
Identifying Perfect Nonlocal Games

by

Adam Bene Watts

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Physics

August 6, 2021

Certified by. .
Aram W. Harrow

Associate Professor of Physics
Thesis Supervisor

Accepted by .
Deepto Chakrabarty

Chairman, Department Committee on Graduate Theses

2

Identifying Perfect Nonlocal Games

by

Adam Bene Watts

Submitted to the Department of Physics
on August 6, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis is about nonlocal games. These “games” are really interactive tests in which a
verifier checks the correlations that can be produced by non-communicating players. We
study the class of commuting operator correlations: correlations which can by produced by
players who make commuting measurements on some shared entangled state. This thesis
contains following results:

• A general algebraic characterization of games with a “perfect” commuting operator
strategy, i.e. games with a winning correlation that can be produced exactly by
commuting operator measurements. This characterization is built on a key result in
non-commutative algebraic geometry known as a (non-commutative) Nullstellensatz.

• A sufficient condition for a class of nonlocal games called XOR games to have a perfect
commuting operator strategy. This condition can be checked in polynomial time, and
can be understood either as non-existence of a combinatorial object called a PREF (the
noPREF condition) or as non existence of a solution to an instance of the subgroup
membership problem in a specially constructed group.

• A family of simple one-qubit-per-player strategies we call MERP strategies, which we
show are optimal for any XOR game which has a perfect commuting operator strategy
by the noPREF condition.

• Proofs that the noPREF condition is both necessary and sufficient for symmetric XOR
games and 3 player XOR games.

• Explicit constructions of several families of XOR games with interesting properties.

• An analysis of randomly generated XOR games using the noPREF condition and the
first moment method.

Thesis Supervisor: Aram W. Harrow
Title: Associate Professor of Physics

3

4

Acknowledgments

Any set of acknowledgements I write must begin with thanks to my parents, Veronica Bene

and Paul Watts, and my sister Simona. My childhood home has always been a place of peace

and beauty, and a constant source of stability in my life. It is, without a doubt, the wisdom

of my parents and the care of my sister that has kept it that way. Beyond that, I need to

thank my parents for nurturing my curiosity (some of my earliest childhood memories are

learning basic mathematics on the blackboard my father made), and my sister for inspiring

me with her own accomplishments.

Of course, my family is bigger than just my sister and parents. I must also thank my

Aunt and Uncle Hanne and Martin Guiffrida who, among other things, are responsible for

my first introduction to computers and the word of technology; my Aunt Marion Voysey for

providing a much-needed organizational influence in our family, and providing me with most

of the photos of myself that I’ve ever used professionally; my half brother Ian Watts for being

both an older brother and a role model; and my cousin Galen Voysey for being one of my

longest and truest friends.

Speaking of friends, I’ve been blessed with many. While it’s impossible to list them all,

Tyler Lawtey, Tristan and Liam Gaw, Levi Jackson, Sylvannah Densmore, Lina Wahlstrom,

Michele Tonutti, Katie Linder, Maia Courtenay, and Danie Martin all deserve special mention

as childhood friends without whose influence I wouldn’t be the person I am today. More

recently, my roommates Jane Panagaden and Galen Voysey (who gets his mention here) and

later Chris McNally and David Berardo have all been constant friendship and support in my

life.

Academically I need to thank my early physics teachers Mr. Tanner (whose first name

I’m embarrassed to admit I’ve either forgotten or never knew) and Mark Wheen, along with

the teachers at the International Summer School for Young Physicists (ISSYP) at Perimiter

Institute for nurturing a chilhood interest in physics. Research-wise I’ve benefited from a

long list of mentors, all of who have provided me with invaluable guidance: Doina Precup,

Prakash Panangaden, Bruce Reed, Patrick Hayden, Andrew Childs, David Gosset, Sergey

Norin, Peter Selinger, Aram Harrow, Robin Kothari, John Wright, Nicole Yunger Halpern,

5

and Bill Helton. Equal thanks are owed to my peers, both from the Honours Physics program

at McGill and more recently my fellow graduate students at MIT, from whom I learned

as much as I learned from any of my teachers. Again it is impossible to list them all, but

Xuan Sun, Jane Panangaden, Luise Dziobek-Garrett, David Berardo, Chris McNally, Gurtej

Kanwar, Anand Natarajan, Mehdi Soleimanifar, Linghang Kong, and Luke Schaeffer all

deserve special mention.

The results in this thesis are closely based on several papers (including one still in

preparation) and related to several others. The authors on those papers (many of whom have

been mentioned already, but who I mention again now in their coauthor capacity) deserve

special mention. Thanks to Gurtej Kanwar, Anand Natarajan, Aram Harrow, Robin Kothari,

Luke Schaeffer, Avishay Tal, Nicole Yunger Halpern, Bill Helton, and Igor Klep. My thesis

committee members Aram Harrow, Peter Shor, and David Kaiser also all deserve thanks for

their patience and support as I threw together a pretty last minute thesis.

Penultimately, and somewhat unconventionally, I feel I owe thanks to the staff and owners

at several coffee shops, where probably the majority of the work contained in this thesis was

done. Café Plume in Montreal (now Paquebot), Curio Coffee in Boston, Java Jive in Salmon

Arm (now Ecotreats), and Kaffeeklatsch in Calgary rank among my most frequented. I’ll

also take this opportunity to recommend these cafes to anyone who happens to be reading

this thesis and looking for a office away from the office.

Finally, just as any acknowledgements section must begin with mention of my sister and

parents, it must end with mention of my partner, Claudine Lebosquain. For the past nine

years she has brought joy, excitement, drama, and love to my life in equal measure, and I

wouldn’t have it any other way.

Financial Acknowledgements: While performing the research in this thesis, I was

financially supported by by NSF grant CCF-1729369.

6

Contents

1 Introduction and Background 17

1.1 Nonlocal Games and Quantum Correlations 18

1.1.1 Correlation Sets . 20

Classical Correlations . 20

Tensor Product Correlations . 21

Commuting Operator Correlations 23

Separations Between Correlation Sets 23

1.1.2 Nonlocal Games . 24

Value of a Nonlocal Game . 25

Nonlocal Games as Tests of Resources 26

The Game Functional . 27

Perfect Games . 28

XOR Games . 28

1.1.3 Multipartite Correlations . 30

1.2 Bounds on the Set of Correlations . 30

1.2.1 Brute Force Lower Bound on Tensor Product Correlations 31

1.2.2 ncSoS Upper Bound on Commuting Operator Correlations 31

1.2.3 Computing the Value of a Nonlocal Game 34

1.3 Mathematical Tools . 35

1.3.1 Groups, Algebras, and Group Algebras 35

Groups . 35

Group Presentations . 35

7

Algebras . 36

Group Algebras . 37

Subgroups, Subalgebras, Ideals and Left Ideals 38

1.3.2 Representations . 38

1.4 Results in this Thesis . 39

2 Algebraic Framework 41

2.1 Introduction . 42

2.2 Nonlocal Game Definitions . 42

2.2.1 Technical Definitions . 42

Commuting Operator Strategies . 42

Games and their Commuting Operator Value 43

2.2.2 The Algebraic Picture . 44

Universal Game Algebra . 44

Projection Generators . 44

Signature Matrix Generators 44

Cyclic Unitary Generators . 45

Strategies as Representations of the Universal Game Algebra 46

An Algebraic Definition of the Commuting Operator Value of a Game 46

2.2.3 Examples of games . 47

XOR Games . 47

2.2.4 Equations Corresponding to Perfect Games 48

2.3 NullSS for Perfect Nonlocal Games . 51

2.3.1 Background on NullSS . 52

Hilbert’s NullSS . 52

Noncommutative NullSS . 53

2.3.2 A general noncommutative NullSS 54

Intuition behind the proof of Theorem 2.3.4 55

2.3.3 NullSS and Perfect Games . 57

2.4 NullSS without SOS and Subgroup Membership 58

8

2.4.1 Conditional Expectations and SOS Projections 59

2.4.2 The NC Toric Ideal Group Algebra Simplification 63

Relating the Subalgebra and Subgroup Membership Problems 64

NC Toric Left NullSS without SOS Terms 66

2.4.3 NullSS for Perfect Unitary Games . 66

2.5 Chapter Summary . 68

3 Refutations, Symmetric XOR Games, and MERP Strategies 69

3.1 Background . 70

3.2 Results . 72

3.3 Technical Overview . 74

3.3.1 Strategies . 76

Classical Strategies . 77

Commuting Operator Strategies . 78

3.3.2 Refutations . 79

3.3.3 Games with no Parity-Permuted Refutations (noPREF Games) . . . 81

3.3.4 Maximal Entanglement, Relative Phase (MERP) Strategies 85

3.3.5 MERP - PREF Duality . 87

3.3.6 Implications . 88

3.4 Refutations . 89

3.4.1 Upper Bound on Value . 90

3.4.2 Tools for Constructing Refutations 95

Combinatorics . 96

PREFs and Shuffle Gadgets . 98

3.4.3 Algorithm for Symmetric Games . 110

3.5 MERP Strategies . 112

3.5.1 Generalizing GHZ . 113

3.5.2 MERP Strategy Value . 115

3.5.3 MERP - PREF Duality . 117

3.6 Chapter Summary . 121

9

4 3XOR Games 123

4.1 A Detailed Overview . 124

4.1.1 Background and Notation . 124

Games . 124

Strategies . 125

Bias. 127

Groups . 128

4.1.2 Precise Statements of Main Results 129

An algebraic characterization of perfect XOR Games 129

Sufficient conditions for 𝜔*𝑐𝑜 = 1 . 132

The sufficient conditions are necessary 133

Bounds on the bias ratio . 136

4.2 Technical Details . 137

4.2.1 Definitions . 137

Recap . 137

Projections and Clause Graphs . 138

4.2.2 Comparison with Linear Systems Games 140

4.2.3 Connectivity of the Clause Graph . 144

4.2.4 Proof of Theorem 4.1.6 . 150

Projectors and simple right inverse. 151

Identity preserving right inverse. 152

Clearing the 𝐺1 and 𝐺2 subgroups 159

Gadgets for word processing . 162

Final Proof . 173

4.3 Properties of 𝐾 and its Interactions . 178

4.3.1 Properties of 𝐾 . 178

Canonical form for monomials mod K 180

4.3.2 The interaction of 𝜙𝜎 and 𝜙𝛼 with 𝐾 182

4.3.3 Equivalence between a PREF and 𝜎 ∈ 𝐻 (mod 𝐾) 183

4.3.4 MERP as a mod 𝐾 strategy . 186

10

4.4 Subgroup Membership . 188

4.5 Chapter Summary . 188

5 Specific Families of Games and Random Games 191

5.1 Results . 191

5.2 Specific Games . 193

5.2.1 123 Game . 194

Value 1 Strategy . 195

5.2.2 Capped GHZ () Games . 197

5.2.3 Asymptotically Perfect Difference (APD) Games 200

Commuting Operater Value . 202

Classical Value . 204

5.3 Random Games . 206

5.3.1 SAT Phase . 208

5.3.2 UNSAT Phase . 209

5.3.3 Lower Bound on Refutation Length (Sketch) 215

5.3.4 Lower Bound on Refutation Length (Full Proof) 221

6 Conclusion and Open Questions 229

11

12

List of Figures

1-1 An experiment in which the verifier tests the correlations that can be produced

by Alice and Bob. 19

3-1 We extend the well-understood duality relation for classical XOR games (left)

to a more complex set of dualities characterizing perfect strategies for entangled

XOR games (right). The arrows indicate implications, with the red, unfilled

arrows holding for symmetric games only. The dashed red arrows follow from

the other arrows for symmetric games. 88

4-3 Sample graph 𝒢12 for a game with alphabet size 𝑁 = 6 and 𝑚 = 11 clauses.

The middle component for example corresponds to clauses 𝑥(1)3 𝑥
(2)
4 𝑥𝑘1𝜎

𝑙1 and

𝑥
(1)
4 𝑥

(2)
4 𝑥𝑘2𝜎

𝑙2 , where 𝑘1, 𝑘2 ∈ [𝑁] and 𝑙1, 𝑙2 ∈ {0, 1} are arbitrary. 154

4-4 Sample graph repeated from Figure 4-3 with a choice of representative vertices

indicated in red. 155

4-5 Sample graph with representative vertices indicated in red and the path

𝑃
(︁
𝑥
(1)
2 , 𝑟1,2

(︁
𝑥
(1)
2

)︁)︁
indicated in blue. This path corresponds to a word

𝑥
(1)
2 𝑥

(2)
2 𝑥

(3)
𝑘1
𝜎𝑙1𝑥

(1)
1 𝑥

(2)
2 𝑥

(3)
𝑘2
𝜎𝑙2𝑥

(1)
1 𝑥

(2)
1 𝑥

(3)
𝑘3
𝜎𝑙3 , where 𝑘1, 𝑘2, 𝑘3 ∈ [𝑁] and 𝑙1, 𝑙2, 𝑙3 ∈

{0, 1} are arbitrary. 156

4-7 Graph 𝒢23 corresponding to the same set of clauses as used to generate the

hypergraph in Figure 4-6. Representative vertices in the image of the map 𝑟3,2

are indicated in red. 165

4-8 Hypergraph repeated from Figure 4-6. A choice of path 𝑄2(𝑥
(2)
5) is indicated

in teal. 166

13

4-9 Hypergraph repeated from Figure 4-6. The path 𝑄2(𝑥
(2)
5) is indicated in teal.

The hyperedges making up 𝛾2(𝑥
(2)
5) are outlined. 166

14

List of Tables

1.1 Classical and Quantum Correlation Sets . 23

5.1 Overview of the games constructed in this section. Quantities of note are

denoted in bold. 194

15

16

Chapter 1

Introduction and Background

This thesis is about quantum correlations. The study of quantum correlations began with

John Bell’s pioneering paper [4], which showed that non-communicating observers measuring

a quantum state could produce correlations which would be impossible to reproduce classically.

This result implied the existence of a “Bell Test” – a test with purely classical input and

output which could certify the presence of quantum behavior in a system. More abstractly,

it showed that quantum systems can behave in ways which are completely impossible for

classical systems to reproduce.

Recent results have shown that the set of correlations which can be produced by measure-

ments like the one’s described by Bell are incredibly rich. In particular, some correlations

in the set require measurements of arbitrarily large, or even infinite dimensional systems

to be produced. Exactly which correlations can be produced by measurements of infinite

dimensional systems depends on assumptions about the underlying mathematical structure

of the Hilbert space in which the quantum state lives. And it is in general undecidable

whether a given correlation can be produced, or even approximated, by measurements of

some quantum state.

This thesis develops techniques for deciding membership in the set of quantum correlations.

More concretely, it is concerned with questions of the form:

“Does there exist any quantum state and set of measurements that

non-communicating observers can make which can produce a specified

17

correlation?”

Because of the aforementioned undecidability results, any techniques for answering this

question will fail on some correlations. Yet there do exist large classes of correlations

for which this question can be efficiently answered. This thesis focuses on these classes

of correlations. By developing mathematical tools to identify these correlations, as well

as the states and measurements that produce them, we can further our understanding of

the operational power of quantum mechanics. In particular, computational techniques for

finding quantum correlations and measurement strategies have the potential to both uncover

sophisticated measurement strategies that have not yet been discovered, and to tell us when

a class of measurement techniques that has already been developed is in a sense optimal.

These measurement strategies may then find use throughout quantum information, in areas

far removed from quantum games [5, 53, 67].

In the remainder of introduction we first give some background to the field of quantum

correlations and nonlocal games, as well as a quick overview of some important mathematical

concepts. Then, in Section 1.4 we give an overview of the results in this thesis.

1.1 Nonlocal Games and Quantum Correlations

We begin by describing an experiment involving a verifier (or referee) and two “players”,

canonically called Alice and Bob. During the experiment the verifier selects two questions 𝑖

and 𝑗 from a list of possible questions, then sends question 𝑖 to Alice and 𝑗 to Bob. After

receiving their questions, but without knowing the question sent to the other player, Alice and

Bob choose responses 𝑎 and 𝑏 and send those responses back to the verifier. This process is

illustrated diagrammatically below:

An important note is that in this experiment we have assumed the randomness used by

the verifier in selecting questions 𝑖 and 𝑗 is is independent of any randomness shared by

Alice and Bob, so absolutely no information is leaked to Alice or Bob about the question the

other player is sent. This assumption, known as the measurement-independence assumption,

requires considerable effort to enforce experimentally [38, 52, 18, 41, 40, 29, 24] and is a

necessary part of a formal Bell test [28, 23]. In this (purely theoretical) thesis, we will assume

18

Figure 1-1: An experiment in which the verifier tests the correlations that can be produced
by Alice and Bob.

it freely.

We can describe the likelihood of a certain outcome when performing this experiment via

the conditional probability 𝑝(𝑎, 𝑏|𝑖, 𝑗), which represents “the probability the verifier receives

response 𝑎 from Alice and 𝑏 from Bob given that they sent question 𝑖 to Alice and 𝑗 to Bob”.

We let ℐ𝐴, ℐ𝐵 denote be the set of all the questions (inputs) that can be sent to Alice and Bob

respectively, and 𝒪𝐴, 𝒪𝐵 be the sets containing all their possible responses. A correlation is

a set of conditional probabilities

{𝑝(𝑎, 𝑏|𝑖, 𝑗) | 𝑎 ∈ 𝒪𝐴, 𝑏 ∈ 𝒪𝐵, 𝑖 ∈ ℐ𝐴, 𝑗 ∈ ℐ𝐵} (1.1.1)

which together specify the probability of Alice and Bob giving any possible response to any

possible set of questions asked. Note that we can assume without loss of generality that

the question and responses sent to and from Alice and Bob are integers, so sets ℐ and 𝒪

are specified completely by their size. Technically, whenever talking about a correlations

we should specify the question size 𝑛 and response size 𝑚, though we will often omit these

details. Whenever a correlation is referred to without 𝑛 and 𝑚 specified it should be assumed

19

that both are finite constants.

We can view correlations as tuples in R|ℐ𝐴||ℐ𝐵 ||𝒪𝐴||𝒪𝐵 | and then define addition and scalar

multiplication of correlations in the natural (entry-wise) way. This observation allows us to

discuss notions such as closure and convexity of various sets of correlations.

Closely related to correlations are the strategies used by Alice and Bob to map the

questions they receive from the verifier to the responses they send back. In our standard

view of correlations, we think of Alice and Bob as knowing ahead of time a correlation which

they are supposed to produce, and then trying to come up with a strategy for producing

that correlation during the experiment with the verifier. The key observation motivating

the study of quantum correlations is that that the correlations Alice and Bob can produce

depend on the resources they are given. In the next section we discuss some of these possible

resources, the descriptions of the associated strategies, and some preliminary results about

the correlations they can produce.

1.1.1 Correlation Sets

In this subsection we introduce various sets of correlations, following the notation in [60].

Classical Correlations

We first consider the case where Alice and Bob only have access to classical resources. The

simplest strategy they can pursue is a deterministic one, with Alice and Bob deciding to give

a fixed response 𝑎𝑖, 𝑏𝑗 to each possible question 𝑖 and 𝑗. Such a strategy can be completely

specified by listing the variables 𝑎𝑖, 𝑏𝑗 for every possible question 𝑖 and 𝑗, and produces

correlations of the form

𝑝(𝑎, 𝑏|𝑖, 𝑗) = 𝛿𝑎,𝑎𝑖𝛿𝑏,𝑏𝑗 (1.1.2)

where 𝛿 is the standard Kronecker delta.

Classical Alice and Bob can also use randomness to produce correlations. In this setting

we imagine Alice and Bob looking at some random classical event – for example a die roll

– and then choosing their response to a question based on that. This randomness can be

20

private, meaning Alice and Bob each roll a die individually once the experiment has started,

or shared, meaning Alice and Bob roll a die before the game has started and store the result

somewhere, then only look at it once the experiment is underway. In either case, the strategy

Alice and Bob use to produce correlations can be specified by a probability distribution 𝑟(𝜆)

over some classical randomness, along with a variables 𝑝𝑖,𝜆𝑎 , 𝑞𝑗,𝜆𝑏 giving the probability of Alice

(resp. Bob) giving response 𝑎 (resp. 𝑏) to question 𝑖 (resp. 𝑗) when classical randomness

takes value 𝜆. These variables must form a probability distribution, so 𝑝𝑖,𝜆𝑎 , 𝑞𝑗,𝜆𝑏 ≥ 0 and

∑︁
𝑎∈𝒪𝐴

𝑝𝑖,𝜆𝑎 =
∑︁
𝑏∈𝒪𝐵

𝑞𝑗,𝜆𝑏 = 1 (1.1.3)

and for all 𝜆, 𝑖, 𝑗. The correlations produced by these classical strategies satisfy

𝑝(𝑎, 𝑏|𝑖, 𝑗) =
∫︁
𝜆

𝑟(𝜆)𝑝𝑖,𝜆𝑎 𝑞𝑗,𝜆𝑏 . (1.1.4)

where we made use of the measurement independence assumption in assuming 𝜆 was in-

dependent of 𝑖 and 𝑗. We let 𝐶𝑐 denote the set of all classical correlations, and 𝐶𝑐(𝑛,𝑚)

denote all classical correlations with fixed question and answer set sizes |ℐ𝐴| = |ℐ𝐵| = 𝑛 and

|𝒪𝐴| = |𝒪𝐵| = 𝑚.

One way of understanding 𝐶𝑐 is by noting that any correlation produced by random

classical strategies can be thought of as a mixture of correlations produced by deterministic

classical strategies. Put differently, 𝐶𝑐 can be viewed as the convex hull of the deterministic

classical correlations defined in Equation (1.1.2) (recall that we defined addition and scalar

multiplication of correlations by viewing them as tuples in |ℐ𝐴||ℐ𝐵||𝒪𝐴||𝒪𝐵|). From this

observation it follows that the set of correlations 𝐶𝑐 is both closed and convex.

Tensor Product Correlations

Now we consider the case where Alice and Bob have access to quantum resources. In

particular, they mare share an entangled state, and measure it before deciding on a response

to send to the verifier. We can describe such a strategy by specifying the shared state

𝜌 and positive operator-valued measure (POVM) operators {𝑃 𝑖
𝑎} and {𝑄𝑗

𝑏} describing the

21

measurements made by Alice and Bob after receiving questions 𝑖 and 𝑗, respectively. To

enforce the condition that Alice and Bob cannot communicate during the game we demand

that the state 𝜌 live in a separable Hilbert space ℋ = ℋ𝐴 ⊗ℋ𝐵 with Alice’s measurement

operators living entirely in ℋ𝐴 and Bob’s in ℋ𝐵. (That is, for any 𝑖 ∈ ℐ𝐴 and 𝑎 ∈ 𝒪𝐴 we

have 𝑃 𝑖
𝑎 =

(︁
𝑃 𝑖
𝑎

)︁
𝐴
⊗ 𝐼𝐵, and similarly for Bob). The correlations produced by these strategies

are given by

𝑝(𝑎, 𝑏|𝑖, 𝑗) = tr
[︀
𝑃 𝑖
𝑎𝑄

𝑗
𝑏𝜌
]︀
. (1.1.5)

We let 𝐶𝑞 denote the set of all correlations that can be realized by strategies where Hilbert

spaces ℋ𝐴 and ℋ𝐵 are both finite dimensional. The POVM formalism allows for mixtures of

strategies, so it follows that 𝐶𝑞 is convex. Furthermore, a Naimark dilation (or “church of the

large Hilbert space” argument) shows that any correlation in 𝐶𝑞 can be realized by a strategy

where measurement operators {𝑃 𝑖
𝑎} and {𝑄𝑗

𝑏} are projective, and 𝜌 = |𝜓⟩⟨𝜓| is a pure state.

In this case, correlations take the form

𝑝(𝑎, 𝑏|𝑖, 𝑗) = ⟨𝜓|𝑃 𝑖
𝑎𝑄

𝑗
𝑏|𝜓⟩ =

⃦⃦
𝑃 𝑖
𝑎𝑄

𝑗
𝑏 |𝜓⟩

⃦⃦2
(1.1.6)

We can also consider the correlations which can be produced by strategies with ℋ𝐴 and

ℋ𝐵 infinite. We denote this set 𝐶𝑞𝑠 (for quantum spatial – referring to the “spatial” tensor

product). As with 𝐶𝑞, mixing strategies shows that 𝐶𝑞𝑠 is convex, and a Naimark dilation

argument gives that correlations in 𝐶𝑞𝑠 can be achieved with pure states 𝜌 and projective

measurements.

It was shown in [60] that neither 𝐶𝑞 nor 𝐶𝑞𝑠 are closed. The set 𝐶𝑞𝑎 (standing for “quantum

approximable”) denotes the closure of 𝐶𝑞. By a result in [57] 𝐶𝑞𝑎 contains 𝐶𝑞𝑠, and so 𝐶𝑞𝑎 is

also the closure of 𝐶𝑞𝑠. This set is closed and convex, and can be viewed as the set of all

correlations approximable by tensor product strategies.

22

Commuting Operator Correlations

So far when discussing quantum strategies we enforced the condition that Alice and Bob

can’t communicate by demanding the Hilbert space they share be factorizable, with each

player only measuring their half of the space. But there is another constraint we could have

chosen to enforce the no communication condition. If we simply demand that each of Alice’s

measurement operators commute with each of Bob’s, so

𝑃 𝑖
𝑎𝑄

𝑗
𝑏 −𝑄

𝑗
𝑏𝑃

𝑖
𝑎 = 0 (1.1.7)

for all 𝑖, 𝑗, 𝑎, 𝑏 ∈ ℐ𝐴, ℐ𝐵,𝒪𝐴,𝒪𝐵 we would also known that no information is exchanged

between Alice and Bob during the measurement process. Any correlation which can be

produced by operators which commute in this way and act on a finite dimensional Hilbert

space can also be produced by measurement operators acting on a tensor product Hilbert space

[57]. However commuting operators acting on a infinite dimensional Hilbert space can produce

correlations which can’t be reproduced by operators acting on any tensor product Hilbert

space. Even stronger, these correlations aren’t even the closure of the set of correlations

that can be produced by tensor-product strategies [36]. We denote the set of correlations

producible by commuting operator strategies 𝐶𝑞𝑐 (for “quantum commuting”). This set is

both closed and convex, and strictly larger than 𝐶𝑞𝑎.

Separations Between Correlation Sets

Table 1.1 summarizes the correlations introduced in the previous sections.

𝐶𝑐 Classical correlations.
𝐶𝑞 Quantum correlations, produced by tensor product (equivalently commuting) mea-

surements on states living in a finite dimensional Hilbert space.
𝐶𝑞𝑠 Quantum seperable correlations, produced by tensor product measurements made

on states living in a potentially infinite dimensional Hilbert space.
𝐶𝑞𝑎 Quantum approximable correlations, defined to be the closure of 𝐶𝑞 (or equivalently

the closure of 𝐶𝑞𝑠 [57])
𝐶𝑞𝑐 Quantum commuting correlations, produced by commuting measurements made on

a potentially infinite dimensional Hilbert space.

Table 1.1: Classical and Quantum Correlation Sets

23

These correlations form an increasing chain of correlation sets, which can be summarized

by the equation

𝐶𝑐

[12, 4]
⊂ 𝐶𝑞

[16]
⊂ 𝐶𝑞𝑠

[60]
⊂ 𝐶𝑞𝑎

[36]
⊂ 𝐶𝑞𝑐. (1.1.8)

While it will not be the focus of this thesis, it should be pointed out that the proofs that

each of these inclusions is proper represented a major breakthrough in our understanding of

quantum correlations. In particular, the final inclusion 𝐶𝑞𝑎 ⊂ 𝐶𝑞𝑐 was proven to be strict

very recently [36]. The proof of this fact is equivalent to a disproof of Connes’ embedding

conjecture, a longstanding conjecture in mathematics.

1.1.2 Nonlocal Games

The separations between correlation sets discussed in the previous section motivate a type of

test which the verifier can use to check the resources shared by Alice and Bob. The verifier

can ask Alice and Bob to produce a certain correlation, then send questions and record the

Alice and Bob’s responses. If the responses are consistent with a certain correlation, the

verifier concludes that Alice and Bob share the resources needed to produce it. For example,

by asking Alice and Bob to produce a correlation which is in 𝐶𝑞 but not in 𝐶𝑐, the verifier

can check that Alice and Bob share an entangled state. One can imagine tests built on the

other strict inclusions which test for infinite dimensional states, or the presence non-separable

Hilbert spaces allowing for commuting operator style measurements.

But there are some theoretical obstacles to such a test. Firstly, the verifier cannot

know exactly the correlation that would be produced by the player’s strategy, but can

only approximate it based on statistics collected from the player’s response. This type of

approximation can never distinguish between a set of correlations and it’s closure, so no

test of this form can distinguish between correlations in 𝐶𝑞, 𝐶𝑞𝑠, and 𝐶𝑞𝑎 (for example).

Furthermore, collecting these statistics requires many repeated rounds of interaction with the

players. So far our analysis has assumed Alice and Bob are “memoryless,” picking a strategy

before the test begins and then following that same strategy every time they are asked a

question. If Alice and Bob keep a list of the list of questions asked and their responses to each

24

round of the game and vary their future responses depending on that, they can potentially

spoof a correlation which they could not have produced with their given resources [1].

Value of a Nonlocal Game

A nonlocal game is a way of defining a test that avoids these difficulties. A nonlocal game 𝒢

with question sets ℐ𝐴, ℐ𝐵 and response sets 𝒪𝐴,𝒪𝐵 is defined by a probability distribution 𝜋

on ℐ𝐴⊗ℐ𝐵 and a “scoring” function 𝑉 : ℐ𝐴⊗ℐ𝐵 ⊗𝒪𝐴⊗𝒪𝐵 → [0, 1]. Given a nonlocal game

𝒢 and a set of correlations 𝐶 we define the value the correlations 𝐶 achieve on the nonlocal

game as

sup
{𝑝}∈𝐶

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
(1.1.9)

with the sum taken over all 𝑖, 𝑗 ∈ ℐ𝐴, ℐ𝐵 and 𝑎, 𝑏 ∈ 𝒪𝐴,𝒪𝐵. Important values are the classical

value of a game

𝜔(𝒢) = sup
{𝑝}∈𝐶𝑐

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
(1.1.10)

the tensor product value

𝜔*𝑡𝑝(𝒢) = sup
{𝑝}∈𝐶𝑞

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
(1.1.11)

= sup
{𝑝}∈𝐶𝑞𝑠

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
(1.1.12)

= sup
{𝑝}∈𝐶𝑞𝑎

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
(1.1.13)

(note the supremum makes the value achieved by these three sets of correlations equivalent,

since 𝐶𝑞𝑎 ⊃ 𝐶𝑞𝑠 is the closure of 𝐶𝑞) and the commuting operator value

𝜔*𝑐𝑜(𝒢) = sup
{𝑝}∈𝐶𝑞𝑐

(︃∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗)

)︃
. (1.1.14)

25

Nonlocal Games as Tests of Resources

If the value achieved on a nonlocal game differs between two correlation sets this game can be

used to test the resources shared by Alice and Bob. As a concrete example, consider a game

𝒢 with 𝜔(𝐺) < 𝜔*𝑡𝑝(𝒢) (the Bell test can be phrased as such a game). To test the resources

shared by Alice and Bob the verifier plays many rounds of this game with Alice and Bob,

choosing questions according to the distribution 𝜋 and scoring the player’s responses according

to the value function 𝑉 . Afterwards, the verifier computes the average score achieved by the

players over all the rounds of the game. If this score exceeds 𝜔(𝒢) the verifier concludes that

players can produce correlations outside the correlation set 𝐶𝑐.1 Because 𝜔*𝑡𝑝(𝒢) > 𝜔(𝒢) there

must be some strategy that players with access to quantum resources can follow which will

allow them to achieve an average score greater than 𝜔(𝒢) on the game. Thus, the nonlocal

game 𝒢 allows players with quantum resources to convince the verifier of this fact.2

It is worth discussing why the nonlocal games formalism avoids the problems with the

correlation test discussed in the previous section. First, note the supremum in the definition

guarantees that if 𝜔*𝑡𝑝(𝒢) > 𝜔(𝒢) then they are separated by some finite amount 𝜖, and this

separation can detected with a finite number of tests. More subtly, because the nonlocal

game scoring function

∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝑝(𝑎, 𝑏|𝑖, 𝑗) (1.1.15)

is linear in the conditional probabilities 𝑝(𝑎, 𝑏|𝑖, 𝑗), the expected score achieved by the players

over all the rounds is just the sum of the expected scores achieved by their strategies on

each round, and the players having a memory of previous rounds doesn’t change the overall

maximum expected score they can achieve on the game.

1Technically, the verifier concludes this with some probability, but that probability goes to 1 provided the
average value achieved by the players stays a constant distance above 𝜔(𝒢) as the number of rounds goes to
infinity.

2Technically, they only convince the verifier they have access to some super-classical resource, capable of
producing a larger set of correlations than 𝐶𝑐 or that they have managed to exploit correlations such that
𝜋(𝑖, 𝑗|𝜆) ̸= 𝜋(𝑖, 𝑗).

26

The Game Functional

When working with with nonlocal games it is often helpful to rewrite the expected score the

players achieve when playing the game as a function of their strategy. We can then express

the value of the game as a supremum over strategies.

In the classical case, linearity of the scoring function tells us that the optimal classical

strategy for the game will be a deterministic strategy. We can write the expected score

achieved by these strategies as

∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝛿𝑎,𝑎𝑖𝛿𝑏,𝑏𝑗 (1.1.16)

and the classical value of the game as

𝜔(𝒢) = max
{𝑎𝑖},{𝑏𝑗}

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗)𝛿𝑎,𝑎𝑖𝛿𝑏,𝑏𝑗 (1.1.17)

with the maximum taken over all possible assignments of deterministic responses {𝑎𝑖}, {𝑏𝑗}

in 𝒪|ℐ𝐴|𝐴 ,𝒪|ℐ𝐵 |𝐵 , respectively.

In the quantum case we can restrict to pure states and projective measurements (by

the Naimark dilation) and write the expected score achieved by players following a certain

strategy as

∑︁
𝑖,𝑗,𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑖, 𝑗)𝜋(𝑖, 𝑗) ⟨𝜓|𝑃 𝑖
𝑎𝑄

𝑗
𝑏|𝜓⟩ = ⟨𝜓|Φ(𝒢)|𝜓⟩ , (1.1.18)

where we have introduced the Φ𝒢 shorthand to encompass the operator part of the scoring

function of the game. We will sometimes refer to Φ(𝒢) as the game polynomial.

We can then obtain the tensor product and commuting operator values of a game by taking

the supremum of ⟨𝜓|Φ𝒢|𝜓⟩ over strategies corresponding to tensor-product and commuting

operator strategies, respectively.

For some games we will use operators other than 𝛿𝑎,𝑎𝑖 , 𝑃
𝑖
𝑎, 𝑄

𝑗
𝑏 to allow us to write the

classical and quantum scoring functions of the game in a more convenient form. We will see

one example of this when discussing XOR games in Section 1.1.2.

27

Perfect Games

An important subclass of games are games for which the scoring function 𝑉 evaluates to either

0 or 1. For these games we can divide sets of questions and responses into valid of “winning”

responses for which 𝑉 (𝑎, 𝑏, 𝑖, 𝑗) = 1 and invalid or “losing” responses with 𝑉 (𝑎, 𝑏, 𝑖, 𝑗) = 0.

A strategy for one of these games is called perfect if it achieves an expected score of 1,

that is, if it produces only winning responses. Games with perfect quantum strategies but no

perfect classical strategies (so 𝜔(𝒢) < 𝜔*𝑡𝑝(𝒢) = 1) are called pseudotelepathy games.

XOR Games

One family of nonlocal games that will be central to this thesis are XOR games. These are

games with response sets 𝒪𝐴 = 𝒪𝐵 = {0, 1} and question sets of arbitrary size (we normally

take ℐ𝐴 = ℐ𝐵 = {1, 2, ..., 𝑛}, with 𝑛 an arbitrary integer). Furthermore, the scoring function

for these games takes value either zero or one and only depends on the parity of the players’

responses so

𝑉 (0, 0, 𝑖, 𝑗) = 𝑉 (1, 1, 𝑖, 𝑗) and (1.1.19)

𝑉 (0, 1, 𝑖, 𝑗) = 𝑉 (1, 0, 𝑖, 𝑗) (1.1.20)

for any 𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}. The distribution 𝜋 over questions is usually taken to be uniform

over some set of allowed questions. Then an XOR game can be specified by a set of allowed

questions and a “winning” parity for each pair of questions (𝑖, 𝑗) that can be sent to the

players. For reasons that will become clear shortly, we specify this list of questions and

parities via a system of equations

�̂�𝑖1 + 𝑌𝑗1 = 𝑠1 (1.1.21)

�̂�𝑖2 + 𝑌𝑗2 = 𝑠2 (1.1.22)
...

�̂�𝑖𝑚 + 𝑌𝑗𝑚 = 𝑠𝑚 (1.1.23)

28

with each equation 𝑋𝑖𝑡 + 𝑌𝑗𝑡 = 𝑠𝑡 specifying that a pair of questions (𝑖𝑡, 𝑗𝑡) is sent to the

players with winning parity response 𝑠𝑡 ∈ {0, 1}.

Classical strategies for answering an XOR game can be described by variables �̂�𝑖, 𝑌𝑗

specifying Alice/Bob’s response to question 𝑖/𝑗 respectively. By identifying these variables

with the �̂�, 𝑌 variables in the system of equations above, we see the classical value of an

XOR game is equal to the maximum fraction of satisfiable clauses in the associated system of

equations, with addition taken mod 2 (i.e. the system of equations viewed as a system of

equations over Z2). It follows that it is easy to decide if an XOR game has a perfect classical

strategy (via Gaussian elimination in Z2). Classically, we can think of an XOR game as

testing the satisfiability of the associated system of equations.

It is convenient to describe quantum strategies for XOR games in terms of observables

𝑋𝑖 = 1− 2𝑃 𝑖
1 and 𝑌𝑗 = 1− 2𝑄𝑗

1. (1.1.24)

Note that

𝑃 𝑖
0 = 1− 𝑃 𝑖

1 =
1

2
(1−𝑋𝑖) , (1.1.25)

with similar equations holding for 𝑌𝑗 and 𝑄𝑗
0, so specifying the matrices 𝑋𝑖, 𝑌𝑗 for 𝑖, 𝑗 ∈

{1, ..., 𝑛} completely specifies the projectors associated with the game. By construction,

the matrices 𝑋𝑖 and 𝑌𝑗 square to the identity. They live in separate factors of a Hilbert

space if they correspond to a tensor product strategy, and commute if they correspond to a

commuting operator strategy. In terms of these matrices the game polynomial for an XOR

game can be written

Φ(𝒢) = 1

2

(︃
1 +

1

𝑚

𝑚∑︁
𝑡=1

𝑋𝑖𝑡𝑌𝑗𝑡(−1)𝑠𝑡
)︃

(1.1.26)

where the 𝑖𝑡, 𝑗𝑡, 𝑠𝑡 come from the system of equations corresponding to the game outlined in

Equations (1.1.21) to (1.1.23).

The tensor product and commuting operator values of XOR games coincide, and can be

computed efficiently [63]. Crucially, this value can sometimes be higher than the classical

29

value of an XOR game, meaning that there are XOR games which allow for simple tests of

quantum resources. The Bell test can be phrased as such a game.

1.1.3 Multipartite Correlations

Thus far our discussion has only involved experiments involving one verifier and two players.

But all the concepts discussed, including correlations sets, nonlocal games, perfect games, and

XOR games, generalize naturally to a multi-player setting. Here tensor-product correlations

involve a Hilbert space that factors into separate pieces for each player, and commuting

operator correlations involve the constraint that all operators corresponding two two different

players’ measurements must commute.

The primary complication in the multiplayer setting is notational. When dealing with

three or more players we abandon the 𝑃,𝑄 notation for projectors and instead define 𝑃 (𝛼)𝑖𝑎
to be the projector corresponding to player 𝛼 giving response 𝑎 to question 𝑖. Similarly, we

define

𝑋
(𝛼)
𝑖 = 1− 2𝑃 (𝛼)𝑖1 (1.1.27)

when discussing multiplayer XOR games, though we will sometimes use 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 in the

special case of three player XOR games.

1.2 Bounds on the Set of Correlations

Two closely related tasks are deciding whether a correlation belongs to the set of tensor

product or commuting operator correlations and computing the tensor product or commuting

operator value of a nonlocal game. A naive approach to either task requires searching

over possibly infinite dimensional strategies, and so it is somewhat surprising that either

question can be answered. Indeed, as mentioned in the introduction, both tasks are in general

undecidable.

But there do exist some general techniques for lower bounding the set of tensor-product

correlations and upper bounding the set of commuting operator-correlations. We discuss

30

those here.

1.2.1 Brute Force Lower Bound on Tensor Product Correlations

The first approach to discuss is a slight refinement of the naive “brute force search” discussed

in the introduction to this section. Consider fixing a dimension 𝑑 and searching over and 𝜖-net

covering all matrices of dimension ≤ 𝑑 for strategies that approximate a given correlation

to within error 𝜖. The set of correlations producible by these strategies is contained in the

set of tensor product correlations, that is it is an inner approximation to the set of tensor

product correlations. Furthermore, this inner approximation converges to 𝐶𝑞𝑎 as 𝑑→∞ and

𝜖→ 0. Recall from Section 1.1.1 that 𝐶𝑞𝑠 ⊂ 𝐶𝑞𝑎, or equivalently that any infinite dimensional

tensor product correlation can be approximated by a finite dimensional ones. Then there

exists a algorithm which provides a converging inner approximation to 𝐶𝑞𝑎, or equivalently

an algorithm which gives a lower bound converging to 𝜔*𝑡𝑝(𝒢) for any nonlocal game 𝒢.

1.2.2 ncSoS Upper Bound on Commuting Operator Correlations

It is also possible to describe a set of correlations containing the commuting operator

correlations, i.e. obtain an outer approximation to the set of commuting operator correlations

via bounds coming from the non-commutative sum of squares (ncSoS) hierarchy. These

bounds were developed independently in [46] and [32, 19]. There are several different ways to

understand the ncSOS bounds, including as result of a noncommutative positivstellensatz, or

(relatedly) as obtained from a proof system based on non-commutative sums of squares. We

do not discuss those views here, and instead give a direct, somewhat “low-level” view of the

ncSOS approach which parallels the discussion in [46].

For notational convenience we discuss the ncSoS approach in the case of bipartite (two-

player) correlations with question set ℐ𝐴 = ℐ𝐵 = {1, 2} and response set 𝒪𝐴 = 𝒪𝐵 = {0, 1}.

The key initial observation is that, for any projectors 𝑃 𝑖
𝑎, 𝑄

𝑗
𝑏 and state |𝜓⟩ we must have

∑︁
𝑝

⟨𝜓|𝑝*𝑝|𝜓⟩ ≥ 0 (1.2.1)

31

for any sum over complex polynomials 𝑝 formed from the projectors 𝑃 𝑖
𝑎, 𝑄

𝑗
𝑏 (so, for example,

we could have a polynomial 𝑝 = 𝑃 1
0 + (2 + 𝑖)𝑄1

0 − 5𝑃 1
0𝑃

2
0𝑄

1
1), and with * denoting the

conjugate transpose. To encode this constraint algorithmically, we first define the vector 𝑣(𝑑)

of matrices associated with some commuting operator strategy to be the vector consisting of

all monomials of degree ≤ 𝑑 formed from projectors 𝑃 and 𝑄, so, for example

𝑣(2) = (1, 𝑃 1
0 , 𝑃

1
1 , 𝑄

1
0, 𝑄

1
1, (𝑃

1
0)

2, 𝑃 1
0𝑃

1
1 , 𝑃

1
0𝑄

1
0, ..., (𝑄

1
1)

2). (1.2.2)

Then the moment matrix of degree 2𝑑 associated with the strategy (sometimes called the

Hankel matrix) 𝑀 (2𝑑) is defined entrywise by setting

𝑀
(2𝑑)
𝑖𝑗 = ⟨𝜓|

(︀
𝑣(𝑑)
)︀*
𝑖

(︀
𝑣(𝑑)
)︀
𝑗
|𝜓⟩ . (1.2.3)

Note that the correlations produced by a strategy (or the value a strategy achieves on a

nonlocal game) can be read off from the matrix 𝑀 (2𝑑) for any 𝑑 ≥ 1. We sometimes refer to

these correlations as “coming from” the moment matrix 𝑀 (2𝑑). The constraint of Eq. (1.2.1)

applied to all polynomials 𝑝 of degree ≤ 𝑑 is equivalent to the demand that 𝑀 (2𝑑) be positive

semi-definite.

If the projectors 𝑃 and 𝑄 come from a commuting operator strategy the entries of the

moment matrix 𝑀 (2𝑑) satisfy additional constraints, for example

⟨𝜓|𝑃 𝑖
𝑎𝑄

𝑗
𝑏|𝜓⟩ = ⟨𝜓|𝑄

𝑗
𝑏𝑃

𝑖
𝑎|𝜓⟩ (1.2.4)

and

⟨𝜓|𝑃 𝑖
0|𝜓⟩+ ⟨𝜓|𝑃 𝑖

1|𝜓⟩ = ⟨𝜓|1|𝜓⟩ = 1. (1.2.5)

We do not list all those constraints here, but instead refer the reader to [46] for a complete

list.

Now we do not restrict ourselves to moment matrices coming from commuting operator

strategies, but instead call any psd matrix of the correct dimensions satisfying and satisfying

32

constraints like the ones listed in Equations (1.2.4) and (1.2.5) a moment matrix. Thus

the set of all degree 2𝑑 moment matrices includes all matrices associated with commuting

operator strategies, but can be larger. The degree 2𝑑 (or level 𝑑) ncSoS approximation to the

commuting operator correlations is the set of correlations coming from any degree 2𝑑 moment

matrix. The degree 2𝑑 ncSoS upper bound on the commuting operator value of a game is the

supremum value achievable by correlations coming from degree 2𝑑 moment matrices.

As an example of a ncSoS type bound, we consider the CHSH game [12] – an XOR game

encoding the Bell test with clauses

�̂�0 + 𝑌0 = 0 (1.2.6)

�̂�0 + 𝑌1 = 0 (1.2.7)

�̂�1 + 𝑌0 = 0 (1.2.8)

�̂�1 + 𝑌1 = 0, (1.2.9)

hence game polynomial

Φ𝐶𝐻𝑆𝐻 =
1

2

(︂
1 +

1

4
(𝑋0𝑌0 +𝑋0𝑌1 +𝑋1𝑌0 −𝑋1𝑌1)

)︂
. (1.2.10)

Then (working with observables 𝑋 and 𝑌 as opposed to projectors and recalling that 𝑋 and

𝑌 observables commute with each other and square to the identity) we see

(︂
1√
2
(𝑋0 +𝑋1)− 𝑌0

)︂2

+

(︂
1√
2
(𝑋0 −𝑋1)− 𝑌1

)︂2

(1.2.11)

=
1

2
(𝑋0 +𝑋1)

2 + 𝑌 2
0 −
√
2(𝑋0𝑌0 +𝑋1𝑌0) (1.2.12)

+
1

2
(𝑋0 −𝑋1)

2 + 𝑌 2
1 −
√
2(𝑋0𝑌1 −𝑋1𝑌1) (1.2.13)

= 4−
√
2(𝑋0𝑌0 +𝑋1𝑌0 +𝑋0𝑌1 −𝑋1𝑌1) (1.2.14)

= 4(1 +
√
2− 2

√
2Φ𝐶𝐻𝑆𝐻). (1.2.15)

33

Thus for any commuting observables 𝑋 and 𝑌 and state 𝜓 we have

⟨𝜓|1 +
√
2− 2

√
2Φ𝐶𝐻𝑆𝐻 |𝜓⟩ ≥ 0 =⇒ ⟨𝜓|Φ𝐶𝐻𝑆𝐻 |𝜓⟩ ≤

1

2

(︂
1 +

1√
2

)︂
(1.2.16)

hence the commuting operator value of the CHSH game is at most 1
2

(︁
1 + 1√

2

)︁
(which ends

up being optimal). Because this bound involved the squares of polynomials of degree at most

1, it can be produced algorithmically by the ncSoS algorithm run to level 1 (or equivalently

degree 2). In fact, a result of Tsierlson shows that a tight upper bound for the commuting

operator value of all 2 player XOR games can be obtained by level 1 ncSoS [63]. (In the same

result Tsierlson also showed that tensor product and commuting operator values of 2 player

XOR games always coincide).

As 𝑑 is increased the level 𝑑 ncSoS approximation to the set of commuting operator

correlations gets more restrictive, since we need to extend matrices to larger matrices while

keeping them PSD and satisfying the commuting operator strategy constraints. Put differently,

any correlation coming from a degree 2𝑑 moment matrix also comes from a degree 2𝑑− 2

moment matrix, since a truncation of a psd matrix remains psd. The key result of [46] is

that ncSoS approximation to the set of commuting operator correlations converges to the set

of commuting operator correlations as 𝑑→∞. Equivalently, for any game 𝒢 the degree 𝑑

ncSoS upper bound on 𝜔*𝑐𝑜(𝒢) converges to the true commuting operator value of the game

from above as 𝑑→∞.

1.2.3 Computing the Value of a Nonlocal Game

Brute force search gives a converging series of inner approximations to the set of tensor product

correlations, while the ncSoS hierarchy gives a converging series of outer approximations to

the set of commuting operator correlations. Consequently, for any nonlocal game 𝒢, there

exists a series of computable lower bounds which converge to 𝜔*𝑡𝑝(𝒢) from below, and a series

of computable upper bounds which converge to 𝜔*𝑐𝑜(𝒢) from above. That means that if

the commuting operator and tensor product values of a game ever coincide, there exists an

algorithm which can approximate the value of that game to arbitrary precision.

Equally interesting is the contrapositive of this statement: if there exists a nonlocal game

34

whose tensor product or commuting operator value cannot be approximated to arbitrary

precision (i.e. a game for which it is undecidable whether 𝜔*𝑡𝑝 > 𝐶 or 𝜔*𝑡𝑝 < 𝐶 − 𝜖 for constant

𝜖) then the tensor product and commuting operator values of the game must differ by a

constant amount. This is exactly the type of argument used in [36] to prove the separation

between 𝐶𝑞𝑎 and 𝐶𝑞𝑐.

1.3 Mathematical Tools

This section contains a “quick and dirty” introduction to the main mathematical tools that

will be used in this thesis. A reader interested in a more formal introduction is encouraged

to look at one of the many excellent textbooks on the subject.

1.3.1 Groups, Algebras, and Group Algebras

Groups

A group consists of a set of elements 𝑆 together with a binary (product) operator · which

satisfy the following rules:

1. Closure: For all 𝑎, 𝑏 ∈ 𝑆, 𝑎 · 𝑏 = 𝑐 ∈ 𝑆.

2. Associativity: For all 𝑎, 𝑏, 𝑐 ∈ 𝑆, (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐).

3. Identity Element: There exists an element 1 ∈ 𝑆 satisfying 1 · 𝑎 = 𝑎 for all 𝑎 ∈ 𝑆.

4. Inverses: For all 𝑎 ∈ 𝑆 there exists an element 𝑎−1 ∈ 𝑆 satisfying 𝑎 · 𝑎−1 = 1.

from here on we will omit the · notation when working with groups and just write 𝑎 · 𝑏 = 𝑎𝑏.

Group Presentations

We will frequently describe groups using the language of group presentations. To understand

this language we first define the free group generated by a set of generators 𝐺 = {𝑔1, ..., 𝑔𝑚}

to be the group consisting of all words formed from products of elements 𝑔1, ..., 𝑔𝑚 and

35

their inverses 𝑔−11 , ..., 𝑔−1𝑚 , with the product of two words being their composition and the

understanding that any generator 𝑔𝑖 and it’s inverse cancel to the identity, so

𝑔𝑖𝑔
−1
𝑖 = 1 and hence (1.3.1)

𝑤1𝑔𝑖𝑔
−1
𝑖 𝑤2 = 𝑤1(1)𝑤2 = 𝑤1𝑤2 for all 𝑔𝑖 ∈ 𝐺 (1.3.2)

where 𝑤1 and 𝑤2 are arbitrary words in the group.

Next, we define a set of relations 𝑅 to be a set of rewrite rules on the free group. These

rewrite rules can be presented as equalities of the form

𝑤𝑖 = 𝑤𝑗 (1.3.3)

with each 𝑤𝑖, 𝑤𝑗 a word in the free group or more compactly as a set of words 𝑅 = {𝑟1, 𝑟2, ...𝑟𝑘}

with the understanding that each 𝑟𝑖 ∈ 𝑅 corresponds to an equality of the form

𝑟𝑖 = 1. (1.3.4)

Finally, we define the group presented by a set of generators 𝐺 and relations 𝑅 to be

the group consisting of all words formed by the generators 𝐺 with equality between any two

words that can be transformed into each other using the rewrite rules 𝑅 (and the basic free

group rewrite rule 𝑔𝑖𝑔−1𝑖 = 1).3 It should be pointed out that the rewrite rules in 𝑅 can be

used to both increase and decrease the length of a word, so determining equality between two

words in a group presentation can be a difficult task (and is, in general, undecidable [44, 48]).

Algebras

An associative algebra (hereafter simply called an algebra) consists of a vector space together

with a bilinear product. Slightly more explicitly, an algebra 𝒜 over a field 𝐾 consists of a

vector space over 𝐾 along with a mapping · satisfying

3A more formal definition for those already familiar with the terminology: The group with generators
𝐺 and relations 𝑅 is isomorphic to the quotient of the free group generated by 𝐺 by the normal subgroup
generated by 𝑅.

36

1. 𝑎 · (𝑏+ 𝑐) = 𝑎 · 𝑏+ 𝑎 · 𝑐

2. (𝑎+ 𝑏) · 𝑐 = 𝑎 · 𝑐+ 𝑏 · 𝑐

3. 𝑘1𝑎 · 𝑘2𝑏 = 𝑘1𝑘2(𝑎 · 𝑏)

for all 𝑎, 𝑏, 𝑐 ∈ 𝒜 and 𝑘1, 𝑘2 ∈ 𝐾. Everywhere in this thesis we will take 𝐾 = C, so all

algebras considered are algebras over the complex numbers. We call these “complex” algebras.

A complex *-algebra is an algebra together with an involution operator * which respects

the bilinear product and acts like the normal adjoint on complex numbers, so 𝑎* ∈ 𝒜 for all

𝑎 ∈ 𝒜 with

1. (𝑎*)* = 𝑎

2. (𝑎 · 𝑏)* = 𝑏* · 𝑎*

3. (𝑎+ 𝑏)* = 𝑎* + 𝑏* and

4. (𝛼𝑎) = 𝛼*𝑎*

for all 𝑎, 𝑏 ∈ 𝒜 and 𝛼 ∈ C. Finally, a 𝐶*-algebra is a * algebra together with a norm ‖‖ such

that the algebra is complete in the metric induced by the norm and

‖𝑎*𝑎‖ = ‖𝑎*‖‖𝑎‖ (1.3.5)

for all 𝑎 in the algebra.

Group Algebras

Given a group 𝐺, the group algebra C[𝐺] is a 𝐶*-algebra with elements of the form
∑︀

𝑔 𝛽𝑔𝑔

with 𝑔 ∈ 𝐺, 𝛽𝑔 ∈ C, multiplication inherited from the group multiplication so 𝑔1 · 𝑔2 = (𝑔1𝑔2)

and * operation defined by 𝑔* = 𝑔−1. Informally we can think of C[𝐺] as being “the algebra

formed from polynomials of elements in 𝐺”.

To define a norm on C[𝐺] (to make it a 𝐶*-algebra) we note that we can view elements of

the algebra as acting by left multiplication on 𝐿2(𝐺), i.e. square summable complex valued

functions of 𝐺. Then the norm is just the standard operator norm.

37

Subgroups, Subalgebras, Ideals and Left Ideals

Given a group 𝐺 a subgroup 𝐻 of 𝐺 is a subset of elements from 𝐺 which contain the identity

element, inverses, and is closed under the group binary operation. Then 𝐻 itself forms a

group, with the same binary operator · as defined for 𝐺. Given a set 𝑆 of elements from 𝐺

the sugbroup generated by 𝑆, denoted ⟨𝑆⟩ (or ⟨𝑆⟩𝐺 when the group 𝐺 may be unclear), is

the smallest subgroup of 𝐺 containing the set 𝑆. We can think of ⟨𝑆⟩ as the group formed

by mulitplication of elements of 𝑆 and their inverses using the binary operator defined on 𝐺.

Given an algebra 𝒜, a subalgebra 𝒞 is defined to be a vector subspace of 𝒜 which is

closed under multiplication of vectors (but not inverses). Because 𝒞 does not need to contain

inverses it may not contain a multiplicative identity. An subalgebra that does is called a unital

subalgebra. A subalgebra of a *-algebra closed under the * operation is called a *-subalgebra.

Finally, the subalgebra (resp *-subalgebra) generated by a set 𝑆 of elements coming from 𝒜

is defined to be the smallest subalgebra (resp *-subalgebra) of 𝒜 containing 𝑆.

Similarly, given an algebra 𝒜 an ideal ℐ is a subset of elements in 𝒜 which is closed under

addition and “absorbs multiplication”, so for any 𝑏 ∈ ℐ we have 𝑎𝑏 ∈ ℐ and 𝑏𝑎 ∈ ℐ where

𝑎 ∈ 𝒜 is arbitrary. The ideal generated by a set 𝑆 of elements coming from 𝒜 is the smallest

ideal of 𝒜 containing 𝑆. A left ideal (or right ideal) 𝐿ℐ of 𝒜 is defined similarly, except it

only adsorbs multiplication from the left (or right).

1.3.2 Representations

Generally speaking, a representation is a map between mathematical objects which preserves

the structure of the objects in the pre-image. In this thesis we will be largely focus on

representations 𝜋 mapping groups or algebras into the algebra of bounded operators on a

Hilbert space ℋ, which we denote ℬ(ℋ). In the groups case this means 𝜋 is a mapping from

𝐺 to operators which satisfies 𝜋(𝑔1)𝜋(𝑔2) = 𝜋(𝑔1𝑔2) for any 𝑔1, 𝑔2 ∈ 𝐺. In the algebras case 𝜋

is a *-representation, meaning it satisfies the multiplicative condition above along with the

condition 𝜋(𝑎+ 𝑏) = 𝜋(𝑎) + 𝜋(𝑏), 𝜋(𝛼𝑎) = 𝛼𝜋(𝑎) and 𝜋(𝑎*) = 𝜋(𝑎)* for any 𝑎, 𝑏 ∈ 𝒜, 𝛼 ∈ C.

This representations language lets us view quantum operators as arising from representa-

tions of groups or algebras. We can then impose structure on the operators by asking for

38

representations of groups or algebras with the desired structure. This view is elaborated on

greatly in Chapter 2.

1.4 Results in this Thesis

In Chapter 2 we construct a general algebraic framework, based on a result in noncommutative

algebraic geometry known as a Nullstellensatz (NullSS) which we will use to analyze XOR

games. In Chapter 3 we discuss a condition called the noPREF condition which guarantees

existence of a perfect commuting operator strategy for an XOR game, along with a tensor

product strategy for XOR games we call MERP. We then show MERP strategies are optimal

for games meeting the noPREF condition and use this result to analyze a class of games

called symmetric XOR games. In Chapter 4 we continue our analysis of XOR games and

show that MERP strategies are optimal for any 3 player XOR game. This result hinges on

an involved algebraic proof built around instances of the subgroup membership problem. In

Chapter 5 we use techniques from the previous chapters to construct families of XOR games

with desirable properties, and to analyze randomly generated XOR games. Finally, Chapter 6

concludes the thesis with a discussion of some open problems motivated by the results of the

thesis.

39

40

Chapter 2

Algebraic Framework

In this chapter we introduce a general mathematical framework for studying the commuting-

operator value of nonlocal games. We introduce the concept of a Universal Game Algebra,

which is an algebra with generators satisfying the same relations as the projectors corre-

sponding to a commuting-operator strategy, then show commuting operator strategies can

be obtained from representations of this universal game algebra. We then connect the

question of whether a nonlocal game has a perfect commuting operator strategy to a result

in noncommutative algebraic geometry known as a Nullstellensatz. This connection gives an

“algebraic” characterization of games with perfect commuting operator strategies in terms of

ideals and sums of squares of elements in the universal game algebra. Finally, we show we

can further simplify this algebraic characterization for a large class of games which includes

XOR games. This simplification reduces the question of whether or not an XOR game has a

perfect commuting operator strategy to the subgroup membership question – a well studied

question in algebraic combinatorics.

The notation in this chapter is adapted to describe arbitrary many-player games and so is

somewhat more involved than the notation in the introduction. This notation is introduced

in Section 2.2.

41

2.1 Introduction

The foundations of classical Algebraic Geometry and Real Algebraic Geometry are NullSSs.

Over the last two decades the basic analogous NullSS for NC variables have emerged.

This chapter concerns nonlocal quantum strategies for games, recalls NullSS which are

helpful, extends these, and applies them to a very broad collection of games. In the process

it brings together results spread over different literatures, hence rather than being terse our

style is fairly expository.

2.2 Nonlocal Game Definitions

This section gives an overview of all the terminology used to discuss nonlocal games in this

paper. Section 2.2.1 gives an overview of the technical definitions which are key to this paper.

Then, in Section 2.2.2 we introduce an algebraic framework which we will use to describe

nonlocal games and their commuting operator strategies. In Section 2.2.3 we describe some

well-know families of games using the language introduced in previous sections. Finally, in

Section 2.2.4 we describe the condition that a nonlocal game has perfect commuting operator

strategy in terms of some of the notation introduced in previous sections.

