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PREFACE

This report is a part of a series of publications which describe
various activities and studies undertaken in the Technology Adaptation
Program at the Massachusetts Institute of Technology.

In 1971, the United States Department of State, through the Agency
for International Development, awarded the Massachusetts Institute of
Technology a grant, the purpose of which was to provide support for the
development at MIT, in conjunction with institutions in selected develop-
ing countries, of capabilities useful in the adaptation of technologies

and problem-solving techniques to the needs and conditions of those
countries. At MIT, the Technology Adaptation Program provides the means

by which the long-term objective for which the AID grant was made, can be
achieved.

In the process of making this TAP-supported study, some insight

has been gained into how appropriate technologies can be identified and

adapted to the needs of developing countries per se, and it is expected

that recommendations'developed will serve as a guide to other developing

countries for the solution of similar problems which may be encountered

there.

Fred Moavenzadeh

Program Director

February 1980
Cambridge, Massachusetts
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THE EFFECTS OF ANNUAL STORAGE AND RANDOM POTENTIAL

EVAPOTRANSPIRATION ON THE ONE-DIMENSIONAL ANNUAL WATER BALANCE

ABSTRACT

An analysis is presented leading to the incorporation of

storage terms into an existing first-order dynamic water balance.

Annual change in storage in the unsaturated zone of an

idealized soil column is included through the addition of one charac-

teristic vegetal parameter, the estimated depth of the root zone.

This defines the storage volume in the unsaturated zone.

Annual change in storage in the saturated zone of the soil

column is accounted for by assuming the dynamic linkage between percola-

tion to the groundwater table and discharge from the groundwater reser-

voir to behave as a linear reservoir. The storage coefficient of this

reservoir must be determined from streamflow data.

The effect on the frequency of annual basin yield of annual

change in storage is tested for two contrasting climates. In both test

cases, the model is found to reduce the unexplained variance of the basic

model without storage mechanisms.

A simplified analysis is conducted to determine the effect on

the frequency of the annual basin yield of a randomly varying rate of

annual average potential evaporation. A modified Penman equation is

used to derive an approximate relationship for the annual average rate of

potential evaporation. A cdf is derived for the annual basin yield from

3



a Gamma distribution for annual point precipitation and a double

exponential distribution for the annual average rate of potential

evaporation.

A linearized version of the water balance model indicates for two

contrasting climates that a random rate of potential evaporation has little

effect on the variance of the annual basin yield. This is interpreted as a

justification for considering the rate of potential evaporation to be

constant when modeling the water balance on a seasonal basis.
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Chapter I

INTRODUCTION

Planning for water resource development requires, among many

other things, estimates of the average return interval of extreme annual

events, such as water yield. These are conventionally achieved by

extrapolation of assumed probability distributions which have been fitted

to the available set of observations. This method bears a number of

shortcomings, however. The limited length of streamflow records available

in developing countries generally prevents a reasonable estimate of the

parameters of a fitted distribution. Or, even if the records of data

are long enough, they might belong to a period in which the hydrologic

system of interest was undergoing physical changes. Examples of such

nonstationary behavior are urbanization, deforestation, drainage and

irrigation and surface water storage.

Insight into hydrologic processes and mechanisms can be gained

only through identification and investigation of the underlying physical

determinisms. Maximum understanding of hydrologic variability would be

achieved with a model that incorporated the geophysical dynamics through

which those atmospheric disturbances, which produce precipitation and

temperature, are generated and propagated.

Lack of scientific knowledge, however, makes it impossible

for us to formulate the detailed physics of atmospheric processes. Thus

we must isolate the hydrologic system from the global system (Figure 1.1)
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Figure 1.1

GLOBAL HYDROLOGIC CYCLE

(from Eagleson, 1970)
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without being able to state the proper boundary conditions. Uncertainty

must be introduced. Probability distributions of atmospheric system

variables such as precipitation and temperature become the substitute

for a set of equations which would define the generating processes of

those variables.

This stochastic sub-unit (atmosphere) of the hydrologic system

now must be linked with the soil-vegetation sub-system (catchment).

It is well known that there is a dynamic coupling of these elements

through the physical processes which produce the transport of thermal

energy and water across the land surface. These processes depend very

much upon the physical properties of the soil and vegetation as well as

upon the local weather conditions. In the long term, the quantities of

water and heat are each conserved.

Empirical studies, due to their weak physical basis, lack both

the generality and the parametric incorporation of climate, soil and

vegetal properties that are necessary for understanding the interactions

of atmosphere, soil and vegetation. To assess the system response to a

change in the system properties (parameters), it is necessary to develop

a model which accounts for all those interactions. Moreover, that model

should have a broad analytical formulation in order to provide generaliza-

tions concerning system behavior.

A conceptual model has been developed by Eagleson (1978a, b, c,

d, e, f, g), which satisfies closely the requirements stated above. It

is reviewed and summarized in Chapter III of this work, which attempts

to elaborate on some of the components of that model.
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Chapter II

PROBLEM STATEMENT AND OBJECTIVES

II.1 Background

The mathematical model this research is based on [Eagleson,

1978a, b, c, d, e, f, g] is a statistical dynamic formulation of the

water budget of an arbitrary hydrologic system as schematized in Figure

2.1.

It is a dimensionless analytical representation of the one-

dimensional annual water balance based on simplified models of the

various interacting hydrologic subprocesses.

In the following, a notation is chosen that is as consistent

as possible with the basic literature. For the sake of completeness,

the original [Eagleson, 1978a] principal assumptions and simplifications

are quoted in order to define the analytical framework for the first-

order water balance.

1. General

a. One-dimensional analysis (only vertical processes) is used

b. No consideration is given to snow or ice.

c. All processes are stationary in the long-term average.

2. Precipitation

a. Storm series is represented by Poisson arrivals of independent

and identically distributed rectangular pulses.

b. Average interstorm period is much greater than average storm

duration.

23
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(from Eagleson, 1978a)
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c. Interstorm period and storm duration are statistically

independent.

3. Soil

a. Soils are homogeneous.

b. Movement of water vapor is not considered.

c. Column is effectively semiinfinite as far as surface processes

are concerned.

d. Infiltration, exfiltration, percolation, and capillary rise from

water table are formulated separately and their fluxes are

linearly superimposed.

e. Carryover moisture storage (or deficit) from storm to interstorm

period (and vice versa) is neglected with internal moisture at

the start of every period being s0 the space and time average

in the surface boundary layer.

4. Vegetation (natural systems only)

a. Transpiration occurs at the potential rate.

b. Rate of soil moisture extraction by the root system is a

constant throughout the soil volume above the maximum root depth.

c. Canopy density seeks a short-term equilibrium state at which

soil moisture is a maximum.

d. In water-limited systems, species evolve in the long term toward

maximum water use.

5. Infiltration and surface runoff

a. No surface inflows from outside the region are considered.

b. Storm intensity and duration are statistically independent.
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6. Evapotranspiration

a. Vegetation transpires at the potential rate.

b. Potential rate of evaporation averaged over the interstorm

period has a negligible coefficient of variation during the

rainy season.

7. Percolation to water table

a. Percolation is steady throughout rainy season at a rate

determined by the average soil moisture s .

b. Percolation is zero during dry season.

8. Capillary rise from the water table

a. Potential rate of evaporation is much greater than rate of

capillary rise from water table.

b. Dry surface matrix potential is much greater than saturated

matrix potential.

9. Miscellaneous

a. Water table is constant (no carryover groundwater storage from

year-to-year).

b. Relation among annual water balance components is given to the

first order by the relation among the average annual quantities.

A volumetric water balance per unit of surface area over time

t (Figure 2.2) can be given by

t

i(t) + L(t) - e ) [V (t) + V (t) + V (t)] dt
S [ +T +t ss su sg

0 t t

= [rs(t) + ru(t) + rg(t)] dt = y(t) dt (2.1)
0 0
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where

i(t) = precipitation intensity

L(t) = leakage rate into the soil column

e (t) = evapotranspiration rate

V ss(t) = surface storage

V (t) = storage in the unsaturated zone
su

V sg(t) = storage in the saturated zone

rs(t) = surface runoff rate

r (t) = subsurface runoff rate
u

r (t) = groundwater runoff rate
g

y(t) = yield rate

Since subsurface runoff is hard to deal with both analytically

as well as experimentally, this component of the water balance is common-

ly neglected and included in the remaining runoff rates. Likewise,

leakage into or out of a catchment is an elusive term. It depends on

nongeneral properties of individual catchments such as geological forma-

tions, etc. According to the goal of formulating a general model, we

neglect leakage.

Finally, it is very obvious that surface storage is due to

surface nonuniformities. Large surface depressions cause long-term

storage in the form of lakes and ponds having annual fluctuations in

volume. To include such storage again exceeds the scope of a general

model. From now on, therefore, the term V ss(t) refers only to the

retention in precipitation by small depressions and plants from which

28



it will be completely evaporated in the interstorm periods.

1 year 1 year

- V (t) dt E = v (t) dt
fat ss r A i s

0

(2.2)

0

where

E r = annual total evaporative loss from surface retention

vss = rate of capture of precipitation in surface storage

If the hydrologic system is assumed stationary in the mean,

and if the integration interval of Eq. (2.1) is taken to be a very

large number of full years, the average annual water balance is obtained.

All storage terms disappear, giving

E[PA] - E[E ] = E[R ] + E[R ] = E[YA
TA A AA

(2.3)

where

PA = annual (seasonal)

E = annual (seasonal)

R = annual (seasonal)

R = annual (seasonal)

Y = annual (seasonal)

E[ ] = expected value of

total precipitation

total evapotranspiration

total surface runoff

total groundwater runoff

total yield

[ ]

As can be seen from Figure 2.3, the above equation (2.3)

represents the balance of fluxes external to the indicated control

volume. The balance of fluxes internal to the control volume is given

by Eq. (2.4).
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E[I ] = E[E ] - E[E ] + E[R ] (2.4)
A TA Ar

This equation also defines the long-term time and spatial average of

soil moisture content, s0, in terms of which each term is defined. The

soil moisture will be the subject of a special analysis in Chapters III,

IV and V of this research.

11.2 Formulation of Objectives

From the literature [Eagleson, 1978a], we learn:

"In the true three-dimensional system, the lateral

properties such as surface physiography and medium

transmissivity will provide a coupling between the

groundwater flow and the water table elevation. A
similar'feedback results from the evaporation and

infiltration of surface runoff as it is conveyed
away from its point of generation. These feedback

links are shown by the dashed lines in Figure 2.4
but are not included in the present model."

a) Storage Components of the Annual Water Balance

It is one of the objectives of this work to add another state

variable to the first-order model as stated in the literature [Eagleson,

1978a, b, c, d, e, f, g]. This state variable, s, represents the annual

(seasonal) average of the soil moisture content with the long-term mean

of s
0

E[s] = s (2.5)

s = f(s, PA, ET A, R , E rA, parameters) (2.6)

Chapters IV and V will deal mainly with an analysis designed

to find the relationship presented as Equation (2.6). Moreover, those
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chapters will deal with the consequences of introducing this new

independent variable.

One of those consequences is the generation of annually

varying soil moisture contents, and thus of annually varying volumes of

water stored in the unsaturated zone. This has to be accounted for by

an additional component in the annual water balance. This term is

1 year

- V (t) dt E AS (2.7)
0 at su uA

where

AS - annual total change in storage in the unsaturated
UA

zone which is defined by the depth of the root zone,

Zr (Figure 2.2), centimeters

Flowing out of the fact of annually differing soil moisture

content is an annually varying total percolation down to the saturated

zone. Thus, another storage term has to be included in Equation (2.3).

This one is

1 yearJ-- V (t) H AS (2.8)

0t sg A

where

AS A = annual total change in storage in the saturated zone

which is defined by the water table and the impervious

bottom layer of the soil column, centimeters

Since the fluctuations in piezometric head must necessarily
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be reflected in some way or other in the groundwater runoff, an analysis

must be concluded to model the linkage between storage and runoff from

the saturated zone.

Hence, the lateral properties or feedback in the ground will

now be included in a "second-order water balance" (Figure 2.4). The

assumption of a constant water table elevation is removed.

The relation among the components of the annual water balance

was given to the first-order (Eq. 2.9) by the relation of their average

annual quantities (Eq. 2.3 without E[ ] operators). The relation among

the components of the annual water balance is now given to the second

order (Eq. 2.10) by the relation of the annual quantities of the previous

components supplemented by the two storage terms:

P - E = Y (2.9)
A T A(29

A

P - E - AS - AS = Y (2.10)
A TA SA uA A (.0

By converting the water balance from its first order

approximation, Eq. (2.9), into a second-order approximation, Eq. (2.10)

a more realistic description of the system behavior is achieved.

b) Random Annual Average Ambient Temperature, TA

In the first-order model, the atmospheric temperature is

assumed to have a small coefficient of variation in its annual average

value and hence is replaced by its long-term mean, T .
A

According to the analytical relationship used (modified Penman

equation) for determining the annual average rate of potential
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evaporation, the annual average temperature TA turns out to be its

principal random variable. Since the coefficient of variation of this

temperature is small compared to that of annual precipitation, the coef-

ficient of variation of the annual average rate of potential evaporation

is considered small as well.

The second objective of this work is to analyze the effect of

a randomly varying atmospheric temperature (in its annual mean) on the

annual water balance. Another assumption, that of a constant annual

average rate of potential evapotranspiration, e , is thus being relaxed.

Chapters V, and VI. will deal with the statistical incorporation

of a second independent random variable into the water balance model.

Together with the newly defined storage terms, a randomly-

varying annual average rate of potential evapotranspiration will help to

further reduce the unexplained variance of the annual basin yield, YA*

c) Verification of the Hypotheses

Two cases will reveal the validity of the various assumptions

made to define the storage terms. A comparison of first- and second-

order models may prove or reject the utility of those additional terms

in the annual water balance. Moreover, the case study will show whether

temperature can indeed be neglected a variable and thus can be dealt

with as an atmospheric parameter.

A subhumid climate, Clinton, Mass., and a semi-arid climate,

Santa Paula, Ca., will serve as test cases.

Simplifications will be made throughout the necessary analyses

whenever possible in order to maintain analytical tractability of the
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problem. Accuracy in detail is traded off against overall utility of

the model.
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Chapter III

REVIEW OF THE LITERATURE

The water balance dynamics upon which this work is based are

analyzed by Eagleson (1978a, b, c, d, e, f, g). A summary of this work

follows.

Various physical sub-processes combine to produce a cycle of

transported water mass called the water balance. Physical considerations

lead to analytical relations for the separate components of this water

balance.

a) Infiltration Depth during the j th Storm

I. = g(i, t : s , n, k(l), c, Z) (3.1)
j 1 r o

where

th
t = duration of j storm
r

n = effective medium porosity

k(l) = saturated effective intrinsic permeability of soil

c = pore disconnectedness index

Z = depth to water table

th
b) Evapotranspiration Depth during the j Interstorm Period

E = g (t , h, e : s , n, k(l), c, H, k , h , Z) (3.2)
T.2j p ov

where

t= th interstorm period
b
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h = jth storm depth

e = potential evaporation rate

M = canopy density

k. plant coefficient = potential transpiration rate
v potential bare soil evaporation rate

h = surface retention capacity

c) Evaporation from Surface Retention during the jth Interstorm Period

E r. = g 3 (h, t , M, h ) (3.3)

d) Uniform Flow Rate to Water Table

r = K(l) s - w[n, k(l), Z] (3.4)
g 0

where

K(l) = saturated effective hydraulic conductivity

Since all of these sub-processes depend on a number of random

atmospheric independent variables (Fig. 2.4), expected values for the

quantities of transported mass are derived. Mutual independence of the

random independent variables and analytical marginal distributions is

assumed as a mathematical expediency. Integration of the instantaneous

volumetric water balance, Eq. (2.1), is performed by summation over the

expected number of events occurring in the period of interest.

Precipitation is chosen as the only independent random variable

for evaluating the annual water balance of a given climate-soil-

vegetation system (2.9). Other random variables, such as season length,

T, and annual potential evapotranspiration, E A, have been left expressed
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by their expected values. Their coefficient of variation is small in

most climates when compared to that of annual precipitation, PA*

III.1 Distribution of Annual Precipitation

Precipitation is modeled according to a Poisson distribution

of individual storm arrivals (point precipitation). This method is most

suitable among the various types of statistical distributions since it

places emphasis on important physical features of precipitation as a

random time series of discrete storm events.

Time between storms, t duration of the storms, tr, and storm

depth, h, are of specific interest for modeling water balance processes

(Fig. 3.1). The outstanding advantage of the presented precipitation

model is the fact that a considerably better estimate of the variance

of the distribution of the normalized annual point precipitation is

achieved by utilizing the additional information contained in the storm

observations (where available!) than is obtained by working with annual

totals only. This is of enormous importance if only a few years of data

exist (Fig. 3.2).

