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ABSTRACT 

 

DDMRP, a supply chain methodology introduced in 2011, aligns planning activities 

around incoming demand signals without the use of forecasts to predict future demand. The 

Demand Driven Institute (DDI) claims that DDMRP can reduce median inventory levels by 

31%, improve median service levels by 13%, and reduce the order lead time. This capstone 

explores the DDMRP framework to assess the feasibility and the potential value-added of 

adopting this methodology in an established supply chain. A simulation model was built to test 

DDMRP in a multi-echelon environment and quantify the impact of altering planning 

parameters. This simulation model was then extended to match the specifications of one of the 

partner company’s supply chains to compare the relevant metrics to their existing key 

performance indicators. The research identified several difficulties experienced when DDMRP is 

adopted in this simulated complex and highly constrained supply chain. These issues must be 

taken into consideration before full-scale implementation.  

 

Capstone Advisor: Tim Russell 
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1 Introduction 
 

The partner company of this capstone is a global developer and manufacturer of 

pharmaceuticals, vaccines, and consumer healthcare products. The company would like to 

streamline its demand forecasting process for vaccines and pharmaceuticals, which for certain 

product categories is labor-intensive.   

The pharmaceutical supply chain starts with the procurement of raw materials from 

chemical suppliers. These materials are converted into active pharmaceutical ingredients (API), a 

pure, raw form of the drug. The API is then transformed into drug products with the proper 

dosage and form suitable for human administration. These products, which must be stored at 

prescribed temperatures and humidity levels for specified time periods, are packaged and labeled 

in accordance with strict regulatory requirements imposed by governments in the target markets. 

The finished products are then distributed through networks of logistics service providers to end-

users such as retail pharmacies and healthcare institutions, or through direct contracts established 

with governments or aid organizations. 

Pharmaceutical production is costly. The required testing for product purity and the 

procedures for validating equipment between process runs result in high fixed costs. These 

dynamics encourage large, infrequent manufacturing campaigns to optimize production 

efficiency. This strategy drives the organization to hold large amounts of inventory to ensure it 

can meet customer demand, which raises costs.  

These and other supply chain challenges drive the long-term forecast horizons that are 

typical in the pharmaceutical industry. Extended lead times are common at each step of the 

manufacturing process, for example, it can take over a year from work order to the production of 



 

 

9 

an API, the first stage in the manufacturing process (Bazerghi, 2015). The partner company’s 

lead times vary across their portfolio of APIs from several weeks to eight months.  

 

1.1 Partner Company Demand Planning Processes 

 

The partner company’s demand planning group is responsible for generating demand 

forecasts that will be shared with the organization to build production schedules, capacity plans, 

and product stocking plans. The group employs a Material Requirements Planning (MRP) 

system, which utilizes forecasting models to plan inventory targets to meet predicted customer 

demand. Forecasts are performed along multiple time horizons, up to 36 months. The long 

horizon forecasts, predicting demand up to three years in the future, are used by the supply 

planning group to structure future production-asset allocations, and to assess long-term capacity 

availability. The shorter horizon forecasts, looking several months in the future, are used to fine-

tune the planned production volume to match anticipated demand. Short Term forecast accuracy, 

while considered acceptable, generally hovers around 80% (Partner company, personal 

communication) 

 

1.2 DDMRP Overview 

 

A push system initiates batch productions at the raw materials stage of the supply chain 

based on forecasts of future customer demand (Orlicky, 1974). To deliver the proper inventory of 

finished goods, as indicated by the demand forecast, planning must consider the lead time and 

variability at each step of the production process.  

In contrast, pull-driven materials planning systems respond to actual customer demand 

and pull materials at various stages of work in progress (WIP) to deliver finished goods. These 

design methodologies, push and pull, are not mutually exclusive; over time, academics and 
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operations professionals have improved the individual methodologies and designed hybrid 

approaches that attempt to combine the strengths of each system. 

DDMRP is one such hybrid methodology. For the partner company, implementing 

DDMRP could reduce the reliance on forecasting, reduce waste within the system, and allow the 

company to strategically store work in progress inventories to alleviate bottlenecks that could 

slow response to demand.  

Traditional segmentation strategy separates products based on high value or highly 

variable stock keeping units (Miclo, 2019). In the partner company’s case, its ABC segmentation 

divides drug products into high-priority products requiring more attention and lower-priority 

items that require less attention.  

DDMRP will instead divide segmentation into two categories along each step of the 

supply chain: buffered and non-buffered. Non-buffered items are non-strategic parts that 

generally do not have extended lead times, are in ample supply, and do not cause bottlenecks. 

With non-buffered parts, a traditional MRP system can be used to push demand through the 

system. Buffered items are those that have uncertainty in lead times, high variability, is at a 

bottleneck position in the supply chain, or due to their nature in the market require a higher level 

of attention (Ptak and Smith, 2016). For buffered segments in a pull-driven DDMRP system, the 

planners determine the number of strategic stocks of WIP material to hold at each step of the 

production process to rapidly respond to demand fluctuations. The decision-making thus 

transitions from forecast generation to strategically maintaining decoupled buffer stocks at key 

points throughout the supply chain. 
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1.3 Motivation  

 

For the partner company, demand forecasting is a labor-intensive process involving the 

combined efforts of internal demand forecasting groups around the world. The internal groups 

are supplemented with extensive external support from outsourced demand planning partners.  

As the number of markets the company serves has expanded and the number of product 

offerings has increased, the number of stock keeping units (SKUs) has grown. The demand 

planning group recognized the need to sustainably meet growing business requirements without 

continually expanding the department’s headcount. Accordingly, they have begun to explore 

methods for streamlining the demand planning process to reduce their reliance on human labor.  

As part of that initiative, in 2020 the demand planning group began segmenting SKUs 

based on demand variability and contribution to company profit. Prior to 2020, all SKUs 

received the same amount of attention from the demand planners, regardless of sales volume or 

profitability. The segmentation is performed in two primary steps: conducting an ABC 

classification based on contribution to net sales, and then splitting each segment  into XYZ 

categories based on demand variability. This approach allowed the group to define demand 

planning strategies based on the characteristics of a particular SKU segment.  

One strategy the group has been testing is the automation of forecasting using statistical 

models and machine learning algorithms. On a large scale, across the asset portfolio, automation 

capabilities are not mature enough to take on the complexity, extended lead times, variability, 

and quality requirements to reduce reliance on human-generated forecasts. However, automation 

has proved beneficial for some lower-value products with stable demand, often providing better 

accuracy than human-generated forecasts. These initial results allowed the demand planning 

function to free up resources to focus attention on higher-priority products. The demand planning 
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group is now interested in automating the forecasting function for lower-value products that 

exhibit high levels of demand variability. These products, however, are considered “not 

forecastable” with traditional, statistics-based models such as time series analysis or predictive 

machine learning algorithms. 

Instead, the partner company has proposed using Demand Driven Material Requirements 

Planning (DDMRP), a multi-echelon planning and execution methodology, to eliminate its 

reliance on forecasts for low-volume, highly variable SKUs. DDMRP is designed to synchronize 

supply and demand by providing visibility across the supply chain without the use of predictive 

forecasts. This pull system drives production planning based on the actual demand signal coming 

from the customer.  

 

1.4 Research Objective 

 

The goal of this research study is to gain a deeper understanding of the mechanics of a 

DDMRP system and assess the feasibility and potential value added by adopting this 

methodology in an established supply chain. The partner company’s supply chains are 

characterized by many dependent production stages, long lead times, and infrequent production 

cycles. DDMRP in complex environments is not well studied in academic li terature. There have 

not been many studies outlining how DDMRP performs in a multi-echelon supply chain 

environment like that of the pharmaceutical industry. 

The primary objective of this study, therefore, is to employ a simulation model to test 

how DDMRP performs within the processes and constraints of the pharmaceutical supply chain. 

Proponents of DDMRP claim that the system reduces inventories and decreases lead times while 

improving service levels. Will DDMRP provide the value advertised while also meeting the high 

service levels demanded by the pharmaceutical industry?  
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The second objective is to adapt the model to simulate one of the partner company’s 

existing supply chain networks under DDMRP principles. The results from the simulation model 

provide a framework for discussions with stakeholders throughout the partner’s supply chain. 

Transitioning to DDMRP requires changes to supply chain processes, these conversations 

outlined the feasibility of implementing the required process changes within the partner’s 

existing capabilities.  

The lessons learned from simulating the material flows in a complex, multi-echelon 

supply chain, and necessary process changes necessary for implementation, will provide a 

valuable perspective not only to the partner company but also to others that are considering the 

potential value added by DDMRP planning.   
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2 Literature Review 
 

Supply chain management is an evolving field. There has been a progression of new 

inventory management methodologies each designed to eliminate a limitation posed by the 

existing management system. Some of these proposed systems have been minor changes while 

others represent major shifts in organizational thinking and ways of managing the supply chain. 

A major shift can be seen in the transition from Pull to Push driven inventory management 

systems. DDMRP has many proposed benefits over a traditional MRP system, although the 

pharmaceutical industry has complex supply chains with many tightly constrained and 

interconnected production stages that may challenge the feasibility of DDMRP implementation.  

This literature review will provide a background on the existing prevalent supply chain 

management methodology, Materials Requirements Planning (MRP). Next, an overview of the 

components of the DDMRP framework is presented to provide context to the relevant features. 

These DDMRP features will provide the underlying structure and operation of the simulation 

model as described in the methodology, Section 4. As this section will comprise just an overview 

of the relevant DDMRP features, further reading into the relevant texts is recommended to gain a 

complete view of DDMRP (Ptak and Smith, 2019; Ling, Ptak, and Smith, 2022; Ptak and Smith, 

2018; Ptak and Smith, 2017; Smith and Smith, 2014; Eagle, 2017). Then the relevant context of 

the pharmaceutical industry will be outlined to orient the reader to the relevant features of the 

industry which will be incorporated into the feasibility assessment. This literature review will 

conclude by presenting the existing academic research on DDMRP to frame the current 

understanding of system design and performance.  
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2.1 MRP (Material Requirements Planning) 
 

According to the APICS dictionary, MRP is defined as “a set of techniques that uses bill 

of material data, inventory data, and the master production schedule to calculate requirements for 

materials” (APICS, 2015). First conceived in the late 1950s, as the earliest computer-based 

inventory management system, MRP is a push-based system that relies on forecasts to make 

planning decisions.  

MRP intends to make every link between production and demand integrated and 

dependent on one another. Minor changes in the supply chain downstream often cause a 

significant impact on the upstream level, which is known as the bullwhip effect, or, as Smith 

describes, nervousness in the system (D. Smith & Smith, 2014). Forecasts are never able to 

perfectly anticipate future demand. MRP plans around this signal with the knowledge that the 

demand signal will change. This uncertainty triggers nervousness by introducing constantly 

changing material target levels which distort the planning and production process to compensate 

for the nervousness (Ptak and Smith, 2016). While variability at a single level may be 

manageable, the compounding effect at a system level can result in uncontrollable turbulences.  

The circumstances, including characteristics of low complexity, low variability, and high 

customer tolerance, under which the MRP was first designed are no longer suitable to depict the 

current business conditions. Within the past 30 years, the industries have gone through dramatic 

change, as summarized in Table 1. These changes should be reflected in the inventory 

management system (D. Smith & Smith, 2014). With little modification to MRP management 

systems since its founding days, skepticism is raised as to whether MRP still is the optimal 

choice of inventory control for today. 
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Table 1:  

Relative changes in supply chain management since the inception of MRP in 1965 

 
Source: (Ducrot and Ahmed, 2019) 

 

2.2 DDMRP (Demand Driven Material Requirements Planning) 
 

In response to the challenges MRP faces, Carol Ptak and Chad Smith developed a pull-

based system, DDMRP. This methodology was originally introduced in Orlicky’s Material 

Requirements Planning – Third Edition, an edition updated by DDMRP founders Carol Ptak and 

Chad Smith (Ptak and Smith, 2011). The pair founded the Demand Driven Institute (DDI) to 

promote DDMRP education and business adoption. To support supply chain leaders’ 

understanding of the DDMRP framework and potential value addition, Carol Ptak and Chad 

Smith wrote the book: Demand Driven Material Requirements Planning (DDMRP), currently in 

the third revision (Ptak and Smith, 2019).  

DDMRP is a “formal multi-echelon planning and execution method to protect and 

promote the flow of relevant information and materials” by placing strategic buffer stocks within 

the supply chain network. The buffer stock creates independence between supply chain stages by 

acting as a shock absorber, dampening variability from the demand and supplier sides (Ptak and 
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Smith, 2016). Decoupling can result in a shift of the critical path to a shorter one, thus 

compressing the system lead time. However, the individual process lead times remain 

unchanged. Compressed lead times allow inventory to respond directly to changes in demand 

and reduce unnecessary inventory waste while protecting from demand fluctuations.  

DDMRP will instead build a resilient and dynamic system that is able to rapidly adjust to 

the demand signal coming in from the customer, without relying on forecasts. The DDMRP 

design can be broken down into three primary functions: position, protect, and pull. These 

functions are then broken down into five steps, shown in Figure 1, explained in detail below: 1) 

examine the network and identify key decoupling points, 2) position and properly size buffers 

stocks, 3) dynamically adjust the buffer size to incoming demand 4) protect the buffer stocks by 

coordinating production around the replenishment signal, 5) give the buffer stocks control to pull 

production from upstream processes by aligning planning processes around the DDMRP 

principles (Ptak and Smith, 2016).  