2.2.1 Technical Definitions

Commuting Operator Strategies

We start with a definition of a commuting operator strategy for nonlocal games. The setting

is a Hilbert space ℋ, possibly infinite dimensional. An important class of operators are all

𝜌 ∈ ℬ(ℋ) which are positive semidefinite with trace 1. These are called density operators.

Definition 2.2.1. A commuting operator strategy 𝑆 for a 𝑘-player, 𝑛-question, 𝑚-response

nonlocal game is defined by (𝜌,𝒫(1),𝒫(2), ...,𝒫(𝑘)) where 𝜌 is a density operator and each

𝒫(𝛼) in {𝒫(1), ...𝒫(𝑘)} is a set of projectors acting on the same Hilbert space

𝒫(𝛼) = {𝑃 (𝛼)𝑖𝑎 : 𝑖 ∈ [𝑛], 𝑎 ∈ [𝑚]} (2.2.1)

42

which satisfy

[𝑃 (𝛼)𝑖𝑎, 𝑃 (𝛽)
𝑘
𝑏] = 0 ∀ 𝛼 ̸= 𝛽 (2.2.2)

and

∑︁
𝑎∈[𝑚]

𝑃 (𝛼)𝑖𝑎 = 1 ∀ 𝛼 ∈ [𝑘], 𝑖 ∈ [𝑛]. (2.2.3)

Note that as a consequence of Equation (2.2.3) we have 𝑃 (𝛼)𝑖𝑎𝑃 (𝛼)𝑖𝑏 = 0 and hence

[𝑃 (𝛼)𝑖𝑎, 𝑃 (𝛼)
𝑖
𝑏] = 0 for any 𝛼, 𝑖 and 𝑎 ̸= 𝑏.

Note. We will try and stick to the convention of having 𝛼, 𝛽, 𝛾 variables label players, 𝑖, 𝑗, 𝑘

variables label questions, and 𝑎, 𝑏, 𝑐 variables label responses. Using 𝑘 for the number of

players, 𝑛 for the number of questions and 𝑚 for the number of responses will also be standard.

Games and their Commuting Operator Value

A 𝑘-player, 𝑛-quesiton, 𝑚-response nonlocal game 𝒢 = (𝑉, 𝜇) is specified by a scoring function

𝑉 : [𝑛]𝑘 × [𝑚]𝑘 → [0, 1] (2.2.4)

and a distribution 𝜇 on [𝑛]𝑘. The score a strategy 𝑆 obtains on a game 𝒢 = (𝑉, 𝜇) is given by

𝑣(𝒢, 𝑆) =
∑︁
�⃗�∈[𝑛]𝑘

∑︁
�⃗�∈[𝑚]𝑘

𝜇
(︁
𝑖
)︁
𝑉
(︁
𝑖, �⃗�
)︁
Tr

⎡⎣∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)𝜌

⎤⎦ (2.2.5)

The commuting operator value 𝜔*𝑐𝑜(𝒢) of a game is defined to be the supremum value achieved

over commuting operator strategies so

𝜔*𝑐𝑜(𝒢) = sup
𝑆∈𝒮𝑐𝑜

𝑣(𝒢, 𝑆). (2.2.6)

where we have defined 𝒮𝑐𝑜(𝑘, 𝑛,𝑚) to be the set of all 𝑘-player, 𝑛-question, 𝑚-response

commuting operator strategies. Often 𝑘, 𝑛, 𝑚 are implied from context, and we just

43

write 𝒮𝑐𝑜.

2.2.2 The Algebraic Picture

In this paper we think strategies 𝑆 ∈ 𝒮𝑐𝑜 as arising from from representations of an algebra

we call the universal game algebra. We define that algebra next.

Universal Game Algebra

Here we define the Universal Game Algebra 𝒰𝒜 in terms of various generators and relations.

These relations reflect the algebraic properties of projectors or related algebraic objects.

Projection Generators Define 𝒰𝒜 to be the *-algebra with generators 𝑒(𝛼)𝑖𝑎 which satisfy

relations

[𝑒(𝛼)𝑖𝑎, 𝑒(𝛽)
𝑗
𝑏] = 0 ∀ 𝑖, 𝑗, 𝑎, 𝑏, 𝛼 ̸= 𝛽, and (2.2.7)(︀

𝑒(𝛼)𝑖𝑎
)︀2

=
(︀
𝑒(𝛼)𝑖𝑎

)︀*
= 𝑒(𝛼)𝑖𝑎 (2.2.8)∑︁

𝑎

𝑒(𝛼)𝑖𝑎 = 1 ∀ 𝛼, 𝑖 (2.2.9)

with 𝑖, 𝑗 ∈ [𝑛]; 𝑎, 𝑏 ∈ [𝑚], and 𝛼 ∈ [𝑘]. (Technically we should define a different Universal

Algebra for every different value 𝑛,𝑚 and 𝑘, so 𝒰𝒜 = 𝒰𝒜(𝑛,𝑚, 𝑘). We frequently omit this

detail when 𝑛,𝑚 and 𝑘 are clear from context.)

There are two common change of variables we will use when describing the algebra 𝒰𝒜.

Signature Matrix Generators The first change of variables is to generators satisfying

the algebraic properties of signature matrices, defined by

𝑥(𝛼)𝑖𝑎 := 2𝑒(𝛼)𝑖𝑎 − 1. (2.2.10)

44

These variables satisfy relations

𝑥(𝛼)𝑖𝑎𝑥(𝛽)
𝑗
𝑏 = 𝑥(𝛽)𝑗𝑏𝑥(𝛼)

𝑖
𝑎 ∀ 𝑖, 𝑗, 𝑎, 𝑏, 𝛼 ̸= 𝛽, and (2.2.11)∑︁

𝑎

𝑥(𝛼)𝑖𝑎 = −(𝑚− 2) (2.2.12)

(︀
𝑥(𝛼)𝑖𝑎

)︀*
= 𝑥(𝛼)𝑖𝑎 (2.2.13)(︀

𝑥(𝛼)𝑖𝑎
)︀2

= 1. (2.2.14)

It is straightforward to check that the set of relations above gives a defining set of relations

for the algebra 𝒰𝒜 written in terms of the 𝑥(𝛼)𝑖𝑎.

Cyclic Unitary Generators The second change of variables is to cyclic unitary generators,

defined by

𝑐
(𝛼)
𝑖 :=

∑︁
𝑎

exp

(︂
2𝜋𝑎

𝑚

)︂
𝑒(𝛼)𝑖𝑎. (2.2.15)

These observables satisfy relations

𝑐
(𝛼)
𝑖 𝑐

(𝛽)
𝑗 = 𝑐

(𝛽)
𝑗 𝑐

(𝛼)
𝑖 ∀ 𝑖, 𝑗, 𝛼 ̸= 𝛽, and (2.2.16)(︁

𝑐
(𝛼)
𝑖

)︁*
=
(︁
𝑐
(𝛼)
𝑖

)︁−1
(2.2.17)(︁

𝑐
(𝛼)
𝑖

)︁𝑚
= 1. (2.2.18)

Straightforward calculation using the inverse transformation

𝑒(𝛼)𝑖𝑎 =
1

𝑚

∑︁
𝑏

(︂
exp

(︂
−2𝜋𝑎
𝑚

)︂
𝑐
(𝛼)
𝑖

)︂𝑏

(2.2.19)

shows that Equations (2.2.16) to (2.2.18) also form a defining set of relations for 𝒰𝒜. This

shows that 𝒰𝒜 can be viewed as the group algebra generated by the 𝑘 fold direct product of

the cyclic group of order 𝑚, or 𝒰𝒜 ∼= C
[︁
(Z𝑚)

𝑘
]︁
.

A notable special case occurs when the answer set of the game contains only 2 responses.

45

In this case the cyclic observable and signature matrix change of variables are the same, since

𝑐
(𝛼)
𝑖 = 𝑒(𝛼)𝑖0 − 𝑒(𝛼)𝑖1 = 2𝑒(𝛼)𝑖0 − 1 = 𝑥(𝛼)𝑖0 (2.2.20)

and

𝑥(𝛼)𝑖0 = −𝑥(𝛼)𝑖1. (2.2.21)

In this case we use the simplified notation 𝑥(𝛼)𝑖 = 𝑐
(𝛼)
𝑖 = 𝑥(𝛼)𝑖0.

Strategies as Representations of the Universal Game Algebra

Now we make an observation that is key to understanding the rest of this chapter: any

commuting operator strategy 𝑆 can be described by a representation 𝜋 of 𝒰𝒜 into bounded

operators acting on a Hilbert space ℋ and a density operator 𝜌 ∈ ℬ(ℋ). Moreover, convexity

arguments tell us that whenever a game has a perfect commuting operator strategy it has

a perfect commuting operator strategy where 𝜌 is rank 1, i.e. a projector onto a state

𝜓 ∈ ℋ. This means that we can study perfect commuting operator strategies by studying

representations of 𝒰𝒜 into bounded operators on some (possibly infinite dimensional) Hilbert

space ℋ along with the action of those representations on a state 𝜓 ∈ ℋ. We make use of

this observation in the subsequent sections.

An Algebraic Definition of the Commuting Operator Value of a Game

For any game 𝒢 define the game polynomial Φ𝒢 ∈ 𝒰𝒜 by

Φ𝒢 =
∑︁
�⃗�∈[𝑛]𝑘

∑︁
�⃗�∈[𝑚]𝑘

𝜇
(︁
𝑖
)︁
𝑉
(︁
𝑖, �⃗�
)︁ ∏︁

𝛼∈[𝑘]

𝑒(𝛼)
�⃗�(𝛼)

�⃗�(𝛼)
(2.2.22)

This game polynomial is an algebraic encoding of an average over all the winning responses

for a game 𝒢, weighted by the probability of the corresponding question being sent to the

46

players. Then, recalling the view of strategies as representations introduced in Section 2.2.2

𝜔*𝑐𝑜(𝒢) = sup
𝜋,𝜌

tr[𝜋(Φ𝒢)𝜌] (2.2.23)

where the supremum is taken over all representations 𝜋 of 𝒰𝒜 into bounded operators on

a Hilbert space ℋ, and density operators 𝜌 ∈ ℬ(ℋ). In particular, a game has a perfect

commuting operator strategy iff there exists a representation 𝜋 of 𝒰𝒜 into ℋ and a density

operator 𝜌 ∈ ℬ(ℋ) with tr[𝜋(Φ𝒢)𝜌] = 1. By convexity, this condition is equivalent to the

existence of a representation 𝜋 of 𝒰𝒜 into ℋ and a state |𝜓⟩ ∈ ℋ with 𝜋(Φ𝒢) |𝜓⟩ = |𝜓⟩ .

In this paper we will restrict ourselves to the case where the image of 𝑉 is {0, 1} and the

distribution 𝜇 is uniform over a set of allowed questions. In this case a game can be specified

by a universe of possible questions 𝒬 and sets 𝒴 (⃗𝑖) listing valid or “winning” response vectors

to each question vector �⃗� ∈ 𝒬. Using this notation we have

Φ𝒢 =
1

|𝒬|
∑︁
�⃗�∈𝒬

∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑒(𝛼)
�⃗�(𝛼)
�⃗�(𝛼). (2.2.24)

We also define the set of invalid responses 𝒩 (⃗𝑖) to be the compliment to the set 𝒴 (⃗𝑖).

These sets can also be used to specify a game.

2.2.3 Examples of games

XOR Games

XOR games are games with 𝑚 = 2 responses which we interpret as a 0 or a 1. The valid

responses 𝒴 (⃗𝑖) to each question vector �⃗� are all responses which sum to either 0 or sum to 1

mod 2.

The game polynomial of an XOR game takes the form

Φ𝒢 =
1

2
+

1

2𝑇

𝑇∑︁
𝑡=1

(−1)𝑠𝑡
∏︁
𝛼∈[𝑘]

𝑥
(𝛼)

�⃗�𝑡(𝛼)
(2.2.25)

with 𝑇 > 0 some integer, the vector �⃗�𝑡 ∈ [𝑛]𝑘 and the integer 𝑠𝑡 ∈ {0, 1} are arbitrary. We

47

refer to each monomial

(−1)𝑠𝑡
∏︁
𝛼∈[𝑘]

𝑥
(𝛼)

�⃗�𝑡(𝛼)
(2.2.26)

as a clause, so the game polynomial above corresponds to a 𝑇 -clause XOR game.

2.2.4 Equations Corresponding to Perfect Games

A strategy is a perfect strategy for a given game if 𝑣(𝒢, 𝑆) = 1. These perfect strategies

admit a nice characterization in terms of invalid and valid response sets.

Theorem 2.2.2. A commuting operator strategy 𝑆 with question set 𝒬 and valid response

sets 𝒴 (⃗𝑖) is perfect for a game 𝒢 iff

⎛⎝⎛⎝ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠− 𝐼
⎞⎠ 𝜌 = 0 for all �⃗� ∈ 𝒬 (2.2.27)

Equivalently, a strategy with question set 𝒬 and invalid response sets 𝒩 (⃗𝑖) is perfect for 𝒢 iff

⎛⎝∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠ 𝜌 = 0 for all (⃗𝑖, �⃗�) ∈ (𝒬,𝒩 (⃗𝑖)). (2.2.28)

Proof. By definition, a strategy for a nonlocal game is perfect iff

1

|𝒬|
∑︁
�⃗�∈𝒬

Tr

⎡⎣ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)𝜌

⎤⎦ = 1. (2.2.29)

Now, for all �⃗� ∈ 𝒬 we have

∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼) ≤

∑︁
�⃗�∈[𝑚]

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼) = 𝐼 (2.2.30)

48

hence

Tr

⎡⎣ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)𝜌

⎤⎦ ≤ Tr[𝜌] = 1 (2.2.31)

and a game is perfect iff we have for all �⃗� ∈ 𝒬:

∑︁
�⃗�∈𝒴 (⃗𝑖)

Tr

⎡⎣⎛⎝∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠ 𝜌

⎤⎦ = 1 (2.2.32)

=⇒ Tr

⎡⎣⎛⎝⎛⎝ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠− 𝐼
⎞⎠ 𝜌

⎤⎦ = 0 (2.2.33)

Again using that

∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼) ≤ 𝐼 (2.2.34)

we see ⎛⎝ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠− 𝐼 (2.2.35)

is negative semidefinite, hence Equation (2.2.33) implies

⎛⎝⎛⎝ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠− 𝐼
⎞⎠ 𝜌 = 0 (2.2.36)

which finishes the first part of the proof.

To convert this condition from terms of 𝒴 to terms of 𝒩 fix �⃗� ∈ 𝒬 and use

∑︁
�⃗�∈𝒴 (⃗𝑖)∪𝒩 (⃗𝑖)

Tr

⎡⎣⎛⎝∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠ 𝜌

⎤⎦ = Tr[(𝐼) 𝜌] = 1. (2.2.37)

In words we are summing over all responses valid or invalid to question �⃗�. Subtract the first

49

line of Equation (2.2.33) from this to get
∑︀

�⃗�∈𝒩 (⃗𝑖) = 0. This is a sum of nonnegative terms,

so each is 0:

Tr

⎡⎣⎛⎝∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠ 𝜌

⎤⎦ = 0 ∀ �⃗� ∈ 𝒩 (⃗𝑖) (2.2.38)

Since operators 𝑃 (𝛼)𝑖𝑎 and 𝜌 inside the trace are positive semidefinite we get their product is

0, thus finishing the proof. ⎛⎝∏︁
𝛼∈[𝑘]

𝑃 (𝛼)
�⃗�(𝛼)
�⃗�(𝛼)

⎞⎠ 𝜌 = 0 ∀ �⃗� ∈ 𝒩 (⃗𝑖) (2.2.39)

More generally, we can obtain a characterization of games described in terms of a

game polynomial Φ𝒢, provided Φ𝒢 is written as a (weighted) average of contractions. This

characterization uses the view of strategies as representations of 𝒰𝒜 described in Section 2.2.2

and applies naturally to XOR games.

Theorem 2.2.3. A game 𝒢 with game polynomial

Φ𝒢 =
𝑇∑︁
𝑡=1

1

𝜈𝑡
𝑔𝑡 (2.2.40)

with 𝑇 an integer, each 𝜈𝑡 a positive real number with
∑︀

𝑡 𝜈𝑡 = 1, and each 𝑔𝑡 a polynomial in

𝒰𝒜 satisfying 𝑔𝑡𝑔*𝑡 ≤ 1 has a perfect strategy 𝑆 iff there exists a representation 𝜋 of 𝒰𝒜 into

bounded operators on a Hilbert space ℋ and state 𝜓 ∈ ℋ satisfying

(𝜋(𝑔𝑡)− 𝐼)𝜌 = 0 (2.2.41)

for all 1 ≤ 𝑡 ≤ 𝑇 . If this condition is satisfied then the representation 𝜋 and state 𝜌 give the

perfect commuting operator strategy 𝑆.

50

Proof. Similarly to the proof of Theorem 2.2.2 we note the strategy 𝑆 is perfect iff

𝑇∑︁
𝑡=1

1

𝜈𝑡
Tr[𝜋(𝑔𝑡)𝜌] = 1 (2.2.42)

=⇒ Tr[𝜋(𝑔𝑡)𝜌] = 1 ∀ 1 ≤ 𝑡 ≤ 𝑇 (2.2.43)

=⇒ Tr[(𝜋(𝑔𝑡)− 𝐼)𝜌] = 0 ∀ 1 ≤ 𝑡 ≤ 𝑇 (2.2.44)

=⇒ (𝜋(𝑔𝑡)− 𝐼)𝜌 = 0 ∀ 1 ≤ 𝑡 ≤ 𝑇 (2.2.45)

where we used on the second line that

Tr[𝜋(𝑔𝑡)𝜌] ≤ ‖𝜋(𝑔*𝑡)‖Tr[|𝜌|] ≤ 1 (2.2.46)

by Holder’s inequality, with ‖‖ denoting the operator norm, and that for any vector 𝑥 ∈ ℋ

ℜ[𝑥*(𝜋(𝑔𝑡)− 𝐼)𝑥] = ℜ[𝑥*(𝜋(𝑔𝑡)𝑥]− 𝑥*𝑥 ≤ 0 (2.2.47)

with equality iff (𝜋(𝑔𝑡)− 𝐼)𝑥 = 𝑥 on the last line.

2.3 NullSS for Perfect Nonlocal Games

In this section we show nonlocal games with perfect commuting operator strategies can be

studied using NullSS. Section 2.3.1 gives a quick overview of commutative and noncommutative

NullSS. Section 2.3.2 introduces a noncommutative NullSS which applies naturally to nonlocal

games with perfect commuting operator strategies. Finally Section 2.3.3 connects the

noncommutative NullSS of the previous section with the algebraic language introduced in

Section 2.2 and gives an explicit “algberaic” characterization of nonlocal games with perfect

commuting operator strategies.

51

2.3.1 Background on NullSS

Hilbert’s NullSS

We begin our discussion of NullSS with Hilbert’s NullSS; a foundational result in (commutative)

algebraic geometry. The statement is the following

Theorem 2.3.1 (Hilbert’s NullSS). Let 𝐾 be an algebraically closed field, and 𝐾[𝑋1, 𝑋2, ..., 𝑋𝑑]

be the commutative algebra of 𝑑-variate polynomials over 𝐾. Let 𝑃 = {𝑝1, ..., 𝑝𝑇} be a set

of polynomials in the algebra, and let 𝑞 be some other polynomial in the algebra. Then the

following are equivalent:

1. 𝑞(�⃗�) = 0 for all �⃗� ∈ 𝐾𝑑 with 𝑝1(�⃗�) = 𝑝2(�⃗�) = ... = 𝑝𝑇 (�⃗�) = 0.

2. There exists an integer 𝑟 with 𝑞𝑟 ∈ 𝐼(𝑃), where 𝐼(𝑃) is the ideal of the algebra

𝐾[𝑋1, 𝑋2, ..., 𝑋𝑑] generated by the set of polynomials 𝑃 .

Note that we can write the condition 𝑞𝑟 ∈ 𝐼(𝑃) more concretely as 𝑞𝑟 =
∑︀𝑇

𝑖=1 𝑏𝑖𝑝𝑖, where

𝑏1, ..., 𝑏𝑇 are polynomials in the algebra 𝐾[𝑋1, ..., 𝑋𝑑]. From this characterization it is clear

that condition 2 implies condition 1. Hilbert’s NullSS shows that this implication is actually

bidirectional.

A useful corollary of Hilbert’s NullSS is the following result, sometimes called the weak

NullSS.

Corollary 2.3.2. Let 𝐾 be an algebraically closed field, and 𝐾[𝑋1, 𝑋2, ..., 𝑋𝑑] be the commu-

tative algebra of 𝑑-variate polynomials over 𝐾. Let 𝑃 = {𝑝1, ..., 𝑝𝑇} be a set of polynomials

in the algebra. Then the following are equivalent:

1. There exists a �⃗� ∈ 𝐾𝑑 with 𝑝1(�⃗�) = 𝑝2(�⃗�) = ... = 𝑝𝑇 (�⃗�) = 0.

2. 1 /∈ 𝐼(𝑃), where 𝐼(𝑃) is the ideal of the algebra 𝐾[𝑋1, 𝑋2, ..., 𝑋𝑑] generated by the set

of polynomials 𝑃 .

Proof. This result follows from Hilbert’s NullSS with 𝑞 = 1. If there is no vector �⃗� with

𝑝1(�⃗�) = 𝑝2(�⃗�) = ... = 𝑝𝑇 (�⃗�) = 0 then the polynomial 𝑞 = 1 vanishes on every vector �⃗� all

polynomials in the set 𝑃 vanish, hence 1 ∈ 𝐼(𝑃). On the other hand if 1 ∈ 𝐼(𝑃) then it is

clear that we cannot have a vector �⃗� with 𝑝1(�⃗�) = 𝑝2(�⃗�) = ... = 𝑝𝑇 (�⃗�) = 0.

52

Corollary 2.3.2 gives an algebraic criterion which can be used to check whether a system

of polynomial equations has a solution. Next, we discuss noncommutative NullSS, which can

be used to check similar criterion for systems of polynomial equations with noncommuting

variables.

Noncommutative NullSS

The first question encountered when generalizing NullSS to a noncommutative setting is what

constitutes a zero in the noncommutative setting. In general, there are 3 definitions of zeros

that are sometimes used:

1. Hard Zeros, where we have that a nc polynomial 𝑝 = 0 identically.

2. Directional Zeros, where we have that a representation of an nc polynomail 𝑝 vanishes

when acting on a state, or 𝜋(𝑝)𝜓 = 0 for a representation 𝜋 of 𝑝 into ℬ(ℋ) and some

state 𝜓 ∈ ℋ, with ℋ a Hilbert space.

3. Determinental Zeros, where we have that det(𝑝) = 0 for some nc polynomial 𝑝.

Here we focus on directional zeros, which correspond naturally to the eigenvalue equations

encountered when considering nonlocal games.

The simplest NullSS in this setting concerns real nc polynomials in a free algebra. Here

we have the following “perfect” NullSS.

Theorem 2.3.3 (Free Algebra Directional Zeroes NullSS [33]). Let ℱ = R[𝑥1, 𝑥2, ..., 𝑥𝑛] be

an algebra over the reals with free nc variables 𝑥1, 𝑥2, ..., 𝑥𝑛. Let 𝑞 ∈ ℱ be a polynomial, and

𝑝 ∈ ℱ be an analytic polynomial. Then the following are equivalent:

1. For all representations 𝜋 mapping ℱ into matrices and real vectors 𝑣 of the appropriate

dimension we have 𝜋(𝑞)𝑣 = 0 whenever 𝜋(𝑝)𝑣 = 0

2. 𝑞 ∈ 𝐿ℐ(𝑝), where 𝐿ℐ(𝑝) is in the left ideal of ℱ generated by the polynomial 𝑝.

With a little work the polynomial 𝑝 in this nullSS can be upgraded to a set of polynomials.

Then, by setting 𝑞 = 1 this nullSS can be used to characterize when a system of equations

has no matrix eigenvalue solution.

53

But this “simple” nc NullSS does not apply to the nonlocal games case for at least

two reasons. Firstly, this nullSS only applies to polynomials in the free algebra, while the

algebra 𝒰𝒜 corresponding to nonlocal game observables is manifestly not free. Secondly,

and releatedly, this nullSS only considers matrix solutions, while we must consider infinite

dimensional operator solutions to address all commuting operator strategies.

In the next section we present a more sophisticated nc NullSS which does apply to the

nonlocal games situation.

2.3.2 A general noncommutative NullSS

Let 𝒜 be a complex finitely presented pre 𝐶* algebra. Let ℐ (resp. 𝐿ℐ) denote an (resp. left

ideal) in 𝒜. A positive *-representation 𝜋 of 𝒜 is *-preserving and maps the SoS cone into

positive operators. 𝑆𝑂𝑆𝑀 denotes all sums of 𝑢*𝑢 with 𝑢 ∈𝑀 .

Theorem 5.1 and Corollary 5.4 in [9], see [9, 10] say

Theorem 2.3.4. Suppose that {𝑝𝜆}𝜆∈Λ is a subset of 𝒜. If 𝑎 ∈ 𝒜 satisfies 𝜋(𝑎)𝑣 = 0 for

every hilbert space representation 𝜋 such that 𝜋(𝑝𝜆)𝑣 = 0 for all 𝜆 ∈ Λ, then

1.

− 𝑎*𝑎 ∈ 𝑐𝑙𝑜𝑠[𝑆𝑂𝑆𝒜 − 𝑆𝑂𝑆𝐿ℐ] (2.3.1)

The converse is also true, provided this holds without the closure.

2.

− 𝑎*𝑎 ∈ 𝑆𝑂𝑆𝒜 − 𝑐𝑙𝑜𝑠[𝑐𝑜𝑛𝑒(𝑆)] (2.3.2)

where 𝑆 := {𝑝𝜆}𝜆∈Λ.

3.

− 𝑎*𝑎 ∈ 𝑐𝑙𝑜𝑠[𝑆𝑂𝑆𝒜 + 𝐿ℐ + 𝐿ℐ*] (2.3.3)

In these assertions when 𝒜 is the free algebra and 𝐿ℐ is finitely generated, representations

𝜋 into finite dimensional Hilbert spaces will suffice to imply these algebraic certificates.

We do not define closure here, since soon we will not need it for the 𝑎 = 1 case.

54

Proof of Theorem 2.3.4 Here we give a proof which ties the parts of the theorem to corre-

sponding theorems in [9]. This is unintuitive so in Section Section 2.3.2 we sketch the idea of

the proof.

The forward side is in [9], (1) is Theorem 5.1.

(2) is Corollary 5.4 and does require closure for 𝑎 = 1. It just applies the old

𝑝*𝑞 + 𝑞*𝑝 = (𝑝+ 𝑡𝑞)*(𝑝+ 𝑡𝑞)/𝑡− 𝑡𝑞*𝑞 − 𝑝*𝑝/𝑡

trick to get

−𝑎*𝑎+ 𝑡𝑞*𝑞 = 𝑆𝑂𝑆𝒜 + (𝑝+ 𝑡𝑞)*(𝑝+ 𝑡𝑞)/𝑡− 𝑝*𝑝/𝑡.

Then 𝑡→ 0 stays in the closure of the right side.

The converse is so trivial and is not even stated in [9], so we prove it now. Suppose the

certificate holds and 𝜋(𝑝𝜆)𝑣 = 0 for all 𝜆. Then 𝑠𝑢𝑚 𝑜𝑓 (𝑣*𝜋(𝑆)*𝜋(𝑆)𝑣) = 0, so

− 𝑣*𝜋(𝑎)*𝜋(𝑎)𝑣 = 𝑣*𝜋(𝑆𝑂𝑆𝒜)𝑣 (2.3.4)

forcing both sides to be 0; thus 𝜋(𝑝𝜆)𝑣 = 0 for all 𝜆 forces 𝜋(𝑎)𝑣 = 0.

(3) Combines Corollary 5.3 and Lemma 5.5 of [9].

The finite dimensional assertion is proved constructively and this is the major part

of [9].

Intuition behind the proof of Theorem 2.3.4

Here is a special case of Theorem 2.3.4, included here since a sketch of its proof is supplies

the readers intuition. Also this lesser level of generality is all that is needed here for nonlocal

games.

Theorem 2.3.5. Suppose 𝒜 is a complex finitely presented 𝐶* algebra with generators {𝑥𝑗},

set of relations Γ, and norm denoted ‖ · ‖ and 𝐿ℐ is a finitely generated left ideal in 𝒜. The

the following are equivalent

1. There exists a Hilbert space ℋ, a positive *-representation 𝜋 of 𝒜 into 𝐵(ℋ) and 𝜓 ∈ ℋ

satisfying 𝜋(𝑓)𝜓 = 0 for all 𝑓 ∈ 𝐿ℐ.

55

2. −1 ̸∈ 𝑆𝑂𝑆𝒜 + 𝐿ℐ + 𝐿ℐ*.

Proof (Sketch – full details in [9]). Easy side: suppose −1 ∈ 𝑆𝑂𝑆𝒜 + 𝐿ℐ + 𝐿ℐ*. If 𝜋, 𝜓

satisfying condition 1 exist, then ⟨𝜓|𝜋(−1)|𝜓⟩ = ⟨𝜓|−1|𝜓⟩ ≥ 0; contradiction.

Harder side: Let 𝒮 denote the span of 1 and 𝐿ℐ + 𝐿ℐ*. By Hahn Banach (fancy form

Eidelheit Kakutani) there is a continuous linear functional ̂︀𝐿 : 𝒮 + 𝑆𝑂𝑆𝒜 → C satisfying

̂︀𝐿(−1) = −1 ̂︀𝐿(𝐿ℐ) ≥ 0 �̂�(𝑆𝑂𝑆𝒜) ≥ 0 (2.3.5)

Since 𝐿ℐ is a subspace ̂︀𝐿(𝐿ℐ) = 0 (else multiplying by −1 would produce an element in

𝐿ℐ with ̂︀𝐿 negative). Also by construction ̂︀𝐿(𝑓) = 𝑓(0) ≥ 0 for any 𝑓 which is a sum of

hermetian squares in 𝒮. (this is why we add a SOS.) That is, ̂︀𝐿 is a positive linear functional,

hence by the Krein Extenson Theorem it has a positive linear extension 𝐿 to 𝒜.

Now perform the GNS construction. Define the bilinear form

(𝑎, 𝑏) := 𝐿(𝑎*𝑏) (2.3.6)

on 𝒜. Set 𝑁 := {𝑎|𝐿(𝑎*𝑎)} = 0 and because

0 ≤ 𝐿(𝑎*𝑟*𝑟𝑎) ≤ 𝐿(𝑎*𝑎)𝐿(𝑎*𝑟*𝑟𝑟*𝑟𝑎) = 0 (2.3.7)

by Cauchy-Schwarz we see 𝑁 is a left ideal; hence 𝐿(𝑁) = 0, hence 𝑁 ̸= 𝒜. Since

𝐿ℐ*𝐿ℐ ⊂ 𝐿ℐ, (2.3.8)

we have 𝐿ℐ ⊂ 𝑁 .

Now consider the quotient space 𝒜/𝑁 which we identify with a Hilbert space ℋ̂ with

norm induced by the inner product defined above. Also define the quotient map 𝜑 : 𝒜 → ℋ̂,

𝜑(𝑎) := 𝑎+𝑁 (2.3.9)

and take 𝜓 := 𝜑(1). Let 𝜋 be the standard GNS *−representation of 𝒜, so 𝜋(𝑥𝑖)𝜑(𝑥𝑗) :=

56

𝜑(𝑥𝑖𝑥𝑗). This satisfies

(𝜋(𝑓)𝜓, 𝜋(𝑔)𝜓) = 𝐿(𝑓 *𝑔) (2.3.10)

which implies 𝜋(𝑓)𝜓 = 0 for all 𝑓 ∈ 𝑁 . Hence 𝜋(𝑓)𝜓 = 0. Noting GNS construction maps

into bounded operators (again, for details see [9]), we are done.

2.3.3 NullSS and Perfect Games

Combining the NullSS of Section 2.3.2 with the perfect game condition discussed in Sec-

tion 2.2.4 gives a new characterization of games with perfect commuting operator strategies

in terms of left ideals and sums of squares of the universal game algebra 𝒰𝒜.

We begin by defining some left ideals of 𝒰𝒜 which build on the valid and invalid response

sets discussed in Section 2.2.4. First, for any game 𝒢 with question set 𝒬 and valid responses

𝒴 (⃗𝑖) define the subset of valid vanishing polynomials 𝒴 by

𝒴 :=

⎧⎨⎩ ∑︁
�⃗�∈𝒴 (⃗𝑖)

∏︁
𝛼

𝑒(𝛼)
𝑖(𝛼)
𝑎(𝛼) − 1

⎫⎬⎭
�⃗�∈𝒬

. (2.3.11)

These are polynomials of the form 𝑦 − 1 for all 𝑦 ∈ 𝒴 (⃗𝑖) with �⃗� ∈ 𝒬. Similarly, define the

invalid vanishing polynomials 𝒩 by

𝒩 :=

{︃∏︁
𝛼

𝑒(𝛼)
𝑖(𝛼)
𝑎(𝛼)

}︃
(⃗𝑖,⃗𝑎)∈(𝒬,𝒩 (⃗𝑖))

. (2.3.12)

Note both 𝒴 and 𝒩 contain sets of polynomials in 𝒰𝒜 which correspond to polynomials

of projectors which must vanish on 𝜌 in any perfect commuting operator strategy. This

motivates the following result.

Theorem 2.3.6. Let 𝒢 be a a nonlocal game, and 𝒴 ,𝒩 be the valid and invalid vanishing

polynomails associated with the game. Then the following are equivalent:

1. 𝜔*𝑐𝑜(𝒢) = 1

57

2. −1 /∈ 𝐿ℐ
(︀
𝒴
)︀
+ 𝐿ℐ

(︀
𝒴
)︀*

+ 𝑆𝑂𝑆𝒰𝒜

3. −1 /∈ 𝐿ℐ (𝒩) + 𝐿ℐ (𝒩)* + 𝑆𝑂𝑆𝒰𝒜

Proof. Immediate from Theorems 2.2.2 and 2.3.5, plus the view of strategies as representations

introduced in Section 2.2.2.

This theorem apples to all games (according to the definitions here) and characterizes

which games do vs. do not have a quantum strategy. Unfortunately, the freedom given by the

SOS terms in this algebraic certificate can be hard to use. Hence, we turn next to situations

with no SOS term.

2.4 NullSS without SOS and Subgroup Membership

It is helpful to divide perfect game condition into two sub questions. The first is checking

whether −1 ∈ 𝐿ℐ + 𝐿ℐ* that is, whether

1 ∈ 𝐿ℐ + 𝐿ℐ*.

Intuitively, this question feels “algebraic", and we will show in Section 2.4.2 that in special

cases it reduces to the subgroup membership problem.

The second problem is checking whether

−1 ∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜 (2.4.1)

given that

1 /∈ 𝐿ℐ + 𝐿ℐ*. (2.4.2)

This question is more analytic, and adds substantial complexity to applications. In special

cases we have that

−1 /∈ 𝐿ℐ + 𝐿ℐ* =⇒ −1 /∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜 (2.4.3)

58

and hence the second problem is trivial. This seems closely related to the existence of

projections which are conditional expectations and respect SOS. The next section investigates

this link further.

2.4.1 Conditional Expectations and SOS Projections

Now we give simplifications of our NullSS which use the existence of either SOS projections

or SOS conditional expectations. The term “SOS” projection is introduced here (though

the concept is certainly standard), while the term conditional expectation is standard and a

definition can be found, for example, in [56]. We repeat these definitions here.

Definition 2.4.1 (SOS Projection). Given a *-algebra 𝒜 and a *-subalgebra 𝒞 an SOS-

projection 𝑃 : 𝒜 → 𝒞 is a projection (i.e. 𝑃 2 = 𝑃) satisfying the additional property that

𝑃 (𝑆𝑂𝑆𝒜) ⊆ 𝑆𝑂𝑆𝒞, that is, that sums of squares in 𝒜 are mapped to sums of squares in the

subalgebra.

Definition 2.4.2 (Conditional Expectation). Given a unital *-algebra 𝒜 and a unital *-

subalgebra 𝒞 a linear map 𝑝 : 𝒜 → 𝒞 is called a conditional expectation if it satisfies

1. 𝑝(𝑎)* = 𝑝(𝑎*) for all 𝑎 ∈ 𝒜.

2. 𝑝(𝑏1𝑎𝑏2) = 𝑏1𝑝(𝑎)𝑏2 for all 𝑎 ∈ 𝒜, 𝑏1, 𝑏2 ∈ 𝒞.

3. 𝑝(1𝒜) = 𝑝(1ℬ).

4. 𝑝(𝑆𝑂𝑆𝒜) ⊆ 𝑆𝑂𝑆𝒜 ∩ 𝒞.

Definition 2.4.3 (SOS Conditional Expectation). Given a unital *-algebra 𝒜 and a unital

*-subalgebra 𝒞 a SOS conditional expectation (called a strong conditional expectation in [56])

is a conditional expectation that also satisfies the SOS projection property, so

1. 𝑝(𝑆𝑂𝑆𝒜) ⊆ 𝑆𝑂𝑆𝒞.

We now show existence of these mappings can simplify the nonlocal games NullSS.

Lemma 2.4.4. −1 /∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜 iff there exists a subalgebra 𝒞 ⊆ 𝒰𝒜 with

59

1. An SOS projection 𝑃 : 𝒰𝒜 → 𝒞 and

2. 1 ∈ 𝒞 and 𝐿ℐ + 𝐿ℐ* ∈ 𝒞 and

3. −1 /∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒞.

Proof. Taking 𝒞 = 𝒰𝒜 and 𝑃 = 𝐼 makes the only if direction trivial.

To see the other direction, assume existence of a subalgebra 𝒞 satisfying the conditions of

the theorem. Then assume for contradiction that −1 ∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜. Applying the

SOS projection 𝑃 to both sides of this equation gives

𝑃 (−1) ∈ 𝑃 (𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜) (2.4.4)

=⇒ −1 ∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒞, (2.4.5)

a contradiction.

Possibly interesting is that Lemma 2.4.4 only requires the SOS projection property, not the

conditional expectation property, making it quite general. On the other hand, the requirement

that 𝐿ℐ +𝐿ℐ* ⊆ 𝒞 makes it tricky to come up with a useful subalgebra 𝒞. The next theorem

loosens the 𝐿ℐ+𝐿ℐ* condition by upgrading the SOS projection to a conditional expectation.

Lemma 2.4.5. Let 𝐹 denote a list of nc polynomials generating the left ideal 𝐿ℐ in 𝒰𝒜.

Given a subalgebra 𝒞 ⊆ 𝒰𝒜 with 𝐹 ⊆ 𝒞, let 𝐿ℐ𝒞 denote the left ideal of 𝒞 generated by 𝐹 .

Then −1 /∈ 𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜 iff there exists a subalgebra 𝒞 ⊆ 𝒰𝒜 with

1. An SOS conditional expectation 𝑃 : 𝒰𝒜 → 𝒞 and

2. 1 ∈ 𝒞 and 𝐹 ⊆ 𝒞 and

3. −1 /∈ 𝐿ℐ𝒞 + 𝐿ℐ*𝒞 + 𝑆𝑂𝑆𝒞.

Proof. As with Lemma 2.4.4 taking 𝒞 = 𝒰𝒜, 𝑃 = 𝐼 makes one direction trivial.

To see the other first note that any polynomial 𝑝 ∈ 𝐿ℐ can we written

𝑝 =
∑︁
𝑖

𝑎𝑖𝑏𝑖 (2.4.6)

60

with 𝑏𝑖 ∈ 𝐹 and 𝑎𝑖 arbitrary. Then, using that 𝑃 is left promodular gives that

𝑃 (𝑝) =
∑︁
𝑖

𝑃 (𝑎𝑖𝑏𝑖) (2.4.7)

=
∑︁
𝑖

𝑃 (𝑎𝑖)𝑏𝑖 ∈ 𝐿ℐ𝒞. (2.4.8)

We conclude that 𝑃 (𝐿ℐ) = 𝐿ℐ𝒞. Then, to prove the theorem assume for contradiction

that there exists a subalgebra 𝒞 satsifying the conditions of the theorem and that −1 ∈

𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜. Then

𝑃 (−1) ∈ 𝑃 (𝐿ℐ + 𝐿ℐ* + 𝑆𝑂𝑆𝒰𝒜) (2.4.9)

=⇒ −1 ∈ 𝐿ℐ𝒞 + 𝐿ℐ*𝒞 + 𝑆𝑂𝑆𝒞, (2.4.10)

a contradiction.

Now we do a preperation step for finding a subalgebra 𝒞 that makes Lemma 2.4.5 valuable.

We consider the subalgebra generated by {𝐹, 1}. This is the smallest possible subalgebra

which satisfies Condition 2. We show it also satisfies Condition 3 provided 1 is not in the

subalgebra generated by 𝐹 .

Lemma 2.4.6. Let 𝒜 be a 𝐶*-algebra and 𝐹 be a set of polynomials in 𝒜. Also let 𝒞 =

C ⟨{𝐹, 1}⟩ be the subalgebra of 𝒜 generated by the set of polynomials {𝐹, 1}. If

1 /∈ C ⟨𝐹 ⟩ (2.4.11)

then

−1 /∈ 𝐿ℐ𝒞 + 𝐿ℐ*𝒞 + 𝑆𝑂𝑆𝒞 (2.4.12)

Proof. First note that any polynomial 𝑝 ∈ 𝒞 ⟨𝐹, 1⟩ can be written as

𝑝 = 𝑝𝐹 + 𝛼 (2.4.13)

61

where 𝛼 ∈ C and 𝑝𝐹 is a polynomial in the elements from C ⟨𝐹 ⟩. It follows that any polynomial

𝑝′ ∈ 𝐿ℐ𝒞 can be written as

𝑝′ = (𝑝𝐹 + 𝛼) 𝑓 = 𝑝′𝐹 ∈ C ⟨𝐹 ⟩ (2.4.14)

with 𝑓 ∈ 𝐹 . A similar result holds for any polynomial in 𝐿ℐ*𝒞. Additionally, any polynomial

𝑝′′ ∈ 𝑆𝑂𝑆𝒞 can be written as

𝑝′′ =
∑︁
𝑖

(𝑝𝐹,𝑖 + 𝛼𝑖)(𝑝𝐹,𝑖 + 𝛼𝑖)
* (2.4.15)

=
∑︁
𝑖

(︀
𝑝2𝐹,𝑖 + 𝛼*𝑖 𝑝𝐹,𝑖 + 𝛼𝑖𝑝

*
𝐹,𝑖

)︀
+
∑︁
𝑖

𝛼2
𝑖 (2.4.16)

= 𝑝′′𝐹 + 𝛼′′ (2.4.17)

with each 𝑝𝐹,𝑖 ∈ C ⟨𝐹 ⟩ hence 𝑝′′𝐹 in C ⟨𝐹 ⟩ and 𝛼′′ > 0 ∈ C.

Now assume for contradiction that −1 ∈ 𝐿ℐ𝒞 +𝐿ℐ*𝒞 + 𝑆𝑂𝑆𝒞. Then, combining the above

observations we can write

−1 = 𝑝′𝐹 + 𝑝′′𝐹 + 𝛼′′ (2.4.18)

with 𝑝′𝐹 , 𝑝′′𝐹 ∈ C ⟨𝐹 ⟩ and 𝛼′′ > 0 ∈ C. Rearranging the above expression gives

−(1 + 𝛼′′) = 𝑝𝐹 + 𝑝′′𝐹 ∈ C ⟨𝐹 ⟩ (2.4.19)

=⇒ 1 ∈ C ⟨𝐹 ⟩ (2.4.20)

where we used that 𝛼′′ > 0 and so 1 + 𝛼′′ ̸= 0.

Combining Lemmas 2.4.5 and 2.4.6 results in the following simplified NullSS.

Theorem 2.4.7. Let 𝒜 be a 𝐶*-algebra and 𝐹 be a set of polynomials in 𝒜. Also let

𝒞 = C ⟨{𝐹, 1}⟩ be the subalgebra of 𝒜 generated by the set of polynomials {𝐹, 1}. If there

exists an SOS conditional expectation mapping 𝒜 onto 𝒞 then the following are equivalent.

62

1. There exists a Hilbert space representation 𝜋 : 𝒜 → 𝐵(ℋ) and vector 𝑣 ∈ ℋ with

𝜋(𝑓)𝑣 = 0 for all 𝑓 ∈ 𝐹 .

2. −1 /∈ 𝐿ℐ(𝐹)𝒜 + 𝐿ℐ(𝐹)*𝒜 + 𝑆𝑂𝑆𝒜

3. −1 /∈ 𝐿ℐ(𝐹)𝒜 + 𝐿ℐ(𝐹)*𝒜

4. 1 /∈ 𝐿ℐ(𝐹)𝒞 + 𝐿ℐ(𝐹)*𝒞

5. 1 /∈ C ⟨𝐹 ⟩

Proof. We have 1 ⇔ 2 by Theorem 2.3.5, 2 ⇒ 3 ⇒ 4 by set inclusion, and 4 ⇒ 2 by

Lemma 2.4.5. Finally, we have 4⇔ 5 by Lemma 2.4.6.

2.4.2 The NC Toric Ideal Group Algebra Simplification

We now give a further simplification of the perfect games NullSS in the case where 𝒜 = C[𝐺]

is a group algebra and 𝐹 is a set of polynomials in 𝒜 of the form (monomial− 1). The ideal

generated by such a set of polynomials is called a (nc) toric ideal.

Note. Here, and everywhere in this paper, we define a monomial to be any element of the

form 𝛽𝑔 with 𝛽 ∈ C and 𝑔 ∈ 𝐺.1

Our first observation is that there is a natural SOS conditional expectation mapping from

𝒜 to C ⟨{𝐹, 1}⟩ provided that 𝐹 is of this form.

Theorem 2.4.8. Let 𝒜 = C[𝐺] be a group algebra and 𝐹 be a set of polynomials in 𝒜

with each 𝑓𝑡 ∈ 𝐹 of the form 𝑟𝑡 − 1 with 𝑟𝑡 a monomial. Then there is an SOS conditional

expectation mapping 𝒜 onto C ⟨{𝐹, 1}⟩.

Proof. Define the subgroup 𝐺′ of 𝐺 to consist of all 𝑔 ∈ 𝐺 with 𝛽𝑔 = 𝑟𝑡 for some 𝛽 ∈ C

and 𝑟𝑡 − 1 ∈ 𝐹. Then C ⟨{𝐹, 1}⟩ = C ⟨{{𝑟𝑡}, 1}⟩ = C[𝐺′]. Since 𝐺′ < 𝐺 there exists an SOS

conditional expectation mapping C[𝐺] onto C[𝐺′] by Example 5 of [56].

Before stating this simplified NullSS we need one final theorem simplifying the subalgebra

memebership problem for toric subalgebras of group algebras.
1An alternate definition of monomial, which we do not use, would be to define a monomial to be any

element of the form 𝑔 ∈ 𝐺, without the prefactor.

63

Relating the Subalgebra and Subgroup Membership Problems

Our starting point is the following lemma, which gives a standard form for polynomials in

C ⟨𝐹 ⟩.

Lemma 2.4.9. Let 𝒜 = C[𝐺] be a group algebra and 𝐹 be a set of polynomials in 𝒜 with

each 𝑓𝑡 ∈ 𝐹 of the form 𝑓𝑡 = 𝑟𝑡 − 1 with 𝑟𝑡 a monomial. Finally let 𝑅 = ⟨{𝑟𝑡}⟩ denote the

group generated by multiplication of the monomials {𝑟𝑡} appearing in the set of polynomials

𝐹 (and their inverses). Then any polynomial 𝑝 ∈ C ⟨𝐹 ⟩ can be written in the form

𝑝 =
∑︁
𝑢,𝑣

𝛽𝑢,𝑣(𝑢− 𝑣) (2.4.21)

with 𝑢, 𝑣 ∈ 𝑅 and 𝛽𝑢,𝑣 ∈ C.

Proof. First note that writing any polynomial 𝑝′ ∈ C ⟨𝐹, 1⟩ as a sum of monomials gives that

𝑝′ can be written in the form

𝑝′ =
∑︁
𝑢

𝛽𝑣𝑣 (2.4.22)

with 𝑢 ∈ 𝑅. Also note that any 𝑓 ∈ 𝐹 can be written in the form (𝑢′ − 1) with 𝑢′ ∈ 𝑅 by

definition. These two observations, combined with the fact that any polynomial 𝑝 ∈ C ⟨𝐹 ⟩

can be written in the form

𝑝 =
∑︁
𝑓

𝑝𝑓𝑓 (2.4.23)

with 𝑓 ∈ 𝐹 and 𝑝𝑓 ∈ C ⟨𝐹, 1⟩ proves the result. (To complete the proof, simply apply both

observations, multiply the resulting polynomials together and relabel 𝑣𝑢′ = 𝑢, then collect

like terms).

Theorem 2.4.10. Let 𝒜 = C[𝐺] be a group algebra and 𝐹 be a set of polynomials in 𝒜 with

each 𝑓𝑡 ∈ 𝐹 of the form 𝑓𝑡 = 𝑟𝑡 − 1 with 𝑟𝑡 a monomial. Finally let 𝑅 = ⟨{𝑟𝑡}⟩ denote the

group generated by multiplication of the monomials {𝑟𝑡} appearing in the set of polynomials

𝐹 (and their inverses). Then 1 ∈ C ⟨𝐹 ⟩ iff 𝑅 ∩ C ! {1}, i.e. 𝜉 /∈ 𝑅 for all 𝜉 ∈ C with 𝜉 ̸= 1.

64

Proof. This proof is partially inspired by the proof of Theorem 2.7 in [43]. First note that

for any monomials 𝑟𝑡 and 𝑟𝑠 we have

(𝑟𝑡 − 1)(𝑟𝑠 − 1) + (𝑟𝑡 − 1) + (𝑟𝑠 − 1) = 𝑟𝑡𝑟𝑠 − 1. (2.4.24)

It follows that for any 𝑡 ∈ ⟨{𝑟𝑡}⟩ we have 𝑡 − 1 ∈ C ⟨𝐹 ⟩ (note inverses are contained

automatically since C ⟨𝐹 ⟩ is a *-algebra and (𝑡− 1)* = 𝑡* − 1 = 𝑡−1 − 1). Then, if 𝛽 ∈ ⟨{𝑟𝑡}⟩

for some 𝛽 ̸= 1 ∈ C we have

𝛽 − 1 ∈ C ⟨𝐹 ⟩ ⇔ 1 ∈ C ⟨𝐹 ⟩ . (2.4.25)

This completes the proof in one direction.

To prove the result in the other direction we assume for contradiction that 𝜉 /∈ 𝐻 for all

𝜉 ̸= 1 ∈ C and that 1 ∈ C ⟨𝐹 ⟩. Then, using Lemma 2.4.9, we can write

1 =
∑︁
𝑢,𝑣

𝛽𝑢,𝑣(𝑢− 𝑣) (2.4.26)

=
∑︁
𝑢,𝑣

𝑢 (𝛽𝑢,𝑣 − 𝛽𝑣,𝑢) (2.4.27)

where we relabeled 𝑢 and 𝑣 in the second term in the sum on the second line. Now since

𝛽 /∈ 𝑅 we have, for any terms 𝑢 ̸= 𝑢′ in the sum above, that 𝑢(𝑢′)−1 /∈ C (i.e. the terms differ

by multiplication of some non-constant element of 𝐻). Then there can be no cancellation

between different 𝑢 and 𝑢′ terms, and we see that

∑︁
𝑣

(𝛽1,𝑣 − 𝛽𝑣,1) = 1 (2.4.28)

and

∑︁
𝑣

(𝛽𝑢,𝑣 − 𝛽𝑣,𝑢) = 0 (2.4.29)

65

for all 𝑢 ̸= 1. But this is a contradiction, since

∑︁
𝑣

(𝛽1,𝑣 − 𝛽𝑣,1) +
∑︁
�̸�=1

∑︁
𝑣

(𝛽𝑢,𝑣 − 𝛽𝑣,𝑢) =
∑︁
𝑢,𝑣

(𝛽𝑢,𝑣 − 𝛽𝑣,𝑢) = 0 (2.4.30)

NC Toric Left NullSS without SOS Terms

Now we combine the results in Sections 2.4.1 and 2.4.2 to obtain the following specialized

NullSS. We point out that this NullSS generalizes Theorem 2.7 in [43].

Theorem 2.4.11. Let 𝒜 = C[𝐺] be a group algebra and 𝐹 be a set of monomials in 𝒜 with

each 𝑓𝑡 ∈ 𝐹 of the form 𝑓𝑡 = 𝑟𝑡 − 1 with 𝑟𝑡 a monomial. Also let 𝒞 = C ⟨{𝐹, 1}⟩ be the

subalgebra of 𝒜 generated by the set of polynomials {𝐹, 1}. Finally let 𝑅 = ⟨{𝑟𝑡}⟩ denote the

group generated by multiplication of the monomials {𝑟𝑡} appearing in the set of polynomials

𝐹 (and their inverses). Then the following are equivalent:

1. There exists a Hilbert space representation 𝜋 : 𝒜 → 𝐵(ℋ) and vector 𝑣 ∈ ℋ with

𝜋(𝑓)𝑣 = 0 for all 𝑓 ∈ 𝐹 .

2. −1 /∈ 𝐿ℐ(𝐹)𝒜 + 𝐿ℐ(𝐹)*𝒜 + 𝑆𝑂𝑆𝒜

3. −1 /∈ 𝐿ℐ(𝐹)𝒜 + 𝐿ℐ(𝐹)*𝒜

4. 1 /∈ 𝐿ℐ(𝐹)𝒞 + 𝐿ℐ(𝐹)*𝒞

5. 1 /∈ C ⟨𝐹 ⟩

6. 𝑅 ∩ C) {1}.

Proof. Items 1 through 5 are equivalent by Theorems 2.4.7 and 2.4.8. Items 5 and 6 are

equivalent by Theorem 2.4.10.

2.4.3 NullSS for Perfect Unitary Games

We now apply the simplified NullSS of this section to nonlocal games. We first define a class

of games on which the NullSS naturally applies.

66

Definition 2.4.12. A game 𝒢 is said to be a unitary game if there exists a change of variables

under which we have 𝒰𝒜 = C[𝐺] a group algebra for some group 𝐺 and

Φ𝒢 =
𝑇∑︁
𝑡=1

1

𝜈𝑡
ℎ𝑡 (2.4.31)

with 𝑇 an integer, each 𝜈𝑡 a positive real number with
∑︀

𝑡 𝜈𝑡 = 1, and each ℎ𝑡 a monomial in

C[𝐺] (Recall that we are allowing monomials to include constant prefactors, so this means

each ℎ𝑡 is of the form 𝛽𝑡𝑔𝑡 for some 𝛽 ∈ C and 𝑔𝑡 ∈ 𝐺). The monomials ℎ𝑡 are called the

clauses of the game 𝒢.

Then the following theorem is a quick consequence of our NullSS and Theorem 2.2.3.

Theorem 2.4.13. Let 𝒢 be a unitary game with a set of clauses {ℎ𝑡}. Let 𝐻 = ⟨{ℎ𝑡}⟩ be the

subgroup generated by multiplication of the clauses and their inverses. Then 𝒢 has a perfect

commuting operator strategy iff 𝜉 /∈ 𝐻 for all 𝜉 ̸= 1 ∈ C.

Proof. By Theorem 2.2.3 𝒢 has a perfect commuting operator strategy iff there exists a

representation 𝜋 mapping 𝒰𝒜 into bounded operators on a Hilbert space ℋ and a state 𝜌 in

ℋ with 𝜋(ℎ𝑡 − 1)𝜌 = 0 for all clauses ℎ𝑡. By Theorem 2.4.11 this happens iff 𝜉 /∈ 𝐻 for all

𝜉 ̸= 1 ∈ C.

Example 2.4.14. From Section 2.2.3 we have that XOR games have a game polynomial of the

form

Φ𝒢 = Φ𝒢 =
1

2
+

1

2𝑇

𝑇∑︁
𝑡=1

(−1)𝑠𝑡
∏︁
𝛼∈[𝑘]

𝑥
(𝛼)

�⃗�𝑡(𝛼)
, (2.4.32)

with the 𝑥(𝛼)
�⃗�𝑡(𝛼)

cyclic unitaries. We also know that 𝒰𝒜 can be viewed as a group algebra

generated by 𝑥(𝛼)
�⃗�𝑡(𝛼)

satisfying the relations described in Section 2.2.2.

Then, defining clauses

ℎ𝑡 = (−1)𝑠𝑡
∏︁
𝛼∈[𝑘]

𝑥
(𝛼)

�⃗�𝑡(𝛼)
(2.4.33)

67

for all 𝑡 = 𝑇 and noting that the ℎ𝑡 are monomials by definition we have that an XOR game

has a perfect commuting operator stategy iff 𝜉 /∈ ⟨{ℎ𝑡}⟩ for all 𝜉 ̸= 1 ∈ C.

2.5 Chapter Summary

In this chapter we have developed a general algebraic characterization of perfect commuting

operator strategies for nonlocal games. In particular, Theorem 2.3.6 gives an algebraic

criterion that applies to any nonlocal game and characterizes the existence of a perfect

commuting operator strategy. We then showed how to simplify this criterion for special

classes of games by borrowing and then building on some results from the study of nc algebras.

The end result of this simplification was Theorem 2.4.11, which related existence of a perfect

commuting operator strategy to an instance of the subgroup membership problem for class

of nonlocal games, which included XOR games as a special example. The result of applying

this theorem to XOR games is laid out in Example 2.4.14 above.

In subsequent chapters we will move away from studying general games and algebras, and

focus on understanding the subgroup membership characterization of XOR games. In doing

so, we will reprove some results from this chapter in the special case of XOR games. The

hope is that the proofs provided in this chapter will provide some general context to those

specific results and help illuminate the mathematical structure that underlies them.

68

Chapter 3

Refutations, Symmetric XOR Games,

and MERP Strategies

In this chapter we begin the study XOR games with perfect commuting operator value. Using

the framework developed in Chapter 2, we know that these games have a perfect commuting

operator strategy iff an instance of the subgroup membership problem has a no answer.

In this chapter we introduce the concept of a refutation – a proof of a yes answer to the

subgroup membership problem associated with an XOR game. We then reprove the result

of Chapter 2 in the special case of XOR games, showing that an XOR game has perfect

commuting operator value iff it does not have a refutation. However, rather than referencing

a noncommutative Nullstellensatz, the proof in this chapter references completeness of the

ncSoS hierarchy (which is actually built on a noncommutative Positivstellensatz [19, 32]).

This lets us connect the length of refutations to the time it takes the ncSoS algorithm to

prove a game does not have a perfect commuting operator strategy,1 We also obtain a weak

bound on how far away from 1 the commuting operator value of a game is when a refutation

exists.

We then introduce a parity refutation (PREF), which is a weaker object than a refutation

(meaning that a game with a refutation also has a parity refutation). Importantly, existence

1A small disclaimer should be made here for those familiar with the ncSoS algorithm. The bounds we
obtain are bounds on the syntactic degree required for ncSoS to prove a game does not have value 1. This
only implies a runtime bound if the ncSoS algorithm does not simplify expressions at a semantic degree
higher than the current “degree” of the algorithm.

69

of a parity refutation for a game can be decided in polynomial time, while there is no

known algorithm to decide if a refutation exists for an XOR game in general. We show

that for a class of games called symmetric games existence of a PREF implies existence of a

refutation, meaning that symmetric games with commuting operator value 1 can be identified

in polynomial time. Finally, we construct a strategy, called MERP, which we show achieves

value 1 on any game that does not have a PREF.

Section 3.3 recaps all the notation required to understand the results of this section,

including some notation specific to XOR games which hasn’t been introduced previously. In

particular, because all games 𝒢 introduced in this section are XOR games, we describe them

using an object called a game matrix, introduced in Definition 3.3.3, instead of using one of

the more general descriptions of games introduced in Chapter 1.

3.1 Background

Constraint satisfaction problems (CSPs) are a fundamental object of study in theoretical

computer science. In quantum information theory, there are two natural analogues of CSPs,

which both play important roles: local Hamiltonians and (our focus) non-local games. Non-

local games originate from Bell’s pioneering 1964 paper, which showed how to test for

quantum entanglement in a device with which we can interact only via classical inputs and

outputs. In modern language, the tests developed by Bell are games: a referee presents two

or more players with classical questions drawn from some distribution and demands answers

from them. Each combination of question and answers receives some score and the players

cooperate (but do not communicate) in order to maximize their expected score. These games

are interesting because often the players can win the game with a higher probability if they

share an entangled quantum state, so a high average score can certify the presence of quantum

entanglement. Such tests are not only of scientific interest, but have had wide application

to proof systems [13, 35], quantum key distribution [22, 2, 64], delegated computation [54],

randomness generation [17] and elsewhere.

To be able to use a nonlocal game as a test for entanglement, it is essential to be able to

approximately compute two quantities: the best possible expected score when the players

70

share either classical correlations or entangled states, respectively called the “classical” and

“quantum” (or “entangled”) values of the game, and denoted 𝜔 and 𝜔*. To understand these

quantities, think of a game with 𝑘 players as inducing a constraint satisfaction problem with

a 𝑘-ary predicate. Each question in the game is mapped to a variable in the CSP, and each

𝑘-tuple of questions and set of accepted responses (a “clause”) asked by the referee corresponds

to a constraint. Classically, a simple convexity argument shows that the players can always

stick to deterministic strategies, where each question is assigned a fixed answer; thus, 𝜔 is in

fact identical to the value of the CSP. Hence, thanks to various dichotomy theorems, we have

a good understanding of the difficulty of computing 𝜔: in some cases, we know a P algorithm,

and for most others, we know it is NP-complete.

