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Abstract

Language understanding research is held back
by a failure to relate language to the physical
world it describes and to the social interactions
it facilitates. Despite the incredible effective-
ness of language processing models to tackle
tasks after being trained on text alone, success-
ful linguistic communication relies on a shared
experience of the world. It is this shared expe-
rience that makes utterances meaningful.

Natural language processing is a diverse field,
and progress throughout its development has
come from new representational theories, mod-
eling techniques, data collection paradigms,
and tasks. We posit that the present success
of representation learning approaches trained
on large, text-only corpora requires the paral-
lel tradition of research on the broader physi-
cal and social context of language to address
the deeper questions of communication.

Improvements in hardware and data collection
have galvanized progress in NLP across many
benchmark tasks. Impressive performance has been
achieved in language modeling (Radford et al.,
2019; Zellers et al., 2019b; Keskar et al., 2019) and
span-selection question answering (Devlin et al.,
2019; Yang et al., 2019b; Lan et al., 2020) through
massive data and massive models. With models
exceeding human performance on such tasks, now
is an excellent time to reflect on a key question:

Where is NLP going?

In this paper, we consider how the data and world
a language learner is exposed to define and con-
strains the scope of that learner’s semantics. Mean-
ing does not arise from the statistical distribution
of words, but from their use by people to communi-
cate. Many of the assumptions and understandings
on which communication relies lie outside of text.
We must consider what is missing from models

Meaning is not a unique property of language, but a
general characteristic of human activity ... We cannot
say that each morpheme or word has a single or central
meaning, or even that it has a continuous or coherent
range of meanings ... there are two separate uses and
meanings of language – the concrete ... and the abstract.

Zellig S. Harris (Distributional Structure 1954)

trained solely on text corpora, even when those cor-
pora are meticulously annotated or Internet-scale.

You can’t learn language from the radio. Nearly
every NLP course will at some point make this
claim. The futility of learning language from lin-
guistic signal alone is intuitive, and mirrors the
belief that humans lean deeply on non-linguistic
knowledge (Chomsky, 1965, 1980). However, as
a field we attempt this futility: trying to learn lan-
guage from the Internet, which stands in as the
modern radio to deliver limitless language. In this
piece, we argue that the need for language to attach
to “extralinguistic events" (Ervin-Tripp, 1973) and
the requirement for social context (Baldwin et al.,
1996) should guide our research.

Drawing inspiration from previous work in NLP,
Cognitive Science, and Linguistics, we propose the
notion of a World Scope (WS) as a lens through
which to audit progress in NLP. We describe five
WSs, and note that most trending work in NLP
operates in the second (Internet-scale data).

We define five levels of World Scope:
WS1. Corpus (our past)
WS2. Internet (most of current NLP)
WS3. Perception (multimodal NLP)
WS4. Embodiment
WS5. Social

These World Scopes go beyond text to consider
the contextual foundations of language: grounding,
embodiment, and social interaction. We describe a
brief history and ongoing progression of how con-
textual information can factor into representations
and tasks. We conclude with a discussion of how
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this integration can move the field forward. We be-
lieve this World Scope framing serves as a roadmap
for truly contextual language understanding.

1 WS1: Corpora and Representations

The story of data-driven language research begins
with the corpus. The Penn Treebank (Marcus et al.,
1993) is the canonical example of a clean subset of
naturally generated language, processed and anno-
tated for the purpose of studying representations.
Such corpora and the model representations built
from them exemplify WS1. Community energy
was initially directed at finding formal linguistic
structure, such as recovering syntax trees. Recent
success on downstream tasks has not required such
explicitly annotated signal, leaning instead on un-
structured fuzzy representations. These representa-
tions span from dense word vectors (Mikolov et al.,
2013) to contextualized pretrained representations
(Peters et al., 2018; Devlin et al., 2019).

Word representations have a long history predat-
ing the recent success of deep learning methods.
Outside of NLP, philosophy (Austin, 1975) and lin-
guistics (Lakoff, 1973; Coleman and Kay, 1981)
recognized that meaning is flexible yet structured.
Early experiments on neural networks trained with
sequences of words (Elman, 1990; Bengio et al.,
2003) suggested that vector representations could
capture both syntax and semantics. Subsequent
experiments with larger models, documents, and
corpora have demonstrated that representations
learned from text capture a great deal of informa-
tion about meaning in and out of context (Collobert
and Weston, 2008; Turian et al., 2010; Mikolov
et al., 2013; McCann et al., 2017).

