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ABSTRACT

A methodology for the design of precipitation net-

works is formulated. The network problem is discussed in

its general conception and then focus is made in networks

to provide background information for the design of more

specific gaging systems. The rainfall process is described

in terms of its correlation structure in time and space. A

general framework is developed to estimate the variance of

the sample long-term mean areal precipitation and mean areal

rainfall of a storm event. The variance is expressed as a

function of correlation in time, correlation in space, length

of operation of the network and geometry of the gaging array.

The trade of time-vs-space is quantitatively developed and

realistic examples are worked out showing the influence of

the network design scheme in the variance of the estimated

values.
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1. THE NETWORK PROBLEM

The planning, development and management of water re-

sources requires information about a large quantity of physical,

economical and social factors. There is always an amount of un-

certainty associated with the data which engineers and planners

have to use for water resource problems, and it is this uncertain-

ty what causes the question of how much information is enough and

what kind of data do we need dealing with real life problems.

The answer will always depend on the particular objectives which

are being pursued and this is why it is so difficult to provide

guidelines for the design of data collection programs. Data sam-

pling activity should never be divorced from a preplanned program

of interpretation and modelling of the system at hand. The choice

of the variables to be measured, their sampling locations and sam-

pling rates all depend upon the objectives of the programs, the

type of models to be used to synthesize or to represent the system

and upon the sensitivity of the decision making process to errors

in the input information. Moreover, the validity of the informa-

tion itself is determined by the conditions of sampling, the accu-

racy of the measurements and the time-space variability of the

phenomena being sampled.

The U.S. Office of Water Data Coordination has defined

three levels of information in regard to Data Network Design.

Level 1 provides a base level of information for wide regional or
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national planning to be used for resource inventory and as background

information for the design of more intensive and specific network

systems. Level 2 concerns networks called to provide general water

resources planning data and Level 3 is restricted to data collection

programs for specific planning and managing activities (Rodda et al,

1969).

Levels 1 and 2 of information can be classified in what we

call systems to provide "Regional Estimation" type of data.

These networks provide the necessary data which are included in re-

connaissance and preliminary exploration type of programs.

Reconnaissance involves a general review of the hydrologic charac-

teristics of large areas which are considered as a single major unit

in a first stage of development planning. Specifically, reconnais-

sance should provide qualitative information in regard to cha-

racteristics like:

1. Amount of rainfall over the area.

2. Character of the streams existing in the region.

3. Existance of possible sources of groundwater.

Preliminary exploration, on the other hand, is oriented towards pro-

viding the first quantitative data about the hydrologic characteris-

tics of the region like:

1. Monthly averages of rainfall over watersheds and sub-

regions of the general area.

2. Gaging of the major streams detected in the reconnais-

sance stage.
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3. Major trends existing in precipitation and ground water

resources.

We call these Regional Estimation type of data because it

will provide the planner with spatial rainfall averages and primary

type of streamf low gaging stations from which a regionalization ap-

proach can be undertaken to hedge against the development of unanti-

cipated needs.

Level 3, because of its same nature, is oriented towards the

collection of accurate information regarding hydrologic characteris-

tics influencing a preplanned program of economic development for the

area. At this level of data collection we are interested not only

in "Regional Estimation" type of problems but also in the "local esti-

mation" of engineering variables at specific sites and subregions.

There exists a clear difference in the design process for data

collection systems corresponding to Levels 1 and 2 and those under

Level 3. When working in Level 3 type networks we have available a

forecast of the economic development and relationships between the

errors of estimate of the hydrological characteristics and the losses

incurred in the developments envisaged. On the basis of this infor-

mation it is possible to use mathem. programming techniques to ob-

tain the optimum variation of the network characteristics during the

planning period.

It is much more difficult to set up an economic optimization

objective for the natural regime network, in this case the informa-

tion is only loosely related to economic factors and the marriage be-
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tween the sampling activity and the preplanned program of inter-

pretation may be a difficult one to accomplish.

Two basic questions are involved in the design of data col-

lections systems:

1. How much effort should be expended in the network and

how should it be allocated to return the most in-

formation?

2. What inferences should be drawn from data collected by

the network and what are the uncertainties in those in-

ferences?

As Baecher (1972) discusses comprehensively, the first question in-

volves statistical decision models; the second involves statistical

inference. To approach the first question in a quantitative manner

it is necessary to develop an analytical decision model of the net-

work design process.

It is clear nevertheless, that inference and strategy deci-

sions should not be made independent processes. Optimal actions will

depend on the inferences which can be drawn from the collected data.

When designing a network to collect Level 3 type of informa-

tion it is not very difficult to set up economic optimization objec-

tives which usually come to the fact that marginal benefits produced

by additional data should never be less than the cost to collect the

data itself. There is a fair amount of work related to this topic

in the hydrologic literature (Tschannerl, 1970; Dawdy et al., 1970;

Moss, 1970; Duckstein and Kisiel, 1971; Davis and Dvoranchik, 1971;
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etc.). The appropriate line of attack in these cases is based on

Bayesian Decision Theory. This approach consists of the following

steps (Davis and Dvoranchik, 1971):

1. Define the decision to be made and the possible alter-

natives.

2. Select the utility function.

a) define goals

i) select state variables (arguments of goal func-

tion).

ii) develop stochastic properties of state variables.

b) establish time preference

c) include risk aversion

3. Making the decision.

a) evaluate present knowledge (outcomes of alternatives

and statistics of these outcomes).

b) expected value of goal function for each alternative.

c) select alternative with largest b).

4. Analysis of uncertainties.

a) determine expected opportunity loss due to uncer-

tainty

b) evaluate data collection programs

i) determine expected reduction in expected oppor-

tunity loss with additional data.

ii) determine cost of obtaining additional data.

As pointed out by Davis and Dvoranchik, information is valuable only

if its possession may cause a change of decision or action and its
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value is measured by the economic gain associated with the change

of action.

A much less defined problem is the network design for areas

where economic development is not foreseen - at least with enough

clarity- within the planning horizon: level 1 and part of level 2

types of information. When we try to pursue similar lines of attack

as used for level 3 of information, a dilemma arises: In most cases

we know neither a decision space (for design) nor a utility function.

The many uses to which level 1 of hydrologic information will be ap-

plied can not be foreseen at the time the data is being collected and

even if they could be foreseen, there would be so many uses and so

varied in character that a decision formulation would be unfeasible

to construct.

Thus, optimizing allocations in a well defined Bayesian frame-

work is not possible when designing networks for the base level of in-

formation. The planner then is left with two basic principles for

level 1 data collection programs:

1. A network operated on a fixed budget should be designed

to minimize the error of estimation of the hydrologic

variables involved.

2. A network operated on a criteria of minimum acceptable

accuracy should be designed for a minimum cost.

Any decision formulation which will lead us to optimizing allocations

in this type of network will have to include either one of two param-

eters:

1. An estimate of the error made by the data collection sys-
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tems, or

2. A measure of the amount of information collected by the

system.

The approach to study those two parameters is different if we wish

to set up a network which either

1. will allow the engineer to construct point estimates of

a hydrologic characteristic at an ungaged site, or

2. will allow the engineer to estimate mean values of a

hydrologic variable over a whole region.