The quantum value 𝜔* is not as well understood. The main obstacle is that the set of

entangled strategies is very rich: the “assignment” to each variable is no longer a value from

a discrete set, but a linear operator over a Hilbert space of potentially unbounded dimension.

As a result, we can say very little in terms of upper bounds on the complexity of computing

𝜔*. In fact, it is not known whether even a constant-factor (additive) approximation to

𝜔* is Turing-computable. For general games, the best we can say is that it is recursively

enumerable: there is an algorithm, called the NPA or ncSoS hierarchy [46, 20], that in the

limit of infinite time converges from above to the quantum value, but with no bound on the

speed of convergence. On the hardness side, more is known, and what we know is grounds

for pessimism: we have been able to show hardness results for approximating 𝜔* matching

(e.g. [65]) and in some cases exceeding (e.g. [35]) the classical case by constructing special

games that force entangled players to use particular strategies. Moreover, families of games

have been found for which deciding whether 𝜔* = 1 is uncomputable [59]. There are a few

exceptions for which some positive results are known: for instance, the class of XOR games,

in which the answers are bits and the payoff depends only on their XOR (for any given set

of questions). In the classical case, these games are as hard as general games except in the

“perfect completeness” regime: distinguishing ≥ 1− 𝜀 satisfiability from ≤ 1
2
+ 𝜀 satisfiability

is NP-complete, but we can determine whether an XOR game is perfectly satisfiable in

polynomial time using Gaussian elimination over F2. However, in the quantum case, it was

shown by Tsirelon [11, 63] that for two-player XOR games, the lowest level of the ncSoS

71

algorithm converges exactly to the quantum value, rendering it computable in polynomial

time via semidefinite programming. (A similar technique was also applied to approximating

the entangled value of unique games [39].) Yet these techniques seemed unlikely to generalize

to three or more players: it is known that distinguishing ≥ 1− 𝜀 satisfiability from ≤ 1
2
+ 𝜀

for an entangled 3-player XOR game is NP-hard [65], and deciding the existence of perfect

strategies for the closely-related family of linear systems games is uncomputable [59].

Another question which has been very fruitful in the study of classical CSPs is un-

derstanding the typical value of a random instance. Research in this direction draws sig-

nificantly on insights from statistical mechanics and has proven that there exist sharp

satisfiable/unsatisfiable thresholds for random 𝑘-SAT and related games (often using the

equivalent constraint-satisfaction formulation). But these techniques do not carry over to the

quantum case. For random classical games, a basic method is to look at the expected number

of winning responses (the “first moment method”) or the variance (the “second moment

method”) as we randomize the payoff function within some family such as random 𝑘-SAT

or random 𝑘-XOR. This suffices, for example, to show that random 3-XOR games with 𝑛

variables and 𝐶𝑛 clauses are satisfiable with high probability if and only if 𝐶 / 0.92 [21].

Since quantum strategies do not form a discrete (or even finite-dimensional) set, these methods

are not possible. Nor is it obvious how to use more refined tools such as Shearer’s Lemma or

the Lovasz Local Lemma, which address the question of when sets of overlapping constraints

can be simultaneously satisfied. Indeed there are famous examples (such as the Magic Square

game) of quantum “advantage” (i.e. the quantum value of a game is higher than the classical

value) when there exist strategies for apparently contradictory constraints that succeed with

probability 1. These suggest that the barriers to extending our classical intuition are not

merely technical but reflect a genuinely different set of rules.

3.2 Results

Our work introduces new techniques that let us make progress on the study of both worst-case

complexity and random instances of XOR games with more than two players, in the regime

where we are trying to decide whether 𝜔* = 1. We think of a nonlocal game as a system of

72

equations whose variables are linear operators, corresponding to the quantum measurements

used by the players; a strategy is a solution to this system. Our main innovation is to consider

a “dual” system of equations, whose solutions are objects that we call refutations. A refutation

is a proof that the “primal” system of operator equations induced by the game is infeasible,

and thus that 𝜔* ̸= 1. Surprisingly, for games that are symmetric under exchange of the

players, we show that the dual system reduces to a set of linear equations over Z, which can

be solved efficiently. This leads to our first result (Theorem 3.2.1), an algorithm for efficiently

deciding whether 𝜔* = 1 for a symmetric 𝑘-player XOR game, which brings the best known

upper bound on this problem down from recursively enumerable [46, 20] to P. Subsequently,

by taking the dual of the dual, we are able to explicitly construct a set of quantum strategies

(we call these Maximal Entanglement, Relative Phase, or MERP, strategies) that attain value

1 for all symmetric games with 𝜔* = 1 (Theorem 3.2.2). In Chapter 5 we will show that the

symmetry assumption is indeed necessary for our algorithm to work: we exhibit a simple

non-symmetric game called the 123 game, for which a simple, non-MERP strategy achieves

𝜔* = 1, while our algorithm is unable to detect this (Theorem 5.1.1).

The theorem statements of these results are as follows. Proof sketches are in Section 3.3.

Theorem 3.2.1. There exists an algorithm that, given a 𝑘-player symmetric XOR game

𝒢 with alphabet size 𝑛 and 𝑚 clauses, decides in time poly(𝑛,𝑚) 2 whether 𝜔*(𝒢) = 1 or

𝜔*(𝒢) < 1.

Proof. Section 3.4.3. Sketch in 3.3.3.

Theorem 3.2.2. For every 𝑘-XOR game 𝒢 for which the algorithm of Theorem 3.2.1 shows

𝜔*(𝒢) = 1, there exists a 𝑘-qubit tensor-product strategy achieving value 1, and a description

of the strategy can be computed in polynomial time.

Proof. Section 3.5. Sketch in Sections 3.3.4 and 3.3.5.

2Note that 𝑚 and 𝑘 do not scale independently for symmetric games. Any symmetric game may be
specified by 𝑚′ base clauses that are then symmetrized via at most 𝑘! permutations each, meaning 𝑚 ≤ 𝑘!𝑚′.
We could thus naively rewrite this runtime as poly(𝑛, 𝑘!𝑚′) to extract the 𝑘 dependence. Because the core
information about the symmetric game is really only contained in the 𝑚′ clauses, one might expect that it is
possible to remove the factor of 𝑘!, and we hope to address this in a future work.

73

3.3 Technical Overview

We begin by formally defining a 𝑘-XOR game and its classical and quantum values.

Definition 3.3.1. Define a clause 𝑐 = (𝑞, 𝑠) to be any (𝑘 + 1)-tuple consisting of a query

𝑞 ∈ [𝑛]𝑘 and parity bit 𝑠 ∈ {−1, 1}. In a 𝑘-XOR game 𝒢 associated with a set of clauses

𝑀 , a verifier selects a clause 𝑐𝑖 = (𝑞𝑖, 𝑠𝑖) uniformly at random from 𝑀 . Next, the question

𝑞
(𝛼)
𝑖 is sent to the 𝛼-th player of the game, for all 𝛼 ∈ [𝑘]. The players then each send back a

single output ∈ {−1, 1}, and win the game if their outputs multiply to 𝑠𝑖.

The key property of a game 𝒢 is its value – the maximum win probability achievable by

players who cooperatively choose a strategy before the game starts, but cannot communicate

while the game is being played. We distinguish various versions of the value by physical

restrictions placed on the players.

Definition 3.3.2. For a given game 𝒢, the classical value 𝜔(𝒢) is the maximum win

probability achievable by players sharing no entanglement.

The tensor-product value is the supremum win probability obtainable by players who

share a quantum state but are restricted to making measurements on distinct factors of a

tensor-product Hilbert space.

Finally, the commuting operator value 𝜔*(𝒢) is the supremum win probability obtain-

able by players who may make any commuting measurements on a shared quantum state,

not necessarily over a tensor-product Hilbert space. 𝜔*(𝒢) is often also referred to as the

field-theoretic value of 𝒢.

In this chapter, we focus primarily on a description of the commuting-operator value but

in many cases can show that it coincides with the tensor-product value.

For the purpose of analyzing both the classical and commuting operator value of 𝑘-XOR

games, we find it useful to define a linear algebraic representation for the game. The linear

algebraic view represents queries as a matrix and parity bits as a vector. In doing so, it

abstracts away from the specifics of labels and player/query indices to reveal the underlying

game structure.

74

Definition 3.3.3. Given a 𝑘-XOR game with 𝑚 queries and alphabet size 𝑛, define the game

matrix 𝐴 as an 𝑚× 𝑘𝑛 matrix describing query-player-question incidence. Specifically, 𝐴

can be written as a segmented matrix with 𝑘 distinct column blocks of size 𝑛 each, where the

𝑗th column of block 𝛼 consists of a 1 in row 𝑖 if the 𝛼th player receives question 𝑗 for query

𝑞𝑖, and a 0 otherwise:

𝐴𝑖,(𝛼−1)𝑛+𝑗 :=

⎧⎪⎨⎪⎩1 if 𝑞(𝛼)𝑖 = 𝑗

0 otherwise
. (3.3.1)

For such a game, define the length-𝑚 parity bit vector 𝑠 ∈ F𝑚
2 by

𝑠𝑖 :=

⎧⎪⎨⎪⎩0 if 𝑠𝑖 = 1

1 if 𝑠𝑖 = −1
. (3.3.2)

An XOR game 𝒢 is completely specified by providing the game matrix 𝐴 and parity bit

vector 𝑠: 𝐺 ∼ (𝐴, 𝑠). For example, the GHZ game [26] is defined by the clauses (here we use

the labels {𝑥, 𝑦} for the questions instead of the typical {0, 1}):

𝒢𝐺𝐻𝑍 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑥

𝑥

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑦

𝑦

𝑥

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑦

𝑥

𝑦

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑦

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.3.3)

75

We translate the GHZ queries into 𝐴𝐺𝐻𝑍 and parity bits into 𝑠𝐺𝐻𝑍 by:

=⇒ 𝐴𝐺𝐻𝑍 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1

0 1 1 0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

← (Alice, 𝑥)

← (Alice, 𝑦)

← (Bob, 𝑥)

← (Bob, 𝑦)

← (Charlie, 𝑥)

← (Charlie, 𝑦)

(3.3.4)

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 1 0

0 1 0 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and 𝑠𝐺𝐻𝑍 :=

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.3.5)

Many of our results apply to two special classes of XOR games: symmetric XOR games

and random XOR games.

Definition 3.3.4. A symmetric 𝑘-XOR game is an XOR game that additionally satisfies

a clause symmetry property: for every clause 𝑐𝑖 = (𝑞𝑖, 𝑠𝑖) in the game, the game must also

contain all clauses 𝑐′𝑖 = (𝑞′𝑖, 𝑠𝑖) where 𝑞′𝑖 is a permutation of the questions in 𝑞𝑖 and the parity

bit is unchanged.

Definition 3.3.5. A random 𝑘-XOR game on 𝑚 clauses and 𝑛 variables is an XOR

game with the 𝑚 clauses chosen independently at random from a uniform distribution over

[𝑛]𝑘 × {−1, 1}.

3.3.1 Strategies

We next introduce both classical and commuting operator strategies and state claims regarding

their value and constraints on when these strategies play perfectly given an XOR game. These

claims are proved in Section 3.5.3. For any game, constructing a strategy and computing its

value lower-bounds the value of the game. In the commuting operator case, this is generally

intractable and motivates the subsequent refutations picture.

76

Classical Strategies

For any game, the optimal classical strategy can be taken to be a deterministic assignment of

answers. In the case of XOR games we will see that it is natural to view this assignment as a

vector in F𝑘𝑛
2 .

Definition 3.3.6. A deterministic classical strategy dictates that player 𝛼 outputs

𝜂(𝛼, 𝑗) ∈ {−1, 1} when they receive question 𝑗 from the verifier. Note that valid outputs must

satisfy

𝜂2(𝛼, 𝑗) = 1. (3.3.6)

To exploit the linear algebraic picture, it is useful to define a length-𝑘𝑛 classical strategy

vector 𝜂 ∈ F𝑘𝑛
2 analogous to the parity bit vector. It is defined by the relation

𝜂(𝛼, 𝑗) = (−1)𝜂𝑛(𝛼−1)+𝑗 = cos
(︀
𝜋𝜂𝑛(𝛼−1)+𝑗

)︀
. (3.3.7)

Here the cos anticipates a generalization that we will see in the quantum case when we

construct MERP strategies.

Claim 3.3.7. If the players play a game 𝐺 ∼ (𝐴, 𝑠) following strategy 𝜂, the vector 𝑜 = 𝐴𝜂

determines their output, i.e. query 𝑖 has answer (−1)𝑜𝑖. The value of classical strategy 𝜂 is

𝑣(𝐺, 𝜂) :=
1

𝑚

𝑚∑︁
𝑖=1

1 + (−1)𝑜𝑖−𝑠𝑖
2

=
1

2
+

1

2𝑚

(︃
𝑚∑︁
𝑖=1

cos(𝜋 [(𝐴𝜂)𝑖 − 𝑠𝑖])

)︃
, (3.3.8)

where again we have used an apparently unnecessary cos, anticipating a quantum generalization.

We also treat F2 and {0, 1} as equivalent here.

These observations lead to a well known procedure using Gaussian elimination to find a

classical value-1 strategy or determine that no such strategy exists.

Definition 3.3.8. Define the classical constraint equations for game 𝒢 by

𝐴𝜂 = 𝑠 (3.3.9)

77

over F2. Equivalently,
𝑘∏︁

𝛼=1

𝜂(𝛼, 𝑞
(𝛼)
𝑖) = 𝑠𝑖, ∀𝑖 ∈ [𝑚]. (3.3.10)

Claim 3.3.9. Every solution 𝜂 to (3.3.9) corresponds to a strategy 𝜂 achieving value 1 on

game 𝐺 ∼ (𝐴, 𝑠), and vice versa. In other words, a game 𝒢 has classical value 1 iff (3.3.9)

has a solution.

When 𝜔(𝒢) < 1, on the other hand, there does not exist an efficient algorithm for finding

optimal classical strategies (assuming P ̸= NP) [31].

Commuting Operator Strategies

Definition 3.3.10. Consider a 𝑘-XOR game with 𝑛 variables. For each 𝑗 ∈ [𝑛], let the

Positive-Operator Valued Measure (POVM) {𝑃 (𝛼)𝑗1, 𝑃 (𝛼)
𝑗
−1} give the 𝛼-th player’s com-

muting operator strategy upon receiving question 𝑗 from the verifier. These POVMs

act on some shared state |Ψ⟩, and different players’ POVM elements commute due to the

no-communication requirement on the players.

Using the Naimark dilation theorem, we can restrict our players’ strategies to be Projection-

Valued Measures (PVMs). We make this restriction for the remainder of the chapter. This

allows us to define the following observables.

Definition 3.3.11. Given a strategy {𝑃 (𝛼)𝑗1, 𝑃 (𝛼)
𝑗
−1}, define the strategy observable

𝑋
(𝛼)
𝑗 := 𝑃 (𝛼)𝑗1 − 𝑃 (𝛼)

𝑗
−1.

Since {𝑃 (𝛼)𝑗1, 𝑃 (𝛼)
𝑗
−1} is a PVM, 𝑋(𝛼)

𝑗 is a Hermitian operator. Indeed commuting

operator strategies are equivalent to imposing the constraints for 𝛼 ̸= 𝛽

[𝑋
(𝛼)
𝑗 , 𝑋

(𝛽)
𝑗′] = 0 (operators held by distinct players commute) (3.3.11a)(︁

𝑋
(𝛼)
𝑗

)︁2
= 𝐼 (square identity, analogous to (3.3.6)) (3.3.11b)

The condition for commuting-operator strategies to achieve value 1 is the following

generalization of (3.3.9).

78

Definition 3.3.12. For a 𝑘-XOR game 𝒢, define the commuting-operator constraint

equations:

𝑄𝑖 |Ψ⟩ :=
(︁∏︁

𝛼

𝑋
(𝛼)

𝑞
(𝛼)
𝑖

)︁
|Ψ⟩ = 𝑠𝑖 |Ψ⟩ , ∀ 𝑖 ∈ [𝑚] (3.3.12)

These equations stipulate that applying the strategy observables for a given question to

the shared state |Ψ⟩ produces the correct output for that question.

Claim 3.3.13. A game 𝒢 has commuting operator value 1 iff there exists some state and

strategy observables that satisfy (3.3.11) and (3.3.12).

While there is an efficient algorithm to solve the classical constraint equations, no such

algorithm is known to exist for the commuting operator constraint equations. This difficulty

forces us to consider alternative techniques for characterizing the commuting operator value

of XOR games.

3.3.2 Refutations

In addition to lower bounding the value of a game by constructing strategies for it, we can

also upper bound a game’s value by showing no high-value strategy can exist. In particular,

we construct proofs that a game cannot have value 1, which we call refutations. Classically,

refutations are well understood, and emerge naturally from the dual to the classical constraint

equations.

Definition 3.3.14. Define a classical refutation 𝑦 ∈ F𝑚
2 as any vector satisfying the

equations dual to (3.3.9), ⎡⎣𝐴𝑇

𝑠𝑇

⎤⎦ 𝑦 =

⎡⎣0
1

⎤⎦ (3.3.13)

where once again the algebra is over F2.

Fact 3.3.15. Either a classical refutation 𝑦 exists satisfying (3.3.13) or a classical strategy 𝜂

exists satisfying (3.3.9).

The proof is standard but because dualities like Fact 3.3.15 play a major role in our work, we

review it here.

79

Proof. By the definition of im and ker, we have im𝐴 ⊆ (ker𝐴𝑇)⊥. The rank-nullity theorem

implies that dim im𝐴 = dim(ker𝐴𝑇)⊥, meaning that in fact

im𝐴 = (ker𝐴𝑇)⊥. (3.3.14)

Therefore

𝑠 ̸∈ im𝐴 ⇔ 𝑠 ̸∈ (ker𝐴𝑇)⊥ ⇔ ∃𝑦 ∈ ker𝐴𝑇 , 𝑠𝑇𝑦 ̸= 0. (3.3.15)

Another way to view 𝑦 as a refutation is by interpreting it as the indicator vector of a subset

of clauses. Recall from (3.3.10) that clause 𝑖 corresponds to the equation
∏︀

𝛼 𝜂(𝛼, 𝑞
(𝛼)
𝑖) = 𝑠𝑖

over the variables 𝜂(·, ·). If 𝑦 satisfies (3.3.13) then multiplying the equations corresponding

to clauses with 𝑦𝑖 = 1 yields

∏︁
𝑖:𝑦𝑖=1

∏︁
𝛼∈[𝑘]

𝜂(𝛼, 𝑞
(𝛼)
𝑖) =

∏︁
𝑖:𝑦𝑖=1

𝑠𝑖 (3.3.16)

From 𝐴𝑇𝑦 = 0 and (3.3.6) it follows that the LHS of (3.3.16) equals 1. From 𝑠𝑇𝑦 = 1 it

follows that the RHS of (3.3.16) equals −1. Thus the existence of 𝑦 satisfying (3.3.13) means

there is no 𝜂 satisfying (3.3.10).

In this chapter we consider the commuting operator analogue of classical refutations. We

would like to construct a dual to (3.3.12), meaning a characterization of certificates for the

unsatisfiability of (3.3.12). As there is no analogue to the linear algebraic methods used in

the classical case, we will instead attempt to generalize (3.3.16).

Cleve and Mittal [15] make use of a noncommutative generalization of (3.3.16), which they

call the substitution method, to exhibit refutations of some Binary Constraint System games.

We will use a similar method for XOR games in which we multiply together constraints

of the form (3.3.12) to obtain a contradiction. Our contribution will be to give a simple

characterization of when such refutations exist in the case of symmetric 𝑘-XOR games and in

some cases, random asymmetric 3-XOR games. Indeed, our characterization will resemble the

classical dual equations (3.3.13) although the route by which we obtain it is quite different.

80

To explain this in more detail, we introduce some definitions.

Definition 3.3.16. Let 𝑍1 and 𝑍2 be two operators formed from products of strategy ob-

servables. We say 𝑍1 is equivalent to 𝑍2, written 𝑍1 ∼ 𝑍2, if 𝑍1 = 𝑍2 is an identity for all

strategy observables satisfying (3.3.11).

Definitions 3.3.12 and 3.3.16 then motivate the definition of a (quantum) refutation,

analogous to Definition 3.3.14. From now on, a “refutation” will be a quantum refutation

unless otherwise specified.

Definition 3.3.17. Let 𝒢 be some 𝑘-XOR game with 𝑚 clauses. A refutation for 𝒢 is

defined to be a sequence (𝑖1, 𝑖2, . . . , 𝑖ℓ) ∈ [𝑚]ℓ satisfying

𝑄𝑖1𝑄𝑖2 . . . 𝑄𝑖ℓ ∼ 𝐼 and 𝑠𝑖1𝑠𝑖2 . . . 𝑠𝑖ℓ = −1. (3.3.17)

Refutations certify that 𝜔* < 1, analogous to the way that classical refutations certify

that 𝜔 < 1. In Theorem 3.4.1, we show that in fact any game with 𝜔* < 1 has a refutation.

The proof of this fact relies on a connection between refutations and the ncSoS hierarchy

analogous to a connection made by Grigoriev [27] between classical refutations and the SoS

hierarchy.

It is not obvious that one can find refutations more easily than one can find strategies.

However, we next establish a necessary condition for a game to admit a refutation, and thus

an easily-identified subclass of XOR games that certainly do not have a refutation meaning

they have 𝜔* = 1.

3.3.3 Games with no Parity-Permuted Refutations (noPREF Games)

noPREF games are a subclass of entangled XOR games for which it is easy to show no

refutation can exist. To motivate their construction and prove some properties about them, we

must first redefine refutations from a combinatorial perspective. A more complete treatment

of these ideas is given in Section 3.4.

81

Definition 3.3.18 (Combinatorial Construction of Refutations, informal). For a 𝑘-XOR

game 𝒢, consider the combinatorial version of the query 𝑞𝑖3 to be a vector with 𝑘 coordinates

(the player indices) with letter 𝑞(𝛼)𝑖 at coordinate 𝛼. Define the set of words contained in 𝒢

to be all vectors formed by concatenating the queries of 𝒢 coordinate-wise (by player). The

sign of a word contained in 𝒢

𝑊 = 𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ (3.3.18)

is defined as

𝑠𝑊 := 𝑠𝑖1𝑠𝑖2 . . . 𝑠𝑖ℓ . (3.3.19)

We will refer to each coordinate of the word as a wire. The identity 𝐼 under the concatenating

action is the word that is blank on every wire.

Define an equivalence relation generated by all wire-by-wire permutations of the following

base relations (in this setting the product of two vectors indicates their coordinate-wise

concatenation).

1. (Repeated elements cancel) :

⎡⎣𝑗...
⎤⎦⎡⎣𝑗...

⎤⎦ ∼
⎡⎣...

⎤⎦ 𝑎𝑙𝑙𝑗 ∈ [𝑛]

2. (Elements on different wires commute) :

⎡⎢⎢⎢⎣
𝑗

𝑗′

...

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
𝑗

...

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑗′...

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣𝑗′...

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑗

...

⎤⎥⎥⎥⎦ 𝑎𝑙𝑙𝑗, 𝑗′ ∈ [𝑛]

A refutation is defined to be a sequence (𝑖1, 𝑖2, 𝑖3, ...𝑖ℓ) ∈ [𝑚]ℓ for which

𝑞𝑖1𝑞𝑖2 ...𝑞𝑖ℓ ∼ 𝐼 and 𝑠𝑖1𝑠𝑖2 ...𝑠𝑖ℓ = −1. (3.3.20)

We claim that this definition of a refutation is equivalent to the one given in Section 3.3.2.

Intuitively, such a construction explicitly manipulates the operator identities required by

each clause of 𝒢 in a way that exploits the operator requirements of (3.3.11) to produce a

refutation as in Definition 3.3.17. We prove this fact in Section 3.4. We next motivate the

noPREF class of games by making the following key observation.

3We overload the notation 𝑞𝑖 here to indicate both the definitional and combinatorial version of a query,
with the relevant meaning clear from context.

82

Observation 3.3.19. All elements contained in queries at even positions in a refutation

must cancel with queries at odd positions.

To exploit this observation, we find it useful to define a broader equivalence relation 𝑝∼

that allows for a parity-preserving permutation on each wire before canceling and commuting

letters.

Definition 3.3.20 (Informal). We say 𝑘-XOR word 𝑊𝐴 is parity-permuted equivalent

to 𝑊𝐵—denoted 𝑊𝐴
𝑝∼ 𝑊𝐵—if 𝑊𝐴 ∼ 𝑊 ′

𝐵 where some permutations of the even positions

and odd positions on each wire of 𝑊𝐵 can produce 𝑊 ′
𝐵.

Since this is just a broadening of the equivalence given in Definition 3.3.18, 𝑊1 ∼ 𝑊2 =⇒

𝑊1
𝑝∼ 𝑊2. With this equivalence relation in hand, we can state a necessary condition for the

existence of a refutation of a game 𝒢.

Definition 3.3.21. A game 𝒢 contains a Parity-Permuted Refutation (PREF) if the

game 𝒢 contains a word which is 𝑝∼ 𝐼 with sign −1.

The set of PREF Games are the set of XOR games that contain PREFs. The set of

noPREF Games are the set of XOR games that do not.

Theorem 3.3.22 (Necessary condition for refutation). If a game 𝒢 admits a refutation, it

contains a PREF.

Proof (sketch). This follows essentially immediately from the observation that ∼ implies
𝑝∼.

Corollary 3.3.23. Every noPREF game has commuting operator value 1.

Proof. This follows directly from Theorem 3.3.22 and the completeness of refutations (Theo-

rem 3.4.1).

The significance of noPREF games is made clear by the two following theorems. For both,

a short proof sketch is given, while the full proofs are delegated to Section 3.4.

Theorem 3.3.24 (Informal). There exists a poly-time algorithm that decides membership in

the set of noPREF games.

83

Proof (sketch). The key observation here is that a game 𝐺 ∼ (𝐴, 𝑠) contains a PREF if and

only if there is a solution to the set of equations

𝐴𝑇 𝑧 = 0 (3.3.21)

𝑠𝑇 𝑧 = 1 (mod 2) (3.3.22)

for some 𝑧 ∈ Z𝑚. If (3.3.21) and (3.3.22) can be satisfied, the game 𝒢 contains a PREF built

by interleaving the multisets of clauses

𝒪 = {𝑞𝑖 with multiplicity |𝑧𝑖|𝑎𝑙𝑙𝑖 : 𝑧𝑖 > 0} (3.3.23a)

ℰ = {𝑞𝑖 with multiplicity |𝑧𝑖|𝑎𝑙𝑙𝑖 : 𝑧𝑖 < 0} (3.3.23b)

such that their elements are placed in odd and even positions, respectively. The reverse

direction requires a technical lemma relating the even and odd clauses of a PREF. Then

standard techniques for solving linear Diophantine equations complete the proof.

The vector 𝑧 defined in the proof of Theorem 3.3.24 is sometimes referred to as a PREF

specification due to (3.3.23).4

Theorem 3.3.25 (Informal). The noPREF characterization is complete for symmetric games.

That is, every value 1 symmetric game is in the noPREF set.

Proof (sketch). We use the structure of symmetric games to construct shuffle gadgets – short

words that move letters from one wire to another when they are appended onto an existing

word. We then show shuffle gadgets are sufficient to construct a refutation given a PREF

contained in the game. This shows that containing a PREF is both necessary and sufficient

for a symmetric game to have a refutation. Then a symmetric game is either in the set of

noPREF games or has value < 1.

Theorems 3.3.24 and 3.3.25 together show that the class of symmetric value 1 games has a

poly-time deterministic algorithm, while previously the question of whether such games took

4Or a MERP refutation, for reasons described in Section 3.3.5

84

value 1 was not known to be decidable. This progress is due to the noPREF characterization

of games.

Given that noPREF games form a large class of value 1 games, it is reasonable to try

to construct a commuting operator strategy to play them. We can ask if there exists a

strategy dual to the PREF criteria, similar to what we have described in the classical and

commuting operator cases. In particular, we ask if a game 𝒢 not satisfying (3.3.21) and

(3.3.22) guarantees existence of a solution to the constraint equations indicating some simple

family of strategies can achieve value 1 for 𝒢.

Somewhat miraculously, the answer to this question turns out to be yes. We proceed by

first defining this class of strategies, then showing that their constraint equations are dual to

the PREF criteria for any game.

3.3.4 Maximal Entanglement, Relative Phase (MERP) Strategies

We introduce a family of “Maximal Entanglement, Relative Phase” (MERP) strategies: a

useful subfamily of the set of tensor-product (and thus commuting-operator) strategies.

MERP strategies are a generalization of the GHZ strategy to arbitrary games. Crucially,

determining whether a MERP strategy achieves value 1 for a game, and if so a construction

for such a strategy, can be described in time polynomial in 𝑚, 𝑛, and 𝑘.5

Furthermore, the conditions for a MERP strategy to achieve value 1 are dual to the PREF

condition for a game, meaning MERP achieves value 1 on any noPREF game. In particular,

this means MERP strategies achieve tensor-product value 1 on any symmetric XOR game

with 𝜔* = 1 (Theorem 3.3.25) as well as on a family of non-symmetric games (APD games,

Section 5.2.3) with 𝜔* = 1 and classical value 𝜔 → 1
2
.

We begin with the definition of a MERP strategy for a game 𝒢.

Definition 3.3.26 (MERP). Given a 𝑘-XOR game 𝒢 with m clauses, a MERP strategy

for 𝒢 is a tensor-product strategy in which:

5For symmetric games, 𝑚 ∼ exp{𝑘}, so in this case one can decide MERP value 1 and describe a strategy
in time polynomial in 𝑚 and 𝑛.

85

1. The 𝑘 players share the maximally entangled state

|Ψ⟩ = 1√
2

[︁
|0⟩⊗𝑘 + |1⟩⊗𝑘

]︁
(3.3.24)

with player 𝛼 having access to the 𝛼-th qubit of the state.

2. Upon receiving question 𝑗 from the verifier, player 𝛼 rotates his qubit by an angle 𝜃(𝛼, 𝑗)

about the 𝑍 axis, then measures his qubit in the 𝑋 basis and sends his observed outcome

to the verifier.

Explicitly, we define the states

|𝜃(𝛼, 𝑗)±⟩ :=
1√
2

[︀
|0⟩ ± 𝑒𝑖𝜃(𝛼,𝑗) |1⟩

]︀
(3.3.25)

and pick strategy observables

𝑋
(𝛼)
𝑗 := |𝜃(𝛼, 𝑗)+⟩⟨𝜃(𝛼, 𝑗)+| − |𝜃(𝛼, 𝑗)−⟩⟨𝜃(𝛼, 𝑗)−| . (3.3.26)

There exists a useful parallel between MERP strategies and classical strategies, which we

summarize below. Almost identically to the classical value (3.3.8),

Claim 3.3.27. Let the length-𝑘𝑛 MERP strategy vector for a given MERP strategy be

defined by

𝜃(𝛼−1)𝑛+𝑗 :=
1

𝜋
𝜃(𝛼, 𝑗). (3.3.27)

The value achieved by that MERP strategy on game 𝒢 is:

𝑣MERP(𝐺, 𝜃) :=
1

2
+

1

2𝑚

(︃
𝑚∑︁
𝑖=1

cos
(︁
𝜋
[︁
(𝐴𝜃)𝑖 − 𝑠𝑖

]︁)︁)︃
. (3.3.28)

Proof. Explicit calculation. Done in full in Section 3.5.2.

Claim 3.3.27 allows us to write down the constraint equations for MERP strategies to

achieve 𝑣MERP = 1.

86

Definition 3.3.28. Define the MERP constraint equations for game 𝒢 by

𝐴𝜃 = 𝑠 (mod 2) (3.3.29)

with 𝜃 ∈ Q𝑘𝑛.

(We could have equivalently required 𝜃 to be in R𝑘𝑛. This is because 𝐴, 𝑠 have integer entries

and so any real solution to (3.3.29) will also be rational.)

Claim 3.3.29. A MERP strategy achieves 𝑣MERP = 1 on a game 𝒢 iff its MERP constraint

equations have a solution. A solution 𝜃 corresponds to the MERP strategy in which player 𝛼

uses 𝜃(𝛼, 𝑗) = 𝜋𝜃(𝛼−1)𝑛+𝑗.

Intuitively, MERP provides an explicit construction allowing players to return an arbitrary

phase on each input, rather than the classical 0 or 𝜋. The MERP constraint equations then

ensure that for each question the returned phases sum to 𝜋𝑠𝑖 up to multiples of 2𝜋. For any

game, Claim 3.3.29 allows us to efficiently determine whether some MERP strategy achieves

value 1 via Gaussian elimination over Q. We often refer to this optimal MERP strategy6 for

a game 𝒢 as simply the MERP strategy for 𝒢.

3.3.5 MERP - PREF Duality

The set of games for which MERP achieves value 1 is exactly the set noPREF. As in the

classical and commuting operator cases, the MERP constraint equations (3.3.29) are dual to

the PREF conditions:

Theorem 3.3.30. For any game 𝒢, either there exists a PREF specification, or a MERP

strategy with value 1.

Proof. Technical proof in the style of a Theorem of Alternatives, analogous to Fact 3.3.15.

See Section 3.5.3.

6Despite the language, we do not wish to suggest that there is a single optimal MERP strategy. Instead
one should imagine some convention being used to specify a unique MERP strategy from the set of optimal
ones.

87

Because of Theorem 3.3.30 we also refer to a PREF specification 𝑧 as a MERP refutation.

Figure 3-1 summarizes the extensions of the classical duality relations presented in this

chapter. The general quantum duality provides a complex but complete description of games

with 𝜔* = 1. The PREF conditions are efficient to compute, but are only necessary conditions

for constructing commuting operator refutations, and thus the dual, MERP value 1, holds true

for only a subset of all 𝜔* = 1 games. We can make a stronger statement about symmetric

games: PREFs are both necessary and sufficient for a symmetric game to have a refutation,

so the duality ensures MERP achieves value 1 for all symmetric games with 𝜔* = 1.

∃𝜂 s.t. 𝐴𝜂 = 𝑠 over F2

𝑘-XOR: primal

@𝑦 ∈ F𝑚
2

s.t. 𝐴𝑇𝑦 = 0 over F2

and 𝑠𝑇𝑦 = 1 over F2

𝑘-XOR: dual

∃ entangled strategy
s.t. 𝑎𝑙𝑙𝑖 : 𝑄𝑖 |Ψ⟩ = 𝑠𝑖 |Ψ⟩

𝑘-player XOR game

∃𝑥, 𝑧 s.t. 𝐴𝑥 = 𝑠+ 2𝑧,
with 𝑥 ∈ Q𝑘𝑛, 𝑧 ∈ Z𝑚

MERP

@(𝑖1, . . . , 𝑖ℓ) ∈ [𝑚]
s.t.

∏︀ℓ
𝑗=1𝑄𝑖𝑗 ∼ 𝐼

and
∏︀ℓ

𝑗=1 𝑠𝑖𝑗 = −1

Refutations

@𝑧 ∈ Z𝑚

s.t. 𝐴𝑇 𝑧 = 0 over Z
and 𝑠𝑇 𝑧 = 1 (mod 2)

PREF

Classical games Entangled games

Fact 3.3.15 Thm 3.4.1

Thm 3.3.22

Thm 3.3.25

Thm 3.3.30

Clm 3.3.29

Thm 3.2.2

Thm 3.2.1

Figure 3-1: We extend the well-understood duality relation for classical XOR games (left) to
a more complex set of dualities characterizing perfect strategies for entangled XOR games
(right). The arrows indicate implications, with the red, unfilled arrows holding for symmetric
games only. The dashed red arrows follow from the other arrows for symmetric games.

3.3.6 Implications

Finally we can use our main results to analyze some particular families of games and partially

characterize the XOR game landscape.

In the 𝜔* = 1 regime, we construct a family of games that generalize the GHZ game,

termed the Asymptotically Perfect Difference (APD) family. Members are parameterized by

scale 𝐾, with the 𝐾-th member having 𝑘 = 2𝐾 − 1 players, and 𝐾 = 2 reproducing GHZ.

88

The APD family is contained in the noPREF set (𝜔* = 1) and has perfect difference in the

asymptotic limit,

lim
𝐾→∞

2(𝜔* − 𝜔) = 1. (3.3.30)

This demonstrates that XOR games include a subset for which (at least asymptotically) the

best classical strategy is no better than random while a tensor-product strategy (MERP)

can play perfectly. Details of this construction are given in Section 5.2.3. We also give, in

Section 5.2.1, the construction for a (nonsymmetric) game for which 𝜔* = 1 but which falls

outside the noPREF set, which shows the incompleteness of the PREF criteria.

To study the 𝜔* < 1 regime, we consider the behavior of randomly generated XOR

games with a large number of clauses. We prove Theorem 5.1.4 by explicitly constructing a

refutation for such games using insights developed in previous sections. Interestingly, we also

show such games have a minimal length refutation that scales like Ω(𝑛 log(𝑛)/ log(log(𝑛))),

which implies that it takes the ncSoS algorithm superexponential time to show that these

games have 𝜔* < 1 (Lemma 3.4.4 and Theorem 5.1.5). These results can be seen as quantum

analogues of Grigoriev’s [27] integrality gap instances for classical XOR games. Finally, we try

to push the potentially superexponential runtime of ncSoS to its extremes. We demonstrate

a family of symmetric games, called the Capped GHZ family, that provably have 𝜔* < 1, but

have minimum refutation length exponential in the number of clauses (Section 5.2.2). For

games in this family the ncSoS algorithm requires time doubly exponential to prove that

their commuting operator value is < 1 while the noPREF criterion can be used to conclude

this fact in polynomial time.

3.4 Refutations

Refutations are a powerful tool for differentiating between XOR games with perfect commuting

operator strategies (𝜔* = 1) and those with 𝜔* bounded away from 1. In Section 3.4.1, we

prove Theorem 3.4.1 and Theorem 3.4.2, relating refutations to the commuting operator

value of XOR games:

Theorem 3.4.1. An XOR game 𝒢 has commuting operator value 𝜔*(𝒢) = 1 if and only if it

89

admits no refutations.

Theorem 3.4.2. Let 𝒢 be an XOR game consisting of 𝑚 queries, with 𝒢 yielding a length-ℓ

refutation. The commuting operator value of the game is bounded above by

𝜔*(𝒢) ≤ 1− 𝜋2

4𝑚ℓ2
. (3.4.1)

Informally, Theorem 3.4.1 gives completeness and soundness of refutations when used as

a proof system for checking if a game has 𝜔* < 1. Theorem 3.4.2 improves the soundness.

We previously introduced the notion of the combinatorial view of refutations (Defini-

tion 3.3.18) and containing a PREF as a necessary condition for a game to have a refutation

(Corollary 3.3.23). Section 3.4.2 presents the combinatorial view in more detail, and proves

that a PREF specification and existence of a particular set of “shift gadgets” is a sufficient

condition for a refutation to exist. Finally, Section 3.4.3 demonstrates that for symmetric

XOR games, all desired “shift gadgets” are automatically available, meaning that a refutation

exists if and only if a PREF specification exists, thus providing an efficient technique to

decide whether any symmetric XOR game has perfect commuting operator value.

3.4.1 Upper Bound on Value

We begin by proving Theorem 3.4.1. The main tool we use is the non-commuting Sum of

Squares (ncSoS) hierarchy, also known as the NPA hierarchy [46, 20]. Given a game 𝒢, each

level in the ncSoS hierarchy is a semidefinite program depending on 𝒢 whose solution gives

an upper bound on the value 𝜔*(𝒢); higher levels correspond to larger semidefinite programs

and tighter upper bounds. While we refer the reader to the references cited above for a full

description, we include here a definition of the key object used in constructing the hierarchy:

the pseudoexpectation operator.

Definition 3.4.3. Given an XOR game 𝒢, a degree-𝑑 pseudoexpectation operator or

pseudodistribution is a linear function Ẽ [·] that maps formal polynomials of degree at most

𝑑 over the strategy observables 𝑋(𝛼)
𝑗 to complex numbers. A pseudoexpectation Ẽ [·] is valid if

• for all polynomials 𝑝 of degree at most 𝑑/2, Ẽ
[︀
𝑝†𝑝
]︀
≥ 0,

90

• for all polynomials 𝑝1, 𝑝2 with deg(𝑝1𝑝2) ≤ 𝑑− 2 and indices 𝛼 ∈ [𝑘] and 𝑗 ∈ [𝑛],

Ẽ
[︁
𝑝1

{︁
(𝑋

(𝛼)
𝑗)2 − 𝐼

}︁
𝑝2

]︁
= 0. (3.4.2)

• for all polynomials 𝑝1, 𝑝2 with deg(𝑝1𝑝2) ≤ 𝑑− 2 and indices 𝛼 ≠ 𝛼′ ∈ [𝑘] and 𝑗, 𝑗′ ∈ [𝑛],

Ẽ
[︁
𝑝1

{︁
𝑋

(𝛼)
𝑗 𝑂𝛼′

(𝑗′)−𝑂𝛼′
(𝑗′)𝑋

(𝛼)
𝑗

}︁
𝑝2

]︁
= 0. (3.4.3)

Intuitively speaking, these requirements state that any algebraic manipulations allowed by

(3.3.11) are also allowed under the pseudoexpectation, as long as they never result in a

polynomial of degree greater than 𝑑. We further say that a pseudoexpectation satisfies a clause

𝑐𝑖 = (𝑞𝑖, 𝑠𝑖) if for all polynomials 𝑝1, 𝑝2 with degrees summing to ≤ 𝑑−𝑘, Ẽ [𝑝1(𝑄𝑖 − 𝑠𝑖𝐼)𝑝2] = 0.

The full ncSoS algorithm involves optimizing over all valid pseudoexpectation operators

that satisfy clauses in the game; it can be shown that this optimization reduces to a semidefinite

program in matrices whose dimension is the number of monomials of degree at most 𝑑/2

in the observables 𝑋(𝛼)
𝑗 . In the special case of determining whether the game value is 1, it

reduces to checking for the existence of such a pseudoexpectation operator.

In [27], Grigoriev showed a connection between refutations of classical games and pseu-

dodistributions which appear to satisfy all clauses of a classical XOR game. In our analysis,

we will adapt some of these arguments to the quantum setting. In particular, Lemma 3.4.4

gives a quantum analogue of Grigoriev’s central insight that, in the special case of deciding

whether the game value is 1, the sum-of-squares hierarchy reduces to checking for the existence

of a refutation.

In addition to being key to the proof of Theorem 3.4.1, Lemma 3.4.4 also gives a bound

on the time it takes the ncSoS algorithm to show a XOR game has value < 1 in terms of the

minimum length refutation admitted by the game.

Lemma 3.4.4. For any 𝑘-XOR game 𝒢 with no refutation of length ≤ 2ℓ there exists a

degree-𝑘ℓ pseudodistribution whose pseudoexpectation satisfies every clause in 𝒢. Consequently,

it takes time at least Ω((𝑛𝑘)𝑘ℓ) for the ncSoS algorithm to prove 𝜔*(𝒢) ̸= 1.

91

Proof. To construct this pseudodistribution, we follow a procedure of Grigoriev [27]. For

each clause 𝑐𝑖 = (𝑞𝑖, 𝑠𝑖), define

Ẽ [𝑄𝑖] = Ẽ

[︃∏︁
𝛼

𝑂𝛼(𝑞
(𝛼)
𝑖)

]︃
:= 𝑠𝑖, (3.4.4)

and for any word7 𝑤 which can be obtained as a product of 𝑁 ≤ ℓ queries,

𝑤 :=
𝑁∏︁

𝑥=1

𝑄𝑖𝑥 , (3.4.5)

define the pseudoexpectation of 𝑤 to be the product of the parity bits 𝑠𝑖𝑥 associated with

each query 𝑄𝑖𝑥 in the operator construction:

Ẽ [𝑤] :=
𝑁∏︁

𝑥=1

𝑠𝑖𝑥 . (3.4.6)

We need to argue that this prescription is well-defined, i.e. that (3.4.5) and (3.4.6) never

assign two different values to the same Ẽ [𝑤]. Suppose to the contrary that 𝑤 =
∏︀

𝑥∈[𝑀]𝑄𝑖𝑥 =∏︀
𝑦∈[𝑁]𝑄𝑗𝑦 with 𝑀,𝑁 ≤ ℓ but that

∏︀
𝑥∈[𝑀] 𝑠𝑖𝑥 ̸=

∏︀
𝑦∈[𝑁] 𝑠𝑗𝑦 . Since (3.4.6) can only take on

the values ±1 we have
∏︀

𝑥∈[𝑀] 𝑠𝑖𝑥 ·
∏︀

𝑦∈[𝑁] 𝑠𝑗𝑦 = −1. Also each 𝑄𝑖 is Hermitian, so

1 = 𝑤𝑤† = 𝑄𝑖1 · · ·𝑄𝑖𝑁𝑄𝑗𝑀 · · ·𝑄𝑗1 . (3.4.7)

This constructs a refutation of length 𝑀 +𝑁 ≤ 2ℓ, contradicting our hypothesis that no such

refutation exists. We conclude that Ẽ [𝑤] is well-defined for the choices of 𝑤 resulting from

(3.4.5).

For all other words (i.e. those that cannot be obtained as products of queries or have

length > ℓ), set their pseudoexpectation to 0. Finally, extend the definition by linearity to

sums and scalar multiples of operator products.

Moreover, Ẽ [·] induces an equivalence relation on words: we say that words 𝑤𝑎
Ẽ∼ 𝑤𝑏 if

Ẽ
[︀
𝑤†𝑎𝑤𝑏

]︀
≠ 0. This relation therefore partitions the set of words into equivalence classes

7In this context, we borrow this terminology from the combinatorial picture to indicate any product of
strategy observables.

92

𝐶1, 𝐶2, We pick a representative element 𝑤𝑖 for each class 𝐶𝑖. A key feature of the

equivalence relation is that for 𝑤𝑎, 𝑤𝑏 ∈ 𝐶𝑖,

𝑤𝑎
Ẽ∼ 𝑤𝑏 =⇒ Ẽ

[︀
𝑤†𝑎𝑤𝑏

]︀
= Ẽ

[︀
𝑤†𝑎𝑤𝑖

]︀
Ẽ
[︁
𝑤†𝑖𝑤𝑏

]︁
. (3.4.8)

To show that Ẽ [·] is a pseudodistribution, it suffices to show that for any polynomial 𝑝 of

degree at most 𝑘ℓ/2 in the operators 𝑋(𝛼)
𝑗 , Ẽ

[︀
𝑝†𝑝
]︀
≥ 0. Group the monomials in 𝑝 according

to the equivalence classes, so that 𝑝 = 𝑝1 + 𝑝2 + . . . where each 𝑝𝑖 is a sum of terms from

equivalence class 𝐶𝑖. It follows that

Ẽ
[︀
𝑝†𝑝
]︀
=
∑︁
𝑖

∑︁
𝑗

Ẽ
[︁
𝑝†𝑖𝑝𝑗

]︁
=
∑︁
𝑖

Ẽ
[︁
𝑝†𝑖𝑝𝑖

]︁
. (3.4.9)

So we have reduced the problem to showing that Ẽ
[︀
𝑞†𝑞
]︀
≥ 0 for any polynomial 𝑞, all of

whose terms belong to the same equivalence class. Write 𝑞 as a linear combination of words

in equivalence class 𝐶𝑖,

𝑞 = 𝛼1𝑤1 + · · ·+ 𝛼𝑠𝑤𝑠. (3.4.10)

Then

Ẽ
[︀
𝑞†𝑞
]︀
= Ẽ

[︃
𝑠∑︁

𝑎,𝑏=1

𝛼*𝑎𝛼𝑏𝑤
†
𝑎𝑤𝑏

]︃
(3.4.11)

=
𝑠∑︁

𝑎,𝑏=1

𝛼*𝑎𝛼𝑏Ẽ
[︀
𝑤†𝑎𝑤𝑏

]︀
(3.4.12)

(3.4.8)
=

𝑠∑︁
𝑎,𝑏=1

𝛼*𝑎𝛼𝑏

(︁
Ẽ
[︁
𝑤†𝑖𝑤𝑎

]︁)︁†
Ẽ
[︁
𝑤†𝑖𝑤𝑏

]︁
(3.4.13)

=
⃒⃒⃒∑︁

𝑎

𝛼𝑎Ẽ
[︁
𝑤†𝑖𝑤𝑎

]︁ ⃒⃒⃒2
(3.4.14)

≥ 0. (3.4.15)

The existence of this pseudodistribution implies that the ncSoS algorithm would need to

run to level at least 𝑘ℓ in the ncSoS hierarchy to show 𝒢 has commuting operator value < 1.

This can be converted to a lower bound on the runtime by standard results in semidefinite

93

programing.

Finally, we state and prove the duality between refutations and 𝜔* = 1.

Theorem 3.4.1. An XOR game 𝒢 has commuting operator value 𝜔*(𝒢) = 1 if and only if it

admits no refutations.

Proof. In one direction, Definition 3.3.12 immediately implies that if the game has commuting

value 1, then there are no refutations.

In the other direction, suppose there are no refutations. Then, by Lemma 3.4.4 and taking

ℓ→∞ we see there exists a pseudodistribution under which every clause is satisfied, and this

pseudodistribution satisfies the constraints of all levels of the ncSoS hierarchy [46]. Since it is

known that the ncSoS hierarchy converges to the commuting value of the game, it follows

that this value is 1.

Classical refutations prove that a constraint satisfaction problem is not feasible, and so if

there are 𝑚 constraints they trivially yield an upper bound of 1− 1/𝑚. In the commuting

operator case, even this statement is not obvious. In particular, one could worry that a game

with a quantum refutation still admits a sequence of commuting operator strategies with

limiting value 1.

However, here we prove Theorem 3.4.2, showing that even in the commuting operator case,

refutations yield explicit upper bounds on 𝜔*(𝒢) that are strictly less than 1. An argument

similar to the one presented here was known previously, and used to derive a comparable

result in Section 5 of [15].

Theorem 3.4.2. Let 𝒢 be an XOR game consisting of 𝑚 queries, with 𝒢 yielding a length-ℓ

refutation. The commuting operator value of the game is bounded above by

𝜔*(𝒢) ≤ 1− 𝜋2

4𝑚ℓ2
. (3.4.16)

Proof. Recall from Definition 3.3.12 that the Hermitian operator 𝑄𝑖 is defined for some XOR

game 𝒢, and represents the collective measurements made by the players upon receiving query

𝑞𝑖. It has eigenvalues ±1, which correspond to the value of the XOR’d bit received by the

verifier. Define �̃�𝑖 := 𝑠𝑖𝑄𝑖, so the 1 eigenspace of �̃�𝑖 corresponds to measurement outcomes

94

on which the players win the game given query 𝑞𝑖, and the −1 eigenspace corresponds to

measurement outcomes on which the players lose the game. Let (𝑖1, 𝑖2, . . . 𝑖ℓ) be the assumed

refutation for 𝒢. Letting |Ψ⟩ be the state shared by the players, we have

�̃�𝑖1�̃�𝑖2 . . . �̃�𝑖ℓ |Ψ⟩ = (𝑠𝑖1𝑠𝑖2 . . . 𝑠𝑖ℓ)𝑄𝑖1𝑄𝑖2 . . . 𝑄𝑖ℓ |Ψ⟩ = −1 |Ψ⟩ . (3.4.17)

On the other hand, if we let 𝑃𝑖 =
𝐼−�̃�𝑖

2
be the projector on to the −1 eigenspace of �̃�𝑖 then

the losing probability is

𝛿 :=
1

𝑚

𝑚∑︁
𝑖=1

Tr
[︁
𝑃𝑖 |Ψ⟩ ⟨Ψ|

]︁
(3.4.18)

We now follow an argument similar to the union bound proof of [25]. Let ∠(|𝛼⟩ , |𝛽⟩) =

arccos | ⟨𝛼|𝛽⟩ | and observe that it satisfies the triangle inequality, i.e. ∠(|𝛼⟩ , |𝛾⟩) ≤ ∠(|𝛼⟩ , |𝛽⟩)+

∠(|𝛽⟩ , |𝛾⟩). Then

𝜋
(3.4.17)
≤

ℓ∑︁
𝑥=1

∠
(︁
|Ψ⟩ , 𝑄𝑖𝑥 |Ψ⟩

)︁
Note that 𝑄𝑖 is unitary. (3.4.19)

=
ℓ∑︁

𝑥=1

arccos
(︁
1− 2Tr

[︁
𝑃𝑖𝑥 |Ψ⟩ ⟨Ψ|

]︁)︁
(3.4.20)

≤
ℓ∑︁

𝑥=1

2

√︂
Tr
[︁
𝑃𝑖𝑥 |Ψ⟩ ⟨Ψ|

]︁
(3.4.21)

(3.4.18)
≤ 2

ℓ∑︁
𝑥=1

√
𝑚𝛿 (3.4.22)

= 2ℓ
√
𝑚𝛿. (3.4.23)

3.4.2 Tools for Constructing Refutations

Having demonstrated the utility of refutations, we return to the combinatorial picture of

refutations and prove necessary and sufficient conditions for an XOR game to contain a

refutation.

95

Combinatorics

We now formally reintroduce 𝑘-XOR games from a combinatorial standpoint. Several

definitions mirror those in Section 3.3.2 but are presented here in a slightly different form to

enable discussion of combinatorial proofs.

Definition 3.4.5. A 𝑘-XOR game on 𝑚 clauses with 𝑛 questions is defined to be a set of

𝑚 𝑘-tuples, consisting of elements of [𝑛], with 𝑚 associated parity bits. An individual 𝑘-tuple

is called a query, and is denoted by

𝑞𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞
(1)
𝑖

𝑞
(2)
𝑖

...

𝑞
(𝑘)
𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.4.24)

Definition 3.4.6. A word 𝑊 on alphabet [𝑛] is a 𝑘-tuple of the form

𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑤11 𝑤12 . . . 𝑤1ℓ1

𝑤21 𝑤22 . . . 𝑤2ℓ2

...

𝑤𝑘1𝑤𝑘2 . . . 𝑤𝑘ℓ𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ (3.4.25)

with all 𝑤𝑖𝑗 ∈ [𝑛]. Each row of 𝑊 is referred to as a wire of the word, and the 𝛼-th row is

sometimes denoted by 𝑊 (𝛼). When all wires have length ℓ, (so ℓ1 = ℓ2 = . . . ℓ𝑘 = ℓ) we say

𝑊 has length ℓ.

The product of two words is defined to be their coordinate-wise concatenation. The notation

𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ then refers to the length ℓ word given by

𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞
(1)
𝑖1
𝑞
(1)
𝑖2

. . . 𝑞
(1)
𝑖ℓ

𝑞
(2)
𝑖1
𝑞
(2)
𝑖2

. . . 𝑞
(2)
𝑖ℓ

...

𝑞
(𝑘)
𝑖1

𝑞
(𝑘)
𝑖2

. . . 𝑞
(𝑘)
𝑖ℓ

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.4.26)

96

Finally, define the identity word 𝐼 to be the empty 𝑘-tuple, which satisfies

𝐼𝑊 = 𝐼𝑊 = 𝑊 (3.4.27)

for any word 𝑊 .

Definition 3.4.7. A game 𝒢 contains a word 𝑊 with sign 𝑠𝑊 ∈ {±1} if

𝑊 = 𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ and (3.4.28)

𝑠𝑊 = 𝑠𝑖1𝑠𝑖2 . . . 𝑠𝑖ℓ (3.4.29)

for some (𝑖1, 𝑖2, . . . 𝑖ℓ) ∈ [𝑚]ℓ.

Definition 3.4.8. Relations are used to express equivalence between words. There are two

basic types (shown here for 3-XOR, and defined analogously for 𝑘-XOR).

1. (Commute Relations):

⎡⎢⎢⎢⎣
𝑗

𝑗′

𝑗′′

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
𝑗′′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑗′
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑗
⎤⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎣𝑗′
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑗
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑗′′

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
𝑗
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑗′′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣𝑗′
⎤⎥⎥⎥⎦ 𝑎𝑙𝑙𝑗, 𝑗′, 𝑗′′ ∈ [𝑛]

(3.4.30)

2. (Cancellation Relations):

⎡⎢⎢⎢⎣
𝑗2
⎤⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎣𝑗2
⎤⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎣
𝑗2

⎤⎥⎥⎥⎦ ∼ 𝐼 𝑎𝑙𝑙𝑗 ∈ [𝑛] (3.4.31)

The relationship property is associative (as suggested by the notation), so more complicated

equivalences can be constructed by concatenating the ones above.

Definition 3.4.9. Given a 𝑘-XOR game 𝒢, a length ℓ refutation for that game is a length

97

ℓ word 𝑊 contained in 𝒢 with sign −1 and

𝑊 ∼ 𝐼. (3.4.32)

PREFs and Shuffle Gadgets

The key difference between entangled and classical strategies is that in the entangled case,

the strategy observables do not all commute with each other. In other words, strings of

queries can be acted on nontrivially by permutations. In this section we consider equivalence

under a restricted class of parity-preserving permutations, and use the fact that at least one

element of a class equivalent to some refutation must be contained in a game for it to admit

a refutation, giving a tractable necessary condition for a refutation to exist. We then define

gadgets that perform these permutations while preserving the associated parity bits. The

result will be a useful set of sufficient conditions for a refutation to exist.

We recall the formal definitions related to these equivalence classes.

Definition 3.3.20. Given two 1-XOR words 𝑊1,𝑊2, we say that 𝑊1 is parity-permuted

equivalent to 𝑊2—denoted 𝑊1
𝑝∼ 𝑊2—if there exists a permutation 𝜋 mapping even indices

to even indices and odd indices to odd indices such that 𝑊1 ∼ 𝜋(𝑊2).

For 𝑘-XOR words 𝑊𝐴,𝑊𝐵, we say 𝑊𝐴
𝑝∼ 𝑊𝐵 if 𝑊 (𝛼)

𝐴

𝑝∼ 𝑊
(𝛼)
𝐵 for all 𝛼 ∈ [𝑘].

From the definition, we see that 𝑝∼ is necessary for ∼, i.e.

𝑊1 ∼ 𝑊2 =⇒ 𝑊1
𝑝∼ 𝑊2. (3.4.33)

We can then conclude that a game 𝒢 contains a refutation only if it contains a word 𝑊 𝑝∼ 𝐼

with sign −1. To make this necessary condition more useful to us, we will move from an

operational definition of the 𝑝∼ relation to a structural one. This is done by talking about the

even and odd subsets of a given word. The relevant definitions are given below.

Definition 3.4.10. Two multisets of queries 𝒯1 and 𝒯2 are said to be multiplicity equiva-

lent if all player-question combinations occur with the same multiplicity in both sets. That is,

98

𝒯1 and 𝒯2 are multiplicity equivalent iff

⃒⃒{︀
𝑞 ∈ 𝒯1 : 𝑞(𝛼) = 𝑗

}︀⃒⃒
=
⃒⃒{︀
𝑞′ ∈ 𝒯2 : 𝑞′(𝛼) = 𝑗

}︀⃒⃒
𝑎𝑙𝑙𝛼, 𝑗. (3.4.34)

Definition 3.4.11. Given a word contained in a game 𝒢

𝑊 = 𝑞𝑖1𝑞𝑖2 ...𝑞𝑖ℓ (3.4.35)

define its even and odd multisets ℰ and 𝒪 in the natural way, so8

ℰ :=
⨄︁

𝑥 even

𝑞𝑖𝑥 and 𝒪 :=
⨄︁
𝑥 odd

𝑞𝑖𝑥 . (3.4.36)

The key feature of the multiplicity equivalence condition is that a word contained in a

game 𝒢 is 𝑝∼ 𝐼 iff its even and odd multisets are multiplicity equivalent. A slightly more

general form of this statement is proved below.

Lemma 3.4.12. Given two words 𝑊1 and 𝑊2 contained in 𝒢, the following are equivalent:

1. 𝑊1
𝑝∼ 𝑊2.

2. The even and odd multisets of the word 𝑊1𝑊
−1
2 are multiplicity equivalent.

Proof. This proof is easiest if we generalize from the concept of even and odd multisets of

clauses to even and odd multisets of variable-player combinations. In particular, given a word

𝑊 (not necessarily contained in a game 𝒢), its even and odd variable multisets are defined by

ℰ ′(𝑊) :=
⨄︁

𝑖 even,𝛼

(𝑤𝑖,𝛼, 𝛼) (3.4.37)

𝒪′(𝑊) :=
⨄︁

𝑖 odd,𝛼

(𝑤𝑖,𝛼, 𝛼) (3.4.38)

where the tuple notion tracks the fact that variables given to different players are treated as

distinct. To prove Lemma 3.4.12, we must now claim some basic facts about ℰ ′ and 𝒪′.

8Here and beyond we use the multiset operation
⨄︀

to indicate union with addition of multiplicities. When
applied to single elements we mean to treat each element as a single-element multiset.

99

(A) For a word 𝑊 contained in 𝒢, the even and odd multisets of 𝑊 are multiplicity

equivalent iff

ℰ ′(𝑊) = 𝒪′(𝑊). (3.4.39)

(B) Applying a parity preserving permutation to a word 𝑊 does not change ℰ ′(𝑊) or

𝒪′(𝑊).

