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Abstract
Polynomial nonnegativity constraints can often be handled using the sum of squares
condition. This can be efficiently enforced using semidefinite programming formu-
lations, or as more recently proposed by Papp and Yildiz (Papp D in SIAM J O 29:
822–851, 2019), using the sum of squares cone directly in an interior point algorithm.
Beyond nonnegativity, more complicated polynomial constraints (in particular, gen-
eralizations of the positive semidefinite, second order and �1-norm cones) can also be
modeled through structured sumof squares programs.We take a different approach and
propose using more specialized cones instead. This can result in lower dimensional
formulations, more efficient oracles for interior point methods, or self-concordant
barriers with smaller parameters.
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1 Introduction

The sum of squares (SOS) condition is commonly used as a tractable restriction of
polynomial nonnegativity. While SOS programs have traditionally been formulated
and solved using semidefinite programming (SDP), Papp and Yildiz [16] recently
demonstrated the effectiveness of a nonsymmetric interior point algorithm in solv-
ing SOS programs without SDP formulations. In this note, we focus on structured
SOS constraints that can be modeled using more specialized cones. We describe and
give barrier functions for three related cones useful for modeling functions of dense
polynomials, which we hope will become useful modeling primitives.

The first is the cone of SOS matrices, which was described by Coey et al. [4,Section
5.7] without derivation. Characterizations of univariate SOS matrix cones in the con-
text of optimization algorithms have previously been given by Genin et al. [6,Section
6]. However, their use of monomial or Chebyshev bases complicates computations of
oracles in an interior point algorithm [16,Section 3.1] and prevents effective general-
izations to the multivariate case. The second is an SOS �2-norm (SOS-L2) cone, which
can be used to certify pointwise membership in the second order cone for a vector
with polynomial components. The third is an SOS �1-norm (SOS-L1) cone, which
can be used to certify pointwise membership in the epigraph set of the �1-norm func-
tion. Although it is straightforward to use SOS representations to approximate these
sets, such formulations introduce cones of higher dimension than the constrained
polynomial vector. We suggest new barriers, with lower barrier parameters than SOS
formulations allow.

In what follows, we use S
m , S

m+, and S
m++ to represent the symmetric, positive

semidefinite and positive definite matrices respectively with side dimension m. For
sets, cl denotes the closure and int denotes the interior. �a..b� are the integers in the
interval [a, b]. |A| denotes the dimension of a set A, and sd(m) = |Sm | = m(m + 1)/2.
We use 〈·, ·〉A for the inner product on A. For a linear operatorM : A → B, the adjoint
M∗ : B → A is the unique operator satisfying 〈x, My〉A = 〈y, M∗x〉B for all x ∈ A
and y ∈ B. Im is the identity in R

m×m . ⊗K : R
a1×a2 × R

b1×b2 → R
a1b1×a2b2 is

the usual Kronecker product. diag returns the diagonal elements of a matrix and Diag
maps a vector to a matrix with the vector on the diagonal. All vectors, matrices, and
higher order tensors are written in bold font. si is the i th element of a vector s and
si∈�1..N� is the set {s1, . . . , sN }. If A is a vector space then An is the Cartesian product
of n spaces A. R[x]n,d is the ring of polynomials in the variables x = (x1, . . . , xn)
with maximum degree d. Following Papp and Yildiz [16], we use L = (n+d

n

)
and

U = (n+2d
n

)
to denote the dimensions of R[x]n,d and R[x]n,2d respectively, when n

and d are given in the surrounding context.

1.1 The SOS polynomials cone and generic interior point algorithms

A polynomial p(x) ∈ R[x]n,2d is SOS if it can be expressed in the form p(x) =∑
i∈�1..N� qi (x)

2 for some N ∈ N and qi∈�1..N�(x) ∈ R[x]n,d . We denote the set of
SOS polynomials in R[x]n,2d by KSOS, which is a proper cone in R[x]n,2d [13].
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We also say that s ∈ KSOS for s ∈ R
U if s represents a vector of coefficients of

an SOS polynomial under a given basis. We use such vectorized definitions inter-
changeably with functional definitions of polynomial cones. To construct a vectorized
definition for KSOS, suppose we have a fixed basis forR[x]n,2d , and let pi∈�1..L�(x) be
basis polynomials for R[x]n,d . Let λ : �1..L�2 → R

