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ABSTRACT 

Companies make inventory decisions based on well-established safety stock methodologies. In these 
methodologies, a key assumption is that transit times are normally distributed. Although previous studies 
have shown a nonnormality in transit time distributions in ocean freight, it is still unclear how transit time 
is distributed in land freight and how much less inventory a company could hold if transit time estimates 
were more accurate. Moreover, while safety stock methodologies are accepted practice, the inputs used in 
them are sometimes sourced from static and unsophisticated transit timetables. To address these limitations, 
this study conducted a distribution analysis and hypothesis testing on geolocation data captured by the 
sponsoring company, project44, a supply chain visibility provider. The analysis revealed differences in day-
of-the-week transit time distributions. Using a Gaussian Mixture Model, this research also studied day-of-
the-week transit time bimodality in detail. It was found that the majority of the first distribution had low 
dispersion around the mean and the second distribution grouped all long-tail transit times, with typically 
higher standard deviations as a result. This trend is particularly strong in intrastate full truck load shipping. 
Furthermore, Monday and Tuesday transit times show lower spread in means and have less variation across 
transit times. In contrast, the rest of the week has considerably higher spread in transit time distributions. 
This study shows that the full truck load freight is bimodal. Companies accounting for day of the week and 
transit time bimodality could reduce safety stock and therefore lower inventory cost by up to16% through 
forward planning and making orders earlier in the week. 
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1 INTRODUCTION 
 

In June 2021, project44 raised $202 million and became a “unicorn”, a privately held startup valued 

at over $1 billion (“project44 Turns Unicorn after Raising $202M Series E Funding from Goldman Sachs, 

Emergence Capital,” 2021). Based in Chicago, project44, a supply chain visibility provider, has connections 

with 850+ ELD and telematics devices and tracks shipments in 165 countries. This big telematic network 

allows project44 to provide customers with real-time supply chain visibility platforms. Over 600 global 

customers use project44. With high-fidelity data, project44 monitors all modes in all geographies to 

estimate time arrival, order and inventory visibility, and condition of the goods. (Project44 | About 

Project44 - Supply Chain Visibility Leader, n.d., p. 44) Our research paper addressed the opportunity that 

project44’s customers have to use granular transit visibility data to better inform inventory management 

decisions. 

1.1 Motivation and Relevance 

To make inventory decisions, shippers consider both the demand for the product and the lead time 

the product takes to get to the shipper. Decision makers for shippers cannot consider one aspect in isolation 

to achieve the service levels they need while minimizing the cost to hold the inventory. A variety of different 

inventory policies may be used by the shipper, with various levels of management priority. Many 

organizations may use methodologies such as Economic Order Quantity (EOQ) or more sophisticated 

models, to ensure that they order the optimal order quantity. However, the optimal order quantity alone 

does not determine inventory cost. Therefore, we must also consider other factors such as lead time variation 

as part of our analysis. 

A key challenge to making inventory decisions is the significant variability in lead time that, in 

practice, a customer may experience when ordering from a supplier. The lead time can be made up of 

multiple factors, such as manufacturing time, procurement time, and transit time. Shippers frequently 

calculate the amount of inventory based on the safety stock equations, in which two inputs are estimated: 
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lead time to delivery and estimated variability around the lead time estimate (Jacobs, F. R., and Chase, R. 

B., 2016). The calculation is used to make important inventory decisions for the company. When demand 

is known, inaccurate prediction of lead time and estimated variance could lead to poor inventory decisions 

and be reflected in the holding cost. 

 Of particular interest to customers of project44 is the measurement of transit times and how to 

better monitor their goods in transit. The transit time is the time needed to move goods from one location 

to another. Jacobs and Chase’s (2016) safety stock equation shows that an accurate and dynamic transit 

timetable will increase the confidence level of lead time variation. Theoretically, transit time duration and 

lead time variation could both impact inventory level. Based on the estimated transit time, shippers would 

make appropriate inventory decisions to minimize out-of-stock risks and meet predefined service level. 

Therefore, accurate transit time data allow shippers to make better inventory decisions and reduce inventory 

costs.  

project44's real-time shipment geolocation data capture allows shippers to monitor their transit 

times, lead time variation, and evaluate potential inventory risks due to transit time variance. The company 

developed sophisticated artificial intelligence and machine learning to improve estimated arrival and to 

manage pre-transit and in-transit exceptions earlier in the shipment lifecycle, such that their customers can 

take actions when knowing ahead of time there is a transit delay.  

1.2 Problem Statement and Key Research Question 

The sponsor company’s current transit timetables are often inaccurate because the tables are not 

intelligent enough to reflect correct transit time variance. The inaccuracy results from using static values 

that are rarely updated, with limited traceability to legacy transit times. To address this problem, the key  

research question of this capstone is how to identify and measure the impact that a more sophisticated model 

for calculating transit times would have on improved inventory positions. 
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Initial investigation revealed that a few key features, such as purchasing order release date and 

shipper mode, were missing from the current transit timetable. For example, the time of the day and the day 

of the week when the purchasing order is released may affect the shipment time. An order placed and 

arranged for shipping during peak traffic hours would have to a longer transit time. Shipper mode is another 

important feature that has a substantial impact on transit time. Less than truckload (LTL) takes more time 

than Full Truckload (FTL), which directly serves the origin and destination without additional stops for 

consolidation (Vega et al., 2021).  We narrowed our scope to Full Truckload transit times to isolate the 

variation resulting from additional stops in less than truckload networks.  

Our research examined transit time distributions in land freight and asked how much less inventory a 

company could hold if the transit time estimate were more accurate. To address the factors driving variation 

in transit time, our research analyzed the level of transit time bimodality and investigated whether the transit 

times were different across days of the week. We sought to challenge the normal distribution assumptions 

through an evaluation of bimodality and its impact on safety stock. Our findings answered the question of 

how much excess inventory companies hold by using out of date and static transit timetables.  Companies 

could use a sophisticated transit time model, proposed by our research, to reduce inventory costs while 

keeping the same service level.  

1.3 Hypothesis and Model Selection 

We hypothesized that transit times for the days of the week were not equivalent. We measured 

similarity between transit times for each day of the week per zip code pair. Our results confirmed that days 

of the week have unique transit time distributions. 

A key assumption made in estimating transit times is that the value follows a normal distribution 

(Das et al., 2014). Here we relaxed this assumption and examined bi-modal distributions as more reflective 

of the unique nature of each transit time distribution. We used a Gaussian Mixture model to decouple the 

normal distribution to a bi-modal distribution, which we used to create a more accurate transit timetable. 

The improvement in transit time accuracy generated lower safety stock level and reduced holding cost.  
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2 LITERATURE REVIEW 
 

Many researchers have investigated the value of time in the freight industry. Although some papers 

focus on the shape of transit time distribution and the impact on inventory management, other papers assess 

how the variance of transit time impacts marginal utility and marginal cost. Considering project44’s 

customer challenge, to create a more comprehensive transit timetable to improve inventory holdings, this 

chapter will review past research and build upon the existing knowledge to examine factors that will 

constitute a more accurate transit timetable.   

The review is divided into three sections. The first section explains the area of study for this capstone, 

which introduces the importance of transit time as a component of lead time and how transit times impact 

the level of inventory shippers’ reorder. The second section evaluates sources of variability in transit times. 

Finally, the third section reviews research on the distribution of transit times and models investigating the 

cost impact of underlying assumptions.  

2.1 The impact of transit time on lead times and inventory management   

The lead time in freight refers to the time it takes from placing an order to the time the order is 

completed. In detail, transportation lead time includes travel time and other logistical operation time 

between loading goods from origin and unloading goods at destination (Massiani, 2008). Of all the 

components of lead time, this capstone will focus on transit time, for which project44 tracks telematic data 

and evaluates the features that can improve a shipper’s confidence in transit times and thus improve 

inventory decision making.  

Transit time has two major components: speed and reliability. Speed is measured by mean lead 

time, and reliability is measured by variance of lead time. Both mean and variance will affect inventory 

decisions. With discrete and continuous transit time distributions, total logistics cost decreases when mean 

transit time is shortened and variance of transit time decreases (Allen et al., 1985). With a thorough 
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understanding of the benefit from reducing variance in lead time, shippers and carriers can make intelligent 

rate negotiations and draft service improvement proposals.   

2.1.1 Importance of transit times in inventory management  

The management of inventory can be decoupled into two core segments: cycle stock and safety 

stock. Cycle stock can be considered the inventory that meets the planned estimated demand and safety 

stock the inventory level required to meet unplanned demand. This capstone will determine the effects of 

lead time and lead time variability to meet safety stock inventory levels.  A classic formulation to determine 

the amount to reorder under a normal distribution of uncertainty is the Hadley-Whitin reorder formulation 

(Hadley and Whitin, 1963).  

