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ABSTRACT

Currently, the operation of premixed dump combustors, while exhibiting
superior performance in efficiency and emission characteristics, is hindered
by large amplitude, low frequency oscillations at equivalence ratios close to
unity. The genesis of this instability is the subject of investigation in
this thesis. A physical model which accounts for the most important
components of flow-combustion interactions in this system is formulated
assuming that the combustor is an acoustically compact trough, the flow is
two dimensional, the flame is a thin front, the inlet section is charged by a
constant-pressure reservoir, and the exit manifold is an acoustic oscillator.
Numerical solutions at high Reynolds number are obtained using the vortex
method.

Solutions of the non-reacting flow show that the dynamics are dominated by a
low frequency instability of the type encountered in bluff-body wake flow.
The frequency of this instability, which leads to the shedding of large
vortex eddies from the recirculaticni zone, scales with the trough depth and
the inlet flow velocity to a Strouhal number 0(0.1). In the reacting flow,
vorticity-flame-acoustic coupling is clearly observed. Heat release at
constant exit pressure, while not appreciably changing the frequency, reduces
the amplitude of the oscillations by creating favourable pressure gradients
within the combustor. A similar effect is observed when the combustor exit
pressure is modulated at frequencies higher than that of the natural mode.
However, when the exit pressure is modulated around the frequency of the
natural mode, the amplitude of oscillation grows with increasing heat
release. This ultimately leads to flow reversal and the propagation of the
flame into the inlet channel. Conditions leading to flame flashback conform
with the instability requirement as stated by the Rayleigh criterion. The
response of the acoustic oscillator to the reacting flow dynamics within the
trough is shown to result in pressure modulation at the combustor exit.
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1. INTRODUCTION

Since the early 1970's, a considerable amount of combustion and fluids
research has been directed towards reducing the pollutant emissions from
aircraft gas turbines (Jones, 1978). The major set of pollutants at non-idle
engine conditions includes the oxides of Nitrogen, referred to cumulatively
as NO, . The levels of NOx measured in combustor exhaust are found to increase
exponentially with the flame temperature. Consequently, lowering the flame
temperature, by enhanced mixing and lean combustion (low equivalence ratio),
has been the goal of many investigations (the equivalence ratio of a given
fuel/air mixture is: the fuel-to-air ratio in the mixture divided by the
stoichiometric fuel-to-air ratio of the specific fuel). Further, in order to
avoid local pockets of high fuel concentration, and hence high temperatures,
it is important to achieve a "uniform" fuel/air mixture. This uniformity is
best achieved if the fuel is vaporized completely during the mixing process.
Consequently, combustors employing lean, premixed and prevaporized fuel/air
mixtures are expected to achieve the theoretical low limit of NO, emissions.
In this work, we shall refer to these lean-premixed-prevaporized combustors
simply as "premixed combustors".

In a typical premixed combustor, the mixture wvelocity is usually much
greater than the flame velocity. Hence, special care has to be taken to
anchor the flame in the combustion chamber, and prevent it from being swept
away by the incoming flow. This is achieved by having a relatively stagnant
region in which a pilot flame can exist and which acts as a continuous source
of ignition for the high velccity gases (Cheng & Kovitz, 1957a, 1957b; and
Wright & Zukoski, 1962). The separation region behind a bluff body or that

downstream of a sudden expansion satisfies these conditions. In particular,



the bluff body configquration is less desirable because of the relatively high
pressure drop associated with it. Hence, the typical flow geometry that has
been considered in most investigations has been either a backward facing step
or a cavity type geometry. (We have chosen the latter, as we shall see
later). The common name used for a combustor with such a sudden expansion is
a "dump" combustor. Where the "dump" is the cavity or step region.

The problem with premixed dump combustors, however, 1is their poor
stability. Below a certain equivalence ratio, the combustion becomes unstable
and "blowout" occurs, i.e. the flame is extinguished. On the other hand, if
the equivalence ratio is increased beyond around 0.7, then "flashback"
occurs, with the flame moving back into the inlet section. Flashback is
associated with large amplitude oscillation in the combustor, and it is a
very serious limitation in terms of achieving high power output (see Plee &
Mellor, 1978).

Considerable effort has been invested in the understanding of flashback.
Unfortunately, however, there has been no consensus on a definite explanation
of its nature and the wunderlying flow dynamics that 1lead to it. The flow
problem is quite complex, involving both the separating reacting flow inside
the combustor, and the acoustic respcase of the system leading to and from
the dump section. Consequently, controlling flashback by either passive or
active control methods has generally been only partially successful.

While the recirculation zone in the dump is essential to the proper
operation of the combustor, it turns out that its associated dynamics are the
source of the flashback instability of the combustor, as we shall see later.
There is considerable evidence that large scale eddy shedding in the dump
section is a significant element nf the combustor dynamics. Further, it seems
that under conditions of high heat release, or high equivalence ratio, these

eddies are energized dramatically to cause large amplitude flapping of the



flame, leading to flashback. Figure 1.1, from Vaneveld et. al. (1982), shows
a typical schlieren record of "stable" combustor operation, where the
organized large eddy shedding causes considerable modulation of the flame,
but no severe flapping. Increasing the equivalence ratio of the incoming
mixture causes a transition to different modes of oscillation, and eddy
shedding frequencies. The low frequency, large amplitude, flapping mode,
which is a precursor to flashback, is the "chucking" shown in Fig. 1.2, also
from Vaneveld et. al. (1982). The flame is seen to lift off from the channel
floor during a part of the cycle, and move a short distance into the upstream
channel, before being convected back into the dump. Flashback involves
further amplification of these dynamics, causing the flame to move well into
the upstream channel. Figure 1.3, from the same above reference, shows a
schlieren record of transition to flashback, caused by a sudden injection of
extra fuel into the incoming mixture. This and similar experiments indicating
the significance of the modulated recirculation zone eddy shedding to the
general combustor dynamics, have prompted this work.

We will be concerned with the numerical investigation of the nature of
the flashback instability and the understanding of the underlying flow
dynamics leading to it. We shall look first at the non-reacting flow in a 2D
cavity-type dump combustor, and then study the full reacting flow in this
geometry. Particular emphasis will be given, in the reacting flow case, to
the inlet and exit boundary conditions, and the coupling they provide with
upstream and downstream system components.

Chapters (2) and (3) deal with the formulation of the analytical model
and the numerical solution of the resulting system of equations,
respectively. Chapter (4) deals with the non-reacting flow, while Chapter (5)

deals with the reacting flow. A literature survey of previous work on the



non-reacting and reacting cavity flow, and general dump combustor flow, is

presented in chapters (4) and (5).
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Figure 1.1 Stable combustor operation in a cavity-type dump combustor, fram

vaneveld et. al. (1982). 1Inlet flow velocity = 9.0 m/s, Re=15000. Time
interval between frames is 1 ms.
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Figqure 1.2 Large amplitude flapping of the flame, or ‘"chucking", in a
cavity-type dump combustor, from Vaneveld et. al. (1982). Inlet flow velocity
= 9.12 m/s, Re=15000. Time interval between frames is 3 ms.



Figure 1.3 Transition to flashback in a cavity-type dump combustor, from
Vaneveld et. al. (1982). Inlet flow velocity = 9.0-9.12 m/s, Re=15000. Time

interval between frames is 20 ms.
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2. FORMULATION - LOW MACH NUMBER, THIN FLAME COMBUSTION
IN AN OPEN DOMAIN

2.1 General Equations :

The objective here is to derive a set of differential equations that
describe both the flame propagation and the fluid flow in an open domain,
given certain restrictive assumptions. An open domain is a domain that is
open to the atmosphe:2, or to some large reservoir.

The discussion below follows earlier works on the topic of "slow" flame
propagation in closed or open domains. Landau (1944) was among the first to
propose that the flame can be considered, in the 1limit, as a surface
separating the reactants and the products, and hence a hydrodynamic
discontinuity. Later work, such as Sivashinsky (1979), combined the
assumptions relevant to slow flame propagation (low Mach number), with the
hydrodynamic discontinuity concept (thin flame) to derive the full set of
equations that govern this flow. Ghoniem et. al (1981), Majda & Sethian
(1985), Ghoniem (1986), and Knio (1984) further developed the formulation of
these equations with regard to their numerical solution, and provided
numerical results using the random vortex method and the SLIC (Simple Line
Interface Calculation) algorithm (see also: Noh & Woodward (1976), Chorin
(1980), and Barr & Ashurst (1984) concerning SLIC).

We begin by listing the set of equations that govern simple reacting
flows, given the starting assumptions discussed below. This is followed by
the two fundamental simplifications: the Low Mach number and the thin flame
sheet limits, that allow further development of the equations.

We consider a reacting mixture consisting of two "components", reactants
R and products P. The rate of reaction, i.e. the rate of burning of
reactants, is assumed to be described by a first order, irreversible,

unimolecular, single step, Arrhenius-rate reaction law (Strehlow, 1984;
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Fristrom & Westenberg, 19€5). This is clearly a major simplification,
however, its reasonable validitv has heen demonstrated in the above reported
numerical studies of combustion. Fristrmm & Westenberg (pp. 324-326) sungest
that a simplification that involves an "overall" reaction kinetics concept,
similar to that suggested here, may be justified when there is a slow rate-
determining step in the reaction which clearly dominates the situation. It
should be mentioned, however, that the final result of the formulation is
independent of this assumption, since we will ultimately use the laminar
burning velocity as a representative of the result of chemical activity. The
single step reaction assumption is only used to demonstrate the rigorous
derivation of the thin flame model from the general conservation equations.

We further assume that the burnt and unburnt gas mixtures behave as
perfect gases with the same molecular weights, and same constant heat
conductivities, and specific heats. The viscosity, u, is allowed to vary as a
function of temperature, u=u4(T). The formulation is restricted to two-
dimensional cartesian coordinates. Body forces are neglected, and Stokes'’s
hypothesis is assumed to hold, i.e. the bulk viscosity is neglected, hence p
= =0 where p and o, are the thermodynamic pressure and the mean stress at a
point in the fluid, respectively (Schlichting 1979).

The non-dimensionalized conservation equations that govern this flow are
given in Table 2.1. Vector quantities are denoted by bold face print, while
tensors are bold and underlined. Eguations (2.2-6) form a .ot of five
equations in five gas dynamic variables, namely : density, p, concentration
of reactants, C, velocity, u, pressure, p, and temperature, T. When
supplemented with the appropriate initial and boundary conditions, these
equations determine the solution uniquely. The reference quantities for non-
dimensionalization are defined in Table 2.2. Other dimensional and non-

dimensional quantities are defined in Table 2.3. A tilde denotes a
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dimensional variable, subscript "u" is for unburnt fluid (reactants) and
subscript "b" is for burnt fluid (products). Significant non-dimensional
groups are defined in Table 2.4. The derivation of the equations in Table 2.1

is described in detail in appendix A.
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TABLE 2.2. REFERENCE QUANTITIES FOR NON-DIMENSIONALIZATION

reference length, cavity depth (m)

reference velocity, maximum inlet flow velocity (m/s)

reference time, Er = E/ﬁ, (s)

reference temperature (K), chosen here to be the adiabatic flame
temperature, ;r - Eui+ai/gp’ where %ui is the initial (upstream-
stagnation) temperature of the reactants, and 61 is the enthalpy of

reaction at Tui‘

~ ~

reference pressure (N/mz), Pr = Patm

reference density (kg/m3), here it is chosen to be the density of

= 10° Pa

the products at the reference state S(Tr'pr)’ Py = P/RT,

~

)

where Pui is the initial (upstream-stagnation) pressure in the

reference mass diffusivity of reactants (kg/ms), at (Tui’pui

reactants

reference heat conductivity, (J/msK), chosen at (Tui'pui)

)

reference dynamic viscosity, (kg/ms), chosen at (Tui'pui
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TABLE 2.3 NOMENCLATURE

A normalized frequency factor, A = A/Ar = Ak/(prcpuz)

; specific heat at constant pressure (J/kgK), cp = Ry/(v-1)
C mass fraction (concentration) of reactants, dimensionless
d mass diffusivity of reactants, non—dimensional, d = é/ér
Ea activation energy (J/kg)

; diffusive mass flux of reactants (kg/mzs)

g dimensionless diffusive mass flux of reactars, g = ;E/&r
k heat conductivity, nondimensional, k = ;/ir

X thermal flame thickness (m), X = E/(Zpﬁ,; 0

p pressure, p = 5/5{

q conductive heat flux, q = a/ar - aa/;r;r' ; :(J/mzs)

Q enthalpy of reaction, Q = 6/6r - a/(;p;r)' 6 :(J/kg)

i gas constant (J/kgK), assumed same for reactants and products

t time, t = t/t[, t :(s)
T temperature, T = T/Tr, T :(K)

T, non—dimensional activation energy, Ta = E:a/RTr

~ o~

u-(ul,uz) dimensionless velocity, u=u/U

ﬁ dimensionless rate of production of products per unit volume, ﬁhﬁﬂhr

. . ':N ~2~ ~

i.e. W= wkr/prcpu2
x=(x1,x2) dimensionless coordinate, x=x/L
p dimensionless density, p=p/p,
v specific heat ratio = cp/bv

T dimensionless shear stress tensor, T = T/Tr - tL/prU

¢ dimensionless viscous dissipation function, ¢ = Q/ér = ¢L2/pr02

~ o~

u dimensionless dynamic viscosity, p=p/u

sij kronecker delta

19
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TABLE 2.4. NON-DIMFNSIONAL GROUPS

Lewis number,

Flame thickness parameter,

Mach number,

Reynolds number,

Enthalpy of reaction,

Activation energy,

20
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2.2 Low Mach Number Limit :

Consider a state of affairs where the significant convective flow time
scales are large with respect to the time scale of pressure wave propagation.
If this condition is realized, then it can be assumed, to a first order
approximation, that the pressure waves generated by the unsteady {low field,
and the accompanying exothermic energy deposition of the combustion process
are able to balance the pressure in the flow domain fast enough such that the
pressure in the hydrodynamic equations may be regarded as an "averaged"
quantity over the domain of interest.

If we define the convective time scale as Tc, and the "acoustic" time

scale as Ta' then the above approximation is justified when:

T=Tc/Ta>>l

Further, suppose that the convective dynamics are governed by some
velocity u and a length, D, such that TC-Q/u. Similarly, write the acoustic
time scale in terms of the sonic speed, c, and a relevant length A, such that
T,=A/c. In a combustion system consisting of a dump section and of piping
leading to and from the dump, we shall see below that the convective length
scale, D, is the depth of the dump, while the acoustic length scale, A, can
include the whole length of the system piping. Using the Mach number M=u/c,

we write the above ratio of time scales as :

Dc_ 1
TTAu T HAD

M AD

Consequently, the requirements for achieving: Tt »> 1, are that (1) the
Mach number is much less than unity, and (2) the length scale, D, relevant to
the convective dynamics is either comparable with, or larger than, that

relevant to the propagation of pressure waves, A, in the domain of interest.
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In the following, we consider a flow field in a "compact" domain that
satisfies both these conditions, and we proceed to simplify the governing
equations based on an asymptotic expansion of the gas dynamic variables in
terms of the square of the Mach number (see Van Dyke, 1975). The domain
considered will include only the dump section, of depth D, with a small
length of the inlet and exit channels leading to and from the dump, such that
the overall length of the domain is comparable to D.

It is noted that, in the limit of zero Mach number, the present analysis
does not require condition (2) above, since t + » for M + 0, given a finite
domain. However, in any useful real flow, the Mach number is not zero, but
has some small value. Consequently, the analysis below is a zeroth order

approximation to the actual flow equations. In particular, this approximation

removes the Mach number from the flow model. If, however, despite the low
Mach number, the flow field considered involves acoustic time scales that are
comparable with the convective time scales, such that they play a significant
role in the flow dynamics, then a flow model that does not include the speed
of sound, and hence the Mach number, is not physically sound. This situation
would arise, at M << 1, if the flow domain is such that A/D >> 1. In this
case, a zeroth order approximation gives an unrealistic model and cannot be
used. A higher order approximation is mandatory. Therefore, it should be
obvious that the low Mach number model of zeroth order, as derived below and
elsewhere, presupposes that, within the domain of interest, acoustic time
scales are much smaller than convective time scales, and that they can be
neglected. Given this understanding we now proceed to derive the model

equations.

The Mach number considered in this work is MO=U/(7RTI)1/2, where U is the
maximum inlet flow velocity, and is always larger than the burning speed of

~

the flame, Su’ (U.10-20 m/s, while Su”0‘5 n/s). Hence, Mo is larger than a

22



Méch number based on Su, and it is the relevant Mach number to be used in
our analysis.

Given that M is small, and since it appears in the equations only as
e=yM02, one should be able to expand all the gas dynamic variables in terms

of €. Let T denote any gas dynamic variable (p,u,p,T,...), and:
LX) = Lo(R,E) + €L (X,t) + €20,(x,E) + ... (2.8)

Substituting in Eq. (2.3) and gathering terms that are independent of ¢, one
finds that Yp, = 0, which shows immediately that :

Py = po(t) (2.9a)

This is the main result of the Low Mach number approximation. The largest
component of the pressure is constant throughout the field. This result
agrees readily with the assumption that M<<1l since it implies that acoustic
waves travel so fast with respect to the motion of the fluid that the largest
component of the pressure is equalized virtually instantaneously.

The dependence of P, On time can be investigated easily for a confined
domain by imposing the condition of fixed overall volume, see Ghoniem (1986).
Po is found to change with time due to the heat release associated with
combustion.

For an open domain, the boundary conditions depend on the flow
configuration both upstream and downstream of the computational domain. If
the situation is such that the pressure at the domain boundary is either
constant or only "slightly" varying, then we can specify P =const in the
computational domain with good accuracy. Otherwise, po-po(t) is specified by

the pressure boundary conditions.
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Therefore, the specific choice for the boundary conditions on the open
domain determines whether P, in the combustor is constant or a function of
time. In the following, we shall assume a flow cofiguration where, for small
M, the resulting perturbation on Po imposed at the inlet and exit of the
combustor is small enough to be neglected. Note that this does not imply that
the variation of the imposed p is negligible. We do allow for imposed
pressure perturbations on the boundaries, however we restrict these to be
small enough to be lumped into €py (p-po+epl+...) and hence affect the flow

dynamics primarily through the momentum equation. Let us write, therefore;
Py = constant (2.9b)
We shall refer to P, 2s the "base" pressure, it has also been commonly

referred to as the "thermodynamic pressure". The second component of the

pressure appears in the e-component of the expansion of the momentum

equation:
Du
o _ 1
po BE- = - Vpl + ﬁc—) V._‘to (2.10)
‘ a(u ). o(u ).
- - o'i o’'j _ 2
where, L ((Tij)o)' (Tij)o Ho ( axj + axi 3sijv'uo )

The pressure P will be referred to as the hydrodynamic pressure. It is
generated to balance the changes in momentum within the flow field. Its
contribution to the total pressure is restricted by e.

Applying the same procedure to the energy equation, Eq. (2.4), yields:

DT

by B2 = - xv.q°+-g-v°v (2.11)

24



where we have used the above assumption, dpo/dt=0. This fact will be implicit
throughout the rest of this text.

We conclude from (2.11) that the energy balance is independent of the
hydrodynamic pressure (pl) and that the effect of the hydrodynamic
dissipation is neligibly small.

The continuity and species equations and the equation of state, Egs.
(2.2,5, and 6) respectively, retain their forms to the zeroth order in e.
However, as shown by Majda and Sethian {1985), a more convenient form of the
continuity equation can be obtained by differentiating Eg. (2.6), and using
Eq. (2.2) for Dp/Dt and Eq. (2.11) for DT /Dt to obtain:

- X Q
V.uo B, V.q° + xPo W (2.12)

Equation (2.12) defines combustion-hydrodynamics interactions in terms of
the volumetric expansion produced by heat reiease.

The two modes of combustion-hydrodynamics interactions (volumetric
expansion and vorticity generation) can be analyzed separately by using the
Helmholz decomposition of the velocity field. Following Batchelor (1985), the
instantaneous relative motion of the fluid near any point is a combination of
(i) an isotropic expansion, (ii) a pure straining motion without change of
volume, and (iii) a rigid-body rotation. Let us label these velocity
components respectively as u_, u

e p’
characterized by the following properties,

and u These three vector fields are

J.u =4, Uxu_ =0, u, is defined on an infinite domain.
(irrotational)

Vou_ =0, 9Uxu =20, up is prescribed by the domain boundaries.
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(solenoidal and irrotational)

V.u@ =0, qum =@, u, is defined on an infinite domain.
(solenoidal)
u =u, + up +u, (2.13)

Where, 4 and w are the local divergence and curl of u, respectively. The two
flow fields, u, and u. contain no information about the domain boundaries,
up provides the required correction to have u, conform to a specified normal

velocity at boundaries. In other words:

up.n = u,.n - (ue + uw).n , along the domain boundaries (2.13a)
= - (ue + uw).n , along fixed solid boundaries (uo.n=0)

Further, let us define the vector field v = u, + up. Since v is
irrotational, it can be expressed in terms of a potential ¢, where v = V¢,
and the equation governing ¢ is obtained by substituting u,=v+u, into Eq.
(2.12):

2, .1 (_ Q .
V¢ = po( XV.q°+TW) (2.14)

Eq. (2.14) defines the first dynamic role of combustion as manifested by
the volumetric expansion associated with heat release.

Moreover, taking the curl of Eq. (2.10) and noting that UxVp, = 0,
.w=0, w= quo = qum, and using Eq. (2.2) and the following two vector

identities:
Ux(AxB) = (B.V)A - (A.V)B + A(V.B) - B(V.A)
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Ux(A.VA) = Ux[ (1/2)9(|A|%) - AX(UxA) ] = - Ux[Ax(VxA)]

we obtain the vorticity transport equation in a 2-D, variable density field,

where w = (0,0,w), as follows:

D, 6 w, 1 1 1
BE(p ) = Vx(v.sb) + -5 Vpoprl + 3 (V.Eb)pro (2.15)
o pOReo p o o Re

This equation defines the second part of the dynamic role of combustion.
Volumetric expansion establishes a variable density field that causes a
baroclinic generation of vorticity within the reaction zone. The appropriate
boundary condition on the vorticity equation is u.s(x)=0 where s(x) is the
tangential unit vector to fixed solid boundaries. This condition is used to
generéte vorticity along the solid boundaries to satisfy the no-slip boundary
condition as explained later in the description of the vortex method.

Finally, since V.uzfo, let us define the stream function y such that
uwf(azw,—alw). Consequently, quw’a W= (0,0,—V2w), or :

vy = - w (2.16)

The above equations, arrived at through the low Mach number assumption,
are reproduced in Table 2.5. All subscripts "o" on the gas dynamic variables
will henceforth be removed, and we rewrite Pg and Py, as P and p

respectively.
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TABLE 2.5. GOVERNING EQUATIONS FOR COMBUSTION
AT LOW MACH NUMBER IN AN OPEN DOMAIN

WITH CONSTANT BASE PRESSURE

u=v+u, v=9, u = (azw.—alw)

92¢=—;—-(—)\V.q+—%—W)

Vzw = - ®

gE( ? ) = 21 "x(9.1) + -—% VoxVp + ——gl- (v.T)x%p
P Reo p p Re

DT Q .

pBE- ==—)\V.q +—x-w

DC A 1°

5t = " e, 9 "X ¥
o

P = pT = constant
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2.3 Thin Flame Limit :

A useful limit of eqgs. (2.17-23) arises when the following two conditions
can be satisfied simultaneously : the flame thickness is small compared to
the relevant dimension of the flow, and the activation energy is large. At
this limit, the flame acts as a hydrodynamic discontinuity between the

reactants and the products, see Landau (1944) and Sivashinsky (1979).
Physically, the limit: A0 can be achieved by letting kr tend to zero,

(recall the definition of A); i.e. the heat diffusion at the flame is assumed
negligible in the limit of a very thin flame. Consequently, the heat released
by the reaction at the flame is carried away primarily by the products of
combustion leaving the flame region, and not by conduction. Further, under
the condition of M0, or an infinitely thin reaction zone, the rate of
reaction per unit thickness of the flame must become infinite in order to
ensure a finite rate of conversion of reactants into products across the
flame surface. Similarly, the significance of the "large" activation energy
(Ta) is the compatibility with a narrow region (the flame) where a reaction
can occur. In the limit orf zero flame thickness, the reaction occurs only at
the flame surface, hence the concentration of reactants (C) changes abruptly
from 1 to 0 across the flame.

Before we proceed to simplify the equations in Table 2.5 by letting A
tend to zero, we introduce below some useful working relations pertaining to
the flame discontinuity.

First, let (pS) be the mass flow through the flame, and let ug be the
local velocity of the flame surface. We define ne and B! the local unit
normal and tangent vectors to the flame surface, respectively. Where, ne
points towards the reactants, and S¢ is oriented such that, looking along its

positive direction, the reactants are on the left. Let us decompose ug into
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its normal (ufn), and tangential (ufs)' components: ug = ug + Ui where
Up, = Ue ng and Up. = Ug Se. Then, from mass conservation across the flame

surface, we have :
Pu(Uen = Uy-ng) = oS, = pplug, — W.ng) = S = (pS) (2.25)

where, Py (pb) is the density of the fluid on the unburnt (burnt) side of the
flame surface, u, (“b) is the fluid velocity on the unburnt (burnt) side, and
Su (Sb) is the speed of propagation of the flame (by burning normal to itself
into the reactants) with respect to a coordinate frame travelling at u, (ub),
i.e. Su (Sb) is the normal burning speed of the flame with respect to the

reactants (products).

Next, if the set of points {xf] is used to construct a surface function

F(x,t), such that:
F(x,t) =0 for the flame surface x = xf
F(x,t) < 0 in the reactants (2.27)

F(x,t) > 0 in the products

then F(x,t) can be used to describe the motion of the flame. An equation that

governs the evolution of the surface F(x,t)=0 is derived by using, first :

Ug = u, + Sunf (2.28)
which is based on eq. (2.25), and on the fact that the flame cannot support
any shear, hence that U,8f = Ug.Bp = 1 .8, Equation (2.28) indicates that

the motion of the flame surface is a superposition of advection with the flow
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at the velocity u, and normal propagation into the reactants (by burning)
along ne at a speed Sy-

Then, let Df() = 3()/9t + uf.V(), be the substantial derivative for an
observer moving at the velocity of the flame surface Ug. Since, at this

surface, F(x,t) = 0 (a constant), then :

Df(F) = JF/3t + uf.VF =0 at the flame surface

where,

VF is the gradient vector of F(x,t).
At every point, it is normal to the locus of points F=const and it
points in the direction of increasing F.
Hence, at the flame, VF is normal to the flame surface, and it points
towards the products.