The first case is that of stream gaging where for ungaged sites the

selection of those that are to be gaged can be approached by means of

a regional analysis of the information at the stations in the existing

network or in similar systems. This type of analysis has been set

forth by Matalas (1969) and Matalas and Gilroy (1968) and is based on

a regression scheme that relates the means of the existing stations to

physiographic and meteorological parameters. Using the same regres-

sion it is possible to obtain estimates of the mean values at ungaged

sites.

The particular sites to be gaged are then those for which the

variances of the estimated means are the largest. There are two main

difficulties with this approach:

A. There is uncertainty about the transferability of the re-

gression relation from gaged sites to ungaged sites.

There is little we can do about this except to use the

best physical criteria to justify the transfer.

B. The variance of the means of the ungaged sites consists
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of two components, namely, the spatial variation among

and the time variation within the means of the gaged

sites. The relative magnitudes of these components have

not been found but if we could express them mathema-

tically it would be possible to set forth an optimal

scheme for stream gaging.

The second case we mentioned previously is that where the engineer

needs a network to estimate mean values of a hydrologic variable

over a certain region. This is typically the case of precipita--

tion networks.
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2. THE RAINFALL PROCESS

Precipitation is normally the most variable hydrologic

element over a territory and its characterization is most commonly

needed for water-balance studies and for flood forecasting.

In water-balance studies what is needed is the long-term

mean areal precipitation during a certain interval of time. The

interval of time depends mainly on the variability of rainfall, and

it may be monthly, seasonal or annual depending of how representa-

tive are the measures in the time scale; in other words, it depends

on the time scale of stationarity of the phenomenon and the use

that is going to be made of the data.

In flood forecasting studies, precipitation data is common-

ly used for the construction of area-depth-duration curves and as

input to rainfall-runoff types of models. In these cases what is

needed is an estimation of the contribution of a particular type

of storm to the area in consideration; this will be called mean

areal rainfall for an event.

Long-Term Mean Areal Rainfall. - We will consider the rainfall

process as a multidimensional random field, f(x.,t). function of

the spatial coordinates x. and the time t. For the determination
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of the mean value of this process, the correlation structure of

the field both in space and time is of capital importance. For

this particular problem it will be assumned that the process is

stationary and furthermore that its correlation function is se-

parable in terms of its spatial and temporal structure. The

second assumption means that the covariance structure of

f(x..,t) can be written in the form

*
cov[f (x.,t), f (x.,,t')I = F 2 r(x.- x.,) - r (t-t') (1)

1 p 1 1

where

2 
2 = point variance of f(x.,t)

r(x.-x.,) = spatial correlation structure
1 1

*
r (t-t') = temporal correlation structure

This assumption seems a normal one when examining that long term

areal mean values are estimated by first forming a spatial average

during each interval of time considered (years, months, etc.) and

then adding them up in a discrete fashion.

The assumption of weakly stationarity means that

a) the expectation is a constant, and

b) the covariance function exists and is only a function of

the difference between the spatial and temporal coordina-

tes and not of the position or time itself.

This limits the applicability of our techniques to not too large areas
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and furthermore to regions which can be considered fairly uniform in

what respect to hydrologic behavior ruling out or neglecting important

factors like orographic effects.

Matheron (1965) has shown that the assumption of stationarity

is in effect stronger than necessary and we may change it to what he

calls an intrinsic hypothesis:

The increments of the random function f(x), e.g. f(x+H) -

- f(x), are weakly stationary but not necessarily the function f(x) it-

self.

The importance of this change of hypothesis is, we believe,

two-branched:

1) We may consider and adequately deal with a change of the mean value

that can be considered as lineal drifts of the type

n
E[f(x+h) - f(x)] = ah = E a. h. (2)

i. 1 1i=1

(As a matter of fact, Yaglom (1962) gives Equation 2 as the defi-

nition itself of a process with stationary increments).

2) As shown by Yaglom (1962) it is appropriate to choose as the basic

characteristic of f(x) a function of the type E ff(u) - f(v)1 2

and NOT the correlation function which may not even exist.

The theory of processes with stationary increments is quite developed and

up to now has mostly been used in turbulence. In the hydrologic problem

we are dealing with, the importance of the first point (Equation 2) is

self-evident, e.g. we may consider linear changes of mean rainfall with
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elevation. The second point is also very important but not self evident

in respect to hydrology. We will now present a brief and general dis-

cussion of its importance.

If our spatial process f(x) is not stationary and we act as if

it were we will estimate from the data "something" that will be named

correlation function and which may'conduct us to non-sensical results. A

good example of this is presented by Matheron in a recent paper (1970):

Let us denote by f(x) a Brownian motion on a straight line

- 0 < t < Co, a realization of which is known as interval 0 < t < L.

f(t) is a process with stationary increments which DOES NOT have a sta-

tionary covariance. If we proceed mechanically with our common esti-

mating procedures we will:

1) Estimate m = E [f(t)] by means of

1 f(t) dt, and
0

2) Estimate the autocovariance by means of

C (h) = L. C (t+h,t) dt
L-hf

0

where

*

C (x,y) = [f(x) - f] - [f(y) - f]

The problem is that neither m nor the covariance function really

exist!

Matheron (1970) shows that we will further get

* -1 -4h+2 h2

E [C (h)] - L - - h +
3 3 3 L
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which is absolute nonsense, as seen by the value of variance

* 1
E[C (0)] = - L

3

which is truly infinite and which we have "found" to depend only

on the length of the sample L.

The conclusion is that if our process is non-stationary

but can be considered one of stationary increments we should not try

to characterize it with the covariance function but with a function

of the type proposed by Yaglom (1962).

Matheron (1965) uses as characterizing function the half-

variogram:

Y (h) -2Var [f(x+h) - f(x)] (3)

Research needs to be performed to quantitatively assess the poten-

tiality of this approach for hydrologic sampling problems. Its pro-

mise is great because it will allow the engineer to deal with data

processes that are changing in space.

The temporal correlation structure of rainfall in terms of

years, months or weeks appears to be quite weak and can be approximated

by a simple Markovian scheme:

r (t-t') = (4)

Here p denotes the first autocorrelation coefficient which is prac-

tically always less than 0.250.

The spatial correlation structure, r(x.- x.,) in Equation

1 poses a different problem. The available data is not sufficient

for statistical discrimination between different kinds of functions
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which could represent the spatial correlation structure. Two problems

may be distinguished in this aspect:

1) what kind of function do we use to represent the spatial

correlation? and

2) how do we fit the parameters of that function with uneven-

ly spaced areal data?

Both questions are very important and we will deal with the

second one later in this paper. With respect to the first question it

has been common to look for correlation functions which decay as a

function of distance; one of this type is the exponentially decaying

function,
1

r(x,y) = e-h (x2+y 2), 2  (5)

which for an isotropic process can be written as

r(v) = e-hv (6)

where v represents the distance between any two points. From a con-

ceptual point of view it can be shown (Matern, 1947) that Equation 5

corresponds to a process which in its simplest form can be written as

3'

)22 2 ] 4

+ - o2J f(xy) = C(x,y) (7)

where E(x,y) represents an uncorrelated two-dimensional process.

