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ABSTRACT

EMPIRICAL TEMPERATURE FORECASTING:
EXTENSIONS OF THE MODEL OUTPUT STATISTICS METHOD

by

DAVID E. LANGSETH

and

RAFAEL L. BRAS

Deterministic models of complex natural phenomena such as
streamflow or weather events are usually either unknown or unwieldy and
thus are often augmented or replaced by stochastic or empirical models.
For example, the National Weather Service (NWS) uses a combination of
deterministic and empirical models to predict several weather parameters.
An approximate deterministic model of the atmosphere provides predictions
of some meteorological parameters at the grid points used in the numerical
solution of the model. Some of these deterministic predictions, along
with recent measured data, are then used as input variables to an
empirical prediction equation. The National Weather Service
uses a stepwise least-squares regression algorithm to develop the
empirical equations.

The prediction of maximum surface air temperature is investigated

in this work. The NWS currently uses 10 variable linear models to predict

maximum temperatures. The 10 variable restriction is based on research
and the linear restriction is based primarily on the prohibitive amount
of time and effort required to develop non linear models. The potential
model improvements from relaxing these two restrictions are examined in
this work. Data from Huntsville, Alabama, supplied by the NWS, is
used. Non linear models are created by applying a non linear model
identification algorithm called the Group Method of Data Handling to
the data. Two linear model identification algorithms are also used.
The usefulness of the removal of harmonic components and the identifica-
tion of principal components were investigated along with each of the
model identification algorithms.

It is shown that, for the site investigated, the linear restric-
tion does not hurt model quality and that while 10 is a reasonable number
of variables, models with fewer variables can also perform well. Also,
modeling the mean trends separately from the more transient effects
improves model quality.
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Chapter 1

INTRODUCTION

Weather influences many activities and weather forecasts

influence many decisions. Some of these decisions, such as whether to

plan a picnic for a particular day, are made informally. Others, such

as raisin growers' decisions to set grapes out to dry, have major conse-

quences and are often carefully analyzed with regard to weather forecasts.

Examples of decision making using weather forecasts are given in Howe

and Cochrane (1976), Kernan (1975), Carter (1972), Helbush (1968), Glahn

(1964), Lave (1963), and Kolb and Rapp (1962).

Weather related decision making involves interaction between

the forecasters, or forecasting system, and the forecast consumer. The

forecasters must decide what, when, how, and how well to forecast. The

forecast consumers must decide how best to use the forecast. For example,

the basic output of a physical model of the atmosphere may be humidity,

but raisin growers and construction contractors both want forecasts of

rainfall. The forecaster must then decide whether to attempt a forecast

of rainfall or let the consumers use the humidity forecast directly.

The contractor may need a 3 day advance notice of a single dry day while

the raisin grower may need a one day advance notice of 3 consecutive

dry days. Either may desire a forecast of the probability of rain or

may prefer an unqualified statement whether or not it will rain.

Forecasters can tailor their forecasts to a particular consumer or try

12



to produce a forecast of more general usefulness (Murphy, 1977, and

Nelson and Winter, 1964). This work is restricted to an examination of

some forecasting methods.

The numerous methods of forecasting weather can generally be

classified as either objective or subjective. We will adopt the defini-

tion given by Allen and Vernon (1951) that objective forecasts are those

which are uniquely determined by a set of data. Subjective forecasts

are those in which human judgment is used. This distinction is sometimes

fuzzy, as, for example, when some of the data used in an otherwise

objective forecast procedure have been subjectively derived or adjusted.

Objective forecasts are frequently used as guidance for subjective fore-

casts. Subjective forecasts are not discussed in this work.

Physical and empirical models are the basic objective forecast

methods. Physical models use fundamental equations of motion, thermo-

dynamics, and continuity, along with prescribed boundary and initial

conditions, to forecast future conditions. Empirical models use data to

calibrate relations between variables known at the forecast issue time

and the forecast variable. The forms of empirical models are usually

chosen for convenience and only implicitly describe the physical rela-

tions. Empirical models thus rely primarily on data, rather than physics,

to connect the past to the future. Data may also be used in physical

models, either for calibration or to assign initial and boundary

conditions. Subjective judgment is normally required to construct either

a physical or empirical model, but the models are still called objective

because once they are constructed, only one forecast can be produced
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from a given set of input data.

Physical forecast models were proposed by Bjerknes

in 1904 and first attempted during World War I by Richardson. The

development of high speed computers made their routine use possible.

Petterssen (1957) reviews the history of physical forecasting methods

and Rieck, et al. (1976) gives brief descriptions of several physical

models used by the National Weather Service (NWS). The physical models

related to this work are described in Section 2.1.

Many empirical objective methods have been used to forecast

weather. Some uses of scatter diagrams, discriminant analysis, adaptive

logic, multiple linear regression, and orthogonal functions are described

in Glahn (1965). Scatter diagrams are an approximate, but statistically

robust, method of deriving relations between variables. The use of

scatter diagrams in temperature forecasting is described in Dickey (1960).

Discriminant analysis is generally useful when the predictand is one of

a set of categories, rather than a continuous variable. A good descrip-

tion and example use of discriminant analysis in weather forecasting is

given in Miller (1962). A form of adaptive logic is part of the motiva-

tion for the structure of the GMDH, a model identification method

used in this work and described in Chapter 4. Multiple linear regression

and orthogonal functions are used in this work and are described in

Chapter 3.

The primary advantage of physical models over empirical models

is their relatively general applicability. Empirical models frequently

have severely limited prediction capabilities outside the range of the
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data used to calibrate the model. The primary advantage of empirical

models over physical models is their ability to capture complex relations

without precise specifications of the underlying processes. Empirical

models are thus frequently much simpler in form and easier to use than

physical models.

Some of the most successful short range (less than 3 days)

forecast models are empirically derived linear combinations of physical

model forecasts and other meteorological variables. Such models are the

objective analogs of subjective forecast methods and have the advantages

over subjective forecast methods of a nearly perfect and neutral memory

and being transferable between forecasters, but have the disadvantage of

not being able to capture the full range of relations implicit in a

forecasters experience. The Perfect Prog (PP) and Model Output

Statistics (MOS) models discussed in Section 2.2 have this form.

The models developed in this work are extensions of the MOS

modeling method. MOS models for temperature forecasting are linear

combinations of 10 variables chosen from 70 to 120 (depending on the

particular variable being forecast) potential predictor variables. The

10 term restriction is based on research by Annet et al. (1972) and

Bocchieri and Glahn (1972). The linear restriction is dictated by the

large number of models which must be produced by the NWS. A variety of

models with different numbers and transformations of the potential

predictor variables are developed and examined in this work.

A secondary emphasis in this work is model validation.
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The NWS produces too many.models to consider applying validation

procedures to every model. Validation procedures are applied to a few

of the models developed in this work both to illustrate the procedures

and to suggest how other models might perform when subjected to the

same procedures.

The temperature forecasting methods used by the NWS are

described in Chapter 2. Most of the empirical modeling techniques used

in this work are described in Chapter 3. A model identification method

called the Group Method of Data Handling is described in Chapter 4.

The details of the procedures used to generate alternative models are

described in Chapter 5 and those models are analyzed in Chapter 6.

Chapter 7 contains the summary and conclusions.
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Chapter 2

OBJECTIVE TEMPERATURE FORECASTING

Model Output Statistics (MOS) is the most successful short

range objective temperature forecasting method in current use. Perfect

Prog (PP) models were the direct predecessors of MOS models and are still

used for some forecasts. MOS and PP models are empirical models which

use both observed conditions and physical model forecasts as predictor

variables. Models developed in this work are based on the MOS

modeling method. The physical models whose forecasts are used in

the MOS and PP models are described in Section 2.1, the PP and MOS

modeling methods are described in Section 2.2, the current schedule

for MOS temperature forecasts is described in Section 2.3, and the data

used to develop MOS temperature forecasting models are described in

Section 2.4. Some methods of evaluating the quality of temperature

forecasting models are described in Section 2.5.

2.1 Physical Models

Forecasts from the Seven Layer Primitive Equation (7LPE),

Limited Area Fine Mesh (LFM-II), and Trajectory Models are used in

MOS and PP models. These 3 physical models are described briefly in

this section.

The 7LPE model is the basic physical model used by the

National Meteorological Center (NMC) for routine forecasting. The 7LPE

model takes its name from the number of vertical layers in the grid

over which the model is solved and the nature of the equations used
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in the model. Until January 1978 the NMC used a similar model which

had 6 vertical layers and was called the 6LPE model. The 6LPE model

is described in Stackpole (1975) and Schuman and Hovermale (1968).

The 7LPE model is described in Brown (1977 and 1977a).

The dynamics of the atmosphere are described in the 7LPE

model by equations of motion in 3 dimensions, thermodynamics of

potential temperature, and continuity of dry air and water vapor.

Complementary equations describe forces to which the air is subjected,

the heat budget, and sources and sinks of air and water. The equations

are written in horizontal coordinates related to lines of latitude and

longitude and a vertical coordinate perpendicular to the surface of the

earth.

The model is solved numerically over a three dimensional grid

which covers the northern hemisphere and extends to the top of the

atmosphere. The horizontal grid array is 129 x 129. The mesh length

varies with latitude, being 153 kilometers at 30*N and 180 kilometers

at 50*N. The vertical mesh length is initially defined by atmospheric

pressure and the location of the tropopause. The boundary layer of the

model is the first 50 millibars (mb) of pressure change. Between the

top of the boundary layer and the tropopause there are 3 layers of

initially equal pressure thickness. The layer pressure thickness is

the pressure change from the top to the bottom of a layer. Between

the tropopause and 50 mb of pressure there are another 3 layers of

initially equal pressure thickness. An eighth layer extends from

18



50 to 0 mb, but is not included in the model name because it has no

meteorological function. The layer pressure thicknesses change during

the execution of the model. The initial conditions for the 7LPE model

are assigned from observed data. Potential temperature, 2 horizontal

components of wind, layer pressure thickness, and precipitable water

are forecast directly by the model. Other variables are derived from

these 5.

The LFM-II model was designed to provide increased forecast

accuracy in the areas of greatest interest. The LFM-II model uses

essentially the same equations as the 7LPE model, but differs from

the 7LPE model in the horizontal mesh length, time step, and method of

assigning boundary and initial conditions. The horizontal grid array

is 79 by 67,with a mesh length of 116 km at 45*11. The grid covers

North America and some of the surrounding ocean. The time step in

the LFM-II model is reduced from that in the 7LPE model to retain

numerical stability. Boundary and initial conditions for the LFM-II

model are assigned from a combination of observed conditions and 7LPE

model forecasts. The LFM-II model replaced the LFM model shortly

before the 7LPE model replaced the 6LPE model. Rieck (1978) and

Gerrity (1977) describe the LFM model and Brown (1977b) describes

differences between the LFM and LFM-II models.

The trajectory model was designed to provide improved low

level temperature and moisture forecasts, with special application to

severe storm prediction (Rieck et al., 1976). Wind forecasts from the
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7LPE model are used in the trajectory model to compute air parcel

trajectories. Changes in temperature and moisture content along those

trajectories are then calculated. The initial temperature and moisture

conditions are assigned from observed data. 6LPE model wind forecasts

were used in the trajectory model prior to the introduction of the

7LPE model.

The NMC runs each physical model twice each day. The runs

are called the 0000 Greenwich Mean Time (GMT) and 1200 GMT forecast

cycles. General information about forecast schedules and cutoff

times for initialization can be found in Rieck et al.(1976).

Since physical models are always approximate descriptions of

a real system, model predictions usually deviate from real system

performance. Some of the deviations may be random and some may have

patterns. The nature of the deviations between the real behavior

of the atmosphere and the physical model predictions is an important

part of the difference between the MOS and PP forecast methods.

2.2 Statistical Models

2.2.1 Perfect Prog (PP) Models

Perfect Prog models are linear combinations of predictor

variables. The development and use of PP models is described in Klein

and Glahn (1974), Klein et al. (1971), Klein and Lewis (1970),

Klein et al. (1967), and Klein (1966). The predictors and associated

weights for a particular model are usually chosen by applying a forward

moving stepwise regression algorithm (see Draper and Smith, 1966) to a
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list of potential predictors thought to be related to the predictand.

Observed values of the predictors are used to develop the equations.

However, when the equations are applied some of the predictors have not

yet been observed and are replaced by forecasts of these predictors from

physical models. Errors in the physical model forecasts are thus

translated directly into errors in the PP model forecasts. The data

records used to develop PP equations are usually 15 to 20 years long.

PP models were used by the NMC from 1964 through 1973 to issue

max/min temperature forecasts out to 60 hours in advance for each of 143

cities in North America. The derivation and use of these models is

described in Klein and Lewis (1970) and illustrates the general PP

method. Data from 18 years were used to develop separate equations for

each 2 month period. The potential predictors were the 700 mb heights

and 700-1000 mb thicknesses observed approximately 12 hours before the

valid time of the forecasts at 67 of the 6LPE model grid points, the

observed maximum and minimum temperature from the preceeding day, and

the day of the year. Observed values of the 700 mb heights and 700-1000

mb thicknesses were used to develop the PP equations and 6LPE model

forecasts of the 700 mb heights and 700-1000 mb thicknesses were used

to forecast with the PP equations. Observed values of the max/min

temperatures from the preceeding day were used both develop and to fore-

cast with the PP equations. The forward moving stepwise algorithm used

to choose the predictors for each equation added pairs of variables
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until no pair could increase the explained variance of the predictand

by more than 2 percent.

PP models have been replaced by MOS models in most situations.

PP and MOS models are compared in Section 2.2.2.

2.2.2 Model Output Statistics (MOS) Models

Guidance forecasts for air temperature, probability of

precipitation, precipitation type, thunderstorm occurrence, cloud

amount, wind speed, and wind direction are issued by the NMC using

MOS models developed by the National Weather Service (NWS) Techniques

Development Laboratory (TDL). Application of MOS models is described

in Klein and Glahn (1974) and Glahn and Lowry (1972). Forecasting

temperature with the MOS method is described in Carter et al. (1979),

Hammons et al. (1976), and Klein and Hammons (1975).

There are 4 primary differences between the MOS and PP

methods. First, in the MOS method physical model predictions are

used both to develop and to forecast with the equations. Second, in

the MOS method all the predictors are values for the forecast site.

The values of the physical model forecasts at the forecast site are

interpolated from the four grid points surrounding the site. Many of

the physical model forecasts are smoothed by averaging each grid point

value with 4, 8, or 24 surrounding grid point values prior to inter-

polation to the forecast site. Third, the data samples used to develop

MOS equations are generally much shorter than the data samples used to

develop the PP equations because there are longer records of observed
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atmospheric conditions than of physical model forecasts. Also, periodic

changes in the physical models further shorten the useful record length.

Fourth, a greater variety of potential predictors is available to the

MOS method than to the PP method because many of the variables forecast

by the physical models are not observed directly.

The MOS method has 2 primary advantages over the PP method.

First, some of the systematic errors in the physical model forecasts

can be accounted for in the MOS method. If the physical model forecast

errors were randomly distributed and unbiased, the MOS method would

lose this advantage over the PP method and the short data records

used to develop the MOS models might even introduce some errors not

found in the PP models. Second, all of the predictors available to the

PP method are also available to the MOS method, but some of the MOS

predictors are not available to the PP method.

The PP method has 2 primary advantages over the MOS method.

First, equations developed from long data samples tend to be relatively

stable and thus do not need frequent redevelopment. Second, PP models

improve directly with improved physical model forecasts. MOS equations

are also likely to improve with improved physical models, but not until

several years after the introduction of the new physical model, when

there are enough archived forecasts to develop new equations.

2.3 MOS Temperature Forecast Schedule

MOS models are used to issue guidance forecasts of air

temperature out to 60 hours in advance for approximately 240 cities.
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Separate equations are used for each city. PP models are used for

longer projection times but only the MOS models are discussed here.

The NMC issues 2 groups of MOS temperature forecasts in

each of 2 daily forecast cycles. The 2 groups are called the early

and final guidance packages and the forecast cycles are called the

0000 GMT and 1200 GMT cycles. The early guidance equations were

developed from LFM model forecasts and are run with LFM-II model

forecasts. The final guidance equations were developed from 6LPE

and trajectory model forecasts and are run with 7LPE and trajectory

model forecasts. These physical model changes were not considered

sufficiently severe to warrant abandoning the old equations, but

local forecasters are warned to watch for occasional unusual behavior

in the MOS forecasts. This work is based on data used for the early

guidance 0000 GMT forecast models.

The early guidance forecast schedule is shown in Figure 2.1

(from Carter et al., 1979). The upper time line is for general

reference in the rest of the figure and the other lines show the times

in each cycle for which temperature forecasts are issued. The 3

hourly forecasts are forecasts of temperature at the specified time

and the max/min forecasts are forecasts of the maximum and minimum

temperatures during calendar days. The max/min temperature forecasts

are shown on separate lines from the 3 hourly forecasts and are marked

at their approximate expected times of occurrence.

The equations within each set, for a given season, were
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constrained to use the same predictors. For example, the April through

June (see Table 2.4) forecast equations for today's max and the

temperatures at 6,9,12,15,18,21,24, and 27 hours in the 0000 GMT cycle

all contain the same predictors, although the coefficients of the

predictors vary between equations. The 24 hour max/min is associated

with set 1, the 36 hour max/min is associated with set 2, and the 48

hour max/min is associated with set 3. The set numbers correspond

to those shown in Tables 2.2 and 2.4. Primary and backup equations

are available for each forecast. The primary equations were developed

from the complete list of potential predictors (see Section 2.4).

Observed predictors are not used in the backup equations.

The early guidance package is usually available to forecasters

by 0004 GMT in the 0000 GMT forecast cycle and 1600 GMT in the 1200

GMT forecast cycle. Final guidance packages are usually available

about 4 hours later.

2.4 MOS Temperature Forecast Equation Development Data

The potential predictors from which the MOS early guidance

temperature prediction equations are developed include forecasts by

physical models, observed conditions at the forecast site, and the

first 2 harmonics of the day of the year. The physical model fore-

cast variables and observed conditions are those thought to influence

or be related to temperature. For example, the humidity variables
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influence temperature through the effect of water on the heat budget

and the layer temperature variables are related to surface tempera-

ture through the lapse rate for temperature. The first 2 harmonics

of the day of the year are represented by the 4 functions

A sin 2D 2.1

2-D
A2 cos(- 5) 2.2

A sin 47D 2.3

A sin( 47rD 2.4

where D is the day of the year and A1 , A2, A 3, and A are weights chosen

in the modeling process. The harmonic terms were originally introduced

into the potential predictor list to correct a bias in the MOS forecasts

noticed during the development of the MOS technique (Annet et al., 1972).

The harmonic terms were later described as a method of modeling the

seasonal trend of temperature (Carter et al., 1979). Modeling the

seasonal trend with harmonic terms prior to developing the rest of

a temperature prediction model is discussed in Section 5.2.

The observed predictors are listed in Table 2.1 (following

Carter et al., 1979) and the physical model forecast variables are

listed in Table 2.2. Table 2.2 was provided by the NWS TDL. The set

numbers in Table 2.2 correspond to those listed in Figure 2.1.

The observation times listed in Table 2.2 are for the physical model
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forecasts and are relative to 0000 (1200) GMT of day 1 for the 0000

(1200) GMT forecast cycle. No observed predictors are used with set

3 or for the 60 hr. max/min. The abbreviations used in Tables 2.1

and 2.2 are listed in Table 2.3.

The years of data and seasonal stratification used to

develop the currently operational early guidance forecast equations

are listed in Table 2.4 (following Carter et al., 1979). Separate

equations for each of the forecasts described in Section 2.3 were

developed for each season. Sets 2 and 3 will also be stratified into

3 month seasons when sufficient data is available.

Set 1 data in the 0000 GMT forecast cycle for the Spring

season at Huntsville, Alabama are used in this work. The predictand

is today's maximum temperature. The NWS TDL supplied the data.

0000 GMT 1200 GNT
Element cycle cycle

0300 1500
Sfc temperature 0000 1200

2100 (yesterday)
Sfc dew point temp 0300 1500
Cloud cover 0300 1500
Sfc U wind 0300 1500
Sfc V wind 0300 1500
Sfc wind speed 0300 1500
Ceiling height 0300 1500
Previous maximum temp 1200
Previous minimum temp 0000
Snow cover 1200 (yesterday) 1200

Table 2.1 Potential Observed Predictors Used to Derive the
MOS Early Guidance Temperature Prediction Equations
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Variable 3-hr Set #1 3-hr Set #2 3-hr Set #3 60-hr max/min

1000-MB HEIGHT 12*,24* 24*,30*,36* 36**,42**,48** 48**,48***
850-mB HEIGHT 12,24 24,30,36 36,42,48 48*,48**
500-MB HEIGHT 12,24 24,30,36 36,42,48 36*,48*
500-1000 MB THICKNESS 0,6,12,18,24 24,30,36 36,42,48 48*
850-1000 MB THICKNESS 0,6,12,18,24 24,30,36 36,42,48* 48*,48**

500-850 MB THICKNESS 0,6,12,18,24 24,30,36 36,42,48* 48*
1000-MB TEMP 0,12*,24* 0,24*,36* 36**,48** 48**,48***
850-MB TEMP 0,6,12,18,24 0,24*,30*,36* 36*,42*,48* 48*,48**
700-MB TEMP 0,12,24 24,30,36 36*,42*,48* 48*,48**
BND LYR POTENTIAL TEMP 6,12,18,24 24*,30*,36* 36*,42*,48*,48** 48*,48**

BND LYR U 6,12,18*,24* 24*,30*,36* 36*,42*,48* 48*,48**
BND LYR V 6,12,18*,24* 24*,30*,36* 36*,42*,48* 48*,48**
BND LYR WIND SPEED 6,12,18*,24* 24*,30*,36* 36*,42*,48* 48*,48**
850-MB U 6,12,18*,24* 24*,30*,36* 36*,42*,48* 48**
850-MB V 6,12,18*,24* 24*,30*,36* 36*,42*,48* 48**

700-MB U 12,24* 24*,36* 36*,48* 48**
700-MB V 12,24* 24*,36* 36*,48* 48**
850-MB REL VORT 6*,12*,18*,24* 30**,36** 42**,48** 48**
500-MB REL VORT 12*,24* 30**,36** 42**,48** 48**
850-mB VERT VEL 12*,24* 36* 48** 48***

700-MB VERT VEL 12*,24* 30*,36* 42*,48* 48***
700-1000 MB TEMP DIF 12,24 36* 48* 48**
500-850 MB TEMP DIF 12,24 30*,36* 42*,48* 48**
BND LYR REL HUM 0*,6*,12*,18*,24* 24*,30*,36* 36**,42**,48** 48***
MEAN REL HUM 6*,12*,18*,24* 24*,30*,36* 36**,42**,48** 48***

Table 2.2 (cont'd on next page)
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PRECIPITABLE WATER 6*,12*,18*,24* 30*,36* 42**,48** 48***

1000-MB DEW POINT 6*,12*,18*,24* 30*,36* 42*, 48* 48**,48***

850-MB DEW POINT 12*,24* 30*,36* 42*,48* 48**

700-MB DEW POINT 12*,24* 30*,36* 42*,48* 48**
BND LYR WIND DIVERGENCE 6*,12*,18*,24* 30*,36* 42**,48** 48***

850-MB TEMP ADVECTION 12*,24* 30*,36* 42**,48** 48***
500-MB VORT ADVECTION 12*,24* 30*,36* 42**,48*** 48***

Table 2.2 Projection Times of Potential Predictors from Physical Models Used to Derive the
MOS Early Guidance (LFM based) Temperature Prediction Equations. The Stars Indicate
the Field was Smoothed by 5 Points (*), 9 Points (**) or 25 Points (***).
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Sfc = surface

temp = temperature

U = east-west wind component

V = north-south wind component

MB = millibar

BND LYR = boundary layer

REL VOR = relative vorticity

VERT VE] = vertical velocity

DIF = difference

REL HUM = relative humidity

Table 2.3 Abbreviations Used in Tables 2.1 and 2.2.

24 h max/min 36 h max/min 48 & 60 h max/min

Season 3-hourly set #1 3-hourly set #2 3-hourly set #3

Spring (April-June) 5(1973-77) ---

Summer (July-September) 5(1973-77)
Warm (April-September) --- 3(1975-77) 2(1976-77)
Fall (October-December) 6(1972-77) --- ---

Winter (January-March) 6(1973-78) ---

Cool (October-March) --- 3(1975-78) 2(1976-78)

Table 2.4 Number of Seasons of Archived Forecasts from the LFM Model
Available for the Development of the Early Guidance
Temperature Prediction Equations.

2.5 Forecast Evaluation

The quality of temperature forecasts can be measured in

several different ways. The most rigorously justificable methods are
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based on maximization of the utility of the forecast to the forecast

consumers. Such measures of forecast quality require knowledge of

both the forecast characteristics and the forecast consumer's utility

functions. Forecast quality measures of this type are discussed by

Thompson and Brier (1955), Gringorten (1959), Thompson (1962), Glahn

(1964), Nelson and Winter (1964), and Murphy (1977), among others.

These methods are generally used only to evaluate proposed models,

though Glahn (1964) incorporated the forecast consumer's utility

function into a model development scheme.

The most commonly used measures of forecast quality are

statistical measures of forecast accuracy. The root mean squared

error (rmse), mean absolute error (mae), correlation between fore-

casts and observations, number of large errors (nle), and forecast

bias have been used to measure forecast accuracy. These statistics

are usually calculated on independent data, but the rmse is also cal-

culated on data used to develop the model. The reasons for preferring

independent data for measuring forecast model accuracy are discussed

in Chapter 3.

As it is rarely clear which measure of forecast accuracy

is to be preferred, several writers have presented multiple measures

of forecast accuracy, all based on independent data. Klein and Glahn

(1974) presented the rmse, mae, correlation, and bias. Klein and

Lewis (1970), Klein et al. (1967), and Klein (1966) presented the

mae, rmse, and correlation. Hammons et al. (1976) and Klein and
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Hammons (1975) presented the mae and correlation. Glahn and Lowry

(1972) presented the mae, nle, and bias. Carter et al. (1979),

Zurndorfer et al. (1979) and Klein et al. (1971) present only the

mae. All of the preceeding writers also presented the rmse on

estimation data when discussing model development characteristics.

Sanders (1973) presented the percentage improvement of the mae over

a control forecast as a measure of forecast accuracy. Sanders used

climatology as the control forecast, but suggested that this was not

the only valid choice.

Five statistical measures of forecast accuracy based on

the data used to develop the models and two measures based on inde-

pendent data are evaluated for the models developed in this work.

These measures are described in section 3.2.3. Sanders' suggestion

was not used because in the absence of a meaningful tontrol forecast

it would simply rescale all the numbers.
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Chapter 3

EMPIRICAL MODELING

Empirical models can be used for many diverse purposes,

including summarizing data, discovering cause and effect relations,

and prediction. The appropriate techniques of modeling vary with the

purpose for which a model will be used. The models developed in this

work are used only for prediction. Thus the following discussion

will concentrate on the aspects of empirical modeling relevant to

problems of prediction.

3.1 Prediction
The basic problem is to predict the value of a variable we

will call the dependent variable, given the values of a set of

variables we will call the independent variables. The independent

variables may themselves be arbitrary functions of other variables,

but their values must be specified independently of the modeling process

under consideration. Let y equal the dependent variable and let the

vector x equal the set of independent variables. The expected value

of y given x,

E[y/x] = y d(F y) 3.1

where F is the conditional probability mass function of y given x,

is probably the most commonly sought predictor of y. However, we

usually neither know nor have enough data to estimate F for even

one value of x, and thus turn to the device of fitting functions to

data to produce an approximate description of Efy/x] over a wide range

of values for x. All of the models in this work are developed
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by fitting functions of the form

y = X a+ e 3.2

where y is the dependent variable

x is a 1 x k vector of independent variables

S is a k x 1 vector of coefficients

k is the number of independent variables in the model,

including a constant term,

and e is a zero mean random disturbance

The vector x contains an element with the constant value of 1. We

assume that E[e] = 0 and thus E[y/x] = x 5. We also assume that E[E2

is finite. Note that V[y/x] = E[ 2] and when the independent

variables are taken to have zero variance V[y] = E[E ]. We will always

assume the variance of the independent variables is not a function of

a or E[E ]. E[z] and V[z] are the expected value and variance of z.

Given the form of Equation 3.2 and the assumptions described

above, the data samples used to develop a model may be described in

the form

y= X + _+_ 3.3

where y is a n x 1 vector of observations of the dependent

variable

X is a n x k matrix of observations of the independent

variables

5 is a k x 1 vector of coefficients (same vector as in

Equation 3.2)
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e is a n x 1 vector of sample disturbances

E[e] = 0 3.4

Ee e ' ] = a2 n3.5

a2 is a scale factor

0 is a symmetric positive definite matrix

and n is the number of observations in the sample

e can account for many types of disturbances in the sample, including

observation errors, system identification errors, and random behavior.

Three basic elements of fitting functions to data are

identification, estimation, and validation. Identification is choosing

the form for the model. Estimation is choosing the coefficients and

other parameters for the model. For the class of models described by

Equation 3.2, identification is choosing the variables in the vector x

and estimation is choosing the vectors 6 and e, the matrix Q, and the

^2.scalar a. Validation is deciding if the proposed model is adequate.

Whenever is estimated we will assume that the rank of X

equals k and that k is less than n. When k is less than n and the

rank of X does not equal k, at least one of the independent variables

is a linear combination of the other independent variables, and is

thus redundant. When k is greater than n the system of equations

represented by Equation 3.3 has an infinite number of solutions and

0 cannot be determined without assuming values for at least k-n values

of S. When k equals n there is a unique solution for 3. When k is
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less than n, the system is overdetermined andno a will satisfy the

system exactly. Thus 1 must be estimated according to some criteria.

Identification is discussed in Section 3.2, estimation is

discussed in Section 3.3, validation is discussed in Section 3.4, and

prediction with linear models is discussed in Section 3.5.

3.2 Identification

The problem of identifying the best model for predicting

the value of a given dependent variable has three parts. First, the

independent variables to be measured or otherwise generated must be

chosen. We will call these the original variables. Second, the

complete set of independent variables to be considered for inclusion

in the model must be developed. This set of variables can include

both original variables and functions of the original variables. The

dependent variable may also be transformed. For example, logarithms

and reciprocals of the original variables, including the dependent

variables, are often used in place of the original variables in

econometric modeling (Johnston, 1972 and Durbin and Watson, 1951).

Third, the subset of variables which produce the best model must be

chosen.

The first part of the problem, choosing the original variables,

is solved through prior knowledge of the system being modeled and is

not amenable to general discussion. The original variables used in

this work were chosen by the National Weather Service and are

described in Chapters 2 and 5. The only variable transformations

37



discussed in this section are those generated by principal components

analysis. Other transformations of the original variables are

used in the Group Method of Data Handling (GMDH)(see Chapter 4). The

rest of this discussion concentrates on the problem of choosing the

subset of variables which should form the model.

Identification of the best subset of variables requires

procedures to generate alternative models and measures of quality

to rank the alternative models. Hocking (1976), Mosteller and Tukey

(1977), Draper and Smith (1966), Chatterjee and Price (1977), and Cox

and Snell (1974) present good discussion of the range of procedures

which have been proposed both for generating alternative models and

for measuring the quality of those models. Only the techniques used

in this work are discussed here.

The best method of identifying a model is to know the correct

form for the model prior to the beginning of the modeling process.

An example of this type of situation is the experimental determination

of the head-flow equation for a spillway. The form of the equation

is frequently taken to be Q = KH3/2 + e, where Q is the flow over the

spillway, H is the depth of the water over the crest of the spillway,

K is the coefficient to be estimated, and e is an error term. If

e were always equal to zero only one measurement would be needed to

find K. However, boundary effects, properties of real water, and

measurement error insure that e is rarely equal to zero. The analyst

thus makes several measurements of Q and H, usually over a range of
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values for H, and estimates K in whatever manner seems appropriate.

Identification is independent of estimation only when the form

of the model is known in advance of the modeling process, as in the

example given above. In most other situations identification

procedures use values of the estimated sample residuals.. Thus the

estimation method will influence the model identification. Least

squares estimation is used for all coefficient estimation in this

work and is discussed in Section 3.3.

The independent variables may generally be divided into 2

groups, those which are known to belong in the model and those whose

selection must be guided by the data sample. It is sometimes convenient

to remove the effects of the variables in the first group from both

the dependent variable and the independent variables in the second

group prior to choosing variables from the second group. A typical

method of removing the effects of some variables, call them xk, from

another variable, call it z, is to estimate a model of z using the xk

as the independent variables and replace z with the residuals from that

model. z can be either a dependent or independent variable.

3.2.1 Principal Components

Principal components are mutually orthogonal linear trans-

formations of the independent variables which have been constructed so

that each succeeding component accounts for as much of the variation

in the independent variables as possible. The variation of the

variables in X can be completely represented with r components, where
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r is the rank of X, but a few components frequently account for a

substantial portion of the variation. The results of a principal

components analysis can be expressed in the form

*
Z = X A 3.6

where Z is a n x c matrix of principal components

*
X is the n x k matrix of normalized independent variables

A is the k x c matrix which defines the transformation

and c is the number of components calculated, c < r

Each variable in X is usually normalized by subtracting the mean and

dividing by the standard deviation before the principal components are

generated. Normalization prevents variables represented by large

numbers from dominating the components. Each column of A defines the

transformation for one component. Coefficients for the variables in

*
X may be retrieved from the coefficients of the variables in Z by

using the transformation

A 3.7
- c

*
where S is the vector of coefficients for the variables in X

and is the vector of coefficients of the variables in Z.

The procedures for finding A are given in Kendall (1957), Theil (1971),

and Johnston (1972). Example of the use of principle components can be

found in Glahn (1962), Jeffers (1967), and Massy (1965).

Massy (1965) and Johnston (1972) suggest two general situations

in which a transformation to principal components may be useful. The
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first situation is when some of the independent variables which the

analyst wishes to include in the model are highly collinear. Some of

the problems caused by highly collinear variables are described

in Section 3.3 A suggested procedure in this situation is to transform

the variables into their principal components, delete the components

which account for little or no variation, estimate coefficients

for the remaining components, and transform those coefficients to get

coefficients for the original variables (Equation 3.7). (Kendall, 1957

and Massy, 1965). The second situation is when it is desired to reduce

the number of variables but no individual variables can be chosen for

deletion. For this situation, as for the first, it has been suggested

that components which account for the most variation be retained as

independent variables, although the number of components retained is

frequently smaller than for the first situation. (Mosteller and Tukey,

1977). The coefficients are not necessarily transformed back to

coefficients on the original variables.

There is no assurance that the most variable principal

components will also be good predictors of the dependent variable.

Massy (1965) suggested that both the amount of variation explained and

the correlation between the components and the dependent variable be

examined when choosing which components to retain.

Some properties of the estimated coefficients help explain

the selection criteria for principal components. When the least

squares estimator of coefficients discussed in Section 3.3 is used, and
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c,r, and k are equal, 5 derived through the transformation given in

Equation 3.7 is identical to Z calculated directly from X*

and is thus a minimum variance unbiased estimator of _.

As components are deleted, I derived through Equation 3.7 becomes a

biased estimator of 3. Greenberg (1975) shows that the coefficients

of the components which account for the most variation are the linear

combinations of coefficients of the original variables which can be

estimated with the least variance, and suggests that the two criteria

for retaining components proposed by Massy (1965) represent a tradeoff

between increasing the variance and decreasing the bias of the

coefficients of the original variables when derived through Equation

3.7. This tradeoff is most important in the first of the two situations

described above because correct coefficients for particular variables

are desired. In the second situation it is likely that only a few of

the original variables are expected to be included in the model and

the particular variables used are not significant. In either case,

this tradeoff may affect the predictive power of the model.

The use of principal components in this work is closer in

spirit to the second than the first of the situations described above.

We would like to reduce the number of independent variables by replacing

groups of similar variables with one or two representative variables,

while retaining as much of the information contained in the original

set as possible. A study by Kutzbach (1967) suggests that principal

components may perform this function reasonably well for meteorological
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variables. The few principal components for each variable subset which

explain the most variation are then calculated and retained as indepen-

dent variables. The correlations between the components and the depena

dent variable are not used to select components because the purpose

of this exercise is not simply to produce as good a prediction model as

possible, but rather to see if a good prediction model can be developed

from summary variables which represent the various meteorological

fields thought to influence temperature. A secondary purpose is to

see if the variable selection with different identification techniques

stabilizes when summary variables are used. The set of independent

variables from which the model is developed then consists of some

original variables and some linear transformations of subsets of the

original variables. This application of principal components is

described further in Section 5.2.2.

A frequent objection to using principal components in modeling

is that they are hard to interpret. This objection is raised primarily

when the model will be used to make inferences about the process being

modeled. When a model is used only for prediction, as in this work,

problems of interpretation are not as important. Principal components

may even provide some clues for identifying the significant processes in

the system which are not provided by other modeling techniques.

