶 ← Sim
(︀
1𝜆
)︀]︁⃒⃒⃒⃒
≤ negl(𝜆),

We consider a quantum analogue of a proposition proven in [BBC+14]. We omit the
proof details since this is identical to the proof provided by [BBC+14] albeit in the
quantum setting.

Proposition 155. Consider a class of evasive circuits 𝒞 = {𝒞𝜆}𝜆∈N associated with a
distribution 𝒟𝒞 such that each circuit 𝐶 ∈ 𝒞𝜆 has polynomially many accepting points.

Assuming q-average-case virtual black-box obfuscation for 𝒞, there is a qIHO for
𝒞.

As a special case, we have qIHO for point functions (defined below) assuming q-
average-case VBB for point functions. Moreover, q-average-case VBB for point func-
tions can be instantiated from QLWE (see for example [WZ17, GKW17]). Thus, we
have the following proposition.

Proposition 156 (q-Input-Hiding Obfuscator for Point Functions). Consider the
class of circuits 𝒞 = {𝒞𝜆}𝜆∈N defined as follows: every circuit 𝐶 ∈ 𝒞, is associated
with 𝑥 such that it outputs 1 on 𝑥 and 0 on all other points.

Assuming QLWE, there is a qIHO for 𝒞.

qIHO for compute-and-compare circuits from qIHO for point functions: We now show
how to construct qIHO for compute-and-compare circuits 𝒞cnc, associated with distri-
bution 𝒟cnc (Definition 134), from qIHO for point functions. Denote PO.qIHO to be a
qIHO for point functions 𝒢 = {𝒢𝜆}𝜆∈N associated with distribution 𝒟po, where 𝒟po is
a marginal distribution of 𝒟cnc on {𝛼}. We construct qIHO for compute-and-compare
circuits below; we denote this by cnc.qIHO.

cnc.qIHO.Obf
(︀
1𝜆,C[𝐶, 𝛼]

)︀
: It takes as input security parameter 𝜆, compute-and-

compare circuit C[𝐶, 𝛼], associated with lock 𝛼. Compute PO.qIHO(1𝜆, 𝐺𝛼 ∈ 𝒢𝜆) to
obtain ̃︁𝐺𝛼. Output ̃︀C =

(︁
𝐶,𝐺𝛼(·)

)︁
.

cnc.qIHO.Eval
(︁̃︀C, 𝑥)︁: On input obfuscated circuit ̃︀C =

(︁
𝐶, ̃︁𝐺𝛼

)︁
, input 𝑥, do the

following:

• Compute 𝐶(𝑥) to obtain 𝛼′.

• Compute PO.Eval
(︁̃︁𝐺𝛼, 𝛼

′
)︁

to obtain 𝑏.

• Output 𝑏.

218

Claim 157. Assuming PO.qIHO is an input-hiding obfuscator for 𝒢 associated with
𝒟po, cnc.qIHO is an input-hiding obfuscator for 𝒞 associated with 𝒟cnc.

Proof. Suppose there exists a QPT adversary 𝒜 such that the following holds:⃒⃒⃒⃒
⃒⃒Pr
⎡⎣̃︀C(𝑥) = 1 :

C[𝐶,𝛼]←𝒟cnc(𝜆),̃︀C←cnc.qIHO(1𝜆,C[𝐶,𝛼]),

𝑥←𝒜(1𝜆,̃︀C)

⎤⎦⃒⃒⃒⃒⃒⃒ = 𝛿

Our first observation is that Pr
[︁
𝐶(𝑥) = 𝛼

⃒⃒ ̃︀𝐶(𝑥) = 1
]︁

= 1. Using this, we can con-
struct another adversary 𝒜′ that violates the input-hiding property of PO.qIHO. On
input 𝐺𝛼(·), 𝒜′ computes 𝒜

(︁̃︀C =
(︁
𝐶,𝐺𝛼(·)

)︁)︁
; denote the output to be 𝑥. Finally,

𝒜′ outputs 𝛼′ = 𝐶(𝑥).
From the above observations, it holds that 𝒜′ breaks the input-hiding property of

PO.qIHO with probability 𝛿. From the security of PO.qIHO, we have that 𝛿 = negl(𝜆)
and thus the proof of the claim follows.