U be a function such that λ(i, j)
returns the vector of coefficients of the polynomial pi (x)p j (x) using the fixed basis
for R[x]n,2d . Define the lifting operator Λ : R

U → S
L , introduced by Nesterov [13],

as:

Λ(s)i, j = 〈λ(i, j), s〉RU ∀i, j ∈ �1..L�, (1.1)

where Λ(s)i j is a component in row i and column j . Now the cones KSOS and K ∗
SOS

admit the characterization [13,Theorem 7.1]:

KSOS = {s ∈ R
U : ∃S ∈ S

L+, s = Λ∗(S)}, K ∗
SOS = {s ∈ R

U : Λ(s) ∈ S
L+}. (1.2)

Equation (1.2) shows that the dual cone K ∗
SOS is an inverse linear image of the positive

semidefinite (PSD) cone, and therefore has an efficiently computable logarithmically
homogeneous self-concordant barrier (LHSCB) (see [14,Definitions 2.3.1, 2.3.2]).
In particular, by linearity of Λ, the function s 
→ − logdet(Λ(s)) is an LHSCB for
K ∗
SOS [14,Proposition 5.1.1] with parameter L (an L-LHSCB for short). This makes it

possible to solve optimization problems over KSOS or K ∗
SOS with a generic primal-dual

interior point algorithm in polynomial time [17]. 1

In a generic primal-dual interior point algorithm, very few oracles are needed for
each cone in the optimization problem. For example, the algorithm used by Coey et
al. [4] only requires a membership check, an initial interior point, and evaluations of
derivatives of an LHSCB for each cone or its dual. Therefore, there is no particular
advantage to favoring either KSOS or K ∗

SOS formulations. Optimizing over KSOS (or
K ∗
SOS) directly instead of building SDP formulations is appealing because the dimen-

sion of KSOS is generally much smaller than the cone dimension in SDP formulations
that are amenable to more specialized algorithms [4, 16]. In later sections we describe
efficient LHSCBs and membership checks for each cone we introduce.

The output of the lifting operator depends on the polynomial basis chosen for
R[x]n,d as well as the basis for R[x]n,2d . Following Papp and Yildiz [16], we use a
set of Lagrange polynomials that are interpolant on some points ti∈�1..U� as the basis
for Rn,2d [x] and the multivariate Chebyshev polynomials [9] as the basis in Rn,d [x].
These choices give the particular lifting operator ΛSOS(s):

ΛSOS(s)i, j = ∑
u∈�1..U� pi (tu)p j (tu)su ∀i, j ∈ �1..L�. (1.3)

Equivalently, ΛSOS(s) = P� Diag(s)P, where Pu,� = p�(tu) for all u ∈ �1..U�, � ∈
�1..L�. The adjoint Λ∗

SOS : S
L → R

U is given by Λ∗
SOS(S) = diag(PSP�). Papp and

1 We direct the interested reader to Faybusovich [5], who obtained non-linear barriers for the cone of
univariate polynomials generated by Chebyshev systems by computing the universal volume barrier of
Nesterov and Nemirovskii [14], which is unrelated to the SDP representations of these polynomials.
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Yildiz [16] show that the Lagrange basis gives rise to expressions for the gradient and
Hessian of the barrier for K ∗

SOS that are computable inO(LU 2) time for any d, n ≥ 1.
Although we assume for simplicity that p is a dense basis for R[x]n,d , this is without
loss of generality. A modeler with access to a suitable sparse basis of L̄ < L poly-
nomials in R[x]n,d and Ū < U interpolation points, could use Eq. (1.3) and obtain a
barrier with parameter L̄ .

2 Polynomial generalizations for three conic sets

The first set we consider are the polynomial matrices Q(x) ∈ R[x]m×m
n,2d (i.e. m × m

matrices with components that are polynomials in n variables of maximum degree
2d)2 satisfying the constraint:

Q(x)  0 ∀x. (2.1)

One of the first applications of matrix SOS constraints was by Henrion and Lasserre
[8]. The moment-SOS hierarchy was extended from the scalar case to the matrix case,
using a suitable extension of Putinar’s Positivstellesatz studied by Hol and Scherer
[10] and Kojima [11].