Whittle (1954) points out that it is difficult to visualize a physical

mechanism which would lead to such a relation.
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If we are interested for example in relating rainfall at a

point in space f(x,y) symmetrically to rainfall at all points around

(x,y), the equation to use is

2 2

+ - k f (x,y) = s(x,y)

which leads to the covariance function

r(v) = b v KI (by) (8)

where K denotes a modified Bessel function, b is a constant, and

v represents the distance between points.

The correlation function (8) may be regarded as the "elemen-

tary correlation in two dimensions, similar to the exponential eaxi

in one dimension. Both correlation curves are monotone decreasing, but

Equation (8) differs in that it is flat at the origin, and that "its

rate of decay is slower than exponential" (Whittle, 1954).

Figure 1 shows a comparison between the covariance functions

e and v K1 (v). The process with covariance function e is com-

putationally easy but it is thought to be "too continuous" to be realis-

tic (Matern, 1960). In fact, it is deterministic along any straight

line in a plane (Karhunen, 1952).

All the developments of this paper will be made for both cor-

relation functions given by Equations 6 and 8. It is important in

the design of rainfall networks to develop a feeling for the range of

variation existing in the parameters of the correlation function.

Eagleson (1967) presents the correlation structure as a function of
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2
distance for a 1250 m2 catchment in Australia. Using annual data

with thirteen raingages and 17 years of data he finds a correlation of

0.5 for a distance of 19 miles. This will correspond to values

h = 0.0365 mi and b = 0.0684 mi~

in Equations 6 and 8 respectively.

Stol (1972) working with monthly data in The Netherlands

shows correlation decays which are much faster for July than for

January.

h (January) = 0.0010 Km~ h (July) = 0.0096 Km_1

Hendrick and Comer (1970) using daily precipitation data during the

months of June-August (1961-1966) in northern Vermont show a strong

decay in correlation which produces r = 0.51 at a distance of 5

miles. This corresponds to

h = 0.135 mi~ and b = 0.26 mi'

These examples are shown as kind of smoothly, well-fitted types of

decay but reality is not as simple as this. A homogeneous area of

30.000 Km with 26 raingages was chosen in central Venezuela in order

to investigate correlation decay as function of distance. The region

is shown in Fig. 2. It was found that although it is true that smooth

correlation structures can be "fitted" to the data, it makes a great dif-

ference from the point of view of network design how the actual fitting

was performed. Using a sophisticated scheme - to be described later in

the paper - which takes into account both the relative position of the

stations and the length of the records, it was estimated that
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r(10 Km) = 0.942 and r(50 Km) = 0.533

Those values will render exponentially decaying factors (Equation 6)

of

h(10 Km) = 0.0060 Km , h(50 Km) = 0.012 Km 1

which are quite different, and as will be seen later would require

very different network densities when maintaining constant the re-

quired precision and the length of operation of the network. The

question is then, what h, or b, to use?

The answer intrinsically depends on the size of the area

being analyzed. Thus, if the area is small, the correlation in space

should be fitted with the criterion of preserving estimated correla-

tion coefficients for a short distance. The opposite will be true when

we deal with a large region. A typical distance which characterizes

the size and shape of the area being analyzed is the mean distance be-

tween two randomly chosen points in the region; this we will define

as the "characteristic correlation distance".

Gosh (1951) derives the distribution of the distance between

two points chosen at random in a plane convex region. The region is de-

noted by S, and its area and perimeter by A and P respectively.

When S is a rectangle with sides A1 and A2, the frequency function

can be written as

1 f (v/ /A, VA1 /A2 ) (9)

where v is the distance among the points and

f(w,a) = 2w[fI(w,a) + f2(wa,a) + f2(w/a,1/a)]
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with

fr+w2 - 2w(a+l/a) 0 < w < a2+a-2

f 1(W a)=

0 otherwise

2 /w2 -1 - 2 cos~ (1/w) - a (w-l)2 1 < w < / + a4

f2(w,a) =

0 otherwise

Matern (1960) has used Equation 9 to compute the mean dis-

tance between two randomly chosen points in seven regions of area 1:

Circle 0.5108 Rectangle a = 2 0.5691

Hexagon 0.5126 Rectangle a = 4 0.7137

Square 0.5214 Rectangle a. = 16 1.3426

Equilateral triangle 0.5544.

When working with a region of area A it is only necessary

to adjust those factors with proportionality coefficients made up of

the ratio of two corresponding distances in the figure of area A and

the figure of unit area. Thus in the region of Central Venezuela the

zone can be approximated by a rectangle with sides ratio equal to 2;

with an area of 30.000 Km2 this gives a diagonal of 268 Km. A unit

area rectangle of the same shape has a diagonal of 1.58 and thus the

characteristic correlation distance is in this case

0.5691 x 268
= 97Km.

1.58
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We need then to fit the correlation structure in space pre-

serving estimated correlation coefficients for distances of the order

of 100 Km, which were found to be equal to 0.21. This in turn produces

h = 0.0156 Km b = 0.0234 KmI

which will be the correlation parameters to be used later in this paper

when designing a network for this particular region, The watershed

analyzed by Eagleson (1967) has an area of 1250 mi 2 and can also be

approximated by a rectangle with a. = 2. This gives a diagonal of 56 mi.

and a characteristic correlation distance of 20 mi., which in this case

agrees with Eagleson's correlation radius r of 19 miles, defined to

be the distance at which the correlation function drops to 0.5.

Areal Mean for Rainfall Event.-

between the mean rainfall P
a

(Eagleson, 1970)

Generally speaking,the difference

over an area about the storm center

1. increases with decrease in the total rainfall depth.

2. decreases with increasing duration.

3. is greater for convective and orographic precipitation

than for cyclonic.

4. increases with increasing area.

For convective storms (in Arizona), Woolhiser and Schwalen (1959)

have fitted the average areal rainfall distribution with the function

(10)P a/P (0) = 1 - [0.14/P (0)] A "'
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where P t(0) is the total depth in inches at the storm center, Pa

is the average depth over the circular area As (in square miles) sur-

rounding the center, and radial symmetry is assumed. Since

r

A =Trr2  and P = - 2ir P (r) dr

s a 2 I t

Eagleson (1967) gives Equation 10 in the form

P t(r)/P t(0) 1 - 0.72 (r/r ) (11)

where

r 1.73 P (0)
0 t

is the correlation radius already defined. The shape of the functions

given by Equations 6 and 8 suggests that they may be appropriate for

the description of the spatial correlation structure of a rainfall

event. It is necessary nevertheless to get an idea of the range of

variation of the parameters.

Fogel and Duckstein (1969) present data which show storm

center depths for convective rainfall in Arizona varying from 0.75 to

5 inches. This is equivalent to correlation radii from 1.30 miles

for the weaker storms up to 9 miles for the more intensive ones. These

values in turn produce correlation structures of the form

r(v) = e-0 .5 3 3v or r(v) = 0.93 v K 1 (0.93 v) (12)

for the storm with center depth of 0.75 inches and

-0 . 0v 
r kv) = e or r kv) = 0. 13 v YIk.jV (135)
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for the storm with center depth of 5 inches.

It will be shown later in this paper that Equations (12) and

(13) lead to quite different types of network, posing then the question

of what type of storm should be the commanding one when designing a

network for the determination of areal mean of rainfall events. This

question is tied up to the considerations made in the section entitled

"The Network Problem," where we noted the importance of relating the

network to the economic criteria involved with the problem at hand.

This point will be developed at length in a future paper by the authors.