Independence of successive events is assumed in a Poisson

model. Simple but realistic distributions are adopted for the signifi-

cant times, tat rt tb, again assuming mutual independence as pointed out

before.

A Gamma distribution is chosen to represent the probability

density of storm depths, h. If each storm depth is similarly Gamma
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distributed, then the sum over a number of events can be modeled by a

Gamma distribution provided the parameters, K, X, are unique (Eq. 3.5).

The 'PDF' of total precipitation from V storm events is given

by:

f (y) = G(VK, ) = - e -Xy
p(v)N

(3.5)

where

K=

lit1 = K/X =

p K/()
2 2
H

a = VK/(X) =
p ()

order of Gamma distribution

mean of the distribution of h of a single storm

event

mean of the distribution of h of the sum of V

events

variance for single event

variance for sum of V events

The PDF of cumulative point precipitation can then be derived

V0-K -Ky V -Wm
rlKg(lKy) e (WT) e T

f (y) = I y > 0 (3.6)
v=1 P(VK) V!

P (0) = eWT y = 0

where

m = mean value for length of rainy season
T

TI= = inverse of mean storm depth

W = m 1 = inverse of mean interarrival time of individual storms
t
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Since the expected value of annual point precipitation is given

by:

E[PA P A =m VH (3.7)

where

E[OlmT] = m = Wm (3.8)

the dimensionless CDF of the annual point precipitation can be readily

integrated to

P A-Wm <x>0 (Wm )
Prob[ <{ + - , p[VK, Wm Kz] (3.9)

A

where

z = = dimensionless point precipitation

MPA

P[a, x] y[a, x]/I(a) Pearson's incomplete Gamma function

It is seen that this distribution is specified by two parameters only,

K and m
V

Figure 3.2 exhibits the powerful technique of using information

of short period observations of storm characteristics in generating a

frequency curve of annual point precipitation.

111.2 Model of Soil Moisture Movement

A distinction is made among the different kinds of one-

dimensional (vertical) soil moisture movements. Four different processes
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processes are analyzed and their effects superimposed linearly. Thus,

the possibility of analytical treatment is retained [Eagleson, 1978c].

3.2.1 Soil Parameters

In order to analyze the different soil moisture movements, some

preliminary remarks must be made on the properties of soil. The follow-

ing parameters must be defined:

Y
K(8) = K(l) sc k(1) s 3.10)

where

s = effective degree of medium saturation

Y= specific weight of liquid

= dynamic viscosity of liquid

K(O) = effective hydraulic conductivity

c = (2 + 3m)/m (3.11)

where

m = pore size disconnectedness index

= $(6) 1/M (3.12)

where

= matrix potential of effective saturation

An empirical relation is given for the pore shape parameter

as

= 1 0 .66+.55/m+.14/m (3.13)
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which leads to a different definition of the matrix potential

$(1)= [n ]1/2
Y' k(l)(D

where

a = surface tension.
0)

Thus, only three independent soil parameters, n, k(l) and c,

characterize the soil's behavior.

3.2.2 Infiltration and Exfiltration

The analysis of the infiltration and exfiltration processes,

Eq. (3.1) and Eq. (3.2), are based on a one-dimensional concentration-

dependent diffusion equation [Philip, 1960] which has to be supplemented

by a sink term for the effect of plant roots on extraction of water from

the soil.

- [D(O) "I - K() _ gr(z, 6)
- t -az z3r

(3.15)

where

e = effective volumetric moisture content

D(6) = diffusivity

= soil matrix potential

A rather complicated analytical derivation for the sorption

and desorption processes going on during consecutive storm and interstorm

periods finally leads to the following dimensionless diffusivities:

3mn D.-/ /
' $ (d, s) (1 - s ) -s s - s 2 ds (3.16)

5K(1)ip(1) i 0 0 f d

s
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where

D = D sorption diffusivity

and similarly

mnDe d
K ) D e --l s d ( d ) = 1 .8 5 s

K(l) $(l) -o e

5

-1.85 J d 85
- s] ds

0

where

D = D = desorption diffusivity

For sorption, the boundary condition at the surface of the soil

column is assumed s1 = 1. For desorption, it is s = 0. These equations

are displayed in graphical form in Figures 3.3 and 3.4.

For infiltration, the diffusion equation (3.15) can be solved

approximately to give:

*
f.(t s ) 5n $ (1) .(d, s ),n/2i 0 = 

0 s ) _ 1-

K(l) 3rmt K(1)
+ -1 [1 + sc] (3.18)2 0

where

*
f.(t s ) = infiltration capacity

1 0

t = duration of infiltration

Similarly, for exfiltration, one can get:

f (t, s) _ +d/2 n (1) $ (d) 1/2 M

=-s ____e
K() 0 7Tmt K(l) K(l)

where
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Figure 3.4
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*
f (t, s ) exfiltration capacity
e 0

ev = rate of transpiration by vegetation

t = duration of exfiltration

The initial value for the soil moisture, s0, is assumed to be, to the

'zeroth order', the space-time average soil moisture. Hence, Eq. (3.18)

and Eq. (3.19) represent the relationships (dimensionless apparent velo-

cities) necessary to find expressions for the integrated rates of

infiltration, Eq. (3.1),and exfiltration, Eq. (3.2).

3.2.3 Percolation

The soil column is subdivided into three different regions

according to Figure 3.5. Soil moisture moves out of the unsaturated

zone, the thickness of which can be estimated by the penetration depth

of infiltration and exfiltration being of the order of vegetal root

depth. This soil moisture then percolates down through the intermediate

zone reaching the groundwater table. The apparent percolation velocity,

U, due to gravity is given by

U(s )o c
= s (3.20)

K(l) o

During the dry season, s is assumed zero and therefore U = 0.

3.2.4 Capillary Rise from Water Table

Using a simplified governing diffusion equation, steady

capillary rise from the water table at elevation z = Z to the surface
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has been studied by various researchers. The solution, as given by

Gardner (1958), is

w = [1 + 3/2 z mc , w/e << 1 (3.21)
(1) mc-l Z 'p

Capillary rise is the only operative process during the dry season.

During the rainy season, Eq. (3.21) can be added to Eq. (3.19), whereas

it must be subtracted from Eq. (3.18) and Eq. (3.20) (Figure 3.5).

If Z = o, w must be set equal to zero.

111.3 Expected Value of Annual Evapotranspiration

The evapotranspiration process is subdivided into three

separate components (Eagleson, 1978d)

1. Surface retention loss, Er, is the depth of water left

on all surfaces after cessation of precipitation and runoff. It will

be removed by evaporation at the surface potential rate, e , from the

vegetation.

2. Bare soil evaporation, Es, is the depth of soil moisture

evaporated from the bare soil fraction of the surface. This exfiltration

takes place at the rate fe.

3. Transpiration, Ev, is the depth of soil moisture evaporated

by plants from the vegetated fraction of the surface. This process takes

place at rate ev.

Considering a homogeneous mixture of vegetation and bare soil,

the total evapotranspiration from a unit land surface may be proportioned

according to
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E = (1 - M) E + ME
T s v

(3.22)

where E and E include surface retention losses.
S v

To calculate the volume, ET, of evapotranspiration during the

th
j interstorm period, Eq. (3.2), evaporation from bare soil is treated

separately from transpiration, E .
V.
J

Expressions are given in Eagleson (1978d) for both the expected

values of E and E . The interested reader is referred to the original
5. v.
J Ji

text.

The desired interstorm evapotranspiration is obtained by

weighting E[E s.] and E[E V.] according to the canopy density, M. The

expected value is given by

E[E ] = (1 - M) E[E ] + ME[E V (3.23)
T. s. v.

which is the expected value of the function g. in Eq. (3.2).

By summing over the mean number of storm events, the expected

annual evapotranspiration is obtained as

V
E[E ] = E[ ET. = E[v] E[E T.] m E[E ] (3.24)

A j=3 T. T

The weighted average potential evapotranspiration rate is given by

e = (1 - M) e + M e = [1 - M(U - k )] e (3.25)
Thp w h V p

The weighted mean annual (seasonal) potential evapotranspiration then is

52



E[E ]=m m e* (3.26)
PA \V t b

Finally, by dividing (3.24) by (3.26), the so-called evapotranspiration

function J(E, M, k , h ) is obtained
V 0

E[E ] (1M-) E[E ] + ME[E .T s. v.
J(E, M, k , h ) - A 1 1 (3.27)

v o E[E ] -*
pA m tbeAtb

This function simplifies for bare soil, M = 0, no surface retention, h ,

and negligible capillary rise, w, to

J[E] 1 - [1 + r2 E] eE + (2E)1 /2 '(3/2, E) (3.28)

where

E [2 nK(l) $(l)/7m e 2 (d) s (3.29)
p e 0

= m 1 = inverse average interstorm time (3.30)
tb

d = c - (1/m) - 1 (3.31)

Equation (3.28) is plotted in Figure 3.6. As precipitation

increases, parameter E increases and the evapotranspiration reaches its

potential limit.

lim E[E ]/E[E ] = 1 (3.32)
E+<>m TA A

Thus, the actual evaporation is controlled primarily by the climate

which in our decoupled model provides the independent variable, e .
p
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As precipitation events occur less and the potential

evaporation rate is high, parameter E goes to zero.

lim E[ET ]/E[E ] = [E/2] 1/2  (3.33)
E+O A A

This is typical for arid conditions where evaporation is controlled

primarily by the soil.

Surface retention capacity, h , is estimated to be h = 0(1) mm.

Surface retention makes a difference in J only for arid

climates where E is small. The evapotranspiration from surface reten-

tion is

(1 - M) E[E ] + ME[E rEE]r r~Lr s. v
A - 1 (3.34)

E[E ] -*

A t bp

where

E = surface retention loss from bare soil
r

S.
J

E = surface retention loss from vegetation
r
v.

111.4 Infiltration and Surface Runoff

From the known distributions of the independent climatic

variables, , r, a distribution for the surface runoff is derived

[Eagleson, 1978e] applying the dynamics of the infiltration process as

summarized earlier.

From Figure 2.2, we find the instantaneous partition of

precipitation at the soil surface. Integrated over the duration of a
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storm, one obtains:

t
r

[i(t) - . jr [r (t) + v (t)] dt

0

t
r

R = r (t) dt

(3.35)

(3.36)

0

(3.37)

t

J r
0

J

t
r

E = rv (t) dt

0

Equation (3.35) can now be written

t

r[i(t) - f.(t)] dt = R + E

0

(3.38)
r

Since point precipitation is assumed to occur in rectangular

pulses

i(t) = i = const. 0 < t < t
- - r

Integration of the infiltration rate over the duration of the storm

according to the different time periods in Figure 3.7 gives

R (i, t , h , s ) (i - A ) t - S.(t /2) 1/2
s. r o o o r r

- E (3.40)
r

A = 1 K(l) (1 + s ) - w
2 0

(3.41)
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S. = 2(1 - s )[(5n K(1) $(l) 4.(d, s ))/3m]/2 (3.42)

The rainfall excess is

*
R = R + E[E ] (3.43)
s. s. r

Independence of i and tr is assumed so that the CDF of rainfall

excess R can be found by integrating the joint PDF of i and tr over an

ci *
integration region which is defined by t = t and R .

r o s.

The mean value of the complete distribution (spike for R = 0

and continuous part for R > 0) is then

E[R ] = -G-2a + 1)/a (3.44)

where

T = - = 0 m - (3.45)
r

E[R ] = e -G-2a (a + 1)/na - E[E r] (3.46)

J

The average annual surface runoff then follows by multiplying

Eq. (3.46) by the mean number of storms, m

my E[R] = E[R ] = -G-2a F a + 1)/ a - m E[Er (3.47)

J sA

or

E[Rs~ E(E I
A _ -G-2a (a + )ao - r (3.48)

E[PA
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Equations (3.46), (3.47) and (3.48) are only defined for

positive runoff.

It follows that

2 2

r5n2 K(l) Y(l)(l - s ) i (d, s )- /3

L (3.49)
L ~6 6 m s 1 /

and

G = A c = [ct K(1)/2][l + s ] - aw (3.50)
0 0

where

= mt1  = reciprocal of average storm duration
r

= - = reciprocal of average storm intensity

Equation (3.48) is plotted in Figure 3.8 (h = 0).
0

A relationship is found now which represents function g1 in

Eq. (3.1)

*

I. = g.(i, t : s , n, k(l), c, Z) = h - R (3.51)
3 i r 0 j s

J

where

th
h. = depth of j storm
J

The expected annual value is given by

*
E(IA] =m9 E[I ] =E[PA] - E[RsA] (3.52)
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111.5 Dynamics of the Annual Water Balance

The previous subchapters demonstrate how the average annual

values for the components of the annual water balance have been deter-

mined. They have been derived from the probability distributions of

storm properties and from the physics of the various soil moisture

fluxes.

Mass conservation on an annual basis is given by

P = R + R + E + AS + AS
A sA SA TA sA A

(3.53)

where

P = annual (seasonal) p

Rs annual (seasonal) s

R = annual (seasonal) g

ET annual (seasonal) t

AS = annual (seasonal) c

ASA = annual (seasonal) c

zone of soil column

recipitation

urface runoff

roundwater runoff

otal evapotranspiration

hange in surface storage

hange in saturated and unsaturated

The average annual evapotranspiration from soil can be

expressed by

E[ET] = E[E T -E[E (3.54)

where

E = annual surface retention
rA
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By using an approximation for the exact evapotranspiration

function J(E, M, kv 1 ), an expression is found for the average annual

evapotranspiration from soil, E [Eagleson, 1978f]

* *
E[E ] ~E[E ] * J(E, N, k )

T PA
t IA

(3.55)

where

*
E = potential total evapotranspiration

E[E A] = E[E ]- E[Er] 
(

F 1-41 f1/2
J(E, M, k) = 1 1+M * [1 + Mk + (2B) E]

v .1 -M+Rkv v

- [1k + (2C)1 /2 E] e-CE - (2E) 1 2[Y(3/2, CE)

- y( , BE)](

3.56)

-BEe

3.57)

in which

B = 1 - M -+
1 + Mk - w/e

V p

2
M k + (1 - M) w/e

- 2
2(1 + Mk - w/e )

V p

- 2 -1
C = [2(Mk - w/e ) I-

vp 1 (3.59)

To the first approximation, the average annual surface retention
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can be obtained by

E[ErA] = m ( - M) E[Er ] + ME[E ]} (3.60)

3 3

where the components of surface retention are

- h 0/e F[K, Ah]
E[Es ]. mtbe l-ehr(K)

+ -K Y(K, Xh - Sh/e (3.61)

p

-Sh 0/e p (K, Xk vh ]
E[E ] = m ek 1- 0 17(K)

r tb p v1 e(K)
v. tb

S--K Y[K, Xk h - h /e]
- 1+ 6 i 1(K) p (3.62)

V p

The average annual groundwater runoff results from a linear

combination of wet season percolation to the water table and annual

capillary rise from the water table. That is

c
E[R A = m K(l) s0 - Tw (3.63)

To obtain a better understanding of the important role

vegetation plays in a complicated climate-soil-vegetation system, a

brief review of the principal assumptions may be helpful.

By including vegetal effects in the analysis of a dynamic

water balance formulation, two independent parameters have to be added

to the set of soil and climate parameters. These are:
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k = potential transpiration efficiency
V

M = vegetal canopy density

It is hypothesized that under natural equilibrium conditions

a vegetal species will operate in the unstressed state which permits

approximation of the average annual rate of transpiration per unit of

vegetated surface by the potential value. That is,

e = k e (3.64)
p V p

where

e = long-term time average potential rate of transpiration
Pv
e = long-term time average rate of potential evaporation

from a bare soil

Furthermore, it is assumed that the root system of the vege-

tated part, M, of the soil surface draws soil moisture uniformly from

the entire soil volume above the maximum root depth Z . This second

hypothesis resolves the conflict which is generated by introducing a

distributed parameter, M, into this lumped one-dimensional representa-

tion of a catchment.

Two additional hypotheses based on Darwinian reasoning are

postulated to facilitate a quantification of the parameters, k v, M.

