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ABSTRACT

A mathematical model is developed using analytical techniques to
determine the longitudinal and vertical distributions of velocities and
salinities, averaged over a tidal period, for mixed but partially stratified
estuaries. The flow field is assumed laterally homogeneous and the estuary
width and depth are assumed to be functions of the longitudinal coordinate
only. Required inputs to the model include the salt intrusion length, the
ocean boundary salinity, the distribution of the depth-averaged salinity

and the freshwater discharge.

The governing equations included in the model are the vertical and
longitudinal equations of motion, continuity, salt conservation and an
equation of state. The key assumption is that the longitudinal salinity
gradient is independent of depth. This decouples these equations and thus

permits an analytical solution to be found.

Using data from laboratory flume tests from the U.S. Army Waterways
Experiment Station and the Delft Hydraulics Laboratory, and field surveys
from the James River Estuary, the model solutions are used to find corre-
lations for the mean vertical transfer coefficients of mass and momentum
with gross characteristics of the estuary. These correlations, plus the
results from a one-dimensional numerical model, permit this analytical
model to be used as a predictor of the velocity and salinity profiles in
estuaries and to relate changes in freshwater discharge to possible changes

in the location of shoaling zones.
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I. Introduction

1.1 Estuaries as Natural Resources

Coastal zones and estuaries, in particular, provide major resources
for both the economic and social well-being of modern man. In recogni-
tion of these valuable resources, increased efforts are being made to in-
sure and protect them from needless deterioration and neglect. To aid in
these efforts a more complete understanding of the complex inter-
relationships between the biological, chemical and physical mechanisms
of estuaries needs to be developed.

Estuaries are being used as sinks for industrial and municipal
wastes. When properly balanced with assimilative capacities, this may
be a practical use of these water bodies. However, careful attention
must be given to the types and amounts of effluents discharged, in order
to avoid conflicts with their great potential for biological productivity
and recreation by man.

In order to achieve this balance of uses, a thorough understanding
of the complex circulation patters of salt and freshwater in the estuaries
is needed.

1.2 Estuarine Circulation - A General Description

An estuary is defined as a body of water connecting a source of
freshwater with a tidal sea or bay and extends over the length of tidal
action. Natural estuaries, with their irregular boundaries, have highly
complex patterns of circulation of the salt and freshwater masses con-
tained within them. The compounded influences of the factors involved,

i.e., the complex geometrv, the tidal flows, the mixing induced b them

13



and by the density differences makes estuarine behavior a very difficult
subject for analytical description.

Figure 1.1 is a representation of a typical estuary as might be
found on the eastern seaboard of the United States. This estuary receives
freshwater flows from several rivers and streams and terminates in a bay
or the ocean. Perhaps the most striking feature is the irregular
boundaries. There are turns and embayments as well as a nonuniform ex-
pansion from the narrow section at its inland end to the wide section at
the sea boundary. Hence, local eddying and flow reversals must be ex-
pected throughout the flow field, and in general, the velocity will have
time-varying components in the longitudinal, lateral and vertical
directions. However, the predominant direction for the velocity is along
the longitudinal axis, periodically changing direction with the tide.
Certain sections of the estuary can have strong lateral components during
portions of a tidal period.

The influence of tides makes the flow in estuaries unsteady in time,
both within a tidal period, and during longer lunar phases. The season-
al variation in the rates of freshwater inflow will also contribute an
additional long-term dynamic unsteadiness to estuarine flows.

One of the most important factors influencing the complex cir-
culation is the density difference between the river discharge at the
head, and the ocean salinity at the mouth. Density currents resulting
from’these differences are often major components of the total circula-

tion, and must be included in a realistic model of the flow field.

14
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For some estuaries, the effects of surface winds or Coriolis
accelerations may be a significant influence on the circulation. However,
in general, these factors are of secondary importance when compared with
the effects of complex geometry, tidal mixing and density differences
and will not be considered further in the present development.

1.3 Estuary Modeling Techniques

The purpose of building models of estuaries is to represent the
complex circulation of the prototype in a simplified form which can be
tested and studied to determine the possible consequences of modifica-
tions of controlling factors on the natural circulation. Examples of
such changes could include the dredging of a navigation channel, the
diversion of freshwater inflow to other basins, or the placement of a
diffuser for the heated condenser water of an electric power station.
The former might seriously alter the salinity distribution while the
latter could obviously influence normal biological cycles. Recourse
to various types of models must be made to provide estimates of the
impact of such changes.

There are two main methods for modeling estuaries; physical and
mathematical models. Only a very brief review of these techniques is
needed here since Tracor (1971) has recently presented a complete
survey of this field.

1.3.1 Physical Models

A Physical hydraulic model provides direct visual observation of
flow. They can also be carefully instrumented for detailed measurements

of the velocity field, water surface elevations and dissolved or
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suspended substances. Physical models of estuaries are distorted due
to large prototype dimensions. Vertical scales are frequently 1:100
while horizontal scales may be 1:1000. This results in a 1:10 dis-
tortion of all cross-sections. General usage has shown that in spite
of this distortion, these models can be made to reproduce many details
of the circulation as well as of the distribution of salinity.

At the present time, physical models of estuaries are the most
important technique for determining the effects of changes in the proto-
type. Their great expense and slow building and operating times are
drawbacks which sophisticated mathematical models may avoid. However,
one can expect these physical models to continue to be important tools
for estuarine analysis for a long time to come.

1.3.2 Mathematical Models

The movement of water and the distribution of dissolved substances
in estuaries are governed by physical laws for which there are known
mathematical descriptions. In many cases, where various simplifying
assumptions can be made, these mathematical descriptions can be written
as equations for which there are known solutions. Depending upon the
solution technique, these models are referred to as either numerical or
analytical models. A numerical solution implies replacing the governing
differential equations with approximate forms which can be solved by
computer. An analytical solution is an exact solution of the original
equation,by integration, with no subsequent approximations.

The application of analytical models to problems of estuarine cir-

culation is limited by the mathematical complexity of the governing

17



equations. In order to reduce these equations to a form which can be
solved analytically, various assumptions may be introduced which often
render the final solutions very limited in application. However, there
are several analytical estuary models which can yield meaningful results.

In general, these analytical models describe conditions averaged
over one or more tidal cycles. Thus, they serve a limited function if
changes within a tidal period are of interest. This will of course
depend on the problems being considered. Analytical models are also
usually restricted to one or two space dimensions, e.g., to depth and
lateral, lateral and longitudinal, or depth and longitudinal directions.
Finally, these analytical models are restricted to problems for which
simple boundary conditions can be prescribed.

Until the advent of the modern high speed computer, analytical
models were the only mathematical technique for describing estuarine
circulation. Numerous models of tidal flushing, salinity distribution
and tidal motions, had been developed. Many of these models continue
to have application today in conjunction with the more powerful
numerical methods. These models have also played an important role in
clarifying the physical understanding of the important processes and in
deriving the proper equations to be included in the newer models.

The greater part of the recent literature on estuarine modeling
pertained to numerical mathematical models. These models use advanced
computer techniques to find solutions to the governing equations of mo-
tion and of mass conservation. One-, two- and three-dimensional models

have been developed, the latter however only in a very preliminary form.
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An important feature of these models is their ability to handle the un-
steady case, i.e., within a tidal period. Thus, the averaging over a
tidal period which was required for most analytical models is not re-
quired for numerical models.

At the present time, the numerical models available for engineering
applications are of either the unsteady one- or two-dimensional type.

A one-dimensional model averages all dependent variables over the cross-
sectional area, and thus vields changes in mean values with time and along
the longitudinal axis. These models can be used to predict water surface
elevation, mean currents, and mean salinities. They can also be used
with certain reservations to determine the cross-sectional mean concen-
tration of a non-conservative water quality parameter, such as dissolved
oxygen or biochemical oxygen demand .

Two-dimensional numerical models usually allow variations along the
lateral as well as along the longitudinal axis. In this case, the only
averaging is with depth. Again, these models can predict currents, water
quality parameters, etc. These models are more complex than the one-
dimensjional case with regard to the computational techniques required.

1.4 Objectives of this Study

The techniques for estuarine modeling described in the preceeding
sections suggest a possible combined approach. Physical models can be
used with mathematical models to analyse different scales of cir-
culation problems. Also, analytical models can be used with numerical

models to increase the number of spatial dimensions of the solution.
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This investigation develops a two-dimensional analytical model of
estuarine circulation including vertical and longidudinal distributions
of velocity and salinity. All equations are averaged over one or more
tidal periods. This model can be coupled with a one-dimensional numerical
model which is not time-averaged, but is averaged over a cross-section.

The ability to calculate vertical variations of the important flow
parameters is often a useful tool for solving estuarine problems.
Vertical salinity stratification is a key element in the circulation
pattern of an estuary. Models which can predict the effects of changing
geometry, freshwater inflows, etc., on this stratification are of great
value. The modeling of vertical velocity profiles is another useful
model capability. Many problems of shoaling in estuaries can only be
properly studied with a knowledge of the vertical distribution of
velocity.

If a model similar to the one described above is to have practical
application as a predictive tool, all parameters included in the solution
technique must be determinable in advance. Thus, an important part of
the objectives of this study is to obtain relationships between the
various time-averaged coefficients of turbulent diffusion and eddy
viscosity included in the model and the gross parameters of estuarine
circulation.

1.5 Synopsis of the Study

The analytical model described in the previous section can be used
to find the longitudinal and vertical distributions of velocity and

salinity for partially stratified or well mixed estuaries. All model

20



results are for conditions averaged over a tidal period. Certain coeffi-
cients of mixing included in the mathematical equations of the model

have been correlated with various parameters for the estuary in question

from field and laboratory experiments. Proper application of this model

requires a coupling with a one-dimensional unsteady numerical model.

The model has been developed and tested with data from léboratory
flumes and field surveys. Results indicate the model has practical
application in the prediction of salinity stratification and shoaling
changes as might result from the engineering modifications of the

factors which control estuarine circulation.
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IT. Previous Investigations

2.1 Analysis of Recorded Data

The last twenty-five years have been a period of active interest in
the description and theoretical analysis of the circulation and mixing
characteristics of estuaries. A large body of literature has evolved
covering results from field surveys, laboratory experiments and theoretical
analysis. These publications are as diverse as the estuaries they dis-
cuss, and this chapter will not attempt to review them all. A very ex-
cellent survey of this work is presented by Bowden (1966). The present
review is restricted to those articles which discuss the vertical dis-
tributions of velocity and salinity for partially stratified estuaries.

Pritchard (1952) describes the circylation in the Chesapeake Bay
estuarine system, and in particular, in the James River estuary. Data
from an extensive program of field surveys are discussed, in which
salinities, temperatures and velocities were measured at several depths
and stations and averaged over one or more tidal periods. The resulting
net circulation and salinity distributions are typical for partially
stratified conditions. A basic feature of this net circulation is
a reversal in the vertical distribution of the time-averaged horizontal
velocity. 1In the surface region, extending to about middepth, the net
flow is towards the ocean, while the bottom region has flow in the
opposite direction, towards the river end of the estuary. The depth

integral of this velocity is equal to the net discharge of freshwater.

Although two regions can be identified for the velocity, the vertical

salinity distribution can not be separated into two distinct zones. In
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partially stratified estuaries, there is a continuous increase in
salinity from the surface to the bottom, without a noticable point of
discontinuity.

Pritchard (1952, 1954) also identifies several interesting features
of the longitudinal salinity gradient. For all depths, there is an
increase in salinity from the freshwater region to the boundary salinity
at the ocean end. In addition, over most of the estuary this longitud-
inal salinity gradient is nearly independent of depth, i.e., vertical
position. This latter feature does not hold very near the ocean
boundary or where the salinity goes to zero, upstream.

Pritchard (1954) discusses the various terms in the equation of
salt conservation and uses the James River data to back-calculate the
relative order of these terms. In this analysis, the velocity and

salinity are written as the sum of three terms

o
i

U + Ut + u' 2.1

0}
I

S+S +s'
t

where U is a mean velocity for one or more tidal periods, Ut is a one-
dimensional tidal velocity (assumed perodic) and u' is a random
fluctuation due to turbulence. A similar set of definitions is made
for the salinity.

The salt conservation equation averaged over a tidal period is

written
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B Ly, g8 0 g 28 +§3(K oS

Jt ox dy 9x X 0X y dy 2.3

where U and V are the mean components of velocity in the horizontal and
vertical directions, x and y, respectively. KX and Ky are identified
as mean coefficients of eddy .diffusivity where KX %g—represents the
cross-product of the turbulent terms u's" averaged over a tidal period.
Similarly, Ky %;-replaces v's'. The bar over the products represents
the time-average over the tidal period. All other cross-products are
assumed uncorrelated, and hence zero. The above equation assumes homo-
geneous conditions in the lateral direction.

For the period of study, Pritchard found the %% term to be small,
indicating that the freshwater inflows to the James River estuary were
nearly steady. The horizontal advection U %g‘was found to be much
larger than the horizontal eddy diffusion %; (Kx %g) and also larger than
the vertical advection V %%-except near middepth. With these considera-
tions, a simplified mass balance can be written

9S as 9 3S

U2 +V 2 = 2 (X

ox 9y 9y y 9y " 2-4

Pritchard (1956) then developed the equations of motion for a simple
partially stratified estuary using the same James River data as cited
before. Surface shear due to wind is neglected. The longitudinal con-

servation of momentum equation, averaged over a tidal period, is
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U oU t

W,y dp 9 u'u' _ 3 v'u' 3 w'u'
ox

1
§§_ t Ox T p 3x ox 3y oz

N
W

U

where p is the hydrostatic pressure,p the density, w' the turbulent
fluctuation of the lateral velocity component (z axis). By analogy with

the conservation of salt equation, Pritchard argues that only the ver-

9 v'u'

oy

averaged field acceleration terms for the James River data are also small.

tical eddy diffusion of momentun needs to he retained. The time-

Finally, the acceleration resulting from the tidal component of the
ou
velocity Ut 3;3-13 an order smaller than the terms on the right-hand-

side of the equation. Using similar arguments, the lateral momentum

equation is written

__1259p
0 =232+ v 5 2.6

where f is the Coriolis parameter. Using appropriate boundary conditions,
equations 2.5 and 2.6 are solved for the distributions of the turbulent
mementum flux terms, averaged over a tidal period. The results indicate
that the mean fluxes are zero at the surface and near the bottom, with

a somewhat parabolic distribution having a maximum near middepth.

2.2 Analytical Modeling of Circulation

The net circulation averaged over a tidal period described by
Pritchard (1952, 1954, 1956) has been used by several investigators
as a basis for the development of analytical models. These models have
several applications, an important one being the analysis of shoaling

zones in estuaries. Simmons (1955) and others have identified a
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relationship between locations where the net horizontal velocity at
the bottom of a channel reverses direction and zones of high rates of
shoaling. Thus, analytical models which can predict the location of
this reversal, called a '"null point', have practical engineering
applications. |

Abbott (1960) examines the role of the longitudinal salinity
gradient in determining the direction of the net, near bottom drift
velocity. Using the assumptions of Pritchard(1956), the longitudinal

momentum equation, averaged over a tidal period,is written

T dh -
1 Py g —2+g ( i 7y 20 2.7
p dy dx 0x )

where Txy is the mean shear and h0 is the mean water level. Assuming

zero surface stress, this equation is integrated over the depth and

the mean stress on the bed is found

oh :
= gh(k 3p 0
p = 8hGh (- 5 P 5% ) 2.8

T
Xy 9%

where h(x,z) is the local water depth. Abbott also shows that this bed
shear, for an oscillating flow, is in the same direction as the drift

velocity

Teyp ~ Y 2.9

From 2.8 it is seen that the drift velocity will be either positive or

negative when

3y 2 0 2.10
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In order to apply this criterion, accurate measurements of the mean
oh 5
surface slope —— and the mean density gradient 20 are needed , the

ox ox

former being a difficult parameter to determine in most cases. Abbott
assumes the salinity gradient to be independent of depth. Data of this
type is used to test the criterion f;r the Thames and Mersey estuaries.
For the Thames, using data reported by Inglis and Allen (1957), no
reversal in drift velocity is predicted by this method, although the
field studies indicate the existence of a null point. Abbott suggests
an additional momentum flux must be present in this case, perhaps a non-
linear tidal convection. In the case of the Mersey, a null point
is predicted near the location observed in field studies. Here the
model appears to reflect the physical processes involved rather well.