However, no meteorological interpretations of equations are presented

in this work. A potential advantage of using principal components is

that model stability may be increased because the influence of errors
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in individual variables is reduced

3.2.2. Generation of Alternative Models

Three methods of generating alternative models are used in

this work. A variable selection algorithm called stepwise regression

is used when the number of variable is large. A set of procedures we

will call interactive stepwise regression is used when the number of

variables is small. The division between large and small is not precise.

Interactive stepwise regression requires more effort per variable

and becomes unmanageable when the number of variables is to large.

An experienced analyst will be able to choose the appropriate technique.

Stepwise and interactive stepwise regression are discussed in this

section. The third method of generating alternative models is the GMDH.

The GMDH is discussed in Chapter 4.

The stepwise regression algorithm used in this work 'is that

implemented in IMSL subroutine rlsep. (IMSL, 1977). Good descriptions

of the stepwise variable selection procedure are given in Draper and

Smith (1966) and Efroymson (1960). Briefly, in each step the independent

variable having the highest partial correlation with the dependent

variable is entered into the model. The hypothesis that there is no

change in the sum of squared residuals (RSS)(see Equation 3.15) due to

the addition of that variable is then tested using the F distribution.

The F test is discussed in Section 3.4.2. If the null hypothesis is

rejected at a specified probability level the variable is tentatively

retained. The variables currently in the model are then removed one at
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a time. The hypothesis that there is no change in RSS due to the

removal of each of the variables is tested. Those variables for which

that hypothesis is not rejected are removed from the model. The

significance levels are specified as tail areas of the F distribution.

For example, if the significance parameter for entering variables is

0.05, a variable will not be entered into the model unless the

statistic for that variable is at least as large as the 95 percent

point of the F distribution. The test for deleting variables

can not be more severe than the test for entering variables. The

procedure continues until no more variables can be entered or removed

at the prespecified significance levels. The resulting equation has

then already passed the F test validation procedure. The forward

moving stepwise algorithm used by the NWS to choose variables for

the Perfect Prog and Model Output Statistics models also selects

variables in the order of their partial correlation with the dependent

variable. However, a forward moving algorithm never removes a variable

once entered into the model.

Stepwise regression is sometimes used to produce a single

equation from a set of data. In this work stepwise regression is

used mainly as a tool to sift through variables quickly and generate

what are presumably reasonable alternative models. Different models

can be developed by varying the significance levels for entering and

deleting variables and by varying the portion of the data sample used

to guide the variable selection. Those models are then examined using
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the techniques discussed in Sections 3.2.3 and 3.4.

There are no standard techniques or references for what we

call interactive stepwise regression. Rather, interactive stepwise

regression is just a convenient name for a set of tools which may be

used for model identification.

The tools used in this work are F ratios for entering and

deleting variables, normal plots of residuals, the squared multiple

correlation coefficient (R ), the analysis of variance table (ANOVA),

partial residual plots, and plots of residuals against time, the inde-

pendent variables, and the predicted value of the dependent variable.

Interactive stepwise regression crosses the boundaries within which we

have chosen to discuss empirical modeling because validation procedures

are used to guide the identification process rather than just applied

to a proposed model. Validation procedures generally require relatively

substantial amounts of effort and make interactive stepwise regression

unsuitable for use on a large number of variables. F ratios and normal

plots of residuals are discussed in Section 3.4.2. R was examined,

but was not emphasized for the reasons discussed in Section 3.2.3.

ANOVA is discussed in Draper and Smith (1966) and includes the value

of RMSk, which is discussed in Section 3.2.3. Both the partial residual

plots and the other residual plots are discussed in Section 3.4.1.

All the procedures for interactive stepwise regression were implemented

on the Consistent System (Laboratory of Architecture and Planning, 1978)

and are described in Appendix C.
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which in turn is implemented on the Honeywell Multics computer system

at MIT.

3.2.3 Choosing Among Alternative Models

Choosing the best model from a specified set of alternative

models is not a well defined procedure. The basic criterion for model

quality is accurate prediction. When the correct form for the model is

known in advance, as in the head-flow modeling example described in

Section 3.2, previous experience with models of the same form inspires

oni c i te Ar %-.&r%_F LALnLLLc= U.L LLe moueL. fowever, weI LLe

model identification is guided by primarily the data, confidence in

future performance must also be guided primarily by the data. Several

measures of model quality based on sample data are discussed in this

section.

When estimating the future performance of a model we need

to assume that both the relations between the dependent and independent

variables and the relations between the independent variables will not

change. When the number of variables in a model increases, the number

of relations between independent variables increases and the probabi-

lity that some of those relations will change also increases. Thus, as

a second criterion for model quality, we prefer to keep the number of

variables in the model as small as possible.

Some measures of model quality which are based on the data

used to estimate the coefficients can be improved by simply adding more

variables to the model. In the extreme case when n = k the data sample

will be fit exactly and every sample residual will equal zero. Only
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quality measures which include some adjustment for the number of

variables in the model are used in this work. However, preference for

models with fewer variables is retained as a separate evaluation

criterion even though adjustments for the number of variables are

included in the quality measures. The tradeoff between the value of

the quality measure and the number of variables in the model is usually

subjective.

The quality of forecasting models is best judged from data

which were not used to estimate the model coefficients. Such data

are called independent data. Independent data should not be confused

with independent variables. Snee (1977) discusses several methods of

choosing independent data and presents a general purpose data splitting

algorithm. Mosteller and Tukey (1977) discuss the use of more than one

independent data set. These methods are particularly useful when

few data points are available. In this work the data are simply divided

by years. For example, when 5 years of data are available, the first 3

years are used to estimate coefficients and the last 2 years are used

as indep'endent data. Quality measures based on independent data are

not adjusted for the number of variables in the model. Preference

for fewer variables is still used as separate choice criterion.

Numerous measures of model quality have been proposed in the

literature. Hocking (1976), in an excellent summary article on model

identification, listed eight commonly used quality measures, which he

called criteria functions, and briefly discussed their use. Hocking
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was careful to note that the properties of the various criteria

functions have not been well established and firm rules which specify

the best criteria function for a given situation do not exist. The

choice of a quality measure is thus left to the judgement of the

analyst.

The following seven quality measures were evaluated for the

models examined in this work:

1) the mean squared residual,RMSk = RSS/(n-k) 3.8

2) the average prediction variance, Jk = RMSk(n+k)/n 3.9

3) the total squared error, Ck = (RSS/a 2)+ 2k - n 3.10

4) the average prediction mean squared error, Sk = RMS k/(n-k) 3.11

5) the mean absolute residual, RMAk = RSA/(n-k) 3.12

6) the mean squared residual over independent data IRMS

IRSS/(s-1) 3.13

7) the mean absolute residual over independent data, IRMA = IRSA/s 3.14

n ^ 2
where RSS = (e) 3.15

s ^2
IRSS = (e) 3.16

i=l1

n
RSA = 3.17

i=1

IRSA = i 3.18
i=1

n is the number of observations in the data set used to

estimate the coefficients
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s is the number of observations in the independent data set

k is the number of coefficients estimated from the data,

including the constant term,

2.
and a is Var(y/x) for the correct model

Hocking (1976) discusses the use of RMSk' Jk' Gk, and

Sk and provides references where further information about these

functions can be found. Among these 4 functions, RMSk and Ck are

emphasized while Jk and Sk are considered supplementary. RMA k

is evaluated because temperature forecasts are frequently judged by

their absolute errors (see Section 2.5). RMSk-%k' k, k' and

RMAk are calculated from the data used to estimate the coefficients.

IRMS and IRMA are calculated from independent data. IRMS and IRMA are

2 of the statistical forecast accuracy measures mentioned in Section 2.5

The 3 others mentioned in Section 2.5, correlation between observed and

predicted values of the dependent variable, number of large errors, and

forecast bias, are not evaluated in this work. IRMS and IRMA are the

most important of the 7 quality measures because they are the most direct

measures of prediction accuracy and frequently reflect the problems

caused by collinear variables. The problems caused by collinear

variables are discussed in Section 3.3. Note that quality measures

based on independent data are also used for model validation (Snee,

1977), but are used in this work primarily for guiding model identifi-

cation.

A special problem associated with the use of Ck is that a2
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must be estimated. Draper and Smith (1966) suggest that RMS approaches

a2 as the number of variables in the model increases, provided all the

important variables are in the model and there are an adequate number

of observations. Hocking (1976) and Daniel and Wood (1971) similarly

suggest that a be taken as the RMSk resulting when all the important

independent variables are entered in the model. In this work the value

^2
of a used in C k is approximately the lowest value of RMSk from the

various models which were generated (see Chapters 5 and 6).

Perhaps the two most commonly used measures of model quality

are the squared multiple correlation coefficient, R , and the adjusted

squared multiple correlation coefficient, Ri . R is defined as

2 n -2 n ^2 n -2
R2 = [ (y - (y -y )]/ (y 3.19

i=l i=l i=l

-2
and R is defined as

j2 = 1-(n-1) (1-R2) /(n-k) 3.20

2 -2 2.
Neither R nor R is used in this work because R is not adjusted for

the number of variables in the model and R2, for a given data set,

provides no information not provided by RMSk. However, the R statistic

is available in the interactive stepwise regression package used in

this work. (see Section 3.2.2)

3.3 Estimation

Consider now the problem of finding 3, given a data sample,

without specifying the purpose of the model. E is determined along
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with { through equation 3.3 as

-_ 13.21

We will constrain to be linear, unbiased, and have the minimum

variance among linear unbiased estimators of Q. Linearity implies

= c'y, Unbiasedness implies E[a] = S, and minimum variance implies

E[(a i-E[ ) ] < E[(e -E[6 ])2 ], i = 1,...,k where 0 is any linear

unbiased estimator of a..

The Gauss-Markov theorem states that the linear unbiased
n 2

estimator of _ which minimizes (e)2 has the- smallest variance of
i=l

any linear unbiased estimator of Q. This estimator is called the least

squares estimator. A proof of the Gauss-Markov theorem is given in

Meyer (1975).

The proof of the Gauss Markov theorem is usually given in

two parts. First, the theorem is proved for the case when 0 = I.

Q = I implies the system disturbances are independent and have equal

variances. a2 need not be known. The least squares estimate for

this situation is

(X'X) 1 X'y . 3.22

where X' is the transpose of X

Second, it is shown that when 0 0 I the data may be transformed by

multiplying both sides of Equation 3.3 by P , where PP' = Q, to

produce a model whose disturbances are independent and have equal

variances, to which the first part of the proof may be applied.
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The least squares estimator for this more general situation is

= (x'Q1X) -lX y 3.23

The same estimator will be derived in Section 3.5 by minimizing

the expected prediction variance.

Smay be estimated either by using Equation 3.23 on the

original data or by using Equation 3.22 on transformed data. The latter

method is used in this work because most computer regression packages

are based on the estimator given by Equation 3.22.

The covariance matrix for Q can be found from the rule for

propagation of errors (Meyer, 1975).

21

E[ 5'J = a(X'G~X) - 3.24

The independent variables must have zero variance for Equation 3.24 to

apply.

The magnitude of the elements of (X'O X) increase as

(X't X) approaches singularity. Thus, as the linear dependencies

among the independent variables increase,the precision with which Q

may be estimated decreases. Chatterjee and Price (1977) and Farrar

and Glauber (1967) discuss the problems which may be caused by such

multicollinearity. Multicollinearity nearly always exists in real data

sets. The problem for the analyst is thus not to discover if multi-

collinearity exists, but to determine if it causes problems in the

application of a model. Multicollinearity is clearly a problem when

the model coefficients will be used to make inferences about the system

53



being modeled. When the model is to be used only for prediction, the

problems caused by multicollinearity are harder to define because the

coefficients of particular variables are not an important product

of the modeling process. Multicollinearity also increases the diffi-

culty of identifying the correct model and makes the estimated

coefficients very sensitive to particular data samples. These problems

can sometimes be remedied by gathering more data or restricting the

coefficients based on prior knowledge (Johnston, 1972). Prediction

with models based on data always depends on the assumption that the

relations represented by the data, and presumably captured in the model,

will continue to apply in the future. Thus, even if some of the in-

dependent variables in a model are nearly perfectly collinear and the

variances of the estimated coefficients of these variables are large,

the model may be able to predict well if the same relations as exist

in the data sample hold in the future. However, we prefer models with-

out such highly collinear variables because their presence increases

the effect on model performance of the stability of the relations between

the independent variables. We see from Equation 3.24 that the value of

2a2, while not needed to calculate 5, is needed to calculate the cova-

2
riance matrix of f. Recall that a was also needed to calculate Ck in

Section 3.2.3. Meyer (1975) shows that an unbiased estimate of

2
a is given by

G = 3.25
n-k

When the data have been transformed prior to estimating Q,the unbiased
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estimate of r2 is A A

^2
a =-- 3.26

Note that this estimate of a2 is equal to RMS The difference

between the estimate of a2 in Equations 3.25 and 3.26 and the estimate

of Y2 desired for use in Ck is that the value being estimated

for Ck is for a somewhat ficticious true model and the value being

estimated by Equations 3.25 or 3.26 is for the particular model for

which the coefficients have been estimated.

The matrix Q is usually not known. It may be estimated by

using the sample residual estimates generated by assuming Q = I.

(Draper and Smith 1966, Goldberger 1964, and Theil 1971). The

sample residual estimates may be used to estimate 0 in two ways.

First, standard techniques for the estimation of a covariance matrix

may be used if there are sufficient replicated observations.

Replicated observations are multiple observations of the dependent

variable for a given set of values of the independent variables.

Suppose there are s sets each containing r replicated observations.

Then

1 r-E[e.E.] =- (y -x6( -. i,j =1,---.,s 3.27
i z 1 i i t-

where y is the kth replicated observation in the ith set

th
x. is the i set of values of the independent values

and I is calculated assuming 0 = I

It is rare to have enough replicated observations to use this technique.
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In some cases the observations may be grouped to form sets of

approximately replicated observations (Theil, 1971). When replicated

observations are not available the residuals may be used to estimate

the parameters of an assumed form for 0. For example, if the system

disturbances are assumed to be generated by the first order auto-

regressive process

Et P t-l + Vt 3.28

2 2
where E[E ] = a 3.29

t

E[vt = 0 3.20

and E[vt] = (lp2 ) 2  3.31
t

then Q takes the following form

2 n-l
1 p p . . . . P

n-2

p l P.. .. .p

3.32

n-l

and p, the lag one correlation coefficient, could be estimated from

the estimated sample residuals as

1n-l
P=n i E:i+1) 3.33

A more general iterative procedure for estimating Q while simultaneously

identifying the equation is described in Mosteller and Tukey (1977)

under the heading resistant stepwise fitting.

Note that the only assumption beyond those of Section 3.1 which

56



is used in this section is the assumption of zero variance independent

variables required for Equation 3.24. However, the Gauss-Markov

Theorem applies only when Q is correctly specified. Examination of

the residuals for independence and constant variance is discussed in

Section 3.4.

Sets of constraints on other than linearity, unbiasedness,

and minimum variance may be specified. For example, in the procedure

called ridge regression the estimator of is allowed to be biased in

expectation of reducing its variance (Hocking, 1976 and Hoerl and Kennard,

1970). Other methods of fitting a function to data may be found in Tukey

(1977) and Mosteller and Tukey (1977). Only the least squares estimator

is used in this work. The primary reasons for this restriction are

that only the least squares estimator is commonly available on computer

systems, and the constraints on and properties of Q calculated from the

least squares estimator, while not ideal for every situation, are

generally desirable.

3.4 Validation

Model validation is perhaps the fuzziest of the three steps

in model building. Validation procedures never provide direct measures

of model quality, but rather provide indications of possible problems.

A model thus passes the validation procedures when no serious problems

are indicated.

The three types of validation procedures used in this work are

hypothesis tests, graphic analysis, and stability analysis. Hypothesis
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tests depend on assumptions about the distribution of the residuals.

Graphic analysis is used to examine the residuals directly. Stability

analysis ean be used to examine many aspects of models and does not

usually depend on assumptions. Graphic analysis is discussed in

Section 3.4.1, hypothesis tests are discussed in Section 3.4.2, and

stability analysis is discussed in Section 3.4.3.

3.4.1 Graphic Analysis

Graphic analysis is generally the most effective way to

examine the sample residuals. Various statistics for examining residuals

have been proposed in the literature. Draper and Smith (1966) list

several such statistics and provide references where further information

on these statistics may be found, but suggest that problems severe

enough to require correction are nearly always revealed through the

appropriate graphic examination. Good general discussions of the

use of residual plots are given by Draper and Smith (1966), Chatterjee

and Price (1977), Anscombe (1973), and Cox and Snell (1968).

The two basic requirements for residuals are that they lack

structure and have equal variances. These two specifications are

motivated by the conditions for validity of the Gauss-Markov theorem

described in Section 3.3, but they also relate to correct model

identification. When these two conditions are not met we suspect

that either the model was not identified correctly or that 0 was not

estimated well.
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Three of the most common types of structure in residuals

are vartation with time, variation with the magnitude of the dependent

variable, and variation with the magnitudes of the independent variables.

Res-iduala may be plotted in time sequence, against the estimated values

of the dependent variables, and against the values of the independent

variables to check for such variations and simultaneously check the

constancy of the residual variance. Since only pattern, and not overall

magnitude, is being examined in validation procedures, standardized

residuals are often used in the plots. Some common residual patterns

which indicate the presence of probably absence of problems and the

interpretation of those patterns in the various plots are presented in

Draper and Smith (1966).

In all the residual plots mentioned above the desirable

pattern is usually considered to be a horizontal band of constant

width. However, the variance of sample residuals varies with the

values of the independent variables, being smallest toward the centroid of

the variables and increasing towards the perimeters, even when the

model assumptions are correct (Behnken and Draper, 1972). Thus, the

expected pattern for a correct model is not precisely a horizontal band

of constant width. Behnken and Draper (1972) suggest, however, that in

many situations, particularly when k/n is small, failing to account

for the expected variation in the sample residual variance does not have

a large effect on the inferences drawn from graphic examination of

residuals.

Another type of residual plot which is particularly useful in
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detecting identification errors is the partial residual plot. Partial

residuals and partial residual plots are discussed by Mosteller and

Tukey (1977) and Larsen and McCleary (1972). The partial residuals

of the dependent variable (pry ) are the sample residuals of a model

which does not contain the independent variable x.. The partial

residuals of the independent variable x.(prx.) are the residuals
1l 1

created by removing from x the effects of the independent variables

already in the model. The relation between x and y, when the effects

of the other variables have been removed, is revealed by a plot of

pry against prx . If we assume the other variables are in the model

correctly, this relation should be linear. When pry. is modeled as a

function of prx., the coefficient on prx, is the same as the coefficient

on x in the whole model (Mosteller and Tukey, 1977). Thus, drawing

the line with slope . on the plot of pry against prx can reveal the

possible influence on i of a few outlying data points. For example,

if the cloud of points is oriented in one direction, but regression

line does not follow that trend, one should suspect that is not being

estimated correctly, even if x. does belong in the model. Two common

causes of poor estimation are multicollinearity and outlying data

points. Some partial residual plots are shown in Figures 5.7, 5.8,

and 5.9.

Other residual plots may be useful. For example, when the

data may be divided into a few categories, separate graphs for each

category may reveal patterns not detected when the categories are

aggregated.
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Ideally, every model which seems promising should be

subjected to graphic validation procedures. Even though validation has

been separated from identification for the purpose of this discussion,

graphic analysis of residuals can be used to help guide the identifica-

tion process and the estimation of Q. Recall that validation techniques

are part of the procedure we call interactive stepwise regression in

Section 3.2.2. Unfortunately, graphic examination of residuals requires

more effort, both to produce and to interpret, than most of the

identification techniques discussed in Section 3.2. Graphic examination

also cannot be used to rank the equations. Thus, except for their use

in interactive stepwise regression, graphic validation techniques are

used primarily to examine a few of the best equations chosen in the

identification process. The validation techniques may then be used

to guide modifications of those equations, if necessary.

3.4.2 Hypothesis Tests

The two hypothesis tests used in this work are the F test

and the Durbin-Watson test.

The F distribution is used to test hypotheses comparing two

sums of squared residuals for different models. Meyer (1975) presents

a good discussion of general hypothesis testing and of the F distribu-

tion. Chatterjee and Price (1977) describe the use of the F test on

regression models. The typical null hypothesis is that the sums of

squared residuals from two different models are equal. The statistic

used to test this hypothesis is
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F = (RSS 1 - RSS2)/(k1 - k2 )
RSS1 /(n-k1 )

where the subscripts 1 and 2 distinguish between the two different

models and k1 and k2 are the numbers of variables in the 2 models.

The F distribution applies to the ratio of 2 variables, each

of which has a chi-square distribution. Thus the F test applies only

when E[eE'] ' N(0, a2 I),that is, the residuals are independent multi-

normally distributed variables with a common variance. This is a

severe requirement on the distribution of the residuals and the F test

should thus be used with caution. If desired, the normality of the

distribution of the residuals may be examined by plotting the cumulative

distribution of residuals against a scale which has been distorted

according to a normal distribution. Such plots are discussed in Daniel and

Wood (1971). Some normal plots are shown in Figures 6.5, 6.6, and 6.7.

In this work the F test is used as part of both the automatic and

interactive stepwise regression algorithms.

The Durbin-Watson statistic is used to test for lag one

serial correlation in the residuals. The basic information about this

test is in Durbin and Watson (1950, 1951) and further discussion of

its use is given by Theil (1971). The statistics tested is

n-l 2 A n 3
d = Ni+l - C ) / ( 3.35

The null hypothesis is that the residuals are serially independent. The

distribution of d is a function of X, but upper and lower limits,
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labeled dU and d , which are appropriate for any matrix X are normally

used. To test for positive serial correlation, the null hypothesis

is rejected if d is less than a specified point in the distribution of

d and not rejected if d is greater than a specified point in the

distribution of d No inference is drawn when d is between those
u

values. When d is replaced by (4-d) the same procedure tests for

negative serial correlation. The procedures developed by Durbin and

Watson (1950, 1951) apply to all cases in which the independent variables

may be considered to have zero variance, and thus do not apply when

lagged values of the dependent variable are included in the model.

Since most of the models developed in this work include a lagged value

of the dependent variable, the Durbin-Watson test does not strictly

apply. It will still be used as an approximate test.

The 5, 2 , and 1 percent significance levels for one tailed

tests of d against d and d were tabulated by Durbin and Watson (1951)
u 2

for models with from one to six variables whose coefficients were

estimated with between 15 and 100 observations. Unfortunately, all

of the models developed in this work are outside of those ranges.

The distribution of d used to construct the tables of significance

points for d and du given in Durbin and Watson (1951) is fairly

complex, but Durbin and Watson (1950) suggest that d is asymptotically

normally distributed for large values of n-k. The equations for the

means and variances of d and du given on page 427 of Durbin and

Watson (1950) and the normal distribution were used to construct
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1%
dn d d

A, 2.9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

.99

.99

.98

.98

.97

.97

.96

.95

.95

.94

.94

.93

.92

.92
.91
.90
.90
.89
.89
.88
.87
.87
.86
.85
.85
.84
.83
.83
.82
.81
.81
.80
.79
.79
.78

Table 3.1 Mean, Variance, and S
Points for d and d ,
Statistic. u
n = 350

ignificance
Durbin-Watson
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2.01
2.01
2.02
2.02
2.03
2.03
2.04
2.05
2.05
2.06
2.06
2.07
2.08
2.08
2.09
2.10
2.10
2.11
2.11
2.12
2.13
2.13
2.14
2.15
2.15
2.16
2.17
2.17
2.18
2.19
2.19
2.20
2.21
2.21
2.22

0.0113
0.0112
0.0112
0.0111
0.0110
0.0110
0.0109
0.0108
0.0107
0.0107
0.0106
0.0105
0.0104
0.0104
0.0103
0.0102
0.0101
0.0100
0.0100
0.0099
0.0098
0.0097
0.0096
0.0095
0.0095
0.0094
0.0093
0.0092
0.0091
0.0090
0.0089
0.0088
0.0088
0.0087
0.0086

0.0114
0.0115
0.0116
0.0116
0.0117
0.0118
0.0118
0.0119
0.0120
0.0120
0.0121
0.0122
0.0123
0.0123
0.0124
0.0125
0.0126
0.0126
0.0127
0.0128
0.0129
0.0129
0.0130
0.0131
0.0132
0.0133
0.0133
0.0134
0.0135
0.0136
0.0137
0.0137
0.0138
0.0139
0.0140

.82

.81

.81

.80

.80
.79
.79
.78
.78
.77
.77
.76
.75
.75
.74
.74
.73
.73
.72
.72
.71
.70
.70
.69
.69
.68
.68
.67
.66
.66
.65
.65
.64
.63
.63

.83

.84

.84

.85

.85

.86

.86

.87
.87
.88
.88
.89
.90
.90
.91
.91
.92
.92
.93
.93
.94
.95
.95
.96
.96
.97
.98
.98
.99
.99
.00
.01
.01
.02
.02

.75

.7)4

.74

.73

.73

.72
.72
.71
.71
.70
.70
.69
.69
.68
.67
.67
.66
.66
.65
.65
.64
.64
.63
.63
.62
.62
.61
.60
.60
.59
.59
.58
.58
.57
.57

d

.76

.76

.77

.77

.78

.78

.79
.79
.80
.80
.81
.81
.82
.83
.83
.84
.84
.85
.85
.86
.86
.87
.87
.88
.89
.89
.90
.90
.91
.91
.92
.93
.93
.94
.94

k' E[d k] E[d u I dk] - V[d I



Table 3.1. Table 3.1 is for n = 350.

3.4.3 Stability Tests

Testing model stability is perhaps the most subjective, but

also the most robust, of the 3 types of validation procedures. Model

stability can be tested in many ways, but the basic concept is to

examine changes in model parameters with changes in the data used to

estimate those parameters. Even model quality statistics based on

independent data are a type of model stability test when compared with

similar statistics based on the estimation data and thus, as mentioned

in Section 3.2.3, are often used for model validation.

In this work the changes in the model coefficients with

changes in the estimation data are examined. There are no definite

acceptability criteria for this type of analysis, but in general we

prefer that coefficients do not change sign or order of magnitude

as the estimation data are changed.

3.5 Prediction with Linear Models (after Goldberger (1962))

The unbiased linear predictor of the value of a dependent

variable, yn+s, which has the smallest variance among all linear

unbiased predictors of yn+s, is sought. A linear predictor P has the

form

P = c'l 3.36

where c is a n x 1 vector of constants and y is the n x 1 vector of
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observations. An unbiased predictor has the property that

E[Pn+s -n+s 3.37

where P is the predictor of y s. Minimum variance implies that

E[(Pn+s - n+s) ] is minimized.

The subscript n+s generally indicates the time period for

which the predictor is sought. Subscripts greater than n could also

simply indicate variables not in the data sample, regardless of their

time of occurence.

The basic model and data have the form described in Section

3.1. Thus,

yn+s + E 3.38

Assume that 2 2
E[n+s an+s 3.39

and
E[en+s W 3.40

w is the vector of covariances between the system disturbance at

time n+s and the sample disturbance estimates.

Combining Equations 3.3, 3.36, and 3.38 we have

P _CI _ ) ~+c'c - C34
n+s n+s + n+s 3.41

Taking the expected value of both sides of Equation 3.41 and using

Equation 3.37 shows that c'X = xn+s. Equation 3.41 can thus be simplified

to
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3.42
Pn+s -n+s CIE - n+s

The vector c is then found by minimizing the expected value of the

square of P ~ y~ subject to c'X = x . The technique of Lagrange
n+s ss s

multipliers may be used. Squaring and taking expected values of both

sides of Equation 3.42 and using Equations 3.5, 3.39, and 3.40 yields

2 2
E[P ) 2] E[(c's - c )WcE - C )'] c +a2 c W 34

E[Pn+s-y n+s n+s n+s -- - n+s -
2 &' 3.43

Note that c'e = E'c. Define

2
g = c' c + a - 2c'w - 2(c'X - x )An+s -- S

3.44

where A is the k x 1 vector of Lagrange multipliers and the term

containing X has been multiplied by 2 to facilitate later manipula-

tions. Setting the derivatives of g with respect to c and X equal to

zero gives

3.45
X' 0 -

The solution to equation 3.45 is

crgl - X(X'I X) 1X'Q 1 _X (X'Q 1 X) -1

(X' - (X'nX) -?

See Goldberger (1964) for the inverse of a partitioned matrix.

Thus, using Equations 3.36 and 3.46,

W

x'
-n+s

3.46
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I =x IQ 1. 34
Pn+s +s + E 3.47

where = (X't~ 'X)' X'0y_ 3.48

and = _ x 3.49

The vector can be considered an estimate of g and the scalar
-l^

'Q E can be considered an estimate of .n+s. Note that Equation 3.48

is the least squares estimator of g. When w = 0 our predictor of yn+s

is x s

The loss in efficiency of prediction caused by assuming

w = 0 when w * 0 is measured by the difference between the prediction

variances when c is calculated with and without w = 0. From Equation

3.43 we can write the difference in prediction variances as

a - 2 (c'qc + a - 2c'w) + 2c) =
p p 1  --r n+s o- 1- 1 n+s

3.50

W .a (_x(IQ _ )

2 2
where a is the prediction variance using w = 0, and a is the

PO -- P
prediction variance using w 0 0. c is calculated from Equation

3.46 with w = 0 and c1 is calculated from equation 3.46 with w 0 0.

The right hand term in Equation 3.50 is the inner product of

(Hw - HX(X'2 XX) -1X'Q 1 ) with itself, where HH = - , and is thus a

non-negative quantity. Since w is the only term in equation 3.50

which varies with s, the loss of efficiency from neglecting w decreases

as the correlation between the sample residual estimates and the
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prediction disturbance decreases.

2
_, C2, and 2 are not usually known and therefore must be

estimated. w cannot usually be estimated unless a structure is

assumed. Goldberger (1962) presents an example in which the sample

disturbances are generated by the autoregressive process described by

Equation 3.28. If the autoregressive process is assumed to continue

after the sample data have been collected,

Fn-l+s
n-2+s
p

2 3.51

p

The estimation of p,a , and A_ were discussed in Section 3.3.
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Chapter 4

THE GROUP METHOD OF DATA HANDLING (GMDH)

GMDH is the generic name of a method of empirical model

identification developed by Ivakhnenko (1970, 1971 and 1976) which is

characterized by a multilayer structure and self sampling. Partial

models are constructed and evaluated in each layer. The GMDH is

called self sampling because the output from the partial models in

each layer is used as input to the next layer. The process continues

until a stopping criterion is met,at which time the complete model is con-

structed from the partial models. The GMDH was developed primarily

for generating complex models from short data records, In this work

the GMDH is used on relatively long data records. Figure 4.1 shows the

general GMDH algorithm.

The structure of the GMDH is motivated in part by the structure

of perceptrons (Ivakhnenko, 1970). Perceptrons are pattern classi-

fying systems used to model neuron networks. Pattern classifying

systems are described in Nilson (1965) and perceptrons are described

in Rosenblatt (1962), Block (1962), and Block et al. (1962). The

GMDH has also been compared to breeding programs in which the specimens

with desirable characteristics are cross bred until an optimal mix

has been achieved (Ivakhnenko, 1970, 1971, and 1976). In the GMDH,

partial models with desirable characteristics are combined to form new

partial models until some specified criterion is met.

We will frequently speak of model complexity when discussing
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NO PARTIAL MODELS
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TO NEXT LAYER

YES

CHOOSE FINAL MODEL

Figure 4.1 Structure of a GMDH Algorithm
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the GMDH. Model complexity is not a well defined term, but larger

numbers of model parameters or higher order terms generally indicate

greater model complexity.

The basic principles of the GMDH are described in Section 4.1.1

and illustrated with an application in Section 4.1.2. Application of

the GMDH to polynomial model identification is described in Section 4.2.1

and discussed in Section 4.2.2. The GMDH algorithm used in this work

is described in Section 4.3.

4.1 The General GMDH Method

4.1.1 Elements of the GMDH

The three basic elements of a GMDH algorithm are partial

models, a partial model quality criterion, and a stopping criterion.

The partial models are complete models in themselves but

are called partial in the context of the GMDH because they are used

as components of other models in the GMDH process. The partial model

structure should be such that the complexity of the overall model

structure increases in each layer. However, partial models should also

be relatively simple because greater complexity in the partial

models reduces the flexibility of the overall process. The partial

model structure may vary both within and between layers, but is normally

held constant.

The partial model quality criterion is used to rank the

partial models. Typically, either all the partial models better than

a specified level of quality or a specified number of the best
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partial models are chosen to provide input to the next layer.

The measure of quality used to rank the partial models should

normally be based on independent data. The GMDH uses the

same data, transformed through the partial models in the previous layers,

to estimate the partial model parameters for each layer. Using the

estimation data to also measure model quality might be appropriate when

the models are intended only for interpolation, but would probably

lead to problems when the models are used for prediction. Ivakhnenko

(1969, 1970,and 1971) stresses the idea that measuring partial model

quality on independent data filters out potential model components

which do not have similar characteristics on the estimation and

independent data sets.

The stopping criterion determines the number of layers which

are developed. A common stopping criterion is the occurence of the

first decrease, relative to the previous layer, of the quality of the

best partial model in a layer. The final model is then constructed

from the best partial model and the series of partial models which

provide input to the chosen model. The number of layers developed may

also be constrained.

There is no theory which explains the performance character-

istics of the GMDH. Aspects of empirical modeling such as those

discussed in Chapter 3 and modeling experience are the only guides to

choosing the particular forms of the elements of a GMDH algorithm.

However, the large number of partial models generated in most GMDH
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algorithms precludes the use of any but the simplest procedures to

develop the partial models. The usual strengths of the GMDH relate

to reducing data requirements for constructing a model of given

complexity and the beneficial aspects of using independent data to

measure model quality. The particular advantages and disadvantages

of the GMDH vary between applications.

4.1.2 Construction of Transition Probability Tables with the GMDH

A simplified version of an example presented by Ivakhnenko

(1969) in which the GMDH is used to construct a transition probability

table is presented in this section. Transition probability tables

are tables of the probabilities of a system being in a specified

condition, given some of the history of the system. The condition

with the highest probability of occurence will be referred to as

the prediction from a transition probability table. This example is

not presented as a recommended method of constructing probability

transition tables, but rather as an illustration of the general GMDH

approach to problems other than polynomial model identification.

Ivakhnenko discretized the annual flows in the Volga River

into three intervals. Flows less than 223 million m3 are in interval

3
1, flows between 223 and 255 million m are in interval 2, and flows

greater than 255 million m3 are in interval 3. Let It denote the

flow interval in year t. The annual flow intervals for 74 years are

listed in Table 4.1. Transition probability tables for the annual

river flow show the estimated probabilities of being in intervals 1,
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Year It P1t P2t t 1Year Iit Plt P2t t Year It Plt P2t t

Table 4.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

3

3

1

3

2

3

3

3

3

1

1

2

3

3

3

1

1

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

1

3

2

2

3

2

1

3

1

1

3

2

1

1

2

2

3

Observed Annual Flow in the Volga River, It
Predicted Annual Flows in the Volga River, Pl ,P2 t, and P3t

Interval 1 QA < 223 million m t

Interval 2 223 < QA < 255 million m 3

Interval 3 255 million M 3 < QA

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

3

3

3

2

2

1

1

2

3

2

2

3

3

3

3

2

2



Year It P1t P2t P3t Year It P1t P2t P3t

52 3 3 3 2 69 1 3 3 2

53 1 3 3 3 70 2 1 1 2

54 1 1 1 2 71 1 3 3 2

55 1 1 2 1 72 2 1 1 1

56 1 1 2 1 73 3 3 3 2

57 1 1 2 1 74 1 3 3 2

58 1 1 2 1

59 1 1 2 1

60 1 1 2 1

61 2 1 2 1

62 2 3 3 3

63 2 3 3 3

64 2 3 3 2

65 1 3 3 2

66 2 1 1 2

67 2 3 3 2

68 2 3 3 3

Table 4.1 cont'd
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2, or 3, given some combination of previous flow intervals.

The first layer partial models are the transition probability

tables defined by different combinations of previous flow intervals.

The 3 partial models used in the first layer are shown in Tables

4.2, 4.3,and 4.4. The denominators in those tables are the total number

of occurences of the previous flow interval pattern which defines

the row. The numerators are the number of occurences of the intervals

which define the columns. The predicted flow for each previous flow

pattern is marked by a star. The first 50 years of data were used to

construct the partial models and the quality of the partial models was

measured by the percentage of correct predictions on the last 24 years

of data. Model 1 predicted 39 percent correctly, model 2 predicted

14 percent correctly, and model 3 predicted 48 percent correctly.