It is also necessary to get an idea of the areal extension of

convective storms when in the process of designing a network. This has

been done using the relationship presented by Fogel and Duckstein

(1969)

-g 2
P (r) = P (0) er t (14)
t t

where t is a dispersion parameter given by

t = 0.27 e~4'*7 Pt(0)

We will arbitrarily fix the limit of the storm at a depth of 0.1

inchesobtaining in this manner areas of

A = 12 mi. 2 for P (0) = 0.75 in. and

2
A = 435 mi. for P (0) = 5.0 in.

For great cyclonic storms in the United States, Boyer (1957)

fitted the average areal rainfall distribution with the storm centered
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function

P (r) / p (0) = e (15)
t t

where the parameter a is given by Eagleson (1967) as

a = 1.68/r (16)
0

A typical isohyetal pattern for this type of storms is shown

in Figure 3 which shows the rainfall'produced on August 12/13, 1955,

in the Baltimore area by Hurricane Connie. This particular example

can be described with

Pt (0) = 8.50 in. and Pt (8.3 mi) = 7.0 in.

Using Equation 15 to compute "a" and Equation 16 to esti-

mate the correlation radius, a value of 73 miles is obtained for r .

This in turn corresponds to correlation structures of the type

r(v) = e~ 0 0
.' and r(v) = 0.016 v K 1(0.016 v) (17)

The areal extension of this type of storms is so large

- P t(r) = 0.5 in. correspond to A = 18.000 mi 2 - that it will cover

any region which we may consider homogeneous for the purpose of net-

work design.
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3. GENERAL FRAMEWORK FOR ESTIMATING LONG-TERM AREAL MEAN RAINFALL

Let us establish the following notation:

f(x.,t) difference between rainfall depth at the point of spatial coordi-

nates x. during year, month, season t, and the mean of the process

N number of statiorm in the network

T, number of years, months, seasons, the network is in operation

A, area in consideration.

The hydrologist wants to estimate

1 T'
9 im E f (xt) dx. (17)

TV->Ko AT? t=l A

by means of

N T

T . f (x.,t) = (18)
i=1 t=l

The precision of the estimation is measured by the variance of T:

N T .~' T'V 2T ~~im 1 1
Ef(x,t) - T AT A f(xi,t) dx (19)

- i=1 t=l t=l

We will prove now that the mean value given by Equation 17 has zero vari-

ance and therefore can be considered as a constant.

9im T' 2

E 1 E fA f(xt) dx =

T'+o AT' t=1

-im 1 T' T'
= E E1fx.t) f(x ,,t') dxi dx.

T'+x> A2T,2  t=1 t'=l Ai

Zim T' T' it-t'
21 2 2 z r(x - x ,) P dx dx.,

T'o A 2 P t= A JA
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where use has been made of Equations 1 and 4 of the second section

of the paper. We can now write the previous expression as

zim I

T <DA 2T, 2

2 [ p01a p E p
p t=1 -

T'-1
+ 2 E

t= 1
9

T'

E
t'I=t+1

t'-t
r (x.-x.,) dx.dx.,

A A

(20)

We have now that,

T' 10
pI

T'-1 T'
T' and E E

t=1 t'=t+1

T'-1

t=
+P 2 + .. .+P

Pt I-t

(21)

Calling

S = 1 + p + P2 + ... + pT'-t-1

and subtracting S - p S we can write

T'-t

1-0

and Equation 21 is equal to

T'-1 T'-t
E lP )

t= 1 I - P

Substituting Equation 22 in Equation 20 we obtain

9, m 2T 1+2 -a- [(T'-l)- 0T 1 K -P 1-P IA A r(x -x ,)dx dx.,

=0

P
- P

(1 - PT -1) (22)

(1_-p 1 ) ]
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In this manner without loss of generality we can consider

E[f(x.,t) = 0 and E[f2 (x.,t)] a 2

The variance of the regional mean P (Equation 19) is then given

by

1 T N -
Var[]= 2 E E_ E f (x ,t) 2 (23)

N2 T2 _t=1 i=1 1

The problem we face now is to evaluate Var P as a function of the

correlation structure of the process both in space and time, the

number of stations in the network, the sampling geometry of the net-

work and the length of operation of the stations. To this end we

write

-1 T N N
Var[P] = E 2 E f(x ,t) f(x t) +

N T t=li=1 i'=]

T-1 T N N
+ 2 E E E E f(x.,t) f(xi,t') =

t=l t'=t+l i=l 41=1

1 f[ N ~ T T-1 T ,

2 2  . T T- r(x.- x.,) L 1+2 E p (24)
N2 T2 p ~ 1'=l- t=1 t=1 t'= t+1

Let us now call

N N
Z E r(x.- x,)

F2(N) = ---1 (25)
2 ~ N2

and
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T T-i T ,
F (T) = Z I + 2 Z Z p

t=1 t=1 t'=t+l

t-1T + 2 T --1 - (1-pT-t)
t 1-p

TT2

T + 2 - [(T-1) - P- (1-p )]-P l-P (26)

T 2

Equation 24 can then be written as

Var[P] = C2 [F 1 (T)] [F 2(N)] (27)

where the variance of the regional mean is expressed as a function of

the point variance of the process multiplied by two reduction factors,

one of them F 2 (N) due to sampling in space and the other F 1 (T) due

to sampling in time.

F 1 (T) is independent of the number of stations and the spatial

properties of the process, it is only a function of the correlation in

time and the length of time the network has been in operation. Figure

4 shows F 1 (T) as function of p and T; when T = 1 year (montn,

season), the variance reduction due to temporal sampling is equal to 1

meaning tnat there is no reduction at all in the variance of the long-

term areal mean with respect to the point variance of the process.

The variance reduction due to spatial sampling F 2 (N) depends

on the correlation structure in space, the sampling geometry and the

number of stations. Three types of sampling schemes can be considered.
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Simple Random Samplin.- In this type of network, each station is

located with a uniform probability distribution over the whole space,

A, independently of the other stations.

Stratified Random Sampling.- In this case we assume our space a is

divided into a number of non-overlapping congruent strata a i- From

each stratum k points are chosen randomly where the raingages will

be located.

Systematic Sampling. - In this kind of scheme, the cluster of sampling

units forms some regular geometric pattern.

Simple random sampling and stratified sampling can be realis-

tic schemes for practical hydrologic purposes where we either distri-

bute the stations more or less randomly or divide the region in several

sub-areas of similar sizes where the position of the stations in each

sub-area is determined by conditions like accessibility, nearby popu-

lation centers, etc. Systematic sampling because of the practical prob-

lems and expenses it involves does not qualify as a realistic sampling

scheme in real world hydrology. We will therefore skip its study.

Variance Reduction Factor Due to Spatial Random Sampling.- We need

to evaluate

NN *
F 2 (N) - E Z r (x.- x.,) =

N N-i N

= -- E E r (o) + 2 E Z r(x.-x.,)
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since the 2nd term is a random variable, we will work with its expec-

ted value

F2 (N) = {N + N (N-1) E[r(x.- xv,) A]} (28)

where E[r(x.- x.i)IA] represents the expected value of the correla-
1 1

tion between two points randomly located on an area of size A. It de-

pends both on the shape of the area and the type of spatial correlation

structure which characterizes the process.