Hansen and Rattray (1965) present an analytical model of estuarine
circulation averaged over one or more tidal periods. A simultaneous
solution of the equations of mass and momentum conservation, assuming
geometric similarity of velocity and salinity profiles and lateral
homogeniety is developed. The estuary is divided into three regions
inner, central and outer, for which different assumptions about salinity

gradients and mixing coefficients are made. The equations included in

the model are:

3
momentum %§-= 5;—(pD %g 2.11
9P 2.12
3y pg .
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continuity dU |, 9V 0 2

ax+§;= .13
9S 3S _ 9 98 ] 9S8
mass Uax + Vv 3y = 3% (KX T ) + 5;—(Ky 5;- 2.14
state p = po(l + a8) 2.15

where D is the eddy viscosity and o is a conversion factor for salinity.
The boundary conditions include zero velocity at the bottom, known stress
at the surface, net flow equal to river discharge and zero net salt flux.
Hansen and Rattray do not discuss the differences between the classically
defined eddy viscosities and eddy diffusivities and the eddy coefficients
which appear in their equations for conditions averaged over a tidal
period. These differences are examined in detail in the next chapter of
the present analysis. For the purposes of this review, it is important
to note that all eddy coefficients introduced into the equations include
neglected terms, terms resulting from averaging over a tidal period,
as well as the averages of the turbulent cross-products.

For the central or middle region of the estuary, the authors assume
that the longitudinal salinity gradient is independent of both depth
and longitudinal position. The velocities are assumed only dependent
upon depth, and thus similar at different stations. The vertical eddy
coefficients, D and Ky are held constant with depth and the horizontal
eddy diffusivity Kx is related Eq the freshwater velocity

d
a = 2.16
dx(Kx) Uf'
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With the above assumptions, solutions can be found for the vertical
distributions of velocity and salinity. FExcept for the possible variation
in Kx’ the solution is independent of longitudinal position. For the
condition of zero for the net surface wind stress, two dimensionless

parameters determine the vertical velocity and salinity profiles

gOtSOh3 K Kxo
Rt Mt a2 2.17
X0 U_ h

f
where SO and Kxo are S and Kx at x = 0 respectively, and Uf is the
freshwater velocity. By a proper choice of values for Ra and M,
the solution can be fitted fairly well to some of Pritchard's James
River data.

For the inner and outer portions of the estuary, near the river
and ocean end respectively, different assumptions about eddy coefficients
are made. The solutions in these regions still require similarity of
velocity and salinity profiles.

Hansen (1966) proposes a non-similarity solution for a similar set
of governing equations. Again, the longitudinal dependence of the ve-
locities and salinities is determined by the longitudinal variation of
the horizontal eddy diffusivity. However, Pritchard (1952) shows that
the longitudinal eddy flux of salt is the smalles; term in the time-
averaged salt balance. Hansen is thus using the weakest term in the
model to provide the longitudinal dependence.

McGregor (1972) develops an analytical model of the net, non-tidal

bottom transport velocity for an estuary. This model is similar to
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other studies in that a longitudinal force balance includes only the
pressure gradient and the vertical eddy stress gradient. For the pressure
gradient, both a surface slope and density gradient are evaluated from
recorded data for the Humber estuarv. The solution technique introduces

a number of empirical constants for fitting these distributions, as well
as an empirical expression for the mean eddy wiscosity. Ry proper

fitting of the numerous constants, McGregor is able to match the net
bottom velocity zero points with the shoaling zones for the Fumber.

The analysis is a good illustration of the roles of the surface slope,

nity

e

sal dient and river discharge in determining the zones of
high rates of shoaling. UHowever, due to the need to fit several con-

stants to previous data, the model is of limited predictive capability.

2.3 Turbulent Diffusion

As shown in the previous section, mathematical modeling introduces
coefficients of turbulent diffusion for mass and momentum. There have
been a few investigations which have attempted to measure these coef-
ficients and relate them to the mean properties of the flow field.

Kent and Pritchard (1959) analyse the vertical eddy flux of salt
for the James River. A mixing length concept, similar to Prandtl's
classic mixing length th?ory of turbulence, is applied in this analysis.

Following Prandtl's arguments, a mixing length can be defined such that

2 2 v's'

n8 = - EIES 2.18
ov| |9y
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where n is a constant, £ is the mixing length, v's' is the vertical eddy
oU . . . . 95

salt flux, 5;—13 the vertical gradient of mean velocity and §§-the

vertical gradient of mean salinity, all averaged over a tidal period.

This £ is defined as the observed mixing length, and refers to the actual

stratified flow for the estuary. For the unstratified case, an adiabatic

mixing length is defined from earlier work by Montgomery (1943)

=5 -
Zu % (h-y) 2.19

where K is Von Karman's constant and h is water depth. Kent and Pritchard
find that the observed and adiabatic mixing lengths can be best related
by the expression
2= 2 (1+BR) 2.20
o i .
where B is some unknown proportionality factor and Ri is the local

Richardson number

U

°p

dy

R, = —— .

i 5u 2 2.21

y

g
p

The observed mixing length is calculated from the extensive James
River data. The velocities and salinities are averaged over one or
more tidal periods and therefore a tidal mean mixing length is determined.
Although agreement between the observed and theoretical mixing length
is good, an improvement is found when an additional term for the wind

waves 1s included.
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Pritchard (1960) extends the mixing length theorv to include the defining

of an eddy diffusivity

K, = fuk 2.22

where £ is the mixing length developed by Kent and Pritchard (1959) and
u* is a characteristic velocity. u* is related to the tidal current at

middepth, Ut’ by similar mixing length arguments

u* = Ut(zibQXl-(l + BRi)—l 2.23

nuv.y )2 2
=_—~——.—-—————L—- -
% - (1 +BR)) 2.24

The Richardson number is approximated as

jeo

|

g 9
p

(o34
<
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1
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N

) .25
t.2
)

(0.7 +—

For the James River estuary, B was found to be 0.276 and N was 8.59x10—3.
An eddy diffusivity computed from the above relationships represents the
net, non-tidal eddy processes. No discussions are presented which attempt
to relate this net eddy diffusivity to the real time tidal eddy coeffici-
ent.

Bowden (1960) analyses velocity and salinity data for the Mersey
Estuary. Effective values for the vertical eddy diffusivity and eddy

viscosity, averaged over a tidal period, for five depths at a single

station are determined. Values for the mean eddy viscosity are
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backfigured from a time-averaged longitudinal equation of motion which
considers only the pressure gradient and vertical eddy diffusions of
momentum. According to Bowden's analysis, for the particular conditions
studied, the effective eddy viscosities for the tidal time-average are
about one-~tenth as large as those expected for a non-stratified flow.

The coefficients of vertical eddy diffusivity are determined from
a salt balance equation which considers only the horizontal advection
and the vertical eddy diffusion. 1In this case, estimates of both the
time-averaged and tidal varving coefficients are made. The diffusivities
averaged over a tidal period are, in general, smaller than the non-aver-
aged coefficients. Again, Bowden concludes that the salinity stratifica-
tion yielded eddy diffusivities smaller than would be expected for a
neutrally stable fluid. In addition, the values for the mean eddy
viscosities are found to be greater at all depths than the mean ver-
tical eddy diffusivities.

Bowden (1963) and more recently, Bowden and Gilligan (1971) have
studied additional data for the Mersey Estuary. As in the previous
studies, mean values for the eddy coefficients are computed from the
field data. When the ratio of eddy viscosity to vertical eddy diffusivity
is plotted against a local Richardson number, a distribution similar to
that of Munk and Anderson (1948) is found. Thus, it appears that
although the mean coefficients, averaged over a tidal period, yield
smaller values than the non-averaged coefficients, they may still be
related empirically to a local Richardson number and therefore the

degree of vertical stratification.
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Harleman and Ippen (1967) analyse data from a laboratory investigation

of estuarine dynamics. A large salinity flume with a tidal and a river

control at either end was used to model partially stratified estuaries.

Extensive velocity and salinity data were recorded and used to backfigure

vertical eddy diffusivities from the time-averaged salt balance equation.

In this analysis, the horizontal eddy diffusion is neglected. Both a
vertical and horizontal dependence is found for the vertical eddy dif-
fusivity. Maximum values at each longitudinal station occur at about
middepth, with a somewhat parabolic decrease towards the surface and
bottom. In addition, the coefficients decreased from a maximum at

the ocean boundary to a minimum far upstream. Using the relationships
of Pritchard (1960), mean vertical eddy coefficients were computed for
the same set of flume data. These equations, developed for the James
River estuary, yield vertical and longitudinal variations of the eddy
coefficients very similar to the backfigured experimental results.
Pritchard's equations did, however, produce slightly smaller values at

all stations for these eddy diffusivities.

For both the work of Bowden and Harleman and Ippen, eddy coefficients

for equations averaged over a tidal period are backfigured from recorded
data. Various terms are neglected from the complete set of governing
equations in these analyses, and therefore, the resulting coefficients
must include the effects of these neglected terms. These coefficients
are not simply the averages over a tidal period of the actual eddy

coefficients which relate to the turbulent fluctuations. These argu-
ments are developed in greater detail in the following sections of

this report.
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IITI Theoretical Considerations

3.1 Statement of the Problem

The analytical models of Abbott (1960), McGregor (1971) and Hansen
and Rattray (1965), although limited by the‘solution techniques, point
out the possible advantages from proceeding in a parallel manner to
model time-averaged vertical velocity and salinity distributions. These
models include, for the longitudinal equation of motion, only the
pressure gradient, which contains the salinity gradient, and the eddy
transport of momentum. The velocity distributions determined from this
equation include all of the important features of measured net velocities.
It may therefore be concluded that this simplified balance of forces
describes the essential mechanisms of time-averaged circulation.

There are two important disadvantages of the Hansen and Rattray
model. The first is the necessity of dividing an estuary into several
regions, each having a unique mathematical model and solution. Within
each of these regions the solutions maintain geometric similarity.

In real estuaries, however, there is a continuous transformation of
velocity and salinity profiles along the longitudinal axis. Therefore,
a solution without implicit similarity assumptions is a preferable
technique.

The second feature of the Hansen and Rattray model which may
be considered a weakness is the strong dependence on the coefficient
of horizontal eddy diffusivity. Numerous investigators have shown
the horizontal eddy flux of salt to be a minor term in the salt bal-
ance for estuaries. FEddy coefficients are difficult parameters to

measure, and even more difficult to predict, especially when averaged
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over a tidal period. Thus, until a more detailed understanding of
eddy processes in stratified fluids is achieved, it seems reasonable
to include only the most important of these eddy flux terms in estuary
models.

The objective of the present study is to develop an analytical
model of time-averaged estuarine circulation which will avoid the less
tractable features of the previous models described above. The govern-
ing equations are similar to Hansen and Rattray's model, which was
originally suggested by Pritchard's analysis of the James River
estuary. A solution technique which is continuous over the entire
length of an estuary is desired and which makes no assumptions about
similarity of velocity or salinity profiles. Only the vertical eddy
flux of salt and momentum are included, and thus only two eddy
coefficients need to be specified. In order to provide the analytical
solution with a predictive capabality, empirical correlations for
these two parameters with gross characteristics of the flow field are
sought, as a fundamental feature of the complete solution.

3.2 Governing Equations

3.2.1 Introduction

The model equations describing the circulation and distribution
of salinity are the equations of motion, of continuity, of conserva-
tion of salt and an equation of state. The model is reduced to the
longitudinal and vertical dimensions by assuming lateral homogeneity.
Figure 3.1 is a definition sketch showing the orientation of the

coordinate system with the x - axis positive towards the head of the
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b (x)

Figure 3.1 Definition sketch for model equations
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estuary (upstream) and the y - axis positive downward. An additional
simplification is made restricting the width b(x) and the mean water
level h(x) to be functions of the longitudinal coordinate only. An
inflow of freshwater Qf occurs at the far upstream end.

3.2.2 Equations of Motion

For the conditions described, the conservation of momentum for

the longitudinal direction can be written

3t T ex Ty

Jub Buzb duvb _ l-ég-b
p 9x

l

where u = velocity in longitudinal direction

v = velocity in vertical direction

t = time

p = density

P = pressure

x = longitudinal direction

y = vertical directiomn

b = width
This equation is a balance of forces for the estuary at any time in
a tidal period, i.e., before time—averaging. The viscous frictional
terms and Coriolis forces have been neglected. In addition, the
approximation of Boussinesq has been applied to neglect density varia-
tions in all but the bouyancy terms. The pressure is for the fluid
only, atmospheric pressure being assumed zero.

For the conservation of momentum in the vertical direction,

hydrostatic conditions are assumed. Thus, inertial and convective
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accelerations are neglected. The vertical equation of motion can

therefore be written

1
0=-=3%2y 3.2
0 g

=i

where g is the acceleration of gravity.

3.2.3 Equations of Water and Salt Conservation

For incompressible flow, the two-dimensional equation of continuity

dub , dvb _
ox + dy 0 33

The conservation of salt equation, before time-averaging, and

neglecting molecular diffusion is

dsb , dusb , dvsb _
ot + ox + ay 0 3.4

where s is the salinity and is a function of x, y, and t.

3.2.4 Time-Averaging of Equations

There are three time scales of interest for the model béing con-
sidered. Turbulent fluctuations of the dependent variables may be
assumed to take place within a few minutes. These variables also have
a diurnal or semi-diurnal component due to the tidal motion. Finally,
slow variations over several tidal periods can result from the changing
freshwater inflows and monthly changes in tidal amplitude. Following
the classical methods, the dependent variables are written as the sum
of a mean and turbulent component, i.e., within the first time scale

mentioned,
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v=v+v'
= < 1
s s + s 3.5
p=p+p
p=p+rp
where the prime refers to the turbulent component. These equations
are substituted into the governing equations 3.1 - 3.4 and averaged
- =2 i y 2 T 1
dub = Ju‘b duvb 1 9p Ju''b  du'v'b
= + = + = =-=%x=b -3 - = 3.6
Jat dx oy p oy [oh.4 ay
1 3p
P
3ub | dvb
% +B*y-—— 0 3.8
3sb , dusb , dvsb _  du's'b dv's'b
5t Tox  Tay - % %y 3.9

L A L |

2
The eddy fluxes of momentum and salt, u'", v'u', u's', and v's' are

usually written as the product of an eddy coefficient and the mean

gradient of the quantity being transported. For example, u'2 may be
replaced by €, %ﬁ, where e would be a horizontal eddy viscocity.
However, for the purpose of the present analysis the introduction of

eddy coefficients will be postponed until time-averaging over a tidal

period is introduced.
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In order to facilitate the tidal time-averaging, the mean de-
pendent variables are divided into two components, a tidal mean, and

a tidal varying term

u="0U+ ut
G =V + v
t
s =S +s, 3.10
p=p+o
= 4
p=2P Py

where U is the mean horizontal velocity for a tidal period and u, is
the harmonic component for the same tidal period, etc. As with the
turbulent components, the average of a harmonic term, e.g., u., S, over

a tidal period is zero by definition. Equations 3.10 are substituted

into equations 3.6 - 3.9 and averaged over a tidal period

2
JUb , Vb 3<u>b L 9Cu v >b
5t T Ix % 5y By
-1 3P 5<u'®b  3<u'vSb
=2y - - 3.11
m X y
0= - 1~—§£—+ g | 3.12
p_ 3y
otb , Vb _ 3.13
ax oy
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>
3Sb , BUSb 9<u, s, >b L 3VSb 9<vis b _
3t 9% 3x 3y Yy -

3<u's'"™>b 9<v's'"™>b
9% T oy 3.14

where < > indicates averaging over a tidal period.

From the analysis of the James River data, Pritchard (1954, 1956)
argues that the dominant terms in the longitudinal equation of motion
3.11 are the pressure gradient and the vertical eddy flux of momentum,
all other terms being of second order. This assumption is included
in the present development. In a later section it will be shown that
the neglected terms are indeed small for the cases studied. For the
salt balance 3.14 the tidal cross-products and horizontal eddy flux are
neglected by similar arguments. The reduced equations are further
simplified by introducing mean eddy coefficients for the remaining

turbulent terms

_a<uvh> sy

- 9
=2 (D 3.15
oy ay ¢ y 9y )
9<v's'> _ 3 ER
-~ 27 =2 (x = 3.16
oy 3y ( y 9y )

These definitions for Dy and Ky are convenient with regard to reducing
the mathematical complexity of the model. However, they are strictly
artificial in that they do not preserve the mechanisms of turbulent
mixing, i.e., tidal activity, in their formulation. In particular,

equation 3.15 relates the net turbulent momentum flux <u'v'> to the
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net, non-tidal velocity U. By purely physical arguments this flux
should be related to the tidal velocity u - This apparent inconsistancy
is partially resolved in Chapter V where Dy is correlated with the tidal

velocity. The equations are now written

__ 1 9P 13 o3

0= o b5y O, 5 3.17

0= -1 _g_f_’J,g 3.18
o 3y

3Ub , Vb _ 3.19

9x oy

3Sb , 3bUS , dbVS _ 3 3s
st Yo T oy T oy OF 5y ) 3.20

The value and distributions of the mean eddy coefficients are
unknown. If a solution to the above set of equations can be shown to
match recorded data by proper fitting of Dy and Ky’ one must assume
that either all the neglected terms are zero, or more probably, that
these neglected terms have been absorbed into these coefficients. A
comparison of equations 3.15 and 3.16 with the classical definitions
of eddy viscosity and eddy diffusivity clearly shows the difference

in the meaning of these terms

8 By, 3 3 |
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More specifically, Dy and Ky are not simply Ey and kv averaged over a
tidal period.

