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ABSTRACT

Optimal irrigation control is performed. The control accounts for
the intraseasonal variation of the crop water requirements and for tie
dynamics of soil moisture depletion process. The clustering dependence
structure of rainfall occurrences is explicitly accounted for. Stochas-
tic rainfall inputs to the soil-plant system are characterized by storm
intensities, storm durations, interarrival times, and number of storms
in a given period of time. Precipitation occurrences are modelled as a
Neyman-Scott cluster process; and using Palm-Khinchin theory conditional
distributions of the time to the next rainfall events are derived. These
distributions are conditional on part of the immediate history of storm
arrivals. The derived distributions are seen to possess characteristics
desired for short term forecasting of rainfall occurrences. Particular-
ly, they exhibit the ability to detect short term trends in precipita-
tion occurrences.

The probabilistic description of precipitation is coupled with a
probabilistic description of cumulative infiltration from storms and a
Markov chain approach to the dynamics of soil moisture throughout the
growing season. Conditional probabilities of soil moisture are derived
and used within a Stochastic Dynamic Programming algorithm to obtain ir-
rigation decisions. The control is obtained in the form of decision
functions which yield the optimal irrigation depth as a function of soil
moisture content at the root zone, volume of irrigation water available,
and number of days since the last rainfall occurrence.

Case study results confirm the existence of a clustering dependence
structure in rainfall occurrences as well as the goodness of the Neyman-
Scott process in its modelling. However, there appears to be no signi-.
ficant difference in expected maximum net benefits when comparing re-
sults obtained with the control model under the homogeneous Poisson as-
sumption and under the conditional Neyman-Scott model. Furthermore,
slightly lower expected benefits are obtained with the conditional Neyman-
Scott model than with the non-homogeneous Poisson model.
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Chapter 1

INTRODUCTION

1.1 General Description of the Problem

Irrigated agriculture is one of the largest consumptive users of

water in the world (C6rdova and Bras, 1981). Increasing water

scarcity produced by ever increasing alternative demands, and a

steady rise in irrigation costs, such as water costs, and labor and

energy costs, require that greater attention be paid to developing

more efficient methods of irrigation water management. Optimal

management of irrigation water could eventually lead to significant

water conservation, to lower or steadier water costs, and to more

reliable food supply in a world faced with forecasts of severe

world-wide food shortages.

The general problem to be addressed is the optimal allocation

of a finite amount of irrigation water throughout the growing season;

specifically the problem is determining the timing of applications

and the amount of water to be applied to a particular crop so as

to optimize a given measure of performance; this is commonly known

as the irrigation scheduling problem.

Considerable effort has been devoted to the study of the complex

inturact-ons of the main factors affect~ing the irrigation Hcheduling

problem such as the characteristics of the climate-soil-plant system.

In this work, the main effort is devoted to the climate portion of

1



the climate-soil-plant system; specifically, to the modelling of the

precipitation process.

Stochastic rainfall inputs to the soil-plant system are charac-

terized by rainfall intensities, rainfall durations, inter-arrival

times and number of storms within a given period of time. The random

input to the soil, defined as the cumulative infiltration from a

given rainstorm, is determined not only by the dynamics of the soil

moisture depletion process, but also by the characteristics of the

precipitation process. Consequently, the modelling of the rainfall

is of primary importance in the achievement of efficient water use;

especially in regions where water is a limited resource but where

rainfall plays an important role as a water supply source.

In recent years, the mathematical theory of Point Processes

has played an important role in describing the precipitation process

and other processes driven by rainfall inputs (Gupta and Waymire,

1981). Kavvas and Delleur (1981) have shown the ability of the so-

called cluster processes in modelling the statistical dependence

of rainfall occurrences in the time domain. In particular, these

authors apply the Neyman-Scott cluster process to model rainfall

occurrences in Indiana. The main appeal of the cluster models is

not only their ability to represent and preserve the statistical

dependence in the occurrence of rainfall but also their ability to

represent mathematically some recognizable basic physical structure

of precipitation; namely, the clustering of rainfall events in time

and space.
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Storm arrivals have been often modelled as a Poisson process.

This assumes that the number of storms within disjoint time intervals

are independent. Within the context of the irrigation scheduling

problem, C6rdova and Bras (1979) used the Poisson model to obtain

optimal irrigation control. However, the probabilistic independence

of the Poisson assumption implies that the history of past rainfall

occurrences contains no valuable information about the future of

the process.

The existence of a dependence structure in the rainfall

occurrence process in different regions of the world has been

acknowledged by several authors in past years (Gabriel and Neumann,

1957, 1962; Smith and Schreiber, 1973; Kavvas and Delleur, 1975; and

others). More recently, Kavvas and Delleur (1975), Gupta and Waymire

(1981) and others have recognized that this dependence in precipi-

tation is caused by the clustering of the rainfalls in time and space.

Consequently, in this work, the Neyman-Scott cluster process is used

to model the occurrence of rainfall in the time domain. Doing so it

is possible to include into the decision process the conditional in-

formation contained in the history of storm arrivals as the growing

season progresses. In this way, as opposed to the work of C6rdova and

Bras (1981) and Bras and C6rdova (1981), the precipitation model be-

comes dynamic, changing throughout the growing season, according to

the immediate history of storm arrivals.

To summarize, the problem is to allocate a finite amount of

irrigation water during the growing season taking into account the

seasonal variability of the crop response to soil moisture stresses,

3



the dynamics of the soil moisture depletion process, and the random-

ness of the precipitation process. The allocation is carried out

optimally so as to maximize net benefits. The solution is obtained

in the framework of the general irrigation scheduling model presented

by C6rdova and Bras (1981) and Bras and C6rdova (1981). Storm

arrivals are modelled using the Neyman-Scott cluster model to account

for the clustering dependence of the rainfall occurrences. Con-

ditional information, contained in the rainfall occurrence process,

is encoded in the model by deriving conditional distributions of

the time to the next rainfall event. Finally, using Stochastic

Dynamic Programming (SDP), a solution to the problem is obtained as

optimal decision functions which yield the optimal amount of water to

be applied at each decision stage as a function of the soil moisture

content at the root zone, the volume of irrigation water available

and the immediate history of storm arrivals.
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1.2 Literature Review

Recent trends in hydrologic research indicate that the modelling

of hydrologic processes starts by first recognizing their basic

physical structure and then representing it mathematically. This

has been permitted by a better understanding of the physical processes

involved as well as by the use of mathematical tools adequate for

modelling the recognized physical structure (Gupta and Waymire, 1981).

In the following sections a brief literature review on precipitation

modelling and irrigation scheduling is presented. For more detailed

reviews, the reader is referred to Gupta and Waymire (1981), and.

Kavvas and Delleur (1975) on precipitation modelling; and to C6rdova

and Bras (1979), and Rhenals and Bras (1981) on irrigation scheduling.

1.2.1 On Rainfall Occurrences Modelling

Point Processes in general, and Counting Processes in

particular, are naturally suited to describe the occurrence of rainfall

events in time. Rainfall occurrences are modelled by counting the

number of storm events in a given period of time. Depending on the

definition of a rainfall event, the counting is carried out either in

discrete time or in continuous time. However, it should be pointed

out that even though the definition of a storm event becomes obscure

(since storm events do not occur instantaneously), most descriptions

of the storm arrival process are carried out in continuous time.

Among the counting process descriptions, three different types of

models can be identified in the literature. First, there are the
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models that assume that the sequence of rainy days and non-rainy

days has no dependence structure. This assumption leads to the well

known counting processes with independent increments. Second, there

are the models that assume that the dependence structure of the

sequence of rainy days and non-rainy days is Markovian. Finally,

there are the models that recognize that clustering is the basic

kinematic structure of space-time rainfall, and that this structure

produces, in general, a non-Markovian dependence in the rainfall

counts.

The sequence of rainy and non-rainy days can be represented by

the binary sequence {W.}, where W. is equal to one if day i is rainy;

and equal to zero otherwise.. Models in the first of the above cate-

gories assume that the W 's conform a sequence of independent and

identically distributed random variables, with Pr[W =1] = p and

Pr[Wi=J] = 1-p. In discrete time, this assumption gives rise to the

Binomial model for the random variable counting the number of storms

in a given time interval. In continuous time, the above assumption

leads to the well known and widely used Poisson models. Several

authors have used the Poisson assumption to model rainfall occurrences.

The complete spectrum of the Poisson models has been used; from the

simple homogeneous model, to the compound and inhomogeneous forms of

the Poisson model (Grant, 1938; Thom, 1959; Shane, 1964; Todorovic

and Yevjevich, 1969; Duckstein, et al., 1972; Eagleson, 1978). The

widespread use of the models with independent increments stems out

from their simplicity, their manageability, and the ease with which

their complete stochastic description is achieved as a -simple product

6



of marginal distributions. In the context of the irrigation scheduling

problem, C6rdova and Bras (1979) used the inhomogeneous Poisson model

to describe the process of storm arrivals.

Acknowledging the inherent drawback of the independence assumption,

some authors have resorted to assuming that the sequence of rainy days

and non-rainy days has a Markovian dependence structure. First order,

as well as higher order Markov models have been assumed to describe

rainfall occurrences. As in the case of the Poisson model, both the

homogeneous and the inhomogeneous forms of the models have been used

(Gabriel and Neumann, 1957; Gabriel, 1959; Gabriel and Neumann, 1962;

Caskey, 1963; Wiser 1965).

One of the main drawbacks of the above modelling schemes is their

strongly localized applicability. In fact, for both the Poisson models

and the Markov models, there exists evidence in the literature to

support the fact that even though these models may describe, reasonably

well, certain sets of data, they fail to do so when tested using

different data (Wiser, 1965; Smith and Schreiber, 1973). With respect

to the Poisson model, even the definition of a storm event has a

bearing on how well rainfall occurrences can be described with the

model in a given region (Todorovic and Yevjevich, 1969). Furthermore,

some authors first assume the process to be Poisson, and then define

a storm event to fit the assumption (Restrepo and Eagleson, 1979).

A stochastic process can be completely described by defining

all of its finite dimensional probability distribution functions. In

the case of the Poisson model it is easy to do so, since the indepen-

7



dence assumption allows one to obtain the above distribution functions

as products of simple marginal distributions. However, the independence

assumption constitutes the main drawback of the model. In the Markovian

case, only the marginal description of the counting process seems

possible.

Both the Poisson models and the Markov models have been shown

many times to be poor models for the rainfall occurrences (Wiser,

1965; Smith and Schreiber, 1973; Kavvas and Delleur, 1975). The

former because of the independence assumption and the latter because

the Markovian dependence fails to account for the observed clustering

in the storm arrivals. Finally, both types of models can be con-

sidered as black box models in the sense that they are fitted to

particular sets of data. Thus, their components and parameters

lack physical meaning, and the models, as a whole, fail to represent

any physical structure of the dynamics of space-time rainfall.

In the last category of models are those that account for the

clustering dependence of the rainfall occurrences in time and space.

The identification of certain physical features common to storm events

.has been possible from systematic observations of diverse types of

storms (Petterssen, 1956; Houze, 1969; Austin and Houze, 1972).

Gupta and Waymire (1979) and Waymire and Gupta (1981) provide an

excellent description of the main characteristics of space-time

rainfall. With respect to the clustering dependence, Kavvas and

Delleur.(1975) use the Neyman-Scott cluster model to describe storm

arrivals in time. Rainfall occurrences in the form of clusters are

assumed to be triggered by some rainfall generating mechanism (RGM)

8



(cyclone belts, fronts, thunderstorm clouds, etc.). These RGM's

constitute the primary level of the .rainfall occurrence process.

The actual occurrence of storms, triggered by the RGM's, constitutes

the secondary level of the process. The observed dependence in the

rainfall occurrences is explained by the superposition of storms

triggered by different RGM's, or by the persistence of a certain

type of RGM, over a given area. They applied the model, successfully,

to describe rainfall occurrences in Indiana. Cluster models have

also been shown to be adequate for modelling the space-time evolution

of.precipitation (Gupta and Waymire, 1979; Waymire and Gupta, 1981).

The advantages of the cluster models can be summarized as follows.

First, they permit the definition of the complete stochastic structure

of the process, a characteristic that is highly desirable for any

model. This is easily obtained by using the concept of probability

generating functionals (p.g.fl.). Second, their dependence structure

is general enough to render the model generally applicable. Third,

they are models physically based, in the sense that some physical

meaning can be assigned to the model components and to their parameters.

And last, but most important, they account for the- observed clustering

dependence of the rainfall occurrences.

1.2.2 On Irrigation Scheduling Problem

The irrigation scheduling problem can be viewed as a

finite horizon, -stochastic, multistage decision process. The ultimate

objective in solving the scheduling problem is to find a sequence of

irrigation decisions that optimizes a pre-specified measure of

9



performance, under a given set of constraints and initial conditions.

This objective can only be achieved after a description of the complex

interactions taking place in the climate-soil-plant system. Several

solutions to the irrigation scheduling problem can be found in the

literature; all of them differing according to how the authors chose

to model each subsystem of the climate-soil-plant system; and

according to the solution algorithms employed.

Systems analysis techniques, such as simulation, linear pro-

granuning, and dynamic programming have all been used to determine

optimal policies. Simulation has been used to derive transition

matrices for the soil moisture content within decision stages. Linear

programming has been used to obtain optimal cropping patterns, as

well as optimal irrigation scheduling when the irrigation appli-

cations are on fixed dates (Blank, 1975; Matanga and Marifto, 1977;

Matanga and Marifio, 1979). Stochastic dynamic programming has also

been widely used, especially when the irrigation applications are on

variable dates (De Lucia, 1969; Hall and Dracup, 1970; Dudley, et al.,

1971; Matanga and Mariflo,.1979; C6rdova and Bras, 1979; Rhenals and

Bras, 1981).

The climate subsystem of the climate-soil-plant system is encoded

in the models by describing potential evapotranspiration and precipi-

tation. Potential evapotranspiration is often assumed deterministic

(De Lucia, 1969; Hall and Dracup, 1970). It has also been considered

as deterministic but varying throughout the growing season (C6rdova

and Bras, 1979) or considered stochastic and modelled as a first order

10



Markov process (Rhenals and Bras, 1981). The same comments can be

made about the modelling of precipitation. Some authors ignore it

all together (Rhenals and Bras, 1981), while some others consider

it stochastic (De Lucia, 1969; Dudley et al., 1971; C6rdova and

Bras, 1979).

In general, most authors describe yield as a function of actual

evapotranspiration. However, there exist discrepancies related to

the form of this relationship. Some authors prefer a multiplicative

form (Jensen, 1968; Minhas, et al., 1974; Hanks, 1974), others an

additive formulation (Hiller and Clark, 1971; Stewart, 1974; Blank,

1975; C6rdova and Bras, 1979). Finally, the soil system is generally

described in terms of the soil moisture content at the root zone. A

water balance in a conceptual soil column defines this state variable.

The water balance is carried out either analytically (C6rdova and

Bras, 1979) or by simulation (Matanga and.Mariflo, 1979).

11



1.3 Thesis Outline

Chapter 2 reviews some elemental but important concepts from

the- theory of Point Processes. Probability Generating Functions (PGF),

probability generating functionals (p.g.fl) and cluster processes

are introduced.

The development of the Neyman-Scott cluster process is presented

in Chapter 3. First and Second order moments are presented. Finally,

the conditional distributions of the time to the next rainfall

occurrence are derived.

The general irrigation scheduling model is then described in

Chapter 4. The conditional distributions derived in Chapter 3 are

then included in the model and transition matrices for the soil

moisture state are derived. Finally, the irrigation scheduling

problem is formulated as a multistage decision process and solved

by stochastic dynamic programming (SDP).

Case study results and model calibration issues are presented

and discussed in Chapter 5. Finally, Chapter 6 gives a brief

summary of the work. Conclusions are presented and recommendations

for future research are made.
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Chapter 2

BRIEF REVIEW OF SOME FUNDAMENTAL CONCEPTS OF THE

THEORY OF STOCHASTIC POINT PROCESSES

2.1 Introduction

This chapter presents a very brief and quick review of some of

the fundamental concepts of the Theory of Point Processes. It relies

heavily on the works of Neyman and Scott (1952), Jowett and Vere-

Jones (1971), Daley and Vere-Jones (1971), and Waymire and Gupta (1981).

The review is intended to be neither complete, nor mathematically

rigorous. Instead, its purpose is to provide an understandable

working basis, so that the reader may get a quick glance at the theory,

its computational tools, and its potential applications. Especially,

the emphasis is on those concepts which play a major role in the

development of this study. For more detailed, more complete, and more

mathematically rigorous treatments, the reader is encouraged to study

the above papers and the references given therein.

As was presented in Chapter 1, the main concern of this work is

the modelling of rainfall occurrences in time. The final objective is

the incorporation of the observed clustering dependence structure of

space-time rainfall occurrences into a decision model to optimize

irrigation decisions. To do so in the time domain, rainfall occurrences

in time are conceptualized as a point process. In the following

sections, some elemental concepts from the Theory of Point Processes

are presented. These concepts are needed in order to understand the

13



description of rainfall occurrences as a point process and in the

development of the precipitation model.

Specifically, the first section defines a point process and

establishes the duality between its counting properties and its

interval properties. In the next section, probability generating

functions and functionals are introduced as a means to completely

define a point process in terms of its joint finite dimensional

multivariate distribution functions. Also, first and second-order

moments are introduced. Following, cluster processes are introduced

very briefly. In the last section, some concepts from the Palm-

Khinchin theory are presented. They are used in a later chapter to

derive conditional distributions from the precipitation model.
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2.2 Definition and Basic Properties

A stochastic point process is a mathematical abstraction which

arises when considering point occurrences of certain random phenomena;

for example, rainfall occurrences in time or in space-time, equipment

failure in time, customers arriving at a queueing facility, earthquake

occurrences, etc. Thus, to define a point process, a state space over

which the random phenomenon evolves, and a sequence of points in that

space representing a possible realization of the phenomenon, are needed.

Two basic characteristics can be defined for a point process: first,

the counting properties which relate to the number of points falling

within specified subsets of the state space; and second, the interval

properties which relate to the relative spacings between points.

For example, in the case of rainfall occurrences in time, the counting

properties refer to the number of rainfall occurrences in a given

period of time, while the interval properties refer to the relative

times between the occurrences. Both properties serve to uniquely

define a point process, and in that sense, both are equivalent.

However, the relationship between the counting properties and the

interval properties is not simple. This problem of expressing the

ones in terms of the others is addressed in Section 2.5.

The definition of a stochastic point process is most conveniently

given in terms of its counting properties. To do so, a counting

measure which counts the number of occurrences within sub-regions of

a given space is defined, and then the probability distribution of

these counts is studied.
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Let X be the state space over which the random phenomenon occurs.

X can be taken as the real line R , or in general as any finite dimen-

sional Euclidean space. A point process is, then, a collection of

non-negative integer valued random variables N(A), parameterized

(indexed) by subsets A of the state space X, and for which the

following conditions hold true:

N(0) = 0 (2.1)

where 0 represents the empty set;

N(A) < (2.2)

with probability one for bounded sets A; and

N U An N(A (2.3)

_n=1 J n=1

with probability one for mutually disjoint sets Al, A2. . . . . .

Thus, the non-negative integer valued random variable N(A) represents

the number of occurrences of some random phenomenon within the interval

or region A C X.

Consider now Q as the family of all countable sequences of points

in X:

16



w = {x I
n

n e Z ={1, 2, ... }
+

where w represents a possible realization of point occurrences in X.

A fundamental theorem in the Theory of Point Processes states that

every point process, N(-), induces a unique probability measure,

Pr, on Q, and conversely (Waymire and Gupta, 1981; also see Moyal,

1962 for proof of theorem). The counting measure for the point process,

N(-), is defined for each possible realization w e 0 as:

N(A,w) = card{n: xn c wfnA} , w E: , A c X (2.5)

The counting measure of equation 2.5, counts the number of

occurrences of some random phenomenon in a region A C X, which were

produced by a particular realization w e Q. Observe that in this

sense, the counting measure description of a point process, N(-),

is a function of each possible realization w, of the random phenomenon.

Thus, it should be clear that there is a one-to-one correspondence

between the probability space associated with the sample space, &, and

the space of non-negative integer valued counting measures, N(-).