Ivakhnenko (1969) suggests 2 ways of choosing the partial

models to provide the input for the next layer. The first is to

require W percent accuracy from partial models using one previous flow

interval, 2W percent accuracy from those using 2 previous flow intervals,

and 3W percent accuracy from those using 3 previous flow intervals.

The second is to choose a specified number of the best models from the

layer. The 2 best models, numbers 1 and 3, are chosen to provide input

to layer 2 in this example.

The predictions of It from the first layer models, Pl, P2,

and P3, are listed in Table 4.1. The second layer partial model is

the transition probability table using Pl and P3. This model is
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t+l 2 3

1 6/13 3/13 4/13

2 3/14 5/14 6/14*

3 4/23 7/23 12/23*

Table 4.2 Model 1, Layer 1

1 2 3

11

12

13

21

22

23

31

32

33

1/6

0/3

1/4

2/3*

1/4

0/6

3/4*

2/7

3/12

3/6*

1/3

3/4*

0/3

0/4

2/6

0/4

4/7*

2/12

2/6

2/3

0/4

1/3

3/4*

4/6*

1/4

1/7

7/12*

Table 4.3 Model 2, Layer 1
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t+i11
1 2 3

11 1/2 0 1/2

12 1/7 2/7 4/7

13 0/4 3/4 1/4

21 1/3 2/3 0/3

22 1/2 1/2 0/2

23 1/8 1/8 6/8*

31 4/8 1/8 3/8

32 1/5 2/5 2/5

33 2/9 3/9 4/9*

Table 4.4 Model 3, Layer 1

79



Table 4.5 Model 1, Layer 2

80

12

13

21

22

23

31

32

33

2

1/10

2/3*

5/10*

6/24

5/10*

1/3

2/10

4/24
JI

3

4/10

0/3

3/10

14/24*



shown in Table 4.5. As in the first layer, the first 50 years of data

were used to construct the model and the last 24 years of data were

used to measure the model accuracy. The layer 2 partial model predicted

46 percent correctly. Other partial models could have been used in

both layers, but these illustrate the method.

The stopping criterion in this example is simply to construct

2 layers. The most accurate model, regardless of the layer in which

it occurs, is the final model. Thus, model 3 in the first layer is

the final model in this example.

4.2 Polynomial Model Identification with the GMDH

The GMDH has been used to develop polynomial models for

economic (Ivakhnenko, 1971), environmental (Ikeda, et al., 1976

and Duffy and Franklin, 1975), and mechanical (Inooka and Inoue, 1978)

systems. The basic elements of GMDH algorithms for polynomial model

identification are described in Section 4.2.1 and their characteristics

are discussed in Section 4.2.2.

4.2.1 Elements

A general polynomial of order p using q variables has the

form

y= 6.x. + 6 . x . x. +.,.+4 .,. . .
11=1 1 1 i1 =1 i 2=1 1 2 1 2 i i2=1 2 p=1 1 2''' p

4.1
x x ...x.
1 2 p
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The partial models in a GMDH algorithm for polynomial model identifica-

tion are some portion of Equation 4.1. The most common choice is a

second order 2 variable polynomial (p=q=2). This choice provides

nonlinear and interaction terms at a relatively low cost in complexity.

However, the nonlinear terms still cause the order and number of

variables to double in each layer. The partial model structure is

usually constant both within and between layers.

The large number of partial models typically developed in

GMDH algorithms dictates the use of a least squares estimator for

the partial model coefficients. Stepwise regression algorithms can

be used to choose terms within the partial models. When all the terms

in the partial models are retained the estimation technique is simply

multiple regression.

Some partial model quality criteria and methods of choosing

independent data are described in Section 3.2.3. Ivakhnenko (1976)

discusses three partial model quality criteria and suggests that

weighted combinations of the three are appropriate for many modeling

situations. One of the 3 criteria is similar to IRMS (see Section

3.2.3), another measures the variation between models developed on

different portions of a data set, and the last measures the departure

of a model from prior knowledge of the system being modeled.

The partial model predictions of the dependent variables

from one layer are used as independent variables in the next layer.

A specified number of partial models are generally passed between
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all layers to ease the programming of the algorithm on a computer.

For example, if there are 10 independent variables in the first layer,

45 second order two variable partial models can be developed in the

first layer. If five of those partial models are passed to the

second layer, 10 second layer partial models can be developed from

the 5 independent variables provided by the 5 first layer partial

models. If 5 second layer models are then passed to the third layer,

10 third layer partial models can be developed.

There are generally no features in the stopping criterion

which are not mentioned in Section 4.1.1.

A simple example of the process follows.

Consider a data set with 1 dependent variable, y, and 3

independent variables, x1 , x2, and . The 3 models given by Equations

4.2, 4.3, and 4.4 can be constructed in the first layer.

^1 ^1 ^1 Al 2 ^l 2 ^1 A

1 = B + 21 2+ +3 4 1 2 + 1-12 + a61  4.2

^1 ^1 ^1 ^1 2 A1 2 ^l ^l
Y2= a12 + 2 + + 223423 5 23 + B62  4.3

Al Al Al Al 2 ^l 2 Al ^l

l3 13 2 + B23 3 + B33?2 + 4323 + 5332 3 + a63 4.4

^k th th thwhere B is the i coefficient in the j model in the k layer and

Ak th th_. is the prediction of_ from the j model in the k layer.
J

Assume, for this example, that all 3 first layer partial

models are passed to the second layer. The 3 models given by Equations
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4.5, 4.6 and 4.7 can then be constructed in the second layer.

2 2
^2 ^2 ^1 ^2 A1 ^2 ^l ^2 ^l ^2 ^1^1 ^2
1= y+ 1 21 2 31 1 41 2 51 1 2 + 614

^2 ^2 ^A1 2 ^1 ^2 ^ ^2 ^A ^2 ^1^1 ^2
2 022 + +22Y3 + 4 2 y 3 + 5 2y1y3 + S6 2  4.6

^2 ^2 A1 ^2 ^A1 2 ^12  ^2 ^12 ^2 ^1^1 ^2
3 + 2 3y3 + 3 3y2 + 43 3 + 53y2Y3 + 63 4.7

Subsequent layers could be constructed similarly. A model in

terms of the original variables can be constructed from a partial model

by substituting the partial models from previous layers into the

selected partial model. For example, if Eauation 4.6 is chosen, the

model in terms of the original variables is constructed by substituting

Equations 4.2 and 4.4 into Equation 4.6.

4.2.2 Characteristics

Two positive and 3 negative characteristics of GMDH algorithms

for polynomial model identification are discussed in this section. The

2 positive characteristics relate to potential reductions in the

computational burden of identifying polynomial models and the use of

independent data in the identification process. The 3 negative

characteristics relate to the sacrificed completeness through which the

computational burden is reduced, induced multicollinearity among the

independent variables, and misleading values for the variances of the

coefficients.
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In some situations the number of terms examined to develop a poly-

nomial model of a given maximum order can be smaller in the GMDH than

in other identification methods. Each term has a coefficient which must

be estimated. In most models some of the coefficients will equal 0.

The number of terms examined in each layer of a GMDH algorithm using 2

variable second order polynomials as the partial models is given by

T = 6 (q) 4.8
2

where T is the number of terms examined and q is the number of indepen-

dent variables in the layer. ( ) = q!/(q-i)!i! where ! is the factorial

operator. The order of the overall model is 2 in the first layer and

doubles in each succeeding layer. One example of an alternative identi-

fication method is using stepwise regression on a general polynomial

(Equation 4.1) with the specified maximum order. The number of terms

examined in this method is given by

T= (q) 4.9
ii

where p is the order of the model, q is the number of independent

variables in the original data set. Table 4.6 shows the number of

terms examined by the GMDH, when q independent variables are used in

each layer, and by stepwise regression for some combinations of p and

q. Only the approximate relative computational burdens of the 2

methods can be judged from the number of terms examined, because the

number of operations associated with examining 1 term varies between
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2 4 8

10 270 540 810

15 630 1,260 1,890

20 1,140 2,280 3,420

GMDH

p 2 4 8

10 55 385 1,012

15 120 1,940 22,818

20 210 6,195 263,949

Stepwise

Table 4.6 Number of Terms Examined in GMDH and
Stepwise Algorithms for Identifying
Polynomial Models.

p = Order of the Polynomial
q = Number of Variables
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methods.

Any model can be tested with independent data, but the GMDH

is one of the few, if not the only, identification methods which is

guided in part by tests on independent data. It is probably impossible

to generally establish which identification method or even guidance

procedure within identification methods is best, but a test on indepen-

dent data is at least as defensible as any other guidance statistic.

However, the partial models must still be developed carefully because

no selection method is capable of choosing a good model from a set of

poor models.

The computational savings of a GMDH algorithm come at the

expense of not considering all possible models of a given complexity.

Thus, models which are better than any examined may be overlooked. Two

methods which can help alleviate this problem without greatly increasing

the computation burden of the overall modeling process have been

proposed. The first is to create models from linear combinations of

the input variables for each layer, perhaps using stepwise regression.

The procedure was suggested by Duffy and Franklin (1975) and is used

in this work. The second is to model and remove the effects of low

order trends before applying the GMDH. This can be accomplished by

developing, for example, a linear model of the process and using the

residuals from that model in the GMDH. Ivakhnenko (1971) removed a

third order trend in time before applying the GMDH. A harmonic trend

in time is removed from some of the data used in this work (see Chapter
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5). As with all identification methods,except an exhaustive search

of all possible models, we simply hope that the algorithm is adequate

to identify a model which is not too far from the best model.

The use of independent data to measure the partial model

quality tends to eliminate the partial models in which multicollinearity

is the greatest problem. The reasons for this are discussed in Section

3.2.3 and 3.3. However, the GMDH method also assures the strong multi-

collinearity of all the independent variables from the second layer on.

When all the terms in every partial model are retained, the partial

models from the second layer on will be strongly affected by multi-

collinearity. For example, the coefficients of such partial models

frequently have the following structure. The magnitudes of the coeffi-

cients of the 2 linear terms are between 0 and 1 and their sum is

approximately 1. The magnitudes of the coefficients of the 3 non-

linear terms are relatively large and their sum is approximately 0.

This type of structure can be seen in the models developed by Ivakh-

nenko (1970a) and indicates the variables are strongly collinear. These

models cannot be expected to have good predictive qualities over a wide

range of independent variables because they will be very sensitive to

small variations in the relations between the independent variables.

The problems caused by multicollinearity in the GMDH can be alleviated

in part by using a stepwise regression algorithm to develop the partial

model structure.

The variance of the coefficients from the second layer on are
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likely to be higher than indicated by Equation 3.24 because the indepen-

dent variables are then functions of estimated coefficients which have

non zero variances and Equation 3.24 uses the assumption of zero

variance independent variables.

The value of k which should be used with the model quality

statistics given by Equations 3.8 through 3.14 when evaluating equations

developed with the GMDH is not clear. Equations 3.8 through 3.12 are

functions of k and all of the statistics are evaluated with regard to

LN. whewn comparing different equat-ions. (see U-ig-Lires 0.1 tLirough 6.4)

If we are primarily concerned with producing unbiased

estimates of the statistics which are functions of k, we might choose

k to be the cumulative number of coefficients estimated in developing

the final model. For example, if a second layer partial model has 3

terms and both of the first layer models which provide the input to

the second layer model have 4 terms, k would equal 11 (3+4+4). However,

the primary model quality evaluation statistics used in this work are

calculated on independent data and are not functions of k. With these

statistics we need k mostly to judge the number of independent variable

interactions which affect the model and the general model complexity.

For this purpose we might choose k to be somewhere in between the number

of different original variables which appear in the model and the total

number of terms in the model when expanded in the original variables.

In this work we chose k to be the total number of terms in the model

when expanded in the p original variables, including the constant term.
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This value of k both suits the primary purpose and maintains something

close to unbiased estimates of the statistics calculated from the

estimation data because it is generally closer to the total number of

coefficients estimated than is the number of different original variables

which appear in the equation.

4.3 GMDH Algorithm Used in this Work

The partial models in each layer are second order 2 variable

polynomials of the form given by Equation 4.1. The stepwise regression

algorithm described in Section 3.2.2 is used to develop the partial

models. The stepwise regression algorithm is also used to generate linear

models from the complete set of input variables for each layer. A

specified number of the partial models with the lowest values of IRMS

(see Section 3.2.3) are passed between layers. The process stops

when a specified number of layers have been calculated. Any of the

partial models may be examined and the coefficients may be reestimated

from all the data. A user's manual for the GMDH program is presented

in Appendix B.
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Chapter 5

DEVELOPMENT OF ALTERNATIVE MODELS

Forty-seven models for today's maximum temperature at

Huntsville, Alabama were developed by applying stepwise regression to

each of 5 data sets, the GMDH to 3 of the 5 data sets, and interactive

stepwise regression to 1 of the 5 data sets. The 5 data sets are all

variants of the set 1 data described in Section 2.4. Some general

aspects of the data are described in Section 5.1 and the 5 data sets

are described in Section 5.2. The use of stepwise regression, inter-

active stepwise regression,and the GMDH to generate alternative models

is described in section 5.3.

5.1 General Characteristics of the Data

The set 1 variables (see Section 2.4) are listed in Table 5.1

along with the units and correlations with the dependent variable. The

variable names, projection times, observation times, and smoothing

information are the same as in Tables 2.1, 2.2, and 2.3. The sequential

variable numbers listed in Table 5.1 will be used as the variable

identifiers, even when some variables are deleted from the data set.

Set 1 data are available only on the days listed in Table 5.2.

The missing days are caused by various malfunctions in the Limited

Area Fine Mesh (LFM) forecasting system. In each 6 digit number

91



Table 5.1 Set 1 Variables

variable (hrs)
# name projection smoothing correlation units

Harmonic Terms

1 sin(day of year) - - -0.6598 -

2 sin(2*day of year) - - -0.0756 -

3 cos(day of year) - - -0.6792 -

4 cos(2*day of year) - - 0.6789 -

Layer Heights

5 1000 mb 12 5 -0.0406 meters

6 1000 mb 24 5 -0.1838

7 850 mb 12 - 0.4345

8 850 mb 24 - 0.2787

9 500 mb 12 - 0.8021

10 500 mb 24 - 0.7452

Layer Thicknesses

11 500-1000 mb 0 - 0.7608 meters

12 500-1000 mb 6 - 0.8054 "

13 500-1000 mb 12 - 0.8351 "

14 500-1000 mb 18 - 0.8490 "

15 500-1000 mb 24 - 0.8548

16 850-1000 mb 0 - 0.8123

17 850-1000 mb 6 - 0.8645

18 860-1000 mb 12 - 0.8954



Table 5.1 Set 1 Variables (Cont'd)

variable
# name

19 850-1000 mb

20 850-1000 mb

21 500-850 mb,

22 500-850 mb

23 500-850 mb

24 500-850 mb

25 500-850 mb

Layer Temperatures

26 surface

27 1000 mb

28 1000 mb

29 850 mb

30 850 mb

31 850 mb

32 850 mb

33 850 mb

34 700 mb

35 700 mb

36 700 mb

37 BND LYR POT

38 BND LYR POT

smoothing correlation

- 0.9139

- 0.8997

- 0.7190

- 0.7620

- 0.7827

- 0.7891

- 0.7943

projection

18

24

0

6

12

18

24

0

12

24

0

6

12

18

24

0

12

24

6

12

0.8468

0.8971

0.8616

0.7920

0.8469

0.8786

0.8963

0.8905

0.7386

0.8265

0.8396

0.8579

0.8873

units

meters

it

it

*Kelvin
it

"I

",

",

"I

"p

"I

",

",

",

",

5

5



Table 5.1 Set 1 Variables (Cont'd)

variable
# name

39 BND LYR POT

40 BND LYR POT

West Wind Component (U)

41 BND LYR

42 BND LYR

43 BND LYR

44 BND LYR

53 850 mb

54 850 mb

55 850 mb

56 850 mb

61 700 mb

62 700 mb

North Wind Component (V

45 BND LYR

46 BND LYR

47 BND LYR

48 BND LYR

57 850 mb

58 850 mb,

59 850 mb

projection

18

24

6

12

18

24

6

12

18

24

12

24

smoothing

5

5

correlation

0.8941

0.8687

units

*Kelvin
i

-0.0545 (meter)(sec )

5

5

5

5

5

0.0579

0.0295

0.0826

-0.2870

-0.1381

-0.1972

-0.1727

-0.4441

-0.4126

I

I,

I,

I,

I,

0

'I

'I

'I

)
6

12

18

24

6

12

18 5

0.3139 (meter)(sec1 )
0.1673

0.1988

0.1543

0.2209

0.1329

0.1190

I

",

"I

"I

"I

%0s



Table 5.1 Set 1 Variables (Cont'd)

variable
# name

60 850 mb

63 700 mb

64 700 mb

Wind Speed

49 BND LYR

50 BND LYR

51 BND LYR

52 BND LYR

Relative Vorticity

65 850 mb

66 850 mb

67 850 mb

68 850 mb

69 500 mb

70 500 mb

Vertical Velocity

71 850 mb

72 850 mb

73 700 mb

74 700 mb

Temperature Differences

75 700-1000 mb

12

24

12

smoothing correlation

5 0.1744

- 0.0321

5 0.1062

5

5

projection

24

12

24

6

12

18

24

6

12

18

24

12

24

12

24

-0.3642

-0.3185

-0.3185

-0.2994

-0.2645

-0.2645

-0.3324

-0.2746

-0.3648

-0.3477

-0.2522

-0.0993

-0.2256

-0.1418

-0.5450 *Kelvin

units

(meter)(sec~)

-1

(meter)(sec 1)
it

(10 5)(sec ~)

it

it

it

"I

(mb)(sec- )
it

",

",



Table 5.1 Set 1 Variables (Cont'd)

variable

ko

me

0-1000 mb

0-850 mb

0-850 mb

ent

D LYR REL HUM
"

variable
# na

76 70

77 50

78 50

Water Cont

79 BN

80

81

82

83

84 ME

85

86

87

88 PR

89

90

91

92 10

93

94

95

AN REL HUM
i

i

i"

ECIP WAT
it

it

i"

)0 mb DEW PT
it

i

i

projection

24

12

24

smoothing

0

6

12

18

24

6

12

18

24

6

12

18

24

6

12

18

24

correlation

-0.4595

-0.6292

-0.6002

0.0884

0.0561

0.0778

0.0511

0.0650

0.0800

0.1445

0.1071

0.1159

0.4984

0.5247

0.5171

0.5206

0.6202

0.6642

0.6949

0.7148

units

*Kelvin
it

if

Percent

"I

"i
",

(kg) (meter-2
",

"I

",

0Kli

",

",

",

"I

"

"



Table 5.1 Set 1 Variables (Cont'd)

variable
# name

96 850 mb DEW PT

97 850 mb DEW PT

98 700 mb DEW PT

99 700 mb DEW PT

Wind Divergence

100 BND LYR

101 BND LYR

102 BND LYR

103 BND LYR

Temperature Advection

104 850 mb

105 850 mb

Vorticity Advection

106 500 mb

107 500 mb

Observed Variables

108 ceiling

109 cloud cover

110 dew point

111 sfc wind spee

112 sfc wind U

smoothing correlation

5 0.6234

5 0.6123

5 0.5260

5 0.5176

projection

12

24

12

24

6

12

18

24

12

24

12

24

(Observation Ti

03

03

03

03

03

nes)

-0.0282

-0.1270

0.0470

-0.1100

0.3977

0.2217

-0.3780

-0.1928

-0.3049

-0.1659

0.6503

-0.4076

0.2308

feet

percent

*Fahrenheit

knots

knots

units

*Kelvin
to

it

it

(1-5 -le-

(10) 5) Melvin) (sec )

(10-5)(sec~ )

if

5

5

5

5

5

5

5

5

d



Table 5.1 Set 1 Variables (Cont'd)

ble
name

sfc wind V

sfc temperature

sfc temperature

sfc temperature

previous max temperature

previous min temperature

today's max temperature

projection

03

smoothing

03

24

21(previous day)

correlation

-0.1928

0.7769

0.8162

0.8008

0.7962

0.6407

1

varia
#

113

114

115

116

117

118

119

units

knots

*Fahrenheit

"
"I

",

"I

",



730401
730412
730502
730511
730525
730601
730621

740401
740410
740419
740429
740501
740510
740519
740531
740602
740614
740624

750403
750415
750427
750501
750511
750521
750530
750601
750610
750621
750630

730402
730413
730503
730513
730526
730603
730622

740402
740411
740420
740430
740502
740511
740520

740603
740615
740627

750405
750416
750428
750502
750512
750522
750531
750602
750611
750622

Table 5.2

730407
730428
730507
730518
730530
730617
730626

740406
740415
740425

740506
740515
740526

730408
730429
730508
730522
730531
730618
730629

740407
740416
740426

740507
740516
740527

730410
730430
730509
730523

730619
730630

740408
740417
740427

740508
740517
740528

730411

730510
730524

730620

740409
740418
740428

740509
740518
740530

730403
730415
730504
730514
730527
730614
730623

740403
740412
740422

740503
740512
740522

740604
740616
740628

750406
750417
750429
750503
750513
750523

750603
750612
750623

730404
730417
730505
730515
730528
730615
730624

740404
740413
740423

740504
740513
740524

740605
740618
740629

750407
750418
750430
750504
750514
750524

750604
750615
750624

750507
750516
750526

750606
750617
750626

750508
750517
750527

750607
750618
750627

750509
750519
750528

750608
750619
750628

750510
750520
750529

750609
750620
750629

Dates for which Equation Development Data is Available for
0000 GMT Forecast Cycle Early Guidance Set 1 Equations in
the Spring Season.

730406
730418
730506
730517
730529
730616
730625

740405
740414
740424

740505
740514
740525

740606 740607 740611 740612 740613
740619 740620 740621 740622 740623
740630

750409 750410 750411 750412 750414
750421 750422 750423 750425 750426

750505
750515
750525

750605
750616
750625



760401
760410
760419
760428
760501
760510
760520
760529
760601
760611
760620
760629

770401
770410
770419
770428
770501
770510
770519
770528
770601
770610
770620
770629

760402
760411
760420
760429
760502
760511
760521
760530
760603
760612
760621
760630

770402
770411
770420
770430
770502
770511
770520
770529
770602
770611
770621
770630

Table 5.2
(cont'd)

760403
760412
760421
760430
760503
760512
760522
760531
760604
760613
760622

770403
770412
770421

770503
770512
770521
770530
770603
770612
770622

760404
760413
760422

760504
760513
760523

760605
760614
760623

770404
770413
770422

770504
770513
770522

770604
770613
770623

760405
760414
760423

760505
760514
760524

760606
760615
760624

770405
770414
770423

770505
770514
770523

770605
770614
770624

760406
760415
760424

760506
760515
760525

760607
760616
760625

770406
770415
770424

770506
770515
770524

770606
770616
770625

760407
'760416
760425

'760507
760516
760526

760608
760617
760626

770407
'770416
'770425

'770507
770516
'770525

770607
770617
770626

Dates for which Equation Development Data is Available for
0000 FMT Forecast Cycle Early Guidance Set 1 Equations in
the Spring Season.

0
0

760408
760417
760426

760508
760517
760527

760609
760618
760627

770408
770417
770426

770508
770517
770526

770608
770618
770627

760409
760418
760427

760509
760519
760528

760610
760619
760628

770409
770418
770427

770509
770518
770527

770609
770619
770628



Table 5.3 Number of Days with Data
During Each Year in Table
5.2.

101

Number of
Year Data Points

1973 59

1974 80

1975 79

1976 89

1977 88

Total 395



the first pair of numbers is the year, the second pair is the month,

and the third pair is the day. The number of days with data in each

year is summarized in Table 5.3.

The daily maximum temperatures for 31 March through 6 October

in 1968 through 1977 are shown in Figure 5.1. An "x" marks 31 March

in each year. The abscissa is the consecutive point number within

the complete set of plotted points. The days listed in Table 5.2

are a subset of the April-June, 1973-1977 portion of the days shown

in Figure 5.1.

The natural variability of the maximum temperature changes

through the year. The variances of the maximum temperatures for 31

March through 6 October, as calculated from the 10 years of data shown

in Figure 5.1, are shown in Figure 5.2. A definite, though noisy,

trend is apparent.

Large sets of meteorological variables, such as that used in

this work, tend to be highly redundant. By redundant, we mean that

essentially the same information is carried by several different

variables or sets of variables. This redundancy is illustrated in

Figure 5.3. Figure 5.3 is based on data set 2, which is used to predict

tonight's minimum temperature (see Section 2.4), and on the fifth

variant of data set 1, which includes principal components of the

original set 1 variables and is used to predict today's maximum

temperature (see Section 5.2). Each point in Figure 5.3 represents

a model which uses variables not used in any of the other models.

The models were created with stepwise regression. After each
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model was created, the variables chosen for the model were removed from

the data set. The significance level for entering and deleting variables

was 0.05 for data set 2 and 0.01 for the fifth variant of data set 1.

The quality of the successive models built from the principal components

drops off more rapidly than those built from data set 2. This is

expected because much of the redundancy is filtered out by the process

of constructing principal components. This type of analysis was not

performed on the original variables in data set 1, but they can be

expected to have similar properties.

5.2 Data Sets Used in this Work

The first variant of data set 1 is simply the unmodified

original variables. The second, third, and fourth variants were deve-

loped by removing harmonic components from the variables. The fifth

variant includes principal components of the original variables. From

here on, these 5 variants of data set 1 will be referred to simply as

data sets 1 through 5. Since the original variables continue to be

called data set 1 and no other data sets are used in this work, this

renaming should not cause confusion. The development of data sets 2,

3, and 4 is described in Section 5.2.1 and development of data set

5 is described in Section 5.2.2.

5.2.1 Data Sets 2, 3, and 4

We may consider modeling temperature as the sum of two

components, a mean and a departure from the mean. The existence of a
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smooth mean trend of daily maximum temperatures produced by the regular

pattern of the earth's orbit and relatively stationary geographical

effects is physically plausible. Departures from the mean are caused

by the more transient effects such as cloud cover and humidity. The

potential advantages of explicit separation of the mean trend and devia-

tions from the trend include the possibility of producing more robust

models and facilitating interpretation of the model variables. The

model robustness may be increased because a mean trend modeled separately

with mathematical functions is perfectly stable and the meteorological

variables are left only the task of modeling deviations from the trend.

The interpretation of the models may be eased because meteorological

variables which have little causal relation to temperatures, but whose

trends match the trend of temperature, are not as likely to appear in

the model.

Harmonic functions have been used to model temperature trends.

For example, Craddock (1956) found that the first 2 terms of a Fourier

series expansion adequately described the annual trend of 5 day mean

temperatures at the 43 European cities he studied. Craddock had approx-

imately 80 years of data for most of the cities. Taylor (1972),

following the work of Craddock, used a 2 term harmonic model in a simula-

tion of temperature in Britain.

The following two harmonic models of maximum temperature at

Huntsville, Alabama, were developed with least squares regression.

Each uses the first 4 variables in Table 5.1 (see Equations 2.1 through
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2.4)and a constant term. Thus they are each equivalent to the first 2

terms in a Fourier series expansion.

T MAX= 71.9 - 4.5 sin D + 1.0 sin4D) - 17.4 cos( ) - 1.4 cos 4wD

(5.1)

2 TrD 4 7TD 27TD4T
T = -23.4+88.5 sin( --) + 39.2 sin(-) - 111.4 cos(- -)-1.6 cos(A -)MAX 36536

(5.2)

Equation 5.1 was developed from the 10 years of data shown in Figure 5.1.

Equation 5.2 was developed from only the data in set 1 (see Table 5.2).

Thus, slightly more than 4 times as many data points were used to esti-

mate the parameters for Equation 5.1 than were used for Equation 5.2.

However, only half of the data used for Equation 5.1 are from the same

season (April-June) as data set 1. The other half are from July-

September. The 10 year average maximum temperatures and the harmonic

model of these averages, Equation 5.1, are shown in Figure 5.4.

Data sets 2, 3, and 4 were created by 3 slightly different

methods of modeling and removing harmonic components from data set 1.

Data set 2 was created by replacing variables 5 through 118, and the

dependent variable, with the residuals from separate harmonic models

of each variable. Each harmonic model had the same form as Equations

5.1 and 5.2. The parameters of the models were estimated with least

squares regression using the 5 years of data in set 1. Equation 5.2

was thus the harmonic model of the mean trend of the dependent variable.

The residuals from this model, which are the dependent variable, are
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shown in Figure 5.5. Data set 3 uses the independent variables from

data set 2, but the mean trend of the dependent variable is modeled

with Equation 5.1. The residuals from Equation 5.1, which are the

dependent variable, are shown in Figure 5.6. Note that Figure 5.6

is very similar to Figure 5.5. Data set 4 uses the original independent

variables (from data set 1) and the detrended dependent variable from

cdata set 3.

The method used to create data set 2 is perhaps the most

conventional way of removing the effects of one set of variables from

another set of variables. Although variables 1 through 4 were left in

the data set unchanged, they were effectively removed from the modeling

process in data set 2 because, following the removal of their effects,

they were linearly uncorrelated with all of the other variables.

Variables 1 through 4 were still available in data sets 3 and 4, because

they had non-zero correlations with the dependent variables in data set

3 and with both the dependent and independent variables in data set 4.

The methods used to create data sets 3 and 4 were attempts to incor-

porate information beyond that in the basic data set into the modeling

process. Data set 4 was created to allow the harmonic terms which

describe the net trends of the independent variables in the models to

be chosen along with the independent variables, without the influence

of the trend in the dependent variable.

The quality of models developed from data from which the

effects of some variables have been removed can be estimated directly
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from the model residuals. This can be shown as follows. Let X and Y

be the original data and let X* and y* be the data from which the effects

of some variables have been removed. We develop a model Y_* = X* S which

has residuals y* - *. The residuals in terms of the original variables

are (* + (y - - (y* + (y - = - y*, the same as the model

residuals. However, when calculating a quality measure which is a func-

tion of the number of variables in a model (see Section 3.2.3), some

account should be taken of effects already removed from the data. When

the parameters of the removed components have been estimated using only

the data from which they were removed, as in data set 2, it is fairly

clear that k in Equations (3.7) through (3.11) should be increased by

the number of parameters estimated. Thus, k was increased by 4 for

equations developed from data set 2. However, when some of the data

used to estimate parameters of the removed components are not part of the

data set from which the components are removed, as in data sets 3 and 4,

the situation is not as clear. If the removed component is estimated

completely independently of the data set used for the rest of the model-

ing, no adjustment to k is needed. Since less than one fourth of the

data used to estimate the parameters of Equation (5.1) is from data set

1, k was not agumented for models developed from data sets 3 and 4.

5.2.2 Data Set 5

The independent variables in data set 5 include principal

components of groups of variables from data set 1 and some variables
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unchanged from data set 1. The dependent variable was not modified.

The groups of variables which were replaced by principal components are

listed in Table 5.4. Each group was replaced by the principal component

of that group which had the largest variance. The percentage of the

total variance which was accounted for by the principal components used

in this work are also listed in Table 5.4. The variables were normalized

by subtracting the means and dividing by the standard deviations before

the principal components were calculated. The variable transformations

for the principal components which were retained are listed in Appendix A.

Variables in Table 5.1 which are not listed in Table 5.4 were

retained in their original form in data set 5, giving a total of 28

independent variables in data set 5. The variable numbering from data

set 1 is again retained and the principal components are identified

by the letters in Table 5.4.

5.3 Generating Alternative Models

Four models from each of the 5 data sets were generated using

stepwise regression. The significance level for entering and deleting

variables was 0.05 for 2 of the models from each data set and 0.01 for

the other 2. At each significance level, the variables for one of the

models were chosen using only the first three years of data. However,

after the variables were chosen, the coefficients of those models

were reestimated from all 5 years of data. The significance level for

entering variables can be stricter than for deleting variables, but in

this work the significance levels for entering and deleting were always
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Table 5.4 Groups of Variables Replaced by their Principal Components
in Data Set 5

115

Maximum % of Total
Group Variables Group Name Variance in One

Component

A 5-10 layer heights 69

B 11-25 layer thicknesses 90

C 26-40 layer temperatures 88

D 41-44;53-56; wind U 71
61-62

E 45-48;57-60; wind V 77
63-64

F 49-52 wind speed 70

G 65-70 relative vorticity 71

H 71-74 vertical velocity 72

I 75-78 temperature differences 75

J 79-99 water content 75

K 100-103 wind divergence 40

L 104-105 temperature advection 77

M 106-107 vorticity advection 62



equal.

Five models from data set 5 and 10 models from each of data

sets 1 and 2 were generated using the GMDH. The significance level for

entering and deleting variables in the partial models was 0.05 for 5

of the models from data sets 1 and 2 and 0.01 for the other 5. Only

0.01 was used on data set 5. Fifty partial models were passed between

layers. The 5 models for each significance level consisted of the

best model in each of 3 layers and the models generated with stepwise

regression from the input variables for layers 2 and 3. The first

3 years of data were used to estimate the coefficients and the last

2 years of data were used to measure the partial model quality.

Following the variable selection, the coefficients of all the models

were re-estimated using all 5 years of data. The linear models

described in the previous paragraph whose variables were chosen using

only the first 3 years of data are the same as the models developed

in the GMDH algorithm from the input data for the first layer.

GMDH models were developed from only 3 data sets because of

limitations on computer time. We expect that the relations between

the quality of the linear models and of the GMDH models for data sets 3

and 4 is similar to that for data sets 1 and 2.

Two models from data set 5 were generated using interactive

stepwise regression. The F statistics indicated that variables 1, A,

B, and C should be included in any model and that variables K, M, and

109 were reasonable choices for a fifth variable. The partial residual

plots of variables K, M, and 109, with variables 1, A, B, and C already
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in the model, were examined to distinguish between the 3 variables.

The partial residual plots are shown in Figures 5.7, 5.8, and 5.9.

Two models, one using variable K and one using variable 109 for the

fifth independent variable were then selected.

The 47 models generated are listed in Table 5.5 along with the

number of terms in each model, the variables in those terms, the method

of generation, the significance level for entering and deleting variables,

and the data set from which the model was developed. The number of terms

includes the constant term and is sometimes greater than the number of

variables because the variables are used in different combinations and

transformations in the models. The underlined groups of variables

correspond to the groups from which principal components were calculated

(see Table 5.4). The abbreviations used for the generation techniques

are described in Table 5.6.
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Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Data
Set

H.'

# Terms
in.

# Model

12

12

6

7

2

16

14

9

36

2

8

16

7

12

9

11

5

6

3

6

Variables in Model

1,7,8,19,68,85,89,96,107,115,117

2,10,19,43,61,72,74,102,104,109,117

1,19,68,107,117

7,19,74,102,104,117

20,26

26,28,33,114

20,26,40,114

27,28,33,115,117

16,26,28,32,40,114,116

20,26

20,26,28,114

19,28,33,114,115,116

26,28,32,116

28,33,114,117

5,19,68,85,96,107,115,117

10,19,43,61,67,72,74,102,104,117

19,68,107,117

19,43,61,68,117

20,26

20,27,67,117

Table 5.5 Alternative Models

Generation
Technique

STWS-3

STWS-5

STWS-3

STWS-5

GMDH mlU1

GMDH m122

GMDH ml3

GMDH in 1

GMDH in 23

GMDH mlUl

GMDH m192

GMDH m123

GMDH in 22

GMDH in 3

STWS-3

STWS-5

STWS-3

STWS-5

GMDH m121

GMDH m122

a1
a
2

0.05

0.05

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.01

0.01

0.01

0.01

0.01

0.05

0.05

0.01

0.01

0.05

0.05

_



Variables in Model

19,20,27,40,68,87,116,117

17,19,26,27,28,30,39,40,61,68,86,115,
116,117

19,20,26,27,39,40,62,68,86,115,116,117

28,114

20,27,68,115

10,19,20,27,39,68,87,117

10,19,26,27,39,40

Generation
Technique

GMDH ml3

GMDH in 22

GMDH in 23

GMDH mlU

GMDH m1P2

GMDH ml3

GMDH in 22

28 11 10,19,20,27,39,68,87,115,117 GMDH in k3 0.01 2

29 8 7,19,68,85,96,107,117 STWS-3 0.05 3

30 11 7,19,43,61,46,63,72,74,102,117 STWS-5 0.05 3

31 5 19,68,107,117 STWS-3 0.01 3

32 6 19,A3,61,68,117 STWS-5 0.01 3

33 8 3,27,32,43,61,68,107 STWS-3 0.05 4

34 13 3,10,32,39,43,61,72,74,77,102,109,116 STWS-5 0.05 4

35 6 3,27,32,68,107 STWS-3 0.01 4

36 12 3,10,21,32.39,43,61,72,74,102,116 STWS-5 0.01 4

7

11

6

6

1,A,C,I,K,M

1,A,B,C,D,K,L,M, 109, 114

1,A,C,I,M

1,,A, B,C,K

Table 5.5 Alternative Models (cont'd)

STWS-3

STWS-5

STWS-3

STWS-5

0.05

0.05

0.01

0.01

5

5

5

5

Model #

# Terms
in

Model

21

22

23

24

25

26

27

11

21

17

3

5

10

13

Data
Set

0.05

0.05

0.05

0.01

0.01

0.01

0.01

2

2

2

2

2

2

2

37

38

39

40



# Terms
in Generation a2 Data

Model # Model Variables in Model Technique U1 Set

41 4 C,109 GMDH mlU1 0.01 5

42 15 A,C,109 GMDH ml22 0.01 5

43 15 A,C,109 GMDH ml3 0.01 5

44 7 A,B,C,K GMDH in 22 0.01 5

45 15 A,C,109 GMDH in Z3 0.01 5

46 6 1,A,B,C,K instws - 5

47 6 1,A,B,C,109 instws - 5

Table 5.5 Alternative Models (cont'd)



Table 5.6 Abbreviations Used in Table 5.5

STWS-3

STWS-5

GMDH mlil

GMDH ml2

GMDH ml93

GMDH in x2

GMDH in k3

instws

= stepwise regression, 3 years of data used to choose the
variables

= stepwise regression, 5 years of data used to choose the
variables

= GMDH, the best model in layer 1

= GMDH, the best model in layer 2

= GMDH, the best model in layer 3

= GMDH, the linear model generated from all the input variables
to layer 2

= GMDH, the linear model generated from all the input variables
to layer 3

= interactive stepwise regression
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Chapter 6

RESULTS

The 47 models described in Chapter 5, a Model Output Statistics

(MOS) model used by the National Weather Service (NWS), and a model

suggested by the validation procedures described in Section 6.2 are

examined in this chapter. Model quality statistics are examined in

Section 6.1, validation procedures are applied to some selected models

in Section 6.2, and the relative performance of the 3 model generation

techniques used in this work is considered in Section 6.3.

