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THE HYDROLOGY OF FRACTURED ROCKS:
A Literature Review

ABSTRACT

Recent literature on the quantitative description of flow in fractured
rocks is reviewed with emphasis on modeling approaches and their conceptual
framework. The relationships of modeling results to laboratory and field
observations is also emphasized. The review is organized in terms of the
following three categories: fracture characterization, hydraulics of
fractured rocks, and solute transport in fractured media. It is found
that there are several probabilistic models which seem to adequately
characterize three-dimensional fracture geometry, but it is not clear
how well these models represent fracture interconnection. The theory for
hydraulic behavior of extensively fractured systems is well established but
no workable theory has been developed for non-extensive three-dimensional
fracture networks. The question of when the flow in a discrete fracture
network can be treated as a hydraulic continuum remains unresolved. Matrix
diffusion models of solute transport are conceptually attractive and have
been developed extensively. However, it has not been shown by direct field
observations that the matrix diffusion mechanism is important in the field.
No theoretical approach has been advanced for treating solute transport in
three-dimensional fracture networks.
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CHAPTER 1

INTRODUCTION

Fractured rock hydrology is largely an unresolved field. In spite

of the fact that it has many applications (water supply, hot dry rock

energy extraction, high level radioactive waste isolation) and

researchers have been working on these problems for over fifteen years,

large gaps exist in the general understanding of the field and what is

known is scattered through many different papers. In this report the

available literature is examined in the context of conceptual

frameworks, modeling approaches and the relationship of theories to

published lab and field data.

We begin with the lowest-order problem, that of characterizing a

fractured formation. Methods are discussed for determining such bulk

parameters as conductivity and porosity and parameters relating to

fractures, such as spacing and aperture. Typical field data for these

parameters is presented, especially when it indicates the form of a

probability distribution.

A higher-order problem is finding the flow through such a

formation. Ultimately, what we would like is a theory which predicts

values of the bulk parameters from the fracture parameters. This is

done for many special cases of fracture network geometry, but not for

the general case. It is not even clear if such a theory must always

exist, as will become apparent from the discussion of when a fractured

regime may be represented by an equivalent porous medium.
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The highest-order problem is the analysis of solute transport. The

knowledge in this area is very limited, being restricted to continuum

analyses which ignore the fractured nature of the medium, and matrix

diffusion models with simple geometry.
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CHAPTER 2

CHARACTERIZATION OF FRACTURED FORMATIONS

2.1 Bulk Parameters

The bulk parameters which one most commonly measures in the field are

hydraulic conductivity and porosity.

The hydraulic conductivity of small volumes of rock is usually measured

using some type of borehole test. The tests used do not differ much from

porous medium tests and, in fact, give values of conductivity as if the

fractured medium were replaced by an equivalent anisotropic porous medium.

Wilson et al. (1979) summarized these tests, of which there were four types:

i. pump test

ii. constant head injection test (packer test)

iii. slug test

iv. pulse test

Figure 1 shows the ranges of hydraulic conductivities which can be measured by

each test.

In the pump test and its variants water is pumped from the aquifer at a

constant rate, and drawdown in the pumped well and in an observation well are

observed. Standard type curves for confined, phreatic, leaky, etc., aquifers

can then be used to find the bulk hydraulic conductivity of the fractured

reservoir. Snow (1966) and Hsieh et al. (1983) described ways to measure

hydraulic anisotropy with packer tests.

9
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Figure 2.1 Ranges of hydraulic conductivity (permeability)
for various borehole tests (from Wilson et al.,
1979).
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Constant head injection tests are used very widely in fractured

environments. The excess pressure in the well is kept constant until steady

flow is achieved. Flow rate should vary linearly with pressure, with

hydraulic conductivity calculated from the slope. Maini et al. (1972)

described several practical suggestions for use of this test.

In slug tests, a certain amount of head is added to the wellbore and the

hydraulic conductivity is found from the transient response as this head is

dissipated. The pulse test is conceptually the same, but is designed for much

lower conductivities. The pulse test has been analyzed theoretically (Wang

et al. 1978; Hsieh et al. 1981; Neuzil et al. 1981) but it is not clear how

well it performs in the field. Davison et al. (1979) measured the hydraulic

conductivity of several sections of borehole using the pulse test and packer

tests. Figure 2 shows the results. The pulse test did not consistently give

the same values as the packer test. Forster and Gale (1981) tried the test at

Stripa, Sweden, but also could not get good results. They discussed several

reasons why this may be.

Different techniques must be used when determining the hydraulic

conductivity of large volumes of rock. Gale et al. (1982) describe a

large-scale test which was run at Stripa. Seepage into a mine tunnel was

measured by observing the changes in moisture of the ventilation air. Thus,

by measuring or estimating the local gradient around the tunnel, an estimate

of hydraulic conductivity may be obtained. The results are given by Wilson

et al. (1983) who reported an equivalent porous medium conductivity of about

10-10 m/s in a volume of 2 x 105 m3 of rock. They also observed a "skin"

11
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Figure 2.2 Comparison of the equivalent rock mass hydraulic
conductivity values obtained from transient
pressure pulse tests, constant pressure fluid
injection tests and laboratory permeability tests
of unfractured core samples (from Davison, et al.,
1979).
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of lower conductivity rock immediately surrounding their tunnel. The

authors speculated that this skin could have been caused by two-phase

flow near the tunnel, compressive stresses in the rock and/or chemical

precipitates left by evaporating water. It would be interesting to compare

the results to some aggregate value of the many packer tests run in the

same volume.

Lindblom (1979) described a similar experiment at a liquid natural gas

storage cavern elsewhere in Sweden. The conductivity of a large mass of

overlying rock was measured in three ways. First, seepage into the cavern

was measured under natural conditions. The gradient was estimated using

flow nets, and thus an estimate of hydraulic conductivity was obtained.