(C) For any two words 𝑊1 ∼ 𝑊2, we have

ℰ ′(𝑊1) ⊎ 𝒪′(𝑊2) = ℰ ′(𝑊2) ⊎ 𝒪′(𝑊1). (3.4.40)

Claims (A) and (B) come directly from the definition of ℰ ′ and 𝒪′. To prove claim (C) we

consider two words 𝑊1 ∼ 𝑊2. If we never used a cancellation relation, we would immediately

have

ℰ ′(𝑊1) = ℰ ′(𝑊2) and 𝒪′(𝑊1) = 𝒪′(𝑊2). (3.4.41)

Now a cancellation on a word always occurs between an element at an even position and

one at an odd one, that is, it removes elements equally from ℰ ′ and 𝒪′. Letting 𝒞1 be the

multiset of elements removed from ℰ ′(𝑊1) (and equivalently 𝒪′(𝑊1)) by cancellation, with

𝒞2 defined similarly for 𝑊2, we find

(ℰ ′(𝑊1)∖𝒞1) ⊎ (𝒪′(𝑊2)∖𝒞2) = (ℰ ′(𝑊2)∖𝒞2) ⊎ (𝒪′(𝑊1)∖𝒞1) (3.4.42)

⇔ ℰ ′(𝑊1) ⊎ 𝒪′(𝑊2) = ℰ ′(𝑊2) ⊎ 𝒪′(𝑊1). (3.4.43)

100

Now, to prove Lemma 3.4.12 we note

𝑊1
𝑝∼ 𝑊2 (3.4.44)

⇔ ∃ parity preserving 𝜋 : 𝜋(𝑊1) ∼ 𝑊2 (definition)

(3.4.45)

⇔ ℰ ′(𝜋(𝑊1)) ⊎ 𝒪′(𝑊2) = ℰ ′(𝑊2) ⊎ 𝒪′(𝜋(𝑊1)) (𝐶)

(3.4.46)

⇔ ℰ ′(𝑊1) ⊎ 𝒪′(𝑊2) = ℰ ′(𝑊2) ⊎ 𝒪′(𝑊1) (𝐵)

(3.4.47)

⇔ ℰ ′(𝑊1𝑊
−1
2) = 𝒪′(𝑊1𝑊

−1
2) (reordering word)

(3.4.48)

⇔ The even and odd subsets of 𝑊1𝑊
−1
2 are multiplicity equivalent. (𝐴)

(3.4.49)

(3.4.48) is a somewhat subtle step, but follows formally (for example) from a proof by cases

considering even and odd length words 𝑊1 and 𝑊2 and noting that the length of 𝑊1 and 𝑊2

must be equivalent mod 2.

Definition 3.3.21. A game 𝒢 contains a Parity-Permuted Refutation (PREF) if the

queries of the game can be combined to form two multiplicity equivalent multisets for which

the parity bits corresponding to the queries multiply to −1. Equivalently (Lemma 3.4.12),

the game 𝒢 contains a word which is 𝑝∼ 𝐼 with sign −1.

The set of PREF Games are the set of XOR games that contain PREFs. The set of

noPREF Games are the set of XOR games that do not.

We can finally restate and prove our necessary condition formally:

Theorem 3.3.22 (Necessary condition for refutation). If a game 𝒢 admits a refutation, it

contains a PREF.

Proof. By definition, a refutation 𝑅 admitted by game 𝒢 must be ∼ 𝐼 and therefore 𝑅 𝑝∼ 𝐼.

𝑅 must also have sign −1. By Definition 3.3.21, game 𝒢 then contains a PREF.

101

Phrasing this necessary condition in terms of even and odd multiplicity equivalent multisets

then provides an efficient means of computing whether or not a game satisfies this PREF

criterion (Section 3.4.3).

We next consider the structural requirements on refutations to derive a stronger condition

that is sufficient for a game to admit a refutation. As a first step we show that we can map

between words which are 𝑝∼ to each other using a restricted class of permutations.

Lemma 3.4.13. Let 𝑊 = 𝑤1𝑤2 . . . 𝑤2ℓ be a 1-XOR word of even length such that 𝑊 𝑝∼

𝐼; i.e. there exists a parity-preserving permutation 𝜋 ∈ 𝑆2ℓ such that 𝜋(𝑊) ∼ 𝐼. Then

there exists a permutation 𝜋′ ∈ 𝑆2ℓ, also satisfying 𝜋′(𝑊) ∼ 𝐼, also parity-preserving,

and with an additional “pair preserving” property. This means that it permutes the pairs

(1, 2), (3, 4), . . . , (2ℓ− 1, 2ℓ) without separating or reordering the elements in each pair:

𝜋′(2𝑖− 1) = 𝜋′(2𝑖)− 1 ∀𝑖 ∈ [ℓ]. (3.4.50)

Proof. Every letter in 𝜋(𝑊) will cancel with a unique other letter. We call a letter even or

odd based on the parity of its location in 𝜋(𝑊). Deleting a canceled pair does not change the

parity of any other location, and 𝜋 also preserves the parities. Thus the letter in location 2𝑖

will cancel a letter in some odd position, which we call 2𝑓(𝑖)− 1 (i.e. 𝑤2𝑖 = 𝑤2𝑓(𝑖)−1). Since

each odd letter cancels exactly one even letter, 𝑓 is a permutation of [ℓ]. Next we decompose

𝑓 into disjoint cycles: 𝑓 = (𝑖1, 𝑖2, . . . 𝑖ℓ1)(𝑖ℓ1+1 . . . 𝑖ℓ2) . . . (𝑖ℓ𝑐−1+1 . . . 𝑖ℓ𝑐) where ℓ𝑐 = ℓ. We claim

that, written in two-line notation,

𝑡′ :=

⎛⎝1 2 . . . ℓ𝑐

𝑖1 𝑖2 . . . 𝑖ℓ𝑐

⎞⎠ (3.4.51)

is a permutation of the pairs satisfying the desired properties. This map from 𝑓 to 𝑡′ is known

as the Foata correspondence. Let 𝜋′ be the corresponding pair-preserving permutation of [2ℓ].

102

Then

𝜋′(𝑤) = 𝑤2𝑖1−1𝑤2𝑖1𝑤2𝑖2−1𝑤2𝑖2 · · · · ·𝑤2𝑖ℓ1−1𝑤2𝑖ℓ1
𝑤2𝑖ℓ1+1−1 · · ·𝑤2𝑖ℓ2

. (3.4.52)

We can see that 𝜋′(𝑤) fully cancels following the pattern marked by the square brackets, with

each cancellation using the fact that 𝑤2𝑖 = 𝑤2𝑓(𝑖)−1.

A pair (and hence parity) preserving permutation 𝜋′ ∈ 𝑆2ℓ can be specified uniquely by

some 𝜋 ∈ 𝑆ℓ, given the relation

𝜋(𝑖) = 𝜋′(2𝑖)/2. (3.4.53)

We will frequently use of this alternate description of pair-preserving permutations, in a way

made formal in Definition 3.4.18.

Before introducing this formally, we will the concept of a shuffle.

Definition 3.4.14. A function 𝑓 : [ℓ]→ [ℓ] is called a shuffle function if the sequence

𝑓−1(1), 𝑓−1(2), . . . , 𝑓−1(ℓ)

can be partitioned into two increasing subsequences. That is, for any shuffle function 𝑓 , there

exist disjoint increasing sequences 𝑠𝐴 and 𝑠𝐵 with |𝑠𝐴|+ |𝑠𝐵| = 𝑙 and 𝑓−1 increasing on 𝑠𝐴

and 𝑠𝐵.

Operationally, the set of shuffle functions are the set of permutations which can be obtained

by partitioning the elements of [ℓ] into two sets, considering those sets as increasing sequences,

and then mixing those sequences using a dovetail (riffle) shuffle.

Definition 3.4.15. Let 𝐴 be an arbitrary set, and let 𝑡 = (𝑎1, 𝑎2, . . . , 𝑎ℓ) be a sequence

consisting of elements of 𝐴. Define the set of shuffles of 𝑡

shuffle(𝑡) := {(𝑎𝑓(1), 𝑎𝑓(2), . . . , 𝑎𝑓(ℓ)) : 𝑓 a shuffle function} (3.4.54)

103

and let this function act on sets in the natural way, so

shuffle(𝒯) :=
⋃︁
𝑡∈𝒯

shuffle(𝑡) (3.4.55)

where 𝒯 ⊆ 𝐴* and 𝐴* =
⋃︀

𝑛≥0𝐴
𝑛 is the set of all sequences of elements of 𝐴.

Shuffles are a subset of the set of permutations. However, a standard result [3] regarding

dovetail shuffles states that any permutation can be expressed as a short sequence of dovetail

shuffles. Since our definition of shuffles contains a choice of partition that generalizes dovetail

shuffles, the same result applies to our family of shuffles.

Lemma 3.4.16 (Theorem 1 of [3]). Let 𝑡 be any sequence of length ℓ, 𝑝 ≥ ⌈log(ℓ)⌉, and let

𝑡′ be any permutation of 𝑡. Then

𝑡′ ∈ shuffle𝑝(𝑡). (3.4.56)

Our next goal is constructing a gadget from 𝑘-XOR clauses that allows us to shuffle pairs

of letters on any wire of a word without changing the overall parity bit. The construction of

this gadget relies on a simpler “shift gadget” which allows us to move words between wires.

This definition and construction are given below.

Definition 3.4.17. For any string of letters 𝑦 = 𝑦1𝑦2...𝑦ℓ, a 1 → 2 shift gadget for 𝑦 is

a word 𝑆1→2(𝑦) that equals the identity on all wires except the first two, and is equal to

𝑦−1 := 𝑦ℓ...𝑦2𝑦1 on wire 1, i.e. a word of the form

𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ := 𝑆1→2(𝑦) ∼

⎡⎢⎢⎢⎣
𝑦−1

ℎ(𝑦)

⎤⎥⎥⎥⎦ , (3.4.57)

for some arbitrary string of letters ℎ(𝑦). For 𝛼, 𝛽 ∈ [𝑘], define 𝛼→ 𝛽 shift gadgets analogously.

104

Note that any shift gadget has a natural inverse

𝑞𝑖ℓ𝑞𝑖ℓ−1
. . . 𝑞𝑖1 := 𝑆1←2(𝑦) ∼

⎡⎢⎢⎢⎣
𝑦

ℎ(𝑦)−1

⎤⎥⎥⎥⎦ =
(︀
𝑆1→2(𝑦)

)︀−1
. (3.4.58)

Intuitively, 𝑆1→2(𝑦) removes 𝑦 from the first wire and “saves” it on the second wire in the

form of the string ℎ(𝑦). 𝑆1←2(𝑦) then “loads” 𝑦 back onto the first wire while removing 𝑦′

from the second wire. We now use these shift gadgets to construct a gadget that shuffles

pairs of letters.

Definition 3.4.18. Define unpack : ([𝑛]2)ℓ/2 → [𝑛]ℓ to map sequences of pairs into an

“unpacked” sequence in the natural way, so that

unpack ((𝑡1, 𝑡2), (𝑡3, 𝑡4), . . . , (𝑡ℓ−1, 𝑡ℓ)) = (𝑡1, 𝑡2, . . . 𝑡ℓ) . (3.4.59)

Note that any permutation 𝜋′ ∈ 𝑆ℓ is pair preserving iff it satisfies

𝜋′ = unpack ∘𝜋 ∘ unpack−1 (3.4.60)

for some 𝜋 ∈ 𝑆ℓ/2.

Lemma 3.4.19 (Shuffle Gadget). Let 𝑡 = (𝑡1, 𝑡2, . . . 𝑡ℓ/2) be a length ℓ/2 sequence of pairs of

letters, with each 𝑡𝑖 := (𝑡
(1)
𝑖 𝑡

(2)
𝑖) ∈ [𝑛]2. Let 𝒢 be an XOR game that contains all shift gadgets

in the set 9

{︁
𝑆1→𝛼(𝑡

(1)
𝑖 𝑡

(2)
𝑖) : 𝛼 ∈ {𝛼1, 𝛼2}, 𝑖 ∈ [ℓ/2]

}︁
, (3.4.61)

where 𝛼1 ̸= 𝛼2 are elements of [𝑘]∖ {1} and each shuffle gadget has length at most 𝐾. Then,

9There is nothing special about player 1 here but we state the lemma in terms of player 1 for notational
simplicity.

105

for all 𝑡′ ∈ shuffle(𝑡), 𝒢 contains a word 𝑊 with sign 𝑠𝑊 = +1, length at most 𝐾ℓ, and

𝑊 ∼

⎡⎣unpack(𝑡)−1 unpack(𝑡′)⎤⎦ .
Proof. Let 𝑓 be the shuffle function satisfying 𝑓(𝑡) = 𝑡′ ∈ shuffle(𝑡). Since 𝑓 is a shuffle

function we can choose disjoint sequences 𝑠𝐴 and 𝑠𝐵 with 𝑠𝐴 ∪ 𝑠𝐵 = [ℓ/2] and 𝑓−1 increasing

on both. We construct a word of the desired form by first saving the pairs in 𝑠𝐴 and 𝑠𝐵 onto

wires 𝛼1 and 𝛼2, respectively, then loading them back onto the first wire, interleaving in the

appropriate order.

For any sequence 𝑠, let 𝑠𝑟 be shorthand for that sequence written in reverse order. Define

the function 𝑔 : [ℓ/2]→ {𝛼1, 𝛼2} by

𝑔(𝑖) =

⎧⎪⎨⎪⎩𝛼1 if 𝑖 ∈ 𝑠𝐴

𝛼2 if 𝑖 ∈ 𝑠𝐵
.

Then the word 𝑊 given below satisfies the lemma:

𝑊 =

ℓ/2∏︁
𝑖=1

(︁
𝑆1→𝑔(𝑖)(𝑡

(1)
𝑖 𝑡

(2)
𝑖)
)︁ ℓ/2∏︁

𝑖=1

(︁
𝑆1←𝑔(𝑓−1(𝑖))(𝑡

(1)

𝑓−1(𝑖)𝑡
(2)

𝑓−1(𝑖))
)︁

(3.4.62)

∼

⎡⎢⎢⎢⎣
∏︀

𝑖∈𝑠𝑟
ℓ/2
(𝑡

(1)
𝑖 𝑡

(2)
𝑖)−1∏︀

𝑖∈𝑠𝑟𝐴
ℎ(𝑡

(1)
𝑖 𝑡

(2)
𝑖)∏︀

𝑖∈𝑠𝑟𝐵
ℎ(𝑡

(1)
𝑖 𝑡

(2)
𝑖)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∏︀

𝑖∈𝑠ℓ/2(𝑡
(1)

𝑓−1(𝑖)𝑡
(2)

𝑓−1(𝑖))∏︀
𝑖∈𝑠𝐴 ℎ(𝑡

(1)
𝑖 𝑡

(2)
𝑖)−1∏︀

𝑖∈𝑠𝐵 ℎ(𝑡
(1)
𝑖 𝑡

(2)
𝑖)−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
unpack(𝑡)−1 unpack(𝑡′)

⎤⎥⎥⎥⎦ . (3.4.63)

By assumption, 𝒢 contains each shift gadget used in the construction of 𝑊 , and each shift

gadget has length at most 𝐾. Therefore 𝑊 is contained in 𝒢 and has length at most

2𝐾(ℓ/2) = 𝐾ℓ. For each shift gadget used, its inverse is also used. By construction, the sign

of each shift gadget is the same as its inverse, so the overall sign of 𝑊 is 𝑠𝑊 = +1.

Note 3.4.20. For any game 𝒢 and sequence of pairs 𝑡 that meets the conditions of Lemma 3.4.19,

𝒢 will also meet the conditions for any sequence of pairs 𝑢 = 𝜋(𝑡) produced through

permutation 𝜋 of 𝑡. Then, under the assumptions of Lemma 3.4.19 we get “for free” that a

106

word is contained in 𝒢 with sign +1 and has the form⎡⎣unpack(𝜋(𝑡))−1 unpack(𝑓(𝜋(𝑡)))⎤⎦ (3.4.64)

with 𝜋 any permutation on pairs and 𝑓 any shuffle function (see Definition 3.4.14).

Combining our newly constructed shuffle gadget with our understanding of parity pre-

serving permutations allows us to derive a set of sufficient conditions for a game 𝒢 to contain

a refutation. These will be used in a critical way in Section 3.4.3.

Lemma 3.4.21. Let 𝒢 be a 𝑘-XOR game containing a length ℓ word 𝑊 whose first wire is

given by

𝑊1 =
[︁
𝑤11 𝑤12 . . . 𝑤1ℓ

]︁
𝑝∼ 𝐼. (3.4.65)

Also let 𝒢 contain all shift gadgets in the set

{𝑆1→𝛼(𝑤1(2𝑖−1)𝑤1(2𝑖)) : 𝛼 ∈ {𝛼1, 𝛼2} , 𝑖 ∈ [ℓ/2]}, (3.4.66)

where 𝛼1 ̸= 𝛼2 ∈ [𝑘]∖ {1} and each gadget has length at most 𝐾.

Then 𝒢 contains a word with sign +1 and length at most 𝐾ℓ log(ℓ) whose first wire is

given by

𝑊−1
1 =

[︁
𝑤1ℓ 𝑤1(𝑙−1) . . . 𝑤11

]︁
. (3.4.67)

and which is ∼ 𝐼 on all wires other than the first.

Proof. By Lemma 3.4.13 there exists a permutation 𝜋 on [ℓ/2] satisfying

[︁
unpack ∘𝜋((𝑤11𝑤12), (𝑤13𝑤14), . . . , (𝑤1(𝑙−1)𝑤1ℓ))

]︁
∼ 𝐼. (3.4.68)

By Lemma 3.4.16, there then exists a sequence (𝑓1, 𝑓2, . . . 𝑓𝑝) of 𝑝 ≤ log(ℓ) shuffle functions

107

with

𝑓𝑝 . . . 𝑓2𝑓1 = 𝜋. (3.4.69)

Now let 𝜋′ be an arbitrary permutation of [ℓ/2], 𝑓 ′ be an arbitrary shuffle of [ℓ/2], and define

the word 𝑌 (𝜋′, 𝑓 ′) to have first coordinate

𝑌1(𝜋
′, 𝑓 ′) :=

[︁
unpack ∘𝜋′((𝑤11𝑤12), . . . , (𝑤1(𝑙−1)𝑤1ℓ))

]︁−1 [︁
unpack ∘𝑓 ′(𝜋′((𝑤11𝑤12), . . . , (𝑤1(𝑙−1)𝑤1ℓ)))

]︁
(3.4.70)

and all remaining 𝑘 − 1 coordinates the identity. By Lemma 3.4.19 and Note 3.4.20, we have

that 𝒢 contains a word with sign +1 and length at most 𝐾ℓ which is ∼ 𝑌 (𝜋′, 𝑓 ′).

By concatenating a carefully chosen string of these words, we see 𝒢 also contains a word

with sign +1 and length at most 𝐾ℓ log(ℓ) which is

∼ 𝑌 (𝑒, 𝑓1)𝑌 (𝑓1, 𝑓2)𝑌 (𝑓2𝑓1, 𝑓3) . . . 𝑌 (𝑓𝑘−1𝑓𝑘−2 . . . 𝑓1, 𝑓𝑘) ∼ 𝑊−1
1 . (3.4.71)

Lemma 3.4.21 suggests we can construct refutations for a game 𝒢 by finding a word

contained in 𝒢 which is 𝑝∼ 𝐼 and has sign −1, and then checking to see if 𝒢 contains the

necessary shift gadgets. First, we demonstrate that the first two wires of some permutation

of such a word can be made to cancel without using any shift gadgets, then determine a

sufficient set of shift gadgets required thereafter.

Lemma 3.4.22. Let game 𝒢 contain word 𝑊 ′ = 𝑞𝑖1𝑞𝑖2 . . . 𝑞𝑖ℓ
𝑝∼ 𝐼. There exists a permutation

𝜋 ∈ 𝑆ℓ such that

𝑊 := 𝑞𝑖𝜋(1)
𝑞𝑖𝜋(2)

. . . 𝑞𝑖𝜋(ℓ)

𝑝∼ 𝐼 (3.4.72)

and both 𝑊 (1) ∼ 𝐼 and 𝑊 (2) ∼ 𝐼 with 𝑊 (2) = 𝑥1𝑥1𝑥2𝑥2 . . . 𝑥ℓ/2𝑥ℓ/2 where 𝑥𝑖 ∈ [𝑛].

Proof. By Lemma 3.4.12, we have that the even and odd multisets of 𝑊 ′, ℰ and 𝒪 respectively,

are multiplicity equivalent. Thus, for each 𝛼 ∈ [𝑘], there exists a bijection 𝑓𝛼 : ℰ ↦→ 𝒪 that

maps a query (𝑞(1), . . . , 𝑞(𝑘)) ∈ ℰ to a query (𝑞′(1), . . . , 𝑞′(𝑘)) ∈ 𝒪 such that 𝑞(𝛼) = 𝑞′(𝛼). From

108

the bijections 𝑓1, 𝑓2, we will define a new map 𝑓 : ℰ ∪ 𝒪 ↦→ ℰ ∪ 𝒪 that maps each query

𝑞 ∈ ℰ to 𝑓1(𝑞) ∈ 𝒪 and each 𝑞′ ∈ 𝒪 to 𝑓−12 (𝑞′) ∈ ℰ . Since 𝑓1 and 𝑓2 are bijections, so is

𝑓 . Applying the Foata correspondence, as in Lemma 3.4.13, to the permutation of ℰ ∪ 𝒪

associated with 𝑓 yields a sequence of queries that make a word 𝑊 with the property that

the first two wires completely cancel to identity and wire 2 takes the desired form, i.e.

𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11𝑤12· · · · ·𝑤1(ℓ−1)𝑤1ℓ

𝑤21𝑤22 · · · · · 𝑤2(ℓ−1)𝑤2ℓ

𝑊 (3)

· · ·

𝑊 (𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑊 (3)

· · ·

𝑊 (𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑊 (3), . . . ,𝑊 (𝑘) are even-length strings of letters.

For a refutation to exist we then simply need to be able to shuffle the pairs on the

remaining wires 3, . . . , 𝑘.

Theorem 3.4.23 (Sufficient condition for refutation). Let 𝒢 be a PR game which by definition

contains some word 𝑊 ′ 𝑝∼ 𝐼 of some even length ℓ. Let 𝑊 𝑝∼ 𝐼 be the pairwise permuted word

as in Lemma 3.4.22. If 𝒢 contains all shift gadgets in the set

{︁
𝑆𝛼→𝛼′

(𝑊
(𝛼)
2𝑖−1𝑊

(𝛼)
2𝑖) : 𝛼 ∈ {3, . . . , 𝑘} , 𝛼′ ∈ {1, 2} , 𝑖 ∈ [ℓ/2]

}︁
(3.4.73)

then 𝒢 contains a refutation.

Proof. By the definition of a PR game (Definition 3.3.21), 𝒢 contains the word 𝑊 with sign

−1. By Lemma 3.4.21, 𝒢 contains all words 𝑊 ′′
𝛼 with 𝛼-th wire given by (𝑊 ′′

𝛼)
(𝛼) =

(︀
𝑊 (𝛼)

)︀−1,
all other wires ∼ 𝐼, and sign +1. Therefore 𝒢 contains the word

𝑅 := 𝑊
∏︁
𝛼

𝑊 ′′
𝛼 ∼ 𝐼 (3.4.74)

with sign 𝑠𝑅 = −1, which is a refutation.

109

It turns out that for the special case of symmetric XOR games, the symmetric structure

guarantees existence of all required shift gadgets automatically. Theorems 3.4.23 and 3.3.22

then give that a symmetric game contains a PREF if and only if it contains a refutation. Fur-

ther, whether a game contains a PREF is an efficiently decidable criterion. A formal definition

of symmetric XOR games and a proof of these facts are demonstrated in Section 3.4.3.

3.4.3 Algorithm for Symmetric Games

We begin with a formal definition of symmetric games.

Definition 3.4.24. A 𝑘-XOR game 𝒢 is symmetric if whenever it contains a clause

𝑐 = (𝑞(1), 𝑞(2), . . . , 𝑞(𝑘), 𝑠), it also contains all clauses 𝑐′ = (𝑞(𝜋(1)), 𝑞(𝜋(2)), . . . , 𝑞(𝜋(𝑘)), 𝑠), where

𝜋 : [𝑘] ↦→ [𝑘] permutes the query while the parity bit 𝑠 is unchanged.

Definition 3.4.25. A random symmetric 𝑘-XOR game 𝒢𝑠𝑦𝑚 on 𝑚 = 𝑘!𝑚′ clauses is a

game constructed by randomly generating 𝑚′ clauses, then including all clauses related by

permutations (as above) in 𝒢𝑠𝑦𝑚.

For symmetric games, we can now prove that all required shift gadgets are certainly

included.

Lemma 3.4.26. Let 𝑊 be a word contained in symmetric game 𝒢 of even length ℓ with

second wire of the form 𝑊 (2) = 𝑥1𝑥1𝑥2𝑥2 . . . 𝑥ℓ𝑥ℓ, where 𝑥𝑖 ∈ [𝑛]. For any wire 𝛼 ∈ {3, . . . , 𝑘}

and pairs of letters 𝑦1, 𝑦2 that appear at adjacent positions 2𝑖− 1, 2𝑖 in 𝑊 (𝛼), there exists shift

gadgets from 𝛼→ 2 and from 𝛼→ 1 for 𝑦1𝑦2 with length 𝑂(1).

Proof. Since the game is symmetric, it suffices to show the existence of the gadget for

𝛼 → 2. Let the queries containing 𝑦1, 𝑦2 in 𝑊 be 𝑞1 = (𝑞
(1)
1 , 𝑞

(2)
1 , . . . , 𝑦1, . . .) and 𝑞2 =

(𝑞
(1)
2 , 𝑞

(2)
2 , . . . , 𝑦2, . . .), respectively. Then by the assumption of symmetry, all permutations of

these queries exist in the given game. We can thus construct the shift gadget 𝑆𝛼→2(𝑦1𝑦2) by

110

the product of four clauses as follows:

𝑆𝛼→2(𝑦1𝑦2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞
(1)
2

𝑞
(2)
2

. . .

𝑦2

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞
(1)
2

𝑦2

. . .

𝑞
(2)
2

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞
(1)
1

𝑦1

. . .

𝑞
(2)
1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞
(1)
1

𝑞
(2)
1

. . .

𝑦1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ℎ(𝑦1𝑦2)

𝑦2𝑦1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.4.75)

where ℎ(𝑦1𝑦2) := 𝑞
(2)
2 𝑦2𝑦1𝑞

(2)
1 and the equality holds because 𝑦1 and 𝑦2 appear at an odd and

following even position of 𝑊 so by the form of the second wire 𝑞(2)1 = 𝑞
(2)
2 .

We now prove Theorem 3.2.1, by showing that the PREF criterion is both necessary and

sufficient for a symmetric game to have a refutation, and can also be expressed as a system

of linear Diophantine equations and thus solved efficiently.

Theorem 3.2.1. There exists an algorithm that, given a 𝑘-player symmetric XOR game 𝒢 with

alphabet size 𝑛 and 𝑚 clauses, decides in time poly(𝑛,𝑚) whether 𝜔*(𝒢) = 1 or 𝜔*(𝒢) < 1.

Proof. By Theorem 3.4.1, deciding whether the commuting-operator value is 1 is equivalent

to deciding whether the game admits a refutation (of any length). By Theorem 3.3.22 for a

game to admit a refutation it is necessary that it contains a PREF. Further, Theorem 3.4.23

and Lemma 3.4.26 together show that for a symmetric game to admit a refutation it is also

sufficient to contain a PREF. Thus for a symmetric game, deciding whether 𝜔* = 1 reduces

to determining whether or not the game contains a PREF.

We can now rephrase the condition for a game to contain a PREF as a system of linear

Diophantine equations. For each query in the game 𝑞𝑖 = (𝑞
(1)
𝑖 , . . . , 𝑞

(𝑘)
𝑖), let 𝑧𝑖 be an integer-

valued variable representing the number of times query 𝑖 appears in the even multiset of the

PREF minus the number of times it appears in the odd multiset. The condition that these 𝑧𝑖

in fact correspond to multiplicity equivalent sets can then be stated as a system of linear

Diophantine equations,

𝐴𝑇 𝑧 = 0 (3.4.76)

where 𝐴 is the game matrix as defined in Definition 3.3.3 and we have collected the 𝑧𝑖 into a

111

vector 𝑧 ∈ Z𝑚. The condition that the signs of the clauses in the PREF multiply to −1 can

be expressed as an additional linear Diophantine equation in terms of 𝑧 and parity bit vector

𝑠 (Definition 3.3.3):

𝑠𝑇 𝑧 = 1 (mod 2). (3.4.77)

By applying a standard algorithm, such as the one described in Chapter 5 of [58], this system

can be solved in time polynomial in the size of the system, measured as the number of bits

necessary to specify the system of equations. This means a runtime that is poly(𝑛,𝑚).

Note 3.4.27. Finding a solution to (3.4.76) and (3.4.77) tells us not only that a refutation

exists but also bounds its length. In particular, by following the steps of the preceding proof,

it can be shown that for a symmetric game with 𝜔*(𝒢) < 1, the minimum-length refutation

has length L satisfying

Ω(‖𝑧‖1) ≤ 𝐿 ≤ 𝑂(𝑘‖𝑧‖1 log ‖𝑧‖1),

where 𝑧 is a solution to (3.4.76) and (3.4.77) minimizing ‖𝑧‖1.

Finally, note that this linear algebraic description of the necessary PREF criterion for an

entangled refutation parallels the classical condition for refutation (Definition 3.3.14). The

only distinction is that (3.4.76) is considered an equation over F2 for classical games and over

Z for entangled games. As described in Section 3.5.3, these Diophantine equations then give

rise to a dual condition similar to the classical picture: a MERP strategy achieves value 1

exactly when these equations do not admit a solution.

3.5 MERP Strategies

Section 3.3.4 introduced the family of Maximal Entanglement, Relative Phase (MERP)

strategies. The primary feature of the MERP strategies is that deciding whether 𝑣MERP = 1

and computing the accompanying MERP strategy vector may be done efficiently via Gaussian

elimination. Beyond computability, the MERP strategies actually achieve value 1 on a large

class of games where that is possible. Specifically, MERP achieves value 1 exactly where a

PREF does not exist (noPREF games), including all symmetric value 1 games. This MERP -

112

PREF duality is analogous to the duality between a classical linear algebraic refutation and

the construction of a classical value 1 strategy.

Here, we motivate the definition of MERP strategies (Section 3.5.1) and prove their value

defined in Claim 3.3.27 (Section 3.5.2). We then investigate the duality between MERP value

1 and PREFs (Section 3.5.3).

3.5.1 Generalizing GHZ

The MERP family of strategies is motivated by the GHZ strategy for solving the GHZ game.

We begin by reviewing the GHZ game and value 1 strategy.

Definition 3.5.1. Recall that the GHZ game is defined by the clauses

𝒢𝐺𝐻𝑍 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑥

𝑥

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑦

𝑦

𝑥

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑦

𝑥

𝑦

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑦

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.5.1)

The GHZ strategy [26], defined as follows, achieves value 1 for this game.

Definition 3.5.2. Define the GHZ Strategy for 𝒢𝐺𝐻𝑍 to be the tensor-product strategy in

which:

1. The 𝑘 = 3 players share the maximally entangled state

|Ψ⟩ = 1√
2
[|000⟩+ |111⟩] (3.5.2)

with player 𝛼 having access to the 𝛼-th qubit of the state.

2. Upon receiving symbol 𝑗 from the verifier, player 𝛼 rotates his qubit by an angle

𝜃(𝛼, 𝑗) =

⎧⎪⎨⎪⎩0 if 𝑗 = 𝑥

𝜋
2

if 𝑗 = 𝑦

(3.5.3)

113

about the Z axis, then measures his qubit in the ± basis and sends his observed outcome

to the verifier. Defining the states |𝜃(𝛼, 𝑗)±⟩ by

|𝜃(𝛼, 𝑗)+⟩ =
1√
2

[︀
|0⟩+ 𝑒𝑖𝜃(𝛼,𝑗) |1⟩

]︀
and (3.5.4)

|𝜃(𝛼, 𝑗)−⟩ =
1√
2

[︀
|0⟩ − 𝑒𝑖𝜃(𝛼,𝑗) |1⟩

]︀
(3.5.5)

the GHZ strategy may be given by the strategy observables

𝑋
(𝛼)
𝑗 := |𝜃(𝛼, 𝑗)+⟩ ⟨𝜃(𝛼, 𝑗)+| − |𝜃(𝛼, 𝑗)−⟩ ⟨𝜃(𝛼, 𝑗)−| . (3.5.6)

We now consider why this strategy is successful. Recall that a 𝜙 rotation in the 𝑍 basis

is represented by the operator

𝑒𝑖𝜙/2 |0⟩⟨0|+ 𝑒−𝑖𝜙/2 |1⟩⟨1| . (3.5.7)

Thus the rotations 𝜙1, 𝜙2, 𝜙3 applied by the players to their shared state |Ψ⟩ results in

|Ψ𝜙⟩ :=
1√
2

[︁
𝑒−𝑖

𝜙
2 |000⟩+ 𝑒𝑖

𝜙
2 |111⟩

]︁
(3.5.8)

𝜙 := 𝜙1 + 𝜙2 + 𝜙3. (3.5.9)

Let 𝜎𝑋 = (0 1
1 0) be the matrix corresponding to a measurement in the ± basis, and note that

𝜎𝑋 ⊗ 𝜎𝑋 ⊗ 𝜎𝑋 |Ψ𝜙⟩ = |Ψ−𝜙⟩. This gives expected value of the measurements performed by

the three players,

⟨Ψ𝜙|𝑋 ⊗𝑋 ⊗𝑋 |Ψ𝜙⟩ =
𝑒𝑖𝜙 + 𝑒−𝑖𝜙

2
= cos𝜙. (3.5.10)

Thus the relative phase between the kets |000⟩ and |111⟩ introduced by the 𝑍 rotations

determines the probabilities that the players output +1 or −1. For the GHZ game, the

prescription for Z rotations given in (3.5.3) results in relative phase 𝜙 = 0 for the first clause

and 𝜙 = 𝜋 for the remaining three clauses, exactly matching the desired outputs.

This description of GHZ motivates the MERP family as a generalization. For a game 𝒢,

the MERP construction assigns a distinct angle to each player-question combination such

114

that the relative phase for each query in 𝒢 gives optimal probability of winning. The set of

games for which MERP can achieve value 1 is exactly the set for which the game admits

independently setting the relative phase for each query to 𝜋𝑠𝑖. This is exactly the statement

of Claim 3.3.29.

We proceed by recalling the definition of a MERP strategy in light of the GHZ analogue,

proving our value claim, and finally demonstrating the duality with PREF games.

3.5.2 MERP Strategy Value

Recall the definition of a MERP strategy:

Definition 3.3.26. Given a 𝑘-XOR game 𝒢 with m clauses, a MERP strategy for 𝒢 is a

tensor-product strategy in which:

1. The 𝑘 players share the maximally entangled state

|Ψ⟩ = 1√
2

[︁
|0⟩⊗𝑘 + |1⟩⊗𝑘

]︁
(3.5.11)

with player 𝛼 having access to the 𝛼-th qubit of the state.

2. Upon receiving question 𝑗 from the verifier, player 𝛼 rotates his qubit by an angle

𝜃(𝛼, 𝑗) about the 𝑍 axis, then measures his qubit in the 𝑋 basis and sends his observed

outcome to the verifier.

Explicitly, we define the states

|𝜃(𝛼, 𝑗)±⟩ :=
1√
2

[︀
|1⟩ ± 𝑒−𝑖𝜃(𝛼,𝑗) |0⟩

]︀
(3.5.12)

and pick strategy observables

𝑋
(𝛼)
𝑗 := |𝜃(𝛼, 𝑗)+⟩⟨𝜃(𝛼, 𝑗)+| − |𝜃(𝛼, 𝑗)−⟩⟨𝜃(𝛼, 𝑗)−| . (3.5.13)

We now demonstrate that a MERP strategy achieves the claimed tensor-product (and

thus commuting operator) value by explicit calculation.

115

Claim 3.3.27. The value achieved by that MERP strategy on game 𝒢 is:

𝑣MERP(𝐺, 𝜃) :=
1

2
+

1

2𝑚

(︃
𝑚∑︁
𝑖=1

cos
(︁
𝜋
[︁
(𝐴𝜃)𝑖 − 𝑠𝑖

]︁)︁)︃
(3.5.14)

=
1

2
+

1

2𝑚

(︃
𝑚∑︁
𝑖=1

cos

(︃
𝑘∑︁

𝛼=1

𝜃(𝛼, 𝑞
(𝛼)
𝑖)− 𝜋𝑠𝑖

)︃)︃
. (3.5.15)

Proof. Consider a particular clause 𝑐𝑖 = (𝑞𝑖, 𝑠𝑖). We calculate the probability that a MERP

strategy parameterized by 𝜃(𝛼, 𝑞(𝛼)𝑖) returns output 𝑠𝑖 correctly.

If players 1, . . . , 𝑘 apply rotations by 𝜙1, . . . , 𝜙𝑘 to their qubits in state |Ψ⟩ = 1√
2

[︁
|0⟩⊗𝑘 + |1⟩⊗𝑘

]︁
then they will be left with

⃒⃒
Ψ𝑘

𝜙

⟩︀
:=

1√
2

[︁
𝑒𝑖

𝜙
2 |0⟩⊗𝑘 + 𝑒−𝑖

𝜙
2 |1⟩⊗𝑘

]︁
(3.5.16)

𝜙 := 𝜙1 + . . .+ 𝜙𝑘. (3.5.17)

Note that 𝑋⊗𝑘
⃒⃒
Ψ𝑘

𝜙

⟩︀
=
⃒⃒
Ψ𝑘
−𝜙
⟩︀
. The expected value of the product of the 𝑘 measurements is

then ⟨︀
Ψ𝑘

𝜙

⃒⃒
𝑋⊗𝑘

⃒⃒
Ψ𝑘

𝜙

⟩︀
=
𝑒𝑖𝜙 + 𝑒−𝑖𝜙

2
= cos𝜙. (3.5.18)

We now plug in the values from the clause and the corresponding angles in the MERP

strategy. The angles are 𝜙𝛼 = 𝜃(𝛼, 𝑞𝛼𝑖) so that

𝜙 =
∑︁
𝛼∈[𝑘]

𝜃(𝛼, 𝑞𝛼𝑖) = (𝐴𝜃)𝑖. (3.5.19)

The probability of obtaining the correct answer for the clause is

1 + 𝑠𝑖
⟨︀
Ψ𝑘

𝜙

⃒⃒
𝑋⊗𝑘

⃒⃒
Ψ𝑘

𝜙

⟩︀
2

=
1 + 𝑠𝑖 cos(𝜙)

2
=

1 + cos(𝜙− 𝜋𝑠𝑖)
2

. (3.5.20)

Averaging over all clauses and substituting (3.5.19) for 𝜙 we obtain (3.5.14) and (3.5.15).

116

3.5.3 MERP - PREF Duality

It is well-known that the structure of the game matrix over F2 gives insight into the classical

value of an XOR game. The construction of a classical value 1 strategy is dual to the existence

of a classical refutation. In much the same way, the construction of a commuting operator

value 1 MERP strategy is dual to the existence of a PREF.

MERP is restricted to achieving value 1 on only a subset of commuting operator value 1

XOR games. By the duality to PREF this subset is exactly those games that our algorithm

can decide have value 1. In particular, this means that all symmetric games with value 1 can

be played optimally using MERP, making it a powerful family of strategies.

We begin with a review of the classical value 1 - refutation duality, which informs our

later proof of the MERP - PREF duality. From Claim 3.3.7, we have the value of a classical

strategy

𝑣(𝐺, 𝜂) =
1

2
+

1

2𝑚

(︃∑︁
𝑖

cos(𝜋 [(𝐴𝜂)𝑖 − 𝑠𝑖])

)︃
(3.5.21)

where the vector algebra is taken over F2. Using this linear algebraic form for the value, we

can prove Claim 3.3.9.

Claim 3.3.9. Every solution 𝜂 ∈ F𝑘𝑛
2 to

𝐴𝜂 = 𝑠 (3.3.9)

corresponds to a strategy 𝜂 achieving value 1 on game 𝐺 ∼ (𝐴, 𝑠), and vice versa. In

particular, a game 𝒢 has classical value 1 iff (3.3.9) has a solution.

Proof. If a solution 𝜂 exists,

𝑣(𝐺, 𝜂) =
1

2
+

1

2𝑚

(︃∑︁
𝑖

cos(𝜋 [(𝐴𝜂)𝑖 − 𝑠𝑖])

)︃
(3.5.22)

=
1

2
+

1

2𝑚

(︃∑︁
𝑖

cos(0)

)︃
= 1. (3.5.23)

Conversely, to achieve value 1, we must have the argument of every cosine equal to some

117

multiple of 2𝜋. Therefore we need 𝐴𝜂 − 𝑠 = 0 over F2.

Recall that this classical value 1 constraint has a dual set of equations, such that there

exists a classical refutation that solves the dual equations if and only if the classical value 1

constraints are not satisfiable.

Fact 3.3.15. Either a classical refutation 𝑦 exists satisfying⎡⎣𝐴𝑇

𝑠𝑇

⎤⎦ 𝑦 =

⎡⎣0
1

⎤⎦ (3.3.13)

or a classical strategy 𝜂 exists satisfying (3.3.9).

We use an analogous duality relation to prove the MERP - PREF duality shortly.

Before that, we mention one more consequence of this characterization of classical value 1

games – a linear algebraic specification, in terms of game matrix 𝐴, of the set of 𝑠 for which

the game 𝐺 ∼ (𝐴, 𝑠) has 𝜔(𝒢) = 1.

Definition 3.5.3. Define the vector space 𝒴2 ⊆ F𝑚
2 by

𝒴2 :=
{︀
𝐴𝜂 : 𝜂 ∈ F𝑘𝑛

2

}︀
= imF2 (𝐴) (3.5.24)

Define the dimension of this vector space as

𝜎2 := dim𝒴2. (3.5.25)

Corollary 3.5.4. Given a game matrix 𝐴, the set of possible accompanying 𝑠 that produce a

game 𝐺 ∼ (𝐴, 𝑠) with classical value 1 is exactly the 2𝜎2 parity-bit vectors in 𝒴2.

Proof. This follows immediately from Claim 3.3.9.

The main use of Corollary 3.5.4 is to characterize the classical value of games with

randomly chosen 𝑠𝑖 (Section 5.2.3).

118

We now use an analogue of Fact 3.3.15 to demonstrate that the set of games on which

MERP achieves commuting operator value 1 is exactly the complement of those for which a

PREF specification exists. First, recall the MERP constraint equations that define the set of

games for which MERP achieves value 1.

Claim 3.3.29. A MERP strategy achieves 𝑣MERP = 1 on a game 𝒢 iff its MERP constraint

equations

𝐴𝜃 = 𝑠 (mod 2) (3.5.26)

have a solution 𝜃 ∈ Q𝑘𝑛.

Proof. If a solution 𝜃 exists, (3.5.14) gives the MERP value using this strategy vector:

𝑣MERP(𝐺, 𝜃) =
1

2
+

1

2𝑚

(︃
𝑚∑︁
𝑖=1

cos (0)

)︃
= 1. (3.5.27)

Conversely, the only way to achieve value 𝑚 inside the sum over cosines is for the argument

to each cosine to be a multiple of 2𝜋. This is only possible if (𝐴𝜃)𝑖 − 𝑠𝑖 = 0 (mod 2) for each

𝑖.

Theorem 3.3.30. Either there exists a MERP refutation 𝑧 ∈ Z𝑚 satisfying the PREF equations

𝐴𝑇 𝑧 = 0 (3.5.28)

𝑠𝑇 𝑧 = 1 (mod 2) (3.5.29)

or a MERP strategy with value 1 exists for game 𝐺 ∼ (𝐴, 𝑠).

Proof. We begin by reformatting the linear Diophantine equations (3.5.28) and (3.5.29) to

remove the modulo 2 and collect the PREF constraints into a single matrix equation⎡⎣𝐴𝑇 0

𝑠𝑇 2

⎤⎦⎡⎣𝑧
𝑧′

⎤⎦ =

⎡⎣0
1

⎤⎦ (3.5.30)

with 𝑧′ ∈ Z.

119

By [58, Corollary 4.1a], the dual to (3.5.30) is the system of constraints

⎡⎣𝐴 𝑠

0 2

⎤⎦⎡⎣𝑤
𝑤′

⎤⎦ ∈ Z𝑚+1 and (3.5.31)

[︁
0 1

]︁⎡⎣𝑤
𝑤′

⎤⎦ /∈ Z. (3.5.32)

Here “dual” means that (3.5.31) and (3.5.32) are satisfiable iff (3.5.30) is unsatisfiable. The

bottom rows of (3.5.31) and (3.5.32) can be satisfied iff

𝑤′ = 𝑎+
1

2
, 𝑎 ∈ Z. (3.5.33)

The top row of (3.5.31) then becomes:

𝐴𝑤 + 𝑠𝑤′ = 𝑎′ ∈ Z𝑚 (3.5.34)

⇔ 𝐴(2𝑤) + (2𝑎+ 1)𝑠 = 2𝑎′ (3.5.35)

⇔ 𝐴(2𝑤) = 𝑠 (mod 2). (3.5.36)

Setting 𝜃 = 2𝑤 and picking arbitrary 𝑎 ∈ Z, (3.5.33) and (3.5.36) can be satisfied iff there is

a solution to

𝐴𝜃 = 𝑠 (mod 2), 𝜃 ∈ Q𝑘𝑛. (3.5.37)

Theorem 3.3.30 tells us that every game that we can decide has value 1 using the

algorithm of Section 3.4.3 also has an accompanying MERP strategy with value 1. Further,

we demonstrated in that section that a symmetric game contains a PREF iff it has value

𝜔* < 1. We conclude that for symmetric games, the MERP family of strategies achieves

value 1 everywhere it is possible to do so.

Following the classical case, it is also illuminating to note a linear algebraic specification,

in terms of game matrix 𝐴, of the 𝑠 for which a MERP strategy can achieve value 1 on game

𝐺 ∼ (𝐴, 𝑠). First, we define a mapping between the space in which the image of 𝐴 lives,

120

imQ(𝐴) ⊆ Q𝑚, and the space in which the parity bits live, 𝑠 ∈ F𝑚
2 .

Definition 3.5.5. Define a mapping10 𝜙2 : Q𝑚 → F𝑚
2 by

𝜙2(𝑧) :=

⎧⎪⎨⎪⎩𝑧 (mod 2) if 𝑧 ∈ Z𝑚

0 otherwise.

Now, we can define an analogue to 𝒴2, here considering 𝐴 as a map over Q and naturally

extending 𝜙2 to act on subsets of Q𝑚.

Definition 3.5.6. Define the vector space 𝒴𝑄 ⊆ F𝑚
2 by

𝒴𝑄 := 𝜙2(imQ(𝐴)). (3.5.38)

We then find that, accounting for the 𝜙2 technicality due to the mod 2 involved in

computing an overall output, the set of games with MERP value 1 is the image of 𝐴 over Q.

Corollary 3.5.7. Given a game matrix 𝐴, the set of possible accompanying 𝑠 that produce a

game 𝐺 ∼ (𝐴, 𝑠) with MERP value 1 is exactly the parity bit vectors in 𝒴𝑄.

Proof. This follows directly from Claim 3.3.29.

In this sense, Corollary 3.5.7 demonstrates that the advantage of MERP over a classical

strategy is simply exploiting entanglement to enable the players to “output” values in Q

instead of F2.

3.6 Chapter Summary

This chapter introduced two important new ideas for the study of XOR games. The first were

PREFs, defined in Definition 3.3.21, which gave an efficiently checkable sufficient condition for

XOR games to have a perfect commuting operator strategy. The second were MERP strategies,

defined in Section 3.3.4 and elaborated on in Section 3.5.2, which gave a simple class of tensor

product strategies for XOR games. Then, in Section 3.5.3 these two conditions were shown
10Note 𝜙2 is not in general a linear function, but it is linear over inputs in Z𝑚.

121

to be related, with a MERP strategy existing for any game that had a perfect commuting

operator by the PREF (really the noPREF) condition. We also explored some scenarios in

which the noPREF condition was necessary and sufficient, showing in Sections 3.4.2 and 3.4.3

that the noPREF condition was a necessary and sufficient condition for symmetric XOR

games to have a perfect commuting operator strategy. As a consequence, we saw that MERP

strategies were optimal for these games.

In the next chapter we continue our study of XOR games by showing the noPREF

condition is also necessary and sufficient for 3 player XOR games to have perfect commuting

operator strategies. Before proving this result we recast the noPREF condition in more

algebraic language, identifying with the subgroup membership characterization of perfect

XOR games introduced in Chapter 2.

122

Chapter 4

3XOR Games

In this chapter we study 3 player XOR games with perfect commuting operator value. Our

starting point is the characterization of games with perfect commuting operator value in

terms of the subgroup membership problem introduced in Chapter 2. As in Chapter 3 we

reprove this result in the special case of XOR games. This time our proof makes use of

representation theory to construct strategies, providing yet another view on the relationship

between the subgroup membership problem and the existence of perfect commuting operator

strategies.

After this we reinterpret the PREF condition introduced in Chapter 3 as a “refutation

(mod 𝐾)” then show, in an involved algebraic result, that all 3XOR games with perfect

commuting operator strategies are noPREF games. This implies the existence of a polynomial

time algorithm for deciding if a 3XOR game has a perfect commuting operator strategy, and

implies that all 3XOR games with perfect commuting operator strategies have perfect MERP

strategies.

Section 4.1 recaps basic definitions, gives precise statements of the main theorems, and

proofs or proof sketches where appropriate. Section 4.2 gives proofs of the more involved

algebraic results. The final sections fill in proof details and give perspectives, mostly about

the subgroup 𝐾.

123

4.1 A Detailed Overview

We begin this section by recapping the notation necessary to state the main theorems of this

work. Section 4.1.2 contains all the major theorem statements of this chapter.

4.1.1 Background and Notation

Games

As mentioned in Chapter 1, we think of XOR games as testing satisfiability of an associated

system of equations. Our starting point for defining any 𝑘XOR game is a system of equations

of the form

�̂�(1)
𝑛11

+ �̂�(2)
𝑛12

+ ...+ �̂�(𝑘)
𝑛1𝑘

= 𝑠1, �̂�
(1)
𝑛21

+ �̂�(2)
𝑛22

+ ...+ �̂�(𝑘)
𝑛2𝑘

= 𝑠2, ..., �̂�
(1)
𝑛𝑚1

+ �̂�(2)
𝑛𝑚2

+ ...+ �̂�(𝑘)
𝑛𝑚𝑘

= 𝑠𝑚

where 𝑛𝑖𝛼 ∈ [𝑁], 𝑠𝑖 ∈ {0, 1}, �̂�(𝛼)
𝑛 are formal variables taking values in {0, 1} and the

equations are all taken mod 2. 𝑁 is called the alphabet size of the game, and 𝑚 the number

of clauses . The 𝑘XOR game associated to this system of equations has 𝑚 question vectors.

In a round of the game the verifier selects a 𝑖 ∈ [𝑚] uniformly at random, then sends question

vector (𝑛𝑖1, 𝑛𝑖2, ..., 𝑛𝑖𝑘) to the players, i.e. player 𝑗 receives question 𝑛𝑖𝑗 . The players respond

with single bit answers and win (get a score of 1 on) the round if the sum of their responses

equals 𝑠𝑖 mod 2. They get a score of 0 otherwise. Any 𝑘XOR game where clauses are chosen

uniformly at random can be described by specifying the associated system of equations.1

For the case of 3XOR games, we will simplify notation slightly by omitting a subindex

and instead writing our system of equations as

�̂�(1)
𝑎1

+ �̂�
(2)
𝑏1

+ �̂�(3)
𝑐1

= 𝑠1, �̂�
(1)
𝑎2

+ �̂�
(2)
𝑏2

+ �̂�(3)
𝑐2

= 𝑠2, ..., �̂�
(1)
𝑎𝑚 + �̂�

(2)
𝑏𝑚

+ �̂�(3)
𝑐𝑚 = 𝑠𝑚

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ [𝑁] for all 𝑖 ∈ [𝑚]. The question vector sent to the players is then (𝑎𝑗, 𝑏𝑗, 𝑐𝑗),

with the players winning the round if their responses sum to 𝑠𝑗 mod 2. We use the 3XOR

notation for the remainder of this section.

1Because we are concerned with the case of perfect value XOR games, fixing the distribution clauses are
drawn from to be uniform doesn’t change the scope of our results.

124

Strategies

The most general classical strategy can be described by specifying a response for each player

based on the question received and some shared randomness 𝜆. If we are only concerned with

strategies that maximize the players’ score a minimax argument shows that we can ignore the

shared randomness (fix 𝜆 to the value that maximizes the players’ score in expectation), so

optimal classical strategies can be described by fixing responses for each player to each possible

question. To better align with the quantum case, we describe these strategies multiplicatively

rather then additively. Define 𝑋(𝛼)
𝑖 to equal 1 if player 𝛼 responds to question 𝑖 with a 0,

and 𝑋
(𝛼)
𝑖 = −1 if the player responds with a 1. Players win on the 𝑗-th question vector iff

𝑋
(1)
𝑎𝑗 𝑋

(2)
𝑏𝑗
𝑋

(3)
𝑐𝑗 (−1)𝑠𝑗 = 1 so the expected score of the players conditioned on receiving the 𝑗-th

question vector can be written

1

2
+

1

2
𝑋(1)

𝑎𝑗
𝑋

(2)
𝑏𝑗
𝑋(3)

𝑐𝑗
(−1)𝑠𝑗 . (4.1.1)

and the expected score this strategy achieves on a XOR game is given by

1

2
+

1

2𝑚

∑︁
𝑗

𝑋(1)
𝑎𝑗
𝑋

(2)
𝑏𝑗
𝑋(3)

𝑐𝑗
(−1)𝑠𝑗 . (4.1.2)

We refer to strategies where players share and measure a quantum state before deciding

their response as entangled strategies .2 In the most general entangled strategy, players share

an state |𝜓⟩ and randomness 𝜆. Then they receive a question, make a measurement on the

quantum state based on the question and shared randomness, and then send a response to the

verifier based on the measurement outcome. Mathematically, any strategy can be described

by fixing the state |𝜓⟩ and POVMs (Positive Operator-Valued Measures) for each possible

question sent to the players. As in the classical case, if we restrict to optimal strategies, we

can ignore the shared classical randomness 𝜆. Then we can describe an entangled strategy by

specifying the shared state |𝜓⟩ and PVMs (Projective Valued Measures) for each possible

player and question. We associate self-adjoint operators with these PVMs using the following

2The name quantum strategies, while more natural, can cause confusion with strategies where questions
and responses are themselves quantum states. Entanglement is not necessary for these strategies, but the
players’ achieve a value exceeding their classical value only if the state they share is entangled.

125

prescription:

1. First, specify the shared state |𝜓⟩.

2. For each player 𝛼 ∈ [𝑘] and question 𝑖 ∈ [𝑁], let 𝑃 (𝛼)
𝑖 be the projector onto the subspace

associated with a 1 response by player 𝛼 to question 𝑖. Similarly, let 𝑄(𝛼)
𝑖 = 1− 𝑃 (𝛼)

𝑖

be the projector onto the subspace associated with a 0 response. Here 1 represents the

identity operator.

3. For every 𝛼 and 𝑖, define the strategy observable 𝑋(𝛼)
𝑖 = 𝑄

(𝛼)
𝑖 − 𝑃

(𝛼)
𝑖 .

The operators 𝑋(𝛼)
𝑖 satisfy some useful properties. Firstly, they are self-adjoint by construction

with eigenvalues ±1. From this, or from direct calculation, it follows that

(︁
𝑋

(𝛼)
𝑖

)︁2
=
(︁
𝑄

(𝛼)
𝑖

)︁2
+
(︁
𝑃

(𝛼)
𝑖

)︁2
+ 2𝑄

(𝛼)
𝑖 𝑃

(𝛼)
𝑖 = 𝑄

(𝛼)
𝑖 + 𝑃

(𝛼)
𝑖 = 1 (4.1.3)

where 1 represents the identity operator, and we have used the fact that 𝑄(𝛼)
𝑖 and 𝑃 (𝛼)

𝑖 are

orthogonal projectors on the last line.

Secondly, the restriction that players be non-communicating means that a players chance

of responding 1 (resp. 0) should be independent of another player’s response. Hence

𝑃
(𝛼)
𝑖 𝑃

(𝛽)
𝑗 = 𝑃

(𝛽)
𝑗 𝑃

(𝛼)
𝑖 (4.1.4)

for any 𝑖, 𝑗, 𝛼 ̸= 𝛽. Defining the group commutator of two observables [𝑦, 𝑧] := 𝑦𝑧𝑦−1𝑧−1 we

see

[︁
𝑋

(𝛼)
𝑖 , 𝑋

(𝛽)
𝑗

]︁
= 1 (4.1.5)

whenever 𝛼 ̸= 𝛽.

Finally, we consider a product of operators corresponding to a question vector in the XOR

game. A state is in the 1 eigenspace of 𝑋(1)
𝑎𝑗 𝑋

(2)
𝑏𝑗
𝑋

(3)
𝑐𝑗 iff the sum mod 2 of the players responses

to the verifier upon measuring this state is 0. Similarly a state is in the −1 eigenspace iff the

sum of the players responses upon measuring this state is 1. Then, players win on question

126

vector 𝑗 with probability

1

2
+

1

2
⟨𝜓|𝑋(1)

𝑎𝑗
𝑋

(2)
𝑏𝑗
𝑋(3)

𝑐𝑗
(−1)𝑠𝑗 |𝜓⟩ (4.1.6)

and their overall score on the game is given by

1

2
+

1

2𝑚

∑︁
𝑗

(︁
⟨𝜓|𝑋(1)

𝑎𝑗
𝑋

(2)
𝑏𝑗
𝑋(3)

𝑐𝑗
(−1)𝑠𝑗 |𝜓⟩

)︁
. (4.1.7)

An important consequence of Eq. (4.1.7) is that the players win the game with probability 1

iff

𝑋(1)
𝑎𝑗
𝑋

(2)
𝑏𝑗
𝑋(3)

𝑐𝑗
(−1)𝑠𝑗 |𝜓⟩ = |𝜓⟩ (4.1.8)

for all 𝑗 ∈ [𝑚]. This is because each 𝑋(𝛼)
𝑖 has norm ≤ 1.

Bias.

XOR games can also be characterized by their bias 𝛽(𝐺), defined by 𝛽(𝐺) = 2𝜔(𝐺) − 1.3

The entangled biases 𝛽*𝑐𝑜 and 𝛽*𝑡𝑝 are defined analogously. A completely random strategy for

answering an XOR game will achieve a score of 1/2, hence 𝜔(𝐺) ≥ 1/2 and 𝛽(𝐺) ∈ [0, 1],

with identical bounds holding on the other biases. When comparing classical and entangled

biases, the quantity usually considered is the ratio 𝛽*𝑡𝑝(𝐺)/𝛽(𝐺) (or 𝛽*𝑐𝑜(𝐺)/𝛽(𝐺)), called the

quantum-classical gap.

For 2XOR games this gap can be related to the Grothendieck inequality, with

𝛽*𝑐𝑜(𝐺)/𝛽(𝐺) = 𝛽*𝑡𝑝(𝐺)/𝛽(𝐺) ≤ 𝐾R
𝐺 (4.1.9)

where 𝐾R
𝐺 is the real Grothendieck constant4. For 3XOR games no such bound holds [50, 7],

3Some definitions vary by a factor of 2, defining 𝛽(𝐺) = 𝜔(𝐺)− 1/2
4Because 𝜔*

𝑐𝑜 = 𝜔*
𝑡𝑝 for 2XOR games, we also have 𝛽*

𝑐𝑜 = 𝛽*
𝑡𝑝

127

and there exist families of games {𝐺𝑛}𝑛∈N with

lim
𝑛→∞

𝛽*𝑡𝑝(𝐺𝑛)/𝛽(𝐺𝑛) =∞. (4.1.10)

All these families have the property that lim𝑛→∞ 𝛽
*
𝑡𝑝(𝐺𝑛) = 0; it is open whether an unbounded

quantum-classical gap can exist for 𝑘XOR games with 𝛽*𝑐𝑜 bounded away from zero. One

special case where a bound on the quantum-classical gap is known is 3XOR games with the

players restricted to a GHZ state [50] (later generatlized to Schmidt states in [6]). In this

case the quantum-classical gap is bounded above by 4𝐾R
𝐺 [6].

Groups

Now we introduce groups whose structure mimics the structure of the strategy observ-

ables introduced in Section 4.1.1. We describe these groups using the language of group

presentations.

Given a 𝑘XOR game with alphabet size 𝑁 , define the associated game group 𝐺 to be the

group with generators 𝜎 and 𝑥(𝛼)𝑖 for all 𝑖 ∈ [𝑛], 𝛼 ∈ [𝑘], and relations:

1.
(︁
𝑥
(𝛼)
𝑖

)︁2
= 1 for all 𝑖, 𝑗 ∈ [𝑛], 𝛼 ∈ [𝑘]

2.
[︁
𝑥
(𝛼)
𝑖 , 𝑥

(𝛽)
𝑗

]︁
= 1 for all 𝑖, 𝑗 ∈ [𝑛], 𝛼 ̸= 𝛽 ∈ [𝑘]

3. 𝜎2 =
[︁
𝜎, 𝑥

(𝛼)
𝑖

]︁
= 1 for all 𝑖, 𝑗 ∈ [𝑛], 𝛼 ̸= 𝛽 ∈ [𝑘].

