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ABSTRACT 

Companies can expect to lose almost 42% of one year’s profit every decade because of supply 

chain disruptions. Working to have better supply chain resilience and robustness is now a 

necessity to stay competitive and profitable. This capstone addresses the creation of a 

comprehensive and scalable vulnerability assessment framework for an FMCG company to help 

assess risks in supply chains and take the right resilience measures. Currently, the sponsoring 

company is facilitating this process by event simulations, but results are not consistent, as the 

input variables to its simulation model are not based on empirical data. To address this problem, 

this research project developed a step-by-step methodology for creating a vulnerability map for 

the supply chain in scope. Questions to answer were: what can go wrong, what is the likelihood 

of it occurring, what is the consequence from it, and what are recommended resilience strategies? 

The approach taken was threefold. First, we mapped the supply chain by location and gathered 

data of natural disruptions and their consequences to establish statistical database. Second, we 

developed a model that simulated the natural disruptions for each country in scope by using 

Monte-Carlo technique. Third, we translated the results of natural disruptions into operations 

shutdown days. Our results were fairly high and showed that our sponsoring company’s supply 

chain in scope could expect to have 227 days of total operations shutdown in the next 10 years. 

Results were visualized on a vulnerability map with the countries as nodes together with a 

breakdown of where most of the risks come from. In closing, our sponsoring company now has a 

model to better assess vulnerability on its supply chain and can therefore focus on resilience 

strategies to mitigate the risks by more accurate simulations of events. 
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1. INTRODUCTION 

1.1. Motivation and Relevance 

Contemporary supply chains involve a large number of actors, such as suppliers, contract 

manufacturers, distributors, logistics providers, wholesalers, and retailers. As supply chain 

networks expand globally, this creates more complexities, interdependencies, and exposure to 

global vulnerabilities, risks, and disruptions (Sheffi, 2005). The recent COVID-19 pandemic has 

fueled the debate over the vulnerabilities of an interconnected world where the goods have to 

pass through a very complex and multi-layered supply chain to reach an end customer (Korbin, 

2020). In this context, supply chain risk management (SCRM) is receiving increasing attention. 

Multinational companies are seeking to gain better understanding of the vulnerabilities in their 

global supply chain and are rethinking their resilience measures. 

 

Recently several studies have been conducted on market leaders of different industry domains to 

evaluate the impact of major catastrophic events on their supply chain networks. The studies 

reveal that different key areas of supply chain, such as supply, production-distribution capacity, 

and demand, can be severely affected due to these adversities (Martel & Klibi, 2016). Taylor 

(2013) found that more than 63% of the companies in Europe, Africa, and Middle East have 

experienced disruptions in their supply chain networks due to numerous unexpected events 

arising from natural calamities, supplier difficulties, economic situation, political unrest, and 

extremism. According to the same study, it also takes an average of 63 days for a company to 

regain its usual business form.  

 

In addition, the COVID-19 pandemic has added new dimensions in the disruptions of supply chain 

networks that the companies have never faced before. Drastic failure in product supply due to 

sudden shutdown of manufacturing plants across the world, shipping and transportation delays 

or halt due to port closure and container shortages, unprecedented disruption in ocean freight, 
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and unavailability of manpower due to lockdown have compelled supply chain managers to think 

differently. These factors have also made clear the necessity of an appropriate risk analysis model 

that can anticipate future risks and provide recommendations regarding choice of suitable 

resilience strategies. 

 

Our sponsor is a globally prominent fast-moving consumer goods (FMCG) company with a wide 

portfolio. The product chosen for the capstone project is one of their high-demand home care 

products. As shown in Figure 1.1, the product relies on a complex global supply chain. It is 

manufactured, assembled, and distributed through contract manufacturing business model from 

two primary locations (denoted as “assembly” and “plant”). These locations primarily serve the 

customer distribution networks (denoted as “customer”) located in the US East Cost and greater 

Europe. To support the final assembly, different components of the product are manufactured, 

transported, and distributed from different suppliers (denoted as “supplier”) located in North 

America, Europe, and Asia. 

Figure 1.1 

Current State of Global Supply Chain of the Selected Home Care Product 
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Long-distance relationships with suppliers and the contract manufacturing model result in 

exposure to disruptions with different magnitudes of probabilities and consequences. During the 

COVID-19 pandemic, the supply chain of this product has faced significant disruptions due to 

ocean transportation delays or halts, container shortages, and supply inaccessibility. This resulted 

in supply disruptions and unavailability of the product in the primary markets. Even though its 

current global supply chain model gives greater control of the overall supply chain processes and 

offers cost reduction opportunities, it also poses bigger risks for business continuity at the time of 

unexpected disruptions, such as the COVID-19 outbreak.  

 

In this context, our sponsoring company wishes to assess the risks and vulnerabilities associated 

with their complex global supply chains. To perform this assessment, they can leverage various 

tools that allow them to simulate the impacts of various disruptions and perform network 

optimization studies. While they already have these analytical tools available, they are unable to 

incorporate vulnerabilities in different supply chain nodes due to the lack of structured definition 

and data of relevant disruptions. In particular, they are not able to quantify the impact of such 

disruptive events. The company is in a need of a vulnerability assessment framework and risk 

analysis model that can be incorporated in their supply chain network design simulation tool, for 

more realistic supply chain resilience insights and investment decision-making. 

 

1.2. Problem Statement 

Our primary objective in this capstone project is to develop a comprehensive and scalable 

vulnerability assessment framework for the analysis of risks and vulnerabilities of global supply 

chains. In line with extant contributions in the area of risk assessment for supply chain 

management, such as Sheffi and Rice Jr. (2005), our vulnerability assessment framework will 

address the following research questions: 
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• RQ1: What can go wrong, i.e., which are the disruptions that could potentially be 

detrimental for business continuity? 

• RQ2: What is the likelihood of the event, i.e., what is the probability of the identified 

disruptions? 

• RQ3: What are consequences resulting from the event, i.e., what is the magnitude of the 

potential consequences or impacts resulting from the identified disruptions? 

• RQ4: What risk mitigation and resilience strategies can be put forward to minimize the 

impact of the identified disruptions? 

 

Further, our objective is to apply the vulnerability assessment framework to a specific pilot product 

of a company, allowing us to validate our approach and assumptions as well as derive specific 

recommendations. The vulnerability assessment framework will be designed in a scalable way in 

order to allow for its application to other supply chains within the organization, beyond the scope 

of this capstone project. 
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2. LITERATURE REVIEW 

There is a vast literature on vulnerability, risk, and supply chain disruptions. To present our 

literature review, we started by reviewing some main concepts and the guiding vulnerability 

framework that we used in the capstone project (Section 2.1). In the second part of our literature 

review, we addressed four research questions: what can go wrong (Section 2.2), methods to 

quantify the probability of the disruptions (Section 2.3), methods to measure the impact of the 

disruptions (Section 2.4), and supply chain resilience measures in contemporary research and 

studies to enhance the robustness of global supply chain against the exposed risks (Section 2.5). 

We concluded our literature review by connecting the key findings as the baseline for 

methodologies (Section 2.6). The structure of literature review is illustrated in Figure 2.1. 

Figure 2.1 

Structure of the Literature Review 

  

 

 

 

 

 

 

 

 

 

2.1. Key Concepts and Frameworks for Supply Chain Resilience 

Sheffi (2005) defines the vulnerability of a firm toward a disruptive event as a combination of the 

likelihood of the disruption and the potential consequence of the disruption. Husdal (2015), 

echoing Sheffi, also defines vulnerability as the degree of the inability of a system in managing 

effects of internal or external events that the system is exposed to. According to a report from 
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Cranfield University School of Management (2003), vulnerability of the global supply chain is a 

measure of exposure to serious disturbance. Pettit et al. (2010) further elaborate the definition of 

vulnerability with a comprehensive list of seven different types of supply chain vulnerabilities: 

turbulence, deliberate threats, external pressures, resource limits, sensitivity, connectivity, and 

supplier/customer disruptions. According to the literature review, supply chain vulnerabilities and 

risks can be defined as the state of exposure to any unexpected event in supply or demand.  