E[r(x.- x.,)IA] = r(v) f (v) dv (29)

J0

where r(v) represents the spatial correlation assumed to be isotropic

and f(v) is the frequency function of the distance v between two

randomly chosen points in the area A. R represents the largest dis-

tance existing in A. It was previously seen that f(v) is a function

of the shape of the area under study - see Equation 9 - but fortunate-

ly it varies little for the shapes normally found in nature; this can

be seen in the values of the mean distance between two randomly chosen

points given before for seven regions of area 1. Only for the rectangle

with a = 16 we can notice sizeable difference in values and this is

because in this case we are moving from a two-dimensional case to a

transect or one-dimensional space. Because of the previous reason we

will perform all our computations for a region of square shape which is

the simplest one to evaluate. Furthermore, we need a scheme to gene-

ralize the computations for different combinations of areas and correla-

tion parameters.
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Let us consider an area of size A on which we superimpose a

process with correlation parameter h (or b) equal to one. Equation

29 takes then the form

d

Sr(v) f (v) dv (30)

where d is the length of the diagonal of the square shaped region.

Let us analyze a similar region with area A/h where h is

the magnitude of the parameter of the correlation structure. Equation

29 comes now in the form

d/h

f r1 (v) fI(v) dv (31)

where d/h is the length of the new diagonal and we have to analyze

the form of r 1 (v) and f (v).

r 1 (v) is simply given by

r (v) = r(hv) (32)

and f1 (v) will be of the same form of f(v) but it is affected by

a factor of proportionality equal to 1/h which reflects the change

2
made when going from area A to A/h

1 f (v/h) = f(v)

or

f (v) h f (vh) (33)

Equation 33 can then be written as

d/h

r(hv) h f 
(hv) dv
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and making vh = v' we obtain

r(v') ' f(v') - dv' 
(34)

which is identically equal to Equation 30. In this manner we have

proved that an area of size A with a process with correlation param-

eter equal to 1 has the same expected value of the correlation be-

tween two randomly chosen points as a homologous area of size A/h2

over which is acting a process with correlation parameter h.

Thus, what remains constant is the product Ah2 if we want

to obtain the same value of

E[r (x. x.,) A]

Equation 28 was evaluated by calculating the integral given

by Equation 29 for a large range of values of Ah2 maintaining N

fixed and then varying N and repeating the procedure. The evaluation

of Equation 29 was performed numerically with the use of the expression

for f(v) given by Equation 9. Two sets of values were obtained, one

for each of the correlation structures given by Equations 6 and 8.

The results are presented in Figure 5 and 6 which will be

studied in detail later in their application to practical cases.

Variance Reduction Factor Due to Spatial Stratified Sampling.- We need

to evaluate

1 .1
F2 (N) = N2 [ E Z r(x- xi,)] =

i=l i'=l '

NC N

- N
2 .Z r(o) + Z r(x - x (35)

i= i,=i
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We will call now

xi, y two different points randomly located in the

same stratum

x., y., two different points randomly located in different

strata

Equation (35) becomes

i N -N
F2 (N) - N + Z Z r(x.- y,.-r(x,-y) (36)

2 ~i=1 i'=1 -

where the points in the 2nd summation are now divided into points in

different strata (1st term), and points in the same stratum (2nd term).

We can further write

1
F2 (N) = R [N + Wl- W2

where, taking expected values as before

-N N1
W = E [l E r (x.- yi,)

Since x and y,, are random variables with uniform distributions

1 1
- and -,
a a

N N f r(x.- v.,)
1 -i

W = a 2 dx. dy., (37)
1 . a. a., 2i=l12=1 1 1 a

a. and a., represent the area of the strata i and i' assumed to
1

be equal in size. Equation 36 is easily simplified when we notice that

the double summation in i and V' of the integrals over a. and a.,

gives in effect two integrals over the whole area A,
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= [ f r(x.-y.,)dx. dy, 1  A2E[r(x.-y,)JA](3
1 A JA 2  2

We will assume now one station per stratum and the area of

the stratum will be adjusted according to the number of stations in

order to meet this assumption. In this manner

W = N2E [r(x.- y.,)IA] (39)
1 1 1

Equation 39 can now be evaluated with the same procedure for Equation

29 and previously described in detail. The term W2 in Equation 36

is equal to

N
W = E r(x.- y.)

2 ~i=l .

And taking expected values as before,

W = E [r (x.- x.,) I (A/N)] (40)

where E[r(x.- x.,)I(A/l)] represents the expected value of the cor-
1 1

relation between two points randomly chosen in the area (A/N). Equa-

tion 40 can also be evaluated with the same procedure already described

for Equation 29.

Similarly then for the case of spatial random sampling, the

study of stratified sampling was made for a square region and moreover

the strata were assumed of square shape in order to avoid boundary or

frontier problems.

The results of this part of the analysis showing the variance

reduction factor due to spatial stratified sampling - Equation 36 -

are shown graphically in Figures 7 and 8.
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Figure 5, 6, 7, and 8 provide an analytical tool for

trading time-vs-space in the estimation of long-term spatial aver-

ages of precipitation. Their use in network design will be illus-

trated with two examples.
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4. TRADING TUE-VS-SPACE.

1) Central Venezuela Region. The area of approximately

30,000 Km 2 is shown in Figure 2. Its 26 raingages, the stations

with their mean annual precipitation values, the standard devia-

tions and the length of the records are given in Table 1. To start

with, it is necessary to adjust a correlation structure both in

time and space which will be representative of the whole region.

The parameter b to use in the correlation function vb K 1 (vb)

was estimated from the equation

N N k f(i'j) N N
fZ . f. = Z E [k (ij)- k.(ij) + 1]i~k3,kf 1

i=l j=1 k=k.(i,j) i=l j=l

v.. b K (v. .b) (41)

where

k.(i,j) represents the first - or initial - year for

which the records of both stations i and j

exist.

k f(i,j) represents the final year for which the records

of both stations i and j exist.

f is the standardized amount of rainfall during year k at
i,k

station i (could be also a monthly or seasonal

amount).



TABLE N* 1

Station Years Mean
No

St.Dev. Station Years Mean St.Dev. Station Years

or mm mm N* of mm mm N*
Record Record

Mean St.Dev.
of mm mm

Record

1445

1412

1269

1404

1500

1342

1328

1294

1144

19

20

21

22

23

24

25

26

1325

1252-

1269

1514

1462

1370

1429

1452

193 10 
52-64 221

43-71

56-71

50-71

44-71

58-71

53-71

61-71

61-71

54-71

193

131

234

127

156

189

234

248

195

1440

1341

1427

1318

1296

1308

1240

1255

1155

194

223

261

200

210

225

228

215

206

Description of Rainfall Data used in the Central Venezuela Example.

.Is-

58-71

55-71

55-65

51-71

56-71

55-71

53-71

48-71

54-71

Table 1 -

10

11

12

13

14

15

16

17

18

52-64

58-71

52-71

52-71

61-71

48-65

52-65

46-65

221

276

246

318

283

194

191

199
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v. stands for the distance between stations i and j.

N is the number of stations.

