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ABSTRACT

The goal of the research in this thesis is to extend the understanding of the physics
involved in the directional solidification of semiconductor and optoelectronic crystals
grown in vertical Bridgman and gradient freeze systems. The specific objectives focus
on the investigation of convection in the melt during growth of dilute or nondilute binary
alloys and its effact on species transport and axial and radial segregation of impurities
and dopants. These objectives have been met by constructing detailed pseudo-steady-
state and transient models describing the crystal growth process; the models include
the shape of the melt/crystal interface, convection, heat and solute transfer in the melt,
heat conduction in the crystal and ampoule, and radiative exchange between the furnace
and the ampoule. The transient analyses presented in this study are meaningful because
these are the first time-dependent simulations of crystals growth in the closed ampoule
of the vertical Bridgman growth system, which account for these effects simultaneously.

Robust numerical algorithms for solution of these complex moving-boundary prob-
lems were constructed for the transient imodel by systematic implementation of finite ele-
ment discretizations and implicit time integration methods for thc resulting differential-
algebraic set of equations. A modified Newton’s method, coupled with frontal elimi-
nation methods for linear systems, was effective in solving the large set of nonlinear
algebraic equations that arise at each time step.

The effect of a vertically-aligned magnetic field on the convection in the melt and
solute segregation in the crystal has been analyzed using the pseudo-steady-state model
in the limit of zero magnetic Reynolds number. Steady cellular convection driven hy
radial temperature gradients causes good axial and radial mixing without a magnetic
field. A weak magnetic field decreases the intensity of convection and the effectiveness
of this mixing. The radial nonuniformity in comosition is greatest at an intermediate
field strength. Stronger fields suppress flow recirculation completely and lead to uniform
solute segregation across the crystal and to diffusion-controlled segregation. Predictions
are made for the growth of Ga-doped Ge in the vertical Bridgman system at MIT.

For the growth of nondilute HgCdTe crystals, a strong cellular motion exists near
the interface, but flow away from it is damped by the stabilizing dependence of the melt
density on the heavier component HgTe of the pseudobinary mixture, which is rejected



at the interface. Increasing the composition of CdTe lowers the melt density far from
the interface and further damps the melt motion, but causes the formation of additional
vertically stacked cells in the melt. Multiple steady-state flows and flow hysteresis are
predicted. Large radial segregation is predicted and is caused by the incomplete solute
mixing adjacent to the interface, as has been observed in experimental studies. The
prediction of solute mixing only in a region adjacent to the interface suggests a model
for axial segregation that couples a small well-inixed region there to diffusion-controlled
axial transport elsewhere. The axial segregation predicted by this model is qualitatively
similar to the diffusion-controlled growth and agrees with experimental observation and
with the numerical simulations.

The transient simulations were used to study convection and segregation in bhoth
dilute and nondilute alloy systems. In the well designed vertical Bridgman furnace at
MIT, almost steady-state temperature and flow fields are reached near the melt/crystal
interface shortly after the beginning of the ampoule translation. Solute concentration in
the crystal increases without reaching a constant value even without convection in the
melt because of the finite length of the ampoule. Nevertheless, the radial segregation and
effective segregation coefficient reach constant values after the initial transient. These
observations justify the use of the pseudo-steady-state analysis for the same MIT system.
Comparisons between our calculations and experiments by Wang [PhD Thesis (1984))
in the MIT system demonstrated the accuracy of the model and solution algorithm for
predictions of transients in the growth process.

Simulations of the growth of gallium arsenide in a small-scale gradient freeze sys-
tem changed with time throughout the simulation because of the large latent heat of
solidification which leads to continuous changes in the temperature field. The pseudo-
steady-state model cannot describe this growih system.

Transient analysis of the growth of HgCdTe alloy in the vertical Bridgman growth
system has demounstrated the transition of flow structure caused by the development of
the solute diffusion layer next to the interface. The flow field damped by this concen-
tration gradient maintains the structure of two axially-stacked toroidal cells, but with
much lower flow intensity. The calculated solute segregation corresponds to almost
one-dimensional, diffusion-controlled growth. Large radial temperature gradients and
the coupling of the melting point with concentration leads to large deflections of the
melt /crystal interface. The solute mixing by the flow cell near the interface was not
enough to reduce the concentration variations along the interface and large radial solute
variations exist. The radial segregation is set by the interface deflection. The depen-
dence of 3; of HgCdTe melt on temperasure and composition leads to the instability
in the convection near the interface. This instability, combined with sideways diffusive
instability in the bulk, resulted in the secondary flow cells between the upper and lower
flow cells. The concentration field is not affected by the variation of 3; because of the
weak convection level.

Thesis Supervisor: Dr. Robert A. Brown
Title: Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Crystal Growth

Crystal growth is a process where disordered atoms in a fluid phase join together to form
a solid phase with ordered structure. Usually, it is preferable to form single crystals, with
atoms aligned on specific crystallographic planes, rather than polycrystalline materials.
While some single crystals are used for mechanical components (e.g. turbine blades,
bearings, abrasive and cutting tools) or for jewellery (e.g. gem-quality diamond, cubic
zirconia, ruby and sapphire), the central role of single crystals has been and will almost
certainly continue to be in microelectronics and optoelectronics technology. Examples
of the use of single crystals of various materials in major semiconductor devices are

shown in Table 1.1 (Brice,1986).

The directions crystal growth research and techmnology relevent to semiconductor
devices have been summed into three categories (Hoselitz,1968;Laudise,1974). First,
crystal growth processes are being applied to newer materials that are more difficult to
produce. When solid-state physicists find a new candidate material for advanced device
applications, the engineering application is often limited by crystal growth process. In
1950’s, the transition from Gz to Si which caused a revolution in semiconductor device

capabilities was dependent on crystal growers learning how to produce crystals of more
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reactive and higher melting point Si. The successful growth of single crystal GaAs,
which is considered a next generation material, is plagued by problems of stoichiometry

control and excess crystallographic defects in the lattice.

A second trend in semiconductor single crystal growth is toward the growth of
larger sized crystals. Since IC (Integrated Circuit) chips are produced batchwise, the
diameter of wafers used for device fabrication significantly affects the productivity and
the production cost. The effect of the diameter of wafers on the production cost is
shown in Figure 1.1 for the chips of various size. Production costs are normalized
with the production cost of 6 X 6 mm chips on 100 mm-diameter silicon wafers. It is
clear that wafers of larger diameter produce IC chips with less cozt and the advantage
becomes more evident with the increase of IC chip size, which is the trend of VLSI/ULSI!
circuitary. The trends of diameter for Si crystals and wafers is plotted in Figure 1.2 for
the last two decades. Currently, 6-in. material is being used. It is generally believed
that 8-in. wafers will be in commercial use in the 1990s. The main problems that must
be overcome in the growth of larger size cry<tal are the increased level of buoyancy-
driven convection, nonuniform distribution qf dopants in the crystal and more strict

temperature control needed to keep defects at a low level.

Next, the demand for semiconductor single crystal with higher compositional and
structural uniformity will increase. The chemical and structural quality of crystal has
been and contirues to be the rate determining step to advances in semiconductor de-
vices and systems. Improvements in device characteristics, such as speed, sensitivity,
power handling capacity, can be directly traced to improvements of the single crystal
characteristics (Gatos, 1982). Factors affecting device performances are depicted in
Figure 1.3 beginning from crystal growth processes. As an example, it was found that
not only charge carrier concentration, but also the diffusion length and the lifetime of
excess carriers are quantitatively related to the dopant concentration in silicon (Chi and
Gatos, 1979). Also, the stoichiometry in compound semiconductors has been shown to

affect the dislocation density of GaAs crystal (Ogawa, 1988) and energy bandgap of

LVLSLULSI refers to the degree of circuit integration according to the number of device components

per chip, See Table 1.2 for more detail.
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Table 1.2:
Huff,1982).

USAGE MATERIALS

Electrical diodes Si,Ge

Photo-diodes Si,GaAs,Cd Hg;_.Te
Transistors Si.GaAs

Thyristors Si

Photoconductive devices Si,Cd Hg;..,Te
Integrated circuits Si,GaAS
Light-emitting devices GaAs,Sn.Pb,__Te
Radiation detectors 51,Ge,CdTe

Strain gauges Si

Hall effect magnetometers | InSb

Table 1.1: The use of crystals in semiconductor devices

Parameter ULSI VLSI LSI MSI

Components/chip | 107-10° | 103-107 | 103-10°% | 10%-103

Chip Area (mm?) | 50-100 | 25-50 | 10-25 10

ULSI = Ultra La.r_;e Scale Integration
ULSI = Very Large Scale Integration
LSI = Large Scale Integration

MSI = Medium Scale Integration

Features of IC chips of various degree of integration (Lawrence and
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NORMALIZED PRODUCTION COST PER CHIP
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Figure 1.1: Relation between the normalized production cost per chip of different size

and the diameter of silicon wafers (Shimura,1989).
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Figure 1.3: Factors affecting device performance along the path of device fabrication.
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Hg,_-Cd_ Te crystals (Long, 1968). The compositional and structural homogeneities of
large semiconductor crystals grown from the melt are strongly governed by coupled heat
and mass transfer and melt flow during crystal growth. For typical semiconductor mate-
rials, the solute distribution in the melt, which ultimately determines the compositional
homogeneity in the crystal through thermodynamic relation at the interface, is highly
dependent on convection in the melt because of low solute diffusivities. Investigations
of the mechanisms of convection in the melt and its influence on spatial segregation in
the crystal has been the subject of vigourous research, both theoretically and experi-
mentally, in the last decade. However, the effect of processing variables on structural
inhomogeneity has not been developed so well as the effect of convection on composi-
tional inhomogeneity because the link between rnicroscopic variations in the structure

of the crystal and macroscopic processing conditions is missing (Brown, 1988).

1.1.1 Semiconductor Materials

Since the invention of the transistor by Bardeen and Brattain at Bell Laboratories in
1947 and the first semiconductoer integrated circuit (IC) by Kilby at Texas Instruments
ten years later, several semiconductor materials have been developed for use in electronic
and optoelectronic devices. Originally, germainium (Ge) was used as a semiconductor
material for solid-state electronic devices (Teal, 1976). However, the narrow bandgap
(0.66eV), which cauces considerable leakage currents above 90 °C, and the inability to
provide a stable passivation layer caused germanium to yield to silicon (Si) as the most
popular semiconductor material. The ability of silicon to accomodate to surface passi-
vation by forming silicon dioxide enabled the basic technologies, including the process
for doping and defining intricate patterns (Shimura, 1989). Silicon has other advantages
including that it is entirely nontoxic and it i; available at low cost, since Si is second
abundant element on the earth next to oxygen. Electronic-grade silicon can be obtained

at less thnn one-tenth the cost of germanium (Wolf and Tauber, 1986).

However, silicon is not an optimum choice in every respect. For example, com-

pound semiconductors such as gallium arsenide (GaAs) has higher electron mobilities
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than silicon, enabling reduced parasitic gate-source resistance and improved frequency
response. As a result, gallium arsenide has advantages over silicon in conventional
high-speed devices by a factor of 3-4 in speed (Dilorenzo, 1978). A more serious dis-
advantage of silicon is that it cannot be used in optoelectronic devices because of its
indirect bandgap. Again, the direct bandgap of gallium arsenide makes it a useful mate-
rial for light emitting devices. In spite of the several disadvantages of silicon, the impact
of compound semiconductors has been limited to areas where the unique properties of
compound semiconductors allow functions that cannot be performed by silicon. These
areas include transferred electron devices, light-emitting diodes, lasers, and infrared

detectors (Ghandhi, 1983).

Next to gallium arsenide, mercury cadmium tellulide (Hg;_,Cd,Te) is one of the
inost thoroughly studied compound semiconductors. Its alloy system is being developed
for many infrared detector applications because its properties are uniquely suited to both
the detection of infrared radiation and the requirements for fabricating junction devices.
Mercury tellulide (HgTe) and cadmium tellulide (CdTe) are ~ompletely miscible in all
proportions and form a direct bandgap semiconductors, for which the spectral response
of HgCdTe can be compositionally tuned between 0.8 and 50 um by varying the mole
fraction of CdTe to tailor a detector for optimum performance at a given wavelength

(Lehoczky and Szofran, 1982).

From the theory of continuum thermoelasticity, dislocations in the crystal are be-
lieved to be created by thermal stress when its magnitude exceeds the critical resolved
shear stress (CRSS) evaluated in the slip directions for the crystal (Tsivinsky, 1979).
Since thermal stress is caused by the thermal gradient in the crystal, which is inversely
proportional to thermal conductivity, CRSS and thermal conductivities play important
roles in determining the level of difficulty for growing perfect crystal. Thermal conduc-
tivities of several semiconductor materials are plotted against the appropriate values of
the critical resolved shear stress (CRSS) in Figure 1.4 to show the trend in the degree of
difficulty of crystal growth. Semiconductor materials with low thermal conductivity and

low CRSS are more difficult to grow because the driving force for dislocation generation,
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represented by thermal gradient. is large and the resistance to dislocation formation,

represented by CRSS, is small.

The modelling of crystal growth in multicomponent systems can be divided into
dilute and nondilute systems. In dilute systems, like gallium-doped germanium (GaGe)
or selenium-doped gallium arsenide (GaAs), the dopant concentration is small’ enough
to neglect the dependence of thermophysical properties on dopant concentration. This
impiies that the equilibrium distribution coefficient (k) and melting point temperature
(T,) are constant and that convection driven by density gradients caused by composi-
tion variation can be neglected. On the contrary, in nondilute systems thermophysical
properties are strongly dependent on the composition. Examples of nondilute systems
are the 5-atom% silicon in germanium grown at the Centre d'Etudes Nucléaires de
Grenoble (Rouzaud et al.,1985), lead-tin tellulide with tin-lead ratios as high as 3:7
on a mole basis, grown by Bourret at MIT (Bourret et al., 1984), and mercury cad-
mium tellulide with mercury-cadmium ratio of 8:2 ,grown by Lehoczky’s group (Szofran
and Lehoczky, 1981). In these systems, the variation of melting point temperature and
equilibrium distribution coefficient with composition must be accounted for quantitative

numerical modelling.

1.1.2 Melt Crystal Growth Systems

Growth methods used for the production of semiconductor materials are classified into
melt growth, vapor growth, solution growth and solid growth, according to the phase
adjacent to the growing crystal. Small growth rates are typical of vapor and solution
growth, which are mainly used for the deposition of thin film to the substrate material.
The crystals grown by solid growth technique show low purity and coarse crystalline
perfection and are not appropriate for substrate material. Only the melt growth method
is currently used for the production of substrate material. Qualitative characteristics of

each growth method are listed in Table 1.3.

'O(1078) for the case of gallium-doped germanium (Adornato and Brown.1987a)
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Method Purity Perfection Growth rate
Melt
Czochralski Good Excellent Very large
Bridgman Good Fair Large
Floating zone Excellent Good Very large
Solution
All types!? Good? Good Small
Vapor
Sublimation  Gooa Good Small
CVvD? Fair Good Small
Sputtering Fair Fair Very small
Solid
All types Bad Bad Large

! Including hydrothermal growth
2 Depends on solvent

3 Chemical Vapor Deposition

Table 1.3: Characteristics of crystals grown by various methods (Brice, 1986).
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Examples of melt growth methods are the Bridgman method, the floating zone
method (FZ) and the Czochralski method (CZ); each are shown schematically in Fig-
ure 1.5. They represent normal freezing technique, zone melting and crystal pulling,
according to the classification of Flemings (1974). Alternatively, these methods can be
classified into confined and meniscus-defined crystal systems, depending on the presence

of a melt/ambient surface (Brown, 1988).

The vertical Bridgman growth system has been studied most intensively, either
by theoretical analyses or by experiments, because the simple furnace system and the
confined growth environment allows the precise control of thermal field necessary for
solidification. We will focus on this system tc analyze the convection in the melt and

its effect on the segregation in the crystal.

The vertical Bridgman growth or Bridgman-Stockbarger method was named after
Bridgman, who grew metal crystals with this variation of directional solidifcation (Bridg-
man, 1925). The furnace is composed of isothermal hot and cold zones separated by an
insulated region designed to create a constant axial temperatrue gradient in the melt
and crystal adjacent to the solidification interface. The charge and the single crystal
seed are loaded into a closed ampoule, melted and resolidified by translating the fur-
nace temperature profile relative to the ampoule: either by furnace or ampoule motion.
Translation rates are mostly in the range of 1 to 30 mm/h to prevent constitutional
supercooling (Brice, 1986). The use of an ampoule permits the shaping of the crystal

and the sealing of the growing system.

The veritcal Bridgman method can be operated in configurations that are stabilizing
or destabilizing with respect to thermal convection depending on the position of melt and
crystal relative to the direction of gravity. The stabilizing mode (bottom seeding) refers,
to the configuration of melt above crystal and the destabilizing mod: (top seeding)
has melt below the crystal. The stabilizing configuration has been the focus of our
research because it allows steady, axisymmetric convection and is the most used system

for confined crystal growth.
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The vertical Bridgman method has received recent attentions for the growth of III-V
(GaAs, InP) and II-VI (CdTe, HgCdTe) electronic and optoelectronic materials. These
materials are not easily grown by the Czochralski method because the high thermal
stress that develops during the Czochralski growih leads to excessive defects in the
crystal or the high vapor pressure of the melt requires confinement to maintain stoi-
chiometry. The confinement in a crucible does not necessarily lead to the high thermal
stress in the crystal because new atomic layer .reated on a planar solid/liquid interface is
not more constrained by crucible walls than by a radial temperatue gradient (Horowitz
and Horowitz, 1989). Previous works show that GaP, InP and GaAs crystals of better
quality can be produced by the vertical Bridgman process compared to the Czochralski
method (Gault et al.,1986; Monberg et al.,1987,1988; Clemans and Conway,1988), if a
planar interface is maintained during the growth. To minimize the effect of crucible,
crucible material with a thermal conductivity at least comparable with or lower than
that of growing material is desirable. To reduce the strain and to facilitate the removal
of crystal after solidification, the crucible material should be chosen so that the crystal

material does not adhere to the crucible.

If the transport of heat is controlled by reducing heater power in time instead of
translating ampoule through furnace, the technique is specially referred to as the gradi-
ent freeze method. Temperatuz> control is easier with this technique by using multizone
heater in the furnace. Temperature gradients in the range of 0.2 to 0.4 °C/cin can
be reproducibly generated leading to very limited convective flow, negligible stress and

strong control over the solid/liquid interface shape (Parsey and Thiel, 1987).

A variant of the vertical Bridgman growth system with horizontal configuration is
called the horizontal Bridgman technique. Crystal is grown in an open ampoule or
boat which adds inelt/ambient meniscus to the growth system. The open configuration
facilitates the control of the vapor pressure of volatile component (for example, arsenic
in GaAs growth) necessary to maintain the stoichiometry of the melt. Surface tension
force at the free surface is important to the melt convection in the space processing

because surface tension is independent of the gravity level.
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1.2 Transport Phenomena in Directional Solidification

1.2.1 Basic Transport Processes

In crystal growth, the transport of momentum and species in the melt and transport of
heat in the melt, crystal, crucible and furnace are complicated by the phase change at
the solidification front. When coﬁvection in the melt is unimportant, as in the idealized
case of diffusion-controlled growth, profiles of passive scalars (temperature, solute con-
centration) in the directional solidificatior. system can be represented schematically as

shown in Figure 1.6.

Temperature profilz in the melt and crystal is almost linear except that the gradient
is changed at the interface due to different thermal conductivities of each phase. How-
ever, several factors determine the detailed temperature field, such as thermophysical
properties of various materials comprising the system, growth rate through latent heat
release at the solidification front and the design of heat delivery system from furnace to
melt and crystal through ampouie. In a confined growth system, convection in the melt
is caﬁsed by the translation of the ampoule through the furnace and by bucyancy force
due to temperature and concentration gradient. The details of the convection pattern
is determined by heat transfer in the system and by the orientation of the melt and
crystal with respect to gravity. More on the convection in the melt is discussed in the

later Section.

The mechanism of heat transfer in each phase are: (i) conduction and convection
in the melt, (ii) conduction in the solid, and (iii) conduction, convection and radiation
between furnace and ampoule. The goal of design of heat delivery systems in melt crystal
growth is minimizing the convetive effect to accomplish diffusion-controlled growth for
compositional homogeneity and growing the crystal with flat interface for structural
homogeneity. This Section focuses on species transport for solutes that form ideal

solutions in the melt and and single-phace crystalline solids.

The transport of solute is governed by convection and diffusion in the melt and
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the boundary condition at the interface which is characteristic of crystal growth. This
boundary condition originates from the equilibrium relationship of solute across the
interface, which is represented by equilibrium distribution coefficient, k. Equilibrium
distribution coeflicient is determined from the phase diagram where the liquidus 7} and
solidus T, temperature is described as a function of concentration. Then, the solute

composition of melt and solid in equilibrium are related by
a = E:/ k (1.1)

The phase diagram with constant k are shown in Figure 1.7 for the cases of k greater
and less than unity. (The symbol tilde (°) is used throughout this thesis to denote

dimensional variables; the absence of it correspends to a dimensionless formulation.)

The behaviour of solute transport is illustrated by the limiting case of diffusion-
controlled growth where the effect of convection is negligible (Tiller et al.,1953). If the
crystal is sufficiently long, steady-state is reached and the concentration far from the
interface remains nearly constant as ¢,. With the coordinate system fixed to the moving
interface, the solute transport in the melt is given by the differential equation as

% 8¢

Dees +V

where = is distance from interface, D is diffusion coefficient of solute in the melt and 1/,
is rate of movement of interface. The requirement of solute conservation at the interace

provides the boundary condition for Eq. (1.2):

-D (95) = V(1 - £)& |2m0 (1.3)
a: =0

where & is the equilibrium distribution coefficient defined by Eq. (1.1). The solution to

Eq. (1.2) with constant far-field concentration ¢, is

— A

k

(3 =co [1 + exp(—V42/D) (1.4)

Exponential solute boundary layer is predicted due to the rejection (k < 1) or incor-

poration (k > 1) of solute at the interface. The characteristic e-folding distance is on
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the order of D/V, and depends only on D and V;,. Equation (1.4) applies in many real

cases of single crystal growth even in the presence of some convection (Flemings, 1974).

Analysis of transients in directional solidification is complicated by the interaction
between heat transfer, the melt/crystal interface shape, and solute transport. We ex-
amine two limiting case of no mixing and complete mixing in the melt with respect to
the efficiency of mixing. In these two cases, the diffusion in the crystal is neglected

because diffusion of solute in the crystal is much slower than in the melt.

No Mixing in the Melt

Smith et al.(1955) analyzed the one-dimensional, diffusion-controlled growth without
convection in the melt. The growth rate is assumed to be equal to the ampoule trans-

lation rate because the thermal diffusion is much faster than solute diffusion.

Conservation of solute in the melt leads to the following equation which is the same

as Eq. (1.2) except the accumulation term on the left hand side.

9 o ¢

-_— = D—'—- V = 1.’

ot FEERIMFT (1.5)
where 2 is the coordinate system along crystal, with Z = 0 at melt/solid interface. The
diffuivity of solute in the melt is D and V, is the growth velocity. This equation cannot
b~ solved analytically for the whole domain of melt with finite length. We focus on
the solution for the initial trauvsient. Smith et al.(1955) introduced the infinite-melt

assumption to solve the initial transient, with following boundary conditions:

E=c, ati=o0 forallt, (1.6)
é=c, ati=0 forall Z>0, (L.7)
—g—g—+%(1—la)é=0 at =0 forallf (1.8)

The boundary condition given by Eq. (1.8) expresses the conservation of solute across
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the interface at all times. They derived the concentration profile in the crystal as

) 1 {1 s (_(‘_’92_/_’2)_) (19)

Co

+(2k — 1) exp[—k(1 — k)(V,/D)z) erfc ((_gf_;_l_)\/(Vg/D)i)}

where Z (= Vi) is a distance solidified in the crystal. For small values of k, this reduces
to (Tiller et al., 1953; Pohl, 1954)

€ = co(k + (1 — k){1 — exp [-k(V,/D)]}) (1.10)

Concentration profile in the crystal are plotted in Figure 1.8 according to Eq. (1.9)
for several values of k. Solute concentration in the crystal approaches gradually to its
steady-state value (¢, = ¢,) as solidification proceeds. The distance Z to reach the
steady-state value depends on D/V, and k. From Eq. (1.10), the characteristic distance
for the length of this transient i> J/V,k. This limiting case was successfully verified
to be valid in the mjcrogrévity environment (Witt et al., 1378) and ir the presence of

vertical magnetic field (Matthiesen et al., 1987}.

Recently, Verhoeven et al. (1988) numerically solved the same equation set
(Egs. (1.5)-(1.8)). They determined the ranges of growth velocity and equilibrium
distribution coefficient for which the transient solution ob*ained by Smith et al.(1955)

is valid.

Complete Mixing in the Melt

When the convection in the melt is intense enough to provide a complete mixing, the
solute concentration is assumed to be uniform throughout the melt. In the solidification
of melt in an ampoule with length L and iatial composition ¢,, solute conservation

equation in the melt is written as
di(L-3)gl+é,d:=0 (1.11)
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where Z is a length of crystal solidified. In this equation, the amount of solute incorpo-
rated to the crystal balances the change of concentration in the remaining melt. With
the definition of & = ¢,/k, Eq. (1.11) can be rearranged to give

dé, (1-k

)Es
= L% (1.12)

e

Integrating Eq. (1.12) from Z = 0 to Z with initial condition of ¢, = kc, gives
&(2) = keo(1 = f)1) (1.13)

where f = Z/L is a fraction solidified. This problem has been analyzed by Gulliver
(1922), Scheil (1942) and Phann (1952), leading to the basically same equation as
Eq. (1.13), which is termed the Scheil equation, or the nonequilibrium lever rule. Segre-
gation profiles computed with Eq. (1.13) for several values of k are plotted in Figure 1.9
as a function of fraction solidified. This equation closely describes solute redistribution
in the crystal under a wide range of experimental conditions on earth (Witt et al.,

1978;Wang, 1984).

In the growth of nondilute alloy, the melting point temperature depends on the
local concentration at the interface following the liquidus curve in the phase diagram.
Then the solidification interface is coupled to the solute and temperature field leading
to the longer initial transient. This problem has been analyzed numerically for the one

dimensional system (Bourret et al., 1985; Derby and Brown, 1986).

1.2.2 Melt Convection
Thermosolutal Convection

The typical high temperature environment for melt growth of semiconductor materials
leads to thermal buoyancy driven convection in earth-bound system. For the growth
of nondilute alloy system, convection is driven by the density variations due to solute

gradient in the melt.
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Thermal convection in directional solidification can be divided into stable and un-
stable configurations according to the direction of temperature gradient. These config-
urations correspond to the bottom seeding and top seeding, respectively, which differ
in the location of seed crystal with respect to the melt and determine the direction
of crystal growth. In a stable growth configuration, density in the melt is decreasing
with the height, stabilizing the thermal convection. When the temperture gradient is
perfectly aligned with gravity, convection is not caused by the thermal field. In an
unstable growth configuration, buoyancy-driven convection begins at a critical value
of thermal Rayleigh number as an instability of a static fluid layer heated from below
(Chandrasekhar, 1961; Drazin and Reid, 1981).

In an unstable configuration, convection is characterized by three dimensionless num-
bers: the thermal Rayleigh number Ra;, Prandtl number Pr and aspect ratio (h/d)
(The definitions of dimensionless groups are in Chapter 2). Series of flow transitions
from static fluid to turbulence through steady convection and unsteady periodic convec-
tion can be describéd in three-dimensional coordinate system, as shown in Figure 1.10.
Iz the plane of Ra;-Pr. the experimental results of Krishnamurti(1973) are drawn in
the limit of small aspect ratio (h/d < 1). For the growth of specific material, Prandtl
number is constant and the course of crystal growth run can be represented in a plane

Ra, versus (h/d).

In the typical crystal growth, temperature gradient in the melt is not unidirectional
due to the complex heat transfer mechanism, which makes it diffcult to interpret the
convection in the melt in terms of simple one diemnsional model. This limitation leads
to the two-Rayleigh-number model of convection suggested by Miiller et ai. (1987) which
allows the lateral heat exchange in the melt. In this model, additional parameter of wall
Rayleighnumber,Ra,,, similar to a Rayleigh number based on lateral temperature gradi-
ent (Gill, 1974;Hurle et al., 1974) was introduced to account for the lateral cornponent
of driving force. The model system is shown in Figure 1.11(a), where T, (top tem-
perature), T, (bottom temperature) and T, (wall temperature) are constant. Thermal

Rayleigh number,Ra;, and wall Rayleigh nuinber,Ra,,, are defined, based on (T} — T,)
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and (T, — (T, + T3)/2) respectively as

3 -
v

R, = UMTe- (Lt T2/ (1.15)

Depending on the relative magnitudes and signs of Ra; and Ra,, several differ-
ent crystal growth techniques can be represented in Ra,;-Ra,, plane, as shown in Fig-
ure 1.11(b). The limitation of this model in representing the flow state with (Ra;,Ra,)
is that it does not consider the temperature variations along the wall, which occur in
practice. Several reviews have been published describing the thermal buoyancy-driven
convection in general (Gebhart et al., 1988) and in crystal growth systems (Hurle, 1972;
Carruthers, 1977; Pimputkar and Ostrach, 1981; Langlois, 1985).

In the Bridgman growth of a pure component melt or dilute binary alloy with the
stabilizing configuration, convection is driven by the radial temperature gradients caused
by the different thermal conductivities of the melt,crystal and ampoule near the interface
and by other thermal imperfections in the s);stem. The calculations of Chang and
Brown (1983b) demonstrated the strong effect of the difference in thermal conductivities
between melt and crystal on the direction and intensity of thermal convection in the
melt. Tle analysis of corvection and segregation in the vertical Bridgman systém by
Adornato and Brown. (1987a) included heat transfer through the ampoule in calculation
of the temperature a.nd showed the generic structure for the axisymmetric low driven

by radial temperature gradients in the melt. This flow structure is summarized below.

The flow field is composgd of two distinct toroidal roll cells stacked axially in the
ampoule. These cells are driven by different sets of radial temperature gradients, Near
the melt/crystal interface, the mismatch in the thermal conductivities of the melt,
crystal and ampoule drives flow which is up along the center of the ampoule when the
solidification interface is convex with respect to the melt, as it is drawn in Figure 1.12.
Large radial temperature gradients are also caused by the mismatch in thermal boundary

conditions at the junction of the hot zone with the insulation region of the furnace. These
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gracients lead to an upper toroidal cell in which melt moves upward along the sidewall
and down along the axis of the ampoule. This flow cell is not present in directional
solidification systems wheie the axial temperature gradient is established by tailoring
the heater design in such a way that the radial temperature gradient is of the same sign

all along the ampoule.

When a fluid layer with more than one diffusing components is perturbed, flow insta-
bilities may arise even when the total density of the fluid decreases with height (Turner,
1973;Stern, 1960). Motions due to such instabilities are variously known as multicompo-
nent convection, double-diffusive convection, thermohaline convection or thermosolutal
convection. The basic physical aspect of this type of convection (Turner, 1973,1985)
and its relevance to crystal growing process (Hurle, 1983;Brown, 1987) have been ex-
tensively reviewed. In thermosoultal convection during the crystal growth, solute field
stabilizes or destabilizes the thermal buoyancy-driven convectior depending on the sign
of solutal Rayleigh number and the magnitude of equilibrium distribution coefficient
with respect to one. The relationship is enmmarized in Figure 1.13, where Ra, is based
on AT(= Tiop — Tsottom) and the sign of Ra, is the same as the sigu of the coefficient

B,. Examples of stabilizing solute field iz thermally stable con-

of solutal expansion,
figuration (melt above solid) are systems of GeSi and HgCdTe, for which k is greater
than 1 and Ra, is negative. Destabilzing snlute field is observed in the system of PbSn,
for which k is less than 1 and Ra, is negative. In the p::udo-binary representation of
HgCdTe, the less dense component CdTe is preferentially partitioned into the crystal
so that the axial density gradient is stably stratified when the crystal is below the melt.
The diffusion-controlled solute transport observed along the growth axis (Lehoczky and
Szofran, 1982) is consistent with the idea that this density profile retards buoyancy-

driven convection.

Effects of Melt Convection on the Inierface Morphology

For low Prandt]l number melt of semiconductor materials, solute field is more affected by

the flow field near the interface, leading to the local variations in the conditions which
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determine the morphological stability of the interface. The first work which quantified
the effect of solute fiela on the interface shape was done by Chalmers and coworkers
(Rutter and Chalmers, 1953; Tiller et al., 1953) in investigating the formation of celluar
structure at the interface during normal freezing and zone meiting. They termed the
phenomena which result in the cellular structure as constitutional supercooling with the
word constitutional indicating that supercooling arises from a change in composition,
not temperature. Since then, the morphological stability of the melt/crystal interface
during the directional solidification of a binary alloy at constant velocity was treated
by Mullins and Sekerka (1963, 1964; Sekerka, 1965, 1967, 1968) in the absence of fluid
flow in the melt. The topic of morphological instability and dendrite formation is well

documented in the book by Kurz and Fisher (1984).

Experimentally, Burden et al.(1973) have reported macroscopic changes in the in-
terface shape due to convective flow induced by density differences during directional
solidification. They controlled the flow field by changing the composition of Al-Cu alloys
(0.5 to 10 wt% Cn in Al) for the same growth rate (8.3 x 10~% cm/sec) and tempera-
ture gradient (60°C/cm). Their result is shown in Figure 1.14 as a function of Al-Cu
composition. Chang and Wilcox (1974a) have observed the breakdown of solid/liquid
interface as affected by radial heat flow and convection pattern during zone melting of
naphthalene. McCartney and Hunt (1981) have shown that by selecting a composition
of the ternary Al-Mg-Si system to minimize the dependence of liquid density on com-
position, the interface curvature effects could be minimized due to the reduced level of
convection. For dilute binary alloy of Ga-doped Ge, thermal convection driven hardly

influences the mophological stability (Holmes and Gatos, 1981a).

Only recently, rigorous analysis using linear stability analysis (Corie'l and Sekerka,
1981; Hurle et al., 1982; Coriell et al., 1984) or weakly nonlinear analysis (Jenkins,
1985) have dealt with the effect of convection on the morphological stability of binary
alloys. Review for the interaction of flow with the interface can be availabe elsewhere

(Glicksman et al., 1986).
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Reduction of Melt Convection

Growth with the unidirectional convection is most desirable because of the axial unifor-
mity of crystal that results when no mixing is present. These conditions are not easily
achieved in practice and several attempts have been made to reduce the convection levei,
including the improvement of furnace design, the growth in a low gravity environment
and the application of vertical magnetic field to the growth system. Solutal effect in
the growth of a nondilute alloy can be advantageous in achieving the unidirectional

convection by the stabilizing density gradient which solute field provides.

Improved design or operation In principle, the vertically stabilizing Bridgman
method with bottom seeding can minimize convection in the melt, because the axial
temperature gradient in the system does not drive the thermal convection. In the real
systein, radial temperature gradients exist because of the thermal conductivity differ-
ences between melt, crystal and ampovle and other thermal imperfections in the crystal
growth system. This radial temperature gradients cause instability in the flow field and
drive the thermal convection in the melt. The requirement of pure axial temperature
gradient in the vertical Bridgman growth system for the minimum convection and the
flat interface could not be fulfilled in the past as discusssed by Wang et al. (1984). Miiller
{1984) has reported the success in obtaining a flat interface and diffusion-controlled axial
segregation profile by insulate the sidewall of ampoule in vertical Bridgman configura-

tion.

Magnetic field The effect of magnetic field on the fluid flow in electrically conducting
fluid was treatad comprehensibly by Chandrasekhar (1961) and Shercliff (1965). When
the induced magnetic field is small compared to the imposed magnetic field such as
the case for small magnetic Reynolds number, the strength of magnetic field remains
steady in time. The interaction of flow field and magnetic field results in Lorentz force
which inhibits the flow across the magnetic flux lines and reduces the convection level.

First experimental applications of magnetic field to the crystal growth process were to
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suppress the time-dependent fluctuations in horizontal Bridgman configurations (Hurle,

1956,1967; Utech and Flemings, 1966,1967).

Kim (1982) has grown 1nSb crystal by the vertically destabilizing Bridgman tech-
nique using a transverse magnetic field. The temperature fluctuations near melt/solid
interface were measured during the increase of magnetic field strength from 0 to 1.69
kG. Temperature fluctuations shown in Figure 1.15 manifests the transiticn of flow
states with the increase of magnetic field strength. Above the ritical value of 1.69 KG,
temperature fluctuaiion is completely suppressed, verifying the effect of magnetic field

on the time-dependent convection in the melt.

Contrary to the case of vertically destabilizing Bridgman method, transverse mag-
netic field applied to vertically stabilizing Bridgman method was reported to degrade
the uniformity of crystal (Miiller, 1988). The change of flow configuration from axisym-
metric to nonaxisymmetric caused unsteady convection, leading to the striations in the

crystal.

Vertical magnetic field aligned with the growth axis does not provide nonaxisym-
metric boundary condition.and its application to Czochralski growth technique showed
the consistent results in the growth of Si {Hoshikawa 1982; Hirata et al., 1984; Kim and
Smetana, 1985; Hirata and Inoue, 1985), GaAs (Osaka and Hoshikawa, 1984) and InP
(Ozawa et al., 1987; Hofmann et al., 1988). Typically, magnetic field above 2 kG suc-
cessfully suppressed the temperature fluctuations and corresponding striations caused
by time-dependent convection. However, the regular patterns of striation which can be
correlated to the crystal rotation were not suppressed with the application of magnetic

field.

Recently, magnetic field has been proven to be beneficial in reducing the level of
steady convection, thus accomplishing the diffusion-controlled growth of single crystal

in the vertically stabilizing Bridgman method (Matthiesen et al., 1987).
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Microgravity Since the buoyancy force due to the density gradient is directly pro-
poi'tional to the level of gravity, several attempts have been made to grow crystal in
reduced gravity environment to minimize the convection effect. Semiconductor crystal
growth experiments were carried out in the Skylab (1973-74) and in the Apollo-Soyuz

(1975) missions.

In the Skylab mission (Witt et al., 1975) cylindrical InSb single crystal was grown
during the flight in the space. The space-grown segraent of crystal revealed no microseg-
regation and the solute concentration profile demonstrated the steady and diffusion-
controlled growth, as shown in Figure 1.16. In the Apollo-Soyuz mission (Witt et al.,
1978), germaniﬁm crystals were grown in the space, demonstrating the diffusion-

controlled segregation profile with negligible convection effect.

Although some space experiments of crystal growth gave quite promising results,
several problems has been revealed in the space processing of materials (Gatos, 1982;
Hurle, 1983). First, as reduced gravity suppresses buoyancy convective flow, the role
of surface tension-driven flow becomes more important in the presence of free surface
such as in the floating-zone method, ‘horizontal boat method or Czochralski method.
Next, the interaction between the flow field and melt/crystal interface becomes stronger.
Under the terrestrial condition, the buoyancy convection is in general so strong that the
energies associatied with it are much greater than those associated with deformation of
melt/crystal interface (Gibbs-Thomson effect). However, in space where the buoyancy
flows are extremely weak, these two energies may become comparable leading to the

stronger coupling between the morphological stability and convective stability.

Control of the convection motivates our first goal, that is to analyze the growth con-
ditions necessary for optimum design of growth systems with moderate convection level.
Convection and solute segregation under the influence of body forces other than grav-
ity are studied by considering the application of a vertical magnetic field to Bridgman
growth systems of differing design. The role of solute field in the growth of nondilute
binary alloy is studied for the HgCdTe system. These two works are conducted by
modifying the pseudo steady-state model (PSSM) developed previously (Chang, 1983;
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Adornato, 1987).

1.2.3 Effect of Melt Convection on Solute Segregation

Convection in the melt causes mixing and change the structure of solute diffusion layer
near the melt/crystal interface. This alteration of solute field changes the rate of solute
incorporation into the crystal, influencing the axial and radial profiles of solute concen-
tration in the crystal. The detailed segregation profiles are set by the structure and
intensity of the flow in the melt. Before discussing the effect of convection in different
flow regimes, we define two parameters representing the radial and axial segregation in

the crystal.

Parameters for Radial and Axial Segregation

The degree of nonuniformity of solute distribution in radial direction is termed per-
centage radial segregation and defined as the maximum difference in the concentration

across the crystal divided by the local average value, < é >:

AC(%) _ (C,.mzzé—:s.min) x 100 (1.16)
s ~1I

_ (émaz "“Cmin)int.f x 100 (1.17)
<c>g

When the diffusion in the crystal is negligible, radial solute distribution on the melt side
of interface is preserved in the crystal. Equation (1.16) is used for the characterization
of crystal in the experiiuent. We use Eq. (1.17) in the numerical simulation from the

information of solute field in the melt.

Coriell and Sekerka (1979) analytically analyzed the lateral segregation caused by

the interface curvature, giving the radial segregarion as

C(%) ~ |1 - kmﬁVgT“) X 100 (1.18)
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where Ah is the maximum difference in the interface location along the interface. They
obtained a reasonable agreement with the experimental data of Witt et al. (1978) in
growing Ga-doped Ge. They extended the analysis for radial segregation to a case with
large departures form planarity by analytical and nnmerical method (Coriell et al.,
1981). Carlson et al. (1982) confirmed the analysis by Coriell and his coworkers by finite
element method, again under the assumption of no convection. Recently, Brattkus and
Davis (1988) analyzed the radial segregation in the growth of nondilute binary alloy.
They contended that radial segregation cannot be calculated solely from the knowledge
of interface shape. This is true for the growth of nondilute alloys in the presence of
convection, because of the complex coupling of flow field, solute field and interface

shape.

The effect of convection on the axial segregation of solute in the crystal is represented
by the effective distribution coefficient k.¢¢, which is defined as the ratio of concentration

in the crystal at the interface to the bulk concentration in the melt (Burton et al., 1953):
_ <& >r k < E>p .
TgéE» T e

keff ."(1‘19)

where < ¢ > is the volume averaged concentration in the melt.

Effect of Melt Convection

The effect of convection on the axial segregation k.fs defined in Eq. (1.19) and radial
segregation Ac defined in Eq. (1.17) is schematically described in Figure 1.17 in terms
of driving force of convection. When the driving force is small, only unidirectional
convection due to solidification is present and solute trax{/sport is diffusion-controlled.
In this flow regime, solute distribution at the interface'is radially uniform resulting
AC = 0 for planar interface. If the melt is sufficiently long and the concentration far
away from the interface remains constant, solute concentration in the crystal is the
same as the far-field concentration in the melt leading to steady-state growth. Then,

kesr approaches unity as indicated by Eq. (1.19). In the real growth, AC has some finite
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value and ks deviates from unity due to the curvature of interface and finite length
of the melt. With the increase of the driving force for convection, cellular convection
dominates in the melt. When this convection is weak, flow field near the interface only
distorts the composition profile leading to high radial segregation. Further increase of
driving force resu'ts well-mixed region near the interface, causing the radial segregation
to decrease again. Radial segregation shows the maximum value at some intermidiate
level of convection. This has been demonstrated in small-scale floating zone where
convection is driven by rotating the feed rod and crystal (Harriott and Brown, 1984)
and in vertical Bridgman system where convection is driven by thermal gradient and
can be damped by stabilizing solute field (Adornato and Brown,1987a). The relative
magnitude of radial segregation in the limit of no mixing and good mixing depends
on the curvature of the interface and the attainable intensity of convection under the
real situation. With the introduction of convection, kesy decreases monotonically to
approach k depending on the level of convection. In the limit of good mixing, < é > is
close to < & >> and ks is close to k as predicted from Eq. (1.19). Beyond the critical
value of driving force, flow becomes time-periodic or chaotic which causes fluctuations
in the field of velocity, temperature and solute. These fluctuations leave its traces in
the crystal in the form of striations, which is also an evidence for fluctuating AC and

kess. More will be discussed on the striations later in this Section.

Although k. is useful to measure the role of convection in axial segregation, the

definition of k.ts (Eq. (1.19)) contains a bulk concentration in the melt, which is not
directly measurable. One way of obtaining k.ss from composition profile in the crystal
is using the normal friezing expression with a dynamic eqilibrium where kg is assumed

constant. Equation (1.13) is rewritten in terms of k.ss as

&(2) = kegreo(1 — f)Kets=1) (1.20)
where f is a fraction solidified.

Burton et al.(1953) first related the convection in the melt and ke in terms of

hypothetical stagnant film thickness. Stagnant film model (Nernst, 1904) assumes a
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thin layer on the solid surface, inside of which mass transfer is by diffusion only and
its rate determines overall reaction rate in heterogeneous reaction. Likewise, stagnation
film model adapted to the crystal growth system assumes a thin boundary layer near
the melt/crystal interface. Inside this boundary layer, solute transport is by diffusion
only and melt flow is uniaxial due to solidification. Outside the boundary layer is
assumed to be a well-mixed region due to cenvection. If the concentration in the bulk
remains constant as ¢,, the steady-state composition profile in the boundary layer can

be obtained by solving Egs. (1.2) and (1.3) with the boundary condition

i) =co (1.21)

This yields

k+ (1 - k)exp(-Vy2/D)
k + (1 - k)exp(-V,é/D)

&3) = co (1.22)

The effective segregation coefficient k.ss can be obtained from the definition of k.4,
Eq. (1.19), and solute concentration profile, Eq. (1.22), in terms of the stagnation film

thickness as
_ k
k + (1 — k) exp(-V,6/D)

kegs (1.23)

The concept of stagnation film is good for understanding the role of convection in
the axial segregation. However, it has limitations in practical use. First, it needs a
additional correlations to relate the stagnant film thickness and intensity of convection.
For simple geometry, such as rotating disk or flat plate, correlation for § can be obtained
from asymptotic analysis, similarity transform,boundary-layer analysis or experiments:
some of them are referred in the review by Wilcox (1969). However, crystal growth
system has so complex geometry and boundary conditions that it does not allow a
simple correlation. Stagnation film model assumes only one well-mixed region ouside
the boundary layer, which is not valid where more than one flow cells exist. With
the multicellualr fiow, the well-mixed regions of almost uniform concentration center
around each cell and communicate with its neighbors by diffusion through thin internal

layers, which complicates the direct application of stagnation film model. Examples

-]
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of multicellular flow were observed in the numerical simulations (Carlson et al., 1984;
Adornato and Brown, 1987a; Heinrich, 1988) and in the experimental models (Miiller

et al., 1984; Neugebauer and Wilcox, 1988) for vertical Bridgman growth system.

We have discussed the effect of steady laminar convection on the axial and radial
segregations in the macroscale, that is over the scale of crystal length or diameter. As
the driving force for buoyancy-driven flow is increased, a point is reached at wkich
the motion becomes time periodic. Further increase in driving force results in more
complex time-dependent behaviour until the flow becomes completely chaotic. The
periodic or chaotic time-dependent flow causes the oscillations in the temperature and
solute field near the interface, leading to the solute segregation in the crystal in a much
smaller length scale. This segregation in microscale takes the form of striations, that
is oscillations in the solute concentration which are either periodically or irregularly
distributed along the growth direction in the crystal. This form of inhomogeneity is

more deleterious for the production of integrated circuit devices than macrosegregation.

Ueda (1961) was one of the first to relate the period of resistivity striations in
germanium single crystals grown horizontally to the temperature oscillations in the
melt in front of the interface. The striations and temperature fluctuations have been
observed primarily during the horizontal Bridgman and the Czochralski growth, because
the temperature field can easily destabilize the flow field (Morizane et al., 1966; Witt
et al., 1966, 1973; Cockayne and Gates, 1967; Carruthers and Witt, 1975; Murgai et al.
1976; Miller et al., 1978). They are also observed in the crystal grown by the vertical
Bridgman technique with top seeding, because of the destabilizing thermal gradient
(Kim et al., 1972,1978). In the vertical Bridgman growth with bottom seeding, thermal
gradients are not destabilizing and so neither temperature fluctuations in the melt or
striations in the crystal have been observed (Witt et al., 19738; Wang, 1984). In Section
1.2.2 we discussed that the thermal convection is driven by the radial temperature
gradient in the vertically stabilizing Bridgman system. Very large radial temperature
gradient drives the chaotic convection in the melt, leading to the striations in the crystal

even in the the stabilizing Bridgman growth (Holmes and Gatos; 1981b).
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In the growth of Ga-doped Ge by the vertically destabilizing Bridgman method,
Kim et al. (1978) related the intensity of striations along the crystal axis to the depth of
melt. Destabilizing temperature gradients were kept nearly constant during the growth.
They found that turbulent aperiodic striations occurred when the melt was deep (2.4 to
1.8 cm), followed by a transition to periodic small-amplitude striations at intermediate
meit depths (1.8 to 1.2 cm), and striation-free uniform growth thereafter (1.2 to 0
cm). Within ore experiment, three different flow régimes could be identified. Since
the Rayleigh number depends on the fourth power of the melt depth for the constant
temperature gradient, the Rayleigh number decreased rapidly from the initial to final
stage of crystal growth experiment. During the experiment, Ra; was varied from 5 x 105
to 0. When Ra, was less than 2 x 104, flow field was stabilized. The results are shown in
Figure 1.18 for the the growth of Te-doped InSb with different melt depths (Kim et al.,
1972).