 

Vulnerabilities are different for enterprises depending on the likelihood and impact of nature of 

disruptions. From literature review, similarities are observed between different vulnerability 

frameworks suggested by scholars and researchers in supply chain resilience. Sheffi and Rice Jr. 

(2005) suggest a vulnerability assessment framework with two dimensions: probability of 

disruptions and consequence of disruptions (see Figure 2.2). The risk exposure matrix proposed 

by Norrman and Jansson (2004), illustrated in the Figure 2.3, is also summarized with the two 

dimensions of basic risk assessment approaches: probability (likelihood) and impact 

(consequence). In both cases, the frameworks are further split into a 2x2 matrix to categorize 

different levels of vulnerabilities. Because of the widespread practice of probability and impact as 

the two most common matrices in the studies of vulnerability assessments, our literature review 

was further extended based on the form of risk matrix shown in Figure 2.2 and 2.3. 
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Figure 2.2 

Dimensions of Vulnerability Assessment Framework 

 

 

 

 

 

 

 

Note. Adapted from Sheffi, Y., & Rice Jr., J. B. (2005). A supply chain view of the resilient 

enterprise. MIT Sloan Management Review, 47(1), 41–48. 

 

Figure 2.3 

Risk Exposure Matrices 

 

 

 

 

 

 

 

 

Note. Adapted from Martel, A., & Klibi, W. (2016). Designing Value-Creating supply chain 

networks. Springer Publishing. 

 

2.2. Defining Disruptions in Global Supply Chain (What Can Go Wrong?)  

To answer the question “what can go wrong?” definitions and classifications of disruptions in 

different literature can be summarized in three broad categories: disruptions according to source 
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of uncertainty, disruptions based on randomness of uncertainty, and disruptions based on 

frequency-impact combination. 

 

In the literature, sources and factors of supply chain risks and vulnerabilities are broadly classified 

into two categories: internal and external. A report by MIT Center for Transportation & Logistics 

(2009) classifies supply chain risks, as shown in Figure 2.4, into two categories: internal risks 

(related to a company’s internal business practices), and external risks (related to a company’s 

external affairs). Martel and Klibi (2016) identify three key sources of supply chain vulnerability: 

supply chain network assets (internal), supply chain network partners (internal and external), and 

public infrastructure (external). Agrawal and Pingle (2020) explain supply chain vulnerability 

sources in a 2x2 matrix with two dimensions: risk class (namely internal and external), and risk 

controllability (namely controllable and uncontrollable). While there are different factors can be 

involved to different extents behind supply chain disruptions, literature review indicates that 

external factors, which are difficult to predict or anticipate for any organization, play a crucial rule 

in supply chain vulnerabilities.   
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Figure 2.4 

External and Internal Risk Factors of Supply Chain Disruptions 

 

Note. Adapted from MIT Center for Transportation & Logistics. (2009). Global supply chain risk 

management part 2: Differences in frequencies and priorities. 

https://ctl.mit.edu/research/current-projects/global-scale-risk-initiative 

 

For our capstone project, we found the classification stated by Sheffi (2005) most appropriate due 

to its simplicity and comprehensiveness. In this classification, disruptions can be segmented into 

three categories: natural disasters (e.g., earthquakes), accidents (e.g., transport accidents), and 

intentional disruptions (e.g., acts of terrorism or sabotage). Data on historical disruptive events 

from the Centre for Research on the Epidemiology of Disasters (CRED, www.emdat.be) can be 

useful in developing a classification model like that prescribed by Sheffi (2005). 

http://www.emdat.be/
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• A recent survey by the World Economic Forum (WEF) states that natural disasters are the 

most threatening and extreme disruptions to supply chain network (Martel & Klibi, 2016). 

CRED (2020) report shows that natural hazards events have increased worldwide by 74% 

from 1980-1999 (4,212) to 2000-2019 (7,248) resulting in approximately 4 million deaths, 

780 million people affected and 1.34 billion USD economic losses. According to the same 

report, it can justifiably be said that the trend toward more natural disasters is causing 

massive human and economic losses. 

• Accidental disasters also follow Pareto’s law similar to natural disasters, i.e., a small 

proportion of the disruption causes a large part of the damage (Sheffi, 2005). 

• Attacks against a company's assets or processes with the intent of interrupting its 

operations are considered as intentional disruptions. Intentional disruption can be 

classified as terrorism, strikes, economic recession, political unrest, cyber-attacks, cargo 

piracy, theft, kidnapping, sabotage, and corporate espionage. Innovations of one company 

may also be disruptive to the existing business of other companies. The introduction of 

Apple's iPhone in 2007, Toyota's lean manufacturing strategy in the 1970s, and LCD TV 

innovations have posed strong existential challenges to the businesses of other 

companies (Sheffi, 2015). 

 

After defining all the disruptions categories, we had the foundation to quantify the likelihood of 

these disruptions, which is elaborated in the next section. 

 

2.3. Quantifying Likelihood of Disruptions (What is the Likelihood of It 
Occurring?) 

In this section, we extended our literature review to methods applied to quantify the probability of 

three types of disruptions identified in Section 2.2. We identified two primary methods of 

quantifying probability of disruptions: the mathematical modeling approach (e.g., probability 
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models), and the subjective evaluation approach (e.g., Delphi method). The applicability of the 

methods varies depending on the nature of the disruptive events, which is illustrated in following 

subsections. 

 

2.3.1. Mathematical Modeling Approach 

Researchers have applied a variety of mathematical modeling approaches to convert risks into 

numerical values that could then be incorporated into decision-making models. Approaches 

include but are not limited to: analytic approaches (to assess risk as a function of occurrence and 

impact), probability models (in developing advanced catastrophe models, e.g., “CAT” by Applied 

Insurance Research), and power law distribution (also known as Pareto’s law or 80/20 law that 

postulates 80 percent of events will be frequent and minor events in the context of disruptions) 

(Amendola et al., 2012; Ravindran et al., 2009; Sheffi, 2015). 

2.3.1.1. Assessing and Modeling Natural Disasters (Random Events) 

Statistical models are widely used in assessing the likelihood and magnitude of natural disasters. 

Diverse data sources are available for the occurrences of such natural disasters in various parts 

of the world, such as models developed by insurance companies for the likelihood of earthquakes, 

floods, or lightning strikes; the U.S. Geological Survey (USGS) data for the susceptibility of areas 

to earthquake events; and the U.S. National Oceanic and Atmospheric Administration (NOAA) 

data for severe weather and climate conditions. The frequency and size of near-misses or small 

disruptions can assist in anticipating the possibility of a larger low probability-high impact natural 

catastrophe. Although such correlations are not exact in predicting the timing or magnitude of 

future disruptions, they can be used to evaluate the relative likelihood of future occurrences in 

comparison to other possible disruptions (Sheffi, 2005). 
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2.3.1.2. Assessing and Modeling Accidental Events 

Despite efforts to prevent accidents and hazards, many accidents affecting supply chains still 

occur, and that is why, determining the likelihood of accidental events is the first and important 

step in risk assessment approach. The majority of analyses aiming at determining such likelihood 

rely on one of the two methods: statistical models based on historical data or the near-miss 

framework (Sheffi, 2005). Martel and Klibi (2016) propose an alternative type of multi-hazard (i.e., 

meta-events having generic impacts on supply chain network resources, partners, and markets) 

modeling, which requires characterizing the occurrence, intensity, and duration of multi-hazards 

by zones or exposure levels. A compound stochastic process uses two random and highly 

correlated variables to explain how multi-hazards occur in space and time: the impact intensity 

and the incident duration. Intensity is typically determined by loss level or fatality level on a 

normalized scale, and duration is determined by impact-duration function. In practice, Poisson 

distributions are commonly used in catastrophe models to estimate the likelihood of accidental 

events for a given period (Banks, 2005). 