The intuition of such embedding representations,
that context lends meaning, has long been acknowl-
edged (Firth, 1957; Turney and Pantel, 2010). Ear-
lier on, discrete, hierarchical representations, such
as agglomerative clustering guided by mutual in-
formation (Brown et al., 1992), were constructed
with some innate interpretability. A word’s position
in such a hierarchy captures semantic and syntac-
tic distinctions. When the Baum–Welch algorithm
(Welch, 2003) is applied to unsupervised Hidden
Markov Models, it assigns a class distribution to
every word, and that distribution is a partial rep-
resentation of a word’s “meaning.” If the set of
classes is small, syntax-like classes are induced;
if the set is large, classes become more semantic.
These representations are powerful in that they cap-
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Academic interest in Firth and Harris increases dramatically

around 2010, perhaps due to the popularization of Firth (1957)

“You shall know a word by the company it keeps."

ture linguistic intuitions without supervision, but
they are constrained by the structure they impose
with respect to the number of classes chosen.

The intuition that meaning requires a large con-
text, that “You shall know a word by the company
it keeps." – Firth (1957), manifested early via La-
tent Semantic Indexing/Analysis (Deerwester et al.,
1988, 1990; Dumais, 2004) and later in the gen-
erative framework of Latent Dirichlet Allocation
(Blei et al., 2003). LDA represents a document as
a bag-of-words conditioned on latent topics, while
LSI/A use singular value decomposition to project
a co-occurrence matrix to a low dimensional word
vector that preserves locality. These methods dis-
card sentence structure in favor of the document.

Representing words through other words is a
comfortable proposition, as it provides the illusion
of definitions by implicit analogy to thesauri and
related words in a dictionary definition. However,
the recent trends in deep learning approaches to
language modeling favor representing meaning in
fixed-length vectors with no obvious interpretation.
The question of where meaning resides in “connec-
tionist” systems like Deep Neural Networks is an
old one (Pollack, 1987; James and Miikkulainen,
1995). Are concepts distributed through edges or
local to units in an artificial neural network?

“... there has been a long and unresolved
debate between those who favor localist
representations in which each process-
ing element corresponds to a meaningful
concept and those who favor distributed
representations.” Hinton (1990)
Special Issue on Connectionist Symbol Processing

In connectionism, words were no longer defined
over interpretable dimensions or symbols, which
were perceived as having intrinsic meaning. The
tension of modeling symbols and distributed repre-
sentations is articulated by Smolensky (1990), and
alternative representations (Kohonen, 1984; Hinton
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et al., 1986; Barlow, 1989) and approaches to struc-
ture and composition (Erk and Padó, 2008; Socher
et al., 2012) span decades of research.

The Brown Corpus (Francis, 1964) and Penn
Treebank (Marcus et al., 1993) defined context and
structure in NLP for decades. Only relatively re-
cently (Baroni et al., 2009) has the cost of annota-
tions decreased enough, and have large-scale web-
crawls become viable, to enable the introduction of
more complex text-based tasks. This transition to
larger, unstructured context (WS2) induced a richer
semantics than was previously believed possible
under the distributional hypothesis.

2 WS2: The Written World

Corpora in NLP have broadened to include large
web-crawls. The use of unstructured, unlabeled,
multi-domain, and multilingual data broadens our
world scope, in the limit, to everything humanity
has ever written.1 We are no longer constrained to
a single author or source, and the temptation for
NLP is to believe everything that needs knowing
can be learned from the written world. But, a large
and noisy text corpus is still a text corpus.

This move towards using large scale raw data
has led to substantial advances in performance on
existing and novel community benchmarks (Devlin
et al., 2019; Brown et al., 2020). Scale in data and
modeling has demonstrated that a single represen-
tation can discover both rich syntax and semantics
without our help (Tenney et al., 2019). This change
is perhaps best seen in transfer learning enabled
by representations in deep models. Traditionally,
transfer learning relied on our understanding of
model classes, such as English grammar. Domain
adaptation simply required sufficient data to cap-
ture lexical variation, by assuming most higher-
level structure would remain the same. Unsuper-
vised representations today capture deep associ-
ations across multiple domains, and can be used
successfully transfer knowledge into surprisingly
diverse contexts (Brown et al., 2020).