G is a right angled Coxeter group isomorphic to
(︀
Z2
*𝑁)︀×3 × Z2. Here the 𝑥(𝛼)𝑖 are group

elements satisfying the same relations as the strategy observables defined in Section 4.1.1. 𝜎

is a formal variable playing the role of −1. Note 𝜎 ̸= 1 in the group.

Given an 3XOR game testing the system of 𝑚 equations

𝑎1 + 𝑏1 + 𝑐1 = 𝑠1, 𝑎2 + 𝑏2 + 𝑐2 = 𝑠2, ..., 𝑎𝑚 + 𝑏𝑚 + 𝑐𝑚 = 𝑠𝑚

we define the clauses ℎ1, ℎ2, ..., ℎ𝑚 of the game by ℎ𝑖 = 𝑥
(1)
𝑎𝑖 𝑥

(2)
𝑏𝑖
𝑥
(3)
𝑐𝑖 𝜎

𝑠𝑖 ∈ 𝐺, where 𝜎0 = 1. We

denote the set of all clauses by 𝑆 and define the clause group 𝐻 ≤ 𝐺 to be the subgroup

generated by the clauses, so 𝐻 = ⟨𝑆⟩ = ⟨{ℎ𝑖 : 𝑖 ∈ [𝑚]}⟩ . Important subgroups of groups 𝐺

128

and 𝐻 are those consisting of even length words corresponding to each player. Define the

even subgroups 𝐺𝐸, 𝐻𝐸 by

𝐺𝐸 :=
⟨{︁

𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 : 𝑖, 𝑗 ∈ [𝑁], 𝛼 ∈ [𝑘]

}︁
∪ {𝜎}

⟩
and 𝐻𝐸 := ⟨{ℎ𝑖ℎ𝑗 : 𝑖, 𝑗 ∈ [𝑚]}⟩ (4.1.11)

Note that 𝐻𝐸 < 𝐺𝐸.

Finally, define the even commutator subgroup 𝐾 by

𝐾 =
⟨︀{︀[︀

𝑥𝛼𝑖 𝑥
𝛼
𝑗 , 𝑥

𝛼
𝑘𝑥

𝛼
𝑙

]︀
: 𝑖, 𝑗, 𝑘, 𝑙 ∈ [𝑛], 𝛼 ∈ [3]

}︀⟩︀𝐺𝐸

(4.1.12)

where 𝑋𝐺𝐸 denotes the normal closure of the subgroup 𝑋 ≤ 𝐺𝐸 in 𝐺𝐸. Note that 𝐾 is a

normal subgroup of 𝐺𝐸 by construction.

4.1.2 Precise Statements of Main Results

In this section we give theorem statements covering the main results of this chapter, along

with some relevant theorems from previous work.

An algebraic characterization of perfect XOR Games

Our first result shows the problem of determining if 𝜔*𝑐𝑜 = 1 is equivalent to an instance of

the subgroup membership problem on the game group 𝐺.

We should mention that some ingredients of this proof have appeared before in other

contexts [47, 66]. The key innovation of this theorem is the algebraic formulation of the issue.

Theorem 4.1.1. An XOR game has commuting operator value 𝜔*𝑐𝑜 = 1 iff 𝜎 /∈ 𝐻, where

𝜎,𝐻 are defined relative to the XOR game as described in Section 4.1.1.

Proof. We first show that 𝜎 ∈ 𝐻 ⇒ 𝑤* < 1. Assume for contradiction that 𝜎 ∈ 𝐻 and

𝑤* = 1. Then, since 𝜎 ∈ 𝐻, there exists a sequence of clauses ℎ𝑡1ℎ𝑡2 ...ℎ𝑡𝑙 = 𝜎 where each

ℎ𝑡𝑖 = 𝑥
(1)
𝑎𝑡𝑖
𝑥
(2)
𝑏𝑡𝑖
𝑥
(3)
𝑐𝑡𝑖
𝜎𝑡𝑖 ∈ 𝑆 is a generator of the clause group 𝐻. Because there exists a perfect

value commuting operator strategy, that means there exits a state |𝜓⟩ and strategy observables

129

satisfying

𝑥(1)𝑎𝑡𝑖
𝑥
(2)
𝑏𝑡𝑖
𝑥(3)𝑐𝑡𝑖

(−1)𝑡𝑖 |𝜓⟩ = |𝜓⟩ (4.1.13)

for all 𝑡𝑖 (Eq. (4.1.8)). Because the strategy observables and −1 satisfy exactly the same

relations as the associated group elements, we also have

∏︁
𝑖

𝑥(1)𝑎𝑡𝑖
𝑥
(2)
𝑏𝑡𝑖
𝑥(3)𝑐𝑡𝑖

(−1)𝑡𝑖 = −1. (4.1.14)

But then applying Eq. (4.1.13) and Eq. (4.1.14) gives

|𝜓⟩ =
∏︁
𝑖

𝑥(1)𝑎𝑡𝑖
𝑥
(2)
𝑏𝑡𝑖
𝑥(3)𝑐𝑡𝑖

(−1)𝑡𝑖 |𝜓⟩ = − |𝜓⟩ , (4.1.15)

a contradiction.

It remains to show 𝜎 /∈ 𝐻 ⇒ 𝑤* = 1. A proof of this fact that relies on completeness of

the nsSoS hierarchy is given in [66]. Here we give a standalone proof, which can be viewed

as a special case of the GNS construction. We assume 𝜎 /∈ 𝐻, and construct the strategy

observables and state |𝜓⟩ explicitly.

First we define a Hilbert space ℋ with orthogonal basis vectors corresponding to the left

cosets of 𝐻 in 𝐺. That is, ℋ is spanned by basis vectors {|𝐻⟩ , |𝑔1𝐻⟩ , ...} with inner product

⟨𝑔1𝐻|𝑔2𝐻⟩ =

⎧⎪⎨⎪⎩1 if 𝑔−11 𝑔2 ∈ 𝐻

0 otherwise.
(4.1.16)

Next we define the representation 𝜋 : 𝐺→ 𝐺𝐿(ℋ) to be the representation given by the left

action of 𝐺 on 𝐻, so

𝜋(𝑔1) |𝑔2𝐻⟩ = |𝑔1𝑔2𝐻⟩ . (4.1.17)

Finally, define |𝜓⟩ = |𝐻⟩ − |𝜎𝐻⟩ , and note that 𝜎 /∈ 𝐻 by assumption implies |𝜓⟩ ̸= 0. We

claim that strategy obserables 𝜋(𝑥(𝛼)𝑖) and state |𝜓⟩ achieve value 𝜔* = 1 for the game. To

130

see this, first note that

𝜋(𝜎) |𝜓⟩ = 𝜋(𝜎) (|𝐻⟩ − |𝜎𝐻⟩) = |𝜎𝐻⟩ − |𝐻⟩ = − |𝜓⟩ (4.1.18)

and for word 𝑤 ∈ 𝐻 we have

𝜋(𝑤) |𝜓⟩ = 𝜋(𝑤) (|𝜎𝐻⟩ − |𝐻⟩) = |𝜎𝑤𝐻⟩ − |𝑤𝐻⟩ = |𝜎𝐻⟩ − |𝐻⟩ = |𝜓⟩ (4.1.19)

since 𝜎 commutes with all elements of 𝐺. Then, for any 𝑗 ∈ [𝑚] we have

𝜋(𝑥(1)𝑎𝑗
)𝜋(𝑥

(2)
𝑏𝑗
)𝜋(𝑥(3)𝑐𝑗

)(−1)𝑠𝑗 |𝜓⟩ = 𝜋(𝑥(1)𝑎𝑗
𝑥
(2)
𝑏𝑗
𝑥(3)𝑐𝑗

𝜎𝑠𝑗) |𝜓⟩ = 𝜋(ℎ𝑗) |𝜓⟩ = |𝜓⟩ (4.1.20)

and so the strategy achieves value 𝜔* = 1 by Eq. (4.1.8).

Theorem 4.1.1 implies that we could identify XOR games with value 𝜔* = 1 by solving

instances of the subgroup membership problem on the group 𝐺. Unfortunately, the subgroup

membership problem on the group 𝐺 is, in general, undecidable.5 To get around this, we

port the 3XOR problem to a simpler group obtained from 𝐺 by modding out the normal

subgroup 𝐾 defined in Equation (4.1.12). On 𝐺/𝐾 the algebraic problem can be solved with

a polynomial time algorithm.

Theorem 4.1.2. Let 𝜎,𝐻𝐸, 𝐾 be defined relative to an XOR game as described in Sec-

tion 4.1.1. Let [𝜎]𝐾 be the coset containing 𝜎 after modding 𝐺𝐸 out by 𝐾. Then we can check

if [𝜎]𝐾 /∈ 𝐻𝐸 (mod 𝐾) in polynomial time.

Proof. First note that 𝐾 ▷ 𝐺𝐸 and 𝐻𝐸 < 𝐺𝐸, so the question is well defined. To show a

polynomial time algorithm, note that 𝐺𝐸/𝐾 is an abelian group – in fact we have modded

out by exactly the commutator subgroup of 𝐺𝐸. The subgroup membership problem for any

abelian group can be solved in polynomial time (see Theorem 4.4.1), so the result follows.

5A game group 𝐺 with 𝑘 ≥ 2 and 𝑛 ≥ 3 contains ℱ2 ×ℱ2 as a subgroup, where ℱ2 is the free group on
two elements. This group has undecidable subgroup membership problem by [45].

131

Sufficient conditions for 𝜔*𝑐𝑜 = 1

An obvious consequence of Theorem 4.1.2 comes from the observation

[𝜎]𝐾 /∈ 𝐻𝐸 (mod 𝐾) =⇒ 𝜎 /∈ 𝐻 =⇒ the associated XOR game has 𝜔*𝑐𝑜 = 1. (4.1.21)

Then, Theorem 4.1.2 tells us that a sufficient condition for an XOR game to have 𝜔*𝑐𝑜 = 1 can

be checked in polynomial time. In fact we can say something stronger; when the condition

given by Theorem 4.1.2 is met an optimal strategy can be chosen from a simple family of

strategies which generalize the regular 3 qubit GHZ strategy. We introduce these strategies

in Definition 4.1.3.

Definition 4.1.3. [MERP strategies] A MERP (maximally entangled, relative phase) strategy

for a 𝑘XOR game is one where the players share the 𝑘-qubit GHZ state |𝜓⟩ = 1√
2
(|11...1⟩+ |00...0⟩)

and, given question j, the 𝛼-th player measures the 𝛼-th qubit of the state with a strategy

observable of the form

𝑀
(𝛼)
𝑗 := exp

(︁
𝑖𝜃

(𝛼)
𝑗 𝜎𝑧

)︁
𝜎𝑥 exp

(︁
−𝑖𝜃(𝛼)𝑗 𝜎𝑧

)︁
(4.1.22)

where 𝜎𝑥, 𝜎𝑧 are the Pauli 𝑋 and 𝑍 matrices: 𝜎𝑥 =

⎛⎝0 1

1 0

⎞⎠ and 𝜎𝑧 =

⎛⎝1 0

0 −1

⎞⎠ . 6

The angle 𝜃(𝛼)𝑗 depends on the player index 𝛼 along with the question 𝑗 sent to the player.

To specify a MERP strategy we just need to specify the angles 𝜃(𝛼)𝑗 for every 𝑗 and 𝛼. For this

reason we refer to the set of angles {𝜃(𝛼)𝑗 : 𝛼 ∈ [𝑘], 𝑗 ∈ [𝑁]} as a description of the strategy.

The MERP strategy observables for any choice of 𝜃(𝛼)𝑗 are valid strategy observables, that

is, they are hermitian with eigenvalues ±1 and observables corresponding to different players

commute.

We can now state the relationship between MERP strategies and the condition 𝜎 /∈ 𝐻

(mod 𝐾).

6In the language of Section 4.1.1, the state |𝜓⟩ lives in the Hilbert space
(︀
C2
)︀𝑘 and, given question 𝑗,

player 𝛼 measures a strategy observable of the form 𝐼⊗𝛼−1 ⊗𝑀 (𝛼)
𝑗 ⊗ 𝐼⊗𝑘−𝛼 where 𝐼 is the 2 by 2 identity

matrix.

132

Theorem 4.1.4. A 𝑘XOR game corresponds to a subgroup 𝐻 with [𝜎]𝐾 /∈ 𝐻𝐸 (mod 𝐾) iff

the game has 𝜔*𝑐𝑜 = 𝜔*𝑡𝑝 = 1 with a perfect value MERP strategy. A description of this strategy

can be found in polynomial time.

Proof. This theorem is a rephrasing of Theorem 5.30 from [66], where the condition [𝜎]𝐾 /∈ 𝐻

(mod 𝐾) was referred to as existence of a PREF (parity refutation). The equivalence between

the 𝜎 ∈ 𝐻 (mod 𝐾) condition and existence of a parity refutation is elaborated on in

Section 4.3.3.

In Section 4.3.4 we prove the theorem in one direction by showing that MERP matrices

satisfy the defining relations for 𝐾. The other direction is proved by defining a system of

linear diophantine equations which are solved only when [𝜎]𝐾 ∈ 𝐻 (mod 𝐾) then showing,

via a theorem of alternatives, that these equations being unsatisfied implies a MERP strategy

can achieve value 1.

The sufficient conditions are necessary

Theorems 4.1.1, 4.1.2 and 4.1.4 give a sufficent condition for XOR games to have value

𝜔*𝑐𝑜 = 1, and a complete characterization of strategies for games that meet this condition.

Theorem 4.1.6, the main technical result of this chapter, gives the surprising result that this

sufficient condition is also necessary for 3XOR games. The proof is purely algebraic, but

involved. We give the full proof in Section 4.2, and sketch high level intuition for the result

here.

As a warm up, we show that 𝜎 ∈ 𝐻 iff 𝜎 ∈ 𝐻𝐸.

Lemma 4.1.5. For any XOR game, 𝜎 ∈ 𝐻 iff 𝜎 ∈ 𝐻𝐸

Proof. The direction 𝜎 ∈ 𝐻𝐸 ⇒ 𝜎 ∈ 𝐻 is immediate.

To see the other, note that each clause ℎ𝑖 contains exactly one generator 𝑥(𝛼)𝑖 for each

𝛼 ∈ [𝑘]. Then an odd length sequence of clauses contains an odd number of generators

𝑥
(𝛼)
𝑖 for each 𝛼 ∈ [𝑘]. Because all the relations of 𝐺 involve words containing an even

number of generators corresponding to each player 𝛼, the parity of the number of generators

corresponding to each player remains fixed when applying the relations of 𝐺. Thus, any word

133

in 𝐺 equals to the product of an odd number of clauses from 𝐻 and contains an odd number

(therefore at least one) generator corresponding to each player 𝛼 and cannot equal 𝜎.

From this, we conclude that if 𝜎 ∈ 𝐻 it is an even sequence of clauses ℎ1ℎ2...ℎ2𝑙 ∈ 𝐻𝐸

which equals 𝜎, thus 𝜎 ∈ 𝐻𝐸 as well.

With Lemma 4.1.5 in hand, we turn our attention to Theorem 4.1.6.

Theorem 4.1.6. 𝜎 is contained in 𝐻 iff, after modding out by 𝐾, the coset containing 𝜎 is

contained in 𝐻𝐸. That is:

𝜎 ∈ 𝐻 ⇔ [𝜎]𝐾 ∈ 𝐻𝐸 (mod 𝐾). (4.1.23)

Some ideas of the proof. One direction is immediate: if 𝜎 ∈ 𝐻, then it is in𝐻𝐸 by Lemma 4.1.5,

and [𝜎]𝐾 remains in 𝐻𝐸 after modding out by 𝐾.

To begin the proof in the other direction, note [𝜎]𝐾 ∈ 𝐻𝐸 (mod 𝐾) iff there exists a word

ℎ ∈ 𝐻𝐸 with ℎ = 𝑤𝑘𝜎 and 𝑤𝑘 ∈ 𝐾. To prove the result it suffices to show 𝑤𝑘 ∈ 𝐻𝐸, since

then

𝑤−1𝑘 ℎ = 𝑤−1𝑘 𝑤𝑘𝜎 = 𝜎 ∈ 𝐻𝐸. (4.1.24)

In Section 4.2.4 we show this is true. Here we give some simple intuition about this result.

At this point the proof and proof sketch diverge – our goal here is to give intuition, rather

than a high level overview of the proof.

Consider a pair of clauses ℎ1, ℎ2 ∈ 𝑆 corresponding to question vectors which send the

same question to the first player, so ℎ1 = 𝑥
(1)
𝑎1 𝑥

(2)
𝑏1
𝑥
(3)
𝑐1 𝜎

𝑠1 , ℎ2 = 𝑥
(1)
𝑎2 𝑥

(2)
𝑏2
𝑥
(3)
𝑐2 𝜎

𝑠2 and 𝑎1 = 𝑎2.

Similarly, let clauses ℎ3, ℎ4 be clauses which agree on the question sent to the second player

134

so 𝑥𝑏3 = 𝑥𝑏4 .7 We then consider the commutator

[ℎ1ℎ2, ℎ3ℎ4] =
[︀
𝑥(1)𝑎1

𝑥(1)𝑎2
, 𝑥(1)𝑎3

𝑥(1)𝑎4

]︀ [︁
𝑥
(2)
𝑏1
𝑥
(2)
𝑏2
, 𝑥

(2)
𝑏3
𝑥
(2)
𝑏4

]︁ [︀
𝑥(3)𝑐1

𝑥(3)𝑐2
, 𝑥(3)𝑐3

𝑥(3)𝑐4

]︀ [︀
𝜎𝑠1+𝑠2 , 𝜎𝑠3+𝑠4

]︀
(4.1.25)

=
[︀
1, 𝑥(1)𝑎3

𝑥(1)𝑎4

]︀ [︁
𝑥
(2)
𝑏1
𝑥
(2)
𝑏2
, 1
]︁ [︀
𝑥(3)𝑐1

𝑥(3)𝑐2
, 𝑥(3)𝑐3

𝑥(3)𝑐4

]︀ [︀
𝜎𝑠1+𝑠2 , 𝜎𝑠3+𝑠4

]︀
(4.1.26)

=
[︀
𝑥(3)𝑐1

𝑥(3)𝑐2
, 𝑥(3)𝑐3

𝑥(3)𝑐4

]︀
(4.1.27)

where we have used the fact that group elements corresponding to different players commute

on the first line, that 𝑥(1)𝑎1 𝑥
(1)
𝑎2 =

(︁
𝑥
(1)
𝑎1

)︁2
= 1 on the second line, and that [𝑤, 1] = 1 for any 𝑤

and 𝜎 commutes with anything on the third.

The conclusion is that
[︁
𝑥
(3)
𝑐1 𝑥

(3)
𝑐2 , 𝑥

(3)
𝑐3 𝑥

(3)
𝑐4

]︁
= [ℎ1ℎ2, ℎ3ℎ4] ∈ 𝐻𝐸. Let 𝜒 denote the set of

all commutators of pairs of generators 𝑥(𝛼)𝑖 which lie in 𝐻𝐸, and note we just proved 𝜒 is

necessarily nonempty. These commutators of pairs generate 𝐾, thus 𝐾 ∩𝐻𝐸 is nonempty as

well. We can repeat the same argument as above with any two pairs of clauses that cancel on

two different players, so for most XOR games 𝜒 will be reasonably large, and 𝐾 ∩𝐻𝐸 will be

large as well. What we show in Section 4.2.4 is that 𝐾 ∩𝐻𝐸 is large enough that the 𝑤𝑘 of

Equation (4.1.24) is in 𝐾 ∩𝐻𝐸. The proof is done with involved bookkeeping organized with

graphs which track the distribution of clauses over possible questions in the game.

With the Theorems 4.1.1, 4.1.2, 4.1.4 and 4.1.6, we conclude the following result.

Theorem 4.1.7. A 3XOR game has value 𝜔*𝑐𝑜 = 1 iff it has a perfect value MERP strategy,

implying 𝜔*𝑐𝑜 = 𝜔*𝑡𝑝 = 1. Additionally, there exists a polynomial time algorithm which decides

if a 3XOR game has value 𝜔*𝑐𝑜 = 1, and outputs a description of the perfect value MERP

strategy if one exists.

Proof. By Theorem 4.1.1, an 3XOR game has 𝜔*𝑐𝑜 = 1 iff 𝜎 /∈ 𝐻 in the associated group. By

Theorem 4.1.6, this is also equivalent to the statement [𝜎]𝐾 ∈ 𝐻 (mod 𝐾). By Theorem 4.1.4

this implies a MERP strategy, and the first part of the result follows.

7These pairs of clauses don’t need to exist, but XOR games where each question is asked only once are
particularly simple, with 𝜔 = 1, so we assume we are not in this case.

135

To get the polynomial time algorithm, we just need to check if [𝜎]𝐾 ∈ 𝐻 (mod 𝐾), which

we can do in polynomial time by Theorem 4.1.2. If true, there exists a MERP strategy and

we can find it by Theorem 4.1.4. If false, the same chain of implications as above shows

𝜔*𝑐𝑜 < 1.

Bounds on the bias ratio

Finally, combining Theorem 4.1.7 with a result from [50] gives the following.

Theorem 4.1.8. A 3XOR game with 𝜔*𝑐𝑜 = 1 also has classical value 𝜔 > 1/2 + 1
8𝐾R

𝐺
≥ 0.57,

where 𝐾R
𝐺 is the real Grothendieck constant.

Proof. By Theorem 4.1.7, a 3XOR game 𝐺 with 𝜔*𝑐𝑜 = 1 must also have a perfect value

MERP strategy. This strategy uses a GHZ state for the players, and a bound from [50] gives

that

𝛽*𝐺𝐻𝑍/𝛽 ≤ 4𝐾R
𝐺, (4.1.28)

where 𝛽*𝐺𝐻𝑍 is the maximum bias achieved with a strategy using a GHZ state. But then

𝛽(𝐺) ≥ 𝛽*𝐺𝐻𝑍(𝐺)

4𝐾R
𝐺

=
1

4𝐾R
𝐺

(4.1.29)

=⇒ 𝜔(𝐺) ≥ 1

2
+

1

8𝐾R
𝐺

(4.1.30)

and the result follows.

136

4.2 Technical Details

This section begins with definitions, then compares the algebraic structure defined in this

chapter to the one introduced in [14], then proves theorem 4.1.6.

4.2.1 Definitions

We briefly recap the definitions given in Section 4.1.1, then give some additional notation that

will be useful in this section. In everything that follows [,] denotes the group commutator,

so [𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1.

Recap

We consider a 3XOR game with questions drawn from an alphabet of size [𝑁]. The game

has 𝑚 question vectors labeled (𝑎1, 𝑏1, 𝑐1),(𝑎𝑚, 𝑏𝑚, 𝑐𝑚) with 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ [𝑁]. When asked

the 𝑖-th question vector (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) players win the game if their responses sum (mod 2) to the

parity bit 𝑠𝑖 ∈ {0, 1}. Parity bits are defined for all 𝑖 ∈ [𝑚].

There are several algebraic objects associated with the game. The first is the game group

𝐺, defined by

𝐺 :=
⟨
𝑥
(𝛼)
𝑖 : 𝑖 ∈ [𝑁], 𝛼 ∈ [3]

⃒⃒⃒ [︁
𝑥
(𝛼)
𝑖 , 𝑥

(𝛽)
𝑗

]︁
,
(︁
𝑥
(𝛼)
𝑖

)︁2
∀ 𝑖, 𝑗, 𝛼 ̸= 𝛽

⟩
× ⟨𝜎|𝜎2

⟩︀
. (4.2.1)

Group elements 𝑥(𝛼)𝑖 correspond to the observable measured by player 𝛼 upon receiving

question 𝑖. The group element 𝜎 should be though of as a formal variable corresponding to

−1 in the group. Note 𝜎 has order two (𝜎2 = 1) and commutes with all elements of group

([𝜎,𝑤] = 1 for any 𝑤 ∈ 𝐺).

For all 𝑖 ∈ [𝑚] we define the associated clause

ℎ𝑖 = 𝑥(1)𝑎𝑖
𝑥
(2)
𝑏𝑖
𝑥(3)𝑐𝑖

𝜎𝑠𝑖 . (4.2.2)

The clause set 𝑆 = {ℎ𝑖}𝑖∈[𝑚] contains all clauses of the game. The clause group 𝐻 = ⟨𝑆⟩ is

the subgroup of 𝐺 generated by the clauses.

137

The even game group 𝐺𝐸 is the subgroup of 𝐺 consisting of words with an even number

of observables corresponding to each player (plus an optional 𝜎), so

𝐺𝐸 =
⟨{︁

𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 : 𝑖, 𝑗 ∈ [𝑁], 𝛼 ∈ [𝑘]

}︁
∪ {𝜎}

⟩
. (4.2.3)

The even clause group is the subgroup of 𝐺 generated by an even number of clauses

𝐻𝐸 = ⟨{ℎ𝑖ℎ𝑗 : 𝑖, 𝑗 ∈ [𝑚]}⟩ . (4.2.4)

An important observation is that 𝐻𝐸 is a subgroup of 𝐺𝐸.

Finally, 𝐾 is the commutator subgroup of 𝐺𝐸, defined to be the normal closure of the set

of commutators of the generators of 𝐺𝐸. In math:

𝐾 =
⟨︀{︀[︀

𝑥𝛼𝑖 𝑥
𝛼
𝑗 , 𝑥

𝛼
𝑘𝑥

𝛼
𝑙

]︀
: 𝑖, 𝑗, 𝑘, 𝑙 ∈ [𝑛], 𝛼 ∈ [3]

}︀⟩︀𝐺𝐸

(4.2.5)

Where ⟨𝑋⟩𝑌 denotes the normal closure of the set 𝑋 in the group 𝑌 .

Projections and Clause Graphs

It will be helpful to have notation for referring to just the observables associated with a single

player. To this end, define player subgroups 𝐺𝛼 ≤ 𝐺 by

𝐺𝛼 =
⟨{︁

𝑥
(𝛼)
𝑖 : 𝑖 ∈ 𝑁

}︁⟩
(4.2.6)

and 𝐺𝐸
𝛼 ≤ 𝐺𝐸 by

𝐺𝐸
𝛼 =

⟨{︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 : 𝑖, 𝑗 ∈ 𝑁

}︁⟩
(4.2.7)

for all 𝛼 ∈ {1, 2, 3}. Because observables corresponding to different players commute, we can

write any 𝑤 ∈ 𝐺 as

𝑤 = 𝑤1𝑤2𝑤3𝜎
𝑠𝑤 (4.2.8)

138

where 𝑤𝛼 ∈ 𝐺𝛼 for all 𝛼 ∈ {1, 2, 3}, and 𝑠𝑤 ∈ {0, 1}. Similarly, any 𝑤′ ∈ 𝐺𝐸 can be written

as

𝑤 = 𝑤′1𝑤
′
2𝑤
′
3𝜎

𝑠′𝑤 (4.2.9)

with 𝑤′𝛼 ∈ 𝐺𝐸
𝛼 and 𝑠′𝑤 ∈ {0, 1}.

For any 𝛼 ∈ {1, 2, 3} we also define the projector onto player subgroups 𝜙𝛼 : 𝐺→ 𝐺𝛼 by

defining its action on the generators of 𝐺:

𝜙𝛼(𝑥
(𝛽)
𝑖) =

⎧⎪⎨⎪⎩𝑥
(𝛽)
𝑖 if 𝛼 = 𝛽

1 otherwise
and 𝜙𝛼(𝜎) = 1 (4.2.10)

then extending 𝜙𝛼 to a homorphism on 𝐺. To see this defines a valid homomorphism note it

preserves the group relations:

𝜙𝛼

(︁
𝑥
(𝛽)
𝑖

)︁2
=

⎧⎪⎨⎪⎩
(︁
𝑥
(𝛽)
𝑖

)︁2
= 1 if 𝛼 = 𝛽

12 = 1 otherwise
(4.2.11)

with a similarly simple argument showing commutation relations are preserved. It is also

helpful to define a projection 𝜙𝜎 which acts on the generators of 𝐺 as

𝜙𝜎

(︁
𝑥
(𝛽)
𝑖

)︁
= 1 and 𝜙𝜎(𝜎) = 𝜎. (4.2.12)

Combining Equation (4.2.8) with the definition of 𝜙𝛼 gives the equation

𝑤 = 𝜙1(𝑤)𝜙2(𝑤)𝜙3(𝑤)𝜙𝜎(𝑤) (4.2.13)

for any 𝑤 ∈ 𝐺.

Next, we define the clause (hyper)graph8 𝒢123 which gives a useful way of visualizing the

clause structure of a game. The graph has 3𝑛 vertices which we identify with the generators

𝑥𝛼𝑖 of the group 𝐺. We label the vertices by the corresponding generator. (Hyper)edges in

8A hypergraph is a graph with edges passing through more than two vertices.

139

the hypergraph correspond to clauses, with a hyperedge going through vertices 𝑥(1)𝑎𝑖 , 𝑥(2)𝑏𝑖
, and

𝑥
(3)
𝑐𝑖 for every clause 𝑥(1)𝑎𝑖 𝑥

(2)
𝑏𝑖
𝑥
(3)
𝑐𝑖 𝜎

𝑠𝑖 ∈ 𝑆. Note that the existence of the edge is independent of

the value of 𝑠𝑖, so the clause graph contains no information about the parity bits.

Because edges in the hypergraph correspond to clauses ℎ ∈ 𝑆, we can identify a path in

𝒢123 with a word 𝑤 ∈ 𝐻. We will use this relationship frequently in the future.

We also define important subgraphs of 𝒢123 by taking the induced graphs on vertices

corresponding to a subset of players.9 For any 𝛼 ≠ 𝛽 ∈ {1, 2, 3} we define the multigraph

𝐺𝛼𝛽 to be subgraph of 𝒢123 induced by the vertices corresponding to generators of 𝐺𝛼 and

𝐺𝛽. See Figure 4-2 for an example. As with the graph 𝒢123, edges in the graph 𝒢𝛼𝛽 can be

identified with clauses in 𝐻 and paths in 𝒢𝛼𝛽 can be identified with words 𝑤 ∈ 𝐻 .

In Section 4.2.3 we show that we can restrict our attention to the case where 𝒢123 is a

connected graph. The induced graph 𝒢𝛼𝛽 can be disconnected, and the different connected

components of this graph (and representative elements from each) play an important role in

the proof in Section 4.2.4.

4.2.2 Comparison with Linear Systems Games

A reader familiar with the work of Cleve, Liu and Slofstra concerning linear systems games [14]

may notice a similarity between the solution group defined in that paper and the clause group

defined in this work. In this section we give a direct comparison between the two. Our goal

in doing this is not to provide any deep insights – we simply hope a direct comparison will

help a reader already familiar with linear systems games to better understand our work. We

do not define linear systems games here, and point readers to [14] for a formal introduction

to them. This section is not critical and a reader can safely skip it without impacting their

understanding of the rest of this chapter.

Following [14], we consider a binary linear system of 𝑚 equations on 𝑛 variables 𝑀𝑥 = 𝑏,

with 𝑀 ∈ Z𝑚×𝑛
2 and 𝑏 ∈ Z𝑚. 𝑀𝑖𝑗 specifies an individual entry in the matrix 𝑀 , and 𝑏𝑖

specifies an entry from the vector 𝑏. The solution group of the binary linear system is a group

with generators 𝑔1, 𝑔2..., 𝑔𝑛, 𝐽 and relations

9For a graph 𝒳 = (𝑉,𝐸), the subhypergraph induced by a set of vertices 𝑉 ′ ⊆ 𝑉 is the hypergraph with
vertex set 𝑉 ′ and edge set 𝐸′ = {𝑒 ∩ 𝑉 ′ : 𝑒 ∈ 𝐸}. Essentially, edges are all truncated to the vertices in 𝑉 ′.

140

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-1: Sample hypergraph 𝒢123 for a game with alphabet size 𝑁 = 6 and 11 clauses. The
hypergraph is generated by clause set (𝜎 terms omitted since they don’t affect the graph):

𝑆 = {𝑥(1)1 𝑥
(2)
1 𝑥

(3)
1 , 𝑥

(1)
1 𝑥

(2)
2 𝑥

(3)
1 , 𝑥

(1)
2 𝑥

(2)
2 𝑥

(3)
2 , 𝑥

(1)
1 𝑥

(2)
3 𝑥

(3)
3 , 𝑥

(1)
2 𝑥

(2)
3 𝑥

(3)
4 , 𝑥

(1)
3 𝑥

(2)
4 𝑥

(3)
4 ,

𝑥
(1)
4 𝑥

(2)
4 𝑥

(3)
3 , 𝑥

(1)
5 𝑥

(2)
4 𝑥

(3)
4 , 𝑥

(1)
5 𝑥

(2)
6 𝑥

(3)
5 , 𝑥

(1)
5 𝑥

(2)
5 𝑥

(3)
5 , 𝑥

(1)
6 𝑥

(2)
6 𝑥

(3)
6 }

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-2: Induced graph 𝒢23 corresponding to the same clause set as Figure 4-1

141

1. 𝑔2𝑖 = 1 for all 𝑖 ∈ [𝑛] and 𝐽2 = 1

2. [𝑔𝑖, 𝐽] = 1 for all 𝑖 ∈ [𝑛]

3. [𝑔𝑖, 𝑔𝑗] = 1 if 𝑥𝑖 and 𝑥𝑗 appear in the same equation (that is 𝑀𝑙𝑖 = 𝑀𝑙𝑗 = 1 for some

𝑙 ∈ [𝑚]).

4.
∏︀

𝑖

(︁
𝑔𝑀𝑙𝑖
𝑖

)︁
𝐽 𝑏𝑙 = 1 for all 𝑙 ∈ [𝑚].

In [14] the authors showed the following result:

Theorem 4.2.1 (Implied by Theorem 4 of [14], paraphrased). The linear system game

associated to the system of equations 𝑀𝑥 = 𝑏 has a perfect value commuting operator strategy

iff in the associated solution group we have 𝐽 ̸= 1.

Theorem 4.1.1 can be thought of as an analog of Theorem 4.2.1 for 3XOR games. We can

restate Theorem 4.2.1 in a way that makes the comparison even more apparent.

Given a system of equations 𝑀𝑥 = 𝑏, define the group 𝐺𝑙𝑠𝑔 to be the group with generators

𝑔1, 𝑔2, ..., 𝑔𝑛, 𝐽 and relations 1-3 above. Note that 𝐽 ̸= 1 in this group. Next, define the

subgroup 𝐻𝑙𝑠𝑔 ▷ 𝐺𝑙𝑠𝑔 to be the normal closure in 𝐺𝑙𝑠𝑔 of the words corresponding to equations

in the system of equations 𝑀𝑥 = 𝑏 (that is, the words involved in relation 4 above) so

𝐻𝑙𝑠𝑔 =

⟨{︃∏︁
𝑖

(︁
𝑔𝑀𝑙𝑖
𝑖

)︁
𝐽 𝑏𝑙 : 𝑙 ∈ [𝑚]

}︃⟩𝐺𝑙𝑠𝑔

. (4.2.14)

Using these definitions, an equivalent statement of Theorem 4.2.1 is:

Theorem 4.2.2 (Restatement of Theorem 4.2.1). The linear system game associated to the

system of equations 𝑀𝑥 = 𝑏 has a perfect value commuting operator strategy iff 𝐽 /∈ 𝐻𝑙𝑠𝑔.

We can compare the above theorem and Theorem 4.1.1 directly. We list, and briefly

discuss, the key differences:

i) The group 𝐺 contains an element for every question player combination, while 𝐺𝑙𝑠𝑔

only contains an element for every question. In a commuting operator (or tensor

product) strategy for an XOR game, different players can measure completely different

142

observables when sent the same question and so we need a different group element to

correspond to each player-question combo.10 Conversely, in linear systems games there

is a close relationship between Alice and Bob’s measurements given the same question,

and both players measurement operators can be constructed from representations (right

and left actions) of the same group elements.

i) Generators of 𝐺𝑙𝑠𝑔 commute with each other if they appear in the same equation (relation

3 above). Generators of 𝐺 satisfy no such relation. This difference reflects a difference

between linear systmes games and XOR games strategies. In a linear systems game a

single player must make simultaneous measurements of all the operators corresponding

to a question in the game. This never happens in XOR games. From an algebraic point

of view, these extra relations place a restriction on elements of 𝐺𝑙𝑠𝑔 that is not placed

on elements of 𝐺.

i) The group 𝐻𝑙𝑠𝑔 is a normal subgroup of 𝐺𝑙𝑠𝑔, while 𝐻 is not a normal subgroup of

𝐺. This has an algebraic consequence: asking if 𝐽 ∈ 𝐻𝑙𝑠𝑔 is an instance of the word

problem (mod out by the generators of 𝐻𝑙𝑠𝑔, then ask if 𝐽 equals the identity), while

asking if 𝜎 ∈ 𝐻 is an instance of the subgroup membership problem. The word problem

is in a sense “easier" than the subgroup membership problem: there are groups with

solvable word problem but undecidable subgroup membership problem [45]. Still, both

problems are undecidable in general. This difference also has consequences for game

strategies. In a linear systems game, an identity of the form

∏︁
𝑖

(︁
𝑔𝑀𝑙𝑖
𝑖

)︁
𝐽 𝑏𝑙 = 1 (4.2.15)

holds in the group, hence holds as an operator identity on the strategy observables as

well. In an XOR game, the operator identities codified in 𝐻 only need hold acting on

the state |𝜓⟩ and there are games (for example, the GHZ game) where products of

strategy observables act as the identity on |𝜓⟩, but the operators themselves do not

multiply to the identity.

10Put (informally) in slightly different terms: XOR games can be very far from synchronous, as defined in
[34].

143

We should also point out that a linear systems game can be defined for any system of

equations of the form 𝑀𝑥 = 𝑏, while XOR games require equations of a special form: exactly

one variable corresponding to each player is involved in each equation. It is possible to define

a slightly more general form of 𝑘XOR games with a subset of players, as opposed to all

players, queried on each question but those are not considered here.

Theorem 4.1.7, in combination with [61] shows that there cannot exist a mapping from

linear systems games to XOR games which preserves the commuting operator value of the

game. The question of finding a natural map in the other direction remains open.

4.2.3 Connectivity of the Clause Graph

In Section 4.2.1 we introduced the clause graph 𝒢123 – a graphical representation of the clause

structure of a 3XOR game. In this section we consider 3XOR games whose associated clause

graph is not connected. Given such a game, we can always define smaller games involving

only the clauses corresponding to a single connected component of the clause graph. Here,

we show a 3XOR game has 𝜔*𝑐𝑜 = 1 iff each of these smaller games has a perfect commuting

operator strategy.

This result can be understood from a strategies point of view. Recall that a clause

𝑥
(1)
𝑎𝑖 𝑥

(2)
𝑏𝑖
𝑥
(3)
𝑐𝑖 corresponds to a question vector (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) that could be sent to the players in a

round of the game. If a game has a disconnected clause graph 𝒢123, players will never be sent

a question vector asking them to make measurements from different connected components

of the graph. Thus, players can consider the measurements in each connected component

of 𝒢123 independently when coming up with a strategy for the game. If they come up with

strategies that win for each connected component of clauses they can always combine them

(given a question, a player follows the strategy corresponding to the connected component

that question came from) to create a strategy that wins on the larger game.

Below, we prove the result using algebraic techniques. The proof is slightly less natural in

this setting, but provides a useful exercise in proving results about XOR games using the

groups formalism.

Theorem 4.2.3. Let 𝐺 be a 3XOR game with clause set 𝑆, clause group 𝐻, and clause

144

graph 𝒢123. Then 𝜎 ∈ 𝐻 iff there exists a subset of clauses 𝑆 ′ ⊆ 𝑆 corresponding to all the

edges in a connected component of 𝒢123 with 𝜎 ∈ ⟨𝑆 ′⟩.

Proof. First note that if the clause graph 𝒢123 is connected Theorem 4.2.3 is trivial, since the

the only subset of 𝑆 corresponding to a connected component of 𝒢123 is 𝑆 itself. Also note

that one direction of the above claim is immediate by the observation that ⟨𝑆 ′⟩ < ⟨𝑆⟩ and so

𝜎 ∈ ⟨𝑆 ′⟩ =⇒ 𝜎 ∈ ⟨𝑆⟩ = 𝐻.

To deal with the converse direction, consider a game 𝐺 with clause group 𝐻 ∋ 𝜎 and

a disconnected clause graph 𝒢123. Let 𝑆1, 𝑆2, ..., 𝑆𝑙 be subsets of 𝑆 corresponding to all the

edges in the connected components of the clause graph. Not that sets 𝑆1, ...𝑆𝑙 partition the

𝑆. For all 𝑖 ∈ [𝑙], define a map 𝜌𝑖 which acts on the generators of 𝐻 as

𝜌𝑖(ℎ𝑗) =

⎧⎪⎨⎪⎩ℎ𝑗 if ℎ𝑗 ∈ 𝑆𝑖

1 otherwise
(4.2.16)

We can extend 𝜌𝑖 to act on a sequence of clauses in the natural way, so11

𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) = 𝜌𝑖(ℎ𝑟1)𝜌𝑖(ℎ𝑟2)...𝜌𝑖(ℎ𝑟𝑡). (4.2.17)

We have by assumption that 𝜎 ∈ 𝐻. Then there exists a sequence of clauses ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡 = 𝜎.

We prove two claims:

1. For all 𝛼 ∈ {1, 2, 3}, 𝑖 ∈ [𝑙] we have : 𝜙𝛼(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 1.

2. For some 𝑖′ ∈ [𝑙], we have 𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) = 𝜎.

To prove the first, define the set 𝑉𝑖 to consist of all generators 𝑥(𝛼)𝑗 corresponding to vertices

in the connected component of 𝒢123 containing clauses 𝑆𝑖. Then, for all 𝛼 ∈ {1, 2, 3}, define

𝑉
(𝛼)
𝑖 = 𝑉𝑖 ∩𝐺𝛼 to be the subset of generators in 𝑉𝑖 corresponding to player 𝛼. Finally, we

11Note that we do not claim 𝜌𝑖 extended in this way is a homomorphism. It is not, because its action on 𝜎
may be undefined.

145

define the a homomorphism 𝜋𝑖 : 𝐺→ 𝐺 by its action on the generators of 𝐺:

𝜋𝑖(𝑥
(𝛼)
𝑗) =

⎧⎪⎨⎪⎩𝑥
(𝛼)
𝑗 if 𝑥(𝛼)𝑗 ∈ 𝑉𝑖

1 otherwise
and 𝜋𝑖(𝜎) = 1. (4.2.18)

Routine calculation shows that 𝜋𝑖 preserves the relations of 𝐺, and thus, is a valid homomor-

phism. Now, to prove claim 1 we show

𝜙𝛼(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜙𝛼(𝜋𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜙𝛼(𝜋𝑖(𝜎)) = 1. (4.2.19)

The second equality follows because we assumed ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡 = 𝜎, and the third equality

holds by definition of 𝜙𝛼. All that remains to show is the first. We show this through direct

computation. For ease of notation fix 𝛼 = 1. Then, for any clause ℎ𝑟𝑗 we have

𝜙1(𝜌𝑖(ℎ𝑟𝑗)) = 𝜙1(𝜋𝑖(ℎ𝑟𝑗)) = 𝑥(1)𝑎𝑟𝑗
(4.2.20)

if ℎ𝑟𝑗 ∈ 𝑆𝑖 and

𝜙1(𝜌𝑖(ℎ𝑟𝑗)) = 𝜙1(𝜋𝑖(ℎ𝑟𝑗)) = 1 (4.2.21)

otherwise, since ℎ𝑟𝑗 /∈ 𝑆𝑖 =⇒ 𝜙1(ℎ𝑟𝑗) /∈ 𝑉𝑖 by definition of 𝑉𝑖. Applying this observation to

each term in the sequence ℎ𝑟1 ...ℎ𝑟𝑙 shows the first equality.

Now, to prove the second claim, note Claim 1 in combination with Equation (4.2.13) gives

𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) = 𝜙1(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))𝜙2(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))𝜙3(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))𝜙𝜎(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))

(4.2.22)

= 𝜙𝜎(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)). (4.2.23)

If 𝜙𝜎(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜎 for any 𝑖 ∈ [𝑙] the above equation proves Claim 2. Assume for

146

contradiction that 𝜙𝜎(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 1 for all 𝑖 ∈ [𝑙]. Then we have

𝜙𝜎(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) = 𝜙𝜎(ℎ𝑟1)𝜙𝜎(ℎ𝑟2)...𝜙𝜎(ℎ𝑟𝑡) (4.2.24)

= 𝜙𝜎

(︃∏︁
𝑖

𝜌𝑖(ℎ𝑟1)

)︃
𝜙𝜎

(︃∏︁
𝑖

𝜌𝑖(ℎ𝑟2)

)︃
...𝜙𝜎

(︃∏︁
𝑖

(ℎ𝑟𝑡)

)︃
(4.2.25)

=
∏︁
𝑖

𝜙𝜎 (𝜌𝑖 (ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 1 (4.2.26)

Where we used the fact that 𝜎 commutes with all elements of 𝐺 to reorder elements and get

from the second line to the third, and our assumption for the sake of contradiction on the final

line. But, by our assumption at the start of this section we also have 𝜙𝜎(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) = 𝜎.

The contradiction proves Claim 2.

Finally, to complete the proof we note

𝜌𝑖′ (ℎ𝑟1 ...ℎ𝑟𝑡) = 𝜙1 (𝜌𝑖′ (ℎ𝑟1 ...ℎ𝑟𝑡))𝜙2 (𝜌𝑖′ (ℎ𝑟1 ...ℎ𝑟𝑡))𝜙3 (𝜌𝑖′ (ℎ𝑟1 ...ℎ𝑟𝑡))𝜙𝜎 (𝜌𝑖′ (ℎ𝑟1 ...ℎ𝑟𝑡))

(4.2.27)

= 𝜎 (4.2.28)

by Equation (4.2.13), Claim 1, and Claim 2, and 𝜌𝑖′ (ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡) ∈ 𝑆𝑖′ by definition of 𝜌𝑖′ .

Thus the claim holds with 𝑆 ′ = 𝑆𝑖′ .

To prove the strongest form of Theorem 4.1.6, we also need a version of Theorem 4.2.3

that applies to works [𝜎]𝑘 ∈ 𝐻𝐸 (mod 𝐾). We give that theorem next. The proof is very

similar to the proof of Theorem 4.2.3, with a few more technical details.12

Theorem 4.2.4. Let 𝐺 be a 3XOR game with clause set 𝑆, clause group 𝐻, and clause graph

𝒢123. Then [𝜎]𝑘 ∈ 𝐻𝐸 (mod 𝐾) iff there exists a subset of clauses 𝑆 ′ ⊆ 𝑆 corresponding to

all the edges in a connected component of 𝒢123 for which [𝜎]𝑘 ∈ ⟨𝑆 ′⟩ ∩𝐻𝐸 (mod 𝐾).

Proof. As with the proof of Theorem 4.2.3, the case where 𝒢123 is connected and the direction

[𝜎]𝑘 ∈ ⟨𝑆 ′⟩ ∩𝐻𝐸 (mod 𝐾)⇒ [𝜎]𝑘 ∈ 𝐻𝐸 (mod 𝐾) are immediate.

12Actually, theorem 4.2.4 in combination with Theorem 4.1.6 provide an alternate proof of Theorem 4.2.3.
Here we proved Theorem 4.2.3 directly both because the proof serves as a good warm up to the proof of
Theorem 4.2.4, and to enphasize the result can be proved independtly from Theorem 4.1.6.

147

To deal with the remaining case, let 𝐺 be an XOR game with disconnected clause graph

𝒢123 and 𝜎 ∈ 𝐻𝐸 (mod 𝐾). Let 𝑆1, 𝑆2, ..., 𝑆𝑙 be subsets of 𝑆 corresponding to all edges in

the connected components of the clause graph. For each 𝑆𝑖, we pick some representative

clause ℎ̂𝑖 ∈ 𝑆𝑖. Then, define a map 𝜌𝑖 which acts on the generators of 𝐻 as

𝜌𝑖(ℎ𝑗) =

⎧⎪⎨⎪⎩ℎ𝑗 if ℎ𝑗 ∈ 𝑆𝑖

ℎ̂𝑖 otherwise.
(4.2.29)

Extend 𝜌𝑖 to act on sequences of clauses in the natural way, so

𝜌𝑖(ℎ1ℎ2...ℎ𝑙) = 𝜌𝑖(ℎ1)𝜌𝑖(ℎ2)...𝜌𝑖(ℎ𝑙). (4.2.30)

Note that for any generator of ℎ𝑗ℎ𝑗′ of the even clause group 𝐻𝐸 we have

𝜌𝑖(ℎ𝑗ℎ𝑗′) = 𝜌𝑖(ℎ𝑗)𝜌𝑖(ℎ𝑗′) ∈ 𝐻𝐸 ∩ ⟨𝑆𝑖⟩. (4.2.31)

As in the proof of Theorem 4.2.3, define the subset of generators 𝑉𝑖 to be the 𝑥(𝛼)𝑖 corresponding

to vertices in the same connected component as the edges in 𝑆𝑖. Then define the projector �̃�𝑖

which acts on the generators of 𝐺 as

�̃�𝑖(𝑥
(𝛼)
𝑖) =

⎧⎪⎨⎪⎩𝑥
(𝛼)
𝑖 if 𝑥(𝛼)𝑖 ∈ 𝑉𝑖

𝜙𝛼(ℎ̂𝑖) otherwise
and �̃�𝑖(𝜎) = 1. (4.2.32)

An important observation is that �̃�𝑖 maps commutators of even pairs of generators to

commutators of even pairs of generators (or the identity) so �̃�𝑖(𝐾) ≤ 𝐾.

By assumption we have 𝜎 ∈ 𝐻𝐸 (mod 𝐾). Then there exists an even length sequence of

clauses ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡 with 𝑤 = 𝜎𝑤𝑘 and 𝑤𝑘 ∈ 𝐾. We claim:

1. For all 𝑖 ∈ [𝑙], 𝛼 ∈ {1, 2, 3} we have : 𝜙𝛼(𝜌𝑖(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜙𝛼(�̃�𝑖(𝑤𝑘)) ∈ 𝑤𝑘.

2. There exists an 𝑖′ ∈ [𝑙] satisfying 𝜙𝜎(𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜎.

The proof of the first equality in Claim 1 follows identically to the proof of Claim 1 in

Theorem 4.2.3. The second inequality holds because �̃�𝑖(𝐾) ≤ 𝐾.

148

Proving Claim 2 requires a little more work. The complicating issue is that we can

encounter a case where 𝜙𝜎(𝜌𝑖(ℎ𝑗)) = 𝜎 even if ℎ𝑗 /∈ 𝑆𝑖. Thus the equation

𝜙𝜎(ℎ𝑗) = 𝜙𝜎

(︃∏︁
𝑖

𝜌𝑖(ℎ𝑗)

)︃
(4.2.33)

might not hold, and we can’t simply copy the proof of Claim 2 in Theorem 4.2.3. How-

ever, copying the proof of Claim 2 does give us that there exists an 𝑖′ ∈ [𝑙] for which

𝜙𝜎(𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜎, that is, the claim holds without the tilde. Let 𝑛𝑖′ be the number of

clauses in the sequence ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡 not contained in 𝑆𝑖′ , that is

𝑛𝑖′ =
⃒⃒
{𝑗 ∈ [𝑙] : 𝑟𝑟𝑗 /∈ 𝑆𝑖′}

⃒⃒
. (4.2.34)

We claim 𝑛𝑖′ is even. To see this, note that any word 𝑤 ∈ 𝐾 contains each generator 𝑥(𝛼)𝑖 an

even number of times, since the even commutators contain the generators 𝑥(𝛼)𝑖 an even number

of times, and the 𝑥(𝛼)𝑖 are self-inverse. Then the number occurrences of all the 𝑥(1)𝑖 /∈ 𝑉𝑖′ in

the word ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡 must be even (the 1 here is arbitrary, all that matters is that we fix a

player). But this is equal to 𝑛𝑖′ mod 2, and we conclude 𝑛𝑖′ is even. Finally, we note that

𝜙𝜎(𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜙𝜎(𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))(𝜙𝜎(ℎ̂𝑖′))
𝑛𝑖′ = 𝜙𝜎(𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) = 𝜎. (4.2.35)

Using the fact that 𝑛𝑖′ is even and 𝜎 has order two.

Combining Claims 1 and 2 with Equation (4.2.13) gives

𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) =
∏︁
𝛼

(𝜙𝛼 (𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)))𝜙𝜎 (𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) (4.2.36)

=
∏︁
𝛼

(𝜙𝛼 (𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)))𝜎 (4.2.37)

with 𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡)) ∈ ⟨𝑆𝑖′⟩ ∩𝐻𝐸 and
∏︀

𝛼 (𝜙𝛼 (𝜌𝑖′(ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑡))) ∈ 𝐾.

To close this section we observe that Theorem 4.2.4 implies proving Theorem 4.1.6 for

all 3XOR games with a connected clause graph 𝒢123 proves the result for all 3XOR games.

To see why, consider a 3XOR game 𝐺 with clause set 𝑆, a disconnected clause graph and

149

𝜎 ∈ 𝐻𝐸 (mod 𝐾). Theorem 4.2.4 says that we can find a connected subset of clauses 𝑆 ′ ⊂ 𝑆

with 𝜎 ∈ ⟨𝑆 ′⟩ ∩𝐻𝐸 (mod 𝐾). Then, we restrict to the 3XOR game 𝐺′ defined only on these

clauses and note is has a fully connected clause graph. Theorem 4.1.6 then says 𝜎 ∈ ⟨𝑆 ′⟩,

which implies 𝜎 ∈ ⟨𝐻⟩ for the original game 𝐺 as well. For this reason, we assume the clause

graph 𝒢123 is connected in Section 4.2.4.

4.2.4 Proof of Theorem 4.1.6

The proof is involved, and we will build up to it slowly over the course of many lemmas.

First, we recap the theorem and give an outline of the proof. Note that notation, particularly

the 𝑤,𝑤′ and �̃�, in this outline is simplified, and does not match the notation used in the

remainder of this section.

Theorem 4.1.6 (Repeated). 𝜎 is contained in 𝐻 iff, after modding out by 𝐾, the coset

containing 𝜎 is contained in 𝐻𝐸. That is:

𝜎 ∈ 𝐻 ⇔ [𝜎]𝐾 ∈ 𝐻𝐸 (mod 𝐾). (4.2.38)

Proof Outline. The forwards direction is immediate. The backwards direction takes work.

Our starting point is the observation that [𝜎]𝐾 ∈ 𝐻 (mod 𝐾) implies there exists some

ℎ ∈ 𝐻 satisfying ℎ = 𝜎𝑤, with 𝑤 ∈ 𝐾. We will modify this word by right multiplying by

words in 𝐻 until we have removed the 𝑤 portion, producing a word 𝜎 ∈ 𝐻. We refer to this

process as “clearing" the word 𝑤 from the word ℎ. To begin, we break 𝑤 into three words:

since 𝐺1, 𝐺2 and 𝐺3 group elements all commute with each other we can separate them out

and write 𝑤 = 𝑤1𝑤2𝑤3 with each 𝑤𝛼 ∈ 𝐺𝛼 ∩𝐾. Then we clear the word 𝑤 one 𝑤𝛼 at a time.

In Section 4.2.4 we show how to construct a word �̃� = 𝑤1�̃�2�̃�3 ∈ 𝐻, where words

�̃�2 ∈ 𝐺2 ∩ 𝐾 and �̃�3 ∈ 𝐺3 ∩ 𝐾 are arbitrary. To do this we define a homomorphism 𝜙*1

which maps any word 𝑣1 ∈ 𝐺1 to a sequences of clauses in 𝐻 whose product equals 𝑣1 when

projected to the 𝐺1 subgroup.

Multiplying ℎ by �̃�−1 produces a word 𝑤′𝜎 = 𝑤′2𝑤
′
3𝜎 with 𝑤′2 ∈ 𝐺2 ∩𝐾 and 𝑤′3 ∈ 𝐺3 ∩𝐾.

Importantly 𝑤′ contains no terms in the 𝐺1 subgroup, that is, we have cleared the 𝐺1 portion

of the word 𝑤. Our next step is to right multiply by a word which will clear the 𝑤′2 term,

150

while not introducing any new terms in the 𝐺1 subgroup. We do this by constructing another

homomorphism 𝜙*2,1, which takes a word in 𝑣2 = 𝐺2 and produces a word in 𝐻 which equals

𝑣2 in the 𝐺2 subgroup and projects to the identity in the 𝐺1 subgroup whenever possible.

Details are given in Section 4.2.4.

Section 4.2.4 goes over the process of removing the 𝑤1 and 𝑤2 words from ℎ. The final

result is a word

𝑤′′ = 𝜙*2,1 (𝑤
′
2)
−1
𝑤′ = 𝑤′′3𝜎

where 𝑤′′3 ∈ 𝐺3 ∩𝐾.

Finally, we want to clear the word 𝑤′′3 without introducing any words in the 𝐺1 or 𝐺2

subgroups. Unlike previous sections, we do not do this by constructing a homomorphism.

Instead, in section Section 4.2.4 we construct a series of gadgets designed to make a word

easier to clear. Then, in Section 4.2.4 we introduce gadgets into the word 𝑤′′3 , and clear the

word with the gadgets introduced. This procedure relies on the fact we have already cleared

words 𝑤1 and 𝑤2 and special structure of the 𝐾 subgroup.

We now begin the proof in earnest.

Projectors and simple right inverse.

We start with some useful notation. Recall the projector 𝜙𝛼 : 𝐺→ 𝐺𝛼 onto group elements

corresponding to player 𝛼 defined in Section 4.2.1 . It is a homomorphism, defined by

𝜙𝛼(𝑥
(𝛽)
𝑖) :=

⎧⎪⎨⎪⎩𝑥
(𝛽)
𝑖 if 𝛼 = 𝛽

1 otherwise
(4.2.39)

and

𝜙𝛼(𝜎) = 1. (4.2.40)

151

We also defined a projector onto the 𝜎 subgroup, 𝜙𝜎 : 𝐺→ {𝜎, 1} which satisfies

𝜙𝜎(𝑥
(𝑗)
𝑖) = 1 and 𝜙𝜎(𝜎) = 𝜎. (4.2.41)

We use the notation 𝜙* to refer to right inverses of 𝜙. Because the map 𝜙 is many to one,

there are many choices of right inverse. We define several.

We first define the simple right inverse 𝜙*𝛼 : 𝐺𝛼 → 𝐻 which maps each 𝑥
(𝛼)
𝑖 to a single

clause in 𝑆. For ease of notation, we give the definition when 𝛼 = 1. 𝜙*1 is a homomorphism

which acts on the generators of 𝐺1 by

𝜙*1(𝑥
(1)
𝑖) = ℎ𝑗 (4.2.42)

where 𝑗 ∈ [𝑚] is chosen so that 𝜙1(ℎ𝑗) = 𝑥
(1)
𝑖 . Note that some clause 𝑥(1)𝑖 𝑥

(2)
𝑗 𝑥

(3)
𝑘 𝜎𝑙 must exist

in 𝑆 or else the question 𝑥(1)𝑖 is never asked, and the group element 𝑥(1)𝑖 can be removed from

the game group (this can be viewed as a special case of the proof given in Section 4.2.3 that

we can assume the game group is connected). If there are multiple clauses which contain the

element 𝑥(1)𝑖 , we pick one arbitrarily. To verify 𝜙*1 is indeed a homomorphism, we can check

𝜙*1(𝑥
(1)
𝑖)2 = ℎ2𝑗 (4.2.43)

= 𝑥(1)𝑎𝑗
𝑥
(2)
𝑏𝑗
𝑥(3)𝑐𝑗

𝜎𝑠𝑗𝑥(1)𝑎𝑗
𝑥
(2)
𝑏𝑗
𝑥(3)𝑐𝑗

𝜎𝑠𝑗 (4.2.44)

=
(︁
𝑥(1)𝑎𝑗

)︁2 (︁
𝑥
(2)
𝑏𝑗

)︁2 (︁
𝑥(3)𝑐𝑗

)︁2
(𝜎𝑠𝑗)2 (4.2.45)

= 1. (4.2.46)

𝜙*𝛼 for general 𝛼 is defined similarly.

Identity preserving right inverse.

The next right inverse we define, 𝜙*𝛼,𝛽, acts as a right inverse to 𝜙𝛼 while also producing a

word ℎ ∈ 𝐻 satisfying 𝜙𝛽(ℎ) = 1 whenever such a mapping is possible. In order to define

𝜙*𝛼,𝛽 as a homomorphism, we restrict it’s action to the subgroup of even length words 𝐺𝐸
𝛼 .

Our first result is a general “trick" we will use to construct homomorphisms on the even

152

subgroups.

Lemma 4.2.5. Let 𝑓 : 𝐺𝛼 → 𝐻 be an arbitrary map. Define 𝑓 : 𝐺𝐸
𝛼 → 𝐻𝐸 by its action on

the generators of 𝐺𝐸
𝛼

𝑓(𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗) = 𝑓(𝑥

(𝛼)
𝑖)𝑓(𝑥

(𝛼)
𝑗)−1, (4.2.47)

and extend it to act on words in 𝐺𝐸
𝛼 in the natural way, so

𝑓(𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 𝑥

(𝛼)
𝑘 𝑥

(𝛼)
𝑙) = 𝑓(𝑥

(𝛼)
𝑖 𝑥

(𝛼)
𝑗)𝑓(𝑥

(𝛼)
𝑘 𝑥

(𝛼)
𝑙). (4.2.48)

Then 𝑓 is a homomorphism.

