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ABSTRACT 

      

The trucking industry hauled 72.5% of all freight transported in the U.S. and served an essential function 

in transporting cargo nationwide from one place to another. Recently, the industry has suffered from 

significant disruption, such as a shortage of drivers and carriers. One of the leading causes of these issues 

is the lengthy detention time in most operational activities, such as loading and unloading time at the 

warehouse. Previous research recognized that the drop trailer offering serves as an effective solution for 

reducing the waiting time at warehouses and improving the on-time delivery rate. When it comes to our 

sponsoring company - Uber Freight, this type of service is still nascent, with several strategic questions 

unanswered. Specifically, two of the most crucial key research questions are 1) where it should expand its 

drop trailer service 2) what load requirement and network characteristics are best serviced with a drop 

trailer. Our capstone project first deployed the K-Means clustering method to address these questions to 

uncover the underlying pattern and key network characteristics of states that have successfully 

implemented the drop trailer service. The result showed that Illinois, Indiana, and Florida possess the 

highest feature similarity with those states and hence, are recommended for Uber Freight to introduce 

drop trailer service. Our project deployed a CART decision tree to decompose the critical features from 

our cluster results that provide a structured recommendation for drop trailer implementation to answer 

the second question above. The analysis indicated four features necessary for a Drop offering to be 

favourable compared to live loading dry-van offering. These four features lay out two sets of market 

conditions with their strategic consideration for Uber Freight to implement drop trailer in the future.     
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GLOSSARY OF TERMS 

 

Term Description 

Carrier Refer to trucking company/third party logistic company or parcel/express 
company. 

Container Standard-sized rectangular box used to transport freight by highway, ship, or rail  

Detention The time carriers spend at shippers or receivers’ facility waiting for freight to be 
released. 

Drop trailer A carrier brings the tractor and trailer to the warehouse, unhooks the trailer from 
the tractor, and leaves the warehouse without waiting for loading/unloading 
operations.  

Live loading A carrier brings the tractor and trailer to the warehouse and waits for warehouse 
personnel to load/unload the goods in the trailer.  

Rateview at 
booking 

Market price of the shipment at the time of booking 

Shipper Cargo owner or a 3rd-party logistics firm that gives an order assignment to Uber 
Freight  

Tractor The head of the truck with the engine that provides power to haul the trailer 

Trailer The unpowered back part of the truck that is towed by the tractor 
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1. INTRODUCTION 

 

According to the American Trucking Associations (2020), the trucking industry in the U.S. hauled 72.5% of 

all freight transportation in 2019, with an industry value of nearly $800 billion. It acts as a vital function in 

facilitating and transporting cargoes nationwide from one place to another. The industry is considered to 

be highly fragmented, with 90% of the trucking companies (the industry usually refers to them as ‘carriers’) 

having fewer than six trucks in their fleet. Considering the harsh competition between the vast number of 

players in the market and the low-capital entry barrier for new players, carriers have always sought new 

service models to improve their business competitiveness.  

 

In a conventional trucking service model via live loading mode, the driver typically spends a significant 

amount of time waiting at yards for the warehouse workers or the cargoes to be ready before the goods 

are loaded into and unloaded from trucks. The problems associated with live loading include a lengthy 

waiting time for drivers and an overall shortage of trucking cargo in the U.S..  

 

Recently, drop trailer service came under the spotlight during the COVID-19 pandemic due to its nature 

of contactless delivery and the ability to relieve the driver shortage problem. As the name suggests, a drop 

trailer refers to the service provided by a carrier to ‘pick up’ a pre-loaded trailer and ‘drop’ the trailer at 

the destination warehouse. Generally, the drop trailer offers three main advantages compared to the 

traditional live loading. First, it reduces the turnaround time for carriers. Instead of waiting for the 

warehouse personnel to operate the trailer, carriers pick up and drop the trailer at their destination and 

leave. Second, it reduces congestion in warehouses for shippers. Third, it allows better planning for 
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carriers with a predictable turnaround time in warehouses, eventually improving the utilization rate of 

trucks and drivers.  

 

Considering the above advantages of the drop trailer service, our sponsoring company, Uber Freight, 

expanded its trucking business with its drop trailer service named ‘Powerloop’. This program allows 

carriers to arrive at and leave the shippers’ facilities at their convenience instead of waiting for loading 

and unloading activities (See Figure 1). What further differentiates the Powerloop program from the other 

drop trailer service is its own pool of trailers for leasing to carriers. By doing so, Powerloop extends its 

drop trailer service to smaller carriers who are unable to afford to buy trailers. The trailer-pooling system 

introduces more players into the drop trailer market, relieving the shortage of carriers for shippers and 

creating a win-win situation for shippers and carriers.  

 

Figure 1: Uber Freight Powerloop Operational Model 
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While Uber Freight’s existing live loading offering is mature in the traditional trucking industry, with ample 

automation, market density, and liquidity, its newly drop trailer offering is still nascent, with several 

strategic questions unanswered. To expand the company’s geographic coverage for the drop trailer 

service in the future, Uber Freight must understand the key network characteristics and criteria for 

expanding its Powerloop service.  

 

Although past work at MIT (e.g., Fankhauser and Li, 2019) has explored Powerloop in resource utilization 

(drivers, trailers), load requirements and network characteristics that are best serviced with a drop trailer 

remain unanswered. Given this uncertainty, this project aims to explore the potential network 

characteristics as a criterion and offer decision-makers a structured approach to understanding the 

condition of providing drop trailer instead of live loading. As part of the deliverables, we provide Uber 

Freight with recommendations to enable a successful drop trailer implementation in the future and a 

predictive model that help them to identify viable market pairs for future expansion.  
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2. LITERATURE REVIEW 

 

To measure the success of drop trailer implementation, it is crucial to explore relevant trade-offs, metrics, 

and possible limitations associated with this type of freight service offering by first looking at the existing 

research. This chapter starts by examining the trade-off between drop trailer and live loading. We then 

focus on exploring relevant metrics to quantify this trade-off and possible limitations associated with drop 

trailer and live loading offering.  

 

2.1 Drop Trailer vs. Live Loading 

 

Previous study by Fankhauser and Li (2019) confirmed that drop trailer service can reduce carriers’ 

detention time, which is the amount of time carriers spend at shipper facilities. Since shippers often pre-

loaded trailers, the driver can pick up the unit and attach the trailer to the tractor. This advantage is 

particularly important in the midst of the current driver shortage as indicated by Correll (2019). 

 

However, the drop trailer does occasionally pose limitations. For instance, one of the limitations is the 

nature of goods carried in the trailer. It has been suggested that perishable goods are not a suitable 

candidate for drop trailer since keeping the goods fresh under climate control may post further difficulty 

and cost for successful delivery (First Call Logistics, 2021). Even with investment in specific infrastructures 

such as refrigerated trailers, researchers have found that refrigerated cargo systems are still not designed 

to support the temperature homogeneity inside cargo trailers (Yildiz, 2019). Another limitation of drop 

trailer services lies in constrained warehouse or yard space. Idled trailers require yard space to store. The 

potential congestion issue here does not only add more effort to the relocation of the drop trailer’s 



12 

designated position but also inevitably increases the lead time and decreases the ability to adjust for 

urgent shipments (Wolhart, 2021).  