3.2.5 Equation of State

The effect of temperature on the relationshp between density and
salinity is not included in this model. A simple linear empirical ex-

pression is used

p=p0 (1 + as)
o]

%}
N
(O3]

where P, is a reference density and 0 is a conversion constant. The
range of temperatures encountered in estuaries does not require a
more complex expression, in light of other model assumptions.

3.3 Additional Assumptions

The governing equations developed in the preceeding sections can
not be solved analytically in their present form. Previous investiga-
tors have introduced similarity assumptions for the velocity and
salinity distributions as well as restrictions on the longitudinal
salinity gradient. As stated in a preceeding section, the present
investigation seeks to avoid the limitations of a similarity solution.
However, as will be developed in the following sections, the longitud-
inal salinity gradient will be modified to allow an analytical solution
to be found.

The Pritchard (1952, 1954) investigation of the James River re-

vealed that for the stations and conditions of the survey, the
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longitudinal salinity gradient did not vary appreciably with vertical
position. Harleman and Ippen (1967) showed a similar pattern for the
analysis of data from a laboratory flume. Taken to the extreme, this
observed feature suggests that the longitudinal salinity gradient may

be assumed independent of its vertical position, i.e.,

oS _ 35

% - 5x (x) 3.24
although

S= s(x,y).

Introducing equation 3.24 into the set of governing equations
3.17 - 3.20 results in equations, which although now solvable analytical-
ly, no longer describe exactly the presumed physical mode of the net
circulation. A close fit of velocity or salinity profiles between
field or experimental data and the theoretical solutions can suggest
the validity of the above assumption only within the context of all
the other assumptions made in developing these equatioms.
The longitudinal salinity gradient %g-is replaced in equations
3.17 - 3.20 with the longitudinal gradient of a depth averaged salinity

S Next, a steady-state condition is assumed for the initial develop-

a4
ment of the solution. This condition will be removed in later sections,
and an unsteady solution will be presented. In addition, the two

mean eddy coefficients Dy and Ky are assumed independent of vertical

position. These coefficients have been shown to represent the rather

complex effects of time-averaging and of the mneglecting of terms
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considered of smaller order. The vertical dependence of these
coefficients is not known, although several investigators have attempted
to analyse these terms from experimental and field observations, as
discusseéd in Chapter II. Thus, Dy and KV are assumed to be independent
of y, and are replaced with effective coefficients for the entire depth
of flow, D and K, respectively.

3.4 Synthesis of Governing Equations

The synthesis of the original model equations, modified by the
assumptions discussed in section 3.3 begins with the equation of

hydrostatic pressure

0=->=3+g. 3.12

Equation 3.12 is intergrated in y

y
= .2
P pmg dy 3.25

hg

and differentiated in x

Yy

N on m
ox 8P 3x te ox dy 3.26
ho

applying Leibnitz' rule and the Boussinesq approximation. Equation
3.26 is next substituted into the longitudinal equation of motion

which now has assumed that Dy(x,y) can be replaced with D(x)

1 9P 39U 3.27
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After substitution of 3.26

y
ho g | %Pm 2%
83 T o ax T 2 3.28
m hy dy

and differentiation in y, yields

9p 3
5——8—‘“=D§~g. 3.29
P X oy

The equation of state 3.23 is next introduced into equaiton 3.29

3
3 _ 97U
g5y = D 2y _ 3.30

The steady-state salt conservation equation, with Ky(x,y)

replaced with K(x) can be written

2
dUSb VSh ' .31
gi + B8y = bK > g 33
oy

This equation can also be written

2
29S 9S 9°S
U2 +v2=k22
9% dy 8y2 3.32
since
oUb oVb,
S(_BT +a—--—0 3.33

from continuity 3.19.
Equation 3.32 is further simplified by introducing the assumption
that the longitudinal salinity gradient %g-can be replaced with a
39S
gradient of the depth averaged salinity §§d' The same procedure is

applied to equation 3.31. The resulting system of governing equations
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can be written

3
L% 0%
80 3% 3 3.34
ay
g—m'i + % _ 3.35
b4 oy
3s 2
a 3s 3°s
Uag ¥V 5y =K o 3.36

A stream function satisfying the equation of continuity 3.35 is
defined
1 oY 1 9¥
U="%v3y Vv 3.37
and thus the equations are reduced to
oS
o4 _pal
8% 3x b o4 3.38
y
]
¥ T4, avas 0%
0y 0x ox 9y Byz 3.39

3.5 Boundary Conditions

The set of governing equations, (3.38 and 3.39) includes a fourth
order equation for the stream function requiring four boundary con-
ditions and a second order equation for salinity, subject to two

boundary conditions. These governing equations describe the dynamics

of an estuary averaged over a tidal period. The boundary conditions,
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as well, should be mean conditions for this averaged system. With

the assumption of steady-state, any control volume defined by two
vertical boundaries, the mean water surface, and the bottom must
maintain a constant quantity of salt and have a net through-flow of
water equal to the freshwater discharge. No flux of water or salt can
occur at a horizontal boundary, i.e., the surface or bottom. Frictional
stresses can be applied at both the surface and bottom and the condition
of no slip of the horizontal velocity on the bottom should also be
considered. These various boundary conditions are examined in the
following paragraphs and a set of conditions is selected for in-
clusion in the analytical model.

Considering first the equation of conservation of momentum 3.34,
four boundary conditions are needed. Surface wind stresses are neglec-
ted, and since the mean eddy coefficient D has a finite value at the
surface by assumption, the vertical gradient of the net horizontal

velocity gg-must be made zero for zero surface stress. At the bottom

y = h, two possible conditions for the horizontal velocity are con-
sidered. A no-slip or U = 0 condition must apply for a precise model
of the actual flow. However, for the rough natural bottoms, or

even in laboratory flumes, the turbulent velocities are very large
near the bed, going to zero in a very thin layer which can be neglected
in the analytical model. If the net velocity is to have its maximum
value just above this thin layer, a condition of zero‘gradient, %g = 0,

at the bottom is the appropriate model boundary condition. An analysis

of the laboratory flume tests in Chapter IV will show that this latter
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condition of negligible stress results in a closer fit of the math-
ematical model to experimental and field velocities. However, for
the purpose of examining the behavior of these two possible approaches,
solutions for both are developed in this chapter.
The remaining two conditions for the stream function are specified
by the requirement that the integral of the net horizontal velocity over
the depth must equal the freshwater discharge per unit width, Qf/b.
By assigning the stream function a zero value at the bottom, its
surface value must equal Qf.
These boundary conditions for the equation of motion 3.38 may

be summarized as follows:

2
vy =0, gg.= 0, - §_%.= 0 zero surface
oy stress
y =h, U=0, _%§.= 0 zero bottom
velocity
or
35U 52y
y = h, 5y - 0, - — = 0 zero bottom
9y stress
h h
Q _ - _1 | oY 1
£/b Udy = -3 Byd b{‘P+‘Ph}
0 0
therefore
y=h, ¥=20
conservation of
y=0, Y%= Qf freshwater
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Two boundary conditions are needed to satisfy the salt balance
equation 3.39. Ideally, these conditions should specify a zero flux
of salt at the surface and the bottom. As the vertical velocity V
is zero at these boundaries, the flux reduces to K%%—where K is

o

non-zero. Thus, a condition that %s-is zero at the surface and bottom
will satisfy the zero flux requirements. The form of the solution of
equation 3.39, however, does not permit the specification of the
gradient of the salinity at two boundaries. This restriction will be
fully explained in section 3.7. The consequence of this limitation is
that a condition of zero gradient is specified at either of the two
boundaries and a second non-gradient condition for salinity is intro-
duced. If the salt balance equation is an accurate description of the
physical processes, a computed gradient at the other boundary, which
has no specified condition, should also be zero.

The alternate boundary condition for the salt balance is a
statement that the depth averaged salinity must equal a prescribed

value, S This mean salinity Sd also appears in the modified long-

q
3S
itudinal salinity gradient. 5 This condition, with either a

zero gradient at the surface or at the bottom, completes the boundary

conditions for the model. These final conditions are written

39S

y =0, §§-= 0 zero flux at
surface
or
- oS _ .
y = h, Sy = 0 zero flux at
bottom
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= d. ) specification of

0 mean salinity

3.6 Non-Dimensionalization of Equations

As with most problems of fluid dynamics, it is convenient to
develop analytical solutions in a non-dimensional form in order to
permit generalized discussions of results. The choice of terms intro-
duced to non-dimensionalize the various dependent and independent
variables, although somewhat arbitrary, should recognize the possible
difficulties in quantifying these new parameters. The following

defintions will be shown to satisfy this condition:

=Y =X
" h I
1
po= L 8 E-%
Qs o 3.40
6, - a
- S
o

where Li is the mean intrusion length, defined as the distance from
the ocean boundary to a point where the time-averaged, depth averaged
salinity is one percent of the ocean salinity. So is the ocean
salinity, h is the depth of the mean water level and Qf is the fresh-
water discharge, as previously noted.

These quantities are introduced into equations 3.38 and 3.39

BaS, 36; DO by

- .41
Ly 98 h4b an4 >
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. o9& L, %6 h on 2 2 3.42

by
2
n=0,—§——l2p— =0
an
v
=1-—— =0
n s am
or 3.43
2
n=1,—l§w =0
on
n =1, Yy =0
n =20, Yy =1
- and
- 96 -
T]—O, 37] 0
or
30 _
n=1o5y =0
1 3.44
S .
6 dn = -4
S
(o]
0

3.7 Analytical Solution for Steady-State Conditions

The steady-state equations of motion and salt conservation, in

dimensionless form are

: 4
g Soh

b ) a6 34w
Li DQf o0&

d
3ﬂ4

3.45
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ab v bKLi 826

on o9& on o9& th an 3.46

Q

wherein Y, 0O, ed, £ and n are all dimensionless variables. These equations

can be further simplified by defining two coefficients,

gaSOhAb
C, (&) = i
1 Li DQf 3.47
KLib
CZ(E) = EEE—_' 3.48

Equation 3.45 can be solved for the stream function Y by integrating with

y four times

4 3 2

0
- ¢ ——4n_ n_ n_
v=-C st e g taptantayy

where a5 a5, ag, and a, are all functions of &, and are evaluated from
the boundary conditions. This determination will be presented for two
cases, depending upon the choice of boundary conditioms.

case 1: zero bottom velocity

For this case, the boundary conditions are

2
B——;)=0,‘JJ=1,n=O
on
3.50
Y _ - -
m 0, Y= O, n=1

and therefore
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_ 3 _d -
a; = 3+ g-Cl 5E a, = 0

__z_l_ci?_é. a4=1’
83 T T2 T 48 "1 ¢

Substituting these values into 3.49 yields

(@]

08, C Bl

.4 1 . 4 3 _ N o2 41
case 2: zero bottom stress

For this case, the boundary conditions are

2
Y _ 0, V=1, n=0
2
an
2
Vo g0, nea
on
and therefore
_1, 2% a, = 0
31 T2 52
9%
! 24 3L 2y '

Substituting these values into 3.49 yields

36, €

— {-n

_d 4
3E 24

V= +2n° - n} -+ 1.

The difference between the stream function for the two cases is

aed c

n 2 1
5’(“ - 1@ - 3 EZ‘)-
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The solution of the salt balance equation 3.46 is dependent upon the
stream function { and therefore on the choice of case 1 or case 2. How-
ever, the general solution can also be developed in terms of an un-

specified stream function. A dummy variable f£(£,n) is defined
_98
f(i,n%an 3.56

and substituted into a modified form of equation 3.46

of _ B(E,n) £ = A(E,n)
o1 c2<£) C, (&) 3.57
where
36
- _9ov d

B(En) = ¥

KL.b
Cc, (&) =

2 th

Equation 3.57 is multiplied by an intergration factor

exp (f -% dan)
2

and the solution for 3.57 is shown by Wylie (1960) to be

f(€,n) = exp (f %-dn)f %-exp (f - %-dn) dn
2 2 2 3.58

+ bl(g) exp (f %édn)
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wherein bl(g) must be evaluated from the boundary condition. At this
point it is clear that only one gradient condition for salinity may be
included, as noted in section 3.5. There is no reason to expect that
the choice of boundary for specifying g%-= 0, i.e., f(&,n) = 0, is
important. Thus, for convenience this condition will be applied at the
surface, N = 0, and this determines that bl(E) = 0,

A second condition is needed to specify the salinity from equation

3.56,
S(E,m) = [ £(&,n) dn + b, (E). 3.59

This condition,stated in equations 3.44, is that the depth average of the

salinity must equal a known value, 6

d,
1
by (8) = 8, - jo [ £&m) dn an 3.60
and thus
1
B(E,n) = ,n) dn + 6. - f(£,n) dn dn. 3.61
(E.n) = [ £(E,n) dn + 6, fof(am n dn

Equation 3.61, although awkward in appearance if written in terms
of the stream function, may be evaluated easily by numerical intergration
using a digital computer.

3.8 Inputs for Solution

In the development of the solutions for the stream function and
salinity, several parameters have been introduced and assumed known
a priori. These parameters are reviewed in this section and possible

sources of quantitative evaluation are discussed.
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The depth average of the salinity, averaged over a tidal period,
aS
S, and its longitudinal gradient —— must both be specified in the

d ox
solutions. For the purpose of evaluating the model from recorded data,
these parameters can be simply backfigured from the measurements. How-
ever, in order for the analytical model to have a predictive capability,
these terms must be predictable themselves. There have been numerous
semi-empirical fits for this one-dimensional salinity distribution,
Harleman and Ippen (1961), McGregor (1972) and others. However, a recent-
ly developed numerical model by Thatcher and Harleman (1972) permits
one to compute a one-dimensional unsteady salinity distribution. This
approach results in a general, non-empirical analysis for this input
parameter. A summary of their model, and the details of its coupling
with the analytical two-dimensional solution are presented in Chapter V
The intrusion length can also be evaluated by their technique.

The freshwater inflow and ocean boundary salinity are considered
to be fundamental quantities, as are the depth and width distributions.

The remaining two quantities needed to evaluate the analytical
solution are the eddy coefficients, K and D. Nothing can be said
about these terms prior to their evaluation from recorded data. The
procedure for their determination is to fit the analytical solutions for
velocity and salinity with flume and field data and to pick the best
fit values for K and D by trial and error. Since the stream function
is dependent only on D, this procedure is not too cumbersome, even though
the salinity is dependent on both D and K. This process of back- cal-

culating D and K from recorded data is repeated for several data sets.
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The resulting distributions of these coefficients are then correlated
with parameters characteristic of the flow conditions, as is shown in
Chapter 1IV.

In summary, the parameters needed to evaluate the analytical
solutions for velocity and salinity, except for the coefficients D and
K, may be determined either from recorded data or a numerical model.

The former method is used first to appraise the model and to back-figure
values for D and K. The latter method, a coupling with a numerical
model demonstrates the predictive capabilities of the analytical model.

3.9 Theoretical Velocity and Salinity Profiles

3.9.1 Velocity Profiles

For the condition of zero horizontal velocity at the bottom, the

dimensionless stream function, eguation 3.52, is

%8, C %8, C
.41 ., _ 4 3y - n,2 e
Y = 5E 34 (-n"+2n"-m -n+1+7 -1 P 24) 3.52

where
gaSohéb
Cl LiD Qf ’
Qf
The horizontal velocity, normalized by the freshwater velocity Uf = th
is
%—;=—%=—§§£§—1’1—(—4n3+6n2—1) -1
. aed Cl , 3.62
-3 1 - 52—'52')(3n -1
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and the vertical velocity normalized by this same factor is

2 2,

L L, C, 5% 3%0,

v it _ 1.1 d 4 3 n .2 a1
TR R 2 .2 (-=n" + 207 M- 5 (n°-1) o 3.63

Table 3.1

Model Parameters for Figures 3.2 - 3.4

S0 29.2 ppt
L. 160 fr
S
h .5 ft
b .75 ft
o .75
ed .66
20
d
f - 097
azed
—5 -2.86
af
D , .24x10_3 ftz/sec
K .18x10—3 ftz/sec

The broken lines in figures 3.2 and 3.3 illustrate these velocity
profiles for representative values of input parameters listed in Table
3.1. The horizontal velocity profile, figure 3.2, clearly shows the

boundary conditions of zero gradient at the surface and zero velocity at
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Figure 3.2 Analytic solution for horizontal velocity profile
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Figure 3.3 Analytic solution for vertical velocity profile
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the bottom. The flow reversal, with seaward flow in the top region

and landward flow in the bottom region is also demonstrated. The inter-
gral of this profile is equal to 1.0 which is a net discharge of the
freshwater inflow. Figure 3.3 shows the vertical velocity profile for
the same conditions. This velocity is zero at the surface and bottom,
and directed downward throughout the depth. From the form of equation

3.63 it is apparent that the direction of the vertical Velocityzdepends

070

on the sign of the second derivative of the salinity gradient 5

13

a point which will be further discussed in section 4.2.2. The maximunm
value of this velocity occurs near mid-depth.
The second case for the bottom boundary condition is that the vertical

gradient of the horizontal velocity is zero, as stated in equation 3.55.