 

2.3.2. Subjective Evaluation Approach 

Subjective scoring methods are often utilized in the absence of adequate data and precise 

evaluations of impact and likelihood. Subjective methods include but are not limited to: game 

theory (Major, 2002), qualitative assessment by risk rating (Portillo, 2009), risk prioritization and 

mapping using Risk Priority Number (Ravindran & Jr., 2012), simulation (Vilko & Hallikas, 2012), 

and stochastic model (Goh et al., 2007). The narrative for subjective evaluation is that it is 

comparatively easier for an organization to assess “what happens if supplier A fails to deliver for 

two months?" instead of "the probability or likelihood that supplier A would fail to deliver” (Sheffi, 

2015). It is common to have an accumulating succession of failures that culminate in a disaster. 

Matrices, depicted on the Figure 2.5, are primarily used to assign a subjective exposure level to 

possible risks (Martel & Klibi, 2016). Many industries have established a management reporting 
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and analysis system based on near-miss framework (see Figure 2.6) to minimize the possibility 

of future high-impact disruptions (Sheffi, 2005). 

Figure 2.5 

Risk Exposure Matrices with Subjective Evaluation or Scoring 

 

 

 

 

 

 

 

Note. Adapted from Martel, A., & Klibi, W. (2016). Designing Value-Creating supply chain 

networks. Springer Publishing. 

 

Figure 2.6 

The Near-Miss Pyramid 

 

 

 

 

 

 

 

 

 

 

Note. Adapted from MIT MicroMasters. (2020). Supply chain dynamics. [Slides]. MITx 

MicroMasters SC3x course. https://www.edx.org/course/supply-chain-dynamics 
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2.3.2.1. Assessing and Modeling Intentional Events 

Unlike natural disasters and accidents that follow power law distribution and can be inferred from 

small disruptions or near-miss frameworks, intentional disruptions are completely different. 

Intentional disruptions, according to Sheffi (2005), are adaptable threats in which attackers strive 

to assure the effectiveness of the attack while also maximizing the damages at the most 

unprotected and vulnerable state of the organizations. When assessing the nature of a new 

intentional threat, historical data are of limited use because of the adaptive nature of intentional 

disruptions. 

 

2.4. Quantifying Consequences of Disruptions (What is the Impact?) 

In this section, we extended our literature review to methods applied to quantify the impact of 

three types of disruptions identified in Section 2.2. Our literature review revealed that value-at-

risk (VaR), time-to-recovery (TTR) and time-to-survive (TTS) models are widely used to quantify 

the impacts of disruptive events. The applicability of the methods varies depending on the nature 

of the disruptive events and the segment of supply chain impacted. Sheffi et al. (2003) identify six 

different types of failure modes and their varying level of potential impacts on the global supply 

chain: supply, transportation, facilities, freight breaches, communications, and human resource 

capacity. 

 

2.4.1. Value-at-Risk (VaR) Model 

The value-at-risk (VaR) model is one of the most widely used models in supply chain risk 

management. While VaR model was originally developed by JP Morgan for the banking sector to 

manage and reduce the risk of trade losses, it can also be adapted to the supply chain context 

for assessing the consequences of any disruptive events. This model is based on probability and 

statistics and can be calculated in several ways, including historical, variance-covariance, and 

Monte-Carlo methods (Olson & Wu, 2020). VaR model has primarily three components: the 
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amount of potential loss due to disruption, the probability of a disruptive event occurring, and the 

duration of the event’s occurrence (Lim et al., 2013). 

 

2.4.2. Time-to-Recovery (TTR) and Time-to-Survive (TTS) Models 

Time-to-recovery (TTR) and time-to-survive (TTS) are two methods for calculating the impacts of 

supply chain disruptions. TTR is the length of time it takes for a supply chain node to restore to 

full capacity following a disruption, whereas TTS is the maximum amount of time a supply chain 

node can continue operations while a disruption is underway. An adequate backup plan is 

required if a supply chain’s TTR is longer than its TTS. Disruptive events with low probability-high 

impact are relatively challenging to be quantified. Simchi-Levi et al. (2015) construct a 

mathematical model based on TTR as input to quantify the economic and operational impact of 

supply chain node failure instigated by varied severity of disruptive events. TTR can be estimated 

under various scenarios from suppliers’ data, such as location, products, lead-time, and cost of 

loss. The model identifies and calculates enterprises' risk areas in depth by combining TTR 

information, bill-of-material data, operational and financial measures, inventory levels, and 

demand projections. Martel and Klibi (2016) demonstrate capacity-loss recovery function using 

TTR method, as shown in Figure 2.7, which implies the capacity recovery profile for manufacturing 

supply chain node at the course of disruption-hit.  
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Figure 2.7 

Capacity-Loss Recovery Function 

 

 

 

 

 

 

 

 

Note. Adapted from Martel, A., & Klibi, W. (2016). Designing Value-Creating supply chain 

networks. Springer Publishing. 

 

2.5. Supply Chain Resilience Measures against Disruptions  

Supply chain resilience can be defined as the ability to bend and bounce back from adversity 

(Coutu, 2002). According to Mitroff and Alpaslan (2003), organizations that are proactive and 

crisis-prepared endure fewer disasters and recover more quickly from adversity. Experts suggest 

different resilience measures (illustrated in Table 2.1) to support and reinforce an organization’s 

resilience and robustness of supply chain network in times of disruptions. Sheffi (2005) provides 

a strategic evaluation of different resilience measures in supply chain, such as redundancy, 

flexibility, product and process standardization, postponement, comprehensive tracking and 

monitoring, and total supply network visibility. Sheffi (2015) also emphasizes developing and 

improving detectability in assessing supply chain vulnerabilities and risks. 
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Table 2.1 

Indicators of Supply Chain Resilience 

Indicator Author’s Name 

Agility Kamalahmadi and Parast (2016) 

Flexibility Sheffi and Rice Jr. (2005), Pettit et al. (2013) 

Robustness Ehrenhuber et al. (2015), Sheffi and Rice Jr. (2005) 

Redundancy Rice and Caniato (2003), Ali et al. (2017) 

Visibility Christopher and Peck (2004) 

IT capability/ information sharing Jain et al. (2017) 

Collaboration Papadopoulos et al. (2017) 

Sustainability Jain et al. (2017) 

Adaptability Chowdhury and Quaddus (2016) 

Supply chain network design Christopher and Peck (2004) 

Security Rice and Caniato (2003) 

 

Note. Adapted from Singh, C. S., Soni, G., & Badhotiya, G. K. (2019). Performance indicators 

for supply chain resilience: Review and conceptual framework. Journal of Industrial Engineering 

International, 15(S1), 105–117. https://doi.org/10.1007/s40092-019-00322-2 

 

2.6. Conclusions of Literature Review 

This literature review explored different contemporary research and studies regarding supply 

chain risk management to find the best-fit methods for assessing the current risk exposure to the 

sponsoring company’s existing global supply chain. From our literature review, we observed that 

probabilities and impacts were the two most primary matrices of vulnerability and probability-

impact methods were used as a framework for vulnerability assessment (Norrman & Jansson, 