1.3 Previous Models for Vertical Bridgman Process

In the vertical Bridgman method, field variables (velocity, pressure,temperature, and
concentration) show transients due to the steady decrease of the length of the melt
with crystal growth and the displacement of the ampoule in the furnace. The transient
nature of the Bridgman growth of crystal motivates our second goal, the development

of transient model describing the process and its solution algorithm.

For the construction of the transient model, we review the previous works on the
modeling of vertical Bridgman growth system. We describe the works on the experi-

mental model before we discuss the theoretical modelling.

1.3.1 Experimental Modeiling

In the experimental modelling, proper materials and process conditions are selected so

that siinilar magnitudes of characteristic dimensionless groups as in the modelled growth
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system are obtained. It is used most for the simulation of flow field, because the flow

pattern is hard to observe in the high temperature environment of real crystal growth.

Muiiller et al. (1984) performed an experimental investigation into buoyancy-driven
convection in closed vertical cylinders heated from below using water (Pr = 6.7) and
gallium (Pr o~ 2 x 19~%) to provide the visual insight of flow patterns in vertically
destabilizing Bridgman crystal growth system. The hydrodynamic state was described
by three dimensionless numbers, the thermal Rayleigh number Ra,, the aspect ratio
(height/diameter) h/d and the Prandtl number Pr. The value of critical Rayleigh num-
ber Ra! for the onset of convection was obtained experimentally for 0.5 < h/d < 5 and
shown to be in good agreement with the theoretical predictions by Charlson and Sani
(1971). The flow pattern showed axial symmetry for h/d = 0.5 and nonaxial symmetry
for 1 € h/d < 5. They also showed that occurrence of doping striations in Te-doped
GaSbh crystals grown in the same configuration was very well correlated to the unsteady

flow regime.

Miiller et al.(1987) presented experimental results for thermal buoyancy-driven
convection in a experimental model that can be extrapolated to various vertical melt
crystal growth configurations. The model consists of a vertical cylinder with the top,
bottom and side walls forming three independent, isothermal boundaries as shown in
Figure 1.11. The hydrodynamic state in this model was described by four dimensionless
groups: the apspect ratio (height/diameter) h/d, the Prandtl number Pr, fhe vertical
Rayleigh number Ra, and a wall Rayleigh number Ra,,. Flow patterns as well as tran-
sitions from steady to unsteday convection were studied as a function of Ra; and Ra,,
which are defined in Eqgs. (1.14) and (1.15). Prandtl number and aspect ratio were fixed
to 6.7 (water) and 1 respectively. Under the constant Pr and h/d, stability diagram
for flow pattern and transtion to unsteday convection were obtained, as shown in Fig-
ure 1.19. where positive Ra; corresponds to cold top and hot bottom while positive
Ra,, is corresponing to hotter surrounding than the core of the fluid. The vertically
stabilizing Bridgman system is located near negative Ra, axis with Ra,, depending on

the thermal characteristics of the system.
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Woods and Huppert (1988) studied the segregation of composition in the solid
grown by cooling a supereutectic melt, aqueous sodium carbonate solution, from below.
When the composition of melt is greater than eutectic, it is called superevtectic. The
melt at the solid/liquid interface can have low density even though it is cold. Destabi-
lizing density gradient drives intense solutal convection, leading to the compositionally
stratified solid. This case is similar to PbSn system, in that light component is rejected

at the interface and the resulting solute field is destabilizing.

Schaefer and Coriell (1984) observed the convective flow fields and solid/liquid
interface shape during the solidification of a transparent material, succinonitrile-ethanol,
which has similar Prandt]l number to oxide materials. The convection due to the radial
temperature gradients in the crystal growth apparatus caused solute transport so that

macroscopic depression developed in the solid/liquid interface.

In an effort to simulate a thermosolutal convection in a Lorizontal Bridgrnan growth
configuration, there have been several experimental investigations of thermosolutal con-

vection in shallow enclosures with horizontal temperature and solute gradients.

Ostrach (1983) reported a three-layer structured thermosolutal convection using
an electrolyte solution of copper sulfate acid (H,S04 + CuSO4 + H,0) in a shallow
cavity with differentially heated vertical end walls. In his experiment the thermal and

soultal buoyancy forces were imposed in either opposing or augmenting senses.

Jiang et al.(1988) investigated a thermosolutal convection by opposed thermal
and solutal buoyancy ferces in a low aspect ratio rectangular system by electrochemical
method. They identified three flow regimes as a function of buoyancy ratio (solu-
tal/thermal), classified as multi-layer, secondary cell and mixed flow structures. The
multi-layer flow was found to be a quasi-steady process, while the secondary cell flow

was unsteady due to a thermosolutal instability.

Lee et al.(1988) carried out experiments in rectangular enclosures of aspect ratio
0.2 and 2.0, for the steady-state thermosolutal convection of a salt-water solution with

an osmotic system. Unicell flow and multi-layer flow patterns were observed depending -
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on the relative magnitude of the buoyancy ratio.

Thompson and Szekely (1988) conducted an experiment where a double-diffsive
liquid is solidified beginning from a vertical wall in a rectangualr box. The experiment
provided a visual picture of the role of double-diffusion in producing a vertical stratifica-
tion of composition and density in an initially homogeneous liquid during solidification.
The development of horizontally oriented convection cells in the stratified liquid was
correlated with the magnitude of the destabilizing lateral temperature gradients across

the liquid region.

1.3.2 Theoretical Modelling

We summarize in Table 1.4 the major theoretical models for the vertical Bridgman
growth developed by previous researchers. These works are classified according to the
equations solved for in each analysis. The number of spatial dimensions and the inclusion
of time in the analysis are specified with the solution method, whether it is analytical

or numerical.

Most theoretical research for the Bridgman growth system has been limited to the
steady-state analysis, which is based on assumptions valid for the region of steady
solidification in a sufficiently long ampoule. One or more aspects of the transport
processes, such as heat transfer, convective flow and solute segregation, in the Bridgman

growth system have been previously analyzed using steady-state assumption.

Transient analysis of the directional solidification system has been confined to one-
dimensional analysis focusing on the single aspect of transport processes, either heat
or solute transfer, in the absence of convection in the melt. In some analyses the
time-dependent solute diffusion equations have been solved by taking the growth rate
transients into accounts (Calyton et al., 1982; Favier, 1980; Bourret et al., 1985; Derby

and Brown, 1986)
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Energy 1D Naumann (1982a)4, Ravishankar and Fu
steady-state | (1983)4, Jasinski et al. (1983,1984)4
2D Chang and Wilcox (1974)4, Sen and Wilcox
steady-state | (1975)", Fu and Wilcox (1980)",
Naumann (1982b)4, Chin and Carlson
(1983)", Naumann and Lehoczky (1983)4,
Huang et al.(1983)", Jasinski and Witt
(1985)N, Taghavi and Duval (1989)4
1D Clyne (1980)", Fu and Wilcox (1981)",
transient | Sukanek (1982a,h)4
2D Borisov et al. (1982)N
transient
Solute 1D Pohl (1954)4, Smith et al. (1955)4,
transient | Hulme (1955)4, Memelink (1956)4,
Clayton et al.(1982)", Verhoeven (1988)%,
Kobayashi (1988)4
2D Coriell and Sekerka (1979)4,
steady-state | Coriell et al. (1981)4", Carlson et al. (1982)N
Energy 1D Favier (1980)", Bourret et al.(1985)",
and solute | transient | Derby and Brown (1986)"
Energy 2D Chang and Brown (19832,1984)N,
and flow | steady-state | Miiller et al. (1984,1987)",
Carlson et al.(1984)", Arnold et al. {1989)¥
Energy, 2D Chang and Brown (1983b)¥,
flow, steady-state | Adornato and Brown (1987a,b)"
and solute 2D This work
transient

A: analytical method, N: numerical method

Table 1.4: Classification of previous theoreticai models for vertical Bridgman growth.
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Thermal Modelling

In the vertical Bridgman-Stockbarger crystal growth system shown in Figure 1.5, heater
and cooler provide the necessary temperature gradient for solidification. Between the
heater and cooler, gradient zone or adiabatic zone can be located to control the shape
and location of melt/crystal interface. Because of the simplicity and its relevance for
semiconductor material, almost every thermal modelling assumed that conduction is

the only mechanism for heat transfer in the melt.

Davis (1972) calculated analytically for the first time the one-dimensional axial
temperature distributions around the gradient region for a charge directionally solidify-
ing within a Bridgman-type three zone furnace. He solved the steady-state conduction
equation in the liquid and solid including the heat transfer from the furnace and latent

heat of solidification at the interface.

Chang and Wilcox (1974b) solved analytically the steady-state differential equa-
tion for temperature in an infinitely long solid cylindricai rod in a two zone furnace
configuration. The differential equation included conductive and convective heat trans-
fer, where convection was due to the growth velocity only. They investigated the effect
of heater and cooler temperature, growth velocity, latent heat release and finite charge
length on the location and shape of interface. The importance of the insulation zone
between the heater and cooler was identified to decrease the dependence of the interface

shape on its position in the furnace, which was later verified by numerical calculation

by Fu and Wilcox (1980).

Sen and Wilcox (1975) studied the effect of ampoule thermal conductivity on
the interface shape and position within a two zone configuration. The steady-state heat
conduction equation was solved using a finite difference method. They concluded that
the thermal conductivity of the ampoule should be close to that of the charge to reduce

the radial heat transfer.

Bartholomew and Hellawell (1980) added th: effect of radiation expliciiiy where

the quantity of radiant heat was modified by a view factor taking account of the geom-
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etry of the system.

Jones et al. (1982, 1984) used an electric analogue to model the heat transfer
between the furnace and the charge, where conduction and radiation was described as
a resistor network. They noted the importance of thermal boundary conditions at the

bottom of the ampoule especially in the early stage of solidification.

Naumann (1982a) developed a one-dimensional analytical expression for the tem-
perature distribution in a solidifying rod in the three-zone Bridgman-Stockbarger con-
figuration. The analysis included the translation effects, finite charge lengths in the hot
zone and the use of booster heater in the gradient zone to increase the axial gradients at
the interface. This analysis was extended to two-dimensional case using hybrid analyti-
cal/numerical method (Naumann, 1982b). In an application of his analysis to HgCdTe
system, he found that the use of insulation zone can adversely affect the interface shape
if the melt and crystal thermal conductivities are significantly different and the ampoule

carries the bulk of heat flux (Naumann and Lehoczky, 1983).

Jasinski et al.(1983, 1984) performed a similar analysis as Naumann (1982a,b),
but included the radial heat flux in the one- and two-dimensional models by defining
an effective Biot number. They also defined the minimum lcngth of the charge in the
hot and cold zones for which the ampoule translation rate equals the growth rate at
the interface. Their model was further extended to account for the Peltier effect at the

interface (Jasinski and Witt, 1985).

Ravishankar and Fu (1983) performed a paramstric study using a one-
dimensional heat transfer model. The effect of parameters naturally occurring during
nondimensionalization on the temperature gradient and interface location was investi-

gated and compared with experimental results of MnBi/Bi eutectic system.

Chin and Carlson (1983) first applied the finite element method to the analysis
of heat transfer in Bridgman crystal growth system, which was also used by Huang
et al.(1983) to investigate the effect of different thermal conductivities between the

melt and crystal.
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- Cheng et al.(1985) investigated the behavior of the melt/crystal interface shape
during Bridgman growth of CsCdCl,, mod=2l material for CdTe, by finiete element analy-
sis. The result showed that the convexity diaplayed a sharp maximum in a region where
the temperature gradient decreased sharply and the high translation rate increased the

concavity of interface.

Dakhoul et al.(1988) analyzed numerically the effect of growth parameters on
the themal distribution during a Bridgman-Stockbarger type crystal growth of HgCdTe
alloys. In the analysis, the dependence of thermal conductivity on the temperature and
concentration was explicitly specified frorn empirical data. Concentraion profile in the
melt was assumed to follow that of diffusion-controlled growth. The interface shape
was shown to be concave or convex depending on the cooling temperature. The inclu-
sion of the compositional dependence of melting point increased the interface curvature

significantly as compared to the isothermal melting point.

When the translation rate of ampoule is abruptly changed, there is a transient
period when the crystal growth rate differs from the translation rate, as shown by

Wang et al.(1984) who measured the growth rate by interface Peltier demarcation.

Clyne (1980b) computed the transient ratio of the crystal growth rate to the
translation rate of the ampoule in the directional solidification using a simple conduc-
tion model and obtained a good agreement with experimentally measured growth rate

(Clyne, 1980a) in the initital transient of solidification of aluminum.

Fu and Wilcox (1981) characterized the transients caused by a step change in
the translation rate by solving a one-dimensional heat transfer model with finite differ-
ence technique. The growth rate or interface location was correlated to an exponential
function in terms of the Biot number, the latent heat and the length of insulation zone.
They further extended their analysis to include a linear or fluctuating change in the
translation rate of ampoule (Fu and Wilcox, 1982). Their analysis was verified in the
experiment where current induced demarcation was used to determine the microscopic

growth rate in MnBi/Bi eutectic (Fu et al., 1982).
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Sukanek (1982a, 1982b) used a perturabtion technique to study the effect of
finite charge lengths on the deviation of the crystal growth rate from the translation
rate of ampoule in a three zone Bridgman-Stockbarger system. As a result, he obtained
a criteria for the critical length of the ampoule above which the steady-state growth rate

can be achieved for the cases of slow translation and moderate translation, respectively.

Borisov et al.(1982) solved numerically using enthalpy method for the two-
dimensional time-dependent temperature fields in a single crystal of copper and alu-
minum grown by Bridgman method. With their model, it was possible to track the
interface shape with time which showed the radial variation of crystal growth rate.
With the same model, they also investigated the effect of furnace temperature change

on the interface shape and location (Warchot and Modrzejewski, 1986).

Convection and Segregation

Clayton et al.(1982) developed the nune-dimensional model for solute redistribution
for the growth of HgCdTe crystal. Their model acccunted for the variations in melting
point and equilibrium distribution coefficient with composition. However, they assumed
the constant temperature gradient throughout the melt and crystal so that heat transfer
characteristics of Bridgman configuration was oversimplified. Nevertheless, the result
was shown to be in good agreement with experimental data demonstrating the segrega-

tion profile of diffusion-controlled growth.

Bourret et al. (1984,1985) performed similar analysis as Clayton et al. (1982) but
employed the realistic furnace temperature profile and heat transfer between furnace
and the charge. In these studies, heat transfer was modelied in one-dimension with fin-
approximation and only growth-induced convection was assumed to be presentt in the
melt. This latter assumption is valid practically either in reduced gravity environment or
in the small-scale terrestrial experiments with a highly stabilizing solute field. Detailed

numerical scheme can be found elsewhere (Derby and Brown, 1986).

Chang and Brown (1983a) first examined the flow field induced by radial tem-
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perature gradients in an idealized Bridgman-Stockbarger system where furnace temper-
atures were imposed directly on the melt and crystal in the absence of the ampoule with
perfectly insulating region between the hot and cold region. The complete solutions of
steady-state velocity, temperature, concentration and melt/solid interface shape were
computed with Boussinesq approximation in the momentum equation. Pseudo-steady-
state was taken for solute field, whefe solute of given concentration enters the ampoule
with the melt from the top and the crystal is pulled away from the bottom with the
concentration which preserve solute balance in the melt. The analysis was based on
finite-element /Newton algorithm, which solves the field variables and interface shape
simultaneously. This algorithm was shown to be more efficient than successive iter-
ations for decoupled field variables and interface shape (Chang and Brown, 1983b).
The results are shown in Figure 1.20 for flow, temperature and concentraiton field.
Conduction dominates the heat transfer in the melt because of the law Prandt]l number
for typical semiconductor materials as shown in the temperature field. The toroidal flow
cells are driven by the radial temperature gradient due to the sudden change of ther-
mal boundary conditions at the junction of hot and insulating zone. Isoconcentration
curves in the solute field shows the typical transition from diffusion-controlled growth to
& well-mixed core in the melt with the maximium radial segregation at the intermediate
level of convection, as described schematically in Figure 1.17. They also compared the
flow fields in the vertically destabilized Bridgman system with that of Rayleigh-Bénard
problem using computer-aided bifurcation analysis. Results showd that the introduc-
tion of imperfection due to the boundarr condition appropriate to Bridgman syctem

modified flow structure in the melt (Chang and Brown, 1984).

Carlson et al. (1984) studied thermally driven flows which occur during stabilized
vertical Bridgman crystal growth of single component fluid using finite element method.
They simplified the modelling by specifying the isothermal interface shape as parabolic.
In their result, a single cell flow was observed when the interface was convex as viewed
from the melt. A concave interface caused multiple counterrotating c.lls. They also
identified the importance of radial temperature gradient for the flow and examined the

effect of the insulation thickness and heat transfer from the furance to the charge on
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the flow pattern.

Adornato and Brown (1987a) extended the analysis by Chang and Brown
(1983a) with boundary coaditions closer to experiments by including the ampoule and
heat transfer between ampoule and furnace in thermal modelling. Nondilute binary
alloy system was also analyzed through the linearized phase diagram. To facilita‘te
the computation of solute field for highly convective case Petrov-Galerkin finite ele-
ment method was used, where the weighting functions poses the different form from
basis functions (Adornato and Brown, 1987b). Numerical analysis was performed for
the growth of gallium-doped germanium and nondilute germanium-silicon alloys in the
Bridgman-Stockbarger furnace of Wang (1984) and in the constant gradient furnace of
Rouzaud et al.(1985). In Wang’s furnace, heat pipes were used tc maintain the con-
stant temperature in the hot and cold zone while in the constant gradient zone furnace
temperature profile was almost linear by use of tapered graphite heater. When the
ampoule was included, it caused a radial temperture gradient near the interface due
to the different thermal conductivities of the melt, crystal and ampoule, which drove
another flow cell near the interface in addition to the one near the junction of hot zone
and gradient zone, as described in Figure 1.21(a). Corresponding solute field showed
the characteristic profile of diffusion-controlled growth at low Rayleigh number. Even
at chis low convection level, radial segregation could be detected because of the curva-
ture of the interface. At high level of convection, two well-mixed core of nearly uniform

composition were formed within the flow cells separated by the internal layers.

Oreper and Szekely (1984) numerically analyzed the effect of imposed magnetic
field on the convection in Bridgman-Stockbarger crystal growth system. Although the
role of magnetic field in suppressing the convection was clearly described, modelling
the Bridgman growth system itself was not faithful to the real situation. Transport
equations were solved only in the melt with flat interface and the partition of solute

between the melt and the crystal at the interface was not taken into account.

Camel and Favier (1986) investigated the influence of convective transport on the

macrosegregation in Bridgman crystal growth system by order-of-magnitude analysis of
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the set of balance equations for momentum and solute in the melt and at the interface.
The different solute transport regimes were defined on the Gr-Pe, plane, where Gr is
a Grashof number and Pe, is a Peclet aumber of solute transport. They also obtained
the scaling for radial segregation and effective segregation coefficient in terms of Gr and

Pe,

Crochet et al.(1983,1985) developed the two-dimensional numerical simulations
to represent the thermomechanical behaviour of semiconductor melts in horizontal
Bridgman growth system. These computer models were based on time-dependent fi-
nite -difference and finite-element codes in a geometry of rectangular box. At moderate
Rayleigh numbers, steady flow fields with multiple cells in a horizontal direction was
observed. Above a critical Rayleigh number, these steady solutions were replaced by
oscillatory melt convection, as suggested by earlier experimental studies (Hurle et al.,
1974) in the horizontal Bridgman configuration. Thermal oscialltions due to the oscil-
latory convection caused periodic freezing and remelting at the interface, which may be
the prohable explanation for the observed striations. Detailed numerical schomes can
be found in a series of works by this group (Crochet et al.,1987; Dupont et al.,1987;
Wouters et al.,1987) including the extension to three-dimensional case. Throughout
these analyses, solute field was not considered as a part of solution preventing the ana-
lyis of convection effect on the solute transport. Since the thermal boundary conditions
on both sidewalls were specifying the constant temperatures, interface was fixed spa-

tially except due to the oscillatory convective motion.

1.4 Thesis Direction

1.4.1 Objectives and Approach

The goal of this research is to extend the understanding of the physics involved in the
directional solidification process, especially during the growth of crystal in the vertical

Bridgman system. The specific objectives have been the invetigation of convection in
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the growth of dilute or nondilute binary alloys and its effect on the species transport
and axial and radial segregation. These objectives have been met by constructing a
comprehensive pseudo-steady-state and transient models describing the crystal growth
process, including convection, heat and solute transfer in the melt and heat conduction
in the crystal and ampoule. Finite element analysis has been developed for solution of

both steady-state and transient models.

Our approach is the numerical simulation by pseudo-steady-state and time-dependent
model describing the temperature, flow and solute fields in two-dimensional axisym-
metric growth system. This approach enables us to analyze the steady-st\ate and time-
dependent interaction of field variables during the growth of crystal. Convection and
solute segregation under the influence of body forces other than gravity are studied by
considering the application of a vertical magnetic field to Bridgman growth systems of
differing design. The role of solute field in the growth of nondilute binary alloy is stud-
ied for the HgCdTe system. These two works are conducted by modifying the pseudo-
steady-state model (PSSM) developed previously (Chang, 1983; Adornato, 1287). The
experimental system of Wang (1984) at MIT for the growth of dilute Ga-doped Ge is
simulated numerically using the transient model to demonstrate the accuracy and ro-
bustness. The growth of Se-doped GaAs in the furnace at GTE (Arnold et al., 1989)
is also analyzed with the transient model. The growth of nondilute alloy is studied for
the growth of pseudobinary HgCdTe alloy in the vertical Bridgman system at NASA
(Szofran and Lehoczky, 1984) including the complete phase diagram of the alloy in the

calculation.

1.4.2 Structure of Thesis

The models for the crystal growth in the vertical Bridgman sytem are described in
Chapter 2 in terms of mathematical statements of the governing equations and boundary
conditions along with modelling assumptions, for both pseudo-steady-state and transient

model.
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Npmerica.l methodologies for spatial and temporal discretization will be discussed
in Chapter 3. A brief outline of finite element method will be presented with some dis-
cussions about the comparison of Bubnov- and Petrov-Galerkin finite element methods.
The numerical scheme to solve the nonlinear algebraic systems of equations resulting
from finite element discretization and time-integration scheme will also be examined.
The numerical algorithm for solution of the transient model is tested through calcula-

tions for the vertical Bridgman growth system used by Wang (1984) without convection.

In Chapter 4, the effect of vertical magnetic field on the convective transport is
analyzed in the crystal growth system at MIT (Wang, 1984) and at the Centre d’Etudes
Nucléaires de Grenoble, France (Rouzaud et al., 1985). The flow structure at high
magnetic field strength is analyzed aymptotically for the comparison with numerical

analysis.

Inclusion of solutal effect on the convetive transport in the growth of nondilute
HgCdTe alloy system is investigated in Chapter 5. Phase diagram is taken into account
for the melting point in a linearized form. Momentum boundary layer near the wall is
analyzed.following Hart’s (1971) analysis, when the solnte field stabilizes the thermal
buoyancy-driven flow. Simple one-dimensional analysis of axial redistribution of solute

is developed for the growth of HgCdTe.

The analyses in Chapter 4 and 5 use the pseudo-steady-state model previously de-
veloped by Chang (1983) and Adornato (1987) and modified in this research. The
results of the transient analysis of growth of gallium doped germanium in the heat pipe
furnace by Wang (1984) is described in Chapter 6. The calculated temperature profile
is compared with the experimental data for a stationary graphite rod inserted in the
furnace. The results are also compared with experimental data in terms of the crystal
growth rates and axial segregation in the crystal. Also, the growth of selenium doped
gallium arsenide in the gradient freeze growth system by GTE (Gustafson et al., 1986)
is simulated numerically to help characterize the growth experiment to be performed in

space.
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In Chapter 7, transient numerical analysis is done to simulate the growth of nondilute
pseudobinary HgCdTe in the Bridgman-type system used by Space Science Laboratory
of NASA Marshall Space Flight Center (Szofran and Lehoczky, 1984). For the accuracy
of the model, full phase diagram is included in terms of var.ation of melting point
and equilibrium distribution coefficient with composition. Among the thermophysical
properties, the dependence of the coeflicient of thermal expansion 3, on the temperature
and composition is considered in the model, because it can change sign along the axial

direction in the melt which adds additional driving force for convection.

Finally, conclusion and some issues which may supplement this work is set forth in

Chapter 8.

91



Chapter 2

Modelling of Directional

Solidification

2.1 Introduction

It is worthwhile to begin with the elements of the modelling process before mathe-
matical model of specific process is made. The initial step, and driving force, is the
definition of phenomena with proper boundary conditions and initial conditions. In this
step several assumptions are introduced to simplify the process while mainitaining key
features involved. Boundary conditions and initial conditions are selected that they are
feasible for mathematical representation. The next step involves the numerical represen-
tation usually in the form of differential equations of physical phenomena and boundary
and/or initial conditions defined in the former step. The characteristic length scale,
time scale and scales for other variables are introduced during nondimensionalization
at this stage. It is in the next step to devise a numerical scheme to solve the resulting
differential equations from the former step. Generally, this step can be divided into two
small steps. First is for discretizing the continuous variables into discrete variables in
space and time, yielding a algebraic set of equations out of differential equations. Then

these algebraic equations are solved with the aid of a certain iterative scheme or direct
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solver, depending on the nonlinearity of equations. Finally, results are obtained and
compared with experiment, the actual process or intuition. At this point the modeller
either accepts the results as having reached the required standard or makes some mod-
ifications in his model. Because the numerical model should be firmly grounded on the
actual process or experiment, it will be helpful to examine the growth system and the

procedure used in the experiment by Wang (1984).

A heat pipe operated Bridgman-Stockbarger growth system was designed and con-
structed to control the temperature fields in the melt and the growing crystal. A
schematic diagram of the three-zone furnaces described in Figure 2.1 shows two verti-
cally aligned annular heat pipes separtaed by layers of insulating material. Sodium-filled
inconel heat pipes were used to obtain radially symmetric, isothermal furnace zones
operated in the temperature range from 570°C to 1100°C in vacuum and inert atmo-
sphere. An axial temperature gradient developed in the insulating zone can be varied
by changing the temperature of either heat pipe or by changing the length or axial and
radial thermal conductivity of the insulating zone. Thus, this insulating zone can also
be called as the gradient control zone. The gradient control zone can be structured to
function as an adiabatic zone which does not allow for heat transfer between the furnace
and the charge within the gradient zone and as a diabatic zone which enhances heat
transfer within the gradient zone, depending on the combinational use of Al,O3 and

Inconel 600.

The typical procedure for crystal growth follows (Wang, 1984). A (111) germanium
seed crystal approximately 8 cm long and a pre-cast germanium charge (~ 100 g) are
loaded into the boron nitride cylinder {(1.36 cm i.d., 1.9 cm o.d. and 30.5 cm in length)
shown in Figure 2.2. Gallium is added to achieve a melt concentration of approximately
5 x 10! gallium atoms/cm® The crucible is positioned within the furnace so as to
place the top of the germanium seed near the top of the gradient control zone to insure
back-melting of the seed. Because of the small distance (1 mm) between the crucible
and furnace wall, the alignment of the crucible is critical for thermal symmetry. The

chamber is evacuated to 0.4 torr and the heat pipes were heated at a rate not exceeding
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Figure 2.2: Schematic diagram of the crucible used for growth in the heat-pipe

Bridgman-Stockbarger growth system (Wang, 1984).
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8°C/min until 500°C is reached, because a faster heating rate can cause internal stresses
in the heat pipe. The temperature of each heat pipe is increased at ~ 4°C/min to the
desired value. After the temperature set point of each heat pipe is stabilized, the system
is thermally equilibrated for 30 minutes. The germanium crystals are grown at constant
crucible lowering rates of either 2 or 4 um/sec. The grown crystals range from 11 to 21

cm in length.

2.2 DPseudo-Steady-State Model

The pseudo-steady-state model (PSSM) of directional solidification (Chang,1983; Ador-
nato,1986) takes the approach of simultaneously determining axisymmetric convection
and solute transport in the melt, heat transfer in melt, crystal, and ampoule and
the melt/solid interface shape. A prototypical vertical Bridgman-Stockbarger crystal

growth system is illustrated in Figure 2.3

2.2.1 Modelling Assumpticns

The finite length of a real ampoule in a Bridgman growth system causes the transport
phenomena in this system to be transient for any nonzero translation rate, through
the steady decrease of the melt volume. These transients are slow for the growth rates
typical for semiconductor materials. The pseudo-steady-state model has been generated
by replacing the unsteady problem with a pseudo-steady-state process viewed from a
stationary reference frame and described in the cylindrical polar coordinate system
shown in Figure 2.3. Thus, the description neglects transients in the field variables
(velocity, pressure, temperature and concentration) caused by the steady decrease of the
volume of the melt and the dispacement of the ampoule in the furnace. The translation
of the ampoule through the furnace is accounted for by supplying melt to the ampoule
at the top (2 = 0) with uniform velocity V;, and composition ¢, and removing crystal

from the bottom of the ampoule at the same average composition and growth rate V,
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determined to conserve mass:
‘g = Ve = Vial(pm/ Pc)- (2.1)
Since the pseudo-steady-state model does not include the ends of ampoule, end effects

cannoi be taken into account. Fortunately, thermal end eftects are negligible for sui-

ciently long ampoules (Sukanek, 1982a, 1982b; Jasinsk: et al., 1983).

The major assumptions and approximations of the pseudo-stcady-state model are:

1. The field variables are axisymmetric. This assumptio allows for a two-dimensional
model and is a reasonable approximation to the vertically stabilizing Bridgman
system. The assumption of axisvmmetry may eliminate the possibility of three-
dimensiona! nature of field variables in a destabilized growth system as indicated
by recent works (Miller et al., 1984: Potts and Wilcox. 1986; Neugebauer and

Wilcox, 1988).

1o

The melt is assumed to be a Boussinesq fluid (Turner, 1973). A linear change in
density due to variations in temperature and concentration affects only the buoy-
ancy term in the Navier-Stokes equation. Elsewhere, the density is approximated
as a constant. Under the conditions appropriate for the growth of germanium
crystal in the experiment by Wang (1984), Ap/p is about 1 5%, which justifies this

assur.ption.

3. When the density of the melt change, on solidification it induces the flow near the
interface. Mathematically, this implies an aphysical jump in tI e velocity at the
ampoule wall and introduces a singularity at the tri-junction of melt, crystal and
ampoule. Analysis of a similar singularity for liquid/liquid/solid contact lines has
demonstrated the necessity of allowing the fluid to slip in a small region near the
contact line (Huh and Scriven. 1971: Dussan, 1979). For tvpical semiconductor
material, this density change is small (~ 3 7 for germanium). Therefore. densities

in both phases are assumed to be same thoughout the analysis, i.e. p, = p,.

4. The pseudo-steady-state mocel simulates the -rystal growth process in the re-

gion where the crystal growth rate is the same as lowering rate of ampoule. Al-
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though the growth rate was shown to be transient at all times in the conventional
Bridgman-Stockbarger growth system (Wang e? al., 1984), it was also demon-
strated that growth rate reached the steady lowering rate of the ampoule after the

initial transient period in carefully designed heat pipe furnaces (Wang, 1984).

1 he time scale for solute redistribution in the melt is assumed to be small com-
pared with the growth rate. Solute is transported in the mel. both by convecticn
along streamlines and by diffusion across solute gradients where each mechanism
occurs on different time scales. Rhines and Young (1983) argued that the first
stage of solute redistribution is due to the rapid convection followed by the much
slower diffusion process. Intense convection and steep solute gradients prevail in

the vertical Bridgman growth process; this assumption seems reasonable.

Perfect thermal contact at the melt/;ampoule and crystal/ampoule interfaces is
assumed, so that the conductive heat fluxes at these boundaries are equal on both
sides. The effect of imperfect thermal contact on the interface shape has been

discussed recently by Holland (1989).

. Ampoule and furnace temperature are not very different at a specific axial loca-

tion fo that the radiative contribution can be linearized. as was done by Jasinski

et al.(1983).

Heat transfer in the crystal consists only of conduction and convection. This is
valid for systems where bulk radiative transfer is not important. However, recent
investigations revealed that internal radiation can affect the temperature distri-
bution and convection pattern appreciably for semitransparent materials (Mat-

sushima and Viskanta. 1988).

The thermal coductivities of all the phases including melt, crystal and crucible
are assumed to be isotropic. For melts. the assumption of isotropic thermal con-
ductivity is quite reasonable. However, the thermal conductivity in the crystal
can be anisotropic depending on the crystallographic orientations (Carslaw and

Jaeger, 1959). Because of the difficulty of making accurate measurements on con-
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10.

11.

12.

13.

14.

duction of heat. little accurate information is available for the conductivity tensor

for specific crystals.

The kinetics of the melt ‘solid phase transformation is assumed to be infinitely
fast since the time scale for the solidification reaction is much smaller than that
for heat transfer. Also, supercooling at the melt/solid interface is excluded. so
that the melt/solid interface shape follows the melting point in the system. In
addition, it is assumed that the surface free energy does not affect the interface

shape.

The solidification front is assumed to be smooth on the length scale used in this
analysis. The existence of a mushy region is neglected as in an analysis by Thom-
son and Szekely (1988). Although there are ways to include the mushy zone in
the analysis of solidification (Bennon and Incropera, 1988; Salcudean and Abdul-
lah, 1988: Poulikakos and Cao, 1989). there has been no evidence for mushy zone
for the growth of seminconductor materials in the stabilized vertical Bridgman

system.

No cross-coupling is assumed to be present between heat and mass transfer, such as
the Soret and Dufor effects. These effects are only coupled through the dependence

of density on the temperature and composition.

As has been indicated by several authors (Jasinski et al.. 1984. Jasinski and Witt,
1985). the presence of crucible and the difference in thermal conductivities of melt,
crystal and crucible introduce the singular behavior at the tri-junction of melt,
solid and crucible. This singularity is due to the fact that temperature gradient at
the melt/solid interface suffers a sudden change while the temperature gradient in
the crucible does not. Kuiken (1988) analvzed this singular behavior to find that
the singularity is weakly logarithmic. In the PSSM. no attention has been paid to

this singularity in developing finite element method.

The crucible is assumed to be inert to the melt. When the crucible is highly

reactive, surface reaction terms on the crucible wall should be accounted.
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2.2.2 Governing Equations and Boundary Conditions

The physical configuration of the mathamatical model for vertical Bridgman growth
svstem is shown schematically in Figure 2.3. The distinguished phases are melt, crystal
and ampoule, each of which is characterized by different thermophysical properties. The
axisymmetric cvlindrical coordinate system (r.:) is placed so that r = 0 coincides with

the axis of crucible and =z = 0 is located at the top of the ampoule.

Variables are put in dimensionless form by scaling lengths with the radius of the
crystal, velocity v(r, =) with v/ R.. pressure p(r, =) with p,v*/ R? and composition é(, =)
with the inlet concentration ¢,. where v is the kinematic viscosity in the melt and p,,

is a melt density. The dimensionless concentration and temperature are defined as

S(r.z)

(2.2)

1}
(2
—
3
ty
|
—

Ti{r.z) = Tooia
f(r.z) = —m————
('r ) Thor — dcold (

o

.3)

where T}, and T.,4 are the dimensional temperatures in the hot and cold zones, re-

spectively.

In a nondilute binary alloy. convection in the melt is driven by density variations due
to both temperature and composition. The dependence of density on these variables is

expressed by the linear relation
p= poi1 = 3T -T,) - 3,(¢ - Co)! (2.4)

where the reference density is that of the melt at the temperature T, and composition c,.
The coefficients of thermal and solutal expansion are defined as .3, = —(1.p)(9p'0T )5
and 3, = (1 p)(0p 9¢)s.1. respectively. Equation (2.4) is written in terms of dimen- .

sionless variables as

3 3
Ap (ch) E(p—l)(gR°) =%{Ra’5_3&(9_1)} (2.5)

v? v?

where p is the dimensionless density (p/p,) and Pr, Ra, and Ra, are the Prandt]l number,
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thermal and solutal Ravleigh numbers, respectivelv. These and other dimensionless

groups are listed in Table 2.1.

Under the assumptions described above, the two-dimensional axisymmetric forms
of the steady-state equations of motion. continuity, and transport of heat and solute in

the melt are (Bird et al., 1960):

Vv = 0 (2.6)
v.VUv = —Vp+V2v-Pir{Ra,S—Ra,(()-l)}e: (2.7)
Prv.-V6 = V%8 (2.8)
Sev.¥VS = Vi§ (2.9)

where Scis Schmidt number and V is the gradient operator.

The energy equations in the crystal and ampoule are

Pee.-V# = 4.V%0 (2.10)

Pee.-V8 = +,V°0 (2.11)

where Pe is dimensionless growth rate or Peclet number and 7. = a./a,, and 7, =

aq 'a,, are ratios of the thermal diffusivities of each phase to the value for the melt.

The houndary condition that is distinguished to determine the melt :crvstal interface

shape is the equilibrium condition described as
O(r,H(r))=0n(S)=6, + m(§5+1-1/k) (2.12)

where 67, is the melting temperature of the alloy with concentration 1 'k and dimensin-
less slope m is obtained from the binary phase diagram by approximating a curve with
a straight line. It has been shown that iterative schemes using the equilibrium condition
to determine interface shape are more accurate and efficient than methods based on the
balance of heat flux (Ettouney and Brown, 1983). The location of the melt/crystal in-

terface is described by = = H(r), 0 < r < 1. The unit vectors normal N and tangential
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Dimensioniess Groups

Definition

thermal Rayleigh number | Ra, = ‘Lgc!.‘lm?:,ﬂi
solutal Rayleigh number | Ra, = %@i
Peclet number Pe = l;ffi
Prandtl number Pr=*
Schmidt number Sc = &

Stefan number St = 'F.:..,ES'T

Table 2.1: Dimensionless groups.
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t to the surface are wriiten as

No & He e He (2.13)
v1+ 1{; v+ 11;.'

where H, = dH/dr and (e,.e.) are the unit vectors in axisymmetric cvlindrical coordi-

nates.

The interfacial temperature and solute fields are related to the corresponding values

in the bulk melt by the balances

[N. V6, - KN -Vl = St Pe{N - e.) (2.14)
N.VS) = PefC(N-e:)(l _ kNS 1) (2.15)

where St is the Stefan number, & is the equilibrium distribution coefficient, and K, =
ke/km is the ratio of thermal conductivities between crvstal and melt. The product
(PeSc, Pr) is the Peclet number for solute transfer which is the dimensionless growth
velocity based on the solute diffusivity. It is used to describe the effect of growth on

solute transport.

The boundary conditions on the velocity field at the interface are

Pe Pe .
. T e— .t . = e— . ‘2_
vt Pr(e' t), o(v.-N) Pr(e_ N) (2.16)

where ¢ = p./pm. The top and sidewall of the ampoule are assumed to be no-slip

surfaces so that v, = 0 and v. = Pe/Pr are essential boundary conditions there.

The top of the melt is taken as the fictiticus inlet where the Danckwerts boundary

condition { Danckwerts. 1955) is set:

8S  PeSc
—_— < pr < ==0. A7
3 PrS for 0<r<1, 0 (2.17)

With this boundary condition, the solute entering the top of the ampoule balances the

solute transported by convection and diffusion in the melt. Equation (2.17) introduces a
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discontinuity in concentration at the inlet boundary. Nevertheless. it is more reasonable

approximation than assuming the constant concentration at this boundary.

Thermal boundary conditions are specified along the ampoule wall according to the

heat transfer condition

ae
[-é-r]a - B](:)[Om(;) . 0] (218)

where Bi( z) is a dimensionless heat transfer coefficient (Bi = h, R,/ k,) defined to include
radiative, conductive, and convective transport between the ampoule and the furnace,
and O, (z) is the temperature distribution of the furnace wall. The particular profiles
of Bi(z) and 8,(=) depend on the design of the furnace and sholud be determined
accordingly. The top and bottom of the domain of interest do not coincide with the real
top and bottom of the ampoule. The temperature on this boundaries are assumed to
be that of hot and cold zone, i.e. 8 = 1 at = = 0 and § = 0 at = = 1. These conditions

have little influence on the calculations when the ampoule is sufficiently long.

The axis ot the cylinder is taken as a line of symmetry for all field variables,

dv. a6 as
] v —_— IZ — = e——— = 2.
v, 5 3 = at r =0 (2.19)

which is consistent with the assumption of axisymmetric fields.

2.3 Transient Model

The finite length of a real ampoule in a Bridgman growth system causes the transport
phenomena in this svstem to be transient for any nonzero translaticn rate through the
steady decrease of the melt volume. This should be reflected in the quantitative model
so that it can describe or predict the transport phenomena occuring in the system as

accurately as possible.



2.3.1

Modelling Assumptions

Major assumptions and approximations for the pseudo-steady-state model are still valid

except the followings:

1.

3.

The Melt and crystal are enclosed in the ampoule and there is neither source nor
sink of material. That is, the melt, crystal and ampoule form a closed system with

respect to maus transfer and a open system with respect to heat transfer.

. Th~ ampoule has finite length so that the melt volume changes in time with

solidification as the ampoule translates through the furnace. Accordingly, all the
field variables (velocity, pressure, temperature and concentration) and interface

shape and location exhibits transient behavior.

In practice the space occupied by melt and crystal in the ampoule expands or
shrinks depending upon the density change on solidification. However, in this
transient model melt and crvstal fills the ampoule completely. leaving no free
surface at the top of the melt. Therefore, there is no necessity to consider surface-
driven convection in the melt. This is consistent with the approximation of equal

densities of melt and crystal.

Remelting or back-melting is not accounted in the growth process. It would be
necessary to solve the solute equation in the crystal to account for the remelting

of the crystal.

The thickness of the ampoule at the top and bottom is assumed to be very thin.
The error generated by this assumption is negligible when the temperature at the

top and bottom of ampoule is equilibrated with the furnace temperature.

Because of the translation of the ampoule, it is more efficient to fix the coordinate
system to the ampoule. Thus, the translation of the ampoule is accounted for by
the time-dependent change of profiles of furnace temperature and heat transfer
coefficients between the furnace and the ampoule with respect to this coordinate

system.
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2.3.2 Governing Equations and Boundary Conditions

The physical configuration of the time-dependent model for the vertical Bridgman
growth system is shown schematically in Figure 2.3. The axisymmetric cylindrical
coordinate system (r.:) is placed so that the origin of coordinate is located at the axis

of ampoule top, as shown in Figure 2.3.

The scales used for the nondimensionalization are the same as for PSSM, except that
time is scaled with momentum diffusion time, R2/v. There are several possible choices
of time scale: the thermal diffusion time, solute diffusion time, momentum diffusion
time and ampoule translation rate. Among these, momentum diffusion time was chosen

following the analysis of thermal convection by Gresho et al. (1980a).

The magnitudes of these time scales are compared for the growth of Ga-doped Ge
in the vertical Bridgman system used by Wang (1984). With the kinematic viscosity
v = 0.0013 and thermal diffusivity a« = 0.20 for the molten germanium, the solute
diffusivity of Ga in Ge D = 2.1 x 107%, and the translation rate 1, = 4um/sec of

ampoule R. = 0.68 cm, the characteristic times are

. R?

for momentum diffusion t, = —= = 355.2 sec
v
. R?

for heat conduction f; = — = 2.3sec

Q
e R?

for solute diffusion t, = o= 2199 sec
. R,

for ampoule translation t, = T = 1699 sec
9

The ratio of these time scales to the momentum diffusion time are represented in terms

of dimensionless groups as

t ~

£ = Lo pr=0(10"% - 107?)
tm a

R

= = = 5=000)
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t v Pr
- o @l )

(2.20)

where the orders of magnitude are for the typical semiconductor materials. From these
comparisons, we expect that the selection of momentum diffusion time for nondimen-
sionalizing the time in transient model neglects the transient in heat conduction which
occurs on a much smaller time scale. The calculated temperature fields from transient
model will not differ much from the results of steady-state calculation. However, the
transients in the flow and solute fields will be described well enough with this selection

of time scale.

Using the assumptions listed above and in the PSSM, the time-dependent field equa-

tions in the melt are written as

Vv = 0 (2.21)
ov o 1 ‘
5—_—-,-V-VV = -Vp- V‘v-.—E(Ra,S—RaJ))e; (2.22)

Pr (ﬂgev.ve) = v (2.23)
or

Sc (-‘9—5+v-vs) = V2§ (2.24)
ar

where the dimensionless groups are define in Table 2.1.

The energy equations in the crystal and ampoule are

NI o
or

Pr (-‘33) = 1.V (2.26)
o7/

where 7. = a./am and V4 = a,/a., are ratios of the thermal diffusivities of each phase

to the value for the melt.
In the transient model, the distinguished boundary condition to determine the in-
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terface shape and location is the same equilibrium condition described in the pseudo-

steady-state model.

For the coordinate system which moves with the ampoule translation rate V;. bound-
ary conditions at the interface are different from those used in PSSM. The temperature

and solute fields are subject to the following balances.

N Tl — KNV}, = —St Pr %{:-(N ce.) (2.27)
, 9H
NVS}-': —SCE_-(N'C;)(I—IC)(.S% 1) (228)

where 9H /OT(N - e.) is the normal component of interface “elocity.

The boundary condition on the velocity field at the interface and on the inside wall

of the ampoule becomes

to satisfy the no-slip condition.

Thermal boundary condition is also dependent on time as the ampoule translates.

-

{-(?2] = Bi(z,7)0uc(z.7) — O(r.z.7)] (2.30)
orl,
where Bi(:z,7) and 8,(=, 7) are functions of time and determined from the characteris-

tics of furnace design.

Another boundary conditions assumed here is that the surfaces of the ampoule are

not a source or sink for the solute, so that the fluxes there are zero:

5 =53] = (2.31)

As mentioned in a previous subsection, the boundray conditions for heat transfer

at the top and bottom of the ampoule are not easily defined. Most of the previous
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works employed the Newton’s cooling-law boundary conditions (Kreith, 1958) with the
magnitude of heat transfer coefficient depending on those in hot and cold zone (Sen
and Wilcox, 1975: Sukanek, 1982a, 1982b; Chin and Carlson, 1983). The insulated ends
were also use in the analysis (Bourret et al., 1985: Derby and Brown, 1986). In the
present model, the temperature on this boundaries are assumed to be that of furnace
at the same axial location. Because the furnace temperature profile is time-dependent,

the top and beitom temperature of the ampoule also varies with time.
O(r.z.7)=0(z,7) for 0<r <A, 2=0.L/R, (2.32)
where A; = R,/ R. ;R, and R, are radii of ampoule and crystal respectively.

The axis of the cylinder is taken as a line of symmetry for all field variables as in

PSSM.

O0v. 06 a5
= e— = e~ = — = 2.
v, = 3 o at r =20 (2.33)

which is consistent with the assumption of axisymmetric fields.

The specification of the moving-boundary problem is completed by setting the initial
velocity, solute and temperature profiles and interface location at 7 = 0. These initial
conditions are obtained from steady-state calculations of velocity and temperature field
in the absence of ampoule translation. The initial condition for the solute field specifies

a uniform concentration throughout the melt.

The transient model developed here is based on the vertical Bridgman growth system
used in the experiments by Wang (1984). However, the application of this model is not
restricted to Wang’s system and is extended to various kinds of confined growth systems
where the crystal is grown vertically in a gravitational field or in any direction under
zero gravity condition, such as the conventional Bridginan growth system (Wang, 1984),
constant gradient furnace (Rouzaud et al., 1985), a vertical gradient freeze growth
system (Gustafson et al., 1986; Gault ct al.; 1986; Monberg et al., 1987,1988; Clernans
and Conway, 1988).