Consequently, a stochastic point process can be defined as a mapping

from the former space into the latter. With this in mind, and assuming

that w c 0 is mapped into N(-), with value N(A,W) on A C X, the con-

ditions 2.1 through 2.3 can be expressed as:

17
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a) Let {A }, n e Z+, be a decreasing sequence of bounded
n+

sets A, such that as n + ', A + 0; then:

Prfw: N(A ,w) + 0} = 1 (2.6)

b) Let A be any bounded set, then:

Pr{w: N(A,w) < o} = 1 (2.7)

c) For every pair of disjoint sets A, A 2 ,

Pr{w: N(A 1U A2 ,w) = N(A1 ,w) + N(A2,W)1 = 1 (2.8)

where w = {x I E : is a possible realization, and A C Xn

represents subsets of the state space. N(-,-) is as defined

in equation 2.5.

According to equation 2.5, the counting measure, N(-), of a point

process is a function of w. However, for notational convenience

and unless otherwise stated, N(-) and N(-,-) are used interchangeably

in the sequel. But it should be stressed again that N(-) E N(-,-) is

well defined only as a function of a realization of the random pheno-

menon.

The complete mathematical definition of a stochastic point process,

as introduced above, is obtained by specifying its complete finite

dimensional structure. This can be accomplished by specifying all

18



of its joint finite dimensional multivariate probability distribution

functions (Daley and Vere-Jones, 1971). In the next section, this

complete mathematical description is obtained straightforwardly

after the introduction of the probability generating functionals

(p.g.fl.).
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2.3 Moments and Probability Generating Functionals

The moments of a point process to be discussed in this section,

refer to the counting measure description of the point process.

The first moment or expectation measure:

M (A) 2 E{N(A)} (2.9)

is said to exist when it is finite for all bounded sets A. In

equation 2.8, E{-} stands for the expectation operator. In general,

higher order moments can be defined as:

M r(A ,..., A r E{N(A1 ) ... N(A r)} (2.10)

It should be stressed that the second-order moment measure

M2 - E{N(A ) N(A2)} can indicate dependence between N(A ) N(A1 ,w)

and N(A2) N(A2 2w).

The probability generating functional (p.g.fl.), introduced

below, is a natural generalization of the probability generating

function (PGF), from a non-negative integer valued random variable to

an infinite family N(-) of non-negative integer valued random variables.

Let A ... Ak, be fixed but arbitrary subregions of X. The joint

distribution of the random vector [N(A ), ... , N(Ak)] can be uniquely

described in terms of its multivariate PGF (Feller, 1968) as:
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k
N(An)

g(t1, ... , tk) = E N(n , 0 < t < 1 , 1< n < k (2.11)

n=1

or more explicitly:

00 O 00 k .

g(t , .9,tk t i n Pr{N(A =i,N(A2 2. . N.(Ak) =k
1 k. 12

=0 j 20 k=0 n=1

0 < t n 1 - n < k

(2.12)

A PGF so defined is indefinitely differentiable with respect to

all of its arguments for 0 < t < 1 and 1 < n < k. The partial
n

derivatives of the PGF are related to the multivariate joint dis-

tribution of the random vector [N(A1), ... , N(Ak)], by:

35j2 +...+j k ka - g(t1 ,...tk~
a, 9t t n109tkPr{N(A)i ,...,N(Ak=k1 j= j2kH

3 at2 at k n- =
S=t2=..tk=0

(2.13)

Moments of any order are also related to the partial derivatives

of the PGF. In particular, the first and second-order moments can be

expressed as follows. The expectation of the number of occurrences

of A is (Appendix A):
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M (A) E E{N(A)} = ag(t)
.1. at (2.14)

t=1

The variance of N(A) is (Appendix A):

2 2agt) + 2 ~t agtl

M2 (A,A) var[N(A)] = ag(t) a 2 t) atj
t=1

Finally, the covariance between N(A ) and N(A2) is (Appendix A):

2
a2g(t1 ,t2 )

M2 (A ,A2) cov[N(A ),N(A2 at1 at 2

t =t2 1

[ag(t 1 ,t 2 )

at
1

t =t2 =

ag(t 1,t21

a t2  2
2=t =1J

Now, in order to define the p.g.fl., first define the stochastic

integral of a real valued function f on X, with respect to the point

proc.ess N(-) as:

IX
f(x) dN(x,W)

= f(Xn)
n

w = {x }n

n e Z+ E {1, 2, ... 1

where N(-,-) is as defined in equation 2.4.

Equation 2.10 can be rewritten as:
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k

g(t,..., tk) = E exp log 1 t n

n=1

k

g(t1,..., tk) =E exp N(An lo8 d) (2.18)

n=1

Keeping in mind definition 2.17, let (() be the function on X

given by:

tn x e An I < n < k

(x) k (2.19)

1 ,K U A n
n=_1

then, using the stochastic integral defined in equation 2.17:

k

log (x) dN(x) = N(A )log tn (2.20)

X n=1

Substituting equation 2.20 in equation 2.18:

g(t ,...,tk E{exp [f log (x) dN(x)]} (2.21)

From equation 2.21, it is clear that in order to represent the

entire finite dimensional structure of a point process N(-), and

consequently its complete probabilistic structure, it is only necessary

to consider the following functional (Waymire and Gupta, 1981):
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G( ) = E{exp[f log(x) dN(x)]} (2.22)

X

for arbitrary real valued functions C(-) on X such as those defined in

equation 2.19. In general, the function (-) has to satisfy only the

following conditions:

0 < F(x) < 1 , x E X (2.23)

and, for a given x outside a defined subset of X:

(x) 1 (2.24)

The functional defined by equation 2.22 is referred to as the

probability generating functional of the point process N(-). The

p.g.fl. is a powerful, but simple, transform technique due to Moyal

(1962). Its development and use have been expanded by Vere-Jones

(1968, 1970), and Westcott (1972). More recently, Waymire and Gupta

(1981) have also presented the p.g.fl. and used it in the context of

modelling physical random phenomena. The p.g.fl. is absolutely

necessary if a complete stochastic description of a point process is

needed. In a later chapter, it will be shown how, with suitable

choices of the function (x) defined by conditions 2.23 and 2.24, all

the joint finite dimensional multivariate probability distribution

functions of a point process can be obtained from its p.g.fl., thus

obtaining a complete stochastic description of the point process.
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2.4 Cluster Processes

One of the most common types of dependence structure encountered in

natural phenomena is the so-called clustering dependence. In Chapter 1,

it was stressed that this kind of dependence has been determined to

exist in the occurrence of rainfall in time and space. In fact,

authors like Le Cam (1961), Kavvas and Delleur (1975, 1981), and

Waymire and Gupta (1981) have acknowledged this cluster structure in

the context of precipitation modelling. The spatial distribution of

galaxies has also been hypothesized to occur in clusters and modelled

as such by Neyman and Scott (1952). Cluster dependence structure

has also been observed in the occurrence of earthquakes and their

after-shocks. Vere-Jones (1970) used cluster processes to model

earthquake occurrence. In fact, the literature is full of examples of

various natural phenomena exhibiting clustering behavior. In the

hydrologic literature, this is true, especially during recent years,

when works by Kavvas and Delleur (1975, 1980), Kavvas (1982), and

Waymire and Gupta (1979, 1981) have popularized the use of cluster

models.

One very important class of cluster processes is the so-called

Moyal Cluster Processes. They are the superposition of two different

point processes, and can be constructed in the following manner.

Define on X, a point process N1 () as the process of cluster centers.

Also, for each x e X, define N2(-/x) as the point process of cluster

members. Then, the cluster process is given by:
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NN() = N2  X) (2.25)

x eN(-)

The p.g.fl. of the cluster process defined in equation 2.25 is

(Waymire and Gupta, 1981):

G()= G {G /x)} (2.26)

where G1 () is the p.g.fl. of N1 () and G2 (-/x) is the p.g.fl.

of N2/*

Among the members of the class of cluster processes defined by

equations 2.25, the one used in this work is the so-called Neyman-Scott

cluster process. This model was introduced by Neyman and Scott (1952)

to model the spatial distribution of the galaxies. The cluster process

of equation 2.25 becomes a Neyman-Scott cluster process whenever the

process of cluster centers N (-) is Poisson and whenever a random

number of points N2(-/x) are independently distributed about the

cluster centers according to a common distance distribution. When

cluster models of the kind presented above are used for modelling

precipitation occurrence in time, one effectively assumes that rainfall

occurrence is a two-level process. In the primary level, or parent

process, there is the occurrence of rainfall generating mechanisms

(RGN's), N1 (-), or cluster centers. In the secondary level, for each

cluster center at x, there is the actual associated number of rainfall

events, N2 (-/x), or cluster members. The RGM's can be, for example,

cyclonic belts persisting over a region, or fronts sweeping over a
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given area. The next chapter will deal more explicitly with the

modelling of precipitation occurrence in time as a cluster process.

Before closing this section, it should be made clear that the cluster

processes are just the result of operating on a simple point process

as defined in equations 2.1 through 2.8. Just as a given point

process can be operated on to transform it into a compound point

process by replacing each point in the original process N(-) with an

associated random variable, it is possible to obtain a cluster

process by replacing each point in the original process N(-) with a

cluster of points (Daley and Vere-Jones, 1970).

The closing section of this chapter introduces some basic concepts

from the Palm-Khinchin theory. These concepts will allow the

derivation of the conditional probability distributions of storm

occurrence, that will later be used to obtain optimal irrigation

decisions throughout the growing season.
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2.5 Some Concepts from the Palm-Khinchin Theory

Given that the precipitation occurrence process exhibits cluster

dependence and that, in general, this cluster behavior invalidates the

common assumption of independence between the rainfall counts by intro-

ducing a non-negligible correlation in the occurrence process, it is

highly desirable to be able to use this additional information in the

forecasting of rainfall occurrence. To do so, conditional probabi-

lity distribution functions are -needed. The approach taken in the next

chapter to obtain conditional information is to derive the conditional

distribution functions of the time to the next rainfall event, con-

ditional on the immediate history of storm arrivals. As can be

inferred, now it is necessary to have either a description of the point

process in terms of its interval properties, or a way of obtaining

interval properties from a counting measure description of the given

process.

Restricting the discussion to the real line or one-dimensional

Euclidean space, where the notion of an interval is more easily com-

prehensible, and keeping in mind that the work to be carried out in

later chapters is in the real line, the interval description of a

point process is presented as follows.

Again, as in equation 2.4, consider the family-O of .sequences

w = {x }. Equation 2.5, defined on subsets of X, allowed then

description of the point process N(-) for each possible w E Q. All

that is needed now is to obtain the inverse description of equation

2.5. To do so, for each w = {x I e Q define:
n
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x = y > 0 such that N[0,y) < n < N[O,y] , n = 0, 1,n

(2.27)

In equation 2.27, the argument of the set function N(-) E N(-,-)

defined in equation 2.5 is an interval. However, instead of writing,

for example, N([a,b)), here and in the sequel, the outer parentheses

are omitted for notational convenience. Consequently, N[0,y) counts

the number of occurrences in the semi-closed interval [O,y) and

N[0,y] counts the number of occurrences in the closed interval [0,y].

It is easy to observe that equation 2.27 is the inverse of equation 2.5.

To construct a sample realization of a point process, it is required to

specify the points {xn}. According to the duality between equation
n

2.5 and equation 2.27, an equivalent construction is the specifi-

cation of such quantities as {n 1= x - }, representing the
n n n-i

sequence of times (intervals) between successive events. Denoting by

H the space of all such sequences, by virtue of equation 2.5 and

equation 2.27, there exists a one-to-one correspondence between 0

and H.

Having defined the duality between equation 2.5 and equation

2.27, the so-called Palm Functions are now introduced. These functions

relate probability distributions Pr on Q (counting properties)

to probability distributions on H (interval properties). The Palm

Functions are defined as:
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qk(y) = lim Pr{N(O,y] = k/N(-x,0] > 0} y > 0 , k E Z+ (2.28)

x+O

When the intensity of the process defined as:

X = lim Pr{N(O,x > 0}/x (2.29)

x+0

is finite, these limits are shown to exist, for stationary Pr, in

the works of Khinchin (1955), and Daley and Vere-Jones (1970).

Observe that equation 2.28 simply yields the limit of the probability

that k events occur in an interval (O,y], given that at least one

event has occurred in an arbitrary, immediately preceding interval,

(-x,], as the length of this interval goes to zero. Also, observe

that equation 2.28 expresses a relationship between a function of

an interval measure y, and a function of a counting measure, N(-).

One final result obtained by Khinchin allows the Palm Functions

of equation 2.28 to be obtained as derivatives of the probability

distribution Pr of N(-) on Q as follows. Khinchin (1955) proves that

for a stationary point process with single occurrences and finite

intensity A:

Pr{N(O,x < k} = 1 - X qk(u) du = X qk(u) du (2.30)

x

x > 0 , k eZ+
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Denoting Pr{N(O,x] < kI = Pk(x), equation 2.30 can be expressed

in differential form as:

D Pk(x) (x) (2.31)

Generalization of equation 2.30 leads ultimately to the highly

desirable one-to-one relation between the description of a stochastic

point process in terms of its counting properties and that in terms

of its interval properties (Daley and Vere-Jones, 1970). For the

purposes of this work, equations 2.27 through 2.31 are sufficient.
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2.6 Summary

Some of the basic concepts from the Theory of Point Processes

have been reviewed. The duality between the counting measure

description and interval measure description of a point process

has also been introduced. The p.g.fl. has been defined and presented

as a powerful tool in the definition of the complete stochastic

structure of a point process. Furthermore, cluster processes were

also defined as a way to model natural clustering behavior. Finally,

some basic functions establishing the relationship between the counting

description and the interval description of a point process were

defined. The entire chapter, instead of pretending to be a deep

mathematical treatise of the theory, is intended to provide a quick

reference of the elemental concepts used in the following chapter in

developing the precipitation occurrence model.
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Chapter 3

PRECIPITATION MODEL: FORECASTING RAINFALL OCCURRENCES USING
THE NEYMAN-SCOTT CLUSTER MODEL

3.1 Introduction

The main goal of this work is the incorporation of the con-

ditional information contained in the immediate history of rainfall

occurrences, into a model of optimal irrigation control. In recent

years, several authors (see Chapter 1) have argued that the observed

dependence structure in the precipitation process is due to the

clustering of the rainfall occurrences in time. It is then highly

desirable that this cluster dependence structure be correctly modelled.

This would allow, in some cases, the derivation of conditional pro-

bability distribution functions (CDF's) useful, for instance, in

obtaining optimal irrigation control.

In this chapter, the process of rainfall arrivals is modelled

as a Neyman-Scott (N-S) cluster process. Using basic concepts from

the theory of point processes, presented in the previous chapter,

the complete mathematical stochastic structure of the N-S model is

obtained. First and second-order moments are also derived. Finally,

using the Palm-Khinchin theory, conditional distributions. of the time

to the next rainfall occurrence, conditional on all or part of the

immediate history of the process, are derived. These CDF's will then

be included into the general formulation of the irrigation scheduling

problem in Chapter 4. The probabilistic description of the .occurrence
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of precipitation effectively accounts for the observed clustering

dependence. in the rainfall counts, and through the CDF's, yields a

dynamic model that changes according to the immediate history of

the process. It is then possible to use this information to predict

future behavior.
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3.2 The Neyman-Scott Cluster Model

The N-S cluster model is a particular member of the more general

class of Moyal cluster processes introduced in Section 2.4. It is

a two-level process in which the process of cluster centers is Poisson,

and in-which a random number of cluster members are identically

distributed about each cluster center. The N-S cluster process was

originally introduced and derived by Neyman and Scott (1952), and

used in modelling the spatial distribution of galaxies. More recently,

and in the context of precipitation, Kavvas and Delleur (1975, 1981),

used it to model rainfall occurrences in the time domain. The N-S.

cluster model proposed by Kavvas and Delleur (1981) has the RGM's

in its primary level (parent process), and the actual occurrence of

the rainfalls generated by each RGM in its secondary level.

Le Cam'(1961) used the Neyman-Scott cluster process for modelling

the areal clustering of precipitation. The basic element in Le Cam's

model is the shower cell. These occur in .clusters which correspond

to fronts; and the fronts also occur in clusters called storms.

Vere-Jones (1970) applied the N-S cluster process in the time domain

to model earthquake occurrences.

In the work of Kavvas and Delleur (1975, 1981), the RGM's corres-

pond to the, fronts of Le Cam. In their work, they hypothesize that,

for the case of rainfall occurrences in Indiana, the clustering

dependence in the rainfall counts is caused, not only by the persis-

tence of a given RGM over a region, but also by the actual super-

position of two or more RGM's. The clusters in their model are made
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up of the rainfalls generated by the same RGM. The clustering behavior

of the rainfall arrival process in Indiana is tested and determined

by observing the behavior of the estimated variance-time and log-

survivor functions. The convexity of the respective estimated functions

indicates an overdispersion and clustering of the rainfall occurrences.

In Chapter 6, these functions will be analyzed for the particular

case study under consideration.

3.2.1 Assumptions and Definitions

The fundamental assumption in constructing the N-S model

for precipitation is that the rainfall occurrence process exhibits

a cluster dependence structure in time. Effectively, the N-S cluster

model assumes that precipitation events occur in clusters in the' time

domain. It als.o assumes that the occurrence of rainfall events in

any given period of time is not only caused by RGM's which occurred

in .the given period, but may also be caused by RGM's which occurred

previously. Following the original work of Neyman and Scott (1952),

the following so-called "structural postulates" are essential to the.

N-S model:

a). Precipitation events occur in clusters in the time domain.

b) Cluster centers are determined by the times of .occurrence,

of the RGM's. It is assumed that these cluster centers

are randomly distributed according to a Poisson model.

c) To each cluster center, there exists an associated group

of rainfalls forming the cluster. Each cluster is charac-
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terized by the number of rainfalls within the cluster

(cluster sizes), and by their time of occurrence with

respect to the cluster center.

d) The cluster sizes are mutually independent and identi-

cally distributed and also independent of all other

variables in the process.

e) For any given cluster, the times of occurrence of

events within the cluster are independent, identically

distributed random variables.

Finally, the main assumption upon which the complete model rests

is simply that rainfall occurrences in time can be modelled as a Point

Process. Accepting the above assumptions, the N-S cluster model can

be constructed in terms of the following elemental random variables

(see Figure 3.1).

Let N(O,t) be the counting random variable, counting the number

of rainfall events in the interval (Q,t). N(O,t) is as defined

throughout Chapter 2, and describes the following Point Process:

{N(O,t) , t > 0 , t T} , (3.1)

which is now to be modelled as a N-S cluster process.

Let N (a,b) be the counting random variable, counting the number

of RGM's in time interval (a,b). As in Section 2.4, N1 (-) defines the

process of cluster centers:
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{N1 (a,b) , -c < a < b < w , a,b e T} .(

According to structural postulate b), N1 (-) is Poisson with parameter p.

Also, let N2 (x) be the random variable representing the number

of cluster members (rainfall events) in a cluster (RGM) centered at
00

time x; let its PGF be gN (z) = E zn Pr[N2 (x) = n]..
2 n=1

Finally, let fT (-x) denote the probability density function (p.d.f.)

of the time positions of the cluster members within each cluster. In

this way, d = - x represents the time distance between the occurrence

of the RGM at x, and the actual occurrence of the rainfall being con-

sidered, at C.

According to these definitions and assumptions, the scheme

considered here to model precipitation arrivals is the same as intro-

duced by Kavvas and Delleur (1981), in which RGM's constitute the

primary level of the process and in which each RGM generates a cluster

of rainfalls. The N-S cluster model is such that the random variable

N(-) is constructed in terms of N1 (-), N2 (-), and T.

3.2.2 Complete Stochastic Structure of the Neyman-Scott Model

As was stated in Chapter 2, in order to completely define

a stochastic point process, it is necessary to determine all of its

joint finite dimensional multivariate probability distribution

functions (PDF). Moyal (1962),and later Vere-Jones (1968), developed

a powerful technique, the probability generating functional, that can
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be used to obtain the above definition of a stochastic point process.

In principle, and as defined in Section 2.3, the p.g.fl. can be used

to obtain the distributions of all random variables determined by

the point process. This is so since, in heuristic terms, the p.g.fl.

is an extension of the multivariate PGF, and it is well known that

the latter uniquely determines the distribution of a given random

vector. However, in practice, the main disadvantage of the p.g.fl.

is that it may be impossible to obtain in closed form. Fortunately,

for the case of cluster processes derived from the Poisson process,

such as the N-S cluster process, this closed form of the p.g.fl. exists

and consequently, these processes can be handled very nicely in terms

of their p.g.fl.'s.