Figure 1:  

DDMRP Core Foundations 

 
Source (Ptak and Smith, 2016) 

 

2.2.1 Position 

 

The focus of decoupling a supply chain is to identify areas where there are bottlenecks in 

the system that constrain material flow. These are traditionally stages where there is an 
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aggregation of dependent steps leading to a single stage. By establishing a buffer inventory at the 

strategic point, the proceeding processes will be effectively decoupled from the rest of the 

production network. This decoupling point creates a new parameter, the decoupled lead time 

(DLT) which is measured between adjoined buffers within the DDMRP system. Ptak and Smith 

(2019) describe the DLT as the “qualified cumulative lead time defined as the longest 

unprotected or unbuffered sequence in a bill of materials.” The impact of decoupled buffer points 

on the lead time within the supply chain network is shown in Figure 2.  

Figure 2:  

Visualization of the benefits of decoupling on absorbing variability and decoupling lead times 

 
Source: (Ptak and Smith, 2019) 

 

2.2.2 Protect 

 

When the strategic decoupling points have been identified, buffer stocks are established 

at these key locations. The buffer zones accomplish three strategic functions within the supply 

chain. The first is to absorb shocks by dampening the variability in supply and demand which 

traditionally leads to system nervousness and bullwhip. The second is to compress the system 

lead time by having strategic work-in-progress materials to supply downstream processes, 

shorting the aggregate lead time. The last function is to control the supply order generation 

signal. The buffers take in the relevant demand, on-hand supply, and on-order stock to determine 

the reorder point to protect the buffer stock (Ptak and Smith, 2019). The core calculations of the 
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DDMRP framework establish the buffer zone into three distinct zones, the red zone, the yellow 

zone, and the green zone (Ptak and Smith, 2019).  

To accomplish the described functions, the buffer zone must be established to provide 5 

key benefits to the system. The buffer must decouple the supply lead time by providing a clear 

break in lead time dependency of the end-to-end supply chain. The stock of buffer material must 

be available for all dependent production stages: shared inventory is not dedicated directly to a 

specific product. Buffers must provide a benefit to the upstream and downstream sides. The 

supply side gets an aggregated order that corresponds to actual demand and consumption, and 

the consuming side gains higher product availability and a compressed lead time. All 

replenishment signals upstream must be made through the buffer calculations including when 

and how much to order. Lastly, to respond to incoming demand, the buffer must dynamically 

readjust its profile levels based on the past demand signal over a user set time horizon (Ptak and 

Smith, 2019).  

 

2.2.2.1 Green Zone 

 

 The green zone represents the order up to the point which defines the order size and the 

average frequency that the buffer position requests a replenishment. The green zone allows the 

planner to incorporate relevant ordering constraints such that the zone is either calculated by the 

demand over the lead time, the Minimum Order Quantity (MOQ), or the imposed order cycle in 

the case of constrained capacity (Equation 1). The Average Daily Usage (ADU), Equation 2, 

provides the demand signal which is fed into each supply chain buffer zone to adjust target 

inventory levels.  

Equation 1: 

𝑇𝑜𝑝 𝑜𝑓 𝐺𝑟𝑒𝑒𝑛 𝑍𝑜𝑛𝑒 (𝑇𝑂𝐺)  =  𝑇𝑂𝑌 +  𝑀𝑎𝑥(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 1, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 2, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 3): 
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𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 1: 𝐷𝐿𝑇 ∗ 𝐴𝐷𝑈 ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (0 − 1) 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 2: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑂𝑟𝑑𝑒𝑟 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦  

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 3: 𝐼𝑚𝑝𝑜𝑠𝑒𝑑 𝑂𝑟𝑑𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 ∗  𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 

Equation 2: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑈𝑠𝑎𝑔𝑒  (𝐴𝐷𝑈)  =  𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡  𝐹𝑎𝑐𝑡𝑜𝑟 (𝑃𝐴𝐹 )  ∗  1/𝑛 ∗  ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝑛

𝑡=0 

 

 

Within the green zone calculation, there is the “lead time factor” which is a scalar 

adjuster between 0.0-1.0. With a long lead time part, within reason, it is best to choose a lower 

factor. This will force the production stage, here forth named node, to hold smaller buffer zone 

levels, increasing the frequency of production orders to the upstream node. This effectively 

creates a “flow” of smaller orders coming into the node with the benefit of a lower inventory 

holding and a stronger ability to react to trends in demand. Figure 3 shows the impacts of the 

lead time adjust factor on production frequency and batch size. The bottom scenario shows the 

impact of choosing a small lead time factor which breaks a single order into 4 smaller orders.  

Figure 3: 

Altering the lead time adjust factor influences buffer inventory size and order f requency.  

 
Source: (Ptak and Smith, 2019) 
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Ptak and Smith (2019) do not provide a mathematical framework for determining the lead 

time factor, but rather they present a qualitative framework for classifying buffered components 

into profiles based on lead time category, as seen in Table 2. This parameter represents a 

strategic decision for management to consider as it will impact the balance between the cost of 

production cadence and the cost of holding inventory within the supply chain network (Ptak and 

Smith, 2019).  

Table 2:  

 
Recommended lead time categories and associated lead time factor  

 

Lead Time Category Lead Time Factor Range 

Long Lead Time 0.20 - 0.40 

Medium Lead Time 0.41 - 0.60 

Short Lead Time 0.61 - 1.00 

 

 

2.2.2.2 Yellow Zone 

 

 The yellow zone provides inventory coverage to meet the anticipated demand over the 

replenishment lead time. This buffer component is calculated, as shown in Equation 3, by 

multiplying the decoupled lead time (DLT) by the average daily usage (ADU). The level for the 

top of the yellow (TOY) is simply the top of red (TOR), introduced below, plus the yellow zone. 

Dividing the yellow zone by the green zone will indicate the average number of pipeline orders 

(Ptak and Smith, 2019).  

Equation 3: 

Top of 𝑌𝑒𝑙𝑙𝑜𝑤 𝑍𝑜𝑛𝑒 (𝑇𝑂𝑌)  =  𝑇𝑂𝑅 +  𝐷𝑒𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 ∗  𝐴𝐷𝑈 
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2.2.2.3 Red Zone 

 

The red zone acts as a safety inventory within the buffer. It is comprised of two 

components: the Red Base, and the Red Safety. Together these make up the Top of Red (TOR). 

The Red Base is calculated by applying the same lead time factor as used in the green zone 

calculation and multiplying this by the expected demand over the lead time. This will set the red 

base level to provide inventory coverage over the anticipated buffer replenishment lead time. The 

recommended red zone buffer size denoted as Top of Red (TOR) is then considered the sum of 

the Red Base and Red Safety. Equation 4 outlines the red zone calculations.  

Equation 4: 

𝑅𝑒𝑑 𝐵𝑎𝑠𝑒 =  𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 ∗  𝐴𝐷𝑈 ∗  𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 

 

𝑅𝑒𝑑 𝑆𝑎𝑓𝑒𝑡𝑦 = 𝑅𝑒𝑑𝐵𝑎𝑠𝑒 ∗ 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 Adjust Factor (0.0 − 1.0) 

 

𝑇𝑜𝑝 𝑜𝑓 𝑅𝑒𝑑 (𝑇𝑂𝑅)  =  𝑅𝑒𝑑 𝐵𝑎𝑠𝑒 +  𝑅𝑒𝑑 𝑆𝑎𝑓𝑒𝑡𝑦 

  

 

Within the calculation for the Red Safety is the “variability factor” which is a scalar 

adjustment factor from 0.0-1.0. This provides a lever for planners to size the safety zone based 

on the anticipated level of variability in the incoming demand. Like the lead time factor, the core 

calculations within DDMRP do not provide a mathematical calculation for determining the value 

for this scalar factor, but rather provide a classification scheme and corresponding recommended 

values, Table 3. This is a departure from traditional safety stock calculations which are sized to a 

targeted service level by meeting a statistical range of demand variability (Silver et al., 2017). 
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Table 3:  

 
Recommended demand variability categories and associated variability factor 

 

Variability Category Variability Factor Range 

High Variability 0.61 – 1.0 

Medium Variability 0.41 – 0.60 

Low Variability 0.0 – 0.40 

 

2.2.2.4 Dynamic Adjustments: Average Daily Usage (ADU) and Net Flow Equation 

 

The average daily usage (ADU) sets the horizon of past demand that the DDMRP 

inventory position incorporates in calculating the buffer zone levels. This parameter is a moving 

average of the demand over the management set time horizon, see Equation 5. A short time 

horizon may make the overall network more reactive to changes in demand, with buffer stocks 

recalculating to adapt to short period demand spikes. If the time horizon is too short, however, 

the nervousness will drive the bullwhip effect as the buffer levels will rapidly jump between 

extremes in the demand signal. 

Another possible downside is that a buffer size will recalculate based on short-term 

increases in demand. The target buffer size will normalize afterward, but the built-up inventory 

level will remain until it is consumed. The opposite impact may also be observed, temporary 

periods of low demand will drive buffer calculations low, leaving the buffer at a higher risk of 

stockout when demand suddenly increases. Defining the time frame for calculating the average 

past demand for the ADU is an important managerial decision that will be assessed in the 

methodology, Section 4.  
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Equation 5:  

Average Daily Usage (ADU) Formula 

𝐴𝐷𝑈 =  1/𝑛 ∗ ∑ Customer Demand𝑡

 𝑛

𝑡 = 0

  

    n = ADU backtrack, days 

 

 The Net Flow Position (NFP) represents the current stock positioning of the buffer. This 

is used to identify the timing and quantity of replenishment orders. The components of the NFP 

are shown in Equation 6. The NFP and ADU should be recalculated as often as possible, daily is 

preferable (Ptak and Smith, 2019). With frequent updates to these parameters based on the latest 

demand signal, the buffer zones will dynamically adjust to the right size to efficiently cover 

demand. The NFP is examined by planners and compared to the current buffer position to 

determine the level of replenishment priority.  

Equation 6: 

𝑁𝑒𝑡 𝐹𝑙𝑜𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑂𝑛 𝐻𝑎𝑛𝑑  +  𝑂𝑛 𝑂𝑟𝑑𝑒𝑟 −  𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝐷𝑒𝑚𝑎𝑛𝑑 +  Current Period Demand 

 

2.2.2.5 Planned Adjustment Factor, and Order Spike Threshold and Horizon 

 

 Buffer zones are designed to be robust in their ability to absorb variability in the absence 

of forecasts, but they can be jeopardized by large changes in the demand pattern. The Planned 

Adjustment Factor (PAF) provides planners a means to incorporate insights into future demand 

trends such as promotions, seasonality, or product phase in or phase out. DDMRP does not 

require forecasts to run, but the PAF provides a means to improve forward-looking planning by 

adjusting to known factors (Ptak and Smith, 2019).  

In addition to the PAF, which is used to plan for changes in future demand patterns, the 

demand spike threshold is used to adjust buffer sizes for known qualified demand. Quali fied 
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demand is considered a sales order or other agreement with a customer to fulfill demand on an 

agreed-upon future date (Ptak and Smith, 2019). Managements sets an order spike threshold and 

an order spike horizon, as seen in Figure 4. Qualified order spikes are then incorporated into the 

net flow position, Equation 6, to make the appropriate adjustments to adapt the buffer profile in 

anticipation of the future qualified demand. The order spike horizon is recommended to be at a 

minimum the decoupled lead time so that production can be initiated in time to provide material 

for the order spike (Ptak and Smith, 2019).  

Figure 4:  

Order Spike Threshold and Horizon. Image source (Ptak and Smith, 2019)  

 

 

 

2.2.3 Pull 

 

In DDMRP, flow is the focus: maintaining this flow means protecting the key buffer 

stocks throughout the system. Planning shifts from long-horizon production planning based on 

forecasts to a reactive system that pulls inventory to protect the buffer zone. When the NFP is in 

the green zone of the buffer, no attention from planners is necessary, when the level falls into the 

yellow zone, this is a sign to planners to initiate a replenishment order to protect the buffer level. 

For buffers requesting replenishment from a shared asset, prioritization is given to the buffer at a 

higher risk of stockout. A key consideration with DDMRP planning is that the smooth 

functioning of the network depends on buffer replenishment within the expected lead time. If the 
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positioning falls into the red zone, this is an urgent message to planners to expedite 

replenishment as the buffer is at elevated risk of stocking out (Ptak and Smith, 2019).  

The buffer calculations will adjust continually based on incoming demand signals: in 

periods of high demand, the order up to and reorder points will increase. Figure 5 shows an 

example of a buffer stock adjustment over time, with the incoming demand shown in black, the 

net flow position shown in blue, and the buffer profile levels based on DDMRP calculations 

shown in their respective buffer zone colors.  

Figure 5:  

Dynamic adjustment of buffer inventory in response to demand 

 
 

2.3 Industry Context 
 

DDMRP represents a departure from the traditional planning processes in place at many 

organizations. A complete assessment of feasibility must consider relevant metrics and system 

constraints to determine if DDMRP holds strategic value to replace existing planning systems in 

the pharmaceutical supply chain.  

A Pharmaceutical company must ensure the continual availability of products to 

customers throughout the markets in which it operates. Drugs must be available to patients 
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suffering from sickness and disease when and where they are needed. Pharmaceutical companies 

target high service levels as large financial penalties are imposed by customers if demand is not 

fulfilled, missing sales of high margin products has serious implications for company 

profitability, and failing to deliver lifesaving medications will harm the company’s reputation 

and ability to maintain long term customer contracts. The goal is to design a supply chain to 

achieve service levels as close to 100% as possible (Uthayakumar and Priyan, 2013).  