3, C,
V= ——%- 5%-{— n4 + o3 - nt -n+ 1. 3.55
13

Proceeding in a similar manner,

e aed ¢

v __%%__""d471, ,3 2 _
T TR { -4n” + 6n 11}-1 3.64
and
L L., 3°8
vV _ 43w _ i a, 4 3
U; TR B TR 2w o o -nk 3.65

These profiles are shown as solid lines on figures 3.2 and 3.3. For
this case, both the horizontal velocity U and the vertical velocity
V are symetric about the mid-depth, y/h = 0.5. 1In addition, the hor-

izontal velocity is symetric about a vertical coordinate of U/Uf = 1.0.
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The mean eddy coefficient D, as well as all other input parameters,

is the same for both cases plotted in figures 3.2 and 3.3. Thus, for
the same value of D, the boundary condition of zero bottom velocity
results in a significant reduction in both the horizontal and the
vertical velocities over most of the depth. This means that the choice
of boundary condition will influence the best-fit values of D for a
given set of experimental or field data.

3.9.2 Salinity Profiles

The model solution for the vertical salinity distribution is given

as
0(E,m) = [ £(E,n) dn + 0y - H £(£,m) dn dn 3.61
0
where
f(E,n) = exp {f Gl 1 d }J Ew-é—?(—i-—-—l--exp {I— P 1 dn dn
oan 9§ C o0& C2
and
K(g) L,b(&)
CZ(E) = **ag—ﬁzgj—— 3.62

Using the same data from Table 3.1, as in the example for the velocity
profile, figure 3.4 illustrates the salinity profile for zero bottom
' velocity (broken line) and zero bottom stress (solid line). It is clear
from these figures that the choice of velocity boundary condition also
influences the vertical salinity distribution if the same value of K
is used.

In obtaining equation 3.61 for the salinity distribution, an

assumption of zero vertical gradient at the surface was made. Figure
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Figure 3.4 Analytic solution for salinity profile
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3.4 shows that at the bottom, y/h = 1.0, %%»is also almost zero. Thus,
it would seem that the governing equations are satisfying the conser-
vation of salt at the horizontal boundaries of the model.

A computer program for evaluating the vélocity and salinity dis-

tributions is discussed in appendix 1.
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IV  Evaluation of Steady-State Solution

4.1 Introduction

The analytical solution for velocity and salinity distribution de-
veloped in Chapter II is evaluated with laboratory data from the Vicksburg
salinity flume, the Delft Hydraulic Laboratory salinity flume and the
James River field study. This combined set of data covers a wide range of
flow conditions and degrees of salinity stratification, some of which may
partially invalidate model assumptions. These latter studies help to de-
fine the limits of model application. For each case studied, a best-fit
value for the two mean eddy coefficients is found at each longitudinal
station. All of these cases are assumed to be in a steady-state condi-
tion, i.e., values for velocity and salinity for successive tidal cycles
are assumed the same. This assumption is valid for the flume studies by
experimental design. For the James River study, steady-state can only
be an approkimate condition, depending upon the freshwater hydrograph.

4.2 W.E.S. Flume

4,2,1 Description of Flume

The laboratory flume of the Corps of Engineers, U.S. Army, Vicksburg
Waterways Experiment Station (WES), is described in detail in a WES re-
port (1955). The flume, schematically shown in figure 4.1, is a lucite
channel 327 ft. long, 0.75 ft. wide and 1.5 ft. in total depth. At the
ocean end there is a tidal reservoir which can maintain a constant salinity
and a periodic surface level. The opposite end has a freshwater reservoir.
Roughness is achieved by 1/4 inch strips attached to the side walls on
2 inch centers. Different estuarine conditions are modeled by varying

the freshwater inflow, the tidal amplitude and the basin salinity.
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Detailed one-dimensional results are presented by Ippen and Harleman (1961)
for numerous tests and conditions. Harleman and Ippen (1967) present
two-dimensional analysis of three tests showing the average over a tidal
period of the vertical velocity and salinity profiles for several long-
itudinal stations. Table 4.1 summarizes the flume conditions for these
three runs.

4.2.2 Evaluation of Bottom Boundary Condition - WES 16

The depth-averaged time-averaged longitudinal salinity distribution
and its first and second derivatives is a required input to the analytical
model. For the purpose of evaluating the model solutions and determining
the eddy coefficients, this salinity distribution is determined from the
recorded data. An analytical function is passed through the data points,
and its first and second derivatives computed using a spline computer
program, outlined in appendix 2. Figure 4.2a shows the depth-averaged,
time-averaged longitudinal salinity distribution for WES 16. The ex-
perimental points are the depth-averages of the vertical profiles shown
in Plate 11 of Harleman and Ippen (1967), and the smooth curve is the
fitted spline function. The first and second derivatives for this func-
tion are plotted in figures 4.2b and 4.2c respectively. As stated pre-
viously, the inflection point shown in figure 4.2c determines the long-
itudinal position where the vertical velocity changes its direction.

Harleman and Ippen (1967) backfigured vertical velocities using
graphical intergration of the equation of continuity. Figure 4.2d shows
these vertical velocities with the corresponding velocities from the
analytical solution. The agreement in direction, and more significantly,

location of the reversal in direction (between 40 and 80) confirms the
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Table 4.1

Summary of WES Salinity Flume Conditions

[44

Flume depth at msl = 0.5 ft. Tidal Period = 600 sec
Length of Flume = 327 ft. Flume Width = 0.75 ft.
Test No. Tidal Basin Tidal Basin Freshwater Intrusion
Salinity, ppt Amplitude, ft. Velocity, ftz/sec Length, ft.
11 26.4 0.05 0.056 140.
14 29.7 0.10 0.020 180.

16 29.2 0.05 0.020 160.




observation that the inflection point of the first derivative of the
salinity determines this location. The large difference in magnitude
between the vertical velocities at station 5 is probably due to the fact
that in both the graphical technique of Harleman and Ippen and the spline
function of the present analysis, difficulty is encountered at the end
points, where extrapolation becomes necessary. Consequently, all analyti-
cal results at the upstream or downstream ends of observed or predicted
salinity distributions must be viewed with a considerable degree of caution.

Having found the longitudinal salinity distribution function and
using the values for the other input parameters from table 4.1, the an-
alytical model can be evaluated for different values of the eddy coeffi-
cients. Two solutions sets are shown, depending upon the choice of bottom
boundary condition for the horizontal velocity. The computations are
carried out on a digital computer, as is outlined in appendix 1.

Case 1 - Zero Bottom Velocity

The equations for the model solutions for velocity and salinity are
given in Chapter III. TFigure 4.33 and figure 4.3b show
the best-fit comparisons of model and experimental velocity profiles for
5 stations, 5, 40, 80, 120 and 160 feet from the ocean end for WES test
16. At each station, a different value for the eddy coefficient D is
used, as listed in table 4.2, At station 5, very close to the ocean
reservoir of the flume, entrance effects, as well as the influence of
extrapolated gradients, probably are responsible for the higher values
of D for both cases. At the remaining stations, the values of the eddy
coefficients do not vary much with the longitudinal position. From the

figures, 4.3a - 4.3b, it is seen that the condition of zero bottom stress,
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case 2, gives a better fit to the experimental data. Figures 4.3c - 4.3d
show the comparisons of salinity profiles for the same flume test. Clearly,
the choice of velocity boundary condition has little effect on the salinity
profiles. Table 4.3 lists the best-fit values of the eddy coefficient of
salt K for the WES test No. 16 for the two cases. Again, except for
station 5, 5 feet from the flume entrance, the eddy coefficients do not
vary much along the length of the flume.

Based upon an evaluation of figures 4.3a - 4.3d as well as similar
plots for other WES tests, case 2, which states that at the bottom the
vertical gradient of the longitudinal velocity is zero, was chosen as
the most suitable boundary condition. In making this selection, certain
emphasis was placed on modeling the net velocities just above the bed
(which this case handles better than the condition of zero bottom velocity)
for the purposes of analyzing sediment transport problems. All remaining
comparisons of experimental and analytical velocity and salinity profiles
are for this zero gradient condition, case 2. Table 4.4 illustrates the
comparison of computed and experimental velocity and salinity distribu-
tions for WES test 16 for the zero gradient boundary condition. All
data in this table except the values for D and K are dimensionless, the
latter having units of ft2/sec. Appendix 3 contains the complete tab-
ulated summary of WES test 16, as well as the data for the other tests
analysed in this study.

4.2.3 WES Test 14 and 11

The other two WES tests used to evaluate the analytical model are
examples of a more stratified flow, test 11, and a less stratified flow,

test 14. Figures 4.4a - 4.4b illustrate experimental and model agreement
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Table 4.2

Best-Fit Values for D for WES-16

Case 1 Case 2
u=0, y=h g—‘éo, y=
Station 2 -3 g -3
D, Ft"/sec x 10 D, Ft7/sec x 10
5 .2 .35
40 11 24
80 .12 .26
120 .12 .24
160 .12 .22
Table 4.3
Best-Fit Values for K for WES-16
Case 1 Case 2
du
Station u=0, y=h dy 0, y=h
K, Ft2/sec x 10—3 K, FtZ/sec X 10“3
5 .07 .18
40 .17 .18
80 .15 17
120 .15 .21
160 .15 .18
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for velocity and salinity at station 80 for both tests. In figure 4.4b
(test 11) the salinity gradient at the botton y/h = 1.0 has an appreciable
slope, indicating that perhaps the model assumptions are not as valid for
this degree of stratification. The tables in appendix 3 summarize the
results for these two tests.

4.3 Delft Flume

4.3.1 Description of Flume

At the Delft Hydraulics Laboratory an experimental investigation of
salinity intrusion in estuaries similar to the Vicksburg studies has been
carried out. The details of flume design and measurement technique are
reported in Delft (1970). Table 4.5 lists the basic Delft flume dimen-

sions with those of the Vicksburg flume for comparison. For the Delft

Table 4.5

Delft and Vicksburg Flume Dimensions

Delft Vicksburg
Length, ft. 546 327
Depth, ft. (msl) .7 .5
Width, ft. 2.0 .75
Roughness (bottom) (side)

2 .
test the bottom roughness was achieved by vertical bars .5 x .5 cm in
cross—-section attached to the flume bottom. By changing the number of

bars the roughness could be varied for different rums.

Four Delft tests were analysed with the analytical model. All the

tests were for steady-state conditions and the longitudinal salinity
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distribution was backfigured from the recorded data as was done for the
WES tests. Table 4.6 summarizes the flow conditions for these four tests.
Tabulated detailed results can be found in appendix 3 which document the
agreement between experimental data and best-fit analytical solutions for
these Delft tests. Figures 4.5 - 4.8 illustrate these results at a cen—
tral section of the salinity regime.

4.4 James River Estuary

The Chesapeake Bay Institute 1950 survey of the James River estuary

is described by Pritchard and Kent (1953). Velocity and salinity data,

stations, shown in figure 4.9. Table 4.7 summarizes the flow conditions

for the three periods of the survey.

Table 4.7

James River Estuary - Flow Conditions

3
Date Qf, m” /sec Li’ m So,ppt
18-23 June 124, 90,900 24
26 June-9 July 104. 94,127 24
17-21 July 130. 90,000 24

The data in the field survey report did not include sufficient long-
itudinal salinity stations for direct estimates of the intrusion lengths
and ocean salinity (Chesapeake Bay salinity). The ocean salinity was
estimated from an unpublished report by the U.S. Army, Waterways Exper-
iment Station, describing the salinity verification of a hydraulic model
of the James River estuary. The intrusion lengths were determined from

Lee (1970), figure 14.10 which plots intrusion length as a function of
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Figure 4.9 Survey sites, James River estuary
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Table 4.6

Summary of Delft Salinity Flume Conditions

06

Flume depth at msl = .216 m Basin Salinity = 30 ppt.
Length of Flume = 179.16 m Tidal Period = 560.4 sec
Flume Width = 672 m
Test No. Roughness Tidal Amplitude Freshwater Intrusion
m 1/z/sec m Discharge m3/sec Length, m
117 28.5 .0125 - 0029 °L.
116 25.3 .0125 - 0029 oL
121 19.0 .0125 - 00145 >4
- .00181 51.

122 19.0 .0125




freshwater discharge.
The depth of mean water was assumed to be 7.5 meters for all three

stations, and the mean widths were determined from the CBI report as

follows:
station mean width, m
J-11 3000.
J-17 2350.
J-24 1640.

Tables in appendix 3 present the comparison between field measurement
and analytical solution for velocity and salinity with depth. Figure 4.10
illustrates this comparison at J-17 for 26 June-7 July. The difference
between computed and actual velocities over most of the depth is probably
due to several factors, including the uncertainity of time-averaged field
measurements, and more importantly, the simplifying assumption of constant
width with depth for the analytic solution. The salinity profiles for
this same station show better agreement than the velocities. However,
there appears to be a sharp vertical gradient near middepth for the field
data which is not observed for the analytical solution. This difference
may be a result of the same factors cited before for the velocitybprofile.

In general, the analytical model, although clearly capable of re-
producing flume conditions more exactly, does not appear to break down
for the prototype conditions and scales exemplified by the James River
estuary.

4.5 Comments on Neglected Terms and Other Model Assumptions

In the development of the governing set of model equations, the time-
averaged convective terms have been neglected from the longitudinal
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equation of motion, leaving the pressure gradient balanced by the vertical

eddy diffusion of momentum

2
U§q+V§H=_l_Z3_P+D§_U 4.1
ox ay 0 9x 2
oy
neglected

These neglected terms can now be computed from equations 3.64 and 3.65
and compared with the remaining terms to determine the reasonableness of
the assumtpion. This comparison is shown in table 4.8 for WES test No. 16.
At all stations and depths the neglected terms are smaller than the re-
maining terms, but there are several places, e.g., stations 40 and 80 at
middepth where these terms, and especially the vertical convection V %%
is of relatively important size. The non-neglible order of these terms
indicates that the mean eddy coefficient D is an ambiguous parameter,
including both convective and diffusive components. Table 4.9 shows

a similar comparison of the order of the convective terms for Delft test
116 and the James River estuary, 26 June-7 July. Again, the neglected
terms are consistently smaller than the pressure gradient-turbulent dif-
fusion terms, but of significant size at about middepth.

A second important model assumption is that the longitudinal salinity
gradient %§~is independent of its vertical position, and thus longitudinal
salinity profiles at different depths are assumed parallel. Figures 4.11,
4.12, and 4.13 illustrate these profiles for WES 16, Delft 116 and James
River 26 June-7 July, respectively. This assumption appears to be quite

reasonable from about x/Li = .25 to x/Li = .60 and rather questionable up-

stream and downstream of this region. However, the tabulated analysis of
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Table 4.9

Comparison of Size of Neglected Terms for Longitudinal Equation

of Motion for James River and Delft Flume

James River 26 June - 7 July Delft Flume T-116
x/Li = ,29 x/Li = .29
303U 2%y 53U U 9%u

y/h (IS Ve Do y/h U~  vi=  pXg
9x dy 2 9% dy 2

9y dy
(x 10_6 m2/sec) (x 10_4 mz/sec)

0 1.1 0 16.2 0 1 0 4.8
2 7 4 9.7 2 .07 02 2.9
4 1 9 3.2 .4 02 05 1
6 08 9 -3.2 6 0 05 -1
8 6 4 -9.7 .8 0 02 -2.9
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Figure 4.12 Depth variation of longitudinal salinity distribution, Delft 116
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Figure 4.13 Depth variation of longitudinal salinity distribution,
James River, 26 June - 7 July



the various flume tests seem to indicate that the analytical solution
is not very sensitive to violations of this assumption, since good ex-
perimental-analytical comparisons are found over the entire salinity
region.

4.6 Analysis of Time-Averaged Eddy Coefficients

In the preceeding section best-fit values for the time-averaged
eddy coefficients D and K were determined for 10 tests including 3 proto-
type field studies. These tests covered a wide range of density strati-
fications and hydraulic conditions. The coefficients of mean momentum
flux and mean salt flux for these tests show a varying degree of long-
itudinal variation as summarized in table 4.10. As is discussed in sec-
tion 4.2.2, the upstream and downstream ends of the salinity distribution
have been eliminated from this table. This procedure removes errors
introduced by faulty analytical extrapolation of the spline function
used to compute first and second derivatives of the longitudinal salinity
distribution. To facilitate cross—comparisons between flume tests, the
units of the eddy coefficients are all given in the MKS system in this
table.