 

The advantages and disadvantages of drop trailer helped us to understand the trade-off to lay out a 

structured approach to formulate metrics that measure drop trailer implementation success. 

 

2.2 Drop Trailer Key Metrics 

 

Next, we explored relevant literature to understand the quantitative impact of the drop vs. live trade-off. 

Overall, there are four core metrics or objectives in the field of transportation and logistics research that 

can be used to measure the performance of freight service offerings: 1) turnaround efficiency, 2) cost-

effectiveness, 3) supply-demand balance, and 4) shipper/carrier density.  

 

Starting with turnaround efficiency, most of the literature referred to this theme as the time spent on 

supply-chain processes or related operational activities (Sapry et al., 2016). For instance, the loading and 

unloading time is part of the formula that optimizes the trucking schedule for the forestry transport 

system in Acuna et al. (2011) research. In Zahid and Melan (2020), curbing the idling time at warehouses 

was also recognized as a recommended practice by most supply chain industry managers. From research 

in this area, we acknowledged that to quantify the successful deployment of drop trailers, this theme will 

be critical to be included for measurement.  

 

https://www.atsinc.com/blog/author/cody-wolhart
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In relation to cost-effectiveness, companies often seek cost as a key objective in their supply chain 

operation. Mura (2019), in his study, showed that transport costs, warehousing costs, and stock costs 

often represent the largest share of the logistics cost. Since one major advantage of the drop trailer service 

is the financial benefit to carriers and shippers due to a reduction in detention time (Wang and Liu, 2014), 

measuring the drop trailer’s cost within the supply chain becomes critical (Feng and Cheng, 2019).  

 

The third common metric dimension from literature is the supply-demand balance, measured by the 

absolute difference between the incoming and outgoing transactions in each period. For instance, in the 

field of ride-hailing service, it is believed that a mismatch between taxi supply and demand could lead to 

a decline in operational efficiency and customer satisfaction (Tang et al., 2019). Similarly, in the case of a 

drop trailer, it may be necessary for the decision-maker to balance the trailer to prevent any congestion 

issue that could result in potential loss of shipments.  

 

The last metric we observed from the literature was the shipper /carrier density (Silver, Pyke, and Peterson, 

1998). This dimension refers to the number of shippers and carriers in a particular geographical area to 

assess the coverage and freight lane design. Generally, the denser the network, the more freight 

transportation in a geographic area can flow and connect, which gives carriers and shippers more choices 

and opportunities to reach cost-saving and efficiencies (Grossardt, 2002). In addition, Friesz et al. (1986) 

found that shipper-carrier density as a design of nodes could influence routing and model choice of 

shippers and carriers. This finding was later affirmed by Peeta and Hernandez (2011), who show that a 

higher carrier density at the destination city enables better service to shippers. 
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Next, we explored several tools and techniques that could be adopted to methodologically address the 

network characteristic and requirements of drop trailer offering in line with the four key metrics described 

previously.  

 

2.3 Methodology Selection 

 

There are two main methodology branches in transportation and logistics study: 1) data science and 2) 

optimization. The data science approach is further split into unsupervised and supervised machine 

learning. In this section, we will review each approach.  

 

We started by exploring a subset of the data science approach - unsupervised machine learning. Briefly 

explain, this type of algorithm learns patterns from untagged data and discovers hidden patterns or data 

groupings without human intervention. By far, there have been limited studies about the application of 

unsupervised machine learning related to drop trailer service. Yet, we were able to identify and learn from 

the study from Moskvichev et al. (2021) that used an unsupervised machine learning method, specifically 

the K-Means clustering, to determine the optimal locations for container storage. In their research, the 

cluster results allowed them to propose a better network design, providing better logistics services with 

a more organized transportation of goods within the supply chain. In our project, this type of method can 

also help identify the underlying pattern of all markets and group similar markets together. 

 

Another data science approach is supervised machine learning. Contrary to unsupervised machine 

learning, this type of supervised algorithm works by using well “labeled” training data and based on that 

data, predicts the output. Some common examples of supervised machine learning algorithms are random 
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forest and decision tree. For instance, van Riessen, Negenborn, and Dekker (2016) applied a decision tree 

to provide selection support for different intermodal transportation. This allows them to allocate 

incoming orders based on features such as booking lead time, transportation lead time, and regulatory 

impact. Similar to our project, we may also want to use the decision tree model to train models to yield a 

binary decision to implement drop trailer. Specifically, a decision tree is a non-parametric supervised 

machine learning method. Each branch node represents a choice between several different options, and 

each leaf node represents a classification decision (Maglogiannis, 2007). Generally, there are four popular 

types of decision tree algorithms: CART (Classification and Regression Trees), CHAID (Chi-squared 

Automatic Interaction Detection), ID3, and C4.5 (Gulati et al., 2016). The main differences between the 

four decision tree algorithms lie in how the data is split in the tree and what data categories can be 

deployed. For instance, CART and CHAID use statistical methods such as Gini Impurity and Chi-square 

independence tests (Gulati et al., 2016) to determine the best split at each step, respectively. In contrast, 

C4.5 and ID3 use a metric called Gain Ratio for their splitting process compared to Information Gain as 

deployed by ID3. Gain Ratio is a modification of the Information Gain concept that incorporates the 

number and size of the branches when choosing an attribute to remove the bias on decision trees with a 

massive number of branches. 

 

Next, we moved to another branch of methodology widely used in transportation-related research - 

optimization. The core mechanism of optimization is to solve for a specific objective function under a set 

of constraints (Xu and Li, 2021). For instance, recent research from Xu et al. (2019) applied an optimization 

approach in the trucking industry to achieve cost minimization via route optimization. Furthermore, Xu et 

al. (2020) used optimization to recommend the number of tractors needed for different time-window.   
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From the research about data science and optimization methodology as explained above, we concluded 

that the former suit better toward the objective of our project due to its nature of learning and 

generalizing from historical data of Uber Freight’s shipment transaction. In such an open-ended context, 

the optimization method may not apply to our project because it requires concrete numerical variables 

and constraints to solve a specific objective (Yan-Qiu and Hao, 2016). However, we foresee the need for 

an optimization method when Uber Freight plans to enhance its warehouse operational efficiency by 

relocating trailer to different regions.  
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3. DATA AND METHODOLOGY  

 

To address our key research objectives of (1) providing Uber Freight with a recommendation on potential 

markets to implement drop trailer and (2) developing a predictive model to help Uber Freight identify 

viable drop trailer market pairs for future expansion, our team leveraged a three-step methodology: 1) 

feature selection, 2) K-Means clustering and 3) CART decision tree. 

 

3.1 Feature Selection and Data Reprocessing 

 

In the feature selection, we took a top-down approach from understanding the high-level project scope, 

decomposing the data fields into the technical and functional areas, to cleaning and processing the data. 

 

Starting with the intention to establish a meaningful relationship between the data and the project 

objective, we walked through the project scope with the management team of Uber Freight to understand 

the key motivation and pain points in the current business in-depth. Next, we talked to the Uber Freight 

Expansion General Manager, who offered a detailed clarification of Uber Freight’s drop trailer operation 

and services. Coupled with the insights obtained from the literature review, our team generated a list of 

preliminary features that could affect the implementation of the drop trailer service.  