Substituting Up = u +5 ng in Df(F)-O, and given that nf.vr--|vr|, we get :

D,(F) = g{ + u,.VF = S_|VF| (2.29)
which is the equation governing the evolution of the flame surface by
advection and by burning.

Now let us turn back to the governing equations.

A formal limit of these equations can be obtained for A\ -+ 0.

We begin by examining eq. (2.22). In the limit as \ tends to zero, the

coefficient of the diffusive term (V.g) vanishes, and this term falls out of

the equation. We are left with:

18

0 t=-¥ , A0 (2.30)

=)

As the flame thickness shrinks to zero, we can also write, at the flame :
D€ = 6.D.(C) = oD (C) A0 (2.31)
PBE * Puu ’b"b ' )
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where, Du(C) = 9C/at + uu.VC ... on the reactants side

and, Db(C) = 3C/93t + W,.VC ... on the products side

and where, in the limit of zero flame thickness, the concentration field is a
Heavyside function that goes from 1 in the reactants to 0 in the products at
the flame surface, such that VC = (aC/an)nf - S(x—xf)nf, at the flame.

Let us consider a point on the reactants side of the flame surface.
Since, at that point, an observer moving with the flame speed ue measures a
constant concentration C=1, we have : pqu(C) = 0. Hence, using eq. (2.28),
we have :

P, D(C) = p ( 3C/3t + u,.%C ) = p ( 3C/3t + .VC + S 9C)
uf u u Y,

ulE:
- puDu(C) + puSu(GC/an) - puDu(C) + puSUS(x-xf) - 0

puDu(C) = - puSUS(x—xf) r A0 (2.32)

Therefore, using eqs. (2.30-32), we get

X1im0 ? = p,S, 8(x-Xg) = (pS) 8(x-X) (2.33)
-’

The above arqument can alternatively be based on the products side, giving

the same result (2.33).

Next, using eq. (2.33), and for X0, the equations in Table 2.5 can be

reduced to :

QS
724 = 7 8(x-Xg) (2.34)
u
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PRE = Pu@5, 8'X-Xg) (2.35)
DC
bRc = = S, 8(x-Xg) (2.36)

Since, from eq. (2.34), V2¢ = V.u = - (Dp/Dt)/p is zero everywhere except
at the flame surface, then p 1s constant everywhere on either side of the
flame: =Py, in the reactants, =Py in the products. It then follows from the
state equation, P = pT = const, and from eq. (2.35), that T is constant on
either side of the flame, T-Tu in the reactants, TnTb in the products. And,
pu/pb = Tb/Tu' Further, since u=y(T), then also, p-pu-const in the reactants,
M= =const in the products. Similarly, from (2.36), C is constant everywhere
on either side of the flame, C=1 in the reactants, C=0 in the products, as is
expected given our arqument above.

In dealing with the momentum equation, however, it is first necessary to
look more closely at the choice of non-dimensionalization for the viscous

terms. In studying viscous dissipation in the vicinity of the flame, the
characteristic length E (in Reo) is not a relevant length scale, instead the
more significant length scale in that regyion is the thickness of the flame
reaction zone, ;. Hence, in the vicinity of the flame, a more appropriate

~ e

non-dimensionalization would replace l/Reo = ”r/prUL by APro, where the

Prandtl number, Pr, is given by:

Pro = ﬂrCMkr
and, as defined earlier,

A= ML = Er/(chprL)

Clearly, XPro and l/Reo are equivalent.
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Therefore, the momentum equation in the vicinity of the flame, and more
precisely, up to the end of the hydrodyamic structure zone on either side of

the flame front, see Sivashinsky (1976), should be as follows :

APr APr
D
ﬁf(_%L) - -229 x(9.7) + -%3 VexVp + -;39- (9.7)x% (2.37)

On the other hand, eq. (2.20) is still the proper choice away from the flame
front.

Let us now study equations (2.37) and (2.20) in the limit as the flame
thickness A\ tends to zero. The viscous terms drop out of (2.37) and the only
term remaining on the right hand side is the local baroclinic vorticity

generation term, Vvap/p3. Further, rearranging terms, we get:

Dw 2 VpoxV
Bt = - WU¢ + o3E

p
Then, taking the limit as \+0, and using (by definition):

. Vox
Q. 8(x-X,) = lim (2.38)
£ Xg X0

we get, at the flame surface,

Dw Qs

u
ot = (9 -~ w T;" 8(x-Xg) (2.39)

Clearly, this indicates that the vorticity field has a discontinuity at
the flame surface. In other words, there is a vorticity jump 8”h+b at the

flame surface, between w, on the unburnt side and W, on the burnt side. i.e.

W - W, = suheb at the flame surface (2.40)

34



The vorticity jump across a gas dynamic discontinuity in an inviscid flow
has been the subject of numerous studies; see for example: Hayes (1957),
Matalon & Matkowsky (1982), Emmons (1958), Chung & Law (1984), Pindera &
Talbot (1986), and Berndt (1966). We will be satisfied with the statement of
the expression for 5“h»b in the 2-D case following the derivation of Hayes
(1957). The required terminology and the resulting expression are as below.

Let "s" be the coordinate along the flame surface, and recall that
(sf,nf) are the wunit tangent and normal vectors at the flame surface,
respectively. We can write : u = u, + ug where u is the fluid velocity on
either side of the flame surface, and u, = ung, u =us. are the components
of u normal and tangential to the flame surface, respectively. Note that
(us‘J-(us)b-uS along the flame, while (un)u'“u’nf and (un)b-ub.nf are not
equal, as shown in eq. (2.25) above. Further, recall that Ugmue Hug is the

velocity of the flame surface, and let us define the substantial derivative

for an observer moving at U as:
Dfn()-a()/3t+ufn.7()
Then, according to Hayes (1957), we have :
S . =n.x [ U_(pS)8(p L) = (pS)"L(Du_ + uc D n.)s(p) ] (2.41)
wb = f gtPoiole P s's © “fn s f£'°'° :

where, Dsus = (Dfnus)s + us'vsus

Dsnf - Dfnnf + us.an

<
]

tangential component of ¢

Og

Suysp = (80,09 9g = Sgxng
$(671) = L/my - 1p,

tangential component of ()
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8(e) =y - 5,
At this point then, we conclude that, at the asymptotic limit of low Mach
number and small flame thickness, combustion occurs across a sharp
discontinuity in an inviscid, non-conducting, non-diffusive, rotational
field.
In the outer flow, away from the flame, equation (2.20) can also be
simplified, using Vp = 0 and Vv = 0, everywhere, and, (p,u)-(pu,yu) in the

reactants, and (p,p)-(pb,pb) in the products. The momentum equation becomes,

5t " Y (2.42)
where, Re = pie /u = [ (p/o.)(p.UL/u) | / (/) = oUL/u
i.e. Re = Re = ZUGE/ZU in the reactants
Re = Reb = Zbﬁi/ib in the products

Therefore, in the limit of low Mach number and thin flame in an open
domain with constant base pressure P, the flow is essentially incompressible,
viscous, on either side of the flame. The relevant governing equations for
the whole flow field are listed in Table 2.6. In this table, we included an
initial condition on the vorticity field and on the flame interface, as well

as boundary conditions on the velocity along 3D, the domain boundary.
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TABLE 2.6. GOVERNING EQUATIONS FOR LOW MACH NUMBER
THIN FLAME COMBUSTION IN AN OPEN DOMAIN

WITH CONSTANT BASE PRESSURE

g% - ﬁé- Vzw in the reactants
u
g% = ﬁ%‘ vzw in the products
b
W, - W, - awhab at the flame surface, see (2.41)
u=v + uﬂ' v =9¢, u@ - (32""-31"’)
Vzw = -
Qs
724 = 7 8(x-Xe)
u
oF
3¢ * Y, VF = S |VF|

P=constant everywhere (base pressure)

(p,T,C) = (pu,Tu,l) in the reactants, (pb,T ,0) in the products

~ ~N o~ ~ o~~~

Reu = puUL/ ﬂul Reb = PbUL/ ”b

w(x,0) = wb(X)

Xg(0) = Xgq

u(x,t) = (un,us) on 3D
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3. NUMERICAL SOLUTION

3.1 General Description:

The numerical solution of the equations in Table 2.6, as implemented in
this study, combines the Random Vortex Method (RVM) for incompressible,
viscous, 2D flow, with the Simple Line Interface Calculation (SLIC) algorithm
for the propagation of the flame interface.

The two solutions are coupled by, (1) the advection part of the flame
motion which uses the velocity field computed by the RVM to propagate the
flame interface, and (2) the expansion field due to the heat release
resulting from burning at the flame front, which contributes to the flow
field computation by the RVM. A third coupling mechanism: the generation of
vorticity at the flame front, is neglected.

The flow domain is a 2D cavity-in-channel geometry, as shown in Fig. 3.1.
This simple geometry is intended to model the essential flow characteristics
of a dump combustor. The premixed fuel and air come in from the left at xmin,
they expand into the combustion chamber, the dump or cavity, and they exit
through a constriction, nozzle, and leave the domain at xmax. The dump serves
to stabilize the flame by anchoring it at the separation point at the
upstream edge of the cavity. This stabilization is due to the separating-
recirculating flow that exists in the cavity. The inlet and exit boundary
conditions are critical to the validity of the flow model in simulating the
operation of an actual premixed combustor. These will be discussed separately
below.

As indicated in Ch. 2 and above, the fluid flow solution will use an
incompressible viscous model, where the only knowledge about the burning
comes from an expansion field located at the flame, and from the different

Reynolds number used in the reactants and the products. Hence, the
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formulation of the random vortex methcd, as described below, will proceed

without much regard for the combustion, except for these two effects.

The combustion solution is described next, followed by a discussion of

the inlet and exit boundary flow problems, and an overview of the complete

solution algorithm.
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3.2 Fluid Flow — Random Vortex Method:

In the Random Vortex Method solution, the vorticity field is discretized
into a finite number of vortex elements whose configuration is updated every
time step according to the flow equations. A Lagrangian formulation is
employed, whereby advection is expressed in terms of a set of coupled
ordinary differential equations while diffusion is simulated by an
appropriate random walk algorithm. Numerical diffusion is minimized by
avoiding the discretization of velocity gradients on a grid. The scheme is
grid-free and the computations are self adaptive since vortex elements move
to capture zones of large velocity gradients associated with concentration of
vorticity. The degree of refinement in the discretization of the continuous
vorticity field into a finite number of discrete vortex elements imposes a
certain smallest resolved length scale, while the time step used in updating
the vorticity field imposes a minimum time scale. The accuracy of the method
in 2D high Reynolds number flows has beeﬁ checked against well documented
experimental data (see Najm & Ghoniem (1987), Ghoniem & Ng (1987)).

For a historical survey of the development of the random vortex method,
see Ghoniem and Gagnon (1987).

In the following, we proceed to demonstrate the application of the method
to the fluid flow equations listed in Table 2.6, on the computational domain

D. These equations are as follows :

Du/Dt = /3t + w.0w = (L/Re) Tw (3.1)
w = auz/ax - aul/ay (3.2)
u=v+u, v = V¢, u, = (9y/3y,~3y/3K) (3.3)
Wy = -w (3.4)
7% = (@S /T,) 8(x=Xg) (3.5)
u= (un,us) on D (3.6a)
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w(x,0) = wb(x) (3.6b)
xf(O) = Xgo (3.6c)

We have used Re for the Reynolds number with the understanding that a
different value (Reu or Reb) is implied depending on whether we are in the
reactants or the products, respectively. Recall also that u, is defined on an
infinite (simply connected) domain, while v includes the required correction
for the domain boundaries.

The solution of the flow equations proceeds differently for the interior
region than for the no-slip "wall region". We will use the technique of
viscous splitting (Beale & Majda, 198l1) to break the vorticity transport
equation in each region into an advection equation and a diffusion equation.
The solution in the wall region will then be matched to the solution obtained
in the interior to produce the full flow. In the following, we consider the
solution method for each of these flow regions separately, and describe the

matching of the two solutions.
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3.2.1 Interior Flow:

The method of viscous splitting is applied to the vorticity transport
equation (3.1) in the interior. This equation is solved, and the vorticity
field is updated, at every time step, using two fractional steps: an
advection step and a diffusion step. In the former, the vorticity field is

updated according to the inviscid version of eq. (3.1), namely :
dw/dt + u.Vw = 0 (3.7)
along with eq’s (3.2-5,3.6b&c) and the boundary condition u.n = u., on oD,
where n is the unit outward normal to 3D. We then update the vorticity by the
diffusion step, which refers to the solution of the equation :
3w/t = (1/Re)Vw (3.8)
This is eq. (3.1) with u=0.

Combining these two solutions provides a solution of (3.1) in the

interior. Let us now consider each fractional step individually.
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3.2.1.1 Advection:
Let us list again the relevant equations for the (inviscid) advection of

the vorticity field in the domain interior. These are :

Dw/Dt = dw/dt + u.Vw = 0 (3.9)
W = auz/ax - aul/ay = Uxu (3.10)
u=v+u, (3.11)
ve= 9% (3.12)
u, = (3y/3y,-3y/x) (3.13)
vy = - (3.14)
%6 = (QS/T,) 8(x-Xg) (3.15)
w.n = u, on 3D (3.16a)
w(x,0) = w (x) (3.16b)
Xp(0) = Xgo (3.16c)

Equation (3.9) is simply a statement of the Helmholz theorem, namely
that, in an inviscid flow, the vorticity is advected along particle paths.
Its solution follows immediately from the knowledge of the velocity field (u)
at every point in the fluid. Therefore, the main issue here is the
determination of the velocity u from eq’s (3.11-15) and the boundary and
initial conditions (3.16). Let us discuss the solution for each of u, and v
separately. Recall that u the solution of eq’s (3.13,3.14), is the inviscid
velocity field due to a specified distribution of vorticity in an unbounded,
simply connected, domain, while v, the solution of eq’s (3.12,3.15), is the
potential flow corresponding to specified volume fluxes at the domain
boundaries and to a specified source field at the flame interface. The sum of

these two velocity components gives the required velocity wu to be used in
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advecting the vorticity field. We begin below by looking at the solution for
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3.A Inviscid Flow Field due to a Specified Vorticity Field

in a Simply Connected Unbounded Domain

The solution of the Poisson equation (3.14) in a simply connected
unbounded fluid domain at rest at infinity is given in terms of the Green
function of the Poisson equation (F. John, 1982, p. 151):

vix,t) = [ G(x-x’") w(x’,t) dx’ (3.17)
where dx’ = dx’dy’, and, for a general vector argument x = (x,y),

G(x) = —(1/2n) 1n(r), r = |x| (3.18)

The integration is performed over the area where w is nonzero. The velocity

distribution is recovered by substituting eq; (3.17) into eq. (3.13):

um(x,t) = [ K(x-x') w(x’,t) dx’ = K(x)*w(x,t) . (3.19)

where,

K(x-x") = ( 3G(x-x")/9y , —-3G(x-x")/3x )

= =(120) ( yy' , ~(x-x") ) / |%=x’|?
or, for a general vector argument x = (x,y),
K(x) = —(1/2n) (y,~x)/t2,  re|x| (3.20)

K is the integral kernel of the Poisson equation, and * denotes convolution.

In the Lagrangian description of the flow, we follow the motion of material
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points. Let us write X(e«,t) = (x(t),y(t)) = x(t) for the trajectory followed
by the particle which is at point a = (al,az) at time t=0 (a1 and o, are the
"Lagrangian coordinates" of the particle). Hence, the map « + X(a,t) (the
fluid flow map) advances each fluid particle from its position at time t=0 to

its position at time t. From the definition of the velocity field of the

fluid:
DX(t) _ 9 X(alt) = =
Dt = 3t uw(x(alt)'t)l X(e,0) a (3.21)
Further, using eq. (3.9), we have : w(X(ot),t) = w(«0), or,

equivalently, 3w(X(e,t),t)/3t = 0 (see also Chorin & Marsden, 1979, p.34).
Given this fact, and since the flow is incompressible, we can write the right

hand side of eq. (3.21), based on eq. (3.19), as follows:

uw(x't) = uw(X(alt)rt) = .r KIX(a:t)-X(a'lt)] w(X(a',t),t) J(a'rt) da’
= [ K[X(e,t)-X(a',t)] w(X(a',t),t) da’ (3.22)

= [ K[X(a,t)-X(a’,t)] w(a’,0) da’

where, J(ea,t) is the Jacobian of the fluid flow map and J =1 for an
incompressible fluid (Chorin & Marsden, 1979, p.14). Eq. (3.21) is a set of
uncountably many ordinary differential equations which, when supplemented
with eq. (3.22), provides a solution of the Euler equations in the unbounded
domain. In order to reduce this to a finite number of equations, we will use
the standard Riemann sum approximation (Greenberg, 1978) to the integral in

eq. (3.22). Therefore,

- N - N
uw(x,t) ~ uw(x,t) =jfll([x-xj(aj,t)] I‘j -jfll!(x—xj)l‘:i
(3.23)
1 N [ "(Y(t)_Yj(t)) ’ X(t)‘xj(t) ]
= BT )
ju=l1 3 |x-x]

46



where we have used xj = xj(t) = (xj(t),yj(t)) = xj(aj,t), and where :

T. = w(a.,0)8A, i
5 = olag,0)8A (3.24)

and oy is the centroid of the area element aAj, belonging to the grid

introduced in the « plane to partition the region where w(e,0) is nonzero.

N
Now let, g(x) = L 8(x—xj)rj, where 8§ is the Dirac Delta function. Then,
j=1

since K(x—xj) = [ 6[(x—xj)-x') K(x’) dx’, we have :

N
K(x)*g(x) = [K*g](x) = [g*K](x) = L I, ] Sl(x—xj)—x'] K(x') dx’
j=1 (3.25)
N
= I K(x-x.)T.
i1 (x xJ) j
Hence, by eq. (3.23), we have:
- N .. N
u (x,t) = L ul(x,t) = K(x)*( L 8(x—x.)T, ) (3.26)
(A} W . 373
j=1 j=1
Then, comparison with eq. (3.19) gives that aw(x,t) is the velocity
corresponding to a collection of point vortices with circulation rj and
coordinates xj(t) = Xﬁ(a t), i.e.,
N
w(x,t) = L §(x-x.) I. (3.27)
j=1 ] ]

In eq. (3.23), the expression for ui(x,t) is the well known Biot-Savart law

for the velocity induced by a straight line vortex (Batchelor, 1985)

Therefore, one possible numerical method for solving Euler’s equation in
an unbounded domain consists of replacing eq. (3.21) by the system of
ordinary differential equations:

DX,  aX.(a.,t) . .
Dt]. - x‘.l.atl = uu,i(t)' xi(ai,()) - a, (3.28)
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where, u, i(t), from (3.23), is the velocity induced by the contribution of

’
all point vortices at point vortex i. Since a point vortex in our 2D model
represents a straight line vortex in 3D space, then it does not induce a

velocity on itself (Batchelor, 1985, p.511), and we have :

a N ~5 N
.(t) = L .(t) =L TI. K(x.-
um,l( ) i uw,1( ) - 3 (x; xj)
Jeei i
(3.29)
) TL tgr- ( —(yi(t)—yj(t)) ' xi(t)'xj(t) ]
mog=1J lxi—x.|2
Joei ]

with xi - X.l(ui:t) - (xi(t)lyi(t))' xj = Xj(aj.t) = (xj(t)IYj(t))l and where
N is the total number of point vortices. Thus, at each instant, the xj's
should approximate the exact coordinates xj's of the point vortices if the

method is to converge. The algorithm (3.28,3.29) is called the point vortex

method. It was introduced by Rnsenhead (1932) to study the behavior of vortex

sheets.

Since the kernel K(x) is singular at x=0, the velocity, u

it tends to
(4

infinity as the distance between the point vortices approach:s zero. This can
cause the method to break down. To see how this happens, consider an
approximation to a vortex tube consisting of a large number of point vortices
(vortex 1lines when extended in the third dimension). Following egs.
(3.28,3.29), it can be seen that, when separated from one another by a short
distance, the vortices will wind around each other because of the
sinqularities on the right hand side of those equations. This was confirmed
computationaly by Kuwahara & Takami (1973). The standard point vortex method

of Rosenhead thus fails due to a spurious interaction of vortices at close
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range. To overcome this difficulty, Chorin (1972) first suggested that
"blobs" of finite area, rather than points of vorticity, be considered.

Hence, eq. (3.27) is modified to :

N
w(x,t) =j£1rj fB(x-xj) (3.30)

where the "core function" f6 is a radially symmetric function of small

support, such that [ fsdxal, and where,
fi(x) = 82 £(r/8), © = |x| (3.30a)

Thus, fS' which has the dimension of (1l/area), approximates the 2D Dirac
delta function as §»0. The "core radius", §, represents the cutoff radius
such that f6 is "small" or zero for r > &.

It is worthwhile noting a few points about § and f8 before we proceed. In
order to approximate a given continuous vorticity distribution accurately, 2§
is often chosen to be larger than the separation between the centers of
adjacent discrete vortex elements (Ghoniem & Gagnon, 1987). This allows for a
margin of overlap between vortex elements. Further, the core function, £,
plays a similar role as interpolating polynomials in finite difference
schemes and base functions in finite-element formulations. By requiring f to
be radially symmetric, the approximation in eq. (3.30) is at least second
order (Hald, 1985).

With the introduction of the cutoff function, the velocity field (3.26)

for the point vortex method is then replaced by :

~ N
uwtx,t) = K(x);flfa(x-xj)rj = K(x)*w(x,t) (3.31)

or,
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- N
uw(x,t) =j£1 Ks(x—xj) Tj (3.32)

where, x = X(a,t), xj = xﬁ(“j't)' and :

Ks(x-xj) = x(x)*fs(x—xj) = [ K(x~-x") fs(x'—xj) dx’ (3.33)

Hence, the kernel K(x) is replaced by a smoothed kernel Ks(x) which is

bounded at x=0, such that (Ghoniem & Gagnon, 1987):

1 (Yl_x)
Ks(x) - - T —rz- K(r/8) (3.34)
with, r
K(r) =2n f, t £(r) ar’ (3.35)

We can then compute the vortex element trajectories by solving the system of
ordinary differential equations (3.28). From -eq. (3.32), the velocity at the

center of the vortex element (blob) i due to all the other vortex slements j

is equal to :
.(t) = £ t) = LT, K.(x.-X. .36
uam( ) j-1u“"i( ) i& 3 5(x1. xJ) (3.36)
i jmi

The algorithm (3.28,3.36) is called the vortex element method. From eq.

(3.30) we have Chorin’s interpretation of the vortex method (Chorin, 1972),

namely, that the vorticity is approximated by a sum of vortex elements

(blobs) of common shape f& centered at xj(t) = X(“j't)' and with strength rj.

We shall use the vortex core function suggested by Chorin (1972), defined

by:
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1/2nr r forr <1
f(r) = and K(r) = (3.37)
0 1 forr>1

Consequently, the velocity at (x,t) due to blob j, using eq. (3.32), is :

. (y-y.,x.-x)

zsﬁ—r;i;;'— r<sd

o3
ul(x,t) = I'. K, (x-x_.) = (3.38)
w ] 8 J =T, (y-Y.,X.-Xx)
e A
| %—=x_ |
]
or, in polar coordinates (r,8), with origin at xj(t),
~s e (0,I./268n) r <8
ul(r,8) = ul(r) = (u,u) = I (3.39)
(O,Fj/2nr) r> 3§

Therefore, for r > §, the velocity field induced by a vortex blob of strength
rj at xj is identical to that due to a point vortex of the same strength and
location. For r < §, the velocity is constant at the value Fj/28n
corresponding to r = §, which is the maximum velocity induced by the vortex.
The vorticity distribution corresponding to the above velocity field due

to vortex element j is found to be :

rj/zsn: for r <8

w,(r,0) = w.(r) = (3.40)
] J 0 for r > §
The stream function associated with this velocity field is :
(T./2n) (1-r/8) for r <é
v.(r,0) = y.(r) = (3.41)
] J (~Ty/2m) 1n(r/8) for > §
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3.B Potential FLow

The potential flow problem involves the solution of eq’'s (3.12,3.15)
using the boundary condition (3.16a). These equations are repeated below for

convenience :

v =U¢ (3.12)
%4 = (@S /T ) 8(x-Xg) (3.15)
u.n = u, on aD (3.16a)

where, u = v + uy U, - 0 on fixed solid walls, U=y far upstream in the

inlet channel, and U= Ui far downstream in the exit channel.

Given u (we drop the """ in the remainder of this text), the condition

(3.16a) can be written :
v.n = Vp.n = u, - u.n (3.42)

On the other hand, in order to deal with the right hand side of eq.
(3.15) it is useful to recall the splitting of the potential flow field v

into the two potential flow fields u, and up, eq. (2.13) above. Namely,

veu+u (3.42a)

where,
V.u, = 0 , defined on an unbounded (simply connected) domain
V.u = 0, prescribed by the domain boundaries

P

Therefore, let u, = v¢e, and up = V¢p, then split the above problem into two

problems as follows :

b= 4o+ &
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v=v¢=v¢e+v¢p=u +u
where ¢e is the solution of :
2
v ¢e = (QSu/Tu) 8(x—xf) (3.42b)

on an unbounded simply connected domain. (The Xg are bounded so that v¢e+0 as

x+o), While ¢p is the solution of :

g
©-
n

0 on the domain D
- (3.42¢c)

e
5
N

b v¢p.n = un - uw.n - ue.n on dD

From the specification of the two problems, it is clear that ¢, the sum
of the two potentials, satisfies the initial problem (3.15,3.42).

The solution of (3.42b) is described in Appendix C. The flow field u, is
represented approximately by a finite set of "source-blobs" that are the
result of discretizing the expansion field along the flame. The flow field of
a source-blob differs from that of a 2D point source by the smoothing
associated with a specified cutoff (core) radius analogous to what was used
above with the vortex blobs. The expression for ue(x,t) for Ng source-blobs,

where source j is located at xj and has strength qj, is as follows :

Ng Ng q. r.
u (x,t) = jfl gy = 3'51 2% IT:ILZ gllrsl/cy) (3.42d)

]

where, rj = x—xj, and g(r) is the core function, given by :

1 for r > 1
g(r) = (3.42e)
r for r <1

The solution of problem (3.42c), leading to the full solution of the

advection flow field (the wvelocity u, eq. 3.11), is dealt with in the
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following. The solution of (3.42c) amounts to satisfying the prescribed
boundary fluxes on the computational domain boundary 3D, given the two flow
fields u, and u, and the specified normal velocity value on aD, u,- As stated
above u, is specified to be : zero on solid walls, W far upstream (x -» -=),
Usut far downstream (x + +«). Note that in both limits, + =, u, and U, tend
to zero, hence up.n-un.