Equation 41 will yield of value of b where we have weighted all the

stations according to the length of their record. In this example, a

value of b was obtained equal to

-1
b = 0.0234 Km

As it was discussed previously in this paper, the characteristic corre-

lation distance is in this case about 100 Km which yields

r(100) = 0.0234 x 100 x k (0.0234 x 100) = 0.21

Fitting now an exponential decay at this distance, we get

r(100) = e- h= 0.21; h = 0.0156

Thus the two equations to be used for describing the spatial correlation

structure are

r(v) = 0.0234 v K1 (0.0234 v) (42)

and

r(v) = e O. Qs15v (43)

where v is in kilometers.

The variance reduction factors due to spatial sampling F2 (N)

are given in Table 2. We can see that F2 (N) decreases much more when

going from 1 station to 5 than when the gages are increased from 5 to 100.

Before reaching any practical conclusions we need to estimate

the variance reduction factor due to temporal sampling F 1 (T). For this



TABLE N* 2

F2 (N) Bessel Type of Correlation

Stratified

1.00

.0.60

0.48

0.40

0.36

0.34

0.32

F2 (N) Exponential Correlation

Random

1.00

0.65

0.54

0.43

0.37

0.33

0.31

Table 2 - Variance Reduction Factor due to Spatial

Ab2 = 16.43 and Ah2 = 7.30 (Central

Stratified

1.00

0.60

0.48

0.39

0.34

0.31

0.29

Sampling with

Venezuela Example).

N

1

2

3

5

10

20

100

Random

1.00

0.66

0.55

0.46

0.40

0.37

0.34

p.
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we will have to estimate first the autocorrelation coefficient repre-

sentative in time for the whole area.

p can be estimated as the solution of

N N k' f(ij) N N

fk jk+l = p E E [k' (ij)- k'.(ij)+ 1]
i=l i=l k=k'.(ij) ' i=1 j=l

1

v. b K *(v .b) (44)

k'.(i~j)and k',i

where k'f(ij) and k' (i,j) represent the initial and final year for

which both the record of station i and the record of station j in -

the following year exist. The other terms are the same as in Equation 41

where b has been estimated. For the annual data in this example, the

obtained p was 0.00.

For p = 0.00, the values of the variance reduction factor due

to temporal sampling are given in Table 3.

Combining Tables 2 and 3, we can estimate the efficiency of dif-

ferent network schemes for the area considered. In the case of one sta-

tion in operation during 20 years we can expect a total variance reduction

factor of

FI(T) - F2 (N) = 0.050 x 1 = 0.050

In other words, this network will produce an estimate of the long-term

areal mean with a variance of the order of 5% of the variance of the point

rainfall process (Equation 27). If we wish to accomplish that type of

precision in a lapse of 10 years we will need

0.050
F (N) = = 0.50
2 F1(10)
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TABLE N* 3

Table 3.- Variance Reduction Factor due to Temporal

Sampling with p = 0.0

T F1 (T) T F 1

1 1.000 15 0.067

2 0.500 20 0.050

5 0.333 30 0.033

5 0.20 50 0.020

7 0.140 75 0.013

10 0.100 100 0.010
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This corresponds to N = 4 stations in the case of random sampling for

both correlation structures given by Equations 42 and 43 and to N = 3

stations when the network is stratified.

It is interesting to observe that the same precision of 0.050

can not be obtained in a lapse of 5 years because it will be needed that

0.050
F (N) = = 0.25

2 0.20

which is a value smaller than the asymptotic one of Equation 28 when N

goes to infinity. From the graphs it can be seen that with Ah 2 - 7.30

and F 2 (N) = 0.25, the corresponding value of N is still larger than

100. We thus have the important conclusion that trading time-vs-space

in hydrologic data collection can be done when we do not reduce the time

interval too much, but no "miracles" can be expected in short times even

from the most dense of all possible networks.

Table 4 presents the combined factors F 1 (T) x F 2 (N) for the

example under consideration. This product represents the total reduction

in variance relative to variance of point rainfall when estimating the

long-term areal mean with N stations during T years. The table in

question was constructed for the Bessel-type correlation function given

by Equation 42 but the use of Equation 43 gives practically identical re-

sults. It can be seen that even for quite a small number of years - like

2, 5 or 10 - 5 stations will accomplish most of the possible reduction

in variance and there is little justification in going over this number.

There is indeed a general result as will be seen in the next example. It

can also be observed that F 1 (T) weights more than F2 (N) in the reduc-

tion of the variance of the long-term areal mean: when T = 5 years,
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TABLE N* 4

F (T) x F2(N)

N T =2 T = 5 T = 10

1 0.500 0.200 0.100

2 0.320 0.132 0.066

3 0.275 0.110 0.055

5 0.230 0.092 0.046

10 0.200 0,080 0,040

20 0.185 0.074 0.037

10 0.170 0.068 0.034

Table 4.- Total Factor of Variance Reduction due to

Temporal and Spatial Sampling in the Central

Venezuela Region. Bessel Type of Correla-

tion with a Randomly Designed Network.
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F 1 (T) = 0.200 and a value F 2 (N) = 0.200 can not be obtained in this

example. This shows again that trading time-vs-space, although possible

and in some instances necessary, is an expensive proposition.

It is important to emphasize that the form of the correlation

function-Bessel type or exponential decay- does not seem to matter if

the fitting has been done with good criteria. Thus Equations 42 and 43

give practically the same results, but if after obtaining b= 0.0234

we had tried to fit an exponential decay using distances far from the

characteristic correlation distance (100 Km), the results would have

been non-sensical.

For example, if we make v = 10 Km in equation

r(v) = 0.0234 v K (0.0234 v)

we obtain r (10) = 0.942, and if we now adjust

r(v) = e hv

with r(10) = 0.942, the value of h becomes equal to 0.0060 Km~

and Ah 2 = 1.08, in contrast with Ah 2 = 7.30 corresponding to Equation

43. With Ah2 = 1.08 it is impossible-even with the most dense network-

to obtain a reduction F (T) - F2 (N) = 0.050 (equivalent to one station

during 20 years) in a period of 10 years; on the other hand, with Ah 2

7.30 it can be accomplished with 4 stations during 10 years.

Another important conclusion is then that the functional shape

of the correlation in space does not affect the results provided the

fitting of the parameters has been done properly. On the contrary, if

the parameters of the correlation structure are evaluated by fitting

the functional form to r's corresponding to distances very different

from the characteristic correlation distance of the region, then the re-
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sults will be totally misleading.

We have been considering the evaluation of the variance of the

estimate of long-term areal mean precipitation. This variance was ex-

pressed as

Var [] = a2 - F1 (T) - F2 (N)

and a scheme was given to evaluate F (T) and F2 (N). This scheme also

provides a method for quantitatively trading time-vs-space in network

design. Our work in this section would not be complete without a dis-

cussion of the estimation of P, the regional precipitation mean value,

and a 2, the variance of the point rainfall process.
p

2 - a 2
Evaluation of P and G D 2 can be estimated from point records

p

at each station. Because the process has been assumed stationary, a 2
p

has to be the same in all stations and thus we can put back to back all

the individual records and compute the variance of that series of data.

This variance will be an estimate of a . For the region in Central

Venezuela, the obtained result was 5.44 x 104 mm 2  of rainfall, and thus

the total reduction of F1 (T) - F2 (N) should be applied to this value in

order to obtain the variance of our estimated long-term areal mean. In

the case when FI(T) - F2 (N) = 0.50, which we discuss previously, we

are obtaining an estimate of the longterm areal mean that has a variance

of

Var [P] = 0.050 x 5.44 x 104 mm 2

or equivalently

St.Dev.(P) = 52.16 mm.