These representations require scale in terms of
both data and parameters. Concretely, Mikolov
et al. (2013) trained on 1.6 billion tokens, while
Pennington et al. (2014) scaled up to 840 billion
tokens from Common Crawl. Recent approaches

1A parallel discussion would focus on the hardware re-
quired to enable advances to higher World Scopes. Playsta-
tions (Pinto et al., 2009) and then GPUs (Krizhevsky et al.,
2012) made many WS2 advances possible. Perception, inter-
action, and robotics leverage other new hardware.

have made progress by substantially increasing the
number of model parameters to better consume
these vast quantities of data. Where Peters et al.
(2018) introduced ELMo with ∼108 parameters,
Transformer models (Vaswani et al., 2017) have
continued to scale by orders of magnitude between
papers (Devlin et al., 2019; Radford et al., 2019;
Zellers et al., 2019b) to ∼1011 (Brown et al., 2020).

Current models are the next (impressive) step
in language modeling which started with Good
(1953), the weights of Kneser and Ney (1995);
Chen and Goodman (1996), and the power-law
distributions of Teh (2006). Modern approaches
to learning dense representations allow us to bet-
ter estimate these distributions from massive cor-
pora. However, modeling lexical co-occurrence,
no matter the scale, is still modeling the written
world. Models constructed this way blindly search
for symbolic co-occurences void of meaning.

How can models yield both “impressive results”
and “diminishing returns”? Language modeling—
the modern workhorse of neural NLP systems—is
a canonical example. Recent pretraining literature
has produced results that few could have predicted,
crowding leaderboards with “super-human" accu-
racy (Rajpurkar et al., 2018). However, there are
diminishing returns. For example, on the LAM-
BADA dataset (Paperno et al., 2016), designed
to capture human intuition, GPT2 (Radford et al.,
2019) (1.5B), Megatron-LM (Shoeybi et al., 2019)
(8.3B), and TuringNLG (Rosset, 2020) (17B) per-
form within a few points of each other and very far
from perfect (<68%). When adding another order
of magnitude of parameters (175B) Brown et al.
(2020) gain 8 percentage-points, impressive but
still leaving 25% unsolved. Continuing to expand
hardware, data sizes, and financial compute cost
by orders of magnitude will yield further gains, but
the slope of the increase is quickly decreasing.

The aforementioned approaches for learning
transferable representations demonstrate that sen-
tence and document context provide powerful sig-
nals for learning aspects of meaning, especially se-
mantic relations among words (Fu et al., 2014) and
inferential relationships among sentences (Wang
et al., 2019a). The extent to which they capture
deeper notions of contextual meaning remains an
open question. Past work has found that pretrained
word and sentence representations fail to capture
many grounded features of words (Lucy and Gau-
thier, 2017) and sentences, and current NLU sys-
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tems fail on the thick tail of experience-informed in-
ferences, such as hard coreference problems (Peng
et al., 2015). “I parked my car in the compact park-
ing space because it looked (big/small) enough.”
still presents problems for text-only learners.

As text pretraining schemes seem to be reach-
ing the point of diminishing returns, even for some
syntactic phenomena (van Schijndel et al., 2019),
we posit that other forms of supervision, such as
multimodal perception (Ilharco et al., 2019), are
necessary to learn the remaining aspects of mean-
ing in context. Learning by observation should not
be a purely linguistic process, since leveraging and
combining the patterns of multimodal perception
can combinatorially boost the amount of signal in
data through cross-referencing and synthesis.

3 WS3: The World of Sights and Sounds

Language learning needs perception, because per-
ception forms the basis for many of our semantic
axioms. Learned, physical heuristics, such as the
fact that a falling cat will land quietly, are general-
ized and abstracted into language metaphors like
as nimble as a cat (Lakoff, 1980). World knowl-
edge forms the basis for how people make entail-
ment and reasoning decisions, commonly driven
by mental simulation and analogy (Hofstadter and
Sander, 2013). Perception is the foremost source
of reporting bias. The assumption that we all see
and hear the same things informs not just what we
name, but what we choose to assume and leave un-
written. Further, there exists strong evidence that
children require grounded sensory perception, not
just speech, to learn language (Sachs et al., 1981;
O’Grady, 2005; Vigliocco et al., 2014).

Perception includes auditory, tactile, and visual
input. Even restricted to purely linguistic sig-
nals, sarcasm, stress, and meaning can be implied
through prosody. Further, tactile senses lend mean-
ing, both physical (Sinapov et al., 2014; Thomason
et al., 2016) and abstract, to concepts like heavy and
soft. Visual perception is a rich signal for modeling
a vastness of experiences in the world that cannot
be documented by text alone (Harnad, 1990).