Since the time and spatial average of soil moisture, s , is not uniquely

defined by the water balance equation, Eq. (3.65), in the presence of

vegetation, the assumption is made that those parameters can be defined

in terms of the remaining climatic and soil parameters.
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-G-2a a *
m[1 - e F(a + 1)/a ] = E[E ][(E, M, k ) + E[R ] (3.65)
A A gA

It is assumed that natural vegetal systems of given species

tend toward a growth equilibrium in which soil moisture is maximized

or evapotranspiration is minimized. This gives the necessary equation

to determine M

* *
E[E ] E[E A

TA =~=JEMk~~A * J(EM~kv)
= 0 = J(E,M,k + E[E]3M MMv 3M MM0 pA M= M M014=1 M=M M4=M
M=M o oo

0 (3.66)

the solution of which is M = 11
0-

It is also assumed that equilibrium natural vegetal systems

which are water limited (rather than energy limited or nutrient limited)

evolve toward maximum water utilization or production of biomass M k ,
0

respectively. The mathematical formulation of this assumption is

D(M k )
o v =0 (3.67)

v k =k
v v

0

with the solution k = k -
v v

0

Thus, the soil moisture balance is defined by the following

independent parameters which can be gained by measurements and observa-

tions:

Climate: MP, t, mt , m TA' e P K, h0
A b r

Soil: k(l), c, n, Z
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111.6 A Derived Distribution of Annual Water Yield

Solution of the average annual water balance of a climate-soil-

vegetation system gives the time and space average soil moisture concen-

tration, s , which can then be used to evaluate the individual water

balance components such as the average annual basin yield E[YA].

The average annual balance of soil moisture, as given by Eq.

(2.4) in dimensionless form. is (for non-zero surface runoff)
*

E[E I
l-G-2a a A_ m K(l) c Te -G-2 (a + 1)a = A J(E,Mk ) + s - (3.68)

nPA v U A 0 PA

This equation gives a unique value of the soil moisture, so.

*
s = s0( A, E[E A], m K(l); parameters) (3.69)

Since s appears in most of the above terms in highly nonlinear fashion,

thus, an iterative scheme must be employed to perform the solution.

Again, in dimensionless form, one obtains from Eq. (2.3),

(3.55), (3.56) the normalized yield

*
E[E* E[E I

E[YA] E A rA
=1- A J(E, M, k ) - A (3.70)

Substituting the solution for soil moisture, Eq. (3.69), into

the above expression eliminates the long-term average of the state

variable of the system, se0, from Eq. (3.70). This gives the solution

for the average annual yield [Eagleson, 1978g]
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*
E[YA 2{M , E[E ], m K(l); parameters} (3.71)

A pA T

The annual basin yield, YA' on the other hand, can be given

by the following function the form of which is not known, however:

*

Y 1{ AP E , T K(l); parameters} (3.72)
A

Knowing the form of the above function g1 ( ), one has the

analytical basis for deriving the distribution of YA from known distribu-

*
tions of P A E and T.

A A
Expanding this Eq. (3.72) about the mean of its independent

random variables in a multi-dimensional Taylor series and neglecting all

the terms of order higher than 1 results in a linear combination of the

long-term means of those variables and the variables themselves.

Taking the expected value of this linear equation and

assuming statistical independence of the three variables gives a second-

order approximation of the first moment, E[YA], of the distribution of

the annual basin yield, YA [Benjamin and Cornell, 1970]

*
E[YA gl(mP , E[E '], m K(l); parameters)

A A T
22 23 g.. 9 g.

+ 1 VAR[P ] + VAR[E ] + VAR[T] (3.73)
2 2 A DE *2 pA T 2

Am E A m

If, in addition, the curvatures of Eq. (3.72) and all the

variances are small, their products can then be neglected giving, to the

first order,

g 
( 2( ) (3.74)
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which means that a first-order approximation of the annual basin yield,

YA (3.72), can be achieved by replacing the average annual quantities of

the water balance components (3.71) by its annual values.

If, furthermore, the coefficients of variance of the potential

evapotranspiration from soil, E and of the rainy season length, T, are

small compared to that of annual point precipitation, the following simple

linear function of one independent random variable is obtained:

YA 2(P A; E[E -, m K(l); parameters) (3.75)

Since- function g 2 is known, Eq. (3.75), the cdf of annual

basin yield is readily derived:

Y -Wm 0> (Wm)
"A T T)-

ProbL---- < z = 1 + V1 P[VK, Wm Kg (z)] (3.76)
V=1

A

where

-l
g21 (z) = PA (3-77)82 A

Up to this point, the review of a one-dimensional water

balance with an adequate probability distribution for the annual basin

yield has been presented. It has been derived for an idealized soil

column of a unit cross-section. It is designed, however, for application

to entire natural watersheds. In effect, spatial variations of param-

eters and variables are being averaged by a lumped model.

Case studies have been conducted which exhibited a remarkable

accuracy of the model in predicting actually observed yield frequencies
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(Figures 3.9 and 3.10).

Finally, it should be noted that suboptimal vegetal cases

were chosen to achieve a best fit of the predicted frequencies to the

observed frequencies in these case studies. The requirement of maximum

biomass is relaxed, accounting for a likely disequilibrium of the vegetal

systems due to limitations by nutrition, light or some other ecological

factor (Figs. 3.9 and 3.10). For the semi-arid climate of Santa Paula,

a variable Mo = M (PA /mP A) was used,whereas for the sub-humid climate of

Clinton, a sub-optimal plant coefficient was applied
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Chapter IV

ANALYSIS OF STORAGE MECHANISMS

The one-dimensional water balance of a soil column of unit surface

area is schematized in Fig. 2.2. The total control volume can be parti-

tioned into three sub-volumes which are interconnected by appropriate

boundary conditions. Each sub-volume has the capability of storing water

mass. The sub-volumes act as reservoirs governed by certain physical

mechanisms through which inflow is converted into change in state of the

reservoir and thence into discharge.

The surface storage is dealt with in the literature already

[Eagleson, 1978] as far as is possible in a general manner. Equation (2.2)

defines the annual surface retention E rAand Eq. (2.4) accounts for its

average annual value E[Er 1. The definition of annual change in storage

in the unsaturated zone of the soil column ASuA is given by Eq. (2.7).

Similarly, Eq. (2.8) represents the definition of the annual

change in storage in the saturated zone of the soil column, AS A. The

latter change in storage corresponds to an annual fluctuation of the ground-

water table elevation.

IV.1 Storage in the Unsaturated Zone

The instantaneous volumetric water balance for the control

sub-volume for the root zone or unsaturated zone is given

t +At t +At

AS = nZ dt = r
uAt r at f f.(t) - e (t) + v (t) - p N(t) dt

t t (4.1)
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with

PN(t) =K(l) sc(t) - w (4.2)

where

pN(t) = rate of net percolation to groundwater table

Since the integrand on the right hand side of Eq. (4.1) is

unknown, we must seek an approximation for the time-varying function,

s(t), of the spatial average of soil moisture in the unsaturated zone.

In order to do so, a second state variable, s, is introduced.

This new state variable represents the annual (seasonal) spatial average

of soil moisture in the root zone as opposed to the long-term spatial

average, s0, of the same variable as implicitly defined by Eq. (2.4).

Integrated over a period of one year (season), the rate of

change of soil moisture, s(t)/ t, yields the annual (seasonal) storage

of soil moisture in the unsaturated zone. Since the purpose of this model

is to operate with annual (seasonal) quantities, it is consistent to adopt

a functional formulation for s(t) that reflects its annual (seasonal)

behavior. A step function is the most convenient such relationship.

s(t) = s = const. (4.3)

This assumption refers to a period of one year (rainy season, T), as shown

in Figure 4.2, and it permits the solution of Eq. (4.1).

Equation (4.1) now gives
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AS = nZ (s. - s ) = V - V (4.4)
UA r -1 su. su

with
T

- 1s - s. (t) dt (4.5)Tj T i
0

where

th
s= spatial average soil moisture of the j year (season)

Previous dynamic water balances [Eagleson, 1978a, b, c, d, e,

f, g] have neglected annual storage entirely. Here we include it but

do not account for carry-over storage effects from previous years. The

initial soil moisture, s ,l is assumed to occur at the long-term spatial

average quantity, s . Thus

AS = nZ (s - s ) (4.6)
uA r 0

This assumption of a long-term average initial condition may

introduce considerable error as is shown in Appendix (A.2). However,

it is the only way of isolating actual hydrological events from previous

ones. Since the water balance finally is evaluated in a statistical

manner, correlations between the consecutive events (i.e., annual quan-

tities) have to be neglected. Suppose the water balance is to be applied

deterministically in simulating a time series of the annual basin yield,

YA, for instance, there is no reason to not account for variational

initial conditions. The same holds for groundwater storage, AS .

Once the annual (seasonal) soil moisture content, s, is known
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from evaluation of the annual (seasonal) soil moisture balance, Eq.

(4.7), the annual (seasonal) change in storage in the root zone is

readily determined by the preceding formula, Eq. (4.6). The annual

soil moisture balance is defined by the annual quantities of the moisture

fluxes internal to the sub-volume as indicated in Figure 4.1.

I = P - R - E = E - E + R + AS + AS (4.7)
A A sA rA TA rA A A A

or

R

PA - A= E + P + AS (4.8)
A PT T A N A uA- A- A A

with

P = R + AS = m K(l) -c - wT (4.9)
NA A TA

and

R E
sA e -G-2c F( + 1) a - A (4.10)
PA PA

where

P = annual net percolation to the water table, cm
NA

Since all the components of Eq. (4.8) are functions of the

new state variable, s, this variable is implicitly defined by that

equation.

It must be noted that according to the assumption of constant

capillary rise (i.e., constant water table elevation, which means no
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change in groundwater storage), there is no feedback between change in

groundwater storage, AS A, and storage in the unsaturated zone, ASuA

The new state variable thus is independent of any change in groundwater

storage provided the annual fluctuations in the water table elevation,

Z, are small. If the changes in groundwater storage, however, cause a

considerable change in capillary rise, such a feedback has to be

considered.

The change in water table elevation is

AZ = AS /n (4.11)

where

AZ = annual change in groundwater table elevation

Substituted into Eq. (3.21), one obtains

w [ F 3/2 (1)mc
= 1+ (4.12)K(l) mc-lZ -AZ]

where

w = annual rate of capillary rise due to Z - AZ

Z0 = long-term average elevation of the water table

Rearranged
mc -mc

_ 

1+1. 51 (1)] Z4.13)

K(l) [ +c-l - Z

If AZ/Z << 1, one can simplify to
0
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w +. $(1)] AZ
= 1 + 1 + mc -- (4.14)

0O 0.

and

W { + mc w (4.15)
Z0

where

w = long-term average rate of capillary rise

This analysis becomes relevant only if the magnitude of w0 is

of the order of K(l) s or greater. Otherwise, capillary rise is being
0

neglected entirely.

When capillary rise is not negligible, a feedback between

changes in the two storages in the soil column is readily created.

AS /n

W = w 1 +mc (4.16)
01 

0

and

AS /n
-c 'A

K(l) s - w0 1 + m T (4.17)
A 0

which is no longer independent of AS A

IV.2 Storage in the Saturated Zone

The instantaneous volumetric water balance of the control

sub-volume idealizing the saturated zone is given by

t +At t +At

AS = (p (t) - r (t))dt = (K(l) sc(t) - w - r (t)) dt
jt N g g
t t (4.18)

0 0
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Equation (4.18) relates the two unknowns, r (t) and AS At

provided s(t) is a known function of time. In order to solve it uniquely,

a second relationship has to be found that links the two unknowns through

some lateral physical properties of the aquifer.

From groundwater hydrology, the desired set of equations

consists of the conservation of mass equation (4.19) and the momentum

equation (4.20) (i.e., Darcy's Law), respectively. That is

3h
-V q =n S (4.19)

xy

and

y
q =-k(l) h V -h = K() V h (4.20)
xy vi s xy s 2 xy s

These combined give for a homogeneous soil and some vertical attrition

PN(t)

1 2 p N(t) _ ndh
V2 h2 + n s (4.21)

2 xy s K(l) K(l) dt

where

h = h (x, y, t) = elevation of the phreatic surface

Since the water balance model is based on a vertical, one-

dimensional approach, Eq. (4.21) is not applicable for our purpose.

Lateral dimensions don't exist by definition.

In order to circumvent this problem, the aquifer is assumed

to behave like a linear reservoir. Thus, a dynamic linking between

discharge, r (t), and the state of the reservoir, Vg , is established.
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V nh ES = K r (t)
sg s s g

where

Ks = groundwater storage reservoir coefficient

A reservoir is said to operate linearly if the discharge is

linearly related to the level of storage, thus K being a constant (see
5

Appendix A.1). Combining Eq. (4.18) and Eq. (4.22) gives a linear first-

order differential equation governing the groundwater reservoir

dS + - p (t) = 0
dt K N

s
(4.23)

The initial condition is specified to be

S(0) E S = K r (0) = K r
0 s g s g

(4.24)

Since the net percolation is

{K(l)sc

(t N

-w

-w

for

for

0 < t < T

T < t < T

the following solution to Eq. (4.23) and Eq. (4.24) can be

1975]

S( )--T/Ks -c -T/K )(T-T)/K
T = K[(r + w) e + K(l)s (1 - e )e

found [Wylie,

- w]

(4.26)

Since
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As =AS
gA I

+ AS =S -S + S - S
T-T T o T T

the annual change in groundwater storage is

-T/K
AS =K e

2. s

T/K

s[K(1)sC (e
s

T/K
- 1) - (r + w)(e s

- 1)] (4.28)

There are three random variables in Eq. (4.28), T, s and r

An expansion of Eq. (4.28) about the mean of its variables into a Taylor

series keeping only the first three terms of the expansion gives

AA + ( kr - m

3AS
0 9A

+ (S - s 0) - DS

AS

gA o
Dr

r

1+ (r
2 g

As

T T

-2 2
2 __ A_

- m ) 2
rg r 0 ms

0

2 AS . A22 2
12 SA + 2 SA+ M (s - s

2 +-2 (s-DS 2 2
+ ... (4.29)

s
0

where

-T/K m 1K
AS = K e s[K(l)sc (e - 1) - (m

gA s o r

T/K
+ w)(e s

- 1)1

(4.30)

If now the expected value of this multivariate expression is

taken, one obtains [Benjamin & Cornell, 1970]

E[AS ] =
A

32
1 3 AS 9

AS + - A X
i=lj=l i mx

COV[X., X.]
i J

(4.31)

with
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E[x - mx] = 0 (4.32)

If we assume small variances and covariances and if the

nonlinearities of Eq. (4.28) with respect to T and s are small, the

second term of Eq. (4.31) can be neglected. Some analysis of the error

introduced by this assumption is conducted in Appendix (A.2.1).

We know, however, that the expected value E[AS ] of the

annual change in any kind of storage is, by definition, zero, if the

hydrologic system is stationary in the mean. Thus,

E[AS ] 0 (4.33)

Equations (4.31) and (4.33) combined give the very useful relationship

which defines the average initial groundwater runoff, mr
g

T/K rn/K
(e T/ - l) (m + w) = K(1) sC T s - 1) (4.34)

r 0

A sensitivity analysis (Appendix A.2.2) indicates that the

variance of change in groundwater storage, AS A, due to the length of

rainy season, T, can be neglected without introducing significant error.

The same analysis shows that an expected initial condition, m , will

r
cause some inaccuracy. It is an analytical expediency, however, to

reduce the number of random variables in Eq. (4.28) so that

-T/K m /K
-s T s -c c

As AS (s, mT, m ) = K e K(l)(e - )(s - s ) (4.35)
gA A r v s

Substituting the value for soil moisture obtained from solving
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Eq. (4.8), the annual (seasonal) change in storage in the saturated zone

can be determined from Eq. (4.35).

IV.3 Analysis of the Effect of Annual Storage

Two storage components have been added to the first-order

water balance as given in the literature [Eagleson, 1978]. Both of

these storage terms are formulated solely in terms of the soil moisture

balance, Eq. (4.8) without introducing additional independent random

variables. For each additional component, just one additional inde-

pendent parameter must be included:

1. The storage coefficient, Ks, which is a characteristic of

the lumped lateral features of the aquifer may be determined according

to Appendix A.l.

2. The depth of the root zone, Zr , the characteristic length

of the unsaturated zone, is a vegetal parameter. Its magnitude may be

found from the literature concerning the plant species which occurs in

the catchment.

It should be noted that for arid climates with an expected

length of the rainy season shorter than a full year there is no perennial

percolation to the water table according to the assumptions of the basic

model [Eagleson, 1978]. During the dry season, the soil moisture is

assumed to reduce to s(t > m ) = 0. The state variables, s and s ,

however, are defined for the length of the rainy season, Eq. (4.5).

Thus, both storage terms have to be accounted for in the mass balances

despite a decay of soil moisture following the rainy season.
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As far as the groundwater is concerned, it is assumed that

the initial runoff, r , occurs at its long-term average value of m
g0 r 9

no matter when the period of integration of Eq. (4.23) begins. This

means that the storage level (state of groundwater reservoir) and hence

the rate of replenishment, pN(t), occur at their long-term average values

too.