To achieve a near-perfect service level, large amounts of inventory must be held in 

preparation for infrequent demand spikes. Improving service level by increasing inventory 

provides diminishing returns: covering low probability high demand scenarios requires 

significant investment (Silver et al., 2017). Due to the importance of meeting customer demand, 

cost optimization is generally a low priority in pharmaceutical supply chain design (Schaber et 

al., 2011). In this industry, it is normal for companies to hold up to 24 weeks of finished goods 

inventories, and up to 90% of annual demand as work-in-progress inventory, resulting in 1 to 8 

inventory turns per year (Shah, 2004). 

The manufacture of early-stage pharmaceutical materials, the Active Pharmaceutical 

Ingredients (API), is normally planned on a campaign basis. Regulatory oversight imposed by 

the Food and Drugs Administration (FDA) in the US and federal agencies in the target market 

mandate high standards of quality and uniformity between batches (Schaber et al., 2011). 

Stringent analytical testing for purity must be conducted at each stage of production. At the 

completion of a campaign, process equipment and the facility must be thoroughly cleaned and 

validated to ensure there is no cross-contamination between batches.  

These setup, testing, validation, and change-over processes add considerable fixed costs 

to a campaign. The cost drivers of production are primarily from fixed costs, and uniformity 
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benefits infrequent large campaigns. It is not uncommon in the industry to produce all APIs to 

meet the annual forecasted demand during a single campaign (Shah, 2004). The head of an API 

manufacturing site at the partner company has indicated that the balance point for operational 

efficiency is 3-4 campaigns per year (Partner company, personal communication).  

The lead times for API manufacturing can extend to a year from initiating the production 

order (Bazerghi, 2015). In a DDMRP system, this lead time would be overcome by placing 

frequent smaller orders to replenish strategic buffer stocks (Ptak and Smith, 2016). The challenge 

for pharmaceutical companies will be to commit to a system that allows the accrual of high fixed 

production costs to drive up the per-volume price of APIs in this sub-economic order quantity 

(Silver et al., 2017). Shah argues that the supply chain for pharmaceuticals already resembles a 

hybrid push and pull approach. The stockpiling of API as work in progress inventory is driven by 

a long-term forecasting push methodology, but this strategic stock is pulled through value-added 

steps as needed to meet customer demand (Shah, 2004).  

Batch size in the pharmaceutical industry is set by the registered production process as 

approved by the relevant regulatory agency. Altering a batch size requires revalidation and filing 

with regulatory agencies, so this parameter is considered fixed. The flexibility in manufacturing 

volumes to meet anticipated demand is achieved by defining the number of batches to produce 

during an established campaign. Any production campaign then must produce material in 

increments of the batch size (Partner company, personal communication). 

To fully assess the cost of holding inventory, management must set an inventory holding 

rate based on the operating expense incurred during storage and the cost of tying up cash in 

inventory. Both metrics are difficult for an organization to accurately assess. Often the cost of 

holding inventory is highly undervalued (Timme, 2003). The production costs may be higher by 
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switching to a DDMRP system. However, with accurate cost accounting, the extra investment 

may be offset by tying up less cash in inventory holding and losing less material to expiration.  

 

2.4 Existing Literature Assessing DDMRP 

 

 DDMRP is a relatively new supply chain methodology that has not been fully evaluated 

in academic literature. The primary sources of information are books authored by DDMRP 

proponents, case studies and testimonials from practitioners on the Demand Driven Institute’s 

website, and articles in trade journals. There is limited exposure to academic research in the form 

of published papers and academic thesis. This section review will examine the relevant academic 

literature in the following categories: comparison of DDMRP to other supply chain 

methodologies, recommendations for improvements to the DDMRP framework, and simulation 

models analyzing and quantifying the performance of DDMRP.  

 The primary comparison seen in the literature examined the differences between DDMRP 

and MRP (Miclo et al., 2016; Shofa & Widyarto, 2017). Other researchers took this comparison 

further by examining other relevant methods such as the theory of constraints, lean, and just in 

time (Dessevre et al., 2020; Favaretto & Marin, 2018; Ihme & Stratton, n.d.; Kortabarria et al., 

2018; Miclo et al., 2019).  

 Several studies have identified limitations and proposed improvements to supplement the 

traditional DDMRP framework. Dessevre et al. (2019), challenged the assumption that the DLT 

for a node is a static parameter and proposed instead to consider the variability of the DLT as 

part of the buffer stock dynamic adjustment process. This study found that the DLT parameter 

has a major impact on the DDMRP performance and adjustments to the DLT cause associated 

impacts on other parts which are produced on a shared production asset.   
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Another study challenged the method for calculating the red zone of the inventory buffer 

profile as it is not based on a mathematical calculation, but rather on users subjectively selecting 

values from a suggested range (Lee & Rim, 2019). The DDMRP framework provides guidance 

on which locations through a product’s bill of materials to place buffer stocks. One study 

provided a method to mathematically optimize the decoupling buffer zone positioning points 

(Jiang & Rim, 2016). There is a lack of standardized processes for assessing and implementing 

DDMRP. For the methodology to progress further research is needed to build a standard process 

for implementing this method (Orue et al., 2020; Velasco Acosta et al., 2020).  

Many of the existing studies incorporating simulation modeling of DDMRP performance 

have focused on a single or two-node system (Ducrot & Ahmed, 2019; Ihme & Stratton, n.d.; 

Kortabarria et al., 2018; Shofa et al., 2018; Shofa & Widyarto, 2017; C. Smith, 2013). A 

visualization of this simulation scope can be seen in Figure 6.  

Other models have examined the impact of utilizing DDMRP with multiple products 

produced on the same manufacturing asset to quantify the impact of capacity constraints (Miclo 

et al., 2015). Shofa and Widyarto modeled a three-part supply chain system with DDMRP and 

compared it to a forecast driven MRP simulation. This study noted that while demand fulfillment 

performance increased with DDMRP, inventory levels within the system increased substantially 

(Shofa & Widyarto, 2017). Only one study was found that assessed the performance of DDMRP 

in a multi-echelon system. The production stages on a manufacturing line were used to evaluate 

the impact of deciding where to place decoupling buffer stocks (Velasco Acosta et al., 2020). 
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Figure 6: 

DDMRP implementation with a single node buffer location 

 
 

There are also no published results that incorporate the relevant constraints of the 

pharmaceutical industry in the DDMRP model. The long lead times and infrequent production 

runs provide considerable challenges for building a supply chain that aligns with the principles of 

DDMRP. 
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3 Methodology Context 
 

 The project evolved in scope as the researcher’s and the sponsor company’s knowledge 

of DDMRP matured. It is relevant here to outline the project maturity process to give the reader 

the perspective on the path taken to define the boundaries of this study. The following sections 

provide context into the decision-making process for assessment and insight into the level of 

complexity involved in observing the performance of an end-to-end supply chain network.  

 

3.1 Initial Scope  

 

This study began with assessing DDMRP as a demand planning solution to be 

implemented in the place of forecasting on an individual SKU basis. The assumption initially 

was that upstream production stages were dedicated to the production of the SKU. Through 

interviews with members of the supply and demand planning groups, we learned that the SKUs 

of interest make up a small portion of the overall production of many products under the same 

drug class. As presented in the literature review, DDMRP is an overall multi-echelon production 

system that synchronizes across demand and supply planning. The following explains the 

difficulty in applying DDMRP at the SKU level.  

 An SKU in this context is defined as a packaged product intended for a target market. 

Forecasts are performed on the SKU level to predict the demand in that market which are then 

aggregated for each upstream production stage to define the expected demand that the facility 

must prepare for. The production of these materials is shared across the drug substance supply 

chain, production runs supply material to meet the need of many dependent SKUs. As 

manufacturing is shared, and these SKUs make up a very small percent of the global production: 

there is little leverage to transition an individual SKU to a reactive production philosophy 

following a DDMRP methodology within the confines of the broader production system. 
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A hypothetical example of the end-to-end production process for a class of drugs is 

shown in Figure 7, to provide context on the scale of SKUs that are manufactured in shared 

production runs. This figure outlines the low leverage position of the target SKU for controlling 

the upstream production process.  

Figure 7:  

A simplified view of the pharmaceutical supply chain outlining the shared production of products under a drug class.  

 
(Icon Source: Flaticon.com) 

 

 

In this example, we have one API which is transformed into multiple different drug 

formulations which represent the physical form of the drug and the delivery method. This single 

API is formulated into a pill, an inhaler, a drinkable liquid, or an injectable form. We will 

assume that each formulation makes up 1/4 of the allocation of that API. Within each of the 

formulations, there will be a variety of dosage strengths of the active ingredient offered. We will 

assume 5 dosages each making up 1/5 of the total demand of the formulation. The delineated 

drug forms are then packaged into their retail form of different units of sale, each representing 

1/3 of the dosage.  

The largest customers for our partner company are the United States, the European 

Union, Japan, and the rest of Asia. These customers will make up about 95% of the total demand 

for the packaged goods. The last step is when the product is dedicated to the target market, with 
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the proper labeling to comply with local regulations. For the SKU of interest, we are looking at 

low volume markets which exhibit difficulty to predict demand, which is the feature of products 

introduced to new markets with little historic demand data. This individual SKU will then make 

up <0.5% of the total demand for the packaged good.  

Then for this hypothetical example, the SKU we are investigating makes up 0.00165% of 

the parent API, 0.0066% of the formulation, 0.033% of the dosage, and 0.16% of the packaged 

goods. In this case, as parent production stages are shared along with a wide portfolio of 

products, it was not feasible to leverage DDMRP flow-based production methodologies at the 

SKU level.  

 

3.2 Updated Project Scope  
 

 Through interviews with members of the partner company, it became apparent that 

DDMRP was not a methodology to meet the immediate needs of demand planning, but it could 

provide strategic value to the overall supply chain group. We returned to the original goal of our 

research, to understand if DDMRP is feasible given the constraints of the pharmaceutical 

industry. The primary concern of our partner company was that the long lead times at the API 

stage and infrequent production campaigns would drive a DDMRP system to hold excessive 

inventory in the absence of forecasting future demand.  

We determined that a full pharmaceutical supply chain would need to be assessed from 

the API stage through the stages of production to meet the demand of the end markets. After 

presenting these initial findings we provided preliminary results of a DDMRP simulation model 

using a fictitious multi-echelon production network fed with actual demand data for a product 

class. The initial simulation results also served as a communication tool to initiate conversations 
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with relevant stakeholders in the production network. These results outlined the information 

required for further modeling and sharing our goals with new project collaborators.  

 This initial test network was defined as shown in Figure 8. This network consisted of 

three stages in total, starting at the parent stage of API manufacture (Node C1), through two 

types of formulations (Node B1-B2), serving the demand of 12 separate customer locations 

(Node A1-A6). Constraints at each stage including production lead times and desired order 

frequency were estimated based on the typical parameters as learned through conversations with 

planners of the respective production processes. Monthly demand data over the past three years 

for 6 SKUs was provided by the demand planning group. The model incorporated the DDMRP 

features as outlined in the literature review. This represented a simplified version of the 

simulation model which was customized to the partner’s parameters as presented in Section 4.  

Figure 8:  

Production network for the early-stage testing of the DDMRP simulation model 
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3.2.1 Strategic Integration 
 

We had planned an initial option for assessing a hybrid DDMRP approach which would 

be integrated into a forecast-driven supply chain at a strategic decoupling point. All processes 

upstream from the decoupling point would be planned using forecasts. The demand signal would 

then be used to plan downstream stages from the differentiation point, the push/pull boundary, 

with DDMRP planning principles.  

Several limitations moved us past this approach. The first is that the partner company 

utilizes third-party logistics and warehousing providers for downstream processes so there is 

little control over transitioning these stages to the new methodology. The second limitation is 

that the goal of this project was to assess if DDMRP can be implemented when considering the 

long lead time and limited production of the upstream manufacturing process, with the API stage 

providing a particular challenge. If this study analyzes the system in absence of the upstream 

stages, it does not integrate the complexity of the pharmaceutical industry production process. 

The third challenge was that a hybrid approach could not be assessed without modeling the 

relevant MRP portion using the partner’s planning parameters, this was beyond the scope of 

assessment for this study. Lastly, a major interest in adopting DDMRP was to move away from 

forecasting. For a hybrid push/pull model to work, upstream push stages need to be planned 

using forecasts, so this hybrid approach did not align with the project goals.  

 

3.2.2 Realistic End to End Supply Chain Modeling 

 

 The next scope involved modeling the company’s full end-to-end production network to 

outline how a full drug class would be managed under DDMRP. This provides a high level of 

realism, with the ability to compare to the metrics of their existing system. Modeling this full 

system was deemed infeasible through conversations with our partners. The hypothetical 
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network shown in Figure 7 can be referenced to understand the rapidly expanding scope of this 

model. The complexity of the network model quickly grows when looking downstream from the 

API stage. One parent API, four unique drug formulations, five dose strengths per formulation, 

three types of retail packaging, and 30 market-specific labeling for each. This overall network 

encompasses 1,800 SKUs and the full network of upstream value-added steps to model. This 

level of complexity was beyond what was required to assess the research goal: to determine how 

a multi-echelon production network would operate using DDMRP principles and the relevant 

constraints of the pharmaceutical industry.  

 

3.2.3 Simplified Full End to End Supply Chain Modeling 

 

 The final simulation, as described in Section 4, was built using a representative model of 

the partner’s supply chain. The relevant steps were modeled to follow the path of an individual 

product through the production stages from API to dedication to an end customer. This scope 

provided the proper granularity of detail to test the functionality of DDMRP and assess how it 

handles the constraints of the pharmaceutical industry. Relevant data is difficult to pull out of the 

company’s Enterprise Resource Planning (ERP) system. This narrow scope gave a manageable 

volume of information to process without the partner dedicating too many resources to data 

gathering. The methodology section goes into much greater detail on the design of the simulation 

model, the network map, relevant data parameters for analysis, and the modeling outputs.   
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4 Methodology 
 

 Figure 9 outlines the process flow for the project. Each stage is described in detail in the 

following sections. 