Several methods exist for solving this problem. Since the domain geometry
considered is relatively simple, we have chqsen to use conformal mapping.
This method avoids a discretization error in the computation of boundary
fluxes, and is quite efficient for simple geometries. For the geometry at
hand, however, no analytical conformal map exists; hence, a code that
computes the Schwartz-Christoffel mapping numerically was used. This code was
provided by Trefethen (1979).

The solution, as implemented here, begins by mapping the flow domain,
along with the two flow fields u, and u, from the physical complex plane
(w=x+iy) to the wupper half plane, referred to as the transform plane,
(C=&+in), where i-(-l)l/z. The domain walls are mapped to the &-axis, while
the domain itself is mapped to the region : n > 0. A vortex/source inside the
domain in the physical plane maps to a vortex/source with the same strength
in the transform plane and vice versa.

Next, given u, and u,, we proceed to satisfy the boundary conditions,
namely, the inlet-exit flows and the impenetrable walls.

Under stable operating conditions, when no bulk flow reversal occurs in
the combustor, the inlet flow, coming from an "infinite" upstream channel,
corresponds to a source at x=-», The inlet flow rate and the extra volume
generated by the expansion sources at the flame interface are both vented to

a sink, which is located downstream at x=+=, (again, for stable combustor

operation). These roles of source and sink may be interchanged depending on
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the pressure boundary conditions upstream and downstream of the combustor, as
will be discussed in section 3.4 below. In the following discussion, with no
loss of generality, we will assume stable operation; hence an upstream source
and a downstream sink. By the choice of the mapping, the two limits, x=-= and
x=+», are mapped to two points on the E-axis in the transform plane. Hence,
the imposition of the inlet and exit boundary conditions involves specifying
the proper source and sink strengths at these two points in the {-plane.

In order to enforce un-O on the E&-axis in the Z-plane (except at the
inlet and exit source and sink singularities), the normal flux on this axis
due to each vortex/source in the upper half plane is cancelled by an
artificial identical vortex/source image of the same strength (opposite sign
for the vortices) in the lower half plane, at the same normal distance from
the f-axis. Therefore, solving (3.42c) amounts to finding the velocity
induced at any point in the -unbounded simply connected- transform plane by :

1) the images of the vortices |

2) the images of the flame sources

3) the inlet and exit flow source and sink and the image of each.
This gives the velocity up in the {-plane. The final velocity u in the
physical plane is arrived at by, (1) adding the velocities induced by the
vortices and the flame sources themselves (the flow fields uw-and ue) in the
C-plane, and (2) mapping the final result to the physical plane. This is done
below, after a brief description of the terminology.

The Schwartz-Christoffel technique utilizes the "complex velocity"
concept where, for u-(ul,uz), the complex velocity is Whul-iuz. To be more
precise, consider a point w=x+iy, which maps to {=f+in. Let the total
velocity at w, in the physical plane, be u-(ul,uz), while the corresponding
velocity at Z in the transform plane be o=(y,v). Then the complex velocities,

Whul-iu2 at w, and S=u-iv at { are related by the transformation as follows:
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W(w) = S(Z) F(w) (3.43)

where F(w)=d{(w)/dw is the transformation function that maps the w-plane to
the C{-plane (see Hildebrand, 1976; Nehari, 1975). Below, the evaluation of S
due to a distribution of vortices, sources, and sinks in the {-plane is
described.

We begin by developing eq. (3.38) to use complex numbers and to give the
complex velocity due to a finite number of vortex elements (j-l,...Nb) in the
{-plane. To use a more concise notation, let us retain k(r/8§) so that one
expression will suffice for all r.

The radial symmetry of the core function £, corresponding to a blob j in
the physical plane, is not preserved, in general, when the blob is mapped to
the  plane. For simplicity, and following the practice adopted in earlier
works (e.g. Ghoniem & Gagnon, 1987), we neglect this disruption of radial

symmetry, and use a circular core in the { plane, with radius Bj given by :

B.
5= (FGy) ], Flwy) = (%)wj

Therefore, the velocity due to vortex element j at Cj=Ej+inj in the

plane, induced at a point I=f+in, is given by:

. -T. (n-n,,&.~E)
o = Iy Ky(Zy) = 5= _|ci?;||7— K(12-T51/85) = (wyv,) (3.44)
j

or, using RJ-C—Cj, and introducing Sa)spa)—i\»a), we get :

ST (PN )H(EE)
J = J 1 J
5) = 5=4 T k(|RJ|/8;)

(3.45)
~iT; (E-E)-i(n-n,) . ~iT, .
= 111 J J R W, —— J .
—5=d S5 k(IR%|/8,) R‘} k(IRY|/85)

2n
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where, Rj* - (E—Ej)—i(n—nj) is the complex conjugate of Rj.
Therefore, the complex velocity in the {-plane, at the point (Z,t), due

to N, vortices and their N, images in the lower half plane, is given by :

N N
v . s v . .
S,(&t) = £ (~ir_/2n’d)k(|RI|/8,) + £ (ir,/2nRY)k(|R) | /B.) (3.46)
w jmi ] j jml ] ]

wvhere, /) = C—Cj*.

Note that a blob and its image are assigned identical core functions with
the same core radius ﬂj in the T plane. This is necessary in order that they
may cancel each other’s normal velocity at the wall (n=0) whatever their
distance from the wall. As noted above, the only difference between a blob
and its image, in the { plane, is the sign of the circulation assigned to
each.

The complex velocity due to a distribution of sources and sinks can be
found similarly. We recall eq. (3.42d) above, for the velocity induced by a
source blob in an unbounded simply connected domain. This equation is equally
valid for a sink, with qj < 0. By the same reasoning employed above, we
assume that the core function g(r) retains its radial symmetry in the -
plane. The core radius in the {-plane (yj) is found from that in the w-plane

(cj), as done above for the vortices, by :

Y. .
d . , ) = (49C
e IFwy)l, Flwy) ‘aa’w-wj

Let us write (3.42d) in the Z-plane. Consider a source (or sink) blob j, at
cj' of strength qj, and core radius vy The velocity aé-(pe,ve) induced by it

at a point {, following (3.42d), is :

. . . q. (E—E-,h-TI)
o) = (4, V) = 5 —-TEEE-TQJ— 9(1%-251/v5) (3.47)
j
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where,

hence, the complex velocity sg - pg-ivg is given by:

53 = (ay/2m (R I/v) ®IY/IRI)Z = ay g8y /2n8) (3.48)

where,
j= - i = -
R (& E.j)+1(n—nj) & Cj (3.49)

Therefore, the complex velocity induced by N, sources and sinks and their

images is given by :

N N
S . . . .
Se = £ a; g(|RY|/v)/2nRY + £ q. g(|RI|/v;)/2nR] (3.50)
j=1 J J j=1 ] ]

where, §j= C—Cj*. Note that this summation includes all the sources and sinks
in the flow, including those on the (-axis (the inlet flow source and the
exit sink, with ¢ = vy = 0), where Rj- ﬁj. Hence, a source (or sink on the &-
-axis is counted twice. Further, analogous to what was done with the blobs,
each source and its image are assigned the same core radius Yy in the
plane.

Finally, the total complex velocity at a point due to the vorticity
distribution (eqgs. 3.13,3.14) and the potential flow (expansion sources and

boundary conditions) egs. 3.15,3.16a, in the Z-plane, is given by :

S(L) = p—-iv = Sw + Se

Nosr, - k(rdey) k(1R |/8.)
= Tl ( —_ — 1,
jgl n RJ RJ
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Ny q. g(leI/vj) 9(|§3|/yj)
+ I 2%( + T

j=1 rJ R

(3.51)

In order to map the complex velocity to the physical plane, we use equation

(3.43) above, to arrive at whul—iuz, i.e.

W(w) = S(Q)F(w)

The above discussion provided an expression for the velocity u(x,t), eq.
(3.11), at any point in the fluid except at the center of a vortex blob. We
need to compute u, (the advection velocity of blob i) in order to update the
velocity field. The computation of u, in the {-plane is in fact identical to
that at any point x, except that the summation over the N, blobs in eqs.
(3.46) and (3.51) excludes the case j=i, while the summation over the images
still includes the image of blob i. Further, the mapping of the complex
velocity to the physical plane involves an additional term when the point in

question is the center of a vortex blob. Namely, for a blob i,

W(wi) = S(Ci)F(wi) - (iri/4n) (dF/‘dC)wi =u - iu2 (3.52)

and,

ui(t) = U(Xi(ai,t)at) = (ulluz) (3'53)

The justification for this extra term is explained in Appendix B.

Therefore, we have found the advection velocity u, at every point in the
physical plane. The next section describes the use of these velocities in
updating the locations of the vortex blobs in the computational domain at

every time step.
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3.C Updating the Vorticity Field in the Interior

by Advection

Each vortex blob is advected by its above computed advection velocity
(ui(t)) according to eq. (3.9), which states that vortex elements are simply
advected with the material particles. Note that ui(t) is the solution of
equations (3.11-15) and the potential boundary condition (3.16a), at some
time t=nAt, given the initial conditions (3.16b,c).

The location of vortex element i, xi(t), is updated according to :
(axi(t)/at)adv = u,(t) (3.54)

The time integration of this equation is done using the modified Euler (also

known as Huen’s) method (Gerald & Wheatley, 1984). Using a time step At, the

algorithm is as follows :

For, i=1,...,NV :
“+1/2 = x1 + Atu

(3.55)
x2+:dv = x + Ot( u + u; n+l/2 Y/2
where, xi = (x, (ndt),y, (nat))
'.l‘s (u; 1(ndt),u; H(nat))

x2+1/2 = intermediate location of vortex blob i

u?+1/2 =u, corresponding to the intermediate vorticity distribution

(x2+1/2) but using the flame source distribution and inlet
and exit conditions used to compute u (those at t=nat).

x:+;dv = location of blob i at t=nAt due to advection alone.
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This technique is second-order accurate in time. Sethian (1984) comments on
the necessity of a second-order time integration scheme such as the above for

updating the vortex blob locations by advection.
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3.2.1.2 Diffusion:

The transport of vorticity due to diffusion is expressed by the second
fractional step expressed above in eq. (3.8). In the Random Vortex Method,
the effect of diffusion is implemented by the dispersion of a finite number
of vortex elements with finite and constant vorticity according to 2D
Gaussian Statistics (Chorin, 1972; Milinazzo & Saffman, 1977; Saffman &
Baker, 1979; Ghoniem & Sherman, 1985; Ghoniem & Gagnon, 1987).

The algorithm is based on the fact that the Green function of the 1D form

of eq. (3.8), given by :
G(x,t) = (Re/dnt)}? exp(-x2Re/dt) (3.56)

is identical to the probability density function of a Gaussian random
variable n with a zero mean and a standard deviation of o-(ZAt/Re)l/z,

namely:
P(nit) = (1,/26°m) 2 exp(-nZ/262) (3.57)
In 2D, the Green function of eq. (3.8) is given by :
G (x,y,t) = (Re/dnt) exp(—(x2+y?)Re/dt) (3.58)
which is equivalent to :
G (x,y,t) = G(x,t)G(y,t) (3.59)

where G(x,t) and G(y,t) have the same form as in eq. (3.56) above. The
corresponding probability density function is the product of two 1D

probability density functions:

P (N nyit) = By(niE)Ry(nit) (3.60)
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where Py and P, are give by eq. (3.57) above. Thus the solution of eq. (3.8)
is simulated stochastically by a 2D displacement of the vortex elements in
two perpendicular directions using two sets of independent Gaussian random
numbers, each having a zero mean and a standard deviation of (o=(2At/Re)1/2).

The random walk algorithm is compatible with vortex schemes because of
its Lagrangian grid-free form. It can also be applied in regions of large
gradients near fixed solid boundaries to move vortex elements which are
generated to satisfy the no-slip boundary condition without excessive
numerical diffusion since it does not depend on the resolution of a grid.
Ghoniem and Sherman (1985) discuss in detail the stochastic solutions of the
diffusion equation with different boundary conditions, its application to the
reaction-diffusion equation, and to the combined heat and momentum diffusion
that arises in natural convection.

In the Random Vortex Method, the diffusive transport of vortex elements
is simulated stochastically by adding to their convective motion an extra
displacement drawn from a Gaussian population with zero mean and a standard
deviation o. The total transport of vortex elements is obtained by adding the

two fractional displacements :

1150 n+1l
x5 = xi,adv + ni (3.61)

where, n=(nl,n2) is the random displacement vector,

x?+1 = new location of blob i in the domain interior (at t=(n+l)At)
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3.2.2 Wall Region:
In the context of the Random Vortex Method, the "wall region" refers to a

very thin region extending only a few ¢’s (random walk standard deviations)
from the domain walls, where the discretization of the vorticity field uses
vortex sheets instead of blobs, the latter being used in the bulk of the flow
domain.

Vorticity is generated at the walls to satisfy the no-slip boundary
condition (Lighthill, 1963; Payne, 1958). This scheme of vorticity generation
was used by Chorin (1972) in the Random Vortex Method to satisfy the viscous
boundary condition at solid walls. The vorticity generated along the wall is
discretized into elements separated by a distance "h". To improve the
resolution, the required circulation generated at each wall station is
distributed among several elements (sheets) such that each has a certain
maximum circulation T These sheets leave the wall by diffusion, to become
part of the interior vorticity field at later times, when they are converted
into vortex blobs of appropriate core radius to satisfy compatibility between
the interior and wall reqgions. The wall region (also referred to below as the
sheet region) has a thickness As.

By the nature of the solution in the wall region, we will use the wall
velocity computed from the above interior flow calculation as a specified U_
for the boundary layer equations. We will not need to use the Helmholz
decomposition, eq. (3.3), of the velocity field. It will be sufficient to
write down the curl of the Navier-Stokes equations and the continuity
equation as starting points. Further, since As is typically much less than
the cell size used for the flame propagation algorithm, we will not consider

the expansion field of any flame sources in the sheet region, rather the

effect of the expansion field will be present via U_. Therefore, the relevant

equations are:
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2

dw/9t + u.%w = (1/Re) V°w (3.62)
du/3x + v/ay = 0 (3.63)
w = 3v/9x - du/dy (3.64)

where u=(u,v), and Re-Reu (Reb) in the reactants (products).

In this section, the coordinate system (x,y) is used to represent the
parallel and the normal to the wall, respectively. Points (x,0) belong to the
wall. Coordinate transformation is employed whenever necessary for converting
velocities and point coordinates from the domain coordinate system (Fig. 3.1)
to the coordinate system of each wall and vice versa.

We now proceed to describe the solution of the above equations in the
wall region. We use Prandtl’s boundary layer approximation to simplify egs.
(3.62,3.64). This approximation is based on the fact that the cross stream
dimension of the boundary layer is much smaller than its stream-wise
dimension. Consequently, we find : 3v/3x << 3u/dy and azw/ax2 << azm/ayz, and

the above equations simplify to :

3w/3t + u.Vw = (1/Re) 3%w/ay? (3.65)
du/9x + v/y = 0 (3.66)
w = - u/dy (3.67)

Similarly to what was done in the domain interior, our solution is split
into two fractional steps. First, we update the vorticity with respect to the

advection component by solving :

dw/dt = —u.%w (3.68)
du/3x + av/dy = 0 (3.69)
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We assume the u velocity component "infinitely" away from the wall to be
given (U_) and require that, at the solid walls, u-(us,un)-(0,0), hence we
impose a "no-slip" condition at the walls..

Next, we update the vorticity field with respect to the diffusion term

a%w/ay?, i.e.
2 .2
3w/3t = (1/Re) 22w/ 3y (3.70)

Given the above stated "no-slip" boundary condition, vorticity has to be
generated at the walls to force the u-velocity there to be zero. The wall
region acts as a transition zone from the still fluid (at y=0) to the high
speed fluid in the interior. Vorticity created at the wall diffuses into the
domain interior (Morton, 1984). This is in contrast to flow in the interior
(where w=3v/3x-3u/3y) where neither velocity component dominates the motion
of the vorticity. Consequently, it is inappropriate to use vortex blobs to
discretize the vorticity field within the wall region, since each blob
generates a radially symmetric rotation of fluid around its center. Instead,
we use vortex sheets, which are surfaces parallel to the solid walls across
which the tangential velocity changes abruptly. In the following (see Chorin,
1978), we describe the discretization of the vorticity field into sheets, and
discuss the properties of the sheets.

Let us consider one of the domain walls. Discretize this wall into
sections of length "h". The vorticity generated on one such section is found
by calculating the circulation around a rectangle of 1length h, and

infinitesimal width, as in the diagram below :

A B
| |
ATTRRIL D ACKERTRRRRRTRRRRRNRN S C AN
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Side CD is coincident with the wall section of length h. The velocity on side
CD is specified to be zero (no-slip), while that on side AB is the wall
velocity computed from the domain interior (us). The circulation around ABCD
is given by :

A

FT'=-fuds+0+0+0=-uh (3.71)
B S s

where Gs is the mean value of ug over the length h. We will assume the
variation of u, over h is approximately linear, and hence use the velocity
computed at the mid point (M) of each wall section (i) of length h to be Gs
for that section. To improve the resolution, the circulation computed at each
section (i) is divided among several sheets, all generated with the same
initial coordinates (at Mi)' same length h, and same circulation rm (+ve for
counter clockwise rotation). Where Fm is specified a priori, as the maximum
allowed vortex strength. These sheets move away from the wall by diffusion to
become part of the interior vorticity at a later time. The coordinates of a
given sheet are, by convention, those of its center (midpoint).

The vorticity distribution inside the wall layer (eq. 3.67) is thus
approximated by a number of vortex sheets of length h and circulation T
which remain parallel to the wall while transporting velocity jumps &u, such

that :
Su=u -u (3.72)

where ut (u”) is the velocity above (below) the sheet.
If the circulation per unit length carried by sheet j is Y5 (also called

sheet "strength") then :

. =T. = — §u. 3.73
Y5 F]/h u] ( )

67



Using the same core function concept implemented above, we thus write the

.orticity distribution due to collection of N sheets as follows:

N
w(x,t) -jfl vj fA(x—xj) (3.74)

where x5 = xj(t) = (xj(t),yj(t)) - x(uj,t). (xj(t),yj(t)) are the coordinates

of the center of sheet j (with lagrangian coordinate aﬁ) at time t. fA is the

"vortex sheet core function" which is defined by :

L R
fA(x—xj) S(y-yj) [ H(x-xj) H(x—xj) ] (3.75)

where x? = xj - h/2, and x? = xj + h/2, are the x-coordinates of the left
and right extremities of sheet 3j, respectively. &(y) is the Dirac delta

function, and H(x) is the Heaviside step function (Greenberg, 1978}, defined

by :

1 for x> 0
H(x) = 1/2 for x =0 (3.76)
0 for x <O

That this choice of core function is appropriate can be easily checked by
finding the circulation around a rectangle with area A, and with side lengths
h and b, containing a single sheet j entirely. Namely, we expect to get :

JwdA =T. = hy.. This is verified below :

A ] ]
R
xj As
IAw daa = | . IO Yj fA(x-xj) dy dx
*5
xg A
] L R s
=v. [ [ H(x=x3) - H(x-x.) 1 [ [ &(y-y.) dy ]} dx (3.77)
iy j j 0 j
X
]
R
*5
= y. 1-0]{1 = . h=T,
Y5 ) . [1-0]{1] ax Y5 3
*5
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Integration of eq. (3.67) in the y-direction, from y=0 to yj, gives the

u-velocity distribution in the wall region, given u=0 at the wall, namely :

Y du
u(x,y) = | w5 dy’ = - [¥ wdy
o %Y 0
N
Bz . St - .
i1 YJ KA(x xJ) (3.78)
wh K ny ’ ) dy’ [ x’=( ")
ere, A(x-xj) - — 0 A(x -x:l Yy’ , X'=(x,y’)
= — H(y- -x%) — H(x—xE
H(y yj) [ H(x xJ) H(x xJ) ] (3.79)

Another formulation for this velocity integral, which is more useful in
terms of finding the actual slip velocity at the wall due to a given interior
flow and a distribution of sheets, is found by integrating eq. (3.67) from y
to As' instead of 0 to y. This formulation is, in fact, the one utilized in
the code for driving the wall velocity to zero by generation of sheets. The
velocity at the edge of the sheet region (x,As), is UA(x). Since the sheet
region is very thin, we simply use the wall velocity computed from the

interior flow for U,- The integration from y to As gives :

b

Up(x) + [ w(x,y’) dy’
Y

N
Uy(%) + I v [1-H(y-y.)] [H(x-x5)-H(x-x3)] (3.80)
j=1 ] J ] ]

u(x,y)

The total velocity at the wall (due to the interior flow and the sheets)

is given by :

N
z

u(x,0) = UA(x) +
j=1

L R
Yj [H(x—xj)—H(x—xj)] (3.81)
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3.2.2.1 Sheet Advection

Let us compute the velocity induced at the center of a sheet i due to the
interior flow and the influence of all other sheets. We average over the

sheet length of sheet i :

R
X.
- - 1 .}
u; =ulxg,y;) =g f . u(x,y;) dx
x5
_ N
&
- 1 ~
where, Up(x;) = § J‘L Uy(x) dx & U, (x,) (3.83)
X.
1

1
and' Dij - B [(Aij+h) H(Aij+h) - 2Aij H(Aij) + (Aij—h) H(Aij_h)]
(3.84)
Aij =X, - xj
Note, it can be easily shown that :
1-j4,.]/ for |4..] <h
D;4 = 1 ] (3.85)
0 for |Aij| 2 h
The above expression for Gi can be developed further to give :
- 1 N
u, = UA(xi) + 3y + L Yj Dij (3.86)
j=1
Yj > ¥

yi/z is the self induced velocity of sheet i, and the summation on the
right hand side of the above equation includes only those sheets that are
further away from the wall than sheet i (higher than sheet i). Sheets closer

to the wall than sheet i (lower than it) have no influence on it. It is also
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noted that the velocity UA(xi) is found by interpolation or extrapolation
from the computed wall velocities using the nearest two wall points.
The v-velocity component of a vortex sheet is computed by integrating the

continuity equation, (3.69). Let us define I(x) as follows :

Y;
I(x) = Io u(x,y) dy (3.87)
Then, we have :
vix,y;) = - 3%-(,;51 (3.88)
R
X,
- - 1 1
or, Vi - V(xilyi) - E .[ LV(X:Yi) dx (3-89)
X.
1
i.e. v, = - 113 [ 1) - 1) ] (3.90)

At this point we make another approximation, namely we use I(x) instead of

I(x) in this last equation. I(x) is the mean of I(x) over x+h/2, i.e.:

_ L x+h2 Yi _
I(x) = ¢ J I(x') dx' = [ u(x,y) dy (3.91)
x-h/2 0
_ N
where, u(x,y) = UA(x) +j£1Yj [1-H(y—yj)] ij (3.22)
1 - |x-x.|/h for |x-x.| < h
D . = ] J (3.93)
J o for |x-xj| >h
Then, 7(x) is found to be :
— N .
I(x) = y;U,(x) +j£1Yj ij mln(yi,yj) (3.94)
and, Gi is :
- 1. = -
Vi =-F [ I(xi+h/2) - I(xi-h/Z) ] (3.95)
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Equations (3.86) and (3.95) give the velocity induced at the center of
each vortex sheet i, due to the interior flow and all other sheets j.
At this point we can update the sheet locations using the advection step,

eq. (3.68). Given the locations x? at time t=nAt, we find the intermediate

N R B
locations, due to advection alone,xp 1

i adv’ at time t=(n+l)At. We use Euler’s
’

method for this time integration :

n+l n =N

xi,adv = X + Ot u; (3.96)
n+l n -n

yi,adv - y; + At vy (3.97)
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3.2.2.2 sheet Diffusion

To update the vorticity in the wall region with respect to the diffusion
equation (3.70), we use, as with the blobs, a random walk algorithm. We allow
each sheet to undergo a jump in the y-direction, either positive or negative,
which is selected from a Gaussian distribution with zero mean and standard
deviation o = (2At/Re)1/2. Note that diffusion takes place only in the
direction normal to the wall. Without the diffusion term, the sheets would
never leave the boundary, since u=(0,0) at the wall, by construction. The
random walk diffuses the sheets away from the wall to join other sheets in
the wall region. The position of sheet i 1is updated by the random walk,

starting with the intermediate location found above due to advection alone,

as follows :
n+1 n+l
n+l n+l
Yi = Yiaaw *tMN (3.99)

where n; is the random jump.
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3.2.3 Matching the Interior and Wall Region Solutions :

As mentioned above, one element of the matching between the Interior flow
and the wall flow solutions is the use of the wall velocity UA' coﬁputed from
the interior flow alone, as the driving outer flow velocity for the boundary
layer computations within the sheet region. This allows the interior flow to
determine the production of vorticity within the boundary layer.

Another mechanism for matching between the two flow regions is the
transfer of vorticity from the wall region to the interior by allowing those
vortex sheets located at a distance greater than As from the wall to become
vortex blobs. When a vortex element is converted from sheet to blob, or vice
versa, its total circulation qn is conserved. A blob is converted to a sheet
if it moves closer than As to a wall. By selecting As to be 2-3 times the
standard deviation of the random jumps implemented in the diffusion algorithm
it is unlikely that a blob will move outside the domain due to a random jump
in one time step. If, due to very high convective blob velocities, this does
happen, then the offending blob is deleted.

A menacing part of the diffusion of sheets is that they may diffuse down
into the wall, since the random jumps used to simulate diffusion can be
negative. Following previous practice, the new locations of these sheets are
found by appropriate reflection back into the domain (see Ghoniem et. al.,
1982).

The determination of the blob core radius is done also to have proper
matching between the interior and wall regions. The rational here is to have
the same wall velocity induced by a vortex element at distance AS from the
wall whether that element is a sheet or a blob. This ensures a smooth
transition from sheet to blob or vice versa, in terms of the wall velocities.