The loss in accuracy incurred by the above assumption is

traded off against the fact that only one additional parameter is

required in order to approximate the annual storage capacity of the

basin aquifer.

Flowing from this is the simplification that the soil moisture

in the unsaturated zone occurs at its expected concentration, E[s] = s .

A sensitivity analysis (Appendix A.2) indicates that the error incurred

by assuming the expected initial state of the system to be the annual

average may be significant.

Again, those simplifications appear justified by their enormous

advantage. Without any major complication of the mathematics of the

basic model [Eagleson, 1978], a storage concept is developed which allows

for accounting for a storage effect on the annual basin yield, YA, at

least in an approximate manner.

Due to the incorporation of this storage concept, the following

change in behavior of the climate-soil-vegetation system can be antici-

pated:

Annual precipitation, PA, exceeding its expected value, MA ,
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generates a replenishment of the two storages of the system. The annual

yield, YA, as simulated by Eq. (2.10) occurs at a lower value than that

given by the first-order model, Eq. (2.9), because a positive change

(increase) in storage of the system reduces the water available for

runoff. The mass conservation equations, Eq. (4.36) and Eq. (4.37) for

the control sub-volumes of the idealized soil column (see Fig. 4.1 and

Fig. 4.3) clearly exhibit this behavior.

Annual precipitation less than its expected value, MPA, results
A

in a depletion of the storages, hence increasing the annual yield, YA'

over that of the first-order model. Again, mass conservation considera-

tions, Eq. (4.39) and Eq. (4.40) lead to the above conclusion. Yield

cannot be zero for realizable values of precipitation.

Figures 4.4 and 4.5 illustrate this difference in behavior

between the two models. In the first-order model, zero precipitation

and zero soil moisture coincide (same horizontal axis in Fig. 4.4). In

the model accounting for storage (Fig. 4.5), the annual (seasonal)

average soil moisture, s, never reaches zero during the rainy season

by definition of the soil moisture storage, AS uA. Accounting for storage

one finds from the two control sub-volumes:

PA> mA or s > s0

I - AS E + PN (4.36)
A A

and
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P - AS = R
NA A A

(4.37)

Combined, these give

A
R - AS = R + AS + E

sA UA A SA TA

(4.38)

PA <nA or s < s :

IA + ASUA = ETA + PNA

P + AS = R
NA A A

(4.39)

(4.40)

Combined, these give

P + AS + AS = R + R + E (4.41)
A gA UA sA A TA

The storage terms exhibit the following asymptotic behavior:

lim AS = nZ (1 - s ) (4.42)
uA r o

s+1l
P A+03
A

lin AS =-nZ s~ (4.43)
_ UA r
s-+O
P A<0
PA

lim AS = const(l - sC (444)

P AO

90

and



lim AS = - const s
s+O A 0
PA <0

const = K e es e I s
S

- 1) K(1)

A scheme is given in Appendix A.3 which displays the

determination of the frequency of the annual basin yield (Table A.1).
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Chapter V

LINEARIZATION OF THE SOIL MOISTURE BALANCE

The annual (seasonal) spatial average soil moisture, s, is

implicitly defined by the conservation of moisture internal to the con-

trol sub-volume representing the unsaturated zone. This conservation

is expressed
*

R
sA *

P [1-f = E +PN + AS (5.1)
A A A A

If there is just one independent random variable as assumed

in the 'first-order model' and as indicated in the preceding chapters,

then there exists a unique relationship between that variable (PA) and

the dependent unknown soil moisture. Equation (5.1) represents a

monotonic relation between precipitation, PA, and soil moisture, s.

As soon as a second independent random variable is to be

accounted for (i.e., annual average potential rate of evaporation, e )

the dependent variable is no longer uniquely defined. An infinite

number of combinations of the two independent variables, PA and e ,

will produce the same concentration of soil moisture. The evaluation

scheme applied so far to determine the cdf of the annual basin yield,

YA, is no longer valid.

To overcome this problem, we must first find an explicit

formulation for the soil moisture, s, in terms of the two independent

variables and the appropriate climatic, soil and vegetal parameters.
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s = s(PA$ p; parameters) (5.2)

Equation (5.1) can be rewritten

P(A ( f(s)) = E A f2 (s) + f3 (s) + f4 (s) - wT (5.3)

with
*

R
(s sA -G-2[G[s] - -a[s] (54)

fs)- = e I'(a[s] + 1) a[s](.41A

or
E
rA

f (s) = A (5.5)
1 PA

if surface runoff, R , equals zero, and with

f2 (s) = J(E[s], M , k ) (5.6)
0 V90

f3 (S) = mT K(1) c (5.7)

and

f 4 (s) = nZ (s - S) (5.8)

It is quite obvious that the soil moisture balance is highly

nonlinear in terms of the soil moisture, s.

An expansion into a Taylor series about the long-term average

value of soil moisture, s , gives a rational means of simplifying the

functions, f.(s). Keeping only the first three terms of the expansions

gives the approximation
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(s -i- (0)(Ss) f-1 ( (S s 2f(1) (s)
=E*(0)- (1) 1 - 2 (11)

(0) (1) 1 2 (11)=E [f (s )+ (s -s ) f (S) + - (S - s )f (s )
PA 2 0 0 2 0 2. 0 2 0

+ f () (s ) + (s - s f (s) + (s - s ) f (s) - wT
3 0 0 3 0 2. 0 3 0

+ (-s ) f (1 (s) (5.9)
0 4 0

The error incurred in each individual function f .(s) is given

by [Bronstein and Semendjajew, 1974]

-3
R =R = (s -s) 3  (1() = c.(s - s) 3  (5.10)
n,i 2,i 3! 1 i 1

where

The total error involved in Eq. (5.9) adds up to

(S-s ) 44 s )3
_____ (11 < I___ fll) S

R= R = f. s) < 0 s)$
n 3 3! i=l 1 3! i=

(5.11)

which means that the summation of the absolute single errors in an upper

bound for the total error. It can be anticipated, however, that these

single errors cancel each other partially.

If the soil moisture, s, varied over all of its theoretical

range (0, 1), Equation (5.9) certainly would be a poor approximation

of Eq. (5.1). This fact is indicated in Figure (5.1) where the nor-

malized precipitation is plotted versus the normalized soil moisture
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for four characteristically different soils. The vegetal parameters, M

and k , were kept at their optimal values [Eagleson, 1978]. The depth

of the root zone, Z , was estimated and the storage coefficient, K ,

was evaluated from actual records of surface waters as compiled in the

USGS Water Supply papers.

It can be seen that the curvature of the graphs increases

for normalized soil moisture below unity. It is in this region that

higher derivatives of f .(s) contribute significantly in the Taylor

series. Fortunately, the likely range of the soil moisture is quite

limited.

For Clinton, this range is approximately independent of the

type of soil. The limits of this range are defined by the frequency of

occurrence of normalized annual yield, YA/MP A. For

1% < ProbYA /MP < z] < 99.99%

we have

.85 < s/s < 1.2 (5.12)

For the semi-arid climate of Santa Paula, this range is

dependent on the type of soil. It is widest for silty-loam and narrowest

for clay. For both Clinton and Santa Paula, the curvatures of the graphs

in Figure 5.1 within the common range of soil moisture (or precipitation)

seem to be small enough to be explained fully by a second derivative of

the functions f.(s).

Thus, from Eq. (5.9), the soil moisture can be expressed with
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sufficient accuracy by

s - s ~ a + (5.13)

where the terms a and b are both functions of the independent variables

PA and ep and the relevant climatic, soil and vegetal parameters. This

quadratic formula, Eq. (5.13), may be applied whenever a highly accurate

estimation of the soil moisture in terms of its independent variables

is required.

This is the case when the annual basin yield, YA' is to be

evaluated deterministically from Eq. (2.10). Elimination of the soil

moisture, s, in Eq. (2.10) using Eq. (5.13) quantifies the annual yield

corresponding to a given pair of values of precipitation and annual

average potential rate of evaporation.

The ultimate goal of this research, however, is the statistical

distribution of the annual basin yield. The frequency of occurrence of

that hydrologic variable is of interest rather than the quantity of the

variable itself. Equations (2.10) and (5.13) combined give a very non-

linear annual water balance in terms of its independent random variable

precipitation. The derivation of a cdf for the annual basin yield from

the known distributions for precipitation and potential evapotranspira-

tion becomes extremely complicated. An elaborate numerical integration

scheme must be employed.

Since a goal of this work is to analyze the sensitivity of

the frequency of annual basin yield to a randomly varying evapotranspira-

tion, some further expedient simplifications will be made.
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An explicit formulation for soil moisture such as Eq. (5.13)

which is nonlinear with respect to its independent random variable,

precipitation, leads to an annual water balance (Eq. 2.10) which is

also nonlinear in terms of precipitation. That is, we have an equation

of the form

*
PA =A + E A A p; parameters) + EASA (P eP; parameters)

(5.14)

An explicit formulation for annual precipitation can then often

not be found. Such an expression is necessary in order to specify the

integration limits when determining the cdf of annual yield.

Again, Figure 5.1 indicates that linearization of the soil

moisture balance with respect to soil moisture introduces an error which

might be limited within the likely range of soil moisture.

The frequencies of the annual yield, YA, both for low and high

values of YA become distorted slightly due to this linearization. For

the purpose of investigating the effect of a random annual average evapo-

transpiration on the frequency of the annual basin yield, however, the

linearization facilitates computations enormously at the expense of some

accuracy for extreme events.

The case studies in Chapter VII of this work show that at least

for Clinton the loss in accuracy by linearizing the soil moisture balance

is not significant. Figures 5.2, 5.3, 5.4 and 5.5 display the error

components contributed to the total error by the individual terms of the
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water balance. It can be estimated how large the discrepancy between

the actual functions, f (s) and their linearizations becomes within a

practical range of soil moisture. It has to be noted that the "actual"

range, R, of soil moisture for Santa Paula appears too large because

of a presumably premature state of the vegetal system.

If sub-optimal vegetal equilibria are accounted for, the

model's accuracy improves remarkably and the "actual" range of soil

moisture shrinks. The range of annual yield, YA, is proportionally

related to a corresponding range in soil moisture. Hence a range in

annual yield which is predicted too large by considering optimal vegetal

conditions generates an equivalent overestimation of the range of soil

moisture. The curvatures in Figures 5.1 to 5.5 thus appear too big as

far as silty-loam and sandy-loam are concerned.

Keeping in mind these circumstances, a linearization of the

soil moisture balance, Eq. (5.1), with respect to precipitation seems

to be accurate enough for the purpose of analyzing the effect of a random

evapotranspiration. Neglecting the second-order terms in Eq. (5.9), one

obtains

(0) (1) (0) -(1)
A - f(O) - (s - s 1) fl(s)] = EA f (s ) (s - )f (s 0)]

(0)-( )-+ f 3 (s) + (s - s) f (s) - wT + (s - s) nZ

(5.15)

with error
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2
(s - s ) 4

R =R< 2 f(1 1 )sj
1=1 (5.16)

Rearranging Eq. (5.15) gives

P [ (s[1- - E* f (0) - m cK(l)s' + Tw
A 1 s = A ( 0-l

0 P f (s) + E* f( (s) + m K(l) cs + nZ
A1 o' pA 2 To r

(5.17)

This explicit formulation, Eq. (5.17) for the soil moisture,

s, is nonlinear with respect to both precipitation and evapotranspira-

tion. Introduced into Equation (2.10) for annual yield, Eq. (5.17) gives

an explicit quadratic-type expression for precipitation in terms of

annual yield, evaporation and parameters. Equation (5.17) can be further

simplified without generating major error, however.

An analysis of magnitudes indicates that the third term in the

denominator of Eq. (5.17), which is related to percolation to the water

table, exceeds all the other terms by at least one order of magnitude.

Figures 5.2 and 5.4 show that the gradients for rainfall excess,

f() (s), and for the evapotranspiration function, f2l) (s ), with respect

to the soil moisture are extremely small in the vicinity of the average

soil moisture, so. The gradient of percolation on the other hand is

extremely steep. This means that the variables in the denominator can

be replaced by their expected values without causing a significant error.

Thus, we remove that slight nonlinearity of Eq. (5.17) with

respect to the independent variables. It then becomes
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PA[l - f(0)(s - E * 2 (s - m K(l)sC + Tw

s -s = f (s) + E[E A (s) + mT K()csC-1 + nZ
mpA 1 A 2 0 T0 r

(5.18)

This equation can be written

s0 = APA 2 p + A3 (5.19)

which demonstrates the linear relationship between soil moisture and its

independent random variables.

We define

d iA f (s) + E[E ] (s) + m K(l)csc- + nZ
A A 2 0 T 0 r

(5.20)

where

f (1) ( ) _ -G(s)-2a(s) T(c(s) + 1) a(s) a(s) (5.21)1 0 _s s(
0

with

-- r (x + 1) = r (x + 1) i(x + 1) (5.22)

and

f (s) = (J(E[s}, m , k s) (5.23)
2 0 30 V

0
5

0

The right-hand side of Eq. (5.22) is tabulated in mathematical handbooks

or exists in the form of a subroutine of a mathematical statistical

computer library. Then

A1 d (1 - f1 (s0 )) (5.24)
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A -d( - M (1 k - r f (s) (5.25)2 0m v 2 0
bI -0 e m -

P tb

-1 C
A -d (m K(l)s - Tw) (5.26)
3 o

where

E[E ]=m1 E[E ] (5.27)
r V rA

We will keep the denominator constant at its long-term mean,

d. This results in a very slight distortion of the tails of the frequen-

cy of the annual yield, YA. For a low frequency, the yield is under-

estimated because of an underestimated soil moisture. For high frequen-

cies, the reverse happens. However, it must be emphasized that this

distortion is almost negligible. Equation (5.19) is an extremely handy

relationship allowing for a comparatively simple derivation of the cdf

of annual yield, YA.

Flowing out of Eq. (5.19), all the terms of the water balance,

Eq. (2.10), can now be expressed solely in terms of the remaining two

independent random variables of our simplified hydrologic system.

Linearizing the evapotranspiration term gives

E[E ]r
E* - rm~ []1 (, 0 kE J(E, M , k )= e mvmt - M (1 - k )-- * J(EM9,k 0PA 0 09 p tb 0 v 0 e Pm tb 1v0

e ~ c [J(s ) + (s - s ) J'(s )] m m (5.28)

where

* =
c= E /e mm (.9

1 A pV tb (.9
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After substitution of Eq. (5.19), one obtains

J(E, M , k ) + E
V rA

-2
E e P + E e + E e
ip A 2 p 3 p

E[E ]
E m m [c J(s ) + =r + c A J'(s )]2 V tb 1 o em tb 1 3 0

b P tb

E mmt c A J'(s)

E m m c A J'(s)
3 V t b12 o

For groundwater storage, the equivalent manipulations give

ASA Kse K(1) (em T s
- 1)(sC - s = c2 (SC

~ 2 c s c- ( - s0

where

C 2 =Ke K(l) (em - 1)

After substitution of Eq. (5.19), this becomes

AS ~ C P + C2e + C
lA A 2p 3

C Ecs-1 A
1 2 o

C = c 1 A
2 2 0 2
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where

(5.30)

and

(5.31)

(5.32)

(5.33)

s c)

(5.34)

(5.35)

(5.36)

where

(5.37)

(5.38)



c-i
C =ccs A3 2 o 3 (5.39)

Similarly, for storage in the unsaturated zone

AS = nZ (s s ) D IP + D e + D (5.40)
UA r o l A 2 p 3 (.0

where

D1 nZ A (5.41)

D 2 nZ r A2 (5.42)

D 3 nZ A (5.43)

After all these simplifications and rearrangement of terms,

Equation (2.10) for the annual basin yield, YA' can be reformulated.

YA A p [1 - E eP - Cp - D1 p[E2 + C2 + D2

-2
-e E - C - D (5.44)

p 3 3 3

Due to the preceding manipulations, a very expedient

approximate formulation for the basin yield is found which is linear

with respect to precipitation and of second-order with respect to

evapotranspiration.

