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ABSTRACT

This paper studies the problem of allocating tasks from different

customers to vehicles in mobility platforms, which are used for ap-

plications like food and package delivery, ridesharing, and mobile

sensing. A mobility platform should allocate tasks to vehicles and

schedule them in order to optimize both throughput and fairness

across customers. However, existing approaches to scheduling tasks

in mobility platforms ignore fairness.

We introduce Mobius, a system that uses guided optimization to

achieve both high throughput and fairness across customers.Mobius

supports spatiotemporally diverse and dynamic customer demands.

It provides a principled method to navigate inherent tradeoffs be-

tween fairness and throughput caused by shared mobility. Our eval-

uation demonstrates these properties, along with the versatility and

scalability of Mobius, using traces gathered from ridesharing and

aerial sensing applications. Our ridesharing case study shows that

Mobius can schedule more than 16,000 tasks across 40 customers

and 200 vehicles in an online manner.
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1 INTRODUCTION

The past decade has seen the rapid proliferation of mobility plat-

forms that use a fleet of mobile vehicles to provide different services.

Popular examples include package delivery (UPS, DHL, FedEx, Ama-

zon), food delivery (DoorDash, Grubhub, Uber Eats), and rideshare
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services (Uber, Lyft). In addition, new types of mobility platforms

are emerging, such as drones-as-a-service platforms [21, 27, 32, 48]

for deploying different sensing applications on a fleet of drones.

In these mobility platforms, the vehicle fleet of cars, vans,

bikes, or drones is a shared infrastructure. The platform serves

multiple customers, with each customer requiring a set of tasks to be

completed. For instance, each restaurant subscribing to DoorDash

is a customer, with several food delivery orders (or tasks) in a

city. Similarly, an atmospheric chemist and a traffic analyst might

subscribe to a drones-as-a-service platform, each with their own

sensing applications to collect air quality measurements and traffic

videos, respectively, at several locations in the same urban area.

Multiplexing tasks from different customers on the same vehicles

can increase the efficiency of mobility platforms because vehicles

can amortize their travel time by completing co-located tasks

(belonging to either the same or different customers) in the same trip.

We study the problem of scheduling spatially distributed tasks

frommultiple customers on a shared fleet of vehicles. This problem

involves (i) assigning tasks to vehicles and (ii) determining the

order in which each vehicle must complete its assigned tasks.

The constraints are that each vehicle has bounded resources (fuel

or battery). While several variants of this scheduling problem

have been studied, the objective has typically been to complete as

many tasks as possible in bounded time, or to maximize aggregate

throughput (task completion rate) [23, 44].

We identify a second—equally important—scheduling require-

ment, which has emerged in today’s customer-centric mobility

platforms: fairness of customer throughput to ensure that tasks from

different customers are fulfilled at similar rates.1 For example, in

food delivery, the platform should serve restaurants equitably, even

if it means spending time or resources on restaurants with patrons

far from the current location of the vehicles. A ridesharing platform

should ensure that riders from different neighborhoods are served

equitably, which ridesharing platforms today do not handle well,

a phenomenon known as “destination discrimination” [35, 45, 49].

We seek an online scheduler for mobility platforms that achieves

both high throughput and fairness. A standard approach to

achieving these goals is to track the resource usage and work done

on behalf of different users in a fine-grained way and equalize

resource consumption across users. Such fine-grained accounting

and attribution is difficult with shared mobility: the resource used

is a moving vehicle traveling toward its next task, but making that

trip has a knock-on benefit, not only for the next task served, but

for subsequent ones as well. However, the benefit of a specific trip is

not equal across the subsequent tasks. Although it may be possible

to develop a fair scheduler that achieves high throughput using

fine-grained accounting and attribution, it is likely to be complex.

1The method we develop also applies to weighted fairness.
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We turn, instead, to an approach that has been used in both

societal and computing systems: optimization, whichmay be viewed

as a search through a set of feasible schedules to maximize a utility

function. In our case, we can establish such a function, optimize it

using both the task assignment and path selection, and then route

vehicles accordingly.

In a typical mobility problem, the planning time frame for opti-

mization could be between 30 minutes and several hours, involving

hundreds of vehicles, dozens of customers, and tens of thousands of

tasks. The scale of this problem pushes the limits of state-of-the-art

vehicle routing solvers [7]. Moreover, fairness objectives lead to

nonlinear utility functions, which make the optimization much

more challenging. As a benchmark, optimizing the routes for 3

vehicles and 17 tasks over 1 hour, using the CPLEX solver [28] with

a nonlinear objective function, takes over 10 hours [36].

To address these problems, a natural approach is to divide the

desired time duration into shorter rounds, and then run the utility

optimization. When we do this, something interesting emerges

in mobility settings: the space of feasible solutions—each solution

being an achievable set of rates for the customers—often collapses

into a rather small and disturbingly suboptimal set! These feasible

solutions are either fair but with dismal throughput, or with

excellent throughput but starving several customers.

A simple example helps see why this happens. Consider a map

with three areas, 𝐴1, 𝐴2, 𝐴3, each distant from the others. There

are several tasks in each area: in𝐴1, all the tasks are for customer

𝐶1; in𝐴2, all the tasks are for customer𝐶2, and in𝐴3, all the tasks

are for two other customers, 𝐶3 and 𝐶4. Suppose that there are

two vehicles. Over a duration of a few minutes, we could either

have the two vehicles focus on only two areas, achieving high

throughput but ignoring the third area and reducing fairness, or,

we could have themmove between areas after each task to ensure

fairness, but waste a lot of time traveling, degrading throughput.

It is not possible here to achieve both throughput and fairness over a

short timescale. Yet, over a long time duration, we can swap vehicles

between regions to amortize the movement costs. This shows that

planning over a longer timescale permits feasible schedules that

are better than what a shorter timescale would permit.

Our contribution,Mobius, divides the desired time duration into

rounds, and produces the feasible set of allocations for that round

using a standard optimizer. Mobius guides the optimizer toward

a solution that is not in the feasible set for one round but can be

achieved over multiple rounds. This guiding is done by aiming for

an objective that maximizes a weighted linear sum of customer

rates in each round. The weights are adjusted dynamically based

on the long-term rates achieved for each customer thus far. The

result is a practical system that achieves high throughput and

fairness over multiple rounds. This approach of achieving long-term

fairness by setting appropriate weights across rounds allows us to

use off-the-shelf solvers for the weighted Vehicle Routing Problem

(VRP) for path planning in each round. Importantly, this design

allows Mobius to optimize for fairness in the context of any VRP

formulation, making this work complementary to the vast body of

prior work on vehicle routing algorithms [3, 5, 8, 23].

Scheduling over multiple rounds also allows Mobius to handle

tasks that arrive dynamically or expire before being done. Moreover,

Mobius supports a tunable level of fairness modeled by 𝛼-fair utility

functions [31], which generalize the familiar notions of max-min

and proportional fairness.

We have implemented Mobius and evaluated it via extensive

trace-driven emulation experiments in two real-world settings:

(i) a ridesharing service, based on real Lyft ride request data

gathered over a day, ensuring fair quality-of-service to different

neighborhoods in Manhattan; and (ii) urban sensing using drones

for measuring traffic congestion, parking lot occupancy, cellular

throughput, and air quality. We find that:

1. Relative to a scheduler that maximizes only throughput,

Mobius compromises only 10% of platform throughput in

order to enforce max-min fairness.

2. Compared to dedicating vehicles to customers, Mobius

improves vehicle utilization by 30-50% by intelligently

sharing vehicles amongst customers.

3. Mobius can compute fair online schedules at a city scale,

involving 40 customers, 200 vehicles, and over 16,000 tasks.

2 PROBLEM SETUP

Every customer subscribing to a mobility platform submits several

requests over time. Each request specifies a task (e.g., gather sensor

data or deliver package) and a corresponding location. The platform

schedules trips for each vehicle overmultiple rounds. It takes into ac-

count any changes in a customer’s requirements (in the form of new

task requests or expiration of older unfulfilled tasks) at the beginning

of each round.We say that a customerhas a backlog if theyhavemore

tasks than can be completed by all available resources within the al-

located time. For simplicity of exposition, we assume each customer

is backlogged (our evaluation in §7 relaxes this assumption).