Neyman and Scott (1952) first obtained the characterization of

the N-S cluster process in terms of its bivariate PGF; at this time

the technique used was somewhat primitive. Later, Kavvas and Delleur

(1975), using the same technique and following the derivation of

Neyman and Scott (1952), obtained again the univariate and bivariate

PGF for the N-S cluster process. In these two instances, only a

partial definition of the process was obtained. The first to have

suggested the use of the p.g.fl. in the context of the N-S cluster

process appears to have been Moyal (1962). Later, Vere-Jones (1970)

derived its p.g.fl. in the context of modelling earthquake occurrences

in time.
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In general, the p.g.fl. of a point process, N(-), was defined

as (Section 2.3):

G[E] = E{exp[ Jog (t) dN(t)]} (3.3)

for a. given class of functions (). In equation 3.3, as well as

throughout the rest of this chapter, and unless otherwise stated,

all integrations are to be taken over a doubly infinite set.

The p.g.fl. for the general Moyal cluster process:

N(-) = N2(-jt) (3.4)

t e Nn

was also introduced in Chapter 2 as:

G[E] = G [G2 (00 |t) .(3.5)

Now, according to the assumptions and definitions of Section 3.2.1,

the process of RGM's, N is Poisson with parameter p'. The p.g.fl.

of the Poisson process is (Vere-Jones, 1970):

G exp{j (t) - 1]dt} (3.6)

The p.g.fl. of the process of cluster members, N2(-), is (Vere-

Jones, 1970):
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G2 [ t] = N { C (t + r) fT ()d,} (3.7)

where g() is the PGF of the cluster member process, N
2

Substituting equations.3.6 and 3.7 into equation 3.5, the p.g.fl.

for the N-S cluster process is obtained as:

G[ ] = exp y [gN j(t +C ) f (c)dc} - 1]dt (3.8)

Under suitable choices for the function ((-, equation 3.8

yields the complete finite dimensional structure of the N-S cluster

process. For example, to obtain the univariate representation of the

N-S cluster process, and assuming that the PGF of the number of rainfall

occurrences N(O,t ) is desired, define:

(x 1-(1-Z) I (x) ,z < 1(3.9)

where I(-) is the indicator function such that:

1 if s E (O,t1 )

I 03t(s) = ( 3.10)

0 otherwise

Clearly, the function defined by equation 3.9 belongs to the class of

functions characterized by equations 2.23 and 2.24, and required in

the definition of p.g.fl.. In general, and substituting equation 3.9

42



into the general definition of p.g.fl. of equation 3.3, the univariate

PGF of the random variable N(O,tI) is immediately obtained. Conse-

quently, substituting equation 3.9 into equation 3.8 yields:

F t

g(z) =exp p f {gN2[1 - (1 - z) p(t)] - 1}dt (3.11a)

where:

t

p(t) = fT(C - t)dc (3.11b)

Equation 3.1la is the univariate PGF of the N-S cluster process.

Kavvas and Delleur (1975) obtained the same result using more primi-

tive techniques.

Finally, to obtain the complete finite dimensional stochastic

structure of the N-S cluster process, and assuming that the multi-

variate PGF of the random vector:

[N(.0,t 1), N(tipt 2),'..., N(t k-ltk)

is desired, where N(-) counts the number of rainfall occurrences

in the indicated non-overlapping intervals, select:

k

= - (( - z ) 1 [tt xt 3) 1

1=1
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which, after substituting in equation 3.8 yields:

t k k

(z ,...,zk f N2[1 - (1 - z.) p(t)] 1}dt

- i=1 - (3.13a)

where:

pi(t) = f - )dG (3.13b)

t.-1

Equation 3.13a represents the multivariate PGF for the above

random vector when the random variable N(-) is distributed according

to the N-S cluster model. In equations 3.11b and 3.13b, above, p(t)

and p (t) represent the probability that a rainfall whose RGM occurred
1

at time t, falls within the time intervals indicated by the upper and

lower limits of the integral. From this definition, it is clear that

the nature of the p.d.f., f (r), determines the memory of the rainfall

process.

By defining the p.g. fl. of the N-S cluster process in equation

3.8, it has been possible to obtain its complete finite dimensional

structure, in equations 3.11 and 3.13. However, in this case, and as

opposed to the Poisson process in which a complete stochastic description

is obtained at the expense of the independence assumption, the N-S

cluster model renders a general cluster dependence structure. In fact,

the model expressed in equations 3.8, 3.11, and 3.13 has the Poisson

process as one of its particular cases. This is easily seen by
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realizing that the independent increments assumption establishes a

rainfall process with zero memory. For this case, the p.d.f,

fT(C - u) becomes a delta function, so that:

t 1 1 if u

p(u) = 4 fT u)d = (3.14)

0 0 otherwise

Substituting equation 3.14 in equation 3.lla yields:

g(z) = exp{p t 1 gN (z) - 1]} (3.15)
2

which is the PGF of the generalized Poisson -process (Parzen, 1967).

Thus, a stochastic model has been devised, with a dependence

structure general enough to render it widely applicable. In addition,

the model acknowledges and represents the observed clustering behavior

of the rainfall occurrences in time. Ideally, its components and

parameters will have some physical meaning.

Up to now, all- expressions presented for the N-S cluster process

are general in the sense that forms for the distributions of the

cluster sizes, N2 (-), and of the times of occurrence of the cluster

members within each cluster, T, have not yet been specified. Explicit

forms of these expressions are presented in Section 3.2.4, for a

particular choice of distributions.
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3.2.3 General First and Second Order Moments

General expressions for the first and second-order moments

of the N-S cluster model are now introduced. Their derivation is

carried out in Appendix B, using the general expressions of Section 2.3

and very simple algebraic manipulations. For more sophisticated

derivations, using the p.g.fl. and its relation to the factorial

moment measures and the -factorial cumulant measures, the reader is

referred to Vere-Jones (1970).

The first moment of the number of rainfall events, N(0,t

in time interval (O,t1), is given in terms of the mean-time function

(Appendix B):

E[N(O,t1 )] = p - E[N2 (.)] - t1  (3.16)

The mean-time function of equation 3.16 is a function of the

length of the interval, but not of its origin. From equation 3.16,

the rate of rainfall occurrence under the N-S cluster process is

easily obtained as:

1(t 1 = y - E[N2(-)] (3.17)
dt1

The variance of the number of rainfall events in interval (O,t1 ),

N(0,t 1), is given in terms of the variance-time function (Appendix B):
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varI[N(0,t1 )] = E[N2 (t)] - t1 + E [N2 2(t) - N 2 (t)] J 2(t)dt

(3.18)

and where p(t) is as defined in equation 3.llb.

The covariance of the number of rainfall events in two disjoint

time intervals, r time units apart is introduced in terms of the

covariance function (Appendix B):

cov[N(0,t1 ) , N(t + , t2)= - E[N 2 (t)-- N2 (t)]

t2

IOp1 (u).p2 (u)du

(3.19)

t

p (u) =

0

t2

p 2 (u) =

tI+

fT(x-u) dx

f T (x-u) dx

The most important feature of these first and second-order

moments is exhibited by the covariance function. In fact, as can be

observed from equation 3.19, as long as the functions p1 (u) and p2(u)

are different from zero, there exists correlation between the counts

in disjoint time intervals. It is in equation 3.19 where the influence

of the p.d.f., f T(-), on the dependence structure of the N-S cluster

model, is more easily grasped.
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Now, define a differential process as AN = lim N(0,t+At) - N(0,t).
At+0

Also, define the covariance density of the process ANt as:

coy ANt, ANt~
c(u) = lin t 2t+1 (3.22)

At+0 (At)2

The spectrum of counts is defined as the Fourier transform of the

covariance density, c(u), of the differential process, ANt, and is

given as (Vere-Jones, 1970):

g(w) =2 + jexp(-iwu) c(u)du (3.23)

where A is the intensity of the process.

For the N-S cluster process, the spectrum of counts is given as

(Vere-Jones, 1970):

2

g+(w) - E[N2 (t)] + E[N 2 (t) -N 2(t)] fT( -u)eiw(c-u)du w>0

(3.24)

The spectrum of counts will be used in Chapter 6 to calibrate

the model. Since the interest is to preserve the dependence structure

of the rainfall arrivals, nothing is more appropriate to fit the

data to than the spectrum of counts, which is the covariance density

after a change of basis.
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3.2.4 Explicit Forms of the Neyman-Scott Cluster Model-

In the above development of the N-S cluster model, the

forms of the distributions for N2 (-) and T have been lef t undefined.

The only requirement is that they agree with the structural postulates

of Section 3.2.1.. To obtain explicit forms for the equation defining

the model, it is then necessary to hypothesize particular forms for

the -above two distributions. It is noteworthy to observe that in

order to completely specify at least the first and second-order

moments of 'Section 3.2.3, it is only necessary to specify the p.d.f.

of T. In fact, in equations 3.16 through;3.24, the random variable

representing the cluster sizes, N2 (t), enters only through its first

and second moments. It is also important to observe again, that the

specific form of the p.d.f. for T determines the memory of the cluster

model and the structure of the clusters as can be seen from equations

3.18 and 3.19.

In this work, as in Kavvas and Delleur (1981), it is assumed

that the random variable characterizing the number of rainfalls in

a given cluster follows a geometric distribution with parameter, p-.

It is well known that the PGF of N2 (t) is then (Parzen, 1962):

g (z) pz ,z I < 1 . (3.25)
N2 1 -(1 -p)z

The distribution of the time positions of the individual rainfalls

within their respective clusters, T, is assumed to be negative expo-

nential with parameter a, so that:
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a exp[-a(C - t)] if C - t > 0

f T(- t) =(3.26)

0 otherwise

The assumption of an exponential distribution for T, implies

that no matter how far in the future from the time of occurrence

of an RGM, there always exists a positive probability that a rainfall

occurring at that time has been generated by the RGM which occurred

in the infinite past.

Once the p.d.f.'s for N2 (-) and T have been chosen as the geo-

metric distribution and the exponential distribution, the following

expressions for the variance time function and the spectrum of counts

are obtained (Kavvas and Delleur , 1981):

var[N= p- E[N22(t)] - t + E (N2 (t) - N2 (t)] [et - 1]

(3.27)

and

2 a 2
g+(w) E[N2 (t)] + p - E[N2 (t) - N2(t)] 2 2 , w > 0

7T 2 2 2 a + 2

(3.28)

where: E[N2 (t)] = 11p and E 22(t)] = (2 - p)Ip2

Explicit forms for the N-S cluster model p.g.fl. result by

substituting equations 3.25 and 3.26 in equation 3.8. For the

particular case of N(O,t1 ) the substitution is done in equations 3.11.
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Finally, for the random vector N(O,t1 ], N(tt 2],..., N(tk-1,tk,

the substitution is done in equations 3.13.
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3.3 Forecasting and Conditional Probability Distributions

In Section 3.2 of this chapter, the Neyman-Scott cluster model

has been developed. Its general dependence structure has been

acknowledged, and in particular, the covariance function between

the counts in disjoint time intervals has been shown to be non-zero

in the general case. It would be very desirable then if it were

possible to obtain conditional distributions of some sort, so that

the model can be used to forecast the future of the process. For

the particular kind of N-S cluster model being considered in this

work, it turns out that explicit forms of these CDF's can be obtained.

In order to do so, the few concepts from the Theory of Palm functions

presented in Chapter 2 are used.

3.3.1 Assumptions and Definitions

Just as a point process can be described in two different

ways, either in terms of its counting properties, or in terms of its

interval properties, forecasting problems for point processes are also

of two different kinds. The first kind corresponds to the problem of

finding the distributions of the number of events in future time

intervals. The second kind corresponds to the problem of finding

the distributions of the time to and between various configurations

of events. It is this last kind of problem that is dealt with in

this chapter. As can be easily inferred, the second kind of problem

leads naturally to a description of the process in terms of its

interval properties. The function under consideration is the CDF of
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the time to the next rainfall event, given some or all of the past of

the process. The immediate past, in particular the time which has

elapsed since the preceding rainfall event, is of utmost importance.

In order to use the Palm-Khinchin theory introduced in Section

2.4, the following assumptions are in order:

a) That the process being considered is stationary.

b.) That the process being considered has single occurrences.

c) That the process being considered has finite rate of occurrence.

d) That the complete stochastic structure of the process is

known.

All four assumptions hold true in the case of the N-S cluster model

developed in previous section. Before proceeding, denote the finite

dimensional distributions of the point process N(-) as:

= Pr{N(O,x) = i, N(x,x+y) = j, N(x+y,x+y+z) = k,...} (3.29)

which are assumed to be known from the p.g.fl. of the N-S model.

. Also, define X as the quantity being forecasted and described

as the time to the next occurring rainfall event. Its distribution

is most conveniently characterized in terms of the survivor function,

defined as one minus the corresponding distribution function.

Finally, the information on which the survivor function depends,
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is taken in this work as the time elapsed since the occurrence of

the last rainfall event. With this in mind, denote the survivor

function as:

S(x;H) Pr[X > xjH] 1 - Pr[X < xIH] (3.30)

which gives the probability that the time X to the next rainfall event

is greater than x conditional on the history H of the process.

3.3.2 Conditional Distribution Functions and Palm-Khinchin Theory

In order to arrive at the desired CDF's, consider the

worst situation or simplest case, namely the situation when no in-

formation about the past of the process is available. According

to this, equation 3.30 reduces to the unconditional probability:

S(x) = Pr[X > x] (3.31)

Using the duality between the counting properties and the interval

properties of a point process, equation 3.31 can be rewritten as:

S(x) = Pr[X > x] = Pr[N(0,x) = 0] = P (x) (3.32)
0

Now, consider the case when the available information about the

past of the process is that a period of time C has elapsed without

any rainfall events occurring. For this case, equation 3.30 becomes:
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Pr(X > x = 0 = Pr[N(O,?) = 0, N(,C+x) = 0] (333)>xN(O,) =Pr[N(0,?) = 0]

where use of the fact P(A B) = P(AO B)IP(B) has been made. Equation

3.33 can also be written as:

Pr[X > x=N(0, ) 0] = Pr[N(0,C+x) = 0] (3.34)
Pr[N(0,G) = 0]

Substituting equation 3.32 in equation 3.34 yields:

S (x;) = Pr[X > xjN(0,r) = 0] = S(x+?) 0 (3.35)

Equation 3.35 yields the CDF of the time to the next rainfall

event, conditional on having observed the process for a period of

time r, without any rainfall events occurring. The subscript 0

indicates that no events were observed during the interval c.

When actual rainfall occurrences start to appear in the history

of the process, the situation complicates,. since by the assumption

of point occurrences, the survivor function would now be conditioned

on probabilities over infinitesimal intervals. To solve this problem

it is necessary to obtain the multivariate distributions of the time

intervals between successive events (Jowett and Vere-Jones, 1972).

The theory of Palm Functions, sketched briefly in Section 2.4,

asserts that a well defined set of multivariate distributions

for the intervals exists.
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Assume that the available information about the past of the

process is restricted to the time since the occurrence of the last

rainfall event (an actual rainfall occurrence was observed at the

beginning of interval C); the desired CDF is:

S 10(x;) = Pr[N(C,C+x) = OIk time units have elapsed since last event]

(3.36)

It is clear that equation 3.36 can be rewritten as:

= li 1 P 10  (h ,.C+x) 
(

10 x-*; P(h, ) (3. 37)

From the definition of Palm Functions presented in equation

2.28, and for k = 0:

q0 (x) = lim Pr{N(0,x] = 0jN(-h,0] > 0} , x > 0 (3.38)

Now, observe that equation 3.38 can be expressed as:

q0 (x) = lim Pr{N(-h,0]>02 N(2x] 0} (3.39)

but, since Pr{N(-h,0] > 0} = 1 - Pr{N(-h,0] = 01, equation 3.39

reduces to:

q0(x) W lim P10(h,x) (3.40)
h(x= 1 - P (h)
h +,, 0 0
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Here, using the Palm-Khinchin theory and recalling equation 2.31,

equation 3.40 becomes:

P 10(h,x) dP (x)
q 0 (x) = lim 10 P (h) -1 0(3.41)

h-0 0 ) dx

Finally, using equation 3.41 in equation 3.37, it is easy to

obtain for the desired CDF:

q0(x+r) rdP~+') d 1
S (x;c) = . dP0 ) (3.42)

10 q0 dx dx

All the desired CDF's have now been obtained in terms of the

survivor functions S0 (x;C) and S10 (x;c) given in equations 3.35 and

3.42, respectively. By an extension of the development presented

above, it is possible to define Palm-type functions of higher order

in which more complex situations for the past of the process can be

accounted for.

3.3.3 Explicit Form of CDF's for the N-S Cluster Model

In this concluding section, explicit expressions for

equations 3.35 and 3.42 are obtained for the particular case of the

N-S cluster process in which the cluster center process is Poisson

with parameter p, the distribution of the cluster size is geometric

with parameter p, and the distribution of the time positions about

cluster centers is exponential with parameter a.
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To do so, it is needed to have the following probability

P (x) = Pr[N(Q,x) = 0]. This can be derived using equation 2.13

and equation 3.11 as follows:

P0 (x) = Pr[N(O,x) = 0] = g(z) (3.43)

Substitution in equation 3.11 of the PGF for N2(-) given in

equation 3.25 and of the p.d.f. of T given in equation 3.26, and

carrying out equation 3.43 yields (Appendix C):

P (x = -e-a e (3.44)[ 1

where q = 1 - p.

For the first case, equation 3.35 is:

So (x; S(x+) (3.45)

where S(-) = P0 (-); so that substituting equation 3.44 in equation

3.45 yields:

S (x;F qe=~ c 1 e* (3.46)
0 I -a(C+x)

1 - qeJ

S0 (x;C) is the conditional probability that the time to the

next rainfall X is greater than x, conditioned on the fact that the

process has evolved for a period of time without any events occurring,
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and that storm arrivals follow the N-S model developed.

When one rainfall event occurs at the beginning of the interval

1, equation 3.42 yields:

q (x+) 
dP0 (x+0

0___ dxS d(x;) = 0 ( d (3.47)

dx

Differentiating equation 3.44:

-(1 +
dP x) elIX p pa 1 -ax a (3.48)

Now, substitution of equation 3.48 in equation 3.47 after evaluating

equation 3.48 at (x+C) and C, produces:

(1+ )

L 1 ge-ac a3.
S10  -a(x+c)- e 3.49)

S 10(x;c) is the conditional probability that the time to the

next rainfall X is greater than x, conditioned on the fact that

C time units have elapsed since the last rainfall occurrence, and

that storm arrivals follow the N-S cluster model proposed.

Observe that for both equation 3.46 and equation 3.49, as the

time C increases (time without rain or time since last rainfall)

the probabilities S0 (x;r) and S10 (x;;) approach those of a Poisson

model with parameter p, meaning that in fact, the farther in the
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future an event is considered, the more it starts to look as indepen-

dent of the present or past of the process. From equation 3.46:

lim S0 (x;l) = ex (3.50a)

and from equation 3.49:

lim S10 (x;1) =e (3.50b)
0

With the CDF's S (x;) and S (x; ), the forecasting of future
0 10

events is now possible. Thus, conditional information contained in

the immediate history of the process can be used, for instance, in

obtaining optimal irrigation control in regions of deficit irrigation.

This will be accomplished in the next chapter.
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3.4 Summary

This chapter has completely introduced the N-S cluster process.

For a particular choice of distributions, explicit expressions for

the model and its first and second-order moments have also been

presented. Finally, with the use of the Palm-Khinchin theory, CDF's

of the time to the next rainfall event conditional on the immediate

history of arrivals were derived. The stage is now set for the

introduction of these CDF's into the general irrigation scheduling

problem.
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Chapter 4

IRRIGATION SCHEDULING MODEL

4.1 Introduction

In this chapter, the general irrigation scheduling problem,

presented by C6rdova and Bras (1979), is reformulated to include

the precipitation model described in the previous chapters. The

framework in which this reformulation is carried out is a general

conceptual soil column with only vertical flows considered. The

probabilistic behavior of the storm arrival process, encoded in the

conditional distribution functions, S0 (x;C) and S10 (x;C), is now

coupled with the probabilistic description of the cumulative infil-

tration volume from a given rainstorm. This coupling provides the

means to describe the random behavior of the soil moisture content

at the root zone.

The resulting irrigation scheduling model makes use of the

conditional information contained in the immediate history of rainfall

occurrences as the growing season progresses. In this sense, the

new model is improved with respect to the model used by C6rdova and

Bras (1979), who, by assuming independence in the rainfall arrival

process, neglect the observed statistical dependence in precipitation.

Finally, using SDP, the irrigation scheduling problem is solved.