If the annual average potential rate of evaporation, e , is

kept constant as is done in the 'first-order model' and in the model

accounting for annual (seasonal) storage, Eq. (5.44) simplifies to a

simple linear relationship between two variables.
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YA 1 1 PA - a2 (5.45)

where

a E 1 e C D (5.46)

=2
a E e [E + C + D ] + e E + C + D (5.47)

2p 2  2 2 p 33 3

Concluding this chapter, it may be kept in mind that the water

balance equations (2.10) and (5.1) are simplified by means of some

justifiable approximations. These simplified relationships are presented

in Eq. (5.13) and Eq. (5.19) as far as the balance of soil moisture is

concerned. The equivalent simplification for the annual basin yield is

presented by Eq. (5.44) for variable evapotranspiration and by Eqs. (5.45)

to (5.47) for constant evapotranspiration. For extreme events, some

accuracy is traded off against a tremendous reduction in the computation-

al burden for determining the cdf of annual yield.
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Chapter VI

A RANDOM ANNUAL POTENTIAL EVAPOTRANSPIRATION

Evapotranspiration consists of the conversion to vapor and

mixing with the atmosphere of the liquid (or solid) water at the earth-

atmosphere boundary; this may be soil moisture, ponded water, water

intercepted on surfaces, and water in plants. The potential rate of

*
evaporation, e , which is determined by various climatic, soil and

vegetal parameters of a hydrologic system provides an upper bound to the

actual rate of evaporation, eT. Time integration of this latter rate

of moisture movement across the earth-atmosphere boundary gives the

accumulated amount of water, ETT,'lost' during the period of integra-

tion, T. That is

T

ET,T eT(t) dt (6.1)

0

It is an objective of this work to investigate the sensitivity

of the frequency of annual basin yield, YA, to a randomly varying poten-

*
tial evapotranspiration, e . In the first-order model, the coefficient

* *
of variation of e is assumed to be small, and e is replaced by its

long-term seasonal average rate, e . Here we will relax this assumption
p

and replace it by the less restrictive assumption of a seasonally

constant rate.

Several simplifications are made to maintain analytical

tractability while including a second random variable. No attempt is
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undertaken to vigorously analyze the effect on the first-order model of

*
an instantaneously varying random variable e , which is a function of

space as well. There is no doubt that averaging of the potential rate

of evapotranspiration over the season length, T, filters and hence

*
reduces the variance of the real potential rate, e (t). When interpret-

ing the results of the following case studies, one must be mindful of

this fact.

By selecting an appropriate analytical relationship for a long-

term average rate of potential evapotranspiration, however, one has the

means of keeping the error comparatively limited. Since all the random-

ness of the weighted e as defined in Eq. (3.25) comes from its bare

soil component e , an analysis of the latter atmospheric variable is

conducted.

VI.1 Comparison of Different Methods of Estimating the Potential

Evaporation

The evaporation process has two aspects. First, it is part of

an energy balance, out of which can come quantitative estimates of water

loss from a vegetated soil surface. Second, it is part of a transport

process, in which the net upward flux can be estimated when relevant

physical measurements over the earth-atmosphere boundary are substituted

in appropriate aerodynamic equations. Thus, there are basically two

different approaches to the theoretical study of evaporation from a

surface.

a) Diffusion method (aerodynamic method) which involves
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the formulation of the mass transfer process by which

vapor is removed from the surface.

b) Energy balance method which keeps account of the energy

fluxes occurring across the same surface over some finite

time interval.

Also several combinations of these two approaches have been

used in order to take advantage of the best features of both.

One of the oldest aerodynamic methods is the one proposed by

Dalton. The actual evaporation rate eT from a free water surface is

given

eT = f(u )(e - e ) (6.2)
T z s z

where

uz = windspeed at elevation z above the surface

e = saturation vapor pressure corresponding to temperature

of the water surface

ez = vapor pressure of the air at elevation z

A similar relationship was tested by H. E. Jobson (1972)

where the windspeed function was specified

e = N u (e - e ) (6.3)
T z s z

where

N = mass transfer coefficient
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Data collected during a 15-month interval at Lake Hefner near Oklahoma

City were analyzed. The results indicated that errors due to averaging

meteorologic variables occur which are larger than 5% about 20% of the

time for a 24 hour averaging period. It is concluded that averaging

periods of 1 month should be avoided in situations similar to those at

Lake Hefner.

Eagleson (1970) mentions that verification of a similar

relationship for evaporation from a water surface has failed apparently

because of convective instability of the atmosphere.

Tanner (1967) concludes that humidity methods like Eq. (6.2)

appear least suited to general use of any methods. In addition to a

necessary calibration of certain constants for the windspeed function,

vapor pressure measurements are less available than other meteorological

data like temperature or cloud amount.

Irrespective of possibly valuable applicability of the

aerodynamic method to certain climatological conditions and to determina-

tion of evaporation from a body for short periods of time, this approach

seems, therefore, to be of little use for the previously stated goals

of this research.

The energy balance method applied to a water surface evaporation

gives according to Eagleson (1970):

q (t) - qgr(t) - q b(t) + q a(t) - q s(t)
e (t) =a(6.4)

p L (1 - R)
e e

where

q (t) = rate of receipt of short-wave radiation from the sun
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q(t) = rate of reflection of short-wave radiation

qb(t) = net rate of long-wave back radiation

q (t) = rate of advection of energy by precipitation,

surface runoff, percolation, etc.

q (t) = rate of increase of energy storage within body

P = density of evaporated water

Le = latent heat of vaporization

R = Bowen ratio

Again, Lake Hefner studies [Eagleson, 1970] showed that this

method gives good results from book-keeping periods of more than 1 week.

To use this method, there must be temperature and humidity measurements

at two levels in order to determine the Bowen ratio, B. The precision

needed in all the measurements, both for Eq. (6.2) and Eq. (6.4) is

great. For research, with the resources of a good physics laboratory

behind it, these accuracies are attainable. For general use, however,

there is need for something simpler.

Penman first combined the advantages of aerodynamic aspects

and energy balance considerations in order to limit the number of

independent climatological variables necessary to determine the rate of

potential evaporation. Again, Tanner (1967) concludes his comparative

study of different methods stating that approaches such as Penman's,

which are based on the energy balance, appear most valuable, and have

widest applicability of all methods. It is that what makes the combina-

tion method most suitable for the scope and purpose of this research.
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The "Modified Penman Equation" is, according to Eagleson

(1970)

q (t) - q(t) -q b(t) + q(t) - q(t) + L B(es e 2

e (t) = 2 A e 2
p L (1 + )ee 'Y (6.5)

with

e -e
S S

T -Tz (6.6)
S Z

where

y = physical constant

B = turbulent transfer coefficient

e s e 2 = vapor-pressure deficit at elevation z 2

es = saturation vapor-pressure at surface temperature Ts

T = air temperature at elevation z

Various applications of Eq. (6.5) revealed its utility for

averaging periods of up to one month [Jensen & Haise, 1967; Linacre,

1967; Lane, 1964]. It was found empirically in these studies that

potential pan evaporation is approximately

T

epT =- ep(t) dt ~ (a + bT )( - ) (6.7)epT =T pAT q9,T - r,T
0

where

TAT = average atmospheric temperature of the period of

interest T

a,b = empirical coefficients which vary from location to

location
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q - qrT net short-wave radiation averaged over period T

It seems plausible that for long averaging periods the

sensitivity of the averaged rate of potential evaporation to changes in

energy storage in the body diminishes. If the time average of the rate

of advective energy is neglected, the average potential rate of evapo-

ration may be approximated to the first order by

q q q + L B (e e )
iT rT bT e T s 2,T A

e 91 p 12, (6.8)

e e A

where A/y is evaluated at the average temperature T at elevation Z =
AT

2.

VI.2 Development of a Simple Long-Term Relationship for Potential

Evaporation

Eagleson (1977) developed a simplified relationship for the

annual average rate of potential evaporation from an arbitrary surface.

Making use of two empirical relationships, it is

q (1 -A) - qb( - C)
e ~ (.42 + .013 T ) peL (6.9)
p ApL

with

C = .25 + (6.10)
1-S

where

A = average value for short-wave albedo
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S = average relative humidity

This Eq. (6.9) fits data fairly well. It is thus adopted as

the basic model for a randomly varying annual average rate of potential

evaporation. Short-wave radiation from the sun for a cloudy sky is

according to Eagleson (1970):

q. = q . (1 - N(l - K)) (6.11)

where

N= annual average amount of clouds

K fraction of cloudless-sky insolation

Time average net longwave back radiation is approximately given by

- -10 - 4
q = (1 - .8N)[.245 - .145 - 10 (TA + 273) ] (6.12)

Thus, Eq. (6.9) is formulated in terms of readily available

meteorological data. The annual average rate of potential evaporation

from an arbitrary surface is basically dependent upon three independent

random variables.

e ~ = (T A, , 5, parameters) (6.13)
p pA

A numerical analysis (Appendix B) indicates that the annual average

atmospheric temperature, TA, is the principal independent random

variable determining e . It contributes most to the variance of e .
p p

In an approximation, it is further considered the only random variable
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so that a cumulative distribution function (cdf) for the dependent

random variable e can be readily derived. Although the long-wave
p

back radiation is also dependent upon the temperature TA a numerical

analysis would show that within a realistic range of average annual

temperatures the long-wave back radiation can be considered a constant.

Equation (6.9) now can be recast into a highly simplified expression

fore. It is
p

e (a1 +a 2 TA) a3  (6.14)

where

a1 , a2 = empirical constants with general applicability for

the present purpose

a3= constant reflecting a great many significant

parameters of a catchment (Eq. 6.15)

Besides the independent random variable TA, there are five

catchment parameters which are available climatologic data for most

catchments

a3 = f(N, S, A, K, 4) (6.15)

where

(D= local latitude, determining clear sky insolation, q..

Equation (6.14) strongly resembles an empirical formula for

the potential rate of evaporation based on temperature measurements.
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Tanner's study (1967) indicates that empirical temperature methods are

best suited to monthly estimates and are not reliable for short-period

estimates. They are also suited for annual estimates of e unlike any
p

other method. In addition, Eq. (6.14) exploits a large set of easily

attainable climatologic data. An actual calibration of the constants

a is not necessary as opposed to purely empirical relationships.

VI.3 Probability Density Function of the Annual Average Rate of

Potential Evaporation

Once a distribution is adopted for the annual average

atmospheric temperature, TA, an approximate distribution for the annual

average rate of potential evaporation is readily derived. The approxi-

mately linear relationship displayed in Eq. (6.14) allows for a simple

derivation.

rde 1
f (e ) - f- (g~(E )) (6.16)

e d p TA
A

with

g - - (a 1  
-a

- (e ) A = (a13 - a 1)/a2 (6.17)

The implication of Eq. (6.16) and Eq. (6.17) is that the

approximate pdf of e has the same shape as the pdf of TA, only stretched

and shifted.

A double exponential distribution for TA is adopted simply

as a convenient representation of the phenomenon on the basis of

observed data (Figure 6.1) and the analytical tractability of the
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exponential function. Thus,

f1 ATITA Al
T A 2 Te
A

(6.18)

AT = parameter of exponential distribution

TA = expected value of the annual average temperature TA

T' = fluctuation of annual average temperature, T - T
A A A

Equation (6.18) combined with Eq. (6.16) gives the desired pdf

an approximate manner:

S AT
f e(e') = AT e

e p 2a 3

AT - =

aa -p p
2 3

e = expected value of the annual average rate of potential

evaporation

Since negative rates of evaporation are physically impossible,

a truncation of the pdf as presented in Eq. (6.19) has to be performed.

One obtains finally

121

where

for e in
p

where

(6.19)



0 as e < e .
p p,mln

- e . -e

1 a2a3 p,min p AT
2 ii2a3 p pmin

ae - e
1 XT a2a 3 p p

f (e ) = ----- eas e . < e < e
e p 2 a2a3 p,min p p,max

T -=- >1 -e

1 a2 a3  p,max p aT p -
- er + as e = e

0 as e > e
p p,max

(6.20)

It has to be noted that all the preceding simplifications have

been made in order to arrive at an analytically derived probability

density function for the annual average rate of potential evaporation,

e . There is no doubt that a more accurate yet more complicated deter-
p

ministic relationship for e could be found through rigorous analysis

of short-term evaporative processes. Since we are interested in the

approximate effect of a second random variable e on the frequency of

the annual basin yield, YA, the simplifications made here appear to be

justified.

VI.4 Derivation of a cdf for Annual Basin Yield

In Chapter V, a relationship, Eq. (5.44), for the annual basin

yield, Y was found which is formulated in terms of two independent

random variables. Since there probably is some negative correlation

between those two random variables, PA and e , a conditional probability
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density function has to be applied in order to evaluate the jointly

random behavior of P and e . It is

A p

f Y(x,y) = f (xy) fY(y) = f (y'x) f x (6.21)

where

f X(x) = marginal probability density function of x

fXy (x,y) = conditional probability density function of x given y

f (x,y) = joint probability density function of x and y

Unfortunately, a conditional pdf is not available for either

of the independent random variables PA and e . Thus, statistical inde-

pendence between precipitation and potential evaporation has to be

assumed in order to force any existing covariance,COV[PA p ],between

PA and ep to zero. Considering this simplification, which introduces

some error in further calculations, the joint pdf can be approximated

by the marginal pdf's, Eq. (3.6) and Eq. (6.20). Integration of the

volume under this joint pdf finally gives the desired joint cumulative

distribution function for the annual basin yield, YA It is

Prob[Y < x] = Jf ( ) f- (e ) dP de (6.22)
A- f P A e p A p

R(x) A p

with an integration area R(x) defined by Eq. (5.44) and x equal to a

certain value of Y . Rewritten, Eq. (6.22) becomes
e P [e x]e ra A p'

Prob[Y < x] = m f P - (P ,e ) dP de (6.23)
A - e_. PA'*e A p AJ p

e .0i
p,min-
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The integration of Eq. (6.23) is performed in Appendix B.2 together with

some analysis of the behavior of the joint cdf for YA. The solution to

Eq. (6.23) is

Prob[ <

MPA

-Win 1 00 (W )T Tz] = e 1 + A T [P[VK, f(z, e
fV! p,max

M> (WiM )V
+ P[KV, f(z, J . )]] + B X V I(z,

p,mn V=
e

p

(6.24)

with

f(z,, e) = MP PA(x, e , parameter)
p m p

A

(6.25)

p,max T
a2a3

I(z, e ) e

ep i

P[VK, f(z, e )] de
p

(6.26)
p

where

P[a, y] = Pearson's incomplete Gamma function equal to

y[a,y]/r(a)

The constants A and B are given by

B = T
2a 2a3

1-2Bje -X
A =- e p,max p

2

The function PA(z, e p) is readily obtained from Eq.

(6.27)

(6.28)

(5.44).

It is
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-2 --

PA= [zmp + e E3 + C3 + D3 +e p[E2 + C2 + D2]] [1 - E e - C - D

(6.29)

with

Z x (6.30)

where x is equal to a certain value of YA for which the cumulative

frequency of occurrence is to be determined. The integral I(z, e ) has

to be evaluated numerically.
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Chapter VII

CASE STUDIES

The 'first-order water balance' model [Eagleson, 1978] has been

verified for two catchments in contrasting climates. A sub-humid climate

is represented by Clinton, Massachusetts. Storm observations of nearby

Boston serve to define the cdf of annual point precipitation, PA, for

Clinton (see Figure 3.2). The derived frequency of annual basin yield,

YA, is shown in Fig. 3.9 for a silty-loam soil and a sub-optimal vegetal

cover.

A semi-arid climate is represented by Santa Paula, California.

Storm observations together with a derived cdf of PA m A are given in

the literature [Eagleson]. The corresponding frequency of annual basin

yield at Santa Paula is presented in Fig. 3.10.

Evaluation of the modifications to the above model developed

in this work will now be conducted for the same two catchments.

Additional streamflow data for determining the groundwater reservoir

coefficient, K , are analyzed as are additional climatological data for

the incorporation of a random potential evapotranspiration in the model.

A complete set of the independent parameters of the modified model

accounting for annual storage and a random potential evapotranspiration

is listed in Appendix C. Since no direct observations of the vegetal

parameter, Zr, were available estimations based upon the reported physio-

logy of the vegetation are used. For Clinton, with its perennial vege-

tation, the depth of the root system is estimated to be of the order of
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Zr = 1 m. For Santa Paula with its significant percentage of annual

grasses, the depth of the root zone is assumed to be Z 0.5 m.
r

For the purpose of comparison, the first-order model is applied

to four representative soils at both Clinton and Santa Paula, as was

done before in the literature [Eagleson, 1978]. The resulting frequency

curves of annual basin yield are shown in Figures 7.1 and 7.2, respec-

tively. In the Santa Paula case, all derived curves in this work are

for K = 0.25 resulting from visual best fit.

In both climates, silty-loam appears to best represent the

actual soil properties. It is that soil which allows the climate-soil-

vegetation system to reach a maximum optimal biomass productivity, M k .
ovy

0

Maximum biomass production seems to be related to maximum water use of

the system through vegetal transpiration or, in other words, minimum

basin yield.

In Chapter IV of this research, an analysis of storage mechanisms

is conducted. It leads to the incorporation in the first-order water

balance, Eq. (2.9), of the additional terms, Eq. (2.10), representing

annual changes in storage in the unsaturated zone, ASA, and in the
uA

saturated zone, AS A, of an idealized soil column. The effect of annual

storage on the frequency of annual yield is demonstrated for Clinton and

Santa Paula in Figures 7.3 and 7.4, respectively. Each of the four soils

responds slightly differently to this modification of the original model.