The second measure of hydraulic conductivity involved measuring the seepage

into the cavern when the vertical gradient above it was increased. This

was done by injection at constant head into many horizontal boreholes

located a short distance (~15 m) above and spanning the horizontal extent

of the cavern. The measures of conductivity for these two methods were

1.1 x 10-8 m/s and 4.2 x 10-8 m/s, exhibiting good agreement. Their

third measure of hydraulic conductivity involved taking the arithmetic

mean of the conductivities found with packer tests at small intervals along

a vertical and an inclined borehole above the cavern. This average value

agreed with the first two methods, although the agreement may be

accidental, as the geometric mean should probably have been used.

13



Burgess et al. (1979) have provided a summary of field data relating

hydraulic conductivity with depth (Figure 3) and fitted the empirical

function

log K = -5.57 + 0.362 (log Z) - 0.978 (log Z)2 + 0.162 (log Z)3 (1)

where K is the in conductivity m/s and Z is the depth in meters below the

overburden of the fractured rocks. Maini and Hocking (1977), however,

pointed out the inadvisability of extrapolating data of this type below

150 m.

Specific storage can also be measured using standard transient-type

well tests. Hsieh et al. (1983) reported values of specific storage

ranging from 2 x 10~7 to 2 x 10-5 m~l. Carlsson et al. (1979)

reported values measured at Stripa ranging from 2 x 10-8 to 5 x 10-8

m-1 .

There are two kinds of porosity in a fractured reservoir. The primary

porosity is due to the spaces between the grains of the fractured material,

and the secondary porosity, or fracture porosity, comes from the volume of

the fractures in the material. It is usually the fracture porosity which

accounts for most of the flow through such a region. Therefore, tracer

tests based on continuum analyses, by far the most common measurement of

effective porosity, measure only fracture porosity.

Lundstrom and Stille (1978) used tracer techniques at Stripa,

reporting an effective porosity of 1.3 x 10~4. Webster et al. (1970)

used a two-well tracer test at the Savannah River Plant in South Carolina,

obtaining an effective porosity of 8 x 10~4. From the breakthrough curve

14



1610
0r

50-

E

100

150

ROCK MASS PERMEABILITY, km (m /sec)

10 10 a 0 160 0

Figure 2.3 Hydraulic conductivity versus depth
(from Burgess et al., 1979).

15

/7. /A

//:,
VIe

EMPIRICAL FUNCTION (6)Iog K=-5.57+0.362 (Iogz)
-0.978(log z )
40.167(logz) 3

/+
'f/ill



(Figure 15), we see that the 50% breakthrough is twice as soon as they

estimated. Thus we suspect that the actual effective porosity is somewhat

lower. Bartolami et al. (1979) monitored infiltration of environmental

isotopes through Mont Blanc, France, to obtain an estimate of effective

porosity in the range of 8.9 x 10-3 to 1.6 x 10- 2 , much higher than

the above data. Finally, Whincup and Domahidy (1982) reported values of

specific yield for phreatic fractured reservoirs ranging from 2.4% to

8.6%. These high values are most likely due to extensive weathering

commonly found in the upper regions of rock formations.

Unfortunately, no attempt has been made, to our knowledge, to

correlate porosity measurements based on tracer tests, with direct

calculations based on known or assumed fracture geometry.

2.2 Fracture Parameters

We consider here the methods reported in the literature for measuring

five types of data commonly used in deterministic or probabilistic

representations of fracture networks. These are the location,

orientation, spacing, aperture and size of fractures or fracture sets.

The simplest method of locating fractures is by direct observation on

an outcropping or excavation. Fractures in boreholes may be located using

TV cameras. Alternatively, cores or integral samples (Rocha and Franciss,

1977) may be inspected.

Packer tests can be used to find fractures in a borehole, with a

non-zero flow indicating the presence of one or more fractures. However,

Marine (1979) pointed out that individual fractures are difficult to

16



isolate due to limited resolution in packer placement. He described a

method of locating fractures by the loss of gamma emitters into joints

during injection. Nelson et al. (1980) used this method at Stripa, but

encountered difficulties due to the natural occurrence of 2 2 2Ra.

Orientation is usually observed visually in outcrops. Typically,

equal-area stereographs are made of pole densities to illustrate the trends

found in a particular area (Bianchi and Snow, 1968; Saari, 1979; Gale, et

al., 1982; Forster and Gale, 1981; Kiraly, 1969). Figure 4 shows one such

stereograph from Bianchi and Snow (1968), exhibiting the characteristic

grouping of fractures into sets with similar orientations.

Baecher (1983) described a geometric bias in orientation sampling.

Joints which are parallel to a sampling line are less likely to be observed

than those which are perpendicular (Figure 5). To account for this, a

weighting factor of 1/sin a should be used, where a is the angle between

the sampling line and the normal to the fracture.

Kiraly (1969) presented a method of calculating the directional

variance of pole density about a mean orientation. Baecher (1983), based

on data from 25 joint surveys (15,000 joints), concluded that no analytical

form of probability density function (PDF) fit field orientation data very

well, but that the Bingham and bivariate (elliptical) Fisher probability

density functions fit best.

Fracture spacing is an important parameter for estimates of porosity,

hydraulic conductivity and solute transport. It can be measured directly

on outcrops or excavations or by inspection of cores. In addition, Snow

(1970) developed a method for finding fracture spacing based on the

frequency of zero-flow packer tests on isolated sections of a borehole.

17
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EOUAL AREA DIAGRAM
(lower hemisphere)

Figure 2.4 Equal area stereographs showing three
approximately normal joint sets, A, B

and C (from Bianchi and Snow, 1968).
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stereonet based on exclusively vertical boreholes shows the
geometric bias. The contoured values are in percent of
points per one percent surface area (Gale et al., 1982).
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Baecher's (1983) survey found that 92% of the data on spacing fit the

exponential probability distribution. In his paper, though, he does not

distinguish between three different definitions of spacing:

(i) the separation of the intersections of any joints with a

sampling line,

(ii) the separation of the intersections of the joints in one

joint set with a sampling line, and

(iii) the spacing defined by (ii), multiplied by the cosine of the

angle between the sampling line and the pole of the average

plane of the joint set.