In order to judge the magnitude of Var (P), an estimate of P

is needed. Being this an important point and truly the justification it-
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self of a network, it seems convenient to present a scheme which will

optimize the estimation of P taking into account the different lengths

of records at the stations, the spatial correlation among the gages and

the correlation in time existing at each record. Depending on these fac-

tors we can conceive the application of a weight at each station, such

that
T

N 1 f,i
p = X a.-- E f(x. t) (45)

i=l i t=T.
1,1

where

N
a. =1

i=l

and

f(x.,t) represents the amount of rainfall at the station

of spatial coordinates x. during the year (month

or season) t.

N is the number of stations

T. .9 stands for the initial year of record at station i

T . is the final year of record at station i
f,i

and

T.= T - T. .+ 1.
1 f,i ),i

Without loss of generality we can assume T .i T.,. for i > j.

The problem is to find the a. which minimize the variance

of P. We can write



.N T ftTT
E Ea E

,=j i Tt=T..

T -ii1 T %f,i f~i
+ 2 E E

t=T. . t'I= t+1

T - T
f f,i

+ 2 Z
t=T.. t'=t+1

2

f (xit)
U 2

. T 2

-T

t=T
f 2 (x. ) +

i9t
I-,'

1 N--1 U ca .
11 1of(x.,t) f(x.,t') + 2 T Ti+i i T

T ,1 = a .2
f f (x.,t) f (x'.,t') =a 2

Si p T 2
i= i -t T.

t -q.

t'=T 2 :TU-I N aO , f.
+ 2 T Tt r(x.-x.,) Z

i=l 1'=i+1 i 1' t=T..
Pt -t

1 +

t P -
t'=T.*

(46)

T

S.i, =

Tfli

P I t
(47)

t=T.. t= =~

we can write Equation 46 as

Var(P) = Y2LX I
p =1 yi --

N-'
S. .+ 2

i=l

N U O.

i =i+T i i
r (x.-x. ,) S. .,I =1 1 lli

N N1 ata.=kn 2 i t r(x.-x.,) m..,
P .~ .,_l T.. i Tit1

Making up now the Lagrangian with the purpose of minimizing Var (T)

we write

53

Now let

'
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N N aga., N

L = T r(x.-x.,) S.., + X( Z a.- 1)

from where we get

2a. N a.
L S.. + 2 E 3 r(x.- x.) S.. +A= =

ai T. 2 =1 i T
ij

N 0.

= I a r(x.-x.) S.. + X for i = 1,2,... ,N (48)
j= T.T. j 1 3

and

N
= a.-1 = 0 (49)

i=1

Equations 48 and 49 represent a system of N+1 equations to get the

N+1 unknowns given by the a. 's and A . This scheme was applied to

the Central Venezuela region; the weights a. for each of the 26 sta-

tions are given in Table 5. The mean value P obtained from Equation 45

was 1403 mm. The negative weights of some stations can be interpreted as

a subtraction of information which has been incorporated by other sta-

tions in order to produce a minimum variance in the regional rainfall P

when using the records analyzed. Table 6 shows the weights when only 15

stations instead of all 26 are used in the estimation of T, it is in-

teresting to note the changes in weights revealing the relative increase-

or decrease-in tflie importance of some stations. This kind of procedure

can be used to investigate which are important-or superfluous-sites when

analyzing an existing network.
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Weight

ci X 103

79.56

65.09

-46.57

12.73

54.99

13.38

3.44

79.83

-35.21

TABLE No 5

Weight

Station . x 103

10

11

12

13

14

15

16

17

18

166.50

-51.54

32.29

111.54

-16.07

- 2.17

70.79

-25.24

99.08

Station

19

20

21

22

23

24

25

26

Weight

a x 103

-29.52

17.54

50.29

137.56

20.81

51.31

12.71

126.83

Table 5.- Weights of Stations for Estimation of Mean Value

with Minimum Variance. Central Venezuela Example

with 26 Stations.

Station



TABLE NO 6

Weight

Station a. x 10 3
1

Weight

Station a. x 103
1

1 82.79 10 138.42 17 -21.20

2 65.43 13 127.25 18 111.82

3 -34.22 14 -35.17 22 170.31

4 63.53 15 - 2.83 24 57.69

8 78.94 16 68.74 26 128.48

Table 6.- Weights of Stations for Estimation of Mean Value

with Minimum Variance. Central Venezuela Example

with 15 Stations.

56

Station

Weight

Ct. x 103
1
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2) New South Wales (Australia). - This second example considers a

catchment near Lismore along the northern coast of New South Wales as

described by Eagleson (1967). It was seen before in this paper that

this region has a characteristic correlation distance of 20 miles which

will be used in the fitting of the spatial correlation structure.

From Eagleson's data we have that

r(20 mi) = 0.47

which in turn yields

h = 0.037 mi and b = 0.0684 mi~

in Equations 6 and 8 respectively. Thus

r(v) = e- 0.037V Ah 2 = 1.71

r(v) = 0.0684 v K1 (0.0684 v) ; Ab 2  5.85

will be used as spatial correlation functions in this example.

Table 7 gives the values of F 2(N) for a randomly designed

network. It is observed that after 3 stations - or even 2 - there is

a very small decrease in the variance reduction factor due to spatial

sampling. The relative importance of this decrease will be even slighter

when F1(T) is brought into action. Thus for 10 years of data and as-

suming p(l) in time equal to zero, we get F2 = 0.62. Fixing N = 5,

F 1 (10) - F 2 (5) = 0.062

Similarly,

F (10) - F2 (100) = 0.053.



TABLE N* 7

F2 (N)

Bessel Correlation

1.00

0.76

0.69

0.62

0.56

0.54

0.53

Exponential Correlation

1.00

0.76

0.69

0.62

0.56

0.54

0.53

Table 7.- Variance Reduction Factor due to Spatial Sampling with

a Random Design for Ab2 = 5.85 and Ah2 = 1.71

(New South Wales Example).
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F 2(N)

N

1

2

3

5

10

20

100
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There is only a decrease of 1% in the variance of the estimated long-

term areal mean when increasing the number of stations from 5 to

100, hardly economical.
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5. GENERAL FRAMEWORK FOR ESTIMATING AREAL MEAN FOR RAINFALL EVENTS

In this case we want to estimate mean rainfall over a certain

area A

Z(A) Af f(x) dx4  (50)
A A

where f(x ) denotes rainfall depth on the point of spatial coordi-

nates x. in the space A. In practice, the hydrologist estimates

Z(A) by the arithmetic mean of N point samples represented by the

raingage stations

1 N
Z - N f (x) (51>

i= 1

The performance of the network can be characterized by the

variance

E [Z-Z (A)]2  N 2  (52)

where it is important to understand that the expectation is taken

over all possible outcomes which the rainfall f(x.) may produce over

the space A. Z(A) is now a random variable and this is an important

difference with Equation (19) when estimating long-term areal mean

rainfall. Notice also that the time element does not play now an ex-

plicit role.