The experimental system of Wang (1934) at MIT for the growth of dilute Ga-doped
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Ge is simulated in Chpter 6, along with the growth of Se-doped GaAs in the furnace at
GTE (Arnold et al.. 1989). The growth of pseudobinary HgCdTe alloy in the vertical

Bridgman system at NASA (Szofran and Lehoczky, 1984) is analyzed in Chapter 7.
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Chapter 3

Numerical Formulation

Detailed analysis for optimization of the design and control of crystal growth systems
requires efficient and accurate numerical methods for solution of the complex free- and
moving-boundary problems that describe solidification including thermosolutal convec-
tion and transport of solute. The set of governing equations in Chapter 2 defines such
a nonlinear free-boundary problem for the pseudo-steady-state model and a moving-

boundary problem for the transient model.

A Galerkin finite element method coupled with the Newton iteration scheme has been
devcloped previously for the simultaneous computation of the field variables and inter-
face shape for steady-state solidification problems (Chang and Brown, 1983a.h.1984;
Adornato and Brown, 1987a,b). In this chapter, the numerical method based on
Galerkin finite element method, Newton iteration and implicit time integration is de-

veloped for the transient model described in Chapter 2.

The general concepts of the finite element method are outlined in Section 3.1 and
followed in Sections 3.2 and 3.3 by the specific applications to the pseudo-steady-state
and transient models, respectively. These Sections include the details of the approx-
imation methods for the field and interface variables, the discretization schemes for

the partial differential equations, and the solution method for the resultant nonlinear



algebraic equation and differential equation sets.

3.1 Finite Element Method

The finite element method, which was first devised for structural analysis (Zienkiewicz,
1971), has become recognized as an effective tool for analysis of a wide range of physical
problems. Among these are problems in the field of fluid mechanics and heat and mass
transport, which are discussed extensively in a series of books, Finite Elements in Fluids
(Gallagher et al.. 1975a,1975b,1978,1982, 1984,1985,1988) and in the journal, Interna-
tional Journal for Numerical Methods in Fluids. Special emphasis has been placed on
the finite element solution of Navier-Stokes equations by Thomasset (1981). Girault and
Raviart (1986) and Cuvelier et al.(1986). General background is availabe in the hooks
by Zienkiewicz (1977), Chung (1978), Irons and Ahmad (1980), Huebner and Thorn-
ton (1982), Rao (1982), Fletcher (1984) and Schwarz (1988). Along with the empirical
success of finite element methcd for solving these physical problems, mathematical the-
ory has been developed to describe the computational accuracy of the finite element

approximations (Strang and Fix, 1973; Whiteman, 1973-1987; Oden and Carey, 1982).

The basic philosophy underlying the finite element method is that any continuous
variable, such as temperature, pressure, velocity or concentration, can be approximated
with low-order polvnomial interpolating functions which are defined in a piecewise man-
ner over a finite number of subdomains or elements. The interpolating functions, also
called approximation functions, basis functions, shape functions or trial fuctions, are de-
fined by the values of the variable at a set of nodes. The behavior of the variables within
the elements is completely described in terms of these nodal values and the underlying
interpolating functions. The nodal values are unknowns in the solution of a partial
differential equation and the success of finite element analysis depends on how fast and
accurately the nodal values can be computed subject to the equation and boundary con-
ditions. The finite element methods formulates the problem in each individual element

and then combines the elemental formulation for the solution of the problem in global
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domain. This feature reduces a complicated problem to a series of routine operations
in each element. This procedure is well suited to the computaion with large digital

computers.

Concepts of the finite element method began to solidify in 1960’s when Melosh
(1963) and Jones (1964 ) recognized that the finite element method was a variant of the
Rayleigh-Ritz method and confirmed it as a general technique for solving linear elastic
continuum problems. The finite element method received an even broader interpretaiton
when Zienkiewicz and Cheung (1965) reported that it is applicable to all field problems
that could be cast into variational form. The applicability of finite element analysis was
extended even farther when it was shown that the weighted residual approach could be
easily applied when a variational formulation was not available (Szabo and Lee. 1969;
Zienkiewicz and Parekh, 1970) Among the various weighted residual methods, the
Galerkin method has been proved in practice to be the most powerful technique for
the approximation of the solution of differential equations (Finlayson, 1972). Galerkin’s
method not only encompasses the variational formnlatinn, when such exists, but also
goes far beyond, because it can be applied to any well-posed system of differential

equations and boundary conditions.

The fandamental idea is briefly described here for the formulation and solution of a

boundary-value problem written in operator form as
L{u(x)} = f(x), (3.1)

where £ is a differential operator, u(x) is the function of independent variable x and
f(x) is the nonhomogeneous forcing function. In Galerkin's method (Calerkin, 1915)
u(x) is approximated within a finite-dimensinnal subspace of the original function space
by

u(x) = a(x) = Z Ni(x)a; = N(x) a. (3.2)

where u represents the solution to the continuum problem, 0 is the approximation to u
in the discretized problem, N is a vector of interpolating functions and a is the vector

of scalar coefficients. The coefficients are determined so as to minimize the error of the
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discrete solution u. This is done by forcing each of the inner products of Eq. (3.1) and

weighting fuctions to be zero ,i.c.
(L(u) - f,w) =0, (3.3)

where ( , ) is the appropriate inner product in the function space and w is a set
of arbitrary weighting functions the number of which is equal to that of unknowns.
The boundary conditions on u are a;counted for either by adding constraints or by
integrating by parts and replacing the relevant term with boundary conditions. If
Eq. (3.3) holds for all w, then the boundary-value problem, Eq. (3.1), with corresponding
boundary conditions are satisfied in a weak sense (Strang and Fix, 1973); the resulting
form of Eq. (3.3) is called the weal form. When the weighting functions are chosen to
be the same as interpolating functions, that is , w; = N, for i = 1,..., N, Eq. (3.3)
is called the Bubnov-Galerkin method or simply the Galerkin finite element method.
Otherwise, the residual formulation (3.3) is called the Petrov-Galerkin method, which

will be examined briefly in the next Section.

The behaviour of the field variables in the solution domain is described by the nodal
values and interpolating functions in the finite element method, and the efficiency and
accuracy of the Galerkin finite element method depends on the choice of the functions.
The interpolating functions are defined in such a way that, as the finite elenient mesh
is refined, the approximate Galerkin solution converges to the exact solution. Sufficient
condition for the convergence requirement is that the elements should be compatible and

complete (Hughes, 1987). The compatibility and completeness are discussed below.

The requirement of compatibility means that the interpulating functions should be
smooth (i.e. at least C!) on each element interior. Q°. and continuous across each
element boundary, 9. When at most first derivatives appear in the integrands of
weighted residual as is the case for the present study, finite elements constructed from
the interpolating functions which satisfy above conditions are C°%-elements. If the in-
tegrands involve derivatives of order m, the compatibility condition is strengthened so
that the interpolating functions should be of class C™~!. The elements which satisfy

the compatibility requirement are called conforming elements.
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We are interested in the second-order boundary value problem for which the first
derivatives appears in the integrands of weighted residual equations. In this case, the
concept of completeness requires that the element interpolating function is capable of
exactly representing an arbitrary linear polynomial when the nodal degrees of freedom
are assigned values in accordance with it. For problems involving mtn derivatives in
the integrands. completeness should be strengthened to mth-order polynomials. For
convergence, the completeness is stronger requirement than compatibility and patch test
has been proposed to ensure the global completeness of nonconforming finite elements

(Bazeley et al., 1965; Irons et al., 1970; Strang and Fix, 1973).

The weak form of the boundary value problem and the finite element solutions and
their derivatives must have certain integrability properties. Functions which have these

properties are the elements of Sobolev spaces of functions defined as

H* = HYQ) = {wiw € Lajw,z € Laj-++;w, oz € La}, (3.4)
—~
ktimes
where
L, = L,(Q) = {w{/ w? dzr < o}. (3.5)
N

The Sobolev space of degree k, denoted by H*, consists of functions that have square-
integrable derivatives through order k. Details about the Sobolev spaces, which are
most important in the numerical solution of the elliptic i)oundary value problems, are
available in the book by Marti (1986). The smoothness and continuity of functions in
each Sobolev space is provided by the Sobolev imbedding theorems (Oden and Reddy,
1976), which states that H* C C* if Q is a bounded domain in R" and s > n/2 + k.
In the finite element analysis, the solutions are approximated as linear combinations of
the interpolating functions in each element and it follows that interpolating functions
are also elements of the Sobolev spaces. In the present study the highest derivatives are
first order and fuactions in H!(f) are required. These have the first derivatives with
finite norm. To be more specific, the admissable functions are H}, where subscript
E denotes that the essential boundary condition is satisfied, as discussed at length by
Strang and Fix (1973).
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The advantages of locally defined piecewise polynomials as a interpolating functions
were first identified by Courant (1943) and by Prager and Synge (1960). Piecewise
interpolating functions are defined over a few elements, outside of which the functions are
zero. For example. the solution u(r) of a one-dimensional elliptic problem is represented

in a given element by

N
u(r) = Z a; Ni(z), (3.6)

1=1

where the coefficients {a;} are the unknown nodal values, {Ni(z)} is the set of one-
dimensional interpolating functions and N is the total number of nodes in the domain.

The discussion here concentrates on Lagrangian interpolating functions.

In each element, the interpolating functions can be represented in terms of local
coordinate system £ (-1 < £ < 1) which has a linear relationship with the global

coordinate:
Ny

u(:c) = E Qg N"(f), (3.7)

j=1
where N, is the number of interpolating functions necessary for 2ach element and de-
pends on the order of interpolating functions: 2 for linear, 3 for quadratic, 4 for cubic
interpolating functions. The forms of interpolating functions are given in Figure 3.1.
Linear and quadratic basis functions are Lagrangian polynomials and the values of the

coefficients represent the solution values u(z) at the nodes of the element.

For Lagrargian polynomial interpolating functions, the transformation of global

coordinate to the local coordinate system is done with the isoparametic trnasformation:

Ny '
z=3Y z, V(&) (3.8)

J=1

where r is the original coordinate and the set {z;} are the positions of the nodes for

[
each element.

With the isoparametric transformation, the evaluation of the derivatives and the

integration using the inner product require the use of the chain rule and the computation
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Figure 3.1: Lagrangian linear and quadratic basis functions defined on a unit element.
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of the elemental Jacobian. because the interpolating functions are expressed in terms of

the local coordinate { rather than in terms of x. For example,

Ny 1 Ny )

d dnN’ T dN’

d—::- = ; ? uj; = det(J)_l df Uj. (3'9)
j:] J=1

where J is a elemental Jacobian and is (dz/d€ ) in one dimension. The value of det(J)
is h./2 for linear interpolation and for the special case of quadratic interpolation for
which the middle node set at the mid-point of two corner nodes; h. is the length of the

one-dimensional element.

In a similar manner, a two-dimensional function u(z, y) is approximated as

u(z,y) = a; N'(z,y) (3.10)

..
1
—

=

where the coefficients {a;} are the unknown nodal values, {N(z,y)} is the set of two-

dimensional interpolating functions and N is the total number of nodes in the domain.

In each element, the elements of global coordinate (z,y) are mapped into the unit
element expressed in the (£,7) coordinate system (-1 < £ < 1,-1 < n < 1) with
elemental interpolating functions

Ny

u(z,y) =Y a; N(&n). (3.11)

1=3

The elemental interpolating functions {N/(£,n)} are constructed as the tensor products
of the corresponding one-dimensional interpolating functions (Schwarz, 1988). The
functional forms of the two-dimensional interpolating functions are listed in Table 3.1,
where the bilinear and biquadratic interpolating functions are expressed as ¥ and @,

respectively and v denotes the one-dimensional interpolating functions.

The nodes in the £ — 7 plane are mapped into corresponding nodes in the z — y plane
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Table 3.1: Two-dimensional Lagrangian bilinear and biquadratic interpolating func-

tions.

Two-dimensional Basis Functions

Tensor Products

Polynomial Forms

Bilinear
¥!(&,n) v'(E)y(n) - £)(1-n)/4
(&) ¥3(€)wi(n) (L+&)(1-n)/4
v3(&,n) wi(&)w(n) (1-&)(1+n)/4
vi(&,m) v3(€)v?(n) (L+&)(1+n)/4

Biquadratic
¢'(&,n) o (§)ot(n) | §(6-1) n(n ~1)/4
o*(€,7) o2 (&)d(n) | (1- - 1)/2
®%(&,n) o3\ (n) | (&~ 1)n(n—1)/4
o*(§,m) oo (n) | E(E-1)1-1n?)/2
o°(€,7m) 02(£)6*(n) (1-¢° )(1 - 7°)
95(€,1) 3 (£)e%(n) | E(E+1)(1-1n?)/2
o"(€: 1) o' (§)e%(n) | &(§ - LIn(n+1)/4
0®(&, 1) 0*(£)e*(n) | (1 -&)n(n+1)/2
0°(&,7) e (€)e*(n) | E(1+Enln+1)/4
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by the isoparametric transformation:

Ny
r=3 z; N(&n) (3.12)

j=1

Ny

y=73_ y; N(&n) (3.13)

J=1

where the (z;,y;) are the locations of the nodes in the elements. Curve-sided elements
formulated in such a way that the functional representation of field variables and its
curved boundaries are expressed by interpolating functions of the same order are called
isoparametric elements. In contrast to isoparametric elements, subparametric elements
are defined as elements whose geometry is described by a polynomial of order lower
than the one used for the field variables and superparametric elements as those whose
geometry is described by a higher-order polynomial (Huebner and Thornton, 1982). An
example of an isoparametric mapping is shown in Figure 3.2. An important considera-
tion in the construction of curvod elements is preservation of the continuity conditions
in the global coordinate system. In this regard, useful guidelines are suggested by

Zienkiewicz et al.(1969).

As discussed for the one-dimensional eleinent, the isoparametric transformation of
the field variables in two dimensions requires the evaltation of the element Jacobian.

In two dimnensions, this is

Ju ou 2_{_ du dn

B2 = 5:32:.{-3_7)% (3.14)
bu _ oudk dudn
dy ~ 060y  dndy

(3.15)

Unfortunately, the partial derivatives of £ and n with respect to z and y are not

directly available and the inverse of Eq. (3.14) must be written as

Ou _ Oudz  OJudy

3% = 3:0¢ T y0¢ (3.18)
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du Judzr Oudy

on ~ oxdm  oyon
(3.17)
or
Ou/d Ou/o
wol | gy | 0v/0e (3.18)
ou/dn du/0y
where (J! is the elemental Jacobian matrix and has components
0z /0¢ 0dy/d T ONIjOEz T IN'/BE ¥
3] = z/0§ 8y/9E _ = '/ EI' 1B '/ Ey' (3.19)
0z/0n 0dy/on S ONY/onrt S ON'/ony
Then, Eq. (3.14) is written as
du/or -y ou/0o¢ (3.20)
Ou/dy du/dn

The isoparametric mapping is invertible between the global and local elements if the
determinant of the element Jacobian does not change sign over each element. This
condition is satisfied if the quadrilateral element in the global domain is convex (Carey

and Oden, 1983).

In the analysis of solidification problems, it is crucial to approximate accurately
the location and shape of curved free- and moving-boundaries and the conditions im-
posed along these boundaries. Biquadratic elements with the isoparametric mapping
are preferred to bilinear approximations. The other advantages of using the higher-order
interpolating functions will be the higher order of convergence or order of accuracy for a
given mesh size (Strang and Fix, 1973) and the requirement of less elements for a given

level of accuracy (Brown, 1979).

Before going to the next Section, a comparison of the finite element method (FEM)
and the finite difference method (FDM) will somewhat justify the use of the FEM in

this work. The finite difference method has long been a driving force in computational
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studes of transport phenomena since its beginning early in this century (Richardson,

1910; Roache, 1976). In spite of the more complex formulation, the FEM provides

better features as a numerical tool in several respects:

o

n

. The standard nine-point FDM is analogous to FEM if linear approximations are

used in the FEM for problems with essential boundary conditions (Arakawa, 1966;

Jespersen, 1974).

The FEM satisfies Neumann boundary conditions through the weak form as de-
rived from the variational approach, which contributes toward a better conser-
vation of field variables throughout the domain. This is not true of the FDM

(Crandall, 1956).

. Irregular boundaries are troublesome in the FDM and have lead to the use of

coordinate transformations for solutions of transformed equations on a regular
mesh (Thompson et al., 1974). On the other hand, the FEM approximates the
irregular boundaries in a self-consistent manner, accounting for the degree of the

interpolating functions and mesh refinement.

Rigorous mathematical error estimates are available in the FEM (Strang and
Fix, 1972), and help determine the number of elements and select the degree of

interpolating functions needed to obtain a given level of accuracy.

The element-by-element formulation makes the FEM suitable to the numerical
algorithms which take advantage of today’s digital computer structure. Especially,
many aspects of the FEM (for example, generation of the elemental arrays and
iterative solution of global equations) are well suited to parallel computation (Noor
et al., 1983). These features have lead to the development of the Finite Element
Machine, which is a computer with multiple processors operating in parallel and
is designed to optimize the finite element computations Storaasli et al., 1982;

Adams, 1982).
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3.2 Formulation of Pseudo-Steady-State Model

3.2.1 Introduction

The solution technique for the pseudo-steady-state model presented here was originally
developed by Ettouney (1983), Chang (1983) and Adornato (1986) for the edge-defined
film-fed crystal growth and vertical Bridgman crystal growth system. The distinguished
featrre of modelling transport phenomena in the crystal growth system is that it involves
the phase change at the interface and it is crucial to representing the interface shape
and location accurately as a part of solution to a free-boundary problem. Conservation
equations written in terms of field variables (velocity, pressure, concentration in the melt
and temperature in bothe phases) are coupled to the location of the melt/solid interface
through the conditions at the phase boundary. For the boundary conditions associ-
ated with the melt/solid interface, essential boundary conditions and natural boundary
conditions are used: the former specifies both melt and solid temperature along the
interface equal to the equilibrium melting point of material and the latter balances the
net energy flux by conduction through the interface with the latent heat released by
solidification. Although both conditions must be satisfied simultaneously along the in-
terface, one condition is used as a boundary condition for the energy balances and the

other condition is distinguished for determining the shape of the interface.

The choice of distinguished condition for determining free surface strongly influences
the rate of the convergence (Silliman and Scriven, 1980) and accuracy of a numerical
solution (Ettouney and Brown, 1983) to a free-boundary problems. Ettouney and Brown
(1983) found that the methods which employ melting point isotherm as a distinguished
condition to determine interface location and use energy flux condition as boundary
condition for the energy balance were more accurate and efficient than formulations
based on the interfacial energy balance as a distinguished condition in their finite element

analysis of heat transfer in edge-defined film-fed crystal growth system.

Analysis by Chang and Brown (1983a,b) used the isoparametric finite element rep-
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resentations of the velocity. pressure. temperature and solute fields with a consistent
polynomial approximations to the melt/solid interface. Velocities, temperature and
solute fields were approximated by expansions of Lagrangian biquadratic polynomials
and the pressure in the melt was approximated by continuous bilinear polynomials.
Galerkin’s method was employed to reduce the partial differential equations to nonlin-
ear algebraic equations and Newton’s method coupled with direct Gaussian elimination
was used to solve the algebraic system. When the Newton’s method was not employed
to solve the interface shape and field variables simultaneously, the calculation of the

field variables and interface shape were decoupled into successive steps.

Traditional numerical schemes for the solution of free-boundary problems iterate
between the calculation of the field variables for the assumed interface shape and proce-
dure for updating the location of the interface (Bonnerot and Jamet, 1974; Kroeger and
Ostrach, 1974; Duda et al., 1975; Sparrow et al., 1977; Saitoh, 1978; Ramachandran,
1982; Lesaint and Touzani, 1989). In calculating field variables, one of the interfacial
honndary conditions mentioned above must be relaxed. Then, this relaxed condition is
used to update a new location of the interface. On the other hand, Newton’s method
calculates the field variables and interface shape simultaneously by setting the interface
location to be unknown and employing either boundary condition at the interface as
a equation for this unknown interface location in building Jacobian matrix. When the
equations for the field variables are nonlinear, Ettouney and Brown (1983) demonstrated
that Newton’s method used less computation time than the conveational schemes. This
increase in computational efficiency was due to the well-known quadratic convergence
rate of Newton’s method compared with the linear convergence of the conventional suc-
cessive approximation scheme (Ortega and Rheinboldt, 1970). The efficiency of the
Isothermm/Newton method over successive approximation scheme for the free-boundary
problem was also demonstrated by Chang and Brown (1983b) in the analysis of convec-
tion during vertical Bridgman crystal growth process. In view of the lineas convergence
rate of successive iteration scheme and the quadratic convergence rate of Newton’s
method, the efficiency of the Newton iteration scheme increases when the number of

unknowns goes up, because the distinguished boundary condition adds only one extra



equation to the problem and the computational load in every iteration is almost same

in either case.

Besides yielding more rapid convergence to the solutions of the discrete equation
sets, Newton's method allows impiementation of the continuation methods for tracking
solutions in parameter space (Kubicek, 1976; Brown et al., 1980) and of numerical
techniques for detecting multiple solutions (Keller, 1977; Ur - and Brown, 1982) and
for determining solution stability with respect to small perturbations (Yamaguchi et al.,

1984).

The Galerkin finite element method is known to be stable and convergent for elliptic
equations (Strang and Fix, 1973). However, this method is notoriously unstable for hy-
perbolic and nearly-hyperbolic equations such as convection-diffusion equation ( Christie
et al., 1976, Brooks and Hughes, 1982). An example of convection-diffusion equation is

written as

V.(kVT)-V-VT =0

which is typical of convective heat transport problems. This equation is mathematically
elliptic but with high velocity it can behave like hyperboilic equation because of the
hyperbolicity of the convection operator. In many instances, these numerical instabilities
of the Galerkin finite element method result in the oscillations in the solution field. The
difficulties in the numerical solution of convection-diffusion equations are evident when
steep gradients of the field variables within the boundary layer develop as the parameters
multiplied to the convection terms increase so that the convection terms domainate over
the diffusion terms. In this case, the loss of ellipticity due to the dominant convection

term causes the numerical instabilities in the form of oscillations.

With the mesh refinement, the Galerkin approximations are improved to the ex-
tent so that the boundary layer of the field variables are adequately resolved and the
oscillations are removed as the ellipticity of the equation in the elemental level is recov-
ered. However, the extremely fine meshes that are needed to resolve the field variables
adequately enough to stabilize the Galerkin approximation for complicated two- and

three-dimensional flow problems are quite costly using present supercomputers, espe-
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cially in the context of the Newton algorithm, which requires solution of large sets of
linear equations. Alternatively, the Petrov-Galerkin method can be used to alleviate
the oscillations in under-refined Galerkin or centered-difference schemes. The algorithm
and discussion are available in the literature, as are the criticisms (Gresho and Lee,
1979; Leonard. 1979) inherent to any methods that purposely introduce artificial dif-
fusivity into the approximations and lose the accuracy. Finite element methods for
solving convection-dominated problems can be classified according to the formalism
used to introduce artificial diffusivity into the Galerkin formulation. Methods based on
modification of the numerical quadrature (Hughes, 1978), on direct introduction of an
artificial diffusivity to increase the diffusivity (Hughes and Brooks, 1982; Kelly et al.,
1980) and on modification of the weighting function in the weighted residual method
known as the Petrov-Galerkin method(Christie et al., 1976; Heinrich and Zienkiewicz,
1977; Brooks and Hughes, 1982; Donea et al., 1985) have been proposed. Some of
these schemes will be tested in Section 3.2.5 for a convection-diffusion model which is

analogous to the problems that arise in the analysis of crystal growth systems.

3.2.2 Discretization by the Galerkin Finite Element Method

The pseudo-steady-state problem defined in Chapter 2 is reduced to a finite-dimensional
set of nonlinear residual equations by approximating velocities, pressure, temperature
and the shape of the melt/solid interface in terms of expansions of finite element interpo-
lating functions and unknown coefficients, and applying the Galerkin method for which
the weighting functions are identical to the interpolating functions. A mesh is formed
of quadrilateral elements by subdividing the domains which cover the melt, crystal and
crucible. The shape of melt/solid interface is approximated by one-dimensional edges
of the quadrilateral elements, so that the interfaces always coincide with the element
boundaries. Sample meshes are shown in Figure 3.3 for the vertically stabilized Bridg-
man crystal growth system. Because of the possible formation of the thin boundary
layers of solute and momentum in the melt, finer meshes are used in the melt region

than in the crystal and ampoule where only Leat transfer equations are solved.
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Figure 3.3: Finite element meshes for the analysis of vertical Bridgman crystal growth.
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Mesh

The isoparametric mapping consistent with the Lagrangian biquadratic interpolating
functions is used to transform each element in the cylindrical coordinate svstem (r, z)

to local coordinate system (&, n), which spans (-1 < £<1,-1<n<1) as

4

rilei(6.n), =3 :Ds'(&n) (3.21)
1 =1

r=

-
where {r(i), 2(1)} are the locations of the nodes in the global coordinate system and

{¢*(€.n"} are biquadratic Lagrangian interpolating functions.

Approximating Functions

The field variables are discretized using a mixture of finite element interpolating func-
tions. The velocity and concentration in the melt and temperature in all phases are

approximated by nine-node Lagrangian biquadratic functions (¢' £ Q,) as

Now [ 09

virz) = > 0 &'(r.z), (3.22)
i=1 Uz

Nm
S(r.2) = ST §D6i(r. 2) (3.23)

L
=1

N
o(r,z) = Y 8%6i(r,2) (3.24)

i=1

where N, is the number of nodes in the melt and .V is the total number of nodes in
all phases. The coefficients o ol §6) and 819) are the nodal values of the velocity,

concentration and temperature that are to he computed.

The dynamic pressure in the melt is approximated by discontinous piecewise-linear

interpolating functions (P,) defined at the centroid node of each element in the local
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coordinate system as

3

plr.z) =Y p'vi(€in) (3.25)

=1

where the linear basis functions ¢'({, n) are

U”(f»ﬂ) = 1
viAEn) = & (3.26)
vdé,n) = n

In Eq. (3.25), p}) represent the value of dynamic pressure at the centroid node while

p'?) and pt3) denote the pressure gradient in the radial and axial direction respectively.
This formulation of the pressure field show the discontinuity across the element because
pressure is not formulated in terms of nodal values at the boundaries. Since there are
no pressure derivatives in the weak formulation of momentum equations (Eq. (3.39),
discontinuous approximations for pressure field are allowed if only they are square-

integrable,i.e.. p € Lo(R).

The interpolating functions for velocity and pressure must be selected carefully to
yield a stable and convergent algorithm. The importance of this choice was noted
empirically by many researchers (Hood and Taylor, 1974; Nickell et al., 1974; Yamada
et al., 1975; Gartling and Becker, 1976; Kawahara et al.. 1976; Huyakorn et al., 1978)

who all selected mixture of interpolating functions for velocity and for pressure.

A mathematical theory for the finite element method with mixture of interpolating
functions has been developed during the last two decades. The key is featured in the
Babuska-Brezzi stability condition which was proposed and studied for linear elliptic
problems and their approximations by Babuska (Babuska, 1971, 1973; Babuska and
Aziz, 1972) and by Brezzi (1974). The main idea is that one cannot mix together
arbitrary an approximation of velocity with any approximatior: of pressure. The same
condition was first derived in an alternative but equivalent form by Ladyzhenskaya

(1969) and it is also called LBB condition.
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Most of our problems for momentum transprot are solution of the Navier-Stokes
equation. But, when the solution of the mathematical problem is unique. the methods
applicable for the Stokes equations have been proved to converge for the Navier-Stokes
equation and the error estimates for the Stokes approximation vield the same order of

accuracy for the Navier-Stokes equations (Jamet and Raviart, 1974; Thomasset, 1981).

We shall consider a Stokes problem in a bounded domain Q of R2. We look for

u € V and p € La(Q) such that for a given f € L,(Q)

-Viu+Vp=f
V-u=0
ulagn =0

where V = H} x H} and
H! = {ulu € Ly(Q),Vu € La(Q) x La(N), ujsn = 0}

The equivalent weak formulation of the Stokes problem is

/{Vu-Vv—pV-v—f-v}dQ:O VWweV (3.27)
] .

qV -udQl = 0 Vg € Ly(N) (3.28)
G

where v is the weighting functions for the momentum equation and ¢ is the weighting

function for the continuity equation.

The incompressibility condition plays the role of a linear constraint in a constrained

optimization problem:

minvev/ IVvi? —f.vdQ (3.29)
1]

Then, Egs. (3.27) and (3.28) are the same as the equilibrium equations of the saddle

point problem for (u, p):

minmaz e, ) /;;{lviflz +qV-v-f-v}dQ (3.30)
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where the pressure is considered as a Lagrange multiplier associated to the linear con-
straint, V . v = 0. These equivalances lead to the derivation of the Babuska-Brezzi
condition for convergence from the discrete formulation of the equation: there must

exist a constant k independent of mesh such that (Fortin, 1981)

V - vpdQ

h h ] _

sup JoanV - vhd 2 kllgnllL, 0/ Yan € Qn (3.31)
vacVy  livallv

where 1}, and Q4 are the finite element approximations of V" and L,(f2) respectively
and

ligllL,iny/r = infeerlig + cllzy(m

is a quotient norm, because p is only defined up to an additive constants. The condition
(3.31) implies that the discrete pressure p, must belong to the same class of functions

as Vjyup. The violation of this condition leads to the spurious modes in the pressure.

The LBB condition is rather abstract and to establish whether or not this condition
15 satisfied for elements of interest is not a trivial task. However, several combinations
of velocity and pressure elements have been shown to be stable and convergent by
satisfying the LBB condition (Bercovier and Pironneau. 1979; Fortin, 1981; Fortin and
Fortin, 1985a.,b). Biquadratic velocity-linear discontinuous pressure element (Q2-P;)
and biquadratic velocity-continuous bilinear pressure element (Q»-Q;) are most widely
used combinations which satisfy the LBB condition. For both mixture of elements, the
rate of convergence is optimal and is O(h?) measured in the L, norm (Fortin and Fortin,

1985b).

Several previous works (Sani et al., 1981; Engelman et al., 1982; Kheshgi and
scriven, 1984; Pelletier et al., 1989; Sackinger et al.; 1989) empirically support the use
of (Q2-P;) formulation over (Q2-Q;) formulation. The (Q,-Q;) formulation vields less
exact mass balances over each element becausc of the fewer incompressiblity constraints

it int  nces relative to momentum constraints (Hughes, 1987).
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Free Surface

For implementation of the isotherm/Newton scheme (Ettouney and Brown, 1983) it
is necessary to express the location of each node within the element as a function of
interface location, hecause the number of elements in each phase are fixed and elements
are deformed by the change of the interface location during the iterations. The simplest
case is a uniform mesh throughout both phases connected by the interface whose shape
is not deviated excessively from planarity, so that its location is a single-valued function
of a radial coordinate system, i.e. = = H(r). Then, the initial locations of the nodes are

unchanged radially and only the axial locations are coupled with the interface location

melt: r; = (i ~1)/(N. 1) z;=(j-1)H(r;)/(Nem — 1) (3.32)
solid: r; =(¢-1)/(N,~-1) zj=H(ri)+(f— Nom){L/R. — H(r;)}/N.43.33)
where N, is the number of node radially and N.,, and N., are the number of nodes

axially in the melt and solid respectively. Grading the mesh near any boundary will

modify above expressions.

The shape of the melt/solid interface is approximated by one-dimensional quadratic

Lagrangian polynomials {é(r}} which are consistent with the sides of the biquadratic
elements used for velocity, temperature and concentration and isoparametric mapping

for the coordinate system. The interface shape H(r) is expressed as

Ny
H(r)=Y HOG(r) (3.34)

i=1

where N7 is the number of nodes along the interface.

Weak Forms

The weak forms of the field equations are obtained by applying Galerkin’s method to

the equations in Section 2.2.2. The weak form of the continuity equation is formed using
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the interpolating function for pressure as a weighting function, i.c.

/ ¢(V - v)dV = 0, (3.35)
D

m

where i = 1....,.N, which is identical to 3Ng ,, because there are three unknowns of

pressure for each element.

The Galerkin method is applied to the momentum equation (Eq.(2.7)) to yield resid-

ual equations for the velocity in the melt as

/ ${v-Vv+Vp- Vv - %[Ra,s - Ra(6 - 1)je.}dV = 0 (3.36)
where i = 1,..., N, and the {¢'} represent the weighting functions that are identi-
cal to velocity interpolatiiig functions multiplied by the unit vectors (e,,e.) for the
corresponding velocity components. Therfore, Eq. (3.36) has a total of 2N, residual

equations for the velocity in the melt.

In a similar manner, the residual equations associated with the solute balance in the

melt and energy balance in all phases are expressed as

' (Scv-VS—-V3i§)dV =0 (3.37)
Dm

/o O (Prv Vb, — V30,)dV + | ¢'(Pee. V6 — 1 V360)dV =0  (3.38)

wherez = 1,..., N represent the residual equation for each node and k = sanda denotes

the crystal and ampoule, respectively.

The final forms of the residual equation set is derived by integrating Eqs. (3.36)-
(3.38) by parts and applying the divergence theorem (Mase, 1970) so that the boundary
conditions on field variablesn at the fictitious inlet, melt/solid interface and along the
ampoule wall are incorporated into boundary iniegrals that appear. Another advantage
of the finite element method is that the energy and solute balances at the interface are

automatically incorporated during the formulation of weak form. The weak form of the
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field equations are

/ ¢'v-Vv-(V.-¢')p+ Ve'Vv - %[Ra,s - Rai(0 - 1)le.dV = 0 (3.39)

m

/ Scoiv. VS + V¢'-vs¢iv+/ $iPe,, SdS
Do 8D,

~ [ oPem (N-e.)(S + 1)(1 - K)dS =0 (3.40)
8D,
Pré'v-V, — V0, -VéndV + | ¢'Pee. VO - 74V -V dV
D D,
- / GiStPe (N - e.)dS — / $Bi (0 — 0)dS = 0 (3.41)
aD; 8Dy

where 8D.,0D and 8D, denote the boundaries at the inlet, at the interface and at the
outer surface of the ampoule, respectively. Note that the pressure term in Eq. (3.39) has
been integrated by parts. This is due to the selection of piecewise linear interpolating
functions for pressure field. If it is not integrated by parts, pressure is expressed only
by p(?) and p® in Eq. (3.25) and there is no way to cbtain p{!). Only the gradients of
pressure are important in the momentum equation, so that it is necessary to specify a
datum level of the pressure. Thus, one of the pressure unknowns is set arbitrarily as
a datum pressure by replacing the first residual equation derived from Eq. (3.35) with
the condition

p(0,0) = 0. (3.42)

The resiaual equations for the interface location are formed by applying the
Galerkin’s method to melting point constraint (Eq. (2.12)) evaluated along the

me.. solid interface as
/ S:(r)16(r, H(r)) = 6m(5))dS = 0 (3.43)
8Dy

where the differential unit of arc-length along the interface dS is

dS =+/1+ H? dr (3.44)
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This Isotherm formulation has been used successfully in the finite element analysis of
solidification during edge-defined film-fed process (Ettouney and Brown, 1983; Thomas
et al., 1986), vertical Bridginan process (Chang and Brown, 1983a,b,1984; Adornato
and Brown, 1987a.b), Czochralski method (Derby et al., 1985.1987; Sackinger et al.,
1989) and in the analysis of interface morphology in directional solidification (Ungar
et al., 1988).

The flow pattern is most easily understood in terms of contours of the stream func-
tion. The stream function is computed as a post-processing step using velocity data
from the finite element solution. In the axisymmetric cylindrical coordinate system the

velocities are expressed in terms of the Stokes stream function ¥(r, =) (Bird et al., 1960)

as
19
Ve = ;--5? (3.45)
109
V., = —‘;—67. (3.46)

From the condition for irrotational flow (V x v = 0), the second-order equation for

the stream function is derived as

O _0v 1% 10% 10% _

0z dr rdr2  r29r r@:z2

v, Ov: ) 1 L N
o - S = V() + (F/r) = 0 (3.47)

The stream function ¥(r, z) is discretized using the same biquadratic Lagrangian inter-

polating functions used for the velocity field:
Nm 13 .
Y(r,z) = ¥l (r,2). (3.48)
=1

Residual equations for the stream function are formed by applying Galerkin’s method

to Eq. (3.47) to yield

; (Ove  Ov: i e 1 ; _
/qu-" (a: —-a—r—> dV_/I;,,. V¢ V(¢/r)+ﬁ¢ (‘I’/'r)dV—-O (3.49)
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The residual equations are reduced to a set of algebraic equations by numerical
integration. Widely used numerical integration techniques are grouped into Newton-
Cotes formula and Gauss-Legendre quadrature rules. The former methods use the
equally spaced sampling points, while the latter scheme optimizes the positions of the
sampling points. In the integration of finite eler-nent matrices, a subroutine is called
to evaluate the values of integrand at given points, and these points may be anywhere
on the element. No additional difficulties arise if the sampling points are not equally
spaced. Therfore, for finite element analysis it is common to use the Gauss-Legendre
integration scheme over Newton-Cotes formulas (Stroud and Secrest, 1966; Irons, 1971;
Zienkiewicz et al., 1971). The advantage of the Gauss-Legendre quatrature is that it
requires less sampling points than Newton-Cotes formula for the same level of accuracy.
In one dimension, we can integrate exactly a polynomial of order at inost (2n — 1) using
n sampling points by Gauss-Legendre quadrature, while 2n sampling points are needed
for the same polynomial by Newton-Cotes formula. In this work, nine-point (3 x 3)
Gaussian quadrature is used to calculate the area integrals and three-point quadrature

for all line integrals within each element.

3.2.3 Algebraic Solution by Newton-Raphson Method

The set of nonlinear algebraic equations has been formulated in the previous section.
The nonlinearities originate from the dependence of thermophysical properties on the
temperature and composition, from the convective transport terms in the momentum,
energy and solute equations and, most influentially, from the implicit coupling of resid-
ual equations with the interface shape through the dependence of the finite element
interpolating functions and the Galerkin integrals on the interface location. These non-
linearities force the employment of the appropriate iterative solution of the equations.
Since the overall performance of the numerical technique depends strongly on the choice
of the iteration scheme, especially in the complex free- and moving-boundary problems,

its selection cannot be over-emphasized. The advantage of the Newton-Kaphson method

in-the-finite-element-analysis -of solidification problem-relevent to the crystal growth
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system has been demonstrated several times previously (Ettouney, 1983; Chang, 1983;
Adornato, 1986; Derby, 1986; Sackinger, 1989); these results lead to the adoption of
Newton's method in this study.

The entire set of algebraic equations is represented by the vector equation

»

R(x;\) =0 (3.50)

where x is the vector of unknown coefficients associated with field variables and interface
location, xT = (v;T,v,T,p7,87,ST, HT), and the vector ) represents the parameters in
the problem. Successive approximations are calculated fo all unknowns simultaneously

using the Newton-Raphson iteration scheme. Given an initial guess for the solution

x(9), a correction vector §(*) for the k-th iteration is computed as
x(k+1) _ x(k) = §F) = -1 (xR (x(¥); \) (3.51)

where elements of the Jacobian matrix J;; = 0R;/0z; represent the sensitivity of the

residual equation set with respect to the unknowns. All contributions to the Jacobian

matrix are expressed analytically as functions of the unknowns x(%), Analytical expres-
sion of the elements in the Jacobian matrix are documented in the literature (Chang,

1983) for the similar problem.

In Newton’s method with unknown interface location, the terms of sensitivity of field
equations to the location of interface are required in the Jacobian matrix. The simple
way to obtain these terms is transformation of the original solidificaticn problem to fixed
meshes so that melt and solid regions have fixed boundaries and differentiation in the
transformed domain. This transformation technique was applied first by Landau (1950)
for one-dimensional and later by others (Spaid et al., 1971; Duda et al., 1975; Saitoh,
1978) to two-dimensional Stefan problems where the interface shape was a function of
a single spatial coordinate. These applications of transformation methods all solve the
the nonlinear equation set by successive iteration between the interface shape and the
temperature field. Ettouney and Brown (1983) implemented the Newton’s method in

solving the entire free-boundary problem in transformed coordinates. Solution of the
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free-boundary problem in the original coordinate system has the additional complexity

of requiring the generation of a new, and generally irregular, grid at each iteration.
Accordingly, the calculation of the Jacobian elements which express the sensitivity of
field equations to the unknown interface location becomes complex, too. In analyzing a
viscous flow with a meniscus, Saito and Scriven (1981) employed Galerkin’s method in
the original coordinate system while the residuals and elements of the Jacobian matrix
were calculated in the transformed coordinates that correspond to the standard isopara-
metric mapping for each element (Bathe and Wilson, 1976). Chang (1983) have shown
these two approaches in obtaining the Jacobian matrix elements are equivalent in the

analysis of convective flow near the melt/solid interface.

In the finite element method, the interpolating functions and weighting functions
have local ,upport, i.e. they are zero outside a few number of adjacent elements. As
a result, the Jacobian matrix J is sparse and banded, i.e. most of its components are
zero and the nonzero components are located within a small band around the diagonal.
This structure enables the efficient use of storage and solution algorithm in solving the
linear equation sets resulting from Newton’s method. For the small system of equations
with truly banded Jacobian matrices, a simple band solver can be used. In the preseﬁt
study of solidification system, simple band solver cannot be used becauce the number of
unknowns are huge (up to 30, 000 to 40, 000) and the field equations are coupled with the
interface shape resulting the arrow-type structure of Jacobian matrix. The correction
vector in Eq. (3.51) is computed using the frontai method originally dev.loped by Irons
(1970) and modified by Hood (1976, 1977). The frontal method stores cnly a part of the
Jacobain matrix in core for pivoting and elimination by formulating the components of
Jacobian matrix and residual equations generated from frontal elements. The reduction
ir. storage requirements allows to solve much larger equation sets by frontal method
than by traditicnal band solvers or matrix solvers. Additional advantage is that the
frontal method does not require the stringent node numbering scheme as is used for the

band solver.

A typical finite element mesh used in the calculations for the pseudo-steady-state

140



model contained 20 radial element in the melt and crystal and 4 elements radially across
the ampoule. The axial approximation was composed of 48 elements in the melt and
16 elements in the crystal. This mesh resulted in 24,085 nonlinear algebraic equations
which required 90 seconds on the CRAY XMP for a single Newton iteration; convergence
was achieved in fewer than 6 iterations. The global accuracy of the computation was

checked by the solute balance at the melt/solid interface expressed as

1 — H 2
I c(r,lH(T‘))\/l FHirdr =L (3.52)
B \/l-i-—H?r dr k

3.2.4 Continuation <f Solution in Parameter Space

Partial diffezential equations for the field variables in Section 2.2.2 or their weak forms
(Eq. (3.39) - Eq. (3.41)) are nonlinear and multiple solutions are possible with ex-
change of stability at the critical points. Bifurcation points and limit points are the
examples of such critical points in the parameter space as shown in Figusc 2.{. These
critical points are identified in the parameter space by computing the determinant of
the Jacobian matrix. Classical perturbation methods are well known for analysis cf
both limit and bifurcation points and have Leen adapted by several researchers (keller,
1977; Rheinboldt, 1978; Brown et al., 1980; Ungar and Brown, 1982; Yamaguchi et al.
1984) for implementation in numerical algorithms. These algorithms enables to track
solutions in the multi-dimensional parameter space, which is the cnly consistent way of

understanding the complex physics involved in multi-component solidification.

Analytic Continuation

Sequences of solutions to Eq. (3.50) are generated in parameter space by incrementally
changing a parameter of interest while fixing other parameters. From a set of field

variables and interface shape, x,, that satisfy Eq. (3.50) for A = A,, an initial guess

(x(9)) for the parameter values A = ), + A\, where A is amall, is constructed by

analytic continuation based on Taylor-series expansion (Kubicek, 1976; Wacker, 1978;
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Figure 3.4: A solution family with bifurcation and limit points in the parameter space.
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Brown et al., 1980) as

xO(A, + AX) = x, + x5 - AX (3.53)

where x) denotes the vector of differential change caused by the parameter A, This

vector is calculated from the solutions of the linear equation set

J(x0) - x» + (%I-;—)A =0, (3.54)

with the Jacobian matrix previously evaluated in obtaining x,.

The continuation method defined by Eq. (3.53) leads to an essentially predictor-
corrector scheme; the new solution is predicted by Eq. (3.53) and then corrected by
subsequent Newton iterations. When the Newton iteration has converged, the new
Jacobian is ready for use in the next predictor ste‘p. This continuation method has been
primarily used in this study to track the solution families with respect to the Rayleigh

number.

»

Arc-length Continuation

Continuation methods have been extended to cope with the pathologies cases by non-
linear systems, where the Jacobian matrix is singular at limit points (Simpson, 1975;
Keller, 1977). Because of the singularity of the Jacobian matrix the analytical contin-
uation method iails there. Arc-length continuation methocd will track solution families
around limit points (Keller, 1977). In most cases, .mperfections in the physical system
break the bifurcation and limit points are more frequently encountered. The arc-length
continuation method is employed in this study to track the steady-state solution family

with respect to solutal Rayleigh number.

The arc-length of the solutiun, s, is defined as the length of arc along the solution
curve from an arbitrarily chosen starting point. The vector function x(s) is a single-
valued function even if x(A) has multiple solutions caused by limit points. An augmented

equation is used with the parameter s to solve for unknowns (x, ) along the solution
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curve. The augmented system of equation is

R(x,A;s) = 0
(3.55)
N(x,\;s) = 0
where one of the several choices for N(x, A; s) (Yamaguchi et al., 1984) is
N(x,X:8) = (81— 50) — [Ix(s1) — x(s0)lI* = [A(51) — A(s0)]%, (3.56)

which prescribes the distance measured from the point [x(sg), A(so)] to the point
[x(s1), A(s1)]- Solution curves are computed by varying s. The predictor step for
(s1 + As) is similar to the analytic continuation procedure described above with the

definition of s (Eq. (3.56)) included:

x(s; + As) = x(s1)+ x,4s

)\(31 + As) = A(Sl) + A As

(3.57)

where (x4, A,) dewoies the vector of differential changes in x and A caused by the pa-
rameter s. This vector is calculated from the solutions of i he linear equations with the

Jacobian matrix previously evaluated i obtaining (x(s;)), i.e.

J RA xl B‘a 0
Ny N, A, N, 2(s; — so)

(3.58)

The prediction (x(s; + As), A(s; + As)) are corrected in the subsequent Newton

iteration using the augmented Jacobian matrix as
J(xF), A(R)) gik+1) = _ Rk} (k) ATk (3.59)

where J, §k=1) and K(*) denote augrnented matrix, correction vector and residual, re-

spectively, defined by

I A TN Axlks)) | RA)
j= o R*K) = . (3.60)

Nx Ny ANk+D) | N
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3.2.5 Test of Petrov-Galerkin Methods

Various Perov-Galerkin finite element methods have been proposed to overcome the
spurious node-to-node oscillations or wiggles which arise in the Galerkin formula-
tion of convection-dominated transport problems. In this Section, the performance
of three representative Petrov-Galerkin schemes are compared here with the standard
Galerkin method with bilinear or biquadratic interpolating functions for the solution of

convection-diffusion problem that is typical of those arising in crystal growth systems.

The model problem is for the melt region in the steady growth system. In this
model, the steady-state solute transport equation in a rectangular coordinate system

with a origin located at the inlet is
V2C - Pev-VC =0 (3.61)

where Pe = V,R./D is a Peclet number based on the solute transport, V, is a growth
velocity and R, is a half width of the crystal plate. Variables are put in dimensionless
form by scaling lengths with the half width of the crystal R, velocity v with V; and
compositicn C with the inlet concentration ¢,. D assuming a flat melt/sclid interface,
the two-dimensicnal domain covering half-width of melt is rectangular with y = ¢ and
y = H corresponding to the top of the melt and a flat interface, respectively. The
form of the flow field is assumed to approximate the cell struciure of flow in the crystal
growth system: and to include the component of growth velocity, as expressed by the

stream function

¥=-V{1-(2z-1){1-(Qy/H-1)}}2 -2 (3.62)

where V; scales the intensity of the flow circulation. This representation of the flow field

satisfies the no-slip and symmetry boundary conditions at the boundaries, i.e.

v, = 0 at all boundaries,
vy,=0 atz=0andz=1, (3.63)
vy=1 aty=0andy=H
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For the solute field we are imposing two kinds of boundary conditions at the top and

at the interface: Dirichlet-type and Robin-type boundary conditions, which are

(I) Dirichlet C =1 aty =0,
C=1/k aty=H

(3.64)

(II) Robin 0C/0y = Pe(C -1) aty=0,
0C/0y = Pe(1 -%)C aty=H

(3.65)

where k is a equilibrium distribution coefficient. Solute boundary conditions at the
interface account for the solute rejection or incorporation depending on the value of k.
Additional solute boundary conditions are specified to satisfy the condition of symmetry

at z = 0 and no-flux condition at z = 1.

oc
E_O at z=0and z=1 (3.66)

In the present study, k is assumed to be 0.1 to approximate the s¢giegation of gallium

from germanium and the aspect ratio H is set to 3.