 

After defining the preliminary features, we then moved on to data processing. This step involves data 

manipulation, such as transposing the columns to rows into market pairs, applying formatting functions 
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to standardize certain features’ numerical values, and removing outliers to narrow the numerical range 

of data to a reasonable value threshold. 

 

Along with our data processing step, we also consider using Principal Component Analysis (PCA) in the 

event when the feature dimensions are large. PCA is a statistical procedure that reduces the 

dimensionality of a dataset by ‘summarizing’ the essential features in the dataset (Lüthi et al., 2012). 

Mathematically, it works by projecting linear lines that minimize the mean squared error of the set of data. 

By setting a target percentage of cumulative variance, we could identify the optimal number of principal 

components from a plot of the number of principal components against the cumulative variance. The 

main benefit of applying PCA in our project is representing the data efficiently at a low dimensionality, 

ensuring no overlap of information.  
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Figure 2: A Sample of PCA component explained variance plot from Scikit-plot 

 

 

The intended outcome of the above feature selection is to generate a business-centric dataset that applies 

to our sponsoring company. The data processing associated with this step produced a lean dataset so we 

could use it directly in our subsequent analysis to reduce the computational requirement. 

 

3.2 K-Means Clustering  

 

K-Means clustering is an unsupervised machine learning method that partitions all data points into k 

clusters. The objective of using K-Means clustering as a part of our project methodology was to segment 

the live loading historical data into k clusters and identify which cluster exhibits the highest similarity to 

the current drop trailer market data, thereby identifying the most feasible state.  
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The procedure of K-Means clustering starts with the initialization of k random centroids. It then calculates 

the distance between all data points and centroids, subsequently assigning each data point to its nearest 

centroid (Zhang and Rudnicky, 2002). After this, the algorithm sums up all points in each cluster and 

divides them by the number of points in the cluster. The process will be repeated until the algorithm finds 

the ideal centroids, which is the assigning of data points to clusters that do not vary. Since the initialization 

of K-Means clustering is random, the clustering results will be different for every run. To mitigate the 

randomness, it is vital to run it multiple times and select the best iteration to minimize the Euclidean 

distance between the centroids and the data points. 

 

Another question with our K-Means clustering is how to choose the optimal number of clusters. To 

identify the ideal value of k, we used the elbow method for a range of a different number of clusters of k. 

For each value of K, we calculate the Within-Cluster Sum of Square (WCSS). WCSS is the sum of the squared 

distance between each point and the centroid in a cluster. The WCSS value is largest when K = 1. On the 

other hand, as the number of clusters increases, the WCSS value will decrease (Cui, 2020). When we plot 

the WCSS against the number of clusters, the plot looks like an elbow and is named the ‘Elbow Method’. 

By examining the x-axis on the plot, we take the k value where the elbow bends, and that k value is the 

optimal number of clusters. The elbow graph looks like Figure 3 (Saputra et al., 2020). 
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Figure 3: A sample of elbow graph from ‘Effect of distance metrics in determining K-value in K-Means 

 

 

 

 

 

 

 

 

 

By applying K-Means clustering, we could discover the similarity of states and compare those with states 

that have already implemented drop trailer (California, Georgia, Texas). Zooming into each cluster with 

the highest drop trailer implementation rate, we can then infer the most suitable market candidate for 

future drop trailer expansion based on the underlying hidden pattern of each market pair’s characteristics.  

 

3.3 CART Decision Tree 

 

To decompose the clustering result into the importance of each feature from the previous step, we 

proceeded to construct a decision tree. 
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Before the actual construction of the decision tree, it is important first to streamline and select the 

impactful features to avoid the issue of over-fitting. Over-fitting will bias our decision tree to predict 

samples because it would have captured noise rather than important patterns in the class sample (Ying, 

2019). To mitigate this risk, one way is to learn the feature distribution from a density plot. The objective 

was to identify which features have a strong impact in differentiating between drop trailer and live loading. 

Our hypothesis was that if for a given feature, the distribution plot for the various clusters is very similar, 

the feature does not really contain any information that would help a decision tree model decide whether 

a new observation is a drop trailer candidate or not. On the other hand, for a given feature, if we see that 

the distribution plot of one or multiple clusters differs significantly from the distribution plot of other 

clusters, this feature will help to explain the difference in drop trailer and live loading services. This means 

that we would keep that feature to build the decision tree. 

 

For our decision tree, we chose the CART model from other types, such as CHAID, ID3, and C4.5, as 

explained in Chapter 2.3. CART is a specific algorithm that assists the tree in deciding on how and where 

to split a node into two or more sub-nodes. The process splits variables based on all possibilities of split 

criteria from many possible predictors with no requirement of each predictor’s distribution (Lewis, 2000). 

In a detailed analysis of CART by Lewis (2000), it is further argued that CART has the advantage of reduced 

complexity as the algorithm can work well with little input or missing variables for a targeted class. When 

there are any outliers or inaccurate values after the aggregation of the dataset, CART is still able to adjust 

the predicted output by estimating the linear combinations of the true unmeasured or unmodelled factors 

of the missing variables. This is particularly useful as the features comprised transactions aggregated on 

a market level. In addition, CART deals with imbalanced data well without significantly considering the 

different underlying distribution of values and variable types of the features (Lewis, 2000). As a result, the 

CART decision tree handles outliers well. Other algorithms such as ID3 and C4.5 may not be able to handle 
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outliers or bias well, as a skewed value could easily increase the information gain of ID3’s splitting criteria 

easily (Yang et al., 2018). 

 

In order to evaluate the accuracy and metrics of a classification problem like CART, most practitioners 

relied on the Precision-Recall (PR) curve and Receiver Operator Characteristic curve (ROC) (Zhou et al., 

2021). First, PR is formed by precision and recall. Precision in statistic theory means the number of the 

correct positive prediction made (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
); whereas recall is a metric 

that allows us to measure the number of correct positive predictions made out of all positive predictions 

that could have been made (𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
). These two combined elements as a 

PR curve will allow us to understand the algorithm’s ability to classify possible samples or minority classes 

in the model (Hand, 2009). In our case, this can be used to measure the validity of our CART decision tree 

when predicting the suitability of the drop trailer implementation. On the other hand, ROC is similar to a 

PR curve. The difference is that ROC aims to plot the true positive rate (TPR) as a function of the false 

positive rate (FPR) at various threshold settings. Each point on the ROC curve conveys a 

sensitivity/specificity pair corresponding to a particular decision threshold. According to Zhou et al., 2021, 

both PR and ROC shall be considered concurrently to understand the strength of the binary classifier (i.e., 

drop trailer or live loading). 

 

With the understanding of the importance of PR and ROC scores, we moved to identify the method that 

could increase the accuracy and robustness of our decision tree. Particularly, one way to do so is via the 

resampling of data. In our initial observation after the data preprocessing step, we noted a significant 



24 

imbalance of data between market pairs that have implemented drop trailer services and those without. 

Hence, resampling may help to improve the classification ability of the CART decision tree in our case. 