Hudson and Priest (1979) also found exponential fits with their

spacing data, but they did not apply any statistical inference tests. On

the contrary Gale et al. (1982) reported that the exponential distribution

did not satisfy goodness-of-fit tests but that the lognormal distribution

did. They used the third definition of spacing. Hudson and Priest (1983)

presented an analysis capable of reconciling the three definitions.

Lapointe (1980) evaluated spatial correlation scales for fracture

frequency.

Field measurement of fracture apertures may only be done indirectly,

using borehole hydraulic tests. Assuming only one fracture intersects the

test interval, a packer test will yield an aperture as a function of the

hydraulic conductivity by using the "cubic law." If more than one fracture

actually intersects the test interval, then this method will overestimate

the aperture of either fracture (Gale 1982). The pulse test mentioned

20



above should in theory be able to calculate fracture apertures from the

transient pressure decay curve but, again, it has yet to work in the

field. Bower (1983) presented a similar analysis capable of measuring

apertures from the amplitude and phase of well tides.

In the lab, Witherspoon et al. (1980) used strain measurements on

whole and jointed rock to infer apertures.

Snow (1968a, 1970) has been the major source of field data on

apertures. Figure 6 shows the general trend of decreasing aperture with

depth. In addition, apertures invariably follow a lognormal distribution,

although the mean and variance change with depth (Figure 7).

All of the data reported in the literature on fracture size, or

persistence, is given in the form of trace lengths, the intersections of

fractures with sampling planes. No one has ever measured the area of a

fracture, although this would seem to be the primary indication of the

persistence of a fracture. Admittedly, it is not obvious how this could be

done. Therefore, we are limited to measuring trace lengths on outcroppings

and excavations.

Baecher and Lanney (1978) describe three biases in trace length

surveys: geometric bias, censoring bias and truncation bias. Geometric

bias represents the fact that longer trace lengths are more likely to be

sampled. This bias is linear and has the curious effect of transforming

most probability density functions into approximately lognormal form

(Figure 8). Thus, lognormality may be an artifact of sampling procedures.

Censoring bias accounts for the fact that the longest trace lengths cannot

be completely measured, as one or two ends of the trace may be out of the

21
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sampling region (or out of view). This would tend to distort sample means

and variances. Truncation bias, relatively less important than the other

biases, accounts for the possibility that very small joints may be

neglected.

Baecher (1983) concluded that the log-normal distribution best fits

unbiased trace length data. On the other hand, Gale et al. (1982)

accounted for biases in sampling trace lengths at Stripa, and found that

the exponential distribution fit very well.

The whole point of trace length surveys is to gain some information on

the persistence of the fractures in a region and, hence, on the degree of

inter-connectivity. Thus, some researchers have found it desirable to

develop three-dimensional fracture models whose parameters (hopefully few

in number) may be inferred from the trace length probability density

function.

Veneziano (1978) proposed a model of jointing based on a Poisson plane

process in space. Each plane is divided into polygons by random lines

(also Poisson processes) and each polygon is assumed to represent either

intact rock or a discontinuity (i.e., fracture). This model would produce

exponential spacing and trace length probability density functions.

25



CHAPTER 3

FRACTURED ROCK HYDRAULICS

3.1 Single Fracture Hydraulics

The simplest model of the flow through a single fracture is the

analogy with Poiseuille flow between two infinite smooth parallel plates.

This is the model proposed by Snow in a series of papers in the late 1960's

(Snow, 1966, 1968a, 1968b, 1968c, 1969, 1970; Bianchi and Snow, 1968). In

this type of flow, the vertically-averaged velocity, V., is given by

-- b g
v =3 J. (3)i 3v i

where b is the fracture's half-aperture, g is the gravitational

acceleration, v is the fluid's kinematic viscosity and Ji is the

hydraulic gradient.

Thus, for a unit width of fracture, the total flow is given by

3

Q. = v b = J., (4)
1 i 3V i'

which is the well-known "cubic law" relating flow to aperture. We are then

led to the definition of fracture hydraulic conductivity, Kf, as

2
K =bg (5)f 3v

26



The other type of model commonly used is that of circles positioned

randomly in space. Baecher et al. (1978) assumed that the joints are

randomly distributed in space, and also randomly oriented. Then, if the

radii are assumed to be lognormally distributed, trace lengths will be

approximately lognormal also. Dienes (1979), on the other hand, assumed an

exponential distribution for the radii. He then solved the inverse

problem: Given P(Z), the number of trace lengths greater than length t,

the PDF of joint radii, n(c), is given by

n(c) = 2 d o C 2 P( ,d (2)
i dc c t(2 - 4c )

which may be integrated numerically. This approach seems promising.

Note that in this section, we have emphasized the probabilistic nature

of the field data. This is important, because probability density

functions of fracture parameters contain a lot of information, yet do not

attempt to explicitly account for each individual fracture, a hopeless

task. In order to condense this information of parameter distributions, we

provide Table I, which lists the distributional forms found from actual

data, as reported by the papers cited.

27



Table 3.1 Fracture Parameter Distributions

Spacing Orientation Aperture

Baecher (1983)

Bianchi and
Snow (1968)

Gale et al.
(1982)

Hudson and
Priest (1979)

Kiraly (1969)

lognormal

exponential

I 4 4

exponential

lognormal

exponential

bivariate
Bingham

Fisher;

non-analytic

lognormal

28
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This is the hydraulic conductivity of only that volume of space occupied by

fractures. Bulk hydraulic conductivity for the entire medium is considered

later.

For a fracture oriented arbitrarily in three-dimensional space, let

ni be the unit vector normal to the fracture plane. If Ii is the

hydraulic gradient across a volume of rock containing the fracture, then

Jj is given by the projection of Ii on the fracture plane (Figure 9):

J. = (S.. - n n.) i (6)
J ij i j

and thus 2
vj 3v (6 . n 1 n ) (7)

gives the average fluid velocity vector for an arbitrary orientation of

the fracture and the hydraulic gradient.