The overall pattern of sensitivity of the cdf of normalized annual yield,

YA mP A, however, stays the same for all the soils. Due to annual change

in storage, a rotation of the individual frequency curves around a
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particular point occurs. This point, by definition of the storage

mechanisms, coincides with the cumulative probability, Prob[YA /mA<
A

my /MP A], of the expected normalized annual basin yield, mY /mP . For
A A A A

Clinton, that probability is approximately 52% for my A A depending on

the set of soil properties. For Santa Paula, the centerpoint of the

rotation of the frequency curves is at about 56%. This rotation of the

cdf of annual yield implies that a reduction in yield variance is generated

by the additional storage terms. This modification of the curves confirms

the analytical argumentation concluding Chapter IV. For annual precipita-

tion exceeding its expected value, MP , a replenishment of the two storages
A

of the system occurs. The high frequencies of annual yield correspond

to a value of YA /mP , which is lower in the case of annual storage.
A

Accountable for this relative reduction in annual yield is a growth of

both storage volumes. It can be seen from Figure 4.5 that for PA /MP

greater than unity, the available water is partitioned into five physically

different quantities. There is surface runoff, R s, and groundwater

runoff, R A, adding up to basin yield, Y and there is evapotranspiration,

E T and a total change in storage EASA. According to the first-order

model, the same quantity of water is divided up into only three different

components, as is shown in Figure 4.4. That is why annual yield, account-

ing for storage, is reduced from that of the first-order model which omits

storage.

Annual precipitation less than the expected value, MnP causes

a depletion of the storages. The supply of water is not sufficient to

maintain the expected level of storage in either zone. A smaller
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average concentration of soil moisture, s, produces a smaller average

rate of percolation down to the groundwater table and consequently the

storage level drops. Depletion of the storages adds to the annual yield

which occurs when storage effects are neglected. Thus, the low frequen-

cies of annual yield, when accounting for annual change in storages,

correspond to a higher value of YA /mP A, as compared to the first-order

model. Again, this difference in behavior of the system can be visu-

alized by comparing Figures 4.4 and 4.5.

The sensitivity of the frequency of annual basin yield to the

storage parameters, K and Z , is demonstrated in the following: First,

it should be noted that in the case of Santa Paula, the vegetal system

may not have reached equilibrium due to limitations by nutrients, light

or some other ecological factor. Therefore, sub-optimal M-k combina-v

tions are tested. The literature [Eagleson, 1978] indicates that the

sub-optimal condition M = 0.38 and k = 1.0 provides the best fit of
o v

any combination with a constant optimal canopy density, M . Two

curves in Figure 7.5 represent that best sub-optimal condition both with

and without annual storage. The models are in reasonable agreement with

the streamflow data considering the discrepancy of the cdf's for optimal

vegetal conditions in Figure 7.4.

Since in arid climates the canopy density is expected to change

from year to year in response to fluctuations in precipitation, the

system is assumed to approximately reach a new growth equilibrium each

year. Accounting for a variable optimal canopy densityM0 = M0(PA /mP A
and incorporating annual storage gives a surprising agreement of model
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prediction and observation. This comparison is also shown in Figure 7.5.

Both for Clinton and Santa Paula, silty-loam evolves as the best

fitting soil. Using this soil, optimal vegetal conditions for Clinton

and a variable M for Santa Paula, the sensitivity of the water balance

model to either one of the storage terms is displayed in Figures 7.6

and 7.7. The curves corresponding to no storage, EASA = 0, and to two

distinct storages, span a range which embraces possible combinations of

K and Z between zero and the ones chosen. It has to be emphasized that
s r

Zr is just an estimation and thus may differ from the actual average

depth of the root zone of the catchments. The Figures 7.6 and 7.7 pro-

vide a visualization of the effect of the two storage parameters on the

frequency of the annual yield. The figures indicate that accounting for

annual storage may improve the model's accuracy slightly.

Another objective of this work is to check the assumtpion

[Eagleson, 1978] of only a minor contribution to the variance of annual

basin yield from a randomly varying rate of potential evaporation, ep.

It has been pointed out in Chapter V that incorporation of a second

random variable (in addition to annual precipitation) in the water

balance necessitates elimination, from Eq. (2.10), of the state variable,

S. In order to accomplish this, the highly nonlinear soil moisture

balance, Eq. (4.8), must be simplified to reach an explicit formulation

for the state variable, s, in terms of the independent random variables,

PA and e , and of the system parameters. Figure 5.1 indicated that a

formulation, PA = f(s), which has defined second derivatives with respect

to s might reflect the curvetures of the functions with sufficient
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accuracy, at least within the common range, R, of soil moisture, to

facilitate the analytical derivation of a cdf for annual yield from

distributions of two independent variables. Therefore, a linear rela-

tionship, Eq. (5.19), was developed. For Santa Paula, where the evapo-

transpiration, E is sensitive to changes in PA, a linearization

could be expected to introduce some error in a derived cdf of annual

yield.

Figures 7.8 and 7.9 for Clinton and Santa Paula, respectively,

demonstrate the effect on the frequency of annual yield of a linearized

water balance model. For Clinton, the result agrees remarkably with

that of the original nonlinear model supplemented by annual storage.

The reason for this is that under humid conditions E is insensitive
TA

to PA* Thus, Eq. (2.10) gives a nearly linear function.

Under more arid conditions like those at Santa Paula,

linearization of the water balance equations with respect to soil

moisture causes distortions of the tails of the frequency curves. The

lower tails of the curves in Figure 7.9 fall off sharply compared with

those of Figure 7.4. It is the lower frequencies which correspond to

significant curvatures in Figure 5.1 for ratios of s/s smaller than

unity. High frequencies in Figure 7.9, however, are well represented

because of the absence of considerable curvature in Figure 5.1 for ratios

of s/s0 greater than unity.

A clearer demonstration of the comparatively poor performance

of a linearization under arid conditions is offered by Figure 7.5. For

the sub-optimal conditions M = 0.38 and k = 1.0, linearized and non-
0 v

linear models are compared. Storage in both cases is not accounted for.
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It has been pointed out in Chapter IV that optimal vegetal

conditions exaggerate the nonlinearity between soil moisture and

precipitation (thus yield). Figure 7.10 clearly shows that the curva-

tures of P A/mP = f(s/s ) for a variable M = M (s) are considerably
A o0A

smaller than those for a constant optimal M # M (s). The linear
0 0

model developed is not capable, however, of handling a variable optimal

canopy density. As mentioned earlier, the common range of s shrinks

significantly if sub-optimal (variable M ) conditions are accounted for.

For optimal biomass production, the corresponding range, R, as

defined previously, is bounded to the left by s/so= 0.0 (because proba-

bilities for YA /mA of less than 15% are never reached for silty-loam,

see Figure 7.2) and reaches far to the right of s/s = 1.0. For variable

M = M (s), the realistic range of soil moisture is rather limited.
0 0

Curvatures of the graph within that range appear to be representable by

a second derivative. It, therefore, can be expected that Eq. (5.13)

rather than Eq. (5.19) would provide a reasonable approximation of

s = f(PeA' p, parameters) for arid climates.

Use of this approximation for elimination of soil moisture from

the expression for annual yield, Eq. (2.10), might provide a reasonably

accurate formulation in the case of annual basin yield, YA, which is

defined by two independent random variables.

Since the soil moisture must be eliminated from Eq. (2.10), if

more than one independent random variable is to be accounted for, a

linearization was chosen to facilitate computations. In order to ana-

lyze the sensitivity of the frequency of annual yield to a second
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independent variable, it may not matter too much how accurate the

sensitivity of the same variable with respect to PA is simulated. It

is rather the difference between the cdf for a constant e and that for
p

a randomly varying e which is of interest in order to assess the sensi-

tivity to e . Linearization of the water balance equations with respect

to soil moisture certainly decreases the variance of Y due to e to
A p

a degree. The linearized equation for annual yield, Eq. (5.44), retains

some nonlinearity with respect to e , however.

From a computer program (Appendix D), which is set up to handle

two independent random variables in a linearized water balance, a sur-

prising result is obtained. The cdf's of YA for both the sub-humid

climate at Clinton and the semi-arid climate at Santa Paula show no

significant sensitivity whatsoever to a random variation of the annual

average evaporation, e . A comparison of the numerical values of the

cumulative probabilities for both Clinton and Santa Paula is given in

Table 7.1.

One would have expected that in arid climates a random evapora-

tion would explain some of the total variance of the annual yield. The

result of this analysis indicates that for both Clinton and Santa Paula

the assumption of a constant annual rate of potential evaporation

[Eagleson, 1978] may be excellent.

One has to keep in mind, however, that the extremely simplified

Penman equation, Eq. (6.14), by no means captures the 'true' variability

of the annual average rate of potential evaporation. For instance, the
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integration interval of 1 year filters out some of the variance of the

random atmospheric temperature, T Similarly, a long-term constant

cloud cover, N, absorbs more of the true variance of e , which in case

of an arid climate may reach the magnitude of the variance of TA.

It has been pointed out in Chapter VI of this work that an ana-

lysis of the rate of potential evaporation similar to that of point

precipitation is not being undertaken.

Infiltration from storm rainfall is governed by two random

variables, tr and i, which (since they may be fitted with exponential

pdf's) have coefficients of variance, CV, of unity. Thus, the random-

ness of both variables was considered in the analysis.

Bare soil evaporation is governed in an analogous fashion by

the random variables, tb and e . While tb has an exponential pdf and
b pb

thus a CV of unity, observations show (Nixon, et al., 1972, and Pruitt,

et al., 1972) that e when averaged over an interstorm period of 10 days

-1
has a CV = 0(10 ). We can expect the CV of e to become smaller for

p

averaging times longer than 10 days and vice versa.

We have assumed that in all cases (i.e., humid as well as arid

climates) CV(tb) CV(e p)

Thus, considering the possibilities that some portion of the

"true" variance of e may not be accounted for by the simplified model,

Eq. (6.14), and that a linearization of the water balance may distort

their contributions to the variance of YA' the actual sensitivity of

the basin yield to a random annual average e seems negligible.
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All calculations for the nonlinear model have been performed

by means of an existing water balance program. Its use for determining

the cdf of the annual basin yield follows closely that displayed in

Table A.l in Appendix A.3. A few statements have been added to the pro-

gram in order to account for the two storage terms.
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Prob[YA/mp < z], Clinton, Ma.
A

K = 45d; Z = 100 cm; k = 0.9, M = 1.0
s r v 0

Constant e
p

0.0102

0.3640

3.8791

17.6614

43.7971

71.3671

89.2753

97.0079

99.3627

99.8926

99.9840

99.9965

Prob[YA/mpA < z], Santa Paula Ca.
A

K = 55d; Z = 50 cm, k = 1.0, N =
s r V o

Table VII.1

SENSITIVITY OF THE FREQUENCY OF ANNUAL YIELD TO A RANDOM RATE OF POTENTIAL EVAPORATION

(LINEARIZED MODEL APPROXIMATING ACTUAL VARIANCE OF e )

.38

Variable e
p

0.0112

0.3773

3.9326

17.7308

43.8046

71.3140

89.2232

96.9830

99.3561

99.8924

99.9854

99.9981

4

z

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Constant e
p

35.6279

44.6517

53.2703

61.1926

68.2495

74.3724

79.5673

83.8907

87.4286

90.2812

92.5510

94.3360

Variable e
p

35.6456

44.6720

53.2937

61.2191

68.2793

74.4052

79.6029

83.9286

87.4690

90.3234

92.5948

94.3810



Chapter VIII

CONCLUSIONS

A. An existing dynamic water balance model [Eagleson, 1978]

has been supplemented by a simple storage concept. Change of the moist-

ure state of a hydrologic system can now be accounted for by means of

two additional terms in the water balance equations.

Simple dynamic modeling of storage mechanisms operating in an

idealized soil column allows for incorporating storage effects on the

annual basin yield in an approximate manner.

In order to retain analytical tractability of the mathematics

and to avoid inappropriate data requirements for calibration, several

simplifying assumptions have been made:

1. All the relevant random variables determining the two

newly-derived storage terms are assumed statistically

independent.

2. The annual average soil moisture, s, is considered the

only independent random variable accounting for the

variance of annual change in storage.

3. The initial state of the hydrologic system is assumed to

occur at its expected level.

The storage concept appears to produce a slight improvement of

the basic nonlinear water balance model.

It has been demonstrated that an explicit formulation of soil

moisture, s = S(PA" p, parameters), becomes necessary if the water balance
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model [Eagleson, 1978] is to be implemented in terms of more than one

independent random variable. An analysis has been performed that leads to

an explicit expression for soil moisture in terms of higher order partial

derivatives of the state variable with respect to its independent random

variables. Numerical analyses indicate that this simplification produces

a reasonable approximation of the actual nonlinearities of the water

balance equations.

B. Additional simplifying assumptions have been introduced

in order to analyze the validity of the assumption of a constant annual

rate of potential evaporation:

1. The two random variables, precipitation, PA, and annual

average potential evaporation, e , are statistically

independent.

2. A simple linear relationship for s = S(PA9 p, parameters)

can be employed in order to analyze the sensitivity of the

annual basin yield to a second random variable.

3. A simplified Penman equation preserves sufficient variance

of the annual average rate of potential evaporation.

Case studies show that the second assumption leads to

considerable distortions of the model when applying it in an arid climate,

since the primary nonlinearities are at small s . It seems to give

acceptable results for humid climates, however. Despite the failure of

the linearized water balance model in terms of accurately predicting

frequencies of annual basin yield for arid climates, it is believed that

148



it still serves the purpose of qualitatively assessing the effect of a

second random variable on the water balance simulations.

The linearized model indicates negligible sensitivity of the

frequency of annual yield to a randomly varying annual average potential

evaporation, for both humid and arid climates.

It seems advisable, however, to look more closely at a

formulation for e which more realistically accounts for random variations
p

of its interstorm average value.
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Appendix A

A.1 Evaluation of the Storage Coefficient from Data

A streamflow hydrograph consists of several different compo-

nents. Approximate empirical procedures have been proposed to separate

these flow components for the purpose of hydrograph analysis [V. T. Chow,

1964].

The recession segment represents withdrawal of water from

storage after all inflow to the reservoir has ceased. Therefore, it is

more or less independent of the time variation in rainfall and infil-

tration. From a number of recession segments of a drainage basin, an

envelope curve may be developed to represent the groundwater recession

curve.

If we model, using a linear reservoir, the physical process

of releasing water from groundwater storage, the reservoir coefficient

(recession constant) can be derived in the following fashion:

1 - 0 = -(A.1)
dt

and

S =K 0 (A.2)
s

where

I = inflow to reservoir

0 = outflow from reservoir

S = storage of the reservoir

K = recession constant
s
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Since there is negligible inflow, I, during a recession

period as stated before, the resulting differential equation is

ds + 1 S = 0 (A.3)
dt K

s

with the general solution

-t/K

S= S e s (A.4)

or in logarithmic form

log S -log S = -t/K (A.5)
0 s

The preceding equation (A.5) will plot as a straight line on

semilogarithmic paper with the storage on the logarithmic scale, as

shown in Fig. A.l.

The reservoir coefficient, Ks, contains geological and soil

information in lumped form.

In general, the storage coefficient is a function of various

variables and parameters.

K = K (S, 0, I, geology, soil parameters...) (A.6)
S 5

Here, we postulated a linear reservoir, thus

Ks = K s(geology, soil parameters...) (A.7)

Depending on this reservoir property, an arbitrary discharge,

00, can be generated by an innumerable number of different storage

levels. For very high values of the reservoir coefficient, Ks, the
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discharge is almost insensitive to changes in storage. For very low

values of K , the discharge is extremely sensitive to any change in

storage. The limit in this case is that the reservoir loses its

functionality.

Equation (4.23) permits an analysis of the two cases.

d~ [S 1dSlim +-+- S p (t) dS = 0 (A.8)
dt K N dtPN

K +o s
S

Thus

dS
d pN(t) (A.9)

and1 year

AS = f PN (t) dt = PN (A.10)
A A
0

Thus,

1 year

r (t) = RA =PNA -ASA = 0 (A.ll)

0

We see that in the case of a high value for the reservoir coefficient,

the yield from the groundwater approaches.zero.

In the other extreme, we find

lim (K dS + S - p (t) K ) = S = 0 (A.12)
s dt N s

S

Thus,

S = 0 (A.13)
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and

R =P =-cR = PN = in K(1) s - wT (A.14)
AA

Here the first-order model is approached. Storage in the saturated zone

is not accounted for. The high lateral transmissivity of the aquifer

doesn't allow for any storage according to a linear reservoir model.