Let 𝐾 be the set of customers, and 𝑇𝑘 (𝜏) be the set of tasks

requested by customer 𝑘 during a scheduling round 𝜏 . We denote

𝑥𝑘 (𝜏) as the throughput achieved for customer 𝑘 in scheduling

round 𝜏 , i.e., the total number of tasks in 𝑇𝑘 (𝜏) that are fulfilled
divided by the round duration.

We denote 𝑥𝑘 (𝑡) as the long-term throughput for each customer

𝑘 , after 𝑡 scheduling rounds, i.e., 𝑥𝑘 (𝑡)=
1
𝑡

∑𝑡
𝜏=1𝑥𝑘 (𝜏) if rounds are

of equal duration. A good scheduling algorithm should achieve the

following objectives:

• Platform Throughput. Maximize the total long-term

throughput after round 𝑡 , i.e.,
∑
𝑘∈𝐾𝑥𝑘 (𝑡).

• Customer Fairness. For any two customers 𝑘1,𝑘2 ∈𝐾 with

backlogged tasks, ensure 𝑥𝑘1 (𝑡)=𝑥𝑘2 (𝑡).
Equalizing long-term per-customer throughputs 𝑥𝑘 (𝑡) provides a
desirable measure of fairness for manymobility platforms: higher

per-customer throughputs correlatewith other performancemetrics,

such as lower task latency and higher revenue. Our evaluation

(§7) quantifies the impact of optimizing for a fair allocation of

throughputs on other platform-specific quality-of-service metrics.

Prior algorithms for scheduling tasks on a shared fleet of vehicles

have focused on the VRP, i.e., only considered maximizing platform

throughput [23, 44]. Achieving per-customer fairness introduces

three new challenges:

Challenge #1: Attributing vehicle time to customers. Vehicle

time and capacity are scarce. Consider the example in Fig. 1, with

two customers and two vehicles; customer 1 has two densely-packed

clusters of tasks, while customer 2 has two dispersed clusters of
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Figure 1: An example with two customers, two vehicles, and a 6-minute planning horizon. Mobius computes a schedule that (i) achieves a similar total throughput

to that of the max throughput schedule, and (ii) preserves the customer-level fairness achieved by the round-robin and dedicated schedules.

⨁ ⨁ ⨁

Max Tput [Option 1] Max Tput [Option 2] Fair Tput

Customer 1 Customer 2 ⨁ Depot

Figure 2: Imposing fairness at short timescales (e.g., one round trip) degrades

throughput. Executing Options 1 and 2 provides fairness at longer timescales

and leads to greater total throughput.

tasks. We show schedules and tasks fulfilled by Mobius and three

other policies: (i) maximizing throughput, (ii) dedicating a vehicle

per customer, and (iii) alternating round-robin between customer

tasks. Notice that, to the left of the depot (center of the map),

customer 2’s tasks can be picked up on the way to customer 1’s

tasks. Thus, multiplexing both customers’ tasks on the same vehicle

is more desirable than dedicating a vehicle per customer, because

it amortizes resources to serve both customers. However, sharing

vehicles amongst customers complicates our ability to reason about

fairness, because the travel time between the tasks of different

customers cannot be attributed easily to each one.

Challenge #2: Timescale of fairness. Fig. 2 shows two customers

and one vehicle that must return home to refuel. A high-throughput

schedule would dedicate the vehicle to one of the customers. By

contrast, a fair schedulewould require thevehicle to round-robin cus-

tomer tasks, achieving low throughput due to travel. Over a longer

time duration, however, we can execute two max-throughput sched-

ules (Options 1 and 2) to achieve both fairness and high throughput.

Challenge #3: Spatiotemporal diversity of tasks. In Fig. 1,

the two customers’ tasks have different spatial densities. The

high-throughput schedule favors customer 1. A max-min fair

schedule should, by contrast, ensure that customer 2 gets its fair

share of the throughput, even if it comes at the cost of higher travel

time and lower platform throughput. Striking the right balance

between fairly serving a customer with more dispersed tasks and

reducing extra travel time is a non-trivial problem.

Customer tasks may also vary with time. For example, a food

delivery service might receive new requests from restaurants, or

an atmospheric scientist may want to update sensing locations

that they submitted to a drone service provider based on prior

observations. The mobility platform must handle the dynamic

arrival and expiration of tasks.

Figure 3: In each round, Mobius uses a VRP solver to compute a schedule that

maximizes a weighted sum of throughputs, and automatically adjusts the

weights across rounds to improve fairness.

3 OVERVIEW

Any resource-constrained system exhibits an inherent tradeoff

between throughput and fairness. In the best case, the most fair

schedule would also have the highest throughput; however, due to

the challenges described in §2, it is impossible to realize this goal

in many mobility settings. Mobius instead strives for customer

fairness with the best possible platform throughput; its approach

is to trade some short-term fairness for a boost in throughput, while

improving fairness over a longer timescale.

In each round𝜏 ,Mobius uses aVRP solver tomaximize aweighted

sum of customer throughputs 𝑥𝑘 (𝜏).
2 Mobius sets the weights in

each round to find a high throughput schedule that is approximately

fair in that round. By accounting for the long-term throughputs

𝑥𝑘 (𝑡) delivered to each customer 𝑘 in prior rounds, it is able to

equalize 𝑥𝑘 (𝑡) over multiple rounds. We formalize this notion of

balancing high throughput with fairness in §4. Mobius uses an

iterative search algorithm requiring multiple invocations of a VRP

solver to find a schedule that strikes the appropriate balance.

Our approach of trading off short-term fairness for throughput

and longer-term fairness raises a natural question: why not directly

schedule over a longer time horizon, rather than dividing the

scheduling problem into rounds? Scheduling in rounds is desirable

for several reasons: (i) their duration can correlate with the fuel or

battery constraints of the vehicles, (ii) it provides a target timescale

at which Mobius strives to provide fairness, (iii) shorter timescales

make the NP-hard VRP problemmore tractable to solve, and (iv) it

2We formally define the VRP in §5.
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(a) Map. Two vehicles start at ⊕. (b) Feasible throughputs in 1 round.
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(d) Convex boundary dynamics.

Figure 4: Visualizing feasible allocations of throughput for a small problemwith two customers and two vehicles. Allocations on the convex boundary trade

short-term fairness for throughput. The convex boundary becomes denser over time, making the target allocation achievable.

enables Mobius to adapt to temporal variations in customer demand

that are captured at the beginning of each round.

Fig. 3 shows the architecture of Mobius. In each round, customers

update their task requests. Mobius then computes the best weights,

generates a schedule, and dispatches the vehicles. At the end of the

round, Mobius updates each customer’s throughput, 𝑥𝑘 (𝑡), and uses
this information to select weights in the next round.

4 BALANCINGTHROUGHPUT& FAIRNESS

We now provide the intuition behind our approach for balancing

throughput and fairness using the example shown in Fig. 4. There

are two customers, each requesting tasks from distributions shown

on the map in Fig. 4a. We have two vehicles, each starting at ⊕. For

simplicity, in §4.1, we consider planning schedules in 10-minute

rounds, where the vehicles return to their start locations after 10

minutes. We renew all tasks at the beginning of each round trip.

Then, in §4.2, we explain how Mobius generalizes to dynamic

settings where customer tasks change with time, and vehicles do

not need to return to their starting locations.

4.1 Scheduling on the Convex Boundary

Feasible allocations. We first consider the set of schedules that

are feasible within the time constraint. Fig. 4b shows the tradeoff

between throughput and fairness amongst these feasible schedules.