Figure 9:  

Process flow diagram for DDMRP simulation 

 

 

4.1 The Simulation Model 
 

 A simulation model was created to observe the flow of materials in a multi-echelon 

system including realistic constraints to match the partner’s production environment. The 

primary goal for the model was to determine if the calculations and the foundations of DDMRP 

can be extended from single node simulations to multi-node systems without cascading effects of 

stockouts at production stages throttling production. The outputs of the model provide an 
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understanding of how this system performs based on the key performance indicators as identified 

in Section 4.4. 

 The simulation model was built using the python programming language, utilizing an 

object-oriented programming (OOP) approach. OOP is a modular programming scaffold that is 

easily scalable to allow for easy customization and experimentation. As the research scope 

matured, this afforded the ability to quickly adapt to a new production network. The simulation 

environment was built based on the principles of the DDMRP methodology as outlined in the 

literature review section. Data sources, assumptions, and limitations of the research model are 

outlined in the subsequent sections of the methodology section. The source code for the 

simulation model can be found at the following link: https://github.com/sahararunner/DDMRP-

Simulationhttps://github.com/sahararunner/DDMRP-Simulation 

 The mechanics of this model flow in the following stages stepping through time daily. 

First, take in demand from the customer nodes. Then assign the aggregated demand to the 

relevant upstream nodes in the system and adjust the buffer stocks with this demand signal. Next, 

compare the on-hand inventory levels to the net flow equation and determine if ordering is 

needed. Initiate an order if the buffer dictates, adjust the upstream inventory on hand level, and 

assess the node's inventory position and initiate an order there if needed. Material is received by 

the node for the transportation lead time if the upstream node has adequate material on hand. If 

the upstream does not have material available, this is recorded as a stockout, and the downstream 

node must wait until the full production and transportation lead time to replenish its inventory. 

The model will continue to move along on a daily time step in this way over the length of the 

simulation time at which point the relevant metrics can be assessed.  
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4.2 Defining the Production Network 
 

The results of the initial model, which was presented in Section 3, provided a tool to 

guide the discussion with stakeholders to define a network map of the relevant production stages. 

The focus was to build a production environment that incorporates features representative of the 

partner company’s supply chain without adding the full complexity of their network. This 

network produces a portfolio of products representative of demand planning segments.  

 

4.2.1 Production Network 

 

The network model follows parallel production paths: API production through the value-

added steps and the carrier device which is combined in later stages for the finished drug 

product. These parallel paths show how separate upstream processes interact and combine under 

DDMRP planning to meet customer demand. Figure 10 shows a graphical representation of the 

production model.  

Figure 10:   

Final supply chain map to match partner company parameters 

 

 

Each stage represents a major processing function in the network, from primary 

manufacturing, secondary manufacturing, packaging, labeling, and distribution. Arcs denote the 
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linkage between a stage, with the arc being the parent process, and the arrow leading to the 

downstream dependent child process. Each location that requires multiple inputs, in our case B1 

and B2, is denoted with the relevant linkage arcs. Customer stages, where demand is fulfilled, 

are locations with no arcs emanating downstream. The initial stages do not have any incoming 

arcs, the stage time is dependent on the procurement and transportation of raw materials, and the 

processing time to transform those raw materials for preparing for the next stage. 

These stages were chosen as key locations for buffer stock to decouple steps in the 

production process. With the buffer stock in place, the overall complexity of the supply chain is 

reduced, and the actions at each stage are isolated from the other stages between buffer locations. 

For this network, there are multiple stages contained between each node in our, but from a 

modeling perspective, these steps are aggregated into one stage.  

 

4.2.2 Customer Nodes 

 

The demand planning group choose to focus on three SKUs that are produced by this 

network to understand how DDMRP will perform with different types of demand signals. The 

first demand profile, customer node A1, serves a large market that experiences high variability of 

demand and higher overall demand compared to the other customers. This customer node is also 

complicated with an extended lead time and 43 days of ocean transport from the point of 

differentiation due to the geographic location of the market. The second customer node, A2, 

represents a well-established market with comparatively stable demand and a short lead time for 

the transit of three days. The last customer node A3 is an established market with relatively 

predictable demand, but due to the market size, the demand is low relative to the other 

customers. This lead time is also short at three days. 
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4.3 Data Requirements for Modeling 
 

The relevant data inputs for the simulation model proved difficult to pull out of the 

company’s ERP. Translating the existing network to the simulated network proved challenging. 

Filling in the missing parameters required conversations with multiple stakeholders within the 

supply chain group to define proxies within their data to drive the parameter when information 

was not accessible. The following sections describe the process for determining the inputs used 

in the simulation model.  

 

4.3.1 Demand Signal 

 

The demand signal used for the three customer nodes represents monthly customer 

demand over the past three years. The simulation model parameters measure lead time in days 

and time steps within the model occur daily. Daily demand was generated assuming a normal 

distribution of demand using the normal random number generator in python’s NumPy library. 

When disaggregating demand to a shorter time period, the standard deviation does not change in 

a linear manner, but rather to the square root of the number of time periods (Silver et al., 2017). 

The formula for converting from monthly standard deviation and monthly demand is shown in 

Equation 8.  

Equation 7 

𝜎𝑑𝑎𝑖𝑙𝑦  =  
𝜎𝑚𝑜𝑛𝑡ℎ𝑙𝑦 

√30
 

     𝜇𝑑𝑎𝑖𝑙𝑦 =  
𝜇𝑑𝑎𝑖𝑙𝑦

30
  

 

For modeling, this historic demand is fed into the DDMRP calculations one day at a time. 

Future demand periods are held hidden from the system, and not incorporated into the model 
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until the simulation reaches that time. Past demand is used to simulate how the DDMRP system 

would react in real-time as the model steps along each day of the study time frame.   

4.3.2 Desired Production Frequency 

 

 The cadence of production at each stage is defined by the individual plant managers, 

there is not an overall target set by upper management. This decision is based on achieving their 

target performance metrics: reducing the costs of production, maintaining level production 

schedules for smooth plant operations, and meeting service level requirements of the 

downstream stage. For the simulation model, it is important to capture the constraints of the 

pharmaceutical industry, as defined by our partner company, regarding production cadence. This 

is a key constraint for determining the feasibility and functionality of DDMRP in this study.  

In the absence of a targeted number of production runs, production batch records over the 

course of the previous calendar year were examined. The records include the volume and date of 

each batch leaving the production line, with a campaign encompassing multiple batches over the 

course of several days to a month. The batch dates were then examined to determine where there 

were natural breaks between a campaign for the product type, as indicated by company 

stakeholders. The number of campaigns in the given year was used to serve as a realistic 

production frequency for input into the model.  

 

4.3.3 Lead Time 

 

The lead times between each stage encompass the relevant time required to pass material 

from the upstream buffered stage, through the value-added steps, to provide material to the next 

buffered stage. The transportation lead time is the total time to pass a completed material from 

the parent to the child stage if the material is available in the buffered inventory. Both lead times 

are used within the simulation model. If an upstream node has sufficient inventory to cover the 
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demand the downstream node is replenished following the transportation lead time. If the 

upstream node stocks out, it passes along its remaining inventory and the downstream node is 

replenished with the backordered amount after the production lead time plus the transportation 

lead time.  

The DDMRP model only considered the buffered production steps to be relevant in the 

simulation analysis. The unbuffered stages then are aggregated together to determine the lead 

time between buffered stages, as the relevant path becomes the total lead time from the upstream 

parent through the processes to the next buffer zone. The parameters for the lead time within the 

company’s ERP system were aggregated to define the DLT between each buffered node.  

 

4.3.4 Planned Adjustment Factor 

 

The planned adjustment factor (PAF) is the primary mechanism within the DDMRP 

framework for accounting for product seasonality or other exogenous factors which can predict 

future demand. The demand planning group indicated that the demand used for the simulation 

model is not impacted by known exogenous factors or seasonality. This assessment is testing the 

feasibility of the overall DDMRP framework, so it was important to incorporate relevant 

planning parameters which can impact model performance. 

To test if the seasonal correlation was present in the demand data, an Autocorrelation 

Function (ACF) was performed using the ACF function in python’s Statsmodels library. ACF is 

a commonly used methodology for analyzing time series data to assess seasonality trends. The 

results of the ACF analysis, Appendix 1, did not indicate a compelling trend in seasonality for 

the demand data on a 95% confidence interval. The PAF was not used in the DDMRP simulation 

as there were no forward-looking planning features to incorporate into the demand signal. 
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4.3.5 Order Spike Threshold and Order Spike Horizon 
 

This study used the demand signal for the product in the target market, as used by the 

demand planning group for forecast generation. The demand does not include what is known as 

tenders, which represent obligations to fulfill demand in the future if a contract is awarded. 

Tenders frequently represent 6 months of the total stock allocated to the target market. Contract 

terms often require fulfillment within a 4-month time frame. The planning around tenders 

represents a high level of uncertainty, given that production must be initiated before winning the 

contract due to the long lead time within the partner’s supply chain. Failing to fulfill the contract 

carries heavy penalties in the form of fines, alternatively reallocating existing inventory puts the 

rest of the supply chain at high risk of stocking out. As the tenders carry uncertainty, planning is 

handled separately by the partner company. The tenders are held separately from the market 

demand signal used by demand planning for time series analysis, otherwise, forecasts would 

incorporate large spikes of nonexistent demand in future time periods.  

As tenders are planned separately, this was considered outside of the scope of the 

assessment. Without tenders, the DDMRP model did not have qualified demand to incorporate 

into the net flow equation of the simulation model. The model as run does not incorporate the 

order spike threshold or order spike horizon as described in the DDMRP literature.  

 

4.3.6 Minimum Order Quantity and Batch Size 

 

Minimum order quantity (MOQ) and batch sizes in the existing production network 

proved problematic to extrapolate to the simulated environment. The order size must be a 

multiple of the batch size for the given process. The MOQ is then a target number of batches that 

make financial sense to initiate a production campaign. Due to high fixed costs at many 

production stages, this MOQ can be quite large to maintain profitability.  
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The production for certain nodes within the supply chain is shared with the global 

production of all products that use the shared material. This simulation model drew the network 

boundary on the production steps required to produce our three target SKUs, ignoring the real 

network steps that were not relevant to our environment. The API for example is produced for 

over 1000 SKUs within the real network, so the minimum order quantity and required batch 

sizes, would not be able to be met by the demand placed from our three SKUs. The percentage of 

the total demand from those three SKUs could be estimated from overall demand data, but this 

would be a data-intensive process.   

The MOQ and batch size were omitted from this analysis due to the challenges of 

translating the system constraints to the simulated network. The desired frequency of production 

at each stage would then be the primary binding factor to limit the number of production runs to 

be relevant to the partner’s supply chain. The simulation model will assume that there are no 

binding requirements in this regard, minimum order size and batch size will be set to 0. This 

omission is a recognized limitation of this study, and an area for future consideration as our 

partner company matures along its DDMRP feasibility assessment process.  

 

4.3.7 Unit Conversions Between Stages 

 

For each stage in the production process, the bill of materials (BOM) outlines the 

required inputs in the form of raw or work-in-progress materials to produce the planned outputs. 

This “recipe” outlines the required material inputs and defines how they are combined and 

outputted into the units of production of materials leaving the stage. For example, 10 kilograms 

of API is taken into the formulation stage and mixed with inactive ingredients, known as 

excipients, to produce the 100 kilograms of formulated product.  
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 The use of buffer stocks allows the model to decouple stages in the supply chain network 

such that the relevant parameters are the aggregate of the processes between stages. With the 

aggregation of stages between each of the decoupled buffer locations, defining the full 

conversion of materials for each of the combined stages is challenging.  

Instead of focusing on tracking actual volumes of material at each stage, days of 

inventory provide a unitless measurement that outlines the number of days of demand coverage 

the stage holds. As this is the key metric to compare to the existing supply chain system, the 

conversion of units between stages can be omitted. For this reason, flows of inventory were 

measured in days of inventory, rather than converting the BOM between stages.  

 

4.4 Model Outputs and Relevant Metrics 

 

 When assessing a new methodology, it is important to identify the key performance 

metrics to judge merits and limitations. The metrics are outlined in Table 4 and described in 

detail in the following sections. 

Table 4:  

Key Performance Metrics 

Metric Relevance Comparable to Reality 
Order or Production Frequency Proxy for production costs in the 

simulated environment and 
manufacturing capacity 
requirements.  

Yes, existing production runs are 
known at stages in the supply 
chain. It can be used to estimate 
“desired” runs.  

Days of Inventory Proxy for identifying the amount of 
inventory buffer profiles held 
within the DDMRP network. Costs 
associated with inventory include 
capital costs and operational costs.  

Days of inventory provide an idea 
of the holding requirements, but it 
is not indicative of real system 
performance. It can be compared 
with limitations.  

Stockout Events Frequency for a customer node 
missing a sale due to lack of 
inventory. 

Yes, existing stockout events are 
known within company metrics.  

Item Fill Rate Metric for determining the 
performance of the DDMRP system 
in meeting customer demand.  

Yes, existing fill rates at customer-
facing nodes are known, and model 
performance can directly compare 
to real fill rate metrics.  
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4.4.1 Order or Production Frequency 

 

 The constraint on the frequency of initiating orders in the pharmaceutical industry is an 

important factor to determine if DDMRP processes are feasible. Within the chosen network, 

upstream assets and production lines are generally multipurpose facilities and not dedicated to an 

individual product type. Planning must balance the needs of a portfolio of products on these 

shared assets. This feasibility study will consider adopting DDMRP within the sponsor’s current 

production environment, so it is important to keep the network producing at a cadence that is 

feasible given the current constraints.  