This constraint has various applications in statistics, control, and engineering (e.g.
[2, 7]). A tractable restriction for Eq. (2.1) is given by the SOS formulation:

y�Q(x)y ∈ KSOS ∀y ∈ R
m . (2.2)

This formulation is sometimes implemented in practice and requires an SOS cone of
dimensionU sd(m) (by exploiting the fact that all terms are bilinear in the y variables).
It is well known that Eq. (2.2) is equivalent to restrictingQ(x) to be an SOS matrix of
the form Q(x) = M(x)�M(x) for some N ∈ N and M(x) ∈ R[x]N×m

n,d [3,Definition
3.76]. To be consistent in terminology with the other cones we introduce, we refer
to SOS matrices as SOS-PSD matrices, or belonging to KSOSPSD. We show how to
characterize KSOSPSD and use it directly in an interior point algorithm in Sect. 3.

The second set we consider are the polynomial vectors q(x) ∈ R[x]mn,2d satisfying:

q1(x) ≥
√∑

i∈�2..m�(qi (x))
2 ∀x, (2.3)

and hence requiring q(x) to be in the epigraph set of the �2-norm function (second
order cone) pointwise (cf. Eq. (2.1) requiring the polynomial matrix to be in the PSD
cone). A tractable restriction for this constraint is given by the SOS formulation:

y� Arw(q(x))y ∈ KSOS ∀y ∈ R
m, (2.4)

2 We assume that polynomial components in vectors and matrices involve the same variables and have the
same maximum degree, to avoid more cumbersome notation.
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where Arw : R[x]mn,2d → R[x]m×m
n,2d is defined by:

Arw(p(x)) =
[
p1(x) p̄(x)�
p̄(x) p1(x)Im−1

]
,

p(x) = (p1(x), p̄(x)) ∈ R[x]n,2d × R[x]m−1
n,2d .

(2.5)

Due to the equivalence between Eq. (2.2) and membership in KSOSPSD, Equation (2.4)
is equivalent to requiring that q(x) belongs to the cone we denote KArwSOSPSD defined
by:

KArwSOSPSD = {q(x) ∈ R[x]mn,2d : Arw(q(x)) ∈ KSOSPSD}. (2.6)

Membership in KArwSOSPSD ensures Eq. (2.3) holds due to the SDP representation of
the second order cone [1], and the fact that the SOS-PSD condition certifies pointwise
positive semidefiniteness. An alternative restriction of Eq. (2.3) is described by the
set we denote KSOS �2 , which is not representable by the usual scalar polynomial SOS
cone in general:

KSOS �2 =
{
q(x) ∈ R[x]mn,2d : ∃N ∈ N,pi∈�1..N�(x) ∈ R[x]mn,d ,

q(x) = ∑
i∈�1..N�pi (x) ◦ pi (x)

}

, (2.7)

where ◦ : R
m × R

m → R
m is defined by:

x ◦ y =
[

x�y
x1ȳ + y1x̄

]
, x = (x1, x̄), y = (y1, ȳ) ∈ R × R

m−1, (2.8)

and ◦ : R[x]mn,d × R[x]mn,d → R[x]mn,2d on polynomial vectors is defined analogously.
This set was also studied by Kojima and Muramatsu with a focus on extending Posi-
tivstellensatz results [12]. The validity of KSOS �2 as a restriction of Eq. (2.3) follows
from the the characterization of the second order cone as a cone of squares [1,Section
4]. For this reason we will refer to the elements of KSOS �2 as the SOS-L2 polyno-
mials. For a polynomial vector in R[x]mn,2d , the dimension of KSOS �2 is Um, which
is favorable to the dimension U sd(m) of KSOS required for Eq. (2.4) or KSOSPSD
in Eq. (2.6). In addition, we show in Sect. 4.1 that KSOS �2 admits an LHSCB with
smaller parameter than KArwSOSPSD. However, we conjecture that for general n and d,
KSOS �2 � KArwSOSPSD (for example, consider the vector [1+ x2, 1− x2, 2x], which
belongs to KArwSOSPSD but not KSOS �2 ). A third formulation could be obtained by
modifying the SDP formulation for KArwSOSPSD to account for all sparsity in the y
monomials (by introducing a specialized cone for theGrammatrix of y� Arw(q(x))y).
However, this approach suffers from requiring O(L2) conic variables for each poly-
nomial in q(x).