𝑅 = 𝐷	𝐿	 + 𝑍(𝐿𝜎!" + 𝐷
"
𝜎#" 

where 

𝑅 = 𝑅𝑒𝑜𝑟𝑑𝑒𝑟	𝑝𝑜𝑖𝑛𝑡 

𝐷 = 𝐸[𝐷] = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑑𝑒𝑚𝑎𝑛𝑑	𝑝𝑒𝑟	𝑑𝑎𝑦 

𝐿 = 𝐸[𝐿] = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒 

𝑍 = 𝑧 − 𝑠𝑐𝑜𝑟𝑒	𝑜𝑓	𝑎	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑠𝑒𝑟𝑣𝑖𝑐𝑒	𝑙𝑒𝑣𝑒𝑙 

𝜎! = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝐷𝑒𝑚𝑎𝑛𝑑 

𝜎# = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝐿𝑒𝑎𝑑	𝑇𝑖𝑚𝑒 

 

The Hadley-Whitin formulation can be further reduced to:  

𝑅 = 𝐸[𝑋!$#%] + 𝑍𝜎!$#%  

where 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐷𝑒𝑚𝑎𝑛𝑑	𝑜𝑣𝑒𝑟	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒:	𝐸[𝑋!$#%] = 𝐷	𝐿	 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑒𝑚𝑎𝑛𝑑	𝑜𝑣𝑒𝑟	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒:	𝜎!$#% = (𝐿𝜎!" + 𝐷
"
𝜎#"  
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This capstone investigates the factors that can improve estimates of the demand variation over lead 

time (𝜎!$#% ). A key assumption under the Hadley-Whitin formulation is that the demand over the lead 

time is approximately a Normal Gaussian distribution. (Constable and Whybark, 1978; Das, 2013) This 

capstone explores whether a normality assumption is sound for project44’s underlying data, investigate 

alternative distributions and develop an approach to improve transit time estimations.  

2.2 Evaluating and Quantifying transit time variability and distribution assumptions 

2.2.1 Transit time with respect to the total cost of inventory 

In discussing the need to study transit time, Dehayes (1968) found that the cost of material in transit 

will add to a certain percentage of economic cost of the goods for those with capital values of assets tied 

up in the transportation system. Transportation time is a significant factor in financing, and it is one of the 

key determinants of the efficiency of the distribution system. Goods must be delivered to users promptly 

and reliably to reduce inventory.  

Allen et al. (1985) developed two models to represent transit time distribution and presented change 

in transit cost with respective to mean and variance of transit time distributions in the matrix. First, the 

paper analyzes transit time in the discrete probability distribution model. The total cost is calculated in the 

formula below: 
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This model constitutes 5 terms: inventory carrying cost, ordering cost, in-transit carrying cost, 

yearly transportation cost, excess cost and shortage cost due to variance in transit and demand. The length 

of transit time is directly projected in the In-transit carrying cost. If firms pay for the goods in transit, the 

longer lead time, the more cost will incur. Meanwhile, variance of transit time is indirectly reflected in the 

cost of excess inventory and cost of stockout. Reorder point is the replenished level, calculated by average 

demand during lead time. Demand varies depending on mean lead time and lead time variance. When the 

reorder point is compared to demand, if inventory is less than demand, there is a stockout cost. In contrast, 

if the reorder point exceeds the demand, there is an excess cost. As a result, a reliable transit time 

distribution will condense the range of reorder points and demands during lead time, which will in turn 

lower shortage cost and excess cost.  

Second, Allen et al. (1995) evaluated transit time in the continuous probability distribution model, 

where daily demand and lead time distributions were assumed to be normal. The shortage cost is represented 

by multiplying the shortage cost and the expected number of shortages. In the case of a continuous 

distribution, the expected number of shortages is an integral function of the difference between EOQ and 

reorder point. The total cost formula shown below is analogous to the discrete total cost formula as shown 

above, but with VW- mean Lr) as inventory, s > mean Lr analogous to excess cost and mean an (s) 

analogous to shortage cost.  

 

Allen et al. (1985) found that a lower mean delivery time and greater reliability was the most desired 

outcome, with most of the saving stems from improvement in reliability, small amount of saving stems 

from improvement in mean lead time.  

Both the Value of Time (VOT) and the Value of Reliability (VOR) are important estimator metrics 

that provide a uniform value outcome due to lead time variability (Dullaert and Zamparini, 2013). VOR 

measures the willingness to pay to reduce the variability of travel times, and such a key time conversion 
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factor into a financial metric. In a paper investigating the impact of lead time reliability on inventory costs 

across a pool of models, Dullaert and Zamparini, 2013 identified that by evaluating the heterogeneity of 

VOR estimates, they concluded reduced lead time does not necessarily reduce cost and can cause increased 

safety stock costs depending on the demand distribution during lead time. This finding is an important 

outcome in providing a counterintuitive example that simply focusing only on reduction of transit time 

variability does not always yield intended results. Our capstone will examine proposed transit time models 

under a range of various demand distributions to ensure the scope of application is also clearly defined. 

2.2.2 Evaluation of transit time distributions and their underlying assumptions 

As discussed in 2.1.1, a key feature of the Hadley-Whitin reorder amount is that the demand over 

the lead time follows a normal distribution. Das's paper examined transit time distributions within ocean 

transportation; exploring features describing the shape of the distributions and inventory outcomes when 

normality is not the primary distribution. In the examined dataset, Das (2013) found that although 17% of 

total lanes were not normal distributions, these lanes accounted for 80% of shipment volumes.  

Das (2013) used the toy example shown in Figure 1 to highlight the impact that normality of lead 

time distribution has on incorrectly suggesting too ordering excess inventory. 

Figure 1 

Example of normal assumption incorrectly increasing purchasing 

If we assume demand is normally distributed ~N (100,10) units/day and examine the following 2 cases: 

Case 1: Transit time has a 4-day deterministic rate 

Case 2: Transit time is stochastic and is 2 days 50% of the time and 4 days the other 50% of the time. 
Lead time standard deviation is 1.  

Applying the above cases to the reduced Hadley-Whitin formula:  𝑅 = 𝐸[𝑋!$#%] + 𝑍𝜎!$#% 

We find in a 95% service level case:  

Case1: 𝑅 = (100 × 4) + 1.645 × P√10" × 4R = 400 + 1.645 × 20 = 433	𝑢𝑛𝑖𝑡𝑠 

Case2:	𝑅 = (100 × (2 + 4) × 50%) + 1.645 × P√3 × 10" + 100" × 1R 	= 300 + 1.645 × 	101.5 =
467	𝑢𝑛𝑖𝑡𝑠 
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Note. Assuming normality in transit increases purchasing units. From “Transportation Research Record: 

Journal of the Transportation Research Board,” by L. Das, B. Kalkanci and C. Caplice, 2014, Impact of 

Bimodal and Lognormal Distributions in Ocean Transportation Transit Time on Logistics Costs, 2409(1), 

63–73. 

The example highlights that although the probability of being out of stock was 5% when the transit 

time exhibited stochastic nature in case 2, the underlying lead time of both times was equal to or less than 

the 4 days in the deterministic case 1. As a result, an incorrect over-purchased of 34 units (approx. +8% 

would have occurred in case 2, simply due to the normality assumed in the lead time distribution. To 

evaluate the impact of non-normal distributions, Das simulated bimodal lead times and evaluated outcomes 

using a range of critical ratios. A critical ratio is defined as the ratio of the cost of understock to the cost of 

overstocking. Discovered that in cases where the critical ratio was above 0.7, i.e., high cost of 

understocking, assumptions of normality expressed a noticeable impact to inventory outcomes versus 

simulated bimodal ones.  

Looking to a larger set of continuous distributions, Tadikamalla’s (1984) paper compared normal, 

logistic, lognormal, gamma, and Weibull distributions as estimates of lead time distributions. Tadikamalla 

(1984) found that when the coefficient of variation was large, the normal distribution was not an appropriate 

approximation to measure lead time variation.  When a demand and lead time distributions were known, 

the normal distribution would be the most appropriate approximation. However, when demand or lead time 

distributions were not known, a lognormal, gamma or Weibull distributions would be suitable estimates 

due to their versatility (Tadikamalla, 1984). In an examination of the robustness of normal approximations 

of lead-time demand, the normal approximation is the most appropriate under continuous review systems 

in general business settings (Tyworth and O’Neill, 1997). Echoing Das’s finding, Tyworth and O’Neill 

found the normal approximation of lead time variation becomes more robust at service levels under 80%. 

To evaluate the underlying distribution, Lau and Zaki (1982) examined normal distribution features 

of kurtosis and skewness within a reorder-point/order-quantity (r,Q) policy - whereby the same quantity is 
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ordered at variable time intervals. Kurtosis, a fourth central moment, references a measure of how large the 

tails are within a probability distribution, where the larger the tail the higher the variation there is in the 

underlying data. Skewness, a third central moment, references the density of the distribution being off-

center, from left or right of the mean. Lau and Zaki were able to identify that the change in lead time 

distribution’s skewness also changed the kurtosis and vice versa – leading to compounding effects in the 

required safety stock levels (Lau and Zaki, 1982). Lau and Zaki’s findings are important attributes to apply 

in this research paper to ensure 3rd and 4th central moments are extra features to examine within Project44’s 

data. 

2.3 Impacts of transit time variation on transportation cost 

An important consideration in this research is assuming that the given transit time and associated 

distribution is the only option for a particular lane. However, there are ways to improve transit time with a 

tradeoff in transport cost. As a result, our research should also ensure that the trade-off of transferring the 

inventory savings benefit onto increased transportation costs is captured, particularly if an improved transit 

time estimates comes at an outsized cost. 