The longitudinal variations of the mean eddy coefficients shown in
table 4.10 suggest that although D and K are functions of x, this de-
pendence is of secondary importance. By introducing the additional
assumption that these mean eddy coefficients may be replaced with effec-
tive constant values for the entire longitudinal distance of the salinity
regime, correlations of these coefficients are greatly simplified.

Table 4.11 lists the arithemetic mean values for the various tests an-

alysed, defined as D and K. The ratio of freshwater velocity Uf to
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Table 4.10

Longitudinal Variation of Mean Eddy Coefficients

Test/Station,x/Li D,m2/sec X 104 K,m2/sec x 104
WES 11 .29 .29 .12
WES 14 .22 .19 .35

AN .26 .48
.66 .28 .26
WES 16 .25 .22 7
.50 .24 .16
.75 .22 .20
DELFT 117 .29 .56 .15
.43 .60 .17
.57 .68 .13
.71 .64 .18
.86 .84 .22
DELFT 116 .29 .64 .20
.43 .64 .15
.57 .84 .13
.71 .68 .18
.86 .92 .34
DELFT 121 .28 .72 .06
41 .76 .15
.54 .84 .06
.67 .80 .15
.81 1.12 11
.94 1.04 .15
DELFT 122 .29 .72 1
.43 .76 .15
.57 .76 .06
.71 .84 .18
James River
18-23 June .30 7.5 2.1
26 June-
7 July .30 6.5 3.1
17-21 July .30 6.5 2.1
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Table 4.11

Mean Values of Eddy Coefficients

U_./u

Test D K f" 7o
mz/sec X 10_4 mz/sec X 10.4

WES 11 .29 .12 .13
14 .24 .36 .029
16 .23 .18 .047

DELFT 117 .66 17 14
116 .74 .20 .15
121 .88 A1 .09
122 .77 .13 11

James River

18-23 June 7.5 2.1 .0085

26 June-

7 July 6.5 3.1 .007

17-21 July 6.5 2.1 .009
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maximum flood velocity at the ocean boundary ug is also shown in table
4,11. This velocity ratio is a significant parameter for defining flow
conditions and degrees of stratification, as will be shown in the following
discussion.

Figure 4.14 demonstrates the effect of using K and D in the place of
the local best-fit values for Delft test 116. It is clearly seen in this
example that the constant coefficients yield quite useful results for the
velocity and salinity distributions. This example is typical of the in-
fluence of this new assumption, and similar results can be shown for the
other tests analysed.

The significance of being able to use constant values for D and K,
i.e., D and R, is that only two unknown parameters need now be specified
in order to apply the analytical model to a given set of estuarine con-
ditions, i.e., freshwater discharge, ocean salinity, depth, etc. All
other model parameters can be readily determined with the possible ex-
ception of the longitudinal salinity distribution. This latter input can
be computed with the aid of a one-dimensional numerical model, as pre-
viously discussed in Chapter III. The determination of K and D for input
to the model is made by using an empirical correlation of these con-
stant coefficients with the gross characteristics of the estuarine system.

The set of governing equations developed in Chapter III can be written

26 4
d o'y
C, (&) =— = - —F 4.2
1 9& 8n4
and
96 2
BV W T RO - 4.3
on 3% an 9% 2 2

on
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where C h, b, Qf, D, and K are all functions of the longitudinal

l} cz’
coordinate £.
Following the arguments presented above for using constant values of

D (£) = D and K (§) ~ K, the dimensionless form of the governing equations

suggests that a possible pair of useful parameters for correlating K and

D is
goS h 4b
C.= — 20 O A
1 — .
Li Qfo D
and
_ KL
C 3
2
Qfo ho

where the zero subscript, e.g., bo’ ho’ refers to the downstream limit
or ocean boundary of the estuary. All terms in these new terms are
assumed constant over the longitudinal and vertical dimensions, and the
only unknown parameters are K and D.

The values of K and D should be a function of the degree of mixing
of the flow field which is in turn a function of the tidal activity. 1In
recognition of this dynamic relationship of the physical system being
modeled, 61 and EZ have been correlated with a characteristic non-time-

averaged tidal velocity. To be consistent with the definitions above, this

velocity is specified as the maximum entrance flood velocity u, non-

0
°f
dimensionalized by the freshwater velocity at this same boundary n g s
oo
_ Q. /b h U
. = for oo _ _fo 4.5
3 u u
o o
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The value of the maximum flood velocity is considered to be a depth
averaged term, as might be estimated from a table of tide currents, or
some other similar hydrographic reference.

Tables 4.12a, 4.12b, and 4.12c summarize the computations of 61,
EZ’ and 63 for the estuaries included in this development. Figures 4.15

and 4.16 show the correlation of C, with C. and 62 with C In general,

1 3 3°
this straight forward technique of using dimensionless groups defined by
the equations, yields seemingly significant correlations. No explanation
is readily available to explain the point for WES 16 on figure 4.15,
although the complex manipulation of the data could easily have introduced
an improper value for one of the component parameters.

It is significant in figures 4.15 and 4.16 that both laboratory flume
tests and prototype field surveys follow the same correlations. In
addition, the range of degrees of stratification include the highly strat-
ified Delft tests 121 and 122 as well as the nearly well mixed middle
reaches of the James River estuary. Thus, this empirical approach to
evaluating the effective coefficients of mean eddy flux, D and K is
apparently applicable to naturally occuring estuarine conditions.

By a simple rearrangement of terms, the unfamiliar parameters Cl and

02 can be shown to be equivalent to the products of several more conven-

tional quantities.

oagS h 4b oSgh h hu u
00 o 0~ o 0 oo o
— = FIEIEDH ) 4.6
Q. L. D u i D fo
fo'i o

C1=

and
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Table 4.12 a

Computation of Correlation Constants for WES Tests

9 _ oS _ghb _ KLp _ U
= 32.2 ft“/sec b = 0.75 ft. c,= =22 c, = ° C, = =2
© 1 L, Q D 2 Qfo ho 3 Yo
i “fo
= 0.75 h = 0.5 ft.
)
Test SO Li gfo u, ) D 4 ) K 4 Cl C2 C3
ppt ft ft7/sec ft/sec ft"/sec x 10 ft"/sec x 10
11 26.4 140. .021 .43 31 .13 32.8 1.3 .13
14 29.7 180. .0075 .70 .26 .39 111.2 14,2 .029
16 29.2 160. .0075 .43 .25 .19 119.5 6.1 .047




LOT

Computation of Correlation Constants for Delft Tests

Table 4.12 b

) _ ogS h’ KL.,b U,
= 9.8 m" /sec bO = .,672 m c, = 22 S =3 1h° G~2
Qfo Li D fo o (o}
= 0.75 h = .216m
o
Test S_ L, Q. u_ ) D y ) K ) ¢, c, 3
ppt m m /sec m/sec m /sec x 10 m”/sec x 10

117 30. 51. .0029 142 .66 .17 32.8 1.2 .14
116 30. 51. .0029 .130 74 .20 29.2 1.1 .15
121 30. 54, .00145 .106 .88 11 45.8 1.4 .09
122 30. 51. .00181 .108 .77 .13 44,2 1.1 A1
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Computation of

Table 4.12 c

Correlation Constants for James River Survey

9 _ OLgSohAbo R Lb _ U
g = 9.8 m"/sec b = 3000 m C. = ° = C,= —
o 1 = 0. h 3 u
Q. L., D fo o o
fo i
o = 0.75 h =8m
(o]
Date s, L; Qe u , D Y K y C, c, C,
ppt m~ /sec m/sec m /sec x 10 m /sec x 10
18-23 June 24 90,900. 124, .6 7.5 2.1 361. 58. .0085
26 June-
7 July 24 94,130 104. .6 6.5 3.1 272, 105. .007
17-21 July 24 90,900 130. .6 6.5 2.1 313. 55, .009
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These latter groupings more clearly show that the dynamics of the net

circulation and net salinity distribution are dependent upon scale ratios,

h aS gh

(EQD, a densimetric tidal Froude number, ——2—59-, and eddy coefficients,
i u
7 — o
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v Analysis of Transient Flume Study Using Coupled One and Two
Dimensional Models

5.1 Description of Transient Test Procedure

The WES salinity flume described in Chapter IV has been used to
evaluate the transient behavior of estuaries as well as the steady-state
conditions discussed previously. WES test 42 was conducted with a
transient freshwater inflow, decreased in discrete steps for 25 consecu-
tive tidal cycles, starting from a steady-state initial condition. All
other flume variables, including tidal amplitude and ocean salinity
were maintained constant during the course of the test, as indicated

in table 5.1

Table 5.1

Summary of Flume Conditions for WES Transient Test 42

depth, msl S oft.

width .75 ft.

length 327. ft.

tidal amplitude .05 ft.

tidal period 600. sec
roughness (side wall), n .02 ft.l/6
initial freshwater discharge .025 ft.3/sec
final freshwater discharge .00652 ft3/sec

The test was begun by running 23 cycles at a freshwater inflow of
.025 ft3/sec and thus permitting an equilibrium initial condition to be
reached. For the following 25 cycles, the freshwater inflow was decreased

.00077 ft3/sec at the end of each cycle. Measurements of velocity were
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made for cycle 1 (last steady-state cycle prior to decreasing inflow)

and cycle 25 for three depths, .05, .25, and .45 ft., at five statiomns,
5, 40, 80, 120 and 160 ft. from the ocean end at one minute intervals for
both cycles. Similar times, depths and stations were used in measuring
salinities for cycles 1, 6, 14 and 24.

5.2 Discussion of One-Dimensional Numerical Model and Results for Transient

Test

The numerical computation of the one-dimensional longitudinal salinity
distribution was carried out with a model presented by Thatcher and
Harleman (1972). This model is a real-time simultaneous solution of
the one-dimensional (longitudinal) equations of momentum, continuity,
state, and salt conservation. Real-time refers to time variations
within a tidal period, unlike the analytical two-dimensional model,
which is averaged over a tidal period. Since the numerical model can
handle boundary conditions which change with successive tidal cycles,
e.g., tidal amplitude, freshwater inflow, etc., it can compute the tran-
sient or natural behavior of real estuaries. Finally, the numerical
model has been developed for variable area estuaries, a condition which
is not required for the constant width salinity flume considered in
this discussion.

The governing equations for the numerical model are:

continuity equation

3h . 90 _ . _
bar+ss-aqa=0 5.1
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momentum equation

%g-+ U gg-+ 9 %g-+ g §§-A + g AZC + g 5]21 =0 5.2
AC Rh
where
dC = distance from the surface to the centroid of the cross-section
b = channel width
h = mean water level depth
Q = discharge, averaged over the cross-section
q = lateral inflow per unit length
U = longitudinal velocity, averaged over the cross-section
A = cross-sectional area
g = acceleration of gravity
Rh = hydraulic radius = A -
b+ 2t +n)
n = surface elevation relative to local mean water level

C = chezy coefficient

salt equation

9AS | 3QS _ 9 3s
*§;'+ > 5;’(EA 5;) 5.3

where

S

salinity, averaged over the cross-section

E = coefficient of longitudinal dispersion
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equation of state

0.75 S + 1,000. . 5.4

©
1

where
S = salinity in parts per thousand

density in kg/m3.

©
]

The coefficient of longitudinal dispersion E is related by

Thatcher and Harleman to the local longitudinal salinity gradient %g s

0

_ 98

E(x,t) = Kl it ET 5.5
0%

0 'S 0 . )
where S = E—»and x = x/L, SO being the ocean salinity and L the length
o
of the estuary. E_ is the dispersion coefficient applicable to a com-

T

pletely mixed region, where %§-= 0 or to the freshwater tidal region

upstream of the limit of salinity intrusion,

E.=77n0T Rh5/6

T 5.6

where n is the Manning's coefficient.
Thatcher and Harleman have found a correlation for the dispersion

parameter K and the stratification as represented by the estuary number

E_ = , 5.7

where PT is the tidal prism defined as the volume of water entering on
u
the flood tide. FD is the densimetric Froude number, S
b
o BAolp
ghAo o
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wherein u is the maximum flood velocity at the entrance and Ap is
the change in density over the entire length of the estuary.
The dispersion parameter K1 is normalized by the maximum flood

K K
velocity and the length of the estuary -1A. The correlation of _ 1

UOL UoL
with the estuary number ED includes data from five WES steady-state
flume tests, and several studies of variable area estuaries for both
quasi-steady-state and transient conditions. Figure 5.1 shows this
correlation. Since all parameters except Kl can be computed directly,

his correlation can be used to compute the changing value of the dis-
persion parameter Kl’ and therefore the dispersion coefficient E(x,t)
for the transient study.

Using boundary conditions of known tidal amplitude and flood tide
salinity at the ocean end, the numerical model computes the elevations
n, discharges Q and salinities S for discrete time steps at discrete
points along the flume length. Finite difference techniques are used
to find the numerical solution, combining both explicit and implicit
methods.

Table 5.2 summarizes the flume conditions which are the input to

the numerical model.
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Table 5.2

W.E.S. Transient Test 42 Flume Conditions

tidal period 600 sec.
flume length 327 ft.
width 0.75 ft.
depth, msl 0.05 ft.
Manning's n .02 ft.ll6
ocean salinity 29.0 ppt
tidal amplitude .05 ft.

The value for the freshwater inflow varied from the initial discharge
of 0.025 ft3/sec to a final value at the 25th cycle of .00652 ft3/sec

as discussed. The dispersion parameter K, was taken from figure 5.1

1
which yielded a value of .31 for cycle 1 and a value of .21 for cycle

25. Figures 5.2, 5.3 and 5.4 illustrate the numerical solution for the
one-dimensional salinities at stations 40, 80 and 120 for the 25 tran-
sient cycles of WES test 42. The very good agreement between experimental
data (the croéses) and the computed salinities shows the capabilities

of the numerical program. These figures, 5.2 - 5.4 also show the effect
of a decreasing freshwater inflow on the distribution of salinity in

the flume. A steady increase in salt level and length of salinity intru-
sion is seen to be a result of this type of freshwater hydrograph. The
effects of this flow pattern on the vertical profiles of velocity and

salinity as well as its influence on sediment transport are examined in

the following sections of this chapter.
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5.3 Analytical Solution for Unsteady Flow Conditions

The analytical model presented in Chapter III was developed for
estuaries in a steady-state condition, i.e., influencing factors such
as tidal amplitgde and freshwater inflow remain constant for successive
tidal cycles. For the analysis of the transient flume test, or for more
realistic natural conditions, an additional term is included in the

equation of salt conservation, 3.32

Q

_a_s"n
ot

X7 =1

ETVa‘y‘—L\ 2

|
o
[v]

where %%—is the average over a single tidal period of the temporal change
in salinity S(x,y,t). For steady-state conditions, %%~is zero, but this
is not the case for transient conditions, since it varies by definition
from one cycle to the next. The other model equations are unchanged
with the note that the freshwater discharge Qf is now a variable and has
a different value with each tidal cycle. However, the momentum equations
remain the same as for the steady state because both temporal and con-
vective accelerations can be neglected.

In order to solve this modified set of model equations, an assumption

is introduced for the §§-term which is similar to that made for the %g

at
term in equation 5.8. Since it has been shown reasonable to assume that
23 . . . 3S aS
5;-# f(y), this same substitution, 5;-# f(y) (and thus 3¢ can be replaced
3S
with —— ) is introduced,

ot
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d d 9S 38 . 5.9

Equation 5.9 is non-dimensionalized with the same terms used in the

steady-state analysis with the addition of the tidal period T, T = t/T.

i d 9y a9 e _ i 30 510

Using the same boundary conditions and solutian technique discussed in
Chapter III, the unsteady model, including equation 5.10 yields the

following expression for the two-dimensional salinity,

0(E,n) = [£(&,n) dn + 0, - L Jf(é,n) dndn 5.11
where
30 20
- 9¢ 1 _d _23¢ di1 _991
£(E,n) = exp (f % C, dn)f{(C43T 5 3E )C2 exp (f 3¢ Czdn)}dn
5.12
and
Libh
C =
4 QfT

The equation for the stream function is unchanged.

5.4 Two-Dimensional Experimental and Analytical Results for Transient
Flume Study

As with the analysis of the steady-state flume tests discussed in
Chapter 1V, the application of the analytical model to this transient
flume study begins with the computation of the one-dimensional longitudinal
salinity distribution. In this case, to illustrate the predictive possi-

bilities of the coupled one-and two- dimensional models, the Thatcher
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and Harleman (1972) numerical model is used to compute this needed dis-
tribution. The values for salinity from the real-time model are averaged

over each of the 25 transient tidal cycles. This same technique is

) 984
employed to find the change in mean salinity I Figure 5.5 illustrates
the experimental and computed time-averaged, one-dimensional salinity
distribution for cycles 1, 14 and 24. Except at station 5, where flume
entrance effects are present, the agreement between the averaged numerical
results and the averaged experimental data is very good, a further
confirmation of the numerical model. As with the previous flume analysis,
the first and second spacial derivatives of this mean salinity are
determined with the spline technique outlined in appendix 2.