A.2 Sensitivity Analysis for Groundwater Storage

A.2.1 Approximation of the First Moment

Eq. (4.31) contains six covariance terms. Three of those are

i # j covariances for two different random variables.

A basic assumption in formulating a change of state of a

hydrologic system in a simple statistical manner is that any correlation

of climatological or hydrologic events between two consecutive years

are insignificant. According to this assumption, two of the i # j

covariances in Eq. (4.31) are negligible. Initial groundwater runoff,

r 0, on one hand,and annual average soil moisture, s, and length of

rainy season, T, on the other hand, belong, by definition, to two

consecutive years.

Statistical dependence between the latter random variables,

s and T, is assumed small as well in this work.

Some analysis of the curvatures of Eq. (4.28) with respect to

its independent random variables is necessary, however. From Eq. (4.28),

we have
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32

2 
m , s 0

=K(1) Sc e T S

K 0
S

32
9A

-2
s s 0 ,m

0 T

5 J~T)/ s - s-2K(1) e- e T/K (c-1) c-2

(A. 16)

and

2AS
9A
2

3r 2 m
g

= 0

Since the first moment of AS A by definition has to be zero

neglecting the three i = j covariance terms in Eq. (4.31) is only

reasonable if they are of the order of zero too.

An upper bound for the magnitude of the nonlinearity of Eq.

(4.28) with respect to T is given by assuming T = m . Thus, Eq. (A.15)
T

becomes

32S2 AS

2
BT m ,s

K(l) sc
-K 0

s

Data analyses indicate (Appendix C) that the right hand side

of Eq. (A.18) evaluated for sandy-loam and the storage coefficient for

Clinton, K = 45 days, gives
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32
SA 

2
BT m ,s

T o

< 1.8 x 10 3 cm ]
day

Any other combination of climate and soil parameters yields

a smaller value. It is unlikely that the variance of season length,

2 2 3 2
T , for any climate considerably exceeds a = 10 days. Taking that

into account, the whole covariance term in Eq. (4.31) for T then becomes

32

1 __A__

a 2
T m ,sT o

2 < 1.0 [cm]
T

An upper bound for the magnitude of the nonlinearity of Eq.

(4.28) with respect to s is also given by assuming a humid climate,

T ~ m . Thus, Eq. (A.16) becomes
T

32
9A

2
s

c-2
< K K(l) c(c-1) s
- s 0

(A.21)

Data analyses indicate (Appendix C) that the right hand side

of Eq. (A.21) evaluated for sandy-loam and the storage coefficient

for Santa Paula, Ks = 55 days, gives

32
9A

-2
s s 0 ,m

0 T

< 600 [cm]

Again any other (more realistic) combination of climatic and

soil parameters yields a smaller value.
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As done in Chapter V of this work, an explicit relationship

between soil moisture, s, and a single random variable, PA, can be gained

from Eq. (4.8) by means of a Taylor series expansion. It can be found

that

s - s a P + a (A.23)

where

a. = constants containing parameterized information of the

climate-soil-vegetation system (Eq. 5.19)

From Eq. (A.23)

2 2 2
c- = VAR(s) ~ VAR(a 1 PA) = a (A.24)

SA

The variance of the annual point precipitation, PA' is according to an

adopted Gamma distribution

. 2
2 A -1

= -2( + K ) (A.25)
A my

The coefficient of variation, V , of the same variable then becomes

AY . . 1/2

V A _ [1 +mP (A.26)

A

Case studies (Chapter VII) indicate that for any soil

2 -6 -2
a < 0(5 x 10 cm ) (A.27)

and
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2
2 250 cm , Clinton, Mass.

2 ~(A. 28)
A 700 cm , Santa Paula, Ca.

Thus, from Eq. (A.24), we get

2 1.25 x 10 , Clinton
10 , (A.29)2s .8 -3 ,lno

2.80 x 10 , Santa Paula

With this data, an upper bound for the complete i = j

covariance term in Eq. (4.31) with respect to soil moisture can be

determined. It is

322 AS

1 ___A_ 2
-2 a- < 1.0 [cm] (A.30)2 -2 s -

s
s ,m

0T

For realistic combinations of climate and soil, both the

values for the expression Eq. (A.20) and for the term Eq. (A.30) are

well below 0 (.1 cm). Considering the fact that the magnitude of AS

within a common range of soil moisture (Chapter V) may well exceed

values of 0 (1.0 cm) above numerical analysis may indicate that the

three i = j covariances in Eq. (4.31) are of negligible magnitude. This

result together with the assumption of small i # j covariances may serve

as a justification for the approximation of E[AS A by ASA, Eq. (4.30).

A.2.2 Analysis of the Second Moment

If only the first two terms of the Taylor-series expansion of

the annual change in groundwater storage, AS A, are retained, a first-

order approximation of the variance of AS A is obtained giving [Benjamin
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& Cornell, 1970]

VAR[AS ] ~ XA A COV[xx.] (A.31)
A j=li=l 1 mm m

Again, it is reasonable to assume statistical independence

among the x., this being consistent with previous assumptions. Equation

(A.31) then simplifies to

3 MSgA|%
VAR[AS ] a jVAR[x.] (A.32)

9A i=1 i jm

This equation may be interpreted that each of the three random

variables, x., contributes to the dispersion of AS in a manner propor-
3-A

tional to its own variance, VAR[x ], and proportional to a factor

21
[(AS /3x i] 2, which is related to the sensitivity of changes in AS

to changes in x .

This formula allows one to estimate the error in the variance

of AS due to the treatment of one of the independent stochastic vari-

ables as deterministic. The variance of AS A has three components:

gA -(T-m )/K -T/

S -9A g ~ 2 [Ks K(l)cs -(e- (-T)1 -e-T/K )] 2 C A_ 2 c-i T s - 2
S0s ,ms

o T

(A.33)

BA -~ 2
g -(T-m )/K

T 01 2 [Klc e T s 2  2S - 3A =A 1 [K(l) sc e -(- 1 s12C (A.34)
T T T 0 T

-AS T 2
S _ A_ 2 sT/ 2 2

Sa = [- KS(1 - e 5)]2 2 (A.35)
r 3r r s r
90 0 mg r 9 90
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We wish to show that the contribution to the variance of AS
9A

from variation of the season length, T, and from variation of the initial

groundwater runoff, r 0, is negligible compared to that coming from

variance of the soil moisture, s . Accordingly, we write

2 -m /K 2

S /S- T 1 (A.36)
T s 2 2 c /Ks G 2K 2 -OI MT IK

Ss -e l-

and 
2
r T/K 1 2
go e s_

S /S = (A.37)r s 2 M /K C-1
g9 oG T s cs9 K(l),

2 3 2
As before (A.2.1), we assume a to be smaller than 10 days which

may be valid even for extremely arid conditions. For the most unfavor-

able combination of climatic and soil parameters (Appendix C), one can

show that the magnitude of S /S9 is approximately 0.5.
T 5

Rearrangement of Eq. (A.37) gives in combination with the

approximation of Eq. (4.34)
2

g 0s 02 1 2
S /S- - (A.38)
r s 2 c (m +w
o s g0

Assuming negligible capillary rise, this becomes

s2
S /S = V2 (A.39)

r s 20

where

V r coefficient of variation of the initial groundwater

9 0 r u n o f f , r
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By definition of the storage concept developed in this work,

the parameters of the distribution of groundwater runoff, r , and those

of the distribution of the initial groundwater runoff, r 0, are identical.

To the first order (absence of groundwater storage), we can

approximate the relationship between soil moisture, s, and groundwater

runoff, r 9, by

r = K(l) sc (A.40)
g

The coefficients of variance are related by [Benjamin & Cornell, 1970]

dr (s)a g
r ds s a-

V = 0 -' s (A.41) r m Klc-l s
g r K(I)sc 0

g 0

Rearranged this becomes

V /V- ~ V /V- ~ c (A.42)
r s r s
g0 g

Combining Eq. (A.42) and Eq. (A.39) gives

,- r ~2

S /s- _ 10 1.0 (A.43.)
r s V- 2

This result is independent of any soil and climatic condition.

It is obtained solely in accordance with the definition of the storage

concept. It shows that both the initial condition for groundwater run-

off, r 9, and the annual average soil moisture, s, contribute to the

variance of AS to the same extent.
sA

It is obvious that significant error is introduced into Eq.
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(4.31) if r90 is treated like constant. It is legitimate, however, to

neglect the variability of T.

Despite the result of the above sensitivity analysis (S /S_-
r s
g

1.0) which exactly applies to the initial condition of storage in tie

unsaturated zone, s _, too (it can easily be shown that S- /S- = 1.0
.] s.

for VAR[AS u]), we must assume the initial state of the system to

occur at its long-term level. This is the only way to account for

storage effects without complicating the analysis to a degree which

makes it analytically intractable and which creates impractical data

requirements.
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A.3 Determination of the CDF of Annual Basin Yield*

E J(E) ET AP NA RsA PA SuA A A S A /MPA YA /mPA

s f(s) f(s) E -J[E] m K(1)s c Ys); nZ r P[- < z] const
A1r ysMP

=f(s) - wT 0(); (so x 100 (s s0

G(s)

Eq. 3.29 Eq. 3.27 Eq. 3.27 Eq. 4.9 Eq. 4.10 Eq. 4.6 Eq. 4.8 Eq. 3.9 Eq. 4.35 Eq. 2.10

cm cm cm %

Solution of the soil moisture balance equation, (4.8) Sol. of Eq. (2.10)

Table A.l

SCHEME TO EVALUATE THE ANNUAL WATER BALANCE AND THE FREQUENCY OF ANNUAL YIELD

* It must be noted that the above table is valid for the simplified case of no surface retention and no
vegetation, thus, h = 0 and M = 0.



Appendix B

B.1 Analysis of the Variance of the Annual Average Rate of Potential

Evaporation, e
p

An expansion of Eq. (6.9) about the expected value of its

independent random variables, TA, N and S into a multidimensional

Taylor series is necessary before expectations of e are taken. The
p

justification for this expansion lies in the observation that the

coefficient of variation, V , of the independent random variables is

small. Keeping only the first three terms of the expansion gives

p Ap TA A 3T N (-
A TA N s

2- 2- 2-

+ -i(TA A) 2 2 + -N -22 + 2p +) 2 2(B.1)
DT = BN =as =

A T AN s

where double bars represent expectation of a variable.

Acknowledging the fact that the second-order terms in the

above expression, Eq. (B.1), don't contribute significantly to the

variance of e because of second-order derivatives, one can find
p

[Benjamin & Cornell, 1970] to the first order

3 3 3e 3e
VAR[e ] xP a COV[X , X. (B.2)

i=i j=1 i m j M

where

x = independent random variables TA, N, S
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Since we are interested in the relative contribution to the

variance, VAR[e ], by the individual variables rather than in the exact

value of VAR[e ] itself, the i # j covariances (although considerable

probably for temperature and cloud amount) can be neglected. Thus, one

obtains three terms from the right hand side of Eq. (B.2), each defining

the contribution of one independent variable to the total variance of

e . Relating the remaining components to the temperature component,
p

which presumably is largest, gives the ratios

(re /3N

- -2 -U/ U-- (B.3)
NTA {/TAi N TA

A ae /BAA
TAY

and

___ __ __ __ 2 2

R 2 - (B.4)
',A [ep/TA=1 A

~TAT
A.

Temperature observations (Figure 6.1) for Clinton, Mass.,

which has a sub-humid climate and for Santa Barbara, Cal., which has

a semi-arid climate, lead to the following parameters of fitted analytical

probability density functions (pdf)

Clinton:
E[T A T = 8.40C

TA A
-1

a- =XA = .714*C
A

V= .085
A TA
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Santa Barbara:

E[TA] = 15.80C

a- = .50C
TA

V- = .032
TA

Santa Barbara records were chosen because of its immediate vicinity

to Santa Paula for which long-term temperature observations are not

available.

Observations [U.S. Weather Bureau, 1950-1978] of relative

humidity, S, and cloud cover, N, have been analyzed for Boston, Mass.,

and Santa Maria, Ca. These stations were found closest to Clinton, Mass.

and Santa Paula, Ca., among the observation stations having complete

records of climatological data. Records of annual means from 1950

through 1978 revealed the following statistical parameters:

Boston:

E[N] E N = .61 tenth

= .029 tenth

V- = 4.8 x 102N

E[S] E S= 57.0%

a- = 2.3%
S

V- = 4.0 x 10-2
s
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Santa Maria:

E[N] = .42 tenth

og = .03 tenth

V- = 7.1 x 10-2
N

E[S] = 60.8%

oS = 2.6%

V-- = 4.3 x 10 2

Using actual numbers now for the ratios and R and
A A

assuming that above results are transferable to Clinton and Santa Paula

gives for Clinton:

.069'x .029' 54 < 1
,T .0038 x .714. 

'8.5 x 10-5 x .023 2
.0038 x .714 J

= 5.2 x 10~ 7 1

and for Santa Paula:

.18 x .03 = 76 < 1
.0124 x . 5 7

S,T A
C8.8 x 10-5 x .026 2 = 7 -4

.0124 x .5 =

This numerical analysis indicates that it is realistic to

consider the annual average atmospheric temperature, TA, the primary
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independent variable in Eq. (6.9). Although it has to be noted that

particularly in the semi-arid climate of California, the variance of

e due to cloud cover is almost of the same magnitude as that due to
p

temperature, TA. A study [CESS, 1976] on atmospheric feedback mechanisms

appears to support the above finding of a minor impact of cloud amount

on climatic variables. The author states that cloud amount, N, is not

a significant climatic feedback mechanism, irrespective of how cloud

amount might depend upon surface temperature, TA. The reasons that

there are compensating changes in both the solar (related to q.) and
1

the infrared (related to qb) optical properties of the atmosphere. In

other words, temperature variations might cause variations in cloud

cover, but the latter doesn't significantly feed back into changes in

potential evaporation, e .
p

Hence, it seems justifiable to assume all the variance VAR[e ]

of e to come from temperature, T alone if to the first order only

one independent random variable is to be accounted for in Eq. (6.9).

This then leads to the simplified Eq. (6.14) where N and S are fixed at

their long-term average values N and S, respectively.

B.2 Integration of the Joint Density Function for the Annual Basin

Yield

Expansion of the right hand side of Eq. (6.23) by substituting

the joint pdf through the marginal pdf's for PA, Eq. (3.6), and e ,

Eq. (6.20), gives
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T

Prob[Y < x] =e [e a2 a3  p,max p

Ap ax- T -

e -

a2 a 3
0

x TA

1 a 2a3  p,max
+ e

T 
-- I e~

a2 a3  pmin
e

= r(x,e )
p 0 )V p,max

F~(vK) e-r r dr

0

- r(x,e pmin)
p cx (wm ) -p -nin -

v!T (K) e- r VK dr

v=1

p,max T

(0in)m -1 f e a2 a3  p p

v=1 v!
e

p ,min

r(x,e )

T -r r VK-l dr

(B.5)

where

r(x, e ) =IKPA (x e (B.6)

After a first integration step and normalization of x = zi 1 A
Eq. (B.5) becomes

Prob[ < z] =

MPA

Ti T
e 1 + A I , [P[VK, f(z, e )1 -

v=1 ' p ,max

00 (Wm )
- P[VK, f(z, e p,min )]] + B T I(z, e )

(B.7)
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where A, B and the function f(z, e ) are given by Eq. (6.27), Eq. (6.28)
p

and Eq. (6.25), respectively.

For the numerical evaluation of the integral I(z, e ) as

given by Eq. (6.26), the Simpson Rule [Bronstein-Semendjajew, 1974] is

applied. The integral is approximated by

- h n-i i+l
I(z, e ) - (y + [3 + (-1) ] y. + y) (B.8)

p 3 0 i n
1=1

where

y. = numerical value of the integrand of I(z, e )
p

n = number of nodal points where n has to be even

The interval of integration is given

e -e
h - p,max p,min (B.9)

n

with

e = 2e - e . (B.10)
p,max p p,min(l)

because of a symmetrical double exponential pdf for e , Eq. (6.20). The

lower realistic limit for e has to be found by Eq. (6.14)

e pmin (a1 + a2 T Amin ) a3  (B.11)

where T is picked the freezing temperature T = 00C.
A,min A,min

For large values of normalized annual basin yield,

z = YA /mPA (z - <o), the joint cdf for YA has to approach unity. That Eq.

(6.24) in fact approaches unity in that case can easily be shown.
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Pearson's incomplete Gamma function reaches unity as the argument f(z, e )
p

goes to infinity due to z going to infinity. Equation (6.24) simplifies

to

Y m O (WM ) + (Wm I)
lim Prob[- < z] = e I + (1 - 2A) =
z-*O MP AV=1 V=1Z A v.