Tyworth and Zeng (1998) applied a non-negative discrete distribution to model transit time and 

developed an enhanced sensitivity-analysis tool for examining the effects of carrier transit time on both cost 

and service. Total annual logistic cost is a sum of transportation cost, ordering cost, holding cost and 

shortage cost: 

 

Holding cost is constituted by the cost of cycle stock and safety stock. The estimated shortage is 

calculated using the distribution of demand and lead time. The lead time was defined as transit time and a 

fixed component ‘𝑌’ represented the time spent on non-transportation activities in the order cycle (Tyworth 

& Zeng, 1998). To estimate the effects of transit-time performance on total logistics costs, Tyworth and 
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Zeng (1998) changed the transit-time mean and variance parameters and recalibrated the order quantity 

decision variables. The findings of Das (2013), Tyworth and Zeng (1998) found the increase of variance in 

transit time resulted in significantly higher cost in the underlying model. If there is a guaranteed on-time 

delivery (i.e., the coefficient of variance T= 0), the cost would decrease, and the service level increases. 

Lastly, examining for holding variance constant and decreasing transit time led to a limited change in total 

cost and service level. Having a better estimate that is dynamic, regardless of what the transit time is, the 

reduction in variance will lead to cost reduction. 

Distance is one most important variable to model transit time distribution – particularly with respect 

to the telematics data that Project44 captures. In an investigation of density of transit models, Chiang and 

Robert argued that neither city size nor inter-city density should be considered as variables (Chiang & O. 

Roberts, 1980). With an underlying hypothesis that larger cities might have better service and thus lower 

transit time – Chiang and Roberts rejected this hypothesis by observing no clear pattern from comparing 

transit time from cities in different sizes. In addition, the hypothesis of lower transit time in dense markets 

is also rejected by proving dense markets have more carriers and thus less transit time. Revalidating this 

finding with respect to urban and regional distances across project44’s telematic data will help ensure that 

the features of our recommended model will directly influence the lead time estimates. 

2.4 Summary  

The examination of transit-time distributions, normality assumptions and the trade-off of 

transportation cost savings over inventory costs are primary factors that have had significant research.  

While there are studies on the impact of demand distribution during transit time on inventory management 

decisions, there is a gap in the research on descriptive factors that impact transit times, such as day of the 

week bimodality. By developing an advanced model for transit times and simulating it against a range of 

outcomes, our capstone provides a new approach to a problem that many companies face.  
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3 DATA AND METHODOLOGY 
 

project44 understands the impact of lead time variation has on inventory management. A key aim 

of this capstone is to evaluate the underlying assumptions in transit time variability that impact lead-time 

estimates and subsequently inventory reordering costs. Based on the Hadley-Whitin reorder function 

mentioned in 2.3.2, we kept all elements but lead time constant. Long lead times and low lead time variation 

resulted in high pipeline inventory and low safety stock. Inversely, high variability and shorter lead times 

translated into higher safety stock levels to account for the uncertainty. We conducted a statistical 

evaluation of the factors impacting transit time and tested the validity of lead time assumptions within the 

Hadley-Whitin formulation. We also valuated historical lead time performance and calculated the 

coefficient of variation. For further analysis, we simulated data points based on transit time percentiles 

provided by the sponsor company and conducted distribution analysis and hypothesis testing to assess the 

modality of transit time distribution. In addition, we created an unsupervised machine learning model, 

Gaussian Mixture Model (GMM), to separate transit time distribution by clustering simulated data points. 

GMM produced the mean and sigma values for each Gaussian model, which are used to calculate separation 

scores and assess the impact of bimodality. As a final step, we evaluated the performance of the GMM 

under simulated business cases by using the Hadley-Whitin formulation to compare safety stock level and 

pipeline inventory outcomes. Recommendations on the most appropriate use cases of the model are made 

accordingly.   

 Our research methodology followed a three-phased approach: cleaning and validating our data sets, 

analyzing the data to understand transit time distributions and test our hypothesis, and finally measuring 

bimodality and assessing its impact on inventory levels (Figure 2). 
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Figure 2 

Methodology Process Map 

 

Note. This figure shows the overall methodology process flow of this paper. 

3.1 Data set 

Project44 provided seven datasets. In the first dataset, there are 8 tabs, of which four tabs include 

Full Truckload (FTL) and Less than Truckload (LTL) transit time data from/to Chicago and another four 

tabs include FTL and LTL data from/to Boston. A list of attributes, and corresponding data type and 

description for each attribute, is provided in Table 1.  

Table 1 

Attributes and definitions in the first dataset provided by project44 

Index Attribute Data Type Description 

1 Destination Postal Integer Destination zip code 

2 Qty Integer Total number of trips from the same origin to destination 

3 AVG Duration Floats Average lead time in hours for one trip 

4 MED Duration Floats Median lead time in hours for one trip 

5 STDDEV Duration Floats Lead time standard deviation for one trip 

6 Estimated Time Integer Estimated number of days for one trip 

7 Actual Day Floats Actual number of days for one trip 

Note. This table listed attributes for all FTL routes inbound and outbound Chicago, IL and Boston, MA.   
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The rest of the six datasets contains aggregated FTL and LTL transit time for eight metro areas: 

Brooklyn, NY, Chicago, IL, Bell Garden, CA, Aiken, SC, Palestine, TX, Bonny Lake, WA, Lakeland, FL, 

and Denver, CO. Transit times are aggregated by day and month. The granular data includes trips from 

origin to destination in a one-year horizon. Note that origin and destination zip codes only display the first 

three digits for confidential concerns from the company. Details for data covered in these datasets are listed 

in Table 2. 

Table 2 

Attributes and definitions in the next six datasets provided by project44 

Index Attribute Data Type Description 

1 Origin Zip Integer Origin zip code  

2 Origin Metro Object Name of the origin metro city 

3 Destination Zip Integer Destination zip code 

4 Destination Metro Object Name of the destination metro city 

5 Day Object Day of the week  

6 Month  Integer Month of the year  

7 QTY Integer Total number of transits within a year  

8 Duration Average Floats Average transit time of a single trip 

9 Duration STDDEV Floats Standard Deviation transit time of a single trip  

10 Duration Min Floats Minimal transit time of all trips  

11 Duration Max Floats Maximum transit time of all trips 

12 Duration P10 Floats 10th percentile of the transit time from all transit times 

13 Duration P20 Floats 20th percentile of the transit time from all transit times 
14 Duration P30 Floats 30th percentile of the transit time from all transit times 

15 Duration P40 Floats 40th percentile of the transit time from all transit times 
16 Duration P50 Floats 50th percentile of the transit time from all transit times 

17 Duration P60 Floats 60th percentile of the transit time from all transit times 
18 Duration P70 Floats 70th percentile of the transit time from all transit times 

19 Duration P80 Floats 80th percentile of the transit time from all transit times 
20 Duration P90 Floats 90th percentile of the transit time from all transit times 
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Note. This table listed attributes for aggregated transit time history for eight metro areas, including 

Brooklyn, NY, Chicago, IL, Bell Garden, CA, Aiken, SC, Palestine, TX, Bonny Lake, WA, Lakeland, 

FL, and Denver, CO.   

3.1.1 Data Cleaning and Simulation  

We cleaned the datasets before studying the attributes and summarizing patterns. The first step was 

to transfer attributes to the correct data type and the correct units for analysis. The second step was to drop, 

impute, or fill in missing values with proper values based on each attribute’s unique characteristic. The 

third step was to cluster adjacent zip codes and similar distances from the origin to destination pairs to 

calculate the coefficient of variation.  

For further analysis, we simulated raw data with given percentile values from metro city data files. 

The percentile durations were split into ten buckets per zip code pair. Each bucket ranges from the previous 

duration to the current duration values were generated within the range of a bucket. The number of randomly 

generated values equals to the total quantity of trips made from each zip code for example, from Chicago, 

IL (zip code starts with 600) to Brooklyn, NY (zip code starts with 181) had 436 trips in total in the given 

year. Correspondingly, a total number of 436 random transit time values were simulated based on the given 

percentiles for the 600 and 181 zip code pair.  

3.2 Analysis  

The research problem posed by project44 is to identify factors affecting transit timetable and 

investigate the impact of transit time variability on inventory cost. To understand lead time variation, we 

first analyzed historical lead time performance and evaluated coefficient variance for potential factors that 

may affect transit time over clustered trips. With an understanding of lead time variation in the past, we 

conducted distribution analysis over past trips and analyzed the distribution of transit time. Hypothesis 

testing was done after distribution analysis to reject the underlying assumptions. Factors proving to 

significantly impact transit time variability were further analyzed in the multi-linear regression model.  
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3.2.1 Historical lead time performance  

A scatter plot of lead time variation provides a high-level overview of historical transit time 

performance. Figure 4 shows the full truckload transit time distribution for all trips made in the last year 

outbound from Chicago. The 45-degree reference line is the average transit time. Ideally, all data points 

would converge to the 45-degree line. However, as shown in figure 4, data points are scattered on each side 

of the diagonal line. Such behavior indicates transit time is not static. The white zone above the 45-degree 

line is the ‘Worse than Contract Zone’, meaning that the shipments are delayed and the zone below it is the 

‘Better than Contract Zone’, meaning that the shipments arrived ahead of time. Either case would result in 

extra logistic costs. Companies will need to coordinate the operation team with the procurement and 

contract team to update transit time frequently to avoid inaccuracy in transit time.  

Figure 3 

Scatter plot for full truckload trips outbound from Chicago 

 

Note. This figure shows the lead time variation for full truck load shipments 

With an overview of transit time variance in scatter plot in Figure 4, we did further analysis of the 

magnitude of variation. The coefficient of variation is calculated for transit time with respect to each type 

when CV=σ/µ. Larger CV means more variation and requires more frequent update on transit timetable. 
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Table 3 shows a sample transit variation which occurs in different payment type and transportation type. 