For example, frames and scripts (Schank and
Abelson, 1977; Charniak, 1977; Dejong, 1981;
Mooney and Dejong, 1985) require understand-
ing often unstated sets of pre- and post-conditions
about the world. To borrow from Charniak (1977),
how should we learn the meaning, method, and im-
plications of painting? A web crawl of knowledge

Eugene Charniak (A Framed PAINTING: The Representation

of a Common Sense Knowledge Fragment 1977)

from an exponential number of possible how-to,
text-only guides and manuals (Bisk et al., 2020)
is misdirected without some fundamental referents
to which to ground symbols. Models must be able
to watch and recognize objects, people, and activi-
ties to understand the language describing them (Li
et al., 2019b; Krishna et al., 2017; Yatskar et al.,
2016; Perlis, 2016) and access fine-grained notions
of causality, physics, and social interactions.

While the NLP community has played an im-
portant role in the history of grounding (Mooney,
2008), recently remarkable progress has taken
place in the Computer Vision community. It is
tempting to assume that vision models trained
to identify 1,000 ImageNet classes (Russakovsky
et al., 2015)2 are limited to extracting a bag of vi-
sual words. In reality, Computer Vision has been
making in-roads into complex visual, physical, and
social phenomena, while providing reusable infras-
tructure.3 The stability of these architectures allows
for new research into more challenging world mod-
eling. Mottaghi et al. (2016) predicts the effects of
forces on objects in images. Bakhtin et al. (2019)
extends this physical reasoning to complex puzzles
of cause and effect. Sun et al. (2019b,a) models
scripts and actions, and alternative unsupervised
training regimes (Bachman et al., 2019) open up
research towards automatic concept formation.

Advances in computer vision have enabled build-
ing semantic representations rich enough to inter-
act with natural language. In the last decade of
work descendant from image captioning (Farhadi
et al., 2010; Mitchell et al., 2012), a myriad of
tasks on visual question answering (Antol et al.,
2015; Das et al., 2018; Yagcioglu et al., 2018),
natural language and visual reasoning (Suhr et al.,
2019b), visual commonsense (Zellers et al., 2019a),

2Or the 1,600 classes of Anderson et al. (2017).
3Torchvision/Detectron2 include dozens of trained models.



8722

and multilingual captioning/translation via video
(Wang et al., 2019b) have emerged. These com-
bined text and vision benchmarks are rich enough
to train large-scale, multimodal transformers (Li
et al., 2019a; Lu et al., 2019; Zhou et al., 2019)
without language pretraining (e.g. via conceptual
captions (Sharma et al., 2018)) or further broad-
ened to include audio (Tsai et al., 2019). Vision can
also help ground speech signals (Srinivasan et al.,
2020; Harwath et al., 2019) to facilitate discovery
of linguistic concepts (Harwath et al., 2020).

At the same time, NLP resources contributed
to the success of these vision backbones. Hierar-
chical semantic representations emerge from Im-
ageNet classification pretraining partially due to
class hypernyms owed to that dataset’s WordNet
origins. For example, the person class sub-divides
into many professions and hobbies, like firefighter,
gymnast, and doctor. To differentiate such sibling
classes, learned vectors can also encode lower-level
characteristics like clothing, hair, and typical sur-
rounding scenes. These representations allow for
pixel level masks and skeletal modeling, and can be
extended to zero-shot settings targeting all 20K Im-
ageNet categories (Chao et al., 2016; Changpinyo
et al., 2017). Modern architectures also learn to dif-
ferentiate instances within a general class, such as
face. For example, facial recognition benchmarks
require distinguishing over 10K unique faces (Liu
et al., 2015). While vision is by no means “solved,”
benchmarks have led to off-the-shelf tools for build-
ing representations rich enough to identify tens of
thousands of objects, scenes, and individuals.

A WS3 agent, having access to potentially end-
less hours of video data showing the intricate de-
tails of daily comings and goings, procedures, and
events, reduces susceptibility to the reporting bias
of WS2. An ideal WS3 agent will exhibit bet-
ter long-tail generalization and understanding than
any language-only system could. This generaliza-
tion should manifest in existing benchmarks, but
would be most prominent in a test of zero-shot cir-
cumstances, such as “Will this car fit through that
tunnel?,” and rarely documented behaviors as ex-
amined in script learning. Yet the WS3 agent will
likely fail to answer, "Would a ceramic or paper
plate make a better frisbee?" The agent has not tried
to throw various objects and understand how their
velocity and shape interact with the atmosphere to
create lift. The agent cannot test novel hypotheses
by intervention and action in the world.

If A and B have some environments in common and
some not ... we say that they have different meanings,
the amount of meaning difference corresponding
roughly to the amount of difference in their
environments ...