Each dot represents an allocation produced by a feasible schedule;

the coordinates of the dot indicate the throughputs of the respective

customers. We generate the schedules by solving the VRP for

each possible subset of customer tasks.3 We also indicate the𝑦=𝑥
line (dotted gray), which corresponds to fair allocations that give

equal throughput to each customer. Note that in this example both

vehicles can more easily service Customer 1. Hence, an allocation

that maximizes total throughput without regard to fairness (labeled

𝐶) favors Customer 1.

Pareto frontier of feasible allocations. The Pareto frontier

over all feasible allocations is denoted by the dashed orange

line, containing 𝐴, 𝐵, 𝐶 , 𝐷 , and 𝐸. If an allocation on the Pareto

Frontier achieves throughputs of 𝑥1 and 𝑥2 for Customers 1 and

2 respectively, there exists no feasible allocation (𝑥1,𝑥2) such that
𝑥1>𝑥1 and 𝑥2>𝑥2. The allocation that maximizes total throughput

will always lie on the Pareto frontier. An allocation on the Pareto

frontier is strictly superior, and therefore more desirable than other

feasible allocations. So which allocation on the Pareto frontier do

we pick? A strictly fair allocation lies at the point where the Pareto

3The VRP is NP-hard (§5), but because the input size is small for this example, we use
Gurobi [25] to compute optimal schedules.

frontier intersects the 𝑦 = 𝑥 line (labeled 𝐵 in Fig. 4b). However,

allocation 𝐵 has low total throughput, because the vehicles spend

a significant part of the 10 minutes traveling between task clusters.

Convex boundary of the Pareto frontier. To capture the subset

of allocations that do not significantly compromise throughput,

we use the convex boundary of all feasible allocations, denoted by

the turquoise line in Fig. 4b. The convex boundary is the smallest

polygon around the feasible set such that no vertex bends inward [9],

and the corner points are the vertices determining this polygon. The

target allocation is the point where the 𝑦 = 𝑥 lines intersects the

boundary (shown in red). It has high throughput and is fair, but it

may not be feasible (as in this example). Is it still possible to achieve

the target throughput in such cases?

Scheduling over multiple rounds. Our key insight is that it is

possible to achieve the target allocation over multiple rounds of

scheduling by selecting different feasible allocations on the con-

vex boundary in each round. In a given round, Mobius chooses the

feasible allocationon the convexboundary that best achievesour fair-

ness criteria. In our example, it chooses allocation𝐴 in its first round.

By choosing allocation𝐴 over allocation 𝐵 (which achieves equal

throughput),Mobius compromises on short-term fairness for a boost

in throughput. However, as we discuss next, it compensates for this

choice in subsequent rounds.Notice that ifMobius instead chooses𝐵,
it would not be able to recover from the resulting loss in throughput.

As we compute a 10-minute schedule for each round, the set of

feasible allocations expands; this allows Mobius to compensate for

any prior deviation in fairness. Fig. 4c illustrates how the feasible

set evolves over several 10-minute rounds of planning. The feasible

allocations (denoted by gray dots) possible after round𝑇 are derived

from the cumulative set of tasks completed in𝑇 rounds. Notice that

over the four rounds, the set of feasible allocations becomes denser,

and the Pareto frontier approaches the convex boundary. Thus, the

target allocation (i.e., the allocation on the convex boundary that

coincides with the𝑦=𝑥 line) becomes feasible.

In summary, the key insights driving the design of Mobius are:

(i) the convex boundary describes a set of allocations that trade off

short-term fairness for a boost in throughput, and (ii) the Pareto

frontier approaches the convex boundary over multiple rounds of

planning, making it possible to correct for unfairness over a slightly

longer timescale.

4.2 Scheduling in Dynamic Environments

In practice, environments aremore dynamic: customer tasksmaynot

recur at the same locations, and vehicles need not return to their start

locations regularly. Thus, the convex boundary may not be identical
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Mobius, Snapshot 1 Mobius, Snapshot 2 Mobius, Snapshot 3Mobius, Round 1 Mobius, Round 2 Mobius, Round 3

Cust. 1 Cust. 2 Vehicle 1 Vehicle 2

Figure 5: The difference in spatial density of tasks leads to short-term un-

fairness (Rounds 1 and 3). Mobius compensates for this by directing more

resources to the underserved customer (Round 2).

in each round. However, in practice, because (i) vehicles move con-

tinuously over space and (ii) customer tasks tend to observe spatial

locality, the convex boundary does not change drastically over time.

To illustrate this, we extend the example in Fig. 4, by creating

a map with the same densities as in Fig. 4a, but with 50 tasks per

customer. To simulate dynamics, we create a new task for each

customer every 3 minutes at a location chosen uniformly at random

within a bounding box. We still consider two vehicles starting at the

same location (i.e., in the middle of customer 1’s cluster) and plan

in 10-minute rounds. We eliminate the return-to-home constraint.

In order to adapt to the customers’ changing tasks, we compute new

10-minute schedules every 1 minute (i.e., 10-minute rounds slide

in time by 1 minute). We run this simulation for 60 minutes.

In order to understand how these dynamics impact the convex

boundary as we plan iteratively, we show in Fig. 4d the convex

boundary of 10-minute schedules at each 1-minute replanning

interval. Notice that the convex boundaries hover around a narrow

band, indicating that we can still track the target throughput reliably.

The red square marks the value of the average target throughput

across all 50 convex boundaries; we also mark the throughput

achieved byMobius’s scheduling algorithm (§5).

In addition to the convex boundary remaining relatively stable

from one timestep to the next, this method of replanning at much

quicker intervals (e.g., 1 minute) than the round duration (e.g., 10

minutes)makesMobius resilient to uncertainty in the environment.4

For instance, Mobius can react to streaming requests in a punctual

manner, and can also incorporate requests that are unfulfilled due

to unexpected delays (e.g., road traffic or wind). Moreover, since

Mobius uses a VRP solver as a building block to compute its schedule

(§3), it can also leverage algorithms that solve the stochastic VRP [8],

where requests arrive and disappear probabilistically.

4.3 Visualizing Routes Scheduled byMobius

To illustrate howMobius converges to fair per-customer allocations

without significantly degrading platform throughput, in Fig. 5 we

show3consecutive 10-minute round schedules computedbyMobius,

for the dynamic example in Fig. 4d. In Rounds 1 and 3, we observe

that Mobius decides to dedicate one vehicle to each customer in

order to give them both sufficiently high throughput; here, customer

2 receives lower throughput because its tasks are more dispersed.

However, in Round 2, Mobius compensates for this short-term

unfairness by scheduling an additional vehicle to customer 2, while

also collecting a few tasks for customer 1 in the outbound trip.

4§7 further evaluates the effectiveness of Mobius’s algorithm for dynamic, real-world
customer demand.

5 MOBIUS SCHEDULINGALGORITHM

Based on the insights in §4, we designMobius to compute a schedule

on the convex boundary in each round, such that the long-term

throughputs 𝑥𝑘 (𝑡) approach the target allocation. Mobius works

in two steps:

(1) In each round, Mobius finds the support allocations, which

we define as the corner points on the convex boundary of the

current round, near the target allocation (§5.1). For example,

in Fig. 4b, Mobius would find support allocations𝐴 and𝐶 .
(2) Amongst the support allocations found in step (1), Mobius

selects the one that steers the long-term throughputs 𝑥𝑘 (𝑡)
toward the target allocation (§5.2).

In this section, we present Mobius in the context of strict fairness

(i.e., 𝑥𝑘 (𝑡) must lie along the𝑦=𝑥 line). §5.3 provides a theoretical
analysis of Mobius’s optimality under simplifying assumptions,

and §5.4 describes our implementation. In §6, we extendMobius’s

formulation to work with a class of fairness objectives.

5.1 Finding Support Allocations

Since the convex boundary of the Pareto frontier is equivalent to

the convex boundary of the feasible set of schedules, a naive way

to find the support allocations is to compute the Pareto frontier, take

its convex boundary, and then identify the support allocations near

the target allocation. However, computing the Pareto frontier is

computationally expensive because it requires invoking an NP-hard

solver an exponential number of times in the number of tasks.