The NWS MOS equation for predicting today's maximum tempera-

ture at Huntsville, Alabama uses variables 3,10,20,27,51,87,96,107,109,

and 114. The coefficients of these variables which were developed in

this work are generally close to, but not the same as the coefficients

developed by the NWS. The reason for the discrepancy is not known.

The mean squared residual (RMSk, see Equation 3.8) for this equation

given by the NWS is 9.19 and the RMSk calculated in this work is 9.26.

Thus the quality of the fit to the estimation data is similar for

both sets of coefficients. Because of the discrepancy and because the

NWS equation is constrained to use the same predictors as the other

equations in set 1 for the spring season (see Section 2.3) the equation

labeled NWS in this chapter is not presented as the best single purpose

equation which can be produced by the MOS system used by the NWS, but

rather as an approximate representative of a model currently in use.
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Any conclusions drawn from the information presented here

must be tempered with the realization that only 1 dependent variable

at 1 location was considered in this work.

6.1 Statistical Evaluation of Model Quality

The 7 statistics given by equations 3.8 through 3.14 are

listed for each equation in Table 6.1. The value used for a2 in the

equation for Ck was 7.0, approximately the lowest value of RMSk from the

47 equations. The last 2 years of data were used to calculate IRMS

and IRMA. IRMS and IRMA were calculated for the NWS model and for

the models whose variables were chosen using all 5 years of data

(models 2,4,16,18,30,32,34,36,38,40,46, and 47) by reestimating

the coefficients using only the first 3 years of data and calculating

the statistics from the last 2 years of data. The last 2 years of

data are not totally independent in this procedure, since they were

used to guide the variable selection, but statistics which can be

compared with the other statistics on independent data are produced. k

in Equations 3.8 through 3.14 is the number of terms in the model,

including the constant term, plus any adjustments for modifications

to the data (see Section 5.2.1). The value of k used for the models

developed with the GMDH is discussed in Section 4.2.2.

IRMS, IRMA, RMSk, and RMA k are plotted against k in Figures

6.1 through 6.4. Plots of Sk' Jk' and Ck are not presented because

they all show essentially the same result as the plot of RMS . Since

we prefer low values on both axes in Figures 6.1 through 6.4, the models
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Model Data RMS i C S# Set k k k k k IRMS IRMA

1 1 12 8.70 8.96 104.89 0.02271 2. 27 11.58 2.61
2 1 12 7.89 8.13 60.60 0.02060 2.22 8.20 2.21
3 1 6 9.03 9. 16 118.58 0.02320 2.29 9.73 2.38
4 1 7 8.73 8.89 103.04 0.02251 2.31 8.63 2.20
5 1 2 10.85 10.90 218.07 0.02760 2.46 9.90 2.37
6 1 16 10.48 10.91 204.60 0.02766 2.46 8.79 2.19
7 1 14 10.60 10.98 210.00 0.02782 2.49 8.60 2.14
8 1 9 9.83 10.05 165.07 0.02547 2.37 11.63 2.45
9 1 36 10.69 11.67 225.34 0.02978 2.57 9.28 2.26

10 1 2 10.85 10.90 218.07 0.02760 2.46 9.90 2.37
11 1 8 10.64 10.86 209. 42 0.02750 2.47 8.69 2.17
12 1 16 10.28 10.69 193.44 0.02712 2.44 8.63 2.13
13 1 7 10.08 10.26 177.63 0.02598 2.38 9.69 2.30
14 1 12 10.33 10.65 194.35 0.02698 2.146 9.18 2.23

15 2 13 8.62 8.90 101.17 0.02255 2.24 10.32 2.44
16 2 15 7.84 8.14 60.64 0.02063 2.23 8.10 2.21
17 2 9 8.95 9.16 116.61 0.02319 2. 29 9.34 2.30
18 2 10 8.45 8.66 89.59 0.02194 2.26 8.77 2.24
19 2 7 10.22 10.40 185.47 0.02634 2.46 9.74 2.42
20 2 10 9.20 9.43 131.08 0.02390 2.30 9.00 2.18
21 2 16 9.02 9.38 125.26 0.02379 2.31 8.57 2.14
22 2 25 8.85 9.41 122.89 0.02392 2.30 12.03 2.58
23 2 21 8.67 9.13 109.98 0.02317 2.28 10.39 2.45
24 2 7 11.48 11.68 255.18 0.02958 2.64 9.51 2.39
25 2 9 9.53 9.75 148.63 0.02469 2.35 9.06 2.21
26 2 14 9.09 9.41 127.70 0.02386 2.34 8.95 2.26
27 2 17 9.05 9.44 127.93 0.02395 2.33 10.24 2.45
28 2 15 9.05 9.39 126.12 0.02381 2.33 10.32 2.45

29 3 8 8.89 9.07 112.24 0.02296 2.27 9.29 2.04
30 3 11 7.12 7.32 17.43 0.01853 2.10 7.46 2.06
31 3 5 8.64 8.75 96.32 0.02215 2.25 8.88 2.11
32 3 6 7.66 7.78 42.90 0.01970 2.15 8.30 2.18

Table 6.1 Model Quality Statistics
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Model Data
# Set k k k k k RMAk IRMS IRMA

33 4 8 8.81 8.99 108.20 0.02277 2.27 9.13 2.12
34 4 13 7.16 7.40 21.79 0.01875 2.11 7.75 2.16
35 4 6 9.27 9.41 131.97 0.02382 2.32 9.61 2.14
36 4 12 7.20 7.42 23.01 0.01880 2.11 7.78 2.14

37 5 7 9.55 9.72 148.38 0.02461 2.39 10.77 2.51
38 5 11 9.27 9.53 135.38 0.02413 2.34 10.92 2.51
39 5 6 9.74 9.88 158.02 0.02503 2.37 10.87 2.51
40 5 6 9.68 9.83 155.01 0.02489 2.39 10.53 2.44
41 5 4 11.09 11.20 232.58 0.02837 2.59 11.63 2.67
42 5 15 10.54 10.94 207.32 0.02774 2.51 10.66 2.47
43 5 15 10.54 10.94 207.32 0.02774 2.51 10.66 2.47
44 5 7 9.92 10.10 168.84 0.02557 2.40 11.00 2.54
45 5 15 10.54 10.94 207.32 0.02774 2.51 10.66 2.47
46 5 6 9.68 9.83 155.01 0.02489 2.40 10.53 2.51
47 5 6 9.75 9.89 158.62 0.02505 2.40 10.29 2.43

NWS 1 11 9.26 9.51 134.74 0.02410 2.37 9.51 2.36

Table 6.1 Model Quality Statistics
(cont'd)
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represented by points closer to the lower and left boundaries of the

figures are preferred over other models. The identification numbers

of the models on and close to the preferred boundaries are indicated

in the figures. However, as discussed in Section 3.2.3, there are no

definite rules to guide the trade-off between improved model statistics

and increased model complexity. Also, subjective judgement concerning

model qualities may sometimes induce the choice of a model not on or

near the preferred boundaries. For example, if model stability were

an overriding concern, the models developed from data set 5 (containing

principal components) might be preferred in spite of their relatively

poor statistics.

Models 30, 31, and 32, all linear models from data set 3,

define the preferred boundaries for IRMS, RMS , and RMA .k Model 4,

from data set 1, and models 34 and 36 from data set 4, again linear

models, appear close to the boundaries for each of these three

statistics. The preferred boundary of IRMA is not clearly defined,

but is generally dominated by linear models from data sets 3 and 4.

Thus, while the GMDH may be successful in some situations, linear

relations between the dependent and independent variables seem to

produce the best prediction equations in this case. Using the GMDH on

data sets 3 and 4 would probably have produced better nonlinear models

than were produced from data sets 1, 2, and 5, but we expect that

they still would have been dominated by the linear models.

The models from data set 3 clearly have the best model quality
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statistics among the 5 data sets. However, data set 3 also requires

much more effort to produce than data sets 1,2, and 4. In situations

where this extra work is prohibitive we may wish to consider the

other data sets. The creation of data set 2 requires nearly as much

effort as data set 3, but the models from data set 2 are generally

dominated by the models from data sets 1 and 4. Data set 4 requires

only that the response be detrended with a model developed from a long

data base,substantially less effort than required by data set 3,

and data set 1 is the original data. Models 34 and 36, from data set

4, are generally close to the preferred boundaries for higher values of

k. Some linear models developed from data set 4 by tightening the

significance levels for entering and deleting variables in the stepwise

regression algorithm (not presented in this work) were also close to

the preferred boundaries at lower values of k. In summary, data set

3 yields the best models but requires the most effort to create;

data set 4 yields reasonably good models and requires substantially

less effort to create than data set 3, data set 1 yields reasonably

good models only at lower values of k, and data set 2 requires more

effort to create than data sets 1 or 4, but yields poorer models.

The Durbin Watson (DW) statistic d is normally used as a

validation procedure for a few selected models and cannot easily be

used to rank different models. However, it can, in this case, be used

to help evaluate the different data sets. The DW statistics of the

models are listed in Table 6.2. A "y" ("n") in the 5% and 1% columns
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Model
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

%
Data

k Set d 5%

12 1 1.82 ?

12 1 1.98 n

6 1 1.88 n

7 1 1.92 n

2 1 1.89 n

16 1 1.87 ?

14 1 1.83 ?

9 1 1.92 n

36 1 1.86 ?

2 1 1.89 n 1

8 1 1.89 n

16 1 1.84 ?

7 1 1.97 n 1

12 1 1.95 n 1

13 2 1.90 n 1

15 2 1.95 n I

9 2 1.59 y

10 2 2.02 n 1

7 2 1.76 y

10 2 1.89 n 1

16 2 1.85 ?

25 2 1.84 ?

21 2 1.89 ?

7 2 1.70 y

9 2 1.76 y

14 2 1.71 y

17 2 1.75 ?

15 2 1.74 y

8 3 1.79 ?

11 3 1.87 ?

Table 6.2 Durbin-Watson Test Results

y indicates serial correlation
n indicates no serial correlation
? indicates the test was inconclusive

Note that Table 3.1 uses k' = k-i
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Model Data
Number k Set d 5% 1%

31 5 3 1.85 n n

32 6 3 1.81 ? n

33 8 4 1.59 y y

34 13 4 1.84 ? n

35 6 4 1.59 y y

36 12 4 1.87 ? n

37 7 5 1.64 y y

38 11 5 1.89 n n

39 6 5 1.64 y y

40 6 5 1.71 y y

41 4 5 1.62 y y

42 15 5 1.69 y ?

43 15 5 1.69 y ?

44 7 5 1.63 y y

45 15 5 1.69 y ?

46 6 5 1.71 y y

47 6 5 1.77 y ?

NWS 11 1 1.73 y

Table 6.2 Durbin-Watson Test Results (cont'd)

y indicates serial correlation
n indicates no serial correlation
? indicates the test was inconclusive

Note that Table 3.1 uses k' = k-l
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indicates the presence (absence) of serial correlation at the specified

significance level. A question mark in either column indicates the

test was inconclusive. The significance points of d for different

values of k' (=k-1) are listed in Table 3.1. Table 3.1 is based on n

350 because there are only 350 pairs of consecutive days from which to

calculate d (see Table 5.2).

Serial correlation appears frequently in the models developed

from data sets 2,4, and 5 and does not appear in the models developed

from data sets 1 and 3. The serial correlation in models from data set

4 appears only when the coefficients have been selected using only just

the first 3 years of data. Thus the quality of data set 3 is confirmed

and models from data set 1 appear to be slightly less likely than models

from data set 4 to exhibit the problem of serial correlation.

6.2 Model Validation

The application of validation procedures (see Section 3.4) to

models 4, 32, and 36, from data sets 1, 3, and 4, are described in

this section. Hypothesis tests, coefficient stability, and residual

graphics are examined. Model 4 was examined in greater detail than

models 32 and 36. Some revisions to model 4 suggested by the graphic

validation procedures, including removing 1 variable, are also

considered. Only hypothesis tests and residual graphics are examined

for models 32 and 36.
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6.2.1 Hypothesis Tests

The F and Durbin-Watson hypothesis tests were applied to

models 4, 32 and 36. These tests are described in Section 3.4.2.

The null hypothesis in the F test is that the change in the sum of

squared residuals due to the presence of a variable in the model is

equal to 0. This hypothesis is rejected at the 99 percent significance

level for each variable in each of the 3 models because F test at that

level was applied to each variable as part of the stepwise regression

variable selection algorithm. The residuals are plotted against normal

cumulative probability distribution functions in Figures 6.5, 6.6 and

6.7. There are no guidelines for accepting or rejecting the validity

of the F test. It is simply subject to more or less suspicion as the

residuals are less or more normally distributed.

The null hypothesis in the Durbin Watson test is that the

residuals do not have positive first order serial correlation. This

hypothesis is not rejected at the 5 percent level for model 4 and not

rejected at the 1 percent level for models 32 and 36 (see Table 6.2).

6.2.2 Coefficient Stability

The examination of model stability was discussed in Section

3.4.3. Only coefficient stability of model 4 is considered here.

Coefficient stability is examined by estimating the coefficients on

different subsets of data and comparing the results, Estimates

developed using each year of data separately are shown in Table 6.3. The
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Variable

Year of Estimation Data

1973 1974 1975 1976 1977

1973
through

1977

max.
diff.

+ 5 yr.
coeff.

Constant -320.852 -292.064 -260.383 -330.757 -384.470 -302.44 0.45

7 0.005 0.021 0.027 0.014 0.012 0.016 1.38

19 0.276 0.233 0.194 0.272 0.317 0.244 0.50

74 409.372 1,291.311 488.303 1,163.970 1,486.543 977.13 1.10

102 0.644 0.302 0.409 0.383 0.867 0.492 1.15

104 0.028 0.200 0.061 0.152 0.030 0.127 1.38

117 0.109 0.183 0.382 0.138 0.072 0.225 1.38

Table 6.3 Coefficients
the Data

of Model 4, Estimated from Different Portions of

I-..
-Is



maximum difference between the various estimates, divided by the

estimate based on all 5 years of data, is also listed in Table 6.3.

Since there are no reversals of sign or extreme changes in magnitude

as the estimation data changes, no serious instability is indicated.

6.2.3 Graphic Analysis

In this section we examine residual and partial residual plots.

These graphics were discussed in Section 3.4.1.

6.2.3.1 Residuals in time sequence

The standardized residuals of models 4, 32,and 36 are plotted

in time sequence in Figures 6.8, 6.9, and 6.10. The residuals have

been standardized by dividing by their standard deviation. The

standard deviation varies between models, being 3.0 for model 4,

2.8 for model 32, and 2.7 for model 36. The mean of the residuals over

the data used to estimate the coefficients is 0. It is fairly clear

that there are no strong trends with periods greater than 1 season.

However, there appears to be a bias towards large negative residuals

for each model and there may be some trends within seasons.

Each model has more residuals below -2 than above +2.

Model 4 has 6 above and 15 below, model 32 has 9 above and 16 below,

and model 36 has 4 above and 15 below. Thus each of the models is

much more likely to severely overpredict than to severely underpredict.

Also, no residual for any of the models is greater than +3, but each

model has some residuals less than -3. The effect of removing the

data point associated with the -4 residual in model 4 (day 358) is
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examined in Section 6.2.4.1.

High frequency variations in Figures 6.8, 6.9, and 6.10 make

it difficult to visually detect patterns within seasons. Some of the

high frequency variations were filtered out by calculating moving

averages of 10 residuals. The averaging was performed only within

seasons. The smoothed residuals are plotted in Figures 6.11, 6.12, and

6.13. Note the similarity between the plots for the different models.

There also are some repeated within season patterns, but none which

recur in every year. For example, in model 4 there is a pattern in

years 1973, 1974, and 1976 which resembles the shape of the sine of

twice the day of year. This pattern suggests that the inclusion of the

sine of twice the day of year might improve the model by removing

some of this pattern. However, the pattern is not as strong or clear

in 1975 and 1977 and the new variable might radically increase errors

in those years. That the sine of twice the day of the year was not

chosen for inclusion in the model by the stepwise variable selection

algorithm also indicates that the overall model quality is not improved,

at the 99 percent significance level, by inclusion of that variable.

No attempt was made to remove any of the patterns in the residuals from

any of the models.

The absence of evidence that the residuals are either correlated

or heteroscedastic indicates that the assumption Q = I (see Section 3.3)

is reasonable. Had the Durbin-Watson test indicated serial correlation

or the residual plots indicated patterns of changing variance, a
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reestimated Q, as described in Section 3.3, would he expected to

alleviate the problem.

6.2.3.2 Other residual plots

The standardized residuals are plotted against the predicted

values of the independent variables in Figure 6.14, 6.15, and 6.16.

Other than the bias towards large negative residuals noted in Section

6.2.3.1, no major patterns are evident in any of the plots. The

reason for the diagonal bands in Figures 6.15 and 6.16 is not known.

The standardized residuals for model 4 are plotted against

the independent variables in Figures 6.17 through 6.22. Some points

well separated from the rest of the points were noted and are circled

in Figures 6.19, 6.20, and 6.21. The effects of these outlying data

points are examined in Section 6.2.4.2. These points could have been

discovered before developing the model by plotting the independent

variables in time sequence.

6.2.3.3 Partial residual plots, model 4

The partial residuals of the dependent variable are plotted

against the partial residuals of each of the independent variables,

given the presence in the model of the other 5 independent variables,

in Figure 6.23 through 6.28. Recall that partial residual plots show

the relation between an independent variable and the dependent variable

when the effects of the other independent variables in the model have

b-een removed.
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Variable 19 clearly has the strongest linear relation with

the dependent variable, variables 7 and 117 show weaker relations,

and variables 74, 102, and 104 show the weakest relations. Again,

several outlying data points appear in the plots of variables 74, 102,

and 104.

Variable 104 appears to have the weakest relation with the

dependent variable. Thus we suspect that a model using only variables

7, 19, 74, 102, and 117 might perform nearly as well as model 4. A

model using these variables was developed and labeled model 48. The

quality statistics of model 48 are listed in Table 6.7 in Section 6.2.4.

Based on these statistics, model 48 does perform nearly as well as

model 4. The validation procedures applied to model 4 were also applied

to model 48, but are not shown in this work. As for model 4, no serious

problems were indicated. Thus choosing between models 4 and 48 is

a subjective decision which would have to be made by the model user.

Model 48 could also have been generated by tightening the

significance level for entering and deleting variables in the stepwise

regression algorithm. As a test, after the work described in the

above paragraph was performed, the significance level was tightened

to 0.001. The variables in model 48 were then chosen. Model 4 was

developed using a significance level of 0.01.

6.2.3.4 Partial residual plots, model 32

The partial residual plots for each of the independent

variables in model 32 are shown in Figures 6.29 through 6.33. Variable
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19 again shows the strongest linear relation with the dependent variable.

The variable coefficients appear to be generally better defined than

for model 4. Variable 68 clearly has the most poorly defined coefficient

in model 32, but appears relatively well defined when compared to

variables 74, 102, or 104 of model 4. Thus we would expect model 32

to retain its prediction accuracy over a wider range of conditions

than model 4. No further work with model 32 was performed. The

partial residuals of model 36 were not plotted.

6.2.4 Analysis of Outliers

6.2.4.1 Residual outliers

The coefficients and model quality statistics of models 4

and 48 were reestimated after the data point associated with the

standardized residual close to -4, day 358 noted in Figure 6.6, was

deleted from the data set. The original and revised coefficients are

listed in Table 6.4. The statistics IRMS and IRMA are not useful

when comparing the models with and without day 358 because the coeffi-

cients estimated from the first 3 years of data are the same in both

cases. Thus IRMS and IRMA change only due to the exclusion of the

largest residual. However, RMSk and RMAk may be used to compare the

models, after the day 358 residual, as calculated from the revised

coefficients, has been included in the statistics of the revised

models. RMSk and RMAk are listed in Table 6.5. The differences between

the revised and original statistics are small. Since the original

and revised day 358 residuals are approximately the same in both models,
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the original and revised models are of approximately equal quality

on the remaining points as well. Thus there is no apparent reason to

exclude points with large residuals from the estimation data.

6.2.4.2 Data outliers

Outlying data points in variables 74, 102, and 104 were

noticed in the plots of the residuals against the independent variables.

The points which are circled in Figures 6.11, 6.12, and 6.13 were

deleted from the data set and the coefficients of models 4 and 48 were

reestimated from the reduced data set. Thus 6 points were deleted

from the data used for model 4 and 4 points were deleted from the data

used for model 48. The original and revised coefficients are listed

in Table 6.6. The model quality statistics of the original and revised

models are listed in Table 6.7. The statistics in Table 6.7 were

calculated directly from the reduced data set. Had the statistics

improved substantially, it would have been necessary to include in

the calculation of the statistics the residuals from the deleted

days,as was done in Section 6.4.2.1, to determine if the improvement

was real. However, some of the coefficients, but none of the model

quality statistics, changed substantially when the outlying data

points were deleted. Thus, there appears to be little, if any, value

in not allowing the models to reflect the full range of the available

data. Model 48 appears slightly more resistant than model 4 to

the removal of data points.
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Variable Original Revised % Change Original Revised % Change

Constant -302.44 -300.58 0.61 -334.25 -333.89 0.11

7 (1.6153)10-2 (1.6771)10-2 3.83 (1.6617)10-2 (1.7239)10-2 3.74

19 (2.4439)10-1 (2.4195)101 -1.00 (2.6962)101 (2.6839)10~ -0.46

74 (9.7713)102 (9.9314)102 1.64 (7.8700)102 (7.9404)102 0.89

102 (4.9231)10~ (4.9917)10~ 1.39 (4.3351)101 (4.3749)10 0.92

104 (1.2748)10~1 (1.3056)10-1 2.42 -

117 (2.2542)10~ (2.3335)10l 3.52 (1.7388)10- (1.7925)101 3.09

day 358
residual 11.75 11.86 0.94 11.45 11.53 0.70

Table 6.4 Effect on Model Coefficients of Deleting a Data Point Associated
with an Outlying Residual (day 358)

Model 4 Model 48
Statistic Original Revised % Change Original Revised % Change

RMSk 8.73 8.73 0.00 8.91 8.92 0.11

RMAk 2.31 2.32 0.43 2.36 2.36 0

Table 6.5 Effect on Model Quality Statistics of Deleting a Data Point
Associated with an Outlying Residual (day 358)

Model 4 Model 48



Variable Original Revised % Change Original Revised % Change

Constant -302.44 -307.64 -1.72 -334.25 -341.85 -2.27

7 (1.6153)10-2 (1.7558)10-2 8.70 (1.6617)102 (1.7514)10-2 5.40

19 (2.4439)10~1 (2.4697)101 1.06 (2.6962)10~ (2.7477)10~1 1.91

74 (9.7713)102 (1.0387)103 6.30 (7.8700)102 (8.0032)102 1.69

102 (4.9231)10~1 (4.9287)101 0.11 (4.3351)10~ (4.5167)10~1 4.19

104 (1.2748)10-1 (1.4901)101 16.89

117 (2.2542)10~ (2.1867)101 -2.99 (1.7388)10~ (1.6185)10~ -6.92

Table 6.6 Effect on Model Coefficients of Removing Outlying Data Points

Model 4 Model 48
Statistic Original Revised % Change Original Revised % Change

IRMS 8.63 8.49 -1.72 8.82 8.78 -0.47

IRMA 2.20 2.19 -0.45 2.23 2.22 -0.45

RMSk 8.73 8.68 -0.63 8.91 8.91 0.00

RMAk 2.31 2.32 0.43 2.36 2.36 0.00

Table 6.7 Effect on Model Quality Statistics of Removing Outlying Data Points

Model 4 Model 48



6.3 Comparison of Model Generation Methods

Data set 5, the principal components data set, was only data

set to which all three model generation methods were applied. The

relative effectiveness of the three methods is compared in this

section by plotting IRMS, IRMA, RMS , and RMAk against k for the models

created from data set 5 and identifying the generation method of each

model. These plots are shown in Figures 6.21 through 6.24. Inter-

active stepwise regression produced models with the smallest values

of IRMS and IRMA. Automatic stepwise regression produced models with

with the smallest values of RMSk and RMAk. Validation procedures

were not applied to the models.

From this small sample, interactive stepwise regression

appears to be the most effective model generation method of the three

used in this work. However, automatic stepwise regression does nearly

as well and requires substantially less effort. The GMDH did not

perform as well as either stepwise regression method and requires

more effort than automatic stepwise regression. The difference

in effort between the GMDH and interactive stepwise regression for

a data set with 28 variables is hard to judge. The GMDH probably

uses more computer effort, but interactive stepwise regression requires

more user effort.
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Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Summary

Models for predicting today's maximum temperature at

Huntsville, Alabama were developed by applying different model

generation methods to five variants of a data set provided by the

National Weather Service. Temperature forecasting and the particular

modeling method on which this work is based, Model Output Statistics,

were discussed in Chapter 2. Some general aspects of empirical modeling

and two of the model generation methods used in this work, automatic

and interactive stepwise regression, were discussed in Chapter 3.

The third model generation method, the Group Method of Data Handling,

was discussed in Chapter 4. Details of the development of the 5 data

sets and the use of the three model generation methods on those data

sets were described in Chapter 5. The five data sets included the

original data set, three data sets from which harmonic components

had been removed, and one data set consisting primarily of principal

components of groups of the original variables. The models were

analysed in Chapter 6. First, the model quality statistics described

in Chapter 3 were used to choose those models worth considering further.

Linear models completely dominated this statistical analysis, and

among the linear models those from which harmonic components had been

removed were generally dominant. Some model validation procedures

were then applied to three of the models, one from the original data
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set and 2 from which some harmonic components had been removed. No

serious problems were indicated.

Some potential changes to the model from the original data

set suggested by the validation procedures were examined. These changes

included removal of one of the independent variables and removal of

some data points. The model with one independent variable removed

was shown to perform nearly as well as the original model and removal

of the selected data points had little effect on model quality.

7.2 Conclusions

Nonlinear transformations of the original variables chosen

by the National Weather Service for the Model Output Statistics

temperature forecast equations do not appear to be useful predictors.

However, model quality can be improved by modeling mean trends

separately from more transient effects. Also, the number of variables

may be reduced from the 10, plus a constant term, currently used by

the NWS without sacrificing much prediction accuracy or fit to the

estimation data.

Carter (1979) has noted occasional irregular behavior in the

temperature predictions from MOS models which appears to be caused

by unstable relations between the independent variables. Reducing

the number of variables in the equations should help reduce this

source of instability.

The GMDH was not an effective modeling method in this

situation. It is not clear whether this lack of effectiveness is

due to some properties of the GMDH algorithm or simply to the

insignificance of nonlinear relations between the original variables
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in MOS temperature prediction equations. Even if the GMDH had produced

the best models, the quality of those models would have had to have

been substantially greater than the quality of models produced with

simpler methods to justify the large computational burden imposed

by the GMDH.

When the number of independent variables is sufficiently

small to permit its use, interactive stepwise regression appears to

be the most effective model generation method. However, the necessary

human direction of the process makes interactive stepwise regression

unsuitable for operations such as those of the NWS, in which thousands

of equations must be developed. Thus, among the procedures examined

in this work, the procedure closest to current NWS practice, linear

stepwise regression is the best way to develop models for predicting

today's maximum temperature at Huntsville, Alabama. Unfortunately,

the coefficient discrepancies mentioned at the beginning of Chapter 6

prevented the direct comparison of models produced by the forward

moving stepwise regression algorithm used by the NWS with the models

produced by the stepwise regression algorithm used in this work.

This work was based on the prediction of one variable at

one site. We suspect that similar variables at the same site have

similar properties, but nothing can be said with certainty about the

implications of these results to predicting other variables at the

same site or predicting any variables at other sites.
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Appendix A: Principal Component Transformations

Variable transformations defining the principal component with

the largest variance for each of the groups listed in Table 5.4 These

numbers are the elements of the matrix A in equation 3.6. For each

group, A is a k x 1 matrix where k is the number of variables in the

group. A has only 1 column because only one principal component was

calculated for each group. The variable numbers refer to Table 5.1
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Group Variable Weight

C
(cont'd)

D

35

36

37

38

39

40

41

42

43

44

53

54

55

56

61

62

45

46

47

48

57

58

59

60

63

64

E

-0,943

-0.916

-0.958

-0.975

-0.948

-0.891

-0.683

-0.782

-0.833

-0.743

-0.869

-0.942

-0.940

-0.878

-0.879

-0.820

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

F 49 -0.646

50 -0.868

51 -0.928

52 -0.869

65

66

67

68

69

70

-0.819

-0.919

-0.928

-0.803

-0.778

-0.806

H 71 -0.832

72 -0.853

73 -0.864

74 -0.842

75 -0.863

76 -0.842

77 -0.883

78 -0.874

J

-0.942

-0.980

-0.990

-0.978

-0.955

-0.922

-0.952

-0.957

-0.932

-0.885

-0.923

-0.963

-0.970

-0.957

-0.937

-0.678

-0.742

-0.797

-0.829

-0.832

-0.830

-0.910

-0.887

-0.831

-0.923

-0.957

-0.947

-0.894

-0.882

-0.907

-0.882
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A

B

C

5

6

7

8

9

10

-0.785

-0.852

-0.902

-0.827

-0.838

-0.953

-0.962

-0.893

-0.868

-0.901

26

27

28

29

30

31

32

33

34

-0.834

-0.749

-0.948

-0.942

-0.699

-0.786

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

-0.921

-0.969

-0.870

-0.909

-0.968

-0.982

-0.976

-0.948

-0.879

Group Variable Weight ,
G

,

Group Variable Weight



Group Variable Weight

J 95 -0.813
(cont'd) 96 -0.946

97 -0.907

98 -0.948

99 -0.854

K 100 -0.521

101 -0.675

102 -0.743

103 -0.577

L 104 0.879

105 0.879

M 106 0.787

107 0.787
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Appendix B

User's Manual, Group Method of Data Handling

B.1.1 Introduction

The program GMDH performs the Group Method of Data Handling described in

Section 4.3 and forward moving, with a backwards glance, stepwise regression.

Programs PLOT1 and PLWSV are used with GMDH to provide graphic output.

GMDH, PLOT1, and PLWSV are written in Fortran IV as interactive programs and

were implemented through the Multics Operating system on the Honeywell 6180

computer. Honeywell Multics documentation should be consulted for information

about using this system. The program modifications which are known to be

necessary for conversion to IBM Fortran are listed in Section B.l.2. All

dimensioned variables and most frequently used scalars are declared in common

blocks contained in file GMDHCOM. incl. fortran. This file is referenced

in each of the subroutines in GMDH and PLWSV through an "% include" statement

and must be present in the working directory when the programs are compiled.

The parameters in GMDHCOM. incl. fortran are discussed in Section B.3.

IMSL (1977)subroutine RLSEP is used to perform all regression

calculations in GMDH and a modification of IMSL (1977) subroutine RLRES is

used to calculate residuals. IMSL (1977) documentation should be consulted

for information about the parameters and performance of these subroutines.

The questions addressed to the user during program execution are

described in Section B.2, the input and output formats and capabilities are

described in Section B.3, a sample terminal session and associated output

are presented in Section B.4, and the programs are listed in Section B.5.
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B.l.2 Conversion to IBM FORTRAN IV

These programs have not yet been used on other systems. The following

changes are believed to be required for conversion to IBM FORTRAN IV.

Character variables may need to be changed to real variables, though

some compilers will accept character variables. The affected variables

are SR, TITLE, CHAR, XAXIS, And YAXIS.

List directed input and output statements need to be changed from

'READ,' and 'PRINT,' to 'READ *.,' and 'PRINT *,

B.2 INTERACTIVE INSTRUCTIONS

B.2.1 Introduction

GMDH prompts the user for information and choices of options. Some

general aspects of interactive data entry are described in this section

and the questions posed by GMDH are described in Section B.2.2.

All interactive numeric data entry is in list directed format.

Thus entries are converted to the data type implied by the variable name.

Different numbers on a line may be separated either by spaces or by comas.

The format specifications given in the user prompts serve only to remind

the user of the numbers and types of variables which should be entered. The

entries may be on one or several lines. However, entries may not be changed

after the line return key is pressed. Extra entries on a line are ignored,

but extra entries on subsequent lines will be read by the next terminal

READ statement. Thus it is good practice to both check the accuracy of all

entries prior to pressing the line return key and to avoid extra entries.
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Interactive character input is formatted and thus will accept blanks

as characters. Each character variable must be entered on a single line

and no other variables should be entered on the same line. This

restriction is signaled by the slash (/) character in the format prompts.

One other general convention should be noted. When a particular

entry is specified to perform an action, any other entry will cause that

action to not be performed.

B.2.2 User Prompts

Question set 1; in subroutine UNIT

ENTER:
IREAD INPUT FILE NUMBER
IWRIT = OUTPUT FILE NUMBER
FF = 0 FOR A CHARACTER FILE

1 FOR AN UNFORMATTED FILE
TITLE (1)= DATA FILE NAME

31, /, A50 FORMAT

IREAD and IWRIT are the unit numbers for the input and output data files.

They should be 1 or 2 digit integers and must be specified in accordance with

the operating system procedures. Numbers 5, 6, 7, 25, 26, 41,and 42

should generally not be used. FF is for the input file. When FF = 0 a list

directed READ is used and when FF = 1 an unformatted READ is used.

Unformatted files must have been written in a code compatible with that

used by the system on which the program is being run. The organization of

input data files is described in Section B.3.1. The first 50 characters on the

line after that on which FF is entered will be read as TITLE (1).

Question set 2A; in subroutine RDTA

ENTER:
M = NUMBER OF INDEPENDENT VARIABLES
N = NUMBER OF DATA POINTS PER VARIABLE
IEX = 1 TO USE A SUBSET OF THE VARIABLES

31 FORMAT
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M is one less than the total number of variables in the input

data because one variable is designated as dependent. When IEX = 1 the

user is asked, in question sets 2B and 2C, to specify which variables are

to be used. When IEX 0 1, the first M columns in the data set are used as

independent variables and the program proceeds to question -set 3. The

M + lst column, as originally entered, is always used for the dependent variable.

Question set 2B; in subroutine RDATA

ENTER:
NV = NUMBER OF INDEPENDENT VARIABLES TO BE RETAINED
IEXIX = 1 TO SPECIFY THE VARIABLES TO BE RETAINED

9 'ADMAT

Question set 2C; in subroutine RDATA

ENTER:
ISV = NUMBERS OF THE VARIABLES TO BE IN OR EXCLUDED

When IEXIX = 1 the :response to question set 2C is a list of variables

(by position in the data matrix) to be retained. When IEXIX 0 1 the response

to question 2C is a list of variables to be excluded.

An operational point should be noted here. The data set reduction

routine can be used several times during one program run. It always operates

on the current data set and sufficient information to perform that reduction

is automatically retained for possible later use. However, each time the

reduction routine is used previous reduction information is overwritten.

Thus, if the variable deletion option is exercised more than once some later

portions of GMDH will not operate properly.