We can write Equation 52 as
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E N f(x ) - f(x ) dx =
- = A

a 2  N N-1 N 2

= Z 1 + 2 r .r(xi- x,) - NA 2
N -i= 1i= '+1 A p

N CY 2

A r(x-xi,) dx, + - r(x - xi,) dx dxi,
f=1 A2 Af

(53)

where p 2 represents the point variance of the process. Equation 53
p

will now be evaluated for two types of network designs: simple random

sampling and stratified sampling.

Variance Reduction Factor due to Random Sampling.- In this case, Equation

53 can be written

S2 2 2 2
C, 2 = 4 N + E [r(x.- X.,)A] - N - (N-1)- N N i NA p

N. - r(x.- x.,) dx. dx., + E[r(x.- x.,)l A] 2A A A 1 i p

2
2 1 _J X' 'C\rl

= 2 N + N(N-l) E[r(x - x , ,) A - 2a E[r(x - x.,) j A] +

+ E[r(x.- x.,)JA] a 2 
- - E [r(x.- x.,)JA] =

1i p N N i '

= a 2 F 2 (N) (54)
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where
1 - E[r(x.-x.,) A]

F 2 (N) =N

Variance-Reduction Factor due to Stratified Sampling.- Equation 53 is

written now

N N N

G [N + r(x = -y1,)- r(x-y.)] -

22 N p
- NA A . A a. 1 11,)dxdy, A A r(x.-y,)dx dy,

p= RA A ~

whose notation has been explained in the previous section of this paper

and which can be written as

2

I {N + N2 E[r(x - y.,)J A] - N E[r(x -y,)I (A/N)1}

- 2a 2 E[r(x i-Y )IA] + C 2E[r(x.-y.,)IAI =

- ap 2  F2 (N) (55)

where l-E[r(x -y. ,) I (A/N)]
F 2 (N) = 1 1

and the assumption has been made of one station per stratum.

Figures 9, 10, 11 and 12 show Equations 54 and 55 for the two

types of correlation functions used in this paper.. The rationale behind

this graphication is the same as the one for Figures 5, 6, 7 and 8 al-

2 2ready explained. It is observed that for very large values of Ah ,Ab
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the curve corresponding to N = 1 goes to F 2 (1) = 1, meaning that one

gage alone will give an estimte of the areal mean with variance equal to

the point variance of the process a 2 Nevertheless for small values
p

of Ah 2, Ab 2, even one gage alone will produce an estimate of the areal

mean whose variance is considerably smaller than a .
p

Equations 54 and 55 will be used now for the sampling in

space of convective and cyclonic storms with the purpose of estimating

the areal mean of these types of events.

Analysis of Convective Storms.- Under the section headed "The Rainfall

Process" we studied sensible values of the correlation parameter - h or

b - depending on the intensity of the storm. It was seen that realistic

values are of the order

Pt (0) 5" h = 0.080, b = 0.130

P t(0) = 2" h = 0.200, b = 0.355

P t(0) 0.75" h = 0.533, b = 0.930

Tables 8 and 9 give the results of estimating the areal mean values

.2 2
of these three types of storms over areas of 1500 mi , 500 mi and

50 mi2 when a network of 3 gages is used by the engineer. It is seen

that the variance reduction factor F2(N) is much smaller for the case

of a heavy storm in all cases, meaning that the error made in these cases

is of less importance. The area has a logical relation, the larger the

area, the larger F2 (N). meaning that more stations are needed to maintain

the same precision in the estimate. It is also important to notice that

stratification can significantly reduce the value of F2 (N); with only 3

stations, reduction largely depends on the size of the area in consideration



TABLE N* 8

F2 (N) for Bessel Correlation Function, N = 3

Random Design

p t(0)=5" P t(0)=2" P t(0)=0.75"

0.240

0.175

0.055

0.320

0.280

0.160

0.320

0.320

0.260

Stratified Design

P (0)=5" P (0)=2"

0.180

0.110

0.025

0.280

0.230

0.094

P t(0) =0.75"

0.320

0.310

0.210

Table 8 - Variance Reduction Factors for Different Combinations of Areas and

Convective Storms with a Network of 3 Stations.

Area (mi)2

1,500

500

50



TABLE N* 9

F2 (N) for Experimental Correlation Function, N = 3

Random Design

Area mi P (0)=5" P (0)=2" P t(0) 0.75"

1,500

500

0.250

0.190

50 0.082

0.310

0.280

0.165

0.320

0.320

0.260

Stratified Design

P (0)=5" P (0)=2" P (0)=0. 75"

0.190

0.140

0.050

0.280

0.230

0.110

0.320

0.310

0.210

Variance Reduction Factors for Different Combinations of Areas

and Convective Storms with a Network of 3 Stations

Table 9 -

10
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because the larger the area the more similar are the random and the

stratified scheme.

From Figures 9 through 12 it is seen that the number of sta-

tions now plays a very important role in the estimation process, some-

what differently than for the estimation of long-term areal means.

The question again arises of what is an acceptable precision?

Although the answer should include economic considerations as previously

noted, an engineering idea can be obtained depending on the value of a 2
p

in Equations 54 and 55. An idea of the value of a 2 can be obtained
p

by simple generation of random storm centers over the area; each of

these centers represents a storm with an areal pattern as given by Equa-

tio 14, and in this manner we can "measure" the amount of rainfall re-

corded by our network. This type of experiment was done for different

combinations of storms, areas and networks; as an example 20 events with

P t(0) = 5" were simulated over an area of 1250 mi2 with a network of

3 gages randomly located. The actual mean areal depth of the event is

approximately 0.603" over 1250 mi2 which is obtained from Equation 14.

The network on the other hand yields a mean depth of 0.530" for the 20

events analyzed, the variance obtained from the simulated records was

2a = 1.32 in. which is quite large considering the area involved.
p

Figures 9 through 12 should prove of help when evaluating the

magnitude of the error made in the input estimation when using rainfall-

runoff models.

Analysis of Cyclonic Storms.- Hurricane Connie in the Baltimore area
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was described with Equation 17 using h = 0.009 and b = 0.016.

Assuming we want to estimate the areal mean depth of this event over

an area of 1500 mi2 with a network of 3 gages we obtain

Ah2 =0.12+F2 (3) = 0.054 (random); F2 (3) = 0.032 (stratified)

Ab2 = 0.38-+F2 (3) = 0.032 (random); F2 (3) = 0.014 (stratified)

Because of the areal coverage of the storm and its intensity

there are large differences in F2(N) according to the type of corre-

lation structure used in the analysis. From a conceptual point of

view the authors would prefer to assume the Bessel-type of correlation

structure rather than the exponential one as discussed in the first

section of the paper.
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CONCLUSIONS

The following conclusions appear to be in order from this

study:

1) In the design of rainfall networks it is important to

consider spatial correlation, time correlation, number

of stations and network geometry.

2) When adjusting a spatial correlation structure it is im-

portant to do so at the "characteristic correlation

distance."

3) For estimating long-term areal mean values of precipita-

tion, the commanding factor is the length of time the

network has been in operation.

4) Trading time-vs-space is possible in many cases when

estimating long-term areal mean values. Nevertheless

it is an expensive proposition.

5) It is possible to evaluate the variance of the areal

mean for both the long-term case and the event case as

function of the factors described in 1).

6) The functional form of the correlation in space seems

to have iriportance only for the case of estimating mean

areal precipitation from cyclonic storms.
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