Planners within the pharmaceutical industry must balance the cadence of production or 

orders to meet demand without driving excessive costs of production in the system. The 

calculation of relevant costs is outside of the scope of this research assessment, this study will 

not attempt to optimize overall supply chain network costs. The metric tracking the desired order 

frequency will provide insight into the overall operational efficiency and scheduling feasibility. 

4.4.2 Days of Inventory 

 

 Inventory represents a cost to the system in the form of tying up capital and the 

associated physical storage costs. This simulation model will calculate the inventory not based 

on cost, but rather on the days of demand that the inventory at a given stage covers. This is 

shown in Equation 10 below. The existing supply chain metrics do not hold inventory for each 

SKU, but rather track the aggregate inventory stored at the stage. This is then used in 

performance metrics to determine how many days of demand coverage are held at each location. 

With this metric, our simulated days of inventory can be compared to the existing days of 

inventory held. 
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Equation 8 

𝐷𝑎𝑦𝑠 𝑜𝑓 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = ∑
(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑛 ℎ𝑎𝑛𝑑𝑡 + 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑛 𝑜𝑟𝑑𝑒𝑟𝑡)

𝐷𝑒𝑚𝑎𝑛𝑑𝑡

365

𝑡=0

  

 

The model will only produce inventory to cover the demand nodes included in the 

simulation, in this case, three customer locations. The actual production environment will pool 

the demand signal from many downstream customer demand signals. The level of variability 

denoted as the standard deviation, does not increase linearly but rather the square root of the 

summed variance as shown in Equation 11. This metric then will provide an insight into the 

operation of DDMRP and the impact of inventory holding levels in our simulated environment , 

but not a perfect comparison to the partner’s existing metrics.  

 
Equation 9 

𝜎𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  =  √𝜎𝑖
2  + 𝜎𝑖+1

2 . . . 𝜎𝑖+𝑛
2    

    i = customer  

    𝜎 =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

 

4.4.3 Stockout Events 

 

 Extremely high on time in full (OTIF) metrics are required of planners in the 

pharmaceutical industry as described in the literature review. The simulation model defines the 

penalty for this parameter based on the number of time periods when the stock on hand was able 

to meet the incoming demand. If the inventory is not available when requested, then the model 

will consider the day a stockout event and place the demand on back order to be fulfilled when 

the material is available. 
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4.4.4 Item Fill Rate 

 

The item fill rate (IFR) was used as a second metric to represent the model’s performance 

based on the level of service provided to customers. Instead of imposing a penalty for not fully 

fulfilling the customer demand for a day, the IFR will quantify the percentage of total customer 

demand that the model fulfilled. This will give an impression of the ability of DDMRP to 

perform in meeting total customer demand, with the weight of the penalty based on the number 

of units short on a given day. Equation 12 shows the IFR formula.  

Equation 10 

𝐼𝐹𝑅 =  
1

𝑛
  ∗ ∑ 𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑/

𝑛

𝑡 = 0

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 

   n = number of time periods in assessment 

 

4.5 Sensitivity Analysis 

 

Experimenting in a simulated model provided an environment to determine the impact of 

altering strategic parameters and deep dive into the system-level constraints of the DDMRP 

methodology. The lead time factor and variability factor values were suggested based on a 

categorical classification scheme. To set the baseline of the analysis, lead time, and variability of 

the nodes are each categorized into three classes.  

To provide a framework for the partner company to set these parameters, a key research 

question for the study is to demonstrate the system's impact on tuning the values. The simulation 

modeling environment of the sensitivity analysis incorporates similar constraints to the 

pharmaceutical industry in the form of a balanced tree-like supply chain as indicated in Figure 

11. The purpose of stress testing the parameters in a general treemap, instead of any specific 
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product is to assist identification of system-wide dynamics. These findings can be applied to our 

customized simulation model. 

Figure 11:  

Supply chain network map for sensitivity testing 

 

 

It is important to understand the overall system impacts of altering the current way of 

supply chain planning and execution. By altering parameters such as the desired order frequency 

and the location of buffer stocks, the impact of strategic system design decisions can be observed 

and quantified. This assessment will quantify the system changes based on altering the 

parameters summarized in Table 5.   
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Table 5:  

Description of the DDMRP input parameters 

Parameter Parameter 
Flexibility* 

Purpose Type 

ADU Time 
Frame 

Managerial 
lever 

Adjust the time frame of the demand 
signal. 

Time Horizon (Days) 

Lead Time 
Factor 

Managerial 
lever 

Adjust buffer zones based on lead time. Scalar Factor (0-1) 

Variability 
Adjustment 
Factor 

Managerial 
lever 

Define red safety size based on demand 
variability. 

Scalar Factor (0-1) 

Planned 
Adjustment 
Factor 

Managerial 
lever 

Account for seasonality or other known 
factors impacting demand (not covered 
in our study). 

Scalar Factor (multiplicative) 

Order Spike 
Threshold 

Managerial 
lever 

Reduce the impact on buffer sizing for 
non-sustained demand spikes (not 
covered in our study). 

The threshold for including a 
future demand as qualified 
demand. Set as a demand 
threshold 

Desired Order 
Frequency 

System 
constraint 

Constrain the frequency of production 
runs or orders at each stage. 

Sets buffer sizes to meet 
demand over the desired time 
horizon between productions 
or orders 

Location of 
Buffer Stocks 

Managerial 
lever 

Determine the network map. Buffers 
decouple stages within the supply chain, 
fewer buffers aggregate more processes 
into a single stage.  

Managerial Decision  

Lead Time System 
constraint 

Determine the impact of long lead time 
at a node in the supply chain. 

Days of lead time 

Demand 
Variability 

System 
constraint 

Test model with demand scenarios. Demand Profile adjustment 

* Managerial lever parameters can be adjusted without further verification of practicality. System constraint 

parameters are inherent constraints that existed in specific products.    

 

4.6 Chase Strategy 

 

 The learning from the sensitivity analysis built a foundation to test the implementation of 

DDMRP on existing portfolios within the partner company. The product network experimented 

with is shown in Figure 10 from Section 4.2.1.  

 A chase strategy was implemented to determine the optimal range for each of the 

parameters in the context of our simulated supply chain. First, the fixed system constraints were 

set based on information gathered from the partner company. The categories considered 
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managerial levers represented factors that could be adjusted without altering the supply chain 

system. These included lead time adjust factor, ADU horizon, and variability adjust factor. The 

relevant DDMRP features are outlined in Table 5. Then, according to insights gained while 

tuning parameters in the sensitivity analysis, the simulation system was set to target a service 

level of zero stockouts at the customer-facing nodes. One parameter was altered at a time in 

incremental steps to determine the optimal setting. When the parameter no longer improved the 

metrics, this value was set, and the next parameter was tuned.  
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5 Results 
 

5.1 Output From Sensitivity Analysis 

 

 The results from the initial sensitivity analysis provide insight into the mechanics of a 

complex multi-echelon DDMRP network. The primary benefit of performing this analysis is to 

understand the impact of altering the managerial lever parameters to tune the model 

performance. The following sections will outline the impact of each parameter on the metrics of 

days of inventory and service level.  

Table 6:  

Sensitivity analysis Result 

 

5.1.1 Lead Time 

 

Reducing the lead time reduces the days of inventory held within the supply chain 

network, with the result of increasing the number of stockout events observed. Conversely, 

Lead Time 2 4 6 8 (Baseline) 10 12 14

DOI 167 202 239 278 304 333 377

Stockout 150 61 27 15 10 4 2

DOI Diff/Stockout Diff from Baseline 0.82 1.65 3.25 - 5.18 4.94 7.59

Desired Order Frequency 2 4 6 8 (Baseline) 10 12 14

DOI 225 225 239 278 301 329 355

Stockout 8 8 6 15 13 18 9

DOI Diff/Stockout Diff from Baseline -7.54 -7.54 -4.36 - 11.49 -16.86 12.81

LT Adj Factor 0.2 0.4 0.6 (Baseline) 0.8 1.0

DOI 195 258 278 313 353

Stockout 125 23 15 4 2

DOI Diff/Stockout Diff from Baseline 0.76 2.56 - 3.19 5.78

Var Adj Factor 0.2 0.4 0.6 (Baseline) 0.8 1.0

DOI 243 258 278 291 306

Stockout 34 23 15 9 7

DOI Diff/Stockout Diff from Baseline 1.86 2.56 - 2.09 3.43

ADU Back Track 15 30 45 60 (Baseline) 75 90 105

DOI 290 269 271 278 271 272 278

Stockout 49 28 13 15 11 7 12

DOI Diff/Stockout Diff from Baseline -0.35 0.74 -3.52 - -1.72 -0.81 -0.09

Demand Coefficient of Variation 0.6 0.8 1.0 1.2 (Baseline) 1.4 1.6 1.8

DOI 265 264 266 278 274 276 273

Stockout 5 10 13 15 19 29 29

DOI Diff/Stockout Diff from Baseline -1.32 -2.87 -6.15 - 1.10 0.15 0.38
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increasing the lead time between each network node increased the inventory holding, and 

reduced the number of stockouts at the nodes. Table 6 outlines the performance metrics with 

varying lead time, and Figure 12 shows the resulting impact on stockouts and inventory levels.  

Figure 12:  

Impact of adjusting replenishment lead time  

 

 

5.1.2 Desired Order Frequency 

 

The model had a better performance of inventory and service level metrics with lower 

desired order frequency. This allowed nodes in the supply chain to replenish more frequently and 

adjust to changes in demand. The lower inventory level was held due to the shorter period of 

demand coverage the buffer needed to plan for. Table 6 outlines the performance metrics with 

varying the desired order frequency, and Figure 13 shows the resulting impact on stockouts and 

inventory level. 
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Figure 13:  

Impact of altering desired order frequency on days of inventory and stockout metrics  

 

 

5.1.3 Lead Time Adjustment Factor 
 

 As the lead time adjust factor was increased, the days of inventory in the system 

increased and the number of stockouts decreased. The most pronounced impact on system 

performance was observed between a lead time adjust factor of 0.2 to 0.4 on both the inventory 

holding and the stockout metrics. As the lead time adjust factor was increased, the inventory in 

the system continued to increase but resulted in an impact on the stockout performance. Table 6 

outlines the performance metrics with varying lead time adjust factors, and Figure 14 shows the 

resulting impact on stockouts and inventory levels. 
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Figure 14:  

Impact of altering lead time adjust factor on days of inventory and stockout metrics  

 

 

5.1.4 Variability Adjustment Factor 
 

 Increasing the variability adjustment factor increases the days of inventory, leading to a 

lower number of stockouts. Reducing the variability adjustment factor decreases the days of 

inventory, leading to a higher number of stockouts. Table 6 outlines the performance metrics 

with changing the variability adjust factor, and Figure 15 shows the resulting impact on 

stockouts and inventory level. 
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Figure 15:  

Impact of altering variability adjust factor on days of inventory and stockout metrics 

 

 

5.1.5 ADU Back Track 
 

 Increasing the number of days of demand incorporated into the ADU signal reduced the 

number of stockouts, between 15 and 45 days. Further increases did not have a predictable 

impact on the number of stockouts. The best performance on the stockout metric was seen at 90 

days of demand signal, although it is not clear if the same optimal value will translate to other 

demand profiles. According to the graph, the days of inventory and stockout metrics run parallel. 

Table 6 outlines the performance metrics with changing the amount of historic demand to 

include in the ADU calculation, and Figure 16 shows the resulting impact on stockouts and 

inventory level. 
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Figure 16:  

Impact of altering ADU time horizon on days of inventory and stockout metrics 

 

 

5.1.6 Variability of Demand 
 

 Smaller demand variability in this model resulted in better performance in both inventory 

level and service level. Reducing the variability had the strongest impact on performance in this 

experimental simulation. Table 6 outlines the performance metrics with changing the standard 

deviation of demand, and Figure 17 shows the resulting impact on stockouts and inventory 

levels. 
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Figure 17:  

Impact of altering variability of demand on days of inventory and stockout metrics 

 

 

5.2 Output From Applying Chase Strategy on Actual Product 
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level, A3 remained with one stockout even after maximizing the adjustment factors and fine-

tuning the ADU back track days. 

Figure 18:  

Stockout performance for chase strategy scenarios for A level nodes 

 

0

5

10

15

20

25

000 001 002 003 004 005 006 007 008 009

N
u

m
b

er
 o

f S
to

ck
o

u
ts

Scenario No.

Number of Stockout Change for A Nodes

A1

A2

A3



 

 

62 

Figure 19:  

Days of inventory performance for chase strategy scenarios for A level nodes 

 

 

On other nodes, an inconsistent stockout pattern was observed, while days of inventory 

remain relatively constant except for node F1, as shown in Figures 20 and 21. A negative impact 

on downstream service level is observed with the improvement in service level in all A level 

nodes, showing that the layers in the system are not independent but their performance was 

interrelated. 
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Figure 20:  

Stockout performance for chase strategy scenarios for B/C/D/E/F level nodes 

 

 
Figure 21:  

Days of inventory performance for chase strategy scenarios for B/C/D/E/F level nodes 

 

 

0

2

4

6

8

10

12

14

16

18

000 001 002 003 004 005 006 007 008 009

N
u

m
b

er
 o

f S
to

ck
o

u
ts

Scenario No.

Number of Stockout Change for B/C/D/E/F Nodes

B1

B2

C1

C2

D1

D2

E1

F1

0

100

200

300

400

500

600

000 001 002 003 004 005 006 007 008 009

D
ay

s 
o

f 
In

ve
n

to
ry

Scenario No.