Proof. The only non-trivial relation to check is that 𝑓(𝑥(𝛼)𝑖 𝑥
(𝛼)
𝑗 𝑥

(𝛼)
𝑗 𝑥

(𝛼)
𝑘) = 𝑓(𝑥

(𝛼)
𝑖 𝑥

(𝛼)
𝑘). But

we see

𝑓(𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 𝑥

(𝛼)
𝑗 𝑥

(𝛼)
𝑘) = 𝑓(𝑥

(𝛼)
𝑖)𝑓(𝑥

(𝛼)
𝑗)−1𝑓(𝑥

(𝛼)
𝑗)𝑓(𝑥

(𝛼)
𝑘)−1 (4.2.49)

= 𝑓(𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑘) (4.2.50)

and the result follows.

Next, we define 𝜙*𝑎,𝑏 and prove its existence in the following lemma.

Lemma 4.2.6. For all 𝛼 ̸= 𝛽 ∈ [3], there exists a homomorphism 𝜙*𝛼,𝛽 : 𝐺𝐸
𝛼 → 𝐻𝐸 satisfying

A1. 𝜙𝛼(𝜙
*
𝛼,𝛽(𝑤)) = 𝑤 for all 𝑤 ∈ 𝐺𝐸

𝛼 .

A2. 𝜙𝛽

(︀
𝜙*𝛼,𝛽(𝑤)

)︀
= 1 whenever there exists an ℎ ∈ 𝐻𝐸 satisfying 𝜙𝛽(ℎ) = 1 and 𝜙𝛼(ℎ) = 𝑤.

An important consequence of this is that 𝜙𝛽

(︀
𝜙*𝛼,𝛽 (𝜙𝛼(ℎ))

)︀
= 1 for any ℎ ∈ 𝐻𝐸 satisfying

𝜙𝛽(ℎ) = 1.

Proof. For ease of notation, we prove the result when 𝛼 = 1, 𝛽 = 2. The proof is identical

for other 𝛼, 𝛽.

Recall the (multi)graph 𝒢12, defined in Section 4.2.1. 𝒢12 has 𝑁2 vertices, labeled by

the group elements 𝑥(1)1 , 𝑥
(1)
2 , ..., 𝑥

(1)
𝑁 , 𝑥(2)1 , 𝑥

(2)
2 , ..., 𝑥

(2)
𝑁 . We identify vertices in the graph with

153

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

Figure 4-3: Sample graph 𝒢12 for a game with alphabet size 𝑁 = 6 and 𝑚 = 11 clauses. The
middle component for example corresponds to clauses 𝑥(1)3 𝑥

(2)
4 𝑥𝑘1𝜎

𝑙1 and 𝑥(1)4 𝑥
(2)
4 𝑥𝑘2𝜎

𝑙2 , where
𝑘1, 𝑘2 ∈ [𝑁] and 𝑙1, 𝑙2 ∈ {0, 1} are arbitrary.

generators of game group 𝐺, and abuse notation slightly by referring to the two objects

interchangeably. Edges in the graph correspond to clauses; the graph has one edge (𝑥
(1)
𝑖 , 𝑥

(2)
𝑗)

for every clause 𝑥(1)𝑖 𝑥
(2)
𝑗 𝑥

(3)
𝑘 𝜎(𝑙) in 𝑆. (𝑘 ∈ [𝑁] and 𝑙 ∈ {0, 1} are arbitrary.) Then 𝒢12 is

bipartite, with the vertices 𝑥(1)𝑖 for 𝑖 ∈ [𝑁] forming one half of the graph and 𝑥(2)𝑗 for 𝑗 ∈ [𝑁]

forming the other. See Figure 4-3 for an example.

Any path

𝑃
(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
=
(︁
(𝑥

(1)
𝑖1
, 𝑥

(2)
𝑗1
), (𝑥

(2)
𝑗1
, 𝑥

(1)
𝑖2
), (𝑥

(1)
𝑖2
, 𝑥

(2)
𝑗2
), ..., (𝑥

(1)
𝑖𝑡
, 𝑥

(2)
𝑗𝑡
)
)︁

(4.2.51)

in the graph can be identified with some word

𝑥
(1)
𝑖1
𝑥
(2)
𝑗1
𝑥
(3)
𝑘1
𝜎𝑙1𝑥

(1)
𝑖2
𝑥
(2)
𝑗1
𝑥
(3)
𝑘2
𝜎𝑙2𝑥

(1)
𝑖2
𝑥
(2)
𝑗2
𝑥
(3)
𝑘3
𝜎𝑙3 ...𝑥

(1)
𝑖𝑡
𝑥
(2)
𝑗𝑡
𝑥
(3)
𝑘2𝑡
𝜎𝑙2𝑡 ∈ 𝐻. (4.2.52)

Abusing notation slightly, we refer to the word in 𝐻 as the path 𝑃
(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
.

Now, consider a word 𝑃
(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
corresponding to a path in 𝒢12 from a vertex associated

with player 1 to a vertex associated with player 2. Note the path has odd length because 𝒢12
is bipartite, so the word 𝑃

(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
consists of an odd sequence of clauses. All generators in

𝐺1, 𝐺2 other than 𝑥(1)𝑖1
and 𝑥(2)𝑗𝑡

are repeated adjacent to each other in the word 𝑃
(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
.

154

These generators cancel, and so

𝑃
(︁
𝑥
(1)
𝑖1
, 𝑥

(2)
𝑗𝑡

)︁
= 𝑥

(1)
𝑖1
𝑥
(2)
𝑗𝑡
𝑥
(3)
𝑘1
𝑥
(3)
𝑘2
...𝑥

(3)
𝑘2𝑡
𝜎𝑙1+𝑙2+...𝑙2𝑡 . (4.2.53)

Hence,

𝜙1

(︁
𝑃 (𝑥

(1)
𝑖1
, 𝑥

(2)
𝑗𝑡
)
)︁
= 𝑥

(1)
𝑖1

(4.2.54)

and

𝜙2

(︁
𝑃 (𝑥

(1)
𝑖1
, 𝑥

(2)
𝑗𝑡
)
)︁
= 𝑥

(2)
𝑗𝑡
. (4.2.55)

Next, note that the multigraph 𝒢12 naturally partitions into components. Pick one

representative vertex 𝑥(2)𝑗 from each component. We define a map 𝑟1,2 that takes generators

of 𝐺1 or 𝐺2 (vertices in 𝒢12) to the unique representative vertex in the same component.

Formally, 𝑟1,2 maps a vertex 𝑥(𝛼)𝑖 in 𝒢12 to the representative vertex in the connected component

containing 𝑥(𝛼)𝑖 . Note that 𝛼 could be either 1 or 2, but we defined representative vertices to

be in 𝐺2, so 𝑟1,2
(︁
𝑥
(𝛼)
𝑖

)︁
∈ 𝐺2.13

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

Figure 4-4: Sample graph repeated from Figure 4-3 with a choice of representative vertices
indicated in red.

𝑟1,2 maps generators which square to the identity to generators which square to the
13Representative elements in 𝐺1 are used to define the map 𝑟2,1, which is used construct the right inverse

𝜙*
2,1. To keep track of this somewhat subtle notation, recall 𝜙*

𝛼,𝛽 is the right inverse of 𝜙𝛼 that tries to
preserve the identity in 𝐺𝛽 subgroup.

155

identity, so we can extend it to a homomorphism acting on words in 𝐺1 or 𝐺2. We abuse

notation and refer to both of these homomorphisms as 𝑟1,2. 14

Next, fix paths 𝑃
(︁
𝑥
(1)
𝑖 , 𝑟1,2

(︁
𝑥
(1)
𝑖

)︁)︁
between the vertices of 𝐺1 and the connected repre-

sentative vertex (see Figure 4-5). Define the homomorphism 𝜙*1,2 : 𝐺
𝐸
1 → 𝐻𝐸 by its action

on the generators of 𝐺𝐸,

𝜙*1,2

(︁
𝑥
(1)
𝑖 𝑥

(1)
𝑗

)︁
:= 𝑃

(︁
𝑥
(1)
𝑖 , 𝑟1,2

(︁
𝑥
(1)
𝑖

)︁)︁
𝑃
(︁
𝑥
(1)
𝑗 , 𝑟1,2

(︁
𝑥
(1)
𝑗

)︁)︁−1
. (4.2.56)

Recall the abuse of notation defined above, so 𝑃
(︁
𝑥
(1)
𝑖 , 𝑟1,2

(︁
𝑥
(1)
𝑖

)︁)︁
defines both a path in the

graph 𝒢12 and a word in 𝐻. 𝜙*1,2 is a valid homomorphism by Lemma 4.2.6.

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

Figure 4-5: Sample graph with representative vertices indicated in red and the
path 𝑃

(︁
𝑥
(1)
2 , 𝑟1,2

(︁
𝑥
(1)
2

)︁)︁
indicated in blue. This path corresponds to a word

𝑥
(1)
2 𝑥

(2)
2 𝑥

(3)
𝑘1
𝜎𝑙1𝑥

(1)
1 𝑥

(2)
2 𝑥

(3)
𝑘2
𝜎𝑙2𝑥

(1)
1 𝑥

(2)
1 𝑥

(3)
𝑘3
𝜎𝑙3 , where 𝑘1, 𝑘2, 𝑘3 ∈ [𝑁] and 𝑙1, 𝑙2, 𝑙3 ∈ {0, 1} are

arbitrary.

It remains to show 𝜙*1,2 satisfies Properties A1 and A2. Property A1 follows from

Equation (4.2.54), which gives

𝜙1

(︁
𝜙*1,2(𝑥

(1)
𝑖 𝑥

(1)
𝑗)
)︁
= 𝑥

(1)
𝑖 (𝑥

(1)
𝑗)−1 = 𝑥

(1)
𝑖 𝑥

(1)
𝑗 . (4.2.57)

14𝑟1,2 does not preserve commutation between elements of 𝐺1 and 𝐺2 (that is,
[︁
𝑟1,2(𝑥

(1)
𝑖), 𝑟1,2(𝑥

(2)
𝑗)
]︁

may
not equal 1) so we cannot extend 𝑟1,2 to a homomorphism simultaneously mapping 𝐺1 and 𝐺2 into 𝐺2.
Instead, there are two separate homormorphisms, one mapping 𝐺1 → 𝐺2 and one mapping 𝐺2 → 𝐺2, and
both are denoted by 𝑟1,2. This somewhat technical issue does not affect the proof.

156

To prove property A2 we first show that

𝑟1,2(𝜙2(ℎ)) = 𝜙2(𝜙
*
1,2(𝜙1(ℎ))) (4.2.58)

for any ℎ ∈ 𝐻𝐸. The claim can be verified by checking the action of the two maps on

generators ℎ𝑖ℎ𝑗 of 𝐻𝐸:

𝜙2(𝜙
*
1,2(𝜙1(ℎ𝑖ℎ𝑗))) = 𝜙2(𝜙

*
1,2(𝜙1(𝑥

(1)
𝑎𝑖
𝑥
(2)
𝑏𝑖
𝑥(3)𝑐𝑖

𝑥(1)𝑎𝑗
𝑥
(2)
𝑏𝑗
𝑥(3)𝑐𝑗

𝜎𝑠𝑖+𝑠𝑗))) (4.2.59)

= 𝜙2(𝜙
*
1,2(𝑥

(1)
𝑎𝑖
𝑥(1)𝑎𝑗

)) (4.2.60)

= 𝑟1,2
(︀
𝑥(1)𝑎𝑖

)︀
𝑟1,2

(︁
𝑥(1)𝑎𝑗

)︁
(4.2.61)

= 𝑟1,2

(︁
𝑥
(2)
𝑏𝑖

)︁
𝑟1,2

(︁
𝑥
(2)
𝑏𝑗

)︁
(4.2.62)

= 𝑟1,2(𝜙2(ℎ𝑖ℎ𝑗)) (4.2.63)

Line (4.2.61) follows from Equation (4.2.55). The key observation comes in line (4.2.62).

Because 𝑎𝑖 and 𝑏𝑖 are both in the clause ℎ𝑖, they are in the same connected component in the

graph 𝒢12. Then they have the same representative vertex and

𝑟1,2
(︀
𝑥(1)𝑎𝑖

)︀
= 𝑟1,2

(︁
𝑥
(2)
𝑏𝑖

)︁
. (4.2.64)

Line (4.2.62) follows.

Now any ℎ ∈ 𝐻 satisfying 𝜙2(ℎ) = 1 must have even length, so ℎ ∈ 𝐻𝐸 and we have

𝜙2(𝜙
*
1,2(𝜙1(ℎ))) = 𝑟1,2(𝜙2(ℎ)) = 𝑟1,2(1) = 1. (4.2.65)

Using the fact that 𝑟1,2 is a homomorphism in the last two equalities. This proves Property

A2, and completes the proof.

The next lemma proves that right inverses 𝜙*𝛼 and 𝜙*𝛼,𝛽 map within the 𝐾 subgroup. That

is, they map words in 𝐾 ∩𝐺𝐸
𝛼 to words in 𝐾 ∩𝐻𝐸.

157

Lemma 4.2.7. Let 𝑣 ∈ 𝐾 ∩𝐺𝐸
𝛼 be arbitrary. Then

𝜙*𝛼(𝑣) ∈ 𝐾 ∩𝐻𝐸 (4.2.66)

and

𝜙*𝛼,𝛽(𝑣) ∈ 𝐾 ∩𝐻𝐸 (4.2.67)

for all 𝛽 ̸= 𝛼.

Proof. For notational convenience we prove the result when 𝛼 = 1, 𝛽 = 2.

The proof is mechanical: any word 𝑣 ∈ 𝐾 ∩𝐺𝐸
1 can be written

𝑣 =
∏︁
𝑖

𝑢𝑖

[︁
𝑥(1)𝑎𝑖1

𝑥(1)𝑎𝑖2
, 𝑥(1)𝑎𝑖3

𝑥(1)𝑎𝑖4

]︁
𝑢−1𝑖 . (4.2.68)

with 𝑢𝑖 ∈ 𝐺1 arbitrary. We pick labels 𝑏𝑖1 , ..., 𝑏𝑖4 , 𝑐𝑖1 , ..., 𝑐𝑖4 ∈ [𝑁] and 𝑠𝑖1 , ..., 𝑠𝑖4 ∈ {0, 1} so

that

𝜙*1

(︁
𝑥(1)𝑎𝑖𝑗

)︁
= 𝑥(1)𝑎𝑖𝑗

𝑥
(2)
𝑏𝑖𝑗
𝑥(3)𝑐𝑖𝑗

𝜎𝑠𝑖𝑗 (4.2.69)

for all 𝑥𝑎𝑖𝑗 . Then

𝜙*1(𝑣) =
∏︁
𝑖

𝜙*1 (𝑢𝑖)
[︁
𝜙*1(𝑥

(1)
𝑎𝑖1

)𝜙*1(𝑥
(1)
𝑎𝑖2

), 𝜙*1(𝑥
(1)
𝑎𝑖3

)𝜙*1(𝑥
(1)
𝑎𝑖4

)
]︁
𝜙*1 (𝑢𝑖)

−1 (4.2.70)

=
∏︁
𝑖

𝜙*1 (𝑢𝑖)
[︁
𝑥(1)𝑎𝑖1

𝑥(1)𝑎𝑖2
, 𝑥(1)𝑎𝑖3

𝑥(1)𝑎𝑖4

]︁ [︁
𝑥
(2)
𝑏𝑖1
𝑥
(2)
𝑏𝑖2
, 𝑥

(2)
𝑏𝑖3
𝑥
(2)
𝑏𝑖4

]︁ [︁
𝑥(3)𝑐𝑖1

𝑥(3)𝑐𝑖2
, 𝑥(3)𝑐𝑖3

𝑥(3)𝑐𝑖4

]︁
𝜙*1 (𝑢𝑖)

−1 ∈ 𝐾.

(4.2.71)

noting that any factors of 𝜎 cancel in the commutator.

158

A similar argument shows 𝜙*1,2(𝑣) ∈ 𝐾. To start assume 𝑣 ∈ 𝐾 ∩𝐺𝐸 and write

𝜙*1,2(𝑣) =
∏︁
𝑖

𝜙*1,2 (𝑢𝑖)
[︁
𝜙*1,2(𝑥

(1)
𝑖1
)𝜙*1,2(𝑥

(1)
𝑖2
), 𝜙*1,2(𝑥

(1)
𝑖3
)𝜙*1,2(𝑥

(1)
𝑖4
)
]︁
𝜙*1,2 (𝑢𝑖)

−1 (4.2.72)

=
∏︁
𝑖

𝜙*1,2 (𝑢𝑖)

(︃
3∏︁

𝛼=1

[︁
𝜙𝛼

(︁
𝜙*1,2(𝑥

(1)
𝑖1
)𝜙*1,2(𝑥

(1)
𝑖2
)
)︁
, 𝜙𝛼

(︁
𝜙*1,2(𝑥

(1)
𝑖3
)𝜙*1,2(𝑥

(1)
𝑖4
)
)︁]︁)︃

𝜙*1,2 (𝑢𝑖)
−1

(4.2.73)

We can show this word is in𝐾 by noting the words 𝜙𝛼

(︁
𝜙*1,2(𝑥

(1)
𝑖1
)𝜙*1,2(𝑥

(1)
𝑖2
)
)︁

and 𝜙𝛼

(︁
𝜙*1,2(𝑥

(1)
𝑖3
)𝜙*1,2(𝑥

(1)
𝑖4
)
)︁

are even-length products of clauses in 𝐻 for any 𝛼, then repeatedly applying to commutator

identities

[𝑥, 𝑦𝑧] = [𝑥, 𝑦] 𝑦−1 [𝑥, 𝑧] 𝑦 (4.2.74)

and [𝑥𝑦, 𝑧] = 𝑦−1 [𝑥, 𝑧] 𝑦 [𝑦, 𝑧] (4.2.75)

to show those words are in 𝐾. The full argument is given in an appendix (Lemma 4.3.1).

An important consequence of Lemma 4.2.7 is the following corollary.

Corollary 4.2.8. Let 𝑣 ∈ 𝐾 ∩𝐺𝐸
𝛼 be arbitrary and 𝛼 ̸= 𝛽. Then

𝜙𝜎(𝜙
*
𝛼(𝑣)) = 𝜙𝜎(𝜙

*
𝛼,𝛽(𝑣)) = 1. (4.2.76)

Proof. By Lemma 4.3.4, 𝜙𝜎(𝑘) = 1 for all 𝑘 ∈ 𝐾 . Then, by Lemma 4.2.7 𝜙*𝛼(𝑣) ∈ 𝐾. Hence

𝜙𝜎 (𝜙
*
𝛼 (𝑣)) = 1 (4.2.77)

The proof for 𝜙𝜎

(︀
𝜙*𝛼,𝛽 (𝑣)

)︀
is identical.

Clearing the 𝐺1 and 𝐺2 subgroups

The next lemma makes critical use of right inverses 𝜙*𝛼 and 𝜙*𝛼,𝛽. It should be be thought of

as a “pre-processing" step, that puts words in a convenient form to prove Theorem 4.1.6.

159

Lemma 4.2.9. If there exists a word 𝑤 ∈ 𝐻𝐸 satisfying 𝑤 = 𝜎 (mod 𝐾), then there exists

a word 𝑤′ in 𝐻𝐸 satisfying:

1. 𝑤′ = 𝜎 (mod 𝐾)

2. 𝜙1(𝑤
′) = 𝜙2(𝑤

′) = 1.

Proof. We construct 𝑤′ by right multiplying 𝑤 by 𝜙*1 (𝜙1 (𝑤
−1)) to clear the 𝐺1 subgroup

elements, then multiplying by 𝜙*2,1
(︁
𝜙2

(︁
(𝑤𝜙*1 (𝜙1 (𝑤

−1)))
−1
)︁)︁

to clear the 𝐺2 subgroup. In

math:

𝑤′ = 𝑤𝜙*1
(︀
𝜙1

(︀
𝑤−1

)︀)︀
· 𝜙*2,1

(︁
𝜙2

(︁(︀
𝑤𝜙*1

(︀
𝜙1

(︀
𝑤−1

)︀)︀)︀−1)︁)︁
. (4.2.78)

First, we show that 𝜙*2,1
(︁
𝜙2

(︁
(𝑤𝜙*1 (𝜙1 (𝑤

−1)))
−1
)︁)︁

is well defied, and that 𝑤′ = 𝜎

(mod 𝐾). By assumption, 𝑤 = 𝜎 (mod 𝐾). Equivalently, 𝑤 = 𝑘𝜎, for some 𝑘 ∈ 𝐾. Then

𝜙1(𝑤) = 𝜙1(𝑘𝜎) = 𝜙1(𝑘) ∈ 𝐾 ∩𝐺𝐸
1 (4.2.79)

since 𝜙1 maps words in 𝐾 to words inside 𝐾 and words in 𝐻𝐸 to words in 𝐺𝐸
1 . 𝜙1 is a

homomorphism, so we also have 𝜙1(𝑤
−1) ∈ 𝐾 ∩𝐺𝐸

1 . Then, by Lemma 4.2.7,

𝜙*1
(︀
𝜙1(𝑤

−1)
)︀
∈ 𝐾 ∩𝐻𝐸. (4.2.80)

A similar argument shows 𝜙2(𝑤) ∈ 𝐾 ∩𝐺𝐸
2 . From this, and equation 4.2.80 it follows that

𝜙2

(︁(︀
𝑤𝜙*1

(︀
𝜙1

(︀
𝑤−1

)︀)︀)︀−1)︁ ∈ 𝐾 ∩𝐺𝐸
2 (4.2.81)

Then, by Lemma 4.2.7

𝜙*2,1

(︁
𝜙2

(︁(︀
𝑤𝜙*1

(︀
𝜙1

(︀
𝑤−1

)︀)︀)︀−1)︁)︁ ∈ 𝐾 ∩𝐻𝐸. (4.2.82)

160

Putting this all together gives

𝑤 · 𝜙*1
(︀
𝜙1

(︀
𝑤−1

)︀)︀
· 𝜙*2,1

(︁
𝜙2

(︁(︀
𝑤𝜙*1

(︀
𝜙1

(︀
𝑤−1

)︀)︀)︀−1)︁)︁
= 𝑤 · 1 · 1 (mod 𝐾) (4.2.83)

= 𝜎 (mod 𝐾), (4.2.84)

as desired.

To show 𝜙1(𝑤
′) = 𝜙2(𝑤

′) = 1, set ℎ = 𝑤𝜙*1 (𝜙1 (𝑤
−1)) and note

𝜙1 (ℎ) = 𝜙1 (𝑤) · 𝜙1

(︀
𝜙*1
(︀
𝜙1

(︀
𝑤−1

)︀)︀)︀
(4.2.85)

= 𝜙1(𝑤) · 𝜙1

(︀
𝑤−1

)︀
(4.2.86)

= 1. (4.2.87)

𝑤 ∈ 𝐻 by assumption and 𝜙*1 (𝜙1 (𝑤
−1)) ∈ 𝐻 because Im(𝜙*1) ∈ 𝐻. Then ℎ ∈ 𝐻 and, by

Property A2 of the map 𝜙*2,1 and Equation (4.2.87) we have

𝜙1

(︀
𝜙*2,1 (𝜙2 (ℎ))

)︀
= 1. (4.2.88)

The maps 𝜙𝛼, 𝜙
*
𝛼, and 𝜙*𝛼,𝛽 are all homomorphisms, so we also have

𝜙1

(︀
𝜙*2,1

(︀
𝜙2

(︀
ℎ−1
)︀)︀)︀

= 1. (4.2.89)

Then we put this all together to see

𝜙1(𝑤
′) = 𝜙1

(︀
ℎ · 𝜙*2,1

(︀
𝜙2

(︀
ℎ−1
)︀)︀)︀

(4.2.90)

= 𝜙1 (ℎ) · 𝜙1

(︀
𝜙*2,1

(︀
𝜙2

(︀
ℎ−1
)︀)︀)︀

(4.2.91)

= 1. (4.2.92)

using equations Equations (4.2.87) and (4.2.89) on the last line.

161

Additionally, property A1 of the map 𝜙*2,1 gives

𝜙2(𝑤
′) = 𝜙2

(︀
ℎ · 𝜙*2,1

(︀
𝜙2

(︀
ℎ−1
)︀)︀)︀

(4.2.93)

= 𝜙2 (ℎ) · 𝜙2

(︀
𝜙*2,1

(︀
𝜙2

(︀
ℎ−1
)︀)︀)︀

(4.2.94)

= 𝜙2 (ℎ) · 𝜙2

(︀
ℎ−1
)︀

(4.2.95)

= 1. (4.2.96)

Equations (4.2.84), (4.2.92) and (4.2.96) complete the proof.

Gadgets for word processing

We are now almost ready to prove Theorem 4.1.6. Before we do this, we define two final

homomorphisms 𝑓1, 𝑓2 : 𝐺𝐸
3 → 𝐻𝐸.15 The 𝑓s are used to put words in an easy-to-cancel form,

and are key in the proof of Theorem 4.1.6. They are defined in the following lemma.

Lemma 4.2.10. For any 𝛼 ∈ {1, 2} and 𝛽 ̸= 𝛼 ∈ {1, 2} there exists a homomorphism

𝑓𝛼 : 𝐺𝐸
3 → 𝐻𝐸 which satisfies

B1. If 𝜙𝛽

(︀
𝜙*3,𝛽(𝑣)

)︀
= 1 then 𝜙𝛽 (𝑓𝛽(𝑣)) = 1

B2. 𝜙𝛼 (𝑓𝛽(𝑣)) = 𝜙𝛼

(︀
𝜙*3,𝛽(𝑣)

)︀
B3. 𝜙𝛽

(︀
𝜙*3,𝛽 (𝜙3 (𝑓𝛽(𝑣)))

)︀
= 1.

B4. 𝜙𝛼

(︀
𝜙*3,𝛼 (𝜙3 (𝑓𝛽(𝑣)))

)︀
= 𝜙𝛼

(︀
𝜙*3,𝛼(𝑣))

)︀
for any 𝑣 ∈ 𝐺𝐸

3 .

To get a feel for the significance of Properties B1 to B4, assume existence of a word

𝑤 ∈ 𝐺𝐸
3 ∩𝐻. Note 𝑤 ∈ 𝐻 and 𝜙2(𝑤) = 1 by assumption, so 𝜙*3,2(𝑤) = 1. Then 𝜙2(𝑓2(𝑤)) =

𝜙2(𝜙
*
3,2(𝑤)) = 1 by Property B1 and 𝜙1(𝑓2(𝑤)) = 𝜙1(𝜙

*
3,2(𝑤)) by Property B2. Thus,

𝜙1((𝜙
*
3,2(𝑤))

−1𝑓2(𝑤)) = 𝜙2((𝜙
*
3,2(𝑤))

−1𝑓2(𝑤)) = 1. (4.2.97)

15We could define analogues of 𝑓 mapping from any 𝐺𝛼. We only need the maps from 𝐺3, so we give the
more specific construction for notational simplicity.

162

Now, define 𝑤′ = 𝑤(𝜙*3,2(𝑤))
−1𝑓2(𝑤). Since 𝑓2 and 𝜙*3,2 both map into 𝐻𝐸 and 𝑤 ∈ 𝐻𝐸 by

assumption we have 𝑤′ = 𝑤(𝜙*3,2(𝑤))
−1𝑓2(𝑤) ∈ 𝐻𝐸. We have 𝜙1(𝑤

′) = 𝜙2(𝑤
′) = 1 by our

earlier observations and definition of 𝑤, and

𝜙3(𝑤
′) = 𝜙3(𝑤)𝜙3

(︀
𝜙*3,2(𝑤)

−1)︀𝜙3(𝑓2(𝑤)) (4.2.98)

= 𝑤𝑤−1𝜙3(𝑓2(𝑤)) = 𝜙3(𝑓2(𝑤)). (4.2.99)

We conclude that, up to a potential factor of 𝜎, 𝑤 ∈ 𝐺𝐸
3 ∩𝐻 =⇒ 𝜙3(𝑓2(𝑤)) ∈ 𝐺𝐸

3 ∩𝐻.

Properties B3 and B4 then tell us about the behaviour of this newly constructed word.

Of particular importance is property B3, which tells us that, in particular

𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝑓2

(︁
𝑥
(3)
𝑖 𝑥

(3)
𝑗

)︁)︁)︁)︁
= 1 (4.2.100)

so any product of two generators “upgraded" by the map 𝜙3 ∘ 𝑓2 cancels to the identity in the

𝐺2 subgroup under action by 𝜙*3,2. Combining this observation with the intuition given in the

proof sketch of Theorem 4.1.6 in Section 4.1.2 is the key to completing the proof. Property B4

is a slightly more technical result that lets us chain together the maps 𝑓1 and 𝑓2 in sequence.

Now we turn to the proof of Lemma 4.2.10. To prepare, we construct “gadget" words

which will be used to in the definition of 𝑓𝛼. These words depend on the representative

vertices chosen from the connected components of 𝒢13 and 𝒢12 when constructing the right

inverses 𝜙*3,1 and 𝜙*3,2.

Recall the definition of the function 𝑟3,1 which maps a vertex 𝑥
(𝛼)
𝑖 in 𝐺3 or 𝐺1 to the

representative vertex in the connected component of multigraph 𝒢31 containing 𝑥(𝛼)𝑖 . The

vertex 𝑥(𝛼)𝑖 can be in either 𝐺1 or 𝐺3. The representative vertex 𝑟3,1(𝑥
(𝛼)
𝑖) is the one chosen

when defining the map 𝜙*3,1, and so is in 𝐺1. The function 𝑟3,2 mapping vertices in 𝐺3 or 𝐺2

to vertices in 𝐺2 is defined similarly.

Finally, recall the hypergraph 𝒢123 defined in Section 4.2.1. Vertices are identified with

elements 𝑥(𝛼)𝑖 , with 𝑖 ∈ [𝑁], 𝛼 ∈ {1, 2, 3}. 𝒢123 contains a hyperedge (𝑥
(1)
𝑖 , 𝑥

(2)
𝑗 , 𝑥

(3)
𝑘) for each

clause 𝑥(1)𝑖 𝑥
(2)
𝑗 𝑥

(3)
𝑘 𝜎𝑙 ∈ 𝑆, where 𝑙 have value 0 or 1. By the arguments of Section 4.2.3, we can

assume this hypergraph is connected. Then there exist paths in 𝒢123 between any two vertices.

163

We pick, somewhat arbitrarily, a vertex 𝑥(𝛼)1 ∈ 𝐺𝛼, then fix a minimal length path in 𝒢123
from each representative vertex 𝑟3,𝛼(𝑥

(3)
𝑖) to 𝑥(𝛼)1 . Denote this path by 𝑄𝛼

(︁
𝑟3,𝛼(𝑥

(3)
𝑖)
)︁
. Each

path corresponds to a sequence of clauses, and hence a word in 𝐻. A sample hypergraph

𝒢123 is introduced in Figure 4-6, and a sample path is illustrated in Figure 4-8.

Given a sequence of clauses 𝑃 = ℎ𝑝1ℎ𝑝2 ...ℎ𝑝𝑠 corresponding to a path in 𝒢123, define the

subsequence of clauses 𝑠𝛽(𝑃) to be the sequence including only pairs consisting of adjacent

clauses which are connected through the 𝐺𝛽 vertices. That is, 𝑠𝛽(𝑃) includes only adjacent

clauses ℎ𝑝𝑖ℎ𝑝𝑖+1
which satisfy

𝜙𝛽(ℎ𝑝𝑖) = 𝜙𝛽(ℎ𝑝𝑖+1
). (4.2.101)

Note 𝑠𝛽(𝑃) is likely not a path, since the pairs of clauses need not be connected to the other

pairs. Finally, define words

𝛾1

(︁
𝑥
(𝛼)
𝑖

)︁
:= 𝑠2

(︁
𝑄1

(︁
𝑟3,1

(︁
𝑥
(𝛼)
𝑖

)︁)︁)︁
for 𝛼 ∈ {1, 3} (4.2.102)

and

𝛾2

(︁
𝑥
(3)
𝑖

)︁
:= 𝑠1

(︁
𝑄2

(︁
𝑟3,2

(︁
𝑥
(3)
𝑖

)︁)︁)︁
for 𝛼 ∈ {2, 3}. (4.2.103)

To full sequence of steps involved in the construction of 𝛾2 is visualized in Figures 4-6 to 4-9.

The following lemma summarizes the important properties of the gadget words 𝛾2
(︁
𝑥
(3)
𝑖

)︁
and 𝛾1

(︁
𝑥
(3)
𝑖

)︁
.

Lemma 4.2.11. The words 𝛾2
(︁
𝑥
(3)
𝑖

)︁
, defined as in Equation (4.2.103), satisfy the following

properties.

C1. 𝜙1

(︁
𝛾2

(︁
𝑥
(3)
𝑖

)︁)︁
= 1.

C2. 𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝛾2

(︁
𝑥
(3)
𝑖

)︁)︁)︁)︁
= 𝜙2

(︁
𝜙*3,2

(︁
𝑥
(3)
𝑖 𝑥

(3)
1

)︁)︁
.

Words 𝛾1(𝑥3𝑖) satisfy similar properties, with the 1 and 2 labels exchanged.

Proof. We show the 𝛾2 case. The proof in the 𝛾1 case is identical up to a change of index.

164

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-6: Sample hypergraph 𝒢123 for a game with alphabet size 𝑁 = 6 and 11 clauses.
Representative vertices in the image of the map 𝑟3,2 are indicated in red. The hypergraph is
generated by clause set (𝜎 terms omitted since they don’t affect the graph):

𝑆 = {𝑥(1)1 𝑥
(2)
1 𝑥

(3)
1 , 𝑥

(1)
1 𝑥

(2)
2 𝑥

(3)
1 , 𝑥

(1)
2 𝑥

(2)
2 𝑥

(3)
2 , 𝑥

(1)
1 𝑥

(2)
3 𝑥

(3)
3 , 𝑥

(1)
2 𝑥

(2)
3 𝑥

(3)
4 , 𝑥

(1)
3 𝑥

(2)
4 𝑥

(3)
4 ,

𝑥
(1)
4 𝑥

(2)
4 𝑥

(3)
3 , 𝑥

(1)
5 𝑥

(2)
4 𝑥

(3)
4 , 𝑥

(1)
5 𝑥

(2)
6 𝑥

(3)
5 , 𝑥

(1)
5 𝑥

(2)
5 𝑥

(3)
5 , 𝑥

(1)
6 𝑥

(2)
6 𝑥

(3)
6 }

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-7: Graph 𝒢23 corresponding to the same set of clauses as used to generate the
hypergraph in Figure 4-6. Representative vertices in the image of the map 𝑟3,2 are indicated
in red.

165

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-8: Hypergraph repeated from Figure 4-6. A choice of path 𝑄2(𝑥
(2)
5) is indicated in

teal.

𝑥
(1)
1 𝑥

(1)
2 𝑥

(1)
3 𝑥

(1)
4 𝑥

(1)
5 𝑥

(1)
6

𝑥
(2)
1 𝑥

(2)
2 𝑥

(2)
3 𝑥

(2)
4 𝑥

(2)
5 𝑥

(2)
6

𝑥
(3)
1 𝑥

(3)
2 𝑥

(3)
3 𝑥

(3)
4 𝑥

(3)
5 𝑥

(3)
6

Figure 4-9: Hypergraph repeated from Figure 4-6. The path 𝑄2(𝑥
(2)
5) is indicated in teal.

The hyperedges making up 𝛾2(𝑥
(2)
5) are outlined.

166

To begin the proof, we note the word 𝑄2

(︁
𝑟3,2(𝑥

(3)
𝑖)
)︁

corresponds to a minimal-length path

and so there are never more than two adjacent clauses containing the same element in the 𝐺1

subgroup. (If there were three or more adjacent hyperedges containing the same element in 𝐺1,

the middle hyperedges could be deleted and the path would remain connected, contradicting

minimality). When defining the sequence/word 𝛾1(𝑥3𝑖) all hyperedges in 𝑄2

(︁
𝑟3,2(𝑥

(3)
𝑖)
)︁

which

didn’t cancel on the 𝐺1 subgroup were removed when we restricted to the 𝑠1 subsequence, so

we can write

𝛾2

(︁
𝑥
(3)
𝑖

)︁
= ℎ𝑦1ℎ𝑧1ℎ𝑦2ℎ𝑧2 , ..., ℎ𝑦𝐿ℎ𝑧𝐿 (4.2.104)

where 𝜙1

(︀
ℎ𝑦𝑗ℎ𝑧𝑗

)︀
= 1. This shows Property C1.

Next, we prove property C2. We start by numbering all clauses in the path 𝑄2

(︁
𝑟3,2(𝑥

(3)
𝑖)
)︁
,

so

𝑄2

(︁
𝑟3,2(𝑥

(3)
𝑖)
)︁
= ℎ𝑝1ℎ𝑝2ℎ𝑝𝑅 . (4.2.105)

Consider two adjacent hyperedges ℎ𝑝𝑟ℎ𝑝𝑟+1 in the path. Since these hyperedges appear in

sequence they overlap on at least one vertex.

a) If this vertex is contained in 𝐺1, then this pair of hyperedges is contained in the word

𝛾2

(︁
𝑥
(3)
𝑖

)︁
and, using the notation of Equation (4.2.104), we have ℎ𝑝𝑟ℎ𝑝𝑟+1 = ℎ𝑦𝑗ℎ𝑧𝑗 for

some 𝑗 < 𝐿.

b) Otherwise these hyperedges overlap on a vertex corresponding to a generator of either

𝐺2 or 𝐺3 (equivalently, these hyperedges overlap on a vertex contained in the subgraph

𝒢23). In that case 𝜙3(ℎ𝑝𝑟) and 𝜙3(ℎ𝑝𝑟+1) are in the same connected component in the

graph 𝒢23 so 𝑟3,2(𝜙3(ℎ𝑝𝑟)) = 𝑟3,2(𝜙3(ℎ𝑝𝑟+1)). Consequently,

𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑝𝑟ℎ𝑝𝑟+1))

)︀
= 𝑟3,2(𝜙3(ℎ𝑝𝑟)𝜙3(ℎ𝑝𝑟+1)) = 1. (4.2.106)

The first equality holds by Equation (4.2.58) and the observation that 𝑟3,2(𝜙3(ℎ)) =

𝑟3,2(𝜙2(ℎ)) for any ℎ ∈ 𝐻.

167

Now consider a contiguous string of hyperedges of the form ℎ𝑧𝑖 , ℎ𝑝𝑟+1 , ℎ𝑝𝑟+2 ..., ℎ𝑝𝑟+𝑟′
, ℎ𝑦𝑖+1

contained in the path (4.2.105). Here ℎ𝑧𝑖 and ℎ𝑦𝑖+1
belong to the path 𝛾2

(︁
𝑥
(3)
𝑖

)︁
, but

ℎ𝑝𝑟+1 ...ℎ𝑝𝑟+𝑟′
do not. By definition of the subsequence 𝛾2

(︁
𝑥
(3)
𝑖

)︁
, no adjacent hyperedges

between ℎ𝑝𝑧𝑖 and ℎ𝑝𝑦𝑖+1
overlap on a vertex in the 𝐺1 subspace, else they would be contained

in the subsequence 𝛾2
(︁
𝑥
(3)
𝑖

)︁
, a contradiction. Then we apply the observation of the previous

paragraph inductively to see

𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑧𝑖))

)︀
= 𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑝𝑟+1))

)︀
= ... = 𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑝𝑟+𝑟′

))
)︀
= 𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑦𝑗+1

))
)︀

(4.2.107)

This shows

𝜙2

(︀
𝜙*3,2(𝜙3(ℎ𝑧𝑗ℎ𝑦𝑗+1

))
)︀
= 1. (4.2.108)

for any 𝑗 < 𝐿. Now we use this observation inductively, and compute

𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝛾2

(︁
𝑥
(3)
𝑖

)︁)︁)︁)︁
= 𝜙2

(︀
𝜙*3,2 (𝜙3 (ℎ𝑦1ℎ𝑧1ℎ𝑦2ℎ𝑧2 , ..., ℎ𝑦𝐿ℎ𝑧𝐿))

)︀
(4.2.109)

= 𝜙2

(︀
𝜙*3,2 (𝜙3 (ℎ𝑦1ℎ𝑧𝐿))

)︀
(4.2.110)

= 𝜙2

(︁
𝜙*3,2

(︁
𝑥
(3)
𝑖 𝑥

(3)
1

)︁)︁
(4.2.111)

where we used on the last line the fact that 𝜙3(ℎ𝑦1) was in the same connected component in

𝒢23 as 𝑥(3)𝑖 , and 𝜙3(ℎ𝑧𝐿) was in the same connected component as 𝑥(3)1 , so

𝜙2

(︀
𝜙*3,2 (𝜙3 (ℎ𝑦1ℎ𝑧𝐿))

)︀
= 𝑟3,2 (𝜙3(ℎ𝑦1)) 𝑟3,2 (𝜙3(ℎ𝑧𝐿)) (4.2.112)

= 𝑟3,2

(︁
𝑥
(3)
𝑖

)︁
𝑟3,2

(︁
𝑥
(3)
1

)︁
(4.2.113)

= 𝜙2

(︁
𝜙*3,2

(︁
𝑥
(3)
𝑖 𝑥

(3)
1

)︁)︁
. (4.2.114)

by definition of 𝑟3,2 and Equation (4.2.61). This proves Property C2.

Now we use the gadget words 𝛾1(𝑥
(3)
𝑖) and 𝛾2(𝑥

(3)
𝑖) to prove Lemma 4.2.10.

Proof (Lemma 4.2.10). Define the homomorphism 𝑓1 : 𝐺
𝐸
3 → 𝐻𝐸 by its action on the basis

168

elements

𝑓1(𝑥
(3)
𝑖 𝑥

(3)
𝑗) = 𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝛾1

(︁
𝑥
(3)
𝑖

)︁(︁
𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁
𝛾1

(︁
𝑥
(3)
𝑗

)︁)︁−1
(4.2.115)

= 𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝛾1

(︁
𝑥
(3)
𝑖

)︁
𝛾1

(︁
𝑥
(3)
𝑗

)︁−1
𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁
, (4.2.116)

with 𝑓2 defined similarly. Both maps are homomorphisms by Lemma 4.2.6. It remains to

show they satisfy Properties B1 to B4.

Property B2 follows from Property C1 of the words 𝛾1(𝑥
(3)
𝑖). Property C1 gives that

𝜙2

(︁
𝛾1(𝑥

(3)
𝑖)
)︁
= 1. Then, checking the action of 𝑓1 on the generators of 𝐺𝐸

3 we see

𝜙2

(︁
𝑓1(𝑥

(3)
𝑖 𝑥

(3)
𝑗)
)︁
= 𝜙2

(︁
𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝛾1(𝑥

(3)
𝑖)𝛾1(𝑥

(3)
𝑗)−1𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁)︁
(4.2.117)

= 𝜙2

(︁
𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁)︁
(4.2.118)

= 𝜙2

(︁
𝜙*3,1

(︁
𝑥
(3)
𝑖 𝑥

(3)
𝑗

)︁)︁
. (4.2.119)

The proof of Property B1 is similar to the proof of Property A2 of the map 𝜙*𝛼,𝛽. Recall the

function 𝑟3,1, defined to map a vertex 𝑥(𝛼)𝑖 in 𝐺1 or 𝐺3 to the representative vertex 𝑥(1)𝑗 in the

connected component of graph 𝐺13 containing 𝑥(𝛼)𝑖 . Define the homomorphism 𝜆1 : 𝐺
𝐸
1 → 𝐺𝐸

1

by extending

𝜆1(𝑥
(1)
𝑖 𝑥

(1)
𝑗) = 𝑟3,1

(︁
𝑥
(1)
𝑖

)︁
𝜙1

(︁
𝛾1

(︁
𝑥
(1)
𝑖

)︁)︁(︁
𝑟3,1

(︁
𝑥
(1)
𝑗

)︁
𝜙1

(︁
𝛾1

(︁
𝑥
(1)
𝑗

)︁)︁)︁−1
(4.2.120)

as in Lemma 4.2.5.

Then we claim

𝜆1(𝜙1(ℎ)) = 𝜙1 (𝑓1 (𝜙3 (ℎ))) . (4.2.121)

From the proof of Property A2 (see Equations (4.2.55) and (4.2.61)) we have

𝜙1(𝜙
*
3,1(𝑥

(3)
𝑐𝑖
)) = 𝑟3,1(𝑥

(3)
𝑐𝑖
). (4.2.122)

Then, as in the proof of Property A2, we check that Claim (4.2.121) holds on the generators

169

of 𝐻𝐸.

𝜙1 (𝑓1 (𝜙3 (ℎ𝑖ℎ𝑗))) = 𝜙1

(︁
𝑓1

(︁
𝜙3

(︁
𝑥(1)𝑎𝑖

𝑥
(2)
𝑏𝑖
𝑥(3)𝑐𝑖

𝑥(1)𝑎𝑗
𝑥
(2)
𝑏𝑗
𝑥(3)𝑐𝑗

𝜎𝑠𝑖+𝑠𝑗
)︁)︁)︁

(4.2.123)

= 𝜙1

(︁
𝑓1

(︁
𝑥(3)𝑐𝑖

𝑥(3)𝑐𝑗

)︁)︁
(4.2.124)

= 𝜙1

(︂
𝜙*3,1

(︀
𝑥(3)𝑐𝑖

)︀
𝛾1
(︀
𝑥(3)𝑐𝑖

)︀ (︁
𝜙*3,1

(︁
𝑥(3)𝑐𝑗

)︁
𝛾1

(︁
𝑥(3)𝑐𝑗

)︁)︁−1)︂
(4.2.125)

= 𝑟3,1
(︀
𝑥(3)𝑐𝑖

)︀
𝜙1

(︀
𝛾1
(︀
𝑥(3)𝑐𝑖

)︀)︀ (︁
𝑟3,1

(︁
𝑥(3)𝑐𝑗

)︁
𝜙1

(︁
𝛾1

(︁
𝑥(3)𝑐𝑗

)︁)︁)︁−1
(4.2.126)

= 𝑟3,1
(︀
𝑥(1)𝑎𝑖

)︀
𝜙1

(︀
𝛾1
(︀
𝑥(1)𝑎𝑖

)︀)︀ (︁
𝑟3,1

(︁
𝑥(1)𝑎𝑗

)︁
𝜙1

(︁
𝛾1

(︁
𝑥(1)𝑎𝑗

)︁)︁)︁−1
(4.2.127)

= 𝜆1
(︀
𝑥(1)𝑎𝑖

)︀
𝜆1

(︁
𝑥(1)𝑎𝑗

)︁−1
(4.2.128)

= 𝜆1(𝜙1(ℎ𝑖ℎ𝑗)) (4.2.129)

Where, on line 4.2.127, we used the fact that 𝑥(1)𝑎𝑖 and 𝑥(3)𝑐𝑖 are both contained in the clause

ℎ𝑖, so the vertices corresponding to 𝑥(1)𝑎𝑖 and 𝑥(3)𝑐𝑖 are in the same connected component of 𝐺13

and consequently,

𝑟3,1
(︀
𝑥(3)𝑐𝑖

)︀
= 𝑟3,1

(︀
𝑥(1)𝑎𝑖

)︀
(4.2.130)

and

𝛾1
(︀
𝑥(3)𝑐𝑖

)︀
= 𝛾1

(︀
𝑥(1)𝑎𝑖

)︀
. (4.2.131)

Since 𝜆1, 𝜙1, 𝑓1, and 𝜙3 are all homomorphisms, this proves the claim.

Then for any 𝑣 ∈ 𝐺3 satisfying 𝜙1

(︀
𝜙*3,1(𝑣)

)︀
= 1 we also have 𝑣 = 𝜙3

(︀
𝜙*3,1(𝑣)

)︀
and

𝜙1 (𝑓1(𝑣)) = 𝜙1

(︀
𝑓1
(︀
𝜙3

(︀
𝜙*3,1 (𝑣)

)︀)︀)︀
(4.2.132)

= 𝜆1
(︀
𝜙1

(︀
𝜙*3,1 (𝑣)

)︀)︀
(4.2.133)

= 𝜆1(1) = 1 (4.2.134)

which proves property B1.

Property B4 follows from Property C1 of the words 𝛾1(𝑥
(3)
𝑖) and Property A2 of the map

170

𝜙*3,2. Property C1 gives

𝜙2

(︁
𝛾1(𝑥

(3)
𝑖)
)︁
= 1 (4.2.135)

and then Property A2 gives

𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝛾1(𝑥

(3)
𝑖)
)︁)︁)︁

= 1. (4.2.136)

Thus, the gadgets words inserted by the map 𝑓1 map to the identity under 𝜙2

(︀
𝜙*3,2 (𝜙3)

)︀
and

Property B4 follows. In math, we verify Property B4 by checking the action of the two maps

on the generators of 𝐺𝐸
3 :

𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝑓1(𝑥

(3)
𝑖 𝑥

(3)
𝑗)
)︁)︁)︁

(4.2.137)

= 𝜙2

(︂
𝜙*3,2

(︂
𝜙3

[︂
𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝛾1

(︁
𝑥
(3)
𝑖

)︁
𝛾1

(︁
𝑥
(3)
𝑗

)︁−1
𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁]︂)︂)︂
(4.2.138)

= 𝜙2

(︂
𝜙*3,2

(︂
𝜙3

[︂
𝜙*3,1

(︁
𝑥
(3)
𝑖

)︁
𝜙*3,1

(︁
𝑥
(3)
𝑗

)︁]︂)︂)︂
(4.2.139)

= 𝜙2

(︁
𝜙*3,2

(︁
𝑥
(3)
𝑖 𝑥

(3)
𝑗

)︁)︁
. (4.2.140)

Where we used Equation (4.2.136) to cancel the two 𝛾1 terms in line (4.2.138).

Finally, Property B3 follows from Property C2 of the words 𝛾1(𝑥
(3)
𝑖). If 𝑣 has even length,

we can write

𝑣 =
∏︁
𝑖

𝑥(3)𝑜𝑖
𝑥(3)𝑒𝑖

. (4.2.141)

Then

𝑓1(𝑣) =
∏︁
𝑖

𝜙*3,1
(︀
𝑥(3)𝑜𝑖

)︀
𝛾1(𝑥

(3)
𝑜𝑖
)𝛾1(𝑥

(3)
𝑒𝑖
)−1𝜙*3,1

(︀
𝑥(3)𝑒𝑖

)︀
(4.2.142)

171

By Property C2 of the words 𝛾1(𝑥
(3)
𝑖)

𝜙1

(︀
𝜙*3,1 (𝜙3 (𝑓1(𝑣)))

)︀
(4.2.143)

=
∏︁
𝑖

𝜙1

(︀
𝜙*3,1

(︀
𝜙3

(︀
𝜙*3,1

(︀
𝑥(3)𝑜𝑖

)︀)︀)︀
· 𝜙*3,1

(︀
𝜙3

(︀
𝛾1(𝑥

(3)
𝑜𝑖
)
)︀)︀
· 𝜙*3,1

(︀
𝜙3

(︀
𝛾1(𝑥

(3)
𝑒𝑖
)−1
)︀)︀
· 𝜙*3,1

(︀
𝜙3

(︀
𝜙*3,1

(︀
𝑥(3)𝑒𝑖

)︀)︀)︀)︀
(4.2.144)

=
∏︁
𝑖

𝜙1

(︂
𝜙*3,1

(︀
𝑥(3)𝑜𝑖

)︀
· 𝜙*3,1

(︁
𝑥(3)𝑜𝑖

𝑥
(3)
1

)︁
· 𝜙*3,1

(︂(︁
𝑥(3)𝑒𝑖

𝑥
(3)
1

)︁−1)︂
· 𝜙*3,1

(︀
𝑥(3)𝑒𝑖

)︀)︂
(4.2.145)

=
∏︁
𝑖

𝜙1

(︁
𝜙*3,1

(︁
𝑥(3)𝑜𝑖

𝑥(3)𝑜𝑖
𝑥
(3)
1 𝑥

(3)
1 𝑥(3)𝑒𝑖

𝑥(3)𝑒𝑖

)︁)︁
(4.2.146)

= 1 (4.2.147)

One nice property of the maps 𝑓1, 𝑓2 is that they map words inside the 𝐾 subgroup to

words inside the 𝐾 subgroup. We show that in the following lemma.

Lemma 4.2.12. For any 𝑣 ∈ 𝐾 ∩𝐺𝐸
3 we have

𝑓1(𝑣), 𝑓2(𝑣) ∈ 𝐾. (4.2.148)

Proof. By assumption, we can write

𝑣 =
∏︁
𝑖

𝑢𝑖

[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁
𝑢−1𝑖 . (4.2.149)

Then,

𝑓1(𝑣) =
∏︁
𝑖

𝑓1 (𝑢𝑖) 𝑓1

(︁[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁)︁
𝑓1
(︀
𝑢−1𝑖

)︀
(4.2.150)

=
∏︁
𝑖

𝑓1 (𝑢𝑖)
[︁
𝑓1

(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝑓1

(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
𝑓1
(︀
𝑢−1𝑖

)︀
(4.2.151)

172

We have 𝑓1
(︁
𝑥
(3)
𝑎𝑖1
𝑥
(3)
𝑎𝑖2

)︁
, 𝑓1

(︁
𝑥
(3)
𝑎𝑖3
𝑥
(3)
𝑎𝑖4

)︁
∈ 𝐺𝐸, so (by Lemma 4.3.1)

[︁
𝑓1

(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝑓1

(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
∈ 𝐾. (4.2.152)

But 𝐾 is normal, so we also have

𝑓1 (𝑢𝑖)
[︁
𝑓1

(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝑓1

(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
𝑓1
(︀
𝑢−1𝑖

)︀
∈ 𝐾 (4.2.153)

for all 𝑖, hence

∏︁
𝑖

𝑓1 (𝑢𝑖)
[︁
𝑓1

(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝑓1

(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
𝑓1
(︀
𝑢−1𝑖

)︀
= 𝑓1(𝑣) ∈ 𝐾. (4.2.154)

The proof for 𝑓2 is identical.

As a corollary, we note that the maps 𝑓1, 𝑓2 don’t introduce any undesired factors of 𝜎.

Corollary 4.2.13. For any word 𝑣 ∈ 𝐾 ∩𝐺𝐸
3 , we have

𝜙𝜎(𝑓1(𝑣)) = 𝜙𝜎(𝑓2(𝑣)) = 1 (4.2.155)

Proof. Similarly to the proof of Corollary 4.2.8, note that 𝑓1(𝑣) ∈ 𝐾 by Lemma 4.2.12, so

𝜙𝜎 (𝑓1(𝑣)) = 1 by Lemma 4.3.4. The proof for 𝑓2 is similar.

Final Proof

Finally, we are ready to prove Theorem 4.1.6.

Proof (Theorem 4.1.6). It is immediate that

𝜎 ∈ 𝐻 =⇒ [𝜎]𝐾 ∈ 𝐻 (mod 𝐾). (4.2.156)

To see the reverse direction, assume that [𝜎]𝐾 ∈ 𝐻 (mod 𝐾). Then there exists some

𝑤 ∈ 𝐻 satisfying 𝑤 = 𝜎 (mod 𝐾). By Lemma 4.2.9, there exists a word 𝑤′ ∈ 𝐻 satisfying

𝜙1(𝑤
′) = 𝜙2(𝑤

′) = 1 and 𝑤′ = 𝜎 (mod 𝐾). Note that the last condition implies that 𝑤′ = 𝜎𝑘

173

for some 𝑘 ∈ 𝐾, hence

𝜙3(𝑤
′) = 𝜙3(𝜎𝑘) = 𝑘 ∈ 𝐾 ∩𝐺𝐸

3 . (4.2.157)

We choose words 𝑢𝑖 ∈ 𝐺𝐸
3 and indices 𝑎𝑖1 , ..., 𝑎𝑖4 ∈ [𝑁] so that

𝜙3(𝑤
′) =

∏︁
𝑖

𝑢𝑖

[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁
𝑢−1𝑖 . (4.2.158)

Now we insert gadgets into the word 𝑤′. Consider the word

𝑤′′ = 𝑤′𝜙*3,1 (𝜙3(𝑤
′))
−1
𝑓1(𝜙3 (𝑤

′)) (4.2.159)

Note that 𝜙1(𝑤
′) = 1, and 𝑤′ ∈ 𝐻. Hence 𝜙1

(︀
𝜙*3,1 (𝜙3(𝑤

′))
)︀
= 1 by Property A2 of the map

𝜙*3,1. By Property B1 of 𝑓1, we also have 𝜙1 (𝑓1 (𝜙3(𝑤
′))) = 1. Putting this all together,

𝜙1

(︁
𝑤′𝜙*3,1 (𝜙3(𝑤

′))
−1
𝑓1(𝜙3 (𝑤

′))
)︁
= 𝜙1 (𝑤

′)𝜙1

(︁
𝜙*3,1 (𝜙3(𝑤

′))
−1
)︁
𝜙1 (𝑓1(𝜙3 (𝑤

′))) = 1.

(4.2.160)

By Property B2 of the map 𝑓1 we have

𝜙2

(︁
𝑤′𝜙*3,1 (𝜙3(𝑤

′))
−1
𝑓1(𝜙3 (𝑤

′))
)︁
= 𝜙2 (𝑤

′)𝜙2

(︁
𝜙*3,1 (𝜙3(𝑤

′))
−1
)︁
𝜙2 (𝑓1(𝜙3 (𝑤

′))) (4.2.161)

= 𝜙2

(︁
𝜙*3,1 (𝜙3(𝑤

′))
−1
)︁
𝜙2

(︀
𝜙*3,1(𝜙3 (𝑤

′))
)︀

(4.2.162)

= 1 (4.2.163)

Finally

𝜙3

(︁
𝑤′𝜙*3,1 (𝜙3(𝑤

′))
−1
𝑓1(𝜙3 (𝑤

′))
)︁
= 𝜙3 (𝑓1(𝜙3 (𝑤

′))) (4.2.164)

by Property A1 of the map 𝜙*3,1. Also note that 𝜙3 (𝑓1(𝜙3 (𝑤
′))) ∈ 𝐾 by Lemma 4.2.12 and

the fact that 𝜙3 maps words in 𝐾 to words in 𝐾 (Lemma 4.3.5).

174

We summarize:

𝜙1(𝑤
′′) = 𝜙2(𝑤

′′) = 1, (4.2.165)

and

𝜙3(𝑤
′′) = 𝜙3 (𝑓1(𝜙3 (𝑤

′))) ∈ 𝐾. (4.2.166)

Now we again add gadgets to 𝑤′′ with the 1 and 2 indices swapped. Recall

𝑤′′ = 𝑤′𝜙*3,1 (𝜙3(𝑤
′))
−1
𝑓1(𝜙3 (𝑤

′)), (4.2.167)

then define

𝑤′′′ = 𝑤′′𝜙*3,2 (𝜙3(𝑤
′′))
−1
𝑓2(𝜙3 (𝑤

′′)) (4.2.168)

The same arguments as above give

𝜙1(𝑤
′′′) = 𝜙2(𝑤

′′′) = 1 (4.2.169)

and

𝜙3(𝑤
′′′) = 𝜙3 (𝑓2 (𝜙3 (𝑤

′′))) (4.2.170)

= 𝜙3 (𝑓2 (𝜙3 (𝑓1(𝜙3 (𝑤
′))))) ∈ 𝐾. (4.2.171)

We have, by assumption,

𝜙3(𝑤
′) =

∏︁
𝑖

𝑢𝑖

[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁
𝑢−1𝑖 . (4.2.172)

We define a composition of maps 𝐹 : 𝐺3 → 𝐺3

𝐹 := 𝜙3 ∘ 𝑓2 ∘ 𝜙3 ∘ 𝑓1. (4.2.173)

175

Then we have

𝜙3(𝑤
′′′) = 𝐹

(︃∏︁
𝑖

𝑢𝑖

[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁
𝑢−1𝑖

)︃
(4.2.174)

=
∏︁
𝑖

𝐹
(︁
𝑢𝑖

[︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2
, 𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

]︁
𝑢−1𝑖

)︁
(4.2.175)

=
∏︁
𝑖

𝐹 (𝑢𝑖)
[︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
𝐹
(︀
𝑢−1𝑖

)︀
. (4.2.176)

where we used the fact that each word 𝑢𝑖
[︁
𝑥
(3)
𝑎𝑖1
𝑥
(3)
𝑎𝑖2
, 𝑥

(3)
𝑎𝑖3
𝑥
(3)
𝑎𝑖4

]︁
𝑢−1𝑖 has even length on the first

line, and that each word 𝑢𝑖 has even length on the second.

Now

𝜙2

(︁
𝜙*3,2

(︁
𝐹
(︁
𝑥
(3)
𝑗 𝑥

(3)
𝑘

)︁)︁)︁
= 𝜙2

(︁
𝜙*3,2

(︁
𝜙3

(︁
𝑓2

(︁
𝜙3

(︁
𝑓1

(︁
𝑥
(3)
𝑗 𝑥

(3)
𝑘

)︁)︁)︁)︁)︁)︁
(4.2.177)

= 1 (4.2.178)

by Property B3 and

𝜙1

(︁
𝜙*3,1

(︁
𝐹
(︁
𝑥
(3)
𝑗 𝑥

(3)
𝑘

)︁)︁)︁
= 𝜙1

(︁
𝜙*3,1

(︁
𝜙3

(︁
𝑓2

(︁
𝜙3

(︁
𝑓1

(︁
𝑥
(3)
𝑗 𝑥

(3)
𝑘

)︁)︁)︁)︁)︁)︁
(4.2.179)

= 𝜙1

(︁
𝜙*3,1

(︁
𝜙3

(︁
𝑓1

(︁
𝑥
(3)
𝑗 𝑥

(3)
𝑘

)︁)︁)︁)︁
(4.2.180)

= 1 (4.2.181)

where we used Property B4 and then Property B3 of the maps 𝑓2 and 𝑓1.