2004; Sheffi & Rice Jr., 2005). Different scholars identified risks from different points of view, such 

as external and internal to the business and supply chain, and nature of hazards. The common 

and widely accepted classification was found to be: natural disasters, accidental disasters, and 

intentional (man-made) disasters (Sheffi, 2005). For quantification of risk probabilities, both 
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mathematical modelling and subjective evaluation approaches were adopted in different fields of 

research (Martel & Klibi, 2016; Sheffi, 2005; Sheffi, 2015). Mathematical modelling was primarily 

based on statistical and probabilistic models and appropriate in availability of data. Subjective 

evaluations were effective when availability of data was in question. For quantification of risk 

impacts, our literature review mainly focused on value-at-risk (VaR), time-to-recovery (TTR) and 

time-to-survive (TTS) models, and observed that these models had relevancies in supply chain 

vulnerabilities (Simchi-Levi et al., 2015). Monte-Carlo simulation was found effective in 

determining and applying these models (Martel & Klibi, 2016). We will next move to the 

methodology chapter to build a vulnerability assessment framework specific to the sponsoring 

company’s supply chain network using the approaches and methods identified from our literature 

review. 
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3. METHODOLOGY 

The primary need for our sponsoring company is a vulnerability assessment framework and risk 

analysis model that successfully incorporates relevant disruptions in all the nodes of the global 

supply chain of the pilot product. After a careful analysis of the literature review and expert 

reviews, we decided that developing an “enterprise vulnerability map” (a vulnerability assessment 

map) from Sheffi and Rice Jr. (2005) would be best-fit for our sponsor because the model is widely 

used and comprehensive; and was aligned with the requirement from the sponsoring company 

that being able to be used as an input to their simulation (Step 4, Section 3.2.4). A general 

framework of our methodology is explained in Figure 3.1. 

Figure 3.1 

Structure of the Methodology 
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To develop such a vulnerability assessment map, we kept in mind that how the vulnerability 

assessment framework could be relevant for the sponsor’s global supply chain, simple yet 

effective, and easy-to-use for the users. Risk classifications were adopted from Sheffi (2005) 

because of the suitability with the scope (Step 1, Section 3.2.1). The disruptions were identified 

based on the relevancy of the geographical location of the node, but all the disruptions were 

restricted to natural disasters for two reasons: 

1. primary contributors to supply chain disruptions (represented more than 50% 

contributions) 

2. availability and reliability of data (compared to accidental and intentional disasters) 

 

We mainly used simple probabilistic models from Martel and Klibi (2016) to quantify the 

probabilities of disruptions (Step 2, Section 3.2.2). We found it impractical to separately analyze 

the probability distribution for each disruption and not viable from a risk management approach. 

Frequencies, trends, and types of disruptions were analyzed and validated for quantifying 

disruption probabilities in different nodes. To quantify the impacts of disruptions, we adopted an 

approach from Martel and Klibi (2016) where we implied both value-at-risk (VaR) and time-to-

recovery (TTR) models using Monte-Carlo simulations and generated a capacity-loss recovery 

function (Step 3, Section 3.2.3). Monte-Carlo simulation method was used because it is a model 

to effectively predict the probability of different outcomes when randomness is present within the 

variables. We also introduced the concept of “operations shutdown days” in the basis of capacity-

loss recovery function, as we found it as an important supply chain resilience measure from a 

management perspective. 

 

3.1. Expert Interviews and Opinions 

According to our literature review (see Section 2.3.2), subjective evaluations are also extensively 

used in risk management studies along with mathematical models in the absence of adequate 
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data and precise risk assessments. Although our aim in the capstone was to build a vulnerability 

assessment framework based on facts and mathematical modeling, we also decided to 

incorporate expert opinions in shaping the entire model. To know the industry-wide best practices 

in terms of risk management, we conducted expert interviews with supply chain industry leaders. 

The core objective of such expert interviews was to get insights about how similar industries were 

dealing with disruptions and quantifying risks in their supply chains, as well as how impacts were 

assessed and what performance metrics were used to adopt appropriate resilience measures. 

 

We also conducted feedback sessions with the representatives from our sponsoring company to 

get their opinions of disruptions and impacts in their entire global supply chain. We used their 

feedback to validate the relevance of our initial findings from data research and to calibrate the 

capstone project scope. 

 

3.2. Methodology of Developing Vulnerability Assessment Framework 

From our literature review of Sheffi and Rice Jr. (2005), we identified that developing an enterprise 

vulnerability map as vulnerability assessment framework would enable the sponsor to accomplish 

their requirement of supply chain risk assessment. Figure 2.2 and 2.3 can be expressed as a 

simplified relationship of probability and impact for our vulnerability assessment framework: 

Risk = Probability × Impact 

 

There two attributes- probability and impact- were keys throughout our research. The probability 

was defined as the measure of likelihood of any potential disruption or group of disruptions in a 

specific supply chain node. The impact was defined as the potential value-at-risk and time-to-

recovery in a specific supply chain node as a consequence of the disruption or group of 

disruptions. 
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We divided the development of our model into four key segments: risk identification, risk 

probability assessment, risk impact assessment, and development of an enterprise vulnerability 

map. 

 

3.2.1. Risk Identification 

For global supply chain networks in which entities are in different geographical regions and goods 

are moved through various transportation links, each entity and transportation link has its own 

risk and vulnerability conditions that may lead to the disruption of the entire supply chain network. 

To answer the question “what can go wrong?” we used the classification stated by Sheffi (2005) 

and segmented disruptions into three categories: natural disasters, accidental disasters, and 

intentional disasters. We identified potential disruptions of a particular supply chain node by 

analyzing the location-related disruption databases and grouped them in the three mentioned 

categories. We then restricted our analysis to natural disasters only, as explained in Section 3. 

We used the databases from the data sources mentioned in Section 3.2.1.1. We also validated 

the data from the representatives of the sponsoring company with their past experiences. 

3.2.1.1. Data Sources 

To begin with the development of the vulnerability assessment framework, we analyzed data for 

each node (location) of the global supply chain of the pilot product. For our analysis, we mainly 

used external data sources. External data was demarcated as the data from authentic external 

databases of globally recognized research and survey centers, which included the following: 

• Centre for Research on the Epidemiology of Disasters (CRED, 2020) 

• “Statista” (Statista, 2021) 

• World Risk Index Report published by Bündnis Entwicklung Hilft, an alliance of nine 

German development and relief organizations including Oxfam (Bündnis Entwicklung Hilft, 

2021) 
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For our capstone project, we significantly relied on those external sources of databases and 

leveraged the network of MIT affiliation with those external parties. 

3.2.1.2. Data Types 

For location-wise disruption and disaster information, we used databases from Centre for 

Research on the Epidemiology of Disasters (CRED, 2020). For countries as supply chain nodes, 

we used data from the World Risk Index Report to assign exposure level and impact level to each 

country (Bündnis Entwicklung Hilft, 2021). 

3.2.1.3. Data Integrity, Cleanliness, Assumptions and Limitations 

Although the external databases that we primarily relied on are widely used for research work, we 

made initial integrity checks and cleaned of the data (e.g., removing null values and outliers). We 

collected 60 years of data but sometimes restricted our horizon to 20 years in the analysis on the 

assumption that the latest 20 years had the more accurate data. We collected data for the supply 

chain node countries from global databases. For accidental and intentional disasters, e.g., 

transport accidents, terrorism, and malware attacks, the sources of reliable statistics are still very 

limited and not used in our analysis. 

 

3.2.2. Risk Probability Assessment: Quantification of Disruption Probability 

After identifying the list of disruptions for a supply chain node, we started assessing the 

probabilities of the listed disruptions. Since disruptions may vary from location to location, and the 

same type of disruption can occur in different patterns in different locations, we applied and 

structured our analysis in the following steps to quantify the disruption probability:  

1. Country was considered to be the lowest node point instead of specific location (e.g., state 

or city). The reasons behind that approach were uneven availability of disruption data for 

specific locations and to maintain parity of analysis. 
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2. We analyzed and validated the trends and types of disruptions in a specific country (i.e., 

node) from the data sources mentioned in Section 3.2.1.1. 