In the case that the fracture walls are considered to have a finite

roughness, Castillo et al. (1972) suggests that the known relationships

between friction factor and Reynolds number for flow in circular pipes be

used, with the definition of the Reynolds number as

R = (8)
V

29



field hydraulic gradient, Ij

component of
.----''hydraulic

gradient normal
to fracture,
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=-i (8ij - nj nj)

fracture plane

Figure 3.1 Projection of the hydraulic gradient I.; onto the plane of
the fracture with unit normal vector n (after Snow, 1969).
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Alternatively, Rocha and Francis (1977) report Louis' (1969) empirical

result

2
K bg1 1 (9)
f 3v 1 + 8.8 r1.5)

where r is the relative roughness of the fracture walls.

Of course, we know that fracture walls are not perfectly parallel,

since a fracture will conduct flow even while the walls are subjected to

normal stress. There must, then, be places of contact where this stress is

endured, while other areas are not in contact, permitting flow.

Pratt et al. (1977), studied the stress dependence of flow in three

granite fractures in the field. They found that even after the fracture

was closed, in that its modulus of elasticity was the same as for intact

rock, a significant amount of flow was still occurring. At low stress, the

fracture flow varied enormously, presumably due to the cubic relationship

between flow and aperture. However, for stresses above 30 bars, there was

little or no decrease in flow for large increases in stress (Figure 10).

Laboratory tests by Nelson and Handin (1977), Kranz et al. (1979),

Gangi (1979) and Witherspoon et al. (1980) have all confirmed this

behavior.
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Gangi (1978) developed an analysis which uses an assumed distribution

of asperity heights within a fracture to calculate fracture conductivity as

a function of stress. He assumed the distribution

= io- ~(1/rn - 1) 0 m l(0
n(t) = 0 0 < m < 1 (10)

where n(t) is the fraction of asperities longer than t, to is the height

of the largest asperity and m is a parameter of the distribution. Then,

Kf = K fo [1 - (a/Ef) ] (11)

where a is the effective normal stress, Kfo is the fracture

hydraulic conductivity at zero stress and Ef is the fracture modulus of

elasticity, related to the intact rock's modulus, E, by

E = E (Ac/A), (12)

where Ac/A is the percentage of the fracture face which is in contact.

This function seems to fit the data of Nelson (1975) quite nicely (Figure

11). We would be more convinced, though, if this theory were compared to

other data as well.

Witherspoon et al. (1979) have noted a scale effect on the asymptotic

value of Kf for high stress. It appears that the larger the sample, the

higher the asymptotic value. They hypothesize that this is due to the
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Figure 3.3 Comparison of Gangi theory with
Nelson's data (from Gangi, 1978).
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possibility that the smaller samples do not contain a statistically

significant sample of the fracture's asperity height distribution. A

larger specimen is more likely to sample asperities from the tail of the

distribution, which would tend to keep the fracture propped wider for the

same stress, thus producing a greater fracture conductivity. This type

of information may be useful for extrapolating to field-scale effective

probability density functions.

Since the fracture aperture, and hence flow, is dependent upon the

effective stress applied, then the fluid pressure in the fracture is

important, and not merely its gradient. For this reason, it appears that

a theory of fracture hydraulics is needed which couples fluid flow and

fracture mechanics. Indeed, this seems to be the case because, for the

same head difference in a packer test, a fracture will accept more water

upon injection then it will yield upon withdrawal. Snow (1968c) reviewed

this and other evidence that fluid pressure affects conductivity in the

field. In that paper he also attempted a coupled theory based on the

conditions of constant vertical total stress and zero bulk horizontal

strain. With this model, then, for a set of equal infinite fractures with

spacing 2B, and whose normal makes an angle 0 with the vertical, the change

in aperture due to a change in fluid pressure is given by

3

A(2b) = A E E sin e ) (13)
C f E sin 6 + C f2B

where p is the fluid pressure and C is a fracture modulus. This

model assumes, though, that the pressure is the same everywhere, which

is strictly correct only for vertical flow.
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To date, the only analyses which couple stress and flow at each point

in a fracture are numerical studies (Noorishad et al., 1972; Gale et al.,

1974; Noorishad and Doe, 1982; Noorishad et al., 1982). The first two

papers dealt only with steady-state conditions. The latter two, however,

used Biot's general theory of consolidation, and its analogy for fractures,

to solve both steady-state and transient problems. Typical results follow:

increasing effective stress causes fracture closure, further increasing

head drop along a fracture, while decreasing the effective stress has the

opposite effect.

With the aperture in a fracture varying from point to point, it

becomes unclear as to which value to use to calculate flow. One

alternative is to define the "effective aperture" as

1/3

b =" ( 3Qv )13(4eff 2gJ (

but this is really a tautology. Witherspoon et al. (1980) sought to find

another way to measure the aperture in the lab, and in doing so found an

independent check of the cubic law. Their method was to subject a

fractured specimen to uniaxial stress while measuring the strain both

across the fracture and portions of the intact rock. By subtracting the

deformation of the intact rock from the total deformation, it was possible

to deduce the deformation in the fracture. Figure 12 shows the

relationship between this deformation and the fracture's aperture. The

total aperture, 2b, is equal to the sum of the apparent aperture, 2bd,
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and the residual aperture, 2 br. When the fracture is closed, 2bd = 0,

but there is still flow, corresponding to the residual aperture. The cubic

law was then rewritten as

-- = - (2b + 2b )n (15)J 12v d r

where n and 2br are the unknowns, to be estimated from the stress-flow

data. The result was that in every case, the exponent n came very close to

3, thus validating the cubic law for fractures whose walls are in contact

at places.