The third and final set we consider is also described through a constraint on a
polynomial vector q(x) ∈ R[x]mn,2d . This constraint is given by:

q1(x) ≥ ∑
i∈�2..m�|qi (x)| ∀x, (2.9)
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Table 1 Properties of new cones compared to SOS formulations

SOS-PSD SOS-L2 SOS-L1

KSOSPSD (2.2) KSOS �2 (2.4) KSOS �1 (2.10)

Cone dim. U sd(m) U sd(m) Um U sd(m) Um U (2m − 1)

Parameter Lm Lm 2L Lm Lm L(2m − 1)

Hessian flops O(LU2m3) O(LU2m5) O(LU2m2) O(LU2m5) O(LU2m) O(LU2m)

Conservatism Equal – Greater – Equal –

Equalities 0 0 0 0 0 U (m − 1)

Variables 0 0 0 0 0 2U (m − 1)

and hence requires the polynomial vector to be in the epigraph set of the �1-norm
function (�1-norm cone) pointwise. A tractable restriction for this constraint is given
by the SOS formulation:

q1(x) − ∑
i∈�2..m�(pi (x)

+ + pi (x)−) ∈ KSOS, (2.10a)

qi (x) = pi (x)+ − pi (x)−, pi (x)+, pi (x)− ∈ KSOS ∀i ∈ �2..m�, (2.10b)

which uses auxiliary polynomial variables p+
i∈�2..m�

(x) ∈ R[x]n,2d and p−
i∈�2..m�

(x) ∈
R[x]n,2d . We refer to the projection of Eq. (2.10) onto q(x) ∈ R[x]mn,2d as KSOS �1

and to its elements as the SOS-L1 polynomials. Note that the dimension of KSOS �1

is Um, while Eq. (2.10) requires 2m − 1 SOS cones of dimension U and U (m − 1)
additional equality constraints. In Sect. 4.2 we derive an Lm-LHSCB that allows us
to optimize over KSOS �1 directly, while Eq. (2.10) would require an LHSCB with
parameter L(2m − 1).

We summarize some key properties of the new cones and SOS formulations in
Table 1: the total dimension of cones involved, the parameter of an LHSCB for the
conic sets, the time complexity to calculate the Hessian of the LHSCB, the level of
conservatism of each new conic set compared to its alternative SOS formulation, and
the number of auxiliary equality constraints and variables that need to be added in an
optimization problem. A computational comparison of each pair of formulations using
an example problemcanbe found at https://github.com/chriscoey/Hypatia.jl/wiki. The
algorithmic advantages from the new cones usually translate to faster solve times in
practice, and our experiments agree with the conjecture KSOS �2 � KArwSOSPSD.

3 SOS-PSD and SOS-L2 cones from general algebras

The ideas introduced by Papp andAlizadeh [15] relating to SOS cones in general alge-
bras allow us to characterize KSOSPSD and KSOS �2 without auxiliary SOS polynomial
constraints. As in Papp and Alizadeh [15], let us define (A, B,�) as a general algebra
if A, B are vector spaces and � : A × A → B is a bilinear product that satisfies the
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distributive property. For a general algebra (A, B,�), Papp and Alizadeh [15] define
the SOS cone K�:

K� = {b ∈ B : ∃N ∈ N, ai∈�1..N� ∈ A, b = ∑
i∈�1..N�ai � ai }. (3.1)

For instance, S+ is equal to the SOS cone of (Rm, S
m,�) for � given by x�y =

1
2 (xy

� + yx�). The second order cone is equal to the SOS cone of (Rm, R
m, ◦).

KSOS is equal to the SOS cone of (R[x]n,d , R[x]n,2d , ·) where · is the product of
polynomials. To obtain our vectorized representation of KSOS we can redefine the
function λ : R

L × R
L → R

U so that for pi ,p j ∈ R
L representing coefficients of any

polynomials in R[x]n,d , λ(pi ,p j ) returns the vector of coefficients of the product of
the polynomials. Then KSOS is equal to the SOS cone of (RL , R

U , λ).
As we describe in Sect. 3.1, Papp and Alizadeh [15] also show how to build lifting

operators for general algebras. This allows us to construct membership checks and
easily computable LHSCBs for K ∗

SOSPSD and K ∗
SOS �2

once we represent them as SOS
cones of tensor products of algebras.