DOI Change for B/C/D/E/F Nodes

B1

B2

C1

C2

D1

D2

E1

F1



 

 

64 

6 Discussion  
 

6.1 Insights from Sensitivity Analysis 
 

The sensitivity analysis allowed us to observe the fundamental functionality of the 

DDMRP system. This provided insights that can be observed across industries. These insights 

are presented and discussed in the sections below.  

6.1.1 Parameter Tuning Suggestions 

 

We categorized the inventory level-service level relationship of the parameters tested into 

three groups: opposite tradeoff, extreme value, and correlated. These categories provide guidance 

on the expected outcome of altering strategic parameters.  

 The “opposite tradeoff” category includes lead time, lead time adjustment factor, and 

variability adjustment factor. In this category, the total number of stockouts decreases as the days 

of inventory increase, and vice versa. Except for lead time which cannot be easily adjusted due to 

inherent system constraints, the other two parameters can serve as a managerial lever to fine tune 

the multi-echelon DDMRP system to achieve strategic service or operational objectives. 

 The “extreme value” category includes the desired order frequency and demand 

coefficient of variation. Both parameters point to better performance on inventory and service 

levels at one extreme end. While both are considered system constraints and cannot be adjusted 

freely, they provide an entry point for the partner company to examine whether there are product 

segments within their current SKU portfolio that are suitable for DDMRP introduction.  

 The “correlated” category consists of parameter ADU back track days. Days of inventory 

move in a similar pattern to the total number of stockouts. This hints that the best ADU back 

track days are highly dependent on the system and that there is no single definite good value for 
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all cases. ADU back track days should be set appropriately by studying the demand profile for all 

nodes to maximize DDMRP performance.   

6.1.2 Buffer Zone Designed for Stable Demand  

 

A DDMRP system, as shown in Table 6, performs better when facing relatively stable 

demand. The results of tuning the demand coefficient of variation are shown in Figure 22. The 

number of stockouts decreased significantly by cutting the demand coefficient of variation from 

1.2 to 0.6. 

Figure 22:  

Inventory position of node A2 under different demand variability scenarios 

A2 output from baseline case; Demand coefficient of variation = 1.2 

 

A2 output from sensitivity analysis scenario 29; Demand coefficient of variation = 0.6 
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Without forecasting to predict upcoming demand, a DDMRP system will have difficulty 

reacting to uncertainty while providing a high service level. Hedging against uncertainty can be 

achieved by holding more inventory or holding excess capacity to enable rapidly pulling 

materials through the value-added stages of manufacturing. Both options represent costs to an 

organization. 

Demand variability has a major impact on the service level performance of a DDMRP 

supply chain. This is an important factor to consider when implementing DDMRP. The 

pharmaceutical industry strives for near-perfect service levels, so there is likely to be a narrow 

portfolio of stable demand SKUs which would be amenable to DDMRP methodology. For 

products that are deemed too variable, future research can assess if forecast predictions can be 

incorporated through the PAF to improve the performance. Is the DDMRP SKU portfolio’s total 

contribution to the company’s value proposition adequate to justify the investment in training, 

technology, and organizational change management.  

6.1.3 Demand Clustering 

 

From the simulation model, we observed that the buffer stock profiles have the effect of 

storing the demand signal and releasing the clustered demand to the upstream node. This leads to 

each stage clustering an increasing amount of the demand signal as we move up the supply 

chain. The design of the network map for the sensitivity test is presented again in Figure 11 to 

orient the reader during the following section. 

The result of a simulation for customer-facing node A1 over a period of 24 months is 

shown in Figure 23. Here, it is observed that the demand is flowing in continually on a daily 

basis with a coefficient of variation of 0.95, Table 6, and the inventory on hand is being 

consumed daily as well until it requires reorder and is replenished by the upstream node.  
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Figure 23:  

Buffer profile level for node A1 in the sensitivity analysis

 

 The upstream node, B1, is planning the buffer levels based on the sum of the raw demand 

coming in at the customer-facing nodes incorporating the sum of A1 and A2 into its ADU 

calculation. However, this node only receives a demand signal when either of its downstream 

nodes requires replenishment. With node B1, shown in Figure 24, as is observed with the black 

line denoting demand, the actual demand on the node becomes infrequent. This is due to the 

downstream nodes holding a buffer inventory which will be depleted and replenished on average 

based on the number of days of inventory coverage in the green zone of A level’s buffer stock. 

This in effect aggregates the demand signal and pushes a larger more infrequent replenishment 

request to the upstream node, the coefficient of variation at this node becomes 2.21, Table 6.  

Figure 24:  

Buffer profile level for node B1 in the sensitivity analysis
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This observed clustering of the actual demand signal becomes more pronounced as we 

move through the upstream echelons of the supply chain environment. Level C1, shown in 

Figure 25 is still planned based on the demand from its dependent customer-facing nodes, the 

ADU calculation is based on the sum of A1 through A4. This node is observed to have large 

infrequent spikes in demand from the downstream stages. The coefficient of variation of demand 

is now about 2.43, Table 6. Individual spikes that exceed the safety buffer level and enter the 

yellow zone are now being ordered on this node. This leaves the node at high risk for stocking 

out, as the inventory level will routinely fall into the yellow zone while the buffer is await ing 

replenishment over the lead time.  

Figure 25:  

Buffer profile level for node C1 in the sensitivity analysis

 

Lastly, as the downstream nodes have been accumulating demand signals in their buffer 

stock and making requests upstream increasingly less frequently and in a larger magnitude, we 

observe interesting characteristics in the furthest upstream node D1, Figure 26. The coefficient of 

variation of demand reaches 3.86, Table 6. As with the other nodes, this location plans its 

inventory buffer levels on the incoming demand at the dependent customer-facing nodes, in this 

case, it plans for the sum of demand at nodes A1 through A8. The demand signal here comes so 

infrequently and in such a large volume that the buffer zone is consumed by the early demand 
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signal. The calculations for orders up to quantity incorporate the buffer recommended order 

quantity plus the amount of the last demand so this node will produce and hold a large amount of 

inventory, much larger than the buffer zone is calculated to require. This inventory is then slowly 

used by following infrequent demand signals, but the buffer no longer will replenish on the 

desired order frequency.  

Figure 26:  

Buffer profile level for node D1 in the sensitivity analysis 

 

 Traditional supply chain systems will plan each node in the system based on their 

immediate downstream requirements. This leads to the variability incoming from the customer 

amplifying as the message progresses up the supply chain due to the lack of visibility between 

nodes. This amplification of variability is known as the bullwhip effect. DDMRP removes this 

bullwhip effect by aligning the planning of each node in the supply chain to the signal of the 

actual demand coming from the downstream customers.  

The side effect of this however is that each node will not plan for its requirements from 

the downstream stage, but rather around its own replenishment to match the customer demand. 

This issue is further explored in Section 6.2.3. This leads to inventory levels that are not aligned 

to the anticipated size of the direct downstream order due to the clustering of accumulated 
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demand. DDMRP has provided a means to reduce the bullwhip effect, but in the process, a new 

phenomenon is introduced which is not addressed in the current framework.  

The clustering effect of orders is not a phenomenon distinctive to DDMRP, but across 

many other inventory planning methodologies. Different methodologies encompass different 

remedies for the problem, such as relying on the forecast to estimate demand and plan operations 

according to smoothed out demand, and planning inventory targets to meet the anticipated 

downstream partners' ordering pattern. Complete automation with little to no intervention, which 

speaks to the partner company’s goal of reducing planning labor, will not overcome the 

progressive increase in demand variability.  

6.2 Insights from Test Implementation: Chase Strategy 

 

The chase strategy was performed to test the DDMRP framework in a realistic 

environment that is relevant directly to our partner company. With the interactive tuning of the 

managerial levers, we were not able to achieve a perfect service level as one market still 

exhibited a stockout over the simulated two-year time horizon. This is an indication that 

DDMRP may not be suitable for this product in this simulated environment.  

 

6.2.1 High Inventory at Upstream Stages 

 

The results of the optimal DDMRP simulation, after tuning, were presented to the partner 

company’s planning and manufacturing functions. The primary concerns addressed by the 

stakeholders are that the system still exhibited stockouts, and upstream stages were holding 

excessive amounts of inventory. As presented in Table 7 of the results, an average of more than 

340 days of inventory were held at the farthest upstream stage, the API. This compares with an 

average of three months of cycle stock, representing the infrequent production campaign 
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scheduling, and an average of three months of safety stock for a total of about 180 days of 

inventory held at the API stage (Partner company, personal communication).  

This problem is likely related to the clustering of demand introduced in Section 4.1.3. 

This is supported by the large amounts of inventory held at the API stage, indicating that 

DDMRP may not be able to handle the complexity of this many buffered stages in this setting.  

 

6.2.2 Demand Tolerance Over the Replenishment Lead Time 

 

We reached the limit of the tuning of the managerial levers and still had one stockout as 

shown in Figure 27. The customer node experienced a high level of demand during the period 

after it called for replenishment. This is the time when the node is at its lowest inventory level, 

therefore the highest risk for stockout. At this time the node is protected by inventory coverage 

of only the yellow zone, representing the demand over the replenishment lead time, and the red 

zone.  

The calculation for the red safety zone as stated in Equation 4 in Section 2.2.2.3, is not 

based on a target service level. At a maximum, this safety zone calculation will call for an 

additional two times the expected demand over the replenishment lead time, see Equation 4. This 

will lead to a maximum of three times the expected demand over the lead time, to cover any 

incoming demand during the replenishment period. Therefore, if the demand over that lead time 

increases to an average of three times the ADU factor, this node will stock out.  
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Figure 27:  

The stockout incident can be seen during the period after the node has placed an order. High demand occurred over the lead 

time producing a stockout.  

 

 

6.2.3 Relationship Between Node Inventory Calculations 

 

 We observed that, across multiple scenarios, C1 has an average of 67 days of inventory 

on hand, but C2 had significantly fewer average days of inventory at 48 days and experienced 

significantly more stockouts, Table 7. These nodes take in the exact same demand signal, both 

having the same amount and frequency of order from the downstream B1 and B2 nodes.  
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Table 7:  

Output metrics of DDMRP simulation on partner company’s supply chain  

 

This observed performance discrepancy may be due to the inventory buffers only 

considering the incoming customer demand at the end stage, but they do not plan to the 

immediate downstream node’s requirements. In the case of the C-level nodes, the downstream 

node has a considerably longer lead time and a less frequent desired order frequency. The green 

zone, reorder point, then is much larger than what is being planned at the upstream stage. The 

downstream node is designed to order from C2 in an amount greater than the total inventory on 

hand at that buffer location leading to a stockout. C1 holds a larger inventory buffer due to a 

slightly longer lead time, so this node performs better than C2. This will be exacerbated as the 

demand increases, the ADU signal increases and is multiplied by a larger lead time in the 

downstream node but is increased by a smaller amount at the upstream. Then as demand 

increases, the gap between the downstream and the inventory on hand to fulfill that demand gets 

wider. This situation is displayed in Figure 28.  

In this figure we also observe the system trying to correct for the large demand spike by 

ordering the spike plus its normal order amount. This leads to a buffer zone that no longer holds 

inventory as directed by the DDMRP calculations, but rather a high level to cover over the last 

demand spike. If the next incoming demand is lower than the previous, the buffer will be safe. 

But the next spike, if it is larger, will cause a stockout. 

Node Demand Avg Lead Time
Actual Order 

Frequency

Desired 

Order 

Frequency

LT Adj Factor
Var Adj 

Factor

ADU Back 

Track
DOI Avg Demand Order Freq

Num of 

Stockout
Fill Rate

A1 21,253 43 66 6 0.2 0.2 60 19 22,605 70 24 97.5%

A2 842 3 5 73 1.0 0.2 60 45 886 10 1 100.0%

A3 2,531 3 18 20 1.0 0.2 60 16 2,550 34 4 99.8%

B1 21,253 8 15 24 0.8 0.4 60 34 22,201 24 4 99.7%

B2 3,373 8 10 37 0.8 0.4 60 50 3,466 16 5 99.5%

C1 24,626 7 77 5 1.0 0.6 60 67 13,092 22 1 100.0%

C2 24,626 4 327 1 1.0 0.6 60 48 13,092 23 12 99.5%

D1 24,626 56 24 15 0.2 1.0 60 162 13,030 12 0 100.0%

D2 24,626 7 11 33 1.0 1.0 60 121 12,970 9 0 100.0%

E1 24,626 78 8 46 0.2 1.0 60 320 13,183 6 0 100.0%

F1 24,626 35 3 122 0.2 1.0 60 340 12,881 2 1 100.0%
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The lack of communication between nodes within the DDMRP framework point to the 

importance of examining the supply chain before implementation. At times, if the nodes are not 

aligned in lead time, supply chain restructuring may need to be done prior to implementing 

DDMRP.  

Figure 28:  

The inconsistent response to the same incoming demand for nodes C1 and C2 

C1 

 

C2 

 

6.2.4 Lead Time Adjust 

 

The simulation model uncovered an important consideration involving the lead time 

adjust factor. Refer to Equation 1. If Parameter 1 in this equation is not the maximum value, the 

lead time adjust will have no impact on the green zone. However, in Equation 4, the red zone 

will always scale down in size based on the lead time factor. If the part has an MOQ or a desired 

order frequency that is binding on the reorder point, this will no longer provide a pipeline of 

orders coming into the system. The safety zone will reduce in size expecting more frequent 
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replenishment, but the benefit that allows for this reduction will not be present. This was the case 

in 6 out of the 11 nodes for this supply chain network. This impact can be seen by the small red 

zone safety coverage in Figure 29.  