Another approach is to attempt to specify the aperture at every point

in the fracture and then solve for the flow analytically. Simplifying

assumptions are in order. For example, Neuzil and Tracy (1981) have

assumed that the aperture may be considered to vary orthogonally to the

flow, but is constant in the direction parallel to the flow. Then, the

effective aperture turns out to be the cube root of the arithmetic mean of

the aperture distribution cubed:

b =<b3>1/3 (16)
eff

Tsang and Witherspoon (1981) also found this result for variation

orthogonal to the flow. One may similarly analyze the effect of variation

along the flow path as a series system, concluding that

b = <b-3>-1/3 (17)
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However, these analyses are only partially correct siace they do not

allow for flow or gradient direction to vary from the mear, whereas it is

well-known that in a two-dimensional hydraulic conductivity field, flow is

diverted around areas of low conductivty. This two-dimensionality is

illustrated by the dye pattern in Figure 13. It seems likely that the

two-dimensional stochastic analysis of Mizell et al. (1982), can be adapted

to this situation. This analysis would be more realistic by allowing for

perturbations in velocity transverse to the mean flow.

3.2 Flow in Ensembles of Fractures

One of the most important questions involving the hydraulics of

fracture networks is under what circumstances the fractured medium exhibits

continuum behavior. This is important because if continuum behavior is

evident, then for the purposes of analysis, all the tools available for

porous medium flow may be used. This greatly simplifies the problem

because otherwise it may be necessary to calculate the effect of each

individual fracture. Not only is this a difficult problem, but the

quantity and quality of field data will rarely if ever support such an

effort.

For a fractured regime to be representable by an equivalent porous

medium (continuum) model, two conditions (at least) must be satisfied:

(i) a representative elementary volume (REV) must exist, and

(ii) that REV must be much smaller than the domain of the

flow problem.
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Figure 3.5 Dyestreaks in a fracture
from photograph by
Maini (1971) (from
Neuzil and Tracy, 1981).
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In an infinite domain, of course, if the first condition is satisfied, then

the second is also.

One such infinite medium is the model proposed by Snow in a series of

papers (Snow, 1968a, 1969; Bianchi and Snow, 1968). Let a set of fractures

of aperture 2b all have the same normal vector ni and be evenly spaced a

distance d apart from each other. Then the flow through any volume with a

length scale much larger than d may be calculated using the equivalent

hydraulic conductivity tensor

3
K . = 2b g (i. - n.n.) , (18)
ij 3vd 1

which is obtained by averaging the flux due to one fracture over the

spacing distance d. The natural extension to this is to consider p =

1, 2, ... , P sets of fractures, with spacings dp, orientations nip and

apertures 2bp. Then,

P b
K.. = - I -Pa(6.. - n n. ) (19)

ij 3v __ d ij ipjp=1p

Use of this last equation assumes, in addition, that there is no

interference between the flows in two fractures where they intersect (Snow,

1969). Wilson and Witherspoon (1976) ran an experiment to test this

assumption. Their apparatus consisted of two intersecting pipes. The flow

in one pipe was measured, with and without cross-flow, as a function of the

Reynolds number. They concluded that for flows in the laminar range
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(most fracture situations) the head lost at intersections of fractures is

indeed negligible.

It is evident from our previous discussion that, while joints come in

sets, all the joints within a set are not parallel, but have orientations

dispersed about a mean. Apertures are dispersed as well. Snow (1969)

extended his model to account for this. Let a sampling vector, Di, in a

borehole intersect P fracture sets and n = 1, 2, ... , N representatives

from the pth set. Snow's major assumption is that each individual

fracture, with unit normal Nipn and aperture 2bpn is repeated with a

spacing

d = n. D.. (20)
pn ipn i

Then, the conductivity tensor is given by

P N 3

K.. = 2gpn - n n.) (21)
ij 3v d pn - ni np=1 n=1 pn pn pn

which is equivalent to equation (23) in Snow (1969). Snow ran many Monte

Carlo simulations of this equation, deriving the orientations of the

principal permeabilities and their cumulative distributions for various

fracture geometries.
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However, this model is really just another version of the model with P

sets of parallel fractures, except that now the number of sets is equal to
P
I Np, i.e., the total number of fractures intersected by the borehole.

p=1

Another twist to the problem is the consideration of deformation due

to fluid pressure. Subject to the reservations noted earlier, Snow's

(1968c) analysis for a single fracture set can be applied to any

combination of extensive sets, as long as any increase or decrease in

pressure is uniform throughout the domain. In general, since aperture

changes will be different for different fracture orientations, the

continuum principal conductivities will change and the principal axes will

rotate. That this is the only model which attempts to couple the stress

and flow for an ensemble of fractures is not surprising, due to the extreme

complications involved.

All of the models discussed so far on this section have dealt with

infinite domains. Boundaries have had no effect, and the hydraulic

gradient has been taken as a given. In the real world, however, boundaries

often do affect the flow problem.

For a finite domain, a fracture which is extensive, i.e., which

completely spans the region, behaves as if it were infinite. However, even

extensive fractures, if in a finite domain, may not behave as a continuum

if the scale of the problem is not much larger than some characteristic

scale of spacing (for example, the mean block size).

In the even more realistic case of nonextensive fractures in a finite

domain, it is not even clear, for the general three-dimensional case, how
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to calculate the flow through the region, even if the mean gradient is

constant. In two dimensions, though, network theory avails us. The

principles of conservation of mass at intersections and zero net head drop

around a circuit provide enough information to compute the flow through

every fracture (assuming the locations, aperture, etc., are known) and thus

through the region as a whole.

When does a network of finite (nonextensive) fractures, in two or

three dimensions, exhibit continuum behavior? The same conditions must be

met as for extensive fractures: the REV must exist, and it must be small

compared to the flow domain. No one knows for sure under what conditions

an REV will exist, given a network of finite fractures.

Long et al. (1982) discussed this problem in detail. For an REV to

exist in an inherently heterogeneous medium, there must be some scale at

which the average of these heterogeneities is invariant with a small change

in the scale. This is the scale of the REV. Then, since the volume may be

considered homogeneous, a symmetric conductivity tensor will predict the

flux through the REV for an arbitrary direction of the gradient.