 

Typically, practitioners rely on two resampling mechanisms - random over-sampling and random under-

sampling. In a typical programming package, the former method is conducted by simply adding datapoint 

from minority classes and vice versa for the case of random under-sampling. However, these two 

mechanisms may impose some bias. For instance, Batista et al. (2004) observed that simply over-sampling 

from minority class can over-fit the model, which has the negative consequences explained in Chapter 3.3. 

Similarly, random under-sampling can also unintentionally discard potential valid market pairs from our 

dataset that could be important to understand the importance of the feature (Japkowicz and Stephen, 

2002). Knowing the risk, we acknowledged the need for a more optimal approach that allows us to 

mitigate the risk of the above heuristic approach. 

 

Recently, an integrated sampling method Synthetic Minority Over-sampling Technique with Edited 

Nearest Neighbor (SMOTE-ENN), has gained interest in academic research as a more effective resampling 

approach (Japkowicz and Stephen, 2002). The SMOTE in the first part functions as an over-sampling 

mechanism to synthesize samples in the minority class by linearly interpolating the original data point. 

For instance, if the dataset is (1,2), it increases the number of samples by adding (2,4) in the minority class. 

On the other hand, the ENN in the second part serves as a data-cleaning tool to remove any noise from 

these newly generated minority samples. Moreover, it also serves as an under-sampling mechanism to 

delete the misclassified instance of the majority class (Xu et al., 2020). 
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Overall, the resampling process before building the CART decision tree allowed us to prevent the problem 

of over-fitting and effectively improve the classification ability of our decision tree. The intended outcome 

of the CART decision tree is a decision tree model incorporating the most impact features in drop trailer 

implementation. With the model, Uber Freight can identify suitable market pairs for drop trailer 

implementation based on future data.
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4. RESULTS AND ANALYSIS 

 

4.1 Feature Selection Result 

 

This section entails how we applied the Uber Freight data to the methodology reviewed in Chapter 3. We 

demonstrate our analysis from feature selection, K-Mean clustering, CART decision tree, and their 

respective results.  

 

Starting with the feature selection analysis, Uber Freight provided two datasets: 1) live loading transaction 

records from 2017 to 2021 nationwide and 2) drop trailer transaction records from 2017 to 2021, with the 

drop trailer service only available in California, Texas, and Georgia. There are 35 data fields in both 

datasets. The content (Appendix A: Uber Freight Original Data Fields) includes but is not limited to the 

date, time, price, and distance of each shipment. 

 

The feature selection follows two main criteria: the relevance to the research objective and the availability 

of data summarized in Table 1. The relevance dimension here is defined as the impact and connection of 

the feature toward the research objective based on the discussions with Uber Freight and our literature 

review. On the other hand, data availability refers to the ease of data access either from the sponsoring 

company or external databases.  
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Table 1: Data Selection Criteria 

 Data Availability 

High Low  

Relevancy to the 
project objective  

High e.g., travel distance  e.g., population density 

Low e.g., booking channel e.g., trailer size breakdown  

 

 

To further explain the feature selection process, we can first look at the ‘High Relevancy - High Data 

Availability’ and ‘Low Relevancy – Low Data Availability’. 

 

On the ‘High Relevancy - High Data Availability’, the travel distance metric emerged because it directly 

impacts drop trailer implementation based on our literature review. Moreover, it also possesses high data 

availability because it can be computed from Uber Freight’s dataset directly using data fields such as the 

route distance in miles within a market pair. On the other side of the spectrum, we included the 

breakdown of trailer size in a market as the Low Relevancy - Low Data Availability feature. Although the 

choice of a trailer size led to trade-offs such as inventory holding cost (Abate and De Jong, 2014) in the 

trucking industry, this feature is neither relevant nor obtainable because Uber Freight only uses a standard 

one-size trailer at the point of our research.  

 

In the ‘High Relevancy - Low Data Availability’, we categorized features such as population density into 

this quadrant. Population density helps understand the shipment numbers that may drive the frequency 

of transactions from shippers, but it is not readily available from Uber Freight’s dataset. Realizing the 



28 

potential usefulness of this metric, we overcame the challenge and accessed external databases to obtain 

the population and land sizes of all states in the U.S. to compute the population density in each market. 

Lastly, we listed the booking channel as an example for the ‘Low Relevancy - High Data Availability’ 

quadrant. Upon discussion with Uber Freight’s team, the booking channel is not a deciding factor for drop 

trailer freight service offering, although the metric is easily accessible from Uber Freight’s data.  

 

Based on the above thinking process, we selected 33 features and subsequently categorized them 

according to the four main metrics that we identified in Chapter 2.2: 

1. Turnaround Efficiencies: This metric contains time-relevant features such as loading time, 

unloading time, and travel time. The metric aims to compare the idling time and traveling time.  

2. Cost-Effectiveness: This metric contains price-relevant features such as market price and the price 

paid by Uber Freight to carriers per mile. The metric aims to capture the cost component of a 

shipment.  

3. Supply-Demand Balance: This metric contains the number of shippers and carriers at origins and 

destinations. The metric captures the difference between the number of carriers and shippers. 

4. Carrier/Shipper Density: This metric contains the density of shippers and carriers at origins and 

destinations. The metric aims to capture how the density of carriers or shippers will affect drop 

trailer implementation.    

 

Detailed data fields by metrics are listed in Appendix B. There are six features under turnaround 

efficiencies, five features under cost-effectiveness, eight features under supply-demand balance, and 14 

features under carrier/shipper density.  
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With 33 features categorized under four buckets, we moved on to conduct PCA. The objective of 

performing PCA is to convert a set of highly correlated features into a set of features with low correlations 

and dimensions. Based on a cumulative target variance of 95%, we obtained 14 principal components that 

summarized the 95% variance of 33 features (Figure 4). These 14 principal components served as inputs 

for the K-Means clustering.   

 

Figure 4: Principal Component Analysis (From 33 Features to 14 PCs) 
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4.2 K-Means Clustering Result 

 

 

To select the optimal number of clusters, we measure the WCSS against various results of the number of 

clusters. In Figure 5, we saw the WCSS stagnated around k=4. Based on the optimal k value of 4, we 

conducted K-Means clustering with an open-source programming package built on Python scripting that 

allows data visualization and machine learning, named ‘Orange’1.  

 

Figure 5: Elbow Plot for Optimal Clusters 

 

 

 

The Orange software assigned each market pair a cluster number based on the K-Means clustering result. 

Extracting a summary of clustering results as an Excel sheet, we computed the percentage of drop trailer 

shipments in each cluster and obtained Table 1. The drop trailer percentage in each cluster was obtained 

 
1 Details of the Orange software can be found on the official website: https://orangedatamining.com/ 
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by dividing the number of drop trailer market pairs by the total number of market pairs in the cluster. For 

instance, Cluster 1 (C1) has 17 market pairs with drop trailer service and 1365 market pairs in total; this 

means that the drop trailer percentage in this cluster is 1.25%. After comparing the drop trailer percentage 

in Table 2, we observed that cluster 3 (C3) has the highest drop trailer percentage among all clusters (Table 

2). From here, we hypothesized that market pairs in this cluster possess a high similarity with market pairs 

that offer drop trailer service.  