Mobius uses a VRP solver as a building block to find a subset of the

corner points of the convex boundary around the target allocation.

The VRP involves computing a pathP𝑣 for each vehicle 𝑣 , defined
as an ordered list of tasks from the set of all tasks {𝑇𝑘 (𝜏) | 𝑘 ∈𝐾},
such that the time to complete P𝑣 does not exceed the total time

budget𝐵 for a round. VRP solversmaximize the platform throughput

without regard to fairness.

We capture different priorities amongst customer tasks by

assigning a weight 𝑤𝑘 to each customer 𝑘’s tasks. Let x ∈ R |𝐾 |

represent a throughput vector, where 𝑥𝑘 is the throughput for

customer 𝑘 , and let w ∈ R |𝐾 | represent a weight vector, with a

weight𝑤𝑘 for each customer 𝑘 .5

The weighted VRP seeks to maximize the total weighted

throughput of the system, where each task is allowed a weight. We

can describe this as a mixed-integer linear program:

argmax
P𝑣 ,∀𝑣∈𝑉

∑

𝑘∈𝐾

𝑤𝑘𝑥𝑘 = argmax
P𝑣 ,∀𝑣∈𝑉

wᵀx (1)

s.t. 𝑐 (P𝑣) ≤𝐵 ∀𝑣 ∈𝑉 (2)

P𝑣 is a valid path ∀𝑣 ∈𝑉 , (3)

where 𝑐 (·) specifies the time to complete a path. Equation (2)

enforces that, for each vehicle, the time to execute the selected path

does not exceed the budget. Equation (3) captures constraints that

are specific to the vehicles (e.g., if vehicles must return to home

at the end of each round) and customers (e.g., if tasks are only

valid during specific windows during the scheduling horizon). The

weighted VRP (also called the prize-collecting VRP) is NP-hard, but

there are several known algorithms with optimality bounds [5, 44].

5x and w vary with each round 𝜏 . We drop the round index 𝜏 whenever there is no
ambiguity about the current round.
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(a) Computingw for a face. (b) Finding support allocations.

Figure 6: Using a blackbox VRP solver as a building block, Mobius runs an

iterative search algorithm to find the support allocations.

Using weights to find the corner points. We can adjust the

weight vector w in order to capture a bias toward a particular

customer; w describes a direction in the customer throughput

space, reflecting that bias. Fig. 6a visualizes w in a 2-D customer

throughput space. A solver optimizing for Equation (1) searches

for the schedule with the highest throughput in the direction of

w [10], thus requiring the schedule to lie on the convex boundary.

For example,w1= (1,0) finds the schedule on the convex boundary
that prioritizes customer 1 (i.e., along the 𝑥-axis), and w2 = (0,1)
finds a schedule that prioritizes customer 2 (i.e., along the𝑦-axis).

Searchingon theconvexboundary.Recall that, for strict fairness,

the target allocation is the point where the 𝑦 = 𝑥 line intersects

the convex boundary for the current round (§4). At the start of

the search, Mobius does not yet know the convex boundary, so it

cannot know the target allocation. To find allocations on the convex

boundary, Mobius employs an iterative search algorithm, analogous

to binary search; in each stage, it tries to find a new allocation

on the convex boundary in the direction of the 𝑦 = 𝑥 line. Mobius

begins the search with allocations along the customer axes. For two

customers, it begins with weights w1 and w2 above, which gives

two allocations on the convex boundary. In each stage of the search,

Mobius computes a newweight vector, using allocations found on

the convex boundary in the previous stage, in order to find a new

allocation on the convex boundary. It terminates when no new allo-

cation can be found. By searching in the right direction, Mobius only

needs to compute a subset of corner points on the convex boundary.

To better illustrate the algorithm, consider the example in Fig. 6b,

with 2 customers. Mobius starts the search by looking at the two

extreme points on the customer 1 (𝑥1) and customer 2 (𝑥2) axes,
which correspond to prioritizing all vehicles for either customer.

So in stage 1, Mobius computes these schedules, using the weight

vectorsw1= (1,0) andw2= (0,1), which give the allocations𝐴 and

𝐵, respectively, in Fig. 6b. After stage 1, {𝐴,𝐵} is the current set of
corner points determining the convex boundary.

In the next stage, Mobius computes a newweightw to continue

the search in the direction normal to𝐴𝐵 (Fig. 6a). Let the equation for

the face𝐴𝐵 be𝑤1𝑥1+𝑤2𝑥2 =𝑐 , where𝑤1,𝑤2, and 𝑐 can be derived
using the known solutions on the line, 𝐴 and 𝐵. So, by invoking

the VRP solver (Equation (1)) with w = (𝑤1,𝑤2), we try to find a

schedule on the convex boundary, with the highest throughput in

the direction normal to 𝐴𝐵. Let 𝑥1 and 𝑥2 be the throughputs for
the schedule computed with weightw. If (𝑥1,𝑥2) lies above this line,
i.e.,𝑤1𝑥1+𝑤2𝑥2>𝑐 , then the point (𝑥1,𝑥2) is a valid extension to the
convex boundary. In this example, Mobius finds a new allocation

𝐶 ; so, the new set of corner points is {𝐴,𝐶,𝐵}.

(a) Extensible region of face 𝐵𝐶 . (b) Throughputs in each round.

Figure 7:Mobius (a) finds the support allocations nearest the target allocation

in each round, and (b) converges to the target allocation.

Notice that this extension in stage 2 creates two new faces on the

convex boundary,𝐴𝐶 and𝐶𝐵. But, the𝑦=𝑥 line only passes through
𝐴𝐶 . So, in stage 3, Mobius continues the search, extending 𝐴𝐶 by

the computing the weights as described above (normal to𝐴𝐶), and
discovers a new allocation𝐷 . Finally, Mobius tries to extend the face

𝐷𝐶 because it intersects the 𝑦 = 𝑥 line. It finds no valid extension,

and so, it terminates its search on the face 𝐷𝐶 , and returns the

support allocations𝐷 and𝐶 .

Generalizing tomore customers.Mobius computes a weight for

each customer 𝑘 ∈𝐾 , i.e.,w ∈R |𝐾 | . Faces on the convex boundary

become |𝐾 |-dimensional hyperplanes, described by the equation∑
𝑘∈𝐾𝑤𝑘𝑥𝑘 =𝑐 . Mobius solves forw using the |𝐾 | allocations that

define each face, and finds |𝐾 | support allocations at the end of the
search. Recall from the example in §5.1 that each stage produced 2

new faces and that Mobius only continued the search by extending

1 face. With |𝐾 | customers, even with |𝐾 | new faces after each stage,

Mobius only invokes the VRP solver once to continue the search.

A naive algorithm, by contrast, would require |𝐾 | calls to the VRP
solver in each stage. ThusMobius scales easily with more customers

by pruning the search space efficiently.

5.2 Scheduling Over Rounds

In each round, Mobius finds |𝐾 | support allocations, which

determine the face of the convex boundary that contains the target

allocation. It then selects a support allocation among these |𝐾 | such
that the per-customer long-term throughputs 𝑥𝑘 (𝑡) approach the

target throughput. By tracking 𝑥𝑘 (𝑡) over many rounds, Mobius

can select allocations that compensate for any unwanted bias

introduced to some customer in a prior round.

Mathematically, to choose a schedule in round 𝑡 , Mobius

considers the effect of each support allocation x(𝑡) on the average
throughput x(𝑡 + 1). The average throughput is defined for each

customer 𝑘 as 𝑥𝑘 (𝑡+1)=𝛾𝑡𝑥𝑘 (𝑡)+(1−𝛾𝑡 )𝑥𝑘 (𝑡),where𝛾𝑡 =1/(𝑡+1).
Mobius chooses x(𝑡) such that x(𝑡+1) is closest to the𝑦=𝑥 line (in
Euclidean distance).