The solution is presented in the form of optimal decision functions

which yield the optimal amount of irrigation water to be applied

at each decision stage, as a function of the soil moisture content
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at the root zone, the volume of water available for irrigation,

and the number of days that have elapsed since the last rainfall

occurrence.
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4.2 Climate-Soil-Plant Model

The general irrigation scheduling model has three main components

which represent each of the three subsystems in the climate-soil-plant

system. The climate subsystem is modelled in terms of the precipi-

tation process and of the potential evapotranspiration. The former

determines the contribution of nature to the soil moisture content at

the root zone as well as how this contribution is distributed through-

out the growing season. The climate controlled potential evapotrans-

piration is an upper bound to the rate at which moisture can be

extracted from the soil by evaporation and plant transpiration. it

determines the stress status of given vegetal species depending on

whether the actual evapotranspiration rate is equal to or less than

the potential.

The precipitation process can be completely described by describing

storm intensities, storm durations and number of storms in a given

time interval. Storm intensities and durations coupled with the

dynamics of the infiltration process determine the amount of water

contributed by each storm to the soil moisture content. In this

chapter, the modelling of the precipitation process is completed.

Probability distribution functions for storm intensities and durations

are hypothesized, and using a derived distribution approach, the

probability distribution function of cumulative infiltration from a

given storm is obtained.
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The soil subsystem is represented in terms of a conceptual soil

column in which the components of the soil water balance interact to

determine the soil moisture content at the root zone. Infiltration

replenishes soil moisture, while evapotranspiration and percolation

out of the root zone deplete it. The rates of infiltration, evapo-

transpiration and percolation are all expressed as functions of the

soil moisture content.

Finally, the plant subsystem is described in terms of a crop

function which relates actual evapotranspiration to actual yield.

The interface between the climate subsystem and the soil-plant

system is provided by the volume of water infiltrated and by the

actual evapotranspiration rate.

4.2.1 Components of Soil Water Balance

The processes-which govern the soil water balance are

infiltration, evapotranspiration and percolation. Their description

is of primary concern in defining the dynamics of the soil moisture

storage process.

4.2.1.1 Infiltration and Surface Runoff

C6rdova and Bras (1981), using results obtained by

Philip (1957) and Eagleson (1978), derived an expression for the

cumulative volume of water infiltrated from a given rainstorm,

under a given set of initial conditions.
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Assuming a rainfall of constant intensity i and duration tr'

the cumulative volume of water infiltrated, V(i,tr), can be expressed
r

as:

V(i~t )r i t r- R 9(i~t ) (4.1)
r r g r

where R (i,t ) represents the amount of surface runoff produced by

the given rainfall.

Using Philip's infiltration equation (Philip, 1957) and assuming

constant rainfall intensity, Eagleson (1978) derived the following

expression for the volume of surface runoff produced by a given rain-

fall:

0 if t < t0

R (it ) = 1 (4.2)
g r t~

(i-A)t - S r if tr > to

where S is the soil sorptivity, A is gravitational infiltration rate,

and t0 is the time from the beginning of the storm at which the soil

surface becomes saturated. They are expressed as (Eagleson, 1978):

( 2 5n K(l) *(I) $(d,e0 /6 (4.3)
2 -3m7r

A = K(1) [1 + (e 0As)] - w (4.4)
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= 2

to 2(i - A)2

where:

n

K(1)

(1)

$ (d,E
0 /os)

w

m

d

c

0

0

= porosity

= saturated hydraulic conductivity

= saturated soil matric potential

= infiltration diffusivity function

= capillary rise from the water table

= pore size distribution -index

= diffusivity index

= pore connectivity index

= initial soil moisture content (mm)

= soil moisture content at saturation (mm)

Substituting equation 4.2 into equation 4.1, the volume of water

infiltrated from a storm of constant intensity i and duration tr is:

it
r

V(itr 
(t)

At + r
r 2

if t < to

if t > t
r 0

Assuming the water table elevation constant throughout the

growing season, the values of the parameters S and A depend only

on the soil properties and on the initial soil moisture content, 00.

Thus, for a given soil, the volume of water infiltrated from a given

storm is a function of the soil moisture content at the beginning of
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the storm. Using a derived distribution approach, the probability

distribution function (PDF) of the random input to the soil system

V(-,-) can be obtained from the PDF of the random variables

storm intensity and storm duration (C6rdova and Bras, 1979).

4.2.1.2 Actual Evapotranspiration

The actual evapotranspiration rate represents the

combined rate at which water is being extracted from the soil by

plant transpiration and by evaporation of exfiltrated water. For

the transpiration process it has been experimentally corroborated

that for a given potential transpiration rate, there exists a

threshold average soil moisture content below which the actual rate

of transpiration is less than the potential (Denmead and Shaw, 1962;

Minhas, 1974; Hanson, 1976). Considering the evaporation process

to behave similarly, a threshold soil moisture can also be defined

below which the actual rate of evaporation is less than the potential.

In the general case, these two threshold soil moisture contents have

different values.

To avoid the problem of defining both processes separately,

C6rdova and Bras (1979), following an approach proposed by Gardner,

et al. (1975) combine both processes defining a single soil moisture

threshold 0*. The actual evapotranspiration rate Ea (), can then be

written as (see Figure 4.la):
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if 6* < 0ET
p

E a(e) = b
if 0 < 6 < 6*

where:

a

ET
p

K
c

(4.-7)

K *E
C 0

(6*)b

= K - E
c 0

= crop coefficient

= potential evaporative flux

b = coefficient

Throughout this work, the soil moisture content 0 is measured

with respect to permanent wilting point (PWP). The parameters a, b,

Kc, E0 , 6* and PWP depend on the growth stage of the crop as well as

on the soil, crop, and climate characteristics.

4.2.1.3 Percolation

Eagleson (1978) relates the percolation rate P(O) to the

soil moisture content by the following expression in which capillary

rise from the water table has been included (Figure 4.la):

P(e) = dOc - w (4.8)

where d = K(1)/nc; n is the soil porosity; c is the pore connectivity
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index and w is the rate of capillary rise.

It should be emphasized that the processes of infiltration,

evapotranspiration, and percolation are all dependent on the soil

moisture content at the root zone. In this way, the soil moisture

content becomes the state variable representing the response of the

soil system.

4.2.2 Conceptual Soil Column Model: Moisture Depletion Process

C6rdova and Bras (1979) consider the climate-soil-plant

system in terms of a conceptual soil column model (Figure 4.1b). The

inputs to the system are the climate controlled potential evapo-

transpiration, the amount of water infiltrated from a given storm

and the irrigation applications. Actual evapotranspiration and

percolation out of the root zone constitute the system outputs.

The state variable describing and controlling the response of the

system is the soil moisture content at the root zone. The evolution

of the state of the system can then be described by:

de I + f - P - E (4.9)
dt t t a

where I and f are the irrigation and infiltration rates, respectively.
t t

In equation 4.9 only vertical flows are considered.

Considering the storm duration tr only through the volume of

water infiltrated V (it r) and assuming that the storms occur

instantaneously in time, during which no evapotranspiration, percolation
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or irrigation occurs, the soil moisture content after the occurrence

of a storm event can be expressed as:

s if 0 + V (i,t ) > 6
t t r s

0 = (4.10)
t

e + V (it) otherwise

Equation 4.10 also holds for the irrigation applications if these

are assumed to be instantaneous and producing no runoff. In this

case V t(,-) becomes the volume of irrigation water applied.

The soil moisture storage process is then characterized by

moisture replenishment from irrigation and infiltration from storm

events and by moisture depletion from evapotranspiration and per-

colation. The former are assumed to occur instantaneously. Thus,

the soil moisture depletion process can be described by defining

the evaluation of the state of the system during the interstorm

period. This can be expressed as:

b c
aeb + d6c - w 0 < 6 < 6*

dd (4.11)
dtc

ET + dc - w 6* < 6 < e
p s

The terminal soil moisture content at time t, et, and the total

actual evapotranspiration during the time interval (0,t], ET a(t)

can be obtained by integrating equation 4.11.
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Depending on the initial conditions, several cases have to be

considered (see Figure 4.lc). If at time t0 = 0 0 = 60 < 0*, then

6 at time t is the solution of the following equation:

0

0 b = t (4.12)
6 a6 + dec - w
t

The total actual evapotranspiration during the time interval

(0,t] is:

ET a(t) f a b9 (4.13)
a b + dOc - w
t

Now, if the initial soil moisture content 60 at t0 = 0 is

*
greater than 6 , 0 > 0*, the time required to deplete the soil

moisture from 0 to 0* has to be defined:

06

t* = (4.14)
n ET + d -w

*p

where t* is the time required to bring the soil moisture to the

value 0*. Once t* is defined, there exist two possible cases. If

the time interval under consideration is smaller than t*, then the

terminal soil moisture content et is obtained as the solution of:

e0

ae= t (4.15)

f1% ET + dOc - w

d bp

and by definition:
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ET (t) = t - ET (4.15)

If the time interval (O,t] is longer than .t*, then the terminal

soil moisture content 0 t is obtained as the solution of:

0*

f= t - t* (4.17)
t ab + dc - w
t

and the total actual evapotranspiration is:

0*

ET (t) = t* - ET + a b a (4.18)
aft- aJb + dec w

4.2.3 Crop Model

Real time control of irrigation systems requires knowledge

of the crop response to water applications throughout the growing

season. The total yield and economic return from a given crop are a

function of the history of the distribution of water throughout the

growing season and not only of the total volume of water applied.

Stewart and Hagan (1974) emphasize this point, acknowledging the

existence of critical growth stages for many crops, during which

adverse responses to moisture stresses are greater. Knowing the

crop response function for the different growth stages allows optimal

control of the irrigation water. This is performed by considering

the temporal variability of the random precipitation inputs together

with the temporal crop response to moisture stresses and the dynamics
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of the soil moisture storage process (C6rdova and Bras, 1979). The

surrogate variable that best describes the effect of moisture stresses

on actual yield is the evapotranspiration ratio, defined by E a/ET ,

(Stewart, et al., 1974; Morey, et al., 1975; Stewart, et al., 1977).

C6rdova and Bras (1979) consider the effect of moisture stresses

on actual crop yield to be additive. The relationship between

crop growth and total actual evapotranspiration can then be expressed

as (Blank, 1975):

NP ET

Y = Y A Z (4.19)
ML.. z ETPz

z=1

where Y is the actual crop yield, YM is the species dependent maximum

yield, NP is the number of growing periods, and A is the moisturez

stress sensitivity parameter of the crop. Finally, the stress

factor is defined as the ratio of the total actual evapotranspiration

ETz to the total potential evapotranspiration ETPz during each

growing period z.

4.2.4 Stochastic -Representation of Soil Moisture

-The soil moisture storage process is a dynamic process.

Figure 4.2 illustrates the variability of soil moisture over time,

as different storms arrive to the site. During the duration of the

storms, tr, soil moisture gradually increases due to infiltration.

On the other hand, during the interstorm time, tb, soil moisture

gradually decreases due to the action of the soil moisture depletion
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processes, namely, evapotranspiration and percolation.

The random input to the soil system, the volume of water in-

filtrated from a given rainstorm, depends on the soil characteris-

tics, the initial soil moisture content, the topographic conditions,

and the storm intensity and duration. Thus, it is evident that the

total amount of water infiltrated during a given time interval

depends both on the number, depth, duration and timing of the storm

events, and on the dynamics of the soil moisture depletion process.

In making irrigation decisions throughout the growing season,

it is necessary to consider all the possible future soil moisture

states, especially if the amount of available irrigation water is

limited. However, since the input to the soil system over a time

interval is random, future soil moisture states become uncertain.

Consequently, making optimal irrigation decisions requires a pro-

babilistic description of the general terminal soil moisture content.

This can be obtained by coupling the dynamics of the soil moisture

storage process with the probabilistic description of precipitation

in terms of the process of storm arrivals and the storm charac-

teristics, intensity and duration. The process of storm arrivals

has already been presented in previous chapters. For the storm

characteristics, intensity and duration, Grayman and Eagleson (1969)

observed that they could be closely fitted by exponential distributions.

Furthermore, data analysis for two locations in the continental

U.S., provided by Eagleson (1978), corroborate the goodness of fit

obtained with the exponential distribution. For storm intensity,

they found:
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-cti
f (i) = ae i > 0 (4.20)

and for storm duration:

-6t

f T(t) = e r t > 0 (4.21)
r

where f (-) and fT () are the probability density functions (p.d.f.)
r

for storm intensity and duration respectively; I/a is the average

storm intensity and 1/6 is the average storm duration.

When surface runoff can be considered negligible with respect

to total storm depth, the p.d.f. of infiltrated volume is simply the

p.d.f. of storm depth. However, in areas where surface runoff is

important, the p.d.f. of infiltrated volume has to be derived from

the p.d.f.'s of storm intensity and duration. Assuming that the

random variables i and t are independent and using a derived

distribution approach, C6rdova and Bras (1979) obtained the pro-

bability distribution function (PDF) of the volume -of water infiltrated

from a given rainstorm V(i,t r) as:

i*

F (v) = Pr[V<v] = 1 - exp [-ai* - 6t0  - a exp[ - ] di (4.22)

where:

t = (4.23)
2(i* - A)2

78



and

4vA + S2 + S(4i* =4v (4.24)

It is easy to see from equations 4.22 through 4.24 that when

v-*, then i*-m and FV(O) = 0. Also, when V-n, i*+A and Fv(w)

In deriving equation 4.22 it is assumed that storm intensity

and duration are exponentially distributed according to equations

4.20 and 4.21. It is also assumed that the volume of water infil-

trated is related to storm intensity and duration as expressed in

equation 4.6.

This completes the description of the general components of the

irrigation scheduling model. In the following sections the general

water balance elements are integrated with the probabilistic description

of storm arrivals given in Chapter 3 and the probabilistic description

of infiltration fromstorms presented above. The resulting system

description of the irrigation scheduling problem acknowledges its

nature as a finite horizon, multistage, stochastic decision problem.

Once this nature of the problem has been recognized, its solution

by stochastic dynamic programming follows straightforwardly.

79



4.3 Systems Description of Irrigation Scheduling Problem

In Chapter 3 the process of storm arrivals has been defined.

Rainfall occurrences in time have been modelled as a Neyman-Scott

cluster process. Consequently, the observed statistical dependence

in the rainfall occurrences in time, caused by the clustering of

storms has been accounted for. This allowed the derivation of the

conditional distribution functions S 10(x;) and S0 (x;c) which give

the conditional probability of the time to the next rainfall event,

conditioned on the immediate history of occurrences. Now, the goal

is to take advantage of the information contained in the history

of immediate past rainfall occurrences, encoded in the conditional

PDF's S 10(x;C) and S0 (x;C), to obtain optimal irrigation control..

The system description of the irrigation scheduling problem, given

in the following sections, incorporates this conditional information

to define the evolution of the state of the system throughout the

growing season. In general, the system is composed of the following

elements: a time scale T, a state space S, a control space C,

an output space Y, a state transition function F, a.stochastic law

of motion P, and an output function G.

4.3.1 Time Scale, T

The time horizon of the irrigation scheduling problem

is the length of the irrigation season. At the beginning of the

season, the farmer has a limited but known volume of irrigation water.

Thus, the objective is to manage this limited amount of water
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optimally, so that net profits at the end of the season are maximized.

The time scale can be expressed as:

T = {k: k = 1, 2, ... , N + 1} (4.25)

where k represents days (decision stages) and N is the number of

days in the growing season.

4.3.2 State Space, S

A state space representation of a given system requires

that the state variable chosen contains all the necessary information,

besides the inputs, to determine future states of the system. Let

Xk be the state vector, such that:

Xk SS , k e T

and (4.26)

Xk= ('k' 'k rk

where:

Sk = soil moisture content at the root zone at beginning

of decision stage (day) k

Ck = number of days, at decision stage k, since the occurrence

of the last rainfall
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rk = volume of irrigation water available at beginning of

decision stage (day) k

The element tk of the vector state Xk, as defined by equation

4.26, represents the knowledge the decision-maker has about the

immediate history of the precipitation process. Due to the dependence

in the rainfall occurrences, this history contains valuable infor-

mation about the future of storm arrivals. This information is

encoded in the conditional distributions S10 (x;C) and SO

derived in Chapter 3, and that are to be included in the general

irrigation model.

4.3.3 Control Space, C

At each decision stage (days,-weeks) during the irrigation

season, the farmer (decision-maker) has to decide whether or not to

irrigate, and how much. It is by making irrigation decisions that the

farmer can control the soil moisture states. Thus, the control

variable is the amount of irrigation water Uk applied at decision stage

k, such that:

U e C , k c T and 0 < U < r k - T (4.27)
k -k -k k
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4.3.4 Output Space, Y

As has been stated before, the objective of the decision-

maker (farmer) is to maximize net profits at the end of the season.

Net profits are a function of crop yield. Thus, the output variable

chosen is the contribution of decision stage k to total actual crop

yield, Yk

4.3.5 State Transition Function, F

The unforced or free motion of the system, expressed in

terms of the dynamics of the vector state Xk, is given by the state-

transition function:

=+1 F(Xk) ,k F T (4.28)

The state transition function is a composite function of three

different operators or dynamic equations, one for each element of

the state vector X
k

First, the soil moisture depletion operator, which yields the

soil moisture content at the root zone at the end of the current

decision stage, 6k+1 is:

0 k+1 g(ek, At) + Vk(ek, At) (4.29)

where Vk is the volume of water infiltrated from storm events during

decision stage k; At is the duration of decision stage k, taken as
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one day; and 6 is the soil moisture content at the end of the stage.
k+1

In equation 4.29, it is assumed that an irrigation decision has been

taken at the beginning of the interval. Consequently, ek in

4.29, is the soil moisture content after the respective irrigation

application.

The first right-hand member of equation 4.29, g(Ok At),

represents the deterministic part of the soil moisture state

transition from decision stage to decision stage. It is given by

equations 4.11, 4.12, 4.14, 4.15 and 4.17, and describes the dynamics

of the soil moisture depletion process. The second member of the

right-hand side of the equation, Vk(Ok, At), represents the stochastic

volume of water infiltrated from storm events during time interval At.

Consequently, 6k+1 is random. Its probabilistic description is

presented later as part of the stochastic law of motion, P.

It is necessary to emphasize that infiltration, either from

storm events or irrigation applications, is assumed to occur in-

stantaneously. Thus, the dynamics of the soil moisture storage

process is as presented in Figure 4.3.

Second, the elapsed time operator, which yields the value of

the variable k at the beginning of the next decision stage as a

function of its present value, Ck' and of a random disturbance, Wk

as follows:

Ck + I if Wk =0 ,k T

Ck+1 = h( k, Wk) = (4.30)

Wk ifW k = 1 ,k T
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where Wk is. a binary random variable that is equal to one if it rains

during decision stage k, or equal to zero otherwise.

Finally, the irrigation water operator given as a simple

mass balance equation to guarantee that the volume of water used

for irrigation during each decision stage k, is less than or equal

to the available volume of irrigation water:

rk+l = Z(rk, Uk) , k e T

such that:

rk+l = k - k

(4.31)
and

rk+1 >0

4.3.6 Stochastic Law of Motion, P

The stochastic law of motion P, is a family of conditional

distribution functions Pk(Xk+l/Xk, Uk), which for each decision stage

k, yield the conditional distribution function of the state vector

+1, conditional on its present value and the irrigation decision.

Only two elements of the state transition vector +1 are stochastic,

namely the soil moisture content 6k+1 and the time in days since the

occurrence of the last rainfall c k+1. The state transition function

for the available irrigation water, 2(-,-), is totally deterministic.
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Consequently, the stochastic law of motion involves only the description

of the joint stochastic behavior of ek+1 and Ck+1' To do so, the

probability distribution function (PDF) of the terminal soil moisture

content, as well as the PDF of the time since the last rainfall

event have to be defined.

Soil-moisture content (SMC) at the root zone is discretized,

in the state space, from saturation SMC to permanent wilting point

PWP. The discretization follows that of C6rdova and Bras (1979)

(Figure 4.4). It is a variable interval discretization whose index

ranges- from one at saturation to m at PWP. The length of each

interval is such that, under unforced conditions (no infiltration

inputs), it takes one day for the depletion processes to drive the

SMC from the upper bound to the lower bound of each interval, and

m days to drive it from saturation to PWP.. According to this, the

PDF of the terminal soil moisture content, for all soil moisture

states, can be expressed as a transition matrix:

,(k) = {$..(k)} i,j = 1, ... , m (4.32)
1j

where $. (k) represents the probability that at the end of decision

stage k (or beginning of decision stage k+1) the soil moisture

content is in.state j, given that at the beginning of the stage it is

in state i. The generic element of matrix (k) is defined as:

. (k) = P.. (k) - Pr[Wk=O I + P. k (k)- Pr[W=lk (4.33)1J 1 w =0 k kIW k k1
k *
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where P.. (k) is the probability that at the end of stage k,

the soil moisture content is in state j, given that at the beginning

of the stage it is in state 1, and no precipitation occurs during the

stage. P.. -i (k) is its analogue for the case when precipitation

occurs during the stage. Finally, Pr[Wk=0 1 k] and Pr(Wk=11 k] are

the conditional probabilities of no rain and rain during the given

stage, respectively.