Given that As is, by construction, much smaller than a blob core radius, §,
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and, given the choice of blob core function f8 used here, this smoothness

condition requires that 8§ and h be related by :
8§ = h/n (3.100)

To demonstrate this assertion, consider a solitary sheet in the wall
region, in an otherwise stagnant fluid, of circulation I = hr > 0. The

velocity induced by this sheet at the wall, irrespective of its wall

coordinate y, is ug = u , where:
+ -
Sumu -u = - rh/h

since ut = 0 (stagnant fluid in the interior, solitary sheet), then :

Uy =u = Ih/h

Next, consider a solitary blob with the same circulation qn > 0, along with
its image with respect to the wall. Let the blob lie at y-As from the wall.
Its image is then at the same distance on the other side of the wall. Since
ruAs < 8§, for both the blob and its image, then the tangential velocity at
the wall due to both of them is given by (eq. 3.39) :

u, = 2 rh/28n = qw/én

substituting é=h/n, we get :

Hence, the velocity induced on the wall due to a blob or sheet at 8, is the
same, and the transition from sheet to blob or vice versa causes no sudden
velocity changes at the wall.

Finally, we may summarize the process of generation and propagation of

vorticity implemented in this work, as follows :

75



1)
2)

3)

4)

Find the total velocity for each blob, egs. (3.52,3.53).

Find U, at the walls, and use it to find the total sheet Qelocity,
egs. (3.86,3.95).

Create vorticity to satisfy the no-slip boundary condition at the
walls.

Update the sheet locations by egs. (3.96-3.99), and the blob lccations
by egs. (3.55,3.61).
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3.3 Combustion Solution:

This section concerns the numerical description of the motion of the
flame interface, as governed by eq. (2.29) above. The motion of the flame can
be split into two components : advection and burning. Advection is simply the
motion of the flame interface as a passive material surface with the local
flow velocity. Burning, on the other hand, is the motion of the flame into
the reactants with respect to an observer moving with the reactants
immediately ahead of the flame. The reactants burn and are converted into
products. As a result of the exothermic combustion reaction, heat is
generated at the flame. The products of combustion are at a higher
temperature, and lower density, than the reactants; i.e. the fuel and air
mixture expands upon burning. In our thin flame model, this expansion of the
fluid crossing the flame zone occurs only at the flame interface. The flame
expansion field (eq. 2.34 above) is discretized here into a finite number of
2D point sources, which are distributed along the flame interface. The
implementation of these sources is also described below.

3.3.1 Resolution and Propagation of the Flame Interface:

Various methods exist for the numerical description of the shape and
evolution of interfaces between fluids. The algorithm implemented in this
work is based primarily on the SLIC (Simple Line Interface Calculation)
method introduced by Noh & Woodward (1976), and later implemented by Chorin
(1980) for flame propagation and advection with increased spatial resolution.
This method uses a finite set of horizontal and vertical straight line
segments on a 2D rectangular grid to construct the flame interface, and an
alternating direction scheme to advect the interface. SLIC has been used
successfully in earlier works for tracking flame surfaces, see for example
Barr & Ashurst (1984), Ghoniem et. al. (1982), Knio (1984), and Majda &

Sethian (1985).
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The information provided by SLIC includes the amount of products, or
reactants, in each cell of the computational grid, and, for cells containing
the flame interface, it includes some indication of the éhape of the
interface, be it horizontal, vertical, corner, or a neck. SLIC does not
provide the local slope or curvature of the flame interface. The slope of the
interface is useful for visualization purposes, while the curvature is needed
to provide a means for varying the burning speed and/or computing the flame
stretch along the flame interface. After Markstein (1964), the variation of

the laminar burning speed, Sy with curvature, is taken as :

S, = Sn(l—A/RF) (3.101)

where S, is the laminar burning speed of a planar flame, A-A(TU,P) is the
Markstein length (Markstein, 1964), and RF is the local radius of curvature
of the flame. The VOF (Volume of Fluid) method introduced by Hirt & Nichols
(1981) is used in part here to find the slope of the flame interface in a
cell based on the information provided by SLIC for that cell and its closest
neighbors. These slopes are used to construct a smoother flame interface than
that provided by SLIC, which is then used to find the local radius of
curvature of the flame (see Knio, 1984).

Our implementation of SLIC and VOF for the determination and propagation
of the flame interface follows closely that of Knio (1984). Consequently, the
discussion below will skim over many details stressing only the added
modifications and/or deviations from earlier works as well as the general
algorithm structure.

We begin by discretizing the domain using a uniform grid, with cell size
given by Ax = ay = hf. The cells are numbered by rows i=1,2,...N and columns

j=1,2...M. The center of cell (i,j) is at (xi,yj). Each cell is assigned a

fractional index fij which indicates the amount of products in the cell.
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Hence, fij-l for a cell full of products, fij'o for a cell full of reactants,
and °<fij<1 for "fractional" «cells, i.e. cells that contain some reactants
and some products. These fractional cells contain the flame interface. Other
index arrays are used to describe the form of the SLIC interface within a
cell.

The propagation of the flame interface is done using two fractional steps
based on eq. (2.29). Considering a set of points {xf} that identify the flame

interface, the following expression, which is based on eq. (2.28), is clearly

equivalent to (2.29), namely :

dxg(t)

—3— - “f(xf) - “u(xf) + Su(xf)nf(xf) (3.102)
where, we recall, uf(xf) is the local velocity of the flame interface, uu(xf)
is the fluid velocity on the reactants side of the flame interface, Su(xf) is
the local burning speed of the flame, and nf(xf) is the local unit normal to
the flame interface pointing towards the reactants, all defined at x-xf(t).

Using eq. (3.102), we write the fractional step for burning as :

dxg(t)
'ESE" = Su(xf)nf(xf) (3.103)

While the advection step is given by :

dXg(t)
35— = Yu(Xg) (3.104)
The propagation of the flame by burning, normal to itself as indicated in
eq. (3.103), can be implemented using the classical Huyghens principle for
wave propagation (see Thompson, 1984). Consider a flame front that forms the
boundary 301 between a region of products Dy and a region of reactants
comprising the rest of the computational domain D. Given flame propagation by

burning only, the motion of anl at every point is given by the local 5, along
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the outward normal ne. Using the construction of Huyghens, successive
flamefronts are drawn as the envelopes of the circular flamelets of radii
SuAt, and centers along aol. Consequently, (see Chorin, 1980) if we let £

denote the concentration field given by the set of cell fractions fi for

jl
all (i,j), at time t=nAt, and use an advection operator A, where Ae(fn) is
the new value of £ obtained from f" by advection with a uniform velocity
field of magnitude Su and angle © with the x-axis (neglecting the variation

of 5, for now), then the new fij due to the burning step is given by :

n+l n

0<0<2n ij

This statement is equivalent to Huyghens principle. Further, as shown by
Chorin (1980), propagation in eight normal directions is sufficient to yield
reasonably accurate results, in the 2D case. The maximum is thus taken over a
discrete set of eight cases, in additionA to the case of no motion, as

follows:

1 ~ n n
(£ 2 B(EM)) = max [ AL(fL) ) (3.106)
ij 'brn 137 1a0-8 9'"ij

where, 6=kn/4, Ao(fn)=fn, and B refers to the burning operator. The stability
condition for this burning algorithm is expressed as a courant condition

(Chorin, 1980), namely :
ot < Ax/max(Su) (3.107)

Given the variation of Su along the flamz interface, the above process of
maximization of fractions, eq. (3.106), 1is still feasible, albeit involving
extensive bookkeeping. See Knio (1984) for details.

The flame advection algorithm used by Chorin (1980) and Knio (1984)

involves moving the flame SLIC interface by the velocity computed on the
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midpoint of the cell wall on the reactants side of the interface. This
velocity is used to propagate the flame, along the directions of the
coordinate axes, in an alternating direction scheme. Alternaﬁe time steps
involve propagation in the X-Y then Y-X directions. This scheme has been
adopted here with a modification that involves splitting the velocity field
into two components and propagating the Elame with each in a fractional step

approach. The two velocity components are given by :
u= g+ v (3.108)

where g is the combined velocity due to the vorticity field and the potential
flow boundary conditions of zero flow into solid walls and a specified inlet
and exit flow rates for the computational domain. v is the flow field due to
the flame expansion sources and their corresponding potential boundary
conditions as for w. The estimation of the interface velocity in the g
propagation step involves interpolation between the x4 velocities computed at
the cell wall midpoints. This interpolation, which is admissible because y is
continuous at the flame interface, provides better accuracy than the one
sided estimation of interface velocity. This latter extrapolation is
implemented in the estimation of the w-velocity at the flame interface. Given
the large amplitudes of velocity involved in the u field, this improved
accuracy is desirable.
Therefore, the advection process proceeds as follows :

1) time step n, advect by the v field in X then in Y direction.

2) time step n, advect by the g field in X then in Y direction.

3) time step n+l, advect by the v field in Y then in X direction.

4) time step n+l, advect by the x field in Y then in X direction.

5) time step n+2, repeat step 1), etc ...
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The stability condition for the advection step is again a courant type

condition :
At < Ax/max|u| (3.109)

3.3.2 Implementation of the Expansion Sources at the Flame:

We recall the above discussion (section 3.B) on the potential flow
solution, which made use of the discretization of the flame expansion field
into source blobs based on the demonstration in Appendix C. Our purpose here
is to describe the implementation of these sources, in terms of the
combustion solution.

In refering to Appendix C, we will use the subscript k instead of j,
since j is already used in the (i,j) nomenclature of the combustion cells.

We begin by describing the evaluation of the source strengths qy, -

If we identify the elemental areas, Ay (A, in Appendix C), with the

]
computational cells (i,j) used to propagate the flame, then we can show :

2
9 = 8E;5 &x° (o /p1) / B¢ (3.114)

The demonstration of this expression is as follows. Consider cell k(i,j).
Consider that, at time t=nAt, it has a volume Vﬁ ' of reactants and Vb of

products (per unit length in the 3rd

dimension). Let AVu be the volume of

fluid swept by the flame interface, in this cell, by burning into the

reactants in one time step. Then the new volumes of reactants and products,
i i i M = - 'B

before taking expansion into account, are: Vi =Vy Avu and Vi =V, +av,,

2

respectively. Note also that AVu = Afiij .
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However, by mass conservation, we must have that for a volume avu of

reactants that has been burnt, the corresponding volume of created products,

Avb, is given by :
AVb = AVu pu/pb (3.115)

The new volume of products due to burning in the crll should be, therefore,
given by V, "=V, +4V, . Hence, the amount of volume that needs to be added by

the expansion field in cell k(i,j), in the time step At, is given by :
5 * vt
=0V - oV = (pu/pb-l) av, (3.116)
And, since, by definition,
q = 4V, /8t (3.117)

we arrive at (3.114)

In fact, in order to refine the spatial discretization of the expansion
field, the source strength q is actually distributed among 1 to 4 sources
along the flamelet straight 1line segment (given by VOF) depending on the
length of this segment. Thus a cell in which burning occurs may ccntain from
1 to 4 sources whose cumulative strength corresponds to the amount of burning
in the cell at that time step.

Another point that was left unanswered in Appendix C is the determination
of the maximum velocity (Vh) assigned to an expansion source at the flame.

This is discussed below.
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Let us look at the velocities immediately before and after a small

section of the flame of length ds, with respect to an observer moving with

the flame at that location. The reactants are seen to move towards the flame
at speed Su' while the products move away at Sb. From mass conservation

across the flame, we have
Sy, = (pu/ob) S, (3.118)

Then, from a volume balance across the flame, we get that the rate of

expansion (volume generation), per unit length along the flame, is given by :
Sp - Su = (pu/pb-l) Su (3.119)

We assume that this expansion is isotropic. Then, it follows that half of
it is directed ahead of the flame and half behind it. Hence, the velocity due

to the expansion field immediately before or after the flame is given by :
Vd = (1/2)(pu/ob—1)Su (3.120)

Consequently, we set the velocity in the core of the source blobs to be
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3.4 Inlet and Exit Boundary Conditions:

As explained above, the vortex method solution, as applied to the problem
at hand, requires the specification of the inlet and exit flowlrates (at —=
and += respectively, in the physical plane). These flow rates correspond to
the relevant Source and Sink strengths in the { plane. In an actual
combustor, however, the inlet and exit flow rates are not independently
specified variables, rather, they depend on the flow conditions upstream and
downstream. If the inlet flow is supplied by some reservoir, then the
stagnation pressure of the reservoir, the shape and properties of the inlet
section, and the time dependent flow configuration in the combustor, all
contribute to the specification of the inlet flow rate at any instant of
time. The same can be said for the exit flow rate.

Including the upstream and downstream flow configurations in the
computational domain increases the complexity and cost of the numerical
solution prohibitively. An easier option is to use some simplified flow model
for the inlet and exit flow problems. This model has to include the relevant
physical processes that determine the inlet and exit flow rates, and yet be
simple enough so as not to increase the computational burden considerably.

As a first step towards such a model, we have to choose the flow geometry
upstream and downstream. Experimental combustors have used a variety of
choices. Typical wupstream configurations use a compressor followed by a
plenum chamber with flow straighteners and screens to obtain a roughly
uniform flow with low turbulence intensity. The flow is then directed into
the combustion section through a smooth contraction. The downstream
confiquration may or may not have a constriction (wide or narrow) that
defines the end of the combustion chamber. This is followed by a long exhaust
pipe leading to the atmosphere. A significant element of the flow dynamics in

a long pipe, whether upstream or downstream, is that the time scales
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associated with the streamwise propagatior. and reflection of pressure waves
are comparable to the convective time scales in the combustor. Hence, the
pipe can enhance the flow dynamics in the combustor by acting as a forced
resonator.

with all the above in mind, we have chosen the inlet and exit
configurations as follows. At the inlet, we assume the flow to be coming from
an infinite reservoir at a fixed Po' while at the exit we consider that we
have a long 1-D channel exiting to the atmosphere, see Fig. 3.2. Each of
these will be discussed in more detail below.

3.4.1 Inlet Boundary Condition

The essential requirement from the upstream boundary condition is to
provide a flow rate into the channel at xmin (see Fig. 3.1) which is
dependent on the flow picture inside the computational domain at every time
step. Hence, for example, if, given a certain inlet flow rate, there is a
severe pressure surge in the combustor, the inlet flow should slow down and
then reverse, causing fluid to move back into the upstream reservoir. The
configuration shown in Fig. 3.2, is sufficient for this purpose.

More precisely, our implementation of this boundary condition at every

time step involves solving one of two different incompressible flow problems,

depending on the sign of the inlet flow rate Q7 ( = Q,

in at the previous time

step).
> 0, i.e. for flow from the reservoir into the combustor, we
solve the simple inviscid flow problem depicted in Fig. 3.3 for the new flow
rate Q?n into the channel. The solution utilizes the unsteady Bernoulli
integral written between points "a" and "b" shown in Fig. 3.3. The resulting
equation, written in non-dimensional form, is as follows :

P

a"iach bvtzag

$
st v GEaT 7t GEb (3.121)

g
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The non-dimensionalization uses the same reference quantities U, Lr' and Prr
as used in the development of the cavity flow equations. Namely, U is a
nominal inlet velocity, Lt is the cavity depth, and or is the density of the
premixed reactants (which is the density of the incompressible £fluid
considered here). The reference pressure is chosen to be | prUZ. Clearly,
the non-dimensional density used above is given by : p=l. It is kept as p for
clarity.

The pressure at "a", which is at a "large" distance (=50H) from the

channel entry, is assumed to be the fixed stagnation pressure, P_ = Py while

a

the velocity, u

o is assumed negligible, hence vV, = |“a| = 0. The pressure at

"b", Pb' is the pressure computed from the combustor flow field at xmin (Fig.
3.1). This is done by integrating the streamwise pressure gradient, 3p/3x,
along the channel centerline from xmax to xmin. The pressure at xmax is known
from the exit boundary condition solution, while 9p/3x is computed at
discrete points along the centerline, from the prevailing flowfield. As
discussed above, the flowfield is computed from the vortices and their
images, the flame sources and their images, and the specified inlet flow rate
into the channel. Hence, in particular, Py depends on the channel inlet flow
rate. u, = (v,.,0) is the velocity at point "b", it is directly related to the
inlet flow rate as mentioned below, and it is an wunknown. ¢ is the flow
potential at a point, such that : wu(x,t) = V¢(x,t). The determination of ¢
involves the solution of the Laplace equation v2¢=0 for the flow geometry in
Fig. 3.3. This is easily done using Schwartz-Christoffel mapping to the upper
half transform plane. If this mapping is designed such that the point (+«,0)
in the physical (w) plane maps to (0,0) in the transform () plane, and point
"b" at w=0+i0 maps to {=0+i (i=(—1)1/2), then the above equation can be

simplified to the following ordinary differential equation:
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2.8 g% . - % A%q (3.122)

where, q = channel inlet flow rate

Vp =Ad, A= % Im( (g‘%)wb] ¢ Wy = 0+i0, Im(x+iy)=y
In(|g, )

¢a ™ Bq' B -_———;———

Pb = Pb(Q)

This equation is solved for qn - Q?n using an implicit discretization as
follows :

Pn

P n n-1
;9 +B Ls_gg_..l - ;9 + % a%(q")? (3.123)

where the only unknown is qn, since Pg - Pg(qn). Further development gives :

£(g") = (M2 - 26" + c =0 (3.124)

where, b = B/(AzAt)
c = c(q") = 2bg™? - Z(Po-Pg)/(Azp) (3.125)

The solution of this implicit equation in qn is found using a simple

Newton iteration scheme, with qn-1 providing an initial quess at every time

step. The solution gives qn = Q?n. If this is found to have a negative value
then the solution is repeated using the reverse flow formulation as discussed

below.

For the case of reverse flow, i.e. when Q?;1< 0, we consider the upstream

flow as a jet exiting into an infinite reservoir. We enforce the presence of
the reservoir by setting the static pressure, Pb' in the exiting jet to be

equal to Po. Hence, the correct reverse flow rate, qn, is that which gives Pb
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= Ponin = Po in the computational domain. Recall that Py is computed by
integrating 9p/3x from xmax to xmin, and is a function of the vortical and
expansion fields as well as the flow rate at the channel inlet, qn. The
reverse flow prowlem is solved for qn using Newton’s iteration on the

equation :
£(g") = Bp(q") - By =0 (3.126)

Again, here, if the solution qn = Q?n is found to have a positive value,
then the flow has -eversed and gone back into the cavity, the solution is

repeated using the above positive Q?n formulation.

In each of the above two cases, forward or reverse flow, we required the
computation of Py from the flow inside the computational domain, between xmin
and xmax, and for a given inlet flow rate q. As g is changed for each
iteration of the Newton method, the vortical and expansion fields are frozen
at their given state at the present time step. Hence, for each iteration,
using qn and the frozen vortical and expansion fields, Py is found by
integrating the x-momentum equation from xmax to xmin along the channel
center line. The flow velocities at points along this line are computed
cheaply for each iteration since the only changing element of the flow field

2u when the path of

is qn. Special care is taken in computing %Yu and ¢
integration crosses by or across the flame front, since the velocity field is
discontinuous along the flame. In the vicinity of the flame interface one
sided derivatives are computed so as not to cross the discontinuity. Further,
the relevant Reynolds number is used in computing 3p/dx from the x-momentum

equation, depending on whether the point considered is in the reactants or

the products. The pressure jump across the flame discontinuity is also taken
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into account in the computation of the pressure integral. The integration

from xmax to xmin gives :

n Xmax ,op
Pin = Pb = Pex ~ fymin (3%’ 9 (3.127)

where the computation of 3p/9x uses proper non-dimensionalization. Pox is the
pressure at the domain exit, at xmax, and it is assumed to be known, given
the downstream boundary condition, as discussed below.

3.4.2 Exit Boundary Condition

The exit boundary condition problem involves the computation of the
combustor exit pressure, pex(t), at xmax.

One option, which we make use of extensively in studying the combustor
flowfield (Ch. 5) is to specify a given pex(t) as a forced pressure at the
combustor exit. In reporting numerical results based on this model, which we

call the uncoupled model, we will specify to be either constant at P,

pex tm

or a sinusoidal function of time of specified amplitude and frequency.
On the other hand, as mentioned above, it is instructive to consider a

simplified downstream £l el for the computation of pex(t). Specifically,
we shall use an inviscid compressible TB”"Eﬁaﬁne%-slqu\ggdel to connect the

cavity exit, xmax, to the atmosphere. In the fol1owing:\;;‘;;EEF\EB*this\

downstream channel as the "1D oscillatcr". The exit flow rate from the

~—

\\

combustor provides a time varying inlet flow velocity to the oscillator. In
turn, the pressure computed from the oscillator at its inlet provides the
requised pex(t) for the combustdr flow computation. This combined flow model
is referred to below as the "coupled" system.

In the following, we discuss the derivation and implementation of the 1D
oscillator solution. At the outset, we stress the simplicity of this flow
model. We assume that no combustion takes place in this channel, and we

neglect all viscous dissipation. We also restrict the dynamics to the
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streamwise direction (1D). The boundary conditions at the inlet and exit of

the oscillator, discussed below, are also very simple. The point of this

whole exercise is to couple the combustor flow with a system that can act as

a forced acoustic

resonator, and hence to illustrate a feasible coupling

mechanism in actual systems between the combustor and the piping leading to

and from it.

We begin by writing the dimensional 1D inviscid gas dynamics equations

for a perfect gas,

Appendix A. Note that "™"

assuming negligible conduction heat transfer, from

denotes a dimensional quantity. The conservation

equations, and state equation, are as follows :

~

Mass @ 92

ot

~

Momentum : 39

~

ot

Energy : T
ot

State : P = pRT

t
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where, R-cp—cv is the ideal

Egs. (3.128-131) can be

~

PR I (3.128)
X
% ég -0 (3.129)
p ox
:l_ (R, udyap (3.130)
at 3
pCp X
(3.131)

gas constant.

manipulated to give the following system of three

equations in 3 unknowns, (p,u,T) :

~

+ 0 WL (3.132)
X
B, 4, (v-1)c, .o (3.133)
ax ox

91



~ ~2 ~ ~ ~
8T , ¢ 3w, 3T (3.134)
3t yc, dx ax

~r~

where y=cp/cv, and c2-yRT. c is the speed of sound in the fluid.

Next, we non-dimensionalize these equations using the following reference
quantities, velocity, U, length, L, density p s temperature, T, , pressure,

~ ~ A~ ~ ~

pr'erTr' and time, tr-L/U. Where, U, » Tr are chosen as typical values of

rl
the velocity, density and temperature at the combustor exit, i.e. at the
inlet to the 1D oscillator; and L is the length of the oscillator. We arrive

at the following set of 3 dimensionless equations written in vector form :
FErAG - 0 (3.135)

where, w-[p,u,T]T is the unknown column vector, p=pT, and A is a coefficient

matrix given by:

u P 0
2 2
A= T/pro u l/yﬂo (3.136)
0 (v=-1)T u

where, pmp/n, uma/l, T/, tei/i_, xew/L, W i/ e/ (yi0 )2, and

T/M 2. ;/6 = c. Note, c is the dimensionless speed of sound in the fluid.
Equation (3.135) is solved numerically wusing the SCM (Split Coefficient

Method). This method combines both finite difference techniques and the

method of characteristics. The implementation used here is based on the

exposition of Anderson et. al. (1984).
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The method uses a uniform grid between x=0 and 1, where x=0 is at the
combustor exit, or the oscillator inlet (xmax in combustor coordinates), and
x=1 is the oscillator exit to the atmosphere. Eq. (3.135) is discretized in
time and space using finite differences. For convenience we use a first order
discretization in time and space.

The discretization of the time derivative is straightforward :
aw, ~ 1 _n
(57) = (v - Wi/t (3.137)

where 4t is the time step, w?-w(xi,tn), and t"=nat.

The evaluation of the space derivative uses a properly selected splitting
of the coefficient matrix. For each of the three components of w, at a given
point in space (xi-iAx, Ax=1/(N-1), i=1,2,...N) and a given instant in time,
t"=nAt, the choice of discretization for the x-derivative depends on the
direction of the relevant characteristic. The choices are either upwind or
downwind differencing.

Therefore, the method proceeds by splitting the coefficient matrix

é(xi,tn) into two matrices, gf and A", such that :

Al =A" + K (3.138)
ow + oW .+ - oW, -
(E) + A (si) +A (5’-() =0 (3.139)

where (auyax)+ is discretized using backward differences (upwind), i.e.

Y R L
oW, + i i-1 (3.140)

(3% Bx

while (3w/3x)  is discretized using forward differences (downwind):

n
- W.

ow,— = i+l i
(ﬁ) = —T— (3.141)
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The slopes of the characteristics at every point in x-t space determine

the splitting of A. These slopes are in turn given by the eigenvalues of A,

namely :

Furthermore, for each eigenvalue Xj’ a left eigenvector Lj exists, and is

found from :

T
L: (A-XI)=0 3.143
j (B2 (3.143)
where I = diag(1,1,1) is the identity matrix.
Using eq. (3.143), the Lj's are found to be :

= [ (1-v)c/vp, 0, c/¥T ]

- C/YP, 1, c/vT ) (3.144)

wr.-a Nr:-] !-F'-!

= [ -c/yp, 1, —C/¥T ]
After Anderson et. al. (1984), the splitting of A into gf and A” uses :
NS U o A=TA T (3.145)

where E’l is a 3x3 matrix given by :

Hr‘l-i

(3.146)

|
-
]
Nr:-:l

urh

andit'+ (A) is a diagonal matrix that contains the positive (negative)

eigenvalues, such that Af + A =A = diag(X;,A5,Ay). Thus, if for example,
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0 <u<c, then £f¥diag(u,u+c,0) and A =diag(0,0,u-c). While, if -c < u < 0,
then 5f-diag(0,u+c,0) and_g_-diag(u,o,u—c).

Given At and A” at each (xi,tn), eq. (3.139) is solved for w?+1 in the

interior (i=2,3,... N-1), using egs. (3.137,3.140,3.141), to give :

WL LW 2T W) - ) - W (3.147)

1 1

The boundary conditions at xlso and xN-l are dictated by the slopes of
the characteristics at these points, at time ", Thus, for example, if
0« u? < ¢, then, at time tn, the characteristics corresponding to Al-u and
xz-u+c have positive slopes (xl,xz) in x-t space, and are thus pointing from

outside the domain towards (xl,tn+l),

while the third characteristic, A3-u—c,
has a negative slope (x3) and points from inside the domain towards
(xl,tn+1). Consequently, two of the gas dynamic variables (p,u,T)n have to be

+1), while the third has to be found from the

specified at (x;,t"
compatibility condition for the x3 characteristic. A similar reasoning is
used for the case of u < 0 at (xl,tn), and for the two cases of positive or
negative Uy at (xN,tn).