When the variable deletion option (IEX = 1) is used more than once on

a data set, it is recommended that the program be restarted once the desired

variable set is chosen. The desired variable selection can then be

performed either outside the program or in a single step within the program.
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Question set 2D; in subroutine RDATA

ENTER:
IEX = 1 TO USE A SUBSET OF THE VARIABLES

11 FORMAT

Question set 2D is asked after question set 3B to give the user a

chance to delete variables after the statistics of the data have been

examined. When IEX = 1 the program returns to question set 2B and

when IEX # 1 the program proceeds to question set 4.

Question set 3A; in subroutine RDATA

ENTER:
IMSD = 1 TO PRINT THE MEANS AND STANDARD DEVIATIONS
ICORR = 1 TO PRINT THE CORRELATION MATRIX

21 FORMAT

When either IMSD or ICORR = 1 the calculations for both are performed.

However, only the requested data is printed. When IMSD = 1 the coefficient

of variation is also printed. The program efficiency could be improved

by calculating only the requested information. These statistics are

currently calculated in subroutine MSDCORR which calls IMSL (1977)

subroutine BECORI. IMSL (1977) documentation should be consulted for

information about BECORI.

Question set 3B; in subroutine RDATA

ENTER:
ICI, IC2 TO PRINT VARIABLES ICI THROUGH IC2

21 FORMAT

ICl and IC2 are column numbers which identify variables. When

IC1 = IC2 0 0 one variable is printed and when ICl or IC2 = 0 the program

returns to question set 2D. The output is the data corresponding to

variables ICi through IC2.
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Question set 4A; in subroutine INPAR:

ENTER:
LO = OFOR GMDH

1 FOR STEPWISE REGRESSION
NTR NUMBER OF ESTIMATION DATA POINTS
JEM = 0 FOR THE MEAN SQUARED RESIDUAL ERROR MEASURE

1 FOR THE R SQUARED ERROR MEASURE
IADJ = 0 TO ADJUST THE ERROR MEASURE

41 FORMAT

When LO = 1 GMDH performs only a linear stepwise regression on

the input data.

The first NTR data points are used to estimate the equation coefficients

and the last N - NTR data points are used to calculate the error measure.

When NTR = N the error measures are calculated from all N data points.

The unadjusted R on the first NTR data points is always calculated,

regardless of the values of JEM or IADJ. The error measure controlled

by JEM and IADJ is an additional calculation performed as follows:

N
1 ^2

mean squared error (mse) = N-S i
i=S

R = 100 (1 - mse/V[y])

where e = the ith residual

S = NTR + 1 when NTR < N

1 when NTR = N

1 N 2
V[y] N-S ( - y)

J=S

N
and y =z- y

is
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When IADJ = 0 and NTR = N the error measures are adjusted as follows,

mse adjusted = (mse) (N-k)

R2 adjusted = 100 (1 - (1 - R 2) (N-1)/(N-k))

where k = the number of coefficients in the equation, including the constant.

The error measures are never adjusted when NTR < N. These calculations

are performed in subroutine CEM.

When LO = 0 the program proceeds to question set 4B and when LO = 1

the program proceeds to question set 5.

Question set 4B; in subroutine INPAR

ENTER:
MS = NUMBER OF VARIABLES PASSED BETWEEN LAYERS
NLAY = NUMBER OF LAYERS

21 FORMAT

Question set 4B is asked only when LO = 0. MS must be between 3

and M(M-1)/2, where M is the number of independent variables. NLAY must

be less than the value of ID3 set in the common block initialization.

(See Section B.3). The limits for both MS and NLAY are printed with

question set 4B during program execution.

Question set 5; in subroutine REGPAR

ENTER:
ALFA(l) = SIGNIFICANCE LEVEL FOR ENTERING VARIABLES
ALFA(2) = SIGNIFICANCE LEVEL FOR DELETING VARIABLES
IJOB(l) = 0 TO NOT PERFORM A LACK OF FIT TEST
IJOB(2) = 0 TO PERFORM ONLY AN OVERALL F TEST

2F, 21 FORMAT

These four values are parameters of IMSL (1977) subroutine RLSEP.

The significance levels for entering and deleting variables are typically

in the range 0.01 to 0.10, though other choices may be appropriate for
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special situations. For example, when ALFA(l) = 0 and ALFA(2) = 1, only

the variables forced into the equation will be chosen (see question set 6).

ALFA(2) must always be greater than or equal to ALFA(l). Draper and

Smith (1966) may be consulted for further information about these

significance levels,

The user unfamiliar with lack of fit tests should always specify

IJOB(l) = 0. The choice of IJOB(2) is subjective. A partial F test on

every variable, performed when IJOB(2) 0 0, is more stringent than

an overall F test.

Question set 6A; in subroutine VFORC

ENTER:
NVF = NUMBER OF FORCED VARIABLES

11 FORMAT

This question is asked only when LO = 1 (see question set 4A). When

NVF 0 the program proceeds to question 6B. When NVF = 0 the program

proceeds to quesiton set 7.

Question set 6B; in subroutine VFORC

ENTER:
NUMBERS OF THE FORCED VARIABLES

The column numbers of the variables to be forced into the equation

should be entered here. The numbers may be entered in any order, but NVF

entries are required.

Question set 7; in subroutine EXEQU

ENTER:
IPS = 0 TO EXAMINE ONLY INDIVIDUAL EQUATIONS

1 TO PRINT A SUMMARY OF THE EQUATION EVALUATION
2 TO PRINT A SUMMARY OF EQUATION COEFFICIENTS

IREV = 0 TO RETAIN COEFFICIENT ESTIMATES
1 TO REESTIMATE COEFFICIENTS

21 FORMAT
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When IPS = 0 the program proceeds to question set 8. When IPS = 1 or 2

the requested information is printed in file IWRIT and when IWRIT # 6 the

summary of equation evaluation is also printed on the terminal. This

information is printed to aid the user in choosing which equations to

examine more thoroughly. (see question set 9). All information given

when IPS = 1 is also given when IPS = 2. The equation evaluation summary

is a list of the values of the chosen error measure (see question set 4A).

Coefficients of the linear equations are listed in the order of occurence of

the variables in the data file. The labeling system, equations numbers,

and location indices used for the quadratic forms generated in the GMDH

are explained in Section B.3.3.

When IREV = 0 the coefficients estimated from the first NTR data

points are retained. When IREV = 1 the coefficients are reestimated using

all of the data, but the model structure is not changed. When IREV = 1

and IPS 0 0, the model coefficients and error measures are replaced in

program storage by the new values. When IREV = 1 and IPS = 0, the initial

coefficient and error measure values are retained in program storage after

the requested information is developed and printed.

Question set 8; in subroutine EXEQU

ENTER:
ICON = 0 TO STOP PROGRAM

1 TO RESTART PROGRAM
2 TO EXAMINE AN EQUATION
3 TO RESTART SUBROUTINE EXEQU

IREV = 0 TO RETAIN COEFFICIENTS
1 TO REESTIMATE COEFFICIENTS

21 FORMAT
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When ICON = 1 the program returns to question set 1, when ICON = 2

the program proceeds to question set 9, and when ICON = 3 the program

returns to question set 7. The effect of IREV was explained with question

set 7.

Question set 9; in subroutine EXEQU

ENTER:
IND2 = 0 FOR A QUADRATIC FORM
IEQU = 1 FOR A LINEAR FORM
IEQU = EQUATION NUMBER
LA = LAYER NUMBER
IPR = 1 TO PRINT THE EQUATION
IPA 1 TO PRINT THE ANOVA TABLE
IPL = 1 TO VIEW GRAPHTCR

61 FORMAT

The first three parameters identify the desired equation and the

last three parameters identify the desired information. IND2 = 0 calls

for an equation from within a layer of GMDH. IND2 = 1 calls for a

linear equation, either an e-quation developed from all input variables

to a layer or the single equation developed when LO = 1 (see question set 4).

IEQU is the sorted position of an equation within a layer. LA is the layer

in which the equation was developed. For example, to indicate the second

best equation in the third layer, set IND2 = 0, IEQU = 2, and LA = 3.

When IND2 = 1, IEQU should also equal 1. The equation and variable

labeling systems used in the program output are explained in Section B.3.3.

The entries in the ANOVA are described in Draper and Smith (1966).

When IPL = 1 the program proceeds to question set 10A. When IPL 0 1 the

program returns to question set 8.
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Question set 1A; in subroutine EXEQU

ENTER:
ICTRL4 = 0 TO CONTINUE PROGRAM

1 TO PRINT LIST OF PLOTS
2-9 TO IDENTIFY A PLOT

ICTRL3 = 0 FOR AUTOMATIC PLOTTING
1 TO CONTROL PLOT FORMAT
2 TO STORE VECTORS

21 FORMAT

When ICTRL4 = 0 the program returns to question set 8. When ICTRL4 = 1

the program proceeds to question set 10B. If a number identifying a plot

(see Table B.2.1 or question set 10B) is entered for ICTRL4 the program

proceeds as though question set 10B had been asked. This option allows

the user who is familiar with the available plots to avoid having them

listed at the terminal.

When ICTRL3 = 0 or 1 a plotting routine named PLOT1 is called.

PLOT1 is discussed in Section B.3.5.1. When ICTRL3 = 2 the program

proceeds to question set 10D, after question set 10B or 10C, as controlled

by ICTRL4, have been asked, and stores the information required to produce

the selected plot in the file then designated. The stored information can

be plotted later with a program called PLWSV or can be used to calculate

model statistics. PLWSV is described in Section B.3.6.2.

Question set 1OB; in subroutine EXEQU

ENTER:
ICTRL4 = 2, STAND. RES. VS. OBS. #

3, ORIG. RES. VS. OBS. #
4, STAND. RES. VS. PRED. RESP.
5, ORIG. RES. VS. PRED. RESP.
6, STAND. RES. VS. PREDICTOR
7, ORIG. RES. VS. PREDICTOR
8, OBS. RESP. VS. OBS. #
9, PREDICTOR VS. OBS. #

1I FORMAT
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The unabreviated plot names are listed in Table B.2.1. Standardized

residuals are the original residuals divided by their standard deviation.

The standard deviation is based on only the estimation data.

When ICTRL4 = 6, 7, or 9 the program proceeds to question set 10C.

Otherwise the program returns to question set 10A or proceeds to question

set 10D, as controlled by ICTRL3.

Question set 1OC: in subroutine EXEQU

ENTER:
IP = PREDICTOR NUMBER

1I FORMAT

IP is the column number, in the data matrix PRD, of the desired

predictor variable. Remember to make appropriate adjustments if some

variables were deleted from the original data set through question set 2.

Question set 1OD; in subroutine STORVEC

ENTER:
IFILE = THE FILE NUMBER FOR THE VECTORS

1I FORMAT

ICTRL4 PLOT

2 Standardized Residuals vs. Observation Number

3 Original Residuals vs. Observation Number

4 Standardized Residuals vs. Predicted Response

5 Original Residuals vs. Predicted Response

6 Standardized Residuals vs. Predictor

7 Original Residuals vs. Predictor

8 Observed Response vs. Observation Number

9 Predictor vs. Observation Number

Table B.2.1

Plot Selection Controlled by ICTRL4
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qs 1

qs 2A

qs 2B

qs 2C

qs 3A

qs 3B

qs 2D,

qs 4A

qs 43

qs 5-

qs 6A

qs 6B (LIST)IREAD
IWRIT
FF
TITLE (1)

M
N -IEX01 '

IE

IEX=1

SXIX

L ISV

ICORR

IC1, IC2

IEX IEX=1

IEX01

LO .
NTR -LO=1

LO=O

Ms
MAY

ALFA(1)
ALFA(2)
IJOB (1)
IJOB (2)

LO=1? no

yes
NVF |

204

qs. 7IPS
IREV

qs 8 IO l CO ICN3ICON=1 IREV IO=

ICON=O STOP

ICON=2

IEQU
qs 9 LA IPLOl

IPR
IPA
IPL

IPL=l

qs 10A ITL -ICTRL4=Q

ICTRL4=1

qs 10B I ICTRL41

- ICTRL4 no

=6,7,9>

yes

qs 10C IP |j

ICTRL3 no ..
=2?

yes

qs 10D IFILE

Figure B.2.1

Flow Chart of User Prompts



IFILE is a 2 digit integer designating the file in which information

necessary to produce the requested plot is stored. A file named file NN,

where NN is equal to IFILE, will be created and placed in the working

directory. IFILE should not equal 5, 6, 7, 25, 26, 41, 42, or IWRIT

(see question set 1).

A flow chart of the user prompts is shown in Figure B.2.1.

B.3 INPUT AND OUTPUT

B.3.1 Input Data Format

Data is read into GMDH through subroutine RDATA. RDATA is currently

equipped to read either character or unformatted files. Both type of files

must be arranged so all the values of one variable preceed all the values

of the next variable and the dependent variable is listed last. The

entries in character files must be separated by either commas or spaces

and the first entry for each variable must begin a new record. Character

files are read with a list directed format. Unformatted files must have

all the values for one variable in one record and are read with an

unformatted read statement.

Subroutine RDATA can easily be modified to read other file formats.

The restriction is that each column of matrix PRD must contain all the

values for one variable and the dependent variable must be in column M + 1.

Thus each row of PRD contains all the variables in a given observation.

B.3.2 Common Block Parameter Assignments

The amount of space allocated for the dimensioned variables may be

adjusted by changing parameter values in the file GMDH _ COM incl. fortran.
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(see section B.5,1). Values for IDI, ID2, ID3, and IMS must be chosen

according to the user's needs. Instructions are given in the file listing

(see section B.5.1) for assigning values to ID1, ID2, ID3, IMS, IMX, ID7,

ID8, ID9, and ID10. Parameters ID4, ID5, and ID6 are calculated from the

other parameter values.

Parameter ID1 for common block PI should be at least as large as ID2

and should be set to the same value in both GMDHCOM.incl. fortran and in

PLOT1 (see Section B.3.5.1.3).

B.3.3 Equation Labels in Printed Output

Quadratic equations from all combinations of 2 different variables

are developed in each layer. These equations are developed and numbered in

an order determined by the rows in a lower triangular matrix, as shown in

Figure B.3.1 where the-pairsof entries are the variable numbers used in the

(()

(2,1)

(3,1) (3,2)

(4) (5) (6)

(4,1) (4,2) (4,3)

Figure B.3.10rder of Quadratic Equation Development
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equations and the circled number above each pair is called the location

index in the program output.

Subroutine QMAP creates the map between the pairs of variables and

the location indices illustrated in Figure B.3.1. This map can be printed

by changing the main program to call subroutine QMAP with the argument

IMAP = 1.

Each quadratic equation of variables x and x2 has the form

^ ^ 2 ^ 2
y = Si x1 + 62 X2 + 63 x1  + 4 x2 + 65 xl x2 + 36

The subscript system in the above equation is used to label the coefficients in

the program output. After all the equations in a layer have been developed

they are reordered according to the values of the error measures, after

which their sequential position is called the equation number. The

equation number, location index, and layer are the 3 identifiers for

equations. Each layer after the first is created from the reordered

response variable of the previous layer and the location indices are

based on the reordered variables of the previous layer. The development

of a given equation is traced by subroutine DIAKA and may be printed by

calling subroutine PREQU with IIACT and IKACT = 1. The vectors IACT and

KACT are explained in the source listing for subroutine PREQU. (see Section B.5.2)

B.3.4 Additional Output Capabilities

Most matrices used in GMDH can be printed by changing the main program

to call subroutines PRCOEFF, PRRSUM, PRDATA, or PRERRM with the appropriate

arguments. The arguments are explained in the comments for each subroutine.

(See Section B.5.2)
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B.3.5 Graphic Output

The graphic output options controlled by question set 10 (see Section B.2)

are implemented through programs named PLOT1 and PLWSV. PLOT1 is a general

purpose plotting routine. PLWSV reads the files created when ICTRL3 = 2

(see question set 10, Section B.2) and calls PLOT1 as a subroutine. PLOT1 is

described in Section B.3.5.1 and PLWSV is described in Section B.3.5.2.

B.3.5.1 PLOT1

PLOTi can be used to produce either plots on a terminal with graphics

capability, such as the tektronix 4015, or files which can be used by

Cal Comp plotting equipment. The calcomp compatible subroutines,

described in Honeywell Multics documentation, and SCLGPH, an MIT

Information Processing Center (IPC)supplied subroutine described in

IPC publication AP-59-3, are used in PLOTi.

Up to 5 different curves may be plotted on one set of axes. The

points in each curve may be connected, marked with symbols at specified

intervals, or both connected and marked. All the plotting parameters may

be changed interactively.

The input arguments, user prompts, and common block parameter

assignments are described in Sections B.3.5.1.1, B.3.5.1.2, and B.3.5.1.3.

System documentation should be consulted for methods of producing plots

at graphics terminals or peripheral plotting devices.

B.3.5.1.1 Input Arguments

The 2 input arguments are ICTRL3 and ICTRL4. The use of these

variables in GMDH was discussed in Section B.2. When ICTRL3 = 0 a set of

default variable values, assigned in the beginning of PLOT1, control the

plot format. When ICTRL3 # 0 these variables are assigned interactively.
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The user prompts for this process are described in Section B.3.5.1.2.

ICTRL4 is used to control choices in PLOTi and is application specific. The

current default variable assignments controlled by ICTRL4 are compatible with

the plotting options described in question set 10 in Chapter 2. The

plot titles, axis labels, and whether the points are connected or marked

with symbols are currently determined by ICTRL4.

In addition to the 2 input arguments, NCURVE, ICTRL(k,l) for k = 1

to NCURVE, A2(I), B2(I), TITLE (1), and TITLE (2) are assigned in the calling

program. NCURVE is the number of different curves on one plot. ICTRL(k,l)

is the number of points in curve k. A2 and B2 are the complete sets of points

for the abscissa and ordinate of the NCURVE curves. The point sets for the

different curves are separated in PLOT1. TITLE (1) and TITLE (2) are titles

for the plot. These and other variables are in a common block to allow the

user to assign values in either the calling program or in PLOT1. However,

the user will find it is generally convenient to assign at least the

variables listed above in the calling program.

B.3.5.1.2 User Interaction

Every time PLOT1 is called the user is asked the following question.

ENTER
ILN = 1 TO DRAW HORIZONTAL LINES ON PLOTS

1I FORMAT

when ILN = 1, horizontal lines at + 1, + 2, and + 3 are drawn on the plots

of standardized residuals (ICTRL4 = 2, 4, or 6). The user will normally

find these lines desirable. The purpose of the question is primarily to

simplify the use of PLOT1 with other programs.
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When ICTRL3 0 0 a series of questions is put to the user. Each set of

questions has the same basic format. The user is given a list of plot

format control variables and associated indicator variables. The values of

the indicator variables must be set to 0 to retain the existing values of

the plot format control variables. When a non zero value is entered the

current value of the plot format control variable is printed at the terminal

and the user is asked to enter a new value. Formats for entering both numeric

and character variables are as described in Section B.2.1. The plot format

control variables are described in the comments in the beginning of PLOT1.

(See Section B.5.3) Further information may be found in Honeywell

Multics documentation. Note that all coordinate positions are in

a 1024 by 1024 device independent grid.

B.3.5.1.3 Common Block Parameter Assignment

Parameter IPl must be set to the largest number of points in a single

curve. Parameter IP2 is then automatically calculated to allow plotting

of up to 5 curves, each of maximum length IPi.

B.3.5.2 PLWSV

PLWSV reads and plots files created by GMDH when ICTRL3 = 2

(see question 10, Section B.2).An option to smooth the curve is also

available. The following 3 questions are put to the user. First,

ENTER:
IFILE = THE FILE NUMBER FOR THE VECTORS

1I FORMAT

IFILE should be the same 2 digit integer specified in question

set 10D in GMDH, unless the file has been renamed, in which case IFILE

is the newly designated attachment number.
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Second,

ENTER:
IND1 = 0 TO PLOT ALL POINTS

1 TO PLOT MOVING AVERAGE OF NA
2 TO PLOT SIMPLE AVERAGES OF NA

NA

21 FORMAT

The averages are calculated in subroutine SMOOTH. SMOOTH is currently

set up specifically for set 1 data in the 0000 GMT cycle of the National

Weather service Model Output Statistics equation development program.

(see Chapter 2). The averages are calculated only within years of data.

SMOOTH can be easily modified for other data sets.

Third,

ENTER:
ICTRL3 = 0 FOR AUTOMATIC PLOTTING

1 TO CONTROL PLOT FORMAT

1I FORMAT

ICTRL3 was explained in Section B.3.5.1.1.
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B.4 GMDH Sample Output

User responses are marked by arrows ( *- ).

The question set numbers are indicated next to the questions to

aid cross referencing with Section B.2. Everything else is typed

by the program. When IWRIT does not equal 6 program output is

stored in a file and does not appear at the terminal, except as

noted in question set 7.
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gmdh
ENTER:
IREAD = INPUT FILE NUMBER
IWRIT = OUTPUT FILE NUMBER
FF = 0 FOR A CHARACTER FILE

I FOR AN UNFORMATTED FILE
TITLE(1) = DATA FILE NAME

31,/,A50 FORMAT
10 6 0 :
HALD DATA
ENTER:
M = NUMBER OF INDEPENDENT VARIABLES
N = NUMBER OF DATA POINTS PER VARIABLE
IEX = 1 TO USE A SUBSET OF THE VARIABLES

31 FORMAT
4 13 0
ENTER:
IMSD = 1 TO PRINT THE MEANS AND STANDARD DEVIATIONS
ICORR = 1 TO PRINT THE CORRELATION MATRIX

21 FORMAT
1 <-'-A

STATISTICS OF THE
MEAN STANDARD

DEVIATION
0.74615E+01 0.58824E+01
0.11769E+02 0.64051E+01
0.95423E+02 0.15044E+02

CORRELATION MATRIX

DATA SET HALD DATA
COEFFICIENT
OF VARIATION

0.78836E+02
0.54423E+02
0.15765E+02
OF THE INPUT AND

VARIABLE
NUMBER

2
4

MEAN

0.48154E+02
0.30000E+02

STANDARD
DEVIATION

0.15561E+02
0.16738E+02

COEFFICIENT
OF VARIATION

0.32315E+02
0.55794E+02

RESPONSE VARIABLES OF DATA SET HALD DATA

1 1.0000
2 0.2286 1.0000
3 -0.8241 -0.1392 1.0000
4 -0.2454 -0.9730 0.0295 1.0000
5 0.7307 0.8163 -0.5347 -0.8213 1.0000
ENTER:
IC1,IC2 TO PRINT VARIABLES IC1 THROUGH IC2

21 FORMAT
1 5 -

THE DATA MATRIX HALD DATA
VARIABLE 5 IS THE RESPONSE

VARIABLE 1
0.70000E+01
0.10000E+01

0.10000E+01
0.11000E+02

qs 3B

0.11000E+02 0.11000E+02 0.70000E+01 0.11000E+02 0.30000E+01 0.10000E+01
0.10000E+02

qs l

qs 2A

qs 3A

VARIABLE
NUMBER

1
3
5

0.20000E+01 0.21000E+02



VARIABLE 2
0.26000E+02 0.29000E+02 0.56C00E+02 0.3
0.40000E+02 0.66000E+02 0.68000E+02
VARIABLE 3
0.60000E+01 0.15000E+02 0.80000E+01 0.8
0.23000E+02 0.90000E+01 0.80000E+01

VARIABLE 4
0.60000E+02 0.52000E+02 0.20000E+02 0.4
0.34000E+02 0.12000E+02 0.12000E+02

VARIABLE 5
0.78500E+02 0.74300E+02 0.10430E+03 0.8
0.83800E+02 0.11330E+03 0.10940E+03
ENTER:
IC1,IC2 TO PRINT VARIABLES ICI THROUGH IC2

1000E+02

)OOE+01

7000E+02

7600E+02

0.52000E+02

0.60000E+01

0.33000E+02

0.95900E+02

21 FORMAT
0 0 * -
ENTER:
IEX = 1 TO USE A SUBSET OF THE VARIABLES

1I FORMAT

ENTER:
NV = NUMBER OF INDEPENDENT VARIABLES TO BE RETAINED
IEXIX = 1 TO SPECIFY THE VARIABLES TO BE RETAINED

21 FORMAT
3 0 4
ENTER:
ISV = NUMBERS OF THE VARIABLES TO BE IN OR EX CLUDED

3 i-
1 I FORMAT

ENTER:
IMSD = I TO PRINT THE MEANS AND STANDARD DEVIATIONS
ICORR = 1 TO PRINT THE CORRELATION MATRIX

21 FORMAT
1 <

VARIABLE
NUMBER

1 1.0000
2 0.2286

MEAN

1 0.74615E+01
3 0.30000E+02

STATISTICS OF THE DATA SET HALD DATA
STANDARD COEFFICIENT VARIABLE MEAN
DEVIATION OF VARIATION NUMBER
0.58824E+01 0.78836E+02 2 0.48154E+02
0.16738E+02 0.55794E+02 4 0.95423E+02

CORRELATION MATRIX OF THE INPUT AND RESPONSE VARIABLES OF DATA

STANDARD
DEVIATION

0.15561E+02
0.15044E+02

SET HALD DATA

COEFFICIENT
OF VARIATION

0.32315E+02
0.15765E+02

1 .0000

0.55000E+02

0.9000E+01

0.22000E+02

0.10920E+03

0.71000E+02

0.17000E+02

0.60000E+01

0.10270E+03

0.31000E+02

0.22000E+02

0.44000E+02

0.72500E+02

0.54000E+02

0.18000E+02

0.22000E+02

0.93100E+02

0.47000E+02

0.40000E+01

0.26000E+02

0.11590E+03

qs 3B

qs 2D

qs 2B

qs 2C

qs 3A



3 -0.2454 -0.9730 1.0000
4 0.7307 0.8163 -0.8213 1.0000
ENTER:
IC1,IC2 TO PRINT VARIABLES IC1 THROUGH IC2

21 FORMAT
1 4 i

THE DATA MATRIX HALD DATA
VARIABLE 4 IS THE RESPONSE

VARIABLE 1
0.70000E+01 0.10000E+01 0.11000E+02 0.11000E+02
0.10000E+01 0.11000E+02 0.10000E+02

VARIABLE 2
0.26000E+02 0.29000E+02 0.56000E+02 0.31000E+02
0.40000E+02 0.66000E+02 0.68000E+02

VARIABLE 3
0.60000E+02 0.52000E+02 0.20000E+02 0.47000E+02
0.34000E+02 0.12000E+02 0.12000E+02

VARIABLE 4
0.78500E+02 0.74300E+02 0.10430E+03 0.8760OE+02
0.83800E+02 0.11330E+03 0.10940E+03
ENTER:

Un IC1,IC2 TO PRINT VARIABLES IC1 THROUGH IC2

21 FORMAT
0 0 <
ENTER:
IEX = 1 TO USE A SUBSET OF THE VARIABLES

11 FORMAT
0 -
ENTER:
LO = 0 FOR GMDH

1 FOR STEPWISE REGRESSION
NTR = NUMBER OF ESTIMATION DATA POINTS
JEM = 0 FOR THE MEAN SQUARED RESIDUAL ERROR MEASURE

1 FOR THE R SQUARED ERROR MEASURE
IADJ = 0 TO ADJUST THE ERROR MEASURE

41 FORMAT
0 7 0 1 -o -
ENTER:
MS = NUMBER OF VARIABLES PASSED BETWEEN LAYERS

(3 < MS < 3)
NLAY = NUMBER OF LAYERS

(NLAY i 3)

21 FORMAT

qs 3B

0.70000E+01

0.52000E+02

0. 330 00E+02

0.95900E+02

0.11000E+02 0.30000E+01 0.1000E+01 0.20000E+01

0.55000E+02 0.71000E+02 0.31000E+02 0.54000E+02

0.21000E+02

0.47000E+02

0.22000E+02 o.60000E+01 0.44000E+02 0.22000E+02 0.26000E+02

o.10920E+03 0.10270E+03 0.72500E+02 0.93100E+02 0.11590E+03

qs 31

qs 2)

qs 4A

qs 4B



3 3 -
ENTER:
ALFA(l) = SIGNIFICANCE LEVEL FOR ENTERING VARIABLES
ALFA(2) = SIGNIFICANCE LEVEL FOR DELETING VARIABLES
IJOB(1) = 0 TO NOT PERFORM A LACK OF FIT TEST
IJOB(2) = 0 TO PERFORM ONLY AN OVERALL F TEST

2F,2I FORMAT
0.05 0.05 0 1 -4

BEGINNING LAYER 1
BEGINNING LAYER 2
BEGINNING LAYER 3

ENTER:
IPS = 0 TO

1
2

IREV = 0
1

TO
TO
TO
TO

EXAMINE ONLY INDIVIDUAL EQUATIONS
PRINT A SUMMARY OF THE EQUATION EVALUATION
PRINT A SUMMARY OF EQUATION COEFFICIENTS
RETAIN COEFFICIENT ESTIMATES
REESTIMATE COEFFICIENTS

21 FORMAT
2 0 <

REGRESSION ON DATA FILE HALD DATA

REGRESSION PARAMETERS
THE SIGNIFICANCE LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND ALFA(2), a 0.50000E-01 . AND
THE LACK OF FIT TEST PARAMETER, IJOB(1), = 0 THE PARTIAL OR OVERALL F TEST STATISTIC. IJOB(2). a I
JEM = 0 IADJ = 1

THE LOCATION
NUMBER LOCATION

INDEX
1 2
2 1
3 3

THE LOCATION
LOCATION
INDEX

2
1
3

THE LOCATION
LOCATION
INDEX

1
2
3

IREV = 0 NTR = 7 NTE a 6

INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 1
.BETA 1 BETA 2 BETA 3 BETA 4 BETA 5

0. OOOOE+00
0.67891E+00
0.00000E+00

0.10168E+01
0.0000OE+00
0.OOOOOE+00

-0.86070E-02
0.00000E+00

-0.92592E-02

0.0000OE+00
0.11556E+00
0.0000OE+00

INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 2
BETA I BETA 2 BETA 3 BETA 4

000000E- )0
0. OOOOE+00
0.0OOOOE+00

0.0000OE+00
0.0000OE+00
0.0000OE+00

0.OOOOOE+00
0.55073E-02
0.OOOOOE+00

0.55483E-02
0.00000E+00
0.55073E-02

0.00000E+00
0.00000E+00
0.00000E+00

BETA 5

0. OOOOOE+00
0.OOOOOE+00
0.OOOOOE+00

INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 3
BETA 1 BETA 2 BETA 3 BETA 4 BETA 5

0.10000E+01
0.10000E+01
0.00000E+00

0.0000OE+00
0.0000OE+00
0.10000E+01

0.OOOOOE+00
0.00000E+00
0.OOOOOE+00

0.00000E+00
0.00000E+00
0.OOOOOE+00

0.00000E+00
0.OOOOOE+00
0.OOOOOE+00

0.50000E-01

INTERCEPT

0.98743E+02
0.54402E+02
0.10713E+03

INTERCEPT

0.44186E+02
0.44529E+02
0.44529E+02

INTERCEPT

0.27780E-05
0.27780E-05
0.27780E-05

qs 5

qs 7

NUMBER

1
2
3

NUMBER

1
2
3



0.13362E+01

0.OOOOOE+00

0.OOOOOE+00

THE COEFFICIENTS OF THE REGRESSIONS IN EACH LAYER ON ALL THE PREDICTORS IN THAT LAYER
(THE LAST ENTRY IS THE INTERCEPT)
LAYER 1

O.OOOOOE+00 -0.58708E+00 0.10361E+03
LAYER 2

0.10000E+01 0.00000E+00 0.27780E-05
LAYER 3

0.00000E+00 0.10000E+01 0.27780E-05

THE LOCATION INDICES AND ERROR MEASURES OF THE 3 BEST PREDICTORS IN EACH LAYER

NUMBER LOCATION
INDEX

1 2

NUMBER LOCATION
INDEX

1 2

NUMBER LOCATION
INDEX

1 1

LAYER
1
2
3

ENTER:
ICON = 0

1
2
3

IREV = 0
1

THE MS RES
MS RES

0.99758E+01
0.96145E+02
0.21942E+03

TO
TO
TO
TO
TO
TO

MS RES

0.37526E+02

MS RES

0.29740E+02

MS RES

0.21942E+03

LAYER I
NUMBER

2
LAYER 2

NUMBER

2
LAYER 3

NUMBER

2

LOCATION
INDEX

LOCATION
INDEX

1

LOCATION
INDEX
2

MS RES

0.96145E+02

MS RES

0.21942E+03

MS RES

0.21942E+03

NUMBER LOCATION
INDEX

3 3

NUMBER LOCATION
INDEX

3 3

NUMBER LOCATION
INDEX

3 3

OF THE REGRESSIONS ON ALL THE PREDICTORS IN EACH LAYER

qs 8STOP PROGRAM
RESTART PROGRAM
EXAMINE AN EQUATION
RESTART SUBROUTINE EXEQU
RETAIN COEFFICIENTS
REESTIMATE COEFFICIENTS

21 FORMAT
2 0 .-
ENTER:
IND2 = 0 FOR A QUADRATIC FORM

I FOR A LINEAR FORM
IEQU = EQUATION NUMBER
LA = LAYER NUMBER
IPR = 1 TO PRINT THE EQUATION
IPA = 1 TO PRINT THE ANOVA TABLE
IPL = 1 TO VIEW GRAPHICS

61 FORMAT

qs 9

t~3

-.4

MS RES

0. 16497E+03

MS RES

0.21942E+03

MS RES

0. 21942E+03



0 2 3 1 1 1 <

VARIABLE 2 LAYER 3

REGRESSION PARAMETERS
THE SIGNIFICANCE LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND ALFA(2), a 0.50000E-01 . AND 0.50000E-01
THE LACK OF FIT TEST PARAMETER, IJOB(1), = 0 THE PARTIAL OR OVERALL F TEST STATISTIC. IJOB(2). s
JEM = 0 IADJ = 1 IREV = 0 NTR = 7 NTE * 6

THE COMPLETE EQUATION, BY LAYERS
RESPONSE (Y) =

VR 2 LY3 =
0.27780E-05

+ 0.10000E+01*VR 3 LY2
VR 3 LY2 =

0.44529E+02
+ 0.55073E-02*VR 2 LYI**2

VR 1 LY2 =
0.44186E+02

+ 0.55483E-02*VR 1 LY1**2
VR 3 LY1 =

0.10713E+03
j + -0.92592E-02*VR 3 LYO**2
o VR 2 LYI =

0.54402E+02
+ 0.67891E+00*VR 2 LYO
+ 0.11556E+00*VR 1 LYO**2

VR I LYl =
0.98743E+02

+ 0.10168E+01*VR 1 LYO
+ -0.86070E-02*VR 3 LYO**2

THE COMPLETE EQUATION
RESPONSE (Y) =

VR 2 LY3 =
0.60828E+02

+ 0.40682E+00 *VR 2
+ 0.25384E-02 *VR 2**2
+ 0.69248E-01 *VR 1**2
+ 0.73550E-04 *VR 1**4
+ 0.86418E-03 *VR 2 *VR 1**2
+ 0.11142E+01 *VR 1
+ -0.94309E-02 *VR 3**2
+ 0.57368E-02 *VR 1**2
+ 0.41102E-06 *VR 3**4
+ -0.97117E-04 *VR 1 *VR 3**2

ANALYSIS OF VARIANCE TABLE
SOURCE D. F. ss ms F RATIO F TAIL AREA



REGRESSION
RESIDUALS
CORRECTED TOTAL

0. 100 OOE+01
0.50000E+01
0.60000E+01

0.10607E+04
0.20731E+02
0.10814E+04

0.10607E+04
0.41462E+0t

LACK OF FIT TEST 0.00000E+00
THE PERCENTAGE OF THE RESPONSE VARIATION EXPLAINED BY THE REGRESSION u

THE STANDARD DEVIATION OF THE RESIDUALS =
THE STANDARD DEVIATION OF THE RESIDUALS AS A PERCENTAGE OF THE RESPONSE MEAN .
THE ERROR MEASURE USED TO ORDER THE EQUATIONS =

0.25582E+03

0.OOOOOE+00
0.98083E+02
0.20362E+01
0.21845E+01
0.21942E+03

0.17397E-04

0.OOOOOE+00

MEAN
0.93214E+02

0.93214E+02

REGRESSION MODEL SUMMARY, TXYB
COEFFICIENT ADJ. SS. . F RATIO
0.10000E+01 0.10607E+04 0.25582E+03
INTERCEPT
0.27780 E-05

THE INVERSE OF THE INFORMATION MATRIX

ICTRL4 = 0 TO CONTINUE PROGRAM
1 TO PRINT LIST OF PLOTS
2-9 TO IDENTIFY A PLOT

ICTRL3 = 0 FOR AUTOMATIC PLOTTING
1 TO CONTROL PLOT FORMAT
2 TO STORE VECTORS

21 FORMAT
1 2 -
ENTER:
ICTRL4 = 2, STAND. RES. VS. OBS. NUM.

3, ORIG. RES. VS. OBS. NUM.
4, STAND. RES. VS. PRED. RESP.
5, ORIG. RES. VS. PRED. RESP.
6, STAND. RES. VS. PREDICTOR
7, ORIG. RES. VS. PREDICTOR
8, OBS. RESP. VS. OBS. NUM.
9, PREDICTOR VS. OBS. NUM.