Origin to Destination pairs is clustered by region. 

Table 3 

Coefficient Variation Table for 3-code zip codes, inbound and outbound from Chicago 

 

Note. This table shows the mean, standard deviation, and coefficient of variation of transit times for 

sampled zip codes. Coefficient of variation values are color coded for visualization: red means high 

coefficient of variation and white means low coefficient of variation.   

3.2.2 Baseline Leadtime distributions for each lane 

To establish a baseline lead time distribution and corresponding data summaries for the percentile 

data we aggregated daily values into overall lane distributions using weighted means and combined 

variance calculations. These are as follows:  
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where 

𝑛2 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑡𝑖𝑚𝑒	𝑟𝑒𝑐𝑜𝑟𝑑𝑠	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑑𝑎𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑒𝑒𝑘	𝑖		 

𝑋3] = 𝑚𝑒𝑎𝑛	𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑑𝑎𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑒𝑒𝑘	𝑖		 

𝑋4^̂^̂ = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑚𝑒𝑎𝑛		𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑙𝑎𝑛𝑒	𝑐	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑑𝑎𝑦𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑒𝑒𝑘	𝑖	 

𝑆2 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑑𝑎𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑒𝑒𝑘	𝑖		 

 

3-code zip FTL LTL FTL LTL FTL LTL FTL LTL FTL LTL FTL LTL
605 5.0 13.8 7.4 10.2 7.5 26.8 10.5 22.5 1.5 1.9 1.4 2.2
604 2.4 19.9 7.5 12.3 7.1 36.9 17.6 36.4 3.0 1.9 2.3 3.0
601 6.9 6.5 4.8 21.3 15.0 13.3 2.9 25.3 2.2 2.1 0.6 1.2
600 18.2 24.4 8.7 31.5 30.0 28.4 6.8 38.3 1.6 1.2 0.8 1.2
531 11.9 24.9 13.4 22.7 21.0 18.7 18.9 8.9 1.8 0.8 1.4 0.4
530 15.0 23.0 19.6 35.0 22.7 22.6 19.7 16.0 1.5 1.0 1.0 0.5

Outbound Outbound
Mean transit time (hours) Standard Deviation Coefficent of Variation (CV)

Inbound Inbound InboundOutbound
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The combined lane transit times and variances defined a mean transit time and variance that are used within 

the industry transit timetables. These aggregate times and associated standard deviation form a baseline to 

compare all lane results with and understand the true impact of assuming normality in transit timetables. 

3.2.3 Distribution Analysis  

This section demonstrates the non-normal distributions in transit time estimates outlined in section 

2.3.2, where Das (2014) proved that normality is not the primary distribution for transit time within ocean 

transportation. With a list of simulated transit times, a histogram was plotted in Figure 6 for distribution 

analysis, which was performed to understand the average lead time and lead time variation under different 

circumstances. The distribution plot shows the frequency of transit time from Chicago, IL (zip code starts 

with 600) to Brooklyn, NY (zip code starts with 181). The distributions are color-coded by day of the week. 

Saturday and Sunday are missing from the graph because less than 10 trips were initiated on Sunday in the 

past year. It is obvious to claim a bimodality for the transit time distribution for six days of a week. In 

Figure 6, Monday and Tuesday have similar distributions, where average transit time μ1 is close to 28 and 

μ2 is close to 51. Compared to Monday and Tuesday, Wednesday, Thursday, and Friday have wider 

distribution, which indicates larger variance and lower accuracy. Wednesday has lowest mean transit time 

μ1 = 25 and μ2 = 70, among three wider distributions. Thursday and Friday have mean transit time μ1 = 26 

and μ2 = 80. 
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Figure 4 

Distribution plot of FL transit time distribution from Chicago, IL to Brooklyn, NY  

 

Note. The distribution analysis is created with seaborn plot in python. Chicago, IL zip codes reference 

start with 600 and Brooklyn, NY zip codes start with 181.  

3.3 Hypothesis testing and Tukey test 

The next step after the analysis of distributions was to formally verify that chosen features exhibit 

statistical differentiation from the mean value. The method for doing this was hypothesis testing and a more 

extensive analysis of variance (Tukey). Hypothesis tests formally examine two mutually exclusive 

conjectures (hypotheses), H0 and HA, and evaluate each against using test statistics. The test statistics used 

to evaluate the hypothesis can be calculated against non-parametric tests such as the Tukey test. The Tukey 

test identifies confidence intervals and outputs p values for multiple comparison to indicate the significant 

difference of paired data points. The results will not prove an alternative hypothesis to be correct but will 

confirm that a null hypothesis can be rejected. To examine factors that exhibit non-normal distribution of 

transit times, this section will highlight a broad range of tests within the data set. We constructed the null 

hypothesis and alternative hypothesis as below:  
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H0 = Mean transit time for each day of the week pairing is equivalent 

HA = Mean transit time for each day of the week pairing is not equivalent 

The hypothesis measures similarity between transit times for each day of the week per zip code 

pair. For example, it compares the transit time between Monday and Tuesday, Monday and Wednesday, 

Monday and Thursday, and so forth. We performed the Tukey test over simulated data for each zip code 

pair and recorded p-values in a matrix. Rows of the matrix documents zip code pairs and columns log 

weekday pairs. The larger the p-value, the weaker the evidence to reject the null hypothesis, meaning that 

the mean transit time between the weekday pair is equivalent. We set a threshold of 0.05 to evaluate the 

statistical significance. A p-value lower than 0.05 is statistically significant and indicates strong evidence 

to reject the null hypothesis.  

3.4 Mixture distributions and Understanding Bimodality impacts 

Following the results of the hypothesis tests using the Tukey test methodology, the next phase of 

our methodology was to identify days of the week and months for lanes which had high likelihood for 

bimodality. As discussed in section 2.3.2, assuming normality in transit time distributions is a hallmark of 

current inventory management methodology.  

Using the Tukey test described in 3.3, we were able to compare all days of the week with one 

another, to understand the differences in distributions. We set up a ratio for each lane counting how many 

comparisons expressed significance in their distribution differences across the various days. While the 

comparison across days formed a benchmark to identify distribution differences across days, our research 

led us to also identify bimodality within each day of the week.  As highlighted in 3.3.3, bimodality can exist 

within each day’s transit time distribution. To examine this within each day, we broke down days the 

distribution into a mixture distribution which follows the following function of 2 combined normal 

distributions:  
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Mixture Distribution:  𝑓(𝑋) = 𝑌 = 𝛼5𝑋5 +	𝛼"𝑋" 

𝑙𝑒𝑡	𝛼 = 𝛼5 = 1 − 𝛼", 

𝑓(𝑋) = 𝛼𝑋5 + (1 − 𝑎)𝑋" 

𝑓(𝑋) = 𝛼𝜑 b
𝑋 − 𝜇5
𝜎5

d + (1 − 𝑎)𝜑 b
𝑋 − 𝜇"
𝜎"

d 

where 

𝑓(𝑋) = 	𝑌 = 𝑀𝑖𝑥𝑡𝑢𝑟𝑒	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑡𝑖𝑚𝑒	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑋	 

𝑋2 = 𝑁𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑖	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑖𝑥𝑡𝑢𝑟𝑒	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑓(𝑋), 𝑓𝑜𝑟		𝑖 = 1, 2 

𝑎2 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑖	𝑖𝑛	𝑡ℎ𝑒	𝑚𝑖𝑥𝑖𝑡𝑢𝑟𝑒	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑓𝑜𝑟		𝑖 = 1, 2 

𝜑	(𝑧) = 	𝜑 b
𝑋 − 𝜇2
𝜎2

d = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑖, 𝑓𝑜𝑟	𝑖 = 1, 2 

Figure 7 illustrates the mixture distribution as a combination of two normal distributions. By 

decomposing the daily transit time distribution into a mixture distribution, we will examine not only if they 

are in fact bimodal transit times, but also which vehicle routes and days are most likely to be bimodal and 

the overall impact of bimodality is on inventory costs.  
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Figure 5 

Bimodality plot within a mixture distribution 

 

Note. This figure shows the formula to calculate mean and sigma values for bimodal distribution. From “A 

new uncertainty propagation method considering multimodal probability density functions,” by Z. Zhang, 

J. Wang, C. Jiang, and Z. L. Huang, 2019, Structural and Multidisciplinary Optimization, 60(5), 1983–

1999. 

3.4.1 Gaussian Mixture Model (GMM) - Unsupervised learning to identify bimodal clusters 

To identify the underlying parameters within the mixture distribution, we chose to use a Gaussian 

Mixture Model (GMM) to cluster the data into two distinct Gaussian distributions. By using an 

unsupervised machine learning model technique, we were able to group the clusters of transit times into 

two clear subsets by using the expectation-maximization (EM) algorithm technique within the GMM. Each 

transit time observation will have a probability of falling within a particular cluster and thus can be assigned 

to one of two parts of a mixture distribution based on the highest probability.  The two distributions that 

represent the distribution are defined by the clusters, and each cluster’s mean and standard deviation is 



 30 

forming a unique Gaussian distribution shown in 3.4. By using the GMM to cluster the data, our research 

was able to define the parameters of the mixture distribution and measure the impact when compared to 

Gaussian only assumptions. 