The other necessary inputs to the analytical model include the flume
dimensions, intrusion lengths, and eddy coefficients D and K. These
latter terms were taken from the steady-state correlation shown in figures
4.15 and 4.16. Table 5.3 summarizes the inputs to the two-dimensional
model for cycles in which experimental data are available. Figures 5.6
and 5.7 illustrate the comparison between experimental and computed
velocities for cycles 1 and 25. The circled crosses indicate experimental
points which are probably inaccurate and should be discounted. 1In
general, the analytical results, using values for D taken from the steady-
state correlations, yield very acceptable results for this transient
test. Figure 5.8 shows the comparison of salinity profiles. Again,
using values of K from the steady-state correlations appears to give

quite good fits of the distributions of salinity.

As discussed in section 5.3, the analytical model for the transient
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Table 5.3
Summary of Inputs tc Two-Dimensicnal Model for WES Transient Test 42

h = 0.5 ft. b = 0.75 ft. S0 = .29 ppt

Cycle max. flood U /uO L,, ft Qf/ft3/sec ﬁ,xlO—Bftz/sec R,XlO_Bftz/sec
velocity, u_s ft/sec

1 W41 .16 110. .025 41 .14
6 W41 .13 112. .021 W41 .15
14 41 .10 120. .015 W41 .16
24 .42 .05 145, .0073 .39 .19

25 W42 .04 150. .0065 .37 .20
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aS
flume conditions includes a —§E>term in the salt balance equation. It is

interesting to examine the importance of including this term in the
model, at least with regard to the scales found in a laboratory flume.
Table 5.4 lists the computed values of the salinities for cycle 6 at

station 40 for model solutions with and without the unsteady term.

Table 5.4

Effect of %%—Term in Salt Balance

WES 42 Station 40 Cycle 6

Depth, y/h S, ppt (with %%) S,ppt (%%vneglected)
0 5.17 5.28
.2 6.42 6.51
A 9.86 9.92
.6 14.75 14.74
.8 20.20 20.10
1. 25.52 25.30

The maximum difference of .22 ppt is not a significant quantity con-
sidering the model assumptions and other departures from the natural
system. Thus, it would seem that perhaps the steady—-state salt balance
equation could be used to model this transient salinity phenomenon.
However, it should be noted that this flume test has a 70 per cent
change in freshwater discharge in 25 cycles, and the Delaware estuary
can have the same change in about 10 tidal cycles. Without additional

analysis, it is therefore uncertain as to whether the unsteady terms
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can be neglected for applications of this model to real estuaries.

5.5 1Influence of Transient Flume Conditions on Shoaling Characteristics

An important feature of the two-dimensional modeling of the time-
averaged velocity profiles is the identification of the longitudinal
position where the net bottom velocity changes direction and goes
through a zero value. This point is commonly called the "null-point",
and has been shown by Simmons (1965), and others, to be a zone of high
rates of shoaling in estuarine channels, as previously discussed in
Chapter II. Figure 5.9 illustrates the features of this null-point and
shows that it is equivalent to the point where the net landward flow
of salt water ceases.

Since the vertical structure of the net velocity field is strongly
dependent upon the magnitude of freshwater inflow, the null-point must
also exhibit a dependence on these discharges. Figure 5.10 shows how
the null-point, as determined from the analytical model, moves upstream
as the freshwater inflow is decreased over the 25 cycles of the transient
flume study. The null-point can be found analytically from the equation
for the horizontal velocity,

c
%{- m3+en® - 1) -1 3.64

v __ %
Ue 9§
At the bottom, n = 1, a condition of zero velocity must satisfy an

equation which states that

d

l=__.___‘

00

where §Eg- is the non-dimensional one-dimensional salinity gradient, and
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The fact that U/Uf is zero implies that the net density current is just
equal and opposite to the freshwater velocity, since U contains both of

these components in its definition.
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VI The Savannah Estuary -~ An Analytical Investigation of Estuarine Shoaling

The shoaling problems of the Savannah Estuary have been carefully
reviewed by Simmons (1965) and Harleman and Ippen (1969). Both hydraulic
models and field investigations have shown a relationship between the
longitudinal location of maximum shoaling and a null point as indicated
in figure 6.1. TFigure 6.2 is a location map for the estuary. From
these figures it is seen that immediately downstream of Savannah Harbor,
between stations 120 and 130, a zone of very high shoaling is located
by comparison with the rest of the estuary. In addition, for the model
data shown in figure 6.1, with a freshwater flow equal to 7,000 cfs,
the null point also occurs between these two stations.

In their report, Harleman and Ippen present the time-and depth-
averaged longitudinal salinity distributions from the model for fresh-
water flows of 7,000 cfs and 16,000 cfs, shown in figure 6.3 (their
figure 13). With these curves, and the correlation for eddy coefficients
presented in Chapter IV, it is possible to apply the analytical model
developed in Chapter III to this estuary and thus further investigate the
null point dependence on freshwater flow rates.

Table 6.1 summarizes the data input to the analytical model for both
the 7,000 cfs and 16,000 cfs freshwater flow rates. Following the arguments
of Harleman and Ippen, the discharge through the navigation channel is
estimated atthree-fourths of the total freshwater discharge, i.e., 5250 cfs
and 12,000 cfs respectively. The value of 2 knots for the maximum flood
velocity is taken from the Coast and Geodetic Tidal Current Tables.

The values for the spacial derivatives of the one-dimensional long-

itudinal salinity distribution were computed using the spline program
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outlined in appendix 2.

Figure 6.4 illustrates the analytical results for the null point
for the two freshwater flows. The connected circles are the computed
values and the crosses are the hydraulic model data, as reported by
Harleman and Ippen. The fairly close agreement between computed and
experimental values indicates that the Savannah estuary prototype scales
and conditions do not seriously violate the assumptions of the analytical
model.

In figure 6.4 it is seen that the null point shifts downstream about
1,000 feet when the freshwater discharge is increased to 16,000 cfs.
Qualitative results of this nature illustrate the usefulness of the
analytical model in the analysis of the many factors which determine the
circulation patterns in estuaries. When used in conjunction with a
numerical model, as discussed in Chapter V, or a hydraulic model, as in
the present illustration, this analytical model should prove to be a

valuable aid to engineering analysis.

Table 6.1

Savannah Estuary & Inputs to Analytical Model

S, = 30 ppt o = 27 ft.
u_ - 2 knots b = 2,000 ft.
0] O
Qf = 16,000 cfs Qf = 7,000 cfs
L. = 85,000 ft. L, = 100,000 ft.
7 = 3
Lf/uO .066 Uf/ uo .029
D=12.2 x 10‘3ft2/sec D =12.8 x 10'3ft2/sec
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VITI Summary and Conclusions

7.1 Objectives

The importance of estuaries in the complex schemes of the natural
environment demands that man gain a more fundamental understanding of the
dynamics éf these water bodies. The ecological stress threatening es-
tuaries as a result of increasing coastal development can only be an-
swered with the knowledge derived from intensive research and analysis.

A small part of this needed understanding can be realized from the de-
velopment of mathematical models of estuarine circulation and dynamics.
The development of a mathematical model requires the understanding of
the physics of the natural system being modeled. Thus, the record of
these model developments is in fact the history of man's increasing
knowledge of these coastal systems.

The present study seeks a method of predicting the patterns of cir-
culation and salinity distribution for the somewhat restrictive condition
resulting from time-averaging these processes over a tidal period.
Longitudinal and vertical variations only, are considered, and thus
lateral spacial averaging is also implied. Although these limiting con-
ditions exclude the modeling of the tidal varying properties characteristic
of estuaries, several important problems can be examined with such a model.
An interesting example of this latter set of model applications is the
occurence of zones of shoaling and of turbidity in estuarine channels as
a consequence of the modification of the natural freshwater inflow patterns.
The coupled growth in mathematical model development and physical under-

standing through physical models and field work has made serious engineering
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analysis possible which can be applied successfully to this problem.
7.2 Summary

The model of the time-averaged longitudinal and vertical distributions
of velocity and salinity developed in this study employs an analytical
solution to the four basic equations describing these parameters.

1. Equations of motion. These equations state the conservation of
longitudinal and vertical momentum. The assumption is made that, for
the mean force balance, averaged over a tidal period, the only important
terms are the following: the pressure gradient and buoyancy for the
vertical equation, and the balance between the pressure gradient and the
vertical flux of momentum for the longitudinal equation of motion.

2. Equation of water conservation. The continuity equation for an
incompressible fluid is used in the model.

3. Equation of salt conservation. The two-dimensional equation of
the conservation of dissolved salt is included in the model in which the
horizontal and vertical convection is balanced by the vertical eddy
diffusion only. Thus, the transport by horizontal eddying has been neg-
lected.

4. Equation of state. The relationship between density and salinity
is approximated by a linear function which neglects temperature effects.

In seeking an analytical solution to the above set of equations,
several additional assumptions are introduced. The longitudinal salinity
gradient has been shown by field and laboratory analysis to be nearly
independent of depth. This observation is included in the model by

replacing the actual longitudinal salinity gradient %z-(x,y) with the
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gradient of the depth averaged salinity —5;-(x). The second important

assumption is that the mean vertical eddy coefficients of momentum Dy(x,y)
and salt Ky(x,y) may be replaced with effective coefficients independent
of depth, D(x) and K(x).

With the above assumptions and a set of generally accepted boundary
conditions, an analytical solution is found using simple methods of nu-
merical intergration. This solution is studied with data from several
flume tests and three field studies. A result of this analysis is that
accurate profiles of velocity and salinity can be obtained when the eddy
coefficients D(x) and K(x) are assumed as constants, D and K, independent
of both x and y. These modified coefficients have been correlated with
the ratio of freshwater velocity and maximum flood tide velocity at the
entrance of the estuary, incorporating two dimensionless terms which may
be derived from the governing equations.

The model, including the correlations for the eddy coefficients, has
been successfully applied to a transient flume study wherein the freshwater
inflow varied over a period of 25 tidal cycles. In this regard, the model
was coupled with the results from a one-dimensional non-time-averaged
numerical model of salinity intrusion. Used in this manner, the two models
represent an important combined approach to the analysis of estuarine
systems.

Finally, the two-dimensional analytical model has correctly described
the relationship known to exist between the zones of shoaling and levels

of freshwater inflow for the Savannah estuary.

143



7.3 TFuture Work

The present model is neither the first attempt, nor should it be the
final answer to the mathematical formulation of the physics governing
estuarine circulation and diffusion. Immediate improvements and refine-
ments might best be directed towards a more sophisticated approach to
the determination of the eddy coefficients, rather than the essentially
empirical technique of the present study. A significant improvement in
the details of the vertical structure of velocity and salinity is directly
dependent on the more accurage representation of these coefficients.

Ultimately, a real-time two-dimensional, or even three-dimensional
model, may be developed, using numerical methods with large, high speed
computers. For the proper evaluation of these models of the future, as
well as the present analytical schemes, much more laboratory, and es-
pecially, field data are needed. The present oceanographical data banks
are often collections of observations which do not lend themselves to
direct comparison to mathematical models. A greater feedback between
model builder and field observer must be iniated to promote rapid progress

in this study of estuaries.
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Appendix 1

The Computer Program for Two-Dimensional Analytical Estuary Model

The analytical solutions for velocity and salinity development in
Chapter III include several complex integrals which are evaluated by nu-
merical intergration techniques. From a computational point of view, the
model is very simple and requires only a limited amount of time and storage.
Both an IBM 370/155 using Fortran IV, G level, Mod 3 and a HP 2114B
using HP Basic have been employed in this study. To illustrate the rela-
tive simplicity of the computational scheme, the HP Basic program is pre-
sented in this appendix
Program inputs:

S,M,N the normalized one-dimensional salinity and its first and

second derivatives. These parameters are usually determined
from the SPLINE program described in appendix 2.
D,K the eddy coefficients, normally taken from the correlations

presented in Chapter IV.

Ul the freshwater velocity, Qf/bh (constant for constant b and h).
H1 the depth of msl.

So the ocean salinity.

11 the salinity intrusion length.

For each longitudinal station, the model begins with the computation
of the dimensionless groups Cl and C2. Then, at each discrete depth a
horizontal and vertical velocity is found. With these parameters known,
the numerical intergration of the salinity function is carried out, a com-
putation requiring four nested integrals. Finally, the salinity is com-

puted and printed with the horizontal and vertical velocities.
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In HP basic, the program is as follows:

620 DIM S[51,M[51,N[51,K[51,DI51,A011],B11]1,H[11]
650 MAT READ S

652 MAT READ M

654 MAT READ N

656 MAT READ K

658 MAT READ D

660 READ UI,H1,S0,L1

676 FOR J=1 TO 5

672 LET C2=K[JI*L1/(UI*H112)

6§74 LET Clz1.P@@POE-83%,75%SO%32,2%H 113/ (L 1*D[J1U 1)
676 FOR I=1 TO 1l

678 LET Y=.lx(I-1)

688 LET ALI1=(MIJI*CI+CLI*kMIJ ]/ 24% C4%Y13-6kYT2+1))) /C2
682 LET BLI1=(~CL*N[J1/24% (Y t4=2%Y13+Y)) /C2

690 NEXT I

691 PRINT

692 PRINT

6§93 PRINT "Y/H"," U/UF"," V/UF",” S/Sg"

6§94 PRINT === o e e e oo e e e e e e e cecmce oo
695 PRINT

700 LET T2:=T4=T6=T8=H3:=0

762 FOR I=2 TO 11l

784 LET T1=T2

706 LET T2=T2+5.00000E-02% (B{I1+B{I-11)

708 LET T3=T4

7180 LET T4=T4+5.00000E-02% (AL I 1¥EXP(-T2)+A[I=11%EXP(-T1))
712 LET T5=T6

714 LET T6=T6+5.00000E=-02% (EXP (T 2)*T 4+EXP(T1)%T3)
716 LET H[I-11=T5

718 LET T7=T8

720 LET T8:T8+5.00000E-02% (T6+T5)

722 NEXT I

730 LET H{111=T6

750 FOR I=1 TO 11l

752 LET Y=z.lk(I-1)

7680 LET H4=H[I11+S[J]1-T8

762 LET H3=H3+H4

768 LET UzA[I11*C2/M[J]

770 LET V=B[II*C2%HI/LI

780 PRINT Y,U,V,H4

782 NEXT I

784 LET H3=H3/11

786 PRINT H3

790 NEXT J
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gap
gaa
g24
g26
g217
gag
g29
830
90

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
END

8l ,066,.37,.13,2.00000E-02

-.51 ’-097,—1017,..'

069 ,-.21

’104,-2099102,2069103

2.,30000E~04,2,30000E-04,2,30000E-04

2.30000E-04,2.,30000E-04

1 . 40000E-04,1.40000E-04,1.,40000E-04

| J40000E-04,1 .40000E- Q4
-Z.QBEQBE- 2,.5 ,29.7,182

A sample of the output from this program is given below. All values

are dimensionless, and y/h = 0 is at the surface.

o4
.5
«6
o7
8
«9
l

.810679

4,73864
4,529217
3.961
3.12355
2.10664
1
-. 106637
-1.12355
-10961
-2.52927
-2.73864

-2.76591E-083
-5.,23296E-083
-7.16431E-03
-8.39079E-03
-8.,81089E~-03
~B8.39079E~Q3
-7.16431E-03
-5.23296E-03
-2,76591E-03
2
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e 174508
« 175924
. 7180085
o 186747
. 795527
. 805925
.817347
.829136
.840626
.851212
«860432



Appendix 2

The Computer Program for Spline Interpolation of One-Dimensional Salinity
Gradients

The first and second spacial derivatives of the one-dimensional
longitudinal salinity distribution, which are inputs to the analytical
model described in appendix 1, are computed with a spline interpolation
routine. The spline program, written here in HP Basic, was adapted from
the M.I.T. Information Processing Center Program, described in their
bulletin AP-72. As stated in AP-72:

The spline fit curve is a mathematical expression for
the shape taken by an idealized spline (a thin wood or
metal strip) passing through the given points........
The spline curve is a piecewise cubic with continuous
first and second derivatives. Thus, it can give good
approximations to the first and second derivatives of
the function in addition to the function values.
Program inputs:

Y the 1-D salinities, normalized by the ocean salinity

13 the salinity intrusion length, ft.

T the distance between values of salinity, y (T is constant in

this case, but can also be a variable.)

S the distance between points where interpolated salinities are

to be found.