If there is no rain during decision stage k, then Vk (0, At) = 0

in equation 4.29. Thus, for At equal to one day and according to

the above discretization:

go" At)

k+1 =

and (4.34)

j = i+ 1

Consequently,

1 if j=i+1

P.. (k) = Pr{0 +[ O+ +O ] /B [ [ La ] andW =01=

'Wk0 k+1 Uk+1'Lk+1 k UkLk k 0 otherwise.

(4.35)

where the subscripts U and L stand for upper and lower bound of the

given soil moisture interval.
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When precipitation occurs during the time interval At, (k, k+1],

equation 4.29 can be written as:

k g(O' At) + V (e, At) = '+1 + V (4.36)k+1 k'kk k k

In equation 4.36, soil moisture is first depleted from k to ek

and then replenished up to the value ek+1. Thus, V represents
k+16 k

the volume of infiltrated water (from rainfall) required to bring

0i+1 0jthe SMC from ek to k+1 The upper and lower bounds of the jth

interval can be expressed as:

ej= ei+1 + Vij
Uk+1 k Uk

(4.37)

oj = )i+1 + V i
L k+1 k L k

Consequently,

P.. (k) = Pr{Ok 6[ eUkL /a W =1
1 = k+1 U k L kk k
fWkl

= Pr{ UV < /k U6 ' L ] and W 1.38)
L k - k Uk k g Ckd L k knd4.38)

Finally, and following CO'rdova and Bras (1979):.
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Qi
U k

(k) =

L k

L k- k--Uk k Uek' Lk' Wk=1d0k

(4.39)

where:

ei ei -Ak = k - k
k U k L k (4.40)

Expression 4.39 can be evaluated using equations 4.36 and 4.37

to calculate UV and LV k and using equation 4.22 which defines

the PDF of the random variable V i, conditional on e .

In a previous chapter, the conditional distributions S 0

and S 10(x;C) have been defined for a point process with single

occurrences and applied to model storm arrivals. Assume that the

time interval chosen, At equal to one day, between decision stages

is sufficiently small to guarantee that:

Pr[N(At) > 1] = 0 (4.41)

where N(At) counts the number of rainfall occurrences in interval At.

By definition,

S0(x;c) = Pr[X > x1c0

and

S1 0(x;) = Pr[X > xji

where X represents the time to the next rainfall occurrence.

(4.42)
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Also, because of the duality between the definition of a Point

Process as a Counting Process or as an Interval Process, equation 4.42

can be written as:

Pr[X > x] = Pr[N(x) = 0] = 1 - Pr[N(x) = n] (4.43)

n=1

When x equal one day, equation 4.41 holds. Consequently, sub-

stituting in equations 4.43 and 4.42:

S0 (x=1 day; c)= Pr[N(x) = 0c]= 1 - Pr[N(x) = 1Jc]

(4.44)

S10 (x=1 day; C) = Pr[N(x) = 0j] = 1 - Pr[N(x) = 1c)

Thus, the PDF of the random variable Wk can be obtained from

eqution 4.44 as:

S (x-1 day; C k
Pr[Wk Ok1 (4.45)

S10 (x=1 day; Gk

and

1 - S0 (x=1 day; Ck

Pr[Wk= k] = (4.46)

1 - S1 0 (x=1 day; Ck

Expressions to evaluate S0 (x;C) and S10 (x;) are given in Chapter 3.
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This completes the definition of the SMC transition matrices.

It should be noted that now, as opposed to C6rdova and Bras (1979),

the transition matrices D(k) are conditional on the random variable

k. Also, it should be observed that the conditional information

contained in the history of the precipitation process has now been

effectively accounted for.

To completely define the stochastic law of motion, it is necessary

to define the PDF of the random variable Gk+1, conditional on the

value of k. It has already been stated that rk represents time in

days since the occurrence of the last rainfall. However an upper

bound on the value of rk has not been defined. In order to do so,

it is assumed that there exists a time lag in days beyond which the

dependence in the rainfall arrival process is sufficiently weak to

guarantee that:

S0(x;H) S 0 (x;H*) S (x;H1) 0 < H < H* < H

and (4.47)

S10 (x;H) # S10 (x;H*) S1 0 (x;H 1) 0 < H < H* < H

In equation 4.47, H, H* and H1 represent the knowledge the

decision-maker has about the immediate history of the storm arrival

process. Thus, the previous assumption simply states that there

exists an upper bound, H*, to the conditional information contained

in the past of the process. According to this assumption, equation

4.30 becomes:
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min( k+1, H*) if Wk = 0 , k S T

= h( k Wk) =

~Wk ifk = 1 , k eT.

k j
k

(4.48a)

(4.48b)
k j , k C T , j = 1, 2, ... , H*

The conditional PDF of the random variable 1 k+1' conditional

on the value of k, can be expressed as a transition matrix:

'(k) = {i (k)} i,j = 1, 2, ... , H*

where ' (k) is the probability that at decision stage k+1, ck+1

in state j, given that at stage k, Ck is in state i.

The generic element . . (k) can be expressed.

*ip (k) = q k (k) - Pr[Wk=0 k + q k 1

(4.49)

is

as:

(4.50)

Prg 6 j i: adW=0
(k) = Pr( [k+I + k / C and Wk = 11

(k) = Pr[k 1 W

(4.51)

(4.52)
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Expressions 4.51 and 4.52 represent the one stage transition

probabilities of the random variable r , conditional on whether or
k

not it rains during decision stage k. These probabilities are

evaluated using equations 4.48a and 4.48b. They are:

1
*q (k) =

q (k) =

JWk=1 (0

if j = i+1

otherwise

if j=1

otherwise

The joint stochastic behavior of the random variables 6 and

C can be obtained in terms of the transition matrices <(k) and T(k).

Assume that at the beginning of decision stage k, the SMC is in state

i, 6 1, and the elapsed time is in state p, C ; then the probability

that at the beginning of stage k+1, 0k+1 is in state j and Ck+1

is in state q can be written as:

Pr{ (e, P] + [a +1Cq +I i j (k) $ p (k)
k k k+1 k+1 ijpq i,j=1, ... , m

p,q=1, ... , H*

(4.55)

where Pr{[-,*] + [-,-} stands for transition probability.

Generalizing equation 4.55 for all feasible values of the

indexes i, j, p, q, yields the desired stochastic law of motion.
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4.3.7 Output Function, G

The contribution of decision stage k, to actual total

crop yield has been defined as the output variable. According to

the crop model presented in Section 4.2.3, the output function can

be defined as:

Y = Gk(Xk, Xk+l, Uk) (4.56)

such that:

ETk
Y Y A - k (4.57)k M k ETPk

where:

Y = contribution of decision stage k to total crop yield

YM = genetically determined maximum potential crop yield

Ak sensitivity parameter of the crop to soil moisture stress

ET total actual evapotranspiration during decision stage k
k

ETP = total potential evapotranspiration during decision stage k

The systems description of the irrigation scheduling model

has now been completed.
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4.4 Stochastic Dynamic Programming Solution

In order to apply the Dynamic Programming algorithm to the

multistage decision problem defined in the previous sections, it

is necessary to define an objective function. In this study, and

accounting for the stochastic nature of the variables involved,

the measure of performance to be used is the maximization of the

expected value of the total net profits at the end of the growing

season:

N+1

B* MAX E YaRk (Xk +1,1 Uk) - PC

&k=l

Rk(Xk' k+V Uk) k - Uk - yCk(Uk)

(4.58)

(4.59)

where:

P

Y k

Uk

C k(U k)

PC

E[-]

= unit price of crop yield

= contribution of decision stage k to total yield

= unit cost of irrigation water

= fixed cost of irrigation (labor cost)

volume of irrigation water applied at decision stage k

1 if Uk >0

0 if Uk = 0

= production costs different from irrigation costs

= expectation operator

4.60)
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With respect to the available irrigation water, two different

cases can be defined in studying the irrigation scheduling problem:

limited and unlimited water supply. The critical case is when the

irrigation water supply is limited. However, from an operational

point of view, the unlimited water supply case offers some advantages

that make it worth solving. On one hand, it has smaller dimension

since it is not necessary to account for the available volume of

irrigation water. This simplifies the problem and reduces its

solution cost. On the other hand, since the unlimited water problem

is a particular case of the more general limited water supply problem,

its solution constitutes an upper bound to the maximum net profits

attainable. Furthermore, by solving the unlimited water case, it

is possible to obtain a preliminary analysis of the effect of the

conditional information encoded in S0 (x;) and S10 (x;t) on the solution

of the irrigation scheduling problem.

4.4.1 Unlimited Water Supply

When the available irrigation water, at each decision

stage, is unlimited, it is not necessary to include it as a state

variable. Thus, for this case:

Xk = (k' Ck

98



The SDP algorithm proceeds as follows:

a) Define

* - * i p
N+l[XN+1 = JN+1[0 N+1' N+1=

(4.61)Vi, i=1, .. ,M

"VP , p=1, S... H*

b) Proceed by induction as follows:

k [Xk kk, U= UAk E [Rk Xk k+1 , Uk k+1 Xk+ 1

UkF k
(4.62)

where Qk is the set of feasible irrigation decisions at stage k and

*
Uk is the optimal irrigation decision at stage k. More explicitly:

J * ,Oic] = Jk[PC ,U *Ik k' k~ k JkL k2 k

= MAX {E[P ([R PU + (k) $ (k) Jk+1 J q }

Uk6Qk j q

(4.63)

Then, set
*i *P)

rk(k k k

*
where r (-,-) is the optimal decision function at stage k. It

yields the optimal amount of irrigation water to be applied at

decision stage k, Uk , as a function of the state, Xk.

c) Proceeding by induction, obtain:
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p * in
J1 [6 ,9C P = B [e , P) + PC

4.4.2 Limited Water Supply

The SDP algorithm proceeds as follows:

a) Define

* -* i p
JN+1(XN+1] = JN+1[0 N+l' IN+1, rN+1] = 0 Vi, i=1, ... , mn

Vp, p=1, ... , H*

b) Proceed by induction as:

fkk]= Jk[XkUk]

= MAX {E[Rk(XkUk)] +(k) (k) J+ +
ij pq K+1(X+)

Uk k j q

or more explicitly:

* [Qi p
k k'kk

= MAX {E[Rk(O, ,Uk + 
k~ekCkp'k +1J

Uk6Qk i

(k) $ (k) Jk + q+I rk+1p q k+ 1 k+ ,k+ ,k+1
q

(4.69)
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and rk+1 <r - Uk (4.70)

Then, set

rkk' k, rk) Uk (4.71)

c) Proceeding by induction, obtain:

J( [ , r1 ] = 1' P, r1 ] + PC (4.72)

The SDP algorithm yields, not only the expected maximum net

benefits, Jk[Xk], for each decision stage and state vector but also,

and most importantly, optimal decision functions, rk(Xk), that give

the optimal amount of irrigation water to be applied as a function

of the SMC at the root zone, 0 k' the time in days since the last

rainfall occurrence, Ck' and the volume of water available for irri-

gation, rk"
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4.5 Summary

In this chapter, the irrigation scheduling problem has been

reformulated to include the conditional information available in

the history of the precipitation process as the growing season

progresses. A systems description of the problem has been presented,

acknowledging its nature as a finite horizon, multistage, stochastic

decision process. Finally, the solution of the problem has been

obtained using stochastic dynamic programming.
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Chapter 5

MODEL CALIBRATION AND CASE STUDY RESULTS

5.1 Introduction

The previous four chapters have developed the theoretic setting

necessary to formulate and solve the irrigation scheduling problem,

considering the conditional information contained in the immediate

history of rainfall occurrences. However, the main objective of this

work is not so much to develop a more or less complex model of the

climate-soil-plant system interactions, but to devise a model capable

of being used in real world situations. In this chapter, the issues.

of model calibration and case study results are discussed. Issues

regarding model calibration are presented in two separate sections,

the first on the calibration of the plant-soil system model; the

second on the calibration of the climate subsystem model. Lastly,

case study results are presented.
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5.2 Case Study Definition

The irrigation problem defined by C6rdova and Bras (1979)

constitutes the case study in this work. C6rdova and Bras (1979)

in turn, used parameters and data obtained by Blank (1975) from an

irrigation study in Colorado.

The parameters required by the soil-plant model were obtained

from field experiments conducted at Colorado State University, with

an early corn variety (Northrup King PX 20) in a uniformly deep

.Nunn clay loam soil during the growing season of 1974.

Precipitation data was obtained from historical records at

Denver, Colorado (N.O.A.A. Station Number 05-2220). Economic co-

efficients were obtained by Blank, from the economic study of the

Fort Morgan irrigation area in Colorado, and performed by Conklin (1974).

The growing season starts on May 15 and ends on September 11.
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5.3 Soil-Plant System Model Calibration

The calibration of the soil-plant system is related to the

estimation of the parameters defining the additive crop model adopted,

as well as the elements of the soil water balance. In the definition

of the above parameters, it is also implied that parameters describing

the particular soil have to be defined; particularly with respect

to the soil water balance. Furthermore, as required by the crop

model, growth stages, and their characteristics have to be described.

5.3.1 Crop Model Parameters

For the additive crop model adopted in Chapter 4 and

expressed as (equation 4.19):

NP ET
Y YM A. ETPz (5.1)

z=1 z

the parameters to be estimated are the crop sensitivity parameters Az

These parameters represent the relative sensitivity of the particular

crop to water stresses in a given growth stage. Blank (1975)

considered the following three growth stages:

1. Germination through vegetative growth, from May 15 to

July 16.

2. Early silking, from July 16 to July 23.

3. Silking through maturity, from July 23 to September 11.
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The adoption of these three particular stages takes into account

the fact that the presilking period is critical for corn production.

Water stresses during this growth stage induce worse adverse effects

on the overall plant growth than on any of the other two growth

stages (see Figure 5.1). Using a standard stepwise linear regression,

Blank (1975) calibrated the model of equation 5.1 to experimental

data obtained for an early maturity corn variety (Northrup King PX 20).

Table 5.1 presents the values obtained for the parameter Az in each

growth stage (see C6rdova and Bras, 1979).

5.3.2 Soil Water Balance Parameters

As presented in Chapter 4, the components of the soil

water balance are infiltration from storm events or irrigation

applications, evapotranspiration, and percolation. All of these

processes are expressed as functions of the initial soil moisture

content at the root zone and soil parameters.

5.3.2.1 Soil Parameters

C6rdova and Bras (1979) estimated the required soil

parameters necessary to account for the dynamics of the infiltration

and percolation processes from the description of the-soil texture.

This was necessary since Blank's study neglected the processes of per-

colation and surface runoff and did not provide values for the soil

parameters. The typical values for the parameters corresponding to a

clay loam soil are taken from Eagleson (1978) and presented in Table 5.2.
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(taken from Anderson and Mass (1971))

Figure 5.1

THEORETICAL CROP GROWTH CURVES
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Table 5.1

CROP SENSITIVITY PARAMETERS FOR BLANK'S ADDITIVE MODEL

A
1

0.236

A
2

0.159

A
3

0.573 0.98

Note: R is the square of the correlation coefficient,
between measured and computed yield.

Table 5.2

SOIL PARAMETERS

Soil Type: Clay Loam

Porosity, n: 0.35

Saturated Hydraulic Conductivity, K(1): 30 mm/day

Saturated Soil Matrix Potential, $(1): 190 mm

Diffusivity Index, d: 5.5

Pore Size Index, m: 0.286

Pore Connectivity Index, c: 10
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5.3.2.2 Actual Evapotranspiration Process

For the three different growth stages defined earlier,

it is necessary to determine not only the potential evapotranspiration

rate, but also the. corresponding crop root depth. The former is

required because it determines the evaporative demand of the atmosphere

or maximum water extraction rate, and the latter because it defines

the depth of the conceptual soil column and consequently the total

volume of water available for evapotranspiration.

Adopting the assumption made by Yaron, et al. (1973), that the

actual evapotranspiration is a linear function of the available

soil moisture -content, equation 4.7 reduces to:

a 0 0 < 6 < FC

E(0) 
(5.2)

ET FC < e
p

where FC is field capacity and a = ET /FC is called the Yaron
p

coefficient. The values obtained by Blank for FC, ET , and root

depth for each growth period are presented in Table 5.3.

Using the values for FC, n, and root depth presented in Tables

5.2 and 5.3,. and using typical soil moisture extraction curves

(Eagleson, 1978), values for the soil moisture content at saturation

and permanent wilting point can be obtained (C6rdova and Bras, 1979).

These values for the particular case at hand are presented in Table

5.4.
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Table 5.3

PARAMETERS OF EVAPOTRANSPIRATION FUNCTION

Growth Period

I

ET (mm/day)
p

FC (mm)

Root Depth (m)

3.1

143.1

0.91

III

6.3

330.0

4.6

330.0

2.13 2.13

Table 5.4

SOIL MOISTURE CONTENT AT SATURATION AND PWP

Growth Period

I. II

320 747

74 173

110

s (mm)

PWP (mm)

III

747
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5.3.2.3 Soil Moisture Depletion Process

In order to determine and quantify the soil moisture

depletion for the case study, several assumptions are made. The

evapotranspiration rate, as expressed in equation 5.2, is assumed

to be a linear function of the available soil moisture content.

In order to obtain a linear expression for the soil moisture depletion

rate, the percolation function is also linearized. To do so, it is

assumed that the percolation rate is zero for soil moisture contents

*
below FC, and a new parameter, 01, 0 < 6 < 0 is defined. Both

the linear evapotranspiration function and the linear percolation

function are shown in Figure 5.2. According to this the soil moisture

depletion rate can be defined as:

a + 0 8 < <0
1 1 1- -s

de --- = -*(5. 3)

836 0 < e < e

Values for the parameters of equation 5.3 are given by C6rdova

and Bras (1979) (see Table 5.5). After linearization, equations

4.11 through 4.18 can be solved analytically. After solving these

linearized equations, the resulting soil moisture depletion curves

for the case study as well as their associated total actual evapo-

transpiration curves are shownin Figures 5.3 and 5.4, for each growth

stage.
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Table 5.5

PARAMETERS OF LINEARIZED MOISTURE DEPLETION RATE

Growth Period

I Ii I

-86.7

.477

a 2 -10.9

.098

.0217

-89.15

.215

-6.90

.040

.0191

-90.85

.215

-8.60

.040

-. 0139
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5.3.3. Economic Parameters

As introduced in Section 4.4, the objective is the maxi-

mization of expected net profits; this is expressed as (equations 4.58

and 4.59):

B = MAX E Rk(Xk, X+, Uk) - PC (5.4)

-k=1

where R k(Xk' +1 Uk) k - SUk Y Yk(Uk) (5.5)

The crop model has also been defined in equation 5.1 as:

ET

Y = YM Az - Y. (5.6)
ETP z

z=1 zZ=1

where as before, NP is the number of critical growth periods;

thus, Yz represents the contribution of growing period z to total

actual crop yield. According to this, and from equation 5.6, Yz

can be expressed as:

ET
Y = Y A Z (5.7)
z 4 z ETP

z

However, because of the additive characteristic of the crop

model, Yz can also be expressed as:
z

ND) ND
z Y A z

Y = n = E z ET (5.8)
zn,z ETP n .

z
n=-1 n= 1
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where NDz represents the number of decision stages in growing period z;

and Y is the contribution .of. decision stage n in growing period z to

total actual crop yield. Substituting equations 5.7 and 5.8 into equation

5.6 yields:
NP ND N+l

z

Y= Y (5.9)

z=1n=1 k=1

where: NP

N = ND (5.10a)

z=1

and:

* ETk
Y k YM A k ET * (5. 10b)

ETPk

is the contribution of the general decision stage k to total actual

crop yield, as it appears in equations 4.59 and 5.5.; Ak and ETPk

are the crop sensitivity parameter and total potential evpotranspiration

for the growing period corresponding to decision stage k. Substituting.

equation 5.10b into equation 5.5 yields:

ETk
-( -. U) P * Ek

Rk(Xk +1, Uk M * -Uk k(Uk) (5.11)
ETPk

Equation 5.11 can be rewritten as:

Rk ' Xk+1, Uk = ak ETk - SUk - YCk(Uk) (5.12)

where: ak Y Ak/ETPk represents the dollar value of one unit
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of actual evapotranspiration during decision stage k. In the previous

* *
equations, Ak and ETPk are defined as follows:

Ak E Az (5.13a)

ETP E ETP (5.13b)
k z

and such that:

z z+1

NDn < k ND , n=1,2,...,NP (5.14)

n=1 n=1

Blank (1975) estimated values for the parameters Y and P.
M

These are 140 bushels/acre and 2.5 U.S.$/bushel, respectively.