The Galerkin formulation of Eq. (3.61) with bilnear interpolating function and uni-
axial velocity field (V. = 0) yields the linear algebraic equation for the arbitrary nodal

point m as

(1+g)cm4—2an+(1-g)cwH=o (3.67)

where 7 = Vgh/D is a elemental Peclet number based on element size h. The exact

solution for this difference equation is

(3.68)

1+x/2\™
Cm=A+B( ’) .

1-7m/2

where constants A and B are to be determined from the boundary conditions. The
solution displays a oscillatory behaviour when 7 is greater than 2. These oscillations
are caused by the central-difference-type approximations of standard Galerkin method

which gives equal weight to both ends of the element. Petrov-Galerkin methods (Christie
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et al., 1976; Heinrich and Zienkiewicz, 1977; Brooks and Hughes, 1982; Donea et al.,
1985) weight contributions from upstream nodes more heavily than those from down-
streams by modifying the Galerkin weighting functions. This is essentially the finite
element analog of the upwind difference schemes (Spalding, 1972) used in finite differ-

ence method.

Heinrich and Zienkiwicz (1977) (hereafter referred to as HZ) modified the weighting
function by adding the portion of cubic modifying function to the quadratic Galerkin

weighting function, i.e.
w'(€) = ¢'(€) + BF(§) (3.69)

Their choice of the modifying function F(z) is quite arbitrary, satisfying

1. F(€)=0at £=-1,0, 1.
2. F(&) is positive for —1 < € < 0 and negative for 0 < £ < 1.

3. -1<F(§) <1

in the local coordinate system within the element. The value of # was obtained sepa-
rately for middle and correr node in one-dimensional analysis by matching the nodal
solutions from the finite element analysis to the exact solutions and extended the result

to two-dimension in a similar procedure to tensor product generation.

In the following two Petrov-Galerkin methods, weighting functions are modified
based on the concept of artificial diffusion. Artificial diffusion method (Hughes and
Brooks, 1979; Kelly et al., 1980) is one of the basic techniques utilized to achieve the
upwind eflect in finite element method, along with quadrature technique and Petrov-
Galerkin method. In this scheme, artificial diffusion is added to the physical diffu-
sion and a conventional Gelerkin finite element discretization is employed. The proper
amount of the artificial diffusion is determined in one dimension to give the exact nodel
solutions to the convection-dominated transport equations. Supporters of the artificial
diffusion methods (Hughes and Brooks, 1979) interpret the artificial diffusion as relative

to central differences and not to the actual physics of the problem.
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Brooks and Hughes (1982) defined streamline upwind/Petrov-Galerkin(SU/PG)
weighting function by equating the modification term of weighting function and ar-
tificial diffusive term which accounts for upstream effects. In this formulation, the
modification of the weighting function is discontinuous and its effect is confined to the
element interior without affecting boundary or continuity conditions. Accordingly, the
divergence theorem cannot be applied to diffusion term which are weighted by w'(¢).
The use of linear interpolating function for the field variables prevents the modifica-
tion of the weighting function from mechanistically affecting the diffusion term. It only

affects the weighting of convective terms.

The Perov-Galerkin method proposed by Donea et al.(1985) (hereater referrred to
as DBS) modified the governing equation by substracting from the original differential
equation the scalar product of its gradient with a vector of free parameters Lambda

associated with each of the coordinate directions, i.e.
V2C — Pev-VC — A-V(V2C - Pev-V(C) =0 (3.70)

The modified govering equation is subsequently discretized by the standard Galerkin
finite element method. This modification is equivalent to the change of weighting func-
tion and thus to the Petrov-Galerkin formulation. The resulting artificial diffusivity

acts only in the direction of the flow and crosswind diffusion is prevented, as in SU/PG.

The test problem is solved to investigate the influence of boundary conditions,
growth velocity and circulation rate on the results of the several Petrov-Galerkin meth-
ods. For the calculations, meshes of 10 x 20 bilinear elements or 5 x .10 biquadratic

elements have been used.

First, the effects of growth velocity on the accuracy of the Petrov-Galerkin meth-
ods are shown in Figure 3.5 for the Dirichlet-type essential boundary conditions with
corresponding flow field and sample solute field for Pe = 1. In this case, the circula-
tion velocity is set to zero corresponding to the unidirectional flow. The exponential
composition profiles calculated with the Petrov-Galerkin methods agree with the exact

one-dimensional solution even for Pe = 50 where the solute boundary layer near the in-
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Figure 3.5: One-dimensional composition profiles computed usir.g the Petrov-Galerkin
methods with essential boundary conditions: (L) for bilinear elements and (Q) for

biquadratic elements.
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terface is very thin. On the other hand, the composition profiles computed by standard
Galerkin methods begin to show wiggles in the boundary layer at Pe = 20 where the
currently used number of elements can not resolve the solution structure sufficiently.
From the stability condition following Eq. (3.68), the exact value of Pe for the onset of
wiggle can be calculated, :.e.

Voh  Pe*H

—_ = ¢ = 13. .71
D No, — Pef =13.33 (3.71)

Q=7 =

where Ng, is the number of elements in the flow direction.

The introduction of a nonzero circulation rate modified the flow field so that it has
a two-dimensional flow cell. The change of flow structure deforms the isoconcentration
contours from one-dimensional solute field of diffusion-controlled growth to the typical
convection-dominated composition profile. The calculated results are shown in Fig-
ure 3.6 and 3.7 to illustrate the effect of circulation rate where Peclet number is given
as unity. Comparison of the performance among Petrov-Galerkin methods has been
made in terms of axial concentration profiles at the mid-point between the centerline and
the outer surface of the melt. The curves represent the same Petrov-Galerkin method
used for generating them as in Figure 3.5, though they are not distinguished readily
from one another in the plots due to the almost same accuracy. Flow fields and solute
fields are also shown as a function of circulation rate, where solute fields have been cal-
culaied by the DBS scheme. When ¥V, = 1, the solute field does not deviate much from
one-dimensional profilc and all the curves calculated by different Petrov-Galerkin met}:-
ods superimpose on one curve. Above V., = 5 solute boundary layers are formed near
the top of the melt and melt/solid interface where the essential boundary conditions are
specified and the region of uniform concentration broaden with the increase of V.. Every
method gives the nearly same solution for V. as high as 100. Thus, all the Galerkin
methods tested here give the accurate results for the convection-dominated problem
with essential boundary conditions except the standard Galerkin methods which give
wiggles near the solute boundary layer when the elemental Peclet number exceeds the

critical value for numerical stability.
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Figure 3.6: Effect of circulation rate on the solute field calculated using the Petrov-

Galerkin methods: Essential solute boundary conditions(I).
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Figure 3.7: Effect of circulation rate on the solute field calculated using the Petrov-

Galerkin methods: Essential solute boundary conditions(II).



The convection-dominated problem with the Robin boundary conditions has been
tested with the same Petrov-Galerkin methods. This problem is more demanding than
the previous problem because the Robin boundary condition is applied weakly in the

finite element method while the essential boundary conditions can be applied exactly.

The effect of growth velocity on the solution of the one-dimensional problem (V. = 0)
is similar to that in the previous problem with essential boundary conditions: the onset
of wiggles is observed in the Galerkin formulation beyond Pe‘. In this problem, the
concentration at the interface (y = H = 3) deviates as high as 20 from the exact
value (1/k = 10) when calculated by HZ. The reason for this behaviour is that the
upwind corrections are forced to vanish at nodal points and the Robin conditions are
not equally weighted in this scheme, leading to the erroneous results in the solution
at the boundaries. These results are shown in Figures 3.8 and 3.9. The results with
Galerkin method give an accurate interface concentration. Among Petrov-Galerkin
methods, only SU/PG gives an accurate boundary value; the solutions computed with

HZ and DBS begin to deviate from the exact value for V, greater than 5.

All the methods give nearly the same results shown in Figure 3.10, if the circulation
rate V, is small and the axial concentration profile is almost one-dimensional. Increas-
ing V. to 5 gives solutions that are grouped following the order of elements. Further
increase of V, separates the solution by HZ from others and this becomes more severe
when V, is large, as shown in Figure 3.11. In the same manner as the one-dimensional
problem (z.e.V, = 0), the accuracy of the method can be measured by comparing the
average concentration along the interface with the exact value (1/k = 10). This exact
value of average concentration which is independent of circulation rate or growth ve-
locity can be derived from the solute balance at the interface and velocity boundary

conditions used in the problem. Integral equation for the solute balance is

/(vzc—Pev-VC) v =0
D
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Figure 3.8: One-dimensional composition profiles computed using the Petrov-Galerkin

methods with mixed boundary conditions.
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Applying the divergence theorem gives

/ n-VC - Pen- (vC) dS =0
8D

Since the sidewall cannot be penetrated bv the solute, contribution for the surtace
integral come only from the inlet and interface.

[
Jop

n-VC - Pen-(v(C) dS

+/ n.-VC - Pen-(vC) dS =0
8Dy

where dD; and 3Dy denote the boundaries at the inlet and at the interface, respectively.
Applying the Robin boundary condition at the inlet and interface gives

/ _Pe(C - 1) + Pev,C dS
8D;

+ [ PeC(l-k)- Pev,C d§S =0
8D,

Axial velocity componenet at the inlet and interface v, is 1 from the stream function in
Eq (3.62), which simplifies the equation as

as

[ vas-[ kcas=o
aD; 8Dy
From this relation, the exact value of the average concentration at the interface is gives

;
C dS =~
8D; k

V. for constant Pe of unity. As expected, methods using biquadratic interpolating
method of HZ.

The average concentration at the interface are shown in Figure 3.12 as a function of
functions generally show better accuracy than those using bilinear elements except the
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with the mixed boundary conditions.
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One reason for the failure of HZ is that the interfacial source term in the weak
form of the solute balance is not changed as the elemental Peclet number is increased
because the modifying function F(£) used to form the Petrov-Galerkin weighting func-
tion (Eq. (3.69)) vanishs along all element boundaries. One remedy is to remove the
source term from the boundary condition by defining a new concentration variable as

the difference between C' and one-dimensional concentration field C,:

X exp(Pe(y - H) (3.72)

_ 1
Cu=1+ :

In terms of the new concentration variable, ¢ = C — C,, new source terms appear ‘
in the area integrals instead of in the boundary integrals, leading the source terms
all affected by the modified weighting functions. The results calculated with the new
concentration variables are shown in Figure 3.13. For unidirectional flow, introducing
the new concentration variable definitely improves the accuracy of the interfacial solute
balance as expected because the solute field is one-dimensional and there is no contri-
bution from the boundary integral expressed with new concentration variables. When
the fiow cell is present, the modified HZ still improves the accuracy of the interfacial
solute balance but fails to give the solution within the accepted range of error. Simi-
lar behaviour of the Petrov-Galerkin method by HZ has been previously observed for
the more detailed simulation of vertical Bridgman crytal growth system (Adornato and
Brown, 1987b). One way to cure this failure is to refine the mesh simultaneously until
it gives the accurate solute balance, but this approach substantially reduces the merits

of the Petrov-Galerkin method over the standard Galerkin scheme.

The test of three representative Petrov-Galerkin methods for the convection-
dominated transport problern can be summarized as follows. First, all the Petrov-
Galerkin methods tested gave correct results for the the problem with essential bound-
ary conditions. When mixed boundary conditions were used, HZ resulted an inaccurate
interfacial solute balance at high convection levels regardless of whether the convection
results from the high growth rate or high circulation rate. Introduction of a new con-
centration variable to remove the source terms from the boundary integral did not help

much when the mesh is coarse. The method proposed by DBS generated inaccurate
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Figure 3.13: Comparison of the accuracy of the Petrov-Galerkin method developed by

Heinrich et al.(1977) using regular and transformed concentration variables.
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solute balances only for the high growth rate.

Although the Petrov-Galerkin solutions were always smocth, no advantage of the
Petrov-Galerkin (HZ, DBS) formulation over conventional Galerkin method is obvious
for the test problem with high convection level, because the predicted concentration
fields lack the accuracy. Only the SU/PG formulation gave the consistent wiggle-free
solutions with reasonable accuracy. However, the advantage of higher-order element are

sacrificed in this formulation.

3.3 Forwmnulation of Transient Model

3.3.1 Introduction

Tranport processes in the vertical Bridgman system are inherently transient because
of the steady decrease of the melt volume in a finite length ampoule. No transient
description of the vertical Bridgman growth system has been available that includes
melt flow, temperature and solute field in the presence of moving melt/solid interface

and a decription of heat transfer through the ampoule and furnace.

This section describes the development of a robust finite element method for the
transient model of the vertical Bridgman growth system developed in Section 2.3. The
numerical techniques presented here are novel because of the methodology used to han-
dle the complex moving-boundaries and the disparate time scales associated with the
transport of the various field variables. Our strategy is to develop a consistent spatial
discretization of the entire set of differential equations describing momentum, heat and
solute transport taking explicit account of the moving-boundary. This discretization
is the basis for developing time integration algorithms for transient simulations. The

numerica! formulation of discrete system of equations is described in Section 3.3.2.

Although a Galerkin finite element method similar to that employed in the solution

of the pseudo-steady-state model is used for spatial discretization, additional complica-
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tions arise from the moving mesh which is updated at each time step. The usefulness
of the transient model hinges on the accurate and efficient numerical integration of the
discrete equation sets. In this study of moving-boundary problems with complex non-
linearities, it is preferable to employ implicit time integration method, which guarantees
the numerical stability (Gear, 1971), over explicit algorithm. For the solidification prob-
lems with large differences in the time scales for heat and solute transport, the fully
implicit time integration was shown to be more efficient than the explicit algorithm in

terms of total CPU time (Derby and Brown, 1986) by taking the larger time step size.

The approach taken here is to implement a fully implicit integration method for
solving the system of differential-algebraic equations generated by the Galerkin finite
element formulation. This integration strategy is described in Section 3.3.3 and parallels
the predictor/corrector type implicit time integration method by Gresho et al. (1980b),
which is equipped with adaptive time-stepping algorithm and has been widely used in
the finite element analyses of transport problems (Bixler and Benner, 1985; Keunings,
1986; Wouters et al., 1987; Derby et al., 1987; Ungar et al., 1988). An improved version
of Gresho and coworkers’ scheme was also suggested by Bixler (1989) for the case where

the solution approaches a steady-state.

In the transient model, large systems of nonlinear equations must be solved at each
time step. A quasi-Newton iteration algorithm is an extremely effective means of solving

these sets and is described in Section 3.3.4.

The applicability of the numerical metheod developed here for the ... ent model
is demonstrated in Section 3.3.5 by displaying the sample results from the transient
simulation of the vertical Bridgman crystal growth system without melt convection,

where the solutions can be compared to simple one-dimensional, closed form results.

3.3.2 Spatial Discretization

The spatial discretization of the transient vertical Bridgman model is based on the

finite element /Newton method for solving free- and moving-boundary problems arising
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in solidification systems (Chang, 1982; Ettouney, 1983; Ungar, 1984; Adornato, 1986;
Derby, 1986). The basic concept of discretizing the interface shape and field variables
in expansions of appropriate Lagrangean polynomials is the same as in the steady-state
formulation. In the transient problem, additional complexity arises from the fact that
the basis functions are implicitly time dependent because they are defined by the finite

element mesh which deforms in time as the interface translates.

The spatial domain, including melt, crystal and ampoule, is discretized into a finite
element mesh which deforms following the movement of the melt/solid interface shape
during solidification. Isoparametric biquadratic elements are used because of their ac-
curacy for solving elliptic probiems and for approximation of curved boundary shapes

(Strang and Fix, 1973; Hughes, 1987).

The shape of the melt/solid interface is approximated by one-dimensional La-
grangian quadratic polynomials {é(r(7))}, which are consistent with the biquadratic
elements in the isoparametric manping for the coordinate system. The interface shape
is expressed as

Ny
H(r,7) =Y H(7)$(r(r)) (3.73)

i=1
where N is the number of nodes along the interface. The coefficients { H(!)} are the

time-dependent interface locations at the nodes along interface and the interpolating

functions {¢'} are implicitly time dependent because of the coupling with the moving

interface.

The simplest case of uniform mesh was illustrated in the formulation of pseudo-
steady-state model in Section 3.2.2. In the present model of confined crystal growth, the
radii of melt and crystal are dictated by the dimension of the crucible leading the radial
location of the nodes in the element to be time-independent; only the axial locations of

the nodes are coupled with the interface shape. Then, time-dependent locations of the

nodes in the element {r(), z(9} are
r() = p() and =) = :O(H(rO) 7))
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The isoparametric mapping consistent with the Lagrangian biquadratic interpolating
functions is used to transform each element in the cylindrical coordinate system (r, =)

to a local coordinate system (£, 7n), which spans (-1 <£<1,-1<7<1),as

9

9
r=> r¢i6m), =3 LOHEY,7))6 (6 n) (3.74)
i=1 =1

where {¢*(£,7n)} are biquadratic Lagrangian interpolating functions. The coupling of
the shape and location of each element to the moving interface governs the location of

the nine nodes in the element.

The field variables are discretized using mixture of finite element interpolating func-
tions. The velocity and concentration in the melt and temperature in all phases are

approximated by biquadratic Lagrangian interpolatinz functions as

N ,(.')(1') .
Ty2,T) = Hr(T), 2(T)), 3.75
CERIE M A ECC R (3.75)
Nm . .
S(ryz,r) = Y SO(r)i(r(r), 2(7)) (3.76)
=1
N 0 .
0(ryz,7) = ZG(‘)(T)¢'(1'(T),:(T)) (3.77)

where N,, is the number of nodes in the melt and .V is the total number of nodes in all

phases. The coefficients v,(- ), v(’) 5G) and 8() are time-dependent velocity, concentration

and temperature values at node i. The interpolating functions {¢*} are implicitly time-
dependent since they are defined on elements with shapes that change in time following

the evclution of interface shape.

The dynamic pressure in the melt is approximated by discontinous piecewise-linear
interpolating functions defined at the centroid node of each element in the local coordi-

nate system as

3
p(ryz,m) =Y pI9i(€, ) (3.78)

i=1
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where the linear basis functions vi(£,7) are the same as in Eq. (3.26).

The weak forms of the field equations are obtained by applying the Galerkin’s
method to the equations in Section 2.3.2. The weak form of the continuity equation is

formulated using the interpolating function for pressure as a weighting function, i.e.
f BV - v)dV = 0, (3.79)
Dp(T)

where ¢ = 1,..., N, which is identical to 3Ng,,, because there are three unkncwns of

pressure-for-each-element.

The Galerkin method is applied to the momentum equation (Eq. (2.21)) to yield

residual equations for the velocity in the melt as

- {Ov 1 .
-/D...(f) @ {E +v-Vv+Vp- Vv - E[Ra,S - Ray(0 - 1)]e:} dV =0 (3.80)

where i = 1,...,N,, and {¢'} represent the weighting functions identicz! to velocity
interpolating functions multiplied by the unit vectors (e,, e.) for corresponding velocity
field. Therfore, Eq. (3.80) has a total of 2V, residu-! equations for the velocity in the

melt.

In a similar manner, the residual equations associated with the solute balance in the

melt and energy balance in all phases are expressed as

/ ¢*‘{sc (ﬁ+v-vs) -st} dV =0 (3.81)
Dum(r) or

/ ¢"{Pr (20—+V-V0m) -vzo,,,}dv
Jpair) ar
%) 39 2
+ s lpr (—-) — Vi bdv =0, (3.82)
Dy(r) or

where i = 1,..., N represents the residual equation for each node and £k = s and k = a

denotes the crystal and ampoule phase, respectively.
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The final forms of the residual equations are derived by integrating the diffusive
terms in Egs. (3.80)-(3.82) by parts and applying the divergence thecrem (Mase, 1970)
and the flux boundary conditions on velocity,temperature and concentration at the end

of the ampoule, meit/solid interface and along the ampoule wall, following the same

procedure as in steday-state formulation. This yields

/D ( )¢@+¢*v Vv— (V. ¢’)p+V¢‘Vv——-—[Ra,S Ray(6 - 1)]e.dV = 0 (3.83)

T

/ Sc ¢ (a—5+v-vs) + V¢ -VSdV
Dm(r) or
8H
+ ¢‘Sc—— (N-e.)(S+1){(1-k)dS=0 (3.84)
8Dy or

/ Pr ¢ <9§—+v Vo ) Vi . VO,.dV
D7) 0

+ #'Pr (39") — 1 V$ - VoAV
Di(7) or

+ f 55:Pr2E (N - e.)dS
8D; or

- ¢ Bi(2,7) [0o(z,7) — 8(r, =, 7)])dS = 0, (3.85)
éD,,

where 8D,.,8Dy and 3D, denote the boundaries at the top of the ampoule, at the
interface and at the outer surface of the ampoule, respectively. In an incompressible
fluid, the pressure is an implicit variable which instantaneously adjusts itself in such a
way that the incompressibility constraint (V-v = 0) remains satisfied. In Eq. (3.83) the
pressure term has been integrated by parts, as discussed for the steady-state formulation.
The pressure field is only computed up to an arbitrary additive constant, which is set

replacing the first residual equation derived in Eq. (5.79) with

p(0,0) = 0. (3.86)

The spatial discretization is completed by substituting finite element approximations

for the field variables Eqs. (3.75)~(3.77) into the residual equations Eqs. (3.83)-(3.84).
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The analytical expressions of the time-derivatives in the residual equations are not
simple because both nodal values and interpolating functions in Egs. (3.75)~(3.77) are
time-dependent. The formulation of the time-derivative is described helow for the energy
equation. The time-derivative term in Eq. (3.85) is expanded in terms of finite element

approximation for temperature as

% _ 2 () ; 3‘9(’)' (59 7
ar 81‘( 6 45’) Z 0 ar (3.87)

In evaluating the time-derivative 8¢7/87, we use the procedure developed previuosly
by Lynch and Gray (1980). We suppose the isoparametric mapping from the parent

element in global coordinates (r,z) to the isoparametric element in local coordinates

(&,7m). The value of ¢’ is invariant with respect to £ and 7 and we have

de’

5-| =0 (3.88)

Applying the isoparametric coordinate transformation to ¢’ gives

00

. o’
ar | Ve 5

anf,, BT 0 (3.89)

&n

where x is the vector of the global coordinates, x = (r,z)and V = (9/8r)e,~(8/0z)e. is
the gradient operator with respect to the fixed coordinate frame (r, z). Equation (3.89)

reduces to

— =-V°.V¢ (3.90)

where the element velocity vector V¢ measures how each element deforms and is defined

by

9 8xk k i
Ve Y ——gk =) Viek, (3.91)
k=1 T k=1

where V¥ = §x*/37 is the velocity of the coordinates of the kth elemental node.
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Substituting Eq. (3.90) into Eq. (3.87) yields

9 [ .96 . . 9 .98l
.'?..:S" ¢Ja—-—V‘-(0(’)V¢’) =Y ¢-’3—— -Ve.Vo (3.92)

or =~ or — or

J=1 Jj=1

The effect of moving mesh is summarized as the last term in (3.92) which directly links
the velocity of the moving melt/solid interface through the functional dependence of
mesh on the interface location. This correction in the time derivative of temperature
is applied to each velocity component and concentration in the same manner and gives

additional terms in the mass matrix described below.

When the mesh of present model system is considered, this correction term is further
sirplified. As discussed earlier, only the axial locations of the nodes in each element
vary in time, coupled with the moving interface. This eliminates the contribution of the
r-component in the element velocity, because the radial locations of the nodes are in-
variant. The element velocity vector reduces to V¢ = V¢ and the Eq. (3.92) is rewritten

as

06
3= 2

. 5009 . 00
2 (d>’ e ) -V 3: (3.93)

The residual equations for determining the interface location are formed by apply-
ing the Galerkin’s method to the melting point constraint (2.12) evaluated along the

melt/solid interface as
[ (60, H(r) - 0m($)ldS = 0 (3.94)

where the differential unit of arc-length along the interface is defined as

dS =1+ H}dr (3.95)

All the discretized equations are assembled into a set of algebraic- differential equa-
tions, which is represented in vector form as

Ol

M ar

= FU(y') (3.96)
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where M() is termed a mass matrix and y{') represents the vector containig all the
unknown coefficients for the field variables and interface shapes. The mass matrix
consists of a banded portion arising from the residual equations for field varaibales
(velocity, temperature and concentration) augmented with dense colum.s and rows
caused by the time-derivative correction linked to the moving interface. The mass
matrix is singular since there are no explicit time derivatives in the residual equations
for the incompressibility constraint (3.79) and meit/solid interface (3.94). The mass

matrix can be written as

M; O, M,
M= (3.97)
0, 0; O,

and the vector of unknowns is ordered as
yT = (vTa V;T, oTa ST, pTa HT)'

For this ordering, M, is a (4N, + N,) x (4N, + N,) banded matrix and M, is a
(4N + N,) x Np dense rectangular matrix. Qy((4Nm + N,) X 3Ngm): O2((3NE,m +
Ni) X (4N + Ny)), O3((3Ng,m+ Nr) x 3NE,m) and O4((3NE.,» + N1) x Ny) are all null

matrices with appropriate dimensions. The components of M, are
My = / adid dv (3.98)
D,

where k denotes the region, 7,5 = 1,...,(4N, + N,) and a’s are dimensionless param-
eters for corresponding field equations: 1 for momentum, Pr for energy and Sc for
solute. The contributions to M account for the moving mesh and are multiplied to the
time derivative of the interface. With the formulation of time-derivatives (3.93) for the

present model system, the components of M, are

= ipi 05 00)
Mai; "/D. e P (3.99)

where i = 1,...,(4Npn + N,) and j = (4Nm + Ny + INEfm + 1)y.. oy (4N + N, +

3NEg,m+ Np) with a’s same as for M;. The symbol ( ) denotes the appropriate variable
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for corresponding field equations: v, or v. for the momentum, 6 for the energy and §

for the solute equations.

3.3.3 Time Integration

The set of transient equations that result from the Galerkin finite element method are

expressed compactly in a vector notation as

i
2

(¥) == =E(y) (3.100)

where y is a vector containig all the unknowns, M is a mass matrix in finite element
literature and F is the steady-state part of the Galerkin residual equations. The mass
matrix M is singular since there are no explicit time derivatives in the residual equa-
tions for the incompressibility constraint and for the melt/solid interface. The system
of equations with singular mass matrix is a differential algebraic set and is particularly
difficult to solve numerically since they are infinitely stiff (Gear, 1971; Petzold, 1982).
This singularity prevents the use of traditional explicit time integration methods, which
would be much faster per time step, but the size of the time steps would be limited
severly by the condition for numerical stability. Ungar et al. (1988) compared the per-
formance of fully implicit Adams-Moulton algorithm and explicit predictor-corrector
algorithm and concluded that the fully implicit scheme was more efficient and accurate
in the microscale solidification problem. Another advantege of the implicit integration
method is that it allows the larger time steps because the numerical stability constraint
does not limit the size of the time step. Derby and Brown (1986) found the fully im-
plicit algorithm was an order-of-magnitude more efficient with respect to the time step
size especially for the solidification problems with large differences in the time scales of

several transported physical quantities.

Among the fully implicit integration methods, trapezoidal rule with second-order
accuracy is preferred to the backward Euler method because of the lower accuracy

and dissipative nature of backward Ev'er scheme. Trapezoidal rule is the two-step
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integration method and variously called modified Euler method. Crank-Nicolson method
or second-order Adams-Moulton method in the literature. To obtain an trapezoidal rule

we use the general formula for multistep implicit method as written by

1 1 1

Truncation of Eq. (3.101) at the second term gives the expression

1
Yn+1 = Yn + AT[y:,.H - E(y:,.i.l - y,'t)] + O(A‘ra), (3.102)

which is rearranged to yield
2
Ynrr = 2= (i1 = ¥n) = yn + O(AT?), (3.103)

that is accurate up to the term proportional to O(A72). The vector equation (3.100) is

discretized in time by applying trapezoidal rule (3.103) as

Ar, (0 At,
M(Yn+1) |Yn+1 = Yn — —51‘- (5%) ] - F(yns1) =0 (3.104)

where the subscripts denote the time step and (dy/07), is calculated from a consistent

second-order trapezoidal rule expression as

2] - - ()
[3”— (i = ¥ma) (ar » (3.105)

Since the trapezoidal rule is a two-step integration method which requires informa-
tion at the previous time step, integration is started with the implicit backward Euler

scheme as

M(Yn41)(¥ns1 — Yn) = AT F(Yn+1) = 0 (3.106)

The system of nonlinear algebraic equations generated at each time step of either

(3.104) or (3.106) is solved by a quasi-Newton algorithm which is described in the next
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Section. The initial guess for these iterations is constructed from an explicit second-

order Adams-Bashforth step using the information from the two previous time steps:

ATn A 3y A"'n ay
P = b
Yne1 = Un T 5 [(2 + ATy 1) (31’) ATy (87) ] (3.107)

where the time derivatives of y are determined by Eq. (3.105). In the iterations for the
starting backward Euler method, a forward Euler step is used for generating the initial

guess, which is consistent with the implicit integration scheme.

. {0y .
y£+1 =yn+ A1, (E)n (3.108)

The strategy for varying the step size AT, is based on an estimation of local time
truncation error and follows the heuristics proposed by Gresho et al. (1980b). As shown

in Eq. (3.102), the highest-order term which is neglected in the trapezoidal rule is

O(AT3) and the estimation of local truncation error becomes

_ P
Ayna = — L 4 O(aTY), (3.109)
3(1+ 2ge=)

where the predictor y%-_, of Eq. (3.107) is used. This estimate of the local time trunca-
tion error is used to compute the next step size At,;; by setting the local truncation

error at the next step to be ¢.

In terms of ¢ which is the only user-specified parameter, the next time step size is
computed as

1

I3 3
Ares = A (i), b0
! [AYns1l (3.120)

where ||yn+11] is the appropriate norm of the local truncation error. In this work, the

following weighted root-mean-square norm has been used:

”yn-rl” -~ N [l |2 > Avvz-.n-H + z /\v- n+1

maz ;=1 mar i=1
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-

N( l\.:
1
Y A2+ —— Y Y ASI A+ — H S‘A (3.111)
mar ;-1 mazr ;=1 mazxr ;=1

where N(= Ny, + N, + Ny + N, + Np) is the total number of unknowns and each Ay
is calculated by Eq. (3.109). The new step size At,4; is accepted if it is greater than
the old step size A, or if it is less than 0.8A7,. If 0.8A7, < Am,41 < ATy, the step
size is unchanged. The parameter ¢ for the error criterion at the next step was chosen

typically as 1 x 10~4.

The strategy described above is used for varying the size of the time step unless this

step size violates following criteria. The first criterion is

ATR‘)‘I
— 1T L9 3.112
Ar, ~ (3.112)

Without this criterion, the step size would increase so much that the predictor would
be likely to overshoot the solution at 7,42 causing unacceptable error. In the scheme
by Gresho et al.(1980b) they repeated the calculation at time 7,41 if A7+ < 0.8A7,,
which makes the prgramming more complex and requires more memory. To prevent this
additional work, we simply set Ar,4; as 2AT, when this criterion is violated. Secondly,

the maximum time step size is specfied as

Atp41 € ATmax (3.113)

where ATmax is set according to the time scale of interest. For the dimensionless time
based on momentum time scale, Armax was usually set to unity.
The third criterion is

ATper > AThin (3.114)

where dimensionless A7 ;. is determined according to the time scale used. When the
time step size is too small, trapezoidal rule oscillations are likely to occur and add to the
time discretization errors. To damp the oscillations the backward Euler scheme replaces

the trapezoidal rule when this criterion is violated.
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3.3.4 Algebraic Solution with Quasi-Newton Iterations

Sets of nonlinear algebraic equations are generated at each time step of transient finite
element analysis as a result of discretization of field variables and interface shape both
in space and time. These nonlinear equation sets are summarized in a vector notation

as

I

(y)=0 (3.115)

where the caret is used to distinguish between residual equations including time dis-
cretization and those arising from steady-state analysis. The nonlinearities in the
steady-state part of the model equations originate from the dependence of thermo-
physical properties on the temperature and composition, from the convective transport '
terms in the momentum, energy and solute equations and most influentially from the
implicit coupling of residual equations with the interface shape through the dependence
of the finite element interpolating functions and the Galerkin integrals on the interface
location. The last factor for nonlinearity becomes more evident with the moving mesh
of the transient analysis. These nonlinearities force the employment of an appropriate

iteration scheme in this analysis.

The best known method for the solution of the problem of this kind is Newton’s
method and modifications of it to improve its computational efficiency. While the
second-order or quadratic convergence rate of Newton’s method is very attractive, the
well-known disadvantage of Newton’s method is the requirement of a very good initial
guess if the iteration is to converge, especially when the domain of attraction of the
solution is small (Powell, 1970; Dennis and Moré, 1977). The most important compu-
tational disadvantage is that it needs the Jacobian matrix to be determined for each
iteration. This is very costly requirement especially for large and dense matrices. One
way to circumvent this problem is using a finite difference approximation to the Jaco-
bian matrix. This approach reduces the cost of evaluating each element in the Jacobian
matrix and this reduction can be substantial if the analytic expression of each element
is complex. However the number of Jacobian elements to be evaluated still remains the

same.
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A popular technique for trying to save overall computational effort of the Newton’s
method is to hold the Jacobian matrix and its decomposition fixed for a given number
of iterations, which is called the quasi-Newton iteration in the present study. The
Jacobian is recomputed only after the previously obtained Jacobian has failed to yield
a converged solution in a given number of iterations. This technique is particularly
nseful when the Jacobina is not changing very rapidly. Brent (1973) has shown that
this technique can increase a certain measure of efficiency in spite of the reduced rate
of convergence. Other quasi-Newton methods are discussed at length in the work by

Dennis and Moré (1977).

An example of convergence for the typical calculation using quasi-Newton method is
illustrated in Figure 3.14 for various number of quasi-Newton steps (/V,,q) between full
Newton iterations. Convergence of the iteration was measured in terms of the absolute

and relative error criteria between successive iterations as

i, - o

i |

(¥) (i

foo = m:a.x]yk‘H - yk)l < Egoset OF &r = miaxli 72 set (3.116)

where € et and ¢, get are the specified error tolerances for the absolute error and

relative error. If either error criterion is satisfied, the iteration stops and the solution is

considered to have been computed.

3.3.5 Example of Time-Dependent Calculation

Problem

The numerical algorithm for solution of the transient model is tested througﬁ calcu-
lations for the growth of gallium-doped germainium crystal in the vertical Bridgman
system used by Wang (1984). In the laboratory experiment, the ampoule is held sta-
tionary until the temperature field in the melt and the seed crystal equilibrated with
the thermal environments. Corresponding flow and solute fields are steady-state with

a uniform concentration throughout the melt. Therfore, the initial conditions for the
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transient integration are the steady-state solution of the field equations in a stationary
ampoule. At t = 0, the ampoule begins to translate downward in the furnace and so-
lidification starts upward. The transient simulation of the crystal growth process was
continued until about half of the melt was solidified. The initial time step was 0.02 and
is equal to two percent of viscous time constant (R2/v). This starting value of At comes
from the suggestion of Gresho et al.(1980b) and the scheme of adaptive time step size

described in Section 3.3.3. was employed to adjust At for future time step.

The discretization used in the calculation contained 20 radial elements in melt and
crystal and 4 elements across the ampoule. The axial approximation was composed of 48
elements in the melt and 16 elements in the crystal. Examples of finite element meshes

a

generated during the simulations are shown in Figure 3.15, where the deformation of

mesh with the progress of solidification can be clearly observed.

The thermophysical properties used in this test for gallium-doped germanium are
listed in Table 3.2. All properties were assumed to be independent of temperature
and the concentration of the gallium is low enough to neglect the solutal buoyancy-
driven convection. Test calculations for the growth of GaGe alloy in a boron nitride
ampoule were performed without convection, Ra;, = 0. This limit of convection-free
growth collapses the problem to the solution of a Stefan problem controlled by duffusion
equations. This fact will be used later in this Section to estimate the numerical stability

bound for At.

Parameters corresponding to the test case for this system are tabulated in Table 3.3.
From the information on thermophysical properties of GaGe and furnace design, the

values of dimensionless groups are listed in Table 3.4.

Results

The time step history is presented in Figure 3.16. to demonstrate the power of implicit
time integration method. During the Euler-backward integration scheme was used in the

first five time steps, the step size was held constant at 0.02. Then, the time siep for the
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Quantity Symbol (units) | Value
Therm‘aTconductivity of the melt K,,(W/°C-.cm) (;.?390
Thermal conductivity of the solid K,(W/°C-cm) | 0.180
Density of the melt Pm(g/cm®) 5.480
Density of the solid ps(g/cm3) 5.480
Specific heat of the melt Cpm(J/°C-g) |0.350
Specific heat of the solid Cp,s(J/°C-g) 0.380
Melting temperature Tm(°C) 937.4
Kinematic viscosity v(cm?/sec) 0.0013
Heat of solidification AH,(J/g) 460
Thermal expansion coefficient Be(°C~1) 5.0 x 104
Diffusion coefficient of Ga in Ge D(cm?/sec) 2.1 x 104
Equilibrium distribution coefficient of Ga | k 0.087

Table 3.2: Thermophysical properties of germanium.

Quantity Symbol (units) | Value
Ampoule length L(cm) 15.24
Crystal radius R (cm) 0.680
Ampoule outer radius R,(cm) 0.953
Gradient zone length Ly(cm) 3.810
Temperature difference T, - T.(°C) 340

Growth velocity Vy(pm/sec) 4.0

Thermal conductivity of ampoule | K,(W/°C-cm) | 0.256
Density of ampoule Pa(g/cm?) 2.250
Specific heat of ampoule Cpa(J/°C-g) 1.862

Table 3.3: Parameters for furnace design and processing conditions.
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Name Symbol | Definition Value

Thermal Rayleigh number Ra; 9Bt ATRS /(amv) | O

Peclet number Pe VoR./a 1.34 x 103
Prandtl number Pr v/am 6.39 x 103
Schmidt number Sc v/D 6.19

Stefan number St AH,/ComAT 3.87

Table 3.4: Dimensionless groups and characteristic values for modelling gallium-doped

germanium crystal growth by the vertical Bridgman method.
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Figure 3.16: History of the time step size generated by the fully-implicit time integration.
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trapezoidal time integration grows monotonically until it reaches the preset maximum
time step size of unity and remains at the maximum value, because there is no change
in the physics that controls the response during this period. However, it is expected
that the time step size will decrease as the melt/solid interface approaches the top of
the ampoule. The elapsed time corresponding to this time step history is described in

Figure 3.17.

The efficiency of the fully-implicit method becomes more clear as we compare these
time steps with those which satisfy the stability requirements of an explicit time in-
tegration methods. In the test problem, temperature and solute fields determine the
size of the time step because velocities are uniformly constant in the melt. The diffu-
sive stability limit for forward-time and centered-space difference approximation in two

dimension is on the order of (Roache ,1976)

At < 2 L

S % W, (3.11()

where a is an appropriate diffusion coefficient for a field variable of interest: 1,Sc
for concentration and 1/Pr for temperature. For the minimum size of the element
Ar = 0.05, the stability limit would be At <~ 10~2 for concentration and At <~ 105

for temperature, which we exceed by a factor as high as 100.

The combination of the relatively long gradient zone and the different, but com-
parable, thermal conductivities of melt, crystal and ampoule leads an interface shape
concave to the solid regardless of the position of the ampoule. This concavity resnlts
in the radial temperature gradient near the interface so that the fluid at the centerline
is hotter than material near the ampoule. Sample temperature fields corresponding to

the meshes in Figure 3.15 are shown in Figure 3.18.

Imposing Ra, = 0 excludes cellular convection in the melt and the solute field is
almost radially uniform; the unidirectional profile characteristic of diffusion-controlled
growth is clearly seen in the solute profiles for dilute gallium in germanium shown in
Figure 3.19. The radial segregations in these results is induced only by the interface

curvacure as discussed by Coriell and Sekerka (1979).
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184



AT = 0.1 AT = 0.1 AT = 0.1 AT = 0.1

[~
R m—
!
.y |
::;r“ |
| i
i
_—T l L
| l
— |
S oy
e
S o
.
S
+
€ & & €

(a) t= 0 sec (b) t= 3889 sec (c) t= 8151 sec (d) t= 13123 sec

Figure 3.18: Sample time-dependent temperature fields for growth of GaGe in the

vertical Bridgman system.
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Figure 3.19: Sample time-dependent solute fields for growth of GaGe in the vertical

Bridgman furnace.
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The growth rate, defined as the advancing rate of the melt/solid interface, is cal-
culated from the time derivatives of the interface location and is shown in Figure 3.20
for an ampoule translation rate of 4 um/sec. The stari of ampoule translation can be
considered as a special case of sudden change in translation rate, which is accompa-
nied by the transient period where crystal growth rate becomes equilibrated with the
ampoule translation rate. Calculated growth rates show an initial exponential profile
during this transient period and reach the equilibrium ampoule translation rate, as was
observed in one-dimensional calculations (Fu and Wilcox, 1981; Bourret et al., 1985)

and in experiments (Fu et al., 1982; Wang et al., 1984).

The composition profile in the grown crystal is of great importance because the
uniformity of composition in the crystal is one of the factors that determines crystal
quality. The capability of calculating axial solute profiles in the crystal partially justifies
the development of transient numerical model. Calculated axial composition profile
in the crystal is depicted in Figure 3.21. The solution of the test problem shows a
good agreement with the analvtical solution by Smith et al.(1955) for one-dimensional

diffusion-controlled growth.

Accuracy

Checks on the accuracy of the finite element results were performed by examining the
species mass balance in the melt. By applying Reynolds transport theorem(Whitaker,
1968; Lin and Segel, 1974) to the time-dependent solute equations along with interface

flux boundary conditions, we obtain the criterion for the numerical accuracy.

The Reynolds transport theorem has been developed to relate the time derivative of
a volume integral to the volume integral of a time derivative, when the surface of the

volume moves or deforms. It is written for the scalar function C as

4 CdV:/ Cw+ | cw-nds (3.118)
dt Jy(e) v(t) Ot S(t)

where w is the velocity of each point on the surface of the volume and may be a function
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of the spatial coordinates and time. «

Integral form of the solute equation which governs solute transport in the systtem
is

/SC(QE+V-VC) _ VI dV =0 (3.119)
D ot

Applying the Reynolds transport theorem and divergence theorem to Eq. (3.119) yields

scﬂ/CdV-sc Cw-ndS
dt Jp 8D,

+ Sc Cv-ndS - VC-ndS =0. (3.120)
8Dy 8Dy

When the melt is taken as the domain of the volume integral, the velocity w is nonzero
only along the interface D and is equal to the growth velocity w = dh/dte.. Ad-
ditional conditions along the interface are v-n = 0 from the no-slip condition and
VC = Sc(—dh/dt)e.(1 — k¥)C from the flux boundary condition. Unit normal to the

interface is given by (Weutherburn, 1927)

e. — h.e,

T V1+h?

where h, = dh/dr. With the realtion dS = /1 + hirdr, Eq. (3.120) is rewritten as

d dh
Sc ['&?/DC av-k[ ¢ rdr] =0 (3.121)

This relation is applied to the discrete time step to give

=V KO-V € C >y - | T kA< WC > dt (3.122)

Trn—1

where V and A are volume of the melt and surface area of the interface, respectively.
Interface velocity or growth rate is denoted by V;. Subscripts n and n — 1 refer to the n-

th and (n — 1)-th time step. The notations < > and < > are for the volume-averaged
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and area-averaged quantities. For an exact balance, £, should be zero for n-th time

step.

To make this criterion for accuracy more sensible, Eq. (3.122) is reformulated to give

kcampute

en=1- p

1o VLE®h-VLC >
e I kA< VIC > dt

(3.123)

The values of £* during the transient simulations are plotted against time in Fig-
ure 3.22. Throughout the simulation, £é* remained below three percent, demonstrating
the accurate solute conservation for the transient solution calculated by the present

numerical model.

Convergence

The accuracy of the transient simulation of the crystal growth processes depends on the '
accuracy of the spatial discretization of the field variables and interface shapes and on

the error associated with the time integration.

Convergence in space. Because no error estimates are available for the free-
boundary problem, the error in the finite element discretization can be checked only
by mesh refinement. Three finite element meshes shown in Figure 3.23 have been used
for this purpose. The interface location and its deflection obtained at ¢ = 0 are listed
in Table 3.5. In Table 3.5, the error in each solution was estimated by the relative
differences with respect to the finest mesh M3, computed as (M1 - M2)/M3 and (M2
- M3)/M3. These differences in the interface location were less than 0.01 percent and
the errors in the computation of the deflection of melt/solid interface were less than one

percent. The values show convergence with mesh refinement.
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Quantity M1 M2 M3
Number of radial elements 14 18 24
Number of axial elements (m+s) | 24 + 8 36 + 12 48 + 16
Melt/Sclid interface, H(0) 13.81176 13.81209 13.81206
(2.17 x107%) (-2.17 x107%)
Deflection of M/S interface, 0.10659 0.10602 0.10558
A = H(0) - H(1) (9.57 x 10~3)  (4.17 x 10~2)

Table 3.5: Results of mesh refinement for the solution at ¢ = 0 and the meshes displayed

in Figure 3.23.
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Convergence in time. The stability and accuracy of the time integration methods
were examined by computing the time dependent growth velocity and solute concentra-
tion profile in the crystal. The growth velocities are shown in Figure 3.20 for the three
meshes used and for the finest mesh with the maximum time step size reduced by one
fourth. Wnen plotted on a large scale, all cases seems to give the same results. But.
when the scale of the plot is enlarged, mesh M1 shows slightly oscillating behaviour

while other solutions have converged to identical results.

The results shown in Figure 3.21 for the solute segregation in the crystal also looked
the same when plotted on the concentration scale covering the whole range of concen-
tration variation. The enlarged view of the profile formed by subtracting the computed
solute concentration profile from the analytical solution by Smith et al.{1955) displayed
small amplitude oscillations for the meshes M1 and M2. The results are converging to
the solution with the finest mesh M3. The results are identical for calculations with
decreasing maximum time step size. indicating the error in the temporal discretization

s small

This simple test problem satisfactorily demonstrats the capability of the transient
mode! and numerical method developed in the present work. Its extensions to the more
complex problems are described in Chapter 6 and 7 for various crystal growth processes

with intense thermal and solutal convection.
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Chapter 4

Effect of Vertical Magnetic Field

The finite element analysis of vertical Bridgman growth described in Chapter 3 is ap-
plied to investigate the effect on convection and solute segregation of a veriically-aligned
magnetic field in the limit of zero magnetic Revnolds number. (‘alculat{nns are pre-
sented for growth of a dilute gallium-doped germanium alloy in a vertically stabilized

Bridgman-Stockbarger system and in a furnace with a uniform temperature gradient

imposed along the ampoule.

4.1 Introduction

In recent years. steady-state magnetic fields have been imposed in melt crystal growth
of semiconductor materials to control fluctuations in solute and impurity concentrations
caused by chaotic convection in the melt (Chedzey and Hurle, 1966; Utech and Flem-
ings. 1966: Hoshikawa et al.. 1980: Kim, 1982: Hoshikawa. 1982). The action of the field
is caused by the Lorentz force on the fluid induced by the magnetic field when the melt
has high eiectrical conductivity and the fluid tries to cross the field lines. The presence
of the magnetic field decreases the intensity of cellt'llar convaction driven by temperature
differences and buoyancy forces. Besides eliminating chaotic and tirne-periodic convec-

tion in large-scale systems, sufficiently intense magnetic fields decrease the intensity of
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convection to the point that the solute concentration in the crystal is affected in the
axial (in the direction of growth) and lateral (perpendicuvlar to it) variations (Series
¢t al., 1985; Matthicsen et al., 1987). The alteration of the laterally averaged axial
concentration of oxvgen is one of the primary advantages of using magnetic fields in
Czochralski growth of silicon (Hoshikawa et al., 1980; Hoshikawa, *982: Serics, 1989a).
It is becoming increasingly evident that the lateral uniformity of solute profiles may
be adversely influenced by imposed magnetic fields (Oreper and Szekely, 1984 Lin and

Benson, 1987).

Recently developed techniques of modulating the strength of magnetic field in time
or space add the flexiblitiy in the application of magnetic field to the crystal growth
processes. Depending on the properties of materials grown and the design of the furnace,
the magnetic field strength can be tailored temporally (Ozawa et al.. 1987; Hofmann

et al., 1988) and spatially (Hicks et al., 1989; Series, 1989b).