N the number of points where salinities are given

M the number of points where interpolation is carried out.
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11
12
13
14
15
16
17
18
19
VA%
22
23

I's)
<

25
26
27
36
4¢
45
58
55
Y
65
70
75
76
17
gu
g2
g5
g7
g8
10
93
94

INPUT N,M,S,T,LI
DIM X[211,7[21 ,A[21],B[21],C[Zl],D[21],E[21],W[?,Zl]
LET 7Z[11=X[11=

FOR Iz2 TO M
LET Zz[I1=Z[I-11+S/L1

NEXT I
DIM YI[51
PRINT "X","MEAN SAL.","DS/DX","D2S/DX2"

PRINT Mem e m e e e e e e e e e cc e e o
FCR Iz2 TO N

LET X[I1=X[I-11+T/L1

NEXT I

PRINT

MAT READ Y

LET S1=T/L1

LET NO=N-1

LET W[1,1]==.5

LET Y[2,11=0

FOR Iz2 TO N@

LET Fz(Y[I+11-Y[I))/Sl-(Y[I1-Y[I-11)/S1I

LET S4:=S1%x,166667

LET W2=(S1+S1)%,333333-S4xW[1,I-1]

LET W[1,I1=(S1%,166667) /W2

LET W[2,I1=(F=-S4*W[2,I-11)/W2

NEXT I

LET EI[NI=(5%WI2,N01)/C1+.5%W[]1,ND])

FOR I=2 TO N

LET K=N+1-1

LET E[KI=W[2,K1-W[1,KI*xE[K+1]

NEXT I

]
a

IF (Z1-X[11)<@ THEN 30

IF (Z1=-X0[11>=00 THEUN 300

IF (Z1-X{11)>0 THEN 85

IF Z1l<(lol®xX[11=-41%xX[21) THEN 400
GOTO 300

LET K=N

IF (Z1-XI[N1)<@ THEN 96

IF (Z1-XIN1)=0 THEN 300

IF (Z1-XIN1)>0 THEN 93

IF Z1>(l 1%XIN]-.1%xX[N-11) THEN 400
GOTO 3080
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96 LET M2:=2
108 LET “3=N

110 RENM

111 LET K= (M3+M2) /2

115 IF (M3>(M2=.1)) AND (M3<(M2+.1)) THEN 300
120 IF (Z1-X[K1)<@ THEN 125

121 IF (Z1-X[K1)=0 THEN 380

122 IF (Z1-X[K1)>0 THEN 130

125 LET M3=K

126 GOTO 110

130 LET M2=K+1

135 GOTO 114

360 REM

301 LET X2:=X[K1-7l
305 LET X3=X212

310 LET 73=Z1-X[K-11]
315 LET z4=7312

320 LET S2:S1%2

325 LET S3z=S1%.166667
330 LET EI=E[K]

335 LET E2:=E[K-1)
340 LET Y!=Y[K1/Sl
345 LET Y2:=Y[K-11/51
350 LET ALI1=(E2xX3*X2+E1*Z4%xZ3)%,166667/5 1
351 LET A[IJ=A[I]+(YI-E1%*S3)%73+(Y2~E2%S3)*X2
355 LET BII]z(ELI*Z4-E2kX3)/S2+Y1-Y2-(EI-E2)%S3
360 LET ClLIJ=(E2%X2+E1%*Z3) /Sl

365 NEXT I

371 FOR I=1 TO W

373 LET Z[I1=Z[I1*LI

375 PRINT zZ[I11,A[11,B[I1,C[I]

376 NEXT I

377 GOTO 500

498 PRINT " OUT OF RANGE, X="3;Z1

410 GOTO 300

452 DATA .91,.77,.532,.2,4.00000E-02,0

500 END
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An example of the spline program output is given below. The values

of x are in feet, and the other terms are dimensionless.

25,5 ,40,40,160

D2S/7DX2

- WP G S En e SR G G . G S W R e G P D DGR T R e W D D we D G G GD YD GD N @R e G G G GE TS We P D WD D e e

120
160

READY

MEAN SAL.
.91

o 17

«532

o2
4,00000E-02
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~1.09125
-.278999

-.714

-1.428

-2.982
4,332
2.166



Appendix 3

Tables of Computed and Experimental Velocity and Salinity Distributions

The following tables present the comparison of computed and experi-
mental velocity and salinity distributions for the flume tests and field
data evaluated in Chapter IV. The units of the eddy coefficients D and K

are as stated in the table; all other terms are dimensionless.
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961

TABLE Al

LUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 11
X/L1 = Nel &
S MEAN= p.bbu J3/DX MEAN= =] ,297 . D2S/DX2 MEAN= ",T713
D= ve39E-u3 SQ FT/SEC K= 417TE~-03 SQ FT/SEC

Y/n EXP U/UF COMP U/UF EXP S/SU COMP S/8n
Vevisn 2659 2+40 T e37 M eb4
Lelut ryL-) 2032 D39 Celt4
Vedil 1.90 2011 {1e 45 Tet7
VeldlUi 1QbU 1.8{‘ 0.53 ':051
Veliuy le 3y le4l 0459 Fe87
vebul lewsl 1,00 Neb7 Feb3
CeOUL Ue 75 e 56 De75 Tl
Ve 0w Ve 8 CQZQ 6082 . nsT8
LCe B8ty Leld -Gall 0e.B7 TeBS
Le%uv -Leld -Ne32 De 90 "e983

leli v —Ue 4l =-De ki Ne92 Le202
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TABLE A2

CUMPUTEDL AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 11
X/7LI = a29
S MEaN= 06367 J3/7DX MEAN= =1,022 C2S/DX2 MEAN= 1.425
D= Je3lE~u3 SQ FT/>3&C K= 0e13E-03 SQ FT/SEC
Y/H EXP U/JUF COMP U/UF EXP §/S¢ _ COMpP S/Sr
Lewil 3.U8 2440 Qel2 FelS
VelUu 2682 2632 Jelé Celb
Velul » 202V 2.11 Delb “el9
Ce3uu leb2 1.79 0.20 "e23
Ge 4y le24 le4l 0.28 e28
Ledud UeT6 1l GO 0,37 Cel4
Le6GUL 0056 9059 0.46 el
veliUL Uel5 0.21 0e53 Ce48
CebU U -0elU -Cell Ne57 NeS5
Ce90uU ~0e4d -De32 0.560 Ceb2

leluu -Ue 68 =0e&l Teb1 Ce68



8S1

S MEAN=

Y/H

Lellu
VelUC
Lel Ul
Leduu
Veu
VebSLU
LebuUV
Ve TLU
Ve Biit
Ve 90y
leClu

TABLE A3

CUMPUTED ANU EXPERIMENTAL VELOCITY

Velcs

V= Ds22E-U3

EXP U/UF

leld
delb
2010
LeS17
leb4a
lelv
Uelb
Ce32
i LY ¥3
'0.49
-Qe74

WES TEST

X/L1 =

J3/D0X MEAN=

SQ FT/>cC

COMP U/UF

2,38
2430
2449
le78
le 41
1,00
Ve 56
Ge22
‘0.39
=Ce 30
-Ce.38

AND SALINITY DISTRIBUTIONS
11

Ce 57

~0a717 D2S/DX2 MEAN= ©~,T713

K= Col7E-N3 SQ FT/SEC

EXR S/S5C

He23
0,03
Tl
GQ“4
VeMb
0e08
n,18
Ue26
0e29
1) o 35

COMP S/S57

[PFSALS
ferl
{igfi2
Aol b

- b

1) ” L

Cell
felb
"al9
Ne23
APV §
603?
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TABLE A4

CUMPUTEV ANU cXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 14
K/LI = (e22
> MEAN= LeT60 J>/DX MEAN= -0,838 D2S/DX2 MEAN= =" ,837
D= CeldUE-U3 SQ FT/5:C K= 01,38E-1N3 SQ FT/SEC
Y/H EXP U/UF COMP U/UF EXP S/Sh ComMp S/S°
ve L S2¢5V Se3C GeT2 {eT2
Vel Selu 576 LeT2 Ne73
Cediv 4e5U 4 o4l De73 NeT3
Ve 3ulL 366y 3044 DeT4 VT4
Ceui 2650 2¢217 Ne75 T eT5
veSUU le3vu l.00 0.76 e 16
vebul Ue 29 -0De27 VYeT7 e lT
L.?UU "’loUU "1-44 0.78 l‘.78
Le BLWU 24y =24t NeT9 79
UQQUQ ‘304(. ‘3006 0080 1"’.8(

) U‘JO -"OZU -303() O.Bf ’.).81
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TABLE A5

CUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 14
X/L1 = Debh
S MEAN=  Ue528 J5/DX MEAN= <«1,397 D2S/0X2 MEAN= =4,256
D= vel28E=U3 S5Q FT/3EC K= G4¢52E<03 SQ EFY/SEC
Y/H EXP U/ UF COMP U/UF EXP S/S8C CoMP S/S7
velu Oe 4l 6el2 045 Ue&8
velUU 66l 5683 646 et 8
Velivu 5620 5606 0e49 Te48
Lol 3680 3491 0 «5C re49Q
vebdiuv 2ele 2652 .53 Neg51
VediL U D660 1.0C Oe54 652
Ve BUL ' rY-1¥ “e52 5658 ﬁc§4
Ve lUu -2eGd ‘1091 fNe56 0c56
Ve BUU -2¢9v “340:6 Q057 ('e57
ve GUUL -3420 -3483 N458 [1g59
lebuvu -3430 ~4612 0s58 NebM
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TABLE A6
CuMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 14

X/L1 = N, &6
S MEAN= (4198 IO/ DX MEAN= =-1,242 D2S/DX2 MEAN= 5,663
D= Ue30E-L3 SQ FI/5€EC K= Ce2BE-T3 SQ FT/SEC

Y/H EXP U/UF C3MP U/UF EXP S/S¢ COMP S/8»
Ve S5e60L 525 Nel3 'el4
Veluu 5634 5N1 Oel4 Tela
Celdiv 4o OV 4437 Q615 “al5
Ueldly 3,30 3.41 Celb "el6
VedUuy Zel U 226 el7 ".18
Veduwu Ve U 100\" 7’.20 Ce2D
bobJU -Uobu "0026 "*.22 ".22
Geluu -leb5U ~le4l » "e23 M"e23
CebBuu -2e630 -2¢37 Ne25 Me25
veui ~2ebU -36.01 : De26 fe26

levud -2+9¢ ] -3,25 Ne27 "e27
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TARL Z A7
CTMPYTER AND EXPER IMENTAL VELTCITY AND SALINITY DISTR2IBLTIINS

WES TEST 16

X/.1 = 0. 2%
S MEAN= (46%A DS/NX MFANz =N,5T1 N28/0X2 MEAN= =2,35G
N= 0e24:¢=03 <Q FT/SEC Ks 0,135=03 S0 FT/SEC
Y /H FXP UJUF COMP /LR EXP §/50 cemMp S/S0
0. COO o4 Q Seths 0a5¢ 0s53
0.100 5400 €e 3R Oe 53 0+5¢4
04200 F N0 G44H Ce £€ 0,5¢%
0. 200 3,70 3444 0e57 0457
01400 2000 2.37 COéO 0.60
Ne 5NN 0.0 1.00 Ce b4 De 64
00700 ’10‘30 *l.‘ﬁk C-72 0072
OQEOO ‘2050 “2,63 0;77 0077
O.QOO '3010 '3.19 0.80 0081

10000 "3020 ’3.5* 0084 0.84




€91

S

MEAN=

Y/H

0.C00
0,100
0. 200
0.300
0 00
0e N0
0. £00
Ne 700
N £00
06200
1 COO

TABLL: A8

CIOMPUTFD ANLC EXPERIMENTAL VELOCITY

03567

N=

Ce2FE~03

oXP Y/IUF

720
20
fe20
3,50
1480
0e30
- 1400
-2 .00
- 3400
-3 .40
-BOSO

WSS TERT
X/L1 =
DS/IX ME An=

SQ FT/SFC

CaMP U /UF

bel kb
e 37
5¢0°
30 93
2653
1.00
‘0053
~1e33
-3, 09
"?.?7
”4016

AND SALINITY DISTRIBUTIDNS

16

0.50

-le1£5S

K=

0-17&‘03

EXP §/S0

0e24
Ca 2%
0.26
Ce 27
Ce 31
Ce35
Ce 3%
Coet2
a7
Ce €2

0.5"6

N2S/NDX2 MEAN= 14275

SO =T/SEC

CCMP S/S0

0623
0e2%
0626
0,29
0,732
0635
0.40
Do 44
De”8
0,50
0.52
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TASLE A9
COMPHYTT R ANC EXPTR INENTAL VELDCITY AND SALINITY CISTRTARUTIONS

WES TEST 16

X/LT = 0.75
€ WTAN= 0,127 £S/DX MFAN= =0,650 N2S/DX2 MEAN= 2,558
D= 0.24E-03 SN FT/SEC K= 0.21E-02 €Q F1/SEC

Y /H EXP UJ/VF CIMP 11/yc EXP S/S0 CiMP S/S0
04000 | 4440 | 4,30 | 0.08 0.08
Ne. 100 410 4ol2 0.08 0.0¢
0200 3,80 3.51 .10 0.,0°
0. 300 290 2,77 C.1C 0.10
N4 400 - 1a30 1,78 Cell 011
0,500 1 .00 1,00 .13 0e13
Co 200 0,10 . 0402 0.15 D, 14
0.700 '0.90 "'0. 97 Dol:r 001:'
06?00 ~1 460 ~1e£1 Ce l¢ Oel%
0. 0N A ‘ ’2.20 -2,12 0. 17 0-17

1000 -2+30 ’ -2+ 30 , C.18 Del%n
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TARLE AlOD

COMPUT =D AND FXPLRIMENTAL VELCCITY AME SALINITY DISTRIBUTIONS

DELFT TEST 117

X/L1 = 0.29
< MEAN= 0,503 DS/DX VEAN= =0.930 C2S/CX2 MEAN=  0.820
D= 0.E€E-04 SO M/SEC K= 0.15E-04 SO M/SEC

Y/H EXP J/UF . CoMP U/UE EXP $/S0 CIMP §/80
0.C77 2,66 2.45 0.09 0.20
0.1%4 20"‘5 2.31 0021 0022
0.231 2.01 2.09 0.31 0.2¢
0.303 1.£0 1,82 0.40 0.31
0.385 1.82 1.51 0.46 0.37
Cobn? 1.0 1.17 0.53 0.44
0.533 1.2¢ 0.83 0.5@ 0.51
0.623 C.tn 0.18 0.74 0.66
0.770 0.15 -0. 09 0.80 0. 74
0.847 ~0.23 -0.31 0.86 .8l
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TABLE All

COMOUTED AND TXPLRIMENTAL VELTCITY AND SALIMITY DISTRIBUTIONS

DELFT TEST 117

X/11 = 0,63
S MEAN= 0,375 D3/0X MEAN= =0,912 ~ [2S/DX2 MEAN= -C,627
Nz 0,60%=04 SQ M/ZSEC K= 0.,19F-C4 SQ M/SEC
Y/H =XP U/sUF COMP J/UF EXP S/SC CIMP S/S)
0,077 ; 2,47 2.32 0,06 0,02
N.154 2.37 219 0,054 0.10
0.231 2,03 2,00 0.14 N.13
0.303 le61 1. 75 0,2¢ 0.17
C.385 1.77 le46 0.33 .23
D662 1.56 l. lé 0.39 0.25
0,537 1.38 0o 8% 0,45 0. 3¢
0.516 1,10 Qe 33 0,51 0,44
0,673 0.41 0. 25 0.58 0.52
C.770 0.23 «0.00 : Q.66 C.61
008“‘7 "0.20 “"0020 0.?1 ' 3.70

0,525 ~0458 ~0432 0,78 0.78
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TABLE Al2

COMPUTED AND EXPLRIMENTAL VELOCTITY AND SALINITY DISTRIBUTIONS

DELFT TEST 117

X/L1 = 0,57
S MZANM= 0,248 DS/NX MEAN= ~-(0,.9156 C2S/CX2 MEAN= 1,970
D= D46%-04 SQ M/SEC ‘ K= 0.136-04 SQ M/SEC
Y/H EXP U/UF - CiMPp U/ZUF £EXP s/50 CavpP 5750
0.C77 2.5% 2.05 0.02 -0,00
Je154 1.7¢ l.54% 0,03 0.02
0,231 1,87 1,79 0,04 C.0x
Ce308 1,33 1.59 0.08 Us 10
N.305 1.0¢ 1. 37 0.16 0.15
00462 10’5 1012 Oo?t‘?‘ ()020
0,533 1.356 0.27 0.31 0.2¢
Ne&lh 1.20 0.63 0.36 C.32
Der53 Q.r7 01“0 0,42 0.38
3.770 Ntk 0,21 D.46 0.43
Ce 37 0.04 0.0% 0.51 C.4¢