Sagar and Runchal (1982) attempted to show that, subject to certain

limitations and assumptions, an equivalent hydraulic conductivity matrix

for a region containing finite fractures will be both asymmetric and

non-tensorial. We find their analysis lacking, however, since they have

assumed that the flow in each fracture is independent of the flows in their

other fractures, and may be found by projecting the hydraulic gradient upon

the fracture plane. This works for extensive fracture networks, but for
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finite fractures it violates continuity. They then summed the contribution

of each fracture to the flow through the region and found an equivalent

Kij for a uniform region which would predict the same flow. They have

thus assumed that it is known a priori which fractures actually conduct

fluid, whereas this should be one of the results of the analysis. These

criticisms appear to place the validity of their results in doubt.

Long et al. (1982) used two-dimensional numerical analyses to address

the problem of continuum behavior for finite fractures. They generated

realizations of two-dimensional fracture networks and then measured the

equivalent conductivity in the direction of the gradient, Kg, as the

gradient was rotated 3600. A porous medium would have Kg-1/2 plot as

an ellipse. This is shown in Figure 14 for two sets of extensive

fractures. They estimate the degree of continuum behavior for the

finite-fracture networks according to the degree of ellipticity of the

K9-1/2 plot. They then studied the effects of aperture and orientation

distributions, scale and joint density. They concluded that a network of

fractures with distributed apertures behaves less like an equivalent

homogeneous medium than a network with uniform apertures. This makes sense

because varying the apertures increases the heterogeneity in the system. A

network with distributed orientations, though, was found to behave more

like a continuum, due to the increased number of fracture intersections.

The effects of density and scale are interdependent. At a small enough

scale, finite fractures become extensive, enhancing continuum behavior.

However, at this small scale, the fractures may not be dense enough that
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Figure 3.6 Hydraulic conductivity ellipse for infinite fractures
(from Long et al., 1982).
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the volume tested contains a significant statistical sample. Then the

effective conductivity will be sensitive to scale changes, violating the

homogeneity requirement for an REV.

It should be noted here that there seems to be two length scales

inherent in a fracture system. One is the average length of a fracture in

a set and one is the average spacing between fractures in that set. These

should both be considered when assessing density and scale effects, a point

which Long et al. (1982) seem to have neglected. We would advise a more

rigorous definition of fracture density.

We know of no study to date which compares the bulk conductivity

tensor as calculated from fracture data to that measured in the field.

Other aspects of fractured rock hydrology which have been studied are

phreatic conditions (Castillo et al., 1972a; Leach, 1982), multi-phase flow

(Braester, 1972), and well hydraulics (Boulton and Streltsova, 1977a,

1977b, 1978; Gureghian 1975; Leach, 1982; Nguyen, 1983; Strelsova, 1976;

Warren and Root, 1963).
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CHAPTER 4

SOLUTE TRANSPORT IN FRACTURED ROCKS

4.1 Continuum Models

The simplest model for chemical transport is based on the assumption

that the fractured formation behaves as a continuum. Then, values for

dispersivity and porosity may be found using standard tracer tests.

Webster et al. (1970) performed a simple two-well test at the Savannah

River Plant in South Carolina, finding a dispersivity of 440 feet for a

test length of 1765 feet. The breakthrough curve is shown in Figure 15.

We believe that a lower value for dispersivity should have been found from

this data, which breaks through significantly more slowly, at first, than

their fitted curve. Grove and Beetem (1971) employed a similar method in

a fractured carbonate aquifer, obtaining a dispersivity of 125 feet with

a 180 foot well spacing test. Claasen and Cordes (1975) reported a

dispersivity of 15 m for a test length of 120 meters. Gelhar (1982)

reported a dispersivity of 2 feet for a test with 56 feet well spacing in

basalt at the Hanford site in Washington. Lallemand-Barres and Peaudecerf

(1979) reviewed dispersivity data as a function of scale. Figure 16

shows their plot of the data. The salient feature of this plot is its

considerable scatter about an otherwise observable trend. Lundstrom

et al. (1978) also reported a scale effect, this time for two tests of

different size, both at the same site.
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Figure 4.1 Breakthrough curve for the two-well recirculating tracer test

at the Savannah River Plant, South Carolina (from Webster

et al., 1970).
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4.2 Discrete Models

We first consider the case of solute transport in a single fracture.

Not only is this the logical first step, but most of the literature deals

with this simple case. This is most likely due to the complete knowledge

of advection transport terms, whereas with more than one fracture, the flux

problem hasn't really been solved, let alone that of predicting velocities.

In a single fracture with impermeable non-porous walls, we expect that

the assumed parabolic velocity profile will tend to disperse any solute

longitudinally. In addition, we expect that, after an appropriate start-up

time, molecular diffusion and aperture heterogeneities will reduce the

transverse gradient across the aperture and cause the longitudinal

dispersion coefficient, D, to reach a constant value, along the lines of

Taylor's (1953) analysis. This value is, from the analysis of Elder

(1965),
2 - 2

D (2b) v (22)
210 D

m

where 2b is the aperture width, v is the average velocity and Dm is the

coefficient of molecular diffusion. Karadi et al. (1972) presented a

method of calculating the average concentration in a fracture at a point

downstream of an arbitrary time-varying input boundary condition, assuming

a constant longitudinal dispersivity.
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Very little field or lab data exists on single-fracture

dispersivities. Gustaffson and Klockars (1981) performed a two-well tracer

test in fractured rock at Studsvik, Sweden, finding dispersivities on the

order of 1 m for an interwell distance of 30 m. Carlsson et al. (1979),

also performed a two-well tracer test but did not report a dispersivity.

Laboratory tests by Grisak et al. (1980) and Neretnieks (1980) were

inconclusive regarding dispersivities, but nevertheless found values of

of 0.15 m and 0.025 m, respectively.

Much recent research has explored the idea of matrix diffusion

(Barker, 1982; Barker and Foster, 1981; Erickson, 1981; Grisak et al. 1980;

Grisak and Pickens, 1980, 1981; Neretnieks, 1980, 1983; Neretnieks et al.

1982; Rasmuson and Neretnieks, 1981; Sudicky and Frind, 1982; Tang et al.