3.4.2 Examining Bimodality with the separation of means 

In order to first examine the mean separation of the two distributions found from the GMM, a useful 

statistic to measure the separation of means relative to their widths we label as D; which is as follows 

(Muratov and Gnedin, 2010): 

𝐷 =	
|𝜇5 − 𝜇"|

[(𝜎"" − 𝜎"")/2]5/"
 

 The D statistic represent the relative mean difference, where a D>2 represents a meaningful 

distribution split. We used the relative separation of means to understand the spread of between the two 

Gaussian distributions produced by the GMM. 

3.4.3 Defining Bimodality with a separation factor  

 To define if the distribution found is truly bimodal, we explored an approach to calculate a 

separation factor and evaluate the absolute difference in means of clusters within mixture distributions. 

Schilling et al. (2002)’s research on human high bimodality defined the generalizable case where 𝜎5 ≠ 𝜎" 

and an unequal mixture of data is present among both X1 and X2.  It follows that when solving for the setting 

the mixture distribution to: 

𝛼𝑓57(𝑥) + (1 − 𝑎)𝑓57(𝑥) = 0  and  𝛼𝑓577(𝑥) + (1 − 𝑎)𝑓577(𝑥) > 0 , 

Schilling et al. (2002) found that the following could be defined as the separation factor, 𝑆(𝑟):  

Let 𝑟 = 	8(
&

8&&
 , then it follows - 𝑆(𝑟) = 	

9/"-:;-:;&/	";)-"(5/;-;&)
)
&
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Using the separation factor, we can define a mixture distribution as bimodal if:  

|𝜇" − 𝜇5| > 	𝑆(𝑟)(𝜎5 + 𝜎") 
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In the case where the inequality is smaller than the absolute difference in means, the distribution 

would be unimodal. Following the definition, we can identify each daily distribution as either exhibiting 

bimodality within the day or not. We ranked the data and found key days of the week and lanes which 

expressed significant deviation and others where underlying normality assumptions were fine to use due to 

their unimodal classification.  

3.5 Safety stock and reorder point using bimodal distributions 

The final step in our methodology was to calculate the impact of the advanced transit time model 

on inventory policy and cost. Inventory cost includes costs for holding cycle stock, safety stock, and 

pipeline inventory. Lead time variation impacts inventory cost, particularly safety stock cost, as safety stock 

equals to k multiplied by lead time standard deviation, where k represents cycle service level. To evaluate 

the impact of the transit time model, we created a numerical experiment that took a demand pattern which 

followed a normal distribution ~~N (1000, 80) and cycle service level to be 95%. To calculate reorder point 

for each segment, we used the Hadley-Whitin equation:  

𝑅 = 𝐸[𝑋!$#%] + 𝑍𝜎!$#% 

where  

𝐸[𝑋!$#%] = 𝐷	𝐿	 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐷𝑒𝑚𝑎𝑛𝑑	𝑜𝑣𝑒𝑟	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒 

𝜎!$#% = (𝐿𝜎!" + 𝐷
"
𝜎#" = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑒𝑚𝑎𝑛𝑑	𝑜𝑣𝑒𝑟	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒  

Similarly, demand over lead time standard deviation was leveraged to calculate safety stock. Safety 

stock is calculated by using the formula: 

𝑆𝑆 = 𝐾 ∗ 𝜎!#. 

Our method focused on comparing the safety stock using normal demand conditions applied to 

historic transit data evaluate inventory outcomes in using a standard day-agnostic baseline across all days 
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of the week and a more advanced approach to transit time this research formulated, calculating two safety 

stock levels for each day of the week. We weighted the two holding costs produced for every day of the 

week by the alpha value produced by the GMM model, creating a holding cost for each day of the week. 

Subsequently, we compared the safety stock and holding cost required in both baseline standard approach 

and each day of the week, to identify opportunities for holding cost savings across the board. Following the 

numerical experiment, we formed recommendations on the most appropriate use cases of the newly 

developed mathematical model. 
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4 RESULTS AND ANALYSIS 
4.1 Baseline Transit times – Data formation & Distribution Analysis  

As mentioned in section 3.1.1, we cleaned the datasets before studying the attributes and 

summarizing patterns by simulating raw data with given percentile values from metro city data files. We 

filtered zip codes with quantities of more than 10 because frequent shipments are more valuable to analyze 

compared to less frequent shipments. To simulate filtered routes, every route is split into 10 buckets, each 

with a minimum window value and a maximum window value. For example, the first bucket has minimum 

duration as minimum window value and 10th percentile duration as maximum window value, the second 

bucket has 20th percentile duration as minimum window value and 30th percentile duration as maximum 

window value, etc. With 10 buckets defined, we generated transit time that randomly falls into the 10 

buckets with the given quantity per route. For instance, 436 transit times had been recorded in the 

‘8Metros_FTL_by_Day’ datasheet for Chicago, IL (zip code starts with 600) to Brooklyn, NY (zip code 

starts with 181), therefore 436 rows of duration data were simulated for this route. Looping through 1152 

unique zip code pairs in ‘8Metros_FTL_by_Day’ datasheet, a total of 145966 rows of data were simulated 

for further analysis. Please see Appendix A for the simulated data.  

With the simulated data, we aggregated daily values into overall route distributions to establish a 

baseline lead time distribution and corresponding data summaries. We applied the combined arithmetic 

mean and combined variance formula in section 3.2.2 for duration mean and duration standard deviation. 

The results were sorted in ascending order by QTY, and the top 10 results are shown in Table 4. We also 

calculated the coefficient of variation (CV) for each route. From table 5, six out of ten top frequent routes 

have CV larger than one, meaning a high level of dispersion around the mean. The routes with high CV 

have large variability in transit time and therefore require more study.  
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Table 4 

Aggregated duration average, standard deviation, and Coefficient of Variation Table for top ten 
zip code pairs ranked by QTY  

index ORIGIN -
3ZIP 

ORIGIN -
METRO 

DESTINA
TION- 
3ZIP 

DESTINATION- 
METRO 

QTY DURAT
ION -
AVG 

DURATION
- STDDEV 

cv 

0 600 Chicago, IL 181 Brooklyn, NY 2118 50.64 27.17 0.54 
1 335 Lakeland, FL 336 Lakeland, FL 1738 22.04 24.33 1.1 
2 752 Palestine, TX 770 Palestine, TX 1655 27.28 16.42 0.6 
3 600 Chicago, IL 750 Palestine, TX 1639 49.66 25.17 0.51 
4 750 Palestine, TX 750 Palestine, TX 1453 9.67 13.78 1.42 
5 604 Chicago, IL 601 Chicago, IL 1367 16.48 22.22 1.35 
6 181 Brooklyn, NY 180 Brooklyn, NY 1354 7.52 12.62 1.68 
7 600 Chicago, IL 917 Bell Gardens, CA 1313 87.18 20.49 0.24 
8 181 Brooklyn, NY 175 Brooklyn, NY 1257 6.07 8.6 1.42 
9 604 Chicago, IL 604 Chicago, IL 1252 22.61 25.32 1.12 

Note. This tables shows mean and standard deviation values per zip code pair aggregated by week. 

Coefficient of variations were derived from the aggregated mean and standard deviation.  

We plotted histograms for the top 6 routes with CV larger than one. In Figure 6, the distributions 

are color-coded by day of the week. Sunday was missing from the first two graphs because less than 10 

trips were initiated on Sunday for route 335 to 336 (Lakeland, FL) and route 750 to 750 (Palestine, TX) in 

the past year. In Figure 6, route 335 to 336 (Lakeland, FL) has a clear bimodality that Friday’s transit time 

distributes separately from the rest of the week; route 750 to 750 (Palestine, TX) has an unnoticeable 

bimodality on Thursday’s distribution; route 181 to 175 (Brooklyn, NY) has a bimodality on Thursday's 

distribution as well. For the rest of the routes plotted, none of the weekdays have perfectly overlapped mean 

value and the wideness of distributions are all divergent. We counted the total number of bimodal routes in 

section 4.3 by using GMM model.  
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Figure 6 

Transit time distribution by day of the week for 6 sampled zip code pairs 

 

 

 

Note. The transit time distribution figures were plotted using seaborn package in python. The figures were 

graphed for the use of this research to perform distribution analysis. 

To examine the number of high CVs in a bigger picture, we plotted a coefficient variance 

distribution in Figure 7. Out of all routes, 778 are with low CVs and 374 are with high CVs larger than 1. 
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Routes with high CVs have more variation on transit time and require further analysis to improve accuracy 

and reduce additional operation cost. 

Figure 7 

Coefficient of variation distribution for transits times 

 

Note. This figure shows the coefficient of variation distribution for aggregated transit times per route 

recorded in the eight metro area transit datasets.  

4.2 Hypothesis testing - Tukey test 

We conducted Tuckey test for extensive analysis of variance to prove the hypothesis established in 

section 3.3 and formally verified that the day of the week exhibits statistical differentiation from the mean 

value. In detail, we looped Tuckey test over simulated data to compare all possible pairs of means, except 

for routes with only one or two days of transit. For example, we compared similarities between Monday’s 

and Tuesday’s distributions for route 335 to 336 (Lakeland, FL) and output a p-value. The smaller the p-

value, the stronger the evidence that we should reject the null hypothesis, meaning that Monday’s and 

Tuesday’s distributions are different. For routes with one weekday transit record, like route 806 to 801 

(Denver, CO), Tuckey test will not be able to operate and outputs a coding error.  
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Table 5 is a heatmap of p-values for top 10 frequent routes sorted in ascending order regarding to 

the origin zip codes. Dark blue represents low p-values and white indicates high p-values. Due to the nature 

of zip codes, the codes started counting from northeast, and the more southwest, the higher the zip codes. 