5.3 Optimality ofMobius

Mobius is optimal in a round.We can prove that Mobius finds

the support allocations nearest the target throughput (in Euclidean

distance).We illustrate this through the example in Fig. 7a,where the

corner points of the convex boundary are {𝐴,𝐷,𝐵,𝐸,𝐶}, and 𝐵 is clos-

est to the target allocation. In the previous stage, Mobius discovered

𝐵, and it needs to pick one face to continue the search. The shadedyel-
low regions indicate the extensible regions of the two candidate faces
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𝐴𝐵 and𝐵𝐶 . The extensible region of a face describes the space of allo-
cations that can be obtained by searchingwith theweight vector that

defines that face, while maintaining a convex boundary (§5.1). Since

Mobius finds a newallocation on the convex boundary in every stage

of the search, no allocation can exist outside these regions; otherwise,

the resulting set of discovered allocationswould no longer be convex.

Thus, the best face for Mobius to continue the search is indeed 𝐵𝐶 ,
because its extensible region is the only one thatmay contain a better

allocation closer to the𝑦=𝑥 line. Our technical report [6] contains a
formal proof that the optimal support allocation (i.e., the allocation

closest to the line𝑦=𝑥) is unique and that Mobius finds it.

Optimality over multiple rounds. Under a static task arrival

model, we can show that the schedules computed byMobius achieve

throughputs that are optimal at the end of every round, i.e., the

achieved throughput has the minimum distance possible to the

target allocation after each round. This model assumes the convex

boundary remains the same across rounds. One way to realize this

is to require (i) the vehicles return to their starting locations at the

end of each round, and (ii) all tasks are renewed at the beginning of

each round. Wemake these simplifying assumptions only for ease

of analysis; our evaluation in §7 does not use them.

We describe an intuition for this result below. 6 Per the static task

arrival model, the convex boundary is the same in each subsequent

round; therefore, Mobius finds the same support allocations in every

round. By taking into account the long-term per-customer rates,

𝑥𝑘 (𝑡), Mobius oscillates between these support allocations in each

round at the right frequency, such that 𝑥𝑘 (𝑡) ∀𝑘 ∈ 𝐾 converges

to the target allocation over multiple rounds. We illustrate this

in Fig. 7b, which shows the support allocations 𝐵 and 𝐸. The face

𝐵𝐸 contains the target allocation, denoted by the star. Because

Mobius oscillates between 𝐵 and 𝐸, the allocation (𝑥1 (𝑡),𝑥2 (𝑡))
must lie along 𝐵𝐸. Mobius chooses 𝐵 in the first round because its

throughput is closer than 𝐸 to the target allocation. In the second

round, it chooses 𝐸, moving the average throughput to 𝐵1𝐸1. In the
third round, Mobius chooses 𝐵, moving the average throughput to

𝐵2𝐸1. Notice that if it had instead chosen 𝐸 in the third round, the

average throughput would be 𝐵1𝐸2, which is further away from the

target throughput. Thus, this myopic choice between𝐵 and 𝐸 results
in the closest solution to the target allocation after any number of

rounds. Additionally, notice that the length of the jump (e.g., from 𝐵
to 𝐵1𝐸1 and from 𝐵1𝐸1 to 𝐵2𝐸1) decreases in each round; therefore,
Mobius converges to the target throughput.

5.4 Implementation

We implement the core Mobius scheduling system in 2,300 lines

of Go.7 It plugs directly with external VRP solvers implemented

in Python or C++ [25, 39]. Mobius exposes a simple, versatile

interface to customers, which we call an interest map. An interest

map consists of a list of desired tasks, where each task includes a

geographical location, the time to complete the task once the vehicle

has reached the location, and a task deadline (if applicable). In each

round, Mobius gathers andmerges interest maps from all customers,

before computing a schedule. At the end of each round, it informs the

customers of the tasks that have been completed, and customers can

6See our technical report [6] for a formal proof.
7github.com/mobius-scheduler/mobius

submit updated interest maps. Interest maps serve as an abstraction

for Mobius to ingest and aggregate customer requests; however, the

merged interest map is directly compatible with standard weighted

VRP formulations [5, 19] without modification. Thus, Mobius acts

as an interface between customers and vehicles, using a VRP solver

as a primitive in its scheduling framework (Fig. 3).

Bootstrapping VRP solvers. Since the VRP is NP-hard [44],

solvers resort to heuristics to optimize Equation (1). In practice, we

find that state-of-the-art solvers do not compute optimal solutions;

however, we can aid these solvers with initial schedules that the

heuristics can improve upon. We warm-start the VRP solvers with

initial schedules generated by the following policies: (i) maximizing

throughput, (ii) dedicating vehicles (assuming a sufficient number

of vehicles), and (iii) a greedy heuristic that maximizes our utility

function (§6). 8 At the beginning of each round,Mobius builds a suite

of warm start solutions. Then, prior to invoking the VRP solver with

some weight vectorw, Mobius chooses the initial schedule from its

warmstart suitewith thehighestweighted throughput (i.e., objective

of Equation (1)). Mobius also caches the schedules found from all

invocations to theVRP solver (§5.1), to use forwarmstart throughout

the round.Mobius parallelizes all independent calls to theVRP solver

(e.g., when computing warm start schedules and when generating

|𝐾 | schedules to initialize the search along the convex boundary).

6 GENERALIZING TO 𝛼-FAIRNESS
The fairness objective we have considered so far aims to provide

all customers with the same long-term throughput (maximizing the

minimum throughput). However, an operator of a mobility platform

may be willing to slightly relax their preference for fairness for a

boost in throughput. To navigate throughput-fairness tradeoffs, we

can generalize Mobius’s algorithm (§5) to optimize for a general

class of fairness objectives. We use the 𝛼-parametrized family of

utility functions𝑈𝛼 , developed originally to characterize fairness
in computer networks [31]:

𝑈𝛼 (y)=
∑

𝑘∈𝐾

𝑦𝑘
1−𝛼

1−𝛼
, (4)

where y∈R |𝐾 | and𝑦𝑘 is the throughput of customer 𝑘 (either short-
term 𝑥𝑘 or long-term 𝑥𝑘 ). 𝑈𝛼 captures a general class of concave

utility functions, where 𝛼 ∈ R≥0 controls the degree of fairness.

For instance, when 𝛼 = 0, the utility simplifies to the throughput-

maximizing objective defined in Equation 1 (assuming all customers

have the same weight). By contrast, when 𝛼 → ∞, the objective

becomesmaximizing theminimumcustomer’s throughput (i.e.,max-

min fairness). 𝛼 =19 corresponds to proportional fairness, where the
sum of log-throughputs of all customers is maximized; this ensures

that no individual customer’s throughput is completely starved.

Generalizing Mobius’s search algorithm. When Mobius

generalizes to 𝛼-fairness, the target allocation is no longer simply

the point on the convex boundary that intersects the 𝑦 = 𝑥 line.

The target allocation is instead the allocation on the convex

boundary with the greatest utility𝑈𝛼 . When searching the convex

boundary in each round, Mobius determines which candidate face

8Our technical report [6] includes a detailed description of this heuristic.
9𝑈𝛼 is not defined at𝛼 =1, so we take the limit as𝛼→1.
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Figure 8:Mobius can tune its allocation to deliver proportional fairness (𝛼 =1)
and max-min fairness (approximated with 𝛼 =100).

contains the target throughput by using Lagrange Multipliers to

find the point along the face 10 with the greatest utility. Once it

finds each support allocation x, Mobius incorporates the historical

throughput x to select the schedule with greatest cumulative utility

𝑈𝛼 (𝛾𝑡x(𝑡+1)+(1−𝛾𝑡 )x(𝑡)), where𝛾𝑡 is as defined in §5.2.

Anexample. Fig. 8 shows a time-series chart of long-term customer

and platform throughputs for the example described in §4.2. By

adapting to different schedules on the convex boundary, Mobius

converges to a fair allocation of rates without degrading total

throughput. 𝛼 allows Mobius to compute expressive schedules; for

instance,𝛼 =1 strives tomaximize total throughputwithout starving

either customer. Additionally, Mobius (max-min)11 converges to

a fair allocation of long-term throughputs within 20 minutes.