3. We calculated “yearly disaster frequency,” f, which indicated the average number of 

disasters for a specific country. While calculating, we considered all disruptions within our 

restrictions and specified time range. If the total number of disruptions in a specific time 

period is n and the time range (in years) is t, then f can be expressed as shown in the 

Equation 3.1. We also calculated “mean inter-arrival time,” μi, which indicated the average 

number of days between two disruptions. If the arrival times (days of year) for the nth and 

(n-1)th disruption events are denoted as dn and dn-1, then μi can be expressed as shown 

in Equation 3.2. Yearly disaster frequency and mean inter-arrival time served in 

combination as a good proxy of disruption probability as a whole. They indicated how 

frequently the country was expected to face disruption. For example, if yearly disaster 

frequency and mean inter-arrival time are 15.7 and 23 for a country, it indicates that 

roughly 15.7 disasters strike in that country every year and each disruption is likely to 

occur in 23 days apart. In reality, it is not practical for a company to analyze and deploy 

different risk management approaches for different disruptions; rather a combined and 

simplified risk management approach is more feasible for management. Hence, we 

discarded the individual disruption probability from our model, and used yearly disaster 

frequency and mean inter-arrival time. 

𝑓 =  
𝑛

𝑡
                                                          (3.1) 

𝜇𝑖 =
∑ (𝑑𝑛 − 𝑑𝑛−1)𝑛=𝑛

𝑛=2

𝑛−1
                                               (3.2) 

 

4. When a country is affected by any disruption, neither the entire country is affected at the 

same time nor are disrupted areas affected equally. We used the “attenuation probability” 

concept, which served as the proxy of average disruption probability for any specific 
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location within a country. Attenuation probability, a, helped us to establish our analysis 

from country level to specific location level, l. For example, if an attenuation probability of 

a country is 0.02, it indicates that if the country is hit by any disruption, the average 

probability of any location within the country getting hit will be 0.02 (~2%). We assigned 

attenuation probability of each country from Bündnis Entwicklung Hilft (2021) on a scale 

of 0 to 1 based on the area of the country. The larger the area of the country, the lower 

the attenuation probability was (because the lower the chance that any location would get 

disrupted), and vice-versa. Let X be the set of countries considered in our analysis. If, a 

country has l locations, probability of location l being hit by any disruption when the country 

being hit by the same disruption is P(l), and areas of location and country are Al and Ax, 

then a can be expressed as shown in Equation 3.3. 

𝑎 = 𝑃(𝑙) =  
∑ (

𝐴𝑙
𝐴𝑥

𝑙=𝑙
𝑙=1 )

𝑙
=

1

𝑙
     ∀𝑥 ∈ 𝑋                                            (3.3) 

 

Although such correlations and assumptions might not be exact in predicting the timing or 

magnitude of future disruptions, they could be used to evaluate the relative likelihood (probability) 

of future occurrences in comparison to other possible disruptions (Sheffi, 2005). 

 

After determining the yearly disaster frequency of a supply chain node, we considered higher 

probability of disruption if the yearly disaster frequency was high, and similarly, lower probability 

of disruption if the yearly disaster frequency was low. 

 

3.2.3. Risk Impact Assessment: Quantification of Disruption Impact 

After identifying the list of disruptions and determining their probabilities for a supply chain node, 

we started assessing the impacts of the listed disruptions. We applied and structured our analysis 

in the following steps to quantify the disruption impact:  
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1. Shutdown or halt of production for a certain period caused by disruptions was defined as 

the production stoppage time, and interruptions in supply of raw materials for a certain 

period caused by disruptions was defined as the transportation stoppage time. The 

production stoppage time and transportation stoppage time were together defined as 

“operations shutdown days” for a node and expressed in days. According to McKinsey 

and Company (2020), operations shutdown days are represented with approximately 30-

50% of one year’s EBITDA loss for a company every decade, and hence, were considered 

in our model as a basis of quantifying impacts in different nodes. 

2. We used Monte-Carlo simulation for a specific time period (typically 5 years and 10 years) 

to determine operations shutdown days for a node. 

3. Operations shutdown days usually follow step function (see Figure 2.7). For example, if a 

plant is impacted by any disruption and caused operational shutdown, the impact is high 

at the initial phase and causes a quick drop of production capacity. Then there might be a 

stagnation phase for getting the recovery measures organized, and then the system 

gradually recovers to its original state. To capture the effect, we also generated capacity-

loss recovery function using Monte-Carlo simulation and translated operations shutdown 

into performance metrics, such as production capacity loss. 

 

Monte-Carlo simulation relied on repeated sampling and the steps of Monte-Carlo simulation are 

illustrated in Figure 3.2. 
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Figure 3.2 

Steps of Monte-Carlo Simulation 

 

The steps and calculations of Monte-Carlo simulation are explained in the following:       

• Step 1: Select countries as nodes 

Country or multiple countries were selected as the first parameter in the Monte-Carlo simulation. 

• Step 2: Apply mean inter-arrival time and attenuation probability 

Mean inter-arrival time for each selected country, μi, x, was calculated from the database using the 

formula shown in Equation 3.2, and is expressed in Equation 3.4.  

𝜇𝑖,   𝑥 =
∑ (𝑑𝑛 − 𝑑𝑛−1)𝑛=𝑛

𝑛=2

𝑛−1
     ∀𝑥 ∈ 𝑋                                               (3.4) 
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Attenuation probability was assigned to each selected country as explained in Section 3.2.2. 

• Step 3: Assign impact level for intensity of disruption 

We determined exposure level and impact level of each country from Bündnis Entwicklung Hilft 

(2021). Impact level was required to determine “intensity of disruption,” which was a key 

parameter in Monte-Carlo simulation. From our literature review of Martel and Klibi (2016), we 

observed that impact level was considered as a uniform distribution function. Lower impact level 

and upper impact level served as the lower limit and upper limit of a uniform distribution function, 

respectively (see Equation 3.5).  

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑃(𝑥) =  𝑈~(𝑝, 𝑞) 𝑤ℎ𝑒𝑟𝑒 𝑝 ≤ 𝑥 ≤ 𝑞                 (3.5) 

 

Due to the lack of data to support a proper mathematical method, we decided to go with subjective 

evaluation for determining exposure level. We assigned exposure level and impact level using 

criteria explained in Table 3.1. 

Table 3.1 

Criteria for Assigning Exposure Level and Impact Level  

Ranking of country 
(higher ranking 

indicates more risk 
exposure) 

Exposure level 
Lower impact 

level, p 
Higher impact 

level, q 

Uniform 
distribution 
for impact 

level, 
U~(p,q) 

1-30 Very high 9 10 U~(9,10) 

31-70 High 7 8 U~(7,8) 

71-110 Medium 5 6 U~(5,6) 

111-150 Low 3 4 U~(3,4) 

> 150 Very low 1 2 U~(1,2) 

 

 

• Step 4: Run simulation for specific time period 

In the next step, we ran Monte-Carlo simulation for 5 years and 10 years period for each selected 

country using the following parameters: 
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Inter-arrival time (unit in days): 

Inter-arrival time between two events and random function are denoted as ix and RAND, and the 

relationship is expressed in Equation 3.6.    

𝑖𝑥 = {− 𝑙𝑛(1 − 𝑅𝐴𝑁𝐷)} × 𝜇𝑖,   𝑥     ∀𝑥 ∈ 𝑋                                       (3.6) 

 

Arrival day (unit in days): 

Arrival day for new event and arrival day for previous event within the simulation are denoted as 

dn, x and dn-1, x, and the relationship is expressed in Equation 3.7. 