The increase of lateral variations of the composition with decreasing convective mix-
ing is not unexpected. The transition in axial and radial solute segregation from uni-
directional crystal growth in the absence of bulk convection to growth with intense
laminar mixir,7 is described schematically by the curves shown in Figure 4.1 in terms
of the percentage radial segregation Ac, defined as the maximum difference in concen-
tration across the crystal surface measured as a percentage of the local average, and by
the effective segregation coefficient k.ss defined in Eq. (1.19) of Section 1.2.3 as

< E>yp

k =k—
ff <>

(4.1)

In directional solidification, diffusion-controlled growth with a planar melt/crystal in-
terface leads to uniform radial distributions of solutes, .. Ac = 0. If the melt is
sufficiently long that the diffusion layer adjacent to the interface occupies only a small
fraction of the total length, k. is unity in the absence of bulk motion other than
the growth velocity 17,. The length of the axial concentration gradient can be con-
trolled, since the scale of the diffusion layer is set by the ratio D/V,,. Curvature of

the melt/crystal interface induces lateral solute variation caused by the focusing of the
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diffusion field adjacent to the interface {Coriell and Sekerka. 1979; Coriell et al.. 1981).

Weak laminar convection distorts the one-dimensional concentration field and causes
the radial and axial segregation indicated on Figure 4.1. When the mixing of a solute
by these flow fields is incomplete, the concentration field adjacent to the melt/crystal
interface is highly distorted and large amounts of radial segregation exist, even when
the axial composition profile indicates diffusion-controlled growth. Harriott and Brown
(1984) demonstrated the effect of weak convection caused solely by differential rotation
of the feed and crystal rods on radial segregation in small-scale floating zones. Radial
segregation caused by weak convection also exists in small-scale crystal growth experi-
ments on earth, in the growth of nondilute binary alloys where the solute field damps
convection (Rouzaud et al.. 1985), in microgravity experiments in which convection
has not been stopped entirely (Witt et al., 1975. 1978), and in experiments with weak

magnetic fields (Matthiesen.1988).

Solute bzundary layers form adjacent to the melt/crystal interface when laminar
convection leads to intense mixing. Then the radial segregation of solute decreases and
the composition of the melt approaches a new bulk value elevated (assuming & < 1)
by the mixing of the solute rejected at the interface. In systems with very thin solute
layers, k.sy approaches k and the soiute concentration increases steadily along the length
of the growing crystal, as described by Scheil (1942). Camel and Favier (1986) have
presented an order-of-magnitude analyvsis for estimating the scalings of both the axial
and the radial segregation as a function of driving force for thermal convection in the

vertical Bridgman system.

Strong laminar convection is rarely found in the low Prandtl number melts for semi-
conductor materials. Instead time-periodic and chaotic flows in the melt lead to thermal
fluctuations near the interface and induce melting and accelerated crystal growth on the
time scale of the fluctuation. The effects of temporal fluctuations in the melt temper-
ature on the axial solute distribution in the crystal are documented in the elucidating

directional solidification experiments of Kim et al. (1972).
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The purpose of this chapter is to present detailed calculations of the action of a
magnetic field on convection, segregation, and heat transfer in a realistic model for the
vertical Bridgman crystal growth system and to quantify the intensity of the field that
is necessary to achieve diffusion-controlled, unidirectional solidification in such systems.
The calculations are presented for the furnace and ampoule designs for small-scale ex-
periments used in the experimental studies of Wang (1984) and Rouzaud et al.(1985);
these two systems are shown schematically in Figure 4.2. Wang's furnace is a classi-
cal Bridgman-Stuckbarger system with isothermal hot and cold zones separated by an
insulated region designed to create a constant axial temperature gradient in the melt
and crystal adjacent to the solidification interface. The furnace of Rouzaud et al.uses a
tapered heating element to establish a nearly linear temperature profile over a length of
ampoule approximately 30 times the radius of the furnace. Both furnaces are designed
so that the crystal growth rate is equal to the ampoule displacement rate after an initial

transient caused by the onset of ampoule motion.

Detailed ralrnlations of the temperature fields, melt flow. and axial and radial segre-
gation patterns for these two furnaces were presented previously ( Adornato and Brown,
1987a) for growth of dilute gallium in germanium in both systems without the presence
of the magnetic field. Both systems exhibited the transition from diffusion-controlled
solute transport to laminar mixing with increasing thermal Rayleigh number. For the
conditions of an earthbound experiment, the convection was intense. radial segregation

was minimal, and the effective segregation coefficient approached the equilibrium seg-

regation coefficient. The results of this chapter are intended to quantify the levels of
imposed magnetic field necessary to damp this convection to the extent that low radial

segregation without axial segregation. i.e. k.ss near unity. is obtained.

Others have modelled the effect of an imposed magnetic field on convection in crys-
tal growth (Oreper and Szekely, 1983.1984; Langlois and Walker, 1982; Langlois, 1984;
Lee et al., 1984; Hjellming and Walker, 1986). Most notably, Mihel¢ié and Wingerath
(1985) have demonstrated the suppression of the temporal fluctuations by an axial mag-

netic field in Czochralski growth. Langlois and co-workers (Langlois and Walker, 1982;
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Langlois. 1984; Lee ¢t al.. 1984) have also demonstrated this effect and have computed
the effect of moderate magnetic field on oxyvgen transport in Czochralski growth. Oreper
and Szekely (1983) have demonstrated the increased radial nonuniformity of solute in-
corporation caused by magnetic damping in a prototype system and in the idealized
model of the vertical Bridgman-Stockbarger system introduced by Chang and Brown

(1983b).

The calculations presented here are refinements to the results of Oreper and Szekely
(1984) because the correct thermal boundary conditions are incorporated so that the
results are meaningful with respect to actual experiments. We have demonstrated the ac-
curacy of the calculations by the comparison presented by Adornato and Brown(1987a)
between the predicted solute segregation and measurements by Wang(1984) without

magnetic fields.

The calculations are based on the finite-element Newton method described in Chap-
ter 3 and used bv Adornato and Brown (1987a) for the solution of conservation equations
and boundary conditions associated with the velocity, pressure. and solute fields in the
melt, the temperature in melt, crystal and ampoule, and the shape of the melt/crvstal

interface.

4.2 Action of the Magnetic Fields

The electrical conductivity of the fluid element and the existence of magnetic field inter-
act in two ways: first, electric currents are generated by the motion of the electrically
conducting fluid as it crosses the magnetic flux lines and contribute to the changes
of the existing magnetic field: second. the fluid elements carrving currents across the
magnetic flux lines cause additional forces acting on the fluid elements. These inter-
actions between the motion of the conductor and the magnetic field form the basis of

magnetohydrodynamic (MHD) theory and are the central physics involved in this work.

We assume that a magnetic field is imposed on the furnace so that outside the am-



poule the field is B,e.. The action of the field on the melt, crystal and ampoule is
determined by analvsis of Maxwell's equations as described in several references (Chan-
drasekhar. 1961: Shercliff, 1965). Most branches of NIHD theory are based on the quasi-
steady approrimation which ignores displacement currents and the effects of variations

in the charge density. Without displacement currents, Maxwell's equations are

UVxB = pJ (Ampere's law) (4.2)
v -B =0 (4.3)
VxE = —%—? (Faraday's law) (4.4)

where E and B are the intensities of the electric and the magnetic fields, J is
the current density, and g, is the magnetic permeability of free space. The magnetic

permeability of free space has a value 47 x 10" weber?joule-meter in the MKSA system.

If the fluid element has a velocity v, the electric field it will experience is not E, as

measured by the stationary observer. but E —~ v x B. Then the current is given by
J = on(E~-v xB) (Ohm's law) (4.3)

where o,, is a coefficient of electrical conductivity of the fluid. From Ampeére’s law, the

conservation of charge is deduced as

V.J = 0 (Kirchhoff’s first law) (4.6)

Equations (4.2) to (4.6) are the basic equations of the field appropriate for MHD.
Through the occurrence of the velocity v in the expression for J, the equations account
for the effect of fluid motion on the electromagnetic field. The inverse effect of the
field on the fluid motions results from the force which the conducting fluid elements

experience while traversing the magnetic flux lines. This is the Lorent: force given by

L =J~B (4.7)

Equations (4.2), (4.4). and (4.5) are combined to eliminate J and E and yield

0B v x(vxB)-

ot HeTm

V’B (4.8)
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where 1 p.0, is called a magnetic diffusivity. By nondimensionalizing the above
equation, a dimensionless group called magnetic Reynolds number, which measure the

relative importance of convection to diffusion in modifving the field. is defined as
R, = po,LV"* (4.9)

where 1"* is the characteristic velocity in the melt and pu. is the magnetic perineability.
In the small-scale crystal growth system for semiconductor materials. the magnetic
Reyvnolds number R,, is much less than unity. The low-R,, approzimation, which
has been used in the analysis of Czochralski growth system under the influence of axial
magnetic field (Langlois and Walker, 1982; Mihel¢i¢ and Wingerath, 1985). The low-
R,, approximation ignores the induced magnetic field entirely and replaces B by the
known field B, in all the MHD equations, since the ratio of induced magnetic field to

imposed magnetic field is of O(R,,).

When the ampoule and crystal are moved parallel to the field. the imposed field
does not cause a current in these materials. Maxwell’s equations admit a simple solu-
tion when the ampoule is electrically isolated from the surroundings and the low-R,,
approximation is valid. The electric field is everywhere equal to zero (E = 0), the
magnetic induction is not distorted by convection in the melt, and the magnetic field is

equal to the imposed value (B = B,e.). Then current is expressed as

J = on(vxB)

omBo(v x e;) (4.10)

The resulting Lorentz body force (J x B) in the equations of motion is described by

L=0,B2(vxe.xe.).

The action of a uniaxially aligned magnetic field on convection in the melt is most
simply demonstrated by considering the equation for momentum conservation written

as

=Y = F,, 4.
o FL+)Y. (4.11)
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where F; = Ha(v xe. xe.) is the Lorentz force and the F, include all other forces (vis-
cous, buovancy. and pressure) acting on the fluid and D Dt is the material derivative
following the fluid element. Taking the scalar product of Eq. (4.11) with the velocity v

gives the equation of change for the mechanical energy (v* = v.v = v? - v?) as

Dg;') -y v.F,=v -F[ = -Ha%t}, (4.12)

O] -

where only the Lorentz force has heen expressed in detail. Neglecting the effects of
the other forces, Eq. (4.12) demonstrates that the magnitude of the velocity field in
the radial direction must decrease proportionally to the square of the strength of the
magnetic fileld. The axial component of velocity is unaffected by the field except in the
coupling of the components through conservation of mass (V-v = 0). Because a uniaxial
flow v. = Pe/Pr, where Pe and Pr are the dimensionless growth rate and Prandtl
number, is consistent with having no radial flow, the velocity field (v,,v.) = (Pe/Pr.0)
almost everywhere in the melt results from a strong field. A more rigorous analysis of
the flow structure for ma >» 1 was first presented by Hjellming and Walker (1986.1987)

and a similar analysis is applied to the vertical Bridgman svstem in Section 4.5.

4.3 Pseudo-Steady-State Model For Magnetic Vertical

Bridgman Process

Transport processes in the two directional solidification configurations shown in Fig-
ure 4.2 were simulated using the pseudo-steady-state model (PSSM) described in Chap-
ter 2 and 3. The mathematical description of the equations and houndary conditions
for convection and species transport are already discussed in Chapter 2; only the parts
needed for the discussion of the results are repeated here. The field variables and in-
terface shape are described in terms of the stationary axisymmetric cylindrical polar
coordinate system (7, :) shown in Figure 4.2. Variables are put in dimensionless form

by scaling lengths with the radius of the crystal R., velocity v(r,z) with the momentum

diffusion velocity of the melt v/R,, pressure with pv®/R. and the composition with c,.
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The dimensionless concentration and temperature fields are defined as

S(r.z) = e(r.2)-1 (4.13)

T(r.z) - Teod

o(r, -
(r ) Thot - Tcold

(4.14)

where Ty, and T.,4 are the hot and cold set-point temperatures associated with each
particular furnace design. These are the values of the hot and cold isothermal zones in
the Bridgman furnace and the temperatures at the ends of the constant temperature
gradient in the constant gradient furnace. The location of the melt/crystal interface is
described by the function H(r) and is computed with the field variables so that the
energy balance along the interface and the condition for the melting point isotherm are

satisfied.

Axisymmetric convection in the melt is modelled by the Boussinesq equations, which

are written in dimensionless form as

Vv = 0 (4.13)
v-Vv = -VUp=+ V2v+-131,-;{Ra,5—Ra,(6—1)}e:

~Ha*(v x e, x e.) (4.16)

Prv-V6 = V%6 (4.17)

Sev-¥S = Vi§ (4.18)

where V is the gradient operator in cylindrical coordinates and the Schmidt (Sc) and
Prandtl (Pr) numbers are defined in Table 4.1. The last term on the right side of
Eq. (4.15) is the Lorentz force and is the sole modification of this equation set caused
by the magnetic field. The Hartmann number Ha = B,R.(c,, ‘1)’ measures the
strength of the field relative to the viscous force: for germanium. Ha = 100 corresponds
to a 3.3 kG field in the small-scale MIT system studied here. The definitions of the

thermal and solutal Rayleigh numbers are given in Table 4.1.

The energy equations in the crystal and ampoule are identical to Eqgs. (2.10) and

(2.11) in Chapter 2. The condition for the interface to correspond to the melting point
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Name Symbol | Definition Value

Thermal Rayleigh number Ra, 953tATR /(ayv) | 3 x 105
(3.5 x 10%)9)

Solutal Rayleigh number Ra, 93,coR3/(amv) 0
Peclet number Pe 3R/ a 1.7x 1073

(7.7 x 10~%9)

Prandt] number Pr v/iam 7.2 x 103
Schmidt number Sc v/'D 6.2
Stefan number St AH,/Cpm AT 3.9
(3.4))
Hartmann number Ha BoRc(owm/1)1/2) | 100
(B, = 3.3 kG)

2) For constant gradient furnace

Table 4.1: Dimensionless groups and their characteristic values appropriate for gallium-

doped germanium crystal growth.
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isotherm for the binary mixture and the solute and energy balances at the melt;/crystal
interface are given by Eqgs. {2.12)-(2.15) there. Equation (2.18) dictates the thermal
boundary conditions between the ampoule and the surrounding furnace and is rewritten
here as
06 v o
2] = Bi)owlz) - 0 (4.19)
orl,
where Bi(z) is a dimensionless heat transfer coefficient (Bi = h,R./k,) defined to include

radiative, conductive, and convective transport between the ampoule and the furnace,

and 6. (z) is the temperature distribution of the furnace wall.

The changes in the heat transfer coefficient between the three zones of the vertical
Bridgman furnace of MIT are modelled by the function
. big , . . ) .
Bi(z) = (biz{1 -- tanhibiy (s, — bir — z)}}

)
-1+ tanh{—bil(:c + blg - .‘I)” (420)

where =, is the location of the mid-plane of gradient zone. The coefficients {bi;} have
the following significance: bip = h.oqR./ ke is the value of Biot number in the cold
zone; bi; sets the slope of the transition in Bi(=) between the isothermal zones and
the adiabatic region; bi; = (Ly/R.)/2 is the half of the dimensionless length of the
adiabatic zone; biz = hpot/heold sets the ratio between the Biot numbers in the hot and

cold zone. The furnace wall temperature is modelled by the function
1 . )
O () = 3{1 - t'a'n-h[eO(-:c - Z)J} (4‘21)

where 8y determines the sharpness of the transition in 8.(z) hetween the hot and cold
zones. Coefficients for the slopes. bi» and #p. are obtained by fitting to the experimental

measurements of temperature reported by Wang (1984).

The constant gradient furnace built by the Grenoble group is modelled by using a

constant Biot number Bi = 8 over the entire length of the ampoule and specifying the



furnace temperature profile in dimensionless form as

Rc
> - — — "2
Oo(z) =1 i (4.22)

The finite-element method described in Chapter 3 was employed for the solution of
transport problem with the imposed magnetic field. The Galerkin weighted residual
method described there is used to discretize the partial differential equations. Mixed
Lagrangian interpolation of the field variables is employed with a continuvous biquadratic
representation for velocity, temperature and concentration and a discontinuous linear
representation fcr pressure. The discontinuous pressure approximation gives better
approximation to the conservation of mass equation (Eq. 4.15) and allows convergence
to higher intensities of convection than were attained with the Petrov-Galerkin method
used for the same system by Adornato and Brown (1987a). The mesh of quadrilateral
elements used in these calculations had 20 radial elements in melt and crystal and
4 elements across the ampoule; the axial approximation had 48 elements in the melt
and 16 elements in the crystal. The nonlinear algebraic equations resulting from this
approximation numbered, 24,085 and required 90 seconds on the Cray XMP for a single
Newton iteration; three to four iterations were usually sufficient for convergence to the

solution of the problem.

4.4 Growth of Gallium-doped Germanium with a Mag-
netic Field

The values of the thermophysical properties used for modelling the growth of dilute
gallium in germanium are compiled in Table 4.2. The calculations assume that tha bulk
concentration of the gallium is low enough that the effect of the concentration variation
on the buoyancy force is minimal and that Ra, = 0 is appropriate. The calculations are
presented separately for the two crystal growth systems. In each case, the temperature,
flow and concentration fields computed without the field are described first as a reference

for the results with increasing field strength. Without the magnetic field the cellular
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Quantity Symbol (units) | Value
Thermal conductivity of the melt K, (W/°C.cm) | 0.39
Thermal conductivity of the solid K,(W/°C-.cm) | 0.17
Density of the melt Pm(g/cm3) 5.5
Density of the solid ps(g/cm3) 5.5
Specific heat of the melt Cpm(J/°C-g) 0.39
Specific heat of the solid Cp.s(J/°C-g) 0.39
Melting temperature Th(°C) 937.4
Kinematic viscosity v(em?/sec) [ 0.0013
Heat of solidification AH,J/g) 460
Thermal expansion coefficient 3,(°C-1) 5.0 x 104
Diffusion coefficient of Ga in Ge D(cm?/sec) 2.1 x 104
Equilibrium distribution coefficient of Ga | & 0.087

Table 4.2: Thermophysical properties of germanium.
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convection was so intense that accurate concentration fields in the melt could only be
computed for Ra, up to 1 x 10° in Wang’'s Bridgman furnace and 1.25 x 10 in the
constant gradient furnace, which is very close to the value 3 x 10° and 3.5 x 104

appropriate for crystal growth on earth in the two furnaces. Higher values could be

achieved by using more refined mesh.

4.4.1 Vertical Bridgman Growth System

The calculations of convection and segregation are influenced by the design and choice
of materials for the ampoule, because of the role of these materials in setting the tem-
perature gradients in the melt. The calculations here are based on the boron nitride
ampoule used in the calculations reported in Section 5.1 of reference by Adornato and
Brown (1987a) and in the experiments of Wang (1984). The dimensions of the am-
poule are listed in Table 4.3. All calculations were performed for a growth velocity of

Vg = 4um/s.

Contour plots of the isotherms, streamlines, and isoconcentration curves are shown
in Figure 4.3 for Ra; = 1 x 10° and Ha = 0. Streamlines are spaced at equal intervals
between zero and the maximum (or minimum) values for each flow cell. The two flow
cells evident in this figure are driven by different sets of radial temperature gradients
along the ampoule and are due to interactions between the furnace and the ampoule.
The differences between the thermal conductivities of the melt (K,, = 0.39 W/K.cm),
the crystal (K, = 0.17 W/K-cm) and the ampoule (K, = 0.26 W/K-.cm) cause the
melt/crystal interface to be convex with respect to the melt and results in the temper-
ature decreasing radially adjacent to this phase boundary. These gradients drive a flow
that is up along the axis of the ampoule and down along the wall. Because of the slender
shape of the melt, the flow is confined to a distance from the melt/crystal interface that

is of the same order-of-magnitude as the ampoule radius.

The mismatch in thermal boundary conditions between the adiabatic and hot zones

of the furnace causes a second set of radial gradients with the hottest temperature
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Table 4.3:

Parameter Vertical Constant
Bridgman | gradient
L furnace furnace
—;npoule length, L(cm) 7.6 7.0
Crystal radius, R.(cm) 0.76 0.35
Ampoule outer radius, 0.95 0.50¢)
R,(cm) (0.70)"
Gradient zone length,
Ly(cm) 3.8
Temperature difference,
Th - T.(°C) 300 350
Growth velocity, V,(um/sec) | 4.0 4.0
Ampoule material Boron Quartz/graphite
nitride composite
Thermal conductivity of 0.26 0.0282)
ampoule, Ko(W/°C-cm) (3.26)%)
Density of ampoule, 2.0 2.2¢)
pa(g/cm®) (1.5)%
Specific heat of ampoule, 1.9 0.77¢
Cp.a(1/°C-g) (2.0)")

4} For quartz.

b For graphite.

Design parameters for vertical Bridgman and constant gradient furnace
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located at the ampoule wall. The upper flow cell is driven by this part of the temperature
field and moves upward at the wall and downward along the centerline. The spacing

between the two flow cells is controlled by the length of the adiabatic zone.

The gallium concentration field in Figure 4.3 shows the effects of the mixing caused
by both the top and the bottom flow cells. The radially uniform and exponentially
decreasing axial variation of the concentration field expected without bulk convection is
distorted in parts of the melt where the flow cells are strong. The concentration above
the top of the adiabatic zone is essentially uniform because of the upper cell and because
the diffusion layer does not penetrate into this portion of the ampoule, even at Ra; = 0;
see Figure 9 in the reference by Adornato and Brown (1987a). The concentration field
near the melt/crystal interface is deformed by the lower cell and the first stages of the
formation of a region of uniform concentration are evident. Steep axial concentration

gradients develop in the region of the ampoule between the two cells.

The temperature field and melt/crystal interface for Ra, = 1 x 10°® and Ha = 0 are
essentially the same as predicted without convection in the melt (Ra, = 0) (see Fig-
ure 4.4), because of the low Prandtl number for the melt. Increasing Ha has essentially

no effect on these variables.

The effect of increasing the strength of the magnetic field is demonstrated by the
flow fields shown in Figure 4.5, where Ra, is fixed to 1 x 105. Weak fields (Ha = 10)
decrease the strength of the flow, but leave its cellular structure unchanged. Magnetic
fields are shown to be more effective in reducing the intensity of the lower flow cell near
the interface. Stronger fields (Ha = 100) decrease the flow strength to the point that
the lower flow cell becomes much weaker than the upper cell, which stretches to fill more
of the ampoule. Very strong fields (Ha = 500) eliminate the lower flow cell entirely and
the upper cell occupies most region of the melt in the ampoule. However, this level of
magnetic field strength is not sufficient to suppress the cellular convection completely
at high Ra, of 1 x 105. For lower Ra,, the same magnetic field strength is effective in
suppressing the convection cell completely and leads to unidirectional flow, as argued

from the mechanical energy balance (see Figure 4.6).
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The flow intensity as measured by the maximum value of the stream function | O |
is plotted in Figure 4.7 for each flcw cell. For low values of Ra,, the flow is essentially
the unidirectional motion caused by crystal growth. Without the magnetic field, the
intensity of the upper cell scales linearly with increasing Ra, for 1 x 102 < Ra, < 3 x103,
indicating that the flow is dominated by a balance of viscous and buoyancy forces. A
transition to a weaker dependence of flow intensity on Ra, occurs for Ra, > 2x10% and
seems to correspond to the formation of boundary layers along the ampoule wall. The
lower cell is present for Ra, > 1 x 102. Its intensity is a complicated function of Ra;
because of the interactions betweer. this cell and the upper one. Imposing the magnetic
field suppresses the lower cell for values of the field strength such that Ha > 100. The

upper cell is still present for high Rayleigh numbers and Ha = 500.

The large ratio of solute to thermal diffusivity (Sc/Pr = O(10%)) makes the solute
field much more sensitive to the level of convection than the temperature fields. Solute
fields for dilute gallium in germanium are shown in F igure 4.8 as calculated for the flows
shown in Figure 4.5. The regions of approximately uriform concentration formed by
mixing within the flow cells are still apparent for Ha = 10. The weak convection in
the lower flow cell shows the characteristic composition field for incomplete mixing at
Ha = 100. The disappearance of the lower flow cell with increasing Ha leads to the
formation of the exponential diffusion layer adjacent to the interface for Ha = 500 with

weak convective mixing caused only by the upper flow cell.

The influence of the magnetic fields on solute convection is more evident for lower
Ra;, which corresponds to conditions fo reduced gravity. Solute fields for gallium in
germanium are shown in Figure 4.9 as calculated from the flow fields in Figure 4.6.
With the same strength of magnetic field (Ha = 500), the exponential diffusion layer

becomes more one-dimensional with decreasing Ra,.

The percentage radial segregation Ac is plotted in Figure 4.10 as a function of
Ra; and Ha ; V; = 4um/s. The maximum in Ac for Ra; = 1 x 10® with weak
magnetic field is similar to the results in the work by Adornato and Brown (1987a).

The value of Ra, for the maximum radial segregation increases as the intensity of the
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field is increased. For Ha > 500, Ac is caused only by the curvature of the melt/solid
interface up to Ra, = 1 x 104 Calculations at higher values of Ra, were not possible
with the finite element mesh used here because of the formation of boundary layers
along the ampoule wall, as explained in Section 4.5. The experimental measurement of
Wang (1984) also is shown; Adornato and Brown (1987a) explain how to extrapolate
the numerical calculations to get reasonable agreement with measurement by using

boundary-layer theory for describing the dependence of Ac on Ra,.

The variation of the axial segregation of solute with Ha and Ra, is estimated
from the calcula‘ions with the PSSM by computing the effective segregation coefficient
defined by Eq. (4.1). These values are plotted in Figure 4.11 as a function of Ra, and
Ha. The value of k. for no convection (Ra; = 0) is not unity because the ampoule is
not long enough so that the variation in concentration caused by the diffusion layer is
small relative to the portion of the melt which is at the bulk concentration (¢ = 1). The
increased mixing caused by convection and the decrease in k.ss towards the equilibrium
value (k = 0.087) are obvious. Increasing the magnetic field strengiii incieases the
effective segregation coefficient, shifting the critical value of Ra, for the beginning of
the decrease in kss with Ra,; to higher values of Ra;. The experimental measurement

of Wang (1984) without a magnetic field is shown again for reference.

4.4.2 Constant Gradient Furnace

The temperature field in the ampoule is established by a surrounding heater that im-
poses a nearly constant axial temperature gradient. The resulting axial temperature
gradient in the melt is nearly linear over the entire length, compared to the vertical
Bridgman furnace where it is interrupted by the discontinuity introduced by the junc-
tion of the adiabatic and hot zones. The calculations with the axial magnetic field
reported here are based on the ampoule design for the constant gradient furnace intro-
duced by Rouzaud et al.(1985), where a quartz sleeve is enclosed in a graphite liner.
The dimensions of the ampoule are listed in Table 4.3. Again the crystal growth velocity

was set as V = 4um/s.
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Contours of the temperature, stream function (velocity) and concentration fields are
shown in Figure 4.12 for Ra, = 1.25x 10* and Ha = 0. The radial temperature gradients
are caused primarily by the differences in the thermal conductivities of melt, crystal and
ampoule material and are largest adjacent to the convex melt/crystal interface. The

temperature field and interface shape are essentially unaffected by the flow.

The radial temperature gradient drives a flow cell centered near the interface that
moves down the ampoule wall and up along the centerlines of the ampoule as shown
in Figure 4.12. No upper cell is present, because the mechanism has heen removed for
the inversion in the radial temperature gradients. The solute concentration field shows
a well-mixed region near the interface. However, the radial temperature gradients are

weaker and mixing is less efficient than in the vertical Bridgman system.

The effects of the axial magnetic field on the flow field is shown in Figure 4.13.
Very weak fields, e.g. Ha = 5, decrcase the strength of the flow. but leave the flow
pattern unchanged. Increasing the magnetic field strength further causes the flow cell
to stretch to fill most of the ampoule, so that more of the flow is aligned with the
field and unaffected by it. At Ha = 500 the cell has almost disappeared and only
the unidirectional motion due to crystal growth remains. But, the action of magnetic
field compresses the streamlines near the wall indicating the formation of a Hartmann

boundary layer.

The variation of the flow intensity, as measured by ¥,,..., is plotted in Figure 4.14 as
a function of Ra; and Ha. These intensities are approximately an order-of-magnitude
weaker than are shown in Figure 4.7 for the vertical Bridgman furnace. With no mag-
netic field and low field lavels, ¥,,,. is approximately linear with Ra, for given Ha.
The value of | ¥,n;, | is constant for the range of Ha and Ra, considered here, since

only one flow cell exists, at most.

The solute fields computed for dilute gallium in germanium are shown in Figure 4.15
with increasing Ha for the constant gradient furnace. The transition toward the diffu-

sion layer that corresponds to unidirectional growth is obvious. The percentage radial
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segregation Ac is displayed in Figure 4.16 as a function of Ra, and Ha. The charac-
teristics of these results are the same as for the vertical Bridgman system, with two
exceptions. First, the position of the maximum in Ac for Ha = 0 is shifted toward
larger values of Ra, because of the weaker convection in the constant gradient furnace.
Second, the level of segregation at this maximum is less than half the values for the
vertical Bridgman system, because of the flatter melt/crystal interface in the constant

gradient furnace.

The effective segregation coefficient defined by Eq. (4.1) is plotted in Figure 4.17 and
a function of Ha and Ra,. The thermal Rayleigh number where k.ss begins to deviate
from the value for diffusion-controlled growth increases with increasing Ha and is an

order-of-magnitude higher than in the vertical Bridgman furnace.

4.5 Asymptotic Analysis for High Magnetic Fields

The action of the magnetic field on the form and intensity of the flow field is easily
understood from an asymptotic analysis designed for a simple limit of an almost perfect
directional solidification system. In this limit the effect of the ampoule is negiected
and a temperature field is imposed directly on the boundary of the melt, as shown in
Figure 4.18. The system is almost perfect in the sense that the gradient of the wall
temperature is assumed to deviate only slightly from the constant value associated with
a perfect unidirectional growth system. Much of the analysis parallels the results of
Hjellming and Walker (1987) for Czochralski growth in the presence of a strong field.

The goal of the analysis described here is to determine the structure and intensity
of the flow in the limit of a strong imposed magnetic field. We assume the melt/crystal
interface to be planar and neglect the moticn of the melt introduced by growth of the
crystal. The analysis is performed in terms of the cylindrical coordinate system shown

in  re 4.18. The dimensionless wall temperature is defined as

0u(z) =1 - €z —ezk(l —€z2) (4.23)
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where the dimensionless temperature is
6(r,z) = —l_m (4.24)

The coordinates (r, z) are scaled with the radius of the crystal R, and ¢! = L/R, is
the dimensionless length of the ampoule. The constant x scales the magnitude of the
deviation of the wall temperature from the constant gradient; x must be in the range

0 < x <1 to give a monotonic temperature decrease along the ampoule wall.

The momentum, continuity and energy equations for the melt are rescaled in terms
of new characteristic dimensions; for the velocity V* = p,g8;AT /o B2, the temperature

AT = Ty — T, and the pressure p* = p,g3ATR..

These new scales are appropriate when a balance of buoyancy and Lorentz forces
control the momentum equation in the limit of a large field strength (Hjellming and

Walker, 1987). The new dimensionless field equations in the melt become

Vv = 0 (4.25)
Nl'v.Vv = --Vp+Ha?V?v-r,e, —0e. (4.26)
Pe,v-VO8 = V34 (4.27)

where the Magnetic Interaction parameter N, the Hartmann number Ha and the ther-
mal Peclet number Pe, are defined in Table 4.4. Typical values of these parameters
for small-scale directional solidification systems are listed there. As noted by Hjellming
and Walker (1987), Eqs. (4.26) and (4.27) can be simplified by neglecting convective
contributicns to momentum and heat transport, because N > 1 and Pe, < 1 for

intense magnetic fields.

Moreover, eliminating the viscous term in Eq. (4.26) by neglecting the term propor-
tional to Ha leaves only the bhalance of buoyancy and Lorentz forces in the momentum

equation:

dv, a6

- or

- = 2
32 (4.28)
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B, (kG) | Interacttion | Hartmann Peclet
parameter?) | number number?®)
N = Ha = Pe, =
0B2R./poV* | BoRc(o/p)/? | V*R./am

2.4 0.350 35.1 25.2

24 3.5 x 10% 351 0.252

120 2.2 x 108 1760 0.0101

3) V* = p,gBAT /o B2

Table 4.4: Dimensionless groups and characteristic values for gallium-doped germanium

crystal growth in constant gradient furnace for asymptotic analysis.
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Because this last step eliminates the highest derivatives in the equation, the no-slip
condition along the ampoule wall and at the melt/crystal interface can no longer be
satisfied and the equations are only valid in the core of the flow, i.e. away from these
boundaries. Boundary layers adjacent to the ampoule and the interface must be present

in order to satisfy the no-slip condition.

Analysis of the core equations and the boundary layer proceeds only after the con-
duction equation (Eq. (4.27) with Pe, = 0) is solved for the imposed thermal boundary
conditions. We simplify this step by assuming that the ampoule is long (¢ < 1) so that
a slender body analysis (Cormack et al., 1974a) can be used for solution of (4.27). This
assumption is introduced by rescaling the axial coordinate as { = €z valid away from
the melt/crystal interface. The energy equation redvces to

10 ( 00Y . ,0% _
;b—;<r-é-;)+€ a—c2—0 (4'29)

The temperature field in the core of the melt away from the melt/crystal interface and
the ampoule wall is computed as a Taylor series expansion in € from Eq. (4.29) using
the boundary conditions of the specified temperature along the wall (Eq. (4.23)) and

axial symmetry about » = 0. The first two terms in this 2xpansion are

o(r,z) = [1-(-r{(1-¢)

2,.(1 — p2
+L14r—) + Oe*) (4.30)
Substituting Eq. (4.30) into Eq. (4.28) and introducing the stream function in the core

¥ (7, z) defined by

-

1 6% 1 9%
c - [+ € = = [+ .
e r 8r’ (4.31)
gives the leading order term for the stream function as
. K
‘I'c(r9 z) = ZT2C(1 - C) (4'32)

In the limit of a long ampoule with the wall temperature profile given by Eq. (4.23),

the core flow is a nearly uniforin buoyancy-driven motion driven downward toward
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the melt/crystal interface. This convective flow returns in the boundary layer along
the ampoule wall so that mass is conserved by the total motion. In this scaling, the

maximum value of the stream function in the core is the constant ¥, ... = /16,

indicating the validity of scaling of velocity with respect to the magnetic field strength.

Converting the result (Eq. (4.32)) to the dimensionless variables used to scale the

numerical calculations leads to the relationship

lI’rna.-.: ~ li’c.t"ncl: Ha—27 (433)

as the appropriate scaling of the flow intensity with the field strength. This result is

compared below to the finite element calculations.

The rigorous solution of the entire flow problem in the limit Ha 3> 1 is not complete
without the analysis of the Hartmann boundary-layer along the ampoule wall necessary
to satisfy the no-slip condition. The analysis of the Hartmann layer closely follows the
procedure introduced by Hjellming and Walker (1987). The definitions of the rescaled
radial coordinate 7, pressure p, (7, =) and stream function ¥,(7, =) in the boundary

layer that leads to a balance of viscous buoyancy, and Lorentz forces in this region are

r = 1-Ha™'%y
p = pe(1,2)+ Ha V% py(n, ) (4.34)
I
I 2
oy
cw = —Hal/? —X2
v, a o

where p.(1, =) is the pressure distribution in the core evaluated at the wall, r = 1. Note
that the stream function in the boundary laver, and hence the velocity, increase with
increasing Ha. This increase is necessary to conserve mass because the thickness of the

Hartmann layer decreases with increasing field strength.

The reduced momentum and energy balances that describe the fields in the houndary
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layer are

0%, _ 88, &Y,

3= = on + it (4.35)
0, 08, .
7?_5_ = 8r(1'") (4.36)

These equations can be solved by the procedure described by Hjellming and Walker
(1987) and matched to the expressions for the stream function and temperature in the
core. We do not complete the analysis here because the analytical results are of little
value for the idealized temperature profile (Eq. (4.23)) proposed along the ampoule
wall. The asymptotic scalings for the variation of the core flow (Eq. (4.33)) and for the
thickness of the Hartmann layer (Eq. (4.34)) are important and should be invariant to

changes in the thermal boundary conditions; these are summarized in Figure 4.18.

The scaling predicted for the intensity of the core flow (Eq. (4.33)) is compared in
Figure 4.19 to calculations for the constant temperature gradient furnace with V; = 0.
The slope of ¥,,.. agrees with (Eq. (4.33)) for values of Ra; shown and for Hartmann
numbers between 100 and 1 x 104 The decrease of the slope of the flow intensity
computed for higher values of Ha is a numerical artifact caused by the failure of the
finite element approximations to resolve the Hartmann layer adjacent to the ampoule
wall for large values of Ha. Since the thickness of this layer is proportional to Ha™1/2,

this layer has decreased in thickness for Ha = 500 to less than element size, which is

one-twentieth of the inner radius of the ampoule.

4.6 Discussion

The calculations reported here show important interactions between the flow field and
axial and radial segregation in directional solidification. Radial segregation is set by the
flow structure near the crystal/melt interface, whereas axial segregation is influenced
by solute mixing throughout the melt and therefore is affected by flow cells isolated

from the interface. These differences are brought out by the calculations in the vertical
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Bridgman crystal growth system.

For example, the maximum in radial segregation in this system corresponds to the
value of thermal Rayleigh number where the flow intensity of the cell closest to the
interface changes slope as a momentum boundary iayer begins to develop. The cor-
respondence between the maximum in segregation and this flow transition also occurs
in the constant gradient furnace. By contrast, transitions in the effective segregation
coefficient in the heat-pipe system correspond more closely to changes in the intensity
of the upper flow cell, instead of the lower cell. The lack of the upper flow cell in the

constant gradient furnace makes this difference immaterial.

The predicted quality of the crystals described by these simulations is character-
ized by the curves in Figures 4.10 and 4.16 as a function of Ra; and Ha. The radial
segregation is lowest when either convection is unidirectional (Ra, small or Ha large)
or when the laminar mixing is intense enough to homogenize the melt adjacent to the
interface. Growth with unidirectional convection is most desireable because of the axial
uniformity of the crystal that results when no nlixing is present. These conditions are
not easily achieved in practice and careful analysis of growth conditions is necessary fcr
optimum design of growth systems with moderate convection levels. On earth, unidi-
rectional growth conditions can be reached for growth of small diameter crystals and
magnetic fields, but these growth conditions are difficult to duplicate for larger crystals
because of the excessively large fields involved. Then the strength of the magnetic field
should be tuned to eliminate unwanted temporal fluctuations in the convection, but to

leave intense laminar convection to mix solutes and modulate radial segregation.

Crystal growth in a low gravity environment is more promising. Here unidi: ectional
growth conditions are achieved in small scale samples without an imposed magnetic
field. The more intense convection caused by increasing sample size (Ra, ~ R2) can
be eliminated by including a reasonably sized magnetic field in the microgravity exper-

iment.
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Chapter 5

Convection and Segregation in
Vertical Bridgman Growth of

Nondilute Alloy Semiconductors

5.1 Introduction

Crystal growth from the melt of Hg,--Cd.Te and other nondilute alloy materials is
extremely challenging because of the myriad of transport processes that must be con-
trolled for growth of crystallographically perfect and compositionally uniform crystals.
Directional solidification in a closed ampoule has been the most developed technique,
because the high vapor pressure of the HgCdTe melt (Schmit, 1983; Capper et al.,
1983; Jones et al.,1983; Szofran and Lehoczky,' 1984; Szofran et al., 1984) requires

extraordinary measures for confinement.

The vertical Bridgman crystal growth system used by Lehoczky and coworkers
(Szofran and Lehoczky, 1984; Szofran et al., 1984) is one of the best characterized
experiments for growth of HgCdTe single crystals and is the focus of the analysis pre-

sented here. These researchers have grown small diameter (5 mm), long (~ 200 mm)
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crystals from a thick quartz ampoule at extremely low growth rates (~ 0.1gm/s). Mea-
surements of the axial composition of CdTe along the boule correiate well with the
profile for diffusion-controlled species transport in a pseudobinary alloy with the correct

phase diagram (Szofran and Lehoczky, 1984).

Simultaneously with the diffusion controlled axial segregation, Szofran and Lehoczky
(1984) reported large compositional nonuniformities of CdTe across the radius of the
crystal. These two observations are in apparent contradiction; the diffusion-controlled
axial redistribution of the alloy suggests convection in the melt is unimportant in species
transport, whereas the large radial variations in composition are too large to be ex-
plained by the interaction of the interface shape with diffusion-controlled growth (Coriell

and Sekerka, 1979; Coriell et al., 1981).

The analysis of transport processes in vertical Bridgman growth of Hg;_.Cd,Te
presented here is directed at an explanation for the radial and axial segregation data
presented in the works by Lehoczky and coworkers (Szofran and Lehoczky, 1984; Szofran
et al., 1984). We show that both data sets are explained by a detailed analysis of heat
transfer, convection and species transport which accounts for thermosolutal convection
in the melt and for the heat transfer mechanisms that dominate in the HgCdTe alloy
system. The analysis presented here is a direct extension of our earlier calculations
(Chang and Brown, 1983b; Adornato and Brown, 1987a; Kim et al., 1988) of thermoso-
lutal convection and solute transport in directional solidification to a prototype system

for growth of HgCdTe alloys.

The analysis presented here is also useful in the experiments of Capper et al.(1983)
for the growth of HgCdTe alloys in directional solidification systems with either a verti-
cally stabilizing temperature field or an axial temperature profile that has a maximum
in the melt. For larger radius (R = 7.5 mm) crystals, Capper et al. reported axial
segregation that was intermediate between diffusion-controlled growth and complete
mixing. The extent of the mixing was a function of both the growth rate and the
percent CdTe in the alloy. For the vertically stabilized temperature profile, decreased

mixing in the melt is expected from either increasing the growth rate or increasing
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the CdTe composition because of the effect of these variables on the magnitude of the
diffusion-controlled solute gradiert. Capper et al.reported that the radial composition
variation decreased with decreasing growth rate, but increased with increasing CdTe
composition. We will demonstrate that these responses to growth rate and composition
can be explained entirely in terms of the degree of mixing in the melt caused by ra-
dial temperature gradients and the solutal damping of this flow caused by preferential

incorporation of CdTe at the interface.

The details of heat, momentum and species transport important in design and con-
trol of vertical Bridgman crystal growth systems have been the subject of intense re-
search over the last decade; most of the important concepts are reviewed by Brown
(1988). For small-scale systems and pure melts with high thermal conductivities, con-
duction governs the heat transport in the melt and the shape of the melt/crystal inter-
face. Then the shape of the interface and the temperature field in the melt is influenced

primarily by changing the heat transfer from the furnace to the ampoule.

Control of the temperature field and melt/crystal interface shape in Hg;_.Cd,Te is
muck more difficult because of the variation in the thermophysical properties with com-
position and because of the large difference in thermal conductivities between melt and
crystal. The most important variation in the thermophysical properiies with composi-
tion is the extremely large variation in melting temperature as the composition of the
alloy changes (Kelly et al., 1982), which is shown in Figure 5.1. The large separation
between the liquidus and solidus curves leads to coupling between the interface shape
and the local composition of the melt, so that the melting temperature and interface

shape vary as the composition of the melt changes during growth.

The change in the location of the melting point of the alloy within the ampoule and
the variation in the local crystal growth rate has been simulated numerically using one-
dimensional, diffusion-controlled models for solute and heat transport (Clayton et al.,
1982; Bourret et al., 1985; Derby and Brown, 1986). The inherently transient location
of the melt/crystal interface and of the local solidification rate make the design of the

heat transfer system much more difficult in nondilute alloy systems than in the growth
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of pure 1uaterials where the temperature field alone fixes the location of the interface.

In the pseudobinary representation of HgCdTe, the less dense component CdTe is
preferentially partitioned into the crystal so that the axial density gradient is stably
stratified when the crystal is below the melt. The diffusion-controlled solute transport
observed along the growth axis is consistent with the idea that this density profile retards
buoyancy-driven convection. Indeed, similar axial segregation profiles were reported by
Rouzard et al. (1985) for the growth of a GeSi alloy which also has a vertically stabilized
density profile. The dampening of buoyancy-driven convection by the solute profile in
the GeSi system was clearly demonstrated in the calculatjons presented by Adornato
and Brown (1987a) for thermosolutal convection with heat transfer boundary conditions

set to model the same vertical Bridgman syster.

Heat transfer in the HgCdTe system is far from one-dimensional near the melt/crystal
interface, because of the factor of seven decrease in the thermal conductivity between
the melt and crystal. This difference coupled with the very thick quartz ampoules that
are used to withstand the high vapor pressure of the melt forces heat to flow from the
melt into the ampoule and leads to highly curved melt/crystal interfaces. Naumann
and Lehoczky (1983) and Jasinski et al. (1983) presented approximate two-dimensional
conduction heat transfer calculations that demonstrated the large melt/crystal interface
deflections expected because of the mismatch in thermal conductivities. More recently,
Dakhoul et al.(1988) presented numerical calculations of conduction heat transfer that

account more realistically for thermophysical properties of HgCdTe alloys.

The radial temperature gradients caused by this thermal conductivity difference and
by other thermal imperfe:tions in the crystal growth system are extremely important
to understanding convection and species transport in the growth of nondilute alloys.
This is especially true in systems such as HgCdTe and GeSi where the average density
gradient is vertically stabilizing and convection must be initiated solely by thermal

imperfections and radial gradients that result.

The calculations of Chang and Brown (1983b) demonstrated the strong effect of
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the difference in thermal conductivities between melt and crystal on the direction and
intensity of thermal convection in the melt. The analysis of convection and segregation
in the verti.al Bridgman system by Adornato and Brown (1987a) included heat transfer
through the ampoule in calculations of the temperature and showed the generic structure

for the axisymmetric flow driven by radial temperature gradients in the melt.

Two distinct toroidal roll cells stacked axially in the ampoule were computed and
were driven by different sets of radial temperature gradients. Near the melt/crystal
interface, the mismatch in the thermal conductivities of the melt, crystal and ampoule
drives flow which is up along the center of the ampoule when the solidification interface
is convex with respect to the melt, as it is drawn in Figure 5.2. Large radial tempera-
ture gradients are also caused by the mismatch in thermal boundary conditions at the
junction of the hot zone with the insulation region (see Figure 5.2). These gradients
lead to an upper toroidal cell in which melt moves upward along the sidewall and down
along the axis of the ampoule. This flow cell is not present in directional solidification
systems where the axial temperature gradient is established by tailoring the heater de-
sign in such a way that the radial temperature gradient has the same sign all along
the melt; this is the case for the furnace used by Rouzaud et al.(1985) to grow GeSi.
In either case, adding an axial magnetic field damps these convective flows and leads
to diffusion-controlled crystal growth, albeit at high field levels (Kim et al., 1988) for

realistic crystal sizes.

The calculations described here show that the diffusion-controlled axial segregation
and large radial nonuniformities seen in HgCdTe growth can be explained by the unique
combination of radial temperature gradients and thermosolutal convection in this sys-
tem. Here the large difference in the thermal conductivities between melt and crystal
leads to large radial temperature gradients at the interface and drives a flow there that
is so intense that it is not damped by the solute rejected during solidification. However,
the extent of the buoyancy-driven convection is confined to the melt near the interface
and convection higher in the ampoule is damped by the very long axial solute profile

caused by the low growth rate. Then the solute field near the interface and the degree
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Figure 5.2: Schematic of prototypical vertical Bridgman crystal growth system.
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of radial segregation is controlled by the poor mixing caused by the thermally-driven
convection there and the axial segregation along the length of the crystal is governed

by the nearly diffusive profile that exists over the length of the melt.

Interestingly, the flow in the region damped by the solute profile has the boundary-
layer structure predicted by Hart’s (1971) one-dimensional model for thermal convection
driven by lateral temperature gradients in the presence of a linear, stabilizing solute
field; this comparison is discussed in Section 5.3.2. Moreover, additional axial roll
cells develop with increasing solute concentration as suggested by the sideways diffusive
flow instability predicted by a linear stability analysis of the one-dimensional motion
(Hart, 1971). Similar roll-cells were seen in calculations of thermosolutal convection
in directional solidification (Adornato and Brown, 1987b) and in the analysis of the
GeSi system by Adornato and Brown (1987a). We show in Section 5.3.1 that this
instability causes multiple steady-states in the HgCdTe and leads to hysteresis in the

radial segregation profiles in experiments.