7 REAL-WORLD EVALUATION

We evaluate Mobius using trace-driven emulation (§7.1) in two

real-world mobility platforms. In §7.2, we apply Mobius to Lyft

ridesharing in Manhattan and demonstrate that it scales to large

onlineproblems. In §7.3,wedeployMobius ona shared aerial sensing

system, involving multiple apps with diverse spatiotemporal prefer-

ences. Our evaluation focuses on answering the following questions:

• How does Mobius compare to traditional approaches in

online scheduling for large-scale mobility problems?

• How robust is Mobius in the presence of dynamic spatiotem-

poral demand from customers?

• How can we tune Mobius’s timescale of fairness?

• What other benefits does Mobius provide to customers,

beyond optimizing per-customer throughputs?

7.1 Online Trace-Driven Emulation

We implement a trace-driven emulation framework to compare

Mobius against other scheduling schemes, under the same real-

world environment. This framework replays timestamped traces of

requests submittedbyeachcustomer, by streaming tasks to the sched-

uler as they arrive, and sending task results back to the customer.

Capturing environment dynamics and uncertainty. To emu-

late dynamic customer demand, our emulation framework streams

tasks according to the timestamps in the trace—soMobius has no vis-

ibility into future tasks. To emulate uncertainty in customer demand,

wecancel tasks that arenot scheduled in10minutes.Additionally, the

10Our technical report [6] shows how to find the face containing the target throughput.
11Mobius approximates max-min fairness (𝛼→∞) with𝛼 =100.

case studies in §7.2 and§7.3 consider scenarioswhereat least one cus-

tomer is backlogged (defined in §2). If no customers are backlogged,

then theplatformcan fulfill all taskswithin theplanninghorizon, and

the resulting schedule would havemaximal throughput and fairness.

Thus, the problems are only interestingwhen at least one customer is

backlogged; Mobius is effective and required only in such situations.

Backend VRP solver.We use the Google OR-Tools package [39]

as our backend weighted VRP solver (Equation (1)). OR-Tools is a

popular package for solving combinatorial optimization problems,

and supports a variety ofVRPconstraints, includingbudget, capacity,

pickup/dropoff, and time windows. Our case studies involve VRPs

with different sets of constraints. We run our experiments on an

Amazon EC2 c5.9xlarge instance with 36 CPUs.

Baselines. In our experiments, we evaluate Mobius’s throughput

and fairness against two baseline routing algorithms: (i) a max

throughput scheduler, and (ii) dedicated vehicles. The max through-

put scheduler simply runs the backend VRP solver on the same

input of customer tasks fed into Mobius for a round. This solution

provides a benchmark on the platform capacity, and quantifies the

maximum achievable total throughput. We compute the “dedicated

vehicles” schedule by first distributing the vehicles evenly among all

customers,12 and then invoking the max throughput scheduler once

for each customer. This solution provides a benchmark schedule

that divides vehicle time equally among all customers. As shown

in §2, round-robin scheduling achieves very low throughput; hence

we omit it from the results in this section.

To the best of our knowledge, Mobius is the first algorithm

that explicitly optimizes for customer fairness in mobility plat-

forms. We considered evaluating Mobius by running a scheduler

that optimizes throughput and fairness over a longer timescale

using a mixed-integer linear program solver (e.g., Gurobi [25] or

CPLEX [28]); however, this is not feasible in practice, because (i)

customer demands arrive in a streaming fashion, and (ii) these

solvers do not scale beyond tens of tasks [36]. Thus, we believe the

baselines described above offer reasonable comparisons for Mobius.

Microbenchmarks. In addition to the real-world case studies

(§7.2-§7.3), we also evaluate Mobius on microbenchmarks created

from synthetic customer demand, including scenarioswhereMobius

is optimal (under the static task arrival model, §5.3). We compare

Mobius against max throughput, dedicating vehicles, and round

robin, and show, through controlled experiments, that (i) it provides

provably good throughput and fairness for a variety of spatial

demand patterns, (ii) it scales for different numbers of vehicles, (iii)

it controls its timescale of fairness, and (iv) it can tune its fairness

parameter 𝛼 . We also report the runtime of Mobius in various

environments. We include these results in our technical report [6].

7.2 Case Study: Lyft Ridesharing inManhattan

Setting. Motivated by the issue of “destination discrimina-

tion” [35, 45, 49] discussed in §1, we consider a ridesharing service

that receives requests from different neighborhoods (customers)

in a large metro area. Some neighborhoods are easier to travel to

than others, and rider demand out of a neighborhood can vary

12Dedicating vehicles is most suitable when the number of vehicles is a multiple of the
number of customers.
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Figure 9: Maps of zones (customers) and demand in Manhattan, indicating

skews in both spatial coverage and volume of ride requests.

with the time of day. We show that Mobius can guarantee a fair

quality-of-service (in terms of max-min fair task fulfillment) to all

neighborhoods throughout the course of a day, without significantly

compromising throughput.We also show that, although it optimizes

for an equal allocation of throughputs, Mobius does not degrade

other quality-of-experience metrics, such as rider wait times. We

further demonstrate that Mobius is a scalable online platform that

generates schedules for a large city-scale problem.

Ridesharing demand. We use a 13-hour trace of 16,817 times-

tamped Lyft ride requests, published by the New York City Taxi and

LimousineCommission, involving 40 neighborhoods (zones) inMan-

hattan over the course of a day [14]. Each request consists of a pickup

and a dropoff zone, and we seek to provide pickups from all zones

equitably. The map in Fig. 9 (left) demarcates the customer zones.

Fig. 9 (right) illustrates the scale of this scheduling problem. It

visualizes traffic on the top 1,000 (out of 3,300) pickup-dropoff pairs;

the color of each arrow indicates the volume of ride requests for that

pickup-dropoff location.Notice thatboth thedistanceof ridesand the

volume of requests originating from zones vary vastly throughout

the island. A significant fraction of requests arrive into and depart

fromLowerManhattan. Some zones inUpperManhattan have as few

as 15 unique outbound trajectories,while other zones have hundreds.

Moreover, ridesharing demand varies significantly with the time

of day. For instance, a busy zone near MidtownManhattan sees the

load vary from around 200 to 600 requests/hour, and a quiet zone

near Central Park experiences a minimum load of 3 requests/hour

and peak load of 24 requests/hour. Notice that the dynamic range

of demand throughout the 13 hours also varies across zones.

Experiment setup. This ridesharing problem maps to the capac-

itated pickup/delivery VRP formulation [19]. It computes schedules

that maximize the total number of completed rides, such that (i) a

ride’s pickup and dropoff are completed on the same vehicle, and

(ii) each vehicle is completing at most one ride request at any point

in time.We configure the solver to retrieve real-time traffic-aware

travel time estimates from the Google Maps API [24], and we

constrain OR-Tools to report a solution within 3 minutes.

We use the trace described above in our emulation framework

(§7.1). We compute schedules for a fleet of 200 vehicles.13 In order

to ensure that the schedules are not myopic, we plan our routes

with 45-minute horizons; however, to reduce rider wait times, we

recompute the schedule every 10 minutes, while ensuring that

we honor any requests that we have already committed to in

13The number of vehicles does not matter, since we compare Mobius to the platform
capacity (from the max throughput scheduler).
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Figure 10: Long-term throughputs for zones in Manhattan after 13 hours. A

good scheduler should have a stacked plotwith large evenly-sized blocks, and

a map with bright (high throughput) and homogeneous (fair) colors across

zones.

the schedule. We assume that riders cancel requests that are not

incorporated into a schedule within 10 minutes of the request time.

Fairness with high vehicle utilization. Since Mobius plans con-

tinuously, having several allocations on the convex boundary at its

disposal, we expect it to converge to a fair allocation of rates, despite

the skew in demand. Fig. 10 shows the long-term throughputs

achieved for each zone by different scheduling algorithms, after

13 hours. The color of each zone in the map indicates that zone’s

throughput. Bright colors correspond to high throughput, and a

homogeneous mix of colors indicates a fair allocation. Beneath

the maps, we also stack the zone throughputs to indicate how each

scheduler divides up the total platform throughput across the zones;

ideally we would like large, evenly-sized blocks.