 

Given the drop trailer service is only offered intra-state, we used the total number of market pairs in 

cluster 3 minus the number of market pairs with the drop trailer service in cluster 3, which gave the 

number of ‘non-drop trailer’ market pairs in cluster 3. Among the ‘non-drop trailer’ market pairs in cluster 

3, we filtered market pairs that are ‘intra-state’ market pairs only. By doing so, we shortlisted 29 intra-

states ‘non-drop trailer’ market pairs from cluster 3 (Table 3). With these 29 intra-state market pairs, we 

calculated the number of intra-state market pairs for each state. The result showed that Illinois state tops 

the number of intra-state market pairs, followed by Indiana and Florida (Table 4). However, without 

further statistical analysis, it is insufficient to conclude that the three states are suitable candidates for 

drop trailer implementation. To affirm the robustness of our deduction, we re-conducted the K-Means 

clustering with k-value of 3 and 5. We chose the k-values because the WCSS became stagnated at these 

values. The results obtained from the additional K-Means clustering for three clusters (Table 5) and five 

clusters (Table 6) remain similar, as summarized in Table 7, consistently recommending Illinois, Indiana, 

and Florida as the top states for drop trailer implementation. This finding also aligned with Uber Freight’s 

recent market expansion plan, as confirmed by our sponsoring company in a meeting. 
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The remaining question is, what network characteristics and key features that differentiate Florida, Illinois, 

and Indiana from other states? This was answered by our CART decision tree. 

 

Table 2: K-Means Clustering Result and Market Pair/Total Market Pairs Proportion (k=4) 

4 clusters C1 C2 C3 C4 

Count of market 
pairs with drop 

trailer  

17 25 36 61 

Total count of 
market pairs 

1,365 1,286 1,315 6,608 

% With drop 
trailer 

1.25% 1.94% 2.74% 0.92% 

 

Table 3: Intra-State Market Pairs in Cluster 3 

IL_CHI_IL_BLO IN_IND_IN_EVA NC_CHA_NC_GRE 

IL_CHI_IL_QUI IN_IND_IN_FTW NC_CHA_NC_RAL 

IL_CHI_IL_RFD IN_IND_IN_GRY NC_CHA_NC_WIL 

IL_CHI_IL_ROC IN_IND_IN_SBD ND_BIS_ND_BIS 

IL_CHI_IL_TAY IN_IND_IN_TER ND_BIS_ND_FAR 

IL_JOL_IL_BLO FL_LAK_FL_JAX SD_RAP_SD_SXF 

IL_JOL_IL_QUI FL_LAK_FL_MIA TN_MEM_TN_CHA 

IL_JOL_IL_RFD FL_LAK_FL_TAL TN_MEM_TN_KNO 

IL_JOL_IL_ROC PA_PHI_PA_ERI TN_MEM_TN_NAS 

IL_JOL_IL_TAY PA_PHI_PA_PIT  

 

Table 4: Recommended State for Drop Trailer (k = 4) 

State Count of Market Pair 

IL 10 

IN 5 

FL, NC, TN 3 
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Table 5: K-Means Clustering Result and Market Pair/Total Market Pairs Proportion (k=5) 

Five-Cluster C1 C2 C3 C4 C5 

Count of market pairs with 
drop trailer 

16 34 33 51 5 

Total count of market pairs 1,286 1,229 1,306 5,995 758 

% With drop trailer 1.24% 2.77% 2.53% 0.85% 0.66% 
 

Table 6: K-Means Clustering Result and Market Pair/Total Market Pairs Proportion (k=3) 

Three-Cluster C1 C2 C3 

Count of market pairs with 
drop trailer 

23 29 87 

Total count of market pairs 1491 1364 7719 

% With drop trailer 1.54% 2.13% 1.13% 
 

Table 7: Summary of K-Means Clustering Result and Market Pair/Total Market Pairs Proportion 

Best cluster result based on different no. of clusters 

K-value 3 4 5 

Count of market pairs 
with drop trailer in the 

best cluster 

29 36 34 

Total count of market 
pairs in the best cluster 

1364 1315 1229 

% With drop trailer 2.13% 2.74% 2.77% 

Top 3 recommended 
state 

FL, IL, NY IL, IN, FL IL, IN, FL 
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4.3 CART Decision Tree Result 

 

 

As a recap of Chapter 3.3, our construction of the CART decision was split into three steps: 1) trimming 

down features to avoid overfitting, 2) balancing the data, and 3) building the decision tree.  

 

Starting from the first step, we first examined the feature importance by plotting two set of graphs for 

each feature from two perspectives: 1) four-cluster distribution and 2) drop trailer vs. live loading 

distribution. 

 

Based on the plotting result (Figure 6), we segmented each feature into three categories: strong, 

moderate, and weak explanatory power. For instance, “market_price” has a stronger explanation power 

because the mean and variance of the distribution are distinct. Whereas for 

“population_density_at_source”, the distribution of four clusters appears to be mingled. This means that 

“population_density_at_source” does not provide a meaningful variable for the decision tree. Apart from 

the cluster’s distribution graph, we also cross-examined the difference of distribution from the 

perspective of the drop trailer vs. live loading distribution set of graphs for each feature, as shown in 

Figure 7. We confirmed that the distribution of each feature from two sets of the graph is almost the same. 

The homogeneity of the finding assured that we could apply the same set of features to our decision tree 

without the need to build a separate tree to compare performances for the different feature sets. In the 

end, we managed to trim down 33 features to 14 features, as listed in Appendix C. 
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Figure 6: Sample of Strong, Moderate and Weak Features Distribution (Four-Cluster) 

market_price travel_distance population_density_at_source 

   

Strong Explanatory Power Moderate Explanatory Power Weak Explanatory Power 

Each cluster is hugely 

differentiated 

Most of the clusters are similar All clusters are mingling 

together 

 

Figure 7: Sample of Strong, Moderate and Weak Features Distribution (Drop vs. Live) 

market_price travel_distance population_density_at_source 

   

Strong Explanatory Power Moderate Explanatory Power Weak Explanatory Power 

Each cluster is hugely 

differentiated 

Most of the clusters are similar All clusters are mingling 

together 
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The next step is the rebalancing of data. Our result shows that PR and ROC percentages increased after 

the SMOTE-ENN resampling, from 57.14% to 71.43%, and from 78.55% to 85.43%. This means that the 

classification ability has slightly improved compared to the previous imbalanced dataset. The confusion 

matrix also shows that the true positive and true negative sorting error has been slightly reduced (See 

Figure 8). 