The interaction between buoyancy-driven convection caused by radial temperature
gradients and damping due to the vertically stabilizing solute field suggests a more
complex dependence of radial and axial segregation on the crystal growth rate than is
predicted by simple segregation models that neglect the interdependence of the inten-
sity of convection on the solute profile caused by solute segregation. Higher growth
rates should lead to increased axial solute gradients and more effective damping of ther-
mal convection; therefore the intensity of the motion should be decreased. In addition,
the higher growth rates decrease the residence time of solute in the melt adjacent to
the interface, again deceasing the effectiveness of the mixing. This leads to lower ax-
ial segregation at higher growth rates, in agrcement with the observation of Capper

et al.(1983).

The response of radial segregation to the increase in growth rate depends on whether
the system is closer to the diffusion-controlled or well-mixed limits; see Brown (1988)
for a lengthy discussion of solute mixing and radial segregation. When good mixing is

present near the interface, increasing the growth rate decreases the mixing and leads
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to increased radial segregation, as is seen in the experiments of Capper et al.(1983).
Damping weak convection by increasing the growth rate decreases radial segregation to-
ward the diffusion-controlled limit, where radial segregation is caused sclely by interface

curvature.

The finite element calculations of solute segregation suggest a one-dimensional model
for axial segregation of dopants that is an alternative to the diffusion-controlled and
well mixed-limits used traditionally. We propose in Section 5.4 an alternate model that
couples a well-mixed region limited to a region next to the interface to a diffusion-

controlled bulk away from it.

5.2 Pseudo-Steady-State Model of Vertical Bridgman
Growth of HgCdTe

The analysis presented here is for the prototvpical model of the vertical Bridgman crystal
growth system shown schematically in Figure 5.2. The model includes a cylindrical
ampoule filled with melt and crystal positioned along the axis of a furnace which is
composed of hot and cold regions separated by an insulated region. In the pseudo-
steady-state model (PSSM) the translation of the ampoule is modelled by melt entering
the top of the cylinder with uniform velocity V; and composition ¢, and by removing

the crystal from the ampoule hottom at a rate that conserves the mass of the material.

Modelling of the vertical Bridgman crystal growth system with the PSSM neglects
the evolution of the system caused by the batchwise transient caused by the shrinking
of the melt. Then the calculations discussed here cannot approximate changes in the
location of the melt/crystal interface and the flow caused by the changing composition
of the melt, except as a sequence of steady-state calculations with varying bulk solute

concentrations.

The mathematical description of the equations and boundary conditions for convec-

tion and species transport of a nondilute binary alloy used here are identical to those
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presented in Chapter 4. The field variables and interface shape are described in terms
of the stationary axisymmetric cylindrical polar coordinate system (r,z) shown in Fig-
ure 5.2. The interface is represented by the shape function = = H(r) and has the unit
normal vector N. Crystal growth is in the negative z-direction, which is represented by

the unit vector e; .

Variables are put in dimensionless form by scaling lengths with the radius of the
crystal R, velocity components with the momentum diffusion velocity v/R., pressure
with pv?/R. and composition with ¢,. Dimensionless concentration and temperature

fields are defined as

S(ryz) = ¢(r,z)-1 (5.1)

T("'v :) = Teold

0(1‘, :) = Thot - Tcold

(5.2)

where Thos and T.oq are the values of the hot and cold isothermal zones in the Bridgman
furnace. The location of the melt/crystal interface is described by the function H(r)

and is computed with the field variables so that the energy balance along the interface
and the condition for the melting point isotherm are satisfied. Axisymmetric convection

in the melt is modelled by the Boussinesq equations which are written in dimensionless

form as
Vv = 0 (5.3)
v.-Vv = -Vp+Viv+ %;{Ra,s - Rat(0‘— 1)}e. (5.4)
Prv.-Vé = V30 (5.5)
Scv-V§ = V3§ (5.6)

where V is the gradient operator in cylindrical coordinates and the Schmidt (Sc) and
Prandtl (Pr) numbers are defined in Table 5.1. The definitions of the thermal and solutal
Rayleigh numbers are given in Table 5.1 and scale the magnitudes of the thermal and

solutal components of the buoyancy driving force, respectively.
The energy equations in the crystal and ampoule are identical to Eqgs. (4.17) and
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Name Symbol | Definition Value
Thermal R:xyleigh number | Ra;, | 98 ATR3/(amv) | 2.1 x 104
Solutal Rayleigh number Ra, | gB,c.R3/(amv) | —4.4 x10%
Modified

Solutal Rayleigh number Ra: | Ra, Pe,(1 - k)/k | 2.5 x 10°
Thermal Peclet number Pe |VoR./a 5x 1074
Solutal Peclet number Pe, VoR./D 0.092
Prandt! number Pr v/Qm 0.11
Schmidt number Sc v/D 19.6
Stefan number St AH,/CpmAT 1.4
Thermal diffusivity ratio ¥ a,/am 0.27
Density ratio o Ps/Pm 1.0

Table 5.1: Definitions of dimensionless groups that appear in analysis of thermosolutal
convection of HgCdTe crystal growth; characteristic values computed from the thermo-

physical properties of HgCdTe are also shown.



(4.18) in Chapter 4. The condition for the interface to correspond to the slope of the
liquidus curve for a binary mixture and the energy balance at the melt/crystal interface
are given by:

O(r,H(r))=0m(S) =67, + m(S +1-=1/k) (5.7)
' [N-VOm - K[N-V0). = St Pe(N -e;) (5.8)

where the liquidus curve has been approximated by a straight line with dimensionless
slope m and 62, is the melting point of the alloy with concentration c,/k. We assume
that m and the segregation coefficient £ are independent of concentration. Parameters
appearing in the interfacial energy balance ,Eq. (5.8), are the ratio of thermal conduc-
tivities K. = k,/kn, the Stefan Number St and the thermal Peclet number Pe based
on the solidification rate Vj; these parameters are defined in Table 5.1. The capillary
correction to the melting temperature has been ignored in Eq. (5.7). This is justified
as long as the length scale associated with the interface shape is not comparable to the

scale for morphological instability.
The interfacial balance for the dilute solute is written as

PeSc

[N.VS]= Pr

(N-e.)(1-k)(S+1) (5.9)

where Scis the Schmidt nuuber. The specification of the thermal boundary conditions
between the ampoule and the surrounding furnace is also discussed in Chapter 4 and

are identical for the calculations presented here.

The free-boundary problem with convection is solved by the same finite ele-
ment/Newton analysis discussed in Chapter 3. A mesh of 20 radial elements in the melt
and 4 in the ampoule with an axial approximation using 48 elements in the melt and
16 in the crystal was used in most of the calculations described here. This discretiza-
tion leads to set of 24,085 equations that are solved by Newton’s method. Accurate
calculations at high values of Ra, require resolution of the thin boundary-layers de-
scribed in Section 5.3.2. A second discretization with ten extra radial elements (33,945

total unknowns) distributed close to the ampoule wall was used for calculations with
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| Ra, |> 1 x 10%. Arc length continuation methods (Yamaguchi ef al.. 1984) based on
the thermal and solutal Rayleigh numbers are used to increment the calculations from

one paraineter set to another; details are found in Chapter 3.

The calculations presented here are much simplified by assuming that Hg;_.Cd.Te
alloys can be modelled as a dilute pseudobinary materials and that the thermophysical
properties and equilibrium constants have constant values that are independent of com-
position and temperature. This is an extreme simplification. Measurements of the phase
diagram (Kelly et al., 1982; Szofran and Lehoczky, 1981, 1983), thermal diffusivity (Hol-
land and Taylor, 1983), and heat capacity (Su, 1986) show very strong dependencies on
composition and temperature. These variations will need to be accounted for a quan-
titative analysis of the alloy redistribution during a batchwise growth experiment, but

can be neglected in the more phenomenological analysis presented here.

The properties used in this analysis were compiled by Professor B. Antar (1988) and
are listed in Table 5.2, along with the characteristic values for the dimensionless groups
that appear in the field equations. The values of the properties have been estimated
as those of a z = 0.20 mole fraction CdTe in alloy composition. The knowledge
of the thermophysical properties is incomplete; for example, the viscosity of HgCdTe
melts is unknown and the value of kinematic viscosity listed in Table 5.2 is only an

approximation.

The crystal growth rate for the simulations is taken as 0.25um/s and is representative
of the value used in the experiments (Szofran et al., 1984). For diffusion-controlled
crystal growth, this value leads to an exponential solute concentration layer that extends
over ten crystal radii form the interface, and thus well into the hot zone of the furnace.
The axial solute gradient is approximately constant for a distance of two crystal radii
above the interface; this fact will be used in the discussion of the flow structure in

Section 5.3.2.

The calculations presented here are modelled after the vertical Bridgman system of

Szofran et al. (1984). The dimensions of the ampoule and the thermophysical properties
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Quantity Symbol (units) Value
Thermal conductivity of the melt km(W/°C-cm) 2.0 x 102
Thermal conductivity of the solid ky(W/°C-cm) 2.9x 103
Density of the melt Pm(g/cm3) 7.6
Density of the solid ps(g/cm3) 7.6
Specific heat of the melt Cpm(3/°C-g) 0.26
Specific heat of the solid Cps(J/°C-g) 0.18
Melting temperature Tm(°C) 800

Slope of the liquidus curve m(°C/mole frac. CdTe) | 505
Kinematic viscosity v(cm?/sec) 0.0011
Heat of solidification AH,(J/g) 130
Thermal expansion coefficient B(°C~1) 8.0 x 10-5
Solutal expansion coefficient B,((mole frac. CdTe)"?) | —0.31
Diffusion coefficient of CdTe in HgCdTe D(cm?/sec) 5.5 x 1075
Equilibrium distribution coefficient of CdTe | k 2.6

Table 5.2: Thermophysical property data used in analysis of HgCdTe growth.
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used in the simulation to model it are described in Table 5.3. We include only conduction
in the quartz ampoule in the analysis and assume that heat transfer between the ampoule
and the furnace is by radiation and convection. The effective heat transfer coefficients
used to transport heat between these elements are computed in the same way described

in Chapter 4.

5.3 Analysis of Flow Structure and Radial Segregation

5.3.1 Effect of Solutal Field on Flow

The interaction of the solute field with thermosolutal convection driven by the radial
temperature gradients is best exemplified by calculations at fixed thermal Rayleigh
number, Ra;, and decreasing solutal Rayleigh number,Ra,. Because the dimensionless
liquidus slope, m, is held fixed, this sequence of calculations does not correspond to
varying the solute concentration. but is strictly equivalent to examining alloys with

different values of the coefficient of solutal expansion j3,.

The temperature, solute concentration, melt density and stream function fields are
shown in Figure 5.3 for the reference case of an alloy without solutal convection, but
in the same ampoule and furnace; Ra, = —2 x 10 and Ra, = 0. The isotherms have
extremely large deflections near the melt/crystal interface caused by the difference in
the thermal conductivities; the interface deflection is a half of the crystal radius. The
radial temperature gradients caused by the mismatch in thermal boundary conditions
at the junction of the hot and insulation zones is barely noticeable from these contours
because this discontinuity js almost completely modulated by heat transfer through
the thick ampoule. The temperature field shown in Figure 5.3 is almost identical to
the field for conduction-dominated transport computed for Ra; = Ra, = 0. No other
temperature fields are shown in the analysis presented here because there is very little

variation from the result in Figure 5.3.

The flow driven by these two sets of temperature gradients has the two cell structure
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Parameter Value

Ampoule length, L(cm) 2.0
Crystal radius, R.(cm) 0.2
Ampoule outer rad.ius,.Ra(cm) 0.4
Gradient zone length, Ly(cm) 0.56
Temperature difference, T}, — T.(°C) 375
Growth velocity, V,(um/sec) 0.25
Ampoule material fused silica
Thermal conductivity of 0.025

ampoule, K ,(W/°C-cm)

Density of ampoule, p,(g/cm?) 2.2
Specific heat of ampoule, Cp,(J/°C-g) | 0.77

Table 5.3: Thermophysical data for ampoule and system geometry.
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that we have shown to be generic for vertical Bridgman systems, although the lower
flow cell is much more intense than the upper one. The concentration field shows the
distorted contours that are characteristic of incomplete rmxmg by convection in small-
scale growth systems. Higher convection levels, e.g. larger values of Ra;, would lead to
two almost totally mixed concentration regions separated by a thin diffusion layer at

the junction of the two cells, as reported by Adornato and Brown (1987b).

Decreasing the solutal Rayleigh number Ra, from zero leads to damping of con-
vection by the composition field. Calculations to demonstrate this effect have been
performed for decreasing Ra, and are summarized by the plots of the flow intensity
and the percentage of radial segregation Ac shown in Figures 5.4 and 5.5, respectively.
In Figure 5.4, the points denoted by the symbols (e),(x) and (o) show the positions
of the solutions shown in Figures 5.6, 5.7 and 5.8, respectively. The intensity of the
flow is documented by the circulation rates of the lower and upper flow cells. The mea-
sure of radial segregation Ac is defined as the difference between the percentage of the
maximum and minimum concentration levels at the interface divided by the average

interfacial value.

Several phenomena are important. First the decrease in the intensity of the flow is
most pl.'onounced in the upper cell where the radial temperature gradients are lower.
The lower cell is affected by the solutal damping only at high values of Ra, which are
closest to the values appropriate for the system with z = 0.2 listed in Table 5.2. At
very high values of Ra, diffusion-controlled solute segregation is expected because of
solutal damping of convection throughout the flow. This state is difficult to compute
because of the formation of thin boundary-layers along all solid surfaces in the system.

The structure of these layers is discussed in Section 5.3.2.

The amount of radial segregation in the diffusion-controlled growth state is estimated
from the computation for Ra; = Ra, = 0 as Ac = 7.62%. This value agrees well
with the approximate solution of Coriell and Sekerka (1979) for a slightly deformed

interface. This asymptotic analysis leads to an approximation for the dimensionless
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radial segregation across the interface given by

~Pe Sc
Pr

Ac = (1-k)AH + O(AHz)] X 100% = 8% (5.10)

where AH =~ 0.5 is the dimensionless deflection of the melt/solid interface.

An important observation is that there is not a unique set of flow states computed
with decreasing Ra,, i.e. increasing solute stabilization. As shown in Figure 5.4, flow
hysteresis is predicted, as exeraplified by the existence of the two limit points. For a
range of Ra, three flow states are predicted to exist. From elementary ideas about the
link between flow stability and bifurcation of steady-state solutions the flows between
the two limit points (dashed portion of the curve in Figure 5.4) are shown to be unstable
and the other two states are stable (Yamaguchi et al., 1984). The cause of the hysteresis

is evident from the flow fields and is discussed below.

Sample flow states leading to the first limit point with decreasing Ra, are shown
on Figure 5.6. Several features deserve mentioning. The damping of the fiow by solute
field is first apparent in the upper flow cell for Ra, = —1 x 10% by the tendency of
the composition field to approach the diffusion-controlled state. The formation of an
exponential profile that is almost radially uniform is complete by Ra, = ~5 x 10°
everywhere except in the region occupied by the lower flow cell. The flow and solute
segregation in the region adjacent to the interface remains unchanged down to Ra, =

—1 x 10%, beyond which the flow begins to be damped.

The upper flow cell becomes weaker and the center moves toward the ampoule wall
as Ra, is decreased. The movement of the center of the cell and the flattening of the
streamlines adjacent to the wall denote the formation of a thin boundary-layer there;

this layer is discussed in Section 5.3.2.

For Ra, < -1 x 10 secondary flow cells form between the upper and lower flow
cells. Similar cells have been seen in the calculations reported by Adornato and Brown
(1987a) for the GeSi system and have been attributed to the sideways diffusive instabil-

ity discussed by Hart (1971). Here an almost parallel flow driven by lateral temperature
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gradients and counter-balanced by a vertically stabilizing solute gradient becomes un-
stable to the tendency of vertically-stacked secondary cells to form composition layers in
the flow. In a perfect parallel flow these cells form as abrupt transitions at bifurcations
from the base state as Ra, is decreased. We postulate the imperfections of our flow
from a perfectly parallel motion lead to the breaking of these bifurcations as described
by imperfect bifurcation theory and to the continuous evolution of the flow to one with

secondary cells.

The limit points in the family of states found at Ra, ~ —1.5x10* can be interpreted
in terms of this imperfection as an indication that the bifurcation from the parallel flow

is subcritical in terms of Ra,, i.e. the flows with secondary cells evolve to higher values

of Ra, until a second critical point, such as Ra, = Ra(,z) is reachaed where the states

turn back to decreasing values of the parameter. The three flow states that co-exist for

Ra(.l) < Ra, < Raﬁl) are shown in Figure 5.7. The states differ only in the number
and intensity of the small flow cells that are stacked near the interface. The irntensity
of all these cells decreases along the transition from the lower to the upper branches.
Moreover, the small region of well-mixed melt adjacent to the interface disappears along
this transition. By comparison, the flow state on the lower branch in Figure 5.7 has this

well-mixed core, whereas the one on the upper branch does not.

Flow fields and concentration fields computed for Ra, < Ra(,z) are shown in Fig-
ure 5.8. The two-cell structure of these flows is relatively unchanged with increasing
solutal damping, although both cells are damped with decreasing Ra,. We retu:n to

the asymptotic analysis of the structure of these flows in the next sub-section.

The evolution of the flow structure with varying concentration (Ra,) has a profound
effect on the radial segregation in the crystal, as shown by the plots of ¢(r, H(r)) in
Figure 5.9. A gull-wing shaped segregation profile results for weak solutal damping
(| Ra, |< 1 x 10%) and becomes more pronounced as the first secondary flow cell forms
adjacent to the interface and along the centerline (z.g., Ra, = —1.5 x 10%). Increased

solutal damping decreases the influence of the flow structure on solute transport and
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leads to convex radial segregation profiles that have tlie same form as the diffusion-
controlled result. The increased radial segregation with decreasing Ra, is very evident

in these profiles.

The effect of the flow structure on the segregation profile is not mimicked by the
interface morphology, as is demonstrated by the plots of the interface shape for varying
Ra, in Figure 5.10. Changes in the interface shape caused solely by the flow and solute
field are only found for the most intense convection levels, corresponding to the lowest
magnitudes of Ra,. The interface shape is approximately constant when the solutal

damping becomes significant.

5.3.2 Flow Structure with Solute Damping

The damping of convection in the upper flow cell and the formation of the boundary-
layer in the axial component of the velocity along the ampoule surface can best be
understond by comparison of the calculations in Section 5.3.1 with a simple, boundary-
layer analysis first described by Hart (1971). The discussion here focusses on the fluid

mechanics of the boundary-layer and on the scalings implied for the flow.

The flow in the region of the melt with the almost constant solute gradient is divided
into a core and a boundary-layer near the ampoule wall. In the core, the momentum
balance, Eq. (5.4). is assumed to be controlled by a balance of the solutal and thermal
components of the buoyancy force. Then the temperature field is essentially the con-
duction field and the solute field is the radially constant solution for diffusion-controlled
growth. Near the wall the momentum balance must include viscous forces so that the
no-slip condition on the solid surface is satisfied. Assuming that this layer is thin for
| Ra, > 1 and Ra, = O(|Ra,|) leads to equations for the local variation in the solute

and velocity fields.

Forcing the viscous and buoyancy terms in the momentum equation and the axial

convective and radial diffusive fluxes of solute in the solute balance to be of equal

4

magnitude leads to a boundary-layer thickness that scales as Ra, /4 and to axial and

o
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/

radial velocity components that vary as Ra, 12 This boundary-layer feeds the upper

circulation in the melt and implies that the circulation rate in this cell scales as Ra, 3/4,

The scalings predicted for the thermosolutal boundary-layer analysis were compared
to the finite element simulations with extra elements added to resolve the radial varia-

tions close to the ampoule wall. The comparison between the magnitude of the recircu-

lation in the upper flow cell ¥, iy = ¥pmin(Ra,) and the scaling Ra, 3/4 predicted by
the asymptotic analysis is shown in Figure 5.11 for Ra; = 2 x 10%. The comparison is

extremely good for large | Ra, |.

A direct comparison of the axial velocity profile near the ampoule wall for fixed =
is a more demanding test of the boundary-layer theory and calculations. The profile
‘of the scaled axial velocity v? = [v.(7,z) — Pe/Pr] | Ra, |'/? is shown in Figure 5.12
as a function of the stretched radial coordinate 7 = (1 — r) | Ra, {1/% near the wall
and the axial location parallel with the center of the upper flow cell. Note that the
uniform component of the velocity caused by growtl has been subtracted from v.
before rescaling ¥7,.. in Figure 5.11 and »? in Figure 5.12 because this portion of the
motion is unaffected by the solutal damping. The profiles superimpose for the largest

values of | Ra, |, thereby indicating that the scales for v. and r are determined correctly

from the boundary-layer analysis.

5.3.3 Effect of Growth Rate

The magnitude of the solute gradient in the melt that leads to damping of convection
is coupled to the solidification rate Pe through the dependence on Pe of the diffusion-
controlled profile. Accordingly, the effective solutal Rayleigh number Ra; that is a
better measure of this driving force is

1-k _ gB,c, RV, 1—k

k avD k (5.11)

Ra; = Ra,

%g—' ~ Ra, Pe,

The damping of the flow expected because of modest increases in the growth rate
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Pe is demonstrated in Figure 5.13. The intensity of the motion in both the top and
bottom cells is decreased by simply increasing the growth rate. The top cell conforms
more to the boundary-layer structure for the higher value of Pe, where Ra; is highest.
The flow intensities for the upper cell predicted for varying Pe are plotted on Figure 5.11
as a test of whether Ra! represents the correct scaling for the solutal damping. The
agreement between these results and the scaling predicted from the asymptotic analysis

verifies this hypothesis.

5.3.4 Effect of Microgravity

The undesirable radial segregation and flow hysteresis demonstrated in Section 5.3.1
can be removed by crystal growth in a microgravity environment. However, the benefit
of a moderate reduction in the magnitude of the gravitational acceleration on thermal
convection is modulated by a corresponding decrease in the role of solute damping of
this motion. This effect is demonstrated by calculations presented in Figure 5.14 for an

order-of-magnitude lower vlaue of Ra, (2 x 103) and a range of Ra,.

The intensity of the circulation decreases nearly an order-of-magnitude over the
result for Ra; = 2 x 10%; however, the asymptotic region where | Ra, | is large enough
that the flow has the boundary-layer structure described in Section 5.3.2 still occurs
only when | Ra, |> Ra;. Because decreasing gravity affects each mechanism identically,

there is no increased role of solute damping.

As we have demonstrated several times (Chang and Brown, 1983b; Adornato and
Brown, 1987a; Kim et al., 1988), environmens with only slight reductions in gravity
may not lead to improved compositional uniformity for the crystal. This is demonstrated
here by the dependence of the radial segregation for Ra; = 2x10% and 2x10% for arange
of values of Ra,, shown in Figure 5.15. Both systems show peaks in Ac for | Ra, |~ Ra;
that are larger than the values for diffusion-controlled growth (Ra; = Ra, = 0). These
peaks correspond to the loss of mixing of solute in the flow cell adjacent to the interface.

Because this interface is extremely curved, mixing in this cell is essential for low radial

272



AV, = 5.0E-3 Ac = 0.02 Ac = 0.02
0.70
¥, ¥
[
A — —
2] : I
? #,=-059C-2 ¥a1 ¥i=-085L-2 2
:'-";?:.s]n-z e :,-;::u-z I
3 ¥=0058 < :‘:3:::‘-‘ :;'-Oéll~2 830
FLOW FIELD CONCENTRATION FLOW FIELD CONCENTRATION FLOW FIELD'  CONCENTRATION
- -4 -
(a) Pe = 3.75x10 (b) Pe = 5x107* (c) Pe = 1x107®

Figure 5.13: Streamlines and isoconcentration contours for calculations with varying

crystal growth rate Pe; Ra; = 2 x 10% and Ra, = -2 x 104

(3%
-]
(2]



101 v ¥ lilll\l ¥ 4 lllllli i T lllllll ] ] LR

LR B RALL
{1 411110

Ra, = 2x10*

—
o
o
T T
2o
[oV]
P2
|
[4V)
X
H
o
(& ]
oyl

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.
.
.
-

107!

TTTTTI
L ool

\Pmax

---.-~

1072 ~~o

T
/
1 it

1073

T TTTTI]
/7
1 el

10"4 Lo taaant Lo al Lol Loty

10t 10? 10° 10* 10°
—Ra,

Figure 5.14: Flow intensity for lower flow cell ¥ g, as a function of solutal Rayleigh

number Ra, for varying values of Ra;. All parameters are fixed at the values listed in
Tables 5.1 and 5.2.

274



T i lll"ll ¥ ] [lllll[ ] ] lll"'l ¥ ] I BRI ER}E

k -

10 ___Ra, = 2x10? B

i e " DIFFUSION CONTROLLEL GROWTH.
Ra, = 2x10°

S  Ra, = 2x10* -

bl g 1300l L1l Lot 1 iqel Lol 1 1y

10! 10® 10° 10* 10°

—Ra

S

Figure 5.15: Radial segregation Ac as a function of sclutal Rayleigh number Ra, for

varying values of Ra;. All parameters are fixed at the values listed in Tables 5.1 and

5.2.



segregation.

Decreasing Ra; leads to diffusion-like segregation at low | Ra, | and to more
undesirable solute segregation. For Ra, = 2 x 102, the amount of radial segregation for
small values of solute damping is above the level for diffusion controlled growth, thereby
implying that the maxima in the Ac with Ra, is near this value. Smaller values of
thermal Rayleigh number should lead to radial composition levels that are close to the
diffusion limit (Ac ~ 7.6%) for all values of Ra,.

5.4 Axial Segregation Model

The flow structure of an intense cell adjacent to the interface and damped convection
away from it leads to an interesting picture of axial segregation that is different from
either the diffusion-controlled case analyzed by Smith et al. (1955) or the perfectly mixed
limit of Scheil (1942). In this section a simple one-dimensional model for solute transport
in this idealized flow structure is presented to explain qualitatively the axial segregation
results seen in the HgCdTe system (Capper et al., 1983). The analysis accounts for the
transients in the axial solute segregation and for the motion of the melt/crystal interface

caused by the changes in the melting temperature with composition.

Because our intent is for the model to give a qualitative description of the axial
transport, we remove the complication of the evolution of the temperature field with
time by assuming that the melt/crystal interface experiences a constant temperature
gradient at any location in the ampoule. This assumption also was made by Clayton

et al. (1982).

We assume that for distance § above the interface a strong flow exists which guar-
antees complete mixing of the solute. Solute transport in the remainder of the melt
is assumed to be controlled by diffusion and by convection caused by ampoule motion.

This situation is shown schematically in Figure 5.16.

The position of the melt/crystal interface is given in a stationary coordinate system
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as H(t). This location and other lengths are scaled with the length of the ampoule
Ii. Concentrations are scaled with an initial bulk value and time is made dimensionless

with L2/D.

The length of the melt L,(t) = H, + 1 — Pe, t, where Pe,, = V,L/D is the
dimensionless pull rate and D is the diffusivity of the solute. The location of the
transition between complete mixing and diffusion controlled control transport is La(t) =

H(t) + 6.

The mathematical statement of one-dimensional solute transport in this two-region

model is
C(Z’t) = Cb(t)v H(t) <:z< L2(t) (5°12)
ac  #*cC oc
Ty ) + Pen s Ly{t) < = < Ly(2) (5.13)

where C(z,t) is a radially averaged concentration field. These equations are subject
to boundary and initial conditions, as well as constraints. The boundary and initial

conditions are

H(0) = H,, (5.14)
L,(0) = 6+ H,, (5.15)
Li(0) = H,+1, (5.16)
Cy(0) = 1, (5.17)
Emwn = o, (5.18)
C(La(t)ht) = Colt), (5.19)

where the condition (5.18) specifies no penetration of the solute at the end of the

ampoule and (5.19) guarantees continuity of concentration between the two regions.

The location of the interface is given by the melting temperature according to the

phase diagram:

m(Cy - 1) = G(H - H,) (5.20)
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where m is an appropriaiely dimensionless liquidus slope and G is the dimensionless

temperature gradient. The location of the ampoule end L,(t) is given by
L\(t) = L1(0) — Pey t (5.21)
The concentrations fields in the well-mixed and diffusion controlled regions are cou-
pled together by the integral constraint for total solute

8 i)
ot H(t)

C(z,t)dt = —kCa(t) (‘;—Ij + Pe,,,) (5.22)

where k is the partition coefficient. This equation sets the bulk concentration Cy(t).

To determine the dependence of the qualitative features of the axial segregation
profile predicted by this model on the size of the well-mixed region relative to the melt
length, we have analyzed the moving-boundary problem described by Egs. (5.12) -
(5.22) by an approximate integral analysis similar to that described by Crank (1984)

for a simpler Stefan problem.

We assume that the concentration field in the diffusion controlled region L,(t) <
= < Ly(t), can be approximated by a penetration region L.(t) < = < Lj3(t), in which
the composition varies from the initial value and a constant composition region L3(t) <
z < Ly(t), that extends over the remainder of the melt. This penetration layer is shown
schematically in Figure 5.16. The concentration profile ('(t) in the penetration region

is modelled by a quadratic poiynomial with time varying coefficients:
C(z,1) = Cylt) - 2Cu(t) - L+ (Cy(t) = 1jn? (5.23)

where n = [z — La(t)]/3(t). The polynomial (5.23) already satisfies the boundary con-
ditions (5.18) and (5.19). The unknown bulk penetration thickness 3(t) is determined
so that the solute balance equation (5.13) is satisfied in an integral sense over the ap-
propriate region, or

Lo foc _o¢ , oC i
/L:(:) (797 ~ 5z~ Pem E) d: = (5.24)
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Substituting the approximate concentration field (5.23) into (5.24) and the overall solute
balance (5.22) leads to coupled differential equations for the evolution of the penetration

thickness 3(t) and the bulk concentration Cy(t) as

B/3+(Cy-1)m/G (Co—-1)/3 aCy/0t
§+B/3-(1=-kCy)m/G (Cb-1)/3 aB8/0t

2(Cy — 1)(1/B - Pen/2)

= (5.25)
Pen(1 - kCy)
The interface velocity 8H/dt is recovered from Eq. (5.20) as
0H (m\ 0C,
%=(3)% (5.26)

The steady-state solution of the model is obtained by setting the left side of Eq. (5.25)

to e zero and is

1 2 -
Cb—P ﬂ—-ﬁ: . (5.27)

so that the concentration in the well mixed region is exactly that which compensates for
the preferential incorporation of solute into the crystal and the penetration thickness is

given by the dimensionless growth rate Pe,, = V,L/D.

Equations (5.25) were integrated numerically starting from the initial conditions of
a penetration layer of zero thickness and a uniformly distributed solute concentration.
The accuracy of the penetration model for the solute field in the diffusion-controlled
region was verified by reducing the model to the case of dilute alloy without the mixing
zone adjacent to the interface; this limit is recovered by setting the liquidus slope m
and mixing length § to be zero. Then the crystal growth rate corresponds to the pull
rate and only the composition field evolves in time. The analysis of Smith et al.(1955)
describes this evolution. The calculations for the initial transient in the axial solute

profile in the crystal are compared in Figure 5.17 to the short-time result of Smith
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et al.. The agreement is extremely good considering the very approximate nature of

the concentration profile used in our analysis.

The effect of the mixing zone adjacent to the melt/crystal interface on the axial
segregation profile is demonstrated in Figure 5.18 by calculations with values of ¢
varying from the diffusion limit (6§ = 0) to an entirely well-mixed melt (6 = 1). When
the mixing region corresponds to over 10 % of the ampoule length, the axial segregation
behavior begins to show the transition between profiles that look like diffusion-controlled
growth and the complete mixing limit. QOur analysis models the well-mixed melt in the
limit of § = 1, as shown by the comparison of the calculation in this limit to the result

of Scheil (1942).

On the basis of axial segregation data alone it is probably impossible to distinguish
these profiles, especially in experiments using ampoules with large aspect ratios, without
very precise knowledge of the diffusion coefficient. This is demonstrated in Figure 5.19
by comparing the axial composition profiles predicted for § = 0 and 0.1 for a specific
diffusion coefficient (Pe, = 9.2) with the diffusion-controlled results for a diffusion
coefficient twice as high (§ = 0.Pe,, = 4.6). In most experiments data cannot be
deconvoluted to distinguish between the last two curves especially if the dependence of

the diffusion coefficient on concentration is taken into account.

5.5 Discussion

More than anything else the calculations and analysis presented here have demonstrated
that convection and solute segregation in nondilute alloys results from a complex inter-
action of heat transfer in the furnace and material and convection and species transport
in the melt. Numerical simulations of the coupled flow, heat and species transport
problems leads to mechanistic interpretations of both radial and axial segregation mea-

surements.

We have demonstrated that the segregation hehavior in the HgCdTe system is a
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result of the combined actions of thermally-driven convecti;)n caused by the large ra-
dial temperature gradients near the interface and solutally-driven damping of buoyancy
flow by the gradient of CdTe in the melt. Quantitative determination of the relative
importance of the two mechanisms can only be determined by precise numerical simu-
lations that account of correct thermophysical properties and for the curvature of the

melt /solid interface.

The radial and axial segregation patterns seen in HgCdTe crystal growth experiments
by Szofran et al.(1984) and by Capper et al.(1983) are explained by the calculations.
The large radial temperature gradients caused by the difference in the thermal conduc-
tivities between the melt, crystal and ampoule lead to strong convection adjacent to the
interface. The solutal damping of this motion caused by the alloy concentration profile

partially damps this motion.

For the small ampoules used by Szofran et al.(1984), solutal damping almost sup-
presses convection entirely in the upper portion of the ampoule, but a relatively intense
flow cell still exists near the melt/crystal interface. The damping of convection over the
length of the ampoule is responsible for the diffusion-like axial segregation profile ob-
served in these experiments. The large radial nonuniformity seen on *he crystals results

from incomplete mixing in the flow cell adjacent to the interface.

The effect of solute damping on buoyancy-driven convection in the core is described
well by the asymptotic analysis of Hart (1971). Moreover, the linear scaling of the
effective solutal Rayleigh number Ra; with the axial concentration gradient caused by
solidification explains the decreasing axial segregation with increasing growth rate that

was observed in the experiments of Capper et al.(1983) with larger ampoules.

There appears to be an important distinction between the two sets of experiments
described here. Those of Szofran et al.(1984) were performed in small enough ampoules
that the radial segregation operates closer to the diffusion-controlled limit, while the
larger system of Capper et al. (1983) operates closer to the limit of a well-mixed melt.

This difference is clear from the response of the radial segregation to increases in the
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crystal growth where the Ac decreases in the small system, but increases in the larger
one. These results are possible only if the systems are operating on opposite sides of

the maxima in Ac with convection intensity, as defined for each system.

The one-dimensional model proposed in Section 5.4 for axial solute transport from
a melt with a well-mixed cell separating convectionless melt from the solidification
interface gives a good phenomenological picture of axial segregation in this system. The
apparent diffusion-like profile is explained and the effective diffusion coefficient is shown
to be a function of the size of the well-mixed region. The predicticns from this analysis
are appealing for the growth of many materials because they suggest that the growth
of radially-uniform crystals with nearly constant axial compasition profiles is possible if

these conditions can be met.
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Chapter 6

Transient Analysis of the
Growth of Dilute Binary Alloy
in a Vertical Bridgman Process

and Gradient Freeze Furnace

The time-dependent finite element formulation developed in Chapter 3 is applied to
investigate the transient transport processes in confined crystal growth systems. Calcu-
lations are presented for growth of a dilute gallium-doped germanium alloy in a verti-
cally stabilized Bridgman-Stockbarger system and for growth of a dilute selenium-doped

gallium arsenide in a gradient freeze furnace.

6.1 Introduction

Solidification in a confined crystal growth system is time-dependent through the trans-
lation of the imposed temperature profile relative to the materials in the ampoule, either

by furnace or ampoule motion. Transport processes such as convection and solute seg-
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regation in this system are also transient, because of the steady decrease of the melt

voiume in a finite length ampoule.

Most theoretical research for the Bridgman growth system has been limited to the
steady-state analysis, which is based on several assumptions (see Section 2.2) valid for
the region of steady solidification in a sufficiently long ampoule. Cne or more aspects
of the transport processes, such as heat transfer, convective flow and solute segregation,
in the Bridgman growth system have been previously analyzed using the steady-state

assumption.

In the simplest thermal modelling, only the conductive heat transfer is accounted
for, taking advantage of the low Prandtl numlers that are characteristic of semicon-
ductor materials. One-dimensional analyses of heat transfer (Chang and Wilcox, 1974;
Nauma.nn, 1982a; Jasinski et al., 1983; Jasinski and Naumann, 1984) have focussed on
determining the criteria necessary for neglecting the thermal end effects. One example is
the infinite length criterion for the necessary aspect ratio (Jasinski et al., 1983), written

as
L 2.5

PRGVRRE
where Bi* is the effective Biot number defined by them. Two-dimensional thermal
models (Chang and Wilcox, 1974; Sen and Wilcox, 1975; Fu and Wilcox, 1980; Borisov
et al., 1982; Naumann, 1982b; Chin and Carlson, 1983; Naumann and Lehoczky, 1983;
Ravishankar and Fu, 1983; Huang et al., 1983; Jasinski et al., 1984; Jasinski and Witt,
1985; Taghavi and Duval, 1989) have analyzed the effect of various process conditions

on the curvature of melt/solid interface.

The uniformity of the dopant concentration in the semiconductor crystal is one
of the major concerns for the quality of crystal (Gatos, 1982). The convective flow
structure in the melt is important in setting the solute segregation in the crystal because
the motion of the flow governs the solute transport mechanism in the semiconductor
melt of high Schmidt number. Steady-state analyses of flow in the melt (Chang and
Brown, 1983a,1984; Miiller et al., 1984; Carlson et al., 1984) have revealed that the
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radial temperature gradients in the melt are large enough to drive thermally buoyant
convection even in the system of thermally stabilizing configuration, i.e. melt above
crystal. But, the effect of convection on the solute distribution has not been investigated

in their analysis.

The effect of convection on the solute segregation has been studied {Chang and
Brown, 1983b; Adornato and Brown, 1987a,b) by steady-state finite element analysis
up to the convection level comparable to that in small scale experimental systems. An
important observation was made in their analyses that the mixing caused by intense
convection near the melt/solid interface reduces the radial segregation and the imperfect
suppression of convection can actually increase the radial nonuniformity in the solute
distribution. Studies of the effect of vertical magnetic field on the convection and

segregation has led to the similar observations, as discussed by Chapter 4.

The behaviour of field variables in the initial and final transient period is completley
ignored in the steady-state analysis In some cases the length of the ampoule used for
crystal growth is not long enough to allow the steady-state transport processes, e.g.,
L/D = 4 for the pyrolytic boron nitride ampoule in the growth of gallium arsenide
(Arnold, et al., 1989), and the solidification process is completed before steady-state
heat transfer is reached. Only transient analysis can provide the complete picture of

the batchwise solidification process in the confined crystal growth system.

The dynamics of the solidification process involves multiple time scales, including
the time scales for the dynamics of heat transfer, for ampoule translation, for viscous
diffusion of momentum and for solute transfer. This complex dynamics in the system
makes transient numerical analysis of the complete system a formidable task. Simple

models have been used by a number of investigators to answer particular questions.

One-dimensional transient analysis of heat traasfer (Favier, 1980; Fu and Wilcox,
1981; Sukanek, 1982a,b) has been used to investigate the deviation of the solidification
rate from the translation rate of ampoule when the translation rate is subject to a step

change, as in the beginning of the solidification process. Time-dependent models of
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solute diffusion equation without convection have been solved analytically (Pohl, 1954;
Smith et al., 1955; Hulme, 1955; Memelink, 1956) for the solute redistribution during
directional solidification of a dilute component with constant segregation coefficient. In
these analyses, the solidification rate is assumed to be constant throughout the process
and this rate is imposed on the interface as soon as solidification begins. Although
thermal transients are neglected, this solution is frequently used as a good approximation
in the limiting case of diffusion-controlled solute transport in the melt, as opposed to the
Scheil equation (Scheil, 1942) for which complete mixing in the melt is assumed. The
same time-dependent diffusion equation has been solved numerically (Clayton et al.,
1982) for the case where no steady solidification is present and the alloy is nondilute.
With transient finite difference analysis, Verhoeven et al. (1988) established the region
in the parameter space composed of equilibrium distribution coefficient k£ and solutal
Peclet number Pe, where the transient solution of Smith et al.and Scheil are valid,
respectively. The effect of diffusion in the solid phase on the solute segregation also has

been investigated analytically (Bourret et al., 1983; Kobayashi. 1988).

The transient in the microscopic growth rate caused by the imperfect heat transfer
was accounted for in the one-dimensional numerical analysis of both heat and solute
transfer in the Bridgman growth of nondilute binary alloy (Bourret et al., 1985). The
coupling between concentration and temperature at the melt/solid interface contributed
to the longer transients observed in the nondilute system than in the dilute system where

heat and solute transfer are decoupled.

The purpose of this chapter is to present detailed transient calculations for the
complete description of the directional solidification process in a confined growth system.
Heat transfer in the melt, crystal and ampoule is coupled to convection in the melt,
which is a key factor to the solute transport in the melt and ultimately to the solute
segregation in the growing crystal. In this chapter, a dilute binary alloy is considered
and convection driven by temperature is incorporated. The temperature variations
important in directional solidification are the axial gradient imposed for solidification

and the radial gradients caused by imperfections in the heat transfer between the charge,
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ampoule and furnace. In the axially stabilizing thermal configuration, convection is

caused by the radial temperature gradients alone.

Two furnace designs previously used in the experiment are of particular interest in
this study and are shown schematically in Figure 6.1. The crucibles shown in Figure 6.1
are the prototypes of the ones used in the experimental systems shown in Figure 6.2.
These are the classical Bridgman-Stockbarger furnace constructed by Wang (1984) at
the Massachusetts Institute of Technology and the gradient freeze furnace constructed
at the GTE Laboratories (Kafalas and Bellows, 1988; Arnold et al., 1989) for the space
experiments. The MIT furnace has been built using two heat pipes for forming isother-
mal hot and cold regions separated by a nearly adiabtic zone. The isothermal zones are
long enough so that the solidification rate equilibrates with the ampoule displacement
rate after initial transient period. The GTE gradient freeze furnace uses multizone
resistance heating elements to establish a desired temperature profile over a length of
ampoule. Instead of moving the ampoule through furnace, this temperature profile is
translating upward to give axial temperature gradient necessary for solidification. In
the multizone gradient freeze method, temperature gradients near the interface can be
minimized, which reduces the thermal stress level in the crystal (Parsey and Thiel, 1985,
1987).

The transient model for the verical Bridgman growth system and finite-element /time-
integration method developed in Chapter 2 and Chapter 3, respectively, are applied to
the calculations for both MIT and GTE furnace systems. Results are presented for the
growth of gallium-doped germanium in the MIT furnace and seleniutn-doped gallium
arsenide in the GTE furnace system. The growth of the gallium-doped germanium in
the MIT furnace has been studied experimentally by Wang (1984) and the GTE space
experiment to grow selenium-doped gallium arsenide is expected aboard STS in 1990

(Arnold et al., 1989).

Transient calculations for growth of gallium-doped germanium in the boron nitride
ampoule show the development of tlow structure in time. The impact of convection on

the solute concentration in the crystal is demonstrated by the radial and axial segrega-
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Bridgman crystal growth system and (b) GTE gradient freeze growth system.
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tion calculations for the dilute gallium-germanium alloy. The predicted values of radial
segregation and effective segregation coefficient for gallium are compared to values ob-
tained by Wang(1984). These are the first quantitative comparisons with experiments
of solute segregation predicted from detailed transient analysis of melt flow. The effect

of the step change in ampoule translation rate is also investigated for this calculation.

Results for growth of selenium-doped gallium arsenide in a PBN (pyrolytic boron
nitride) ampoule show the effect of large latent heat of solidification on temperature
field and interface shape in time. The geometry of the melt region is determined by the
interface shape and location and influences the structure of flow and solute distribution
in the crystal. These consequences are presented for the dilute selenium-doped gallium

arsenide alloy.



6.2 Transient Model for Vertical Bridgman Growth Pro-

cess and Gradient Freeze Growth Process

The transient model for the vertical Bridgman crystal growth process has been pre-
sented in detail in Chapter 2. In this Section, basic differences between the vertical
Bridgman and gradient freeze processes are examined. It is shown that the transient
model developed for vertical Bridgman process can be used for gradient freeze process

without modifications.

In the MIT furnace, two heat pipes provide nearly isothermal hot and cold zones and
the temperature gradient near the interface is controlled by the length and material used
for the adiabatic zone. Typical furnace temperature and heat transfer coefficient profiles
are shown in Figure 6.3(a). The temperature profile along the axis of the cylindrical
ampoule shows the effect of imperfect heat transfer between the furnace, ampoule and

charge.

Multi-zone heating elements in the gradient freeze furnace make it easier to tailor
the desired furnace temperature piofile in time, by controlling the power to each heating
elements in the furnace. With the increase of the nuinber of independent heating zcues,
more sophistigated shape of the temperature profile is posssible. Figure 6.3(b) shows
typical time change of the temperature profile in GTE furnace system. In the gradient
freeze furnace, the absence of the adiabatic zone vields almost uniform heat transfer
coefficient over the length of the ampoule, except for the temperature dependence of

radiative heat transfer.

The most distinguished difference between the crystal growth processes in MIT
furnace and GTE furncae lies in the dvnamics of heat supply to the ampouie. In the
MIT furnace. the furnace temperature profile is stationary in the fixed laboratory frame
and the ampoule is pulled down so that it sees the changing furnace temperature in
time. On the contrary, the ampoule is stationary and the furnace temperature profile is
changed in time in the GTE gradient freeze furnace system. These differences disappear

with the proper choice of the coordinate reference frame. In our model, we fix the
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coordinate reference to the top of the ampoule and the furnace temperature profile
translates or changes shape in time for both systems. These time-dependent profiles
of furnace temperaiure and heat transfer coeflicient are incorporated into the model in

analytical forms.

Another feature which should be accounted in the modelling of the GTE gradient
freeze furnace is that the pyrolytic boron nitride used as a ampoule material is a strongly
anistropic material. Its thermal conductivities vary as 1:25 for the radial and axial di-
rections, respectivelv. as shown in Table 6.5. Chait (1988) accounted for this anisotropy
in his model by dividing the ampoule into two isotropic layers of different conductivity.
We incorporate the anisotropy into the model by assuming pyrolytic boron nitride as 2
orthotropic solid (Carslaw and Jaeger, 1959). For orthotropic solids. off-diagona! com-
ponents of the second-order conductivity tensor are zero and heat fluxes are expressed

for the axisvmmetric cylindrical system as

q- K., 0 ] r—aT.’ar

(6.1)
g 0 AJ -8T 9:

The Laplacian of temperature in the axisymmetric cylindrical system is written for

constant A,, and A.. as

-2 _ ___1 a _aQ:
viro= rar(”’" 0:
.18 ( 8T\  ,. 9T
= Koz () *Ha 5 (6.2)

This formulation is used for the modelling of heat conduction in the anisotropic PBN

ampouie.
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6.3 Growth of Gallium-doped Germanium in MIT Ver-

tical Bridgman Heat-pipe Furnace

The thermophysical properties used in this study for gallium-doped germaniumn were
compiled from results of Crouch et al. (1982) and Wang(1984) and are listed in Table 6.1.
All properties were assumed to be independent of temperature. The small degree of tem-
perature dependence of germanium properties reported by Crouch ¢t al. (1982) partially
support this assumption. We assume that the small concentrations of gallium ( 10%-
109 atoms,/cm?® or 1079--10~% mole fractions) of experiments by Wang (1984) do not

drive solutal convection. as discussed by Adornato and Brown (1987a).

The calculations for germanium growth are presented for the MIT furnace. Pa-
rameters corresponding to the design of .his system (Wang, 1984) and thermophysical
properties of boron nitride ampoule (Touloukian, 1967) are tabulated in Table 6.2.
Dimensionless groups appropriate for the terrestrial growth of germanium with this fur-
nace design parameters are listed in Table 6.3. where 1} is a ampoule translation rate

through furnace.

6.3.1 Thermal Boundary Conditions

Comparisons between the predictions of calculations and small-scale growth experiments
is only possible when the thermal boundary conditions for the experiment are well

established and these boundary conditions are incorporated into the model precisely.