Conclusion: Combining Claim 157 and Proposition 156, we have qIHO for compute-
and-compare circuits from QLWE.

219

220

Bibliography

[Aar] Scott Aaronson. Shtetl-Optimized. Ask Me Anything: Apoca-
lypse Edition. https://www.scottaaronson.com/blog/?p=4684#
comment-1834174. Comment #283, Posted: 03-24-2020, Accessed: 03-
25-2020.

[Aar04] Scott Aaronson. Limitations of quantum advice and one-way commu-
nication. In Proceedings. 19th IEEE Annual Conference on Computa-
tional Complexity, 2004., pages 320–332. IEEE, 2004.

[Aar09] S. Aaronson. Quantum copy-protection and quantum money. In 2009
24th Annual IEEE Conference on Computational Complexity, pages
229–242, 2009.

[ABDS20] Gorjan Alagic, Zvika Brakerski, Yfke Dulek, and Christian Schaffner.
Impossibility of quantum virtual black-box obfuscation of classical cir-
cuits, 2020.

[ABG+20] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and
Giulio Malavolta. Post-quantum multi-party computation in constant
rounds. arXiv preprint arXiv:2005.12904, 2020.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden
subspaces. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, pages 41–60, 2012.

[ACGH20] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung.
Non-interactive classical verification of quantum computation. In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography,
pages 153–180, Cham, 2020. Springer International Publishing.

[ACLP21] Prabhanjan Ananth, Kai-Min Chung, and Rolando L. La Placa. On
the concurrent composition of quantum zero-knowledge, 2021.

[AF16] Gorjan Alagic and Bill Fefferman. On quantum obfuscation. arXiv
preprint arXiv:1602.01771, 2016.

221

https://www.scottaaronson.com/blog/?p=4684#comment-1834174
https://www.scottaaronson.com/blog/?p=4684#comment-1834174

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry.
One-shot signatures and applications to hybrid quantum/classical au-
thentication. In Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 255–268, 2020.

[AJ17] Prabhanjan Ananth and Abhishek Jain. On secure two-party compu-
tation in three rounds. In Theory of Cryptography Conference, pages
612–644. Springer, 2017.

[AK21] Prabhanjan Ananth and Fatih Kaleoglu. Uncloneable encryption, re-
visited, 2021.

[ALL+20] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe
Zhang. New approaches for quantum copy-protection, 2020.

[ALP20] Prabhanjan Ananth and Rolando L. La Placa. Secure quantum extrac-
tion protocols. In Theory of Cryptography Conference, 2020.

[ALP21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing.
In EUROCRYPT. Springer-Verlag, 2021.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments.
Journal of Computer and System Sciences, 64(4):750–767, 2002.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum
attacks on classical proof systems: The hardness of quantum rewinding.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 474–483. IEEE, 2014.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, pages 106–115. IEEE, 2001.

[BB83] Charles H Bennett and Gilles Brassard. Quantum cryptography and its
application to provably secure key expansion, public-key distribution,
and coin-tossing. In IEEE International Symposium on Information
Theory, volume 95. St-Jovite: Qebec Press, 1983.

[BB14] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Pub-
lic key distribution and coin tossing. Theoretical Computer Science,
560:7–11, 2014. Theoretical Aspects of Quantum Cryptography – cel-
ebrating 30 years of BB84.

[BBBW83] Charles H Bennett, Gilles Brassard, Seth Breidbart, and Stephen Wies-
ner. Quantum cryptography, or unforgeable subway tokens. In Ad-
vances in Cryptology, pages 267–275. Springer, 1983.

222

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer
Paneth, and Amit Sahai. Obfuscation for evasive functions. In Theory
of Cryptography Conference, pages 26–51. Springer, 2014.

[BBK+16] Nir Bitansky, Zvika Brakerski, Yael Kalai, Omer Paneth, and Vinod
Vaikuntanathan. 3-message zero knowledge against human ignorance.
In Theory of Cryptography Conference, pages 57–83. Springer, 2016.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifi-
able randomness from a single quantum device. In 2018 IEEE 59th An-
nual Symposium on Foundations of Computer Science (FOCS), pages
320–331. IEEE, 2018.