Finally, consider the word

𝑤
′′′′

=
∏︁
𝑖

𝜙*3 (𝐹 (𝑢𝑖))
[︁
𝜙*3,1

(︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁)︁
, 𝜙*3,2

(︁
𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁)︁]︁
𝜙*3
(︀
𝐹
(︀
𝑢−1𝑖

)︀)︀
. (4.2.182)

We have

𝜙3(𝑤
′′′′) =

∏︁
𝑖

𝐹 (𝑢𝑖)
[︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁
, 𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁]︁
𝐹
(︀
𝑢−1𝑖

)︀
(4.2.183)

= 𝜙3(𝑤
′′′) (4.2.184)

176

Equation (4.2.178) gives

𝜙2(𝑤
′′′′) (4.2.185)

=
∏︁
𝑖

𝜙2 (𝜙
*
3 (𝐹 (𝑢𝑖)))

[︁
𝜙2

(︁
𝜙*3,1

(︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁)︁)︁
, 𝜙2

(︁
𝜙*3,2

(︁
𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁)︁)︁]︁
𝜙2

(︀
𝜙*3
(︀
𝐹
(︀
𝑢−1𝑖

)︀)︀)︀
(4.2.186)

=
∏︁
𝑖

𝜙2 (𝜙
*
3 (𝐹 (𝑢𝑖)))

[︁
𝜙2

(︁
𝜙*3,1

(︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁)︁)︁
, 1
]︁
𝜙2 (𝜙

*
3 (𝐹 (𝑢𝑖)))

−1 (4.2.187)

= 1 (4.2.188)

A similar argument using Equation (4.2.181) shows 𝜙1(𝑤
′′′′) = 1. Finally, noting that

elements in the image of 𝜙𝜎 commute with each other (an argument similar to the proof of

Corollary 4.2.13) shows

𝜙𝜎 (𝑤
′′′′) (4.2.189)

=
∏︁
𝑖

𝜙𝜎 (𝜙
*
3 (𝐹 (𝑢𝑖)))𝜙𝜎

(︁[︁
𝜙*3,1

(︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁)︁
, 𝜙*3,2

(︁
𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁)︁]︁)︁
𝜙𝜎

(︀
𝜙*3
(︀
𝐹
(︀
𝑢−1𝑖

)︀)︀)︀
(4.2.190)

=
∏︁
𝑖

𝜙𝜎 (𝜙
*
3 (𝐹 (𝑢𝑖)))

[︁
𝜙𝜎

(︁
𝜙*3,1

(︁
𝐹
(︁
𝑥(3)𝑎𝑖1

𝑥(3)𝑎𝑖2

)︁)︁)︁
, 𝜙𝜎

(︁
𝜙*3,2

(︁
𝐹
(︁
𝑥(3)𝑎𝑖3

𝑥(3)𝑎𝑖4

)︁)︁)︁]︁
𝜙𝜎

(︀
𝜙*3
(︀
𝐹
(︀
𝑢−1𝑖

)︀)︀)︀
(4.2.191)

=
∏︁
𝑖

𝜙𝜎 (𝜙
*
3 (𝐹 (𝑢𝑖)))𝜙𝜎

(︀
𝜙*3
(︀
𝐹
(︀
𝑢−1𝑖

)︀)︀)︀
(4.2.192)

= 1. (4.2.193)

To put this all together and complete the proof, consider the word 𝑤′′′𝑤′′′′−1. Using

equations Eqs. (4.2.169) and (4.2.188)

𝜙2(𝑤
′′′𝑤′′′′−1) = 𝜙2(𝑤

′′′)𝜙2(𝑤
′′′′−1) (4.2.194)

= 1 (4.2.195)

177

with a similar argument giving

𝜙1(𝑤
′′′𝑤′′′′−1) = 𝜙1(𝑤

′′′)𝜙1(𝑤
′′′′)−1 (4.2.196)

= 1. (4.2.197)

Equation (4.2.184) gives

𝜙3(𝑤
′′′𝑤′′′′−1) = 𝜙3(𝑤

′′′)𝜙3(𝑤
′′′′)−1 (4.2.198)

= 𝜙3(𝑤
′′′)𝜙3(𝑤

′′′)−1 (4.2.199)

= 1. (4.2.200)

Finally, Equation (4.2.193), Corollary 4.2.13, and Corollary 4.2.8 give

𝜙𝜎(𝑤
′′′𝑤′′′′−1) = 𝜙𝜎(𝑤

′′′)

= 𝜙𝜎(𝑤
′′𝜙*3,2 (𝜙3(𝑤

′′))
−1
𝑓2(𝜙3 (𝑤

′′)))

= 𝜙𝜎(𝑤
′′)

= 𝜙𝜎

(︁
𝑤′𝜙*3,1 (𝜙3(𝑤

′))
−1
𝑓1(𝜙3 (𝑤

′))
)︁

= 𝜙𝜎 (𝑤
′)

= 𝜎.

The proof is complete.

4.3 Properties of 𝐾 and its Interactions

Here we prove several small facts used in the proof of Theorem 4.1.6 as well as some which

add perspective on 𝐾.

4.3.1 Properties of 𝐾

Lemma 4.3.1. Let 𝑢, 𝑣 be two even length words in 𝐺𝛼. Then [𝑢, 𝑣] ∈ 𝐾.

178

Proof. Let 𝑙(𝑢) denote the length of 𝑢, with 𝑙(𝑣) defined similarly. Define 𝐿 = 𝑙(𝑢) + 𝑙(𝑣).

We prove by induction on 𝐿.

When 𝐿 = 4, 𝑢 and 𝑣 must both have length 2, hence [𝑢, 𝑣] is a generator of 𝐾. Then the

result is immediate.

Otherwise, we must have that either 𝑙(𝑢) or 𝑙(𝑣) is greater than 2. For now we assume

𝑙(𝑣) > 2. Then we can write

𝑣 = 𝑣′𝑣′′ (4.3.1)

with 𝑣′ and 𝑣′′ both even length words. Note that

𝑙(𝑣′) + 𝑙(𝑣′′) = 𝑙(𝑣) (4.3.2)

so 𝑣′ and 𝑣′′ both have length less than 𝑣. Then we can write

[𝑢, 𝑣] = [𝑢, 𝑣′𝑣′′] (4.3.3)

= [𝑢, 𝑣′] 𝑣′−1 [𝑢, 𝑣′′] 𝑣′ (4.3.4)

where we have used the commutator identity

[𝑥, 𝑦𝑧] = [𝑥, 𝑦] 𝑦−1 [𝑥, 𝑧] 𝑦 (4.3.5)

on the second line. 𝑙(𝑢) + 𝑙(𝑣′) and 𝑙(𝑢) + 𝑙(𝑣′′) are both less than 𝐿, so by the induction

hypothesis we have [𝑢, 𝑣′] and [𝑢, 𝑣′′] are both in 𝐾. Since 𝐾 is normal, that also implies

𝑣′−1 [𝑢, 𝑣′′] 𝑣′ ∈ 𝐾, (4.3.6)

and since 𝐾 is a group

[𝑥, 𝑦] 𝑦−1 [𝑥, 𝑧] 𝑦 ∈ 𝐾. (4.3.7)

179

The proof when 𝑙(𝑢) > 2 is almost identical, except we use the commutator identity

[𝑥𝑦, 𝑧] = 𝑦−1 [𝑥, 𝑧] 𝑦 [𝑦, 𝑧] (4.3.8)

Canonical form for monomials mod K

Consider the game group 𝐺 is defined for 𝑘 players and let ∼𝐾 denote the equivalence relation

on 𝐺 defined by modding out by 𝐾. In this subsection we shall write down a canonical

selection from the equivalence classes. This is not used in the proofs here, but might be in

other proofs and it is certainly useful in computer experiments. While 𝐺 is defined for 𝑘

players modding out by 𝐾 acts independently on the variables 𝑥(𝛼)𝑗 𝑗 = 1, . . . , 𝑛 associated

with each player 𝛼. Thus wlog we can take 𝑘 = 1. Also 𝐺 contains 𝜎 but we shall ignore it,

since 𝜎 has no impact on the canonical form.

The core observation is the following lemma.

Lemma 4.3.2. Suppose 𝐺 is the game group of a 1-XOR quantum qame. Monomials of the

form

𝑤𝑎𝑏𝑐𝑑𝑞 𝑎𝑛𝑑 𝑤𝑐𝑏𝑎𝑑𝑞 𝑎𝑛𝑑 𝑤𝑎𝑑𝑐𝑏𝑞

are all equal mod 𝐾. Here 𝑎, 𝑏, 𝑐, 𝑑 are generators of the 𝐺 and 𝑤 and 𝑞 are arbitrary

monomials.

For degree 3 or more monomials this immediately implies that interchanging any two even

position variables or any two odd position variables in a monomial 𝑚 produces a monomial

�̃� with 𝑚∼𝐾�̃�.

Proof. We first show 𝑎𝑏𝑐𝑑 ∼𝐾 𝑎𝑑𝑐𝑏 by noting

(𝑎𝑑𝑐𝑏)−1 𝑎𝑏𝑐𝑑 = 𝑏𝑐𝑑 𝑏𝑐𝑑 = 𝑏𝑐 𝑑𝑐 𝑐𝑏 𝑐𝑑 ∼𝐾 1. (4.3.9)

where the last equation is true by definition of 𝐾. The proof that the first and third monomials

are equivalent goes similarly.

180

If 𝑚 has degree 3 write it as 𝑎𝑏𝑐, then the property just proved for degree 4 gives

𝑎𝑏𝑐∼𝐾 𝑎𝑏𝑐𝑥𝑥 ⇔ 𝑐𝑏𝑎𝑥𝑥∼𝐾 𝑐𝑏𝑎 (4.3.10)

as claimed.

Given an ordering on the generators of 𝐺, a canonical form of a monomial 𝑚 is seen easily

from the lemma. We describe it in terms of an algorithm.

Algorithm 𝐾,𝑄

1. Find its even (resp, odd) part, namely the monomial whose entries are the variables in

the even (resp odd) locations of 𝑚. For example: take 𝑚 = 𝑧𝑔𝑎𝑏𝑐𝑑𝑓𝑧𝑧, then

𝑒𝑣𝑒𝑛[𝑚] := 𝑔𝑏𝑑𝑓𝑧 𝑜𝑑𝑑[𝑚] := 𝑧𝑎𝑐𝑒𝑧

2. Select a variable, say 𝑣, and count how many times, 𝑒, it appears in 𝑒𝑣𝑒𝑛[𝑚] and 𝑜

times in 𝑜𝑑𝑑[𝑚].

If 𝑜 ≤ 𝑒, then remove all variables 𝑣 from the list 𝑜𝑑𝑑[𝑚] and also remove 𝑜 of the 𝑣’s

from 𝑒𝑣𝑒𝑛[𝑚]. If 𝑒 ≤ 𝑜, then remove all 𝑣 from the list 𝑒𝑣𝑒𝑛[𝑚] and also remove 𝑒 of

the 𝑣’s from 𝑜𝑑𝑑[𝑚]. The order of removal does not matter. Do this for all variables

(not just 𝑣) to get 𝑒𝑣𝑄[𝑚] and 𝑜𝑑𝑑𝑄[𝑚].

Example revisited: take 𝐺 to have generators equal to the alphabet 𝑎, . . . , 𝑧 with

each generator having square equal to 1. 𝑒 = 1 and 𝑜 = 2 for the variable 𝑧. So

𝑒𝑣𝑄[𝑚] = 𝑔𝑏𝑑𝑓 and 𝑜𝑑𝑑𝑄[𝑚] = 𝑧𝑎𝑐𝑒.

3. Order both lists. 𝑎𝑙𝑝ℎ[𝑒𝑣𝑒𝑛] := 𝑏𝑑𝑓𝑔, 𝑎𝑙𝑝ℎ[𝑜𝑑𝑑] := 𝑎𝑐𝑒𝑧

4. Recombine these words to make one word. 𝑐𝑎𝑛𝑜𝑛[𝑚] := 𝑎𝑏𝑐𝑑𝑒𝑓𝑧𝑔

Application of Lemma 4.3.2 proves the Algorithm succeeds as is formalized by the following.

Proposition 4.3.3. For monomials of degree ≥ 3, we have that 𝑐𝑎𝑛𝑜𝑛[𝑚] is uniquely

determined and 𝑚∼𝐾 𝑐𝑎𝑛𝑜𝑛[𝑚]. That is, 𝑐𝑎𝑛𝑜𝑛[𝑚] is a canonical form for 𝑚.

181

4.3.2 The interaction of 𝜙𝜎 and 𝜙𝛼 with 𝐾

Lemma 4.3.4. For any 𝑘 ∈ 𝐾,

𝜙𝜎(𝑘) = 1. (4.3.11)

Proof. We can write

𝑘 =
∏︁
𝑖

𝑢𝑖
[︀
𝑥𝛼𝑖
𝑎𝑖
𝑥𝛼𝑖
𝑏𝑖
, 𝑥𝛼𝑖

𝑐𝑖
𝑥𝛼𝑖
𝑑𝑖

]︀
𝑢−1𝑖 (4.3.12)

Then,

𝜙𝜎(𝑘) = 𝜙𝜎

(︃∏︁
𝑖

𝑢𝑖
[︀
𝑥𝛼𝑖
𝑎𝑖
𝑥𝛼𝑖
𝑏𝑖
, 𝑥𝛼𝑖

𝑐𝑖
𝑥𝛼𝑖
𝑑𝑖

]︀
𝑢−1𝑖

)︃
(4.3.13)

=
∏︁
𝑖

𝜙𝜎(𝑢𝑖)
[︀
𝜙𝜎

(︀
𝑥𝛼𝑖
𝑎𝑖
𝑥𝛼𝑖
𝑏𝑖

)︀
, 𝜙𝜎

(︀
𝑥𝛼𝑖
𝑐𝑖
𝑥𝛼𝑖
𝑑𝑖

)︀]︀
𝜙𝜎

(︀
𝑢−1𝑖

)︀
(4.3.14)

=
∏︁
𝑖

𝜙𝜎(𝑢𝑖)𝜙𝜎

(︀
𝑢−1𝑖

)︀
(4.3.15)

= 1 (4.3.16)

where we used that Im(𝜙𝜎) = {𝜎, 1} is a commutative group to show the commutator terms

were the identity.

Lemma 4.3.5. For any 𝑘 ∈ 𝐾, and 𝛼 ∈ {1, 2, 3}:

𝜙𝛼(𝑘) ∈ 𝐾. (4.3.17)

Proof. Define the set 𝐶 to be all commutators of pairs, that is

𝐶 =
{︀[︀
𝑥𝛼𝑖 𝑥

𝛼
𝑗 , 𝑥

𝛼
𝑘𝑥

𝛼
𝑙

]︀
: 𝑖, 𝑗, 𝑘, 𝑙 ∈ [𝑛], 𝛼 ∈ [3]

}︀
. (4.3.18)

Recall that K was defied to be the normal closure of 𝐶 in 𝐺𝐸, that is:

𝐾 = ⟨𝐶⟩𝐺
𝐸

. (4.3.19)

182

We first show that

𝜙𝛼 (𝑐) ∈ 𝐶 (4.3.20)

for all 𝑐 ∈ 𝐶. To see this, note

𝜙𝛼

(︁[︁
𝑥
(𝛽)
𝑖 𝑥

(𝛽),
𝑗 , 𝑥

(𝛽)
𝑘 𝑥

(𝛽)
𝑙

]︁)︁
=
[︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼),
𝑗 , 𝑥

(𝛼)
𝑘 𝑥

(𝛼)
𝑙

]︁
∈ 𝐾 (4.3.21)

for 𝛼 = 𝛽, and

𝜙𝛼

(︁[︁
𝑥
(𝛽)
𝑖 𝑥

(𝛽),
𝑗 , 𝑥

(𝛽)
𝑘 𝑥

(𝛽)
𝑙

]︁)︁
= 1 ∈ 𝐾. (4.3.22)

for 𝛼 ̸= 𝛽.

Then, since 𝜙𝛼 is a homomorphism mapping 𝐺𝐸 → 𝐺𝐸
3 , and 𝜙𝛼(𝐶) ⊂ 𝐶, we have

𝜙𝛼 : ⟨𝐶⟩𝐺
𝐸

→˓ ⟨𝐶⟩𝐺
𝐸
3 ⊂ 𝐾. (4.3.23)

The result follows.

4.3.3 Equivalence between a PREF and 𝜎 ∈ 𝐻 (mod 𝐾)

In [66] an object called a parity refutation was defined. A (paraphrased) version of that

definition using the language of Section 4.1.1 is repeated here. First, we define a parity

preserving permutation.

Definition 4.3.6. A parity preserving permutation of a sequence of generators (written here

as a product)

𝑥(1)𝑎1
𝑥(1)𝑎2

...𝑥(1)𝑎𝑙1
𝑥
(2)
𝑏1
...𝑥

(2)
𝑏𝑙2
𝑥(3)𝑐1

...𝑥(3)𝑐𝑙3
𝜎𝑠 (4.3.24)

is a permutation 𝑃 which satisfies

𝑃 (𝑥(1)𝑎𝑖
) = 𝑥(1)𝑎𝑗

(4.3.25)

183

with 𝑖 = 𝑗 (mod 2), similar restrictions for 𝑃 (𝑥(2)𝑏𝑖′
) and 𝑃 (𝑥(3)𝑐𝑖′′) and the condition 𝑃 (𝜎) = 𝜎.

An equivalent definition of parity preserving permutations which will be useful to use

later are permutations 𝑃 which can be decomposed into products of transpositions of the

form 𝜋
(𝛼)
𝑗,𝑗+2 with 𝛼 ∈ [3] and

𝜋
(𝛼)
𝑗,𝑗+2

(︁
𝑥(𝛼)𝑎1

𝑥(𝛼)𝑎2
...𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗+2

...𝑥(𝛼)𝑎𝑙

)︁
= 𝑥(𝛼)𝑎1

𝑥(𝛼)𝑎2
...𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗

...𝑥(𝛼)𝑎𝑙
(4.3.26)

Parity preserving permutations can be used to define an equivalence relation on the words

𝑔 ∈ 𝐺

Definition 4.3.7. Two words 𝑔1, 𝑔2 ∈ 𝐺 are parity permutation equivalent, written 𝑔1 ∼𝑝 𝑔2,

if there is a sequence of generators

𝑥(1)𝑎1
𝑥(1)𝑎2

...𝑥(1)𝑎𝑙1
𝑥
(2)
𝑏1
...𝑥

(2)
𝑏𝑙2
𝑥(3)𝑐1

...𝑥(3)𝑐𝑙3
𝜎𝑠 = 𝑔1 (4.3.27)

and a parity preserving permutation 𝑃 acting on that sequence of generators satisfying

𝑃 (𝑥(1)𝑎1
𝑥(1)𝑎2

...𝑥(1)𝑎𝑙1
𝑥
(2)
𝑏1
...𝑥

(2)
𝑏𝑙2
𝑥(3)𝑐1

...𝑥(3)𝑐𝑙3
𝜎𝑠) = 𝑔2 (4.3.28)

Routine calculation (given in [66]) shows ∼𝑝 is an equivalence relation on elements of 𝐺.

Finally, we define a parity refutation (PREF).

Definition 4.3.8. A sequence of clauses ℎ𝑟1 , ℎ𝑟2 , ..., ℎ𝑟𝑙 is called a parity refutation if

ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 ∼𝑝 𝜎.

Existence of a parity refutation is exactly equivalent to a word 𝜎 ∈ 𝐻 (mod 𝐾), as we

show in the following theorem. (Actually, a stronger statement is true: the equivalence

relation ∼𝑝 is exactly the same as the equivalence relation on 𝐺 induced by modding out by

𝐾. Small modifications to the proof below give that result.)

Theorem 4.3.9. A sequence of clauses ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 is a parity refutation iff the word ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 ∈

184

𝐻 obtained by multiplying the clauses together satisfies

ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 = 𝜎 (mod 𝐾) (4.3.29)

Proof. Both directions of the proof are nontrivial. We first show that if a sequence of clauses

ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 forms a parity refutation then ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 = 𝜎 (mod 𝐾). Recall that any parity

preserving permutation 𝑃 can be decomposed into transpositions of the form 𝜋
(𝛼)
𝑗,𝑗+2, where

𝜋
(𝛼)
𝑗,𝑗+2

(︁
𝑥(𝛼)𝑎1

𝑥(𝛼)𝑎2
...𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗+2

...𝑥(𝛼)𝑎𝑙

)︁
= 𝑥(𝛼)𝑎1

𝑥(𝛼)𝑎2
...𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗

...𝑥(𝛼)𝑎𝑙
(4.3.30)

But we also have

𝐾 ∋
[︁
𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+1
, 𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+1

]︁
= 𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+2
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗
(4.3.31)

hence

𝑥(𝛼)𝑎𝑗
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗+2
= 𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+2
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗
𝑥(𝛼)𝑎𝑗+2

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗

(mod 𝐾) (4.3.32)

= 𝑥(𝛼)𝑎𝑗+2
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗
(mod 𝐾). (4.3.33)

As a consequence, we also have

𝑥(𝛼)𝑎1
𝑥(𝛼)𝑎2

...𝑥(𝛼)𝑎𝑗
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗+2
...𝑥(𝛼)𝑎𝑙

= 𝑥(𝛼)𝑎1
𝑥(𝛼)𝑎2

...𝑥(𝛼)𝑎𝑗+2
𝑥(𝛼)𝑎𝑗+1

𝑥(𝛼)𝑎𝑗
...𝑥(𝛼)𝑎𝑙

(mod 𝐾) (4.3.34)

= 𝜋
(𝛼)
𝑗,𝑗+2

(︁
𝑥(𝛼)𝑎1

𝑥(𝛼)𝑎2
...𝑥(𝛼)𝑎𝑗

𝑥(𝛼)𝑎𝑗+1
𝑥(𝛼)𝑎𝑗+2

...𝑥(𝛼)𝑎𝑙

)︁
(mod 𝐾). (4.3.35)

Since the word 𝑥
(𝛼)
𝑎1 𝑥

(𝛼)
𝑎2 ...𝑥

(𝛼)
𝑎𝑙 was arbitrary and we could decompose 𝑃 into products of

transpositions of the form 𝜋
(𝛼)
𝑗,𝑗+2 we conclude

ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 = 𝑥(1)𝑎𝑟1
𝑥(1)𝑎𝑟2

...𝑥(3)𝑐𝑟𝑙
𝜎𝑠𝑟1+𝑠𝑟2+...𝑠𝑟𝑙 (4.3.36)

= 𝑃 (𝑥(1)𝑎𝑟1
𝑥(1)𝑎𝑟2

...𝑥(3)𝑐𝑟𝑙
𝜎𝑠𝑟1+𝑠𝑟2+...𝑠𝑟𝑙) (mod 𝐾) (4.3.37)

= 𝜎 (mod 𝐾) (4.3.38)

185

Where line (4.3.37) follows from equation (4.3.35) and line (4.3.38) follows from the definition

of a parity refutation. This completes the proof in one direction.

It remains to show that if ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 = 𝜎 (mod 𝐾) we also have ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 ∼𝑝 𝜎. Our

first step is to note that the equivalence relation ∼𝑝 respects multiplication by construction –

that is we have 𝑔1 ∼𝑝 𝑔2 and 𝑔3 ∼𝑝 𝑔4 implies 𝑔1𝑔2 ∼𝑝 𝑔3𝑔4. We next note that for any set of

generators 𝑥(𝛼)𝑖 , 𝑥
(𝛼)
𝑗 , 𝑥

(𝛼)
𝑠 , 𝑥

(𝛼)
𝑡 and word 𝑤 ∈ 𝐺 we have

𝑤
[︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 , 𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

]︁
𝑤−1 = 𝑤𝑥

(𝛼)
𝑖 𝑥

(𝛼)
𝑗 𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

(︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗

)︁−1 (︁
𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

)︁−1
𝑤−1 (4.3.39)

∼𝑝 𝑤𝑤
−1𝑥

(𝛼)
𝑖 𝑥

(𝛼)
𝑗 𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

(︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗

)︁−1 (︁
𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

)︁−1
(4.3.40)

∼𝑝 𝑤𝑤
−1𝑥

(𝛼)
𝑖 𝑥

(𝛼)
𝑗 𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

(︁
𝑥(𝛼)𝑠 𝑥

(𝛼)
𝑡

)︁−1 (︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗

)︁−1
= 1 (4.3.41)

since the permutations moving 𝑤−1 to the other side of
[︁
𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗 , 𝑥

(𝛼)
𝑠 𝑥

(𝛼)
𝑡

]︁
and swapping(︁

𝑥
(𝛼)
𝑖 𝑥

(𝛼)
𝑗

)︁−1
and

(︁
𝑥
(𝛼)
𝑠 𝑥

(𝛼)
𝑡

)︁−1
are both parity preserving permutations. It follows that for

any 𝑘 ∈ 𝐾, 𝑘 ∼𝑝 1. Then, if ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙 = 𝜎 (mod 𝐾) we must also have ℎ𝑟1ℎ𝑟2 ...ℎ𝑟𝑙𝑘 = 𝜎

for some 𝑘 ∈ 𝐾, and hence

ℎ𝑟1 ...ℎ𝑟𝑙 = ℎ𝑟1 ...ℎ𝑟𝑙𝑘𝑘
−1 ∼𝑝 𝜎(1) = 𝜎 (4.3.42)

where we used that ∼𝑝 respected multiplication ℎ𝑟1 ...ℎ𝑟𝑙𝑘 = 𝜎 and 𝑘−1 ∼𝑝 1 to obtain the

equivalence. This completes the proof.

4.3.4 MERP as a mod 𝐾 strategy

Recall from Definition 4.1.3 the MERP strategies are a nice class of finite dimensional

strategies which generalize the GHZ strategy. Here we give a direct proof that MERP

strategies are annihilated by the 𝐾 relations.

Theorem 4.3.10. The MERP strategy observables respect the mod 𝐾 relations. That is,

[︁
𝑋

(𝛼)
𝑖 𝑋

(𝛼)
𝑖′ , 𝑋

(𝛼)
𝑗 𝑋

(𝛼)
𝑗′

]︁
= 1 (4.3.43)

for all 𝛼, 𝑖, 𝑖′, 𝑗, 𝑗′ if the 𝑋(𝛼)
𝑖 are MERP strategy observables as defined above.

186

Proof. The proof is computational, with some tricks about Pauli matrices. Let all the 𝑋(𝛼)
𝑖

be MERP strategy observables and note, for all indices

[︁
𝑋

(𝛼)
𝑖 𝑋

(𝛼)
𝑖′ , 𝑋

(𝛼)
𝑗 𝑋

(𝛼)
𝑗′

]︁
= 𝐼⊗((𝛼−1) ⊗

[︁
𝑀(𝜃

(𝛼)
𝑖)𝑀(𝜃

(𝛼)
𝑖′),𝑀(𝜃

(𝛼)
𝑗 𝑀(𝜃𝑗′)

(𝛼)))
]︁
⊗ 𝐼⊗(𝑘−𝛼)

(4.3.44)

by the tensor product structure. Now, the Pauli matrices anti-commute, so

𝜎𝑥𝜎𝑧 = −𝜎𝑧𝜎𝑥 (4.3.45)

and

𝜎𝑥 exp(𝑖𝜃𝜎𝑧) = exp(−𝑖𝜃𝜎𝑧)𝜎𝑥 exp(𝑖𝜃𝜎𝑧)𝜎𝑥 = 𝜎𝑥 exp(−𝑖𝜃𝜎𝑧) (4.3.46)

where the later equalities can be shown by the Taylor series expansion of exp(𝑖𝜃𝜎𝑧). This

lets us write our MERP strategy observables in a slightly simplier form, since

𝑀(𝜃
(𝛼)
𝑖) = exp

(︁
𝑖𝜃

(𝛼)
𝑖 𝜎𝑧

)︁
𝜎𝑥 exp

(︁
−𝑖𝜃(𝛼)𝑖 𝜎𝑧

)︁
(4.3.47)

= exp
(︁
2𝑖𝜃

(𝛼)
𝑖 𝜎𝑧

)︁
𝜎𝑥 (4.3.48)

As a more more significant application of Equation (4.3.46) we can show MERP strategy

observables switch the sign on 𝜃(𝛼)𝑖 when they commute since

𝑀(𝜃
(𝛼)
𝑖)𝑀(𝜃

(𝛼)
𝑗) = exp

(︁
2𝑖𝜃

(𝛼)
𝑖 𝜎𝑧

)︁
𝜎𝑥 exp

(︁
2𝑖𝜃

(𝛼)
𝑗 𝜎𝑧

)︁
𝜎𝑥 (4.3.49)

= 𝜎𝑥 exp
(︁
−2𝑖𝜃(𝛼)𝑖 𝜎𝑧

)︁
exp
(︁
2𝑖𝜃

(𝛼)
𝑗 𝜎𝑧

)︁
𝜎𝑥 (4.3.50)

= 𝜎𝑥 exp
(︁
2𝑖𝜃

(𝛼)
𝑗 𝜎𝑧

)︁
exp
(︁
−2𝑖𝜃(𝛼)𝑖 𝜎𝑧

)︁
𝜎𝑥 (4.3.51)

= exp
(︁
−2𝑖𝜃(𝛼)𝑗 𝜎𝑧

)︁
𝜎𝑥 exp

(︁
−2𝑖𝜃(𝛼)𝑖 𝜎𝑧

)︁
𝜎𝑥 (4.3.52)

=𝑀(−𝜃(𝛼)𝑗)𝑀(−𝜃(𝛼)𝑖) (4.3.53)

187

using Equation (4.3.46) on the second line. Now, repeatedly applying Equation (4.3.53) gives

𝑀(𝜃
(𝛼)
𝑖)𝑀(𝜃

(𝛼)
𝑖′)𝑀(𝜃

(𝛼)
𝑗)𝑀(𝜃

(𝛼)
𝑗′) =𝑀(𝜃

(𝛼)
𝑗)𝑀(−𝜃(𝛼)𝑖)𝑀(−𝜃(𝛼)𝑖′)𝑀(𝜃

(𝛼)
𝑗′) (4.3.54)

=𝑀(𝜃
(𝛼)
𝑗)𝑀(𝜃

(𝛼)
𝑗′)𝑀(𝜃

(𝛼)
𝑖)𝑀(𝜃

(𝛼)
𝑖′) (4.3.55)

Hence

[︁
𝑀(𝜃

(𝛼)
𝑖)𝑀(𝜃

(𝛼)
𝑖′),𝑀(𝜃

(𝛼)
𝑗)𝑀(𝜃

(𝛼)
𝑗′)
]︁
= 1 (4.3.56)

and the result follows.

4.4 Subgroup Membership

Theorem 4.4.1. The subgroup membership problem is solvable in polynomial time for any

finitely generated abelian group.16

Proof. It reduces to linear algebra over the integers. We can write all the relations in the group

𝐺 and generators of the subgroup �̃� as products of generators of 𝐺, raised to some power.

When we multiply generators or apply a relation we just add or subtract the multiplicities

of the relevant generators. So the subgroup membership problem just asks if a given vector

(corresponding to the group element) is in the span of the vectors corresponding to the

relations and subgroup generators.

4.5 Chapter Summary

This chapter completely characterizes 3XOR games with perfect commuting operator strate-

gies. First, an alternate view of PREFs as “the subgroup membership problem mod 𝐾” is

developed (Theorem 4.1.2, with equivalence to the PREF condition discussed in Section 4.3.3).

16Stronger versions of this statement are also true. In particular, the subgroup membership problem is
solvable for any finitely generated metabelian group[55] (meaning commutators of commutators vanish) or
finitely generated nilpotent group[42].

188

Then, in the most involved algebraic argument of this thesis the “subgroup membership mod

𝐾 ” problem is shown to be necessary and sufficient for 3 player XOR games (Sketch following

Theorem 4.1.6, full proof in Section 4.2.4). Combining this result with the MERP-PREF

duality discussed in Chapter 3 shows MERP strategies are optimal for perfect 3 player XOR

games.

189

190

Chapter 5

Specific Families of Games and Random

Games

In this chapter we use the techniques developed in previous chapters (particularly Chapter 3)

to construct families of games with interesting properties and to study randomly generated

XOR games. The first family of games we construct, Capped GHZ (), is a family where

ncSoS takes exp(𝑛) levels and exp(exp(𝑛)) time to detect that 𝜔* < 1 (Theorem 5.1.2), in

contrast to our algorithm which runs in polynomial time. The second, Asymptotically Perfect

Difference (APD), is an explicit, deterministic family of 𝑘-XOR games with 𝜔* = 1 and

classical value 𝜔 → 1/2 in the limit of large 𝑘 (Theorem 5.1.3).

For random instances of games, we show the existence of an unsatisfiable (i.e. 𝜔* < 1)

phase as in the classical case (Theorem 5.1.4). We also relate our methods to the ncSoS

hierarchy. For random instances, we show that in the unsatisfiable phase, a superlinear

number of levels of ncSoS is necessary to certify that 𝜔* < 1 (Theorem 5.1.5).

This chapter uses the notation developed in Chapter 3 to describe and analyze XOR

games.

5.1 Results

Theorem 5.1.1. There exists a 6-player XOR game 𝐺 with alphabet size 3 and 6 clauses,

for which 𝜔*(𝐺) = 1 but the algorithm of Theorem 3.2.1 cannot detect this.

191

Proof. Section 5.2.1.

Theorem 5.1.2. There exists a family of 3-XOR games with 𝜔* < 1 but for which the

minimum refutation length scales exponentially in the number of clauses 𝑚 and alphabet size

𝑛. For these games exponentially many levels of ncSoS are needed to witness that 𝜔* < 1.

Proof. Section 5.2.2.

Theorem 5.1.3. There exists a family of 𝑘-XOR games, parametrized by 𝐾, for which

𝜔*(𝐺(𝐾)) = 1 and the classical value is bounded by

1

2
≤ 𝜔(𝐺(𝐾)) ≤ 1

2
+

√︂
𝐾 + 1

2𝐾+1
≤ 1

2
+

√︂
log 𝑘

𝑘
. (5.1.1)

Proof. Section 5.2.3.

Theorem 5.1.4. For every 𝑘, there exists a constant 𝐶unsat
𝑘 depending only on 𝑘 such that

a random 𝑘-XOR game 𝐺 with 𝑚 ≥ 𝐶unsat
𝑘 𝑛 clauses has value 𝜔*(𝐺) < 1 with probability

1− 𝑜(1).

Proof. Section 5.3.2.

Theorem 5.1.5. For any constant 𝐶, the minimum length refutation of a random 3-XOR

game with 𝑚 = 𝐶𝑛 queries on an alphabet of size 𝑛 has length at least

𝑒𝑛 log(𝑛)

8𝐶2 log(log(𝑛))
− 𝑜

(︂
𝑛 log(𝑛)

log(log(𝑛))

)︂
(5.1.2)

with probability 1− 𝑜(1) (as 𝑛→∞). Hence, either 𝜔* = 1 or Ω(𝑛 log(𝑛)/ log(log(𝑛))) levels

of the ncSoS hierarchy are needed to witness that 𝜔* < 1 for such games.

Note that we can choose 𝐶 ≥ 𝐶unsat
3 (with 𝐶unsat

3 from Theorem 5.1.4) such that

for large enough 𝑛, typical random instances will have 𝜔* < 1 but ncSoS will require

Ω(𝑛 log(𝑛)/ log(log(𝑛))) levels to detect this.

Proof. Section 5.3.3.

192

5.2 Specific Games

In this section we use the machinery of the previous sections to construct some games with

interesting properties.

The first is a simple game, the 123 Game, which illustrates conditions under which the

PREF condition can be fooled. It is a relatively small (6 player, 6 query) non-symmetric

game which does contain a PREF, but still does not contain any refutations. We show this

by giving an explicit value 1 strategy for the 123 Game.

The second is a family of games, called Capped GHZ (), which are designed to be hard

instances for the ncSoS algorithm. In particular, the game on 𝑛 variables (denoted CG𝑛) is a

symmetric game with value strictly less than 1, meaning the decision algorithm of Section 3.4.3

can show the game has value < 1 in poly time, but with a minimum refutation of length at

least exponential in 𝑛. This shows a doubly exponential improvement in the runtime of our

decision algorithm as compared to the ncSoS algorithm, and an exponential improvement over

the previous best known ncSoS lower bounds for this problem [30]1. This game construction

is based primarily on the theorems of Section 3.4, which outline the relationship between

refutations and ncSoS runtime, as well as our decision algorithm.

Finally, we construct a family of games with commuting operater value 1 and a low

classical value. These games are called Asymptotically Perfect Difference (APD) games, and

are parameterized by 𝐾. The classical value of the 𝐾-th APD game (APD𝐾) approaches

1/2, which is the lowest possible, in the limit of large 𝐾. The existence of such a family was

posed as an open question in [8]. The construction of these games is based primarily on the

difference between the linear equations defining MERP value 1 and classical value 1, which is

discussed in Section 3.5.3.

These games are summarized in the following table, with a full discussion of each in the

subsequent sections.

1In fact, to our knowledge, our results are the first exponential degree lower bound for the ncSoS hierarchy
applied to any problem.

193

Game 𝑛 𝑚 𝑘 𝜔* 𝜔 minimum refuta-
tion length

123 Game 3 6 6 1 5/6 −
CG𝑛 𝑛 3𝑛− 1 3 < 1− 1/ exp(𝑛) 1− 1/𝑚 2n+1 − 2

APD𝐾 2 2𝐾 2𝐾 − 1 1 1/2+
√︀

K/2K −

Table 5.1: Overview of the games constructed in this section. Quantities of note are denoted
in bold.

5.2.1 123 Game

We begin with a discussion of the intuition behind the 123 game, then follow with an explicit

value 1 strategy. It is instructive to begin by analyzing the “Small 123 Game”.

Definition 5.2.1. Define the Small 123 Game to be the 𝑘 = 3 player game with 𝑛 = 3

and 𝑚 = 6 clauses

𝐺small
123 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
1

2

3

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

3

3

3

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
2

3

1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
2

2

2

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
3

1

2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (5.2.1)

In this form, it is clear the Small 123 Game has 𝜔*(𝐺small
123) < 1, since placing its clauses

in the order presented forms a refutation.

The game matrix 𝐴 has a one-dimensional left nullspace (corresponding to the space of

candidate PREF specifications 𝑧 satisfying 𝐴𝑇 𝑧 = 0):

𝑧 ∝
[︁
1 −1 1 −1 1 −1

]︁𝑇
. (5.2.2)

Any odd multiples of this basis vector produce a PREF specification 𝑧.

We now add players to this game while preserving this PREF specification, until we

exclude all refutations formed by permutations of a single copy of each of the clauses. To

preserve the PREF specification, for each question 𝑗 given to a new player, we ensure 𝑗 is

given to the player once in an even clause (2, 4, or 6) and once in an odd clause (1, 3, or 5).

194

We must add three players to exclude all possible reorderings of the length-6 refutation given

by the clauses of the Small 123 Game, and in doing so end up with the “123 Game” (clauses

reordered to expose the game structure):

Definition 5.2.2. Define the 123 Game by the following set of clauses:

𝐺123 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

2

2

2

2

2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

3

3

3

3

3

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

3

1

2

3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3

1

3

1

2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

1

2

2

3

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.2.3)

The 123-game has been constructed to make it difficult to reorder valid PREF specifications

into refutations (for instance, it can be shown that no permutation of the valid length-6

PREF specifications

±
[︁
1 1 1 −1 −1 −1

]︁𝑇
corresponds to a valid refutation).

In Section 3.4.3 we demonstrated that symmetric games have a refutation whenever they

contain a PREF by construction of all required shift gadgets. In the (non-symmetric) 123

Game, there are no obvious shift gadgets present. This structure gives some intuition for why

one would expect this game to have value 1 even though it has a PR. In the next section we

prove that this intuition is correct; the 123-Game does in fact have value 1.

Value 1 Strategy

We define a simple strategy: measure in the Z basis if sent a 1, X if sent a 2, and Y if sent

a 3.2 If each player plays the 123 Game uses this strategy, it results in the following set of

query observables:

2This is motivated by the observation that the 123 game provably does not have a refutation if we assume
the measurements for different questions anticommute. We plan on addressing this intuition formally in an
upcoming paper.

195

𝒬123 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑍

𝑍

𝑍

𝑍

𝑍

𝑍

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌

𝑌

𝑌

𝑌

𝑌

𝑌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑍

𝑋

𝑌

𝑍

𝑋

𝑌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑌

𝑍

𝑌

𝑍

𝑋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌

𝑍

𝑋

𝑋

𝑌

𝑍

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5.2.4)

We also define a state on which these measurement can be made.3

|𝜓123⟩ :=
1√
8

(︁[︁
|000000⟩+ |111111⟩

]︁
−
[︁
|100100⟩+ |001010⟩

+ |010001⟩+ |011011⟩+ |110101⟩+ |101110⟩
]︁)︁

(5.2.5)

Theorem 5.2.3. The strategy observables in 𝒬123 measured on the state |𝜓123⟩ win the 123

Game with probability 1. (The 123 Game has value 1.)

Proof. For every string in |𝜓123⟩, its compliment is also in |𝜓123⟩ with the same sign. Addi-

tionally, every string in |𝜓123⟩ has even Hamming weight. Overall, we may then conclude

𝑋𝑋𝑋𝑋𝑋𝑋 |𝜓123⟩ = 𝑍𝑍𝑍𝑍𝑍𝑍 |𝜓123⟩ = |𝜓123⟩ (5.2.6)

and hence

𝑌 𝑌 𝑌 𝑌 𝑌 𝑌 |𝜓123⟩ = (𝑖)6𝑋𝑋𝑋𝑋𝑋𝑋
[︁
𝑍𝑍𝑍𝑍𝑍𝑍 |𝜓123⟩

]︁
= − |𝜓123⟩ . (5.2.7)

It remains to check the outcomes for the last 3 queries. Explicit calculation gives

𝑍𝑋𝑌 𝑍𝑋𝑌 |000000⟩ = (−1) |0⟩ |1⟩ (−𝑖) |1⟩ (−1) |0⟩ |1⟩ (−𝑖) |1⟩ = − |011011⟩ . (5.2.8)

3This state was found through simple trial and error.

196

as well as

𝑍𝑋𝑌 𝑍𝑋𝑌 |111111⟩ = |1⟩ |0⟩ 𝑖 |0⟩ |1⟩ |0⟩ 𝑖 |0⟩ = − |100100⟩ (5.2.9)

Similarly, we can check

𝑍𝑋𝑌 𝑍𝑋𝑌 |001010⟩ = (−1) |0⟩ |1⟩ 𝑖 |0⟩ (−1) |0⟩ |0⟩ (−𝑖) |1⟩ = |010001⟩ . (5.2.10)

and

𝑍𝑋𝑌 𝑍𝑋𝑌 |110101⟩ = |1⟩ |0⟩ (−𝑖) |1⟩ |1⟩ |1⟩ 𝑖 |0⟩ = |101110⟩ . (5.2.11)

Putting this all together we see

𝑍𝑋𝑌 𝑍𝑋𝑌 |𝜓123⟩ = |𝜓123⟩ , (5.2.12)

with similar (permuted) arguments holding for 𝑋𝑌 𝑍𝑌 𝑍𝑋 and 𝑌 𝑍𝑋𝑋𝑌 𝑍.

5.2.2 Capped GHZ () Games

We begin by considering a family of symmetric games with commuting operater value < 1.

The key property of this family is that to detect that 𝜔* < 1 requires an exponentially high

level in the ncSoS hierarchy, whereas the algorithm presented in Section 3.4.3 can do so in

polynomial time.

Definition 5.2.4. Define the 𝑛-th order Capped GHZ game as the 3-XOR game with

alphabet size 𝑛 and 𝑚 = 3𝑛− 1 clauses defined by

CG𝑛 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

1

2

2

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

2

1

2

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

2

2

1

+1

⎤⎥⎥⎥⎥⎥⎥⎦ , . . . ,
⎡⎢⎢⎢⎢⎢⎢⎣
(𝑛− 1)

𝑛

𝑛

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

𝑛

(𝑛− 1)

𝑛

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

𝑛

𝑛

(𝑛− 1)

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑛

𝑛

𝑛

+1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(5.2.13)

197

We claim 𝜔*(CG𝑛) < 1, and that it requires level at least 2𝑛+1 − 2 in the ncSoS hierarchy

to detect this fact. Define the 𝑖-th triple of CG𝑛 to be the clause set

𝐴𝑖 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
𝑖

(𝑖+ 1)

(𝑖+ 1)

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
(𝑖+ 1)

𝑖

(𝑖+ 1)

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
(𝑖+ 1)

(𝑖+ 1)

𝑖

+1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (5.2.14)

The clauses ⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛

𝑛

𝑛

+1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.2.15)

are called the caps (upper and lower) of the game and, for notational convenience, are referred

to by 𝐴0 and 𝐴𝑛. Our first claim shows that any refutation for CG𝑛 must include both the

upper and lower caps.

Lemma 5.2.5. Let ℰ, 𝒪 be minimal multiplicity equivalent multisets of queries taken from

CG𝑛, so ℰ ∼ 𝒪 and no clause appears in both ℰ and 𝒪. If ℰ ⊎𝒪 contains some 𝑥 ∈ 𝐴𝑗 with

𝑗 /∈ {0, 𝑛}, then ℰ ⊎ 𝒪 also contains clauses drawn from 𝐴𝑗−1 and 𝐴𝑗+1.

Proof. Without loss of generality, we assume

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑗

(𝑗 + 1)

(𝑗 + 1)

+1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ ℰ . (5.2.16)

We then proceed by contradiction. If no clause from 𝐴𝑗−1 is contained in 𝒪 then the

multiplicity of letter 𝑗 for wire 1 in 𝒪 cannot match ℰ , and the contradiction is immediate.

To prove the second claim, assume 𝑥 occurs in ℰ with multiplicity 𝜆, and no terms from

𝐴𝑗+1 are contained in 𝒪. Then, in order to match the (𝑗 + 1) multiplicity on the 2nd and

198

3rd wires, clauses

𝑦1 =

⎡⎢⎢⎢⎢⎢⎢⎣
(𝑗 + 1)

𝑗

(𝑗 + 1)

+1

⎤⎥⎥⎥⎥⎥⎥⎦ and 𝑦2 =

⎡⎢⎢⎢⎢⎢⎢⎣
(𝑗 + 1)

(𝑗 + 1)

𝑗

+1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.2.17)

must both occur in 𝒪 with multiplicity 𝜆. Then we find (𝑗 + 1) occurs on the first wire of ℰ

with multiplicity 0, and on the first wire of 𝒪 with multiplicity 2𝜆. Then ℰ and 𝒪 cannot be

multiplicity equivalent, and this contradiction proves our result.

A bound on the minimum length refutations for CG𝑛 follows in a straightforward manner

from Lemma 5.2.5.

Theorem 5.2.6. The minimal length refutation for CG𝑛 has length at least 2𝑛+1 − 2.

Proof. We show the minimal sized multiplicity equivalent multisets ℰ and 𝒪 formed by

elements of CG𝑛 have size at least 2𝑛+1 − 2. By Lemma 5.2.5 the lower cap 𝐴0 of CG𝑛 is

contained in either ℰ or 𝒪. Without loss of generality, assume it is contained in ℰ .

Then ℰ contains letter 1 on every wire, and by minimality we know 𝐴0 ∩ 𝒪 = ∅. Since ℰ

and 𝒪 are multiplicity equivalent multisets, we conclude 𝐴1 ⊆ 𝒪. But then 𝒪 has two 2s

on each wire, and by minimality 𝐴1 ∩ ℰ = ∅. So we conclude (𝐴2)
2 ∈ ℰ , where the notation

𝐴2
2 denotes the multiset containing two copies of each element of 𝐴2, and containment of

one multiset in another implies containment of each element with at least it’s multiplicity.

Continuing in this vein, we see (assuming even 𝑛 for the assignment of 𝐴𝑛 below, though this

does not affect the counting):

𝐴0 ⊎ (𝐴2)
2 ⊎ (𝐴4)

8 ... (𝐴𝑛)
2𝑛−1

⊆ ℰ and 𝐴1 ⊎ (𝐴3)
4 ⊎ (𝐴5)

16 ... (𝐴𝑛−1)
2𝑛−2

⊆ 𝒪. (5.2.18)

The total number of clauses contained in ℰ ⊎ 𝒪 is then given by

1 + 3(20) + 3(21) + . . . 3(2𝑛−2) + 2𝑛−1 = 1 + 3(2𝑛−1 − 1) + 2𝑛−1 (5.2.19)

= 2𝑛+1 − 2. (5.2.20)

199

Any refutation gives rise to even and odd multiplicity equivalent multisets ℰ and 𝒪, and the

above demonstrates that their combined size must be ≥ 2𝑛+1 − 2, proving the lower bound

on refutation length.

Theorem 5.2.6 shows that there exists a pseudodistribution on the clauses of CG𝑛 which

appears to have value 1 to a level exponential in the ncSoS hierarchy (proving Theorem 5.1.2).

The minimal length multisets constructed in the proof of Theorem 5.2.6 are in fact multiplicity

equivalent and the parity bits multiply to −1 (there is exactly one copy of 𝐴0, which is the

only question with 𝑠𝑖 = −1) meaning CG𝑛 contains a PREF. Since CG𝑛 is a symmetric

game, these two properties are sufficient to ensure a refutation exists (Section 3.4.3) giving

𝜔*(CG𝑛) < 1.

5.2.3 Asymptotically Perfect Difference (APD) Games

We next construct a family of 𝑘-XOR games, parameterized by 𝐾 ∈ N, with 𝑘 = 2𝐾 − 1,

𝑚 = 2𝐾 clauses, and asymptotically perfect difference: each game in the family is a noPREF

game, meaning

𝜔*(APD𝐾) = 1, (5.2.21)

while

𝜔(APD𝐾) ∼
1

2
+

√︂
𝐾

2𝐾
∼ 1

2
+

√︂
log 𝑘

𝑘
(5.2.22)

indicating that the difference is asymptotically as large as possible,

lim
𝐾→∞

2 (𝜔*(APD𝐾)− 𝜔(APD𝐾)) = 1. (5.2.23)

Definition 5.2.7. Define the Asymptotically Perfect Difference family of XOR games

parameterized by a scale 𝐾 ∈ N as the set of games with alphabet size 𝑛 = 2, 𝑘 = 2𝐾 − 1

players, and 𝑚 = 2𝐾 clauses:

APD𝐾 :=

⎧⎨⎩
⎡⎣𝑞𝑖
𝑠𝑖

⎤⎦ : 𝑞
(𝛼)
𝑖 = 𝐵𝛼,𝑖

(𝐾) + 1

⎫⎬⎭ . (5.2.24)

200

The 𝑠𝑖 are defined to adversarially minimize 𝜔(APD𝐾) and the matrix 𝐵(𝐾) ∈ {0, 1}2
𝐾×2𝐾 is

recursively defined by

𝐵(0) =
[︁
1
]︁

(5.2.25)

𝐵(𝐾+1) =

⎡⎣�̄�(𝐾) 𝐵(𝐾)

𝐵(𝐾) 𝐵(𝐾)

⎤⎦ (5.2.26)

with �̄� produced by switching 0↔ 1 for all entries of 𝐵. Equivalently, �̄� = 𝐽 − 𝐵, with 𝐽

the all-ones matrix.

Note that by the game definition, the 𝑚×𝑘𝑛 = (2𝐾)× (2* (2𝐾−1)) game matrix 𝐴(𝐾) for

APD𝐾 consists of the first 2𝐾 − 1 columns of 𝐵(𝐾) interleaved with the first 2𝐾 − 1 columns

of �̄�(𝐾):

𝐴(𝐾) =
[︁
𝐵·,1(𝐾) �̄�·,1(𝐾) 𝐵·,2(𝐾) �̄�·,2(𝐾) . . . 𝐵·,2

𝐾−1
(𝐾) �̄�·,2

𝐾−1
(𝐾)

]︁
. (5.2.27)

The pairs of columns in 𝐴(𝐾) corresponding to the two possible outputs from each player

are complementary, making 𝐴(𝐾) a valid game matrix.

Note that 𝐴𝑃𝐷2 is exactly the GHZ game, so the APD family is a particular many-player

generalization of GHZ:

𝐵(2) =

⎡⎣�̄�(1) 𝐵(1)

𝐵(1) 𝐵(1)

⎤⎦ (5.2.28)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1

0 0 1 1

0 1 0 1

1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.2.29)

=⇒ 𝐴(2) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 1

1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.2.30)

Exchanging columns 3⇔ 6 and 4⇔ 5, corresponding to a relabeling of players and inputs,

201

gives 𝐴𝐺𝐻𝑍 as defined in (3.3.3). The choice of parity bits in GHZ is known to minimize the

classical value, exactly matching the definition of 𝐴𝑃𝐷2.

We now prove our claims about the commuting operater and classical values of APD

games.

Commuting Operater Value

Lemma 5.2.8. For all 𝐾, 𝐵(𝐾) has trivial kernel.

Proof. We proceed by induction.

1. Base case: 𝐵(0) =
[︁
1
]︁

has trivial kernel by inspection.

2. Induction step: Assume 𝐵(𝐾) has trivial kernel, i.e. 𝐵(𝐾)𝑥 = 0 =⇒ 𝑥 = 0. We now

demonstrate that 𝐵(𝐾+1) has trivial kernel by contradiction.

Assume to the contrary that 𝐵(𝐾+1)𝑥 = 0 for 𝑥 ̸= 0. We can expand the blocks of this

equation:

𝐵(𝐾+1)𝑥 =

⎡⎣�̄�(𝐾) 𝐵(𝐾)

𝐵(𝐾) 𝐵(𝐾)

⎤⎦⎡⎣𝑥1
𝑥2

⎤⎦ = 0. (5.2.31)

By the bottom block,

𝐵(𝐾)𝑥1 +𝐵(𝐾)𝑥2 = 0 (5.2.32)

𝐵(𝐾)(𝑥1 + 𝑥2) = 0 (5.2.33)

=⇒ 𝑥2 = −𝑥1. (Induction hypothesis) (5.2.34)

202

Using this relation in the top block, we have

0 = �̄�(𝐾)𝑥1 −𝐵(𝐾)𝑥1 (5.2.35)

=
(︀
𝐽 −𝐵(𝐾) −𝐵(𝐾)

)︀
𝑥1 (5.2.36)

2𝐵(𝐾)𝑥1 = 𝐽𝑥1 (5.2.37)

2𝐵(𝐾)𝑥1 =

⎡⎢⎢⎢⎣
∑︀

𝑖 𝑥
𝑖
1∑︀

𝑖 𝑥
𝑖
1

...

⎤⎥⎥⎥⎦ . (5.2.38)

Noting that the bottom row of 𝐵(𝐾) is always the all-ones vector by the definition, we

can consider the bottom element of (5.2.38)

2
∑︁
𝑖

𝑥𝑖 =
∑︁
𝑖

𝑥𝑖 (5.2.39)

=⇒
∑︁
𝑖

𝑥𝑖 = 0. (5.2.40)

This means 𝐽𝑥1 = 0, which together with (5.2.37) gives:

𝐵(𝐾)𝑥1 = 0. (5.2.41)

By the induction hypothesis, this must mean 𝑥1 = 0 = 𝑥2, contradicting 𝑥 ̸= 0.

Theorem 5.2.9. For all 𝐾, APD𝐾 is a noPREF game, and thus has a MERP strategy with

value 1 and 𝜔*(APD𝐾) = 1. The same holds for any choice of 𝑠.

Proof. First, we demonstrate that (𝐴(𝐾))
𝑇 has trivial kernel.

We have from Lemma 5.2.8 that 𝐵(𝐾) has trivial kernel, and thus its rank is 𝑚 = 2𝐾 .

𝐴(𝐾) includes all columns of 𝐵(𝐾) except the last, the all-ones vector. 𝐴(𝐾) also includes

columns of �̄�(𝐾). Adding a column of 𝐵(𝐾) to the corresponding column of �̄�(𝐾) produces

the all-ones vector, so it must be in the column-span of 𝐴(𝐾) as well. Finally, this means the

203

column span of 𝐴(𝐾) includes the column span of 𝐵(𝐾) and so the rank must be 𝑚. By the

rank-nullity theorem, matrix (𝐴(𝐾))
𝑇 has trivial kernel.

The PR constraints are unsatisfiable, so APD𝐾 is a noPREF game. By Theorem 3.3.30,

APD𝐾 has a MERP strategy with value 1 and 𝜔*(APD𝐾) = 1.

Classical Value

We extend the motivating classical results presented in Section 3.5.3 to analyze the classical

value of the APD family. Corollary 3.5.4 demonstrates that the set of outputs achievable by a

deterministic classical strategy is given exactly by 𝒴2 := imF2 (𝐴). Recalling that 𝜎2 = dim𝒴2,

we see that when 𝜎2 ≪ 𝑚, the set of deterministically achievable outputs is much smaller

than the total space of possible parity bit vectors, and so we should be able to find a vector

𝑠 ∈ F𝑚
2 with large Hamming distance from all outputs in 𝒴2. In this section the probabilistic

method is used to formalize this argument.

Theorem 5.2.10. Let 𝐴 be an XOR game matrix, for which 𝜎2 ≤ 𝛿𝑚. Then there exists a

parity bit vector 𝑠 ∈ F𝑚
2 for which the game 𝐺 ∼ (𝐴, 𝑠) has value at most

1

2
+

√︂
𝛿

2
(5.2.42)

Proof. This argument is a close variant of the usual Hamming bound on error-correcting

codes. Let 𝑆 denote the set of 𝑠 within distance 𝑚(1/2− 𝜖) of some point in 𝒴2. Using the

fact that |𝒴2| = 2𝜎2 ≤ 2𝛿𝑚 we have

|𝑆| ≤ 2𝛿𝑚
∑︁

𝑘≤𝑚(1
2
−𝜖)

(︂
𝑚

𝑘

)︂
. (5.2.43)

We bound the sum over binomial coefficients with the Chernoff bound to obtain

|𝑆| ≤ 2𝛿𝑚2𝑚(1−2𝜖2). (5.2.44)

Then for any 𝜀 >
√︀
𝛿/2 there exists a 𝑠 with distance ≥ 𝑚(1/2− 𝜀) from any point in 𝒴2.

This corresponds to value 1/2 + 𝜀.

204

We now consider the specific case of the APD game and demonstrate the asymptotic limit

of the classical value.

Lemma 5.2.11. Given 𝐾 ∈ N, the APD game APD𝐾 has 𝜎2(APD𝐾) = 𝐾 + 1.

Proof. Recall that 𝜎2 is the dimension of 𝒴2, the image of 𝐴(𝐾) viewed as a map taking

F𝑘𝑛
2 → F𝑚

2 . Equivalently, 𝒴2 is the column span of 𝐴(𝐾) taken over F2, and for this proof we

use this view. By the same argument as Theorem 5.2.9, the column span of 𝐴(𝐾) is identical

to the column span of 𝐵(𝐾). We prove this Lemma by induction over the 𝐵(𝐾):

1. Base case: 𝐵(0) =
[︁
1
]︁

giving 𝜎2 = 1 by inspection.

2. Induction step: Assume 𝜎2(APD𝐾) = 𝐾 + 1, meaning the dimension of the column

span of 𝐵(𝐾) over F2 is 𝐾 + 1. We can write 𝐵(𝐾+1) in block format:

𝐵(𝐾+1) =

⎡⎣�̄�(𝐾) 𝐵(𝐾)

𝐵(𝐾) 𝐵(𝐾)

⎤⎦ =

⎡⎣(𝐽 −𝐵(𝐾)) 𝐵(𝐾)

𝐵(𝐾) 𝐵(𝐾)

⎤⎦ =

⎡⎣(𝐽 +𝐵(𝐾)) 𝐵(𝐾)

𝐵(𝐾) 𝐵(𝐾)

⎤⎦ (over F2)

(5.2.45)

All columns in the right block of (5.2.45) take the form
[︁
𝑥 𝑥

]︁𝑇
, so their span is

S :=

{︂[︁
𝑟 𝑟

]︁𝑇
: 𝑟 ∈ 𝒴2(APD𝐾)

}︂
. (5.2.46)

On the other hand, all columns in the left block take the form
[︁
1⊕ 𝑥 𝑥

]︁𝑇
=
[︁
1 0

]︁𝑇
+[︁

𝑥 𝑥
]︁𝑇

. The form of the right block span guarantees
[︁
1 0

]︁𝑇
is linearly independent

from the right columns. Thus the total column span is

𝒴2(𝐴𝑃𝐷𝐾+1) = S ∪

⎛⎝S+

⎡⎣1
0

⎤⎦⎞⎠ (5.2.47)

and 𝜎2(𝐴𝑃𝐷𝐾+1) = 𝜎2(APD𝐾) + 1 = (𝐾 + 1) + 1, completing the induction step.

205

Theorem 5.1.3. The APD family has classical value

1

2
≤ 𝜔(APD𝐾) ≤

1

2
+

√︂
𝐾 + 1

2𝐾+1
≤ 1

2
+

√︂
log 𝑘

𝑘
. (5.2.48)

Proof. The lower bound of 1
2

applies to all XOR games since a random assignment will satisfy

half the clauses in expectation.

For the first upper bound, note that for APD family, 𝑚 = 2𝐾 and from Lemma 5.2.11,

𝜎2 = 𝐾 + 1. Then Theorem 5.2.10 yields the bound

𝜔(APD𝐾) ≤
1

2
+

√︂
𝜎2
2𝑚

=
1

2
+

√︂
𝐾 + 1

2𝐾+1
≤ 1

2
+

√︂
𝐾

2𝐾
. (5.2.49)

The last bound in the theorem statement is obtained by noting that 𝐾 = 2𝑘.