Zellig S. Harris (Distributional Structure 1954)

4 WS4: Embodiment and Action

In human development, interactive multimodal sen-
sory experience forms the basis of action-oriented
categories (Thelen and Smith, 1996) as children
learn how to manipulate their perception by ma-
nipulating their environment. Language grounding
enables an agent to connect words to these action-
oriented categories for communication (Smith and
Gasser, 2005), but requires action to fully discover
such connections. Embodiment—situated action
taking—is therefore a natural next broader context.

An embodied agent, whether in a virtual world,
such as a 2D Maze (MacMahon et al., 2006), a
grid world (Chevalier-Boisvert et al., 2019), a sim-
ulated house (Anderson et al., 2018; Thomason
et al., 2019b; Shridhar et al., 2020), or the real
world (Tellex et al., 2011; Matuszek, 2018; Thoma-
son et al., 2020; Tellex et al., 2020) must translate
from language to action. Control and action taking
open several new dimensions to understanding and
actively learning about the world. Queries can be
resolved via dialog-based exploration with a hu-
man interlocutor (Liu and Chai, 2015), even as new
object properties, like texture and weight (Thoma-
son et al., 2017), or feedback, like muscle activa-
tions (Moro and Kennington, 2018), become avail-
able. We see the need for embodied language with
complex meaning when thinking deeply about even
the most innocuous of questions:

Is an orange more like a baseball or more
like a banana?

WS1 is likely not to have an answer beyond that
the objects are common nouns that can both be held.
WS2 may capture that oranges and baseballs both
roll, but is not the deformation strength, surface tex-
ture, or relative sizes of these objects (Elazar et al.,
2019). WS3 may realize the relative deformability
of these objects, but is likely to confuse how much
force is necessary given that baseballs are used
much more roughly than oranges. WS4 can appre-
ciate the nuances of the question—the orange and
baseball afford similar manipulation because they
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have similar texture and weight, while the orange
and banana both contain peels, deform, and are
edible. People can reason over rich representations
of common objects that these words evoke.

Planning is where people first learn abstraction
and simple examples of post-conditions through
trial and error. The most basic scripts humans learn
start with moving our own bodies and achieving
simple goals as children, such as stacking blocks.
In this space, we have unlimited supervision from
the environment and can learn to generalize across
plans and actions. In general, simple worlds do
not entail simple concepts: even in a block world
concepts like “mirroring” appear (Bisk et al., 2018).
Humans generalize and apply physical phenomena
to abstract concepts with ease.

In addition to learning basic physical proper-
ties of the world from interaction, WS4 also al-
lows the agent to construct rich pre-linguistic rep-
resentations from which to generalize. Hespos and
Spelke (2004) show pre-linguistic category forma-
tion within children that are then later codified by
social constructs. Mounting evidence seems to indi-
cate that children have trouble transferring knowl-
edge from the 2D world of books (Barr, 2013) and
iPads (Lin et al., 2017) to the physical 3D world.
So while we might choose to believe that we can en-
code parameters (Chomsky, 1981) more effectively
and efficiently than evolution provided us, develop-
mental experiments indicate doing so without 3D
interaction may prove difficult.

Part of the problem is that much of the knowl-
edge humans hold about the world is intuitive,
possibly incommunicable by language, but still
required to understand language. Much of this
knowledge revolves around physical realities that
real-world agents will encounter. Consider how
many explicit and implicit metaphors are based on
the idea that far-away things have little influence
on manipulating local space: “a distant concern”
and “we’ll cross that bridge when we come to it.”

Robotics and embodiment are not available in
the same off-the-shelf manner as computer vision
models. However, there is rapid progress in simu-
lators and commercial robotics, and as language re-
searchers we should match these advances at every
step. As action spaces grow, we can study complex
language instructions in simulated homes (Shrid-
har et al., 2020) or map language to physical robot
control (Blukis et al., 2019; Chai et al., 2018). The
last few years have seen massive advances in both

In order to talk about concepts, we must understand the
importance of mental models... we set up a model of
the world which serves as a framework in which to
organize our thoughts. We abstract the presence of
particular objects, having properties, and entering into
events and relationships.

Terry Winograd - 1971

high fidelity simulators for robotics (Todorov et al.,
2012; Coumans and Bai, 2016–2019; NVIDIA,
2019; Xiang et al., 2020) and the cost and avail-
ability of commodity hardware (Fitzgerald, 2013;
Campeau-Lecours et al., 2019; Murali et al., 2019).