Equations describing the transient heat transfer in the system have been developed
in Section 2.3. Equation (2.29) dictates the thermal boundary conditions between the
ampoule and the surrounding furnace and rewritten here as
[36

where Bi(z,7) is a time-dependent, dimensionless heat transfer coefficient (Bi(=,7) =

ha(z,7)R/ks) defined to include radiative, conductive, and convective transport be-
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Quantity Symbol (units) | Value
Thermal conductivity of the melt K, (W/°C.cm) | 0.39
Thermal conductivity of the solid K,(W/°C.cm) | 0.18
Density of the melt Pm(g/cm3) 5.5
Density of the solid ps(g/cm?3) 5.5
Specific heat of the melt Cp.m(3/°C-g) 0.35
Specific heat of the solid Cp.s(J/°C-g) 0.38
Melting temperature Tm(°C) 937 .4
Kinematic viscosity v(cm?/sec) 0.0013
Heat of solidification AH,J/g) 460
Thermal expansion coefficient B3,(°C~1) 5.0 x 1074
Diffusion coefficient of Ga in Ge D(cm?/sec) 2.1 %104
Equilibrium distribution coefficient of Ga | k 0.087

Table 6.1: Thermophyvsical properties of germanium.
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Ampoule length, L(cm) 15.2
Crystal radius, R.(cm) 0.68
Ampoule outer radius, R,(cm) 0.95
Gradient zone length, Ly(cm) 3.8
Temperature difference, T}, — T.(°C) 340
Ampoule translation rate. Vy(um/sec) 1.0
Initial location of the center of

the gradient zone, =!4(cm) 9.91

Ampoule material

Boron nitride

Thermal conductivity ¢f ampoule, K(W/°C-cm) 0.26
Density of ampoule, p,(g/cm?) 2.3
Specific heat of ampoule. C'p,(J °C-g) 1.9

Table 6.2: Design parameters for MIT vertical Bridgman furnace

300




Name Syvmbol | Definition Value

Thermal Rayleigh mumber Ra, 93, ATR:/ (amv) | 2 x 10°

Solutal Rayleigh number Ra, g8,coR3/(amv) |0

Peclet number Pe VR /a 1.3 x 103
Prandt] number Pr v/iam 6.4 x 1073
Schrnidt number Sc v/D 6.2

Stefan number St AH,/CpmAT 3.9

Table 6.3: Dimensionless groups and characteristic values appropriate for gallium-doped

germanium crystal growth in MIT furnace.
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tween the ampoule and the furnace. and 6, (z. 7) is the temperature distribution at the

furnace wall.

The changes in the heat transfer coefficient betwecn the three zones of the MIT

vertical Bridgman furnace are modelled by the function

Bi(z, 1) = E’;—()-(bi:;{l + tanh{biy(z.(7) = bix — z)!}
<1 -+ tanh{-bi;(z.(7) + bia - z)}) (6.4)

where z.(7) is the time-dependent location of the mid-plane of gradient zone in coor-

dinate system fixed to the ampoule and is linear in time as

. Pe
-c(T) - ~c,0 T F;T (6'5)

for which z.o is a initial location of z. and translation Peclet number of ampoule is
constant throughout the run. The coefficients {bi;} are constant in time and have
the following significance: big = ficoigRe/ka is the value of Biot number in the cold
zone; bi; sets the slope of the transition in Bi(z) between the isothermal zones and
the adiabatic region; bi» = (Lg/R.)/2 is the half of the dimensionless length of the
adiabatic zone; bis = hpot/hcoig Sets the ratio between the Biot numbers in the hot and

cold zone. The furnace wall temperature is modelled by the function
1 . )
000(:,'r)=;{1—(.anha~00(:c(7)-:—-A:),} (6.6)

where 6, determines the sharpness of the transition in 6(z,7) between the hot
and cold zones and A: accounts for the degree of asymmetry in dimensionless furnace

temperature.

These formulations for the heat transfer coefficient and furnace temperature profile is
tested by performing numerical simulation of heat transfer for the experiment of thermal
characterization by Wang (1984). In this experiment. a graphite rod was used instead
of an ampoule. Axial temperature fields along the furnace wall and in the graphite rod

were measured in a helium atmosphere.
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The heat t-ansfer coeflicients in the hot and cold isothermal zones were estimated
from the contribution of conduction through the ambient gas phase and radiation be-
tween the furnace wall and the charge, i.e. h = heond + hrad- The heat transfer coefficient
due to conduction in the gas is given by

k
9 -
heond = =t (6.7)
rrin(rgiren)
where kg is thermal conductivity of the gas in the gap and r; and r.; are outer radii of
the furnace and the charge, respectively. The contribution of radiative heat transfer is

summed up as

N 3
.TL__TE’_’_} (6.8)

d‘)

4

h,.ad =4Fc [

where T; and T, are temperature of the furnace wall and the charge. respectively and

o is Stefan-Boltzmann constant (5.67 x 10~!* W/cm?®. K*). Overall interchange factor

Fis a function of emissivities of furnace wall (¢;) and charge (.4 ), given by (Siegel and
f g g <)

N -1
Fo |2 *(’_h) (-1__1) (6.9)
Zeh Tf vsf

The coefficients big and biz in Eq. (6.4) are determined from these heat transfer co-

Howell. 1972)

efficients and bi» is obtained from the length of adiabatic zone. Coefficients for the
slope, bi, and g, are obtained by best fitting to the experimental measurements of

temperature.

The predicted and measured temperature are shown in Figure 6.4. No solidifi-
cation is involved with the graphite rod and temperature has been predicted from
steady-state finite element analysis, with coefficients {fy. Az} = {0.39.0.38}.{bi;} =
{0.10.2.,2.8.1.7}. The average error in the predicted temperature was only 0.011 in
dimensionless temperature or about 4 °C. This comparison validates the thermal model

and boundary conditions.
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6.3.2 Temperature Fields and Growth Velocity

Transient calculations for the growth of gallium-doped germanium alloy in a boron ni-
tride ampoule are performed with an initial condition {or which the center plane of the
gradient zone is placed at 0.65 of the ampoule length from the top and ampoule trans-
lation rate is set to zero. Initial concentration of gallium dopant is uniform throughout
the melt because of the zero growth rate. The temperature field is equilibrated with the
surrounding furnace and steady thermal convection due to this temperature field is used
as an initial state before the translation of the ampoule is begun. The calculations are
continued until about 0.65 of the charge is solidified. Sample meshes shown in Figure 6.5
are used for the tiansient calculation and display the deformation and translation of the

individual element during the run.

Heat transfer in the crystal and ampoule is caused by conduction only and conductive
heat transfer dominates in the melt because of the low Prandtl number of semiconductor
material. The high level of convection in the system does not deform the shape of
isotherm appreciably as shown in Figure 6.6.  Almost the same temperature field
was computed for Ra; = 0 and 2 x 10°. This confirms the dominance of conductive
heat transfer in the melt. Only close scrutiny of the temperature field reveals a littl~
flattening of the isotherm in the melt at Ra, = 2 x 10° due to convective heat transfer.
The effect of convective heat transfer is more evident in Figure 6.8. where the interface
deflection is plotted as a function of Ra,. The melt;crystal interface becomes somewhat

flatter with the more intense convection associated with the higher Ra,.

In the MIT vertical Bridgman system, the furnace temperature in the hot and cold
zones is nearly constant and temperatuse change is confined to the gradient zone. This
is reflected by the temperature field inside the ampoule, where the temperature gradient
is steepest near the interface and becomes lower with distance away from it. The large
length of the hot and cold zones, compared to the size of the adiabatic zone, enables
the temperature field around the interface to be independent of the position inside the

ampolue and thus results in a steady-state growth rate as solidification proceeds.
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The growth rate of the crvstal was computed from the transient location of the
interface. which is determined solely from the temperature field for a dilute binary
alloy. Since the temperature field in the melt is affected little by the convection level, the
growth rate histories for several values of Ra, superpose on one another and are nearly
indistinguishable in Figure 6.7. These growth rate profiles show the initial transients
caused by the step change of ampoule translation rate (from 0 to 4 um/sec) and the
deviation of growth rate from the ampoule translation rate in later time is caused by
changes in the temperature field as the interface senses the approaching end of the

amj oule.

The initial transient represents the adaptation of the crystal growth rate [0 H/d7(7)|
to the translation rate of the ampoule V; upon sudden change in the translation rate.
This change is caused by unsteady heat transfer which is coupled with the transient
crystal growth rate through the latent heat release at the melt/crystal interface. Fu
and Wilcox (1981) obtained the correlation for the transient growth rate from a one-

dimensional heat transfer model as

SRl =1 - exp(-r/4) (6.10)
where A is a time constant of thermal response in the growth system and mostly depends
on the heat transfer coefficient between the furnace and ampoule and the magnitude of
latent heat release at the interface. The computed growth rate in the initial transient
is plotted as a function of fraction solidified in Figure 6.9 for thermal Rayleigh number
of 0 and 2 x 105. In the initial transient, the growth rate is well correlated with the
functional form suggested by Fu and Wilcox (1981). Figure 6.9 also shows the effect
of convection on the thermal response in the svstem. Comparison of the slopes of two -

curves shows that a slightly faster thermal response is obtained with the high level of

convection Ra, = 2 x 105,

The differences between the thermal conductivities of melt, crystal and ampoule
cause the characteristic thermal field near the interface. In this region, the melt near

the centerline is hotter than near the ampoule wall and a concave interface shape to the
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solid is obtained. The concavity of the interface increases with the release of latent heat
at the interface. The amount of concavity is proportional to the growth rate of crystal.
A sudden change of the ampoule translation rate leads to the transient behaviour in
both growth rate and interface deflection, as shown in Figures 6.7 and 6.8. Interface
deflection A H is much more sensitive to convection level. This is important for matching

the computed results with experiments in Section 6.3.5.

6.3.3 Flow Fields

The axial temperature gradient in stabilizing vertical Bridgman system does not drive
the flow in the melt. The temperature field near the interface provides a negative
radial temperature gradient adjacent to the interface and the large change of thermal
environment at the junction of the hot zone and adiabatic zone results in the positive
radial temperature gradients in that region. These two radial temperature gradients
play the role of driving forces for thermal buoyant flow in the melt and lead to the
characteristic two-cell structured flow first seen by Chang and Brown (1984). The upper
toroidal cell moves melt upward along the ampoule wall and down at the centerline.

Lower troidal cell near the interface rotates in the opposite direction.

Sample flow fields in the melt are presented in Figure 6.10-6.13 for thermal Rayleigh
numbers of Ra; = 2 x 102,2 x 103,2 x 10* and 2 x 10%. These flow fields occur at the
elapsed time of approximately 0, 5,000. 10.000, and 15.000 seconds for each thermal
Rayleigh number and show the relative locations of the ampoule with respect to the

furnace.

The initial structure of the two axially stacked counter-rotating cells is unchanged
in time, as shown in Figure 6.10. The intensity of each flow cell, as measured by the
maximum absolute values of the stream function ¥, is almost constant. As the interface
approaches the end of ampoule, the upper flow cell suffers the resistance of the solid

end wall and the flow intensity decreases.

The two-cell structure of flow is not affected by increasing the thermal Rayleigh
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Figure 6.10: Sample flow fields for growth of GaGe in MIT system with boron nitride
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Figure 6.11: Sample flow fields for growth of GaGe in MIT system with boron nitride

ampoule: Ra; = 2 x 103,
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Figure 6.12: Sample flow fields for growth of GaGe in MIT system with boron nitride

ampoule: Ra, = 2 x 104,
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Figure 6.13: Sample flow fields for growth of GaGe in MIT system with boron nitride

ampoule: Ra, = 2 x 10°.
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number. Only the intensities of the cells in terms of the stream function values ¥
increase with the thermal Rayvleigh number. As the intensity of flow increases, thin
boundary layers form along the ampoule wall, as exemplified by the shift of the center
of the flow cell to the wall. This is more evident in the upper flow cell than in the
lower cell. because the flow in the lower cell is much more restricted by the geometry
near the interface. The time histories of the intensities of the flow cells are presented
in Figure 6.14; the intensities of the upper and lower flow cells are ¥pm;n and ¥z,
respectively. The intensities of the lower flow cell are almost constant during the run,
but, the upper flow cell experiences the decrease of flow intensity due to the reason

discussed above.

The effect of increasing thermal Rayleigh number on the intensity of the flow is
presented in Figure 6.15 for f = 0 and f = 0.6. where f is the fraction of the melt that
has been solidified. The increase of the flow intensity with thermal Rayleigh number is
approximately linear up to Ra, = 2 x 104, indicating that inertia and thermal convection
are not important. When the thermal Rayleigh number is large enough, inertial effect
becomes important in the momentum equation and convection in the energy transfer
reduces the radial temperature gradient in the melt. These combined effect leads to the

slower increase in the circulation rate with high Ra,.

The results for the flow fields by transient analysis are very similar to the pseudo-
steady-state results with varying melt depths. In the MIT system, the radial temper-
ature gradients, which drive the melt flow, are almost constant in time because the
steady-state temperature field near the interface is set shortly after the beginning of
ampoule translation. The combined effect of long ampoule and steady-state tempera-
ture field near the interface leads to the steady-state flow structure as viewed from the

interface.
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6.3.4 Solute Fields

The diffusion coefficient of gallium in germanium is 2.1 x 10~4 cm?/sec and the Schmidt
number Sc is betweeri 1 and 10. As a result of relatively high Schmidt number, con-
vection dominates solute transfer and the solute distribution is highly dependent on
the flow pattern in the melt. Transient solute profiles for dilute gallium in germanium
are shown in Figure 6.16-6.20, as calculated for the flows shown in Figure 6.10-6.13
and the ampoule translation rate of 4um/sec. At time zero, solute concentration is
uniform throughout the melt, as denoted by the lack of isoconcentration contours in

these figures.

When Ra, = 0, solute distribution is almost one-dimensional in the axial direction
and the solute diffusion layer develops in time due to the rejection of solute at the
interface, as shown in Figure 6.16. The only deviation from a perfectly one-dimensional
profile is caused by the curvature of the melt/crystal interface. Slight increase of the
convection level deforms the iso-concentration contour lines to resemble the direction
of flow in each cell, as shown in Figure 6.17. The influence of the flow structure on
the solute distribution is more evident in Figure 6.18, where flow near the interface
transports solute from the ampoule wall to the centerline of the melt, resulting in the
higher dopant concentration near the center of the crystal. Above Ra; = 2 X 104
(Figure 6.19,6.20), convection is intense enough to form the well mixed regions within
the core of each cell, where the solute concentration is almost uniform respectively. The
gradients of solute concentration are present only in the region of weak flow, forming an
internal solute boundary layer between the two flow cells, which prevents the exchange

of solute between two regions.

Result of dopant concentration profile in the crystal are presented in Figure 6.21, in
terms of the radially-averaged concentration (C'), the radial segregation Ac and effective

segregation coefficient k.ss, each defined as
1 1
c=/ Ji+ HZrd /,/1+H3 d 6.11
() x rdr/ A rdr (6.11)
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Figure 6.16: Sample gallium concentration fields for growth of GaGe in MIT system.
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AC(%) = :012515):1 C(r.H(r)) - oxglrigl('(r.H(r))]/((-') x 100% (6.12)

= 1 SEL
kef! =k ((C)) (6.13)

where ((C)) is the bulk-averaged concentration in the melt and k is the equilibrium

distribution coefficient for the solute.

The solute concentration profile in the crystal coinputed for Ra, = 0 agrees well with
the one-dimensional concentration profile derived by Smith et al.(1955) in the absence
of convection. Even if the initial growth rate transient is neglected in their solution,
the effect of growth rate transient is not distinct in the comparison because of the
short transient period of growth rate. The deviation of growth rate from the ampoule
translation rate in later time (Figure 6.7) leads to the deviation of the calculated one-
dimensional solute profile at Ra; = 0 from the solution by Smith et al. (1955). Increasing
convection in the melt by increasing the thermal Rayleigh number shifts the solute profile

to the solution of Scheil equation (1942), which is written as
cs(z) = k(1 = f)E-D) (6.14)

where k is a equilibrium distribution coefficient and f = /L is a fraction solidified. It is
somewhat surprising that calculated solute profiles in the crystal approach the solutic
of the Scheil equation, because the convection pattern has two well-mixed regions and

the exchange of solute between these two regions is by diffusion alone.

The computed radial segregation shown in Figure 6.21(b) has a maximum at inter-
mediate thermal Rayleigh numbers, as observed previously in the steady-state analysis
of the same system (Adornato and Brown, 1987a,b). The intensity of convection during
terrestrial growth (Ra, = 2 x 10%) is not considered to be high enough to reduce the
radial segregation to the level or convectionless growth (Ra; = 0). It is interesting that
the solute fields for Ra; = 2 x 102 and 2 x 10° lead to very different solute profiles in
the crystal; one for Ra; = 2 x 102 is close to the solution of Smith et al. for diffusion-
controlled growth and the other for Ra; = 2 X 103 is close to the solution of Scheil;

however, both fields have nearly the same values of radial segregation AC.
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From the definition of effective segregation cocfficient k.ss (6.13), it is easily de-
duced that k. approaches the equilibrium distribution coefficient & for complete mix-
ing, where the solute concentration is uniform everywhere along interface and in the

bulk. Calculated values of the effective segregation coefficients k.s; are very close to

k above Ra, = 2 x 10* as shown in Figure 6.21. This indicates that convection under
terrestrial growth conditions is intense in terms of axial segregation. For low values of
Ray, k. increases initially as the solute diffusion layer is developed and the interface
concentration increases; however, it tends to decrease, when the solute diffusion layer

fills the melt.

6.3.5 Comparison with Experimental Measurements

The results of the transient numerical calculations are compared with the experimental
measurements of Wang (1984) to quantify the accuracy of our model. For the purpose
of comparison, calculations are done for the case where the ampoule translation rate is
increased from 2 pm/sec to 4 um/sec after 0.3 of the charge has been solidified. Every
measurement obtained from the experiment can be calrulated from the transient model,
including the transient growth rate, the interface deflection, the radially-averaged solute
concentration profile in the crystal, the radial segregation of gallium across the crystal
and the effective segregation coefficient of gallium as a function of fraction of the melt

that has been solidified.

Comparisons between the calculated and experimentally measured growth rates are
presented in Figure 6.22(a) and (b). Part of Figure 6.22(a) is redrawn in Figure 6.22(b)
to show detail in the initial transient. The initial transient and the transient caused by
the step change in ampoule translation rate are well reproduced by simulation calcula-
tion, without any adjustments of thermophysical parameters or any accounting for the

errors involved in the experimental measurement.

Experimental data of interface deflection are available only in terms of focal lengths

for each ampoule translation rate. Interface deflection calculated from this data are
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Figure 6.22: Comparison of computed transient growth rate of GaGe crystal with ex-

perimental data by Wang (1984) for the case of a step change in ampoule translation
rate from 2 pum/sec to 4 um/sec: Ra, = 2 x 10°.
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plotted in Figure 6.23 with the results from transient numerical calculation. The nu-
merical result has a tendency to overestimate the interface deflection, as in the work by
Adornato and Brown (1987a), because of the weak singularity in the temperature field
at the trijunction of melt. crystal and ampoule. However, the changes in the interface
deflection caused by the increase of the ampoule translation rate follows the same trends

of the experimental measurement.

The gallium concentration profile in the crystal measure experimentally is shown
in Figure 6.24 with the comparison to the calculated profile. The profiles are in good
agreement everywhere, except in the the initial stages of growth. Interestingly, the
experimental data follows the solution of Scheil equation exactly in this region; this can
be explained only by more intense mixing in the melt. Otherwise, the discrepancy in
the initial region may be attributed to the dilution of the crystal by remelting of seed

crystal on initiation of growth.

The overestimate of the numerically calculated interface deflection leads to the over-
estimation in radial segregaion, as shown in Figure 6.25(a). The effective segregation
coefficient obtained from the experiment are drawn as dots in Figure 6.25(k) and com-
pared with the calculated values of k.ss. The agreement is good, except in the initial
stage of growh, which coincides the region of discrepancy in Figure 6.24. The possible

reasons for the discrepancy are the same.
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Figure 6.23: Comparison of computed transient interface deflection during the growth

of GaGe crystal with experimental data by Wang (1984) for the case of step change in
ampoule translation rate from 2 um/sec to 4 um/sec; Ra, = 2 x 10°.
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6.4 Growth of Selenium-doped Gallium Arsenide in GTE

Gradient Freeze Furnace

Gallium arsenide, a compound semiconductor of congruent transformation (Ghandi,
1983), is treated as a single matevial in this study. The thermophysical properties
used for simulating the growth of selenium-doped gallium arsenide are compiled from
Touloukian (1967,1970), Glazov et al.(1969), Neuberger (1971), Jordan (1980,1985)
and Chait (1988). All properties are assumed to be independent of temperature and are
listed in Table 6.4. This assumption is appropriate for the growth in the GTE gradient.
freeze furnace, because of the small range of temperature in the furnace. The only
exception is for the viscosity which varies about 30 percent in the temperature range
of interest (Jordan, 1985; Kakimoto and Hibiya, 1987). The mean value of viscosity.
in the temperature range is used to mimic the effect of the vaciable viscosity. The
concentration of selenium in gallium arsenide (2 - 6 x10*7 atoms/cm® or 8 x 1076~
3 x 10~° mole fraction) is considered to be small enough not to drive solutal convection

during the growth.

The calculations are presented for the growth of gallium arsenide in GTZ gradient
freeze furnace. Design parameters corresponding to this system are listed in Table 6.5.
Dimensionless groups appropriate for the growth of gallium arseride in this furnace

design are tabulated in Table 6.6 for growth unde earthbound conditions.

8.4.1 Furnace Temperature Profile

Data on the furnace temperature profile were measured in the experiment “Run M”
by the group at GTE (Chait, 1988). We model this furnace temperature profile by
an analytical form to incorporate it into the model. In the experiment, temperatures
outside the ampoule were measured at five axial locations with a time interval of 600
seconds. Temperature data from the experiment are shcwn in Figure 6.26 and show

some irregualrities, such as the same values of temperature at two instances of time for
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Quan_tity Symbol (units) | Value
The;al conductivity of the rglt K, (W/°C.cm) | 0.18
Therm=! conductivity of the solid K,(W/°C-.cm) | 0.071
Density of the melt pm(g/cm?) 5.7
Density of the solid ps(g/cm?) 5.2
Specific heat of the melt Cp.m(3/°C-g) 0.44
Specific heat of the solid Cp.s(J/°C-g) 0.42
Melting temperature T(°C) 1238.0
Kinematic viscosity v(cm?/sec) 0.0042
Heat of solidification AH,J/g) 726
Thermal expansion coefficient B:(°C~1) 1.9 x 10~*
Diffusion coefficient of Se in GaAs D(cm?/sec) 1x 104
Equilibrium distribution coefficient of Se | & 0.1

Table 6.4: Thermophysical properties of gallium arsenide.
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Ampoule length, L(cm) 8.8
Crystal radius, R.(cm) 1.27
Ampoule outer radius, R,(cm) 1.45
Maximum temperature

in space and time,T;(°C) 1277
Minimun temperature

in space and time,T.(°C) 1177
Temperature difference. T, — T.(°C) 100
Ampoule material pyrolytic

boron nitride

Thermal conductivity of ampoule, K,(W/°C-cm)

(Axial direction) 0.628
(Radial direction) 0.025
Density of ampoule, p,(g/cm?) 1.90
Specific heat of ampoule, Cpo(J/°C-g) 1.97

Table 6.5: Design parameters for GTE gradient freeze furnace.
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Name Symbol | Definition Value

Thermal Rayleigh number Ra, 98 ATR: /(amv) | 1.2 x 10°
Solutal Rayleigh number Ra, gBscoR3/(amy) |0

Prandtl number Pr v/am 5.9 x 1072
Schmidt number Sc v/D 42
Stefan number St AH,/CpmAT 16.7

Table 6.6: Dimensionless groups and characteristic values appropriate for selenium-

doped gallium arsenide crystal growth in GTE furnace.
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Figure 6.26: Furnace temperature data from GTE experiment.
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the same location or a nonuniform rate of temperature decrease in time. We refined
these temperature profiles by taking the initial and final temperature profiles and inter-
polating between them for the intermidiate times. The smoothed temperature profiles

are presented in Figure 6.27.

Analytical forms of the furnace temperature profile have been devised to approximate

the experimental data by
Bo(z,7) = a(T)- = + b(7) + ¢(7) tanh(d - =) (6.15)

where a(7), b(T)andc(r) are time-dependent coefficients determined from the transient
temperature profile and the constant d is determined from the axial location of the data
points. The result are shown in Figure 6.28, where the solid lines represent initial and
final temperature profiles and dashed lines are for the intermediate time. Experimental
data for the initial and final temperature profile is shown as blank circles for comparison.

These furnace temperature profiles are used throughout the analysis in this Section.

Actually, the furnace temperature profile measured in the experiment is the temper-
ature profile outside the ampoule wall. Because heat transfer between the furnace and
the ampoule is approximated by Newton’s cooling law in our model, we use very higi
heat tran:fer coefficient of 10 W/cm?-K (Bi = 500) to equilibrate the temperatures in

the furnac: and outside the ampoule wall at the same axial location.

6.4.2 Temperature Fields and Growth Velocity

The growth of selenium-doped gallium arsenide in a pyrolytic boron uitride ampoule
is numerically simulated with an initial condition obtained from steady-state calcula-
tion. An initial furnace temperature profile is used with the melting point (0.61 in
dimensionless unit) located at approximately 0.55 of the ampoule length from the top.
For this initial condition, the steady equilibriumn temperature profile and corresponding
flow field are calculated with the selenium concentration uniform throughout the melt.
Beginning with this initial state, transient calculations are performed until the position

of furnace temperature corresponding to the melting point is located at approximately
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0.1 of the ampoule length from the top. Sample meshes during the transient simulation
are shown in Figure 6.29 and display the translation and extreme deformation of the

individual elements.

Heat transfer in the GTE gradient freeze system shows several important differences
from the MIT vertical Bridgman system described in Section 6.3. The large amount
of latent heat release (St = 16.7) and the low thermal conductivity ratio between melt
and crystal results in dramatic changes in the curvature of melt/crystal interface during
the run, as shown in Figure 6.30 for Ra, = 0 and 1.2 x 105. As solidification proceeds,
latent heat is released at the interface. If the resulting latent heat is not extracted
properly, it heats up the material around the interface and the system adjusts itself to
this situation by lowering the temperature gradient in the melt and raising the gradient
in the crystal in the vicinity of interface. Subsequently, the interface tends to not move
near the centerline of the ampoule leading to the low growth rate in that region. This
phenomenon becomes more severe in the GTE gradient freeze growth system, because
the furnoce temperature profile results in the reverse flow of heat form the furnace tc
the crystal near the bottom of the ampoule and reduces efficiency of heat removal from

the interface.

The role of latent heat in the interface deflection becomes more evident, from a
comparison of the temperature fields obtained from the transient calculation and from
the steady-state calculation for the furnace temperature profile at rest with the same
furnace temperature profile, as shown in Figure 6.31. The temperature field for the
stationary furnace temperature profile does not exhibit the extreme interface deflection
seen in the transient solution, because the effect of latent heat is completely eliminated

for the stationary furnace.

The level of convection associated with the high thermal Rayleigh number Ra, does
not affect the shape of the isotherms, indicating that conductive heat transfer is domi-
nant in the melt. Only a slight tendency toward flatter isotherms in the melt is observed

for Ra; = 2 x 10° in Figure 6.30.
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Figure 6.29: Sample mesh used for the analysis of GaAs growth in GTE furnace.
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In the gradient freeze system, the temperature field around the interface varies
continuously in time due to the effect of latent heat release, thereby preventing the
crystal growth rate from attaining a constant value. The crystal growth rate is computed
from the transient location of the interface at the midpoint between the centerline and
ampoule wall; these results are presented in Figure 6.32 for several values of Ra;. As
discussed above, the level of convection has little influence on the temperature field which
determines the interface shape and growth rate for the dilute binary aHoy system; the

growth rate history corresponding to each Ra, follows the single curve.

In the initial state at 7 = 0, the interface deflection is less than 15 percent of
the charge radius. The thermal characteristics in the growth system lead to interface

deflections of more than 1.5 times the charge radius at later stage of the growth process.

Observations made in this Section lead to the suggestion that a flatter interface and
a steady growth rate can be achieved only by incorporating lower translation rates for
the furnace temperature profile, which will result in lower growth rates and a reduction
of the effect of latent heat. Also, the furnace temperature profile needs to be tailored

so that the latent heat released at the interface is extracted more effectively.

8.4.3 Flow Fields

In the GTE gradient freeze growth syscem, the smooth change of the furnace temper-
atﬁre preofile and the almost uniform heat transfer coefficient between the furnace and
ampcule over the ampoule length lead to the formation of one toroidal cell in the melt,
which moves upward near the centerline and downward along the ampoule wall. This
flow is shown in Figure 6.33 for Ra; = 1.2 x 10% and 1.2 x 103 by stream functions at

the elapsed times of approximately 0, 1900, 3900 and 5200 seconds for each Ra;.

The flow structure is strongly dependent on the interface shape which changes with
the progress of solidification. However, the intensity of the flow cell, measured in terms
of the maximum value of stream function ¥,,,z, is nearly constant until the length

of the melt is comparable to the size of flow cell. This effect is shown separately in
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Figure 6.34(a). When the intensity of the flow cell is high (Ra, = 1.2 x 10°), convective
heat transfer in the melt reduces the radial temperature gradient. As a result, the flow
cell with higher convection level is confined ic the narrower region near the interface
in .he initial period of growth. As the length of melt decreases with the solidification,
the flow cell occupies almost the entire length of the melt, regardless of the convection
level. The intensities of the flow cell when 0.2 of the melt has been solidified is shown in
Figure 6.34 and dispal linear dependence on Ray, indicating no boundary layer formation

in the melt.

8.4.4 Solute Fields

The diffusion coefficient of selenium in gallium arsenide 1nelt (1 x 10~% cm?/sec) and
equilibrium distribution coefficient (k¥ = 0.1) are order-of-magnitude estimates based on
the data compiled by Ghandi (1983). With this value of the diffusion coefficient, the
Schmidt number is much greater than unity (Sc = 42) and the solute distribution in the

melt is strongly affected by the flow structure.

Solute concentration fields in the melt are represented in Figure 6.35 at four times
for the thermal Rayleigh numbers of Ra; = 1.2 x 10% and 1.2 x 103. The solute fields
are calculated simultaneously with the corresponding flow fields shown in Figure 6.33
and for the furnace temperature profiles shown in Figure 6.28. At the initiation of
growth, the solute concentration is uniform everywhere in the melt and no contours
are shown in the field. In Figure 6.35, the spacings of the solid curves are indicated
as Ac and the concentration differences between the dotted lines are 0.2 AC’s. The
exception is that the dotted curves are spaced at the interval of 0.2 in the fourth plot
for Ra; = 1.2 x 10%. For example, the solid curves correspond to the dimensionless
concentrations of 1.2, 1.4 and 1.6 and dotted curves are for 1.04,1.08,1.12 and 1.16 in

the second plot for Ra; = 1.2 x 10°.

Because of the high value of Schmidt number, the solute concentration is uniform in

most of the melt even for Ra; = 1.2 x 103 and concentration gradients are confined to the
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centerline near the interface where convection is weak. For Ra, = 1.2 x 103, the isocon-
centration contour curves are relatively flat near the interface, but the radial variation
of concentration along the interfce is very severe due to the large interface deflection.
Most of the radial variations in composition are confined near the centerline and become
more centralized with an increase in the convection level. The high convection levels
asscciated with increased Ra; leads to the formation of closed isoconcentration curves,
for which the position of minimum concentration is located inside the curve as denoted

by the symbol (x) in Figure 6.35.

The radially-averaged axial segregation of solute in the crystal is presented in Fig-
ure 6.36(a) as a function of the fraction solidified for several values of Ra;. These curves
approach the Scheil’s solution Eq. 6.14 with increasing Ra,. For growth under terrestrial
conditions (Ra; = 1.2 x 10%), the profile deviates from Scheil’s solution at later stage
of solidification because the convection is weak near the interface at the centerline, as

interface deflection becomes extreme. Mixing is then incomplete near the centerline.

The large interface deflections observed in this system have most remarkable effect
on the radial variation of solute concentration in the crystal, measured in terms of ra-
dial segregation, defined by Eq. (6.12). The radial segregation shown in Figure 6.36(b)
amounts to several hundred percent, that is, the radial variation of concentration along
the interface is several times of average interfacial concentration. The radial segrega-
tion increases in time following the behaviour of the interface deflection but shows a

maximum value for the intermediate Ra, as expected.

The effective segregation coefficient ks is a means of quantifying axial segregation
in the crystal and its transient behaviour shows the same trends as observed in the
axial segregation profile in the crystal. As the axial solute distribution in the crys-
tal approaches the solution of Scheil equation, k. become closer to the equilibrium
distribution coefficient. Transient values of k.ss for Ra, = 1.2 x 10° are showa in Fig-
ure 6.36(c) and deviate from the equilibrium distribution coéfﬁcient during the later

period, for the same reasons described for the axial segregation profile.
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6.4.5 Effect of Ampoule

The pyrolytic boron nitride used as a ampoule material in GTE growth system has a
severe anisotropy in the thermal conductivity: the ratio of the radial and axial com-
ponents of thermal conductivity reaches 1:25. In order to investigate the effect of this
anisotropy, comparisons are made in this Section between the growth in the isotropic
ampoule and in the anisotropic ampoule of three thicknesses. The isotropic ampoule
assumes an increased thermal conductivity of ampoule in radial direction by 25 times,
thus equal to the thermal conductivity in axial direction. The thick ampoule and thin
ampoule in this Section denote the ampoules with the wall thickness doubled and halved,

respectively.

Temperature Fields

The change of ampoule design was expected to change considerably on the temperature
field. However, the large amount of latent heat of solidification in the present system
overwhelms the effect of ampoule design. Temperature fields calculated for the four
cases listed above and at Ra, = 1.2 X i0° are presented in Figures 6.37(a)-(b) and in
Figures 6.38(a)-(b). The temperature fields do not vary much between the four cases.
one another at every times. The overall axial temperature gradient between the top
and bottom of the ampoule is set by the temperatures at both ends, which are assumed
uniform and are equal to the furnace temperature at the same axial location. Radial
temperature gradient between the melt at the centerline and furnace remains nearly
same for all cases at each time. Only the temperature field in the melt near the ampule

wall and inside the ampoule wall adjusts with the ampoule design.

Radial thermal comminication between the melt and furnace decreases in the order
of (i) isotropic ampoule, (ii) thin ampoule. (iii) mean ampoule thickness. and (iv) thick
ampoule. The growth rate |0H/d7| and interface deflection AH seen in Figure 6.39
show this effect clearly. The interface location at the ampoule wall moves closer to the

top of the ampoule for the same furnace temperature profile with an increase in thermal
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communication between the charge and the furnace.

Flow Fields

In the GTE growth system, the structure of flow is determined by the distribution of
radial temperature gradient in the imelt and the interface shape. Since the temperature
field does not vary much for the different ampoule designs, the transient structure of the
flow are sirilar in the shape and location of the flow cell for each of the cases. These

flow fields are displayed in Figures 6.40(a)-(v) and in Figures 6.41(a)-(b).

The changes in the radial temperature gradient distribution in the melt for different
ampoule designs cause differences in intensity of flow cell in these systems. Because ..e
radial temperature gradient has a linear relationship with the deflection of an isotherm,
the intensity of the flow cell descends in the same order as the interface deflection, as

shown by Figure 6.42.

Solute Fields

The slight change in growth rate and interface shape between variants of ampoule
design has considerable effect on the time-dependent behaviour of solute field; these
effects are shown in Figures 6.43{a)-(b) and in 6.44(a)-(b). The symbol (x) denotes the
location of minimum concentration in the melt. The difference i..¢v een the minimum
and maximum concentrations for each case is strongly influenced !+ the ampoule design.
These differences follow the same order as in the order of better therinal communication
between the furnace and ampoule. However, if the difference in growth rates caused
by changes in the ampoules are accounted for an the solute distribution in crystal is
plotted as a function of fraction solidified, the distinctions almost disappear as shown

in Figure 6.45.
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6.5 Discussion

The detailed transient simulation of the directional crystal growth process shown here
for the experimental systems at MIT and GTE, emphasizes the importance of furnace

design and operation for accomplishing optimized steady-state growth.

In the well designed MIT system, the temperature field around the interface is
set shortly after the beginning of the ampoule translation, leading to the constant
growth rate during most of the run, except in the initial transient period. As a result,
the flow field maintains the two-cell structure with almost constant intensity of each
flow cell. After the top of the ampoule begins to restrict the upper flow cell, only
the intensity of upper flow decreases. The solute concentration in the crystal keeps
increasing without attaining the steady value even for the diffusion-controlled growth
with the present ampoule length. Nevertheless, the radial segregation and effective
segregation coefficient reaches the steady value after the initial transient period which
is a little longer than the transient for the growth raie or maximum stream function
value. These observations justify the use of pseudo-steady-state analysis previously
done (Adornato and Brown, 1987a,b) for the study of temperature field, flow structure,
convection and solute segregation during the crystal growth process in the same MIT
system. An axial concentration profile in the crystal is not directly obtained from the
steady-state analysis. However, it can be approximated by the following equation that

is similar to Scheil’s results for a well-mixed melt
cs(2) = kegy (1 = f)lkess=1), (6.16)

where f is a fraction solidified and k. is obtained from the steady value of effective
segregation coefficient. Comparison of the axial segregation profile calculated from
transient numerical analysis and from Eq. (6.16) are shown in Figure 6.46, showing

good agreement, except in the initial transient period.

The large latent heat of solidification associated with gallium arsenide growth pre-
vents the growth process in GTE system from reaching either a steady-state interface or

growth rate. Most quantites observed in the transport process, such as growth rate, in-
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terface deflection, axial segregation and radial segregation, changed throughout the run.
Pseudo-steady-state analysis cannot be applied to the system like this, because steady-
state results do not describe the continuously transient process. Only by complete

transient analysis like the calculations presented here, meaningful results are obtained.

Comparison between the calculated results and experiments by Wang (1984) in the
MIT system demonstrate the usefulness of our model in predicting transport processes
during the crystal growth. If the boundary conditions are well defined and thermophys-
ical properties of the material are reasonably well known, this model can be utilized in

designing new processes for growing crystals.
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Chapter 7

Transient Analysis of the
Growth of Nondilute Binary
Alloy Crystal in a Vertical
Bridgman Growth System.

The growth of pseudobinary HgTe—-CdTe alloy crystal in the vertical Bridgman furnace
system has been studied with the transient model described in Chapter 2. The develop-
ment of flow structure due to the thermosolutal convection driven by both temperature
and concentration gradients, time-dependent melt/crystal interface morphology and
solute segregation in the crystal have been calculated by the time-integration/finite-

element formulation developed in Chapter 3.

7.1 Introduction

Mercury cadmium telluride (MCT; Hg; -.Cd.Te) is one of the most important semicon-

ductor meterial at present because of its unique electronic and electro-optical properties.
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This compound semiconductor material can have a direct energy band gap anywehere
between zero and 1.6 eV by selecting the alloy composition. It is mainly used for the
fabrication of infrared detectors that operate in the range from 3 to 13 pm, which covers
the range of the important atmospheric transmission windows of 3 to 5 and 8 to 13 pm.
The fundamental properties of MCT suitable for the fabrication of infrared detectors
promote the development of many different types of infrared devices made from MCT,
including photoconductive detectors, photovoltaic detectors, photodiodes and charge

transfer devices (Schmit, 1983; Elliot, 1985).

Solidification in a sealed ampoule has been the most widely used technique for the
growth of single crystal mercury cadmium telluride, because the high vapor pressure
of mercury can cause the explosion and the precise stoichiometry control is required
(Micklethwaite, 1981). Methods used for the growth of mercury cadmium telluride in
a closed ampoule are classified as quench-anneal technique (Parker and Kraus, 1969:
Johnson, 1971; Brau, 1972; Kruse and Schmit, 1973; Brau and Reynolds, 1974; Dietl
and Jarosch, 1976; Bartlett et al., 1979b; Su et al., 198%; Rollong and Proux, 1989),
Bridgman growth method (Blair and Newnham, 1961; Capper et al., 1979; Lehoczky
et al., 1980; Lehoczky and Szofran, 1982; Capper et al., 1983; Szofran et al., 1984;
Szofran and Lehoczky, 1984; Andrews et al., 1988) and zone melting method (Dziuba,
1969; Ueda et al., 1972; Takase, 1974; Nishizawa et al., 1976; Gallet et al., 1976;
Triboulet, 1977; Itoh et al., 1980; Triboulet et al., 1985; Colombo et al., 1988).

The quench-anneal method is the most commonly used method at present for prepar-
ing bulk crystals of mercury cadmium telluride (Schmit, 1983). Here the melt is cast to
form a polycrystalline solid ingot, which is then recrystallized in the solid state by an-
nealing the sample below the solidus temperature. Recrystallization by annealing is an
extremely slow process (typically 5 to 15 days) and often results in high densities of mi-
crostructural defects in crystal, such as dislocations, small-angle grain boundaries, and
second-phase precipitates, that can limit the device performance and future applications

(Lehoczky and Szofran, 1982).

The vertical Bridgman process was among the first methods used for the crystal
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growth of mercury cadmium telluride. The crystals grown by this method have shown
high dislocation density (Bornykh et al., 1974) and large amount of radial and axial
segregation (Dittmar, 1978; Bartlett et al., 1979a), limiting the use of this material for
detector devices. Axial segregation can be advantageous because the material suitable
for both the atmospheric windows can be obtained from the same crystal ingot. The
Bridgman process and casting step in quench-anneal method can share the same furnace

system, differing only in the solidification or growth rate.

The effects of growth conditions on the solute segregations and the relative impor-
tance of the various mechanisms involved in the solute redistribution have been studied

intensively in recent years to overcome the difficulties in growing compositionally homo-

these studies are based on experiments for the growth of mercury cadmium telluride in
a carefully designed Bridgman furnace system and have been carried out by Capper’s
group at Mullard, UK and Lehoczky’s group at NASA. The detailed description of the
furnaces used in these studies is found in the works by those two groups (Capper et al.,

1979; Lehoczky et al.; 1980; Lehoczky and Szofran, 1982).

Heat transfer in the small-scale Bridgman system for the growth of semiconductor
crystal is governed by conduction in the charge and ampoule. Temperature field of
the furnace provides the axial temperature gradient necessary for solidification, where
local heat transfer is complicated by the different thermal conductivities of melt, crystal
and ampoule material and by the letent heat release coupled to the growth rate. For
a pure component or dilute binary alloy system, the interface shape and location are

determined by the isotherm corresponding to the melting point.

The curvature of the interface has been considered as a major factor in radial seg-
regation of mercury cadmium telluride crystal grown in the Bridgman system (Bartlett
et al., 1979; Jones et al., 1983; Capper et al., 1983). Many efforts have been made
to yield the flat interface or minimize the interface curvature by controlling the tem-
perature field. Jones et al.(1982,1983,1984) investigated the possible improvement of

melt/solid interface shape by changing the shape of ampoule, increasing the ampoule
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stem conductance or forced cooling of the base of the ampoule. These changes were
designed by numerical analysis of cenductive temperature field in the system, using
the concept of electrical analogues. Szofran and Lehoczky (1984) proposed the method
for interface shape control using heat-pipes in a two-zone Bridgman growth system by
adjusting the circular opening and thickness of the heat barrier between heat pipes and
controlling the radiative heat transfer. However, the large change of thermal conductiv-
ity upon solidification (Naumann and Lehoczky, 1983), inherent to the HgCdTe system,
and the large amount of heat carried by the thick quartz ampoule have limited the
success of the heat pipe system. Naumann and Lehoczky (1983) demonstrated the large
interface deflections due to the mismatch of thermal conductivities between two phases

by analytical solution of two-dimensional conduction equations.

The variation of the thermophysical properties with temperature and composition
adds to the difficulty in the control of temperature field and melt/solid interface shape
(Holland and Taylor, 1983; Chandra and Holland, 1983). The large change of melting
point temperature with the camposition (Brice et al., 1986) leads to the coupling be-
tween the interface shape and local solute concentration in the melt, thus to the variation
of the interface shape and location during the growth. Dakhoul et al.(1988) studied the
effect of cold zone temperature on the interface curvature by numerical calculation of

conductive heat transfer accounting the variations of some thermophysical properties.

Their result shows the coupling of interface shape with local concentration significantly

increses the interface curvature.

During the growth of HgCdTe crystal, the lighter component of the pseudobinary
CdTe is preferentially incorporated into the crystal and the heavier component HgTe
is more rejected at the interface, which results in the stabilizing axial solute gradient
in the melt when the melt is above crystal. The density profile with this stable solute
gradient tends to retard the buoyancy-driven convection caused by the radial temper-
ature gradient in the stabilizing configuration of Bridgman growth system (Adornato
and Brown, 1987a,b). This idea is supported by the fact that axial segregation profile

in the crystal, observed in the experiments (Lehoczky and Szofran, 1982; Szofran et al.,
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1984), can be approximated by the profile for diffusion-controlled growth corrected for

the variable equilibrium distribution coefficient.

The large separation between the liquidus and solidus curves in the pseudobinary
HgCdTe phase diagram causes the partitioning of solute at the interface and results
in large axial segregation of solute in the crystal. Axial segregation in the crystal has
been analyzed numerically by one-dimensional transient models for diffusion-controlled
growth (Clayton et al., 1982; Bourret et al., 1985; Derby and Brown, 1986). The
transient growth rate and mea.ﬁ interface location were also calculated in their analyses
by the solution of one-dimensional conduction and solute diffusion equations in the melt

and crystal with the assumed furnace temperature profiles.

The effect of density-driven thermosolutal convection on the interface shape and
radial segregation across the crystal has been recognized earlier, at least in concept
(Bartlett et al., 1979; Lehoczky and Szofran; 1982). When a slightly concave interface
is present as a result of a radial temperature gradient, the density-driven convective
flow near the interface yields a higher HgTe concentration in the center of the melt.
This enhances the deflection of interface because the lower melting HgTe near the center
shifts the interface into the crystal. The analysis of thermosolutal convection in HgCdTe
growth system is indispensable in understanding the large compositional nonuniformities
across the crystal, observed by Szofran and Lehoczky (1984), despite the diffusion-

controlled axial segregation profile.

In Chapter 3, steady-state analysis was performed to investigate the interaction of
convection and segregation in this directional solidification of HgCdTe. These results
resolved the apparent contradiction between diffusion-controlled axial segregation mea-
surement and larger radial segregations than expected for diffusion-controlled growth,
as were observed in the experiments by Lehoczky and Szofran (1982). For the system
with thermosolutal convection, convection and solute segregations are dependent on the
- growth rate-through the coupling of convection and solute field. The effect of growth
rate was also discussed in Chapter 3, along with an interpretation to the experimental

data by Capper et al. (1983).

372



The calculations described here show the effect of thermosolutal convection and the
temperature field on the transient g-owth rate and axial and radial segregation profile
in the crystal. The convection level is high in the beginning, because the solute field is
initially uniform and cannot provide the necessary gradient for the solutal convection,
which will stabilize the thermal convection caused by the imperfect heat transfer between
charge and furnace. As the solute diffusion layer develops, the convection level in
the melt decreases and the solute concentration field resembles the results for nearly
diffusion-controlled growth. The radial segregation approaches the steady value after
the initial transient, but the variation of the solute concentration across the crystal

decreases with the decrease of radially-averaged concentration along the axis of crystal.

The pseudobinary alloy Hg;_Cd,Te is known to have a maximium density in the
liquid state slightly above the melting point for z < 0.1 (Chandra and Holland, 1983).
The region of density increase with temperature is thermally unstable and provides an

additional driving force for convection. During the growth of HgCdTe, this region always

concentration in the melt drops below 0.1 due to the equilibrium partitioning. This
type of convection is called penetrative convection and commonly occurs in geophysical
and astrophysical flows (Veronis, 1963). Antar (1987) performed the linear stability
analysis for the simplified HgCdTe growth system for the combined penetrative and
solutal convection. We included this effect in our analysis by representing the volumetric
expansion coefficient (3;) as a function of temperature and concentration. Comparisons

are made in Section 7.4 between the calculated results with constant 3, and variable 3,.

The analysis presented here is for the vertical growth system used by Lehoczky’s
group (Szofran and Lehoczky, 1984), illustrated in Figure 7.1. We simplified this furnace
configuration with several assumptions: the melt is assumed to fill the ampoule and there
is no free volume above the melt. The heat barrier in Lehoczky’s system is modelled
as a insulation zone, where the heat transfer communication between the furnace and
ampoule is negligible. Heat transfer coefficients in the hot zone and cold zone are

estimated from Wang’s system (Wang, 1984). Profiles for the furnace temperature and
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Biot number used here are shown in Figure 7.2.