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the ex-
istence of extractable one-way functions. SIAM Journal on Computing,
45(5):1910–1952, 2016.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-
private ot from lwe. In Theory of Cryptography Conference, pages
370–390. Springer, 2018.

[BDS16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signa-
tures. arXiv preprint arXiv:1609.09047, 2016.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Annual International Cryptology Conference, pages 390–420. Springer,
1992.

[BG20] A. Broadbent and A. B. Grilo. Qma-hardness of consistency of local
density matrices with applications to quantum zero-knowledge. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 196–205, Nov 2020.

[BGGL01] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-
sound zero-knowledge and its applications. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 116–125, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. In Joe Kilian, editor, Advances in Cryptology
- CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings, vol-
ume 2139 of Lecture Notes in Computer Science, pages 1–18. Springer,
2001.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-
time programs. In Annual Cryptology Conference, pages 344–360.
Springer, 2013.

223

[BI19] Anne Broadbent and Rabib Islam. Quantum encryption with certified
deletion. arXiv preprint arXiv:1910.03551, 2019.

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryp-
tion for circuits of low t-gate complexity. In Annual Cryptology Con-
ference, pages 609–629. Springer, 2015.

[BJL+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder, and
Aarthi Sundaram. Secure software leasing without assumptions, 2021.

[BJSW16] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zero-
knowledge proof systems for qma. In 2016 IEEE 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 31–40.
IEEE, 2016.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision
resistance: a paradigm for keyless hash functions. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 671–684. ACM, 2018.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-
knowledge beyond the black-box barrier. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages
1091–1102. ACM, 2019.

[BKS21] Nir Bitansky, Michael Kellner, and Omri Shmueli. Post-quantum
resettably-sound zero knowledge. Cryptology ePrint Archive, Report
2021/349, 2021. https://eprint.iacr.org/2021/349.

[BL04] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation
and extraction. SIAM Journal on Computing, 33(4):783–818, 2004.

[BL19] Anne Broadbent and Sébastien Lord. Uncloneable quantum encryption
via random oracles. arXiv preprint arXiv:1903.00130, 2019.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, volume 1,
page 2. Citeseer, 1986.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate
obfuscation and applications to resettable cryptography. In Proceed-
ings of the forty-fifth annual ACM symposium on Theory of computing,
pages 241–250, 2013.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic
multi-key fhe with short ciphertexts. In Annual International Cryp-
tology Conference, pages 190–213. Springer, 2016.

224

https://eprint.iacr.org/2021/349

[Bra05] Gilles Brassard. Brief history of quantum cryptography: A personal
perspective. In IEEE Information Theory Workshop on Theory and
Practice in Information-Theoretic Security, 2005., pages 19–23. IEEE,
2005.

[Bra18] Zvika Brakerski. Quantum fhe (almost) as secure as classical. In Annual
International Cryptology Conference, pages 67–95. Springer, 2018.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game
over the net-concurrent composition via super-polynomial simulation.
In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 543–552. IEEE, 2005.

[BS16] Anne Broadbent and Christian Schaffner. Quantum cryptography be-
yond quantum key distribution. Designs, Codes and Cryptography,
78(1):351–382, 2016.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in con-
stant rounds. In STOC, 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 136–145. IEEE, 2001.

[CCLY21] Nai-Hui Chia, Kai-Min Chung, Qipeng Liu, and Takashi Yamakawa.
On the impossibility of post-quantum black-box zero-knowledge in con-
stant rounds, 2021.

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Black-box
approach to post-quantum zero-knowledge in constant round. arXiv
preprint arXiv:2011.02670, 2020.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Annual International Cryptology Conference, pages 19–40. Springer,
2001.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,
and Daniel Wichs. Watermarking cryptographic capabilities. In Pro-
ceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’16, page 1115–1127, New York, NY, USA, 2016.
Association for Computing Machinery.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 494–503, 2002.