As computers transition from desktops to perva-
sive mobile and edge devices, we must make and
meet the expectation that NLP can be deployed in
any of these contexts. Current representations have
very limited utility in even the most basic robotic
settings (Scalise et al., 2019), making collaborative
robotics (Rosenthal et al., 2010) largely a domain
of custom engineering rather than science.

5 WS5: The Social World

Interpersonal communication is the foundational
use case of natural language (Dunbar, 1993). The
physical world gives meaning to metaphors and
instructions, but utterances come from a source
with a purpose. Take J.L. Austin’s classic example
of “BULL” being written on the side of a fence in
a large field (Austin, 1975). It is a fundamentally
social inference to realize that this word indicates
the presence of a dangerous creature, and that the
word is written on the opposite side of the fence
from where that creature lives.

Interpersonal dialogue as a grand test for AI is
older than the term “artificial intelligence,” begin-
ning at least with Turing (1950)’s Imitation Game.
Turing was careful to show how easily a naïve tester
could be tricked. Framing, such as suggesting that a
chatbot speaks English as a second language (Sam-
ple and Hern, 2014), can create the appearance of
genuine content where there is none (Weizenbaum,
1966). This phenomenon has been noted countless
times, from criticisms of Speech Recognition as
“deceit and glamour” (Pierce, 1969) to complaints
of humanity’s “gullibility gap” (Marcus and Davis,
2019). We instead focus on why the social world
is vital to language learning.

Language that Does Something Work in the
philosophy of language has long suggested that
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function is the source of meaning, as famously il-
lustrated through Wittgenstein’s “language games”
(Wittgenstein, 1953, 1958). In linguistics, the
usage-based theory of language acquisition sug-
gests that constructions that are useful are the build-
ing blocks for everything else (Langacker, 1987,
1991). The economy of this notion of use has
been the subject of much inquiry and debate (Grice,
1975). In recent years, these threads have begun to
shed light on what use-cases language presents in
both acquisition and its initial origins in our species
(Tomasello, 2009; Barsalou, 2008), indicating the
fundamental role of the social world.

WS1, WS2, WS3, and WS4 expand the fac-
torizations of information available to linguistic
meaning. allows language to be a cause instead of
just a source of data. This is the ultimate goal for
a language learner: to generate language that does
something to the world.

Passive creation and evaluation of generated lan-
guage separates generated utterances from their
effects on other people, and while the latter is
a rich learning signal it is inherently difficult to
annotate. In order to learn the effects language
has on the world, an agent must participate in lin-
guistic activity, such as negotiation (Yang et al.,
2019a; He et al., 2018; Lewis et al., 2017), collab-
oration (Chai et al., 2017), visual disambiguation
(Anderson et al., 2018; Lazaridou et al., 2017; Liu
and Chai, 2015), or providing emotional support
(Rashkin et al., 2019). These activities require in-
ferring mental states and social outcomes—a key
area of interest in itself (Zadeh et al., 2019).

What “lame” means in terms of discriminative
information is always at question: it can be defined
as “undesirable,” but what it tells one about the
processes operating in the environment requires
social context to determine (Bloom, 2002). It is
the toddler’s social experimentation with “You’re
so lame!” that gives the word weight and definite
intent (Ornaghi et al., 2011). In other words, the
discriminative signal for the most foundational part
of a word’s meaning can only be observed by its ef-
fect on the world, and active experimentation is key
to learning that effect. Active experimentation with
language starkly contrasts with the disembodied
chat bots that are the focus of the current dialogue
community (Roller et al., 2020; Adiwardana et al.,
2020; Zhou et al., 2020; Chen et al., 2018; Serban
et al., 2017), which often do not learn from individ-
ual experiences and whose environments are not

persistent enough to learn the effects of actions.

Theory of Mind When attempting to get what
we want, we confront people who have their own
desires and identities. The ability to consider the
feelings and knowledge of others is now com-
monly referred to as the “Theory of Mind” (Ne-
matzadeh et al., 2018). This paradigm has also
been described under the “Speaker-Listener” model
(Stephens et al., 2010), and a rich theory to describe
this computationally is being actively developed
under the Rational Speech Act Model (Frank and
Goodman, 2012; Bergen et al., 2016).