The compatibility condition for each of the three characteristics, Xj’ is
the relationship between the gas dynamic variables that has to be satisfied
along the characteristic. The condition for each xj is found using the
corresponding vector Lj introduged above, from the following expression (see

Anderson, 1984) :

T oW

L M L (3.148)

5 (38 + X %
Note that the result of the 1left hand side is a scalar expression. The

resulting compatibility conditions are given by :

aln(pT/p") Aln(pT/p") _ -
T +u % 0 for Al u (3.149)
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9ln(pT) aln(pT) |, y (3u du, _ -

5t + (u+c) T + 2 [at + (u+c) ax] 0 for Xz u+c (3.150)
Aln(pT) dln(oT) Y ;9u Jdu

3 ¢+ (u-c) " " C [5E + (u-c) 3;] = 0 for x3 = u-c (3.151)

We summarize the specification of the boundary conditions at every time

step as follows. We implicitly assume that Iuil < c, then :

iful >0  specify ul*! ana TO*! (3.152)

- at x,=0
1 n n+l

if up < 0 specify v (3.153)

if ) > 0 specify ph't (3.154)
- at xN=1

if Wl <0 specify pit! and TR* (3.155)

where, p=pT.
n+l

The velocity Uy in (3.152,3.153) is the known space averaged flow speed

at the combustor exit at tn, while the pressure at the oscillator exit, p§+1
in (3.154,3.155), is specified to be atmospheric. The specification of the
temperature at the oscillator inlet and exit, T?+1 and T§+l, in (3.152) and
(3.155), is not straightforward. In the actual systen, Ty is a time varying
quantity depending on the amount of products versus unburnt reactants leaving
the combustor at a given time. On the other hand, the combustion does not
stop at the combustor exit. It continues as the mixture is convected
downstream. Obviously, our simple non-reacting 1D oscillator model cannot
account for this extra burning and the associated heat release. We have
chosen to use an inlet temperature Ty that assumes the fluid at that location

to be at the products’ temperature, Ty which is a fixed quantity, hence T, =

Tp- Again, while this is clearly not the actual situation, it suffices for
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the present purpose of constructing a simple 1D oscillator to examine the
general features of the combustor-system coupling. Further, given the low
Mach number flow considered in this work, the temperature variations along
the 1D oscillator are expected to be relatively small. Consequently, the exit
temperature, Ty, is specified to be the products’ temperature, Ty, as well.
The flow reversal at the exit (uN < 0, in 3.155), if it occurs, is expected
to be intermittent, occuring only during a fraction of the flow oscillation
cycle. It is therefore expected to be short lived, since the period of the
flow oscillation is merely a fraction of a second (see for example Vaneveld
et. al., 1982). Hence, it seems reasonable to assume that the flow rushing
into the pipe at X from the atmosphere, consists of hot products, still at
Tb.

Finally, the initial conditions used for the gas dynamic variables

(p,u,T) are given by: P=Ppr u=l, Tth.
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3.5 Overall Solution Algorithm:

In the following we present an overview of the algorithm used in the
implementation of the numerical solution described above.

We describe the sequence of tasks that are executed by the code at each
time step. The previous time step is tn—l' while the present one is tn' We
use {Qn_l} as the set of vortices in the computational domain at the previous
time step. Similarly for the sources ([Sn_l}). We use VOF as an abbreviation
for the "Volume of Fluid" method, discussed in the description of the
combustion solution above. Other symbols follow easily, or are explained
below.

The algorithm, at each time step, is as follows :

1) Begin a new time step, t =not.
2) Get the new exit pressure, Pex_Patm' from the downstream boundary
condition.

3) Get the new inlet flow rate, Q.

in’ and inlet pressure P from the upstream

boundary condition, using the cavity flow field : ({2"71},{

"9

4) Find Umax, from the flow field : ({" '}, (s"™%},0; ), on the combustion
grid. Use Umax to find the suitable (stable) combustion time ctep bte,
and hence to set the number of combustion time steps per vorticity time
step J=0t/Ot..

5) Do the combustion calculation in J time steps Atf.

5.a) For j=1 to J, where : t. = tn_1 + 3 Atf.

]
5.b) Advect the products by the dilatation flow field : {SJ_l}.
5.c) Advect the products by the flow field : ((&"},Q; )

5.d) Using VOF, find the burning speed in every cell, Su(i,j).
5.d) Propagate the flame by burning into the reactants, find Afij'

5.e) Find the new flame interface by VOF.
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5.f) Generate the new sources [Sj} from Afij in every cell.
5.g9) goto (5.a).
6) Remember two source fields, the one from the previous time step {Sn_l},
and the new one [Sn} from the last combustion time step (Sn}-{SJ].
7) Generate new vortex sheets at the domain walls, using the flow field :
({Qn'l},[sn_l},oin), and propagate them by advection and diffusion. These
}.

8) Update the locations of the vortices: [Qn_ll, by advection, using the flow

that become new blobs are set aside, refer to them as {Qnew
field : ((2"71},{s""!},Q, ), and then by diffusion. Deal with those that
enter sheet layers or leave the domain.

9) Form the new set of vortices {Qn} from those left after step (8) above,

and from {Q _ '} (step 7). The complete new flow field is given by :

new
({9"},(s“},oin). This is flow field for time t .
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Figure 3.1 - Nomenclature and geometry of dump combustor
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Figure 3.2 - Upstream and downstream flow configurations.
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Figure 3.3 - Inlet flow boundary condition.
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4. NON-REACT™NG FLOW

Let us now consider the non-reacting flow in a dump combustor. The study
of the underlying dynamics of this flow, given the exclusion of the effects
of heat release, is a good introduction to the more complex reacting case.

In the following discussion, we shall be concerned with the dynamics of
low Mach number, hence incompressible, fluid flow in geometries that exhibit
the essential features of a dump combustor flow configuration. These features
include: (1) the shear layer starting at the upstream edge of the dump and
separating the fast mainstream fluid from the slower recirculating fluid in
the dump; (2) the recirculation zone in the dump; and (3) the constraint
presented by the existence of the constriction at the downstream end of the
dump. Because of these diverse features of the flow field, the discussion
below will touch upon several flow configurations that stress one or more
such features in particular. These configurations include free shear layers,
forced and impinging shear layers, backward-facing step, cavity, and bluff-
body flows. Because of the assumed incompressibility of the working fluid, we
shall look at experimental results from both air and water flows.

For consistency in extrapolating the results to combustor flows, we are
interested in high Reynolds number dynamics. Namely, Re=UD/v > 1000, where D
is depth of the dump, U is the mainstream flow velocity at the upstream edge
of the dump, and v is the kinematic viscosity of the fluid. At these Reynolds
numbers, both the shear layer and the recirculation zone are highly unstable.
This instability results in the shedding of vortical structures at certain
characteristic frequencies. At low Reynolds numbers, Re=0(100), the
instability of the flow tends to become insignificant due to the high viscous
dissipation, which acts to diffuse vortical structures before they grow to

significant sizes. Our results exhibit a trend towards higher instability,
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hence more coherent vortical structures and significant flow oscillation, as
the Reynolds number is increased. For Re > 1000, we have found the flow field
to vary little with the Reynolds number, as is generally expected for high
Reynolds number flcws. The majority of our results use Re=2500, except in
cases where comparison with experimental data dictates otherwise.

The numerical study reported herein uses the 2D cavity-in-channel flow
configuration in Fig. 3.1, repeated here for convenience in Fig. 4.1. The
numerical solution is as described in Chapter 3, with ue=0 and Re fixed
everywhere (non-reacting flow). The choice of a 2D model obviously restricts
the range of phenomena that can be studied, by suppressing flow instability

rd . . .
dimension. This is not a severe

as well as vortex stretching in the 3
restriction, however, since (1) the significant dynamics of shear layer flows
correspond to the large scale, roughly 2D, flow structures (see Brown &
Roshko, 1974; Oster & Wygnanski, 1982) and (2) the large scale dynamics of
recirculation zones, as in the wake behind a bluff body, are expected to be
also sufficiently two dimensional. Both of these flows, on the other hand,
have no walls downstream of the separation point. In particular, the
recirculation zone behind a step or in a cavity does not display the same
degree of 2D organization as a bluff bcdy flow, since the flow structures
lose their coherence upon interaction with the walls downstream. On the other
hand, the significant low frequency, albeit broad peaked, oscillations in
these flows are still determined by the large scale 2D dynamics.

The upstream and downstream boundary conditions used in the computations
below do not include the pressure boundary conditions described in Chapter 3.
Instead, we choose a simple upstream boundary condition that involves
specifying the inlet wvelocity profile at xmin, and a downstream boundary
condition that involves the deletion of vortex elements beyond the end of the

computational domain, xe=xmax. The reason for using these simple boundary
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conditions is to ensure a less complicated flow field, especially since for
low Mach number non-reacting flow acoustic phenomena are generally
negligible.

In the following numerical study and accompanying discussion we shall
stress one aspect of the cavity geometry that is found to be most significant
in determining the flow dynamics. This is the cavity aspect ratio :
length/depth or L/D ratio. As we shall see kelow, short, or deep, cavities
exhibit dynamics that are quite different from those of long, or shallow,
cavities. In fact, we will try to demonstrate that there are two significant
mechanisms that determine the unsteady oscillations of cavity flows. These
are the instability of the shear layer and that of the recirculation zone. As
the cavity length is decreased to a fraction of the depth, the shear layer
instability, mcdulated by the impingement at the downstream cavity edge,
dominates over that of the recirculation zone. The structure of the
recirculation zone tends to a relatively quiescent eddy for small L/D. On the
other hand, as the length of the cavity is increased with respect to the
depth, the recirculation zone gains dominance until, by L/D > 4, the flow
resembles a step flow or a wake behind a bluff body, where the shedding
frequency of the recirculation zone is clearly dominant.

We begin below by a review of previous studies on shear layers, including
free, forced and impinging shear layers, as well as cavity, step, and bluff
body flows. The present numerical results and conclusions are then reported,

with a clear distinction between the short and long cavity cases.
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4.1 Background :
The Kelvin-Helmholtz instability leads to the formation of large scale

vortical structures in free shear layers at a wide range of frequencies. The
mode observed most frequently is the natural or most unstable frequency, fn'
which corresponds to a Strouhal number of St = fneo/Us ~ 0.033, where 90 is
the momentum thickness of the undisturbed layer and Us is the mean velocity
in the layer. In fact, the value of St depends on the velocity distribution
within the initial shear layer, thus some variation in the above value is
observed.

The behavior of a shear layer forced by controlled external excitation
applied by oscillating the free streams has been studied extensively, e.g.,
Ho and Huang (1982) and Ghoniem and Ng (1987). Results show that the shedding
frequency is the harmonic of the forcing frequency closest to the most
unstable frequency of the shear layer. Thus, as the forcing frequency, ff, is
decreased, the rollup frequency, cr the response frequency of the shear
layer, fr’ experiences jumps which correspond to the harmonics of the forcing
frequency, n ff, where n is an integer. These shed eddies are, however,
forced to pair in a collective manner to form eddies at the forcing
frequency.

A shear layer impinging on a downstream wedge experiences forcing due to
the upstream influence of the disturbance generated by the impingement of
flow structures on the wedge. This flow was studied experimentally by Hussain
and Zamman (1978), and Ziada and Rockwell (1982). The impinging shear layer
was found to exhibit jumps in its oscillation frequency with the variation of
impingement length, L, mainstream velocity, Uy and separating boundary layer
momentum thickness, eo. These jumps correspond to changes in the number of
waves, or eddies, which exist simultaneously within L. The eddy impingement

frequency, fi’ which is the same as the feedback frequency from the
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downstream edge, ff, is also the same as the rollup frequency, in all
frequency stages. The feedback frequency plays the role of a forcing
frequency.

The instability of cavity flows has been the subject of various studies.
Ghaddar (1985) suggests that it is a result of the interaction between the
shear layer Kelvin-Helmholtz instability and the channel flow Tollmien-
Schlichting (T-S) waves. Schedow & Wilson, (1985) and Schadow et. al. (1984),
working on a step flow with a downstream constriction, suggest that the
shedding frequency is determined by the acoustic properties of the apparatus.
On the other hand, cavity flow oscillations have been observed in essentially
incompressible flow, and when the upstream flow was free of significant T-S
oscillations, suggesting that other frequency selection mechanisms may exist;
see, for example, Rockwell and Knisely (1979), and Knisely and Rockwell
(1982).

Knisely and Rockwell (1982) found, for a planar ramp-cavity geometry with
L/D around 2.0, that L/A = n, where X is the wavelength of the dominant
oscillation. The dominant frequency was found to experience jumps with the
variation of L/eo, such that the dominant Strouhal number, St = f GO/UO, was
in the range: 0.011 - 0.018. Several lower amplitude oscillation frequencies,
which are fractions of the dominant frequency, were also observed depending
on the range of L/eb. It was concluded that at least some of the observed
short cavity dynamics can be explained by the impingement feedback process as
with the shear layer-wedge system.

Sarohia (1977) studied oscillations in an axisymmetric cavity flow, with
L/D < 1.1, where D is the depth of the cavity, and found L/X\ = n + 1/2. The
cavity depth, was found to affect the dynamics if it is less than 5 - 10 60,
where 80 is the boundary layer thickness at the upstream separation edge,

defined as the point where uy, = 0.99. The flow dynamics in these cavities,
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which identify as short cavities, are apparently dominated by the shear layer
instability, as manifested by the shedding of small scale eddies, on the
order of magnitude of the original shear layer thickness.

Ethembabaoglu (1973) conducted an investigation covering a relatively
wide range of rectanqular cavity lengths, L/D = 0.3 - 5.5, where D is the
depth of the cavity. This study was done at high Reynolds number, U D/ = 7 -
9 x 105. The dominant frequency was found to exhibit one jump, while
maintaining an overall decrease with increasing L/D. The value of fD/Uo was
in the range: 0.2 - 1.5, for the above range of L/D. Neary and Stephanoff
(1987) report a Strouhal number fD/Uo = 0.24 for flow over a rectangular
cavity with L/D = 3.5 and Re,, around 2500. In the above two studies the flow
was such that Q/&o € 3, thus these cavities were shallow with respect to the
separating boundary layer.

More recently, Gharib and Roshko (1987) and Gharib (1987) report an
experimental study of flow in a <chort axisymmetric cavity, where they
identify dynamics similar to those described by Rockwell and Knisely for
short cavities. They also describe the flow in a long axisymmetric cavity,
with L/D=1.4, as being similar to a wake flow. Specifically, they report flow
visualization results which indicate that, in this flow regime, the
axisymmetric cavity shear layer becomes highly asymmetric, and no longer
reattaches onto the downstream corner. The reattachement point is observed to
be below the downstream corner. Further, the cavity flow is observed to be
unstable on a large scale, comparable to the depth D. Generally, they suggest
that the flow field in this regime begins to show some resemblance to a 3-
dimensional bluff-body wake.

Other studies on long cavities include the numerical investigation of

Kailasanath et. al (1986) where a cavity with L/D = 11.6 was used, with fD/UO
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= 0.09, and that of Menon and Jou (1987), where fD/Uo = 0.1 with a cavity
where L/D = 10 approximately.

Evidently, cavity flows are complicated beyond impinging shear layer
flows by the existence of recirculating eddies inside the cavity. According
to the experimental information cited above, the frequency of oscillation
depends on L, D, Uo' and eo. For a cavity in a channel, the channel height,
H, may also be important. Further, for high Mach number flows, channel and
cavity acoustics may also contribute to the frequency selection mechanism.

While the flow structure and instability mechanism for short cavities
appear to be understood on the basis of the impinging shear layer mechanism,
the dynamics of fiow in longer cavities are not well understood despite the
above investigations. The flow dynamics in 1long cavities appear to be
inherently different from those in short cavities due to the interaction
between the separating shear layer and the cavity floor, 3D effects, as well
as the instability of the recirculation zone and the concomitant shedding of
large scale eddies. The relevance of recirculation 2zone dynamics in long
cavities is expected since, in the 1limit of large L/D, the cavity flow must
tend to a step flow configuration, where the recirculation bubble is known to
exhibit oscillation and large scale shedding of vortical structures.

Other flows whose dynamics are determined by a recirculation bubble have
also been studied extensively, and their results may be used to shed some
light on the dynamics of long cavities. Both step flows and bluff-body flows
fall within this category.

In step flows, the work of Tani et. al (1961), and Honji (1975), provided
some of the early indications about the transient structure of the
recirculation bubble in a non-reacting flow over a backward-facing step.
Later work on the same configuration, such as Driver et. al. (1987), Eaton

and Johnston (1981), Pitz and Daily (1981), and Schadow et. al. (1984), found
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fD/Uo to be in the range 0.04-0.16, i.e. roughly : fD/Uo = 0(0.1). The onset
of 3D instabilities masks the 2D recirculation =zone instability in these
flows, resulting in a frequency spectrum that is broad peaked around the
Strouhal number of 0.1.

Bluff body flows are found to exhibit similar dynamics. Works by Kiya and
Sasaki (1983,1985), Parker and Welsh (1983), and Cherry et. al (1984) found
the Strouhal number fD/Uo to be in the range 0.1-0.2, where D is here the
dimension of the bluff body normal to the undisturbed flow direction. Again,
£D/U, = 0(0.1).

These results, along with the above long cavity results, agree on an
order of magnitude of 0.1 for the Strouhal number fD/Uo. This suggests that
the recirculation bubble may be the common mechanism that defines the
dynamics of all these flows.

The role of the recirculation bubble in defining the dynamics of long and
short cavity flows is demonstrated in the following exposition of our
numerical results. We illustrate the accuracy of the model by comparisons
with experimental measurements, and we elaborate on the nature of the

dominant instability mechanism for a wide range of values of L/D (2.0-8.0).
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4.2 Results :

Results have been obtained for various values of L/D, L/eo, and H/D. The
purpose of our analysis is to define the mechanism of oscillation at
different values of these parameters and determine the corresponding
frequency in each case.

The following discussion deals with the dynamics of short and long
cavities separately. It is difficult to define a value for L/D at which one
can distinguish between a short and a 1long cavity. We will make this
distinction based on the dynamics of the separating shear layer. If the shear
layer impinges on the downstream edge before it reaches the bottom wall, we
call this case a short cavity. If the shear layer impinges on the bottom wall
first, even though this may happen intermittently, this is a long cavity. By
experimenting with various values of L/D, we found that L/D > 2, corresponds
to a long cavity. The long cavity case is more interesting for the dump
combustor analysis, given typical combustor geometries. On the other hand, we
start by analyzing results for the L/D = 2 case because it represents a more
natural extension of the impinging shear layer analysis.

Where dimensionless numerical parameters and results are reported, the
reference quantities used are as follows. The reference length is the cavity
depth D. The reference velocity is the upstream spatial-mean streamwise
velocity Uy where the product of Un and the channel height is the fixed

d

prescribed upstream inlet flow :ate per unit depth in the 3" dimension. The

reference time is D/Um, and the reference circulation is UmD.
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4.2.1 Short Cavity :

This is the case for which L/D < 2; the separating shear layer impinges
on the downstream edge before it reaches t!:: bottom wall. In the following,
we compare the numerical results on the mean velocity with experimental
measurements, and study the dynamics of the shear layer in terms of the
rollup of vortex eddies.

4.2.1.1 Mean Velocity Profiles :

The experimental measurements of the mean velocity profiles within a
rectangular cavity, reported by Sinha (1978) and Rockwell and Knisely (1979),
were used to check the accuracy of the numerical solution. Figure 4.2 shows a
comparison between the numerical results and the measurements of Sinha
(1978). The parameters used in his wind tunnel experiment are : L/D = 2.0,
SO/D = (.56, and UOD/v = 2140, where, as in Fiqg. 4.1, &o is the boundary
layer thickness at the upstream edge of the cavity, and U, is the main stream
velocity in the channel at that location. Relevant numerical parameters used
in our simulation are: hs/D = 0.25, rh/Uhp = 0.0208, AtUm/D = (0.1, and AS/D -
0.0207; where hS is the length of a vortex sheet, qn is its circulation, Um
is the spatial mean flow velocity in the unstream channel, and As is the
thickness of the sheet region. Vortex elements were deleted at xmax/D = 4.
The experimental value of the boundary layer thickness at the step was
achieved in the numerical simulations by varying the inlet channel length and
the boundary layer thickness at xmin. The computations were performed uncil a
stationary state was reached, and a sample of 1050 time steps was collected
to obtain the average velocity distributions.

Figure 4.2 shows good agreement between the computed profiles and the
experimental results, most notably within the shear layer. Two places where
disagreement is noticeable are the lower parts of profiles (2) and (3).

Within this region, the experimental profiles are less certain, which was
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noted by the author and is evident in profile (2) in the figure where two
values of the velocity were reported at the same location. The disagreement
in the boundary layer region of profile (6) is probably due to both three
dimensional effects and to the fact that, in the numerical simulation,
vorticity is deleted at xmax/D = 4.0 for computational efficiency.

The comparison between the computed mean velocity profiles and those
measured by Rockwell and Knisely (1979) is shown in Fig. 4.3. In this
experiment, water was used in the flow over a cavity in a channel without a
top wall. The experimental flow and geometry specifications are: eO/D -
0.014, LD = 2, UOD/v = 7571. Relevant numerical parameters are: hs/D = 0.25,
Ih/Uhp = 0.0208, AtUm/D = 0.1, As/D = 0.015 and xmax/D = 4. The figure
depicts the normaiized velocity uw/U

max
coordinate (y—y1/2)/9, at x/D = 0.92. Here Umax is the maximum velocity at

plotted against a normalized

the specified x-location, x and y are as defined in Fig. 4.1, Y1/2 is the
value of y at which u/Umax = 0.5, and 6 is the shear layer momentum thickness
at the specified x location, between u=0 and u=U - The comparison between
the two profiles shows excellent agreement in the shear layer. No
experimental data is provided in the recirculation zone.

The mean velocity profiles for a short cavity indicate that a separating
shear layer exists between the main stream and the cavity fluid, while a
recirculating flow dominates the downstream region of the cavity. The long-
time-average streamlines computed from the results of the above run with
UOD/v = 7571, plotted in Fig. 4.4, support this conclusion and reveal further
detail of the mean flow structure. This plot shows the dominant eddy residing
in the downstream part of the cavity, as well as a smaller upstream corner
counter-rotating eddy. These results are in general agreement with previous

observations, see for example Hardin and Mason (1977), Ghaddar et. al.
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(1986), and Ethembabaoglou (1973). The time dependent flow structure is

discussed in detail below.
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4,2,1.2, sShort Cavity Dynamics :

The flow dynamics in a short rectanqular cavity, L/D = 1-2, were
investigated experimentally by Rockwell and Knisely (1979). They reported
that the flow displayed jitter in the location of impingement of the shear
layer eddies on the downstream cavity edge which, they suggested, could be
due to low frequency modulation by the adjacent recirculation zone of the
cavity, as well as three dimensional effects. Despite this jitter, a peak in
the frequency spectrum was identified at feo/Uo = 0.016.

Knisely and Rockwell (1982) studied a modified cavity in which the
upstream cavity edge was replaced by a slanting ramp in order to reduce the
noise and to enhance the organization of the rollup process. They used L/D =
2. In this study, it was found that two stages of oscillation, depending on
the value of L/eo, may occur. The frequency spectrum, in either stage,
displayed a dominant, largest amplitude peak, which corresponded to the
frequency of shear layer eddy rollup, along with other lower frequency peaks
at lower amplitudes. The dominant Strouhal number, St = feo/Uo, in either
stage, was in the range: 0.011-0.018, depending on the value of L/eo.

The first stage described above corresponds to a flow structure which we
will refer to as a one-eddy system. In this regime, a single eddy occupied
most of the impingement 1length, with a smaller eddy being shed from the
upstream edge. The flow structure which corresponds to the second stage will
be referred to as a two-eddy system. Here, two eddies existed simultaneously
within the impingement length. In both Rockwell & Knisely (1979) and Knisely
& Rockwell (1982), the separating shear layer impinged on the downstream
edge, and GO/D was small enough, 0.1-0.2, to minimize the interaction between
the shear layer eddies and the cavity floor. The modulation of the shear
layer dynamics by the recirculating eddies inside the cavity was observed in

both stages in the form of low frequency overall flapping of the layer.
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The results of the numerical simulations for the dynamics of the short
cavity are now discussed. The relevant numerical parameters are: hS/D = 0.20,
r/v,P = 0.0167, aty m = 0.05, 4 /D = 0.011, xmax/D = 4.0. The flow
parameters are: U /U = 1.026, Uy = 7500, and eo/D = 0.02. Figure 4.5
shows a sequence of time frames depicting the evolution of the flow structure
in terms of the distribution of the vortex elements in the interior of the
domain, with a straight line segment originating at the center of each
element proportional to and in the direction of its velocity. Within this
period, four eddies, marked by short arrows, are shed from the separating
shear layer. The mean period between two sheddings is T = 1.17, corresponding
to a Strouhal number St = feo/Uo = 0.0166.

Within a period of 27.0, a total of 15 eddies were shed. These eddies can
be classified in two groups, depending on their frequency, size, speed of
propagation and overall influence on the flow f£field. The shedding shown in
Fig. 4.5 involves the smaller, faster, and hence more frequent eddies that
travel in the shear layer along the top of the cavity, with little effect on
the recirculating flow within the cavity. Ten such eddies were observed, nine
of which had Sp = 0.013 - 0.019, with a distribution skewed towards higher
frequencies, while one eddy was observed at St = 0.04. This range of Strouhal
numbers, 0.013-0.019, where most of the shear layer eddy shedding occured is
in general agreement with the above experimental data.

In the following, we analyze the flow structure observed in the shear
layer and within the cavity during the most frequent shedding. In Fig. 4.5,
the centers of the separating shear layer eddies are marked with an arrow. In
Fig. 4.6, the edge of the shear layer is indicated by a solid line, while the
velocity vectors are plotted with respect to a coordinate system moving at
0.5 Up- Plotting the vorticity field with respect to this moving coordinate

system serves to indicate the extent and structure of the shear layer in
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terms of vortex structures. Both figures show the presence of two eddies
within the impingement length. According to the above distinction between the
two regimes in a short cavity, this picture suggests that the dynamics fall
in a two-eddy regime. Moreover, in the laboratory reference frame, we note
the existence of two large recirculating eddies within the cavity, a counter
clockwise rotating eddy downstream of the backward-facing step, and a
clockwise rotating eddy which occupies the other side of the cavity. A
smaller eddy also resides at the bottom corner of the forward-facing step in
the downstream end of the cavity. The shear layer eddies flow over these two
large recirculation eddies that act as a buffer between the shear layer and
the bottom wall of the cavity. This is an important distinction between the
short cavity and the 1long cavity dynamics. In the mean velocity reference
frame, the separating shear layer eddies rollup, growth, and impingement on
the downstream edge is shown. The dark line defines the demarcation between
the vorticity laden fluid and the mainstream irrotational flow.