The tensor product of two algebras (A1, B1,�1) and (A2, B2,�2) is a new algebra
(A1 ⊗ A2, B1 ⊗ B2,�1 ⊗ �2), where �1 ⊗ �2 is defined via its action on elementary
tensors. For u1, v1 ∈ A1 and u2, v2 ∈ A2:

(u1 ⊗ u2) �1 ⊗ �2 (v1 ⊗ v2) = (u1 �1 v1) ⊗ (u2 �2 v2). (3.2)

The algebra we are interested in for a functional representation of KSOSPSD is
the tensor product of (R[x]n,d , R[x]n,2d , ·) with (Rm, S

m, �̄). We can think of ele-
ments in R[x]n,d ⊗ R

m as polynomial vectors in R[x]mn,d , and R[x]n,2d ⊗ S
m as

the symmetric polynomial matrices in R[x]m×m
n,2d . The SOS cone of (R[x]n,d ⊗

R
m, R[x]n,2d ⊗ S

m, ·⊗ �̄) corresponds to the polynomial matrices that can be written
as

∑
i∈�1..N�mi (x)mi (x)� with mi (x) ∈ R[x]m for all i ∈ �1..N� [15,Section 4.3],

which is exactly KSOSPSD. Equivalently, a vectorized representation of KSOSPSD can
be characterized as the SOS cone of (RL ⊗ R

m, R
U ⊗ S

m, λ ⊗ �̄). We can think of
R

L ⊗ R
m as R

L×m and we can think of R
U ⊗ S

m as a subspace of R
U×m×m that

represents the coefficients of symmetric polynomial matrices.
Likewise, the algebra we are interested in for a functional representation of KSOS �2

is the tensor product of (R[x]n,d , R[x]n,2d , ·) with (Rm, R
m, ◦). We can think of

R[x]n,d ⊗ R
m and R[x]n,2d ⊗ R

m as R[x]mn,d and R[x]mn,2d respectively. The SOS
cone of the tensor product of these algebras then corresponds to KSOS �2 due to
Eq. (2.7). A vectorized representation of KSOS �2 may be characterized as the SOS
cone of (RL ⊗ R

m, R
U ⊗ R

m, λ ⊗ ◦). We can think of R
U ⊗ R

m as the coefficients
of polynomial vectors, represented in R

U×m .

3.1 Lifting operators for SOS-PSD and SOS-L2

The lifting operator of (A, B,�), when A and B are finite dimensional, is defined
by Papp and Alizadeh [15] as the function Λ� : B → S

|A| satisfying 〈a1,Λ�(b)a2〉A
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= 〈b, a1 � a2〉B for all a1, a2 ∈ A, b ∈ B. This leads to the following descriptions of
K� and K ∗� [15,Theorem 3.2]:

K� = {s ∈ B : ∃S  0, s = Λ∗�(S)}, K ∗� = {s ∈ B : Λ�(s)  0}. (3.3)

Recall that in order to use either K� or K ∗� in a generic interior point algorithm,
we require efficient oracles for a membership check and derivatives of an LHSCB of
K� or K ∗� . If Λ�(s) is efficiently computable, Equation (3.3) provides a membership
check for K ∗� . Furthermore, an LHSCB for K ∗� is given by s 
→ − logdet(Λ�(s)) with
barrier parameter |A| due to the linearity of Λ� [14,Proposition 5.1.1]. The following
lemma describes how to compute Λ�(s) for a tensor product algebra.

Lemma 3.1 [15,Lemma 4.1]: If w1 ∈ B1 and w2 ∈ B2, then:

Λ�1⊗�2(w1 ⊗ w2) = Λ�1(w1) ⊗K Λ�2(w2). (3.4)

Let us define ⊗ : R
U × S

m → R
U×m×m such that (u ⊗ V)i, j,k = ui Vj,k and

let us represent the coefficients of a polynomial matrix by a tensor S ∈ R
U×m×m .