A large white area in the middle of Table 5 shows that the transit time is far from unimodal in south and 

mid US, particularly around Lakeland, FL and Chicago, IL. More white numbers on the right-hand side of 

the table than left means that Friday’s transit time is very different from the rest of the weeks.  

Table 5 

P-value heatmap for top ten frequent routes 

 

Note. This table records p-values output from Tukey tests. The values are arranged in the order of zip code 

pairs and weekday pairs.  

Other than top 10 frequent routes, we performed Tukey Test over each unique zip code pair 

available and produced p-values for every zip code pair. We set a threshold of 0.05 and calculated the ratio 

of p-values lower than the threshold to the total number of p-values for each route. High ratio means that 

more days of the week pairing have different transit time and low ratio means less difference in day of the 

week. Besides, we ranked the routes with ratio over 0.5 in descending order regarding QTY. According to 

Table 7, Chicago, IL to Brooklyn, NY is the most frequent route and has the highest difference ratio. 
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Chicago, IL to Palestine, TX and Chicago, IL to Bell Gardens, CA are ranked number two and number 

three in terms of frequency and difference ratio. All three directions outbound Chicago have a high 

difference ratio and it makes Chicago the most volatile metro area in terms of transit time. Other than 

Chicago, Lakeland, FL, Bell Gardens, CA and Palestine, TX also have relatively high transportation 

frequency and different transit times depending on the day of the week.  

Table 6 

Difference ratio versus coefficient of variation  

zip_pair ORIGIN_METRO DESTINATION_METRO QTY CV Ratio 
600_181 Chicago, IL Brooklyn, NY 2118 0.54 0.90 
600_750 Chicago, IL Palestine, TX 1639 0.51 0.70 
600_917 Chicago, IL Bell Gardens, CA 1313 0.24 0.70 
335_328 Lakeland, FL Lakeland, FL 959 0.94 0.60 
335_330 Lakeland, FL Lakeland, FL 634 0.97 0.60 
900_328 Bell Gardens, CA Lakeland, FL 345 0.45 0.57 
330_291 Lakeland, FL Aiken, SC 343 0.71 0.60 
759_752 Palestine, TX Palestine, TX 311 1.18 0.53 
984_982 Bonney Lake, WA Bonney Lake, WA 277 0.89 0.57 
924_923 Bell Gardens, CA Bell Gardens, CA 229 1.62 0.60 
334_297 Lakeland, FL Aiken, SC 213 0.51 0.83 
605_750 Chicago, IL Palestine, TX 213 0.69 0.60 
775_802 Palestine, TX Denver, CO 204 0.3 0.83 
917_760 Bell Gardens, CA Palestine, TX 199 0.37 0.53 
908_917 Bell Gardens, CA Bell Gardens, CA 191 1.47 0.70 
750_601 Palestine, TX Chicago, IL 177 0.65 0.60 
907_902 Bell Gardens, CA Bell Gardens, CA 176 0.7 0.73 
193_174 Brooklyn, NY Brooklyn, NY 152 1.08 0.60 
917_802 Bell Gardens, CA Denver, CO 151 0.62 0.60 
181_071 Brooklyn, NY Brooklyn, NY 136 1.45 0.60 
170_173 Brooklyn, NY Brooklyn, NY 128 0.82 0.67 
752_802 Palestine, TX Denver, CO 123 0.36 0.70 
604_296 Chicago, IL Aiken, SC 109 0.57 0.60 
907_601 Bell Gardens, CA Chicago, IL 100 0.28 0.67 

Note. This table shows the difference ratio and coefficient of variation in parallel for sampled zip code 

pairs. The values are sorted by QTY.   

Figure 10 shows top 10 frequent routes with high difference ratio on a map. White circles are origin 

points and red circles are destination points. The size of each circle represents the total number of trips 

recorded in the datasets, the larger the circle, the busier the region. Paths are colored based on difference 

ratio levels. Dark red paths’ transit times highly fluctuated by day of the week. The level of variation 

decreases as the path color is lighter. From Figure 10, although some routes with big variation in transit 

times are in-state trips, most of the routes are out of state.  
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Figure 8 

Map visualization for areas with dense traffics and high Difference ratio 

 

Note. This map shows the metro areas with frequent shipments and highly variate transit times by day of 

the week. The map was graphed using Tableau public.    

4.3 Day of the week bimodality – GMM Model & Separation Factor 

Following the findings of the Tukey test in section 4.2, we next investigated identifying and 

quantifying within distribution bimodality. To evaluate the lane and day of the week bimodality, we chose 

to use the Gaussian Mixture Model (GMM) to cluster distributions into two groups. As discussed in section 

3.4, the GMM model is used to create a clear distribution separation that can be further examined to examine 

bimodality within the day of the week.  

4.3.1 Distribution Splits using GMM 

We next applied the GMM to zip code pair data, filtering for lanes with greater than 10 trips 

across the dataset. The output generated clusters of 2 gaussian distributions, with parameters: mean 1, 

mean 2, standard deviation 1, standard deviation 2 and alpha. Together, the two gaussian distributions 

form a mixture distribution. The distributions were ordered, such that mean 1 < mean 2. A visual example 



 40 

of this can be seen in Figure 9, illustrating the 2 output distributions from the GMM on 600_180’s 

Monday transit time distribution. The first distribution captures the data around the first hump, with the 

second distribution capturing the second hump and the wider long tail of longer transit times.  

Figure 9 

Historical distribution of 3-digit zip code 600 to 181 Monday transit times and GMM 
distributions 

 

Note. This distribution was created using seaborn within Python. zip code 600 contains regions within 

Chicago, IL zone and zip code 181 contain regions within the Brooklyn, NY zone.     

The GMM output of the 10 highest volume lanes can be seen in Table 7.  
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Table 7 

Table of GMM distribution clusters 

 

Note. This table shows the GMM distribution outputs for mean, standard deviation and alpha weighting for 

the top 10 zip-code pairings within the examined data set.  

Each distribution cluster found expressed unique alpha values that combined the two distributions 

into a mixture distribution. Figure 10 highlights lanes with strong preference for the first distribution – such 

as 604_601, within Chicago, IL intracity transit. Cross country transit lanes such as 600_917, Chicago to 

Bell Gardens, CA showed much stronger preference for the second distribution on all days except Monday. 

Figure 10 confirms the insight with in stronger bias for the first distribution seen in intrastate transit lanes 

and much wider spread of alphas seen in interstate transit lanes. Our underlying hypothesis to explain higher 

alpha in intrastate lanes is that short distance transit lanes have longer tails which are more likely to be 

clustered in the second, larger GMM distribution. There could be many factors driving the longer tail of 

transit times, such as urban traffic or higher impact of delays on overall time in transit.  

GMM Distr. Day 181_180 335_334 335_336 600_181 600_750 600_917 604_601 604_604 750_750 752_770
Monday 2.5 10.5 9.6 26.5 31.9 66.9 6.1 8.3 5.3 22.8
Tuesday 2.4 10.1 10.2 27.2 37.2 29.5 10.3 11.1 2.0 21.9
Wednesday 5.0 9.7 10.2 27.1 37.5 84.0 10.6 7.5 6.4 21.5
Thursday 2.9 9.5 9.7 30.5 43.2 72.9 9.3 10.2 1.2 17.6
Friday 4.0 58.3 6.3 27.2 31.1 74.7 5.9 5.3 1.4 13.2
Monday 20.3 38.6 34.6 45.5 60.0 93.0 35.8 37.3 49.1 60.6
Tuesday 17.2 33.0 34.5 44.2 100.7 70.1 81.0 80.0 21.0 67.6
Wednesday 88.7 44.8 60.9 82.0 110.8 101.8 144.8 51.4 67.1 172.3
Thursday 41.8 63.2 38.9 80.2 100.7 105.8 80.7 114.1 15.4 76.7
Friday 70.6 84.3 63.8 83.3 88.0 103.7 88.4 82.6 45.8 73.4
Monday 1.4 3.6 3.4 2.7 9.3 3.3 4.4 6.3 5.6 8.9
Tuesday 1.3 3.1 3.6 2.1 12.5 3.9 7.9 9.1 1.1 10.4
Wednesday 3.9 2.8 3.4 8.4 12.7 17.4 8.8 5.3 7.4 9.2
Thursday 1.8 3.1 3.4 9.0 16.3 17.4 6.9 7.9 0.6 9.8
Friday 2.9 2.6 5.3 8.5 13.5 7.0 3.7 4.1 0.6 6.5
Monday 12.8 21.2 14.2 18.9 15.6 40.0 22.2 20.5 21.2 9.3
Tuesday 12.5 14.6 14.2 18.5 12.7 17.2 41.9 32.0 16.8 9.9
Wednesday 48.9 30.4 32.4 21.9 19.8 13.1 53.7 34.2 30.1 69.8
Thursday 46.4 14.9 22.1 27.4 14.7 11.1 31.2 53.3 11.9 15.0
Friday 47.4 35.6 13.8 21.4 26.2 12.1 54.9 58.8 39.3 22.2