It should be noted that the rollup of the separating shear layer was
induced by its instability. The "white" noise, which exists in the
computations due to the discrete nature of the numerical method and the
random noise associated with the simulation of diffusion, acts as small
amplitude perturbations at a wide range of frequencies. The fact that some
eddies were shed at frequencies different from the most preferred frequency,
St = 0.016, shows that, as in the case of a free shear layer, the separating
shear layer is unstable to a range of frequencies.

The dynamics of the larger, slower, and hence less frequent eddies are
illustrated in Fig. 4.7. This sequence of frames shows the shedding of one
such eddy. Within a time period of 27.0, five slow eddies were observed, with
St as low as 0.004. Comparison of the frames shown in Fig. 4.7 with Fig. 4.5

suggests that fundamental differences exist between the mechanism of eddy
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shedding in each. The eddy forming at the separation edge in Fig. 4.7 travels
slower than the shear layer eddies in Fig. 4.5 because it generally exists at
a lower level within the cavity. It grows to become significantly larger than
the shear layer eddies, and its interaction with the recirculating eddy in
the downstream side of the cavity leads to a significant flapping of the
shear layer above the cavity. This activity does not inhibit the smaller
shear layer eddies which are seen to shed and ride on the stronger wave. This
overall picture is reminiscent of the experimentally observed modulation of
the separated shear layer dynamics by the 1low frequency oscillation of the
recirculation zone within the cavity (Rockwell and Knisely, 1979). It seems
that this slow shedding is the mechanism responsible for the low frequency
oscillation of the recirculation zone within the cavity and the flapping of
the shear layer.

Figures 4.8 and 4.9 show the instantaneous streamlines in a sequence of
frames corresponding to Figs. 4.6 and 4.7,‘ respectively, for fast and slow
shedding. These plots indicate again the difference between the two modes of
instability. Ghaddar et. al. (1986) report streamline plots that are similar
to the slow shedding in Fig. 4.9.

The spectrum of frequencies evident in the above visual observations can
be seen quantitativly by studying the flow velocity fluctuations at specific
points. Figqure 4.10 shows the wu-velocity fluctuation at one station in the
shear layer above the cavity close to the downstream edge (x/D = 0.95, y/D =
1.0) and the corresponding frequency spectrum. The two plots indicate the
existence of strong low frequency oscillation, along with weaker high
frequency dynamics. It is noted that the experimental results for the L/D = 2
ramp-cavity geometry of Knisely & Rockwell (1982), while showing a similar
spread in frequencies, find a higher amplitude for the frequency peak
corresponding to the shear layer eddy rollup than the modulation frequency.
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The difference between the two results indicates that the recirculation zone
dynamics of the geometries considered are different. The investigation in
Rockwell & Knisely (1979) used an actual cavity, but they report spectra for
a shorter cavity than the one considered here, namely LD = 1.1.

The frequency peak with the highest amplitude in the spectrum in Fig.
4.10 occurs at a Strouhal number, St = feo/Uo = 0.004, or a frequency fD/Um -
0.22 = 1/4.5. This frequency corresponds roughly to the 1long period
oscillation observed in the velocity trace in Fig. 4.10, and to the period of
large eddy shedding in Fig. 4.7.

The mean observed streamwise propagation velocity of the slow eddies
within the cavity length, i.e. the phase velocity at their frequency, was
found to be: c/Uh=0.33. Hence, the oscillation wavelength corresponding to
the frequency fD/Um-O.ZZ is M\D=1.5. Consequently, we find fL/c=L/\=l.33.
This result, when interpreted in terms of the formula;ion: L/X=[n,n+1/2]},
suggests a value of the integer n=1, hence indicating a first stage
oscillation, or a one eddy system within the cavity length in the
recirculation zone. This conclusion is in agreement with our definition of a
one eddy system, as demonstrated by observing the flow structure in Fig. 4.7,
where the large recirculating eddy in the downstream end of the cavity
occupies most of the cavity length while the smaller eddy is being shed at
the upstream edge.

The dynamical results indicate that both the "shear layer" and
"recirculation zone" modes of instability exist for the cavity geometry with
L/D = 2. It is also evident that the shear layer does not interact directly
with the bottom wall of the cavity; the recirculation eddies within the
cavity form a buffer between the shear layer and the cavity floor, hence the
reference to this geometry as a short cavity. This is not the case for a

cavity with L/D > 2, as discussed below.
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4.2.2 Long Cavity - Dynamics of Recirculation Zones :

For cavities most often used in combustion applications, L/D > 4. As we
mentioned before, it is expected that in this case the flow dynamics will be
different from those of a short cavity since the separated shear layer,
driven by the flow within the cavity, will reach the bottom wall before
impinging on the other side of the cavity. We have performed several
simulations for different values of L/e0 since it was initially suspected
that, as in the case of short cavity, the thickness of the boundary layer
would control the dynamics within the trough. Fig. 4.11 shows a series of
frames for the flow field for the case with L/D = 4, L/Bo = 183, ReD - UmD/v
= 2500, and Uy/Up = 1.04. The numerical parameters used in this case are,
hs/D = 0.25, otu /D = 0.1, TVl = 0.0208, 4,/D = 0.0179, and xmax/D = 4.

The numerical results reveal that: (1) the flow structure appears to be
completely different from that observed in the short cavity case and, in
particular, the large eddies which resided permanently in the left and right
hand sides of the trough in the short cavity are uow in constant transition;
and (2) the dominant frequency of oscillation is associated with the motion
of the recirculation eddy away from the step and the rollup of another eddy.
This motion is periodic, and all the events associated with a single period
are repeated every cycle. In the following we examine one complete cycle of
events for the sample of frames for time 70 - 83 shown in Fig. 4.11.

At time 70, the flow structure consists of a large leading eddy moving
towards the cavity edge and a satellite counter-clockwise rotating eddy which
resides between the leading eddy and the step. There are also two small
shear layer eddies flowing on the top side of these two eddies. Between time
71 and 79, a new trailing eddy, with its own satellite counter clockwise
rotating eddy, forms at the step while the leading eddy is moving into the

downstream edge. The trailing eddy starts as a rollup eddy in the separating
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shear layer, however, instead of moving on top of the large eddies, it is
pushed downwards by a strong flux of channel fluid into the cavity and is
anchored at the step, growing by entraining more of the vortical fluid
delivered by the shear layer. During its growth, the shear layer rolls up on
its upper side, shedding small eddies, as shown in time 74 - 79, which are
engulfed by the growing anchored eddy.

At time 77, the interaction between the trailing eddy and the step corner
results in the generation of another satellite counter clockwise rotating
eddy. As the trailing eddy grows by entraining more vortical fluid and
enqulfing the separating shear layer eddies, its satellite counter clockwise
eddy grows. The trailing eddy then moves downstream, and a gap is generated
between it and the step side wall, as seen in time 79 - 81. Within the next
part of the cycle, the separating shear layer at the step will "dip" into the
cavity and shed a new eddy that will become the new trailing eddy, while the
first eddy will become the leading eddy.

We now describe the development of the leading eddy, which takes place on
the right hand side of the trough while the trailing eddy is growing on the
left hand side. As soon as the trailing eddy separates from the step, it
ceases to entrain vortical fluid from the shear layer, as shown in time 72 -
74. Instead, it becomes the leading eddy and starts to entrain non vortical
fluid from the main stream, as well as some of the vortical fluid from its
satellite counter rotating eddy. The leading eddy tends to exert a strong
strain field on its satellite, causing it to get engulfed in its own field,
as shown in time 73 -78. This causes a substantial increase in the leading
eddy size in the cross stream direction. puring the final stages of the
leading eddy within the trough, it collides with the downstream edge of the
cavity, rides over the edge, and leaves almost in its entirety, as shown in

time 76 -79.
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The instantaneous streamline plots corresponding to the above sequence of
frames are shown in Fig. 4.12. These plots emphasize the large scale
structures more than the small structures since, by construction, they
involve some smoothing of the wvorticity field. The shedding cycle of the
large scale leading and trailing eddies in the recirculation zone is clearly
illustrated. On the other hand, the curvature of the streamlines above the
cavity represents the same shedding cycle in terms of a velocity wave
propagating downstream.

The long cavity acts as a shallow trough in which the :eparating shear
layer experiences large amplitude flapping on top of the recirculating eddy.
This severe flapping causes the shear layer to interact directly with the
cavity floor during part of the cycle, as opposed to the flapping observed in
the short cavity case where the shear layer did not interact with the floor.
The recirculation zone is observed to shed eddies that form, grow, leave the
step and are then replaced, hence causing the flapping of the shear layer.
The flapping action seems to dominate over the shedding of the eddies from
the separating shear layer. Wwhile these eddies are still shed at a fast rate
as in the L/D = 2 case, they do not move along the top of the cavity towards
the downstream edge as in Fig. 4.5. Instead, they are instantly engulfed by
the recirculating zone eddies. Hence, the shear layer eddies seem to have a
negligible influence on the flow field. In fact, most of the entrainment of
fluid from the main stream takes place within the eddies generated in the
recirculation zone, as shown in Fig. 4.13 in which a dark line is drawn to
indicate the boundary between tne vortical fluid and the £fluid being
entrained from the main stream. As in the short cavity case, the long cavity
instability mechanism involves both shear layer and recirculation zone modes

of instability, however, the latter mode is clearly dominant.
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It is interesting to note, concerning the recirculation zone structure in
Fig. 4.13, that it is reminiscent of the entrainment contours in free shear
layers.

The average velocity profiles within the cavity are shown in Fig. 4.14,
plotted u(x,y)/Umax(x) against (y—yl/z)/e(x). The profiles exhibit strong
self-similarity within the shear layer, 0<“<Umax' The mean streamlines are
shown in Fig. 4.15, where a well defined mean recirculation bubble, similar
to that behind a step or a bluff body, is evident. The spatial growth of the
recirculation eddies, shown in terms of the average momentum thickness 6(x),
is depicted in Fig. 4.16. The figure shows a plot of Q/eo vs. (x—xeup)/e0
for five x locations along the cavity length, x/D = -2, -1.95, -1, 0, and 1;
where xeup/D = -2 is the x location of the upstream cavity edge. The two
phases of development of the eddy, involving its being either the trailing or
the leading eddy, are clearly shown in this figure. In the first phase, the
trailing eddy grows by entraining vortical fluid and engulfing small rollup
eddies shed by the separating shear layer. When the trailing eddy is
separated from the step, it ceases to grow. In the second phase, the
trailing eddy becomes the leading eddy, and it grows by entraining fluid from
the main stream and enqulfing the vortical fluid from its satellite counter
rotating eddy.

The organization of this process is best exhibited in Fig. 4.17 and 4.18.
In Fig. 4.17, a time trace of the streamwise velocity component is shown at
coordinates (x/D,y/D) = (-1.95,1.0), (-1.0,1.0), (1.0,1.0), and (1.95,1.0),
i.e., all traces are taken along the top of the cavity. The time traces show
the remarkable organization of the recirculation eddy shedding process at a
dimensionless time period of 12.5. Fig. 4.18 shows the spectra for the
fluctuation in the streamwise velocity at the same stations chosen above. The

highest amplitude peak occurs at St = feo/U0 = 0.0016, which is an order of
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magnitude smaller than the shear layer most unstable Strouhal number,
Furthermore, since eo/D = 0.0218 and UO/Um = 1.040, the dimensioniess

frequency corresponding to this peak is fD/Um = StD = 0.08 = 1/12.5. Hence,

this frequency.
The mean streamw:se Propagation speed for the recirculation zone eddies,

C, was measured to be c/Um = 0.21. This was done by tracking the Centers of

for long cavities, we repeated the above numerical simulation with L/eb = 119

and 217, i.e. with eb/D = 0.034 and 0.018. Fig. 4.19 shows velocity tracesg

for the intermediate case, L/eo = 183, to within the frequency resolution
affordable to uys: +(0.004 - 0.007). The peak Strouhal numbers (feo/Uo) are
different because 60 is different among the three cases. The values of the
Strouhal number defined as fD/Um, however, are . StD = 0.085 and 0.086,
essentially the same ag the 0.08 value for L/60=183, given our frequency
resolution. The flow fields in both cases looked the same ag in Fig. 4.11. A
sample of 130 time steps is shown in Fig. 4.20 for L/e0 = 217. These results
indicate that the value of 90, within the range investigated herein, is
irrelevant to the dynamics of the flow field in the long cavity case, as is

Suggested by the dominance of the recirculating zone instability over the
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shear layer instabitlity. On the other hand, it is expected that, for any
L/D, a value of eo/D exists beyond which eo becomes the dominant factor in
the cavity dynamics. In this work we restrict ourselves to cases where GO/D
is in the above range of values.

The effects of varying H/D and xmax/D on the flow in the L/D=4 cavity
were also investigated. Varying H/D was done in order to ascertain whether
the frequency selection in the chosen flow geometry was affected by the
specific choice of channel height, as opposed to being an intrinsic cavity
selection. H/D was changed from the value used above (H/D=2.0) to H/D=1.0,
with no major effect on the dynamics, nyUm=0.092. The study of the effect of
xmax/D on the dynamics is more of a numerical question. Specifically, the
issue is whether our choice of xmax, the point at which vortex blobs are
deleted, for the above runs affects the flow dynamics in a significant
manner. The value of xmax/D was varied from the above value of 4.0 to 8.5.
The resulting Strouhal number for the dynamics was St = 0.087, which is
again not very different from the 0.08 value found above.

Next, in order to study the transition between the short cavity and the
long cavity cases, we investigated the intermediate case of L/D = 3. 1In
this case, the flow parameters are, L/eb = 96, ReD = 2500, and Uo/Um = 1.06.
The numerical parameters used are, hs/D = 0.25, otu D = 0.1, rh/UmD =
0.0208, 8./D = 0.0179, and xmax/D = 4. The dynamics of the flow field is
shown in Fig. 4.21. The highest peak in the frequency spectrum (not shown),
which corresponds to the recirculation zone oscillation shown in Fig. 4.21,
is fD/Um = 0.09 = 1/11.1. The phase speed was measured to be: c/Um = 0.16,
indicating an fL/c = L/X = 1.69, i.e. a one eddy system in the recirculation
zone.

The sequence of frames shown in Fig. 4.21 illustrates dynamics common to

the two cases studied above, L/D = 2, and 4. In the time period 70 -75, the
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trailing eddy is seen to move downstream while growing in size by entraining
both non-vortical fluid and shear layer eddies, indicated by arrows. It is
noted that the development of the flow structure starting at time 75 in Fig.
4.21, is similar to that observed in Fig. 4.11 starting at time 70. The
trailing eddy becomes the leading eddy as a new trailing eddy starts forming
at time 76, Fig. 4.21. The effect of shorter cavity length in the L/D = 3
case of Fig. 4.21 as compared to Fig. 4.11 is to change the subsequent
development of the leading eddy. This eddy, in Fig. 4.11, grows in size to
the point where its core is at the level of the channel floor, before it
collides with the docwnstream cavity step. Subsequent to this collision, the
eddy climbs the step in its entirety, including, in parti-ular, its core. In
Fig. 4.21, because of the shorter distance of travel before collision, the
leading eddy is smaller, and its core is within the cavity when it arrives at
the downstream step, at time 77-78. In this case, the result of the
collision is the destruction of the eddy, as its top fluid is sheared off by
the faster channel flow, while its core and bottom fluid are trapped within
the cavity. Eventually, the vcrtical fluid trapped in the cavity is dragged
away, however, the eddy structure is lost. This process, while sharing with
the L/D = 4 case the fact that all the vortical fluid comprising the leading
eddy eventually leaves the cavity, to be replaced by a new eddy, also shares
with the L/D = 2 case, Fig. 4.7, the fact that the downstream/leading eddy is
sheared off at the top by channel fluid. Compare, for example, Fig. 4.7, time
118.5, and Fig. 4.21, time 78.

It is obvious, from studying this intermediate case, how decreasing the
cavity length would decrease the amplitude of flapping of the shear layer.
When L decreases, the recirculating eddies have less time to grow before
impinging on the downstream edge, and hence will grow to smaller final size.

The smaller recirculation eddy size at impingement causes smaller vertical
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displacement of the shear layer at that location, hence weaker flapping.
This explains the dominance of the recirculation zone instability, manifested
by the flapping, over the shear layer instability, in long cavities.

Finally, it i~ instructive to look at the flow dynamics as the cavity
length goes beyond L/D=4. We have 1looked at two cases in particular, L/D=6
and 8. The results of these two cases are useful in order to fully
understand the frequency selection mechanism in long cavities. The results
presented hitherto show that the flow intabiiity in long cavities is
primarily a recirculation zone instability involving shedding of large eddies
from the recirculation zone that completely dominate the smaller shear layer
eddies. We have not, however, determined how the frequency of recirculation
zone shedding is selected. It is not yet clear whether the cavity
recirculation bubble is shedding eddies at its "natural” frequency or if it
is somehow "forced" by the impingement of these eddies at the downstream
cavity edge, in a manner similar to the organization of an impinging shear
layer.

Two observations on the results for leng cavities, L/D = 3 and 4, suggest
that the shedding is actually natural, not organized by impingement forcing.
First, in looking at the L/D = 4 flow dynamics, e.g. in Fig. 4.11, it is
evident that the trailing eddy begins forming when the leading eddy moves
away from the step causing a strong dip of the shear layer into the cavity.
Thus, the formation of a new eddy is not a result of impingement of the
leading eddy with the downstream corner. Secondly, it is noted that in going
from LD = 3 to L/D = 4 there is only a minor change in Sty = fD/Um. This
relative invariance of £ with the impingement length L suggests that the
former is not dependent on the latter.

The results for L/ D= 6 and 8 confirm the above two observations. The

flow dynamics are almost identical to those at L/D = 4. The Strouhal number
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St in both cases is around 0.08, as it is for L/D = 4, and the evolution of
the flow structures, their development, interaction and downstream motion,
are all similar to the L/D = 4 case. Hence, it is evident that for L/D > 3,
the cavity flow dynamics are fully determined by the natural oscillation of
the recirculation bubble within the cavity, and are therefore independent of
L/D. For L/D < 3, the cavity length is short enough to constrain the size of
the recirculation bubble and hence to affect its shedding frequency.

The dynamics of the L/D = 8 case are illustrated in the series of frames
in Fig. 4.22 and in the u and v spectra in Fig. 4.23. 1In this run, Re, =
2500, Uy/Vp = 1.067, eo/D = 0.026, and the numerical parameters are: hs/D -
0.333, oty /D = 0.1, IVl = 0.0278, 4,/ = 0.0179, and xmax/D = 6.0. The
long time average streamlines are shown in Fig. 4.24, to indicate the
unconstrained length of the recirculation bubble given the specific flow
parameters.

The variation of Sty for all the L/D cases considered is shown plotted in
Fig. 4.25. This plot shows the strong decline of fD/Um for L/D = 2-3,
followed by a relatively fixed value around 0.08 for L/D > 3, as the cavity

flow approaches that behind a backward facing step.
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4.3 Conclusions :

Numerical simulation of the 2D incompressible flow over a cavity in a
channel at high Reynolds number shows that the large scale dynamics of cavity
flows involve two coexisting flow instabilities: the shear layer instability
and recirculation zone instability. If the recirculation zone were quiescent,
the flow field over a cavity would resemble a shear layer impinging on a
downstream wedge, with the resulting organization due to disturbance feedback
from eddy impingement downstream. However, recirculation =zones are not
quiescent. They have been observed to display significant oscillation in
various flow confiqurations. Our results illustrate how this oscillation
modulates the shear layer dynamics, causing a low frequency flapping of the
shear layer. The amplitude of flapping increases with the length-to-depth
ratio of the cavity, while the effect of the shear layer rollup at the
separation edge, which coexists with this global flapping, becomes
increasingly negligible. We have also shown that the mechanism which drives
the oscillation of the recirculation zone is the shedding and downstream
migration of large scale eddies within the cavity.

Our results show that eddy shedding from the 1long cavity (L/D > 3)
recirculation zone is similar to that from the recirculation bubble in a
backward facing step or behind a bluff body. All three flow configurations
exhibit recirculation zone shedding at a Strouhal number fD/Um = 0(0.1), a
manifestation of a generic recirculation bubble instability. We note that
this shedding process was found to be independent of 8y the momentum
thickness of the boundary layer at the upstream separation edge, for eo/D ~
0(0.01). We restrict our conclusions to this range of eo. We suspect that %
would become a relevant parameter in the long cavity dynamics if it were of
the order of magnitude of the cavity depth D, however, we are not concerned

with this range of values.

129



The shedding of large scale eddies from the recirculation zone at low
frequency strongly resembles the processes observed in the unstable modes of
operation of a dump combustor (Keller et al., 1981; Vaneveld et. al., 1982).
While heat release may affect the shedding frequency, and the rate of growth
and the size of the large eddies downstream, the results of the numerical
simulations suggest that the mechanism of the combustor instability is
strongly tied to the instability of the recirculation zone in the dump.

One interesting aspect of the reacting flow is the higher organization of
the recirculation zone eddies that is observed experimentally. Generally, low
frequency peaks in non-reacting flow spectra are much broader than those
measured in reacting flows. We suspect the reason to be that, in the reacting
case, the unsteady flame acts as a distributed acoustic source. This acoustic
energy is stored in the pressure waves that travel up and down the pipes
upstream and downstream of the combustor. Consequently, the combustor
experiences significant pressure forcing, which may cause the organization of
large eddy shedding to be enhanced. In the non-reacting case this feedback
forcing is absent and the large 2D structures tend to breakdown due to
interaction with the walls and 3D instabilities.

In the next chapter we deal with the full reacting flow dynamics.
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Figure 4.1 A schematic diagram of the geometry of the cavity in a channel,
showing the coordinate system and the parameters used to define the flow and
the dimensions of the computational window.
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Pigure 4.2 A comparison between the computed mean Figure 4.3 A comparison between the numerical
velocity profiles, shown in solid lines, and the solution, indicated by squares (L), and Rockwell
measurement3 of Sinha (1978), shown in open circles and FKnisely’s measurements (1979), shown by

(o) for a flow at Re = U0y = 2140, L/D =2, triangles (4), of the mean velocity profile within
a cavity with L D= 2, and Re = Uon/v = 7571, at
x/D = 0,92,
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Figure 4.4 Long time average streamlines, time 101.0 to 143.5, corresponding
to the numerical results used in Fig. 4.3.
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Figure 4.5 A sequence of time frames (continued from the previous page)
showing the flow field, presented in terms of the vortex elements and their
velocity vectors, for the flow over a cavity with L/D = 2 at Re, = 7500. The
arrows indicate the centers of the shear layer eddies. Note the~ presence of
two resident eddies within the trough, and the two shear layer eddies over the
impingement length.
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Figure 4.6 Two time frames of the flow depicted in Fig. 4.5, with the vortex
elements velocity measured with respect to U /2. A solid line, which is drawn

as a demarcation of the separating shear “layer, outlines a two-wave (eddy)
system over the cavity.

134



Figure 4.7 For caption see next page.
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Figure 4.7 A sequence of time frames (continued from the previous page)
showing the flow field at the conditions of Fig. 4.5, exhibiting the shedding
of a slow eddy within the cavity.
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Figure 4.8 A sequence of time frames (continued from the previous page)
showing the instantaneous streamlines corresponding to the vorticity plots
in Fig. 4.5.
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Figure 4.11 For caption see next page.
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Figure 4.11 A sequence of time frames (continued from the previous page)
showing the flow field, in terms of the vortex elements and their instantaneous
velocity vectors, for a flow over a long cavity with L/D = 4, L/eo = 183, and
Re. = 2500. The arrows indicate the eddies within the shear layer-as they are
shgd and engulfed by the trailing, clockwise rotating eddy. Note the leading
and trailing eddies, and their satellite counter clockwise rotating eddies.
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Figure 4.12 A sequence of time frames (continued from the previous page)
showing the instantaneous streamlines corresponding to the vorticity plots
in Fig. 4.11.
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leading eddy

trailing eddy

Figure 4.13 The flow field at the same conditions as in Fig. 4.11, with a line
depicting the boundary between the vortex-laden flow and the potential flow
entrained from the main stream.
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Figure 4.14 The mean velocity profiles of the flow depicted in Fig. 4.11,
exhibiting the self similarity of the flow within the shear layer formed by
the eddies shed from the recirculation zone. x/D = -1.9 (+), x/D = -1.0 (O),
x/D = 0.0 (4), x/D = 1.0 (D).
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Figure 4.15 Long time average streamlines, time 69.0 to 135.0, of the flow
depicted in Fig. 4.1l.
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Figure 4.16 The growth of the momentum thickness, ©, versus streamwise
distance, for the flow field shown in Fig. 4.1ll.
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Figure 4.17 Time traces of the streamvise velocity
at points along the top of the cavity, for the
flow field of Pig. 4.11, showing the oscillation
produced by the shedding of eddies from the
recirculation zone. The numbers under each figure
indicate the x and y coordinates, respectively.
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Figure 4.18 Spectra of the streamrise velocity
fluctuation for the same points as in Fig. 4.17,
plotted against the Strouhal number based on the
boundary layer momentum thickness and mainstream
velocity at the step.
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Figure 4.19 Time trace and spectra of the streamwise velocity for L/ D = 4 and
(a) L/8 ) = 119; and (b) L/8, = 217.
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Figure 4.20 The flow field, shown in terms of the vortex elements and their
instantaneuos velocity vectors, over a cavity with L/D = 4; L/, = 217; and
Rey = 2500. Arrows show the separating shear layer eddies.
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Figure 4.21 The flow field, shown in terms of the vortex elements and their
instantaneuos velocity vectors, over a cavity with L/D = 3; L/eo = 96; and
Re, = 2500. Arrows show the separating shear layer eddies.
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Figure 4.22 Continued on next page.
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Figure 4.22 Continued on next page.

155



N R T ""f":i,‘*— QN K A N T

e - == e

Figure 4.22 Continued on next page.
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Figure 4.22 A sequence of time frames (continued from the previous three
pages) showing the flow field, in terms of the vortex elements and their
instantaneous velocity vectors, for a flow over a long cavity with L/D = 8,
and Re,, = 2500.
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Figure 4.23 Spectra of the u and v velocity fluctuation, for the flow
depicted in Fig. 4.22, at three points along the top of the cavity. The top

row

of plots corresponds to (x/D,y/D)
(0.0,1.0), while the bottom row is at

(-3.0,1.0), the middle row to
(3.0,1.0). S is the Strouhal

number based on the mean inlet velocity and the cavity “depth. The highest
peak in each of the above plots is at Sty = fD/Uh = 0.085.