The max throughput scheduler divides the platform throughput

most unevenly across zones. In particular, we see that while it

serves nearly 200 rides/hour out of the Financial District (Lower

Manhattan), it virtually starves zones near Central Park. From the

demand map (Fig. 9), notice that (i) a majority of rides originate

from Lower Manhattan, and (ii) most of these trips are destined

for neighboring zones. Thus, the best policy to maximize the total

number of trips completed is to stay in Lower Manhattan, which

is what the max throughput scheduler does.

The bar chart indicates that dedicating 5 vehicles to each zone

results in 40% lower platform throughput than the max throughput

scheduler. This is because a heterogeneous demand across zones

cannot be effectively satisfied by an equal division of resources

(vehicles). Nevertheless, Fig. 10 shows that this scheduler shares the

platform throughput most evenly across zones. The division of per-

zone throughputs is not perfectly even, in spite of dedicating anequal

number of vehicles, because (i) ride requests fromdifferent zones can

have different trip lengths, and (ii) some zones have inherently low

demand and do not backlog the system, leaving some vehicles idle.

By contrast, Mobius strikes the best balance between throughput

and fairness. It achieves roughly equal zone throughputs, while

compromising only 10% of the maximum platform throughput.

Compared to dedicating vehicles, we see, from the map, that

Mobius achieves higher throughput for most zones by identifying

an incentive to chain requests from different zones. For example,
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Figure 11: Time series of long-term throughputs for two zones for different re-

planning horizons. Frequent replanning ensures fairness (equal throughputs)

at shorter timescales.
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Figure12:Distributionsof riderwait times for twozones.Even thoughMobius

compromises some throughput for fairness, it delivers similar wait times as

the max throughput scheduler.

Mobius combines two requests from different zones into the same

trip, when the dropoff of the first request is close to the pickup of

the second request. While this helps improve efficiency, Mobius also

prioritizes pickups from zones with a historically low throughput

to ensure fairness across zones. This ridesharing simulation reveals

that it is possible to achieve a fair allocation of rates in a practical

settingwithout significantly degrading platform throughput.

Controlling the timescale of fairness. Mobius’s replanning

interval controls the timescale over which it is fair. The more often

thatMobius replans, themore up-to-date its record of long-term cus-

tomer throughputs; Mobius can then adapt to short-term unfairness

quickly by finding a more suitable schedule on the convex boundary.

Recall that when replanning frequently, the convex boundary does

not change drastically between scheduling intervals (§4.2), if the

spatial distribution of tasks do not change rapidly with time. So, in

practice,wedonot expect to deviate far from the ideal target through-

put. Fig. 11 shows the long-term throughputs achieved for two zones,

for replanning timescales of 10 minutes and 15 minutes. Mobius

equalizes throughputs better when it replans more frequently.

Rider wait times. Platform operators prefer high throughput

schedules because they translate directly to high revenue; low

throughput would lead to more cancelled rides. While Fig. 10

demonstrates that Mobius is fair without degrading throughput,

we would like to know if optimizing for fairness impacts rider wait

time (i.e., the time between requesting a ride and being picked up).

Fig. 12 compares the distributions of rider wait times for rides

originating from Bloomingdale District (a quiet neighborhood west

ofCentral Park) and fromMidtownCenter (a busydistrict nearTimes

Square). We compute wait times are only for fulfilled tasks. Notice

that in both zones—with two very different demand patterns—the

distribution of wait times for Mobius is comparable to that of the

max throughput scheduler.

Weobserve that thewait times in the quiet zone are slightly higher

forMobius (averageof17minutes, comparedwith15minutes formax

throughput). This is because thewait times forMobius are computed

for significantly more tasks (Mobius fulfills 66.7%more ride requests

than does max throughput). The schedule that dedicates vehicles

sees higher wait times than Mobius, especially when rides originate

from a busy zone (e.g., Midtown Center), since vehicles would be

idle until they return to their assigned zone to pick up a new rider.

Scalability. This case study demonstrates that Mobius is practical

at an urban scale. In fact, when scheduling its fleet of taxis, New

York City’s Yellow Cab restricts its scheduling region to Manhattan

and organizes its requests according to approximately 40 taxi

zones [7, 13]. In our experiments, the backend VRP solver (i.e., max

throughput scheduler) computes each 45-minute schedule in 3

minutes (capped by the timeout). We observe that Mobius takes

5-6 minutes; Mobius sees a speedup by (i) parallelizing calls to

the VRP solver and (ii) warm-starting the VRP solver with initial

schedules (§5.4). These optimizations help Mobius easily scale to

tens of thousands of tasks. We believe we can further improve the

speed by leveraging parallelism in the backend VRP solver [43]

(OR-Tools does not expose a multi-threaded solver).

7.3 Case Study: Shared Aerial Sensing Platform

Setting. The recent proliferation of commodity drones has gener-

ated an increased interest in the development of aerial sensing and

data collection applications [2, 4, 16, 20, 33, 34], as well as general-

purpose drone orchestration platforms [26, 37, 40]. An emerging

mobility platform is a drones-as-a-service system [21, 27, 32, 46, 48],

where developers submit apps to a platform that deploys these app

tasks on a shared fleet of drones. App (customer) semantics in a

drone sensing platform can show significant heterogeneity in both

space and time. To ensure a satisfactory quality-of-service for all

applications, a scheduler must not only efficiently multiplex tasks

from different applications in each flight (typically constrained to 20

minutes due to the battery life [17]), but also share task completion

throughput equitably across apps. Since apps can be reactive (i.e.,

sensing preferences change as apps receive measured data), Mobius

must additionally provide a sustained rate-of-progress to each app,

as opposed to “bursty” throughput.

Sensing apps. We implement 5 popular urban sensing apps to

evaluate Mobius in this drones-as-a-service context, summarized in

Fig. 13. Fig. 14 depicts the locations for the sensing tasks submitted

by each app. We describe each app below:

• The Traffic app continuouslymonitors road traffic congestion

over 11 contiguous segments of road in an urban area. Tomea-

sure average vehicle speed, it collects 10-second video clips

at each road segment, detects all cars using YOLOv3 [42], and

tracks the trajectory [11] of each vehicle. After gatheringmul-

tiple initial samples at all 11 locations, the app prioritizes the

locations with the highest variance in speed, in order to col-

lapse uncertainty in its overall estimates of road congestion.

• The Parking app counts parked cars at 3 sites, by monitoring

each lot for 1 minute; to maintain fresh estimates of counts,

this app renews these 3 tasks after 10 minutes.

• TheAir Quality appmeasures PM2.5 concentration around

a plume [1], submitting a candidate list of 100 one-time

sampling locations. This app is also reactive; on receiving a

measurement, it updates a Gaussian Process model [41] and

cancels any unfulfilled tasks with high predicted accuracy.
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Figure 13: Summary of aerial sensing applications, which span a variety of spatial demand and reactive/continuous sensing preferences. We collected ground

truth data for each of these applications using real drones, and created traces to evaluate Mobius.

Recharge
Traffic
Parking
iPerf
Air Quality
Roof

Figure 14:Map of tasks for 5 aerial sensing apps, spanning a 1 squaremile area

in Cambridge, MA. Mobius replans every 5 minutes, in order to incorporate

new requests. Each drone returns to recharge every 15 minutes.

• The iPerf app builds a map of cellular coverage in the air, by

profiling throughput at 100 spatially-dispersed locations.

It renews all tasks after each cycle of 100 measurements is

complete.

• The Roof app submits 60 one-time tasks to image roofs over

a residential area.