Finally, we conclude by mentioning that even though the APD construction may require an

exponential time to choose the adversarial 𝑠𝑖, one can achieve the same asymptotic difference

with high probability by choosing the 𝑠𝑖 uniformly at random. This is implicit in the proof of

Theorem 5.2.10, which implies that a randomly chosen 𝑠 has value ≥ 1/2+ 𝜀 with probability

≤ 2(𝛿−2𝜀
2)𝑚. Note as well that 𝜔* = 1 for any choice of 𝑠𝑖, according to Theorem 5.2.9.

5.3 Random Games

The previous sections give a complete characterization of symmetric games with commuting

operator value 1. However, as demonstrated by the final example of the previous Sec-

tion (5.2.1), non-symmetric games remain, in general, hard to characterize. One area where

we can make some progress is in understanding the value of randomly generated XOR games.

We will work in a model, specified in Definition 3.3.5, where each clause is sampled uniformly

with replacement from the set of all possible clauses.

The classical value of random CSPs4 in this model has been intensely studied for several

predicates including XOR, and it is useful to summarize the classical results. While determin-
4As noted in Section 3.1, CSPs and games are closely related. Classically, the difference between a CSP

and the associated symmetric game is that each player in a game may play according to a different assignment
of the variables; thus, the value of a CSP is always less than or equal to the classical value of the associated
symmetric game.

206

ing the exact classical value of a random 𝑘-XOR instance for 𝑘 ≥ 3 remains hard, union bound

arguments can give probabilistic bounds on the classical value of random 𝑘-XOR instances,

in terms of the number of variables 𝑛 and the number of clauses 𝑚. Combining these with

second moment-type arguments and combinatorial analysis has revealed the existence of SAT

and UNSAT phases for random instances in the limit of large 𝑛, which are separated by a

sharp threshold in 𝑚 [51]. For 𝑘 = 3, this threshold occurs at 𝑚/𝑛 ≈ 0.92 [21]. When 𝑚/𝑛

is below the threshold, a random 3-XOR instance has value 1 with probability approaching

1 as 𝑛 → ∞, while when 𝑚/𝑛 is above the threshold, a random instance has value 1 with

probability approaching 0, and in fact, in the UNSAT phase, it is known that the value is close

to 1/2. In addition to the true value, one can study the performance of the SoS algorithm on

random instances. A key result in this direction is that of Grigoriev [27], who showed the

existence of a region in the UNSAT phase with classical value close to 1/2, but for which the

classical SoS algorithm reports a classical value of 1 until a high level in the SoS hierarchy.

In the language we have developed thus far, he showed this by proving that random XOR

games with appropriately chosen 𝑚 and 𝑛 do not admit any short-length classical refutations.

One can interpret this result as showing the existence of a phase which is both UNSAT and

computationally intractable.

The goal of this section is to prove a quantum analogue of these results. We are limited

in one important sense: classically, the existence of an UNSAT phase with value close to 1/2

is shown via a union bound over the set of possible classical strategies, but this tool is no

longer available to us for quantum strategies. Using our refutation-based technology, the

best we can say is that the commuting operater value of a game is bounded a small distance

away from 1 (see Section 3.4.1). At the same time, the quantum case presents us with an

opportunity to go beyond what is possible classically: while the classical SoS algorithm has a

natural upper bound at level 𝑘𝑛, no such bound exists for the ncSoS algorithm. We could

thus potentially improve on Grigoriev’s result to prove a superexponential lower bound on

the runtime of ncSoS.

We work subject to these considerations. In one direction, we know that for any 𝐺,

𝜔*(𝐺) ≥ 𝜔(𝐺), and so we immediately get an entangled SAT phase for 3-XOR games with

𝑚 / 0.92𝑛. In the other direction we show the existence of an entangled UNSAT phase:

207

specifically, we show that there exists a constant 𝐶𝑘 depending only on the number of players

𝑘 such that random games with more than 𝐶𝑘𝑛 queries have commuting operater value < 1

with high probability. For 3-XOR games we find 𝐶3 / 4. Our bounds on the entangled SAT

and UNSAT phases are only a constant factor apart, leaving open the possibility of a sharp

threshold behavior as in the classical case.

Further, in analogy with Grigoriev’s results, we also show that random XOR games with

𝑚 = 𝑂(𝑛) queries have, w.h.p., no refutation with length less than Ω (𝑛 log(𝑛)/log(log(𝑛))).

By Lemma 3.4.4, this implies ncSoS takes superexponential time to show these games have

value < 1.

5.3.1 SAT Phase

To start, we will show how the existence of a SAT phase for 𝑘-XOR viewed as a CSP implies

the existence of such a phase for 𝑘-player XOR games. This is a simple consequence of the

connection between games and CSPs.

Lemma 5.3.1. For every 𝑘-XOR game 𝐺 with 𝑚 clauses and 𝑛 variables, there exists a

corresponding 𝑘-XOR CSP instance Φ𝐺 with the same number of clauses and variables, such

that if val(Φ𝐺) = 1, then 𝜔(𝐺) = 1. Moreover, when 𝐺 is chosen at random according to

the distribution in Definition 3.3.5, the induced definition over Φ𝐺 is the one generated by

uniformly sampling 𝑚 clauses over 𝑛 variables with replacement.

Proof. For each clause (𝑞𝑖1 , . . . , 𝑞𝑖𝑘 , 𝑠𝑖) ∈ 𝐺, create a clause 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑘 = 𝑠𝑖 in Φ𝐺, where

the variables 𝑥𝑖 are taken over {±1}. (We allow Φ𝐺 to contain repeated clauses.) It is clear

that Φ𝐺 has the same number of clauses and variables as in 𝐺, and that if 𝐺 is random then

Φ𝐺 is distributed as in the lemma statement.

If Φ has value 1, let 𝑥 be a satisfying assignment for Φ. Then the classical strategy where

all players play according to 𝑥 is a strategy for 𝐺 achieving value 1. Hence val(Φ𝐺) = 1

implies that 𝜔(𝐺) = 1.

Corollary 5.3.2. For every 𝑘, there exists a constant 𝐵𝑘 such that for any 𝑏 < 𝐵𝑘, a random

𝑘-XOR game with 𝑚 = 𝑏𝑛 clauses will have 𝜔(𝐺) = 𝜔*(𝐺) = 1 with probability approaching 1

as 𝑛→∞.

208

Proof. The analogous statement for 𝑘-XOR CSP instances is proved in Theorem 16 of [51].

Let 𝐵𝑘 be the threshold appearing in that theorem. By Lemma 5.3.1, if we sample a random

𝑘-XOR game 𝐺 with 𝑚 = 𝑏𝑛 clauses, then the associated CSP instance Φ𝐺 will be a random

CSP instance with 𝑏𝑛 clauses, and thus have value 1 with probability approaching 1. Hence,

𝜔(𝐺) = 𝜔*(𝐺) = 1 with probability approaching 1 as well.

For 𝑘 = 3, the constant 𝐵𝑘 can be computed to be ≈ 0.92 [21].

5.3.2 UNSAT Phase

Since we are considering general random XOR games, we cannot appeal to the shift gadgets

available by symmetry. Instead we use probabilistic analysis to show that such gadgets exist

with high probability, given enough clauses. Below we give the analysis for the specific case

of random 3-XOR games. The analysis for general 𝑘 proceeds identically, with different

constants depending on the number of players.

Lemma 5.3.3. Let 𝐺 be a randomly generated 3-XOR game defined by the set 𝑀 of queries

and associated parity bits, with |𝑀 | = 𝑚 ≥ 3.3𝑛. Then with probability 1− 𝑜(1), there exists

a set 𝑁3,1 ⊆ [𝑛] with |𝑁3,1| > 0.95𝑛 such that for all 𝑎, 𝑏 ∈ 𝑁3,1, 𝐺 contains a shift gadget

𝑆3→1(𝑎𝑏).

Proof. Consider a bipartite graph between two sets of 𝑛 vertices. Label one set of vertices

by ([𝑛], 3), and the other by ([𝑛], 2). Add an edge between (𝑗, 3) and (𝑗′, 2) iff there exists a

query ⎡⎢⎢⎢⎣
𝑟

𝑗′

𝑗

⎤⎥⎥⎥⎦ ∈𝑀

where 𝑟 ∈ [𝑛] is arbitrary. Label the edge by the index of the query corresponding to it. Our

key observation is that that 𝑆3→1(𝑎𝑏) can be constructed from the queries corresponding to a

walk from (𝑎, 3) to (𝑏, 3) in the graph.

209

Because queries are randomly generated, edges in this graph are randomly generated as

well. So our graph is a 𝐺𝑛,𝑛,𝑚 Erdös-Rényi random bipartite graph. A technical result (Lemma

5.3.4) gives that this graph is at least as connected as �̂�𝑛,𝑛,𝑝 – a random bipartite graph in

which each edge is present independently with probability 𝑝 = 𝑚/𝑛2 − 𝜖/𝑛 = (3.3 − 𝜖)/𝑛,

where 𝜖 is an arbitrary small constant.

Finally, applying a Galton-Watson style argument to this random graph shows [37,

Theorem 9] that with probability 1− 𝑜(1) it contains a “giant component” that touches at

least 𝛾𝑛 vertices of ([𝑛], 3), where 𝛾 is the unique solution in the interval (0, 1] to the equation

𝛾 + exp (𝑝𝑛(exp(−𝑝𝑛𝛾)− 1)) = 1 =⇒ 𝛾 > 0.95.

Lemma 5.3.4 (Relating random graph models). Let 𝐺 ∼ 𝐺𝑁,𝑁,𝑚 with 𝑚 = 𝐶𝑁 . Further

let �̂� ∼ �̂�𝑁,𝑁,𝑝 with 𝑝 = (𝐶 − 𝜖)/𝑁 , for arbitrary small constant 𝜖. For any value 𝑍, if �̂�

contains a connected component of size 𝑍 with probability 1− 𝑜(1) then 𝐺 also contains a

connected component of size 𝑍 with probability 1− 𝑜(1).

Proof. We couple the distributions used to generate �̂� and 𝐺. In particular, a graph 𝐺 can

be generated by choosing a graph �̂�, then randomly adding or removing edges until the graph

has exactly 𝑚 edges. As long as we only add edges, this process will only increase the size of

the largest connected component in the graph. Letting 𝐸(�̂�) be the set of edges of a graph

�̂�, we find

E|𝐸(�̂�)| = 𝑁2𝑝 = (𝐶 − 𝜖)𝑁

and so

p|𝐸(�̂�)| > 𝑚 ≤ exp
(︀
−𝜖2𝑁/3

)︀
= 𝑜(1)

by a Chernoff bound.

Lemma 5.3.3 tells us that, given a large enough number of queries, most variables can

210

be shuffled in exactly the manner described in Section 3.4.2. If we consider only queries

involving these variables, we should then be able to construct refutations from PREFs using

exactly the techniques described in the later half of that section. In fact, we only need to

restrict to those variables on 𝑘 − 2 of the wires, since cancellations on the first two wires are

automatic (see, in particular, the proof of Lemma 3.4.22).

If a large enough number of queries remain one would expect that they admit a PR with

high probability. This fact is proved below.

Lemma 5.3.5. For any 𝑘-XOR game 𝐺 with 𝑚 queries, alphabet size 𝑛 and

𝑚− 𝑘𝑛 = 𝛿 > 0, (5.3.1)

if the parity bits for 𝐺 are picked randomly then 𝐺 has a PREF with probability at least

1− 2−𝛿.

Proof. By definition, a PREF specification is any vector 𝑧 ∈ Z𝑚 satisfying

𝐴𝑇 𝑧 = 0 and (5.3.2)

𝑠𝑇 𝑧 = 1. (5.3.3)

When 𝑚 > 𝑘𝑛, the matrix 𝐴𝑇 has rank ≤ 𝑘𝑛. By the rank-nullity theorem, the kernel of 𝐴𝑇

has dimension ≥ 𝑚− 𝑘𝑛, and so the are at least 𝛿 linearly independent vectors 𝑧 satisfying

(5.3.2). If the parity bits are chosen randomly, each of these vectors 𝑧 satisfy (5.3.3) with

independent probability 1/2, and the result follows.

Finally, we use our lemmas to prove the specific 𝑘 = 3 case of the random game threshold.

Theorem 5.1.4. Let 𝐺 be a random 3-XOR game with 𝑚 = ⌈3.3𝑛⌉ clauses on an alphabet of

size 𝑛. Then, with probability 1− 𝑜(1), 𝐺 has value < 1.

Proof. Let 𝑁3,1 be defined as in Lemma 5.3.3, and extend this definition to 𝑁3,2 analogously.

Define

𝑁3 := 𝑁3,1 ∩𝑁3,2. (5.3.4)

211

Let 𝛾 be defined as in Lemma 5.3.3. A union bound then gives that the expected size of 𝑁3

is bounded below by

(1− 2(1− 𝛾)) > 0.9𝑛.

Finally we let 𝑀 be the set of queries for 𝐺, then define

𝑀 ′ := {(𝑞(1), 𝑞(2), 𝑞(3)) ∈𝑀 : 𝑞(3) ∈ 𝑁3}.

If 𝑁3 were independent of 𝑀 ′, we could conclude

E|𝑀 ′| = 𝑚
|𝑁3|
𝑛

> 3.01𝑛 (5.3.5)

and then, by concentration,

p|𝑀 ′| < 3.009 . exp(−𝑛) = 𝑜(1). (5.3.6)

𝑀 and 𝑁3 are not independent, but a technical lemma (Lemma 5.3.6) shows their correlation

can only increase the size of 𝑀 ′, hence (5.3.6) remains valid.

Now consider a game 𝐺′ consisting of only the clauses of 𝐺 with queries in 𝑀 ′. 𝑀 ′ has

been constructed such that 𝐺′ has shuffle gadgets for any wire of a pair of queries drawn from

𝑀 ′. Furthermore |𝑀 ′| − 3𝑛 ≥ 0.009𝑛 with high probability, so by Lemma 3.4.21 and Lemma

5.3.5, we can then conclude 𝐺′ contains a complete refutation with probability 1− 𝑜(1). Since

𝐺′ contains a subset of the clauses of 𝐺, this also means 𝐺 contains a complete refutation

with probability 1− 𝑜(1).

Lemma 5.3.6. Let 𝐺 be a random 3-XOR game on 𝑚 clauses, and let 𝑁3 and 𝑀 ′ be defined

as in the proof of Theorem 5.1.4. If there exists some constant 𝛿 for which

E|𝑁3| ≥ 𝛿𝑛

212

with probability 1− 𝑜(1), then we have, for any 𝜖 > 0 that

E|𝑀 ′| ≥ (𝛿 − 𝜖)𝑚

with probability 1− 𝑜(1) as well.

Proof. We first move from the random game 𝐺 to the random game �̂�, in which the total

number of clauses isn’t fixed, but rather every possible clause appears in the game with

probability56

𝑚− 𝜖1
2𝑛3

. (5.3.7)

We also define the variables �̂�3, �̂� and �̂� ′, which depend on �̂� in exactly the same way the

unhatted variables depends on 𝐺. By an argument identical to the one used in the proof of

Lemma 5.3.4, lower bounds on the size of �̂� ′ will carry over to lower bounds on the size of

𝑀 ′ for 𝐺 with high probability.

The techniques used to bound the size of 𝑁3 work equally well on �̂�3, and so

|�̂�3| ≥ (𝛿 − 𝜖1 − 𝜖2)𝑛 (5.3.8)

with probability 1− 𝑜(1).

Now we let 𝐴 be some arbitrary subset of [𝑛] of size ⌊(𝛿 − 𝜖1 − 𝜖2)𝑛⌋, and define

�̂�(𝐴) = {(𝑞(1), 𝑞(2), 𝑞(3)) ∈ �̂� : 𝑞(3) ∈ 𝐴}.

Since 𝐴 is arbitrary, it is immediate that

E|�̂�(𝐴)| = (𝛿 − 𝜖1 − 𝜖2)𝑚 (5.3.9)

5Note the factor of 2 in the denominator comes from the choice of parity bit.
6Here and below we use 𝜖𝑖 to indicate arbitrary small constants.

213

and (by concentration)

p|�̂�(𝐴)| < (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 = 𝑜(1). (5.3.10)

Finally, we define the indicator random variables 𝐼𝑞 to take on value 1 if 𝑞 ∈ �̂� , and 0

otherwise. Our key observation is that

E𝐼𝑞 | 𝐴 ⊆ 𝑁3 = E𝐼𝑞

(︂
p𝐴 ⊆ 𝑁3 | 𝐼𝑞 = 1

p𝐴 ⊆ 𝑁3

)︂
(5.3.11)

≥ E𝐼𝑞 (5.3.12)

and this remains true even after conditioning on the outcomes of other 𝐼𝑞’s.

The indicator for the event

{︁
|�̂�(𝐴)| < (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚

}︁
(5.3.13)

is a decreasing function of the 𝐼 ′𝑞𝑠, and so we can conclude

p|�̂�(𝐴)| ≤ (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 | 𝐴 ⊆ 𝑁3 ≤ p|�̂�(𝐴)| < (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 (5.3.14)

Putting this all together, we find

p|�̂� ′| ≤ (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 ≤ p|�̂�(𝐴)| < (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 | 𝐴 ⊆ 𝑁3 (5.3.15)

≤ p|�̂�(𝐴)| < (𝛿 − 𝜖1 − 𝜖2 − 𝜖3)𝑚 (5.3.16)

= 𝑜(1) (5.3.17)

(where the first line follows from definition of 𝑀 ′). Since |�̂� ′| is a lower bound for |𝑀 ′| with

high probability, we can set 𝜖 = 𝜖1 + 𝜖2 + 𝜖3 and conclude the result.

214

5.3.3 Lower Bound on Refutation Length (Sketch)

In this section we sketch the proof of the following theorem, which gives a lower bound that

holds with high probability for the length of refutations of random 3-XOR games. Aside

from the immediate implications of the theorem, this result is also significant because its

proof uses a counting technique not found elsewhere in the paper.

Theorem 5.1.5. For any constant 𝐶, the minimum length refutation of a random 3-XOR game

with 𝑚 = 𝐶𝑛 queries on an alphabet of size 𝑛 has length at least

𝑒𝑛 log(𝑛)

8𝐶2 log(log(𝑛))
− 𝑜

(︂
𝑛 log(𝑛)

log(log(𝑛))

)︂
(5.3.18)

with probability 1− 𝑜(1) (as 𝑛→∞). Hence, either 𝜔* = 1 or Ω(𝑛 log(𝑛)/ log(log(𝑛))) levels

of the ncSoS hierarchy are needed to witness that 𝜔* < 1 for such games.

This significance of this result is twofold. Firstly, it gives a lower bound on refutation

lengths which matches the length of refutations constructed using the methods of Section

3.4.3 to a factor of 𝑂(log(log(𝑛))). This suggests that the algorithm described in Section 3.4.3

is a near-optimal method for constructing refutations for symmetric XOR games.7 Secondly,

combining Theorem 5.1.5 with Lemma 3.4.4 show that an ncSoS proof that a random 3-XOR

game has value < 1 requires going to level Ω(𝑛 log(𝑛)/ log(log(𝑛))) in the ncSoS hierarchy.

This results in a runtime which is superexponential in 𝑛, and longer than the worst possible

case for classical (commuting) SoS applied to XOR games (or boolean CSPs in general).

Theorem 5.1.5 is proved using a careful application of the first moment method. The

full analysis is somewhat involved, and so we spend some time discussing the key ideas

required for the proof. The proof hinges on enumerating possible refutations in a somewhat

non-intuitive way. Rather than building up a refutation of length ℓ query by query, we will

instead write down all possible sequences of ℓ queries, and consider all the ways those queries

could cancel to form a refutation. The key definition required to make this counting work is

that of a cancellation pattern.

7Strictly speaking, this conclusion is motivated only for 3-XOR games. That being said, for larger 𝑘,
Theorem 5.1.5 still gives a lower bound which is tight to a factor of 𝐶𝑘 log(log(𝑛)), and it is reasonable to
expect that, with additional work, this lower bound could be tightened further.

215

Definition 5.3.7. A length ℓ one wire cancellation pattern is a partition of [ℓ] into ℓ/2

pairs of the form {(𝑎1, 𝑏1), . . . , (𝑎ℓ/2, 𝑏ℓ/2)} with

𝑎𝑖 < 𝑏𝑖 and 𝑎𝑖 < 𝑎𝑗 =⇒ 𝑏𝑖 > 𝑏𝑗 (5.3.19)

𝑎𝑙𝑙𝑖, 𝑗 ∈ [ℓ/2] (no cancellation patterns exist for odd ℓ). When discussing 𝑘-XOR games, a

length ℓ cancellation pattern refers to an ordered list containing 𝑘 one wire cancellation

patterns.

Definition 5.3.8. Given a length ℓ cancellation pattern, the locations of that cancellation

pattern are elements of [ℓ], corresponding to the positions at which queries can appear in the

cancellation. The sites of the cancellation pattern are specified by coordinates (𝛼, 𝑖) ∈ [𝑘]⊗ [ℓ],

and represent the places where individual questions appear. Site (𝛼1, 𝑖1) is said to cancel site

(𝛼2, 𝑖2) iff 𝛼1 = 𝛼2 and the pair (𝑖1, 𝑖2) is contained in the 𝛼1-th cancellation pattern. In this

case, the pair of sites ((𝛼1, 𝑖1), (𝛼2, 𝑖2)) is referred to as a cancellation.

Definition 5.3.9. Using matrix notation to specify individual letters in a word, a cancellation

pattern is valid on a word 𝑊 iff

𝑤𝛼1,𝑖1 = 𝑤𝛼2,𝑖2 (5.3.20)

for all sites (𝛼1, 𝑖1) and (𝛼2, 𝑖2) which cancel one another.

By definition, a word cancels to the identity iff there exists at least one cancellation

pattern which is valid on the word. It is also straightforward to give a combinatorial bound

on the number of possible length ℓ cancellation patterns.

Claim 5.3.10. The number of possible cancellation patterns on a single wire with ℓ locations

is given by the ℓ/2-th Catalan number, denoted by 𝒞ℓ/2. The number of possible cancellation

patterns on a length ℓ word formed from 𝑘-XOR queries is then given by

(︀
𝒞ℓ/2
)︀𝑘 ≤ 2𝑘ℓ. (5.3.21)

216

Proof. Direct from the definition of Catalan numbers, and standard bounds on their size.

See [62] for an extensive discussion.

To illustrate the benefit of working in terms of cancellation patterns, we prove a simple

theorem, regarding the existence of a restricted class of refutations.

Theorem 5.3.11. Let 𝑚 ∈ 𝑜(𝑛𝑘/2). Then, as 𝑛 → ∞, a random 𝑘-XOR game with 𝑚

queries on an alphabet of size 𝑛 will contain a refutation in which every query is used at most

once with probability at most 𝑜(1).

Proof. We apply the first moment method. There are ℓ!
(︀
𝑚
ℓ

)︀
ways of creating a word of length

ℓ from the queries, and at most 2𝑘ℓ cancellation patterns on the word. Since queries are all

independent and randomly chosen, each cancellation pattern on a length ℓ word is valid with

probability (1/𝑛)𝑘ℓ/2. Then the probability of a valid cancellation of any length is given by

(using (𝑚)(𝑚− 1)...(𝑚− 2𝑟) ≤ 𝑚2𝑟)

𝑚/2∑︁
𝑟=1

[︂
(2𝑟)!

(︂
𝑚

2𝑟

)︂
(𝒞𝑟)𝑘 (1/𝑛)𝑘𝑟

]︂
≤

𝑚/2∑︁
𝑟=1

[︀
2𝑘
(︀
𝑚/𝑛𝑘/2

)︀]︀2𝑟 ∈ 𝑜(1). (5.3.22)

We now take a small detour, and use techniques similar to the one above to reprove a

result of Grigoriev [27]. This is done to illustrate the power of these techniques, but also for

completeness, as we will use Grigoriev’s result in our proof of Theorem 5.1.5.

Theorem 5.3.12 (Originally proved in [27]). Let 𝐺 be a random 3-XOR game on the set

of queries 𝑀 , with |𝑀 | = 𝑚 = 𝐶𝑛 and alphabet size 𝑛. Define a classical refutation to be a

subset of queries 𝑇 ⊆𝑀 such that

|{𝑞 ∈ 𝑇 | 𝑞(𝛼) = 𝑗}| = 2𝑚𝑎𝑙𝑙𝑗 ∈ [𝑛], 𝛼 ∈ {1, 2, 3} (5.3.23)

(if written as a word, 𝑇 would contain each 𝑗 ∈ [𝑛] an even number of times on each wire).

Then, with probability 1− 𝑜(1) as 𝑛→∞ the shortest classical refutation contained in 𝑚 has

length at least 𝑒𝑛/𝐶2.

217

Proof. We again use the first moment method, paralleling the argument used in the proof of

Theorem 5.3.11. We find
(︀
𝐶𝑛
ℓ

)︀
ways of choosing ℓ queries from 𝑀 , and ((ℓ− 1)!!)3 ways of

pairing up letters on all rows once ℓ queries have been chosen (if ℓ is even). As before, each

pair of letters is equivalent independently with probability (1/𝑛) and so by the union bound

the probability of a classical refutation of length less than ℓ is bounded by

ℓ/2∑︁
𝑟=1

[︂(︂
𝐶𝑛

2𝑟

)︂
((2𝑟 − 1)!!)3(1/𝑛)3𝑟

]︂
≤

ℓ/2∑︁
𝑟=1

[︀
(𝐶𝑛)2𝑟 (2𝑟𝑟!) (1/𝑛)3𝑟

]︀
(5.3.24)

=

ℓ/2∑︁
𝑟=1

[︀
𝑟!
(︀
2𝐶2/𝑛

)︀𝑟]︀ (5.3.25)

≤
ℓ/2∑︁
𝑟=1

[︀
𝑒
√
𝑟
(︀
2𝐶2𝑟/(𝑒𝑛)

)︀𝑟]︀
. (5.3.26)

Noting this sum is 𝑜(1) provided ℓ𝐶2/𝑒𝑛 < 1 completes the proof.

Returning to the informal proof of Theorem 5.1.5, the natural approach is to try to

generalize the proof of Theorem 5.3.11 by allowing repeated queries and repeating the union

bound analysis. Unfortunately, when queries are repeated not all cancellations are valid

independent of one another, which makes it dramatically more difficult to compute the

probability of a given cancellation pattern being valid. To accommodate this, we require

additional terminology for discussing the different types of cancellations that can occur when

a cancellation interacts with a word containing repeated queries. This is introduced below,

along with a brief discussion of how these cancellations are accounted for in the full proof.

Definition 5.3.13. Given a cancellation pattern on a word made up of queries from a random

𝑘-XOR game, define:

• The set of independent cancellations to be a maximal set of cancellations so that

each cancellation is valid independent of all others in the set with probability 1/𝑛.

• The set of dependent cancellations to be the set of cancellations which are valid with

probability 1 if all independent cancellations are valid.

• The set of self cancellations to be the set of all cancellations which are valid with

218

probability 1 independent of all other cancellations (these occur when a query is canceled

with itself).

A full cancellation pattern is a cancellation pattern where cancellations are specified to be

independent, dependent or self ahead of time, and this full cancellation pattern is valid on a

word iff the sets defined above are compatible with the way the cancellations are labeled ahead

of time.

Note there is some freedom in which cancellations are chosen as dependent vs. independent.

This ambiguity allows us to simplify the full proof, and is left in intentionally.8 Semi-formally,

we can now give the proof of Theorem 5.1.5 as follows:

Proof (semi-formal). Our goal is to show that, under the conditions of Theorem 5.1.5, any

cancellation pattern on a word consisting of a small number of queries is valid with vanishing

probability. We restrict our attention to minimum length refutations: refutations for which

no subset of queries can be removed while leaving a valid refutation.

We then attempt a union bound argument in which we identify the various ways queries

can interact with cancellation patterns in the refutation. We begin by segmenting the

queries in the refutation into maximal strings of queries connected via dependent or self

cancellations. We call these phrases. By definition, the phrases themselves must be connected

by independent cancellations.

We can bound the number of ways of building a phrase of length 𝑘. The first query in

a phrase can be a picked arbitrarily from a set of size 𝑚. After that, a query connected to

a known query by a self-cancellation is fixed exactly, and concentration inequalities can be

used to show that a query connected to a fixed query via a dependent cancellation is drawn

from a set of size at most 𝑚 log(𝑛)/𝑛.9 Then the ways of choosing queries such that they

form the given phrase is bounded by

𝑚

(︂
𝑚 log(𝑛)

𝑛

)︂𝑘−1

. (5.3.27)

8Of course, it could also be removed by fixing a convention for the cancellations which are labeled
independent (i.e. choosing the lexicographically minimal set).

9Proved in Lemma 5.3.16

219

We next place some restrictions on the number and type of phrases that can occur in

a refutation. By minimality, each phrase must contain at least one site involved in an

independent cancellation (otherwise the phrase is “redundant”); then by parity each phrase

must contain two. We also get a bound on the number of queries appearing an odd number of

times. Removing all queries that occur an even number of times, and leaving only one copy

of each query that occurs an odd number will produce a classical refutation. Theorem 5.3.12

then tells us that with probability 1− 𝑜(1), any valid refutation must have 𝑒𝑛/𝐶2 queries

which occur an odd number of times.

We then use a result from the technical proof: for 𝑝 phrases and 𝑠 sites with independent

cancellations,

𝑠 ≥ 2𝑝+ 𝑒𝑛/4𝐶2. (5.3.28)

Using (5.3.27) to bound the number of ways each phrase occurs, and a factor of 1/
√
𝑛 per site

in an independent cancellation (making 1/𝑛 per independent cancellation) we find that any

full length-ℓ cancellation pattern is valid on some word of ℓ queries with probability at most

𝑚𝑝

(︂
𝑚 log(𝑛)

𝑛

)︂ℓ−𝑝(︂
1

𝑛

)︂𝑠/2

≤ 𝑚𝑝

(︂
𝑚 log(𝑛)

𝑛

)︂ℓ−𝑝(︂
1

𝑛

)︂𝑝+𝑒𝑛/8𝐶2

(5.3.29)

≤
(︂

1

log(𝑛)

)︂𝑝(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ (5.3.30)

≤
(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ . (5.3.31)

Adding in a union bound over all possible length ℓ full cancellation patterns, we find the

probability of a valid length ℓ cancellation pattern existing is at most

𝒞3ℓ/233ℓ/2
(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ ≤ 123ℓ/2
(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ (5.3.32)

≤
(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(42𝐶 log(𝑛))ℓ . (5.3.33)

Setting 𝑚/𝑛 = 𝐶 and following through the geometric series we find the probability of a

220

refutation of length less than or equal to ℓ existing is at most

42𝐶 log(𝑛)ℓ+1

𝑛𝑒𝑛/8𝐶2 + 𝑜(1) (5.3.34)

where the 𝑜(1) term comes from the use of results 5.3.12 and 5.3.16 in our proof. If follows

that the total probability of refutation is 𝑜(1) unless

ℓ ≥ 𝑒𝑛 log(𝑛)

8𝐶2 log(42𝐶 log(𝑛))
− 1 (5.3.35)

completing the proof of Theorem 5.1.5. ≈�

While the proof above was hopefully convincing, it wasn’t completely formal. A more

careful proof that clearly discusses the various events the union bound is constructed over is

given below.

5.3.4 Lower Bound on Refutation Length (Full Proof)

For the most part, the key ideas used in the proof of Theorem 5.1.5 are well covered in

Section 5.3.3. The remaining details are primarily technical, but somewhat involved. We

begin by formalizing the definition of a phrase, used informally above.

Definition 5.3.14. Consider a full cancellation pattern consisting of dependent, self and

independent cancellations. Let 𝐺 be a graph with vertices corresponding to dependent or self

cancellations in the cancellation pattern. Add an edge between vertices if the corresponding

cancellations overlap at some location. The sets of cancellations corresponding to connected

components in this graph are called phrases.

Our analysis will require language specific to the ways in which queries and phrases can

occur in a refutation. That language is introduced below.

Definition 5.3.15. Given a refutation, we define the following sets:

• 𝐿𝑟 is the set of locations located at the leftmost point in some phrase. We call queries

at these locations roots.

221

• 𝐿𝑐 is the set of all locations in phrases which are not the leftmost point of a phrase.

Queries at these locations are called constrained queries.

• 𝑃 is the set of all phrases in the cancellation pattern.

• 𝑃𝑟 ⊆ 𝑃 is the set of all phrases for which every location in the phrase contains only

self or dependent cancellations. Phrases in 𝑃𝑟 are called redundant phrases.

• 𝑆 is the set of all sites in independent cancellations.

Redundant phrases are so named because removing all queries contained in them still leaves a

valid refutation. For this reason minimal length refutations are defined to be refutations

that do not contain any redundant phrases.

We now prove a few basic properties about the structure of refutations constructed from

random queries.

Lemma 5.3.16. Let 𝑚 = 𝐶𝑛 for some constant 𝐶. Then, with probability 1 − 𝑜(1), all

refutations for a random 3-XOR game on 𝑚 queries with 𝑛 variables will satisfy

1. The refutation contains at least 𝑒𝑛/𝐶2 distinct queries occurring an odd number of

times.

2. The cancellations can be labeled so that |𝑆| ≥ 2|𝑃 |+ 𝑒𝑛/4𝐶2.

3. For all queries 𝑞𝑖: the refutation implies that 𝑞𝑖 cancels with at most 𝐶 log(𝑛) other

queries on each wire.

Proof. We prove 1 by appealing to [27]. Note we can obtain a classical refutation from a

quantum refutation by taking a single copy of each query repeated an odd number of times.

Then, we know from [27] (alternately Theorem 5.3.12) that there are 𝑒𝑛/𝐶2 distinct queries

repeated an odd number of times in the quantum refutation.

To prove 2, we first note that every distinct query occurring an odd number of times must

be involved in at least three independent cancellations (one per wire) across all locations

where it appears, resulting in a total count of 3𝑒𝑛/𝐶2 cancellations. We will show that we can

222

relabel independent and dependent cancellations such that at least 1/4 of these independent

cancellations are all contained in at most 𝑒𝑛/4𝐶2 phrases.

To do so, we begin by making a list of all queries occurring an odd number of times

in our refutation, and consider a cancellation pattern on which only the self-cancellations

have been fixed. We refer to a phrase induced by these self cancellations as a subphrase.

We now extract a query from the list, pick an odd length subphrase involving that query

(this subphrase may have length one), and mark three non-self cancellations coming from

that subphrase as independent (one per wire). Next, we remove from our list any queries

connected to this subphrase by the newly labeled independent cancellations. Removing the

connected queries from the list ensures that any non-self cancellations involving elements

remaining on our list will be independent from the cancellations we have labeled so far. We

then repeat this process until we have exhausted all queries on our list, and then label the

remaining cancellations in any valid manner.

Over this process, we remove at most three additional queries from the list for every

subphrase we identify, so when we have exhausted all queries on this list (but before we have

labeled any dependent cancellations), we will have at 𝑒𝑛/4𝐶2 subphrases containing at least

3𝑒𝑛/4𝐶2 independent cancellations. Each of these subphrases is contained in a phrase (since

all locations are connected via self-cancellations) and labeling the remaining cancellations

cannot change the cancellations already labeled as independent, so we have found at least

3𝑒𝑛/4𝐶2 independent cancellations contained in at most 𝑒𝑛/4𝐶2 phrases.

From here the proof of 2 is straightforward: by minimality, each phrase contains must

contain at least one independent cancellation, and hence by parity each phrase must contain

two. Furthermore, we have already identified a special set of at most 𝑒𝑛/4𝐶2 phrases which

contain at least 3𝑒𝑛/4𝐶2 independent cancellations. Letting 𝑝1 be the number of phrases

identified so far, and 𝑝2 be the number of phrases not contained in the set already identified,

we see

|𝑆| ≥ 2𝑝2 +
3𝑒𝑛

4𝐶2
≥ 2(𝑝2 + 𝑝1) +

𝑒𝑛

4𝐶2
= 2|𝑃 |+ 𝑒𝑛

4𝐶2
(5.3.36)

as desired.

223

Finally, 3 follows from concentration of measure. We define 𝑦(𝑗) to be the random variable

counting the number of queries with letter 𝑗 on the top wire, so

𝑦(𝑗) =
⃒⃒⃒
{𝑖 : 𝑞(1)𝑖 = 𝑗}

⃒⃒⃒
. (5.3.37)

It is then clear that

E𝑦(𝑗) = 𝑚/𝑛 = 𝐶. (5.3.38)

By a Chernoff bound

p𝑦(𝑗) ≥ 𝐶 log(𝑛) ≤ 𝑒−(log
2(𝑛)−1)𝐶/3𝑛 (5.3.39)

≤ 1/𝑛𝐶 log(𝑛)/3 = 𝑜(1) (5.3.40)

and so a union bound argument gives the result for large 𝑛.

The proof of Theorem 5.1.5 will follow from our observations in Lemma 5.3.16 and first

moment arguments. To make clear the analysis, we first present a simple algorithm for

generating minimal length refutations with length ℓ from a random set of queries 𝐺.

Algorithm 5.3.17 (Refutation generator).

input: A set of 𝑚 queries, with 𝑚 = 𝐶𝑛, and parameter ℓ

output: A minimal refutation of length ℓ, or failure

1. Initialize ℓ locations where queries might be placed.

2. Randomly generate a cancellation pattern consisting of self, dependent and independent

cancellations on the ℓ locations. Identify the phrases in this cancellation pattern.

3. If there is any redundant phrase, return failure: not minimal.

4. Randomly map queries to locations.

(a) If the independent cancellations require there to be more than 𝐶 log(𝑛) queries

which agree on any wire, or if the cancellation pattern would imply |𝑆| ≤ 2|𝑃 |+

224

𝑒𝑛/4𝐶2, return failure: improbable cancellation.

(b) If self-cancellations occur between non-identical queries, or dependent cancellations

are not implied by independent cancellations, return failure: improper labeling.

5. If any independent cancellations occur between queries which disagree on the wire

where the cancellation is occurring, return failure: invalid cancellation.

6. Otherwise, return success along with the cancellation pattern and query mapping.

We prove Theorem 5.1.5 by proving two basic facts about Algorithm 5.3.17. Firstly, we

show that, with high probability10, there exists a random seed for which Algorithm 5.3.17

finds a refutation provided one exists. Secondly, we show the expected number of paths on

which Algorithm 5.3.17 returns success is small unless ℓ is sufficiently large. We will prove

these claims separately.

Theorem 5.3.18 (Correctness). Algorithm 5.3.17 only returns success when it finds a valid

minimum length refutation. Furthermore, when the input queries are randomly selected,

with probability 1− 𝑜(1) the algorithm has a positive probability of finding all valid length ℓ

refutations.

Proof. The first claim is clear from inspection of the algorithm. The second follows from

Lemma 5.3.16 and further inspection. In particular, the only refutations not found by the

algorithm are those which require greater than 𝐶 log(𝑛) queries to agree on a wire, or those

with a cancellation pattern for which

|𝑆| ≤ 2|𝑃 |+ 𝑒𝑛/4𝐶2. (5.3.41)

Lemma 5.3.16 tells us that these cases occur with probability 𝑜(1) for randomly chosen

queries.

Theorem 5.3.19. Given a randomly chosen set of 𝑚 = 𝐶𝑛 queries as input, the expected

number of minimal length ℓ refutations which can be found by Algorithm 5.3.17 is upper

10It should be stressed that this with high probability refers to the randomness associated with choosing
the queries provided as input to the algorithm, not the randomness associated with the algorithm’s run.

225

bounded by

(1/𝑛)𝑒/2𝐶
2

(42𝐶 log(𝑛))ℓ. (5.3.42)

In particular, we expect to find no refutations until

ℓ = Ω(𝑛 log(𝑛)/ log(log(𝑛))) (5.3.43)

Proof. We give an overcounting of the number of possible paths Algorithm 5.3.17 can take.

We first note that a path can be completely specified by a choice of cancellation pattern and

mapping of queries to locations.

Using our rough bound on the Catalan numbers, there are at most 𝒞3ℓ/2 ≤ 43ℓ/2 different

ways of pairing up all sites for cancellations. Since each cancellation can be one of three

types, we find a total of

33ℓ/243ℓ/2 ≤ 42ℓ (5.3.44)

possible cancellation patterns.

We next give a rough (over)counting of the number of ways queries can be mapped to

locations such that the cancellation pattern is not rejected in step 4 of the algorithm.

In particular, we allow arbitrary queries to be mapped to locations in 𝐿𝑟. After this

mapping, we note all remaining locations are in 𝐿𝑐. Assuming the cancellation pattern was

not rejected in step 4a, a location connected to a fixed query by a self cancellation can only

have a single query mapped to it, and a location connected to a fixed query by a dependent

cancellation can have at most 𝐶 log(𝑛) queries mapped. In total then, we find

𝑚|𝐿𝑟| (𝐶 log(𝑛))|𝐿𝑐| = 𝑚|𝑃 | (𝐶 log(𝑛))|𝐿𝑐| (5.3.45)

possible mappings from queries to locations.

Finally, we bound the probability that our given query assignment doesn’t fail in step 5

of the algorithm. Noting independent cancellations are, by definition, independent we find

226

the probability of failure is given by

(︂
1

𝑛

)︂|𝑆|/2
. (5.3.46)

Since our cancellation pattern doesn’t contain any redundant phrases, and was not rejected

as improbable by the algorithm we also have

|𝑆| ≥ 2|𝑃 |+ 𝑒𝑛/4𝐶2. (5.3.47)

The overall expected number of successes for a given cancellation pattern can then be bounded

by:

𝑚|𝑃 |(𝐶 log(𝑛))|𝐿𝑐|
(︂
1

𝑛

)︂|𝑃 |+𝑒𝑛/8𝐶2

= 𝑚|𝑃 |
(︂
𝑚 log(𝑛)

𝑛

)︂ℓ−|𝑃 |(︂
1

𝑛

)︂|𝑃 |+𝑒𝑛/8𝐶2

(5.3.48)

≤
(︂

1

log(𝑛)

)︂|𝑃 |(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ (5.3.49)

≤
(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(𝐶 log(𝑛))ℓ (5.3.50)

resulting in an overall bound on the expected number of successes for any length ℓ of

(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(42𝐶 log(𝑛))ℓ. (5.3.51)

Summing the geometric series, the expected total number of refutations of length less than ℓ

can then be bounded above by

(︂
1

𝑛

)︂𝑒𝑛/8𝐶2

(42𝐶 log(𝑛))ℓ+1 − 1

(42𝐶 log(𝑛))− 1
. (5.3.52)

227

We see this is 𝑜(1)11 unless

ℓ ≥ 𝑒𝑛 log(𝑛)

8𝐶2 log(log(𝑛))
− 𝑜

(︂
𝑛 log(𝑛)

log log(𝑛)

)︂
, (5.3.53)

and the desired result follows from Markov’s inequality.

To close this section, we note Theorem 5.1.5 is immediate from Theorems 5.3.18 and

5.3.19.

11As a word of caution: it should be noted the (𝑒𝑛 log(𝑛)) /
(︀
8𝐶2 log(log(𝑛))

)︀
only dominates when 𝐶 is

taken to be a constant with respect to 𝑛. When 𝐶 scales with 𝑛 the above analysis will still work, but requires
more care in computing the final bound.

228

Chapter 6

Conclusion and Open Questions

There are two points of view one can take when summarizing the results in this thesis. Firstly,

this can be understood as a thesis about XOR games. From this point of view, the key

results of this thesis are contained in Chapters 3 and 4 and the random games section of

Chapter 5, where symmetric, 3-player, and random XOR games are analyzed. The subgroup

membership (and relatedly, the noPREF) characterizations of XOR games with perfect

commuting operator value play a key role in all these arguments, as do MERP strategies,

which emerge as optimal strategies for a surprisingly large class of games (though not all

games – see 5.2.1). This point of view also leads to a natural class of open questions: while

the techniques in this thesis work for a large class of games they also fail on others. What

can we say about strategies for those games? Is there some generalization of MERP or the

noPREF condition that works for 4 player or, even better, 𝑘 player XOR Games? Given

recent results about the complexity of optimal strategy for some nonlocal games [36], it is

natural to ask how rich the class of optimal strategies for XOR games can get.

A second, complimentary view of this thesis is as a thesis that lays out a blueprint for

an algebraic study of nonlocal games. A similar blueprint has already been laid out, and

used to great effect, in the study of synchronous games [49, 34]. This thesis begins the

process of generalizing this blueprint to non-synchronous games. From this point of view

Chapter 2 is foundational. Also important is the view of the noPREF condition as subgroup

membership mod 𝐾 discussed in Chapter 4, and the MERP-PREF duality discussed in

Sections 3.3.5 and 3.5.3. From this point of view a foundational question remains open:

229

we have an example where a simplified algebraic certificate (subgroup membership mod 𝐾,

or noPREF) is necessary and sufficient to guarantee the existence of perfect commuting

operator strategies, and consequently a simple class of tensor product strategies (MERP)

can be shown to be optimal. Yet all parts of this example, including MERP strategies, the

noPREF condition, and MERP-PREF duality, were constructed in a very ad-hoc manner. Is

there a more general mathematical principle that could have guided us to this example? And

can similar techniques be applied to other nonlocal games? Answer these questions may lead

to progress on the XOR questions discussed above, and/or advance the study of nonlocal

games generally.

A final set of open questions concern potential applications of the games and strategies

developed in this thesis. One example of this is short depth circuits, where measurements

similar to MERP measurements have been used to prove a short depth circuit separation

[67]. More generally, XOR games have played a key role in results in both foundational

physics [52] and theoretical computer science [53]. It is likely that XOR games, and nonlocal

games generally will be at the center of many advances yet to come.

230

Bibliography

[1] Jonathan Barrett, Daniel Collins, Lucien Hardy, Adrian Kent, and Sandu Popescu.
Quantum nonlocality, bell inequalities, and the memory loophole. Physical Review A,
66(4):042111, 2002. [p. 25]

[2] Jonathan Barrett, Lucien Hardy, and Adrian Kent. No signaling and quantum key
distribution. Physical review letters, 95(1):010503, 2005. [p. 70]

[3] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of
Applied Probability, 2(2):294–313, 1992. [p. 104]

[4] John S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195,
1964. [pp. 17, 24]

[5] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow
circuits. Science, 362(6412):308–311, 2018. [p. 18]

[6] Jop Briet, Harry Buhrman, Troy Lee, and Thomas Vidick. Multiplayer xor games and
quantum communication complexity with clique-wise entanglement. arXiv preprint
arXiv:0911.4007, 2009. [p. 128]

[7] Jop Briët and Thomas Vidick. Explicit lower and upper bounds on the entangled value
of multiplayer xor games. Communications in Mathematical Physics, 321(1):181–207,
2013. [p. 127]

[8] Jop Briët and Thomas Vidick. Explicit lower and upper bounds on the entangled value
of multiplayer XOR games. Communications in Mathematical Physics, 321(1):181–207,
2013. [p. 193]

[9] Jaka Cimpric, Bill Helton, Scott McCullough, and Christopher Nelson. A non-
commutative real nullstellensatz corresponds to a non-commutative real ideal; algorithms.
arXiv preprint arXiv:1105.4150, 2011. [pp. 54, 55, 56, 57]

[10] Jakob Cimprič, J William Helton, Igor Klep, Scott McCullough, and Christopher
Nelson. On real one-sided ideals in a free algebra. Journal of Pure and Applied Algebra,
218(2):269–284, 2014. [p. 54]

[11] Boris S Cirel’son. Quantum generalizations of Bell’s inequality. Letters in Mathematical
Physics, 4(2):93–100, 1980. [p. 71]

231

[12] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed
experiment to test local hidden-variable theories. Physical review letters, 23(15):880,
1969. [pp. 24, 33]

[13] Richard Cleve, Peter Hoyer, Benjamin Toner, and John Watrous. Consequences and
limits of nonlocal strategies. In CCC ’04, pages 236–249, 2004. [p. 70]

[14] Richard Cleve, Li Liu, and William Slofstra. Perfect commuting-operator strategies for
linear system games. Journal of Mathematical Physics, 58(1):012202, 2017. [pp. 137,
140, 142]

[15] Richard Cleve and Rajat Mittal. Characterization of binary constraint system games.
In International Colloquium on Automata, Languages, and Programming, pages 320–331.
Springer, 2014. [pp. 80, 94]

[16] Andrea Coladangelo and Jalex Stark. Unconditional separation of finite and infinite-
dimensional quantum correlations. arXiv preprint arXiv:1804.05116, 2018. [p. 24]

[17] Roger Colbeck. Quantum And Relativistic Protocols For Secure Multi-Party Computation.
PhD thesis, University of Cambridge, 2006. [p. 70]

[18] BIG Bell Test Collaboration et al. Challenging local realism with human choices. Nature,
557(7704):212–216, 2018. [p. 18]

[19] Andrew C Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie Wehner. The
quantum moment problem and bounds on entangled multi-prover games. In 2008 23rd
Annual IEEE Conference on Computational Complexity, pages 199–210. IEEE, 2008.
[pp. 31, 69]

[20] Andrew C. Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie Wehner. The
quantum moment problem and bounds on entangled multi-prover games. In CCC ’08,
pages 199–210, 2008. [pp. 71, 73, 90]

[21] Olivier Dubois and Jacques Mandler. The 3-XORSAT threshold. Comptes Rendus
Mathématique, 335(11):963–966, 2002. [pp. 72, 207, 209]

[22] Artur K Ekert. Quantum cryptography based on Bell’s theorem. Physical review letters,
67(6):661, 1991. [p. 70]

[23] Andrew S Friedman, Alan H Guth, Michael JW Hall, David I Kaiser, and Jason
Gallicchio. Relaxed bell inequalities with arbitrary measurement dependence for each
observer. Physical Review A, 99(1):012121, 2019. [p. 18]

[24] Jason Gallicchio, Andrew S Friedman, and David I Kaiser. Testing bell’s inequality
with cosmic photons: Closing the setting-independence loophole. Physical review letters,
112(11):110405, 2014. [p. 18]

[25] Jingliang Gao. Quantum union bounds for sequential projective measurements. Physical
Review A, 92(5):052331, 2015. [p. 95]

232

[26] Daniel M Greenberger, Michael A Horne, Abner Shimony, and Anton Zeilinger. Bell’s
theorem without inequalities. American Journal of Physics, 58(12):1131–1143, 1990. [pp.
75, 113]

[27] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for
the parity. Theoretical Computer Science, 259:613–622, 2001. [pp. 81, 89, 91, 92, 207,
217, 222]

[28] Michael JW Hall. Local deterministic model of singlet state correlations based on relaxing
measurement independence. Physical review letters, 105(25):250404, 2010. [p. 18]

[29] Johannes Handsteiner, Andrew S Friedman, Dominik Rauch, Jason Gallicchio, Bo Liu,
Hannes Hosp, Johannes Kofler, David Bricher, Matthias Fink, Calvin Leung, et al.
Cosmic bell test: measurement settings from milky way stars. Physical review letters,
118(6):060401, 2017. [p. 18]

[30] Aram Harrow, Anand Natarajan, and Xiaodi Wu. Limitations of semidefinite programs
for separable states and entangled games. 2016. [p. 193]

[31] Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001. [p. 78]

[32] J Helton and Scott McCullough. A positivstellensatz for non-commutative polynomials.
Transactions of the American Mathematical Society, 356(9):3721–3737, 2004. [pp. 31, 69]

[33] J William Helton, Scott McCullough, and Mihai Putinar. Strong majorization in a free
*-algebra. Mathematische Zeitschrift, 255(3):579–596, 2007. [p. 53]

[34] William Helton, Kyle P Meyer, Vern I Paulsen, and Matthew Satriano. Algebras,
synchronous games and chromatic numbers of graphs. arXiv preprint arXiv:1703.00960,
2017. [pp. 143, 229]

[35] Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, pages 885–898. ACM, 2016. [pp.
70, 71]

[36] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Mip*=
re. arXiv preprint arXiv:2001.04383, 2020. [pp. 23, 24, 35, 229]

[37] Tony Johansson. The giant component of the random bipartite graph. Master’s thesis,
Chalmers University of Technology, 2012. [p. 210]

[38] David I Kaiser. Tackling loopholes in experimental tests of bell’s inequality. arXiv
preprint arXiv:2011.09296, 2020. [p. 18]

[39] Julia Kempe, Oded Regev, and Ben Toner. Unique games with entangled provers are
easy. SIAM Journal on Computing, 39(7):3207–3229, 2010. [p. 72]

233

[40] Calvin Leung, Amy Brown, Hien Nguyen, Andrew S Friedman, David I Kaiser, and
Jason Gallicchio. Astronomical random numbers for quantum foundations experiments.
Physical Review A, 97(4):042120, 2018. [p. 18]

[41] Ming-Han Li, Cheng Wu, Yanbao Zhang, Wen-Zhao Liu, Bing Bai, Yang Liu, Weijun
Zhang, Qi Zhao, Hao Li, Zhen Wang, et al. Test of local realism into the past without
detection and locality loopholes. Physical review letters, 121(8):080404, 2018. [p. 18]

[42] Markus Lohrey. The rational subset membership problem for groups: a survey. In
Groups St Andrews, volume 422, pages 368–389, 2013. [p. 188]

[43] Klaus Madlener and Birgit Reinert. String rewriting and gröbner bases—a general
approach to monoid and group rings. In Symbolic rewriting techniques, pages 127–180.
Springer, 1998. [pp. 65, 66]

[44] Ralph McKenzie and Richard J Thompson. An elementary construction of unsolvable
word problems in group theory. In Studies in Logic and the Foundations of Mathematics,
volume 71, pages 457–478. Elsevier, 1973. [p. 36]

[45] KA Mikhailova. The occurrence problem for direct products of groups. Matematicheskii
Sbornik, 112(2):241–251, 1966. [pp. 131, 143]

[46] Miguel Navascués, Stefano Pironio, and Antonio Acín. A convergent hierarchy of
semidefinite programs characterizing the set of quantum correlations. New J. Phys.,
10(7):073013, 2008. [pp. 31, 32, 34, 71, 73, 90, 94]

[47] Miguel Navascués, Stefano Pironio, and Antonio Acín. A convergent hierarchy of
semidefinite programs characterizing the set of quantum correlations. New Journal of
Physics, 10(7):073013, 2008. [p. 129]

[48] Petr Sergeevich Novikov. Algorithmic unsolvability of the word problem in group theory.
Journal of Symbolic Logic, 23(1), 1958. [p. 36]

[49] Vern I Paulsen, Simone Severini, Daniel Stahlke, Ivan G Todorov, and Andreas Winter.
Estimating quantum chromatic numbers. Journal of Functional Analysis, 270(6):2188–
2222, 2016. [p. 229]

[50] David Pérez-García, Michael M Wolf, Carlos Palazuelos, Ignacio Villanueva, and Mar-
ius Junge. Unbounded violation of tripartite bell inequalities. Communications in
Mathematical Physics, 279(2):455–486, 2008. [pp. 127, 128, 136]

[51] Boris Pittel and Gregory B Sorkin. The satisfiability threshold for k-xorsat. Combina-
torics, Probability and Computing, 25(2):236–268, 2016. [pp. 207, 209]

[52] Dominik Rauch, Johannes Handsteiner, Armin Hochrainer, Jason Gallicchio, Andrew S
Friedman, Calvin Leung, Bo Liu, Lukas Bulla, Sebastian Ecker, Fabian Steinlechner,
et al. Cosmic bell test using random measurement settings from high-redshift quasars.
Physical Review Letters, 121(8):080403, 2018. [pp. 18, 230]

234

[53] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496(7446):456–460, 2013. [pp. 18, 230]

[54] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496(7446):456–460, 2013. [p. 70]

[55] NS Romanovskii. Some algorithmic problems for solvable groups. Algebra and Logic,
13(1):13–16, 1974. [p. 188]

[56] Yurii Savchuk and Konrad Schmüdgen. Unbounded induced representations of *-algebras.
Algebras and Representation Theory, 16(2):309–376, 2013. [pp. 59, 63]

[57] Volkher B Scholz and Reinhard F Werner. Tsirelson’s problem. arXiv preprint
arXiv:0812.4305, 2008. [pp. 22, 23]

[58] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
1986. [pp. 112, 120]

[59] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from
non-local games, 2016. [pp. 71, 72]

[60] William Slofstra. The set of quantum correlations is not closed. In Forum of Mathematics,
Pi, volume 7. Cambridge University Press, 2019. [pp. 20, 22, 24]

[61] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from
non-local games. Journal of the American Mathematical Society, 33(1):1–56, 2020. [p.
144]

[62] R. P. Stanley. Enumerative Combinatorics, vol. 2. Cambridge University Press, 1999.
Exercise 6.36 and references therein. [p. 217]

[63] Boris S Tsirel’son. Quantum analogues of the Bell inequalities. The case of two spatially
separated domains. Journal of Mathematical Sciences, 36(4):557–570, 1987. [pp. 29, 34,
71]

[64] Umesh Vazirani and Thomas Vidick. Fully device-independent quantum key distribution.
Physical review letters, 113(14):140501, 2014. [p. 70]

[65] Thomas Vidick. Three-player entangled XOR games are NP-hard to approximate. In
Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, FOCS ’13, pages 766–775. IEEE Computer Society, 2013. [pp. 71, 72]

[66] Adam Bene Watts, Aram W Harrow, Gurtej Kanwar, and Anand Natarajan. Algorithms,
bounds, and strategies for entangled xor games. arXiv preprint arXiv:1801.00821, 2018.
[pp. 129, 130, 133, 183, 184]

[67] Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. Exponential
separation between shallow quantum circuits and unbounded fan-in shallow classical
circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 515–526, 2019. [pp. 18, 230]

235

	Introduction and Background
	Nonlocal Games and Quantum Correlations
	Correlation Sets
	Classical Correlations
	Tensor Product Correlations
	Commuting Operator Correlations
	Separations Between Correlation Sets

	Nonlocal Games
	Value of a Nonlocal Game
	Nonlocal Games as Tests of Resources
	The Game Functional
	Perfect Games
	XOR Games

	Multipartite Correlations

	Bounds on the Set of Correlations
	Brute Force Lower Bound on Tensor Product Correlations
	ncSoS Upper Bound on Commuting Operator Correlations
	Computing the Value of a Nonlocal Game

	Mathematical Tools
	Groups, Algebras, and Group Algebras
	Groups
	Group Presentations
	Algebras
	Group Algebras
	Subgroups, Subalgebras, Ideals and Left Ideals

	Representations

	Results in this Thesis

	Algebraic Framework
	Introduction
	Nonlocal Game Definitions
	Technical Definitions
	Commuting Operator Strategies
	Games and their Commuting Operator Value

	The Algebraic Picture
	Universal Game Algebra
	Projection Generators
	Signature Matrix Generators
	Cyclic Unitary Generators

	Strategies as Representations of the Universal Game Algebra
	An Algebraic Definition of the Commuting Operator Value of a Game

	Examples of games
	XOR Games

	Equations Corresponding to Perfect Games

	NullSS for Perfect Nonlocal Games
	Background on NullSS
	Hilbert's NullSS
	Noncommutative NullSS

	A general noncommutative NullSS
	Intuition behind the proof of Theorem 2.2

	NullSS and Perfect Games

	NullSS without SOS and Subgroup Membership
	Conditional Expectations and SOS Projections
	The NC Toric Ideal Group Algebra Simplification
	Relating the Subalgebra and Subgroup Membership Problems
	NC Toric Left NullSS without SOS Terms

	NullSS for Perfect Unitary Games

	Chapter Summary

	Refutations, Symmetric XOR Games, and MERP Strategies
	Background
	Results
	Technical Overview
	Strategies
	Classical Strategies
	Commuting Operator Strategies

	Refutations
	Games with no Parity-Permuted Refutations (noPREF Games)
	Maximal Entanglement, Relative Phase (MERP) Strategies
	MERP - PREF Duality
	Implications

	Refutations
	Upper Bound on Value
	Tools for Constructing Refutations
	Combinatorics
	PREFs and Shuffle Gadgets

	Algorithm for Symmetric Games

	MERP Strategies
	Generalizing GHZ
	MERP Strategy Value
	MERP - PREF Duality

	Chapter Summary

	3XOR Games
	A Detailed Overview
	Background and Notation
	Games
	Strategies
	Bias.
	Groups

	Precise Statements of Main Results
	An algebraic characterization of perfect XOR Games
	Sufficient conditions for perfect commuting operator value
	The sufficient conditions are necessary
	Bounds on the bias ratio

	Technical Details
	Definitions
	Recap
	Projections and Clause Graphs

	Comparison with Linear Systems Games
	Connectivity of the Clause Graph
	Proof of modding lemma
	Projectors and simple right inverse.
	Identity preserving right inverse.
	Clearing the G1 and G2 subgroups
	Gadgets for word processing
	Final Proof

	Properties of K and its Interactions
	Properties of K
	Canonical form for monomials mod K

	The interaction of phi sigma and phi alpha with K
	Equivalence between a PREF and modded subgroup membership
	MERP as a mod K strategy

	Subgroup Membership
	Chapter Summary

	Specific Families of Games and Random Games
	Results
	Specific Games
	123 Game
	Value 1 Strategy

	Capped GHZ (CG) Games
	Asymptotically Perfect Difference (APD) Games
	Commuting Operater Value
	Classical Value

	Random Games
	SAT Phase
	UNSAT Phase
	Lower Bound on Refutation Length (Sketch)
	Lower Bound on Refutation Length (Full Proof)

	Conclusion and Open Questions