Monday 64% 77% 81% 36% 65% 77% 74% 65% 90% 92%
Tuesday 68% 79% 83% 33% 93% 4% 86% 89% 64% 95%
Wednesday 86% 77% 86% 50% 90% 35% 90% 66% 89% 93%
Thursday 74% 92% 81% 40% 74% 19% 93% 91% 55% 92%
Friday 86% 75% 16% 27% 28% 10% 79% 80% 56% 57%
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Figure 10 

GMM alpha allocation between interstate and intrastate 

 

Note. This box and whisker plot shows the spread of the alpha weighting for a mixture distribution for 

interstate and intrastate lanes  

When evaluating the standard deviation across the two distributions, we find that the intrastate 

transit lanes have higher levels of standard deviation across both distributions (Figure 11). The interstate 

transit lanes are more likely to have much tighter standard deviation within the first distribution and much 

wider potential outcomes in the second distribution. Earlier we confirmed in Figure 111 that there is less 

skew towards the first distribution, given a high alpha weight the first distribution more within a mixture 

distribution. Pairing the fact that interstate routes have more weighting towards their second distribution, 

we can infer that interstate transit times have higher spreads in standard deviation and more likely to have 

their true transit times within the second part of the mixture distribution. Intrastate lanes on the other hand 

are less likely to have distributions within the second distribution, and thus those that are within the second 

distribution may have an oversized impact on the overall transit time distribution for intrastate trips. 
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Figure 11 

Intrastate/Interstate standard deviation spread by GMM distribution type 

 

Note. This box and whisker plot shows the spread of the standard deviations for intrastate/interstate lanes 

for each distribution produced by the GMM.  

In addition to intrastate/interstate splits, we also chose to evaluate the spread of each distribution’s 

day of the week standard deviation. We found a similar large spread in standard deviations across the second 

GMM distribution, with the Thursdays and Fridays significantly wider in transit time variation compared 

with Mondays and Tuesdays (Figure 12). 
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Figure 12 

Day of the week standard deviation spread by GMM distribution type 

 

Note. This box and whisker plot shows the spread of each lanes standard deviation by day of the week, for 

each of the two distribution produced by the GMM.  

Figure 13 is a clear example of how spread of transit times impacts a single lane. We plotted the 

results of the GMM, the original daily and overall transit time averages to understand how the spread of 

transit times impact one lane, 600 to 181 – Chicago, IL to Brooklyn, NY. The key insight figure d highlights 

are that Monday and Tuesday’s spread in transit times is much tighter than the remaining weekdays. 

Additionally, there is a step change in transit times from Wednesday onwards, with high levels of spread 

between the two GMM distributions. The 2nd of the two GMM distributions also exhibit much higher levels 

of spread in standard deviation on Wednesday, Thursday, and Friday.  
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Figure 13 

Day of the week standard deviation spread by GMM distribution type 

 

Note. This figure shows the spread of each unique distribution produced by day of the week for the 600 to 

181 zip code pairing, illustrating the changes in spread when using the distributions produced by the GMM.  

Within the single lane example shown in Figure 13, we can see that there is clear split in transit 

time distribution by day, with this lane having a large overall standard deviation of 27 hours. Monday and 

Tuesday’s transit times would be significantly under the 27-hour standard deviation, driving large amounts 

of safety stock to account of non-existent variables. However, the remaining days would have very wide 

distributions, with negative kurtosis and spread in GMM distributions found. Therefore, as each day of the 

week has different distributions, using a static transit time for a lane would drive either too much safety 

stock or understocking depending on which day and other factors that drive within day bimodality.  
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4.3.2 Transit Time Distribution Spread - Difference in Means statistic 

To form an understanding of how spread the means produced from the two GMM distributions, we 

calculated the difference of means statistic described in 3.4.2. The difference of means statistic is used to 

understand how means were separated relative to their standard deviations. Figure 14 shows the distribution 

of the difference of means statistic, illustrating the widespread in relative widths of 4.5-5 hours between the 

two distributions. As a rule of thumb, distributions that have a difference greater than 2 can be potential 

candidates for exhibiting bimodality. This, however, is not definitive, as overall distributions with large 

negative kurtosis (i.e. spread) may also have high difference of means as a result of the output from the 

GMM.  

Figure 14 

Distribution of the difference of means between the two GMM clusters 

 

Note. This figure was created using seaborn in python. This shows the distribution of the difference of 

means statistic and the mean and median of this distribution.  

4.3.3 Defining Bimodality using a separation factor 

Following our application of the difference of means statistic in section 4.3.2, we applied a 

separation factor truly classify distributions as bimodal or unimodal. Described in section 3.4.2, the 

separation factor is a hurdle factor that defines bimodality with respect to two Gaussian distributions ratio 
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of variances. Applying this to the transit lanes by day of the week, we were able to identify that 1,985 of 

the 4,013 unique lane and day of the week pairs were bimodal, accounting for 49% reviewed lanes. When 

weighting each lane by the number of trips made in each unique lane and day of the week pairing, we find 

that 86,907 of the 145,966 trips were bimodal: accounting for 70% of reviewed trips. The key finding that 

the separation factor was able to highlight was that bimodality is present in almost half the lanes reviewed, 

and in particularly high-volume lanes. 

Figure 15 

Distribution of the difference of means between the two GMM clusters 

 

Note. This figure was created using seaborn in python. This shows the distribution of the difference of 

means statistic for the GMM output distributions classified as bimodal and unimodal. 

 An interesting counter pattern arose when investigating the difference of means for lanes classified 

as bimodal and unimodal (Figure 15). Our intuition suggested that bimodal distributions would exhibit high 

levels of differences in means, however what the distribution in Figure 15 highlights that bimodal route 

distribution means are on average closer together. Our hypothesis is that true unimodal lanes that have 

negative kurtosis, i.e., more spread out and flatter, with larger tails but no distinct two peak distributions. 
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On the other hand, bimodality within the underlying lane would exhibit density around two peaks, with 

smaller densities in the tails of the distribution. 

4.3.4 Interstate, Intrastate Lane and State Bimodality:  

After we were able to define which lanes were bimodal and those that were unimodal, we 

investigated the lane categories to understand if there were patterns in bimodality by location. A key finding 

in our research was that intrastate lanes that were proportionately more bimodal, with 59% of lanes and 

70% of intrastate trips on those lanes classified as bimodal. (Figure 16)  

Figure 16 

Intrastate & Interstate bimodality by Lanes & trip share 

 

Note. This figure shows the share of bimodality by lane count and weighed by trips within those lanes for 

both interstate and intrastate transit times.  

When evaluating the highest volume lanes for bimodality, we saw that across almost all intra state lanes 

there was strong bimodality across all lanes, with lanes within Florida and Illinois with the highest intrastate 

bimodality. (Figure 17). Interstate lanes however were primarily unimodal, with Illinois to New York lanes 

a rare standout in having higher share of bimodal transit time distributions. 
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Figure 17 

Top 5 Intrastate & Interstate bimodality share by total trip volume 

 
Note. This figure shows the top 5 intrastate/interstate transit lanes volume that is classified are bimodal. 

 When pooling by lane origin state, we found that the highest differences in trips across lanes that 

had bimodality were in Florida, Illinois, and Colorado. (Figure 18). In relative terms, low levels of 

bimodality existed ins California and South Carolina.  

Figure 18 

Top 5 Intrastate & Interstate bimodality share by total trip volume 

 
Note. This figure shows the origin state volume of trips that are bimodal and unimodal. 
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4.3.5 Bimodality by day of the week:   

In addition to understanding bimodal lanes by states, we also grouped lanes by day of the week 

found that there was a clear split in weekday bimodality over a lower likelihood during Saturdays and 

Sundays. (Figure 19) Multiple factors could be involved in driving this relationship, with weekday traffic 

or lower weekend volumes helping consistency in transit distributions. Although less apparent in 

aggregate than in the individual lane shown in figure d, we can see that there is a slight increased share in 

Thursday’s bimodality relative to other days of the week. A key practical takeaway from this could be to 

save on unnecessary transit time safety stock by avoiding starting trips on Thursday.  

Figure 19 

Share of Bimodal trips by day of the week  

 

Note. This figure shows the share of bimodal trips across all 4013 unique lane days of the week.  

4.4 Numerical Experiment - Bimodality Impact measurement  

To measure the impact of bimodality, we created three case scenarios to compare safety stock and 

its impact on inventory costs by using the safety stock inventory level formula in section 2.1.1 and logistic 

cost formula in section 2.3.1. We defined the first scenario as the base case, which used a static transit 

timetable commonly used in industry, to calculate the reorder amount. The treatment cases were to use 
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different transit times determined from GMM bimodal distribution to calculate reorder amount, while 

keeping the same demand level and desired service level. The outcome of three cases were used to compare 

inventory costs, calculate cost savings, and determine the best day of the week for shipping.  