Figure 4.24 Long time average streamlines, time 20.0 to 150.0, computed from
the flow field depicted in Fig. 4.22.
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Figure 4.25 The variation of StD = fD/ﬁm versus L/D for all the cases studied.
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5. REACTING FLOW

5.1 Background :
As mentioned earlier, the overwhelming problem with premixed dump

combustors operating at relatively high, although less than stoichiometric,
equivalence ratios is the "flashback" instability. Flashback, briefly
introduced in Chapter 1, is an instability that results in the motion of the
flame upstream into the inlet duct. It is accompanied by low frequency, large
amplitude flow and pressure oscillation in the combustor. In the following,
we give an extensive review of previous investigations into the nature of
flashback in premixed dump combustors, and present our understanding and
interpretation of this data.

It is worthwhile to note at the outset that the flashback we refer to
here is not the "classical" flashback (Lewis & Von Elbe, 1961). Classical
flashback involves the upstream motion of the flame along walls, in the
boundary layers, due to the local low convective velocity. This is clearly
not the case in the majority of reported flashback observations in premixed
dump combustors. Instead, as reported in the review of Plee & Mellor (1978),
flashback in premixed dump combustors is generally associated with either
preignition, autoignition, or convective flow reversal. Furthermore, the
latter phenomenon, flow reversal, is the one observed in all controlled
laboratory experiments involving simple model geometries such as a backward
facing step or a cavity.

Let us examine the combustor flow dynamics in general, under non-
flashback conditions, and then consider the mechanism of transition to

flashback.
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Premixed dump combustor flows have been found to involve large scale,
organized, vortex structures (eddies) that are shed from the upstream edge
region of the dump and modulate the flame interface as they grow and move
downstream. As evidenced by Schlieren pictures of many experimental
investigations, the flame region lies generally at the edges of these eddies
(e.g. Ganji & Sawyer, 1979, 1980; Keller et. al., 1981;, Vaneveld et. al.,
1982; Yu et. al., 1989, 1987; Smith & Zukoski, 1985;, McManus et. al., 1987,
1989; Pitz & Daily, 1981, 1983). Furthermore, the eddies have been observed
at various frequencies and were classified as different modes of oscillation
of the combustor (see Keller et. al., 1981, Vaneveld et. al., 1982).

The problem of understanding these various modes of oscillation has been
a daunting task tackled by many investigators. The dynamics of the underlying
non-reacting flow, as indicated in Chapter 4, involve complicated interaction
between the shear layer and the recirculation zone instabilities. The
existence of the flame presents the added complication of the expansion field
due to the combustion heat release as well as the acoustic response of the
piping system upstream and downstream of the combustor, given the acoustic
source distribution associated with the flame front.

The equivalence ratio, ¢, of the incoming fuel/air mixture has been found
to determine the specific mode of oscillation exhibited by the combustor.
when ¢ is small, relatively high frequency, low amplitude oscillations are
observed. As ¢ is increased, lower frequencies gain dominance, leading to
large scale, low frequency flapping of the flame, which finally causes severe
flow reversal and flashback. This low frequency oscillation, in which the
flame position undergoes strong flapping but stays anchored at the desired
region, has been studied widely as the significant precursor to flashback. It

is a sustainable mode of operation, since the flow reversal is weak, and
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occurs for a fraction of the oscillation cycle, hence the flame does not move
far upstream into the inlet duct.

The following quote from Ganji & Sawyer (1979) is typical of observations
made during transition to flashback: "Flashback is brought about by a
coupling between the combustion and fluid mechanical processes which produces
an instability in the flow. Flashback appears to start with an overexpansion
of the large eddies inside the combustor which augments the recirculation of
reactants into the recirculation zone behind the step. This in turn causes a
lifting of the flame from the edge of the step and increases eddy growth.
This process repeats until pressure pulsations occur which are sufficient to
stagnate or possibly reverse the flow into the combustor allowing the flame
to move into the inlet section upstream of the step." Similar dynamics have
been reported by Vaneveld et. al. (1982), Keller et. al. (1981).

Given all this, the major unresolved issue is still the identification of
the mechanism that leads to amplified instabilities and determines the
frequencies of the combustor oscillation, both at high and, in particular, at
low frequencies. It has been suggested by many studies that this frequency
selection is determined by the acoustic characteristics of the combustor and
piping system (Smith & 2ukoski, 1985; Kailasanath & Gardner, 1986, 1987;
Menon & Jou, 1987; Jou & Menon, 1987). The prevailing conviction has been
that the acoustic power radiated from the unsteady flame feeds energy into
the resonant acoustic modes of the system. This resonant pressure
oscillation, which is fed back to the combustor, is believed to determine the
frequency of the organized eddies shed from the shear layer and recirculation
zone.

while we agree in part with this scenario, we will try to demonstrate
that even if the higher modes of oscillation of the combustor correspond to

"acoustic" modes of the system, the more danyerous low-frequency
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oscillaticons, which lead to flashback, are determined by the dynamics of the
recirculation zone in the dump. Thus, while the higher modes are "system"
instabilities, the low-frequency mode that 1leads to flashback is a
"combustor" instability in the sense that it is predetermined by the flow
configuration in the dump (the irlet flow speed and the depth of the dump).

The dynamics of non-reacting incompressible recirculation zones are
discussed in Chapter 4, and they generally involve the following scaling of
the frequency of eddy shedding from the recirculation zone : fD/U = St =
0(0.1), where D is the cavity depth and U is the mean inlet velocity. Here,
one has to be careful to recall that this Strouhal number, in non-reacting
flows and, by extrapolation, in reacting flows, is not sharply defined but
rather observed to be roughly around 0.1. The specific low frequency selected
within this range may depend on other variables, including the acoustic
response of the system, but it will always be such that St=0(0.1), and it
will always involve the amplification of the recirculation zone oscillations.
Similarly, we must stress that our numerical investigation in Chapter 4 has
found St=0(0.1) for recirculation zones at incompressible conditions. Hence,
we are considering combustor flows at relatively low Mach numbers. We are not
making predictions about high Mach number flow fields.

Furthermore, the inlet flow rate in our non-reacting flow study was
fixed, and Up used in Chapter 4, was simply the spatial mean velocity at
the inlet plane. In the reacting case, where the upstream boundary condition
is a specified stagnation pressure rather than the inlet flow rate, Un is a
function of time. We have chosen to use the time average value of Un to be
the mean velocity, U, used in the definition of St above.

The above claim, that the recirculation zone provides a generic low

frequency "combustor" instability independent of other system components, is
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quite general, and we shall try to provide justification for it by examining
previous experimental findings before discussing our numerical results.
Generally, available experimental measurements of oscillation spectra
within dump combustors exhibit two or more large amplitude peaks. As ¢ is
increased, the lower frequency peak gains dominance. The accompanying time
traces exhibit the familiar "beating" which corresponds to the superposition
of two or more frequencies (Choudhury et. al. 1981; Yu et. al., 1989). The
remarkable observation however, is that the reported Strouhal numbers for the
lowest peak are found to always lie around 0.1, as indicated by the
compilation of results in Table 5.1. These results are from various
experimental and computational studies using different combustor and system
configurations. The fact that St~0.1 is the single common result among all of
them. On the other hand, the higher £frequency peaks, not reported in the
Table, and other details vary widely depending on the specific overall system
considered. We believe that this system dependent variation has been at the
root of the general inability to comprehend the operation of dump combustors.
Therefore, based on the above, we maintain that flashback occurs as a
result of amplification of the inherent recirculation zone dynamics, and that
this amplification occurs as the pressure oscillation in the system
approaches the natural low frequency of the recirculation zone eddies. In the
following we attempt to verify this hypothesis by conducting numerical
experiments using the full reacting flow model. We begin by the case of fixed

atmospheric exit pressure, and examine the flow dynamics. This is

Pex’
followed by a forcing study in which Pex is specified to be a given
sinusoidal forcing function and we examine the effects of higher heat release

given different frequencies of exit pressure modulation.
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Yu. et. al., 1989

McManus et. al., 1987
and 1989

Gangi & Sawyer, 1978

Smith & Zukoski 1985

Schadow et. al. 1987

Kailasanath et. al.
1986, 1987

vaneveld et. al. 1982

Table 5.1

Double expansion, with constriction at exit
D=2.5cm, L=5.8-12.5 cm, U=12.2-16.3 m/s
¢=0.65, dominant St = 0.09-0.15.

L/ is found to change St slightly.

e.g. for U=12.2 m/s, (L=5.8 cm, St=0.15),
while (L=12.5 cm, St=0.10)

Backward facing step, D=2.0 cm, U=8.5 m/s
¢=0.70, St=0.10 even when forced at a much higher
St.

Backward facing step, D=2.55 cm, U=13.2 n/s
St=0.10, low frequency flapping
Pressure oscillation amp. >> dynamic head

Backward facing step, D=1.9 cm, U=22.0 m/s, ¢=1.0

St=0.16 for U=22 m/s

St=0.09 (same f), for U=40 m/s, and with changes
to some acoustic characteristics of the
system., although a new peak appears also
slightly larger St.

St=0.20 for U=50 m/s

frequency depends on the amplitude of inlet

velocity fluctuation.

Axisymmetric ducted jet, D=3.2 cm,
non-reacting, U=38 m/s, St=0.12
reacting, U=37 m/s, St=0.13

Axisymmetric ramjet, step - constriction,
computational.
D=3.2 cm, U=50 m/s, St=0.09, lowest peak.

2D cavity, D=2.54 cm, U=9.12 m/s, St=0.15
low frequency chucking
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5.2 Results :

The geometry used here is again that of Fig. 3.1, along with the upstream
and downstream pressure boundary specifications. The computational grid used
for the propagation and advection of the products of combustion is a uniform,
square grid with Ax/D = 8y/D = 0.1.

We will denote the reference velocity by U, and the reference density by
Pre We use the dynamic pressure prUrz as the reference pressure Py for the
boundary condition pressure computation, and we will report gauge pressure
values, measured with respect to atmospheric pressure, Patm§105 Pascals.
Hence, a pressure p/prnl.o, for example, corresponds to an absolute
dimensional value of Patm+1.0pr. We refer to the stagnation pressure in the
upstream reservoir as |

As indicated in Chapter 2, the Reynolds numbers in the reactants (Reu)
and the products (Reb) are different. In fact, given their definitions in

Table 2.6, we have :

Re,/Re = (pb/pu)(ﬂu/wb) (5.1)

Further, given eq. (2.23), we have : p « 1/T. Using this relation, and

assuming ¢ = Tl/2 (see Tien & Lienhard, 1979), we get :
Re, /Re, = (p,/p,)>> (5.2)

Therefore, in the reacting case, the Reynolds number used in the products is
a fraction of that in the reactants, where this fraction is given by the 3/2
power of the density ratio P/ Py

The results are obtained for a fixed cavity geometry, L,/D=4.0, H/D=1.0,
xmin/D=—4.0, xmax/D=4.0. These parameters will be implicit in the discussion
below.
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Further, the same dimensional reference quantities are used in all the
reacting flow results below. The reference density and viscosity (dynamic)
are those of the reactants, and have the values : pr-1.2 kg/m3, and

3 Ns/mz. The reference length is the cavity depth, D=2.5 cm. The

pr-2.0x10_
reference velocity is u - 6.67 m/s, and the reference gauge pressure is
pr=53.33 Pa.

In the following we begin by examining the reacting flow results for the

unforced case, where the exit pressure is atmospheric.
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5.2.1 The Unforced Case :

The main issue here is to determine the effect of the heat release due to
combustion on the flow dynamics, given a specified fixed exit pressure, pex-o
(gauge), i.e. atmospheric exit pressure.

We begin by examining a flow case with the following specifications :

Upstream stagnation pressure : p_/p 2.02 (p . =107.73 Pa-gauge)
r o

4
Reu = UrD/vu = 10

Pu/Pb" 4

Reb - UrQ/vb = 1250
Sy'Vr

We also use the following numerical parameters :

Reynolds number in reactants

Density ratio across flame

Reynolds number in products

Normal burning speed

0.05 (Su-33.33 cm/s)

Sheet length : hs/D = 1/3
Sheet strength : rm/UrD = 0.0278
Time step ' : OtU /D = 0.05
Sheet layer thickness :4,/D = 0.0095

The flow dynamics for this case are illustrated in the sequence of time
frames of the vorticity field and the flame interface shown in Fig. 5.1.
Although the products and reactants are not labeled specifically, it is
implicit that the area underneath the flame, within the cavity and beyond,
contains the products. The inlet stream is all reactants. The flame interface
is drawn as a thick line for visualization purposes. The same earlier
convention is used with the vortices, namely, each vortex element is depicted
with a small circle, and its velocity is delineated by a straight line
segment originating at its center and with its length and direction
corresponding to the magnitude and direction of the velocity vector at that

point.
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For comparison, Fig. 5.2 shows a similar sequence of frames illustrating
the recirculation zone eddy shedding for non-reacting flow in the same
geometry, although at 1lower Reynolds number, Re-UrD/v-1250, and lower
upstream stagnation pressure, po/pr-l.O. Note that the reference velocity and
pressure used for this case are different from those for the reacting flow
cases. They are : Ur=0'83 m/s, and pr-0.83 Pa. All other reference quantities
are identical to those in the reacting flow. Relevant numerical parameters
are : hs/D-1/2, rm/urn-o.o417, AtUr/D-0.0S, AS/D-0.0134.

The dynamics of the recirculation zone in the reacting case are similar
in many respects to those of the non-reacting flow. Eddies are shed at the
upstream edge of the dump, they grow by entraining shear layer vorticity,
then detach and move downstream as they continue to grow by entraining
essentially irrotational fluid until they collapse at the downstream edge.

Further, the flame is observed, as was found experimentally, to ride on
the outer edge of the recirculation =zone. 1In other words, the large eddies
modulate the flame interface as they grow and move downstream. Similarly,
small shear layer eddies are observed to modulate the flame at a smaller
scale, which is superposed on the larger scale modulation, see for example
time 37.0 in Fig. 5.1. As with the non-reacting flow pictures, these smaller
eddies are engulfed by the large trailing eddy forming in the upstream end of
the cavity.

The reacting flow does differ, however, from the non-reacting flow in
that the size and "coherence" of eddies within the recirculation zone are
both diminished due to the flow field associated with the flame. By the
"coherence" of an eddy we refer to the degree to which the eddy holds the
vortical fluid within it together as one structure, distinct from the rest of
the flow field. In the non-reacting flow, Fig. 5.2, the eddies displayed

higher coherence and attained larger sizes than those in Fig. 5.1. This
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difference is also observed in the time trace and spectral analysis of the
velocity along the top of the cavity. Let us consider the u-velocity at
y/D=1.0, and x/D=-1.0,1.0. Figures 5.3 and 5.4 show the time traces and
frequency spectra for the reacting flow at these two points respectively,
while Figures 5.5 and 5.6 show the same results for the non-reacting flow.
The dominant low frequency peak at each station in Fig. 5.4 has lower
amplitude than that in Fig. 5.6. At X/D=-1.0, the amplitude of the dominant
peak in the reacting case is U/Ur'0'137 or u/U=0.109, while that in the non-
reacting case has u/U =0.414, u/U=0.370. Similarly, at x/D=1.0, the dominant
peak has an amplitude of wU =0.117, u/U=0.093, in the reacting case as
compared to u/Ur-0.346, u/U=0.309, in the non-reacting case. As will be
indicated below, these peaks do correspond to the recirculation zone eddy
shedding in each case. Clearly then, both the time traces and spectra show a
better organization in the non-reacting flow than in the reacting flow.

In fact, we find that increasing the amount of burning, hence the heat
release, beyond that used above, causes further reduction in the size and
coherence of the recirculation zone eddies, giving a rather quiescent
recirculation region in the dump ~ as long as the exit pressure is fixed.
Thus, our numerical results indicate that, for a fixed exit pressure, the
heat release associated with combustion acts to dampen the instability of the
shear layer and recirculation zone.

These observations are in agreement with available experience for
combustion systems with no significant acoustic feedback, see for example,
Williams (1985) and Glassman (1987). One mechanism that has been suggested to
explain this stabilization is that the Reynolds number in the recirculation
zone is lower than that in the mainstream due to the increased temperature in
the products. The lower Reynolds number is expected to cause the separation

bubble to become more stable in the reacting case than in the non-reacting
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case. However, the value of the Reynolds number used in the above non-
reacting flow is precisely that used in the products in the reacting case
(recall eq. 5.2 above). Therefore, it is not the lower Reynolds number in the
products that dampened the instability of the recirculation zone. The only
other possible mechanism in our model is the expansion field due to the
flame. It seems that this expansion field acts to accelerate the flow leaving
the dump region by imposing a more favourable streamwise pressure gradient,
and that this tends to dampen the growth of the recirculation zone
instability. The flow acceleration due to heat release is clearly exhibited
by the increase in the size of the velocity vectors leaving the cavity in
Fig. 5.1. Figure 5.7, from Lewis and Von Elbe (1961) p. 439, shows the
pressure gradient and mean recirculation bubble size corresponding to
reacting and non-reacting flow around a cylinder. This figure illustrates the
correlation between the pressure gradient and the degree of growth of the
recirculation zone instability. Wé suggest ‘that this same mechanism is at
work in the flow at hand. This mechanism is weil known in other flow
arrangements such as, for example, the stabilization of boundary layers by
flow acceleration and favourable pressure gradients. Fiqure 5.1 illustrates
that the growth of the boundary layer on the top wall, which can be compared
to that in Fig. 5.2, is drastically reduced due to heat release and the
concomitant flow acceleration. Similarly, for plane shear layers, streamwise
pressure gradients are known to strongly affect the growth of the shear
layer; reducing it for a favourable pressure gradient and enhancing it
otherwise (Masutani et. al., 1978, 1988).

Clearly, this stabilization is not significant in systems where the
combustion can couple with the system acoustics causing sustained pressure
oscillations in the combustor and its inlet and exit piping. In such cases,

the pressure feedback due to the acoustic resonance forced by the flame may
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upset the stabilization caused by the expansion field by enhancing the
organized eddy shedding from the recirculation zone. See for example the flow
pictures of Vaneveld et. al. (1982).

Therefore, we have shown that for a fixed exit pressure, hence no
acoustic resonance feedback or pressure forcing, the reacting flow exhibits
oscillation corresponding to eddy shedding from the recirculation zone
similar to the non-reacting flow shedding but with lower coherence and
strength. Further, increasing the amount of burning causes further
stabilization of the recirculation zone. We therefore conclude that this
system cannot achieve the large amplitude fluctuations leading to flow
reversal and flashback. Clearly, the downstream exit pressure is crucial in
determining the dynamics to be seen in the combustor. The investigation of
the influence of this pressure is handled in the next section. Before we go
there, however, it is instructive to analyze the "natural" dynamics of the
present model in some more detail. This will shed light on the nature of the
combustor flow oscillation and allow further comparison with experimental
results.

Let us begin by observing the shedding frequency of the recirculation
zone eddies in the reacting case versus that in the non-reacting flow. These
shedding processes are found to correspond to the dominant Strouhal number
peaks in Figs. 5.4 and 5.6, respectively. The Strouhal number in each of
these plots is based on the cavity depth and on the time average mean inlet
velocity U, for the time span considered. We expect, from the results in
Chapter 4 and from our literature review, that both spectra should exhibit
dominant peaks in the vicinity of St=0.1. This 1is indeed the case, the
dominant peak in the non-reacting case, Fig. 5.6, is at S5t=0.089+0.012, while
that in the reacting case, Fig. 5.4, is at St=0.119+0.012 at x/D=-1.0, and

St=0.099+0.012 at x/D=1.0, being well centered around 0.1 for the whole range
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of x/D. In the non-reacting case, St=0.089 corresponds to a dimensionless
time period of 10, which is evident in the vorticity dynamics shown in Fig.
5.1 (compare times 33.0 and 42-43.0, to see how the flow repeats itself with
this period). As for the reacting case, St=0.1 corresponds to a time period
of 8, which is again evident in Fig. 5.2, as for example, between the frames
at times 35.0 and 43.0. Therefore, the Strouhal number, 0(0.1), of
recirculation zone eddy shedding, which corresponds to the lowest frequency,
highest amplitude peak in the frequency spectra, is not significantly
different in the reacting case from that in the non-reacting case. It is also
noted that, for the reacting flow, the peaks at St~0.2 and 0.1 are of
comparable size while in the non-reacting flow the low frequency mode carries
almost three times as much energy as the high frequency mode.

Next, we examine both the pressure in the combustor and the inlet flow

rate, Q s functions of time. For the sake of comparison with experimental

in’ 2
measurements, we look at the pressure in the channel, at its centerline,

above the wupstream step of the cavity, P The pressure trace

step’
corresponding to the conditions of Fig. 5.1 is shown fn Fig. 5.8. Figure 5.8a
shows the actual pressure data computed in the run, while Fig. 5.8b shows a
smoothed version of the same trace. Both traces are plotted against time. The
smoothing helps to bring out the low frequency oscillations of the pressure
by filtering out the high frequency noise. This noise, which is evident in
Fig. 5.8a, is due to the the unsteady flow field as well as the discrete
nature of the numerical scheme and the random walk algorithm £for the
simulation of diffusion. Note that the pressure is obtained by integrating
ap/9x, which is computed from the x-momentum equation and thus involves
differentiation of the velocity field. The inlet flow rate, Qe is plotted

ir. Fig. 5.9. This trace contains less high frequency noise than the pressure

trace. This is clearly due to the inertia of the fluid and the concommitant
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time delay required for it to accelerate due to a given pressure gradient.
Figure 5.10a shows the superposition of the Q. and Pstep traces. It is found

from this plot that Qin leads P by, roughly, a quarter of a period of

step
oscillation. This observation is in agreement with the experimental
measurements of Yu et. al. (1989), for a cavity with a constriction at the
exit and an "long" upstream pipe inlet section.

The superposition of Q;n and P is blown up in Fig. 5.10b, for a time

ste

segment from 32.0 to 44.0. This sezment corresponds to the shedding cycle
shown in Fig. 5.1. Let us compare the two figures. The pressure in Fig. 5.10b
reaches a minimum at times 33 and ~41. In Fig. 5.1, these times are seen to
correspond to a flow condition where the trailing eddy is growing in the
upstream region of the dump, while the leading eddy has collapsed at the
downstream edge. This is accompanied by an acceleration of the inlet flow
into the combustor, as is evident in the significant positive slope of the
Qin trace at time 41, for example. The rise in the inlet flow manifests
itself in the vorticity plots as a strong downward flux of vortex elements
into the cavity. This is seen at times 34-35, and 41-42 in Fig. 5.1. The
trace of Qin attains a peak at times 35 and 42. As the flow acceleration
decreases, to reach this peak, the pressure is seen to rise steeply. The
maximum pressure is attained roughly at times 37 and 44, a 1/4 period (2 time
units) after the Q. peak. At this point, the flow rate is experiencing
strong deceleration. Time frame 37.0 in Fig. 5.1 indicates that this
corresponds to a situation where the large eddy reaches its maximum size on
its journey to the downstream edge. As the eddy arrives at the downstream
edge, the flow rate reaches its minimum (time 38-40), and the pressure is

falling steeply. The eddy disintegrates at the downstream step (time 40-41),

as the flow rate starts to rise again, and the pressure reaches its minimum.
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At this time, a new trailing eddy is forming in the upstream region of the
cavity, and the cycle is repeated.

Therefore, the eddy shedding process is closely associated with specific
flow rate and pressure oscillations within the combustor. The flow rate into
the combustor attains a maximum as the trailing eddy leaves the step and
moves downstream, while the minimum flow rate corresponds to the leading eddy
arriving at the downstream step prior to its disintegration. The pressure,
Pstep' on the other hand, reaches its highest value when the eddy is largest
after it has detached from the upstream step and before arriving at the
downstream step. Clearly, this high pressure causes the minimum flow rate
soon after when the eddy reaches the downstream edge. The minimum pressure
corresponds to the situation where the trailing eddy has formed but is still
close to the upstream edge, while the leading eddy has disintegrated at the
downstream step. One more time we see that the oscillations of the separating
shear layer and recirculation zone are not necessarily related to the
impingement of the large eddy at the downstream edge but to the flow
processes involving the leading and trailing eddies in the cavity.

The strongest oscillation of Qin and P occurs at the frequency of the

step
recirculation zone eddy shedding, St=0.1. This is well illustrated by the
spectra shown in Fig. 5.1la, for Qin’ and Fig. 5.11b, for Pstep'

A significant component of the combustor operation involves the total
rate of heat release and its relationship to the combustor flowfield. The
rate of expansion, or rate of volume release, is a direct indicator of the
heat release in our model. For the reacting flow case considered, the volume
release rate is found to oscillate with the large scale flow dynamics. This

oscillation is shown in Fig. 5.12a, where we have plotted the rate of volume

release versus time. While a considerable amount of energy exists at various
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frequencies, the spectral analysis reveals a dominant Strouhal number that is
close to 0.1, as in Fig. 5.13.

In order to investigate the nature of these oscillations, let us examine
first Fig. 5.12b. This plot shows the variation in the overall number of
flame segments, or flamelets, in the combustor as a function of time. This is
an indicator of the overall flame length (or area, given the 3"'d dimension).
A comparison between this plot and that of the volume release rate in Fig.
5.12a reveals that the two quantities are in phase, in fact they follow each
other closely. Hence, we find that the instantaneous amount of heat release
from the combustor varies directly as the instantaneous flame length. This is
expected since the rate of burning is given by : Isudl over the flame length.
when the flame is contorted and fragmented by the flow field, its overall
length increases, and hence the amount of burning, and heat release, increase
accordingly.