 

Figure 8: A Comparison of Training Dataset before and after SMOTE-ENN Sampling 

Dataset Distribution  
(Training Data Before SMOTE-ENN) 

Dataset Distribution  
(Training Data After SMOTE-ENN) 

  

Confusion Matrix  
(Before SMOTE-ENN) 

Confusion Matrix  
(After SMOTE-ENN) 

  

Recall = 0.5714 
ROC = 0.7855 

Recall = 0.7143 
ROC = 0.8543 
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Using the newly balanced data, we moved to the construction of the CART decision tree. The process of 

building the CART decision tree was also accompanied by a series of parameter tuning, or so-called “tree 

pruning”, a term used in the machine learning field. In Python, we were able to adjust the model’s 

parameters, including the tree depth, minimum number of leaf nodes, and the maximum sample leaf, to 

increase the robustness of our model. The best value of these parameters can be identified by evaluating 

the deviation between the accuracy score of training data and testing data to determine an optimal 

parameter for the model. To further explain, we want to ensure that the value of accuracy in the training 

and testing data is neither under-fitting nor over-fitting. If the training data is constant and close to 100%, 

while the testing score is lower, then it is a case of over-fitting on training data. On the other hand, if both 

the score of training and testing data is low, it is a sign of under-fitting on the training data. 

 

.
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Figure 9 shows the accuracy score between training and testing data given a range of values for each 

parameter. For instance, in the simulation of the tree depth between 0 and 17.5, we observed that the 

difference between training and testing score accuracy is lowest when the depth is 5. We set the 

maximum depth accordingly to 5 to achieve the best maximum tree depth of our CART model. This 

selection process was followed similarly to identify the optimal value for other parameters, such as the 

minimum number of leaf nodes and the maximum sample leaf. Along with the model testing, we also 

tried a different combination of these parameter’s values in multiple iterations to yield a model that 

mostly aligns with the business strategy and implication. 

 

Other than parameter tuning, we also implemented a mechanism to impose a penalty cost to reduce the 

possibility of misclassification. This was done by setting the class weight in our CART decision tree as 

“balanced” in the “DecisionTreeClassfier” built-in function from scikit learn. This setting will allow the 

code to treat live loading and drop trailer class equally. Although our dataset has been rebalanced 

previously, this adjustment will further impose a cost of bias in mislabelling live loading and, at the same 

time, better predict the class we are interested in (Zheng et al., 2017), which in this case is the drop trailer. 

 

With the above effort, we finally came out with the best version of our CART decision tree model (Figure 

10). The decision tree consisted of 4 key features: (1) number of shipments at the source market, (2) travel 

distance, (3) market price, and (4) carrier to shipment ratio at the destination market. Figure 11 is the 

same CART decision tree but with an extra layer that allows us to understand the distribution of data and 

its split point. Each of the four features represents one of the four themes we defined during our feature 

selection process.
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Figure 9: Training vs. Test Data Evaluation in CART Decision Tree Post-Pruning Process 

  

Optimal Tree Depth: 4-6 Optimal Minimum Sample Leaf: 20-40 

 

  

Optimal Maximum Features: 4-6 Optimal Minimum Sample Leaf: 5-10 
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Figure 10: CART Decision Tree for Uber Freight’s Drop Trailer Implementation 

 

 

Figure 11: CART Decision Tree for Uber Freight’s Drop Trailer Implementation (by distribution) 
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5. DISCUSSION 

 

This chapter explains the real-life implications and recommendations based on our analysis and results in 

Chapter 4.  

 

Per Chapter 4.3, the CART decision tree shows two sets of market conditions that can make drop trailer 

service attractive for implementation. These sets of conditions are summarized in Table 8. 

 

Table 8: Network Condition and Strategy Consideration for drop trailer Offering 

 Low Shipment Volume Market 

Condition 

High shipment Volume Market 

Condition 

Condition • Number of shipments at source ≤ 

26,525, market price ≤ 612, 

carrier to shipment ratio at 

destination market ≤ 0.197 

• Number of shipments at source ≥ 

26,525, travel distance ≤ 413 

 

Strategic 

Consideration 

• Work on pricing strategy to drive 

drop trailer adoption. 

• Incentivize stronger carrier to 

participate in the drop trailer 

program 

• Focus on shorter and compact 

market pair 
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As we can see from the decision tree, the most significant feature in drop trailer implementation is the 

number of shipments at the source. This feature refers to the total number of shipments at source market 

from 2017 to early 2021, yielding an average annualized shipment number of about 6,630.  

 

5.1 Low Shipment Volume Market Condition  

 

When the annual shipment number at a source market is less than 6,630, two features determine the 

attractiveness of the drop trailer service: (1) market price and (2) the carrier to shipment ratio at the 

destination.  

 

Starting with the market price, our exploratory analysis shows that Uber Freight pays an average price of 

$520 for a drop trailer shipment and an average price of $1,723 for a live loading shipment. Hence, when 

the market price is less than $612, Uber Freight yields a better margin from implementing drop trailer 

service.   

 

Another important consideration after the market price is the carrier to shipment ratio at the destination 

market. For a viable network, the carrier to shipment ratio is preferred to be as low as possible at the 

destination market. The decision tree indicates that the carrier to shipment ratio at the destination market 

should be less than 0.15, equivalent to at least six shipments to one carrier. On the other hand, if the ratio 

is more than 0.15, the market may be too saturated to offer drop trailer service. This is because an 

increase in the density of carriers hinders them from achieving their maximum capacity utilization 

(American Trucking Association, 2020).  
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Overall, under this low shipment volume market condition, Uber Freight should pay attention to its pricing 

and competitiveness in the market.  

 

Firstly, the market price threshold dictated the pricing strategy to carriers from Uber Freight. Since the 

price paid by Uber Freight determines the drop trailer take-up rate by carriers, it is imperative for the 

company to decide the approximate price of each transaction or what the “average” shipment will cost 

as compared with the market price. Our initial exploratory analysis found out that the average price for a 

drop trailer shipment is $520, which is significantly lower than the live loading price of $1,723. Hence, 

when the drop trailer rate is close to that of live loading, there is little incentive for shippers and carriers 

to use drop trailer.  

 

Currently, Uber Freight’s pricing is generated by its proprietary algorithm, which is based on real-time 

market data which sets the most competitive prices at the time as well as internal expert judgment 

(personal communication, 2022). As such, the company has limited levers to control or implement more 

sophisticated pricing. Nevertheless, one additional feature that can be implemented to maximize the 

profit is to allow for an auction model for drivers or carriers to submit bids, given the “perishable,” time-

sensitive nature of the service (Einav et al., 2018). Furthermore, Uber Freight can also introduce better 

forecasting and analytic ability to predict appropriate pricing strategy (either over or under-price) to drive 

adoption. 

 

Other than market price under this market condition, the carrier to shipment ratio has significant 

theoretical value and practical significance for the application and development of drop trailer platform 
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design. In order to have a successful platform that matches supply and demand, a company must have a 

matching strategy within the value chain to match both the supply and demand sides simultaneously 

without any discrimination (Arthur, 1996; Cusumano and Gawer, 2002). It is usually agreed that the 

matching strategy between consumers and producers should align with the platform development since 

the demand patterns often require different resource allocation and operations at different times 

(Edelman, 2020).  

 

Since the establishment of Uber Freight, the company has attracted sufficient shippers to use the 

platforms. However, to have viable drop trailer services in a market, the company should focus on getting 

shipments and securing a reliable supply side (i.e., carriers). In particular, they should maintain a healthy 

carrier to shipment ratio to avoid over-competition (Kim, 2015). For instance, Uber Freight could work 

with carriers, third-party logistic companies, and trucking carriers that can serve multiple shipments 

simultaneously. 