𝑑𝑛,   𝑥 = 𝑑𝑛−1,   𝑥 + 𝑖𝑥      ∀𝑥 ∈ 𝑋                                               (3.7) 

 

Disaster intensity: 

Disaster intensity is denoted as β, and the relationship with lower impact level (p) and higher 

impact level (q) from Table 3.1 is expressed in Equation 3.8. 

𝛽 = 1 + 𝑅𝐴𝑁𝐷 × (𝑝 − 𝑞)                                                 (3.8) 

 

Hit result:  

Hit result, h, was 1 when the disruption affected the specific location of the node within the country, 

and 0 otherwise. The relationship with attenuation probability, ax, can be expressed 

mathematically as shown in Equation 3.9.  

ℎ = {
1 𝑖𝑓 𝑅𝐴𝑁𝐷 < 𝑎𝑥

0 𝑖𝑓 𝑅𝐴𝑁𝐷 ≥ 𝑎𝑥
     ∀𝑥 ∈ 𝑋                                              (3.9) 

 

Time-to-recovery (unit in days): 

Time-to-recovery, θ and θactual, indicated the gradual recovery from the time any disruption 

occurred until the system reached the original state for each successful hit. From the literature 

review of Martel and Klibi (2016), time-to-recovery was directly related to the disaster intensity 
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(β). The associated error band, ε, allowed the encapsulation of ±15% deviations or randomness 

in the analysis and was added with actual time-to-recovery (θactual). The relationships are 

expressed in Equation 3.10, 3.11 and 3.12. 

𝜃 = 𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝛽) + 𝜀                                                   (3.10) 

𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝛽) = 0.8𝛽2 + 4𝛽                                              (3.11) 

𝜀~𝑈(−0.15𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝛽), +0.15𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝛽))                                  (3.12) 

 

• Step 5: Repeat simulations 

We repeated the simulations three times and considered average value from the aggregated 

results to avoid sampling errors and get more plausible outcomes. 

 

• Step 6: Determine capacity loss analysis 

Capacity-loss recovery function per recovery period, rτ, and capacity loss per recovery period, c, 

were determined for each successful hit and recovery period, τ, in the simulations from step 5, 

and are expressed in Equation 3.13 and 3.14, respectively. Operations shutdown days per event, 

s, were calculated as the sum of capacity loss per recovery period (c) for the entire disruption 

event (see Equation 3.15). Total operations shutdown, Ts, x, for each selected country was derived 

from the summation of operations shutdown days for all discrete disruptions during the simulation 

period (see Equation 3.16).  

𝑟𝜏(𝛽, 𝜃) = {
1 − 0.1𝛽 𝑖𝑓 1 ≤ 𝜏 ≤ 0.25𝜃

1 − 0.1𝛽 {
(𝜃+1−𝜏)

(𝜃+1−0.25𝜃)
}  𝑖𝑓 (0.25𝜃 + 1) < 𝜏 ≤ 𝜃

                      (3.13) 

𝑐 = 1 − 𝑟𝜏                                                          (3.14) 

𝑠 = ∑ 𝑐𝜏=𝜃
𝜏=1                                                           (3.15) 

𝑇𝑠,   𝑥 = ∑ 𝑠𝑥∊𝑋                                                         (3.16) 
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After determining the total operations shutdown of a supply chain node, we considered higher 

impact of disruption if the total operations shutdown was high, and similarly, lower impact of 

disruption if the total operations shutdown was low. 

 

3.2.4. Enterprise Vulnerability Map Development 

Once both probabilities and impacts of disruptions were determined for a supply chain node, the 

last step was to build and visualize an enterprise vulnerability map to understand the vulnerability 

condition of the node. We plotted a XY scatter chart for the supply chain node with disruption 

probability (as explained in Section 3.2.2) in the x-axis and disruption impact (as explained in 

Section 3.2.3) in the y-axis. The output of the model was a visual report of the vulnerability 

assessment map with breakdown of details, as shown in Figure 3.3.  

Figure 3.3 

Enterprise Vulnerability Map for a Particular Supply Chain Node (Country) 
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4. RESULTS AND ANALYSIS 

In this chapter, we have presented and analyzed the results obtained from our outlined 

methodology and data preparation explained in Chapter 3, and discussed about limitations and 

future recommendations. We have started with explaining the tools we used to derive results and 

insights. In order to maintain confidentiality of the sponsoring company, we have presented 

hypothetical data to illustrate our results. The supply chain demonstrated was carefully selected 

so that it shared very similar characteristics with the actual one, and could serve as a 

representative and realistic exhibition of the analysis of results. We have presented and analyzed 

the current state of the supply chain for the pilot product in our vulnerability assessment framework 

and explained sensitivity analysis by altering the locations and comparing the results with the 

current supply chain. In our model, we mapped all supply chain nodes considering supply and 

manufacturing locations and excluded demand locations. Demand is generally associated with 

other organizational and market factors and can be handled within the simulation tool used by the 

company. The discussions and pilot recommendations are also based on the same hypothetical 

data. 

 

Tools for analysis and visualization 

We used Python program as a primary tool to analyze data sources from different external 

databases and formulate Monte-Carlo simulation with required parameters explained in Section 

3.2.3. The external databases were imported into Python and the simulation period was defined. 

According to the databases and set parameters, simulation data for all countries were generated 

and extracted as outputs from Python. We used Microsoft PowerBI software as a visualization 

tool to develop a dashboard for the sponsoring company. In the visualization tool, both external 

databases and the outputs of simulation data from Python were imported as inputs to visualize 

disaster probability (frequency) and trends, capacity-loss recovery function, country-wise heat-

map, and an enterprise vulnerability map. 
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Mapping and visualization of supply chain 

We started with six countries as the most representative examples for our global supply chain. 

The countries selected are shown in Figure 4.1. As depicted in Figure 1.1, selected countries 

represented the supplier, assembly, and plant locations of the supply chain. Among the selected 

countries, USA and Dominican Republic are from North America, China and Thailand are from 

Asia, and Germany and Poland are from Europe. 

Figure 4.1 

Selected Countries for Analysis of Vulnerability Assessment Framework     

 

Note. Own elaboration. 

 

4.1. Risk Identification 

As formulated in our methodology for RQ1 (risk identification), we identified the top contributing 

natural disasters from 2001 to 2020 for the selected baseline countries. The results determined 

using Python and visualization tool are illustrated in Figure 4.2 and 4.3. From Figure 4.2, it is clear 

that both storms and floods were mostly responsible (~73%) for disruptions caused by natural 
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disasters in the selected supply chain. When only USA was considered, we observed that USA 

was also exposed to storms and floods (~80%) as the major threats of natural catastrophes (see 

Figure 4.3). Among the other contributing natural disasters, USA was more exposed to wildfires, 

whereas the selected supply chain was more prone to earthquakes.   

Figure 4.2 

Types of Natural Disasters in the Selected Supply Chain Nodes during 2001-2020 

 

 

 

 

 

 

 

 

Note. Own elaboration. 

Figure 4.3 

Types of Natural Disasters in USA during 2001-2020 

 

 

 

 

 

 

 

 

Note. Own elaboration. 
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4.2. Risk Probability Analysis 

Once the major risks were identified from the database, we calculated the yearly disaster 

frequencies for the listed countries as formulated in our methodology for RQ2 (quantification of 

risk probability) and illustrated in Figure 4.4. From Figure 4.4, it is clear that both China and USA 

were the leading countries in terms of yearly disaster frequency, with 28 and 23 disasters on 

average per year, respectively. It also indicated that China and USA were responsible for ~82% 

of the total natural disasters happened within the selected supply chain with yearly 51 natural 

disasters on average.   