The flame is contorted both by the sheér layer eddies and by the large
recirculation zone eddies. Both these mechanisms can be observed in our
results. Consequently, it is difficult to point to a definite time within a
shedding cycle that will exhibit the highest heat release. Note in particular
that flame modulations by the shear layer eddies, although initially small,
grow with time as they move downstream along the flame and hence become
significant. In the majority of the cycles observed, however, the flame
seemed to attain its highest contortion, producing the highest heat release,
when the recirculation zone eddy is largest, having detached from the
upstream step, and moving downstream. This is reasonable in the light of our
previous discussion about the mechanism of growth of the eddy in this part of
the cycle. Namely, the large eddy grows by entraining fluid from the
mainstream, hence by entraining reactants and stretching the flame interface

and increasing its area.
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To illustrate the relationship between the flow dynamics and the overall
rate of heat release, let us look at the vorticity plots corresponding to the
heat release maxima in Fig. 5.12. After the flow startup time (0-10), these
are found to occur at times : 19.0, 22.0, 31.0, ~39.0, and 43.5. The
vorticity field at time 39.0 is shown as part of the sequence in Fig. 5.1,
while the rest are shown in Fig. 5.14. As we shall see, some of these frames
exhibit the above large detached eddy situation and the concomitant flame
contortion, while others correspond to flame contortion due to growth of
shear layer modulations. Frame 19.0 shows the eddy at an early phase, but the
flame interface is quite contorted due to the downstream growth of
perturbations. Similarly, frame 39.0, in Fig. 5.1, exhibits significant
contortion due to shear layer eddies, both upstream and downstream, while the
recirculation zone eddy is at the downstream step. On the other hand, each of
the frames 22.0, 31.0, 43.5, shows a large detached eddy traveling
downstream, as described above, at the time of maximum heat release. As
mentioned in our above comparison between the inlet flow rate and step
pressure traces and the vorticity frames, this part of the shedding cycle,
exhibiting high heat release and a large detached eddy in the dump,
corresponds roughly to a maximum in the pressure. The correspondence between
the pressure peaks and heat release peaks is evident, at least for some of
the heat (volume) release peaks in Fig. 5.15, where the pressure and volume
release traces are superposed. l1n fact, Yu et. al. (1989) find that the rate
of heat release lags the pressure by roughly 1/4 of the period. Hence, the
heat release should peak shortly after the pressure does. At least three of
the peaks in Fig. 5.15 (times 7.0, 31.0, and 39.0) display this phase lag.
The time segment corresponding to the two peaks at times 31.0 and 39.0 is
blown up in Fig. 5.16a to illustrate this 1/4 period phase shift.

Furthermore, given the above demonstrated phase relationship between the
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pressure and the inlet flow rate, it is evident that the heat release is
roughly 1/2 period (180 degrees) out of phase with the inlet flow rate, as
shown in Fig. 5.16b for the same time segment in Fig. 5.16a.

The heat release minima, on the other hand, are found to correspond to
situations where the flame is least contorted. From Fig. 5.12, consider the
minima at times 15.5, 26.0, 28.0, 36.0, 42.0, and 46.0. The vorticity plots
at times 15.5, 26.0, 28.0, and 46.0 are shown in Fig. 5.17, while those at
36.¢c, and 42.0 are in Figq. 5.1. These frames illustrate the lower
fragmentation and contortion of the flame interface at these times, and hence
the lower heat release.

Finally, let us look at the flow rate leaving the combustor, namely Qout *
The variation of this quantity with time and the corresponding frequency
spectrum are shown in Fig. 5.18. The dominant frequency corresponds to
St=0.079+0.012 which is again in the vicinity of 0.1, this is expected since
both Qi and the volume release rate have been found to exhibit this Strouhal
number.

The significance of Qout is that it acts as a forcing function for the
downstream system components that may exhibit a characteristic acoustic
resonance response. Clearly, given this oscillation in Qut feeding into the
exit piping, the pressure at the exit plane (xmax) is not expected to be
fixed at atmospheric or any other pressure level. Instead, it must exhibit
oscillations that depend on the flowfield and geometry.

This brings us to the next topic. 1In order to investigate the effect of
having an oscillating exit pressure on the combustor dynamics, we conducted
the forcing study discussed in the next two sections. This study involves
imposing a specified exit pressure waveform, hence removing the effect of the
flow field on Pey’ but retaining the effect of Pey ©ON the combustor dynamics.

This is a simpler case to tackle as opposed to the fully coupled case.
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Figure 5.1 For caption see next page.
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Figqure 5.1 For capticn see next page.
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Figure 5.1 A sequence of time frames (continued from the previous page)
showing the combustor flow field, presented in terms of the vortex elements,
their velocity vectors, and the flame interface. The exit pressure is
atmospheric, fixed.
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For caption see next page.

Figure 5.2
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For caption see next page.

Figure 5.2
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Figure 5.2 A sequence of time frames (continued from the previous page)
showing the non-reacting flow field in the combustor geometry, presented in
terms of the vortex elements and their velocity vectors. The exit pressure is
atmospheric, fixed. The upstream boundary condition is, as with the reacting
flow case, a specified stagnation pressure.
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Figure 5.3 Time traces of the streamwise velocity at two points along the
top of the cavity, for the reacting flow field of Fig. 5.1. The numbers
identifying the station location are the x and y coordinates, respectively.
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Figure 5.4 Spectra of the streamwise velocity fluctuation, computed from
the time trace in Fig. 5.3, for the time period 10.0-50.0. The Strouhal
number used is based on the cavity depth and the mean inlet flow velocity for
the time period considered. The dominant peak is around St=0.1 in both plots.
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Figure 5.6 Spectra of the streamwise velocity fluctuation, computed from
the time trace in Fig. 5.5, for the time period 10.0-50.0. The Strouhal
number used is based on the cavity depth and the mean inlet flow velocity for
the time period considered. The dominant peak is around St=0.1 in both plots.
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Figure 5.9 The inlet flow rate at xmin plotted against time, for the
reacting flow of Fig. 5.1.
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Figure 5.10 (a)- The inlet flow rate and upstream step pressure plotted
against time, for the reacting flow of Fig. 5.1. (b)- A close up segment of
the plot in (a) for the time span corresponding to the shedding cycle in Fig.
5.1.
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the time period 10-50. The Strouhal number wused is based on the cavity depth
the time period considered. Both plots
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and the total number of flame segments (b), plotted against time, for the
reacting flow field shown in Fig. 5.1.
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10-50. The Strouhal number used is based on the cavity depth and the mean

inlet flow velocity for the time period considered. The dominant peak is
around St=0.1.
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Figure 5.14 Instantaneous frames of the reacting flow field of Fig. 5.1, at
times corresponding to heat release maxima in Fig. 5.12, depicting the flame
fragmentation and contortion at these times.
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Figure 5.16 (a)- A close up segment of the plot in Fig. 5.15 showing the 1/4
period phase difference between the step pressure and volume (heat) release
traces. (b)- The rate of volume release and inlet flow rate plotted for the
same time segment in (a). They are 1/2 period (180 degrees) out of phase.
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Figure 5.17 Instantaneous frames of the reacting flow field of Fig. 5.1, at
times corresponding to heat release minima in Fig. 5.12 depicting the
ralatively minor contortion and fragmentation of the flame interface at these
times.
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Figure 5.18 (a)- The volume flow rate out of the combustor, at xmax, plotted
against time. (b)- The corresponding spectrum computed for the time period
10-50. The Strouhal number used is based on the cavity depth and mean inlet
flow velocity for the time period considered. The dominant peak is around
St=0.1.
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5.2.2 High Frequency Forcing :

Our immediate objective in this and the following section is to examine
the operation of the combustor under specified conditions that include a
sinusoidal exit pressure with a given frequency and amplitude. We intend to
compare the flow dynamics for two cases that differ only in the amount of
heat release. This comparison is expected to provide some understanding of
the effect of increased equivalence ratio on combustor operation assuming a
specified pressure oscillation in the system.

In particular, in this section we consider a pressure oscillation that is
at a frequency significantly higher than the natural frequency observed
above, St=0.1. In the next section we consider a lower forcing frequency
closer to the natural frequency.

This high-frequency forcing study is intended to demonstrate that the
experimentally observed migration from high to low frequencies as the
equivalence ratio is increased is not due to the flow in the isolated dump
section, but rather it involves the whole system including upstream and
downstream configurations. Specifically, we demonstrate that increasing the
rate of heat release, under conditions of high frequency forcing, leads to
further dampening of the natural low frequency instability of the combustor.

To begin, let us consider the same geometry used above, namely: L/D=4,
H/D=1, xmin/D=-4, and xmax/D=4. We specify the following flow parameters:
Reu=104, Su/Ur-0.0S, po/pr-0.375. Relevant numerical parameters include
AS/D=O.0095 for both cases, while hS/D=1/3,1/4 and rh/Uan0.0278,0.0208 for
the low and high heat release cases respectively. The exit pressure is
specified as a cosine function of amplitude pmx=2.5, and frequency, ff, such
that ffD/Ur=0.4. The only significant difference between the two cases is the
density ratio across the flame. For the low heat release case, we use

pu/pb=l.5, while we double this ratio for the high heat release case :
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pu/pb=3.0. In the next section we attain the same objective of higher heat
(volume) release rate by increasing the burning speed rather than the density
ratio. The amount of volume generated at the flame front per time step is
proportiocnal to : Su(pu/pb—l). Consequently, since (pu/pb—l) is increased
from 0.5 to 2.0, we expect to see a corresponding four-fold increase in the
rate of heat release.

We look first at the low heat release case.

The forcing pressure function at the exit section of the combustor, Pox

and the resulting step pressure trace, are shown in Fig. 5.19.

Pstep’

Clearly, the dominant oscillation in P is at the forcing frequency. The

step
two traces are seen to be in phase. This is expected since, apart from the
density jump across the flame front, the flow is incompressible and the
pressure drop within the combustor 1is due to friction and flow acceleration

or decceleration. The flow rate into the combustor, Q.

in’ which is plotted

versus time in Fig. 5.20, is initialized at 1.0 (dimensionless) and then
settles down to a mean value of 0.66. It exhibits organized high frequency
oscillation around this mean, with visible low frequency modulation. Again,
the dominant oscillation is at the forcing frequency. The spectra of Q5 and
Pstep’ shcwn in Fig. 5.21, indicate this dominance of the forcing frequency
at St=fD,/U=0.603+0.009 (i.e. fD/Ur=0.4). A small peak exists in both traces
at St=0.115+0.009. The relative amplitude of this peak, with respect to that
at the forcing frequency, is higher in the Q,, spectrum than in the Pstep

spectrum. This reflects the more prominent low frequency modulation observed

in the time trace of Qin’ Fig. 5.20, as compared to the PS trace in Figq.

tep
5.19a. As we shall see below, this St=0.115 peak and the associated low
frequency modulation is due to the natural instability of the recirculation

zone analyzed in Section 5.2.1.
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A close up view of the superposition of the Qin and Pstep traces is shown
in Fig. 5.22. The organization of the flow oscillations due to forcing is
evident in the repeated consistent phase lag of 1/4 period between the two
traces. This phase shift corroborates our above observation in the unforced
case.

The rate of heat release and the total flame length are plotted versus
time in Fig. 5.23. The correlation between the two traces is evident, as in
the unforced case. Spectral analysis of the heat release trace is shown in
Fig. 5.24. As expected from the time trace, the forcing frequency is not
dominant. Rather, most of the energy is concentrated at low frequencies with
a significant amplitude distributed broadly around St=0.1. As we shall see
below, this is a manifestation of the fact that the shear layer eddies, which
are observed to shed reqularly at forcing frequency, merge together or with
the large recirculation 2zone eddy so that the overall burning rate is
governed more by the low frequency dynamics than by the high frequency
forcing. Finally, the flow rate at the exit plane, Qout' is plotted along
with its frequency spectrum in Fig. 5.25. Both the forcing frequency,
St=0.603, and the low frequency modulation, at St=0.115, are evident in both
plots.

Let us now look at the same global diagnostics, for the high heat release

case. The pressure traces, and Py’ are shown in Fig. 5.26. The

Pstep
amplitude of the pressure oscillation at the step as well as its mean value
are higher than the corresponding quantities in the low heat release case. As
we shall see below, this is a manifestation of the higher flow rate, Qout'
leaving the combustor in the high heat release case because of the higher

rate of expansion at the flame front. This increase in due to the

Pstep'
higher heat release at the flame, causes a smaller inlet flow rate, Qin' into

the combustor from the upstream reservoir whose stagnation pressure has been

204



held constant. The plot of Q;, Vversus time, shown in Fig. 5.27, illustrates
this fact. The mean value of Qin after time 10.0, is found to be 0.44, which
is significantly less than the vlaue of 0.66 found in the low heat release

case. The spectra of Qn and P are shown in Fig. 5.28. They indicate,

step
again, a dominant high frequency peak at the forcing f£frequency,
St=£fD,/U=0.924+0.011, i.e. fD/Ur-0.4. Comparison with Fig. 5.21 shows that the
effect of increased heat release was to broaden the low frequency peak around
St=0.1, as well as to increase the amplitude of the high frequency peak. This
suggests that increasing the heat release tends to stabilize the natural low
frequency dynamics of the flowfield, that 1is, to shift more of the flow
energy into the small scales and out of the large scales. This is verified
below in the detailed observation of the vorticity field.

The phase shift between Qin and P is still observed to be 1/4 of the

step
forcing high frequency period of oscillation, as in Fig. 5.29.

The rate of heat release is found to be roughly four times that measured
in the low heat release case. This is expected, as long as the overall flame
length does not change significantly between the two cases, since the rate of
expansion at the flame is proportional to Su(pu/pb—l). The time traces of the
heat (volume) release and flame length are shown in Fig. 5.30. The heat
release spectrum is shown in Fig. 5.31, and it indicates the same kind of low
frequency dominance measurecl in the low heat release case. The peaks here are
higher because of the increased rate of expansion at the flame. The overall
flame length, or number of flamelets, is decreased slightly due to the higher
rate of heat release, as evident from a comparison of Figs. 5.23b and 5.30b.
This can be explained by observing the sequence of frames of each flow field,
shown below in Figs. 5.33 and 5.36 for the low and high heat release cases

respectively. The larger amplitude of the recirculation zone instability in

the low heat release case, and the associated large eddies in the
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recirculation zone, cause more entrainement of reactants and contortion of
the flame than in the high heat release case, where these natural dynamics
are dampened. This decrease in flame length, due to an increase of pu/pb, is
evidently not significant enough to offset the tendency toward an increase in
the overall rate of heat release from the combustor.

The time trace and spectrum of Q. 2re shown in Fig. 5.32. The
oscillation of Qout is at a higher mean in this case despite the smaller mean
Qin' This is due to the 4-fold increase in the rate of high release. The
amplitudes of both the high and low frequency peaks in Fig. 5.32b are also
higher than those in Fig. 5.25b due, in part to higher heat release as well
as, in the case of the high frequency peak, to the more organized nature of
the forced Qin oscillation at that frequency.

Let us now examine the flow dynamics for each of the two cases of low and
high heat release, using time frame sequences depicting the flow field in
terms of the vortex elements and the flame interface. We begin with the low
heat release case. Consider the sequence of frames in Fig. 5.33a. This
sequence displays the high frequency shedding of shear layer eddies that are
more organized than those observed in the unforced case above. This increased
organization is due to the pressure forcing. The eddies are seen to cause
definite "small" scale modulations of the flame interface. Of much more
consequence, however, is the persistent low frequency, large scale, natural
dynamics of the cavity flow. These are manifested in the large recirculation
zone eddy shedding observed in Fig. 5.33b. One shedding cycle extends roughly
from 26.0 to 40.0. Hence, with a period of ~14. The flow dynamics involve a
superposition of small scale shear layer eddies generated at the shedding
frequency and large scale recirculation zone eddies produced at the natural
low frequency mode of the combustor. This result is corroborated by the u-

velocity traces at x/D=+1.0, y/D=1.0, shown in Fig. 5.34, and their
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corresponding spectra in Fig. 5.35. The highest peak in both spectra is at
St=fD/U=0.115+0.009, (i.e. at fD/Ur=0.076, since U/Ur=0.66 for the time
period 10-62.75 considered.) This translates into a period of 13.2, which
corresponds to the large eddy shedding in Fig. 5.33b. The second highest peak
in the spectra of Fig. 5.35 1is that at St=fD/U=0.603+0.009, i.e. fD/Ur-0.40,
which is the forcing frequency. This corresponds to a period of 2.5, which is
evidently the period of forced shear layer eddy shedding. This can be seen in
Fig. 5.33a between frames 32.0 and 34.5, for example.

Therefore, we see that, in the low heat release case, the natural
dynanics of the recirculation zone persisted significantly despite the higher
frequency forcing. The natural frequency of the flowfield was close to 1/5th
of the forcing frequency (0.115/0.603=1/5.24).

The results of the high heat release case are quite different. The
dynamics are illustrated in the sequence of frames in Fig. 5.36a and 5.36b.
The frame sequence in Fig. 5.36a illustrates similar high frequency shear
layer eddy shedding, as in the low heat release case. However, the large
scale eddy shedding from the recirculation zone has been virtually suppressed
due to the increased heat release, as can be seen in Fig. 5.36b. The
recirculation zone 1is still wunstable, but the corresponding eddies are
relatively incoherent, and small compared to those in the low heat release
case. The period of these eddies is roughly 22, extending from time 28 to 50
in the sequence of Fig. 5.36b. This would give a frequency of fD/Ur=0.045, or
fp/U=0.1, given that U/Ur-0.44. The u-velocity traces and spectra are shown
in Fig’'s 5.37 and 5.38 respectively. The reduced unsteadiness in the
vorticity plots is reflected in the lower amplitude oscillations in the u-
traces, and the corresponding lower amplitudes of the peaks in the spectra.
Of significance is that the peak at St=0.1 1is no longer dominant, as would

have been expected from the wvorticity plots. The dominant peak at
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St=£fD,/U=0.924+0.011 corresponds to fD/Ur=0.4, which is the forcing frequency.
This corresponds to a period of 2.5, which is again that of the forced shear
layer eddies, as is evident from Fig. 5.36a - frames 32 to 34.5, or 36 to
38.5. In particular, frames 32 to 34 demonstrate the growth and downstream
propagation of flame modulations caused by the forced high frequency shear
layer eddy shedding. Vaneveld et. al. (1982) report shclieren pictures of an
experimental cavity-type dump combustor under conditions of relatively stable
high frequency operation that show similar growth and propagation of flame
modulation along the top of the cavity.

The above results indicate that the increase in heat (volume) release
leads to the stabilization of the flow, as in the unforced case. Further,
increasing the heat release causes a shift towards higher frequencies for
dominant dynamics, given high frequency forcing. Hence, this isolated dump
(without an acoustically coupled downstream system) cannot cause a transition
to lower frequency dominance due to increased heat release. Rather, the
opposite is true; under high frequency forcing, the natural low frequency
dynamics tend to die out as the heat release increases, as in the unforced
case.

It is interesting to note that the position of the flame front with
respect to the boundary of the shear layer, or the zone of intense vorticity,
depends on the rate of heat release. At low heat release, the flame is
essentially tangential to the local streamlines and is stabilized on the
boundary of the vorticity zone. The cross-stream distance between the flame
front and the boundary of the vorticity zone grows donstream. However, the
flame remains almost tangential to the local streamlines. In the high heat
release, case, the flame is attached to the zone of high vorticity
concentration only upstream and near the step. Downstream, the flame front

moves away from the vorticity zone and into the free stream where streamlines
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are essentially straight and parallel lines. This explains the observed flat,
horizontal, flame interface away from the step in Fig. 5.36.

Results of high frequency forcing emphasize our previous conclusion that
heat release stabilizes shear flows. It 1is evident that the favourable
pressure gradient produced by the exparnsion «f the flow as it accelerates to
accomodate the extra volume can delay the rollup of the shear layer and
suppress the recirculation zone mode. As we will show in the next section,
this is true only in case of hign frequency forcing, when the recirculation
zone mode is not energized. The effect of the favourable pressure gradient on
the stabilization of the boundary layer on the top wall is also apparent in
all cases.

In the next section we examine the effect of increased heat release on

the flow dynamics ' nder conditions of low frequency forcing.
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Figqure 5.19 The pressure trace (channel centerline) at the upstream step (a)
and the specified exit pressure trace (b) plotted versus time, for the low
heat release flow of Fig. 5.33 below.
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Figure 5.20 The inlet flow rate at =xmin plotted against time, for the low
heat release flow of Fig. 5.33 below. The mean flow rate for the time period
from 10 to 62.75 is 0.66.

211



8.28
8.18
Z0.18
o
50.14
g a.12
g.10
]
— 9.08
5
= 0.
g 28
C 0.04
0.82
8.c0

1.4
1.2
1.0
0.8
8.6
0.4

g.2

FLUCTUATION AMP. OF (PSTEP-PATM)

T T T | J

T LS

[ L

8.0 6.1 2.2 8.3 2.4 0.5 8.6 0.7 0.8 8.9

STROUMAL NUMBER
PEAKS- 0.603 ©0.115 0.229

(a)

1.0

B —uczsrn;n—-JTJJdn—L“qux -

8.0 9.1 0.2 8.3 0.4 0.5 4.8 0.7 6.8 0.9
STROUHAL NUMBER
PEAKS- 2.603 0.488 @.115
(b)

Figure 5.21 Spectra of the inlet flow rate
(b), computed from the corresponding time traces in figures 5.20 and 5.19a,
for the time period 10-62.75. The Strouhal number used is based on the cavity
depth and the mean inlet flow velocity for the time period considered. Both
plots exhibit a dominant peak at St=0.6, and a smaller peak around St=0.1.
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Figure 5.22 A close up segment of the step pressure and inlet flow rate
superposed time traces for the low heat release flow of Fig. 5.33 below.
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Figure 5.23 The rate of volume release (heat release) in the combustor (a),
and the total number of flame segments (b), plotted against time, for the low
heat release flow field shown in Fig. 5.33 below.
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Figure 5.24 Spectrum of the rate of volume release (heat release) in the
combustor, computed from the time trace in Fig. 5.23a, for the time period
10-62.75. The Strouhal number used is based on the cavity depth and the mean
inlet flow velocity for the time period considered.
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Figure 5.25 (a)- The volume flow rate out of the combustor, at xmax, plotted
against time, for the low heat release flow of Fig. 5.33 below. (b)- The
corresponding spectrum computed for the time period 10-62.75. The Strouhal
number used is based on the cavity depth and mean inlet flow velocity. The
dominant peak is at St=0.6, while a smaller peak lies around St=0.1
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Figure 5.26 The pressure trace (channel centerline) at the upstream step (a)
and the specified exit pressure trace (b) plotted versus time, for the high
heat release flow of Fig. 5.36 below.
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Figure 5.27 The inlet flow rate at xmin plotted against time, for the high
heat release flow of Fig. 5.36 below. The mean flow rate for the time period
from 10 to 54.25 is 0.44.
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Figure 5.28 Spectra of the inlet flow rate (a) and upstream step pressure
(b), computed from the corresponding time traces in figures 5.27 and 5.26a,
for the time period 10-54.25. The Strouhal number used is based on the cavity
depth and the mean inlet flow velocity for the time period considered. Both
plots exhibit a dominant peak at St=0.9, with a broad spectrum at low St.
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Figure 5.29 A close up segment of the step pressure and inlet flow rate
superposed time traces for the high heat release flow of Fig. 5.36 below.
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Figure 5.30 The rate of volume release (heat release) in the combustor (a),
and the total number of flame segments (b), plotted against time, for the
high heat release flow field shown in Fig. 5.36 below.
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Figure 5.31 Spectrum of the rate of volume release (heat release) in the
combustor, computed from the time trace in Fig. 5.30a, for the time period
10-54.25. The Strouhal number used is based on the cavity depth and the mean
inlet flow velocity for the time period considered.
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Figure 5.32 (a)- The volume flow rate out of the combustor, at xmax, plotted
against time, for the low heat release flow of Fig. 5.36 below. (b)-~ The
corresponding spectrum computed for the time period 10-54.25. The Strouhal
number used is based on the cavity depth and mean inlet flow velocity for the
time period considered. The dominant peak is at the forcing St, St=0.9.
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Figure 5.33a For caption see next page.
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Figure 5.33a A sequence of time frames of the combustor flow field at low
heat release, illustrating the fast shear layer eddy shedding at the forcing
frequency. The exit pressure is a specified sinusoidal function of time, at
fDVUr=0.4, i.e with a period of 2.5.
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Figure 5.33b For caption see next page.
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Figure 5.33b A sequence of time frames of the combustor flow field at low
heat release, illustrating the slow recirculation zone eddy shedding at the
natural frequency. The exit pressure is a specified sinusoidal function of

time, at fD/Ur=0.4.
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Figure 5.34 Time traces of the streamwise velocity at two points along the
top of the cavity, for the low heat release flow field of Fig. 5.33. The
numbers identifying the station location are the x and vy coordinates,
respectively.
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Figure 5.35 Spectra of the streamwise velocity fluctuation, computed from
the time trace in Fig. 5.34, for the time period 10.0-62.75. The Strouhal
number used is based on the cavity depth and the mean inlet flow velocity for
the time period considered. The dominant peak is around St=0.1 in both plots,
with a smaller peak at the forcing frequency, St=0.6.
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Figure 5.36a Continued on next page,
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36a For caption see next page.
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Figure 5.36a A sequence of time frames of the combustor flow field at high
heat release, illustrating the fast shear layer eddy shedding at the forced
frequency. The exit pressure is a specified sinusoidal function of time, at
fD/Ur=0.4, i.e. with a period of 2.5.
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Figure 5.36b Contirued on next page, caption at end of sequence.
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Figure 5.36b For caption see next page.
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Figure 5.36b A sequence of time frames of the combustor flow field at high
heat release, illustrating the slow recirculation zone eddy shedding at the
natural frequency. The exit pressure is a specified sinusoidal function of

time, at fD/Ur=0 .4.
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Figure 5.37 Time traces of the streamwise velocity at two points along the
top of the cavity, for the high heat release flow field of Fig. 5.36. The
numbers identifying the station location are the x and y coordinates,
respectively.
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Figure 5.38 Spectra of the streamwise velocity fluctuation, computed from
the time trace in Fig. 5.37, for the time period 10.0-54.25. The Strouhal
number used is based on the cavity depth and the mean inlet flow velocity for
the time period considered. The dominant peak is around St=0.9, the forcing
St, in both plots.
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5.2.3 Low Frequency Forcing :

We now examine the effect of heat release on the combustor dynamics,
given low frequency forcing of the exit pressure, Pay- We consider three
cases that differ only in the amount of heat release. As we shall see below,
and contrary to what was observed above under high frequency forcing, the
effect of increasing the rate of heat release is to amplify the flow
oscillations in the combustor leading to flashback and flcw reversal in the
inlet channel.

We use the same geometry as above. Namely : L/D=4, H/D=1l, xmin/D=-4, and
xmax,/D=4. Relevant flow parameters are : Reu=104, pu/pb-4.0, and po/pr-l.o.
All cases use the following set of numerical parameters : hs/D-1/3,
AS/D-O.OOQS, and rm/UrD-0.02778. The exit pressure is specified to be a
cosine function of time with amplitude pmx-2.5, and frequency ff such that
ffD/Ur-O.l. The only difference between the three cases is the value of the
normal burning speed of t