1I FORMAT
2 -4----
ENTER IFILE = THE FILE NUMBER FOR THE VECTORS

11 FORMAT
50 -
ENTER:
ICTRL4 = 0 TO CONTINUE PROGRAM

1 TO PRINT LIST OF PLOTS
2-9 TO IDENTIFY A PLOT

ICTRL3 = 0 FOR AUTOMATIC PLOTTING

VARIABLE
1

RESPONSE

0.9428E-031
ENTER:

I-J
'.0

F TAIL AREA
0.17397E-04

VARIANCE.
0.94279E-03

qs 10A

qs 10B

qs 10D

qs 10A



1 TO CONTROL PLOT FORMAT
2 TO STORE VECTORS

21 FORMAT
00 -
ENTER:
ICON = 0

1
2
3

IREV = 0
1

21 FORMAT
3 1 <
ENTER:
IPS = 0

1
2

IREV = 0
1

TO STOP PROGRAM
TO RESTART PROGRAM
TO EXAMINE AN EQUATION
TO RESTART SUBROUTINE EXEQU
TO RETAIN COEFFICIENTS
TO REESTIMATE COEFFICIENTS

TO EXAMINE ONLY INDIVIDUAL EQUATIONS
TO PRINT A SUMMARY OF THE EQUATION EVALUATION
TO PRINT A SUMMARY OF EQUATION COEFFICIENTS
TO RETAIN COEFFICIENT ESTIMATES
TO REESTIMATE COEFFICIENTS

21 FORMAT
2 1 - -

BEGINNING LAYER 1
BEGINNING LAYER 2
BEGINNING LAYER 3

REGRESSION ON DATA FILE HALD DATA

REGRESSION PARAMETERS
THE SIGNIFICANCE LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND ALFA(2), a 0.50000E-01 . AND
THE LACK OF FIT TEST PARAMETER, IJOB(1), = 0 THE PARTIAL OR OVERALL F TEST STATISTIC. IJOB(2). a 1
JEM = 0 IADJ = 1 IREV = 1 NTR = 7 NTE a 6

THE LOCATION INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 1
NUMBER LOCATION BETA 1 BETA 2 BETA 3 BETA 4

INDEX
0. OOOOE+00
0.72641E+00
0.00000E+00

0.14082E+01
0.0000OE+00
0.0000OE+00

-0.89165E-02
0.OOOOOE+00
-0.10917E-01

0.00000E+00
0.69423E-01
0.0000OE+00

0.
0.
0.

THE LOCATION INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 2
NUMBER LOCATION BETA 1 BETA 2 BETA 3 BETA 4

INDEX
1 2 0.OOOOOE+00 0.OOOOOE+00 0 00000E+00 nl53070E-02 a

0. OOOOE+00
0.00000E+00

0.0000OE+00
0.0000OE+00

0.52016E-02
0.OOOOOE+00

0.0000OE+00
0.52016E-02

0.
0.
0.

BETA 5

00000E+00
00000E+00
00000E+00

BETA 5

)0000E+00
)00001E+00
)00001E+00

0.50000E-01

INTERCEPT

0.95247E+02
0.54361E+02
0.10807E+03

INTERCEPT

0.46054E+02
0.47016E+02
0.47016E+02

qs 8

qs 7

N),
t'~3
0

1
2
3

2
1
3

2
3

1
3



THE LOCATION INDICES AND COEFFICIENTS OF THE 3 BEST PREDICTORS IN LAYER 3
LOCATION BETA 1 BETA 2 BETA 3 BETA 4
INDEX

1 0.10000E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.
0.10000E+01
0. OOOOE+00

0.00000E+00
0.10000E+01

0.00000E+00
0.OOOOOE+00

0.00000E+00
0.00000E+00

0.
0.

BETA 5

O0000E+00
O0000E+00
)0000E+00

INTERCEPT

0.21329E-05
0.21329E-05
0.21329E-05

THE COEFFICIENTS OF THE REGRESSIONS IN EACH LAYER ON ALL THE PREDICTORS IN THAT LAYER
(THE LAST ENTRY IS THE INTERCEPT)
LAYER 1

0.OOOOOE+00 -0.61395E+00 0.10310E+03
LAYER 2

0.10000E+01 0.OOOOOE+00 0.42657E-05
LAYER 3

0.OOOOOE+00 0.10000E+01 0.21329E-05

THE LOCATION INDICES AND ERROR MEASURES OF THE 3 BEST PREDICTORS IN EACH LAYER

NUMBER LOCATION
INDEX

1 2

NUMBER LOCATION
INDEX

1 2

NUMBER LOCATION
INDEX

1 1

MS RES

0.15334E+02

MS RES

0.14161E+02

MS RES

0.13143E+02

LAYER
NUMBER

2
LAYER

NUMBER

2
LAYER

NUMBER

2

2

3

LOCATION
INDEX

I

LOCATION
INDEX

1

LOCATION
INDEX

2

MS RES

0.10735E.+02

MS RES

0.13143E+02

MS RES

0.13143E+02

NUMBER LOCATION
INDEX

3 3

NUMBER LOCATION
INDEX

3 3

NUMBER LOCATION
INDEX

3 3

MS RES

0. 83303E+02

MS RES

0. 13143E+02

MS RES

0. 13143E+02

LAYER
1
2
3

ENTER:
ICON = 0

1
2
3

IREV = 0
1

THE MS RES
MS RES

0.74762E+01
0.97588E+01
0.13143E+02

TO STOP PROGRAM
TO RESTART PROGRAM
TO
TO
TO
TO

OF THE REGRESSIONS ON ALL THE PREDICTORS IN EACH LAYER

qs 8

EXAMINE AN EQUATION
RESTART SUBROUTINE EXEQU
RETAIN COEFFICIENTS
REESTIMATE COEFFICIENTS

21 FORMAT
2 0 --
ENTER:
IND2 = 0 FOR A QUADRATIC FORM

1 FOR A LINEAR FORM
IEQU = EQUATION NUMBER

qs 9

NUMBER

1
2
3

2
3

0.14400E+01

0.00000E+00

0.OOOOOE+00

1



LA = LAYER NUMBER
IPR = 1 TO PRINT THE EQUATION
IPA = 1 TO PRINT THE ANOVA TABLE
IPL = 1 TO VIEW GRAPHICS

61 FORMAT
0 2 3 1 1 0 -

VARIABLE 2 LAYER 3

REGRESSION PARAMETERS
THE SIGNIFICANCE LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND ALFA(2), a 0.50000E-01 AND 0.50000E-01
THE LACK OF FIT TEST PARAMETER, IJOB(1), a 0 THE PARTIAL OR OVERALL F TEST STATISTIC. IJOB(2). I I
JEM = 0 IADJ = 1 IREV = 0 NTR g 7 NTE a 6

THE COMPLETE EQUATION, BY LAYERS
RESPONSE (Y) =

VR 2 LY3 =
-0.371 77E+01

+ 0.10532E+01*VR 3 LY2
VR 3 LY2 =

0.47016E+02
+ 0.52016E-02*VR 2 LY1**2

VR 1 LY2 =
0.46054E+02

+ 0.53070E-02*VR I LY1**2
VR 3 LY1 =

0.10807E+03
+ -0.10917E-01*VR 3 LYO**2

VR 2 LY1 =
0.54361E+02

+ 0.72641E+00*VR 2 LYO
+ 0.69423E-01*VR 1 LYO**2

VR 1 LY1 =
0.95247E+02

+ 0.14082E+01*VR 1 LYO
+ -0.89165E-02*VR 3 LYO**2

THE COMPLETE EQUATION
RESPONSE (Y) =

VR 2 LY3 =
0.61991E+02

+ 0.43268E+00 *VR 2
+ 0.28909E-02 *VR 2**2
+ 0.41351E-01 *VR 1**2
+ 0.26404E-04 *VR 1**4
+ 0.55257E-03 *VR 2 *VR 1**2
+ 0.14236E+01 *VR 1
+ -0.90141E-02 *VR 3**2



+ 0.10524E-01 *VR
+ 0.42193E-06 *VR
+ -0.13327E-03 *VR

ANALYSIS OF VARIANCE TABLE
SOURCE
REGRESSION
RESIDUALS
CORRECTED TOTAL

D. F.
0.10000E+01
0.50000E+01
0.60000E+01

SS
0.10103E+04
0.71112E+02
0.10814E+04

. MS .
0 . 10103E+04
o.14222E+02

LACK OF FIT TEST 0.00000E+00
THE PERCENTAGE OF THE RESPONSE VARIATION EXPLAINED BY THE REGRESSION z

THE STANDARD DEVIATION OF THE RESIDUALS =
THE STANDARD DEVIATION OF THE RESIDUALS AS A PERCENTAGE OF THE RESPONSE MEAN *
THE ERROR MEASURE USED TO ORDER THE EQUATIONS =

F RATIO
0.71035E+02

0.OOOOE+00
0.93424E+02
0.37713E+01
0.40458E+01
0.13143E+02

F TAIL AREA .
0.38570E-03

0.00000E+00

1
ENTER:

VARIABLE
1

RESPONSE

0.1098E-02

ICON = 0 TO
1 TO F
2 TO i
3 TO F

IREV 0 TO F
I TO F

21 FORMAT
2 0 <
ENTER:
IND2 =

IEQU
LA
IPR
IPA
IPL

MEAN
0.92032E+02

0.93214E+02

REGRESSION MODEL SUMMARY. TXYB
COEFFICIENT ADU. SS . F RATIO
0.10532E+01 0.10103E+04 0.71035E+02
INTERCEPT
-0.37177E+01

F TAIL AREA
0.38570E-03

VARIANCE.
0.10980E-02

THE INVERSE OF THE INFORMATION MATRIX

qs 8;TOP PROGRAM
RESTART PROGRAM
EXAMINE AN EQUATION
RESTART SUBROUTINE EXEQU
RETAIN COEFFICIENTS
REESTIMATE COEFFICIENTS

qs 9
0 FOR A QUADRATIC FORM
1 FOR A LINEAR FORM
EQUATION NUMBER
LAYER NUMBER
1 TO PRINT THE EQUATION
1 TO PRINT THE ANOVA TABLE
1 TO VIEW GRAPHICS

61 FORMAT
1 1 2 1 0 0 -

REGRESSION ON INPUT VARIABLES FOR LAYER 2

REGRESSION PARAMETERS

1 **2
3**4
1 *VR 3**2

(~)



THE SIGNIFICANCE LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND ALFA(2), a 0.50000E-01 . AND O.50000E-01
THE LACK OF FIT TEST PARAMETER, IJDB(1), = 0 THE PARTIAL OR OVERALL F TEST STATISTIC, IJOB(2). I I
JEM = 0 IADJ = 1 IREV = 0 NTR = 7 NTE * 6

THE COMPLETE EQUATION, BY LAYERS
RESPONSE (Y) =

0.42657E-05
+ 0.10000E+01*VR 2LY1

VR 2 LY1 =
0.54361E+02

+ 0.72641E+00*VR 2 LYO
+ 0.69423E-01*VR 1 LYO**2

THE COMPLETE EQUATION
RESPONSE (Y) =

0.54361E+02
+ 0.72641E+00*VR 2 LYO
+ 0.69423E-01*VR 1 LYO**2
ENTER:
ICON = 0 TO STOP PROGRAM qs 8

1 TO RESTART PROGRAM
2 TO EXAMINE AN EQUATION
3 TO RESTART SUBROUTINE EXEQU

IREV = 0 TO RETAIN COEFFICIENTS
1 TO REESTIMATE COEFFICIENTS

21 FORMAT
0 0 <

STOP



C** ***
C*** GMDHCOM.INCL.FORTRAN ***
C** * **
C********* ****** ************************************ ********************

C THE INTEGER CONSTANTS IN THE FOLLOWING PARAMETER STATEMENTS MUST
C BE ASSIGNED ACCORDING TO THE NEEDS OF THE LARGEST
C DATA SET ON WHICH THE PROGRAM IS TO BE USED.
C ID1 = THE MAXIMUM NUMBER OF INDEPENDENT VARIABLES 0
C ID2 = THE MAXIMUM NUMBER OF DATA POINTS PER OBSERVATION
C ID3 = THE MAXIMUM NUMBER OF LAYERS TO BE DEVELOPED
C ID3 MUST BE _ 5
C IMS = THE MAXIMUM NUMBER OF INDEPENDENT VARIABLES TO BE PASSED
C BETWEEN LAYERS, 3 _ IMS _ (ID1)*(ID1-1)/2
C 0

PARAMETER(ID1=118,ID2=518,ID3=3,IMS$50)
PARAMETER( ID4=ID1+1)

C IMX = MAX(ID1, IMS)
PARAMETER( IMX=118)
PARAMETER(ID5=IrX+1,ID6=IMX*(IMX-1 )/2)
PARAMETER(IMXL2=2*ID5,IMM=ID5*(ID5+1)/2)

C ID7 = MAX(ID5,16)
C IDS = MAX(ID5,6)
C ID9 = MAX(IMXL2,12)
C ID10 = MAX(IMM,21)

PARAMETER( ID7=119, ID8=119, ID9=238 , ID10=7140)
C

COMMON /C1/ PRD(ID2,ID5),ICICL,FFIADJ.MGLICONIEXDD.MDCL,IEXIX
COMMON /C2/ WSM(ID2,ID8)
COMMON /C3/ QCO(6,ID6, ID3)
COMMON /C4/ IQCO(6,ID6,ID3)
COMMON /C5/ IREAD,IWRIT,QP(ID2,6),CO(ID5,ID3).EM(ID6,ID3).

& IEMLOC(ID6,ID3),EMAT(ID3),ICO(ID5.ID3).
& IXD(ID9),ANOVA(ID7),XYB(ID8.5).TXYB(ID8,5).VARB(ID1O).
& IH(ID9),BETA(ID8),RES(ID2,4),ISV(ID1).
& MAP(ID6,2),IACT(63),KACT(31).C(54.2),
& ALFA(2),IJOB(2).XMEAN(ID4).SD(ID4),CV(ID4).CORR(ID1O).
& M,MS,N,NTR,NLAY,MX,NTE.MLM2,M2L.MC2,MC2L,MSL.LA.
& MS2,MS2L,MSC2,MSC2L,MXL,MX2,MX2LMXC2.MM. LM.NTRL.MXLAY2.
& MXLAYL,LO,JEM
EXTERNAL RLSEP(DESCRIPTORS)
EXTERNAL BECORI(DESCRIPTORS)
CHARACTER*10 SR

C THE FOLLOWING SECTION IS FOR SUBROUTINE PLOTI.FORTRAN
PARAMETER(IP1=2000)



PARAMETER(IP2=5*IP1+2)
CHARACTER*50 TITLECHARXAXISYAXIS
COMMON /P1/ TITLE(11),XTITLE(11),YTITLE(11).ATITLE(11).

&HTITLE(11),HSMBL(11),ASMBL(11),YSMBL(11).XSMBL(11),ISMBL(11).
&NSMBL,NCHAR,NTITLE,A1(4),B1(4),A(IP1),B(IPI).NCURVE.
&ICTRL(5,5),A2(IP2),B2(IP2),XAXISYAXIS
EXTERNAL CCS_$AXIS(DESCRIPTORS)
EXTERNAL CCS_$DFACT(DESCRIPTORS)
EXTERNAL CCS_$LINE(DESCRIPTORS)
EXTERNAL CCS_$PLOT(DESCRIPTORS)
EXTERNAL CCS_$PLOTS
EXTERNAL CCS_$SCALE(DESCRIPTORS)
EXTERNAL CCS-$SYMBOL(DESCRIPTORS)



to

C** **
C** GROUP METHOD OF DATA HANDLING H.
C** **

C***** ******** ***** ****** ****** ******* ** *** ** *t

C
C THE MATRICES SHOULD TO BE DIMENSIONED 0
C ACCORDING TO THE REQUIREMENTS OF THE LARGEST DATA SET
C FOR WHICH THE PROGRAM WILL BE USED. ENTER
C THE APPROPRIATE VALUES IN FILE GMDH_COM.INCL.FORTRAN.
C
C DO NOT USE FILES 25 OR 26 FOR ANY INPUT-OUTPUT OPERATIONS.
C FILE 25 IS USED IN THE PLOTTING SUBROUTINE TO DISPLAY
C MESSAGES ON THE TERMINAL AT THE COMPLETION OF A PLOT.
C FILE 26 IS USED TO LABEL PLOTS AND MAY BE DELETED
C AT THE END OF A RUN.
C
C THE DATA MUST BE ENTERED INTO MATRIX PRD SO THAT EACH COLUMN
C OF PRD CONTAINS ALL THE OBSERVATIONS OF ONE VARIABLE AND THE LAST
C COLUMN CONTAINS THE RESPONSE VARIABLE. DATA IS ENTERED THROUGH
C SUBROUTINE RDATA. THE READ STATEMENT IN RDATA MAY BE
C MODIFIED AS NEEDED TO READ THE ORIGINAL DATA FILE.
C
C MAJOR VARIABLES
C
C PRD = THE DATA MATRIX.
C WSM = A WORK SPACE.
C QP = A QUADRATIC SETTING IN STANDARD ORDER OF TWO VARIABLES
C FROM PRD. THE RESPONSE VARIABLE IS IN COLUMN 6.
C EM = THE ERROR MEASURE MATRIX FOR THE
C REGRESSIONS ON QP.
C IEMLOC = A LOCATION INDEX FOR THE ENTRIES IN EM.
C SEE SUBROUTINE QMAP FOR DETAILS.
C MAP = A MAPPING OF QUADRATIC FORMS OF TWO VARIABLES
C INTO ORDERED PAIRS OF INTEGERS.
C QCO = THE COEFFICIENTS OF THE REGRESSIONS ON EACH
C QP. THE INTERCEPT IS IN ROW 6. EACH COLUMN CONTAINS ONE EQUATION.
C IQCO = 1 IF QCO(IJ,K) = 0.
C 0 IF QCO(I,J,K) w 0.
C CO = THE COEFFICIENTS OF THE REGRESSIONS ON PRD
C IN EACH LAYER. EACH COLUMN CONTAINS ONE EQUATION.
C ICO a 1 IF CO(Id) = 0
C 0 IF CO(I,J) = 0
C EMAT = THE ERROR MEASURES FROM THE REGRESSIONS ON PRD



C IN EACH LAYER.
C XMEAN = VECTOR OF MEANS OF THE VARIABLES
C SD = VECTOR OF STANDARD DEVIATIONS OF THE VARIABLES
C CV = VECTOR OF COEFFICIENTS OF VARIATION OF THE VARIABLES
C CORR = VECTOR OF CORRELATIONS AMONG THE VARIABLES
C
C M = THE NUMBER OF INDEPENDENT VARIABLES IN THE ORIGINAL INPUT
C FILE.
C MS = THE NUMBER OF VARIABLES TO BE TRANSFERRED BETWEEN LAYERS.
C MX = THE MAXIMUM OF M AMD MS.
C N = THE NUMBER OF DATA POINTS PER VARIABLE.
C NTR = THE NUMBER OF TRAINING DATA POINTS.
C NTE = THE NUMBER OF TESTING DATA POINTS. NTR + NTE * N.
C
C

%INCLUDE GMDHCOM
100 CALL UNIT

CALL RDATA(O)
CALL INPAR
CALL QMAP(O)
CALL REGPAR(IREV,1,0)
CALL CORE(O)
CALL EXEQU
IF(ICON.EQ.1) GO TO 100
STOP
END

SUBROUTINE INPAR
C
C THE BASIC DATA SIZE PARMETERS ARE ENTERED THROUGH INPAR
C AND OTHER PARAMETERS ARE CALULATED.
C
C NOTATION:
C
C *C2 = THE NUMBER OF COMBINATIONS OF * THINGS TAKEN 2 AT A TIME
C *L = * PLUS I
C *2 = * MULTIPLIED BY 2
C

%INCLUDE GMDHCU.A
PRINT,' ENTER:'
PRINT,' LO = 0 FOR GMDH
PRINT,' 1 FOR STEPWISE REGRESSION'
PRINT,' NTR a NUMBER OF ESTIMATION DATA POINTS'
PRINT,' JEM a 0 FOR THE MEAN SQUARED RESIDUAL ERROR MEASURE'
PRINT,' I FOR THE R SQUARED ERROR MEASURE'



PRINT,' IADJ = 0 TO ADJUST THE ERROR MEASURE'
PRINT
PRINT,' 41 FORMAT'
READ,LO,NTR,JEM,IADJ
IF(LO.NE.0) GO TO 100
PRINT,' ENTER:'
PRINT,' MS = NUMBER OF VARIABLES PASSED BETWEEN LAYERS'
PRINT,' (3 f MS < ',MC2,')'
PRINT,' NLAY a NUMBER OF LAYERS'
PRINT,' (NLAY < ',ID3,')'
PRINT
PRINT,' 2I FORMAT'
READ,MS,NLAY
GO TO 110

100 MS = 0
NLAY = 1

110 MX = MAX(M,MS)
NTE = N-NTR
ML = M+1
M2 = M*2
M2L = M2+1

C MC2 = M*(M-1)/2 WAS CALCULATED IN RDATA
MC2L = MC2+1
MSL = MS+1
MS2 = MS*2
MS2L = MS2+1
MSC2 = MS*(MS-1)/2
MSC2L = MSC2+1
MXL = MX+1
MX2 = MX*2
MX2L = MX2+1
MXC2 = MX*(MX-1)/2
MM = MXL*(MXL+1)/2
LM = MAX(MXL,16)
NTRL = NTR+1
NLAY2 x NLAY*2
NLAYL = NLAY + 1
MXL2 = MXL*2
RETURN
END

N)3

SUBROUTINE UNIT
%INCLUDE GMDHCOM
PRINT,' ENTER:'
PRINT,' IREAD c INPUT FILE NUMBER'



PRINT,' IWRIT = OUTPUT FILE NUMBER'
PRINT,' FF = 0 FOR A CHARACTER FILE'
PRINT,' I FOR AN UNFORMATTED FILE'
PRINT,' TITLE(1) = DATA FILE NAME'
PRINT
PRINT,' 31,/,A50 FORMAT'
READ,IREAD,IWRIT,FF
READ 900,TITLE(1)

900 FORMAT(A50)
LA = 0
RETURN
END

SUBROUTINE RDATA(IND)

INPUT:

IND a 0 WHEN INTIALLY ENTERING DATA
I TO REPEAT THE PROCESS, RETAINING THE INITIAL PARAMETERS

%INCLUDE GMDHCOM
IF(IND.EQ.1) GO TO 215
PRINT,' ENTER:'
PRINT,' M = NUMBER OF INDEPENDENT VARIABLE
PRINT,' N = NUMBER OF DATA POINTS PER VARI
PRINT,' IEX = 1 TO USE A SUBSET OF THE VARIA
PRINT
PRINT,' 31 FORMAT'
READ,M,N,IEX
IEXDD = IEX
ML = M + 1
MDCL = ML

215 REWIND IREAD
DO 310 J=1,ID5
DO 310 I=1,ID2

310 PRD(I,J) = 0.
DO 201 J=1,MDCL
IF(FF.EQ.0) READ(IREAD,225) (PRD(IJ).Iw ,N)
IF(FF.EQ.1) READ(IREAD) (PRD(I,J),I=1.N)

201 CONTINUE
225 FORMAT(V)

IF(IEXDD.NE.1) GO TO 440
IF(IND.EQ.1) GO TO 230

207 PRINT,' ENTER:'
PRINT,' NV = NUMBER OF INDEPENDENT VARIAB

S'
ABLE'
BLES'

LES TO BE RETAINED'

C
C
C
C
C
C

C



PRINT,' IEXIX = 1 TO SPECIFY THE VARIABLES TO BE RETAINED
PRINT
PRINT,' 21 FORMAT'
READNV,IEXIX
IF(NV.LE.M) GO TO 205
PRINT,' YOU ASKED FOR MORE VARIABLES THAN YOU ENTERED INTO$
PRINT,' THE DATA FILE. PLEASE TRY AGAIN'
GO TO 207

205 DO 220 J=1,M
220 ISV(J) = 0

MISV = NV
IF(IEXIX.NE.1) MISV = M - NV
M = NV
ML = M + 1
PRINT,' ENTER:'
PRINT,' ISV = NUMBERS OF THE VARIABLES TO BE IN OR EX CLUDED'
PRINT
PRINT,MISV,' I FORMAT'
READ,(ISV(J),d=I,MISV)

230 IF(IEXIX.NE.1) GO TO 835
DO 810 J=1,M
DO 810 I=1,N

810 WSM(I,J) = PRO(1,ISV(J))
GO TO 850

835 ICNT4 = 1
ICNT3 = 0
DO 840 J=1,MDCL-1
IF(J.EQ.ISV(ICNT4)) GO TO 805
ICNT3 = ICNT3 + I
DO 860 I=1,N

860 WSM(I,ICNT3) = PRD(I,J)
GO TO 840

805 ICNT4 = ICNT4 + 1
840 CONTINUE
850 DO 820 I=1,N
820 WSM(I,ML) = PRD(I,MDCL)

DO 830 J=1,ML
DO 830 I=I.N

830 PRD(I,J) = WSM(I,J)
440 MC2 = M*(M-1)/2

IF(LA.NE.0) RETURN
MGL = ML
PRINT,' ENTER:'
PRINT,' IMSD a 1 TO PRINT THE MEANS AND STANDARD DEVIATIONS'
PRINT,' ICORR a 1 TO PRINT THE CORRELATION MATRIX'
PRINT

fH



PRINT,' 21 FORMAT'
READ,IMSD, ICORR
IF(IMSD.EQ.1.OR.ICORR.EQ.1) CALL MSDCORR(IMSD.ICORR.1.MGL.0)

450 PRINT,' ENTER:'
PRINT,' IC1,IC2 TO PRINT VARIABLES IC1 THROUGH IC2'
PRINT
PRINT,' 21 FORMAT'
READ,ICI,IC2
IF(IC1.EQ.0.OR.IC2.EQ.0) GO TO 460
CALL PRDATA(0,1,0,0,0,MQ1,MQ2,ICI,IC2,IR1.IR2)
GO TO 450

460 PRINT,' ENTER:'
PRINT,' IEX = 1 TO USE A SUBSET OF THE VARIABLES'
PRINT
PRINT,' 11 FORMAT'
READ,IEX
IF(IEX.EQ.1) IEXDD = IEX
IF(IEX.EQ.1) GO TO 207
RETURN
END

SUBROUTINE QMAP(IMAP)
C
C A MAP OF ALL COMBINATIONS OF MX THINGS TAKEN 2 AT A TIME.
C MX*(MX-1)/2 ENTRIES, IS CREATED. MAP(I.1) AND MAP(I.2)
C ARE THE FIRST AND SECOND ELEMENTS OF THE ITH COMBINATION.
C THE COMBINATIONS ARE ORDERED BY ROWS OF A LOWER TRIANGULAR
C MATRIX, EXCLUDING THE DIAGONAL.
C
C MATRIX MAP IS PRINTED WHEN IMAP 1
C

%INCLUDE GMDHCOM
IF(IMAP.EQ.1) GO TO 220
DO 710 I=2,MX
J = (I-1)*(I-2)/2
DO 710 K=J+1,J+I-1
MAP(K,1) = I

710 MAP(K,2) = K-J
220 IF(IMAP.NE.1) RETURN

WRITE(IWRIT,200)
200 FORMAT(/,T40,'MAP OF QUADRATIC FORMS'./.T5.'NUMBER'.T15.

&'ELEMENT 1',T25,'ELEMENT 2',T40,'NUMBER',T50.'ELEMENT 1.
&T60,'ELEMENT 2',T75,'NUMBER',T85,'ELEMENT 1'.T95.
&'ELEMENT 2')
WRITE(IWRIT,210)(I,MAP(I,1),MAP(I,2).I.1.MXC2)



210 FORMAT((6X,3(I4,7X,I4,6X,I4,10X)))
RETURN
END

SUBROUTINE REGPAR(IREV,IENTER,IPRINT)
C
C THE ALFA AND IJOB PARAMETERS FOR THE IMSL STEPWISE REGRESSION
C SUBROUTINE ARE ENTERED WITH THIS SUBROUTINE
C
C INPUT:
C
C IREV = 0 IF THE ORIGINAL COEFFICIENTS HAVE BEEN RETAINED
C I IF THE COEFFICIENTS HAVE BEEN REESTIMATED
C IENTER = 1 TO ENTER THE REGRESSION PARAMETERS
C IPRINT = 1 TO PRINT THE REGRESSION PARAMETERS
C

%INCLUDE GMDHCOM
IF(IENTER.NE.1) GO TO 200
PRINT,' ENTER:'
PRINT,' ALFA(1) = SIGNIFICANCE LEVEL FOR ENTERING VARIABLES
PRINT,' ALFA(2) = SIGNIFICANCE LEVEL FOR DELETING VARIABLES
PRINT,' IJOB(1) = 0 TO NOT PERFORM A LACK OF FIT TEST'
PRINT,' IJOB(2) = 0 TO PERFORM ONLY AN OVERALL F TEST
PRINT
PRINT,' 2F,2I FORMAT'
READ,ALFA(1) ,ALFA(2) ,IJOB( 1),IJOB(2)

200 IF(IPRINT.NE.1) RETURN
WRITE(IWRIT,310) ALFA(1),ALFA(2),IJOB(1),IJOB(2)

&, JEM,IADJ, IREV,NTR,NTE
310 FORMAT(/,T40,'REGRESSION PARAMETERS'/,TIO.'THE SIGNIFICANCE'.

& ' LEVELS FOR ENTERING AND DELETING VARIABLES. ALFA(1) AND
&'ALFA(2), =', E12.5,3X,'AND',2XE12.5,
&/,T1O,'THE LACK OF FIT TEST PARAMETER. IJOB(1), '
&I1,5X,'THE PARTIAL OR OVERALL F TEST STATISTIC, IJOB(2). .
&I1,/,T1O,',JEM =',13,5X,'IADJ =',13,5X.'IREV ',13.5X.lNTR '.
&14,5X,'NTE =',14)
RETURN
END

SUBROUTINE VFORC
C
C VARIABLES MAY BE FORCED INTO THE MODEL WITH VFORC
C

%INCLUDE GMDHCOM



DO 310 I=1,ID9
310 IXD(I) = 0

PRINT,' ENTER:'
PRINT,' NVF = NUMBER OF FORCED VARIABLES'
PRINT
PRINT,' 1I FORMAT'
READ, NVF
IF(NVF.EQ.0) RETURN
PRINT,' ENTER:'
PRINT,' NUMBERS OF THE FORCED VARIABLES'
PRINT
PRINT,NVF, ' I FORMAT'
READ,(VARB(I),I=1,NVF)
DO 300 I=1,NVF

300 IXD(IFIX(VARB(I))) - 1
RETURN
END

SUBROUTINE CORE(IREV)
C
C CORE PERFORMS A LAYERED REGRESSION USING QUADRATIC POLYNOMIALS
C OF ALL POSSIBLE COMBINATIONS OF TWO VARIABLES.
C THE BEST MS POLYNOMIALS FROM EACH LAYER ARE TRANSFERRED
C TO THE SUCCEEDING LAYER.
C
C INPUT:
C IREV u 0 TO PERFORM THE INITIAL REGRESSION
C I TO REEVALUATE THE COEFFICIENTS USING ALL OF THE DATA
C WHILE RETAINING THE MODEL STRUCTURE
C

%INCLUDE GMDHCOM
NTRT = NTR
ATEMP = ALFA(l)
IF(IREV.EQ.0) GO TO 1992
NTR = N
ALFA(1) = 0.0000001

1992 DO 1990 LAY=1,NLAY
IER36 = 0
PRINT,' BEGANING LAYER',LAY
LA = LAY
IF(LAY.GT.1) GO TO 1995
MG = M
MGL = ML
MGC2L = MC2L
GO TO 2005
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ALFA(1) =.ATEMP
RETURN
END

SUBROUTINE QUAD(MQ1,MQ2)
C
C A QUADRATIC FORM FROM COLUMNS MQ1 AND MQ2 IN THE ORDER
C MQ1, MQ2, MQ1*MQ1, MQ2*MQ2, MQ1*MQ2. IS CREATED AND RETURNED
C IN QP.
C
C INPUT:
C MQ1 = FIRST VARIABLE IN THE QUADRATIC FORM.
C MQ2 = SECOND VARIABLE IN THE QUADRATIC FORM.
C

%INCLUDE GMDHCOM
DO 720 I=1,N
QP(I,1) z PRD(I,MQ1)
QP(I,2) = PRD(IMQ2)
QP(I,3) a PRD(I.MQ1)*PRD(I,MQ1)
QP(I,4) = PRD(I,MQ2)*PRD(I,MQ2)
QP(I,5) = PRD(I,MQI)*PRD(I,MQ2)

720 QP(I,6) = PRD(IMGL)
RETURN
END

SUBROUTINE COMPCT(IND)
C
C A SUMMARY MATRIX TXYB WHICH INCLUDES ONLY THE VARIABLES
C CHOSEN BY THE STEPWISE REGRESSION IS EXTRACTED FROM THE
C MATRIX XYB. BETA AND IH ARE CREATED FOR INPUT TO
C SUBROUTINE RLRESA.
C
C INPUT:
C IND = 0 FOR QUADRATIC FORMS (QP).
C 1 FOR THE REGRESSIONS ON ALL THE VARIABLES IN A LAYER.
C
C OUTPUT:
C IC * THE NUMBER OF VARIABLES CHOSEN BY THE STEPWISE
C REGRESSION.
C ICL = IC+1.
C

%INCLUDE GMDHCOM
IC = 0
IF(IND.EQ.0) GO TO 1330



IF(LA.LE.1) GO TO 1335
MA = MSL
MB = MS2
MC = MS
GO TO 1340

1335 MA = ML
MB = M2
MC = M
GO TO 1340

1330 MA = 6
MB = 10
MC = 5

1340 DO 1300 I=MA,MB
IF(IXD(I).EQ.0) GO TO 1300
IC = IC+1
IH(IC) = I-MC
DO 1310 J=1,5

1310 TXYB(IC,J) = XYB(I-MC,J)
1300 CONTINUE

ICL = IC+1
IH(ICL) = MA
TXYB(ICL,1) = XYB(MA,1)
TXYB(ICL,2) = XYB(MA,2)
DO 1320 I=1,ICL

1320 BETA(I) = TXYB(I,2)
IF(ICL.EQ.MA) GO TO 1370
IF(ICL.GT.MA) PRINT,'AN ERROR HAS OCCURRED IN SUBROUTINE COMPCT'
DO 1360 I=(ICL+1),MA
BETA(I) = 0.

1360 IH(I) = 0
1370 RETURN

END

SUBROUTINE CSORT(MA,MB,NO,IXL,IXO)
C
C THE NO SMALLEST (IF IXO = 0) OR LARGEST (IF IXO 1)
C ELEMENTS IN EACH OF THE COLUMNS MA
C THROUGH MB OF EM ARE CHOSEN AND ARRANGED IN ASCENDING
C (IF IXO = 0) OR DESCENDING (IF IXO = 1) ORDER IN
C THE FIRST NO ROWS OF THOSE COLUMNS, FOR IXL = 0.
C IF IXL = 1, EM IS SORTED ACCORDING TO THE INPUT IEMLOC.
C
C INPUT:
C MA a THE FIRST COLUMN TO BE SORTED.
C MB x THE LAST COLUMN TO BE SORTED.



C NO m THE NUMBER OF ELEMENTS SORTED FROM EACH COLUMN.
C IXL a 0 TO SORT IEMLOC ACCORDING TO EM
C 1 TO SORT EM ACCORDING TO IEMLOC
C IXO = 0 TO SORT IN ASCENDING ORDER
C I TO SORT IN DESCENDING ORDER
C
C OUTPUT:
C EM IS RETURNED SORTED.
C IEMLOC. A I IN THE JTH (d<NO) ROW OF COLUMNS MA
C THROUGH MB INDICATES THAT ELEMENT I IN THE
C INPUT MATRIX EM IS THE JTH SMALLEST
C ELEMENT IN THAT COLUMN OF EM. THAT IS. THE
C ELEMENT WHICH WAS IN THE ITH ROW OF EM WHEN
C INPUT SHOULD BE IN THE 5TH ROW OF EM
C WHEN OUTPUT.
C

%INCLUDE GMDHCOM
IF(IXL.EQ.1) GO TO 665
DO 660 d=MA,MB
DO 660 I=1,MXC2

660 IEMLOC(I,J) = I
DO 670 J=MA,MB
DO 680 I=1,NO
ICOUNT = 0
NI = MXC2-I
DO 690 K=1,NI
KM = MXC2+1-K
IF(IXO.EQ.1) GO TO 730
IF(EM(KM,J).GE.EM(KM-1,U)) GO TO 690
GO TO 740

730 IF(EM(KM,J).LE.EM((KM-1),J)) GO TO 690
740 ICOUNT = ICOUNT+1

TEMP = EM(KM,J)
EM(KM,d) = EM(KM-1,J)
EM(KM-1,d) = TEMP
TEMP = IEMLOC(KMJ)
IEMLOC(KM,J) = IEMLOC(KM-1,J)
IEMLOC(KM-1,J) = TEMP

690 CONTINUE
IF(ICOUNT.EQ.0) GO TO 670

680 CONTINUE
670 CONTINUE

RETURN
665 DO 710 J=MA,MB

DO 700 1=1 ,NO.