 

When the carriers have a limited infrastructure to support shipper requests, the platform can encourage 

load and resource sharing among more prominent carriers (Feng and Cheng, 2021). The premise of load-

sharing is that the carriers are compensated for lending out their extra resources, increasing their 

revenues (Figliozzi, 2006). Using an optimization method, Figliozzi (2006) proved that bundling of load 

within carriers in an incentive framework could increase the space for profit from a system perspective. 

For Uber Freight to implement this, a framework for clear collaboration rules and policies must be 

established to ensure service fulfillment and control. Furthermore, to induce more handling capability, 

they should also work with carriers to increase systematic management of warehouse operational 
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improvements such as facility and schedule optimization so that they can handle more incoming 

shipments without the need to add new carriers. 

 

We have so far considered the implication on the supply side of Uber Freight’s platform for drop trailer 

services. From the demand side, Uber Freight should also design an attractive paid-out contract and 

intensive marketing to get more shippers so that a certain volume of shipments can be reached when 

there is an over-supplied situation. In summary, for future expansion under this market condition, Uber 

Freight’s campaign must be broad-based, acknowledging the carrier and shipment ratio and emphasizing 

more local coordination among diverse types of carriers. 

 

5.2 High Shipment Volume Market Condition 

 

 

When the number of shipments at a source is more than 6,631 per year, we consider the market to be a 

high shipment volume market.  

 

Under this scenario, travel distance becomes more critical to determine whether a drop trailer service 

should be offered or not. From the tree, it is observed that when the travel distance between source and 

destination is less than the threshold of 414 miles, it is more favorable to offer the drop trailer service. 

This finding also aligns with Uber Freight’s hypothesis that there is a length of haul (i.e., travel distance) 

at which turnaround efficiencies gained from Drop solutions are less relevant. 
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To further explain the phenomenon, we can revisit the turnaround efficiency, linking to the underlying 

model of drop trailer offering. In a market pair with a shorter traveling distance, the fraction of loading 

and unloading time is higher, although the actual loading and unloading time is the same. This amplifies 

the impact of loading and unloading time consumption. Hence, in a shorter travel distance, the drop trailer 

service is preferred due to its time-saving nature during loading and unloading. This means that Uber 

Freight would need to be careful to select the shortest and most compact market pair that yields the travel 

distance within the 414-mile threshold for the drop trailer service to be attractive. To understand this 

relationship, we exemplify it with two examples of market pairs in Table 9. 

 

Table 9: Market pairs with Similar Loading and Unloading Time but Different Travel Distance 

 Travel distance Fraction of Sum 
of Loading and 
Unloading Time 
over Cycle Time 

Loading time in 
seconds 

Unloading time in 
seconds 

Market Pair A:  
TX_MCA_UT_SLC 

1,556 0.045 11,800 11,269 

Market Pair B: 
MO_JOP_IL_BLO 

398 0.29 11,558 11,778 

 

 

Although market pairs A and B have similar loading and unloading times, due to the difference in travel 

distance, the fraction of the total loading and unloading time over cycle time for B is much higher than A. 

Hence, it is more tempting to implement the drop trailer service in B due to the fraction of loading and 

unloading time the drop trailer service can save.  
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This conclusion is helpful if Uber Freight considers incorporating shipper-agnostic drop yards. For instance, 

if the distance between source and destination is more than 414 miles, adding a drop yard in the middle 

point may enable a more efficient first- and last-mile delivery in congested urban areas, handled by Uber 

Freight’s network of contracted local fleets (Boysen, N. et, 2020). However, to implement this approach, 

Uber Freight must provide clear communication and visibility to meet pick-up schedules to avoid any 

consequent delays (Wu and Zheng, 2021).  

 

5.3 Future Research 

 

Although the project addressed the key research objectives and provided recommendations on drop 

trailer implementation for Uber Freight, three areas can be further explored to expand the explanatory 

power of our model. 

 

5.3.1 An Expansion of Transaction Data Nationwide 

 

As the Powerloop service is relatively new, with only five years’ history across three states, there was a 

limitation to obtain a comprehensive amount of drop trailer transaction data nationwide. Although the 

initial dataset consists of over 2 million transaction entries, spanning between 2017 and 2021, the actual 

market pairs that are aggregated by average significantly reduce the portion of data on the states that 

have implemented drop trailer (i.e., California, Georgia, and Texas). It is recommended that as Uber 

Freight expands its services to other states, future research should gather more Uber Freight transactional 

data to improve our model accuracy.  
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5.3.2 An Expansion of Industrial Data 

 

In terms of industrial data, the project acknowledged the need for other industrial data, such as 

warehouse size. As shown in Chapter 2.1, it is agreed that the warehouse size is a significant factor to be 

considered when deciding whether to implement drop trailer. In a state where there is a big difference 

between supply and demand, bigger warehouse space is preferred to implement drop trailer. 

Communication with industry and academic experts confirmed that warehouse sizes should be 

considered when building the machine learning model. However, we cannot obtain this metric due to the 

time constraints and limitations in accessing reliable databases. 

 

For future research, it is recommended to find out such as ‘High Relevancy - Low Data Availability’ dataset 

and incorporate them into the model. 

 

5.3.3 An Expansion of Methodology for Verification 

 

While we have conducted repetitive tests and verification of the unsupervised machine learning model 

(K-Means) and supervised machine learning model (CART decision tree), exploration of other machine 

learning models could be used to diversify the methodology.  On top of the unsupervised machine learning 

model (K-Means), future research could investigate K-Medians clustering algorithm to mitigate the impact 

of outliers, although the time required to run the model can be longer. In addition, mean-shifting 

clustering is also an alternative with the benefit of discarding a pre-set number of clusters, but it comes 

with the disadvantage of requiring a selection of radius.  
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6. CONCLUSION  

 

With the rising need to improve the driver and truck utilization rate to relieve the shortage of drivers, 

determining where and under what conditions to implement drop trailer for our sponsoring company, 

Uber Freight, is a critical strategic and tactical issue.  

 

Our K-Means clustering result showed that Illinois, Indiana, and Florida possess the highest feature 

similarity with states that have already successfully deployed drop trailers. To understand the critical 

features, our study further scaled to a predictive decision tree model that enables Uber Freight to identify 

market pairs suitable for drop trailer implementation in the future. The decision tree recognized the four 

most impactful features in drop trailer implementation: 1) number of shipments at source market, 2) 

travel distance, 3) market price, 4) carrier to shipment ratio at destination market. The four features also 

aligned with the four drop trailer metrics discovered from the literature review: 1) turnaround efficiencies, 

2) cost-effectiveness, 3) supply-demand balance and 4) carrier/shipper density. The four features 

illustrated essentially lays out two sets of favorable market conditions to implement drop trailer service 

along with their strategic implication.  