Using the length of each growth period and the values for the poten-

tial.evapotranspiration rate, the parameter ak was calculated.

Table 5.6 shows the resulting values. The parameters PC, f, and y

were estimated by Blank from the study of the Fort Morgan irrigation

area in Colorado, performed by Conklin (1974). Assuming a fifty

percent efficiency in the application of water yields a value

= 0.016 U.S.$/mm, of water delivered at- the root zone. Assuming

that labor cost per irrigation is independent of the amount of water

applied yields y = 2.5 U.S.$/irrigation/acre. Finally, PC is.

estimated as 237.0 U.S.$/acre.
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Table 5.6

VALUES FOR PARAMETER a

Growth Period

I

an $/mm 0.44

II

1.15

118
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5.4 Climate Subsystem Model Calibration

As defined in previous chapters, the climate subsystem is

modelled in terms of the potential evapotranspiration rate and the

precipitation process. The potential evapotranspiration rate was

assumed deterministic but varying throughout the growing season,

and its values for the different growth periods were presented in

Section 5.3. Precipitation is modelled in terms of the process of

storm arrivals and the storm intensity and duration. As stated

earlier, these parameters were estimated from twenty-seven years

of precipitation data at Denver, Colorado (1949 to 1975).

The main issue to be resolved in the calibration of the complete

precipitation model is the definition of a storm event. In the work

of C6rdova and Bras (1979), and in order to justify the use of the

Poisson process for the storm arrivals, an independent storm event

had to be defined. This was done by determining a minimum interstorm

time that would yield a coefficient of variation equal to one in

the implied one parameter exponential distribution. Neglecting

seasonality in the precipitation process throughout the year,

Restrepo and Eagleson (1979) determined that the minimum interstorm

time was 17.7 hours for Denver, Colorado.

In this work, the objective is not to define a storm event

that fits the assumptions of a prespecified model; rather, a logical

storm event is defined, and then a precipitation model is fitted to

the resulting time series. The only condition required is that the

defined storm event effectively describes a point occurrence. This
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is a condition required not only by the Neyman-Scott process, but

also by the Poisson process, and in general by the assumption that

the precipitation arrivals constitute a point process. This is true

as long as the duration of each storm event is not considered, since

for a point process the occurrences should be instantaneous. Con-

sequently, an abstraction is needed so that storms of finite duration

are transformed into instantaneous occurrences in time. This trans-

formation is obtained defining a sampling interval so that an in-

stantaneous rainfall event is assumed to have occurred in the middle

of the interval if certain conditions are met. As the size of the

sampling interval decreases, each storm event starts to approximate

more and more an instantaneous occurrence. This size of the interval

is determined not only by the requirement that the resulting storm

events should approximate as much as possible a point occurrence;

but also by the computer storage requirements, computer costs, etc.

Keeping this in mind, and the study of Restrepo and Eagleson mentioned

above, an interval size of twenty-four hours (one day) is used in

this work to define a rainfall occurrence. A storm event occurs in

the middle of the day whenever the total precipitation on the given

day is greater than 0.254 mm (0.01 inches).

5.4.1 Rainfall Intensity and Duration Parameters

The entire growing season (120 days) was divided into

fifteen consecutive eight-day long periods to carry out the rainfall

data analysis with respect to intensity and duration. The analysis

was performed for each eight-day period and frequency histograms
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for storm intensity and duration were obtained (Tables 5.7 and 5.8):

first and second-order moments for intensity and duration, as well

as the number of storm events for each eight-day period were obtained.

Comparing the number of storms in each of the fifteen periods,

as well as the mean and variance of the storm intensity and duration,

five arbitrary statistically homogeneous precipitation periods were

defined. These homogeneous precipitation periods are as shown in

Table 5.9. This means, that although as stated in previous chapters,

the precipitation process is considered homogeneous (stationary) with

respect to the storm arrivals; it is considered inhomogeneous with

respect to the storm characteristics intensity and duration. Using

the method of moments, an exponential distribution was fitted to

storm intensity and storm duration in each homogeneous precipitation

period. Also, for the sake of comparison, a Poisson model was fitted

to the process of storm arrivals. The parameters obtained for the

analyzed data are as shown in Table 5.10.

5.4.2 Rainfall Arrivals Model Parameters

Only three parameters need to be calibrated when the

rainfall arrivals are modelled as a Neyman-Scott cluster process of

the kind considered here. Namely, these parameters are the parameter

p of the Poisson distribution for the parent process or rate of

occurrence of RGM's; the parameter p of the geometric distribution

for the cluster sizes; and the parameter a of the exponential

distribution for the times of occurrence of the individual storms
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Table 5.7

HISTOGRAMS FOR STORM INTENSITY

STORM INTENSITY (MM/H)

HISTOGRAMS FOR EACH PERIOD
INTERVAL 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15

0.- 1. 47. 37. 50. 47. 38. 28.- 30. 41. 36. 42. 39. 32. 27. 31. 23.
1.- 2. 22. 20. 16. 17. 11. 6. 8. 13. 16. 10. 9. 10. 10. 11. 13.
2.- 3. 6. .5. 9. 4. 4. 4. 5. 5. 6. 7. 5. 8. 8. 3. 4.
3.- 4. 2. 2. 4. 6. 2. -1. 3. 3. 6. 4. 5. 5. 2. 4. 0.
4.-- 5. 2. 1. 1. 1. 2. 1. 5. 3. 5. 2. 2. 1. 2. 1. 1.
5.- 6. 1. 0. 0. 4. 3. 0. 0. 2. 1. 2. 1. 0. 1. 0. 0.
6.- 7. 0. 0. 0. 0. 0. 0. 1. 0. 3. 0. 1. 0. 0. 0. 0.
7.- 8. o. 0. o. 1. o. o. 0. o. o. o. o. 1. 0. 0. 2.
8.- 9. 0. 0. 0. 0. 0. 0. 2. 0. 1. 1. 0. 1. 1. 0. 1.
9.- 10. 1. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
10.- 11. 0. 0. 0. 0. 2. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0.
11.- 12. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.
12.- 13. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
13.- 14. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0.
14.- 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
15.- 16. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
16.- 17. 0. 0. 0.- 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0.
17.- 18. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.
18.- 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
19.- 20. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.
20.- 21. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
21.- 22. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
22.- 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
23.- 24. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
24.- 25. 0. 0. 0. 0. 0. 0. 0. 0. 0.. 0. 0. 0. 0. 0. 0.
25.- 26. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
26.- 27. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
27.- 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
28.- 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
29.- 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
30.- 31. 0. 0. 0. .0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
31.- 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.* 0. 0. -0. 0. 0.
32.- 33. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
33.- 34. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

> 34. 0. 0. 0. 0. 0. 0. 0. o. 0. .0. 0. 0. 0. 0. 0.

MEAN 1.2 1.3 1.1 1.5 1.8 1.0 2.2 1.2 2.5 1.7 1.4 1.7 1.4 1.4 1.5
STD. DEV.' 1.4 1.7 1.0 1.9 2.8 0.9 3.0 1.3 3.3 2.6 2.0 2.5 1.6 2.4 1.9
NUMBER OF
STORMS 81 66 80 81 63 40 57 67 79 70 63 59 51 51 44
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Table 5.8

HISTOGRAMS FOR STORM DURATION

STORM DURATION (H)

HISTOGRAMS FOR EACH PERIOD
INTERVAL 1 2 3 4 5 6 7 8. 9 10 11 12 13 14 15

0.- 1. 20. 23. 27. 26. 27. 15. 25. 29. 27. 19. 26. 32. 22. 19. 18.
1.- 2. 17. 11. 13. 19. 9. 16. 17. 17. 23. 24. 24. 13.- 14. 12. 13.
2.- 3. 13. 10. 7. 10. 14. 5. 8. 10. 10. 12. 2. 5. 4. 7. 1.
3.- 4. 6. 5. 7. 5. 4. 1. 3. 6. 11. 5. 5. 6. 2. 3. 7.
4.- 5. 3. 2. 11. 5. 3. 2. 1. 2. 3. 2. 1. 1. 3. 3. 2.
5.1- 6. 2. 4. 1. - 5. 4. 1.. 2. 1. 1. 1. 2. 0. 5. 1. 2.
6.- 7. 2. 0. 1. 6. 0. 0. 0. 2. 2. 1. 0. 1 1. 0.
7.- 8. 2. 1. 5. 1. 0. 0. 0. 0. 2. 1. 1. 0. 0. 1.. 0.
8.- 9. 4. 1. 2. 1. 0. 0. 1. 0. 0. 3. 2. 1. 0. .1. 0.
9.- 10.. 2. 2. 0. o. o. o. 0. o. o. 0. o. 0. o. 1. o.

10.- 11. 2. 1. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
11.- 12. 0. 0. 3. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.
12.- 13. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
13.- 14. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
14.- 15. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.
15.- 16. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
16.- 17. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
17.- 18. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
18.- 19. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
19. - 20. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
20.- 21. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
21.- 22. 1. .0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
22.- 23. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
23.- 24. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
24.- 25. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
25.- 26. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
26.- 27. 0. 0: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
27.- 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
28.- 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
29.- 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
30.- 31. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0. 0. 0.
31-. - 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
32.- 33. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
33.- 34. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

> 34. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

MEAN 4.9 4.3 3.8 3.4 2.7 2.0 2.1 2.2 2.5 3.0 2.3 2.0 2.4 3.1 2.5
STD. DEV. 5.1 4.9 3.5 3.4 2.7 1.2 1.5 1.5 1.7 2.7 1.9 1.6 1.8 3.0 2.1
NUMBER OF
STORMS 81. 66' 80 Si 63 40 57 67 79 70 63 59 51 51 44
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Table 5.9

HOMOGENEOUS PRECIPITATION PERIODS

Precipitation
Period

I

II

III

IV

May 15 - June 16

June 16 - July 18

July 18 - Aug. 3

Aug. 3 - Aug. 19

Aug. 19 - Sep. 11

Table 5.10

PARAMETERS OF EXPONENTIAL DISTRIBUTION FOR STORM
INTENSITY, DURATION, AND POISSON ARRIVAL RATE

Homogeneous Precipitation Periods

I II III IV V

Storm Intensity Parameter

Storm Duration Parameter

Storm Arrival Rate

0.78 0.65 0.48 0.65 0.70

0.24 0.44 0.36 0.46 0.37

0.36 0.26 0.34 0.28 0.23

Poisson Model Parameter 0.294
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within their respective clusters. The calibration of these three

parameters is done by fitting the theoretical spectrum of counts

and log-survivor function for the N-S model to their estimated

counterparts. The estimation of the spectrum of counts, and of the

log-survivor function is performed using the theory developed by

Cox and Lewis (1966) for the statistical analysis of series of events.

Before proceeding to the calibration of the N-S cluster model for

the twenty-seven years of rainfall data in Denver, a partial description

of the process in terms of the estimated mean rate of daily occurrence,

the estimated variance-time function, the estimated log-survivor

function, and the estimated spectrum of counts is obtained using

the theory for the statistical analysis of series of events (Cox

and Lewis, 1966).

5.4.2.1 General Description of Arrival Process

Figure 5.5 presents a plot of the cumulative number

of storm events versus cumulative time from an arbitrary origin.

From this plot it is possible to identify low frequency cycles or

non-homogeneities in the mean rate of occurrence. The slope of the

plot at any time yields the inverse mean rate of daily occurrence.

However, it is not at all clear from Figure 5.5 whether the slope is

increasing or decreasing or constant (or in other words, whether

the function is convex, concave or both). These characteristics are

important because they help to determine long-term trends or low

frequency inhomogeneities in the mean rate of arrivals. In order to
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do so, the Cramer statistic is calculated (Cramer, 1946). The Cramer

statistic is defined as:

U (S - T/2) (5.15a)
T//i2n

where:

n

S = Et (5.15b)

i=1

In equations 5.15a and 5.15b, T is the length of the period of

observation, n is the number of events in T, and t. is the time

from the origin to the occurrence of the ith event. Cramer showed

that U is distributed N(0,i) as n-o. If the centroid of the observed

times tj is greater than the midpoint of the period T, then .U is

positive, indicating an increasing mean rate of occurrence. Using

the program SASE (for Statistical Analysis of Series of Events;

Lewis', et al., 1969), the value of U obtained was 0.5, which indi-

cates no trends in the rate of occurrence at the five percent level

of significance. So that at this point, the assumption of a constant

mean rate of occurrence seems to be called for, as it would be

desired under the N-S model adopted, since as expressed in equation 3.17,

its rate of occurrence is constant. However, this conclusion is not

valid because both of the above tests serve only to determine low

frequency trends, and high frequency cycles are filtered out.
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To estimate the mean rate of occurrence of the storm arrival

process, the following estimator was used:

N(t, t+At)
At At

where At is an arbitrary interval of time.

This estimator was usedby Kavvas and Delleur (1975) and proved

to be unbiased for stationary processes by Cox and Lewis (1966).

Figure 5.6 shows the estimated mean rate of occurrence. Since for

a stationary process, the mean rate of occurrence constitutes a

horizontal straight line, it is evident from Figure 5.6 that the

rainfall data analyzed is not only non-homogeneous but possesses

a very marked yearly periodicity. Many other significant cycles

may exist in the analyzed time series, but a complete trend and

cycle analysis is out of the scope of this work.

The normalized spectrum of counts was estimated using the

computer program SASE by Lewis, et al. (1969). The estimated

spectrum of counts for the rainfall occurrences in Denver is shown

in Figure 5.7. As defined in an earlier chapter, the spectrum of

counts is the Fourier transform of the covariance density. It then

carries information about the dependence structure of the process.

For the homogeneous Poisson process, that is, under the independence

assumption, the theoretical spectrum of counts is (Kavvas and Delleur,

1975), g+(w) = X/w , w > 0 , or a horizontal straight line. Figure 5.7
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also shows the normalized spectrum of counts and ninety-nine percent

confidence intervals for the Poisson process when it is fitted to

the data from Denver. It is evident that the estimated spectrum

of counts deviates greatly from the Poisson assumption of indepen-

dence, as shown by the many frequencies outside the confidence limits,

indicating a definite dependence structure in the rainfall arrival

process.

The variance time function, as well as the log-survivor function,

was also estimated using the program SASE. For a Poisson process

the variance-time function plots as a straight line with slope equal

to the rate of arrival. The comparison between the estimated variance-

time function and the theoretical variance-time function under the

Poisson assumption is shown in Figure 5.8. *It shows not only the

deviation from the Poisson case of the estimated variance-time

function, but also by appearing to be convex, indicates an overdis-

persion, and a clustering of the rainfall events (Vere-Jones, 1970);

the upward deviation from the Poisson case implies a coefficient of

variation greater than unity. This is all clear evidence of the

clustering behavior in the occurrence of rainfall and of a significant

dependence structure.

Finally, the relative frequency histograms of the interarrival

times between daily occurrences, and the log-survivor function were

estimated using again the above-mentioned computer program (Lewis,

et al., 1969). The log-survivor function is defined as the logarithm

of the survivor function of the interarrival times. For the Poisson
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process, it is easily obtained as:

in Pr[X > x] = -Xx (5.17)

Figure 5.9 shows the estimated log-survivor function. Again, it

not only deviates from the theoretical Poisson case, but its con-

vexity indicates once more the overdispersion and clustering of the

rainfall occurrences (Vere-Jones, 1970; Kavvas and Delleur, 1975).

However, the deviation from the Poisson log-survivor function is

not very marked, indicating that possibly, although there is some

clustering, it is not sufficient to cause a very long memory in the

rainfall counts, and the process at hand has a very weak dependence

structure.

From the above general statistical description of the rainfall

data used in the case study, three main features are of interest.

The first relates to the obvious non-homogeneity of the process of

rainfall occurrences. Neglecting the influence of the high frequency

cycles, the only significant periodicity appears to be the marked

yearly cycle. However, the N-S cluster model under consideration is

stationary. Obviously then, the N-S model cannot be used to model

rainfall occurrences throughout the entire year. It can only be

used to model stationary sequences. For the purpose at hand, the

four-month long irrigation season is a period of time short enough

to make practical the assumption of stationarity. Kavvas and Delleur

(1975) state that the model could be employed for small intervals

where stationarity of the process can be safely assumed. Thus, for
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this work, although the complete process is obviously non-homogeneous,

it is assumed stationary in the time interval under consideration

(growing season).

The second and third features relate to the dependence structure

and clustering behavior of the rainfall counts in the rainfall data

from Denver. It is observed from the variance-time, spectrum of

counts, and log-survivor functions that the rainfall events, in Denver,

cannot be considered independent; and that the storm events have a

tendency to form groups around their RGM (clustering). Thus, it has

been indicated that the independence assumption of the Poisson process

is not valid and that a more general model that can account for the

dependence structure as well as for the clustering behavior is

needed. As in Kavvas and Delleur (1975), it is here hypothesized

that the N-S model is such a model.

For more details about the estimators of the variance-time

function, and the spectrum of counts, as well as the computer program

used in their evaluation, the reader is referred to Cox and Lewis

(1966); Lewis, et al. (1969), and Kavvas and Delleur (1975).

5.4.2.2 Neyman-Scott Cluster Model Calibration

The main objective in modelling rainfall arrivals as

a N-S cluster process is to be able to account for the observed

dependence structure and clustering behavior of the storm counts.

The statistical analysis of the previous section has confirmed once

more that for Denver, Colorado, the process of storm arrivals also
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exhibits the cluster dependence structure found in Indiana by Kavvas

and Delleur (1975). In particular, this clustering behavior and

dependence structure is shown in the estimated spectrum of counts

and log-survivor function. The comparison of these functions with

the theoretic Poisson case invalidates the assumption of indepen-

dence. The convexity of the log-survivor function has been shown to

indicate an overdispersion of the rainfall events and consequently

a clustering of storms. It is then only -logical in order to preserve

the dependence structure that the model be fitted to the estimated

spectrum of counts; and in order to preserve the structure of the

interarrival times and the clustering behavior, that it be fitted

to the estimated log-survivor function.

The theoretical normalized spectrum of counts fitted to that

estimated in the previous section is obtained from equation 3.28 as:

rg+(w) rE[N 2 1 (0_ , w > 0 (5.18)

p. E [N(t)] LE N (0 2 2
2 2 a + w

The fit was performed using a Non-linear Adaptive Least-Squares

algorithm developed at the Sloan School of Management at MIT (Dennis,

et al., 1979). Letting the parameters E[N22 (-)], E[N2 (-)], and a

free to be estimated by the algorithm, produced unrealistic values

2
for E[N2 2()J and E[N2(.)] in the sense that they yielded negative

variance. Following the approach used by Kavvas and Delleur (1975)

who encountered the same problem, the ratio E[N2
2 (-)]/E[N2 (-)] was

fixed equal to 2.44 as indicated by the unrealistic fit (Table 5.11).
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Equation 5.17 was fitted again producing a value of a as shown in

Table 5.11.

With the ratio E[N2
2 (-)] /E[N2 ()] fixed at 2.44 and with the

value of a obtained, the resulting fit is shown in Figure 5.10,

which is quite acceptable. The value of a determined implies a

rapid decay of the exponential distribution of T, indicating the

anticipated short memory of the process. Since the dependence in

the rainfall counts is produced in part by the superposition of

RGM's, the faster the exponential distribution for T decays, the less

likely it is that events from two or more RGM's superimpose, and

the weaker the dependence in the rainfall counts is. This is so since

the probability that a storm event occurs far in the future decreases

(Figure 5.11). From Figure 5.11, H in equation 4.47 was taken as

seven days.