1981; Uffink, 1983). Huyakorn et al. (1983b), Noorishad and Mehran (1982),

and Rasmuson et al. (1982) presented numerical studies of this topic. Each

model has different features, but the essence is the same. Mathematically,

the model consists of two coupled one-dimensional second-order differential

equations. One describes transport longitudinally on the fracture and the

other describes diffusion transversely, but without advection, into the

porous rock matrix bounding the fracture.
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Referring to the geometry of Figure 17, the mass balance equations,

with all the features added, are:

2
ac f ac , 3 c 2D'm acM

-- + v -- = D -at x ax L 2 f b az z= b

2
ac ,a c
-- = D m - m (23)

3t m 2 maz

v = v /R - D = D /R * D = D /R
x x df' DL=DL df' m m dm

where cf(x,t) is the contaminant concentration in the fracture,

cm(x, z,t) is the concentration in the rock matrix, v is the average

velocity in the fraction, DL is the longitudinal dispersion coefficient

in the fracture, Rdf is the retardation coefficient for solution on the

fracture walls, Dm is the effective matrix diffusion coefficient, Rdm

is the matrix retardation factor and X is the species decay constant.

Decay chains can also be accounted for (Kanki et al., 1980).
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The initial and boundary conditions are:

c (x,O) = cm(x,z,O) = 0

c (xt) = cm(x,b,t)

(24)Cf (,t) = cm ,z,t) = 0

cf (ot) = g(t)

with one of the following:

c (x,,t) = 0
m

- c (x,B,t) = 0 ,
az m

(a)

(b)
(25)

where g(t) is an arbitrary release scenario and 2B is the spacing between

fractures in a set. Condition (b) is used in cases when the lateral

boundary has an effect, i.e., when

B < / D' T
m
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where T is the travel time for a pulse of contaminant to pass through the

fracture. Otherwise, condition (a) may be used. Table 2 compares the

features and solution techniques for the several matrix diffusion models

reported.

It is interesting to compare the matrix diffusion models to the

traditional advection-dispersion model. In general, the matrix diffusion

model predicts much later and much lower breakthroughs (Figure 18), due to

a retarding effect whereby the front of a pulse in the fracture loses mass

to the matrix while the tail of a pulse receives mass from the matrix.

Whether this can be represented by a single retardation factor is not

clear. Barker and Foster (1981) showed that when D'm + 0, the

concentration is constant in the z-direction, the mass being

instantaneously shared between the fracture and matrix pore space.

Then, the peak of a pulse would travel with a velocity, v'xp, given by

v b
V'= --- b) (26)

xP R df -B + b

where is the porosity of the matrix. Then the fracture may be considered

to have an effective retardation factor, Rdf*, given by

* =B + b(
Rdf = df b ).2)
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Table 4.1 Summary of Matrix Diffusion Papers

- ., i 1 T I T

Author(s)

Barker, 1982

Barker and

Foster, 1981

Erickson, 1981

Grisak and

Pickens, 1980

Grisak and

Pickens, 1981

Grisak et. al.,
1980

Huyakorn et. al.,

(1983a)

Huyakorn et. al.,

(1983b)

solution
.iicn

analytical

analytical,

numerical

analytical

analytical,

numerical

analytical

laboratory

numerical

numerical

a

T yes

yes

no

yes

no

yes

yes

yes

C

1.21

1.21

1.21

1.22

1.21

1.21

1.21

d coriiu'ents

yes

no

no

no

no

no

yes

yes

chromatography

analogy,

infiltration

spherical diffusion

spherical or

rectilinear

diffusion

decay chains,

spherical or

rectilinear

diffusion

(2steady (S) or transient (T)?
blongitudinal dispersivity in fracture?
Cmatrix boundary condition
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Table 4.1 (continued)

Tsolution 1
Author(s) solutin a I b c d comments

techniqueI
Kanki et. al., 1980

Neretnicka, 1980

Neretnicks, 1983

Neretnieks et. al.,
1982

Nooriahad and

Mehran, 1982

Raamuson and

Neretnieks, 1981

Rasmuson et. al.,
1982

Sudicky and

Frind, 1982
asteady (S) or tr

analytical

analytical

analytical

laboratory

numerical

analytical

numerical

analytical

ansient (T)?

T no

no

yes

yes

yes

yes

1.22

1.22

1.22

1.21

1.21

1.22

yes

yes

no

yes

110

yes

yes

no

decay chains

decay chains

advec t ion-

dispersion

comparison

channeling

spherical diffusion

spherical diffusion

6longitudinal dispersivity in fracture?
Cmatrix boundary condition
'decay?
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Table 4.1 (continued)

Author(s) sohition b c d comments
techniquie

Sudicky and analytical T no 1.22 yes two-member

Frind, 1984 decay chain

Tang et. al., 1981 analytical S, yes 1.21 no

T

Uffink, 1983 analytical T no 1.22, no heat flow

1.21

asteady (S) or transient (T)?
'longitudinal dispersivity in fracture?
cmatrix boundary condition
ddecay?
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Figure 4.4 Radionuclide decay chain concentration distributions for

advection-dispersion (dashed line) and matrix diffusion

(solid line) models (from Kanki et al. , 1980) .
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When D'm is low enough to affect the problem, though, an originally

Gaussian profile in the fracture becomes increasingly skewed towards the

upstream side. Neretnieks (1983) discussed this trend for the case when

DL = 0. The breakthrough curve is shown in Figure 19. This curve is

characterized by a peak at

4Dm' 2 (28)

b

which cannot be represented by a simple retardation factor.

Another characteristic of this curve is that is has an infinite

variance. Therefore, no advection-dispersion solution can represent this

breakthrough. As the lateral boundary becomes important (i.e., for small

B, large D'm or large T), we would expect that Taylor's (1953) analysis

would provide an effective dispersion coefficient capable of predicting the

spreading about the peak of the mean concentration across the width 2B.