Then we may write S = ∑
i∈�1..m�, j∈�1..i�Si, j ⊗Ei, j , where Ei, j ∈ R

m×m is a matrix

of zeros and ones with Ei, j = E j,i = 1 and Si, j ∈ R
U are the coefficients of the

polynomial in row i and column j . Applying Lemma 3.1, the lifting operator for
KSOSPSD, ΛSOSPSD : R

U×m×m → S
Lm is:

ΛSOSPSD(S) = Λλ⊗�̄(S) = Λλ⊗�̄(
∑

i∈�1..m�, j∈�1..i�Si, j ⊗ Ei, j ) (3.5a)

= ∑
i∈�1..m�, j∈�1..i�ΛSOS(Si, j ) ⊗K Ei, j . (3.5b)

The output is a block matrix, where each L × L submatrix in the i th group of
rows and j th group of columns is ΛSOSPSD(S)i, j = ΛSOS(Si, j ) for all i, j ∈ �1..m�.
The adjoint operator Λ∗

SOSPSD : S
Lm → R

U×m×m may also be defined blockwise,
Λ∗
SOSPSD(S)i, j = Λ∗

SOS(Si, j ) for all i, j ∈ �1..m� where Si, j ∈ R
L×L is the (i, j)th

submatrix in S. Note that the Hessian of s 
→ − logdet(ΛSOSPSD�(s)) can be evaluated
in O(LU 2m3) time, which is implemented in the Hypatia solver [4].

Likewise, we use a tensor s ∈ R
U×m to describe the coefficients of a polynomial

vector, and write si ∈ R
U to denote the vector of coefficients of the polynomial in

component i . Applying Lemma 3.1 again, we obtain the (blockwise) definition of the
lifting operator for KSOS �2 , ΛSOS �2 : R

U×m → S
Lm :

ΛSOS �2(s)i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ΛSOS(s1) i = j

ΛSOS(s j ) i = 1, j �= 1

ΛSOS(si ) i �= 1, j = 1

0 otherwise

∀i, j ∈ �1..m�, (3.6)
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where ΛSOS �2(s)i, j ∈ S
L is the (i, j)th submatrix of ΛSOS �2(s). Thus ΛSOS �2(s) has a

block arrowhead structure. The output of the adjoint operator Λ∗
SOS �2

: S
Lm → R

U×m

may be defined as:

Λ∗
SOS �2

(S)i =
{∑

j∈�1..m�Λ
∗
SOS(S j, j ) i = 1

Λ∗
SOS(S1,i ) + Λ∗

SOS(Si,1) i �= 1
∀i ∈ �1..m�, (3.7)

where Λ∗
SOS �2

(S)i ∈ R
U is the i th slice of Λ∗

SOS �2
(S) and Si, j ∈ R

L×L is the (i, j)th
block in S for all i, j ∈ �1..m�.

4 Efficient barriers for SOS-L2 and SOS-L1

As for K ∗
SOSPSD and K ∗

SOS �2
, we show that a barrier for K ∗

SOS �1
can be obtained by

composing a linear lifting operator with the logdet barrier. This is sufficient to opti-
mize over KSOSPSD, KSOS �2 and KSOS �1 without high dimensional SDP formulations.
However, for K ∗

SOS �2
and K ∗

SOS �1
we can derive improved barriers by composing non-

linear functions with the logdet barrier instead. We show that these compositions are
indeed LHSCBs.

4.1 SOS-L2

Recall Eq. (3.3) suggests that checking membership in K ∗
SOS �2

amounts to check-
ing positive definiteness of ΛSOS �2(s) with side dimension Lm. This membership
check corresponds to a straightforward LHSCB with parameter Lm given by s 
→
− logdet(ΛSOS �2(s)). We now show that by working with a Schur complement of
ΛSOS �2(s), we obtain a membership check for K ∗

SOS �2
that requires factorizations of

only two matrices with side dimension L and implies an LHSCB with parameter 2L .
Let Π : R

U×m → S
L return the Schur complement:

Π(s) = ΛSOS(s1) − ∑
i∈�2..m�ΛSOS(si )ΛSOS(s1)−1ΛSOS(si ). (4.1)

By Eqs. (3.3) and (4.1):

K ∗
SOS �2

= {s ∈ R
U×m : ΛSOS �2(s)  0} = cl{s ∈ R

U×m : ΛSOS �2(s) � 0}
= cl{s ∈ R

U×m : ΛSOS(s1) � 0,Π(s) � 0}. (4.2)

Equation (4.2) describes a simple membership check. Furthermore, the function F :
R
U×m → R defined by:

F(s) = − logdet(Π(s)) − logdet(ΛSOS(s1)) (4.3a)

= − logdet(ΛSOS �2(s)) + (m − 2) logdet(ΛSOS(s1)), (4.3b)

is a 2L-LHSCB barrier for KSOS �2 .
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Theorem 4.1 The function F defined by Equation (4.3) is a 2L-LHSCB for K ∗
SOS �2

.