In order to calibrate the other two parameters, namely, p and

p, and in order to preserve the cluster behavior and interarrival

time structure, the theoretic log-survivor function for the N-S

*model is fitted to the estimated one. The theoretic unconditional

survivor function can easily be obtained from equation 3.49 by letting

C = 0. This yields:

[](~ +1)

S 10 (x;0) = Pr X > x] = -ax e*ei' (5.19)

1-qe
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Thus, the log-survivor function is:

In S (x;O) - ln Pr(X > x] -- ix + (& + 1) In -_ (5.20)
10 ( -ax

1 - qe

Using again the Non-linear Adaptive Least-Squares algorithm

and the value of a previously calibrated (with ratio fixed at 2.44),

values for the parameters p and p were obtained as shown in Table

5.12. However, observe that the value of p obtained differs greatly

from that implied by the fixed ratio at 2.44; namely a value of p

equal to 0.58. In order to observe the behavior of the fit and

expecting to obtain identical values for p in both fits, an iterative

procedure was implemented. The value of the ratio E[N22 -)]/E[N
22

for which identical values for p were obtained was 1.99 (Table 5.13);

the associated Mean Square Errors (MSE) and coefficients of variation

(CV) are 'also shown. Since the fit to the estimated spectrum of

counts has the greater CV, it was assumed that the correct ratio was

the one that yielded the smaller MSE. Thus, the ratio assumed is

equal to 2.44, meaning that the parameters used are those shown in

Tables 5.11 and 5.12. The fit obtained with these parameters is

shown in Figure 5.12, which as before, is quite acceptable. This

fit is rather good for the longer interarrival times, especially

when compared to. the fit that would be obtained using. the Poisson

assumption which implies a straight line. The N-S model is then able

to preserve the clustering indicated by the convexity of the estimated

log-survivor function.
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Table 5.11

FIT TO SPECTRUM OF COUNTS

I) Free Parameters: E[N2 (-)] = 19.17

= 7.86

= 0.755297

II) Fixed Ratio

Free. Parameter:

E[N2 2 (-)] /E[N2 (-)]

a

= 2.44

= 0.755296

Table 5. 12

FIT TO LOG-SURVIVOR FUNCTION

Fixed Parameter:

Free. Parameters:

cx = 0.755296

p = 0.674060

p = 0.234509

137



Table 5.13

ITERATIVE MODEL FITTING

Fixed Ratio

Spectrum of Counts

Fitted a Implied p MSE

Log-Survivor Function

a Fitted p MSE

0.755296 0.5814

0.996443 0.668

10.7 0.755296 0.674060 0.226

12.1 0.996443 0.667

CV = 2.5

0.223

CV = 0.12
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5.4.2.3 Calibrated Conditional Distribution Functions

Any model that pretends to make use of the conditional

information contained in the immediate history of rainfall arrivals

should have at least the characteristic of being able to identify

local short-term trends in the process. For instance, if during any

given period, several days have passed without any storm occurring,

the probability of rain should increase. However, when the number

of days without rain keeps increasing, the model should be able to

interpret this information as an indication of a drought; thus, the

probability of future rain should decrease.

In the framework of the CDF's derived in Chapter 3 and expressed

in equations 3.46 and 3.49, the above characteristic can be interpreted

as follows. As increases, that is, as the number of days since

the last rainfall event increases, the model should detect a possible

drought and yield a decreasing probability of rain in the future.

This behavior can be observed clearly in Figure 5.13 by fixing the

value of x and varying . Observe that as increases, S(0

also increases. On the other hand, for a fixed C, as x increases,

S10 (x;C)' decreases, meaning that the probability of rain in the

future increases as we look farther and farther ahead (Figure 5.13).

Thus, the simple model devised is capable of adequately modelling

and forecasting short-term trends in the process. However, its

simplicity neglects a great deal of valuable information by only

considering the time since the last rainfall event. In spite of

this, due to the short memory of the process expressed by the
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parameter a,, the influence of the neglected information can probably

be considered negligible.
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5.5 Case Study Results

As in C6rdova and Bras (1979), this study considers a dynamic

root depth throughout the growing season. During each growth period,

the water balance is carried out only in the soil column defined by

the corresponding root depth. When a new period starts with a different

root depth, there exists a newly available soil layer for which no

water balance has been carried out, and consequently, its SMC is

unknown. Assuming that percolation out of the root zone into the new

layer is equal to the percolation out of the new layer (C6rdova and

Bras, 1979), the initial SMC in this layer at the beginning of the

growing period can be assumed equal to the initial condition at the

beginning of the growing season. In this study, this occurs when

going from growth period I to growth period II. Following C6rdova

and Bras (1979) it is further assumed that the initial SMC in the new

available soil layer is FC.

The irrigation scheduling problem was solved using SDP. Two

different cases were considered, the unlimited irrigation water supply

case, and the limited irrigation water supply case. For the unlimited

water case only two feasible irrigation decisions were considered at

each decision stage: not to irrigate at all or irrigate up to field

capacity. For the limited water case, five feasible irrigation decisions

were considered at each decision stage: irrigate up to FC, to 3/4 FC,

to 1/2 FC, to 1/4 FC, or not to irrigate. The growing season was

divided in 120 decision stages (daily irrigation decisions). The

solution is given as optimal decision functions that yield the optimal
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amount of water to be applied at each decision stage as a function of

the SMC and the number of days elapsed since the last rainfall occurrence.

For the limited water supply case, twenty cases with different total ir-

rigation water available during the growing season were considered. The

amount of water available ranged from 475.0 mm to 0.0 mm, and as implied

above, discrete intervals of 25 mm were used. In this case, the optimal

decision is also a function of the available irrigation water. Typical

decision functions for each case are presented in Appendix D and Appen-

dix E.

The effect of the conditional Neyman-Scott model, encoded in the

CDF's S0 (x;) and S 1(x; ), on irrigation control is compared to results

from four other precipitation models. Namely, the unconditional N-S mod-

el encoded in the PDF P (x), the homogeneous and non-homogeneous Poisson

models whose parameters are as presented in Tables 5.10 and 5.14, and

Cordova's non-homogeneous Poisson model (Cordova and Bras, 1979) whose

parameters are as presented in Table 5.14. It is necessary to make clear

that the latter model was fitted by C6rdova and Bras (1979) to a trans-

formed set of data as explained earlier, so that the comparison is not

valid. However, in extending COrdova's model from weekly to daily irri-

gation decisions results are obtained which contradict previously ac-

cepted facts, stated by Blank (1975) and C6rdova and Bras (1979), about

irrigation on fixed dates or variable dates. The inclusion of C6rdova's

model then serves the purpose of showing the effect of the particular

data transformation used on the results of the control algorithm.
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Table 5.14

TOTAL AMOUNT OF PRECIPITATION UNDER THE N-S AND POISSON MODELS

Poisson Model*

Mean Storm Intensity (mm/h)

Mean Storm Duration (h/storm)

Mean Rate of Arrival

I

1.28

6.67

0.262

Precipitation

II III

1.54 2.27

2.33 3.13

0.228 0.308

Period

IV

1.52

2.33

0.266

N-S Model

Mean Storm Intensity (mm/h)

Mean Storm Duration (h/storm)

Mean Rate of Arrival

I

1.28

4.16

0.356

Precipitation Period

II III IV

1.54 2.08 1.54

2.32 2.78 2.17

0.263 0.345 0.282

Rate of Occurrence under N-S Model P - E[N2()] = 0.348

Average Precipitation for Poisson Model = 1.31 mm/day

Average Precipitation for Poisson Model* (C6rdova and Bras, 1979) = 1.47 mm/day

Average Precipitaion for the N-S Model = 1.54 mm/day

*
Obtained from C6rdova and Bras (1979).

p.

V

1.47

3.70

0.184

Mean

1.62

3.63

0.250

V

1.43

2.70

0.225

Mean

1.57

2.83

0.294



Figures 5.14 through 5.19 summarize the results obtained with the

different models and different initial conditions. Observe that in gen-

eral, all models analyzed behaved very consistently. The conditional

form of the N-S model is compared first to the unconditional N-S model,

and then to the Poisson model. As expected, the conditional N-S model

yields greater expected net benefits at the end of the growing season

than the unconditional N-S model for all the cases considered (Figures

5.14b through 5.19b). This is obviously the result of water conservation,

obtained through improved irrigation water management made possible by

accounting for the conditional information contained in the precipitation

process.

Logical results are obtained with the unconditional N-S model; this

case always yields lower expected net benefits than any of the other four

models. Both the unconditional and conditional N-S models yield lower

expected net benefits than any of the other models when there is no avail-

able water for irrigation; in this case, the system is being driven solely

by rainfall. The behavior can be logically explained by the clustering

of the precipitation occurrences encoded in the N-S process. The clust-

ering behavior, as shown by the convexity of the log-survivor functions

(Figure 5.9 and 5.12), tends to produce longer interarrival times. This

is implied in Figures 5.9 and 5.12 by the fact that:

Pr [X > x) > Pr > x] Vx > 0 -(5.21)

where the subscripts N-S and P refer to the N-S and Poisson models, re-

pectively.
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When there is no available irrigation water, the longer interarrival

times coupled to the soil moisture depletion processes and no possible

control, lead to longer and more severe periods of water stress on the

crop, thus producing reduced maximum expected net benefits as compared to

those obtained with the Poisson model.

It was expected that the conditional form of the N-S model would

yield greater expected net benefits than the Poisson model when irriga-

tion was possible. As presented in Figures 5.14 through 5.19, this ex-

pectation was wrong. It is observed from these figures that the condi-

tional N-S and the homogeneous Poisson model yield almost identical re-

sults. In fact, although the difference is not significant enough to be

detected in the figures, the conditional N-S model produces slightly low-

er expected net benefits for higher initial SMC's and slightly greater

expected net benefits for lower initial SMC's than the homogeneous Pois-

son model. The non-homogeneous Poisson model always yielded greater ex-

pected net benefits. Since the models were fitted to the same data set,

these results can be simply explained by realizing that the clustering

behavior will tend to induce greater water use and by the fact that the

dependence structure present in the precipitation process is very weak

as anticipated in Sections 5.4.2.1 and 5.4.2.2, and as shown in the form

of the CDF S1 0 (x;E) (see Figure 5.13). Observe that the range of c (con-

ditional information) over which there is a significant change in the

value of S 0 (x; ) is about two days. For regions of deficit irrigation,

where the mean interstorm time tends to be long, a memory of only two

days seems to be for all practical purposes negligible. However, the

slightly better results obtained with respect to the homogeneous Poisson

during dry initial conditions indicate that there may exist instances
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where the use of the N-S model will improve irrigation efficiency; namely

when the dependence structure of the precipitation process yields longer

memory.

As presented in Table 5.14, the average precipitation expected by

the N-S model is slightly greater than the average precipitation expected

by the Poisson models. The longer interarrival times tend to offset

this difference by producing greater water stresses on the crop, leading

to more water use and lower expected net benefits. Thus, the conditional

N-S model will only yield better results whenever the memory of the pre-

cipitation process is long enough to counterbalance the clustering effect.

The difference observed between the conditional N-S model and the

non-homogeneous Poisson model also raises once more the question of the

implied stationarity of the former model. Although it has been shown that

the N-S model is a better representation of the rainfall occurrences than

the homogeneous Poisson model, this has not been done with respect to the

non-homogeneous Poisson model. The implied independence of the Poisson

model is almost reproduced by the very short memory of the fitted N-S

model, so that at the end the question remains one of determining which

is the true underlying process governing precipitation occurrences. This

is a question that can only be partially answered by simulating the sys-

ten with the different optimal policies obtained from each model.

Some additional results are now simply stated. Observe from Figures

5.14a through 5.19a that the Poisson model fitted by C6rdova and Bras

(1979) always produces greater expected net benefits than the Poisson

models fitted in this work, although the data used in both fits were the

same. However, C6rdova and Bras (1979) transformed the data by defining
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an independent storm event to justify the Poisson assumption. Table 5.14

compares the parameters obtained in both fits. In general, the model of

C6rdova and Bras expects more precipitation. Also, observe from the fig-

ures that contrary to facts stated by Blank (1975) and C6rdova and Bras

(1979), there is an increase in the expected net benefits when going from

irrigation on fixed dates (weekly irrigations) to irrigation on variable

dates (daily irrigation decisions).

Finally, it is necessary to emphasize that the results presented in

this chapter are only theoretic results expressed as expected values. A

simulation is required to be able to state with certainty the superiority

of one model over the others.
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5.6 Summary

This chapter has completely presented the calibration of the dif-

ferent model parameters and the case study results. The precipitation

process for the case study at Denver, Colorado has been shown to exhibit

a clustering dependence structure of very short memory. The homogeneous

Poisson model is not a good representation of the data. After fitting

the N-S model to the storm arrivals, the derived CDF's are shown to pos-

ses characteristics necessary for adequate short term forecasting of rain-

fall occurrence. Finally, case study results indicate that although the

precipitation is better represented by the N-S process, this improvement

does not produce better results for the particular data analyzed, when

the models are used to obtain optimal irrigation decisions. The expect-

ed net benefits are shown to be essentially identical under the condi-

tional N-S and homogeneous Poisson model, and lower than under the non-

homogeneous Poisson model.
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Chapter 6

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

The objectives of this work were manyfold. It was desired to

implement a real-time control model for irrigation, in regions of

deficit irrigation, that accounted for the widely documented dependence

and clustering behavior of the process of precipitation arrivals.

At the same time, it was desired to determine whether the rainfall

data from Denver also exhibited this clustering behavior and if so,

to determine how well the N-S cluster process could represent the

data as compared to the Poisson process.

Using the methodology proposed by Kavvas and Delleur (1975),

the precipitation data from Denver was analyzed and seen to have no

significant long term trends in the daily rate of occurrence. However,

from the behavior of the estimated variance-time, spectrum of counts,

and log-survivor functions it was concluded that the rainfall arrivals

for Denver possess a definite short memory dependence structure caused

by the clustering of the individual storms.

A particular form of the N-S cluster process was fitted to the

data and seen to represent quite well the real precipitation time

series. In order to preserve both the dependence structure and the

clustering behavior, the model was fitted to the theoretical spectrum
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of counts and log-survivor function. The slight inconsistency en-

countered in the calibration can be explained by the fact that the

process is not completely homogeneous as assumed.

The success obtained in modelling the precipitation data from

Denver using the N-S cluster process confirms once more the ample

generality and flexibility of the model; and most importantly, its

ability to adequately represent the clustering dependence of the storm

arrivals exhibited by the data. This last fact also confirms, once

more, the widely accepted notion that precipitation events occur in

clusters in the time domain. Furthermore, the fit obtained with the

N-S model as compared to the one obtained with the Poisson model

indicates the superiority of the former.

The use of the Palm-Khinchin theory allowed the derivation of

general expressions for the conditional distribution functions of the

time to the next rainfall event, conditional on part of the immediate

history of storm arrivals. Explicit forms of these expressions for a

particular form of the N-S model were derived. These functions are

seen to possess the required characteristics for adequate short term

rainfall forecasting. In fact, these functions are able to detect

short term trends, particularly drought trends. The use of the N-S

model and of the derived CDF's permitted a substantial increase in the

accuracy of the rainfall forecasting.

The dynamic precipitation model devised, with the capability of

changing as the growing season progresses and of using the conditional

information to predict future behavior, was coupled with a model of
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the plant-soil system. This coupling allowed the implementation of a

stochastic control model to obtain optimal irrigation decisions. It is

shown that for the case study, the added complexity of the precipitation

model results in a substantial improvement in the representation of the

process, although this does not lead to significant differences in the

theoretic expected maximum net benefits when compared to the Poisson mod-

el.

The results of this work do not allow any conclusion as to which

model is more adequate. On one hand, it has been shown that the N-S mod-

el is a better representation of the precipitation process than the homo-

geneous Poisson model. But on the other hand, from the practical point

of view, there seems to be no reason to favor one over the other, at

least with respect to the particular case analyzed in this work. Results

indicate that for Denver, the dependence structure of precipitation is

very weak to allow for significant improvement in rainfall forecasting.

Consequently, given that the Poisson model is not only simpler and easier

to use, but also less costly to implement, the immediate conclusion is

that the Poisson model should be favored over the N-S model.
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6.2 Recommendations for Future Research

With respect to the precipitation model, the main issue is the as-

sumption of homogeneity. The N-S model is stationary. Two alternatives

are in order: either a homogenization scheme is implemented as suggested

by Kavvas and Delleur (1975) or a non-homogeneous form of the N-S cluster

model is developed. Neither alternative seems promising. First, most

homogenization schemes deal only with first order moments and it is shown

here that even under a homogeneous rate of occurrence, problems arise

when calibrating the second order moments. Second, non-homogeneous forms

of the N-S cluster model can be expected to be very complex thus invalid-

ating their ability to be easily used. Consequently, it is necessary to

study different models from the general class of Moyal cluster processes

so that a simple non-homogeneous cluster model is devised.

With the use of the Pilm-khinchin theory, it has been 'shown how con-

ditional distribution functions of the time to the next rainfall event

could be derived. However, the situations considered here were very sim-

ple. In fact, only the time since the last rainfall event is accounted

for. It is desirable to include more complex situations, when more than

one event in the past is considered. In this way, the emphasis is not

so much on the drought conditions but also on the wet conditions. The

derivation of CDF's accounting for more complex situations seems possible

by defining Palm-type functions of higher order. See Appendix F for an

example. However, from the onset, the complexity of the expressions ob-

tained, as well as the implementation of a control model able to use the

added information, makes this a difficult task.
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With respect to the general irrigation control model, a more detail-

ed modelling of the different components of the soil-plant is needed. At

the present level, the precipitation component of the system is much more

accurate than the soil-plant component. It is highly desirable that all

system components be modelled at the same level of complexity so that ad-

ded accuracy in one component is not filtered out by another. In this

regard, the further research proposed above to improve precipitation mod-

elling and forecasting should be postponed in favor of further research

on the dynamics of the soil-plant system. In particular, on the impact

of the spatial variability of soil moisture in the root zone on plant

productivity, as well as on the impact of the spatial inhomogeneity of

the soil properties on the dynamics of soil moisture. Furthermore, the

effect of the fluctuations of the groundwater elevation on crop yield

has to be determined. Finally, and since the accuracy of the work rests

on the validity of the crop response model, further research and experi-

ments are needed to determine the form of the yield-evapotranspiration

relationship as well as the sensitivity of the crop to vertical variance

of soil moisture in the root zone. Lastly, since the results presented

in this work are expressed in terms of theoretic expected values, the

system should be simulated using the optimal operating policies deter-

mined, so that a more definite conclusion can be reached with respect to

the precipitation model and its effect on the irrigation control problem.
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Appendix A

FIRST AND SECOND ORDER MOMENTS AS FUNCTIONS OF THE PGF

A) First Moment:

By definition: (A.1)g(z) = zn Pr[N(-) = n]

n=O

Differentiating equation A.1 yields:

00

3g(z) - n zn-1 Pr[N(-) = n]

n=O

Evaluating equation A.2 at z = 1, yields:

E[N(-)] = n Pr[N(-) = n]

n=0

= ag(z)

z=1

B) Second Moments:

1) Variance:

Differentiating again equation A.2:

00 co

2 g(z) _ n2 n-2 Pr[N(-) = n] - n zn-2 Pr[N(-) = n]

3z 2 E r
n=0 n=0
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Equation A44, after evaluating it at z = 1, becomes:

N(-) n] -

n=O

n Pr[N(.) = ni.