Figure 29:  

Outcome of node A2 (desired order frequency: 73 days; lead time: 3 days)  

 

 Practitioners must be careful when implementing DDMRP to provide a provision that the 

lead time adjust is not binding on the safety stock if it is not used in the green zone calculation. 

 

6.2.5 Buffer Zones are Not Sized for Target Service Level 

 

When running simulations, and iteratively tuning the parameters, we realized that there is 

no clear path to target a customer service level within the DDMRP framework. In traditional 

inventory calculations as described by Silver et al. (2017), the service level can be used to 

calculate a safety value for the inventory, denoted as “k” in Figure 30. Providing coverage over 

an assumed underlying probability distribution of demand is not perfect, but these calculations 

provide a clear path for planners to translate a service level into an inventory target. 

Figure 30:  

Service level-based inventory calculation 
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In DDMRP, the green zone represents the inventory coverage over the review period, and 

the yellow zone represents the inventory coverage over the lead time after that order is placed. 

Together the green and yellow represent the same “cycle stock” portion of the traditional 

inventory calculation, Figure 30. DDMRP differs from the traditional inventory formula in the 

safety portion calculation, as there is no clear mechanism for setting the safety stock to a 

management-directed service level. The safety portion is not set based on a mathematical 

characterization of the underlying demand pattern or the error in forecasting accuracy.  

The safety zone instead is sized to provide additional coverage of the buffer over the 

replenishment lead time. The categorization scheme helps to provide guidance on how to size the 

safety zone, but it is not clear how well a system will perform in the initial phases of 

transitioning to DDMRP. This is likely to present a trial-and-error tuning of the safety level 

parameters until the system performs to the expectation of management. During this tuning 

period, the company may need to invest capital in building excessive inventory, or it may be 

caught with insufficient amounts and harm its customer service metrics. In the current state of 

DDMRP development, our partner company may see risk in this service level targeting 

approach. Further development of the DDMRP framework could provide better control in 

targeting a service level.  

 

6.2.6 Implementation Difficulty 

 

Test implementation of DDMRP relied on tuning the parameters on an incremental basis 

to achieve optimal outcomes. However, in actual implementation, the managerial levers and the 

positioning of the buffer stocks need to be determined at a strategic level for each individual 

node. For implementing any other inventory planning methodologies, high performance in the 

system is usually achieved through an iterative learning process across different functions. This 
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is supported by a large amount of data collecting and analyzing system performance over time. 

The same is with implementing DDMRP, many parameters need to be set, standardized, and 

improved through a long-term iterative learning process. The set-up work may require significant 

investment and is to be considered by the partner company, and an understanding that a long-

term organizational learning process will need to be undertaken to achieve performance goals. 
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7 Conclusion  
 

 The foundation of the predominant supply chain methodology in use today, Material 

Requirements Planning (MRP), was introduced by Joseph Orlicky in 1975 (Orlicky, 1975). Since 

this time, MRP has been the subject of extensive assessment and refinement by academic 

researchers and industry practitioners. DDMRP introduces several key features to address the 

shortcomings of MRP planning systems. First aligning the end-to-end supply chain around the 

incoming customer demand signal with the assumption that forecasts always contain errors. In 

MRP, this forecast error is propagated and amplified down the length of the supply chain 

creating what is known as the bullwhip effect. Second, placing buffer stocks in key decoupling 

points effectively reduces the lead time between dependent stages of a supply chain network and 

dampens supply and demand variability. The buffer stocks also provide planners with visibility 

across the supply chain to facilitate demand-driven planning and execution. Third, the system is 

built with the principles of flow. Products are pulled through the supply chain to rapidly react to 

changes in demand, achieving high customer service levels.  

 This capstone has provided insight into the interaction between strategic buffer stocks 

within a DDMRP system in a complex multi-echelon supply chain environment. A simulation 

model was created to serve as a tool to examine network behavior. This tool allowed for 

experimentation by altering the planning levers within the DDMRP framework. The model was 

then expanded to create an environment that incorporates the constraints of the pharmaceutical 

industry’s supply chain. This includes a long chain of dependent processes, long lead time 

between stages, and infrequent production runs driven by high fixed manufacturing costs. This 

research has identified several difficulties experienced when DDMRP is adopted in a complex 

multi-echelon supply chain with a focus on the pharmaceutical industry.  
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 Without forecasting future demand, a DDMRP supply chain must absorb variability to 

maintain high service levels. Thus, it performs best with relatively stable demand, stockouts 

increase as demand becomes more variable. Without a forecast, there is no quantifiable forecast 

error for planners to use to size their safety stock inventory. For this reason, there is no clear path 

to building the supply chain to achieve a target customer service level. The buffer safety zone is 

not planned based on a level of variability in demand, but rather to provide extra coverage over 

the replenishment lead time. This will guarantee a stockout event if the demand over the 

replenishment lead time increases to three times or more of the ADU. The lead time adjust factor 

also can lead to incorrectly decreasing the size of the safety zone, in a system that has target 

reorder points or large minimum order quantities. 

Aligning the full supply chain around the incoming demand signal along with placing 

buffer stocks in key locations is a strong step towards eliminating the bullwhip effect. The 

DDMRP methodology however does not incorporate a key part of the MRP framework, where 

inventory levels are planned to meet the requirements of the downstream partners' ordering 

pattern. For example, if a downstream node produces infrequently, it is likely to hold a large 

inventory. This node will then place large, infrequent orders which can cause stockout events at 

the upstream node. The DDMRP planning framework provides visibility across the supply chain, 

but this information is not used to synchronize direct partners in the network. Future research 

may build upon these findings to form a stronger link between partners in complex multi-echelon 

supply chains, taking advantage of the benefits provided by visibility. DDMRP has promised to 

provide strategic benefits to organizations, but we believe organizational learning, as well as 

further framework development, is required to reap the benefits.  
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Appendix 1:  
 

Results from Autocorrelation Function (ACF) Function 

 

Autocorrelation analysis estimates the influence of other time periods on a given time 

period based on a user-set number of time lags. The demand data provided by the partner 

company was monthly demand, so the number of lags was set to 12, representing the 12 months 

of a year. The ACF plots for the three demand profiles are shown in Appendix XXX. This plot 

shows the level of correlations between a data point and the relevant data points at each lag step, 

1 month apart. The correlation at the 0 point is equal 1, signifying a perfect correlation, to be 

expected as this indicates the data point is perfectly correlated with itself. The relevant 

parameters are for each time frame going outwards at 1 for the next month, 6 is half a year away, 

and 12 represents the correlation between data points and the same month in the other years of 

the data set. This graph includes the blue shaded section which represents the 95% confidence 

interval, correlations falling inside of this zone are not considered correlated with a 95% 

confidence. 

A statistically significant correlation was found in the A2 and A3 data profiles at 1 time 

lag which indicates that the observed demand in the current period is a good predictor of the 

demand in the next period. This is an indication of a trend of demand, where the strongest 

correlation is the next closet time period. A2 also had a moderate correlation at 3-time lags, 

indicating some level of correlation on a quarterly basis. None of the demand profiles showed a 

strong correlation at the point of 12-time lags, which the researchers would expect to observe for 

annual seasonality. For example, the value in January does not provide a strong predictor of the 

value for other time periods in January.  
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The PAF is also considered a mechanism for adding known features into the forward-

looking aspect of the demand signal, such as product ramp up or ramp down. The SKUs the 

researchers investigated are well-established products in their respective markets. The partner 

company did not believe these products were near the beginning (ramp-up) or end (ramp down) 

of their product cycle. The PAF then was not used to model known seasonality or forward-facing 

demand trends for the simulation model.  
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Appendix 2 
 

Result for Applying Chase Strategy on Actual Product 

 

 

  