As B + 0, Dm' + o or ' + o, the effective dispersion coefficient

approaches DL-

Grisak et al. (1980) ran a tracer experiment in the laboratory using

both reactive and non-reactive solutes and a step input. Even for the

non-reactive solute, simple advection-dispersion solutions could not fit

the breakthrough curves, whereas matrix-diffusion solutions could, albeit

roughly. Grisak et al. (1980) used an analytical model which used boundary
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for a pulse input in a fracture with
matrix diffusion (from Neretnieks, 1983).
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condition (b), with B = 3 cm. However, we don't think the lateral

boundaries had an effect on the breakthrough, since the mean distance of

diffusion into the matrix was only (D 'T) 1/2 = 0.36 cm. This is also

shown by the fact that the breakthroughs reached only about 80% of CO

(Figure 20), indicating that some mass had not yet left the matrix. We

think longer tests need to be done, particularly if these results are to be

extrapolated to field scale. Yet, some researchers are using this model to

find breakthrough curves for points as far downstream as 4 km (Grisak and

Pickens, 1981). This model may, however, be adapted to the case where a

thin zone of highly fractured rock is surrounded by a large zone of

relatively intact rock as in Uffink (1983). Then, however, there would

undoubtedly be some longitudinal dispersion.

It would be appealing to be able to calculate this longitudinal

dispersion coefficient as a function of the fracture parameters or their

distributions. Unfortunately, no such analysis is available.

Neretnieks (1983) discussed a model with one set of parallel fractures

with no matrix diffusion. Each fracture has a constant aperture, but the

apertures in the set vary lognormally. As in all perfectly stratified

models with no transverse dispersion, the dispersivity increases without

bound as time and distance increase. Such models should be used cautiously

because they may overestimate the magnitude of the dispersion coefficient

at large distances and, hence, overpredict the degree of dilution. It

seems possible that including more than one set in this model would

alleviate the non-Fickian nature of the spreading, and might even be an

63



V = 29.7 m/day

0

0 CP 0 00 ,0 0 0

0 X 7

S0

0 C
00 o 0 So 0 Cc

00 - ANALYTICAL
0 0 a L 0.15 m

0 X =0.76 m

0o

0 2
TIME (DAYS)

3

(a) Advection-dispersion model.

D*=0.0 cm
2

/s
1.0,

e eV -- 29.7 m/day
es aL= 4 cm

e 2b= 40pLm
SSe -6 cm

Kd -0 mL/g

-em= 0.35

0*
0

3

TIME (DAYS)

(b) Matrix diffusion model with chloride.

Figure 4.6 Comparison of model simulations
(solid lines) with laboratory
experiments (from Grisak et al.,
1980).

64

1.0-

10.8
z
0

CE

'-0.6-z

0

Lii 0.4-

-LJ
Et 0.2-

4

l*
S0.8
0

0.6-

0 . -

.

0

0

Wi 0.4-

ct 0.2-

4
n j



acceptable representation of field-scale dispersion. Allowing for more

than one fracture set should also diminish the effects of matrix diffusion

as all the fracture sets will be competing for the same storage space.

Testor and Potter (1979) described a series of tracer tests in a

hydraulically fractured granite. They concluded that the shapes of their

breakthrough curves were due to the sum of a small number of discrete

pathways. Although their curve fitting procedure does not provide a unique

set of parameters, the variation in Peclet numbers from 0.0094 to 3.32 for

different components of the same breakthrough curve is probably realistic.

Numerical experiments on solute transport through two-dimensional

networks of discrete fractures have been reported by Castillo et al.

(1972b) using constant aperture fractures which extend through the entire

flow domain. Similar numerical experiments on two-dimensional orthogonal

networks of non-extensive fractures with randomly varying apertures are

reported by Schwartz et al. (1983) and Smith and Schwartz (1984). These

numerical experiments produce interesting results which suggest significant

departures from classical Fickian dispersion but, because of the small size

of these networks and the oversimplified assumptions about fracture

orientation, it can not be concluded that these two-dimensional results are

representative of natural three-dimensional networks.
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CHAPTER 5

COMMENTS AND RECOMMENDATIONS

In the area of fracture characterization there are several

probabilistic models which seem to represent three-dimensional fracture

geometry in ways which are consistent with statistics from joint surveys.

However, it is not clear how realistically these existing models represent

the degree of fracture interconnection especially in relatively sparse

networks. There is a need for systematic investigations emphasizing the

connectivity characteristics of these models since this feature will be

critical in determining the flow properties of such networks. Percolation

theory (e.g., Charlaix et al., 1984) may provide a framework for evaluating

connectivity characteristics. Also the question of spatial correlation of

fracture characteristics needs to be explored because if such persistence

exists, it implies a greater degree of continuity of flow paths than would

be produced by a completely random model.

In the area of fracture hydraulics, it is well established that

extensively fractured systems can be represented in a continuum sense as an

equivalent porous medium. However, in the case of non-extensive fracture

systems it remains unclear, even for the relatively simple case of

two-dimensional networks, what specific criteria must be satisified in

order to represent the discrete network as a hydraulic continuum. In the

case of realistic three-dimensional networks it seems that a workable flow

simulator has not even been developed. Furthermore, it seems likely that

three-dimensionality will play a critical role in the connectivity and

continuum behavior fractured rock systems.
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The understanding of solute transport in fractured systems is much

more limited than that of the hydraulics. Continuum models, which are

based on the classical advection-dispersion equation, seem to be adequate

for some field situations, but little is known about the conditions under

which these models are expected to be applicable. The so-called matrix

diffusion model is conceptually attractive and has been the subject of

numerous theoretical studies. Hypothetical calculations based on matrix

diffusion models show that this mechanism could produce very significant

retardation of solutes but there are no field experiments which demonstrate

the importance of this mechanism in fractured rock. There is a need for

carefully designed field experiments which evaluate the importance of

matrix diffusion.

There is no established approach for treating solute transport in a

realistic three-dimensional network of discrete fractures. Even the

relatively simple problem of solute transport in three-dimensional

infinitely extensive fractures has not been analyzed. Also, the effect of

aperture variability on solute-transport within a single fracture have not

been evaluated. This effect could be analyzed by treating the aperture as

a spatial random field and solving the flow and solute transport equations

for the fracture as stochastic differential equations.
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