A series of challenges that attempt to address this
fundamental aspect of communication have been
introduced (Nematzadeh et al., 2018; Sap et al.,
2019). These works are a great start towards deeper
understanding, but static datasets can be problem-
atic due to the risk of embedding spurious patterns
and bias (de Vries et al., 2020; Le et al., 2019;
Gururangan et al., 2018; Glockner et al., 2018),
especially because examples where annotators can-
not agree (which are usually thrown out before
the dataset is released) still occur in real use cases.
More flexible, dynamic evaluation (Zellers et al.,
2020; Dinan et al., 2019) are a partial solution, but
true persistence of identity and adaption to change
are both necessary and still a long way off.

Training data in WS1-4, complex and large as
it can be, does not offer the discriminatory signals
that make the hypothesizing of consistent identity
or mental states an efficient path towards lowering
perplexity or raising accuracy (Liu et al., 2016; De-
Vault et al., 2006). First, there is a lack of inductive
bias (Martin et al., 2018). Models learn what they
need to discriminate between potential labels, and
it is unlikely that universal function approximators
such as neural networks would ever reliably posit
that people, events, and causality exist without be-
ing biased towards such solutions (Mitchell, 1980).
Second, current cross entropy training losses ac-
tively discourage learning the tail of the distribu-
tion properly, as statistically infrequent events are
drowned out (Pennington et al., 2014; Holtzman
et al., 2020). Meanwhile, it is precisely human’s
ability to draw on past experience and make zero-
shot decisions that AI aims to emulate.

Language in a Social Context Whenever lan-
guage is used between people, it exists in a concrete
social context: status, role, intention, and countless
other variables intersect at a specific point (Ward-
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haugh, 2011). These complexities are overlooked
through selecting labels on which crowd workers
agree. Current notions of ground truth in dataset
construction are based on crowd consensus bereft
of social context. We posit that ecologically valid
evaluation of generative models will require the
construction of situations where artificial agents are
considered to have enough identity to be granted
social standing for these interactions.

Social interaction is a precious signal, but ini-
tial studies have been strained by the training-
validation-test set scenario and reference-backed
evaluations. Collecting data about rich natural sit-
uations is often impossible. To address this gap,
learning by participation, where users can freely
interact with an agent, is a necessary step to the
ultimately social venture of communication. By
exhibiting different attributes and sending varying
signals, the sociolinguistic construction of identity
(Ochs, 1993) could be examined more deeply. Such
experimentation in social intelligence is simply not
possible with a fixed corpus. Once models are ex-
pected to be interacted with when tested, probing
their decision boundaries for simplifications of re-
ality and a lack of commonsense knowledge as in
Gardner et al.; Kaushik et al. will become natural.

6 Self-Evaluation

We use the notion of World Scopes to make the
following concrete claims:

You can’t learn language ...
... from the radio (Internet). WS2 ⊂ WS3

A task learner cannot be said to be in
WS3 if it can succeed without perception
(e.g., visual, auditory).

... from a television. WS3 ⊂ WS4

A task learner cannot be said to be in
WS4 if the space of its world actions
and consequences can be enumerated.

... by yourself. WS4 ⊂ WS5

A task learner cannot be said to be in
WS5 unless achieving its goals requires
cooperating with a human in the loop.

By these definitions, most of NLP research still
resides in WS2. This fact does not invalidate the
utility or need for any of the research within NLP,
but it is to say that much of that existing research
targets a different goal than language learning.

These problems include the need to bring meaning
and reasoning into systems that perform natural
language processing, the need to infer and
represent causality, the need to develop
computationally-tractable representations of
uncertainty and the need to develop systems that
formulate and pursue long-term goals.

Michael Jordan (Artificial intelligence – the
revolution hasn’t happened yet, 2019)

Where Should We Start? Many in our commu-
nity are already examining phenomena in WSs
3-5. Note that research can explore higher WS
phenomena without a resultant learner being in a
higher WS. For example, a chatbot can investigate
principles of the social world, but still lack the un-
derlying social standing required for WS5. Next
we describe four language use contexts which we
believe are both research questions to be tackled
and help illustrate the need to move beyond WS2.

Second language acquisition when visiting a
foreign country leverages a shared, social world
model that allows pointing to referent objects and
miming internal states like hunger. The interlingua
is physical and experiential. Such a rich internal
world model should also be the goal for MT models:
starting with images (Huang et al., 2020), moving
through simulation, and then to the real world.

Coreference and WSD leverage a shared scene
and theory of mind. To what extent are current
coreference resolution issues resolved if an agent
models the listener’s desires and experiences explic-
itly rather than looking solely for adjacent lexical
items? This setting is easiest to explore in embod-
ied environments, but is not exclusive to them (e.g.,
TextWorld (Côté et al., 2018)).