Proof It is easy to verify that F is a logarithmically homogeneous barrier, so
we show it is a 2L-self-concordant barrier for K ∗

SOS �2
. We first show that

F̂ : S
L++ × (RL×L)m−1 → R defined as F̂(X1, . . . ,Xm) = − logdet(X1 −

∑
i∈�2..m�XiX

−1
1 X�

i ) − logdet(X1), is a 2L-self-concordant barrier for the cone:

Km
�2

= cl
{
(X1, . . . ,Xm) ∈ S

L++ × (RL×L)m−1 : X1 − ∑
i∈�2..m�XiX

−1
1 X�

i � 0
}
.

(4.4)

We then argue that F is a composition of F̂ with the linear map (s1, . . . , sm) 
→
(ΛSOS(s1), . . . ,ΛSOS(sm)) and K ∗

SOS �2
is an inverse image of Km

�2
under the same

map. Then by Nesterov and Nemirovskii [14,Proposition 5.1.1] F is self-concordant.
Let � = S

L+ × (RL×L)m−1 and G : int(�) → S
L be defined as:

G(X1, . . . ,Xm) = X1 − ∑
i∈�2..m�XiX

−1
1 X�

i . (4.5)

Let us check that G is (SL+, 1)-compatible with the domain � in the sense of
[14,Definition 5.1.1]. This requires that G is C3-smooth on int(�), G is concave
with respect to S

L+, and at each point X = (X1, . . . ,Xm) ∈ int(�) and any direction
V = (V1, . . . ,Vm) ∈ S

L × (RL×L)m−1 such that −X1 � V1 � X1, the directional
derivatives of G satisfy:

d3G
dX3 [V,V,V] � −3 d2G

dX2 [V,V]. (4.6)

Let V ∈ S
L × (RL×L)m−1. It can be checked that d3G

dX3 is continuous on the domain
of G and we have the directional derivatives:

d2G
dX2 [V,V] = −2

∑
i∈�2..m�(XiX

−1
1 V1 − Vi )X

−1
1 (XiX

−1
1 V1 − Vi )

�, (4.7)

d3G
dX3 [V,V,V] = 6

∑
i∈�2..m�(XiX

−1
1 V1 − Vi )X

−1
1 V1X

−1
1 (XiX

−1
1 V1 − Vi )

�. (4.8)

Since X1 � 0 in int(�), − d2G
dX2 [V,V]  0 and so by Nesterov and Nemirovskii

[14,Lemma 5.1.2], G is concave with respect to S
L+. It remains to show that (4.6)

is satisfied. Since the directional derivatives decouple by each index i in the sum,
it is sufficient to show that the inequality is satisfied for each i ∈ �2..m�. For this,
it is sufficient that 6X−1

1 V1X
−1
1 � −3 × −2X−1

1 for all −X1 � V1 � X1, which
follows since X1 is positive definite on int(�). Now by [14,proposition 5.1.7], F̂ is a
2L-LHSCB. The same is true for F by composing F̂ with a linear map. ��

The Hessian of F can be evaluated in O(LU 2m2) time, which is implemented in
Hypatia.
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4.2 SOS-L1

By combining Eqs. (1.2) and (2.10), the KSOS �1 cone admits the semidefinite repre-
sentation:

KSOS �1 =

⎧
⎪⎨

⎪⎩

s ∈ R
U×m : ∃S1,S2,+,S2,− . . . ,Sm,+,Sm,− ∈ S

L+,

s1 = Λ∗
SOS(S1) + ∑

i∈�2..m�Λ
∗
SOS(Si,+ + Si,−),

si = Λ∗
SOS(Si,+) − Λ∗

SOS(Si,−) ∀i ∈ �2..m�

⎫
⎪⎬

⎪⎭
. (4.9)

Its dual cone is:

K ∗
SOS �1

=
{
s ∈ R

U×m : ΛSOS(s1 + si )  0,ΛSOS(s1 − si )  0 ∀i ∈ �2..m�
}
.

(4.10)

Equation (4.10) suggests that checking membership in K ∗
SOS �1

amounts to checking
positive definiteness of 2(m − 1) matrices of side dimension L . This membership
check corresponds to a straightforward LHSCB with parameter 2L(m − 1) that is
given by s 
→ −∑

i∈�2..m� logdet(ΛSOS(s1 + si )ΛSOS(s1 − si )). We now describe a
membership check for K ∗

SOS �1
that requires factorizations of only m matrices, and

corresponds to an LHSCB with parameter Lm.