K = IEMLOC(I,J)
700 WSM(I,1) = EM(K.L)

DO 710 I=1,NO
710 EM(I,J) =.WSM(I,1)

RETURN
END

SUBROUTINE CLAY(IND1,IND2)
C
C A NEW PRD MATRIX IS CREATED FROM THE MS BEST PREDICTORS
C IN THE INPUT LAYER. CLAY SHOULD BE CALLED ONLY.AFTER
C THE LAYER HAS BEEN SORTED (SEE SUBROUTINE CSORT).
C
C IND1 = 0 TO REPLACE THE ENTIRE MATRIX PRD
C = 1 TO REPLACE ONLY SELECTED COLUMNS
C IND2 = THE NUMBER OF COLUMNS TO BE REPLACED
C
C
C NOTE:WHEN IND1 = 1 THE MATRIX RES MUST CONTAIN THE LIST OF
C COLUMNS TO BE REPLACED (SEE SUBROUTINE RDE)
C

%INCLUDE GMDHCOM
MT = MS
IF(IND1.EQ.1) MT = IND2
DO 900 d=1,MT
J1 =
K = IEMLOC(J,LA)
IF(IND1.EQ.0) GO TO 1000
K = IFIX(RES(JLA))
IF(J.EQ.1) GO TO 995
DO 990 I=1,U-1
IF(IFIX(RES(I,LA)).EQ.K) GO TO 900

990 CONTINUE
995 DO 980 I=1,MS

IF(IEMLOC(I,LA).EQ.K) i - I
980 CONTINUE

1000 IA = MAP(K,1)
IB = MAP(K,2)
DO 900 I=1,N
WSM(I,J1) = QCO(1,K,LA)*PRD(I,IA) + QCO(2.K.LA)*PRD(I.IB) +

& QCO(3,K,LA)*PRD(IIA)*PRD(I,IA) + QCO(4.K.LA)*PRD(I.IB)
&*PRD(I,IB) + QCO(5,K,LA)*PRD(IIA)*PRD(I.IB) + QCO(6.K.LA)

900 CONTINUE
DO 920 I=1,N

920 WSM(I,MSL) = PRD(I,MGL)



DO 930 J=1,MSL
DO 930 I=1,N

930 PRD(I,J) = WSM(I,J)
C
C WHEN THE INPUT PRD MATRIX IS LARGER THAN THE OUTPUT PRD
C MATRIX THE EXTRA POSITIONS ARE SET EQUAL TO 0.
C

IF(MSL.GE.MGL) GO TO 970
DO 960 J=MSL+1,MGL
DO 960 I=1,N

960 PRD(I,J) = 0.
970 RETURN

END

SUBROUTINE CEM(IJ,IND)
C
C INPUT:
C Id QUADRATIC FORM NUMBER WITHIN LAYER
C IND = 0 FOR QUADRAT7C FORMS
C 1 FOR REGRESSIONS ON ALL THE VARIABLES IN A LAYER
C
C OUTPUT:
C RETURNS THE ERROR MEASURE FOR A REGRESSION.
C
C NOTE THAT WHEN A STATISTIC IS CALCULATED ON
C INDEPENDENT DATA IT IS NOT ADJUSTED FOR THE DEGREES
C OF FREEDOM IN THE COEFFICIENT ESTIMATION.
C

%INCLUDE GMDHCOM
VEQ = 0.
XNTE = NTE
XN = N

C
C KDC = DEGREES OF CONSTRAINT
C KDF = DEGREES OF FREEDOM
C

KDC = 0
IF(IND.EQ.1) GO TO 820
DO 800 KL=1,6

800 KDC = KDC + IQCO(KL,IJ,LA)
GO TO 830

820 DO 810 KL=1,MGL
810 KDC = KDC + ICO(KL,LA)
830 KDF = N - KDC

IF(NTR.NE.N) KDF = NTE - I



DF = KDF
DC = KDC
SSRA = 0.

C
C CALCULATE THE SUM OF SQUARED RESIDUALS
C

DO 710 K=NTRLN
710 SSRA = SSRA + RES(K,3)*RES(K,3)

IF(JEM.NE.0) GO TO 700
C
C CALCULATE THE MEAN SQUARED RESIDUAL
C

IF(NTR.EQ.N) GO TO 760
VEQ = SSRA/DF
GO TO 748

760 VEQ = ANOVA(12)*ANOVA(12)
715 IF(IADJ.EQ.0) VEQ = VEQ*DC

GO TO 748
700 IF(JEM.NE.1) GO TO 750

C
C CALULATE THE REDUCTION OF VARIANCE
C

IF(NTR.LT.N) GO TO 745
VEQ = 100.-((XN-1.)/DF)*(100.-ANOVA(11))
IF(IADJ.NE.0) VEQ = ANOVA(11)
GO TO 748

745 SRA = 0.
TV = 0.
SUM = 0.
DO 740 K=NTRL,N
SRA = SRA + RES(K,3)
SUM = SUM + RES(K,1)

740 TV = TV + RES(K,1)*RES(K,1)
YRS = SSRA - SRA*SRA/XNTE
YBS = TV - SUM*SUM/XNTE
VEQ = 100.*(1.-(YRS/YBS))

748 IF(IND.EQ.0) EM(IJ,LA) = VEQ
IF(IND.EQ.1) EMAT(LA) = VEQ

750 RETURN
END

SUBROUTINE EXEQU
C
C EQUATIONS CAN BE PRINTED
C OR EXAMINED GRAPHICALLY.
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IF(ICTRL4.NE.1) GO TO 100
PRINT,' ENTER:'
PRINT,' ICTRL4 = 2, STAND. RES. VS. OBS. NUM.'
PRINT,' 3, ORIG. RES. VS. OBS. NUM.'
PRINT,' 4, STAND. RES. VS. PRED. RESP.'
PRINT,' 5, ORIG. RES. VS. PRED. RESP.'
PRINT,' 6, STAND. RES. VS. PREDICTOR'
PRINT,' 7, ORIG. RES. VS. PREDICTOR'
PRINT,' 8, 0BS. RESP. VS. OBS. NUM.'
PRINT,' 9, PREDICTOR VS. OS. NUM.'
PRINT
PRINT,' 11 FORMAT'
READ,ICTRL4

100 IF(ICTRL4.EQ.0) GO TO 2490
IF(ICTRL4.NE.2) GO TO 2560
DO 2540 =1,N
A2(J) = 0

2540 B2(J) = RES(J,4)
2560 IF(ICTRL4.NE.3) GO TO 2580

DO 2570 J=1,N
A2(J) = J

2570 82(J) = RES(J,3)
2580 IF(ICTRL4.NE.4) GO TO 2600

DO 2590 J=1,N
A2(J) = RES(J,2)

2590 82(J) = RES(J,4)
2600 IF(ICTRL4.NE.5) GO TO 2620

DO 2610 J=1,N
A2(J) = RES(J,2)

2610 82(J) = RES(J,3)
2620 IF(ICTRL4.NE.6.AND.ICTRL4.NE.7) GO TO 2640

PRINT,' ENTER: IP = PREDICTOR NUMBER'
PRINT
PRINT,' 11 FORMAT'
READ,IP
DO 2710 J=1,N
A2(J) = PRD(J,IP)
IF(ICTRL4.EQ.6) B2(J) = RES(J,4)

2710 IF(ICTRL4.EQ.7) B2(J) = RES(J,3)
2640 IF(ICTRL4.NE.8) GO TO 2655

DO 2650 J=1,N
A2(J) = J

2650 82(J) = RES(J,1)
2655 IF(ICTRL4.NE.9) GO TO 2660

PRINT,' ENTER: IP a PREDICTOR NUMBER'
PRINT

.Is



PRINT,' 11 FORMAT'
READ,IP
DO 2690 J=1,N
A2(J) = J.

2690 B2(J) = PRD(J,IP)
2660 NCURVE = 1

IF(ICTRL3.EQ.2) CALL STORVEC(ICTRL4,0)
IF(ICTRL3.EQ.2) GO TO 2663
ICTRL(1,I) = N
CALL PLOTI(ICTRL3,ICTRL4)

2663 GO TO 2675
END

SUBROUTINE MSDCORR(IMSDICORR,L1,L2.IWAL)
C
C INPUT:
C IMSD = 1 TO PRINT THE MEAN, SD, AND C OF V FOR EACH VARIABLE
C ICORR = 1 TO PRINT THE CORRELATION MATRIX
C L1,L2 = THE FIRST AND LAST VARIABLES FROM PRD TO BE USED
C IWAL = I IF THE DATA IS IN PRD
C 0 IF THE DATA IS IN WSM
C

%INCLUDE GMDHCOM
NV = L2 - LI + 1
IF(IWAL.NE.0) GO TO 305
ICNT = 0
DO 300 K=LI,L2
ICNT = ICNT + 1
DO 300 KI=1,N

300 WSM(KI,ICNT) = PRD(KI,K)
305 CALL BECORI(WSMN,NV,ID2,XMEAN,SD,CORR.IER)

DO 310 d=1 ,NV
310 CV(J) = (SD(J)/XMEAN(J))*100.

IF(IMSD.NE.1) GO TO 320
WRITE(IWRIT,330) TITLE(1),(J+L1-1,XMEAN(J).SDIJ).CV(J).J=1.NV)

330 FORMAT(/,T30,'STATISTICS OF THE DATA SET '.A50,/.
&T1O, 'VARIABLE',T20,'MEAN',T35,'STANDARD'.T50.
&'COEFFICIENT',T70,'VARIABLE',TB0,'MEAN'.T95.'STANDARD'.
&T110,'COEFFICIENr',/,T10,'NUMBER',T35.'DEVIATION',T50.
&'OF VARIATION',T70,'NUMBER',T95,'DEVIATION'.TllO.
&'OF VARIATION' ,/,(T1O,I4,4X,3(E12.5.3X).T70.I4,4X,3(E12.5.3X)))

320 IF(ICORR.NE.1) RETURN
WRITE(IWRIT,360) TITLE(1)

360 FORMAT(1X,/,T30,'CORRELATION MATRIX OF THE INPUT AND RESPONSE'.
& ' VARIABLES OF DATA SET ',A50)



K x 0
DO 350 I=1,NV
K = K + I
La K - I + 1

350 WRITE(IWRIT,340) I+L1-I,(CORR(J),0JL.K)
340 FORMAT(1X,I3,2X,(15(lX,F7.4)))

RETURN
END

C
C
C
C

SUBROUTINE RLRESA (XY,IX,MM,N,IH,M.BETA.SDR.RES.IR.IER.IC9)

THIS SUBROUTINE IS BASED ON IMSL SUBROUTINE RLRES

DIMENSION XY(IX,MM),IH(ID9).BETA(M).RES(IR.4)
REAL BETA,SDR,XY,RES
DOUBLE PRECISION STAT
IER = 0
IF(M.LE.MM.AND.L.GE.1) GO TO 5
IER = 130
RETURN

C TERMINAL ERROR 2, MISSPECIFIED PARAMETERS
5 DO 10 I=1,MM

10 IH(M+I) = I
DO 25 I = 1,M

DO 15 d=IMM
JLJ =

IF(IH(M+J).EQ.IH(I)) GO TO 20
15 CONTINUE

IER = 129
RETURN

C TERMINAL ERROR 1, NO TERMS IN EQUATION
20 ITEMP = IH(M+I)

IH(M+I) a IH(M+JJ)
IH(M+JJ) a ITEMP

25 CONTINUE
L = IH(M)
DO 35 I=1,N

STAT = BETA(M)
RES(I,1) = XY(I,L)
Ml = M-1

IF(M1.EQ.0) GO TO 40
DO 30 J=1,M1

K = IH(J)
STAT a STAT + DBLE(BETA(J))*DBLE(XY(I.K))

.Is



30 CONTINUE
40 RES(I,2) = STAT

RES(I,3) * RES(I,1) - STAT
RES(I,4) = RES(I,3)/SDR

35 CONTINUE
RETURN
END

SUBROUTINE RDE(IEQU,IREV,IND2,IND3)
C
C THE REQUESTED EQUATION IS RECREATED
C
C INPUT:
C
C IEQU = THE SORTED POSITION OF AN EQUATION WITHIN A LAYER
C IREV = 0 TO RETAIN THE OLD COEFFICIENTS
C 1 TO REESTIMATE THE COEFFICIENTS BASED ON ALL THE DATA
C IND2 = 0 FOR QUADRATIC FORMS
C 1 FOR REGRESSION ON ALL THE VARIABLES IN A LAYER
C IND3 = 0 TO RECREATE THE REQUESTED EQUATION
C 1 TO RESTORE THE ORIGINAL COEFFICIENTS
C

%INCLUDE GMDHCOM
NTRT = NTR
LAT = LA
ICNT = 0
MGL = ML
MG = M
IF(LA.LE.1) GO TO 230
IF(IREV.EQ.O.AND.IND3.EQ.1) GO TO 230
IF(IC.LE.IFIX(ID2/16.)) GO TO 231
IF(IWRIT.NE.6) WRITE(6,232)
WRITE(IWRIT,232)

232 FORMAT(T5, 'THE REQUESTED EQUATION COULD NOT BE RECOVERED'.
& ' BECAUSE IT HAD TOO MANY TERMS',/.T5.'AND THE FOLLOWING OUTPUT',
& ' IS PROBABLY INCORRECT. THE MAXIMUM NUMBER OF TERMS'.
& ' IS ID2/16.')

C
C THIS ROUTINE WILL HANDLE UP TO ID2/16 TERMS
C

231 IF(IND2.EQ.1) LA - LAT - 1
ICNT3 = 0
KJ = IEQU
IF(IND2.EQ.0) GO TO 2082
DO 2090 KJ - 1,MS



IF(ICO(KJ,-LAT).EQ.0) GO TO 2090
2082 ICNT3 = ICNT3 + 1

CALL DIAKA(KJ,IV)
IVT = IV
DO 2080 MJI=1,LAT-1
DO 2085 MJ2=1,IV

2085 RES(MJ2+(ICNT3-1)*IV,MJ1) a.KACT(MJ2+IV-1)
2080 IV = IV/2

IF(IND2.EQ.0) GO TO 2070
2090 CONTINUE
2070 IV = IVT * ICNT3

DO 105 LA=1,LAT-1
IF(LA.GE.2) MGL = MSL
MG = MGL - I
IF(IREV.EQ.0) GO TO 175
DO 110 J=1,IV
IF(J.EQ.1) GO TO 180
DO 190 jj=1,j-1
IF(IFIX(RES(d,LA)).EQ.IFIX(RES(JJ,LA))) GO TO 110

190 CONTINUE
180 IF(IND3.EQ.1) GO TO 185

CALL QUAD(MAP(IFIX(RES(d,LA)),1),MAP(IFIX(RES(d.LA)).2))
C
C THE ORIGINAL COEFFICIENTS ARE STORED IN CORR
C

185 DO 120 K=1,6
IF(IND3.EQ.1) QCO(K,IFIX(RES(I,LA)).LA) a CORR(ICNT+K)
IF(IND3.EQ.1) GO TO 120
CORR(ICNT+K) = QCO(K,IFIX(RES(J,LA)).LA)
IXD(K) = IQCO(KIFIX(RES(J,LA)),LA)
DO 120 KI=1,N
WSM(KI,K) = QP(KI,K)

120 CONTINUE
ICNT = ICNT + 6
IF(IND3.EQ.1) GO TO 110
CALL RLSEP(WSMN,5,ID2,ALFA,IJO8,IXD.ANOVA.XYB,ID8.VARB.I1ER)
IF(IER.NE.0) CALL PRERRM(IER,IFIX(RES(d.LA)).0,'RLSEP
DO 110 K=1,6
QCO(K,IFIX(RES(,LA)),LA) m XYB(K,2)

110 CONTINUE
175 CALL CLAY(0,0)
105 IV = IV/2
230 LA = LAT

IF(LA.GE.2) MGL = MSL
MG = MGL - I
IF(IREV.EQ.0) GO TO 240



IF(IND2.EQ.1) GO TO 220
DO 150 K=1,6
IF(IND3.EQ.1) QCO(K,IEMLOC(IEQU,LA).LA) a CORR(ICNT+K)
IF(IND3.NE.1) CORR(ICNT+K) = QCO(K.IEMLOC(IEQU.LA).LA)

150 CONTINUE
IF(IND2.EQ.0) GO TO 240

220 DO 160 K=1,MGL
IF(IND3.EQ.1) CO(KLA) = CORR(ICNT+K)
IF(IND3.NE.1) CORR(ICNT+K) = CO(K,LA)

160 CONTINUE
240 NTR = NTRT

IF(IND3.EQ.1) RETURN
C
C THE FINAL LAYER MUST BE CALCULATED BY REGRESSION TO
C PRODUCE THE EVALUATION STATISTICS AND RESIDUALS
C

IF(IREV.EQ.1) NTR = N
IF(IND2.EQ.1) GO TO 2400
CALL QUAD(MAP(IEMLOC(IEQU,LA),1),MAP(IEMLOC(IEQU.LA).2))
DO 2025 K=1,6
IXD(K) = IQCO(K.IEMLOC(IEQU,LA),LA)
DO 2025 KI=1,N

2025 WSM(KI,K) = QP(KI,K)
IXD(6) = 0
CALL RLSEP(WSM,NTR,5,ID2,ALFA,IJOBIXD.ANOVA.XYB.ID8.VARB.IER)
IF(IER.NE.0) CALL PRERRM(IER,IEMLOC(IEQU.LA).O,'RLSEP
DO 2027 K=1,6

2027 QCO(K,IEMLOC(IEQULA).LA) = XYB(K,2)
CALL COMPCT(0)
IF(ANOVA(12).EQ.0) ANOVA(12) = SQRT(ANOVA(5)/ANOVA(2))
CALL RLRESA(QP,ID2,6,N,IH,ICL,BETAANOVA(12).RES.ID2.IER.ID9)
NTR = NTRT
IF(IER.NE.0) CALL PRERRM(IER,KACT(1).0.'RLRESA ')
RETURN

2400 DO 2047 K=1,MGL
IXD(K) = ICO(K,LA)
DO 2047 KI=1,N

2047 WSM(KI,K) = PRD(KI,K)
IXD(MGL) = 0
CALL RLSEP(WSM,NTR,MG,ID2,ALFA,IJOB.IXD.ANOVA.XYBID8.VARB.IER)
IF(IER.NE.0) CALL PRERRM(IER,Id,1,'RLSEP
DO 2049 K=1,MGL

2049 CO(K,LA) = XYB(K,2)
CALL COMPCT(1)
IF(ANOVA(12).EQ.0) ANOVA(12) = SQRT(ANOVA(5)/ANOVA(2))
CALL RLRESA(PRD,ID2,MGL,N,IH,ICLBETA.ANOVA(12).RES.ID2.IER.ID9)



IF(IER.NE.0) CALL PRERRM(IERIJ,1,'RLRESA A)

NTR = NTRT
RETURN
END

SUBROUTINE DIAKA(IEQU,IV)
C
C INPUT:
C IEQU = THE SORTED LOCATION WITHIN LAYER LA
C OF THE DESIRED EQUATION
C
C OUTPUT:
C IV = THE NUMBER OF PARTIAL MODELS CREATED FROM THE
C ORIGINAL DATA MATRIX
C IACT,KACT = MAPS OF THE VARIABLES IN THE FINAL EQUATION.
C
C KACT(I) = THE LOCATION OF A VARIABLE IN A LAYER BEFORE
C SORTING.
C IACT(2*I) AND IACT(2*I + 1) = THE SORTED LOCATIONS OF THE
C VARIABLES IN THE PREVIOUS LAYER USED TO
C CREATE VARIABLE KACT(I) IN THE CURRENT LAYER.

U' C (IACT CAN EASILY BE RECOVERED FROM THE MATRICES MAP
C AND KACT, BUT IS RETAINED FOR CONVENIENCE)
C

%INCLUDE GMDHCOM
C
C DO LAST LAYER SEPARATELY
C

IV = 1
IACT(1) = IEQU
KACT(1) = IEMLOC(IEQU.LA)
IACT(2) = MAP(KACT(1),1)
IACT(3) = MAP(KACT(1),2)
IF(LA.EQ.1) RETURN
DO 2500 IL=(LA-1),1,-1
IV = 2*IV
DO 2500 J=IV,2*IV-1

C
C UNSORTED POSITION IN CURRENT LAYER
C

KACT(J) = IEMLOC(IACT(d),IL)
C
C SORTED POSITION IN PREVIOUS LAYER
C

IACT(2*d) = MAP(KACT(J),1)
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IF(C(38,JCL).NE.0.)
IF(C(39,JCL).NE.0.)
IF(C(40,JCL).NE.0.)
IF(C(41,JCL).NE.0.)
IF(C(42,JCL).NE.0.)
IF(C(43,JCL).NE.0.)
IF(C(44,JCL).NE.0.)
IF(C(45,JCL).NE.0.)
IF(C(46,JCL).NE.0.)
IF(C(47,JCL).NE.0.)
IF(C(48,JCL).NE.0.)
IF(C(49,JCL).NE.0.)
IF(C(50,JCL).NE.0.)
IF(C(51 ,JCL).NE.0.)
IF(C(52,JCL).NE.0.)
IF(C(53,JCL).NE.0.)
IF(C(54,JCL).NE.0.)
RETURN

600 FORMAT(1X, ' +
601 FORMAT(1X, ' +
602 FORMAT(1X, ' +
603 FORMAT(1X, +
604 FORMAT(1X, ' +
605 FORMAT(1X, ' +
606 FORMAT(1X, +
607 FORMAT(1X, ' +
608 FORMAT(1X,' +
609 FORMAT(1X, '+

&,'**2')
610 FORMAT(1X, ' +

8,4X, '*VR', 14)
END

, E12.5,
' ,E12.5,
,E12.5,
,E12.5,

*,E12.5,
' E12.5,
,E12.5,
,E12.5,

' ,E12.5,
'E12.5,

WRITE(IWRIT,606)
WRITE(IWRIT,608)
WRITE(IWRIT,606)
WRITE(IWRIT,606)
WRITE(IWRIT,604)
WRITE(IWRIT,604)
WRITE(IWRIT,609)
WRITE(IWRIT,606)
WRITE(IWRIT,606)
WRITE(IWRIT,604)
WRITE( IWRIT,604)
WRITE(IWRIT,609)
WRITE(IWRIT,608)
WRITE(IWRIT,608)
WRITE(IWRIT,609)
WRITE(IWRIT,609)
WRITE(IWRIT,610)

C(38,JCL)
C(39. JCL)
C(40.JCL)
C(41 .JCL)
C(42,JCL)
C(43.JCL)
C(44,JCL)
C(45.JCL)
C(46, JCL)
C(47,JCL)
C(48, JCL)
C(49.JCL)
C(50.JCL)
C(51 JCL)
C(52.JCL)
C(53.JCL)
C(54,JCL)

,IB. ID
,IS. IC1 ID

IC . IA
ID, IA
IA. IC1
IA.ID

,IC1.ID.IA
IC 1IB

,ID. IB
I. ICI
IS. ID
IC .ID. IB

,IA.IB,IC1
, IA.IB, ID
,IAI B, IC
, IA. I. ID
,A,IBIC1,ID

*VR '14)
*VR',14,'**2')
*VR',14,4X,'*VR',I4)
*VR',I 4 ,'** 4 ')
*VR',14,'**2 *VR',14.4**2')
*VR',I4,'**3')
*VR',I4,4X,'*VR',I4.'**2')
*VR',14,4X,'*VR',I4.1**3')
*VR',14,4X,'*VR'I.4.4X,'*VR',I4)
*VR',14,4X,'*VR'.I4.4X,'*VR',I14

'.E12.5,' *VR',14,4X.'*VR'.I4.4XI*VR',I4

SUBROUTINE PRCOEFF(IPQCOIPIQCO,IPCO.IPICO.IEM.IIEMLOC.IDIAT)
C
C MATRIX **** IS PRINTED WHEN I**** , OR IP****. a 1.
C
C INPUT:
C ALL ARGUMENTS ARE INPUTS.
C

%INCLUDE GMDHCOM
IF(JEM.EQ.0.AND.IADJ.EQ.0)
IF(JEM.EQ.1.AND.IADJ.EQ.0)
IF(JEM.EQ.0.AND.IADJ.EQ. 1)
IF(JEM.EQ.1.AND.IADJ.EQ.1)

SR
SR
SR
SR

'MS RES ADJ'
'R SQRD ADJ'
'MS RES'
'R SQRD'

Ln



IF(IPQCO.NE.1) GO TO 650
DO 500 J=1,LA
WRITE(IWRIT,510)MS,J

510 FORMAT(/,T20,'THE LOCATION INDICES AND COEFFICIENTS'.
& ' OF THE ',13,' BEST PREDICTORS IN LAYER'.12./,T10.'NUMBER'
&,T20,'LOCATION',T35,'BETA 1',T50,'BETA 2'.T65.'BETA 3'.T80
&,'BETA 4',T95,'BETA 5',T107,'INTERCEPT'./.T21.'INDEX')

C
C EM MUST ALREADY HAVE BEEN SORTED FOR THE OUTPUT
C TO BE MEANINGFUL.
C

DO 520 I=1,MS
K = IEMLOC(I,J)

520 WRITE(IWRIT,530)I,K,(QCO(L,K,J),L=1,6)
530 FORMAT((TI2,2(14,5X),T32,6(E12.5,3X)))
500 CONTINUE
650 IF(IPCO.NE.1) GO TO 700

WRITE(IWRIT,660)
660 FORMAT(/,T20,'THE COEFFICIENTS OF THE REGRESSIONS IN EACH',

& ' LAYER ON ALL THE PREDICTORS IN THAT LAYER'./.T20.
& '(THE LAST ENTRY IS THE INTERCEPT)')
j = 1

n WRITE(IWRIT,720) J,(CO(I,J),I=1,ML)
IF(LA.LE.1.OR.LO.EQ.1) GO TO 700
DO 715 J=2,LA

715 WRITE(IWRIT,720)J,(CO(I,J),I=1,MSL)
720 FORMAT(T20,'LAYER ',I1,/,(10(1X,E12.5)))
700 IF(IEM.NE.1) GO TO 750

WRITE(IWRIT,560)MS
560 FORMAT(/,T20,'THE LOCATION INDICES AND ERROR MEASURES OF$.

&' THE',13, ' BEST PREDICTORS IN EACH LAYER')
DO 570 J=1,LA
WRITE(IWRIT,590)J,SR,SR,SR

590 FORMAT(T50,'LAYER',I3,/,TS,'NUMBER',T15.'LOCATION'.T33.A1O
&,T49,'NUMBER',T59,'LOCATION',T77,A1O.T93,
&'NUMBER',T103,'LOCATION',T121,AlO,/.T16.'INDEX',T60.
&'INDEX',T104,'INDEX')
WRITE(IWRIT,605)(I,IEMLOC(I,J),EM(IJ).1=1.MS)

605 FORMAT((T5,3(I3,7X,14,11X,E12.5,7X)))
570 CONTINUE
750 IF(IIEMLOC.NE.1) GO TO 800

WRITE(IWRIT,760)MS
760 FORMAT(/,T20,'LOCATION MAP OF THE BEST'.13.' PREDICTORS IN EACH',

' LAYER',/,T5,'NUMBER',T15,'LAYER 1'.T30.'LAYER 2'.T45.'LAYER 3',
& T60,'LAYER 4',T75,'LAYER 5')

770 WRITE(IWRIT,780)(I,(IEMLOC(IJ),J=1.5).I=1.MS)
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C IER = THE ERROR PARAMETER FROM AN IMSL SUBROUTINE.
C IND = 0 FOR QUADRATIC FORMS.
C 1 FOR REGRESSIONS ON ALL THE VARIABLES IN A LAYER.
C IJ = THE LOCATION NUMBER OF A QUADRATIC FORM
C

%INCLUDE GMDHCOM
MAL = MGL
IF(IND.EQ.0) MAL = 6
MA = MAL - I
MMA = MAL*(MAL+1)/2
IF(IIER.NE.1) GO TO 120
WRITE(IWRIT,110)IER

110 FORMAT(/,T1O,'THE ERROR PARAMETER, IER(SEE IMSL DOCUMENTATION)'.
&', = ',13,/)

120 IF(IIND.NE.1) GO TO 150
WRITE(IWRIT,130)MA,MA

130 FORMAT(/,T20,'IND: A 1 IN THE FIRST',14.' LOCATIONS INDICATES'.
& ' THE VARIABLE WAS FORCED INTO THE MODEL'./.T25,'A 1 IN THE'.
& ' SECOND',I4,' LOCATIONS INDICATES THE VARIABLE IS IN THE',
& ' DEVELOPED MODEL.',//,T5,'VARIABLE'.T15,'INDIr30.'VARIABLE'
&,T40,'IND',T55,'VARIABLE',T65,'IND'.TSO.'VARIABLE'.T90
&,'IND',T105,'VARIABLE',T115,'IND')
WRITE(IWRIT,140)(I,IXD(I),I=1,MA)

140 FORMAT((T9,5(I4,4X,I1,16X)))
WRITE(IWRIT,139)

139 FORMAT(/)
WRITE(IWRIT,140)(I,IXD(I+MA),I=1,MA)

150 IF(IANOVA.NE.1) GO TO 200
EMJ = EM(IEQU,LA)
IF(IND.EQ.1) EMJ = EMAT(LA)
WRITE(IWRIT,160)ANOVA(1),ANOVA(4),ANOVA(7).ANOVA(9).ANOVA(10)

&,ANOVA(2),ANOVA(5),ANOVA(8),ANOVA(3).ANOVA(6).ANOVA(14)
&,ANOVA(15),ANOVA(16)

160 FORMAT(/,T50,'ANALYSIS OF VARIANCE TABLE',/.TI0,'SOURCE'.T35.
&'D.F.',T57,'SS',T77,'MS',T92,'F RATIO'.TI08,'F TAIL AREA'./,T10.
&'REGRESSION',T30,5(E12.5,8X),/,
&T1O,'RESIDUALS',T30,3(E12.5,8X),/,T1O.'CORRECTED TOTAL'.
& T30,2(E12.5,8X),//,T10,'LACK OF FIT TEST',T50,E12.5,
&29X,2(E12.5,8X) /)
WRITE(IWRIT,170)ANOVA(11),ANOVA(12),ANOVA(13).EMJ

170 FORMAT(T10,'THE PERCENTAGE OF THE RESPONSE VARIATION EXPLAINED'.
& ' BY THE REGRESSION = ',T90,E12.5./,T10,'THE STANDARD DEVIATION'.
& ' OF THE RESIDUALS = ',T90,E12.5,/,T10.'THE STANDARD DEVIATION',
' OF THE RESIDUALS AS A PERCENTAGE OF THE RESPONSE MEAN = ',

&T90,E12.5,/,T10,'THE ERROR MEASURE USED TO ORDER THE EQUATIONS at
&T90,E12.5,/)
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WRITE(IWRIT,420)(IH(I),BETA(I),I=1,ICL)
420 FORMAT((T6,4(I4,7X,E12.5,7X)))
450 IF(IRES.NE.1) RETURN

WRITE(IWRIT,460)
460 FORMAT(/,T50,'COMPLETE RESIDUAL LIST'./.TIO.'OBSERVATION'.T26

&,'OBSERVED',T40,'PREDICTED',T55,'RESIDUAL'.T66,'STANDARDIZED'./.
&TIO,'NUMBER',T25,'RESPONSE',T40,'RESPONSE'.T66,'RESIDUAL')
WRITE(IWRIT,480)(I,(RES(I,),J=1,4).I.1.N)

480 FORMAT((T14,I5,T25,4(E12.5,3X)))
RETURN
END

SUBROUTINE PRDATA(IPRDBR,IPROBC,IWSMBR.IWSMBC.IQP.MQ1.MQ2.IC1.IC2.
& IR1,IR2)

C
C MATRIX **** IS PRINTED WHEN I**** = 1
C THE SUFFIX BR MEANS BY ROWS
C THE SUFFIX BC MEANS BY COLUMNS
C
C INPUT:
C ALL ARGUMENTS ARE INPUTS.
C MQ1 = THE NUMBER OF THE FIRST VARIABLE USED FOR OP.
C MQ1 = THE NUMBER OF THE SECOND VARIABLE USED FOR QP.
C IC1,IC2 = FIRST AND LAST COLUMNS TO BE PRINTED
C IR1,IR2 = FIRST AND LAST ROWS TO BE PRINTED
C
C NOTE: IC1,IC2,IR1,IR2 = 0 TO PRINT ALL ROWS OR COLUMNS
C
C

%INCLUDE GMDH.COM
IF(IPRDBR.NE.1.AND.IPRDBC.NE.1) GO TO 500
WRITE(IWRIT,460)TITLE(1),ML

460 FORMAT(/,T20,'THE DATA MATRIX ',A50./.T20.'VARIABLE '.14.
& ' IS THE RESPONSE')

IF(IPRDBR.NE.1) GO TO 485
IF(IR1.EQ.0) IR1 = 1
IF(IR2.EQ.0) IR2 = N
DO 470 I=IR1,IR2

470 WRITE(IWRIT,480)I,(PRD(I,J),J=1,MGL)
480 FORMAT(1X, 'OBSERVATION NUMBER',14,/.(10(lX.E12.5)))

IF(IPRDBC.NE.1) GO TO 500
IF(IC1.EQ.0) IC1 = 1
IF(IC2.EQ.0) IC2 = MGL

485 DO 486 J=IC1,IC2
486 WRITE(IWRIT,481) J,(PRD(IJ),I=1,N)



481 FORMAT(1X,'VARIABLE',I4,/,(10(1X,E12.5)))
500 IF(IWSMBR.NE.I.AND.IWSMBC.NE.1) GO TO 550

WRITE(IWRIT,510)
510 FORMAT(/,T20,'THE TEMPORARY DATA MATRIX.WSM: THE LAST COLUMN

& CONTAINS THE RESPONSE VARIABLE')
IF(IWSMBR.NE.1) GO TO 585
DO 530 I=1,N

530 WRITE(IWRIT,480)I,(WSM(I,J),J=1,MGL)
IF(IWSMBC.NE.1) GO TO 550

585 DO 586 J=1,MGL
586 WRITE(IWRIT,481) J,(WSM(I,J),I=1,N)
550 IF(IQP.NE.1) RETURN

WRITE(IWRIT,560)MQ1,MQ2
560 FORMAT(/,T1O,'THE QUADRATIC SETTING OF COLUMNS MQ1 z'.13.' AND'.