2
Sg z)

az
= [N2 (-)] - E[N(-)] (A.6)

Z= 1

hinaliy, adding equation A61 to equation A,6, and subtracting

6quation A,3 squared from equation A.6, the following is obtained:

vat [N(-)] ( ) [N2 2N( ) = z) + 3 Z) - z ) z=1
a 2 az [3z

(A.7)

2) Covariance:

ty definition: g(z , t2) = z nzn2 Pr [N(-)] n, 2(-) = n
1 2aE0n =0 nA2=0

(A. 8)

Diffe'entiating equation A.8 with respect to k 1 and z 2

2 n 1 z 2 Pr[N (-) = n1 , N 2(-) = n 2 ]
n 0 n2 0
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zt 1

n 2

n=0

and

(A.5)

I

(A4 9)

2g )

a z



and

202g(z ,z )

Bz 3z22 =

co 00

n1=0

n-1 n9-1
2 9

n n2 z I

n2

z Pr [N (-) = n , N2(-) n2

(A.10)

Equation A.10 evaluated as z = z2 = 1 yields:

2 g(zlz 2)

z=z 2=1

- E
n =0

n n2 Pr[N1 ()=n 1 , N 2(-)=n 2] E[N1 (-)N2(HI

(A.11)

3g(z1 ,z2)
From A.9, 3z

z =z2 1

and by analogy:

.(A. 12)

(A.13)
ag(z1 ,z2 )

3z 2
zCz 2 =

Finally,

cov[N 1(-), N2 (-)] = E[N(-) N2 (-)] - E[N1(-)]E[N2

2 g(z 1z2) g(z~z 2) ag(z1 ,z2 )

z1 2 3z 1 3=
1, 2 1Zz2

(A.14)
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Appendix B

FIRST AND SECOND ORDER MOMENTS FOR THE N-S CLUSTER MODEL

A) First Moment:

The univariate PGF of the N-S cluster model for the interval

(0,t I ) is (Equation 3.11):

g(z) = exp [p

ti

-co

t

0
where: p(t)

fT(C - t)dC

From equation 2.14:

E [N(O, t 1 )]
- g(z)

= z=1
= P 0 g(z) - a) t

gN 21-( z)p(t)]Idt z=
2 3=

(B.3)

The derivative in equation B.3 can be written as:

gN 2[1 - (1 - z)p(t)]dt 1

(B.4)
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(B.1)

(B.2)

[1 - (1 - z)p(t)] - 1}dt]

t. f
1 00

t1

= N [z - (N -z)p (t) I dt

-0 1 z=1



By definition:

[1 - (1 - z)p(t)] = [1 - (1 - z)p(t)]n Pr[N2 (t) = n]

n=2

(B.5)

so that the derivative appearing in equation B.4 is:

g[1 - (1 - z)p(t)] = p(t) n[l - (1 - z)p(t)]n-1 Pr[N (t) = n]
z Nn[ E -2

2 n=o
(B.6)

and evaluating at z = 1 yields:

a gN2 [- - z)p(t)
D z -N 2z = 1

00

= pWE) n Pr [N 2 (t) = n] =p (t) -E [N 2(t)]

n=0
(B. 7)

Substituting equation B.7 in equation B.4:

2 - (1 - z)p(t)jdt

- cez=1 - -

E[N2 (t)]p(t)dt

Now, by structural postulate, the N2 (t)'s are i.i.d. for each cluster

centered at t, and consequently equation B.8 becomes:

t

I-001
E[N2 (t)]p(t)dt = E[N2 (t)] -I

tJ1
p(t)dt (B.9)
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Using equation B.2 in equation B.9:

t t

p(t)dt =

-O 0
fT(-t)d~dt 

=

ti

4
A

fT(C-t)dtd = tI

(B.10)

Finally, by definition:

g(z)

z= 1

= 1

Substituting equation B.9, B.10, and B.11 in equation B.3 yields:

E[N(Ot 1 )] = v - E[N2(t)]. t

B) Second Moments:

1) Variance:

From equation 2.15:

var[N(O, t 1 )]
2

3 z 2

g(z) - 3g(z) 12
2 z

L J z= 1

From equation B.12:

3 z)

z=1

= p - E[ N2 (- )] - t
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2
3z) =i

z=
= P2 E2 [N2(-)] -t

Now, denoting [1 - (1 - z)p(t)] by k:

2
)= g - g(z)

3z 2

t a 2 2 2

gN (k)dt + 2i g(z) 2 
gN (k)dt I z 2 + 1

(B.16)

The second-order derivative appearing in equation B.16 is:

2__ n-2

2 gN (k) = n(n - 1) p2(t)[1 - (1 - z)p(t)]
3z 2 n

Pr[N 2 (-) = n]

(B.17)

And evaluating at z = 1:

a 2

az 2 z=1

= p2 t) - E[N 2 2(-) - N2(-I

Finally, after replacing equations B.14, B.15, and B.19 in equation

B.13, the following expression for the variance is obtained:

t

var[N(O,t)] = E[N 2 (t)] - t + E[N2
2 (t) - N2 (t)1 - p (t)dt

(B.20)
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2) Covariance:

Using equation 3.13, the PGF for the counts N(Q,tI) and N(tI+ G, t2)

can be written as:

g(zI,z 2) = exp [-p

.t

with p 1 (t) =

0

t

I2 {g N2[1-(1-z )pI(t) - (1-z2)p2(t)) - 1}dt]

(B.21)

f (x-t)dx

t2

and p2(t) =

tl+ 1

f (x-t) dx

(B.22)

From equation 2.16:

a2gz z2 ag(zl~z2 Ig(z ,z2
cov[N(0,t ),N(t +?,t2  = z12 L z

1.~~~~~ =z21 z23 13

(B.23)

Denoting (1 - (1 - z )p1 (t) - (1 - z2)p2 (t)] by m, the derivatives

in equation B.23 are:

- ag(z1 ,z2 )

3z = - g(z 1 , z 2)

gg( z 2 )

az 2 = y g(zz 2

t
/2

t

f2

-C

a gN (m)dt
1 2

g (m)dt
2 2
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(B.25)



2 g(z1 ,z2 )
1z2 = - g(zz2

az az 2
1 2

tJ 2 azz2 N2(m)dt

+ 12 - g(z1 ,z2  2 3 N2 (m)dt 2 9N2(m)dt]

(B.26)

Evaluating B.24, B.25, and B.26 at z1=z 2=1, yields:

t2

cov[N(O,tI),N(t +,t 2)] = E[N2
2 (t) - N2 (0) p1 (u) p2 (u)du

(B.27)
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Appendix C

DERIVATION OF P 0(W

From equation 3.11:

= exp p / 0

x

p(t) =0

0

{N 2[1 - (1 - z)p(t)]

f T(C - t)dC

From equation 3.43:

(C.3)

According to equation C.3:

P00W

x

=expi. f/
- 00

g N[1 - p(t)] - l}dt] (C.4)

Now, from equation 3.25:

gN2(z)
= p z -

1-(1 - p)z

g(z)

and

- 1}dt] (C.1)

(C.2)

, Izl < 1 (C.5)
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and from equation 3.26:

( - = e
f T( -t)=

T1 0

if r-t > 0

otherwise

According to definition C.6 and equation C.2:

p(t)

x

0
ae-a(C-tdC

ae-a(C-tOdCp(t)

x

t

eat -ax) , t < 0

= 1 - e-c(x-t) , t > 0

Equation C.4 can then be rewritten as:

0

P0(x) exp[p f {N2 e t I-lx 1

+ exp {gN 2 e -a(x-t)I}dt

[ x

180

(C.6)

and
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From equation C.5:

g 2 - eat(1 - eax)]
p - eat (1 - e-OX A

1 - (1 - p) [1 - ea t (1 - eaox)]

and

N 2[ -e(x-t)
-pe-a (x-t)

1+ (1 - p)ea(xt)

Now, substituting C.10 and C.11 in equation C.9 and carrying out

the integrations, it is easy to obtain:

Pi

P(x) = [] e -PX (C.12)

181

(C.10)

(C 11)



Appendix D

RESULTS OF THE SDP ALGORITHM: UNLIMITED WATER CASE.
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RESULTS OF THE STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM

OPERATION POLICIES

OPERATION POLICY IRRIGATE UP TO SOIL MOIST.CONT. EQUALS STATE
No. GR.PR.I GR.PR. II GR.PR. III

14
NO IRRIGATION

22
NO IRRIGATION

26
NO IRRIGATION

183

2



r, z z rC r, z z z z E z z z z z z z z z z C C CCCCL
z z z C z z z z z z z z z z z z z z z z a z z z z z z z z z z z z z z C z C C C ZCCC9
z z C C C z C z C z Cl z C C. C z z C C C r z z z C z C z z z z C z C C z z z C CCCCCCCCs
c z z z z z z C C C C C C z z z C C c E z C z z z C C z C z C z C z z z C CCCCCzt'

t z z z z z z z z C z z & z C z z z z C E z C z z z z z z C z z E z z C C z C CzzzCcC
t k z c z C C z C C C z C z z C C z C z C r C z z C z r z C C C C z z z C z C CCCCCCCz
tI I t zz zz zz zz zz zc z 9z zZ. z z z z z zz zz zz zz CCzzzz
t I t t 3 z z z E a z C E C a z z z z C z z C C C z z z C z r C z z z C C C C C zCCC

NIVUi ON
IN31NOD 3bAISIow IoSSAVO

t9 :30VIS diOl A3IlOd NOIlVDIblI VilIldO

00
r-4

t t 1 tp t t i t t t t t t t t t I t 1 tp t t I t t t i t t t t tp i t tp t t t t 1 z z z z C z C C .C C z z C C C C C CCCCCCL
tp t t 4 t t t t t t t t t t t t t t t t t t t t t t t t t t t t. t t t t t t 1 z 'p z z z C z C C C C C C C C C C C C C ZC 9

t t t t t t t t t t t t t t t t t t t t t & t t t t t t t t t t. t t t & z z z z 1 1 z z C C C C C C C C z C CCC CC cCCzs
tp 1 t t t t t t t t z z z c z z z z z z 1 z z z z z z I IIII p 111C CCCC CCCC CCCC

I I I I II II I I p 1 1 1 1 11 I1 1 I 1 I1 I1 11 I 1 1 1I IC C C C C CC CC C C C CCCCCCC

I~~~~~~~ ~~~ z z z z z 1 z z z z z z z 1 1111 111111 111II 'p11ICC CCCCCC CCCCC

S31VIS
NIV8J ON

IN31NOO 3bAiSIOw lIDSSAVO

'p 30V.S UJ A3IlOd NOI1VD.IbUI IVWIldO

1.

I.

I.

I,
I

I.

I.
I.

I.
I.

I.
I
I
I,
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I

I

I

I

I

I
I
I

I
I

I.
I
I
I
I
I
I
I

I
I

I

I

I

I

I
I
I,
I
I
I
I

I
I
I

I
I
I

I,
I
I
I.
I
I,
I
I

I
I

I

I
'p

I,
I
I.

I.
I



t t t t t t t t t t t t t t I t t i C C C C C C z C C C C C c rC C C C C C Cl C C C C C z zzCCCCCCz
t & t i t t t t t t t t t t t t t t t t t t t t t t z z z z z z z z z C C C z C z C C C C C C CCC CCC CCC C cCCCC

I I I 1--I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I C C C C C C C C C C C-C-C-C-C-C-C-C-C-C-C-C-C-C-C----------

S3J.VJS
NIY~i ON

.LN3.NOO 3uisXow iios. SAVO

C9 30VIS ZfOz A3I1Od NOIIVDIbtiI IVWlIldO

00

z z z z z I z z z z z z z a E z r z a r rI z C C C Cl C C CCCCCC CCCCCC CCCCCC CC .CCL
z z z z z a 9 z E r z z 9 z z z z z z z z C C C C C C C C C C C C C C C C C C. C CCC CCC CCCC CCCCCC9
z z z z z z a z z a 9 c z z z z z z z z r z C C C C C C C C C C C C C C C C C C CCCCCCCCCCC CCCC

t t z z z z c z z z z z a z a z I z z z z r C C C C C C C C C C C C C C C C C C C C CCCC CCCC CCCC C cCCCC
9 r z z z a z z r 9 z z z z z z z z z a z C C C C C C C C C C C C C C C CCCCCC CCCCCC CCcCCCC
c z z r z .1 1 1 a 1 1 z z z 1 z z z 1 c z z z C C C C C C C C C C C C C CCCCCCCCCCCC C CcCCcCCC

z z z 9 z z z z z z a E z a z z 9 z z z r z z z z r. C C C C C CCCC CCCC CCCC CCCC CCCCC

S3J1VJS
NIVSI ON

IN31NOD 3U1flsioI lios SAvaI

Z9 30VS 60Ai A3IlOd NOIiVDIbb~I IVWI~dO



OPTIMAL IRRIGATION POLICY FOR STAGE : 118

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
123456789101112131415i6171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6222222222 2 2 2 2 2 2 2 2 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

00

OPTIMAL IRRIGATION POLICY FOR STAGE 120

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2



Appendix E

RESULTS OF THE SDP ALGORITHM: LIMITED WATER CASE.
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RESULTS OF THE STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM

OPERATION POLICIES

OPERATION POLICY IRRIGATE UP TO SOIL MOIST.CONT. EQUALS STATE
NO. GR.PR.I GR.PR. II GR.PR. III

1.
2
3

14
24
36

4 50
5 NO IRRIGATION

22
30
40
54

NO IRRIGATION

26
38
52
66

NO IRRIGATION
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OPTIMAL IRRIGATION POLICY FOR STAGE 30

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 175.OOMM

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
1234567891011121314 51617181.9202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5.5 5 5 5 1 1 1 1 1 1 1 1
5555555555 5 5 5 55 555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5.5 5 5 5 1 1 1 1 1 1 1 1
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1
7555555555 5 5 5 5 5 5'5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1

00

OPTIMAL IRRIGATION POLICY FOR STAGE 30

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 200.OOMM

------------------------- ------------w4 -------------- ----------------------- ------------------- ---------- -------------------

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
12345678910111213141516i71819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
--------------- w ------------------------------------ m - w ---------- --------------- w ----------------- ----- ----- ---

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 2 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 2 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1



OPTIMAL IRRIGATION POLICY FOR STAGE 30

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 250.OOMM

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
1234567891011121314151671819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1 .1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OPTIMAL IRRIGATION POLICY FOR STAGE 30

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 225.OOMM

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
123456789101112131415l6171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 2 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 2 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 2 9 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 2 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 2 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 2 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 2 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 2 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



I I~ II II II II II II II II II II II II 99 99 99 9 9 G 9 9 9 G s G99999999L

I .I IIIIIIIIIIIIIII I I. 9 9 9 9 9 G 9 9 9 9 9 s 9 9 9 .S 9 S99999999
I IIIIIIIIIIIIII IIIIII t t 9 9 9 G 9 9 9 9 9 9 9 9 9 9 9 9 s 9999999999
I IIIIII IIIIII IIIIII III II. t 9 9 s 9 9 S 9 9 9S 9 9 9 9 9 9 9 99999S99,.

I IIIII IIIII IIII IIIII IIII9 9 9 9 S 9 9 G 9 9 S S 9 9 9 9999999st
I III III III III III III.III IIII 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99999SGGGO

------------------I---------I-----------I---------------I-- ----I I-------I---I ----------9-9---9-9-9-S-9-9-9---9-9-9-9---9-9-9999S
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IlIo'LOOL) 30VIS JO ONINNIS38 IV ?I31VA NOIIVDI68I 318VIIVAV

OC 30VIS UIOJ A31Od NOI VOIddlI WIdO

I I Ir I I~ I I I I I I I I I I I I I I S G S eI S S S G G S I. G G G G G 1j G95 9 9 9 9 9 9 9 99rS9999 lL
t t v I t t I I t I t t I I I I I t t t I I I I t I I & t t t t t t t t t t t t 9 G s s; 9. G G G G s s s G G 9i s es 9s9sss99

III IIIIII IIIIIIIIIIIIIII. t I I t t t I I t t t. t I t t 9 9 9 9 9 G 9 9 9 G 9 9 G G G 9 9 9 G sS999999SS
t I, t t t t t I t t I I I I I I I. t t I, I I I I I t I. t I I t I I t t 9 9 9 s 9 9 9 9 9 G 9 G G 9 G 9 9 9 9ss9999999

t t I t I t I t I. t t I t I, I I I t I t t I t I I I t I, t t I tI I 1 9 9 9 9 9 9 G 9 9 9 9 9 9 9 s 9 9 9 GG9999999C
t t t t t I I, t t t t I, I t I t I. t t I. t t t I t t t t t t I t I I t G 9 9 9 9 9 9 9S 9 9 9 G 9 9 G 9 9 9ss999999s
I & t t I t t I I t I I , I I I t I I I t t , t I I I t I I I 1 9 9 9 9 9 G G 9 9 9 9 9 9 9 9 9 9999999991

I t t I I It I t I t t t t I I, t t I I I I, & I. t I I, t I. I I I t t t t t t I. I I I t I 9s G I 9 9 9 9 9 9 G 9 9 9 9 9 9 9999999990
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OPTIMAL IRRIGATION POLICY FOR STAGE 90

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 75.OOMM

--------------------------------------------------------------------- --------------------------------------------------------------
DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
1234567891011213141516171819202l22232425262728293031323334353637383940414243444546474849505i52535455565758596061626364656667686970
----------------------------------------------- ----------------------------------------------------------------------- -------------

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 2 2 5 5 5 5 5 5 3 3 3 5
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 5

H

OPTIMAL IRRIGATION POLICY FOR STAGE 90

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 100.OOMM

-- -- ----- -- --------------------- -- --------------- -- ----- ------- ------- -- ------- ---- ------- -------- --- -- -------- -- ----- ------- ------ --
DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
1234567891011 31415i617l8192O2i22232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
--------------------- ------------------------------- ------------- -------------------- ----------------------- ---------------------

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 1 1 1 1 5 5 5 5 2 2 2 2 5 2 2 2 2 2 2 2 2 2
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 1 1 1 5 5 5 5 2 2 2 2 5 5 2 2 2 2 2 2 2 2
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5'5 5 5 1 1 5 5 5 5 2 2 2 2 5 5 2 2 2 2 2 2 2 2
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 5 5 5 5 5 2 2 2 5 5 2 2 2 2 2 2 2 2
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 5 5 5 5 5 2 2 2 5 5 5 2 2 2 2 2 2 2
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 5 5 5 5 5 2 2 2 5 5 5 2 2 2 2 2 2 2
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 5 5 5 5 5 2 2 2 5 5 5 2 2 2 2 2 2 2
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 5 5 5 5 5 2 2 2 5 5 5 2 2 2 2 2 2 2



OPTIMAL IRRIGATION POLICY FOR STAGE 90

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 125.OOMM

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
1234567891011121314l516l718192O212223242526272829303i3233343536373839404142434445464748495051525354555657585961626364656667686970

0555555555-----5 5 5 555 5 5 55 5 5 55 5 5 55 5 555 5 5 5 5 5 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 2 2 2 2 2 2 2
1555555555 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 5 5 2 2 2 2 2 2 2 2

OPTIMAL IRRIGATION POLICY FOR STAGE 90

AVAILABLE IRRIGATION WATER AT BEGINNING OF STAGE 475.OOMM

DAYS SOIL MOISTURE CONTENT
NO RAIN
STATES
12345678910111213i41516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970

0555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I
4555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Appendix F

DERIVATION OF A MORE COMPLEX CONDITIONAL
DISTRIBUTION OF STORM ARRIVALS

Assume that the information about the past of the process is

that a rainfall event has occurred during the observation interval,

not at the origin. The desired conditional distribution can be

written as:

010(x 1 2 jim P010  1, h, (F.1)
h-) 0 010 , h,2

where S010 ( l 2) yields the probability that the time to the

next rainfall is greater than x, conditional on the fact that one

storm occurred after C time units since the beginning of the obser-

vation period, and C2 time units have elapsed since the occurrence of

that storm.

It is well known that:

Pr (A U B] = Pr [A] + Pr [B] - Pr (A l B] (F.2)

and for mutually exclusive events:

Pr [A U B] = Pr [A] + Pr [B] (F.3)
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In the situation depicted above, the observation interval has been

divided into three subintervals, a first interval of length C with

no storms, a second interval of length h with one storm, and a third

interval of length C2 with no storms. Since events are instantaneous,

a limit is taken as h-+O.

Let A now be the event (0,1,0) and B the event (0,0,1) representing

the number of events in each of the above intervals. Then A n B =

and A U B = (0,1,1). Thus, using equation F.3 it is obtained:

P010 1, h, C2 + P00 1(C 1, h, C2 P01 1(C1, h, C2) (F.4)

And from equation F.4:

P0 10(C1, h, 2 0 1(C1, h+C 2 ) P0 1(c1+h, (2 F.5)

Now, define a Palm-type function as:

(C10~1~ V C urn P010(;1, h, ) (F.6)010 2) =h0i [1 - P 0(h)]

Substituting equation F.5 in F.6, and adding and subtracting

P01 lC C2 yields:

P0 1 1,tV2+h) - P 01 ( 1+h, 2) + P 01 ( 2 -01 l'2
h010 ft 2) lim[ - P (h)]h+--0 0

(F.7)
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Multiplying and dividing by h:

[P 0 10 Q 1 2+h) -P 1 2)

12h [ h0h-* '2 0 0( h)] /h
h

(F.8)

In equation F.8:

1 - P0 (h) = Pr[N(Qh) > 0]

so that:

lIr 1 - P (h)

h+0 h
(F.9)lim Pr[N(Oh) > 0]

h+0 h

where by definition, X is the mean rate of the process.

Finally, substituting in equation F.8:

1 01 2 2 01 132
010 l' 2) X [ C 3 2 a

Using equation F.10 in equation F.1, the desired CDF is obtained

as:

S0 10(X; 1 2 = 010 1 2 010 2)
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(F.10)

(F.11)

P01 1' 2



where in general the functions $010 ' 42 ) are defined in terms of

the p.d.f. of the number of events in a given time interval

Pioj,k .. (x,y,z ... ) defined in Chapter 3.

NOV 0 8 199%
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