Notice that these apps collectively have a variety of spatiotemporal

characteristics. For instance, the Traffic app changes its requests

with time, based on the uncertainty in speed estimates and the

freshness in measurements. By contrast, the Air Quality app

changes its requests with space, using a statistical model to collapse

uncertainty in a task based on nearby measurements. The iPerf app

has no temporal preferences, and instead functions as a “free-riding”

app that gathers quick measurements over a large area.

Ground-truth data collection. To run our drones-as-a-service

platform on real-world sensor data, which is critical to the

performance of the reactive and continuous monitoring apps, we

separately gather 90 minutes of ground-truth data for each app,

using real drones. This gives us a trace of timestampedmeasurement

values of each app. We then use our trace-driven emulation

framework (§7.1) to evaluate different scheduling algorithms.

Fig. 13 shows highlights from our data collection. For example,

to collect ground-truth for the Traffic app, we instrument 6 DJI

Mavic Pros [17] to continuously gather video and track cars over

the 11 measurement locations (Fig. 14) for 90 minutes. Similarly, for

the iPerf and Air Quality apps, we program a DJI F450 drone [18]

equipped with an LTE dongle and a PM2.5 sensor [1] to gather

measurements at their respective measurement locations. We

instrument our drone to communicate its location, battery status,

and measurement data to a dashboard hosted on an EC2 instance,

fromwhich we observe the drone’s progress on our laptop.

Experiment setup.We configure our backend solver to estimate

travel time as the Euclidean distance between the sensing tasks plus
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Figure 15: Long-term throughputs achievedover 90minutes.Mobius achieves

high throughput and best shares it amongst the apps.

the sensing time for the destination task. In order to be sufficiently

reactive to the Traffic and Air Quality apps, we schedule in 5-minute

rounds, and require that the drones return to recharge their batteries

every 15 minutes. We run our trace-driven emulation framework

with 5 drones. Additionally, we configure the Roof app to join the

system after 30 minutes.

High throughput, high fairness. To understand how Mobius

divides the platform throughput, we show the long-term throughput

for each app over 90 minutes in Fig. 15. Mobius (max-min) achieves

55% more throughput than dedicating drones and only 15% less

throughput than maximizing throughput. Mobius with a propor-

tional fairness objective similarly outperforms max throughput and

dedicated vehicles in navigating the throughput-fairness tradeoff.

Note that the throughputs of the Air Quality and Roof apps decay

with time, after their one-time tasks are fulfilled.

Because these apps have variable demand (e.g., 100 tasks for iPerf

and 3 tasks for Parking), studying throughput is not sufficient.Hence,

we plot the tasks completed as a fraction of demand for each app in

Fig. 16. Notice that, under Mobius, even the most starved app (iPerf)

completes nearly 34% of its tasks; by contrast, max throughput and

dedicated drones deliver worst-case task completions of 30% and

13%, respectively. Even though dedicating drones guarantees equal

drone time for each app, it is extremely unfair toward apps with

higher demand or more spatially-distributed tasks.

Impacts of sensing and travel times. Fig. 14 would suggest that

the Air Quality and Roof tasks are easier to service, since their

tasks are more spatially concentrated; however, their tasks take 20

seconds each (Fig. 13). The max throughput scheduler understands

this tradeoff in terms ofmaximizing throughput, and thus prioritizes

the iPerf app, since its 10-second tasks (Fig. 13) are cheap to complete.

By contrast, Mobius additionally understands how to navigate this

tradeoff in terms of fairness; for instance, it forgoes some iPerf tasks

to complete more 20-second AQI measurements.
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Figure 16: Percentage of tasks completed per app. Mobius fulfills nearly all

requests for the Traffic and Parking apps, before allocating “excess” vehicle
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Figure 17: Discounting long-term throughput allows Mobius to gradually

respondto thesuddenpresenceof the transientRoofapp, insteadofdedicating

all drones to it.

Reliable rate-of-progress. In enforcing either proportional

or max-min fairness, Mobius does not starve any app, at any

instant of time. Indeed, Fig. 15 indicates that Mobius delivers a

reliable rate-of-progress to the Air Quality app, gradually giving

it roughly 3 tasks/min over the first 20 minutes. By contrast, the

max throughput scheduler is more “bursty”, and only services this

app after 20 minutes. As a result, we find that, with Mobius, the

root-mean-square error (RMSE) of the Gaussian Process model for

the air quality drops more rapidly.

Catering to transient apps. Recall that the Roof app joins the plat-

form after 30minutes. Fig. 15 indicates thatMobius rapidly adapts to

this change in demand with a spike in throughput for the Roof app

at the cost of lower throughput for the iPerf and Air Quality apps.

Notice that this spike in Mobius’s schedule is larger in magnitude

than the one in the max throughput schedule. This is because

Mobius realizes that, when the Roof app joins, it has no accumulated

throughput, while other apps have amassed higher throughput from

living in the system for longer. Fig. 17 (right) plots the routes for

all 5 drones during minutes 30-35; all drones immediately flock to

the Roof app. With Mobius, an operator can choose to respond to

the arrival of new apps by discounting throughput accumulated in

prior rounds. Fig. 17 (left) shows howMobius can control the Roof

app’s rate of task fulfillment, with a discount factor of 0.1.

8 RELATEDWORK

Sharedmobility and sensing platforms. Ridesharing platforms

rely on different flavors of the VRP; these systems have typically

been interested in maximizing profit (i.e., throughput) [3, 12],

minimizing the size of the fleet [47], and planning in an online

fashion [7]. Similarly, there has been a large amount of recent work

on drones-as-a-service platforms, which have primarily addressed

challenges surrounding data acquisition [46], multi-tenancy and se-

curity [27], andprogramming interfaces [26, 37].All of these systems

use a throughput-maximizing algorithm under the hood. Mobius

is motivated by the advent of customer-centric mobility platforms

in a variety of domains, where guarantees on quality-of-service to

customers are paramount to the viability [45] of these services [35].

Vehicle routing problem. The VRP has been extensively studied

by the Operations Research community [44]. Many variants of the

problemhave been considered, ranging from the budget-constrained

VRP [5], capacitated VRP [23], VRP with time windows [19], pre-

dictive routing under stochastic demands [8, 26], etc. Prior work

has extended the VRP to consider multiple objectives, such as

minimizing the variance in vehicle travel time or tasks completed

by each vehicle [29]. These load balancing objectives, however, do

not consider customer-level fairness, which is the focus of Mobius.

Moreover, Mobius abstracts out fairness from the underlying vehicle

scheduling problem, making its techniques complementary to the

large body of work on the VRP and its variants.

Fair resource allocation in computer systems.Our approach to

formalizing throughput and fairness in mobile task fulfillment is in-

spired by𝛼-fair bandwidth allocation in computer networks [31, 38].

However, as noted in §1, mobility platforms introduce new chal-

lenges around attributing cost to serve customers, that do not arise

when addressing fairness in switch scheduling [15], congestion con-

trol [30], and multi-resource compute environments [22]. Mobius

develops a novel set of techniques to address these challenges.

9 CONCLUSION

We developed Mobius, a scheduling system that can deliver both

high throughput and fairness in shared mobility platforms. Mobius

uses the insight that, when operating over rounds, scheduling on the

convex boundary of feasible allocations, as opposed to the Pareto

frontier, provably improves on fairness with time. We showed

that Mobius can handle a variety of spatial and temporal demand

distributions, and that it consistently outperforms baselines that aim

to maximize throughput or achieve fairness at smaller timescales.

Additionally, through real-world ridesharing and aerial sensing case

studies, we demonstrated that Mobius is versatile and scalable.

There are several opportunities for extending the capabilities of

Mobius. First, Mobius assumes that customers are not adversarial.

Developing strategyproof mechanisms that incentivize truthful

reporting of tasks by customers is an open problem. Second, we

design Mobius to only balance customer throughputs. We believe

the optimization techniques we developed (§5) can be extended

to support other platform objectives, such as task latency, vehicle

revenue, and driver fairness. Finally, incorporating predictive

scheduling, where the platform can strategically position vehicles

in anticipation of future tasks, is an interesting direction for future

work, as it can further increase platform throughput.
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