Scenario No.
Parameter 

Adjusted
Node Demand Avg Lead Time

Order On 

Hand

Actual Order 

Frequency

Desired 

Order 

Frequency

LT Adj Factor
Var Adj 

Factor

ADU Back 

Track
DOI Avg Demand Cov Demand Avg Onhand Order Freq

Num of 

Stockout
Fill Rate

000 Start A1 21,253 43 1,133,194 66 6 0.2 0.2 60 19 22,605 1.0 421,857 70 24 97.5%

000 Start A2 842 3 5,557 5 73 1.0 0.2 60 45 886 1.3 39,745 10 1 100.0%

000 Start A3 2,531 3 16,705 18 20 1.0 0.2 60 16 2,550 0.9 39,896 34 4 99.8%

000 Start B1 21,253 8 360,446 15 24 0.8 0.4 60 34 22,201 3.1 743,912 24 4 99.7%

000 Start B2 3,373 8 57,206 10 37 0.8 0.4 60 50 3,466 4.1 172,508 16 5 99.5%

000 Start C1 24,626 7 448,188 77 5 1.0 0.6 60 67 13,092 4.8 874,269 22 1 100.0%

000 Start C2 24,626 4 256,107 327 1 1.0 0.6 60 48 13,092 4.8 633,786 23 12 99.5%

000 Start D1 24,626 56 1,930,655 24 15 0.2 1.0 60 162 13,030 5.8 2,111,966 12 0 100.0%

000 Start D2 24,626 7 517,140 11 33 1.0 1.0 60 121 12,970 5.7 1,564,550 9 0 100.0%

000 Start E1 24,626 78 2,689,127 8 46 0.2 1.0 60 320 13,183 9.0 4,219,816 6 0 100.0%

000 Start F1 24,626 35 1,206,659 3 122 0.2 1.0 60 340 12,881 11.2 4,373,895 2 1 100.0%

278 51

001 Var Adj Factor A1 21,253 43 1,133,194 66 6 0.2 0.2 60 19 22,605 1.0 421,857 70 24 97.5%

001 Var Adj Factor A2 842 3 5,557 5 73 1.0 0.2 60 45 886 1.3 39,745 10 1 100.0%

001 Var Adj Factor A3 2,531 3 16,705 18 20 1.0 0.2 60 16 2,550 0.9 39,896 34 4 99.8%

001 Var Adj Factor B1 21,253 8 360,446 15 24 0.8 0.4 60 34 22,201 3.1 743,912 24 4 99.7%

001 Var Adj Factor B2 3,373 8 57,206 10 37 0.8 0.4 60 50 3,466 4.1 172,508 16 5 99.5%

001 Var Adj Factor C1 24,626 7 413,712 77 5 1.0 0.4 60 64 13,092 4.8 837,140 22 1 100.0%

001 Var Adj Factor C2 24,626 4 236,407 327 1 1.0 0.4 60 47 13,092 4.8 612,643 23 14 99.4%

001 Var Adj Factor D1 27,157 56 2,007,423 24 15 0.2 0.6 60 152 13,022 5.8 1,978,500 11 0 100.0%

001 Var Adj Factor D2 49,251 7 896,376 11 33 1.0 0.6 60 115 12,966 5.7 1,488,954 9 0 100.0%

001 Var Adj Factor E1 52,624 78 5,582,397 8 46 0.2 0.8 60 313 13,168 9.0 4,125,843 6 0 100.0%

001 Var Adj Factor F1 76,408 35 3,743,997 3 122 0.2 1.0 60 341 12,809 11.2 4,362,160 2 1 100.0%

273 53 2.23

002 Var Adj Factor A1 21,253 43 1,169,749 66 6 0.2 0.4 60 20 22,605 1.0 449,158 69 19 97.9%

002 Var Adj Factor A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

002 Var Adj Factor A3 2,531 3 18,223 18 20 1.0 0.4 60 16 2,550 0.9 41,421 34 3 99.9%

002 Var Adj Factor B1 21,253 8 387,649 15 24 0.8 0.6 60 36 22,322 3.1 805,333 23 4 99.9%

002 Var Adj Factor B2 3,373 8 61,524 10 37 0.8 0.6 60 51 3,466 4.1 175,394 16 5 99.5%

002 Var Adj Factor C1 24,626 7 448,188 77 5 1.0 0.6 60 68 12,964 4.9 883,380 22 2 100.0%

002 Var Adj Factor C2 24,626 4 256,107 327 1 1.0 0.6 60 50 12,964 4.9 645,171 23 14 99.4%

002 Var Adj Factor D1 27,157 56 2,068,254 24 15 0.2 0.8 60 149 13,700 5.8 2,040,368 13 1 100.0%

002 Var Adj Factor D2 49,251 7 965,328 11 33 1.0 0.8 60 111 13,635 5.7 1,513,138 9 1 100.0%

002 Var Adj Factor E1 52,624 78 5,746,585 8 46 0.2 1.0 60 303 14,156 9.1 4,294,487 5 0 100.0%

002 Var Adj Factor F1 76,408 35 3,743,997 3 122 0.2 1.0 60 380 11,375 12.3 4,326,698 2 1 99.9%

286 47 2.13

003 LT Adj Factor A1 21,253 43 1,425,631 66 6 0.4 0.4 60 35 22,605 1.0 789,801 38 5 99.4%

003 LT Adj Factor A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

003 LT Adj Factor A3 2,531 3 18,223 18 20 1.0 0.4 60 16 2,550 0.9 41,421 34 3 99.9%

003 LT Adj Factor B1 21,253 8 442,056 15 24 1.0 0.6 60 49 22,473 4.3 1,096,597 21 1 100.0%

003 LT Adj Factor B2 3,373 8 70,158 10 37 1.0 0.6 60 54 3,466 4.1 185,979 16 5 99.7%

003 LT Adj Factor C1 24,626 7 448,188 77 5 1.0 0.6 60 70 13,783 5.3 965,432 20 2 100.0%

003 LT Adj Factor C2 24,626 4 256,107 327 1 1.0 0.6 60 52 13,783 5.3 718,684 21 17 99.2%

003 LT Adj Factor D1 27,157 56 2,615,734 24 15 0.4 0.8 60 189 13,955 6.3 2,636,218 11 0 100.0%

003 LT Adj Factor D2 49,251 7 965,328 11 33 1.0 0.8 60 101 14,093 6.2 1,419,537 7 2 99.9%

003 LT Adj Factor E1 52,624 78 7,388,467 8 46 0.4 1.0 60 325 14,340 9.7 4,665,624 4 0 100.0%

003 LT Adj Factor F1 76,408 35 4,813,711 3 122 0.4 1.0 60 402 16,092 13.9 6,465,907 3 0 100.0%

321 33 2.42

004 ADU Back Track A1 21,253 43 1,425,631 66 6 0.4 0.4 10 61 22,605 1.0 1,388,062 26 0 100.0%

004 ADU Back Track A2 842 3 6,062 5 73 1.0 0.4 70 44 886 1.3 39,222 10 2 99.9%

004 ADU Back Track A3 2,531 3 18,223 18 20 1.0 0.4 20 18 2,550 0.9 44,745 35 1 99.9%

004 ADU Back Track B1 21,253 8 442,056 15 24 1.0 0.6 30 58 24,225 5.4 1,411,876 15 14 98.9%

004 ADU Back Track B2 3,373 8 70,158 10 37 1.0 0.6 50 52 3,501 4.0 182,892 15 4 99.7%

004 ADU Back Track C1 24,626 7 448,188 77 5 1.0 0.6 30 86 13,531 6.3 1,157,767 13 7 99.6%

004 ADU Back Track C2 24,626 4 256,107 327 1 1.0 0.6 30 67 13,531 6.3 905,658 15 12 98.9%

004 ADU Back Track D1 27,157 56 2,615,734 24 15 0.4 0.8 60 231 13,841 8.1 3,196,625 8 1 100.0%

004 ADU Back Track D2 49,251 7 965,328 11 33 1.0 0.8 80 144 13,640 7.8 1,960,269 6 4 99.7%

004 ADU Back Track E1 52,624 78 7,388,467 8 46 0.4 1.0 120 356 14,630 10.8 5,209,744 4 0 100.0%

004 ADU Back Track F1 76,408 35 4,813,711 3 122 0.4 1.0 360 340 14,549 14.7 4,945,531 1 1 99.9%

386 40 9.87

005 ADU Back Track A1 21,253 43 1,425,631 66 6 0.4 0.4 10 61 22,605 1.0 1,388,062 26 0 100.0%

005 ADU Back Track A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

005 ADU Back Track A3 2,531 3 18,223 18 20 1.0 0.4 20 18 2,550 0.9 44,745 35 1 99.9%

005 ADU Back Track B1 21,253 8 442,056 15 24 1.0 0.6 60 62 24,225 5.4 1,509,461 19 11 99.1%

005 ADU Back Track B2 3,373 8 70,158 10 37 1.0 0.6 50 53 3,514 4.0 187,475 16 3 99.9%

005 ADU Back Track C1 24,626 7 448,188 77 5 1.0 0.6 60 68 14,188 5.6 968,366 16 11 99.2%

005 ADU Back Track C2 24,626 4 256,107 327 1 1.0 0.6 30 53 14,188 5.6 749,865 17 14 98.8%

005 ADU Back Track D1 27,157 56 2,615,734 24 15 0.4 0.8 60 207 14,225 7.2 2,944,103 9 1 100.0%

005 ADU Back Track D2 49,251 7 965,328 11 33 1.0 0.8 60 134 14,363 7.2 1,923,214 8 4 99.9%

005 ADU Back Track E1 52,624 78 7,388,467 8 46 0.4 1.0 60 311 16,605 9.3 5,166,041 4 0 100.0%

005 ADU Back Track F1 76,408 35 4,813,711 3 122 0.4 1.0 60 480 15,214 14.4 7,302,652 2 1 99.9%

361 40 7.59
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Scenario No.
Parameter 

Adjusted
Node Demand Avg Lead Time

Order On 

Hand

Actual Order 

Frequency

Desired 

Order 

Frequency

LT Adj Factor
Var Adj 

Factor

ADU Back 

Track
DOI Avg Demand Cov Demand Avg Onhand Order Freq

Num of 

Stockout
Fill Rate

000 Start A1 21,253 43 1,133,194 66 6 0.2 0.2 60 19 22,605 1.0 421,857 70 24 97.5%

000 Start A2 842 3 5,557 5 73 1.0 0.2 60 45 886 1.3 39,745 10 1 100.0%

000 Start A3 2,531 3 16,705 18 20 1.0 0.2 60 16 2,550 0.9 39,896 34 4 99.8%

000 Start B1 21,253 8 360,446 15 24 0.8 0.4 60 34 22,201 3.1 743,912 24 4 99.7%

000 Start B2 3,373 8 57,206 10 37 0.8 0.4 60 50 3,466 4.1 172,508 16 5 99.5%

000 Start C1 24,626 7 448,188 77 5 1.0 0.6 60 67 13,092 4.8 874,269 22 1 100.0%

000 Start C2 24,626 4 256,107 327 1 1.0 0.6 60 48 13,092 4.8 633,786 23 12 99.5%

000 Start D1 24,626 56 1,930,655 24 15 0.2 1.0 60 162 13,030 5.8 2,111,966 12 0 100.0%

000 Start D2 24,626 7 517,140 11 33 1.0 1.0 60 121 12,970 5.7 1,564,550 9 0 100.0%

000 Start E1 24,626 78 2,689,127 8 46 0.2 1.0 60 320 13,183 9.0 4,219,816 6 0 100.0%

000 Start F1 24,626 35 1,206,659 3 122 0.2 1.0 60 340 12,881 11.2 4,373,895 2 1 100.0%

278 51

001 Var Adj Factor A1 21,253 43 1,133,194 66 6 0.2 0.2 60 19 22,605 1.0 421,857 70 24 97.5%

001 Var Adj Factor A2 842 3 5,557 5 73 1.0 0.2 60 45 886 1.3 39,745 10 1 100.0%

001 Var Adj Factor A3 2,531 3 16,705 18 20 1.0 0.2 60 16 2,550 0.9 39,896 34 4 99.8%

001 Var Adj Factor B1 21,253 8 360,446 15 24 0.8 0.4 60 34 22,201 3.1 743,912 24 4 99.7%

001 Var Adj Factor B2 3,373 8 57,206 10 37 0.8 0.4 60 50 3,466 4.1 172,508 16 5 99.5%

001 Var Adj Factor C1 24,626 7 413,712 77 5 1.0 0.4 60 64 13,092 4.8 837,140 22 1 100.0%

001 Var Adj Factor C2 24,626 4 236,407 327 1 1.0 0.4 60 47 13,092 4.8 612,643 23 14 99.4%

001 Var Adj Factor D1 27,157 56 2,007,423 24 15 0.2 0.6 60 152 13,022 5.8 1,978,500 11 0 100.0%

001 Var Adj Factor D2 49,251 7 896,376 11 33 1.0 0.6 60 115 12,966 5.7 1,488,954 9 0 100.0%

001 Var Adj Factor E1 52,624 78 5,582,397 8 46 0.2 0.8 60 313 13,168 9.0 4,125,843 6 0 100.0%

001 Var Adj Factor F1 76,408 35 3,743,997 3 122 0.2 1.0 60 341 12,809 11.2 4,362,160 2 1 100.0%

273 53 2.23

002 Var Adj Factor A1 21,253 43 1,169,749 66 6 0.2 0.4 60 20 22,605 1.0 449,158 69 19 97.9%

002 Var Adj Factor A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

002 Var Adj Factor A3 2,531 3 18,223 18 20 1.0 0.4 60 16 2,550 0.9 41,421 34 3 99.9%

002 Var Adj Factor B1 21,253 8 387,649 15 24 0.8 0.6 60 36 22,322 3.1 805,333 23 4 99.9%

002 Var Adj Factor B2 3,373 8 61,524 10 37 0.8 0.6 60 51 3,466 4.1 175,394 16 5 99.5%

002 Var Adj Factor C1 24,626 7 448,188 77 5 1.0 0.6 60 68 12,964 4.9 883,380 22 2 100.0%

002 Var Adj Factor C2 24,626 4 256,107 327 1 1.0 0.6 60 50 12,964 4.9 645,171 23 14 99.4%

002 Var Adj Factor D1 27,157 56 2,068,254 24 15 0.2 0.8 60 149 13,700 5.8 2,040,368 13 1 100.0%

002 Var Adj Factor D2 49,251 7 965,328 11 33 1.0 0.8 60 111 13,635 5.7 1,513,138 9 1 100.0%

002 Var Adj Factor E1 52,624 78 5,746,585 8 46 0.2 1.0 60 303 14,156 9.1 4,294,487 5 0 100.0%

002 Var Adj Factor F1 76,408 35 3,743,997 3 122 0.2 1.0 60 380 11,375 12.3 4,326,698 2 1 99.9%

286 47 2.13

003 LT Adj Factor A1 21,253 43 1,425,631 66 6 0.4 0.4 60 35 22,605 1.0 789,801 38 5 99.4%

003 LT Adj Factor A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

003 LT Adj Factor A3 2,531 3 18,223 18 20 1.0 0.4 60 16 2,550 0.9 41,421 34 3 99.9%

003 LT Adj Factor B1 21,253 8 442,056 15 24 1.0 0.6 60 49 22,473 4.3 1,096,597 21 1 100.0%

003 LT Adj Factor B2 3,373 8 70,158 10 37 1.0 0.6 60 54 3,466 4.1 185,979 16 5 99.7%

003 LT Adj Factor C1 24,626 7 448,188 77 5 1.0 0.6 60 70 13,783 5.3 965,432 20 2 100.0%

003 LT Adj Factor C2 24,626 4 256,107 327 1 1.0 0.6 60 52 13,783 5.3 718,684 21 17 99.2%

003 LT Adj Factor D1 27,157 56 2,615,734 24 15 0.4 0.8 60 189 13,955 6.3 2,636,218 11 0 100.0%

003 LT Adj Factor D2 49,251 7 965,328 11 33 1.0 0.8 60 101 14,093 6.2 1,419,537 7 2 99.9%

003 LT Adj Factor E1 52,624 78 7,388,467 8 46 0.4 1.0 60 325 14,340 9.7 4,665,624 4 0 100.0%

003 LT Adj Factor F1 76,408 35 4,813,711 3 122 0.4 1.0 60 402 16,092 13.9 6,465,907 3 0 100.0%

321 33 2.42

004 ADU Back Track A1 21,253 43 1,425,631 66 6 0.4 0.4 10 61 22,605 1.0 1,388,062 26 0 100.0%

004 ADU Back Track A2 842 3 6,062 5 73 1.0 0.4 70 44 886 1.3 39,222 10 2 99.9%

004 ADU Back Track A3 2,531 3 18,223 18 20 1.0 0.4 20 18 2,550 0.9 44,745 35 1 99.9%

004 ADU Back Track B1 21,253 8 442,056 15 24 1.0 0.6 30 58 24,225 5.4 1,411,876 15 14 98.9%

004 ADU Back Track B2 3,373 8 70,158 10 37 1.0 0.6 50 52 3,501 4.0 182,892 15 4 99.7%

004 ADU Back Track C1 24,626 7 448,188 77 5 1.0 0.6 30 86 13,531 6.3 1,157,767 13 7 99.6%

004 ADU Back Track C2 24,626 4 256,107 327 1 1.0 0.6 30 67 13,531 6.3 905,658 15 12 98.9%

004 ADU Back Track D1 27,157 56 2,615,734 24 15 0.4 0.8 60 231 13,841 8.1 3,196,625 8 1 100.0%

004 ADU Back Track D2 49,251 7 965,328 11 33 1.0 0.8 80 144 13,640 7.8 1,960,269 6 4 99.7%

004 ADU Back Track E1 52,624 78 7,388,467 8 46 0.4 1.0 120 356 14,630 10.8 5,209,744 4 0 100.0%

004 ADU Back Track F1 76,408 35 4,813,711 3 122 0.4 1.0 360 340 14,549 14.7 4,945,531 1 1 99.9%

386 40 9.87

005 ADU Back Track A1 21,253 43 1,425,631 66 6 0.4 0.4 10 61 22,605 1.0 1,388,062 26 0 100.0%

005 ADU Back Track A2 842 3 6,062 5 73 1.0 0.4 60 45 886 1.3 40,276 10 0 100.0%

005 ADU Back Track A3 2,531 3 18,223 18 20 1.0 0.4 20 18 2,550 0.9 44,745 35 1 99.9%

005 ADU Back Track B1 21,253 8 442,056 15 24 1.0 0.6 60 62 24,225 5.4 1,509,461 19 11 99.1%

005 ADU Back Track B2 3,373 8 70,158 10 37 1.0 0.6 50 53 3,514 4.0 187,475 16 3 99.9%

005 ADU Back Track C1 24,626 7 448,188 77 5 1.0 0.6 60 68 14,188 5.6 968,366 16 11 99.2%

005 ADU Back Track C2 24,626 4 256,107 327 1 1.0 0.6 30 53 14,188 5.6 749,865 17 14 98.8%

005 ADU Back Track D1 27,157 56 2,615,734 24 15 0.4 0.8 60 207 14,225 7.2 2,944,103 9 1 100.0%

005 ADU Back Track D2 49,251 7 965,328 11 33 1.0 0.8 60 134 14,363 7.2 1,923,214 8 4 99.9%

005 ADU Back Track E1 52,624 78 7,388,467 8 46 0.4 1.0 60 311 16,605 9.3 5,166,041 4 0 100.0%

005 ADU Back Track F1 76,408 35 4,813,711 3 122 0.4 1.0 60 480 15,214 14.4 7,302,652 2 1 99.9%

361 40 7.59