The example case that we used was to assume a fulfillment center in Brooklyn, NY (Zip code 

starting with 181) needs to replenish toilet paper and the toilet paper was dispatched from Chicago, IL (Zip 

code starting with 600) distribution center. The carrier assumed a lane average transit time of 50.64-hours 

with 27.17-hour standard deviation. Furthermore, assume the daily demand is normally distributed ~N 

(1000,80) units. Under a case where an order is placed weekly, therefore the total lead time is 7-day. We 

calculated the safety stock at 95% service level: 

𝑆𝑆 = 	𝑍(𝐿 𝜎!" + 𝐷]" 𝜎#" 

𝑆𝑆 = 	1.645p(7) ⋅ 80" + 1000" (
27.17
24

)" 

𝑆𝑆 = 1,895	 

The unit costs per bag of 18-rolls ultra-soft Charmin toilet paper is $18.79 and the cost per order 

is $1000. The annual holding cost is 20% of unit cost. Keeping the order frequency constant, changing the 

number of safety stock will only affect the cost of inventory: 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = ℎ𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑐𝑦𝑐𝑙𝑒	𝑠𝑡𝑜𝑐𝑘
+ ℎ𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑠𝑎𝑓𝑒𝑡𝑦	𝑠𝑡𝑜𝑐𝑘 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = 𝑈𝑛𝑖𝑡	ℎ𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 ∗ (𝐿̂ ∗
𝐷]
2
+ 𝑆𝑆) 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = 18.79 ∗ 20% ∗ (7 ∗
1000
2

+ 1895) 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = $20,274.4	 

For the treatment case, we calculated the reorder amount’s safety stock (SS1 and SS2) by using 

means and standard deviations from GMM bimodal distribution per day of the week. First safety stock 

(SS1) was calculated for the first distribution and second safety stock (SS2) was calculated for the second 
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distribution. As shown in Table 8, all safety stock for the first distribution is significantly lower than the 

safety stock from the base case. In particular, shipments start from Monday and Tuesday require fewer than 

400 units for safety stock, which is close to 22% of base case safety stock quantities. Safety stock for the 

second distribution, in contrast, is much higher than safety stock for the first distribution, but the majority 

is lower than base case values, except for Thursday.  

Table 8 

Safety stock calculation of bimodal distributions for each weekday 

 

Note. This table shows the safety stock calculated by using four mean and standard deviation output from 

GMM model per day of the week.  

We calculated holding cost with respective safety stock values in Table 8, by using the same 

demand distribution and service level from the base case. We also calculated weighted holding cost per day 

of the week by multiplying holding cost by alpha values for each distribution. From the weighted holding 

cost in Table 9, shipments starting Monday and Tuesday generated more than $3K (or 16%) cost saving 

compared to the base case. Thursday, which was considered the least favorite day of the week, also reduced 

$1.7K (or 9%) holding cost compared to the base case.  

Table 9 

Holding cost calculation by day of the week for bimodal distribution 

 

Day Mean 1 Mean 2 Std. Dev. 1 Std. Dev. 2 alpha 1 alpha 2 SS1 SS2

Monday 26.5 45.5 2.7 18.9 0.4 0.6 395 1344
Tuesday 27.2 44.2 2.1 18.5 0.3 0.7 377 1316
Wednesday 27.1 82.0 8.4 22.0 0.5 0.5 671 1544
Thursday 30.5 80.2 9.0 27.4 0.4 0.6 707 1909
Friday 27.2 83.3 8.5 21.4 0.3 0.7 676 1509

Day Holding Cost
 (Std. Dev. 1)

Holding Cost
 (Std. Dev. 2) Total Cost Saving Saving %

Monday $14,639 $18,203 $16,937 $3,336 16%
Tuesday $14,570 $18,099 $16,934 $3,339 16%
Wednesday $15,675 $18,956 $17,317 $2,955 15%
Thursday $15,811 $20,329 $18,521 $1,752 9%
Friday $15,695 $18,826 $17,980 $2,292 11%
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Note. This table shows the cost saving values and cost saving percentages from total cost by shipping from 

different day of the week.  

Treating transit time differently across day of the week could generate as high as 16% cost reduction 

in the toilet paper case above. Companies looking to reduce inventory cost should add day of the week to 

the transit timetable and choose the most cost-effective day to start shipment.  

We applied the same methodology to other commodities with higher unit prices. Keep the safety 

stock and unit cost unchanged, the larger holding cost percentage unit cost, the higher the total holding cost 

and the larger the cost savings. For perishable items with high holding cost rate, the impact of bimodality 

in transit time is amplified by generating big cost savings.    

Figure 20 

Safety stock calculation of bimodal distributions for each weekday 

 

Note. This figure shows the change of cost savings by increasing holding cost rate while keeping the safety 

stock and demand constant.  
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5 DISCUSSION AND CONCLUSION 
 

This research showed bimodality in transit times and demonstrated impact on inventory decisions. 

We have developed a Gaussian Mixture Model (GMM) based on geolocation data captured by project44 

and analyzed the impact of bimodality on safety stock in order to reduce inventory cost while maintaining 

the same service level. Shippers could leverage the bimodality discovered from this research to create a 

more sophisticated transit timetable to improve the measurement of transit times and better monitor the 

goods in transit.  

We conducted distribution analysis for transit duration for each day of the week on the simulated 

transit time from eight US metro areas’ aggregated geo data. The distribution analysis in 4.1 clearly showed 

differences in distributions for each day of the week, with each day having different means and variance. 

The day of the week difference created a large dispersion around the mean transit time, which caused 

shippers to gauge their safety stock inaccurately. Our research shows that 40% of the routes recorded have 

a high coefficient of variation in transit duration. Lanes with a high coefficient of variance in transit times 

drive high safety stock requirements to account for their variability. However, our research showed that 

high variability in some lanes may in fact be genuine and cannot only be attributed to bimodality.   

Further exploration on the difference among day-of-the-week transit time distributions confirmed 

our initial investigation that using transit times static distributions, which ignored day-of-the-week 

information, would result in excess inventory holding or in shipping delays. We performed Tukey 

hypothesis tests to evaluate whether mean transit times are equivalent across unique day-of-the-week 

combinations. Based on Tuckey test results, we rejected the null hypothesis and proved that each day of the 

week has a unique transit time distribution. Particularly, Chicago, IL, has the highest proportion of unique 

daily transit time distributions, i.e., difference ratio, regardless of direction, inbound or outbound. This 

means that, for Chicago, IL, most days of a week have a unique transit time that shippers should account 
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for. Other metro areas, such as Lakeland, FL, Bell Gardens, CA and Palestine, TX, also expressed a high 

difference ratio.  

Comparing the coefficient of variation to difference ratio in parallel, we found no significant 

correlation. High coefficient of variation does not necessarily indicate high difference ratio. In other words, 

a high variation in the distribution does not mean that each day of the week has a different time. Our 

interpretation of this result is that those distributions with high coefficient of variability have high negative 

kurtosis with flatter spread in distribution. Therefore, the overall distribution cannot easily be differentiated 

among each day of the week and thus cannot be classified as truly different distributions.  

project44’s main goal is to prove that a more accurate transit timetable would make better delivery 

date predictions and reduce safety stock for shippers and carriers. To create a more sophisticated timetable, 

we studied day-of-the-week transit time distribution in further detail. Based on the distribution analysis and 

hypothesis testing results, we created an unsupervised machine learning model, Gaussian Mixture Model 

(GMM) to define distinct transit time distributions by clustering distribution data points within each day of 

the week. GMM split the distribution in two humps and produced the mean and sigma values for each 

bimodal mixture distribution. We discovered that the majority of the first peaks had low dispersion around 

the mean and the second peaks grouped all long-tail transit times, with typically higher standard deviation 

as a result; with this trend being particularly strong within intrastate transit lanes. Furthermore, according 

to the box plot in section 4.3.1, Monday and Tuesday transit times express lower spread in means and have 

less variation across transit times. In contrast, the rest of the week has considerably higher spread in transit 

time distributions. Finally, we compared the intrastate and interstate transit time distributions. Intrastate 

transit routes had higher possibility to be bimodal. We infer that this could be due to intrastate transit routes 

having shorter lead times in high traffic areas or high-density zones. 

The variation of transit time could significantly impact the safety stock level, according to Hadley-

Whitin reorder formula in section 2.1.1. We conducted a numerical experiment, evaluating the GMM 

outputs to reorder formula and discovered that a more sophisticated transit timetable, factorized by day of 
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the week and bimodality of the transit time distribution, reduced the variation and increased accuracy. Our 

research proved, within the numerical experiment shown in section 4.4, that accounting for bimodality and 

day of the week resulted in 38% inventory reduction and up to 16% holding cost saving in toilet paper case 

study. Testing for sensitivity around the assumptions of the experiment that extend these findings to 

different commodities unit prices or holding cost rate could result in higher cost saving for the shippers and 

carriers. For example, perishable items like fruit that have higher holding cost per unit would reduce more 

inventory cost according to the safety stock formula due to the higher penalty of expirations in this type of 

commodity. Companies can use their understanding of the bimodality within their key transit lanes to 

segment their inventory according to their holding cost impact and thus prioritize high holding cost SKUs 

for transit across days have lower bimodality. A further extension of this work could further enable shippers 

to reduce inventory holding costs to accommodate costs for routes and transit practices that are more 

environmentally sustainable. 

Our research findings clearly described that accounting for day of the week and transit time 

bimodality can yield shippers positive returns in reducing safety stock required for inaccurate lead time 

variability. By forward planning and making orders earlier in the week, shippers can reduce excess safety 

stock required for end-of-week transit time bimodality. Further, if shippers can identify the drivers of 

intraday bimodality, they will be able to better segment their transit timetable into each component of the 

mixture distribution and thereby significantly reduce safety stock requirements.  
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APPENDIX A 
 

 
Appendix A. Sample Simulated Data from Denver, CO, to Chicago, IL. 

 
 
 
 
 
 
 
 
 