Novel word learning from tactile knowledge
and use: What is the instrument that you wear like
a guitar but play like a piano? Objects can be de-
scribed with both gestures and words about appear-
ance and function. Such knowledge could begin
to tackle physical metaphors that current NLP sys-
tems struggle with.

Personally charged language: How should a
dialogue agent learn what is hurtful to a specific
person? To someone who is sensitive about their
grades because they had a period of struggle in
school, the sentiment of “Don’t be a fool!” can be
hurtful, while for others it may seem playful. Social
knowledge is requisite for realistic understanding
of sentiment in situated human contexts.
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Relevant recent work The move from WS2 to
WS3 requires rethinking existing tasks and investi-
gating where their semantics can be expanded and
grounded. This idea is not new (Chen and Mooney,
2008; Feng and Lapata, 2010; Bruni et al., 2014;
Lazaridou et al., 2016) and has accelerated in the
last few years. Elliott et al. (2016) reframes ma-
chine translation with visual observations, a trend
extended into videos (Wang et al., 2019b). Regneri
et al. (2013) introduce a foundational dataset align-
ing text descriptions and semantic annotations of
actions with videos. Vision can even inform core
tasks like syntax (Shi et al., 2019) and language
modeling (Ororbia et al., 2019). Careful design is
key, as visually augmented tasks can fail to require
sensory perception (Thomason et al., 2019a).

Language-guided, embodied agents invoke many
of the challenges of WS4. Language-based nav-
igation (Anderson et al., 2018) and task comple-
tion (Shridhar et al., 2020) in simulation environ-
ments ground language to actions, but even com-
plex simulation action spaces can be discretized
and enumerated. By contrast, language-guided
robots that perform task completion (Tellex et al.,
2014) and learning (She et al., 2014) in the real
world face challenging, continuous perception and
control (Tellex et al., 2020). Consequently, re-
search in this space effectively restricts understand-
ing to small grammars (Paul et al., 2018; Walter
et al., 2013) or controlled dialog responses (Thoma-
son et al., 2020). These efforts to translate language
instructions to actions build towards using language
for end-to-end, continuous control (WS4).

Collaborative games have long served as a
testbed for studying language (Werner and Dyer,
1991) and emergent communication (Schlangen,
2019a; Lazaridou et al., 2018; Chaabouni et al.,
2020). Suhr et al. (2019a) introduced an environ-
ment for evaluating language understanding in the
service of a shared goal, and Andreas and Klein
(2016) use a visual paradigm for studying pragmat-
ics. Such efforts help us examine how inductive
biases and environmental pressures build towards
socialization (WS5), even if full social context is
still too difficult and expensive to be practical.

Most of this research provides resources such as
data, code, simulators and methodology for evaluat-
ing the multimodal content of linguistic representa-
tions (Schlangen, 2019b; Silberer and Lapata, 2014;
Bruni et al., 2012). Moving forward, we encourage
a broad re-examination of how NLP frames the rela-

tionship between meaning and context (Bender and
Koller, 2020) and how pretraining obfuscates our
ability to measure generalization (Linzen, 2020).

7 Conclusions

Our World Scopes are steep steps. WS5 implies
a persistent agent experiencing time and a person-
alized set of experiences. confined to IID datasets
that lack the structure in time from which humans
draw correlations about long-range causal depen-
dencies. What happens if a machine is allowed
to participate consistently? This is difficult to test
under current evaluation paradigms for general-
ization. Yet, this is the structure of generaliza-
tion in human development: drawing analogies to
episodic memories and gathering new data through
non-independent experiments.

As with many who have analyzed the history
of NLP, its trends (Church, 2007), its maturation
toward a science (Steedman, 2008), and its major
challenges (Hirschberg and Manning, 2015; Mc-
Clelland et al., 2019), we hope to provide momen-
tum for a direction many are already heading. We
call for and embrace the incremental, but purpose-
ful, contextualization of language in human expe-
rience. With all that we have learned about what
words can tell us and what they keep implicit, now
is the time to ask: What tasks, representations, and
inductive-biases will fill the gaps?

Computer vision and speech recognition are ma-
ture enough for investigation of broader linguistic
contexts (WS3). The robotics industry is rapidly
developing commodity hardware and sophisticated
software that both facilitate new research and ex-
pect to incorporate language technologies (WS4).
Simulators and videogames provide potential envi-
ronments for social language learners (WS5). Our
call to action is to encourage the community to lean
in to trends prioritizing grounding and agency, and
explicitly aim to broaden the corresponding World
Scopes available to our models.
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