225

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concur-
rent zero-knowledge from indistinguishability obfuscation. In Annual
Cryptology Conference, pages 287–307. Springer, 2015.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key
leveled fhe from learning with errors. In Annual Cryptology Conference,
pages 630–656. Springer, 2015.

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba.
Quantum copy-protection of compute-and-compare programs in the
quantum random oracle model, 2020.

[CVZ20] Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive
zero-knowledge arguments for qma, with preprocessing. In Annual In-
ternational Cryptology Conference, pages 799–828. Springer, 2020.

[DCO99] Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-
knowledge with pre-processing. In Annual International Cryptology
Conference, pages 485–502. Springer, 1999.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny,
and Daniel Wichs. Two-round oblivious transfer from cdh or lpn. In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 768–797. Springer, 2020.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-
knowledge. Journal of the ACM (JACM), 51(6):851–898, 2004.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing
the need for timing constraints. In Annual International Cryptology
Conference, pages 442–457. Springer, 1998.

[DSDCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe
Persiano, and Amit Sahai. Robust non-interactive zero knowledge. In
Annual International Cryptology Conference, pages 566–598. Springer,
2001.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski,
and Peter Shor. Quantum money from knots. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages
276–289, 2012.

[FKP19] Cody Freitag, Ilan Komargodski, and Rafael Pass. Non-uniformly
sound certificates with applications to concurrent zero-knowledge. In
Annual International Cryptology Conference, pages 98–127. Springer,
2019.

226

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive
zero knowledge proofs under general assumptions. SIAM Journal on
Computing, 29(1):1–28, 1999.

[G+05] Oded Goldreich et al. Foundations of cryptography–a primer. Founda-
tions and Trends® in Theoretical Computer Science, 1(1):1–116, 2005.

[Gav12] Dmitry Gavinsky. Quantum money with classical verification. In 2012
IEEE 27th Conference on Computational Complexity, pages 42–52.
IEEE, 2012.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Wa-
ters. A generic approach to constructing and proving verifiable ran-
dom functions. In Theory of Cryptography Conference, pages 537–566.
Springer, 2017.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homo-
morphic encryption and rerandomizable Yao circuits. In Annual Cryp-
tology Conference, pages 155–172. Springer, 2010.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta.
Statistical zaps and new oblivious transfer protocols. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 668–699. Springer, 2020.

[GJO+13] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan
Visconti. Concurrent zero knowledge in the bounded player model. In
Theory of Cryptography Conference, pages 60–79. Springer, 2013.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round
zero-knowledge proof systems for NP. J. Cryptology, 9(3):167–190,
1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. SIAM Journal on Computing, 25(1):169–192,
1996.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-
time programs. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, pages 39–56, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[GKVW20] Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent
Waters. On perfect correctness in (lockable) obfuscation. 2020.

227

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfusca-
tion. In 2017 IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 612–621. IEEE, 2017.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof-systems. In STOC, pages 291–304, 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic proto-
col design. In Foundations of Computer Science, 1986., 27th Annual
Symposium on, pages 174–187. IEEE, 1986.

[Gol07] Oded Goldreich. Foundations of cryptography: volume 1, basic tools.
Cambridge university press, 2007.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic appli-
cations. Cambridge university press, 2009.

[Got03] Daniel Gottesman. Uncloneable encryption. Quantum Information &
Computation, 3(6):581–602, 2003.

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable decryption keys.
Cryptology ePrint Archive, Report 2020/877, 2020. https://eprint.
iacr.org/2020/877.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
J. Comput., 28(4):1364–1396, 1999.

[HSS11] Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic
protocols in a quantum world. In Annual Cryptology Conference, pages
411–428. Springer, 2011.

[JKMR06] Rahul Jain, Alexandra Kolla, Gatis Midrijanis, and Ben W Reichardt.
On parallel composition of zero-knowledge proofs with black-box quan-
tum simulators. arXiv preprint quant-ph/0607211, 2006.

[KK19] Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-
malleability from quantum supremacy. In Annual International Cryp-
tology Conference, pages 552–582. Springer, 2019.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical
witness indistinguishability (and more) in two messages. In Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 34–65. Springer, 2018.