Figure 4.4 

Yearly Disaster Frequencies in the Selected Supply Chain Nodes during 2001-2020 

 

 

 

 

 

 

 

 

Note. Own elaboration. 

 

We also identified and plotted the trends of natural disasters in the listed countries for the last 20 

years (from 2001 to 2020) to understand the future exposure to threats of natural calamities. From 

Figure 4.5, we observed that the numbers of natural disasters were consistently low in the 

European and South-East Asian countries. While there were no major fluctuations in the trends 

of China and USA, these two countries had historically been highly vulnerable to natural disasters. 

Although a slight decrease was observed in the trend for China for last 5 years, this short time 
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span could be ambiguous to draw any conclusion that China would be facing fewer natural 

disasters in the future.   

Figure 4.5 

Trends of Total Natural Disasters in the Selected Supply Chain Nodes during 2001-2020 

 

Note. Own elaboration. 

 

4.3. Risk Impact Analysis 

After identifying the risks and determining the probabilities and trends of risks, we calculated the 

total operations shutdowns for the listed countries as formulated in our methodology for RQ3 

(quantification of risk impact). It was calculated using Monte-Carlo simulation using the 

methodology and parameters explained in Section 3.2.3. The parameters were calculated within 

the simulation using the data imported to Python. Since Monte-Carlo simulation generates future 

plausible scenarios based on the randomness and historical data, this plausible future generation 

process involves the construction of representative sample scenarios from different subsets. 

Similarly, we also conducted the simulation three times to comply with the statistical sampling 

before aggregating the final results in our model. We assumed that these subsets of simulations 

reduced the sampling errors of the aggregated simulation. For each instance, simulation was run 
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for 10 years. The aggregated simulation was then calculated based on the average of three-run 

simulations. The subset simulations are illustrated in Figure 4.6. 

Figure 4.6 

Results of Sampling Simulation Runs for 10 years for the Final Aggregated Simulation 

 

 

 

Note. Own elaboration. 
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The aggregated simulation results are illustrated in Figure 4.7. The y-axis represents the capacity-

per-day of the selected supply chain and the x-axis represents the days of simulation. The value 

of capacity-per-day was denoted as the percentage of capacity. The total capacity available per 

day for the selected supply chain was considered to be 100%. From the simulation, disruptions 

happened in different times and supply chain locations. When a disruption happened in any 

location, it followed the capacity-loss recovery function explained in Section 3.2.3. The capacity 

dropped from 100% and slowly recovered to 100% during the disruptive period (i.e., time-to-

recovery, or TTR). An example of capacity-loss recovery function is explained in Table 4.1 and 

Figure 4.8. In our analysis, we simulated each country separately for the defined simulation period 

(i.e., 10 years) and calculated total operations shutdown for the country. When multiple countries 

were selected in the supply chain, individual country-wise simulation results of total operations 

shutdown were added to determine the results of total operations shutdown for the entire supply 

chain. The combined results were not likely to behave the same as the capacity-loss recovery 

function. The same concept applied when multiple simulations were aggregated based on 

average, i.e., the aggregated simulation was not likely to behave the same as the capacity-loss 

recovery function. 
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Figure 4.7 

Results of Final Aggregated Simulation for 10 Years 

 

Note. Own elaboration. 

Table 4.1 

Demonstration of Capacity-Loss Recovery Function for a Disruptive Event  

Random 
simulation 

days 

Recovery days 
(time-to-

recovery period) 

Capacity-loss 
recovery 

function (%) 

Capacity loss 
(%) 

Remarks 

396  100.0 0.0  

397 1 82.8 17.2 Disruption hit 

398 2 82.8 17.2  

399 3 84.5 15.5  

400 4 86.7 13.3  

401 5 88.9 11.1  

402 6 91.1 8.9  

403 7 93.3 6.7  

404 8 95.6 4.4  

405 9 97.8 2.2  

406  100.0 0.0 Fully recovered 
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Figure 4.8 

Demonstration of Capacity-Loss Recovery Function for a Disruptive Event 

 

 

 

 

 

 

 

 

 

Note. Own elaboration. 

 

From our analysis, total operations shutdown for the aggregated simulation period of 10 years 

was observed as 227 days, which was on average 23 days per year. The individual country-wise 

contributions are shown in the heat-map in Figure 4.9. From Figure 4.9, it is observed that China 

had the most total operations shutdown: 149 days (~64%), with a yearly average of 15 days. 

Although we observed that both China and USA were highly exposed and vulnerable to supply 

chain disruptions, total operations shutdown of China was almost 5 times higher than USA in a 

simulated environment. The reason was the risk indexes of countries, which were incorporated in 

the model to determine the capabilities of countries to withstand natural disasters in different 

criteria. It was observed that the incorporation of risk indexes allowed us to get realistic insights 

about the preparedness of any country. Even if any country might face frequent natural disasters, 

it could reduce the long-term impacts by making better infrastructure and strategic policies, and 

improve its scores to be a viable choice in supply chain in terms of sourcing and manufacturing. 
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Figure 4.9 

Country-wise Total Operations Shutdown for 10 Years Simulation 

 

 

 

 

 

 

 

 

 

 

 

Note. Own elaboration. 

 

4.4. Generation of Enterprise Vulnerability Map 

As the last step of our methodology shown in Figure 3.1, we created an enterprise vulnerability 

map using the visualization tool and by combining the risk probability and risk impact for the listed 

countries. The final output for the enterprise vulnerability map is shown in Figure 4.10. From 

Figure 4.10, we observed that China, with higher risk probabilities and risk impacts, was the most 

vulnerable country in terms of supply chain disruptions. Even though USA had higher risk 

probabilities of natural disasters, its capability to minimize the impact to a significant extent and 

better score in the World Risk Index Report placed it in a moderately vulnerable zone for supply 

chain disruptions. European and South-East Asian countries also showed much lower risk 

probabilities and risk impacts compared to China and USA, making them favorable for supply 

chain operations. 
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Figure 4.10 

Enterprise Vulnerability Map for the Selected Supply Chain Nodes for 10 Years Simulation 

 

Note. Own elaboration. 
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5. DISCUSSION 

In this chapter, we have discussed our findings and insights from the analysis of results and 

demonstrated the mitigation and resilience strategies in view of the Table 2.1. We have also 

analyzed limitations of the model and provided future recommendations to improve model 

outputs.   

 

5.1. Insights and Recommendations from Model Results 

• After assessing and analyzing the supply chain nodes through the enterprise vulnerability 

map, the sponsoring company can perform comparative analysis regarding the relative 

risks of supply chain nodes and conduct trade-off analysis with long term costs and 

impacts. Extending the majority of suppliers, contract manufacturers, or own 

manufacturing establishments to highly vulnerable countries needs careful analysis before 

execution and considering short-term cost benefits. In our analysis, we observed that 

reducing high dependency on China could reduce the chances of total operations 

shutdown by 60% in the supply chain. We also observed that moving to USA as part of 

the localization strategy could partially improve the overall vulnerability score but would 

still comprise a significant exposure to disruptions. Alternatively, sourcing from or 

manufacturing in European countries could improve the overall vulnerability score in the 

supply chain by reducing the chances of total operations shutdown.   

• The vulnerability assessment framework is scalable to any supply chain network design 

irrespective of the number of nodes. The Python program behind the model performs all 

the location-specific calculations and simulations based on the imported databases and 

makes the model easy to scale. 

• In our analysis, three simulations with 10 years of each simulation period were used to 

derive the final aggregated simulation result. The company can adjust the numbers of 
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simulations and duration of simulation period according to the required “confidence 

interval” (a statistical feature that indicates the accuracy of the sampling data). 

• Because of the scalability, users can select different countries as supply chain nodes to 

understand and compare risks and vulnerability conditions among different supply chain 

design choices. 