Lemma 4.2 The set {X ∈ S
L+,Y ∈ S

L : −X � Y � X} is equal to K 2
�2

= cl{X ∈
S
L++,Y ∈ S

L : X − YX−1Y � 0}.
Proof For inclusion in one direction:

cl{X ∈ S
L++,Y ∈ S

L : X − YX−1Y � 0} (4.11a)

=
{
X ∈ S

L+,Y ∈ S
L : X Y

Y X  0, X −Y
−Y X  0

}
(4.11b)

⊆
{
X ∈ S

L+,Y ∈ S
L : 2v�Xv ± 2v�Yv ≥ 0, ∀v ∈ R

L
}

(4.11c)

= {X ∈ S
L+,Y ∈ S

L : X + Y  0,X − Y  0}. (4.11d)

For the other direction, suppose−X ≺ Y ≺ X. ThenX � 0,Y+X � 0,X−Y � 0.
Note that (Y + X)X−1(X − Y) = X − YX−1Y is symmetric. Due to Subramanian
and Bhagwat [18,Corollary 1], this product of three matrices also has nonnegative
eigenvalues. We conclude that −X ≺ Y ≺ X implies X � 0 and X − YX−1Y  0.
Since −X � Y � X = cl{−X ≺ Y ≺ X}, taking closures gives the result. ��

By Lemma 4.2 we can write the dual cone as:

K ∗
SOS �1

= cl

{
s ∈ R

U×m : ΛSOS(s1) � 0,

ΛSOS(s1) − ΛSOS(si )ΛSOS(s1)−1ΛSOS(si ) � 0,∀i ∈ �2..m�

}

.

(4.12)
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Theorem 4.3 The function F : R
U×m → R given by:

F(s) = −∑
i∈�2..m� logdet(ΛSOS(s1) − ΛSOS(si )ΛSOS(s1)−1ΛSOS(si )) −

logdet(ΛSOS(s1))
(4.13)

is an Lm-LHSCB for K ∗
SOS �1

.

Proof It is easy to verify that F is a logarithmically homogeneous barrier, and we
show it is an Lm-self-concordant barrier. As in Theorem 4.1, we define an auxiliary
cone:

Km
�∞ = {(X1, . . . ,Xm) ∈ S

L+ × (RL×L)m−1 : (X1,Xi ) ∈ K 2
�2

∀i ∈ �2..m�}. (4.14)

Let F̂ : S
L++ × (RL×L)m−1 → R be defined as F̂(X1, . . . ,Xm) = −∑

i∈�2..m� logdet

(X1 − XiX
−1
1 X�

i ) − logdet(X1). We argue that F̂ is an Lm-self-concordant barrier

for Km
�∞ . F is a composition of F̂ with the same linear map used in Theorem 4.1 and

self-concordance of F then follows by the same reasoning.
Let � = S

L+ × (RL×L)m−1 and H : int(�) → (SL+)m−1 be defined by:

H(X1, . . . ,Xm) =
(
X1 − X2X

−1
1 X�

2 , . . . ,X1 − XmX
−1
1 X�

m

)
. (4.15)

We claim that H is ((SL+)m−1, 1)-compatible with the domain �. This amounts to
showing that for all i ∈ �2..m�, the mapping Hi : S

L++ × R
L×L → S

L , Hi (X) =
X1 −XiX

−1
1 X�

i is (SL+, 1)-compatible with the domain S
L+ ×R

L×L (the requirements
for compatibility decouple for each i). The latter holds since Hi is equivalent to
the function G from Theorem 4.1 with m = 2. Then by Nesterov and Nemirovskii
[14,Lemma 5.1.7], F̂ is an Lm-self-concordant barrier. ��

The Hessian of F can be evaluated in O(LU 2m) time, which is implemented in
Hypatia. Note that we rely on an analogy of a representation for the �∞-norm cone
(see [4,Section 5.1]) in Eq. (4.12). From this we derive an LHSCB that is analogous
to the �∞-norm cone LHSCB. On the other hand, we are not aware of an efficient
LHSCB for its dual, the �1-norm cone, so we cannot use the same technique to derive
an LHSCB for the dual of a polynomial analogy to the �∞-norm cone.
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