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure soft-
ware leasing from standard assumptions, 2021.

228

https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/877

[Kob08] Hirotada Kobayashi. General properties of quantum zero-knowledge
proofs. In Ran Canetti, editor, Theory of Cryptography, pages 107–
124, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic function-
alities from standard lattice assumptions. In Jonathan Katz and Ho-
vav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages
503–536, Cham, 2017. Springer International Publishing.

[LAF+09] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset,
Avinatan Hassidim, Jonathan Kelner, and Peter Shor. Breaking and
making quantum money: toward a new quantum cryptographic proto-
col. arXiv preprint arXiv:0912.3825, 2009.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation
without setup assumptions. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 683–692, 2003.

[Lin17] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof
technique. Tutorials on the Foundations of Cryptography, pages 277–
346, 2017.

[LN11] Carolin Lunemann and Jesper Buus Nielsen. Fully simulatable
quantum-secure coin-flipping and applications. In Abderrahmane
Nitaj and David Pointcheval, editors, Progress in Cryptology –
AFRICACRYPT 2011, pages 21–40, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-
interactive commitments. IACR Cryptology ePrint Archive, 2019:279,
2019.

[Mah18a] Urmila Mahadev. Classical homomorphic encryption for quantum cir-
cuits. In 2018 IEEE 59th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 332–338. IEEE, 2018.

[Mah18b] Urmila Mahadev. Classical verification of quantum computations. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 259–267. IEEE, 2018.

[MST21] Christian Majenz, Christian Schaffner, and Mehrdad Tahmasbi. Limi-
tations on uncloneable encryption and simultaneous one-way-to-hiding,
2021.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty compu-
tation via multi-key fhe. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 735–763.
Springer, 2016.

229

[MY21] Tomoyuki Morimae and Takashi Yamakawa. Classically verifiable
(dual-mode) nizk for qma with preprocessing, 2021.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of
cryptology, 4(2):151–158, 1991.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quan-
tum information, 2002.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with
a dishonest majority. In STOC, pages 232–241, 2004.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and
Trends® in Theoretical Computer Science, 10(4):283–424, 2016.

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party
computation in a constant number of rounds. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings.,
pages 404–413. IEEE, 2003.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero
knowledge with logarithmic round-complexity. In FOCS, pages 366–
375. IEEE, 2002.

[PRSD17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudo-
randomness of ring-lwe for any ring and modulus. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 461–473, 2017.

[PS16] Chris Peikert and Sina Shiehian. Multi-key fhe from lwe, revisited. In
Theory of Cryptography Conference, pages 217–238. Springer, 2016.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np
from (plain) learning with errors. In Annual International Cryptology
Conference, pages 89–114. Springer, 2019.

[PTV14] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venki-
tasubramaniam. Concurrent zero knowledge, revisited. Journal of cryp-
tology, 27(1):45–66, 2014.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the
composition of public-coin zero-knowledge protocols. In Annual Inter-
national Cryptology Conference, pages 160–176. Springer, 2009.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On
constant-round concurrent zero-knowledge. In Theory of Cryptography
Conference, pages 553–570. Springer, 2008.

230

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party
protocols from one-way functions. In Theory of Cryptography Confer-
ence, pages 403–418. Springer, 2009.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. SIAM Journal on Computing, 40(6):1803–1844, 2011.

[Rab05] Michael O Rabin. How to exchange secrets with oblivious transfer.
IACR Cryptol. ePrint Arch., 2005(187), 2005.

[Reg] Oded Regev. The learning with errors problem.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 84–93, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

[rev] How microsoft corporation makes most of its
money. https://www.fool.com/investing/2017/06/29/
how-microsoft-corporation-makes-most-of-its-money.aspx.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition
of zero-knowledge proofs. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 415–431. Springer,
1999.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adap-
tive chosen-ciphertext security. In 40th Annual Symposium on Foun-
dations of Computer Science (Cat. No. 99CB37039), pages 543–553.
IEEE, 1999.