• The outputs of the model, such as overall vulnerability scores, location-specific risk 

probabilities and impacts can be used as inputs in the analysis of supply chain network 

design and optimization tool. The results from the model allow and support to perform 

network design taking resilience factors into consideration. 

• The outputs of the model can be used to determine different supply chain performance 

metrics (e.g., lost sales), assess the comparative risks, and suggest resilience 

recommendations. It should be noted that incorporating complex features in the model 

requires thorough analysis of complexity, feasibility, applicability, and cost-benefit 

impacts. 

 

5.2. Analysis of Supply Chain Risk Mitigation and Resilience Strategies 

There is a wide variety of supply chain risks in real operations. Unfortunately, there is no royal 

road to mitigating supply chains’ risks. Not long before the COVID-19 pandemic, supply chain 

resilience measures were part of organizations’ core supply chain principles. Now the importance 

of resilient supply chain is getting more attention and priority. In our vulnerability assessment 

framework, we analyzed risks in supply chain and focused on three resilience strategies relevant 

for the sponsoring company’s global supply chain: redundancy, flexibility, and supply chain 

network design. 
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5.2.1. Redundancy 

In general, redundancy means having backup of resources, e.g., supplier and stock. In our case, 

redundancy is more relevant to the backup or alternative suppliers and the amount of time it takes 

for an organization to switch between suppliers following a disruption. Our model showed that the 

organization could face enormous risks with a primary supplier situated somewhere with high 

disruption risk probability. From the results, we observed that China was posing a bigger 

disruption risk in the supply chain and European countries were deemed to have low vulnerability 

for the supply chain and business continuity. From our analysis, it can be suggested that forming 

single-sourcing, strategic supplier partnerships, or contract manufacturing from China can be 

vulnerable for the entire supply chain. Our sponsoring company should incorporate supply chain 

disruption scores in evaluating suppliers and segment the majority or strategic supplier bases in 

regions of low to moderate vulnerability. When this option is strategically not feasible for the 

company, they must partially arrange alternative or backup sourcing from suppliers in less to 

moderately vulnerable countries.  

 

5.2.2. Flexibility 

Supply chain flexibility means the ability to easily adjust production levels, raw-material 

procurement, and transport capacity. It has enormous benefits compared to traditional supply 

chain management. A traditional approach to supply chain management is rigid and does not 

allow for fast changes as needed. This creates a scope to cause disruptions to the entire supply 

chain in times of demand spikes, drops, or holdup in the supply chain. Our sponsoring company 

can adopt flexibility in countries where supply chains are less vulnerable. The advantages of 

flexibility will not be effective unless processes and products are standardized. 

 



 

Page 54 of 63 

 

5.2.3. Supply Chain Network Design 

Optimization of supply chain network design is a costly solution. But whenever the company 

needs to perform optimization, they should incorporate vulnerability scores while determining 

potential supply chain nodes for sourcing or setting up manufacturing units.  

 

5.3. Model Limitations and Areas for Improvement 

The objective of the vulnerability assessment framework was to provide a comprehensive risk 

analysis model to the sponsoring company, which would be based on facts and easy to 

incorporate in any supply chain network design simulation tool. Like any risk management 

modeling approach, this approach was also not exact, and had a few limitations and areas for 

improvement. 

 

The limitations of the vulnerability assessment framework were: 

• As country was considered the lowest point of supply chain node, the number of plants in 

any country had no impact in our model. The insights about the disruption profile of the 

country would be the same regardless of the existence of multiple plants in the same 

country. 

• The model was limited to specific risk category only, i.e., natural disasters. Although this 

broad category could cover most external factors of disruptions, accidental and intentional 

disasters could also be incorporated if reliable data and proper quantitative approach were 

available. 

• The impact analysis was node-centric. Synchronous impacts were not considered, i.e., 

the impact of disruptions in one particular node for the impact of disruptions in other 

connected nodes were not taken into considerations, as it would make the model more 

complicated. 
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• Internal and other exogenous factors than natural disasters were not considered. In reality, 

there are many factors that can lead to disruptions for a supply chain node. It was 

practically not feasible to include and quantify all the factors, such as financial and 

economic, in a single model. 

 

The future improvement areas of the risk model are: 

• The model is built upon a framework which is able to provide more accurate results with 

the availability of more volume and granularity of data. If there is a requirement for more 

granular level analysis, such as city or location-specific disruption profile, the sponsoring 

company can source and arrange empirical data based on expert opinions. 

• The input data can be queried from the relevant sources using application programming 

interface (API) technology and automatically fed to the model. This will reduce the manual 

intervention of users regarding data and automate the data-import process for the model.  
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6. CONCLUSION 

Supply chains are becoming more global and exposed to different types of disruptions more than 

ever. As a result, there is growing interest in supply chain risk management. Organizations are 

focusing more on assessing and improving their supply chain resilience, specifically after the 

COVID-19 pandemic. To take the right resilience measures, it is important for the companies to 

know, assess, and visualize the current state of risk exposures in the supply chain. In our 

capstone project, we developed a vulnerability assessment framework for our sponsoring 

company that would help assess the risks and vulnerabilities in its current global supply chains 

and could be used as an input to its supply chain network design and optimization tool. 

 

We applied the vulnerability assessment framework to a specific pilot product of the sponsoring 

company, validated our approach and assumptions, and derived specific recommendations. 

Different organizations have different pain-points and perspectives in regard to resilience. With 

that in mind, one of the major decisions was to decide and identify the risks to be incorporated. 

While there can be several factors that cause disruptions in supply chains, we restricted our 

analysis to natural disasters because we observed their consistency in terms of impacts. Insights 

provided from our model will not be changed much by adding more different disruptions, but there 

will always be room for improvement in the model to incorporate other disaster categories 

provided that appropriate method and right data are available. Perceiving and incorporating 

important feedback from the sponsoring company at different phases of the project also helped 

to understand the requirement from the beginning and make the model suitable for industry-scale. 

 

In closing, the objective of the research was to develop a vulnerability assessment framework that 

would help our sponsoring company in building resilient supply chain and sustainable ecosystem 

for all stakeholders. Our sponsoring company now has a model to better assess vulnerability on 

its supply chain and can therefore focus on resilience strategies to mitigate the risks by more 
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accurate simulations of events. We recommend that the sponsoring company examine our 

framework for risk identification and risk quantification (probabilities and impacts) in its supply 

chain, and use the insights from the model in taking decisions of supply chain resilience, such as 

redundancy, flexibility, and optimized supply chain network design. 
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8. APPENDICES 

8.1. Appendix A: List of Parameters Used from External Databases 

Source Parameters Parameters Remarks 

Centre for Research 
on the Epidemiology of 
Disasters (CRED) 

Disaster code/No. Indexing of the disasters 

Disaster group Specified as natural disaster 

Disaster subgroup  
Further classified the disaster group as, e.g., 
biological, climatological, extra-terrestrial, 
geophysical, hydrological, meteorological 

Disaster type  
Specified as, e.g., flood, storm, earthquake, 
epidemic 

Disaster subtype  
Further classified the disaster type as, e.g., 
coastal flood, flash flood, riverine flood 

Country Country of disaster origin 

Continent Continent of disaster origin 

Latitude  

Longitude  

Start year 

Recorded start time of the disaster Start month 

Start day 

End year 

Recorded end time of the disaster End month 

End day 

World Risk Index 
Report published by 
Bündnis Entwicklung 
Hilft 

Ranking higher ranking indicated more risk exposure 

Exposure factor  

Vulnerability factor  

Susceptibility factor  

Lack of coping 
capacities 

 

Lack of adaptive 
capabilities 
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8.2. Appendix B: PowerBI Visualization 

Executive Dashboard: 

 

 

Summary Statistics for Quantification of Risk Probabilities: 
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Simulation Results: 

 

 