Schematic diagram of vertical Bridgman growth system used for the modelling is
shown in Figure 7.3. The model system includes a quartz cylindrical ampoule filled
with melt and crystal located along the axis of furnace which is composed of hot and

cold zone separated by the insulation zone.

We focus on the initial transient behaviour in several aspects of the transport phe-
nomena during the growth. The mathematical description of the equations and bound-
ary conditions for convection and species transport of nondilute binary alloy used here
are described in Chapter 2. The only exception is the employment of phase diagram
for the melting point T}, and equilibrium distribution coefficient k. These properties
are described in Section 7.2. The moving boundary value problern with convection is

solved by the same finite element formulation developed in Chapter 3. A mesh of 20

elements in the melt and 16 in the crystal was used for the calculations described here.
This discretization leads to set of 57,493 equations for each time step that are solved

by the modified Newton’s method.
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7.2 Thermophysical Properties

7.2.1 Phase Diagram

The accuracy of calculations of the solute field and interface shape for a nondilute
binary alloy system hinges on the correci pkase diagram, especially when the separation
* between liquidus and solidus curves are large as for Hg;_;Cd.Te. There have been data
published for the phase diagram of pseudobinary HgTe-CdTe. Szofran and Lehoczky
(1981) paid particular attention to the accurate measurement of temperature and their
phase diagram is sufficiently reliable. Recently, Brice et al.(1986" synthesized ihe HgTe-
CdTe pseudobinary phase diagram from all the published data. It is considered the most

accurate phase diagram and employed in the present study.

The correct phase diagram is most useful for the determination of the melting point
temperature T,, and the equilibrium distribution coefficient k. Micklethwaite (1981)
and Brice et al.(1986G) gave the formulae for T,, and &, respectively as a function of

CdTe mole fraction z as

1000z -

[ —_ —— e
Tn(°C) = {375 0.97 * 068 (7-1)

. 1
~ 0.210 + 0.790z

(7.2)

Analysis by Brice et al.(1986) of the previously published phase data showed significant
disagreement with the formula proposed by Micklethwaite (1981). New formula for the
liquidus curve based on the data suggested by Brice et al.(1986) was developed in this
thesis. For the convenience in diffrentiation, it is represented in terms of a polynomial

in the mole fraction of CdTe z as
Tm(°C) = ap + a1z + azz” + azz® (7.3)
where the {a;} take the values of

ap = 670.9445
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a;, = 671.4593
a; = =375.0729

az = 110.5424

The phase diagram of pseudobinary CdTe-HgTe alloy system is shown in Figure 7.4,
with these formulae for the liquidus curve. In Figure 7.4, the symbols (o) indicate the

median values of data within 99% confidence limits, as suggeted by Brice et al.(1986).

The dimensionless melting point temperature is used in the calculation. It is repre-
sented as a polynomial in the dimensionless concentration at the interface in the form

of
B = Opmo + Om (S + 1)+ 0m2(S+1)2 +60n3(S +1)° (7.4)

where the dimensionless concentration § is defined in Section 2.2 and the {6} are

defined as

bmo = aoA_TTc

The formula proposed by Brice et al.(1986) for the equilibrium distribution coeffi-
cient showed good agreement with experimental data. We fit the data to the fifth-order

polynomial in z, written as

5
k=) ba', (7.5)
1=0
where the {b;} have the values
bo = 4.72607
b = -15.93513
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Figure 7.4: The pseudobinary phase diagram for CdTe-HgTe alloy system. Symbols (o)

denote median values within 90 % confidence limics, as suggested by Brice et al. (1986).
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b, = 39.33464
b3 = -59.15100
by = 46.75216

bs = -—14.74259

These correlations are compared in Figure 7.5 with the data obtained from the phase

diagram of Brice et al.(1986).
The representation of k in dimensiorless concentration at the interface is written as

5
k= k(S+1), (7.6)

=0
where the {k;} are defined as

ki =bic. i=0,1,2,3,4,5

7.2.2 Variation of Thermophysical Properties

Measurements of thermal diffusivity (Holland and Taylor, 1983) and estimations of the
heat capacity and thermal conductivity (Su, 1986) for HgCdTe show strong dependencies
on temperature «nd composition. The density of HgCdTe melt (Chandra and Holland,
1983) depends on composition, more than on temperature, because of the large density
differences between HgTe and CdTe. The example of variation of thermal diffusivity is
shown in Figure 7.6, based on th'e data by Holland and Taylor (1983).

Most variations in thermophysical properties for HGCdTe are larger for the melt than
for the crystal so that properties of crystal may be assumed to be constant. Even for the
melt, the use of constant thermophysical properties is not considered to yield significant
errors in the result, because of the narrow range of temperature and composition in the
system. Representative values for the thermophysical properties have been compiled
by Antar (1988) and are listed in Table 7.1. These values are used in most of our

calculations.
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In the vertical Bridgman growth system, density gradients are the main driving forces
for convection in the presence of gravity. Those gradients are related to the gradient
of temperature or composition through the coefficients of thermal expansion (3;) and
solutal expansion (3,). The sign of these coefficients are important in understanding
the mechanism of fluid motion, because they are one of the key factors determining the
stability of flow in a given configuration. The density of the HgCdTe melt is known
(Chandra and Holland, 1983) to have a maximum with temperature for a certain range

of composition, leading to the change of sign of 3; at that maximum.

For the precise estimation of 8;, we fit the experimental measurements of HgCdTe
melt density by Chandra and Holland (1983) to the second order polynomial of T' and
z, as

Plig(g/cm®) = co + 1z + 2T + c3zT + cqz? + c5T? (7.7)
where z is a mole fraction CdTe and T is a temperature in Celcius. The coefficients

{c;:} have been estimated as

co = 2.25085
g = -—4.47815
ca = 1.54035 x 1072

c3 = 2.54384x 1073
cs = 3.60881x 107!

cs = -1.02193x107°

The correlations are shown in Figure 7.7 with experimental data by Chandra and Hol-
land (1983) and show the maximum in density for z < 0 1. Contour plots of isodensity
lines are constructed in Figure 7.8 from the correlation formula for melt density. These
curves clearly show the density maximum in a range of temperature and composition

that occurs in typical crystal growth systems.

Coefficients of thermal and solutal expansion are displayed in Figure 7.9 and 7.10 for
selected compositions. They are obtained by differentiation of Eq. (7.7) with respect to

temperature and composition. Thermal expansion coefficients cross the line for 8, = 0
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when r is less than 0.15. Because the range of 3, includes zero. ;3; can vary by orders-
of-magnitude in a small range. On the othe~ hand, coeflicients of solutal expansion
are almost independent of the composition in the melt and show the variations with
temperature only. The maximum variations are about 10 percent in the temperature

range for our model an¢ can be assumed to be constant.

The range of thermal Rayleigh number (Ra,) are generated by calculating 3, under
the condition imposed in our model. It is presented in Figure 7.11 with ¢, = 0.2. The
upper curve represents the condition at the top of the melt, that is. only composition
changes while temperature is maintained at hot zone temperature. The lower curve
follows the temperature and composition of the liquidus curve so that the equilibrium
relationship at the interface is satisfied. The area bounded by these two curves and by
r = 0 and ¢, covers the range of possible Ra,. If we further assume that the composition
at the top of the melt remains at c,, Ra, changes only inside the shaded area. This
assumption is valid when the mixing effect is negligible as in the diffusion-controlled
growth. Almost diffusion-controlled avial segregation observed previcusly (Lehoczky

and Szofran, 1982; Szofran et al., 1984) supports this assumption.
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7.3 Flow Structure and Solute Segregation

The thermophysical properties used in this study for HgCdTe were compiled by Pro-
fessor Antar (1988) and are listed in Table 7.1. The values of the properties have been
estimated for the alloy with # = 0.20 mole fracetion CdTe. The melting point temper-
atrue and equilibrium distribution coefficient are obtained from the phase diagram and
calculated from Eq. (7.3) and (7.5), respectively. All other properties were assumed
to be independent of temperature and composition, except for specific calculation with

variable 3,.

The calculations for HgCdTe growth are presented simulating the vertical Bridgman
system of Szofran and Lehoczky (1984). Parameters and the thermophysical properties
of quartz used in the simulation are tabulated in Table 7.2. The effective heat trans-
fer coefficients between the ampoule and the furnace are computed in the same way
described in Chapter 6. Dimensionless groups appropriate for the terrestrial growth of
Hg(CdTe with this furnace design parameters are listed in Table 7.3, with their defini-

tions.

Transient calculations for the growth of nondilute pseudcbinary HgCdTe allloy in a
quartz ampoule were conducted using the stationary state as an initial condition. For
this a stationary ampoule was positioned with the center plane of the gradient zone
at 0.65 of the ampoule length from the top. The initial temperature field reached a
steady-state with the surrounding furnace and the composition was uniform throughout
the melt in the absence of incorporation or rejection of solute at the interface due
to solidification. The initial condition for the flow calculation corresponds to steady
thermal buovancy-driven fluid motion. The transient calculation was continued until
about 0.2 of the charge was solidified to focus on the initial transients in the transport
processes. Sample meshes used in the transient finite element discretizations are shown
in Figure 7.12, displaying the deformation and translation of the individual elements in

time.
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Quantity Svmbol (units) Value
Ther:n:l conductivity of the melt km(W/°C.cm) 1.96 x 10~2
Thermal conductivity of the solid k,(W °C.cm) 2.91 x 103
Density of the melt Pm(g/cm?) 7.55
Density of the solid ps(g/cm3) 7.63
Specific heat of the melt Cp.m(J/°C-g) 0.257
Specific heat of the solid Cp.s(J/°C-g) ‘ 0.177
Melting temperature T.(°C) | Eq. (7.3)
Kinematic viscosity v(cm?/sec) 1.08 x 10~3
Heat of solidification AH,J/g) 130
Thermal expansion coefficient 3,(°C-1) 1.5 x 1974
Solutal expansion coefficient 3,((mole frac. CdTe)~!) | —0.30
Diffusion coefficient of CdTe in HgCdTe D{em? sec) 5.5 x 1075
Equilibrium distribution coefficient of CdTe | & | Eq. (7.5)

Table 7.1: Thermophysical property data used in analysis of HgCdTe growth.




Parameter Value

Ampoule length, L(cm) 5.0

Crystal radius, R.(cm) 0.25
Ampoule outer radius, R,(cm) 0.50
Gradient zone length, Ly(cm) 1.00
Temperature difference. T, — T.(°C) 480
Tempearature in hot zone. T;(°C) 880
Tempearature in cold zone. T.(°C) 400

Initial concentration. c,(mole fraction CdTe) ! 0.20

Ampoule translation rate, V(pm; sec) 1.12
Ampoule material quartz
Thermal conductivity of 0.025

ampoule, A, (W/°C-.cm)

%)

!\9
o

Density of ampoule. p,(g/cm

Specific heat of ampoule, Cp o(J/°C-g)

—
o
(&1}

Table 7.2: Thermophysical data for ampoule and system geometry.
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Name Symbol | Definition Value
Thermal Rayleigh number | Ra, | g3 ATRS/(amp) | 1.0 5 10°
Solutal Rayleigh number Ra, g3,coR3/(amv) | —8.5 » 10*
Thermal Peclet number Pe T.R./a 2.8 x 1073
Solutal Peclet number Pe, VoR./'D 0.51
Prandt]l number Pr viam 0.11
Schmidt number Sc v'D 19.6
Stefan number St AH,/CpmAT 1.05
Thermal diffusivity ratio ¥ a,/am 0.21
Density ratio o Ps/ Pm 1.0

Table 7.3: Definitions of dimensionless groups that appear in analysis of thermosolutal
convection of HgCdTe crystal growth; characteristic values cornputed from the thermo-

physical properties of HgCdTe are also shown.
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7.3.1 Temperature Fieids and Growth Velocity

Conduction dominates the heat transfer in the melt because of the low Prandtl numnber
(0.11 for r = 0.2) of Hg,_.Cd;Te melt. while conduction is the only mechanism for heat
transfer in the solid materials. Effective heat ransfer coefficients between the furnace

and ampoule account for the effects of conduction and radiation.

Sample temperature fields for Ra; = 0 are shown in Figure 7.13 as isotherm contours.
They are spaced at equal spacings of 0.1AT, where AT is the overall temperature
difference in the furnace. The constant temperature in the hot zone and cold zone, and
relatively small length of insulation zone cause the axial temperature gradient to be
confined to the insulation zone. Temperature field in this region keep the same relative

shape regardless of the location of ampoule in the furnace.

The most distinct feature of the temperature field for the growth of the nondilute
alloy is observed in the change of the interface shape and location during growth. This
is attributed to the dependence oi the melting point temperature on the local compo-
sition at the interface. The initial interface shape follows the isotherm, as shown in
Figure 7.13(a), because the composition is uniform along the interface. As the solute
diffusion layer develops due to the preferential incorporation of CdTe at the interface,
interfacial concentration of CdTe decreases gradually until it reaches the steady value.
The change in interface concentration leads to the decrease in melting point temper-
ature, following the liquidus curve in the pseudobinary phase diagram (Figure 7.4).
Comparison of the interface location at » = 0 between Figure 7.13(a) and (d) shows
the melting point temperature changes about 0.2AT or 98 °C during the crystal growth
process. Histories of the melting point temperature at the midpoint of interface are
presented in Figure 7.14. It shows melting point temperature or the concentration at
that point by which it is determined is hardly affected by the gravitational level, because
the convection itself is weak and competing thermal and solutal effects are influenced

by gravity to the same degree.

Another consequence of the coupling of interface shape and interface concentration
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Figure 7.14: Time histories of the melting point temperature at the midpoint of interface

for several gravitational force level.
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is that the interface coincides with neither an isotherm or an isoconcentration line. The
initial curvature of the interface is caused by the imperfections in heat transfer and
by the different thermal conductivities between melt, crystal and ampoule. Once the
ampoule starts to move and crystal begins to grow. the effects of latent heat release
and radial segregation in composition across the interface complicates the mechanism
determining the interface sl.ape in the growth of nondilute alloy crystal. The variation
of composition across the interface results in the variation in melting point temperature.
In Figure 7.13(d). melting point temperature changes about 0.1A7T or 48 °C across the

interface.

Comparison of the temperature fields from the calculations for Ra, = 0 and 1.0 x 10*
supports the conduction-dominated heat transfer in the melt. Temperature field: at
Ra, = 1.0 x 10% are shown in Figure 7.15 for nearly the same time instances as in

Figure 7.13. These fields show almost the same isotherm shape and location. suggesting

convection hardly alters the temperature fields.

The growth rate of the crystal has been computed from the transient location of
the interface. The coupling of the interface composition and melting point temperature
causes a variation of growth rate across the crystal. The transient history of growth rates
for several Ra,. shown in Figure 7.16, were computed at the midpoint of interface. The
growth rate approaches the ampoule translation rate and show little dependence on Ra,.
As growth rate attains the steady value after the initial transient period. interface shape
and its location with respect to the furnace becomes steady, as shown in Figure 7.18

more clearly.

The interface deflection in the growth of the nondilute alloy is the product of com-
plex interactions between the temperature and solute fields near the interface. through
thermosolutal convection and the dependence of melting point temperture on interface
concentration. The history of interface deflection displayed in Figure 7.17 shows that
the convection near the interface slightly enhances the interface deflection. When the in-
terface shape is concave, thermosolutal convection near the interface carries more HgTe

to the center and higher concentration of HgTe in that region lowers the melting point
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Figure 7.16: Transient growth rate of HgCdTe crystal for several pairs of the thermal
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Figure 7.17: Transient interface deflections of HgCdTe crystal in vertical Bridgman
growth system for several pairs of the thermal Rayleigh number, Ra, and solutal
Rayleigh number, Ra,.
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temperature and shifts the interface to the direction of bottom. This effect causes more

interface deflection in the presence of weak convection.

7.3.2 Flow Fields

The analysis of fluid motion in the melt of the crystal growth system is important to
understanding the convection and solute distribution in the crystal. For the growth of
dilute binary alloy or pure material in the stabilizing vertical Bridgman growth system,
it is well known that radial temperature gradients caused by the thermal conductivity
differences and by other thermal imperfections drive the flow in the melt (Chang and
Brown, 1983b; Adornato and Brown, 1987a). \'wo distinct toroidal cells stacked axially
in the ampoule are present for the Bridgman furnace with insulation or gradient zone.
The mismatch in the thermal conductivities of the melt. crystal and ampoule near the
interface region causes one set of radial temperature gradients, which drive the flow up
along the centerline. Heat transfer from the furnace to the charge in the 1pper part of the
ampoule sets the radial temperature gradients which are opposite in sign to the radial
temperature gradients near the interface. This second region of radial temperature
gradient drives the upper toroidal cell which rotates in the counter direction of the flow

cell near the interface.

In the growth of nondilute HgCdTe growth, the lighter component CdTe is preferen-
tially incorporated into the crystal and the accumulation of the heavier component HgTe
near the interface leads to the stably stratified axial density gradient. This density pro-
file damps the thermal buoyancy-driven convection as demonstrated by Adornato and

Brown (1987a) for the GeSi system of similar nature.

The sequence of snap shots of flow fields at approximately 0, 3.000. 6.000, and 9.000
seconds are described in Figure 7.18 for Ra, = 1.0 x 10*. Ra, = —8.5 x 103, These plots
show the relative position of the ampoule with respect to the furnace during the growth.
Before the solidification starts, the composition in the melt is uniform and the solute

field does not participate in the mechanism for convection. The corresponding flow field
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Figure 7.18: Sample flow fields for growth of HgCdTe crystal in the vertical Bridgman
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(Figure 7.18(a)) shows the typical structure of flow driven by the radial temperature

gradients in the vertical Bridgman growth system.

As the solute diffusion layer develops and penetrates into the melt, the flow intensi-
ties of both the upper and lower flow cell decreases by more than an order. The lower
flow cell is damped more readily in the early stage because of the high axial solute gra-
dient near the interface. The flow intensity of this cell is lower than in the upper cell,
although they are comparable initially. With the extension of solute diffusion layer, the
upper cell is damped continuously, while the large radial temperature gradient near the

interface prevents the further weakening of the lower cell.

With the decrease of flow intensity, the centers of the flow cells move toward the
ampoule wall. The movement of the center of the cell and the flattening of the stream-
lines adjacent to the wall suggests the formation of a thin boundary layer, which was

discussed in Chapter 5 by steady-state analysis.

Calculations for Ra, = 1.0 x 10° and Ra, = —8.5 x 10%. which corresnonds to
the condition of terrestrial growth, show the similar flow structure with higher flow
intensities. as presented in Figure 7.19. The intermdiate flow structure between initial
thermal buoyancy-driven flow and flow field damped by the solute field is shown in
Figure 7.19(b). The lower flow cell is already damped by the solute field, but the upper
flow cell still maintains the initial low intensity. The detailed transition of flow structure
is described in Figure 7.20 and 7.21 with shorter time intervals. The upper flow cell
initially driven by thermal buoyancy gradually reduces in size and finally disappears to
give way to the fiow cell damped by the solute field. The flow intensity of the upper

flow cell shows a maximum during this transition period.

The intensities of the flow fields are summarized by the history of stream function
of the each flow cell shown in Figure 7.22 for (Ra,, Ra,) = (1.0 x 10%,-8.5 x 10%)
and (1.0 x 105, -8.5 x 10%). The lower flow cell behaves in the same manner at both
cases. However, the upper flow cell demonstrates significant differences in the early

stages of growth. The large driving force for thermal buoynacy-driven convection at
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Ra; = 1.0 x 10% causes a very abrupt change in flow structure and almost a step change
is observed in the stream function. These changes require a small time step size in the

numerical integration.

7.3.3 Solute Fields

During the growth of HgCdTe alloy, CdTe is preferentially partitioned into the crystal
and it is depleted in the region of melt near the interface. It is replaced by the transport
of solute trom the bulk melt by convection and diffusion. When the level of convection
is negligible, solute transport is limited by diffusion and solute diffusion layer develops
beginning from the interface. Sample solute fields for Ra; = Ra, = 0 in Figure 7.23
display the process of solute diffusion layer development in time. The solute profile
is expected to be perfectly cne-dimensional for flat interface. The curvature of the
melt/crystal interface leads to the variation in composition along the interface. For
the growth of nondilute alloy with variable equilibrium distribution coefficient, these
variations of composition results in the nonuniform equilibrium distribution coefficients
along the interface. The rate of incorporation of solute into the crystal is subsequently
nonuniform and the isoconcentration lines are a little distorted near the interface, as

shown in Figure 7.23.

The stably stratified density gradient in the growth HgCdTe alloy suppresses the
thermal buoyancy-driven convection almost entirely. The structure of two toroidal
cells stacked axially in the ampoule is still maintained, but their intensities are too
weak to convect the solute. The solute profile in the presence of convection shows
the characteristics of diffusion-controlled growth, despite the high Schmidt number
for HgCdTe. Sample solute fields at Ra; = 1.0 x 10*, Ra, = -8.5 x 10% and
Ra; = 1.0 x 105, Ra, = -8.5 x 10" are presented in Figure 7.24 and 7.25, showing
these features. The presence of weak convection leads to the flatter isoconcentration
lines near the interface and slightly distorts the isoconcentration lines in the upper part
of the ampoule. The change of curvature in isoconcentration lines from concave to flat

predicts slightly more radial segregation in the presence of convection. Solute fields in
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earlier period are described in Figure 7.26 to show the effect of convection, when the
lower flow cell still undegoes a transition. The distorted isoconcentration lines near the

interface indicate the effect of mixing by convection.

Solute concentration profiles in the crystal has been calculated by multiplying the
equilibrium distribution coefficient by the average melt concentration over the interface
at each instant of time. The results are shown in Figure 7.27 and compared with the

exact solutions of Smith et al. (1955) and Scheil (1942).

The diffusion-controlled axial solute segregation in the crystal was obtained from
the solution of Smith et al.(1955), which assurnes constant growth rate and constant
equilibrium distribution coefficient. The other one accounts for the changing growth
rate and variable equilibrium distribution coefficients from the phase diagram. It was
calculated using our model while the interface was forced to be flat by assuming high

and equal thermal conductivities in all materials and neglecting the latent heat.

Scheil’s equation is the solution of the solute conservation in the melt and crystal
assuming complete mixing in the melt and no diffusion in the crystal. The differential

equation for bulk solute conservation is written as

df _ dC -
-7-c_c, (7.8)

where f is a fraction solidified, C is a uniform concentration in the melt and C, is a
concentration in the crystal at the interface at f. The equilibrium relationship, C, = kC,
holds at the interface. With constant k, Eq. (7.8) is easily solved for to give the solution

as

Cy = keo(1 = f)F1 (7.9)

where ¢, is the initial concentration in the melt. When k is not constant, no closed-form
solution of Eq. 7.8 exist. We solved Eq. (7.8) with & from Eq. (7.2) using a fourth-order

Runge-Kutta numerical integration method.

The calculations indicate that the level of gravity is not important in determining the

axial segregation in the crystal. The calculated axial segregation profiles show an almost
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constant difference from the solution of Smith et al.(1955) with constant k. At short
times, the numerical calculations are in good agreement with the diffusion-controlled
profile with flat interface and variable k. As the profile approaches its steady-state value,
the deviation between these profiles hecomes constant. as is the comparison with the
solution of Smith et al. (1957). These observations lead to the argument that the later
deviations are caused by the high curvature of the interface and the average concentra-
tion at the highly curved interface does not coincide with the interfacial concentration
calculated by the one-dimensional analysis. Despite these deviations, the calculated
axial segregation is much more closer to the diffusion-controlled case and far from the

segregation profile predicted by Scheil’s equation with either constant or variable k.

Hence, the weak convection does not alter appreciably the solute field near the inter-
face and the radial segregation is mainly governed by the interface curvature during the
growth of HgCdTe. The radial segregation is defined as a measure of the nonuniformity

in composition along the interface as

AC(%) = [max C(r, H(r) - min C(r,H(r))}/(C) x 100% (7.10)

1 — 1
c =/ J1+Her d // Ji+ Her d
(C) 0c r dr/ A r dr

where (C) is the radially-averaged value of solute concentration in the melt. As discussed
previously, the presence of weak convection near the interface flattens the isoconcentra-
tion lines and causes slightly increased radial segregation, as shown in Figure 7.28. The
small average concentration at the interface amplifies the radial segregation, which is

more than 100 per cent at steady-state.

The effective segregation coefficient ks is used as a measure of the relative resem-
blance of the crystal growth process to the diffusion-controlled growth or growth with

complete mixing in the melt. It is defined as

_ 0 fC) :

where (C) is the radially-averaged value of solute concentration in the melt, ((C)) is the
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bulk-averaged concentration in the melt. H, is a derivative of the interface location with
respect to r and k is the equilibrium segregation coefficient for the solute. When mixing
is complete, (C) and {((")) become equal and k. approaches k. For steady diffusion-
controlled growth. solute concentration in the crystal just solidified and in the bulk are
¢, when the whole length of melt is infinite so that the length of solute diffusion layer
is negligible. In this situation, k. becomes unity. Calculated ks from numerical

anlalysis approaches one but it is not exactly one because of the finite melt length.
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7.4 The Eifect of Variable Coefficient of Thermal Expan-

sion

The melt density of HgCdTe has a strong dependence on temperature and composititon
(Chandra and Holland, 1983). This dependence affects tﬁe flow structure in the melt
through variable coefficients of thermal expansion (3;) and solutal expansion (3,). The
range of magnitude of solutal expansion coefficient in the present growth system leads
to the assumption of constant 3,. In this Section, we will demonstrate only the effect

of variable 83; on the flow structure.

The analvtical form of the dependence of 3, on z and T is obtained from the density
function, Eq. (7.7), by diferentiation with respect to temperature. From Eq. (7.7), 3, is

determined as

_ 1 dp)
ﬁt ‘_ Pm (dT

1
= ——(Cg +Cc3T T+ 2C5T)
Pm

= Bo+ Bz + 8.T

where 8y = —¢2/pmsB1 = —c3/pm and By = —2¢5/p;m. The thermal Rayleigh number
Ra, is defined as

98:ATR?
av

Ra; =
= Rap+ Ra)(§ + 1) + Rayf
where the {Ra;} are defined as

(80 ~ 3:T.)ATR?

Ray, =
av
3
Ra, = 981c,ATR?
av
. 2p3
Roy o 9PATVES
av
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where g is the gravitational acceleration and a = k/pc, is the thermal diffusivity. The

definitions of other variables are found in Table 7.1 and 7.2.

The calculations for the variable 3, has been done for the conditions corresponding
to Ra, = 1.0 x 10* and Ra, = -8.5 x 10% with constant 3,. The most significant
change appears in the flow field, as shown in Figure 7.29. In the initial state, the upper
and lower flow cell typically observed in the flow field with constant 3, are connected
together and rotate in the same direction, whereas they rotate in opposite direction
when 3, is constant. This reversal of flow direction near the interface is caused by the
presence of quadratic on temperature in the buoyancy force of the momentum equation.
As the solute diffvsion layer develops and the solute concentration participates in the
convection mechanism, secondary flow cells form between the upper and lower flow cells.
Similar cells were observed in the calculations by Adornato and Brown (1987a) for the
GeSi system and in the first family of the steady-state solutions described in Chapter 3
for HgCdTe system. These flow structures can be attributed to the sideways diffusive

instability discussed by Hart (1971}

In the present system, the maximum density is present at a short distance from the
interface because of the characteristic dependency of HgCdTe melt density on temper-
ature. Below the location of maximum density, both the axial and radial temperature
gradients provide the driving force for convective flow near the interface. This type of
convection is called penetrative convection and occurs when the density variation with
temperature is not monotonic (Antar, 1987). The instability due to the axial temper-
ature gradient near the interface combined with sideways diffusive instability tends to

form vertically-stacked secondary cells in this region.

Comparisons between the constant and variable 3, are made in Figure 7.30 in terms
of stream function values in upper and lower flow cells. The difference in stream function
values between upper and lower flow cells becomes larger with variable 3,. The flow
cell in the upper region of the ampoule becomes more intense with variable 3;, while
the opposite is true in the region near the interface. The amount of increase in the

stream function value of upper flow cell is almost the same amount as the decrease
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of the lower flow cell. This suggests that the value of constant 3, well represents the
mean J3;. In the initial stages of growth, where the lower cells show greater difference in
stream function value, the secondary flow cell of the variable 3; case assumes the stream
fumction value which show the similar trend as the constant 3, case with the difference

in stream function value mentioned above.

The weaker convection in the variable 3, case has the effect of reducing interface
deflection, as shown in Figure 7.31. Interface deflection has been decreased almost to

the level of convectionlese state, which will lead to the reduction in radial segregation.

Solute concentration profiles corresponding to these flow fields are described in Fig-
ure 7.32. Solute fields displays the development of solute diffusion layer with con-
centration profiles that are almost one-dimensional profiles characteristic of diffusion-
controlled growth. The deviation from the perfectly one-dimensional profile shows the
effect of flow structure with secondary flow cells. Closer examination at the isoconcen-
tration lines indicates that the radial solute gradient changes sign several times along

the axial direction.

The decreased level of convection near the interface and interface deflection for the
case of variable (3, results in the slight reduction of radial segregation to the level of
diffusion-controlled growth, as shown in Figure 7.33. The increased convection level in
the upper region of the ampoule does not affect the concentration field considerably
because concentration in that region is nearly constant in the early stage of growth.
The history of the effective axial segregation coefficient for variable 3, is almost indis-

tingishable from that for constant 3.
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7.5 Conclusions

Thermosolutal convection during the growth of nondilute HgCdTe alloy in vertical
Bridgman growth system is governed by the interactions of driving forces determined
by the alloy’s thermophysical properties, the design of ampoule and furnace, and op-
erating conditions for growth. The flow patterns are coupled with the temperature
and solute concentration fields to give a rich structure. The lighter component CdTe
is preferentially partitioned into the crystal and the remaining HgTe components are
accumulated near the interface to help form the stably stratified axial density gradient
in the melt. The resulting solute field retards the thermal convection driven by the large
radial temperature gradient near the interface. The analysis presented in this Chapter
is meaningful in that it is the first transient numerical calculations for the growth of
nondilute alloy in the vertical Bridgman growth system accounting for the convection,
heat transfer and solute transport with interface shape and location determined simul-
taneously. The complete phase diagram was included in the calculation through the
dependency of the melting point temperatrue and equilibrium distribution coefficient

on the composition.

Concentration gradient is set up first near the interface to form ihe solute diffusion
layer, which is more effective in damping the flow cell near the interface. As the solute
diffusion layer penetrates into the melt, transient calculations showed the transition
of a flow structure that was governed by the temperature field to motion suppressed
by the solute field. The damped flow structure consisted of two toroidal cells stacked
axially in the ampoule, as is typically observed in the thermal driven convection in the
Bridgman growth system; however, the intensity of this motion, expressed in terms of

stream function values, is much lower than for a thermally-driven flow cells.

Transient anlalysis of the growth of HgCdTe alloy in the vertical Bridgman growth
system has demonstrated that the previous experimentally obtained axial segregation
profiles (Lehoczky and Szofran, 1982; Szofran et al., 1984) are the result of the effective

damping of the thermal convection by the solute field. The calculated solute segregation
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is almost one-dimensional, characteristic of diffusion-controlled growth.

In addition to the large radial temperature gradient, the coupling of the melting
point temperature with the interfacial concentration leads to the large interface de-
flections, which are mainly responsible for the large radial segregation observed in the
growth of HgCdTe. This observation is not contradictory to the result from steady-
state analysis, where ampoule translation rate was Jower and imperfect mixing near
the interface is more important to large radial segregation. The intensity of the flow
cell near the interface was not high enough to provide the sufficient mixing to reduce
the concentration variations along the interface, except for the short time period in the

beginning when the solute concentration gradient is small.

Thermophysical properties of HgCdTe melt is strongly dependent on temperatrue
and composition. Among others, the dependency of the density of HgCdTe melt are
most influential to the flow structure in the melt. Density shows maximum with tem-
perature in some range of concentration, which fall into the range of present operating
conditions. The variation of density with temperature and composition was implied in
the expression of the coefficient of thermal expansion (3;) as a function of temperature
and coraposition. The variable 3; introduced additional instability caused by the axial
temperatrue gradient near the interface. This instability, combined with the sideways
diffusive instability, resulted in the secondary flow cells between the upper and lower
flow cells typically observed in the Bridgman growth system. As a result of variable 5,
the upper flow cell showed an increase in intensity of approximately the same amount
as the decrease in intensity of lower flow cell. The concentration field displayed little

effrct by the variable 8; because of weak convection level.
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Chapter 8

Conclusions

The goal of the research in this thesis was to extend the understanding of the physics
involved in the directional solidification of semiconductor and optoelectronic crystals
grown in vertical Bridgman and gradient freeze systems. The specific ohjectives focused
on the investigation of convection in the melt during growth of dilute or nondilute h.nary
alloys and its effect on species transport and axial and radial segregation of impurities
and dopants. These objectives have been met by constructing detailed pseudo-steady-
state and transient models describing the crystal growth process; the models include
the shape of the melt/crystal interface, convection, heat and solute transfer in the melt,
heat conduction in the crystal and ampoule, and radiative exchange between the furnace
and the ampoule. The transient analyses that have been presented in this study are
meaningful because these are the first iime-dependent simulations of crystals growth in
the closed ampoule of the vertical Bridgman growth system, which account for these

effects simultaneously.

8.1 Steady State Analysis

In the pseudo-steady-state model (PSSM), the translation of the ampoule is modelled by

supplying melt at the top of the ampoule with a uniform velocity and composition and
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removing crystal from the bottom of the ampoule at the same average concentration.
Transients in the field variables caused by the steady decrease of the melt length with
crystal growth and by the displacement of the ampoule in the furnace was neglected in

this model.

The complete set of partial differential equations and houndary conditions for field
variables and interface location defines a nonlinear free boundary problem. We solved
this equation set using an efficient finite element/Newt: 1 method based on the works
by Chang and Brown (1983a,b) and Adornatc and Brown (1987a,b). A mesh of bi-
quadratic isoparametric finite elements was used to spatially dicretize the melt, crystal
and ampoule with the melt/crystal interface taken as boundaries in the mesh. The
components of the velocity, temperature and solute fields are approximated by a set
of two-dimensional biquadratic Lagrangian basis functions defined on this mesh. The
pressure field is approximated by a set of linear, discontinuous basis function, which
is compatible with basis functions for velocity. The melt/crystal interface shape is in-
terpolated by one-dimensional quadratic Lagrangian polynomials defined on the same
finite element mesh. A Newton’s method was used to solve the large set of nonlinear

algebraic equations that arise from finite element discretization.

The pseudo-steady-state model was used to investigate the effect of a axially aligned
magnetic field on the convection in the melt and solute segregation in the crystal,
assuming the limit of zero magnetic Reynolds number. The steady-state calculations
for the growth of dilute gallium-germanium alloy showed important interactions between
the flow field and axial and radial segregation for a vertical Bridgman furnace and for
a furnace with a uniform temperature gradient. Radial segregation is set by the flow
structure near the crystal/melt interface, whereas axial segregation is influenced hy
solute mixing throughout the melt and therefore is affected by flow cells isolated from
the interface. These differences are hrought out by the calculations in the vertical

Bridgman crystal growth system.

The radial segregation is lowest when either convection is unidirectional (Ra, small

or Ha large) or when the laminar mixing is intense enough to homogenize the melt adja-
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cent to the interface. Growth with unidirectional convection is most desireable hecause
of the axial uniformity of the crystal that results when no mixing is present. These
conditions are not easily achieved in practice and careful analysis of growth conditions
is necessary for optimumn design of growth systems with moderate cenvection levels.
On earth, unidirectional growth conditions can be reached for growth of small diameter
crystals and magnetic fields, but these growth conditions are difficult to duplicate for
larger crystals because of the excessively large magnetic fields involved. It is practical
to tune the strength of the magnetic field to eliminate unwanted temporal fluctuations
in the convection, but to leave intense laminar convectiorn to mix solutes and modulate

radial segregation.

The second application of the steady-state model was to the growth of nondilute
HgCdTe alloy in a vertical Bridgman growth system. The calculations demonstrated
that convection and sciute segregation in nondilute alloys results from a complex inter-
action of heat iransfer in the furnace and material and convection and species transport
in the melt. Numerical simulations of the coupled flow, heat and species transport.
problems leaded to mechanistic interpretation of both radial and axial segregation mea-

surements made in several laboratories.

The calculations demorstrated that the segregation hehavior in the HgCdTe system
resuls from the combined actions of thermally-driven convection caused by the large ra-
dial temperature gradients near the interface and solutally-driven damping of buoyancy
flow by the gradient in CdTe composition in the melt. Quantitative determination of the
relative importance of the two mechanisms can only be determined by precise numerical
simulations that account of correct thermophysical properties and for the curvature of

the melt/solid interface.

The radial and axial segregation patterns seen in Hg('dTe crystal growth experiments
by Szofran et al.(1984) and by Capper et al.(1983) were explained by the calculations.
The large radial temperature gradients caused by the difference in the thermal conduc-
tivities hetween the melt, crystal and ampoule lead to strong convection adjacent to the

interface. The solutal damping of this motion caused by the :lloy concentration profile
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partially damps this motion. For the small ampoules used by Szofran et al. (1984), solu-
tal damping almost suppresses convection entirely in the upper portion of the ampoule,
but a relatively intense flow cell still exists near the melt/crystal interface. The damping
of convection over the length of the ampoule is responsible for the diffusion-like axial
segregation profile observed in these experiments. The large radial nonuniformity seen

in the crystals results from incomplete mixing in the flow cell adjacent to the interface.

The effect of solute damping on buoyancy-driven convection in the hulk of the flow is
described well by the asymptotic analysis of Hart (1971). Moreover, the linear scaling of
the effective solutal Rayleigh number Ra] with the axial concentration gradient caused
by solidification explains the decreasing axial segregation with increasing growth rate

that was observed in the experiments of Capper et al.(1983) with larger ampoules.

A one-dimensional model is proposed for describing axial solute transport from a
melt with a well-mixed cell separating convectionless melt from the solidification in-
terface. This model gives a good phenomenclogical picture of axial segregation in the
HgCdTe system. The apparent diffusion-like axial segregation profile is explained and
the effective diffusion coefficient is shown to be a function of the size of the well-mixed
region. The predictions from this analysis are appealing for the growth of many ma-
terials because they suggest that the growth of radially-uniform crystals with nearly

constant axial composition profiles is possible if these conditions can be met.

8.2 Transient Analysis

A transient model for crystal growth in closed vertically orienicd cylindrical ampoules
was developed to account for the inherent transient hehaviour of the transport phe-
nomena in these growth systems. The time-dependence in these systems is caused
by the steady decrease of the melt volume in a finite length of ampoule and by the
time-dependence of the furnace temperature profile with respect to the ampoule during
growth. A robust algorithm for numerical integration of the resultiz:g complex moving-

boundary problem was constructed by systematic implementation of finite element
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discretizations and by implicit time integration methods for the resulting differential-
algebraic set of equations. Modified Newton’s method implemented using frontal elimi-
nation techniques was effective for solving the large set of nonlinear algebraic equations

that arise at each time step.

The tranient analysis was applied to the simulation of directional solidification sys-
tems for the growth of dilute gallium-doped geramnium and selenium-doped gallium
arsenide crystal in the vertical Bridgman growth system at MIT and gradient freeze
growth system at GTE, respectively, and for the growth of nondilute HgCdTe crystal
in the vertical Bridgman growth system at NASA in Huntsville, AL. The most dis-
tinguished difference between the crystal growth processes in the vertical Bridgman
system and the gradient freeze furncae lies in the dynamics of heat supply to the am-
poule. In the vertical Bridgman furnace, the furnace temperature profile is stationary
in the fixed laboratory frame and the ampoule is pulled down so that it sees the chang-
ing furnace temperature in time. On the contrary, the ampoule is stationary and the
furnace temperature profile is changed in time in the gradient freeze furnace system:.
These differences disappear in transient model using the coordinate frame fixed to the

ampoule.

The well designed MIT furnace lead to temperature and flow fields around the
interface that were in approximately steady-state shortly after the beginning of the
ampoule translation. The solute concentration in the crystal kept increasing without
attaining a constant value even for the diffusion-controlled growth because of the finite
ampoule length. Nevertheless, the radial segregation and effective segregation coefficient
reaches steady-state values after the initial transient which is a little longer than the
transients for the temperature field and flow field. These observations justify the use of
pseudo-steady-state analysis (Adornato and Brown, 1987a) for the study of temperature
field, flow structure, convection and solute segregation during the crystal growth process
in the same MIT system. Comparisons between the calculated results and experiments
hy Wang (1984) in MIT system demonstrated the robustness and acciracy of our model

and algorithm in transient description of the crystal growth process.
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The large latent heat of solidification associated with the gallium arsenide alloy pre-
vented the attainement of steady growth in the gradient freeze system. Most quantites
ohserved in the transport process, such as growth velocity, interface deflection, axial
segregation and radial segregation, exhibited transients throughout the growth in GTE
gradient freeze system. The pseudo-steady-state approach is not valid for modelling this
system. Only complete transient analysis, like the one presented here, gives meaningful

results.

Thermosolutal convection during the growth of nondilute HgCdTe alloy in vertical
Bridgman growth system is governed by the interactions of driving forces determined hy
the alloy’s thermophysical properties, the design of ampoule and furnace, and operating
conditions for growth. A stably stratified axial density gradient develops in the melt
because the lighter component CdTe is preferentially partitioned into the crystal and tae
remaining HgTe is accumulated near the interface. The resulting solute field retards the
thermal convection driven by the large radial temperature gradient near the interface.
The flow patterns are coupled with the temperature and solute concentration fields
and change in time as the solute diffusion layer develops. This picture of the coupling
hetween convection and segregation was confirmed by finite element analysis using the

pseudo-steady-state model.

The transient analysis of the growth of HgCdTe alloy in the vertical Bridgman
growth system has demonstrated the transition of flow structure caused by the devel-
opment of the solute diffusion layer next to the interface. The solute concentration is
uniform in the melt at time zero because no solidification occurs in the system. As the
melt is solidified with the translation of ampoule, solute diffusion layer develops near the
melt/crystal interface in the melt. The flow cell near the interface was damped earlier
by the solute gradient which exist only in the region near the interface initially. As
the solute diffusion layer penetrates into the melt, the flow field initially driven by the
temperature field is suppressed entirely by the solute field. The flow structure damped
by the solute field still consists of two toroidal cells stacked axially in the ampoule, as

is typically observed in the thermal driven convection in the Bridgman growth system,
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but, the intensities of the cells, expressed in terms of stream function values, are much

lower than those of thermally-driven flow cells.

For the transient analysis of HgCdTe growth in the vertical Bridgman growth system,
the complete phase diagram was included in the calculation through the dependence of
the melting point temperatrue and equilibrium distribution coefficient on the composi-
tion. The time-dependent calculations show that the previous experimentally obtained
axial segregation profiles (Lehoczky and Szofran, 1982; Szofran et al., 1984) are the
result of the effective damping of the thermal convection by the solute field. The calcu-
lated solute segregation is almost one-dimensional, characteristic of diffusion-controlled
growth. The deviation from perfectly one-dimensional composition profile was caused
by the large interface deflections due to the mismatch of the thermal conductivities
of melt, crystal and ampoule and due to the coupling of the melting point tempera-
ture with the interfacial concentration. The intensity of the flow cell near the interface
was too small to provide the sufficient mixing to reduce the concentration variations
along the interface, except for the short time period in the beginning when the solute

concentration gradient is small.

The dependence of /3; of HgCdTe mlet on temperature and composition introduced
additionai instability caused Ly the density inversion near the interface. This instakility,
combined with sideways diffusive instability in the bulk, resulted in the secondary flow
cells hetween the upper and lower flow cells. By including the dependence of 3; on
temperature and composition, the upper flow cell showed the increase in the intensity of
flow by the approximately same amount as the intensity of lower flow cell decreased. The
concentration field displayed little effect by the variable 3; because of weak convection

level.

8.3 Suggestions for the Future Work

The transient analysis reported here was successful at quantitatively modelling crystal

growth in confined vertical ampoule systems. The expression of the real crystal growth
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system to the mathematical model is in most cases accompanied by some simplifications.
In this Section, some suggestions are made which are expected to increase the accuracy

of the model.

Free Volume above the Melt

For most semiconductor materials, the e<pansion of material upon solidification (For
example, germanium, silicon or gallium arsenide) requires the free volume space ahove
melt to avoid the excessive stress. The free volume naturally occurs in the confined
growth system during the preparation of the melt charge. The porosity of the sclid

constituents charged into the ampoule leaves the free volume ahove the melt.

The presence of the free volume above the melt changes the temperature field near
the top of the melt because of the different thermal conductivities of the vapor phase,
leading to the possible change in flow field driven by the temperature gradients. The
present study has focused on the initial period of solidification when no more than sixty
percent of the melt volume has been solidified. If there is a interest is in the final

transient, the free volume ahcve the melt should be included in the model.

Thermal Boundary Condition at the Ends of Ampoule

The thermal boundary conditions at the top and bottom of the ampoule were assumed
in this study that the temperatures there are equal to the furnace temperatures at the
same axial locations. Because we were interested in the initial transients, the both
ends of the relatively long ampoule were in the constant temperature zones during the
period of interest and above assumptions were justified. However. if we are dealing
with the short ampoule or interested in the final transient. these boundary conditions
do not faithfully represent reality. This is also true when the ends of the ampoule are
not free from other parts of the furnace system, such as the pedestal, plug, or plunger.
The thermal boundary conditions in these cases should be more carefully defined and

applied in the model calculation.
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Variable Viscosity

Gallium arsenide melt is known to have a viscosity which are very strongly dependent
on the temperature upto 70 °C above the melting point (Kakimotot and Hibiya, 1987).
This temperature range covers most of the melt region in a gradient freeze furnace
system where axial temperature gradient is smaller than conventional Bridgman growth
system. Although the viscosity data for HgCdTe is not available, it is expected to show

the significant dependence on temperature and composition.

The variation of viscosity has a great impact on the flow structure in the melt by
facilitating the convection in the region of low viscosity and suppressing it in the region
of high viscosity (Hyun and Lee, 1988). As we have shown throughout this study that
the nonuniformity of composition in the crystal is closely coupled to the flow field,
the variation of the viscosity also influences the solute segregation in the crystal. The
stability of the flow with variable viscosity has been discussed recently by Smith (1988)
for the directional solidification system and by Chen and Pearlstein (1989) for the free
convective flow. The inclusion of the dependence of the viscosity on temperature is

expected to improve the accuracy of the model.

Remelting

The accumulation of the heavier component HgTe at ihe interface due to the rejection
lead to the lowering the melting point temperature and there is a chance that just
solidified crystal can remelt during the growth of HgCdTe crystal. The present transient
model is not capable of describing remelting or backmelting except for the pure material.
The description of the remelting for the hinary alloy can be possible by including the

solute transport equations in the crystal.
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Three-dimensional Calculations

When the instability of the system drives the flow to be time-dependenet or periodic
as in the case of destabilizing vertical Bridgman growth system (melt below crystal),
our transient model is able to capture the time-dependency of the flow field using a
small time step. But, in most cases these flows are no more axisymmetric and hecome
three dimensional. Although it requires an enormous amount of work, the accurate
description of time fluctuations of the flow field should be preceded by the construction

of the three-dimensional model.

Traveling Heater Methed

The traveling heater method is one of the confined solution growth techniques, where
part of the charge enclosed in the ampoule is melted as it passes by the heater. It
has received recent attention in growing high quality HgCdTe crystals (Triboulet et al.,
1985; Colombo et al., 1988) for the infrared dctectors. The present transient model
can readily be modified to be applied to the traveling heater method by adding another

melt /crystal interface and solid phase into the model.

Control of Interface

The interface curvature or deflections can be controlled using a side heater or booster
heater near the interface (Jasinski and Witt, 1985). Control strategy to couple the
interface deflection and the power of the side heater can be devised so that the interface
deflection should he minimized. The implementation of the control algorithm to the
transient model is not formidable task, as it was done similarly for the C'zochralski
growth method (Derby et al., 1987). These contro!l schemes can also be applied in
the experiment with the aid of the development of in-situ ohservation technique of
the interface (Barher et al., 1986; Kakimoto et al., 1988). Clombined with the image

processing technology, in-situ observation of the interface shape can be easily linked to
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the heater power through controller.
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