[Shm20] Omri Shmueli. Multi-theorem (malicious) designated-verifier nizk for
qma, 2020.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, 1994.

[Unr10] Dominique Unruh. Universally composable quantum multi-party com-
putation. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 486–505. Springer, 2010.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 135–152. Springer, 2012.

231

https://www.fool.com/investing/2017/06/29/how-microsoft-corporation-makes-most-of-its-money.aspx
https://www.fool.com/investing/2017/06/29/how-microsoft-corporation-makes-most-of-its-money.aspx

[Unr13] Dominique Unruh. Everlasting multi-party computation. In Annual
Cryptology Conference, pages 380–397. Springer, 2013.

[Unr16] Dominique Unruh. Computationally binding quantum commitments.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 497–527. Springer, 2016.

[VW16] Thomas Vidick and John Watrous. Quantum proofs. Foundations and
Trends in Theoretical Computer Science, 11(1-2):1–215, 2016.

[VZ20] Thomas Vidick and Tina Zhang. Classical zero-knowledge arguments
for quantum computations. Quantum, 4:266, 2020.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM Jour-
nal on Computing, 39(1):25–58, 2009.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, Jan-
uary 1983.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under LWE. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 600–611. IEEE, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, pages 162–167, 1986.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 408–438. Springer, 2019.

[Zha20] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder.
Cryptology ePrint Archive, Report 2020/1191, 2020. https://eprint.
iacr.org/2020/1191.

232

https://eprint.iacr.org/2020/1191
https://eprint.iacr.org/2020/1191

	Introduction
	Zero-knowledge protocols
	Zero-knowledge and the simulation paradigm
	Challenges in the quantum setting
	Questions explored in this thesis

	Quantum copy-protection
	Our results
	Results regarding QZK protocols
	Results regarding quantum copy-protection
	New notion: Secure Software Leasing

	Technical overview
	QZK protocols
	Impossibility of quantum copy-protection
	Construction of SSL

	Related work
	(Computational) Quantum zero-knowledge
	Unclonable Primitives, Copy-Protection, and SSL

	Organization and bibliographical information

	Preliminaries
	Notation and conventions
	Quantum background
	Quantum Zero-Knowledge (QZK)
	Watrous Rewinding Lemma

	Learning with errors
	Cryptographic primitives
	Noisy Trapdoor Claw-Free Functions (NTCF)
	Commitments
	Quantum Fully Homomorphic Encryption (QFHE)
	Cryptographic Obfuscation
	Secure Function Evaluation (SFE)
	Non-Interactive Zero-Knowledge (NIZK)
	Simulation-Extractable Non-Interactive Zero-Knowledge (seNIZK)
	Witness Indistinguishability (WI)
	Post-Quantum Statistical Sender-Private OT

	Quantum Extraction Protocols
	QEXT definitions
	cQEXT
	Overview
	Construction of cQEXT

	qQEXT
	Overview
	Construction of qQEXT

	Quantum Zero-Knowledge Protocols
	Introduction
	Constant round quantum zero-knowledge classical argument system for NP
	Overview
	Definition
	Construction

	Bounded concurrent quantum zero-knowledge for NP
	Overview
	Definition
	Construction

	Bounded concurrent quantum zero-knowledge proof for QMA
	Overview
	Definition
	Construction

	Quantum Proofs of Knowledge
	Overview
	Receiver statistical oblivious transfer
	Definition
	Tool: Statistical ZK quantum argument system
	Post-quantum statistical receiver OT: Construction

	Quantum proofs of knowledge
	Definition
	Construction of (Standalone) QZKPoK
	Extending to Bounded Concurrent QZK Setting

	On proofs of quantum knowledge

	Impossibility of Quantum Copy-Protection
	De-quantumizable Circuits
	Constructing de-quantumizable circuits

	Impossibility of Copy-Protection and QVBB

	Secure Software Leasing
	Introduction
	Construction overview

	Definition
	Security
	Infinite-Term Lessor Security

	Impossibility of SSL
	Evasive circuits
	SSL for evasive circuits

	Instantiation of qseNIZK
	qIHO for compute-and-compare circuits