&' MQ2 =',13,' OF MATRIX PRD',/,1X,'OBS. NUM.1.T21.'MQ1'.T36,'MQ2'
&,T47,'MQ1*MQ1',T62,'MQ2*MQ2',T77,'MQ1*MQ2',T91.'RESPONSE')
WRITE(IWRIT,580)(I,(QP(I.J),d=1,E ).Iu1.N)

580 FORMAT((T4,13,T15,6(E12.5,3X)))
RETURN
END

SUBROUTINE PRERRM(IER,IJ,IND1,SR)
C
C INPUT:
C IER = THE IMSL ERROR CODE(SEE IMSL DOCUMENTATION).
C IJ = THE STEP WITHIN THE LAYER FROM WHICH THE ERROR
C CODE WAS RETURNED.
C IND = 0 FOR QUADRATIC FORMS
C 1 FOR REGRESSIONS ON ALL VARIABLES IN A LAYER.
C SR = THE NAME OF THE IMSL SUBROUTINE FOR WHICH THIS
C SUBROUTINE IS BEING USED. THE MAXIMUM LENGTH
C OF SR IS 10 CHARACTERS.
C
C OUTPUT:
C A MESSAGE LISTING THE IMSL ERROR CODE AND LOCATION OF OCCURRENCE.
C

%INCLUDE GMDHCOM
IF(IND1.EQ.1) GO TO 1200
WRITE(IWRIT,111,)IER,SR,Id,LA

1110 FORMAT(T20,'IMSL ERROR CODE '.13,' WAS RETURNED BY SUBROUTINE
&,A1O,' AT THE ',14,' CALL IN LAYER '.11)
IF(IWRIT.EQ.6) GO TO 1195
WRITE(6,1110)IER,SR,IJ,LA

1195 RETURN
1200 WRITE(IWRIT,1210)IER,SR,LA



1210 FORMAT(T20,'IMSL ERROR CODE ',13,' WAS RETURNED BY SUBROUTINE
&,A1O,' AT THE CALL TO ALL THE VARIABLES IN LAYER '.11)
IF(IWRIT.EQ.6) RETURN
WRITE(6,1210)IER,SR,LA
RETURN
END

SUBROUTINE PREQU(IIACT,IKACT,ISE,ICE.IEQU.IND1,IND2)
C
C ITEM **** IS PRINTED WHEN I**** = 1.
C
C INPUT:
C IEQU = THE SORTED LOCATION WITHIN LAYER LA
C OF THE DESIRED EQUATION.
C INDI = 0 TO PRINT ALL COEFFICIENTS, INCLUDING ZEROS
C 1 TO PRINT ONLY NON ZERO COEFFICIENTS.
C IND1 APPLIES ONLY TO SE OUTPUT(SEE BELOW)
C IND2 = 0 FOR QUADRATIC FORMS
C I FOR REGRESC-IONS ON ALL THE VARIABLES IN A LAYER
C
C
C OUTPUT:
C IACT,KACT = MAPS OF THE VARIABLES IN THE FINAL EQUATION.
C
C KACT(I) = THE LOCATION OF A VARIABLE IN A LAYER BEFORE
C SORTING.
C IACT(2*I) AND IACT(2*I + 1) = THE SORTED LOCATIONS OF THE
C VARIABLES IN THE PREVIOUS LAYER USED TO
C CREATE VARIABLE KACT(I) IN THE CURRENT LAYER.
C (IACT CAN EASILY BE RECOVERED FROM THE MATRICES MAP
C AND KACT, BUT IS RETAINED FOR CONVENIENCE)
C
C SE =-A LIST OF THE DESIRED EQUATION BY LAYERS.
C CE = A LIST OF THE DESIRED EQUATION.
C
C THIS SUBROUTINE SHOULD GENERALLY NOT BE USED TO PRINT
C IACT OR KACT AND PRINT AN EQUATION IN THE SAME CALL.
C ALL ITEMS REQUESTED WILL ALWAYS BE PRINTED. BUT IN SOME
C CASES THE ORDER OF OUTPUT MAY BE MIXED UP.
C

%INCLUDE GMDHCOM
2590 LAT = LA

ICJ = 1
IND3 = 0
IND4 = 0



IF(IND2.EQ.1) GO TO 2690
2910 CALL DIAKA(IEQU,IV)

IF(IIACT.NE.1) GO TO 2670
WRITE(IWRIT,2660)IACT

2660 FORMAT(/,T20,'THE MAPPING VECTOR IACT'./,(10I10))
2670 IF(IKACT.NE.1) GO TO 2690

WRITE(IWRIT,2680)KACT
2680 FORMAT(/,T20,'THE MAPPING VECTOR KACT'./.(10I10))
2690 IF(ICE.EQ.f.AND.LA.EQ.1) GO TO 2600

IF(IND3.EQ.1) GO TO 2600
IF(ISE.NE.1) GO TO 2700

2600 IF(IND2.EQ.ICJ) GO TO 2760
ICNT1 = 1
IF(IND2.EQ.1) GO TO 2940
WRITE(IWRIT,2629)

2629 FORMAT(/,T5,'THE COMPLETE EQUATION, BY LAYERS',/.T5.
&'RESPONSE (Y) =',/)

C
C OUTPUT FORMATS
C
2940 DO 2610 IL=LA,1,-1

L2 = IL - 1
DO 2650 I=ICNT1,(2*ICNT1-1)
IF(I.EQ.ICNT1) GO TO 2652
DO 2655 II=ICNTI,(I-1)

2655 IF(IACT(I).EQ.IACT(II)) GO TO 2650
2652 10 = 1+1

IJL = IJ+1
IF(IND3.EQ.1) GO TO 2712
IF(IND1.EQ.1) GO TO 2657
WRITE(IWRIT,2630)IACT(I),IL,QCO 6,KACT(I).IL).QCO(1.KACT(I).IL).
&IACT(IJ),L2,QCO(2,KACT(I) ,IL), IACT(IJL).L2.QCO(3,KACT( ).IL),
&IACT(Id),L2,QCO(4,KACT(I),IL),IACT(IJL).L2.QCO(5.KACT(I).IL).
&IACT(Id),L2,IACT(IdL),L2
GO TO 2650

2657 WRITE(IWRIT,2710) IACT(I),IL,QCO(6,KACT(I).IL)
2710 FORMAT(1X,/,1X,'VR',I4,' LY',I1,' = ',/.4X.E12.5)
2712 DO 2650 LI=1,5

IF(IQCO(LI,KACT(I),IL).EQ.0) GO TO 2650
IF(LI.EQ.1) WRITE(IWRIT,2720) QCO(LI.KACT(I).IL),IACT(Id).L2
IF(LI.EQ.2) WRITE(IWRIT,2720) QC:O(LI.KACT(I).IL).IACT(IJL),L2
IF(LI.EQ.3) WRITE(IWRIT,2730) QC:O(LIKACT(I).IL).IACT(IJ).L2
IF(LI.EQ.4) WRITE(IWRIT,2730) QCO(LI.KACT(I).IL).IACT(IJL).L2
IF(LI.EQ.5) WRITE(IWRIT,2740) QCO(LIKACT(I).IL).IACT(IJ).L2

&,IACT(IJL),L2
2650 CONTINUE



ICNTl = ICNT1 + ICNT1
2630 FORMAT(IX,/,1X,'VR',I4,'

&E12.5,'*VR',I4,1 LY',I1,'
&I1,' + ',E12.5,'*VR',I4,1
&,' LY',I1,'**2',/,lX,' +
&,14,' LY',I1)

2720 FORMAT(1X,' + ',E12.5,'*V
2730 FORMAT(1X, ' + ',E12.5,'*V
2740 FORMAT(1X, ' + ',E12.5,'*V
2610 CONTINUE

IF(IND4.EQ.1) RETURN
IF(IND2.EQ.0) GO TO 2700
IF(IND3.EQ.0) GO TO 2900
GO TO 3330

LY' ,I1,' = './.4X.E12.5./.1X.' .+

+',E12.5,'*VR',I4., LVy,
LY',I1,'**2 + ',E12.5,'*VR'.I4
,E12.5,'*VR'.I4,' LY',I1,'*VR'

R',14,'
R',14,'
R' ,I4,'

LY',II) .

LY',1.'*VR',I4,' LY'.11)

C
C BEGIN SECTION FOR REGRESSION ON ALL INPUT VARIABLES FOR A LAYER
C
2760 MG = M

IF(LA.GE.2) MG = MS
MGL = MG + 1
LA = LA - 1
WRITE( IWRIT,2629)
WRITE( IWRI T,2810) CO(MGL,LAT)

2810 FORMAT(1X,E12.5)
IF(IND1.EQ.1) GO TO 2840
WRITE(IWRIT,2820)(CO(I,LAT),I,LAI=1,MG)

2820 FORMAT(4(1X,' + ',E12.5,'*VR',I4,'LY'.I1))
GO TO 2865

2840 DO 2850 J=1,MG
IF(ICO(J,LAT).NE.0) WRITE(IWRIT,2860) CO(J.LAT),JLA

2850 CONTINUE
2860 FORMAT(1X,' + ',E12.5,'*VR',I4,'LY',I1)
2865 IF(LAT.LE.1) GO TO 2920

ICJ = 0
DO 2900 J=1,MG
IF(ICO(J,LAT).EQ.0) GO TO 2900
IEQU = d
GO TO 2910

2900 CONTINUE
2920 LA = LAT

C
C BEGIN SECTION FOR FULLY EXPANDED EQUATION
C
2700 IF(LA.EQ.1) RETURN

IF(ICE.NE.1) RETURN
WRITE(IWRIT,3010)
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C ICTRL4 = THE PLOT IDENTIFIER (SEE SUBROUTINE EXEQU IN TEST7.FORTRAN)
C IND a 0 TO STORE VECTORS
C I TO PLOT VECTORS PREVIOUSLY STORED
C

%INCLUDE GMDHCOM
PRINT,' ENTER IFILE - THE FILE NUMBER FOR THE VECTORS'
PRINT
PRINT,' 11 FORMAT'
READ, IFILE
IF(IND.NE.0) GO TO 200
WRITE(IFILE) N,NCURVE,ICTRL4,TITLE(1).TITLE(2),(A2(I).Ia1.N).

8(82( I), I=1 ,N)
RETURN

200 REWIND IFILE
READ(IFILE) N,NCURVEICTRL4,TITLE(1).TITLE(2).(A2(I),IU1.N).

&(B2(I),I=l,N)
PRINT.' ENTER ICTRL3 a 0 FOR AUTOMATIC PLOTTING'
PRINT,' 1 TO CONTROL PLOT FORMAT'
PRINT
PRINT,' II FORMAT'
READ,ICTRL3
ICTRL(1,I) a N
CALL PLOT1(ICTRL3,ICTRL4)
RETURN
END



%INCLUDE GMDH.COM
IND = 1
DO 100 J=1,20

100 CALL STOR-VEC(ICTRL4,IND)
STOP rt
END

0

SUBROUTINE STORVEC(ICTRL4,IND)
C
C THIS SUBROUTINE STORES VECTORS FOR LATER PLOTTING
C OR PLOTS VECTORS WHICH HAVE BEEN STORED
C
C INPUT:
C TITLE(1) = THE FILE NAME
C TITLE(2) = A LABEL FOR THE GRAPH
C ICTRL4 = THE PLOT IDENTIFIER ( SEE SUBROUTINE
C EXEQU IN GMDH.FORTRAN)
C IND = 0 TO STORE VECTORS
C 1 TO PLOT VECTORS PREVIOUSLY STORED
C
C %INCLUDE GMDHCOM

00 C
PRINT,' ENTER IFILE = THE FILE NUMBER FOR THE VECTORS'
PRINT
PRINT,' 11 FORMAT'
READ, IFILE
IF(IFILE.EQ.0) STOP
IF(IND.NE.0) GO TO 200
WRITE(IFILE) N,NCURVE,ICTRL4,TITLE(1).TITLE(2),

& (A2(I),I=1,N),(B2(I),I=1.N)
RETURN

200 REWIND IFILE
READ(IFILE) N,NCURVE,ICTRL4,TITLE(1),TITLE(2).

& (A2(I),I=1,N),(B2(I),I=1,N)
PRINT,' ENTER IND1 = 0 TO PLOT ALL POINTS'
PRINT,' 1 TO PLOT MOVING AVERAGE OF NA'
PRINT,' 2 TO PLOT AVERAGES OF NA'
PRINT,' NA'
PRINT
PRINT,' 21 FORMAT'
READ,INDI,NA
IF(IND1.NE.0) CALL SMOOTH(IND1,NA)
PRINT,' ENTER ICTRL3 = 0 FOR AUTOMATIC PLOTTING'
PRINT,' 1 TO CONTROL PLOT FORMAT'
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210 CONTINUE
PRINT,' YEAR, IH, ICNT',JXH(J),ICNT
IBP = IBP + IH(J)

200 CONTINUE.
N = ICNT - 1
DO 230 J=1,N

230 B2(J) z VARB(d)
RETURN
END



SUBROUTINE PLOT1(ICTRL3,ICTRL4)
C
C INPUT ARGUMENTS
C
C ICTRL3 =0 TO USE DEFAULT PLOTTING FORMAT

rtC 1 TO CONTROL PLOTTING FORMAH
C ICTRL4 CONTROLS INPUT DATA SET
C aQ
C VARIABLES WHICH MUST BE ASSIGNED IN THE CALLING PROGRAM 0
C
C NCURVE
C ICTRL(K,1), Kxl,NCURVE
C A2(I),I=1,NPTS
C B2(I),I=1,NPTS
C TITLE(I),I=1,2
C
C COMMON BLOCK P1 AND THE CHARACTER VARIABLES MUST BE
C DECLARED IN THE CALLING PROGRAM.
C
C OTHER VARIABLES
C
C ICTRL5 IS THE CONTINUATION PARAMETER
C TITLE = CHARACTER STRINGS OF LABELS FOR THE GRAPH
C NTITLE = THE NUMBER OF LABELS TO BE WRITTEN ON THE GRAPH
C XTITLE = X COORDINATE OF TITLE
*C YTITLE = Y COORDINATE OF TITLE
C ATITLE = ANGLE OF TITLE
C HTITLE = HEIGHT OF TITLE
C XAXIS = LABEL FOR X AXIS
C YAXIS = LABEL FOR Y AXIS
C XXIN,XYIN = COORDINATES OF BEGINNING OF X AXIS
C YXIN,YYIN = COORDINATES OF BEGINNING OF Y AXIS
C XDELTA = QUANTITY BETWEEN TIC MARKS CIN X AXIS
C YDELTA = QUANTITY BETWEEN TIC MARKS CIN Y AXIS
C XFIRST = X VALUE OF THE ORIGIN
C YFIRST = Y VALUE OF THE ORIGIN
C CHAR = COMMENTS WRI.TTEN AFTER GRAPH IS PRODUCED
C (CHAR IS READ FROM FILE 25)
C NCHAR = NUMBER OF LINES FROM CHAR TO BE WRITTEN
C
C THE NEXT 6 VARIABLES DEALING WITH SYMBOLS ARE FOR THE
C LABELS ON THE GRAPH. THE SYMBOLS USED TO PLOT POINTS ON THE GRAPH
C ARE CONTROLLED BY THE ICTRL MATRIX.
C
C NSMBL a NUMBER OF SYMBOLS
C HSMBL a HEIGHT OF SYMBOLS



C ASMBL = ANGLE OF SYMBOLS
C XSMBL = X COORDINATE OF SYMBOL
C YSMBL = Y COORDINATE OF SYMBOL
C ISMBL = SYMBOL CODE NUMBER
C A = VECTOR OF DATA FOR THE ORDINATE (FOR ONE CURVE)
C B = VECTOR OF DATA FOR THE ABSCISSA (FOR ONE CURVE)
C NCURVE = NUMBER OF CURVES TO BE PLOTTED ON ONE GRAPH
C A2 COMBINED DATA FOR ORDINATE (NCURVE DATASETS)
C B2 = COMBINED DATA FOR ABSCISSA (NCURVE DATASETS)
C NPTS = NUMBER OF DATA POINTS IN EACH OF A2 AND B2
C XLENGT = LENGTH OF X AXIS
C YLENGT = LENGTH OF Y AXIS
C ICTRL = MATRIX WITH 1 ROW PER CURVE (NCURVE ROWS)
C COL 1 = NUMBER OF POINTS IN THE CURVE
C COL 2 = 0 TO NOT CONNECT POINTS
C COL 3 = 0 TO NOT PLOT WITH SYMBOLS
C OTHERWISE, THE INTERVAL BETWEEN POINTS
C TO BE MARKED WITH SYMBOLS
C COL 4 = SYMBOL CODE, FOR COL 3 = 0
C COL 5 = SYMBOL SIZE, FOR COL 3 = 0
C

PARAMETER(IP1=2000)
PARAMETER(IP2=5*IP1+2)
CHARACTER*50 TITLE,CHAR,XAXIS,YAXIS
COMMON/P1/TITLE(11),XTITLE(11),YTITLE(11).ATITLE(11).
&HTITLE(11),HSMBL(11),ASMBL(11),YSMBL(11),XSMBL(11).ISMSL(11).
&NSMBL,NCHAR,NTITLE,A1(4),B1(4),A(IP).B(IP1).NCURVE
&,ICTRL(5,5),A2(IP2),B2(IP2),XAXIS,YAXIS
EXTERNAL CCS_$AXIS (DESCRIPTORS)
EXTERNAL CCS_$DFACT (DESCRIPTORS)
EXTERNAL CCS-$LINE (DESCRIPTORS)
EXTERNAL CCS_$PLOT (DESCRIPTORS)
EXTERNAL CCS_$PLOTS
EXTERNAL CCS_$SCALE (DESCRIPTORS)
EXTERNAL CCS_$SYMBOL (DESCRIPTORS)

C************ ******* ***** ****** ****** ******* ***** *********

C
C DEFAULT VARIABLE ASSIGNMENTS
C
C

IF(ICTRL3.NE.0) GO TO 200
C

TITLE(3) = 'STANDARDIZED RESIDUALS VS. OBSERVATION NUMBER'
TITLE(4) = 'ORIGINAL RESIDUALS VS. OBSERVATION NUMBER'
TITLE(5) = 'STANDARDIZED RESIDUALS VS. PREDICTED RESPONSE'
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IF(NCURVE.EQ.5) GO TO 140
DO 130 0=1,5
DO 130 I=(NCURVE+1),5

130 ICTRL(I,J) = 0
140 XAXIS = 'OBSERVED RESPONSE'

YAXIS = 'STANDARDIZED RESIDUALS'
IF(ICTRL4.EQ.4.OR.ICTRL4.EQ.5) XAXIS = 'PREDICTED RESPONSE,
IF(ICTRL4.EQ.2.OR.ICTRL4.EQ.3.OR.ICTRL4.EQ.8.OR.ICTRL4.EQ.9)

& XAXIS = 'OBSERVATION NUMBER'
IF(IC.TRL4.EQ.6.OR.ICTRL4.EQ.7) XAXIS z 'PREDICTOR'
IF(ICTRL4.EQ.3.OR.ICTRL4.EQ.5.OR.ICTRL4.EQ.7)

&YAXIS = 'RAW RESIDUALS'
IF(ICTRL4.EQ.8) YAXIS = 'OBSERVED RESPONSE'
IF(ICTRL4.EQ.9) YAXIS = 'PREDICTOR'

C

C*********** ** ***** ***** ****** ****** ******** **** ******

200 IF(ICTRL3.EQ.0) GO TO 210
PRINT
PRINT,' ENTER IBP = 0 TO RETAIN NCURVE. NTITLE, NSMBL. AND NCHAR'
PRINT
PRINT,' II FORMAT'
READ,ISP
IF(IBP.EQ.0) GO TO 210
PRINT,' ENTER NCURVE, NTITLE, NSMBL. NCHAR'
PRINT,' CURRENT VALUES: NCURVE =',NCURVE
PRINT,' NTITLE z'.NTITLE
PRINT,' NSMBL s'.NSMBL
PRINT,' NCHAR s'.NCHAR
PRINT
PRINT,' 41 FORMAT'
READ,NCURVE,NTITLE,NSMBL,NCHAR

C CALCULATE NPTS
210 NPTS = 0

DO 220 I=1,NCURVE
220 NPTS = ICTRL(I,1) + NPTS

C INITIALIZE THE SCREEN
CALL CCS $PLOTS
IF(ICTRL3.NE.0) GO TO 230

C THE AXES ARE SCALED USING ALL THE POINTS
CALL CCS.$SCALE(A2,XLENGT,NPTS,1)
CALL CCS_$SCALE(B2,YLENGT,NPTS,1)

C THE SCALING VALUES ARE RETURNED IN A2 AND 52
XDELTA=A2(NPTS+2)
YDELTA=B2(NPTS+2)
XFIRST=A2( NPTS+1)
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270 CALL CCS-$AXIS(XXIN,XYIN,XAXIS,50,XLENGT,0..XFIRST,XDELTA)
CALL CCS_$AXIS(YXIN,YYIN,YAXIS,-50,YLENGT,90..YFIRST.YDELTA)
IF(NSMBL.EQ.0)GO TO 310
DO 300 I=1 ,NSMBL
IF(ICTRL3.EQ.0)GO TO 300
PRINT
PRINT,' ENTER IHC = 0 TO RETAIN COORDINATES OF SYMBOL',I
PRINT,' IHA = 0 TO RETAIN HEIGHT AND ANGLE OF SYMBOL'.I
PRINT,' IHS = 0 TO RETAIN THE SAME SYMBOL CHARACTER'
PRINT
PRINT,' 31 FORMAT'
READ,IHC,IHA,IHS
IF(IHC.EQ.0) GO TO 280
PRINT,' ENTER XSMBL(I),YSMBL(I) . COORDINATES OF SYMBOL',!
PRINT,' CURRENT VALUES: XSMBL(I) ='.XSMBL(I)
PRINT,' YSMBL(I) -'.YSMBL(I)
PRINT
PRINT,' 21 FORMAT'
READ,XSMBL(I),YSMBL(I)

280 IF(IHA.EQ.0) GO TO 290
PRINT,' ENTER, HSMBL(I) = HEIGHT OF SYMBOL I'
PRINT,' ASMBL(I) = ANGLE OF SYMBOL I'
PRINT,' CURRENT VALUES: HSMBL(I) ='.HSMBL(I)
PRINT,' ASMBL(I) .'.ASMBL(I)
PRINT
PRINT,' 21 FORMAT'
READ,HSMBL(I),ASMBL(I)

290 IF(IHS.EQ.0) GO TO 300
PRINT,' ENTER ISMBL(I) = CODE FOR SYMBOL'.I
PRINT,' CURRENT VALUE: ISMBL(I) a'.ISMBL(I)
PRINT
PRINT,' II FORMAT'
READ,ISMBL(I)

300 CALL CCS-$SYMBOL(XSMBL(I),YSMBL(I),HSMBL(I).ISMBL(I),ASMBL(I).0)
310 IF(NTITLE.EQ.0)GO TO 370

DO 340 I=1,NTITLE

C THE USE OF d AND ICTRL4 IS APPLICATION SPECIFIC.
C I IS ADDED TO ICTRL4 BEAUSE OF THE NUMBERING SYSTEM
C USED IN SUBROUTINE EXEQU OF PROGRAM TEST7 FOR THE
C VARIOUS PLOTS WHICH CAN BE CALLED FROM TEST7.
C

J I
IF(I.GE.3) J = ICTRL4 + 1

IF(ICTRL3.EQ.0)GO TO 340



PRINT
PRINT,' ENTER ITC = 0 TO RETAIN TITLE(I). I-'.d
PRINT,' ITH = 0 TO RETAIN HEIGHT AND ANGLE OF.TITLE(I)'
PRINT,' ITL = 0 TO RETAIN LOCATION OF TITLE(I)'
PRINT
PRINT,' 31 FORMAT'
READ,ITC,ITH,ITL
IF(ITC.EQ.0) GO TO 320
PRINT,' ENTER TITLE(I), I =',J
PRINT,' CURRENT VALUE: TITLE(I) ='.TITLE(J)
PRINT
PRINT,' (A50) FORMAT'
READ 910,TITLE(d)

910 FORMAT(A50)
320 IF(ITH.EQ.0) GO TO 330

PRINT,' ENTER, HTITLE(I) = HEIGHT OF TITLE',J
PRINT,' ATITLE(I) = ANGLE OF TITLE',J
PRINT,' CURRENT VALUES: HTITLE(I) =',HTITLE(J)
PRINT,' ATITLE(I) n'.ATITLE(d)
PRINT
PRINT,' 21 FORMAT'
READ,HTITLE(d),ATITLE(J)

330 IF(ITL.EQ.0) GO TO 340
PRINT,' ENTER XTITLE(I),YTITLE(I) a COORDINATES OF TITLE'.J
PRINT,' CURRENT VALUES: XTITLE(I) =',XTITLE(J)
PRINT,' YTITLE(I) W',YTITLE(J)
PRINT
PRINT,' 21 FORMAT'
READ,XTITLE(J),YTITLE(J)

340 CALL CCS_$SYMBOL(XTITLE(d),YTITLE(J).HTITLE(),TITLE(J).
8 ATITLE(d),50)
IF(ICTRL3.EQ.0) GO TO 370
DO 360 I=1,NCURVE
PRINT
PRINT,' ENTER INPTS = 0 TO RETAIN NUMBER OF POINTS IN CURVE',I
PRINT,' ICV = 0 TO RETAIN ICTRL PARAMETERS FOR CURVE'.I
PRINT
PRINT,' 21 FORMAT'
READ,INPTS,ICV
IF(INPTS.EQ.0) GO TO 350
PRINT,' ENTER ICTRL(I,1) = NUMBER OF POINTS IN CURVE'.I
PRINT,' CURRENT VALUE: ICTRL(I,1) -',ICTRL(I.1)
PRINT
PRINT,' 1I FORMAT'
READ,ICTRL(I,1)

350 IF(ICV.EQ.0) GO TO 360

I',,



PRINT,' ENTER COL 2 = 0 TO NOT CONNECT POINTS'
PRINT,' COL 3 - 0 TO NOT PLOT SYMBOLS'
-PRINT,' OTHERWISE. THE INTERVAL BETWEEN POINTS'
PRINT,' TO BE MARKED WITH SYMBOLS'
PRINT,' COL 4 = SYMBOL CODE (FOR COL 3 = 0)'
PRINT,' COL 5 = SYMBOL SIZE (FOR COL 3 = 0)'
PRINT,' CURRENT VALUES: ICTRL(I,2) c',ICTRL(I,2)
PRINT,' ICTRL(I,3) ='.ICTRL(I.3)
PRINT,' ICTRL(I,4) c',ICTRL(I,4)
PRINT,' ICTRL(I,5) ='.ICTRL(I.5)
PRINT
PRINT,' 41 FORMAT'
READ,ICTRL(I,2),ICTRL(I,3),ICTRL(I,4).ICTRL(I.5)

360 CONTINUE
370 CALL CCS-$PLOT(YXIN,YYIN,-3)

XDELTA=XDELTA/100.
YDELTA=YDELTA/100.

PRINT
PRINT,' ENTER ILN = 1 TO DRAW HORIZONTAL LINES ON PLOTS'
PRINT
PRINT,' II FORMAT'
READ,ILN
IF(ILN.NE.1) GO TO 390

C DRAW SOME LINES ON THE RESIDUAL PLOT GRAPHS BEFORE PLOTTING
C THE CURVES
C
C DRAW A LINE AT Y = 0 FOR ALL RESIDUAL PLOTS
C

IF(ICTRL4.GE.8) GO TO 390
A(1) = XFIRST
A(2) = XFIRST + XDELTA*800.
B(1) = 0.
B(2) = 0.

- NPTS = 2
CALL SCLGPH(A,B,NPTS,O.,INTEQV,XFIRST.XDELTA.YFIRST.YDELTA)

C
C DRAW LINES AT Y = -1,.2,-3 FOR STANDARDIZED RESIDUAL PLOTS
C

IF(ICTRL4.NE.2.,..4D.ICTRL4.NE.4.AND.ICTRL4.NE.6) GO TO 390
DO 380 11=1,3
DO 380 12=1,2
B(1) = Ii
B(2) = I1
IF(12.EQ.2) B(1) = -Il
IF(12.EQ.2) B(2) = -Il



380 CALL SCLGPH(A,B,NPTS,O.,INTEQV,XFIRST.XDELTA.YFIRST.YDELTA)
C

C
C NOW PLOT THE CURVES
C

390 LPTS = 0
DO 410 I=1,NCURVE
U1=LPTS+1
02=LPTS+ICTRL(I,1)
LPTS = LPTS + ICTRL(I,1)
IF(ICTRL(I,2).EQ.0)GO TO 410
ICOUNT = 0
DO 400 d=J1,J2
ICOUNT=ICOUNT+1
A(ICOUNT)=A2(J)

400 B(ICOUNT)=B2(d)
CALL SCLGPH(ABICTRL(I,I),0.,INTEQVXFIRST.XDELTA.YFIRST.YDELTA)

410 CONTINUE
C
C THE SYMBOLS ARE PLOTTED
C

LPTS=O
DO 430 I=1,NCURVE
J1=LPTS+1
J2=LPTS+ICTRL( I,1)
LPTS = LPTS + ICTRL(I,1)
IF(ICTRL(I,3).EQ.0)GO TO 430
ICOUNT=0
DO 420 d=J1,J2,ICTRL(I,3)
ICQUNT=ICOUNT+1
A(ICOUNT)=A2(d)

420 B(ICOUNT)=B2(d)
NPTS1=ICOUNT*(-I)
CALL SCLGPH(A,B,NPTSI,FLOAT(ICTRL(I,5)).ICTRL(I,4)XFIRST.DELTA,

& YFIRST,YDELTA)
430 CONTINUE

CALL CCS-$PLOT(0.,0.,33)
C
C ILMJK IS A DUMMY VARIABLE WHICH MUST BE ENTERED AT THE TERMINAL
C BEFORE PROCEEDING. THE PURPOSE OF THE FOLLOWING LINE
C IS TO ALLOW PRODUCTION OF A CLEAN COPY OF A GRAPH WHEN AT A
C SCOPE TERMINAL SUCH AS THE TEK 4015.

READ,ILMJK
REWIND 25



IF(NCHAR.EQ.0) GO TO 450
DO 440 I=1 ,NCHAR
READ(25,920)CHAR

920 FORMAT(A50)
440 WRITE(6,930)CHAR
930 FORMAT(10X,A50)
450 PRINT

PRINT,' ENTER ICTRL5 * 0 IF FINISHED WITH PLOT'
PRINT
PRINT,' 11 FORMAT'
READ, ICTRL5
IF(ICTRL5.EQ.0) RETURN
ICTRL3 = 1
XDELTA = XDELTA*100.
YDELTA = YDELTA*100.
GO TO 200
END

00



Appendix C

Consistent System Macros for Interactive Stepwise Regression

C.1 Introduction

The 5 programs described in this Appendix were written for use on the

Consistent System (CS) as implemented on the Multics operating system on the

Honeywell 6800 computer facility at the Massachusetts Institute of Technology.

The programs comprise CS commands and are called CS macros.

BSR, ENT VAR, and DEL VAR are used to perform interactive stepwise multiple

least squares regression. CALCRES, PQSRES, and NMPLOT are used for

analysis of a developed model. The input arguments for and restrictions on

the use of these macros are explained in Section C.2. The macros are listed

in Section C.3. CS documentation should be consulted for further information.

C.2 Using the Macros

C.2.1 General Information

Runnable macros must be created from the files mentioned above before

they can be used. The runnable macros should be given names which are

different from, but similar to, the original file names. An example of the

necessary command is

makemacro file filem

where make macro is the CS command, file is the name of the file which contains

the text of the macro, and filem is the name of the runnable macro. The macro

is then invoked by typing filem followed by the argument list. The

arguments do not need to have the same names as in the macro text. They are

recognized by position in the argument string.
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Files named input, cpm, and sw will appear in the working directory

when these macros are used. They may be deleted when the work is completed.

C.2.2 Adding and Removing Variables

BSR, ENTVAR, and DELVAR are used to add and remove variables from

a model.

BSR prepares a means and cross-products matrix for use in the macros

ENTVAR and DELVAR. BSR must be called before any of the other macros are

called and then is not called again until a new data set is used. The

input arguments are PR and DTMX. When PR = 0 the coefficient matrix is

printed at the terminal. When PR is positive nothing is printed. The

coefficient matrix printed when PR = 0 includes coefficients, degrees of

freedom for the coefficients, F statistics, and significance levels for the

F statistics. DTMX is a labeled genarray file in which the dependent variable

is in the last column. Some of the macros will not work unless the variables

are labeled. DTMX is also an input argument for the model analysis macros.

ENTVAR enters specified variables into the model using the CS

routine QSWEEP. The input arguments are PR followed by a list of variables

to be entered. PR has the same function as in BSR. The variables are

identified by column number in DTMX.

DELVAR removes variables from the model using the CS routine

QRSWEEP. The input arguments are the same as for ENTVAR.

C.2.3. Model Analysis

CALCRES, PQSRES, and NMPLOT calculate model residuals and produce

information from those residuals.
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CALCRES produces 2 files containing residuals. 'fit' contains the

residuals and associated predicted responses. 'seq' contains residuals in

the sequence in which the data was given in DTMX. The various CS plotting

routines may be used to produce graphs from these files. They may also

be printed. The Durbin-Watson statistic is calculated and printed at the

terminal. DTMX is the input argument.

PQSRES plots the partial residuals of the dependent variable against

the partial residuals of a variable which is not yet entered into the model.

A line with the slope of the coefficient of that variable, were it entered

in the model along with the variables already in the model, is also plotted

on the graph. PQSRES is set up for use at graphics terminals but may

easily be changed to work at line printers by changing the plotting calls.

The input arguments are DTMX and VARNBR, the number of the independent variable.

NMPLOT plots the residuals against a normal cumulative probability

distribution. NMPLOT is also set up for use at a graphics terminal and

may also be changed to work at a line printer by changing the plotting

call. The input argument for NMPLOT is DTMX.

C.3 Macro Listings

The 6 macros described in this section are listed on the following

pages.
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&c BSR
&C
&C This macro prepares a means and crossproducts
&C matrix for use in an interactive stepwise regression
&C using qsweep and qrsweep. It also prints the regression with
&C only the constant term entered.
ac pr = 0 to print the coefficient matrix
&C pr = any positive number to not print the coefficient matrix
&c dtmx = the data matrix with the response in the last column.
&p pr dtmx
eval:a cpm:=crossp:x(dtinx)
copyfile:a cpm sw
&if pr end
eval:a rgqsig:x(cpm,cpm) print coe7s,rsq
&label end

&c ENTVAR
&C
&c This macro enters variables into the regression model
&C using qsweep. cpm must be prepared by crossp. sw is overwritten
&c Input arguments: pr followed by a list of variables to be entered, where
&C pr = 0 to print the coefficient matrix
&c pr = any positive number to not print the coefficient matrix
&a directions input
&t pr vnbr
concatenate:a "makeattribute:a " input 0 vnbr" input
run:a input
eval:a pr:=subse t:a(vnbr,"(1=1)")
eval:a vnbr:=subset:a(vnbr,"(1^=1)")
cm:a vnbr:=vnbr+1
eval:a sw:=qsweep:a(sw with swa(vnbr$))
&if pr end
eval:a rgqsig:x(sw,cpm) print coefs,rsq
&label end



&c NMPLOT
&C
&C This macro produces a normal plot of the residuals from
&C a regression model developed with the CS sweep operators.
&C dtmx = complete data matrix with the response in the last column
&C cpm = means and cross products matrix from crossp
&C sw = current swept matrix from qwseep or qrsweep
&p dtmx
&t res coefs jres
eval:a coefs:=rgqsig:x(sw,cpm)
eval:a res:=residuals:x(dtmx,coefs)
eval:a jres:=extractattr:x(res with attr(3))
eval:a normplot:x(jres) print using plotl:a

&c PQSRES
&C
&C This macro creates a partial residual plot for a variable not
&C already entered in the model. This is a companion
&C macro for bsr, entvar, and delvar.
&C
&C dtmx = the complete data matrix with the response in the last column
&C varnbr = the variable number for which the partial residual
&c plot is to be created.
&c cpm means and cross products matrix from crossp
&C sw = current swept matrix from qsweep or qrsweep
&p dtmx varnbr
&t resi coefsl res2 coefs2 b rall presx presy prmtx res3 fit
cm:a varnbr:=varnbr+1
eval:a coefsl:=rgqsig:x(sw,cpm)
eval:a resl:=residuals:x(dtmx,coefsl)
eval:a sw:=qsweep:a(sw with swa(varnbr$))
eval:a coefs2:=rgqsig:x(sw,cpm)
eval:a res2:=residuals:x(dtmx,coefs2)
eval:a b:=subset:a(coefs2,"(1=varnbr$)","(2=11")
eval:a rall:=extractattr:x(res2 with attr(3))
eval:a presy:=extract _attr:x(resl with attr(3))
cm:a presx:=(presy-rall)/b
eval:a res3:=rgattr:x(presy on presx ret(residuals))
eval:a fit:=extractattr:x(res3 with attr(I))
plot2:a presx presy
plotl:a presx fit -noerase
eval:a sw:=qrsweep:a(sw with swa(varnbr$))

0:,
'n



&c DEL-VAR
&C
&C This macro deletes variables from a regression model.

&C It is a companion macro for ent-varm.
&a directions input
&t pr vnbr
concatenate:a "make-attribute:a 0 input 0 vnbrO input
run:a input
eval:a pr:=subset:a(vnbr,"(1=1)")
eval:a vnbr:=subset:a(vnbr,"(1^=1)")
cm:a vnbr:=vnbr+1
evalia sw:=qrsweep:a(sw with swa(vnbr$))
&if pr end
eval a rgqsig:x(sw,cpm) print coefs,rsq
&label end

&c CALCRES
&C
&c This macro is used to calculate the residuals of a
&c model created with the sweep operators. The residuals.
ac coefficient matrix, R squared, vcvcf. ANOVA. seq. fit.
&c and the Durbin-Watson statistic are calculated.
&c seq and fit are matrices for plotting the residuals in
&C sequence and against the fitted response.
&C A file named days with consecutive numbers for
&C each observation should be created before
&c this macro is used.
&p dtmx
&t ri
eval :a coefs:=rgostats:x(sw,cpm ret(coefs) save(rsq:ursq) sav&(vCvcf:wvCvcf) save(anov:-anov))
eval:a res:=residuals:x(dtmx,coefs)
eval:a fit:=extractattr:x(res with attr(2))
eval:a rl:=extractattr:x(res with attr(3))
eval:a fit:=dtmxjoin:x(fit,rl)
eval:a seq:=dtmxjoin:x(days,rl)
eval:a durbin-watson:x(rl) print