 

In the first set of market conditions (low shipment volume market condition), the market demand is 

forecast to be low. Uber Freight needs to develop a pricing strategy to drive up the adoption of drop trailer 

service. The significant impact of a carrier to shipment ratio also translates to a market strategy for Uber 

Freight to secure more reliable carriers. For the second set of market conditions (high shipment volume 

market condition), Uber Freight should carefully select routes with the distance within a threshold for 

drop trailer implementation, focusing on the turnaround efficiency metric of the drop trailer service.  
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In conclusion, our research provided a foundation of factors for Uber Freight and other drop trailer carriers 

to consider when expanding the drop trailer service. To ensure a successful market expansion, further 

research could be done by obtaining more transactional and industrial data nationwide to develop more 

features, such as the average warehouse size of the carriers. Another exploration area is to further 

disaggregate the population density on a market pair level, investigating whether the impact of population 

density is more potent at a market pair level than at a state level. Future research could cover other areas 

such as a hybrid model of drop trailer and live loading or a yard operation to increase network efficiency 

with more comprehensive features.  
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APPENDIX 

 

Appendix A: Uber Freight Original Data Fields 

 

In Table 10, we list all fields from the original data provided by Uber Freight.  

 

Table 10: Original Data Fields from Uber Freight 

Column Number Data Field Data Type 

1 external_load_id String 

2 shipper_uuid String 

3 carrier_uuid String 

4 booking_channel Categorical 

5 comparable_carrier_price Numeric 

6 destination_actual_arrival_utc_time DateTime 

7 destination_actual_departure_utc_time DateTime 

8 destination_city Categorical 

9 destination_state Categorical 

10 destination_country_iso2 Categorical 

11 destination_start_utc_time DateTime 

12 destination_end_utc_time DateTime 

13 destination_market_id String 

14 destination_market_name String 

15 destination_region Categorical 

16 destination_timezone DateTime 

17 equip_type Categorical 

18 is_utp Boolean 

19 load_status Categorical 

20 load_status_category Categorical 

21 max_available_to_max_book_hrs Numeric 

22 rateview_at_booking Numeric 

23 route_distance_in_miles Numeric 

24 source_actual_arrival_utc_time DateTime 

25 source_actual_departure_utc_time DateTime 

26 source_city Categorical 

27 source_state Categorical 

28 source_country_iso2 Categorical 

29 source_start_utc_time DateTime 

30 source_end_utc_time DateTime 

31 source_market_id String 

32 source_market_name String 

33 source_region Categorical 

34 source_timezone Categorical 

35 total_carrier_price Numeric 
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Appendix B: Data Fields by Metrics 

 

This appendix consists of four tables, each representing a theme developed from the literature review. 

In each table, there are the features under the theme, with the unit and datatype of each feature.  

 

Table 11: Turnaround Efficiencies Theme and its Features 

Turnaround Efficiencies 

 Features for a Market Pair Unit and Datatype 

1 Unloading time at Destination Market In seconds 

2 Loading time at Source Market In seconds 

3 Fraction of Travel time of the cycle Time Travel Time / Cycle Time, fraction number 

4 Fraction of Loading time of the cycle Time Loading Time / Cycle Time, fraction number 

5 Fraction of Unloading time of the cycle 
Time 

Unloading Time / Cycle Time 

6 Travel Distance Route_distance_in_miles, number 

 

Table 12: Cost-Effectiveness Theme and its Features 

Cost-Effectiveness 

 Features for a Market Pair Unit and Datatype 

7 Market price Rateview_at_booking, number 

8 Carrier price paid by Uber Comparable_carrier_price, number 

9 Cost Differences Rateview_at_booking - 
Comparable_carrier_price, number 

10 Market price per mile Rateview_at_booking / route_distance_in_miles, 
number 

11 Carrier price paid by Uber per mile Comparable_carrier_price / 
route_distance_in_miles, number 

 

Table 13: Supply Demand Balance Theme and its Features 

Supply-Demand Balance 

 Features for a Market Pair Unit and Datatype 

12 No. of Shippers at Destination No. of distinct shipper_uuid 

13 No. of Carriers at Destination No. of distinct carrier_uuid 

14 No. of Shipment at Destination No. of distinct external_load_id 

15 No. of Shippers at Source Same value as 12 

16 No. of Carriers at Source Same value as 13 

17 No. of Shipment at Source Same value as 14 
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18 average_monthly_source_ 
supply_demand_balance 

At source, average monthly supply - average 
monthly demand 

19 average_monthly_destination_ 
supply_demand_balance 

At destination, average monthly supply - average 
monthly demand 

 

Table 14: Carrier/Shipper Density Theme and its Features 

Carrier/Shipper Density 

 Features for a Market Pair Unit and Datatype 

20 Shipper to Shipment Ratio at Destination 
Market 

No. of distinct unique shipper_uuid / No. of  
distinct external_load_id, fraction 

21 Carrier to Shipment Ratio at Destination 
Market 

No. of distinct carrier_uuid / No. of distinct 
external_load_id, fraction 

22 Shipper to Carrier Ratio at Destination 
Market 

No. of distinct shipper_uuid / No. of  distinct 
carrier_uuid, fraction 

23 Shipper to Shipment Ratio at Source 
Market 

Same value as 20 

24 Carrier to Shipment Ratio at Source Market Same value as 21 

25 Shipper to Carrier Ratio at Source Market Same value as 22 

26 Shipper Density at Destination No. of distinct shipper_uuid / 
destination_market_land_area 

27 Carrier Density at Destination No. of distinct carrier_uuid / 
destination_market_land_area 

28 Shipment Density at Destination No. of distinct external_load_id / 
destination_market_land_area 

29 Population Density at Destination destination_market_population_density 

30 Shipper Density at Source fraction number 

31 Carrier Density at Source fraction number 

32 Shipment Density at Source fraction number 

33 Population Density at Source fraction number 
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Appendix C: Feature Selection for CART Decision Tree 

 

This appendix consists of four tables, each representing a theme and the features under the theme which 

are used for constructing the CART decision tree.  

Table 15: Features under Turnaround Efficiencies used for CART decision tree 

Turnaround Efficiencies 

 features for a Market Pair Unit and Datatype 

1 Unloading time at Destination Market In seconds 

2 Loading time at Source Market In seconds 

 

Table 16: Features under Cost-Effectiveness used for CART decision tree 

Cost-Effectiveness 

 features for a Market Pair Unit and Datatype 

3 Market price Rateview_at_booking, number 

4 Carrier price paid by Uber Comparable_carrier_price, number 

5 Cost Differences Rateview_at_booking - 
Comparable_carrier_price, number 

 

Table 17: Features under Supply-Demand Balance used for CART decision tree 

Supply-Demand Balance 

 features for a Market Pair Unit and Datatype 

6 No. of Shippers at Destination No. of distinct shipper_uuid 

7 No. of Shipment at Destination No. of distinct external_load_id 

8 No. of Carriers at Source Same value as 13 

9 average_monthly_source_ 
supply_demand_balance 

At source, average monthly supply - average 
monthly demand 

10 average_monthly_destination_ 
supply_demand_balance 

At destination, average monthly supply - average 
monthly demand 

 

Table 18: Features under Carrier/Shipper Density used for CART decision tree 

Carrier/Shipper Density 

 features for a Market Pair Unit and Datatype 

11 Carrier to Shipment Ratio at Destination 
Market 

No. of distinct carrier_uuid / No. of distinct 
external_load_id, fraction 

12 Shipper Density at Source fraction number 

13 Carrier Density at Source fraction number 

14 Shipment Density at Source fraction number 

15 Population Density at Source fraction number 
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