(B.12)

For small values of normalized yield (PA -* 0), the lower

integration limit, Eq. (6.25) reaches zero. From Eq. (6.29), one obtains

by setting PA equal to zero (see Figure B.1)

-2-
YAmin -ep E - e [C + D + E] - C - D (B.13)

The integration region R(x) for Eq. (6.22) thus displays a

confined area F over which the integration of the joint cdf for YA gives

a discrete probability (Figure B.1) for Y . = z . - M . For z + o,
A,min min A~.Fo

the upper boundary of the integration region F = F + F moves to infinite
1 o

values o f P

174



/

A[z ,ap]

PA [Zmin, p]

ep max

Figure B.1

INTEGRATION REGION FOR PROBABILITY OF ANNUAL BASIN YIELD
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Appendix C

LIST OF PARAMETERS

Parameter Clay Clay Loam Silty Loam Sandy Loam

2.8 x 10-10

0.35

10

0.75 1.0 1.0

0.3 0.9 0.5

1.0 1.0

0.7 0.3

Table C.I

INDEPENDENT PARAMETERS OF REPRESENTATIVE SOILS AND EQUILIBRIUM

PROPERTIES OF VEGETAL COVER

* Clinton, Mass.

t Santa Paula, Calif.

176

2
cm

n

S1 0-10

0.45

12

1.2 x 10~9

0.35

M
0

k
V

2.5 x 10~9

0.25

0.2 0.1

2.1* 0.7

6

0.9

0.7

4



Parameter

4 (*N)

^ cm (annual)
A

M ,cm (seasonal)
A

m, d

, t d
r

m ,d
tb

K

TA, *C

XT, *l

N, tenth

, tenth

S, %

, %

N, tenth

S, %

Ks, d

Zr, cm

A

* From method of moments

t From visual best fit

Table C.2

INDEPENDENT CLIMATE AND CATCHMENT PROPERTIES

177

Clinton, Mass.

42.50

111.3

94.1

365

0.32

3.0

0.50*

8.4

1.4

.61 (Boston)

.029

57.0

2.3

0.35

70.0

45.0

100.0

0.3

Santa Paula, Calif.

34.40

54.4

53.4

212

1.43

10.4

0.37*, 0.25

13.8

2.0 (Santa Barbara)

.42 (Santa Maria)

.03

60.8

2.6

0.35

60.0

55.0

50.0

0.2



Appendix D

FORTRAN PROGRAM FOR LINEARIZED

WATER BALANCE COMPUTATIONS
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c THIS FORTRAN PROGRAM DETERMINES THE 'CDF' OF THE ANNUAL BASIN
c YIELD OF A CATCHMENT.IT IS A LINEARIZED VERSION OF THE FIRST-
c ORDER MODEL [ EAGLESON,1978 ], ACCOUNTING FOR ANNUAL CHANGE IN
c STORAGE AND FOR A RANDOMLY VARYING ANNUAL AVERAGE RATE OF
c POTENTIAL EVAPORATION. GIVEN A SET OF VEGETAL, CLIMATIC
c AND SOIL-PARAMETERS THE PROGRAM EVALUATES THE CORRESPONDING
c PROB[Ya/mpa < z] FOR SOME DISCRETE VALUES OF Ya/mpa.

real*8 mv,mh,maxep,minep,meanep,E1,E3,cfin,afin,bfin,A,B
real*8 kapp,znorm,probab
real mtr,mtau,mtb,mi,n,klkapr,m,J,ke,Fiso(3),j(3),e(3),JJ
real mpa,mo,kvo,holambdamaxtameanta,minta
integer pistol

c INDEPENDENT CLIMATIC PARAMETERS FOR CLINTON, MASS.
data mpa/94.1/,mtr/.32/,mtau/365./,mtb/3./,lambda/1.4/
data ho/.1/,const/.283/,kapp/.5/,meanta/8.4/

c INDEPENDENT CLIMATIC PARAMETERS FOR ST. PAULA, CALIF.
c data mpa/53.4/,mtr/1.43/,mtau/212./,mtb/10.42/,lambda/2.0/
c data ho/.1/,const/.457/,kapp/.25/,meanta/13.8/

data w/.O/,t/365./
data specw/7.1e4 / ,tens/7.5e-2/
phi(d,os)=1./(d*(1.-os)**(1.45-.0375*d)+5./3.)

c THE FOLLOWING INPUT PARAMETERS HAVE TO BE SPECIFIED:
c minta = TEMPERATURE CHOSEN TO REPRESENT LOWER LIMIT OF PDF
c kapr = GROUNDWATER RESERVOIR COEFFICIENT, DAYS
c rootd = DEPTH OF ROOT ZONE, CM
c bsOvel= SWITCH FOR BARE SOIL( 0 ), VEGETATION( 1)
o ret10 = SWITCH FOR SURFACE RETENTION( 1 ), OTHERWISE( 0 )

print,'input minta,kapr,rootdepth,bsOvel,retlO'
input,minta,kapr,rootd,bsOvel,retlO
pistol=1

c INDEPENDENT SOIL-AND VEGETAL PARAMETERS, AND LONG-TERM SO
c so = LONG-TERM SOIL MOISTURE CONTENT,
c ke = INTRINSIC SATURATED PERMEABILITY,CM**2
c c = PORE DISCONNECTEDNESS INDEX
c n = EFFECTIVE POROSITY OF THE MEDIUM
c mo = VEGETAL CANOPY DENSITY
c kvo = PLANT COEFFICIENT

113 print,'so,ke,c,n,mo,kvo'
inputso,ke,c,n,mo,kvo
mo=mo*bsOve1
ho=ho*ret10

c CALCULATION OF THE DEPENDENT CLIMATIC- AND SOIL PARAMETERS
c ACCORDING TO EAGLESON(1978).

mv=mtau/(mtr+mtb)
mh=mpa/mv
mi=mh/mtr
m=2./(c-3.)
PHI=10.**(.66+.55/m+.14/(m*m))
ki=specw*ke*86400.
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psii=tens*(n/(ke*PHI))**.5
d=c-1./m-1.
soo=so-.02
1=0
do 333 jj=1,3
1=1+1
soo=soo+.01
phii=phi( d, soo)
phie=phe(d)
maxta=2.*meanta - minta
sigma=((5.*n*(1./mh)**2.*k1*psii*(1.-soo)**2.*phii)/(6.*3.14*

&1 ./mtr*m))**(1 ./3.)
call mgamma(sigma,gam,ier)
G=1./mi*(.5*kl*(1.+soo**c)-w)
Fiso(l)=sigma*gam/sigma**sigma*exp(-G-2.*sigma)

c SIMPLIFIED PENMAN EQUATION, CHAPTER VI

minep=(.42+.013*minta)*const
meanep=(. 42+.013*meanta)*const
maxep=(.42+.013*maxta)*const
e(l)=(2.*1./mtb*n*k1*psii/(3.14*m*(meanep-w)**2.))*phie*soo**(d+2.)
epabs=mv*mtb*meanep
EE=e(1)

c 000000000000000000000000000000000000000
call evtrfc(meanep,EE,w,mo,kvo,JJ)
veg=1.-mo*(1.-kvo)
call era(meanep,kapp,mh,mtb,mo,kvo,ho,ret)

c 0000000000000000000000000000000000000000000
j(l)=JJ

333 continue
derfis=(Fiso(3)-Fiso(1))/.02
derJ=(j(3)-j(l))/.02
fiso=Fiso(2)
E=e(2)
J=j(2)
vegret=veg-ret
epavr=epabs*vegret
Era=epabs*ret/mpa
if(fiso.le.Era) goto 999
goto 9999

999 fiso=0.0
derJ=0.0
w=-epabs*ret/365.

9999 denom=mpa*derfis+epavr*derJ+mtau*k1*c*so**(c-1 .)+n*rootd
A1=1./denom*(1.-fiso)
A2=-1./denomfmv*mtb*vegret*J
A3=-1./denom*(mtau*k1*so**c-t*w)
w=0.0
if(kapr.lt.1.e-6) goto 57
aa=exp( -t/kapr)
ab=exp(mtau/kapr)-1.
goto 58

57 aa=0.0
ab=100.
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58 rk=kapr*k1*aa*ab*c*so**(c-1.)
Cl=rk*A1
C2=rk*A2

C3=rk*A3
Dl=n*rootd*Al
D2=n*rootd*A2
D3=n*rootd*A3
El=mv*mtb*vegret*Al1*derJ
E2=mv*mtb*(vegret*J+ret+vegret*A3*derJ)
E3=mv*mtb*A2*derJ*vegret
afin=l.-Cl-Dl
bfin=C2+D2+E2
ofin=C3+D3
B=.5*lambda/(const*.013)
A=.5*exp(-(maxep-meanep)*2.*B)
print,' Al A2 minep meanep maxep derfso derJ'
print200,Al,A2,minep,meanep,maxep,derfis,derJ

200 format('0',3x,e8.3,3x,f5.3,3x,3(f5.3,3x),ft.3,3x,f6.3)
print,' sigma G fiso E J epabs denom'
printlOO,sigma,G,fiso,E,J,epabs,denom

100 format('0',3x,7(f8.3,2x))
print,' Cl C2 Dl D2 El E2'
print300,Cl,C2,Dl,D2,El,E2

300 format('0',3xf5.3,3x,f7.3,3x,f5.3,3x,f7.3,3x,f5.3,3x,f7.3)
print,' afin bfin A B'
print400,afin,bfin,A,B

400 format('0',3x,f5.3,3xf7.3,3x,2(elO.3,3x))
print,' z Prob[Ya/mpa < z]'
znorm=.0
iii=O

111 znorm=znorm+.1

c 8888888888888888888888888888888888888888888888888888888888888
call numint(mv,mh,maxep,meanep,minep,E1,E3,cfin,afin,bfin,A,B,

& probab,kapp,znorm,pistol)
c 8888888888888888888898888888888888888888888888888888888888888

print500,znorm,probab
500 format(lx,f3.llOx,f7.4/)

if(iii.eq.13) goto 112
iii=iii+l
pistol=2
goto 111

112 continue
goto 113
end

c THIS SUBROUTINE DETERMINES THE CUMULATIVE FREQUENCY OF AN
c ARBITRARY NORMALIZED ANNUAL BASIN YIELD(ZNORM), IN
c ACCORDANCE WITH CHAPTERS V AND VI.

subroutine numint(mv,mh,maxep,meanepminep,E1,E3,cfin,afin,bfin,
& A,B,probab,kapp,znorm,pistol)
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5555555555555555555555555555555555555555555555555555555555555

real*8 vfac,znorm,zkapp,kerror,mv,hminepmaxep,meanepep
real*8 fvlogin,logincincrem,maxim,mh,E1,E3,sumOn
real*8 afin,bfin,cfin,Bsumga,AC,cmin,cmax,n,probab
real*8 fac(500),ga(150),integ(3),ratio(3),summ(3)
real*4 p,maxili,minili
integer v,vmax,pistol

c generation of v-terms

if(pistol.eq.2) goto 11
do 20 j=1,500
vfac=.OdO
do 10 ji=1,j

10 vfac=vfac + dlog(dble(float(ji)))
fac(j)=vfac

20 continue

c initiation of values

11 z=znorm*mv*mh
k=kapp
error=1.e-5
v=1

c calculation of the v-th increment

summ(1)=.OdO
summ(2)=.OdO
summ(3)=.OdO
n=100.

12 fv=float(v)
p=k*fv
1=1
h=(maxep-minep)/n
if(h.lt.error) goto 1000

1 ep=minep + float(l)*h
xxy=(znorm+(E3*ep**2.+cfin+ep*bfin)/(mv*mh))/(afin-E1*ep)
varili=mv*k*xxy

c calb. of all discrete values of Fi(v=const)

call mdgam(varili,p,probva,ier)
C=exp(-abs(ep-meanep)*2.*B)
ga(1)=C*dble(probva)
11= ifix(sngl(n))
if(1-ll) 13,2,2

13 1=1+1
goto 1

c numerical evaluation of the integrals I(3),I(4)

2 sumga=.OdO
nn=n-1
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do 3 i=1,nn
3 sumga=sumga + (3.+(-1.)**(i+1))*ga(i)

1000 continue
xx=(znorm+(E3*minep**2.+cfin+minep*bfin)/(mv*mh))/(afin-E1*minep)
xy=(znorm+(E3*maxep**2.+cfin+maxep*bfin)/(mv*mh))/(afin-E1*maxep)
minili=mv*k*xx
maxili=mv*k*xy

c minili=mv*k*znorm
o maxili=minili

call mdgam(minili,p,probmi,ier)
call mdgam(maxili,p,probma,ier)
cmin=exp(-abs(minep-meanep)*2.*B)
cmax=exp(-abs(maxep-meanep)*2.*B)
sum0n=cmin*dble(probmi) + cmax*dble(probma)
integ(1)=probmi
integ(2)=probma
integ(3)=(sumOn + sumga)*h/3.

c in case of constant ambient temperature we need
0 the following corrections

if(h.lt.error) goto 2000

goto 3000
2000 integ(3)=1.

B=.GdO
3000 continue

if(integ(1).le..O) goto 6(X

c summation of all v-terms

do 4 ii=1,3
login=dlog(integ(ii))
loginc=fv'dlog(mv) - fac(v) + login - my
if(loginc.le.-85.) loginc=-85.
increm=dexp(loginc)
summ(ii)=summ(ii) + increm

4 ratio(ii)=increm/summ(ii)
maxim=dmax1(ratio(1),ratio(2),ratio(3))
if(maxim.le.error) goto 60
v=v+1
goto 12

c end of calc. of the v-th increment

60 vm=mv
if(mv.gt.85.) vm=85.
prob=exp(-vm) + A*(summ(1)+summ(2)) + B*summ(3)
probab=prob*100.
return
end

c THIS FUNCTION SUBPROGRAM DETERMINES THE EXFILTRATIONPARAMETER

function phe(d)
dimension y(6)
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data y/.18,.11,.0 7 7,.0 56,.044t,.034/
if(d.gt.7.) goto 10
x=d-1.

i=ifix(x)
frac=x-float(i)
y1 =alog(y(i))
y2=alog(y(i+1))
phe=exp((y2-yl)*frac+yl)
return

10 phe=.034
return
end

c THIS SUBROUTINE DETERMINES THE SURFACERETENTION

c 333333333333333333333333333333333333333333333333
subroutine era(meanep,kapp,mh,mtb,mo,kvo,ho,ret)

c 3333333333333333333333333333333333333333333333333

real*8 meanep,kapp,mh
real*4 mtb,mokvoho

if(ho.lt.le-5) goto 1
xlamb=kapp/mh
xhme=ho/(mtb*meanep)
xlah=xlamb*ho
xlahk=xlah*kvo
argi=xlah+xhme
arg2=xlahk+xhme
quot1=1./(mtb*meanep*xlamb)
quot2=quotl/kvo
brackl=(1.+quotl)**(-kapp)
brack2=(1.+quot2)**(-kapp)

call mdgam(xlah,kapp,trxlah,ier)
call mdgam(xlahk,kapptxlahk,ier)
call mdgam(argl ,kapp,trargl ,ier)
call mdgam(arg2,kapp,trarg2,ier)

xl=1-exp(-xhme)*(1.-trxlah)
x2=brackl*trarg1

x3=1.-exp(-xhme)*(1.-txlahk)
x4=brack2*trarg2

ret=(1.-mo)*(x1-x2) + mo*kvo*(x3-x4)
goto 2

1 ret=O.
2 continue

return
end

c THIS SUBROUTINE DETERMINES THE EVAPOTRANSPIRATION FUNCTION
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c 7777777777777777777777777777777777777777777777777
subroutine evtrfc(meanep,ew,mokvoj)

c 7777777777777777777777777777777777777777777

real*8 meanep
real*4 mk,mo,kvo,j

wep=w/meanep
mk=mo*kvo
cc (mk-wep) **2.
if(cc-.005) 10,10,20

10 c=100.

goto 30
20 c=(2.*cc)**(-1.)

30 b=(1. -mo)/(1.+mk-wep)+(mk*mo+(1.-mo)*wep)/(2.*(1.+mk-wep)**2.)
be=b*e
ce=c*e

call mgamma(l.5,gamm,ier)
call mdgam(be,1.5,begam,ier)
call mdgam(ce,1.5,cegam,ier)

if(be.gt.80.) be:80.
if(ce.gt.80.) ce=80.
gam= (cegam-begam) *gamm
coeff=(1.-mo)/(.-mo+mk)
a=(1.+mk+e*(2.*b)**.5)*exp(-be)
d=(mk+e*(2.*c)**.5)*exp(-ce)

j=1.-coeff*(a-d-gam*(2.*e)I*.5)

return
end
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