O.dz‘n‘ "0."*‘" “0.05 O.Sq Oo 5"
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TARLE Al13

FOMDUTED AND EXPUR IMENTAL VELICITY ANG SALIMNITY DISTRIBUTIONS

DELFT TZST 117

X/L1 = 0,71
SOMEANM= (Q,146A DS/CX MEAN= =0,5%63 r2S/oX2 MeAN= (C.102
C= 0.64r-01 SO M/SEC K= 0,18tE-04 SO M/SEC
Y/ TXP U/UF COMP U/UF EXP S/S0 COMP $/50
c.077 2.0%8 l.21 0.01 -0.03
001'5" 2009 l-pa? 0.02 ‘0-02
N.231 l1.8¢ l. G 0.02 0,00
N0.30% 1.78 1.52 Q.03 0.03
04385 1.32 1.32 0.05 0.926
N, 452 1.0 l.11 2.10 .10
8.%39 C.n? 0.89 0.17 Cels
D614 Cet} 0. 519 0.21 0,13
C.%523 Q.75 Q.03 0.25 0.23
Ce?77C 0.%¢ ( 0.31 0.30 0, 28
’).5‘:"7 00[‘0‘ ’ 00 la : Ou3l? 3:33

C.q24 0.10 0.0¢ 0.39 0.32
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TARLE Al4
COMPUTED AND EXPERIMENTAL VELUGCITY ANC SALINITY DISTRIBLTIGNS

DELFT TEST 117

X/L1 = 0. 85
S MEAN=  0,0%9 ODS/70X McAN= -0,.503 L2S/C0X2 MEAN= 2,235
D= 048L5--046 SQ M/SEC K= 04226-04 SO M/SEC
Y/H XD YsYF COMP U/UF £XP S/50 Cavp S/S0
2.077 1l.56 1.52 0,01 -0.02
0.1’_\"' 106(: l-“? 0001 "'0.0].
7.231 1./2 1.39 0.01 ~-0.01
04308 1,50 1. 30 0.91 0.01
0.335 2 26 le1F 0,01 0.172
Ce%? 1.12 1.04% 0.02 0,04
Ne%37 1.03 O0.G4 0.04 J.,06
\.\’:16 00?’3 0.‘22 0007 C.OO
Lol Q. 84 0.70 0,12 0,10
0.770 c,93 Ce#1 O.1% 0,12
CoBe? C.n3 0.53 0.15 J.14

O.Czl 0.‘-‘8 0.45 001-’ OQI.F.‘
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TARLE AlS
COIMPUTED AND FXPERIMENTAL VELUCITY ANC SALINITY DISTRIBUTISNS

CELFT TEST 11¢€

X/LI = 0023
S MEAN=  0.4E1L DS/DX MEAN= 1,038 C25/0X2 MEAN= ~0,336
= Q¢ 44E-04 SQ M/SEC K= 0,20E~04 SO M/SEC
Y /M EXP U/UF COMP U/UF EXP $/S0 COMP §/50
0.077 2,00 2,61 0,06 0.16
0.231 2,26 2,07 0,25 0.22
0.308 2402 1.80 0434 0.26
C. 385 1.66 1.50 0442 0.32
0.462 1-37 ® 1.17 0.50 0.38
C.539 1.12 0.€3 n.56 Q. 458
0,616 .07 0.50 0.63 0.33
0,403 0.63 0,20 0,58 0.61
00770 037 ”000? 0.75 C.bG
0,847 -0.07 -0.28 0.81 0.78

00924 "0:3.‘ "0.'-'#1 0.q5 0.8"
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TABLE A16
COMPUTED AND EXPERTMENTAL VELTCITY ANC SALINITY NISTRIRUTIONS
DELFT TEST 116

X/L1 = 0.43

T OMEAN= (L1318 DS/0X MEAN= =0.9&7 £2S/0X2 MEAN= 1.38)
D= 0.54E~0D4 SQ M/SEC K= 0,15E-04 S M/SSC
Y/H “XP U/UF CTMP U/UF =Xp S/7S0 CiMP S/50
C.077 246 2632 0.03 0.07
0.1%¢ 2e4€ 2,18 0,04 0.04
0.231 2423 1.6¢ 0. 07 .07
C. 308 1, 8¢« ' 1.7% 0.16 0.13
0.385 1.70 le st 0.25 0.14
Ce4€2 1.36 : l1.16 0.33 0.2%
Ce3393 1.13 0.84 0.40 J,32
N.56156 .08 C.o3 0.45 0.+C
G.%93 0.61 0.25 0.50 CosT
C.770 D22 0.00 0,54 De5+
Ne 947 C.0¢% -0.19 0.62 0.51
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TARLE Al7
COMPUTID AND EXPERIMENTAL VEL:CITY AND SALIMITY DISTRIZBUTIINS

DFLFT TEST 116

X/L1 = 0.57
5 MTAN= 0,1%% NS/NDX MEAN= -0.735 £28/DX2 MEAN= 1,282
D= 0.84?—04 SQ M/seC _ K= 0.13E-C& SQ M/SEC
Y/H EXP U/IUF ‘ CCMP U/UF £XP S/S0 COvMP S/S0
0.077 o 1.(0 1.76 0-0‘ "0.01
0.154 ' 1,53 1469 0.02 0.00
’3-2“1 1.":3 I.EQ 0.02 0003
C.30% : 1.20 1.43 0.04 0. 0%
Ce2E5 1.22 1.27 0.0¢ 0.10
0,+02 1.5¢6 1.0° 0.17 0O, 15
N.53¢ 1.23 0.51 ‘ 0.2% C.l173
D.018 1.0¢ 0.73 0.30 0,25
Qet93 0.7¢4 0.57 0+ 36 0.30
Dnts? ‘ 0,22 0.31 0,42 0,40

0,524 -0,1°P Q.24 0.4% 0. 4¢
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TARLE Al8

CrMOyTED ANC EXPER [MENTAL VELDCITY AND SALINITY DISTRIRUTIAONS

DELFT T=S7T 11¢

X/L1 = 0.71
5 MSAN¥ C.193 0S/CX MEAN= -0,568 D2S/CX2 MEAN=  Q.%476
D= N0,A87-04 SO M/SFC K= 0.18€-04 SQ M/SEC

Y/H TXP U/UF CCmMP U/UF £XP S§/S0 CaMP S/S0
3.154 1#"3 ) 1.6-‘3 0001 "'0002
N.231 1.75 1457 0,02 -C. 00
0. 308 1,73 le4l 0.02 0,02
4385 1.3¢8 1., 2¢ 0,03 0.0¢
0.462 1.21 1.09 0.06 C.07
o539 1.92 0.91 0.10 0,10
0.616 0.1 0.7¢ 0.15 0,13
0.£6%3 0.73 0.52 0.17 C.17
%.770 ' C. ¢ Qs 0.22 J3.20

C.CZ‘& 0.31{. 0027 ‘ 0.29 0028
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TARLE Al9
CoMPUTIEO AND EXPi-R IMINTAL VELTCITY AND SALINITY DISTRIBUTIONS

DELFT TEST 116

X/L1 = 0.95
5 NMCANz 0,032 DS/NX MEAN= -=0,377 C2S/0X2 MEAN= 1.%35
D= 0.G2E-04% S0 W/SEC K= 0.34E-04 SQ M/SEC

Y/H T XP 1} JUF COMP U/UF EXp S/50 Ccavp 5/50
0,077 130 1032 0.01 -0.01
Nel5% 1.52 l.34 0.01 -0.01
Ca231 loqg 1025’ 0.0’. -0.00
QNe3)R le:% 1,21 N.01 0,00
0.355 1.1% 1.13 0,01 C.01
Qedb?2 1.12 l.0% 0,01 0.02

e 535 1.04 0.9% 0.02 0.03
Coéll‘ 1.02 0.P7 0.0‘3 Ooo*
3.693 | 1.04 0.79 0.0% 0.05
0.770 0.°1 0.72 0.07 0.0:=
G047 C."2 0.%56 0.0¢ 0.02

0.724 0.41 .62 .10 0.0?
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Y/H

0.077
CelBa
0.,231
0.30R
0.385
00452
0.35373
0.516
0.5732
0.779
C.847
C.024

TABLE A20

COMPUTED AND TXPERIMENTAL VELICITY AND SALINITY DISTRIBUTIONMS

o?ZE“OA

cXPe U/Ur

3’66?
3,44
2.71
2.15
1.72
1,22
0.-’.#\’
0,27
~Golt
”0132
~0,63

DELFT TEST

X/L1 =

0S/DX MEAN=

SQ M/SEC

CGMP U/UF

3.19
2.7
2465
2.2¢
1.77
L.2¢
0.7¢
0.23
-0.25
“Goéq
°0o98
‘1019

121

-0. 940

K= 0,59F~C5

£2S/CX2 MEAN=

SQ M/SEC

EXP S/SO CoM

0.18
0.23
0.3¢
0.44
0.51
0.59
0.h8
0.76
0.83
0.85
0.87
0.89

1.627

P S/S0

0.17
0.21
0.27
0. 34
0.43
0.52
C.h1
C. ”S
0. 74
0.32
C.88
o.'-:z
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Y/H

(o= NeoNe)
*® o € ¢
PDow N O
oW~
o= N

0.33%
D642
2, 53¢
Ooﬁlb
0.£93
C.770
0,847
C.?24

TABLFE A2l

COMPUTEN AND EXPERIMUNTAL VELQCITY ANMC SALINITY DISTRIBUTIONS

DELFT TEST

X/L1 =

N= 0.765-04 S50 M/SEC

XP U/UF

+2 5 J DS/CX MEAN=

CCMP U/UF

3.23
3.02
2.8
2427
1.78
1426
0.73
"Ce 21
-0,27
-0,.,¢F0
‘1002
"'1c?3

121

0.41

“10023

K= 0.156-04

£2S/DX2 MEAN= ~2,713

SQ My/s=C
EXP S/S0O CaMp S/50
0,12 0.12
0.13 0.1%
0.16 " Q.lR
0.24 Ce22
0.33 0.27
0442 0.33
0,51 0.40
0.60 O.«+3
0.68 C.37
0.73 Q.66
0.76 0;7&
0.83 0.8%
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TABLE A22
COMPUTED AND EXPFRIMENTAL VELSCITY ANC SALINITY DISTRIBUTIONS

DELFT TEST 121

X/LI = 0054
S MEAN= (0,284 DS/CX MPAN=z -0,307 C2S/0X2 MEAN= 4,42
N= 0484F-04 SQ M/SFC K= D,585-05 SQ M/SEC

Y/H L XP U/JUF CoMP y/UF ZXP S/S0 Cavp S/50
C.C77 | 2.61 2.75 0.08 0.05
00154 2.6¢ ) 2062 0.03 0.08
e231 2.53 2.3° 0.10 .12
0.308 2,20 2.02 0.12 0,12
0,335 2405 1.43 0.17 0s24
Cen?2 152 1.721 0.24 0.2
0.535 1,904 C.78 0.32 0.34
C.616 N.63 0.37 0.40 0. 38
0.£673 Ce?0 -0.02 0.48 O.41
00770 ‘0.23 -0e 36 0.53 0.473
008“‘7 ‘005‘3 "0.62 0.57 Cc‘?f’

Ce924 1le04 -0.79 0.60 0.56€
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TARLE A23
S CTMNYTED AND EXPSRIMENTAL VELOCCITY AND SALINITY DISTRIBUTINNS

DELFT TEST 121

X/L] = Q.69
S MEANZ 0,182 | NS/DX MEANS =0, 746 D2S/0X2 MEAN= ~2,039
D= 02,90F~04 S M/SEC K= Q,185F=064 SQ M/SEC

Y /H “XP U/IF CMP |J/UF EXP S/80 cChMp §/80
0007’, 2.‘1"1 20 5s 0005 0002
C.154 2,23° 2460 ‘ 0.0% 0.03
0.231 231 2.17 0.05 0.04
€.307 2.22 1.,AR 0.06 0,07
0,335 1.70 1,54 0.10 g.10
Dea52 0?2 l.18 0.14 0.13
0,539 1.0¢ 0,81 D.19 0. 17
G-ﬁlé O.éq 0045 } 0.26 0021
3.693 0;60 0012 Oa31 0)26
C.770 0.02 -0.17 0,35 C.31
C.S“" . ) "00.3“ ”0040 0’30 : . 0936

00924 “0;96 '0055 0042 0-42
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TABLE A24

COMPYTEN AND EXPLRIMEMTAL VELJCITY AND SALINITY DISTRIBUTIONS

DEZLET TZST 121

X/L1 = 0. 81
S MEAN= (C,L,0F0 NDS/0X MEAN= -0,525 £2S/0X2 MZAN= 3,823
J= 0,1158-03 §Q M/SEC K= 0,106-04 SQ M/SEC

Y/H EXP tJ/UF CCMP U/UF =XP S/S0O CaMP S/S0
00077 1073 100“‘ 0.02 "0002
0015(‘1‘ 1."9 1.8'5 0002 "0901
0.231 1.76 1.71 .02 Cc.00
C.308 1.59 1.53 0,02 0.02
C.33¢% 1.30 1.33 ' 0.03 0404
Cotrh2 1.1° l1.11 0.04 0. 0¢
Ne539 1.01 0.AR9 0.06 3.05
0.61" 007/“ 0.67 0.10 Oo 11
0,693 0.73 [ 0.14 .12
C.770 0,47 0.26 0,18 0.16
0,807 0,31 0.15 0.20 0,13
C.52¢ 0.47 0.0¢ 0.2 C.20
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L OMEAN=

Y/H

0,077
0,154
C.231
0.309
0.385
Ce452
0.53%
0.615%
€,£683
0.770
0.847
Go c24

TARLE A25

CONAYTEN OND EXPERIMINTAL VELICITY

0 00_24

D= OQIQE”OB

EXP N/IUF

1.18
1.10
1.17
.25
1.07
1.14
0,7/
0.33
0,4%
CQ‘r
Dabe .
.73

DELFT TEST

X/L] =

0s

g0 M/SEC

JCY MIFAN=

coMmp LI/UF

l.41
1,37
1.31
1,23
114
1.05%
Ce©H
0.5
0.77
0.6G
0er3
Q. Sq

AND SALIMITY DISTR IAYTIONS
121

0,65

=0, 240 £2§/CX2 MCAN= 1,755

kK= 0,1hE~04 §Q M/§EC

£XP S/S0

0,091
.01
0,01
2,01
0,01
0.02
0.02
N, 03
0,04
0,08
0,96
0.06

COvP §/80

”QQQO
0,020
J.01
€. 01
2,02
0.02
c.03
C,0¢
0,04
g, 05
D.0¢%
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TABLE A26

COMPUTED AND EXPHRIMENTAL VELZCITY ANC SALINITY DISTRIBUTIINS

DELFT T=ST 122

X/L1 = 0.23
T MNFAN= 0,502 DS/DX MZAN= -1,000 C2S/DX2 MEAN= 1.016
D= D,72F-0% SQ M/SEC K= 0,10F-C4 SQ M/SFC
Y/H D VAT CaMp U/UF EXP S/S0 CIMP S/SD
0.077 3.31 2.6% 0,13 0.15%
N.1%4 2,00 2.7¢ N.1A .17
0.231 2,48 247 0.27 0.23
0,308 2.00 2.11 Ne37 3,2¢
0.285 1.01 1e58 , 0o tts D.36
0.4.‘.)2 1051 1023 0052 f”‘f“:f
0,539 0,21 Ce75 0.61 c.5?
N.616 Ce?0 0.31 0.6° 0.561
0,523 0.03 ~0.11 0.78 0.H6
0.770 ~0.2¢ -0suR 0.82 C. 77
04R47 ~Ca-ad ~0.76 0.RS 0.84%

OQQZ“ “3.%3 ‘0.9‘5 O.R-’ C.’?O



81

TARLE A27
COMPUT =) AND EXPIFIMENTAL VELTCITY ANC SALINITY DISTRIBLTIONS
DELFY TEST 122

X/L! = Ce43

S NEAN= 0,341 NS/UX MFAN= -1,022 : C25/0X2 VEAN= -1.323
= 0.74E-04 SQ M/SEC K= J,15F=-04 SQ M/SEC
Y/H EXP U/UF CLMP U/LF IXP S/S0 Cavp S§/S0
C.C77 2,73 2.99 0.08 0.0%
0.154 2.04 2«70 0, 0% f 0.07
0.231 2.72 2442 0.10 C.10
043023 2.3% 2.07 0.17 0.1%
0.325% 1.84 le b6 0,25 Ce20
D.537 C.=?6 Ce 77 0.43 0.3%5
C.%16 0.°f 0.33 ‘ 0.50 J.23
C. £13 O.’)’ “0008 0061 O. 52
CQ??‘) "0022 '00‘93 0.67 0061
C.8.7 -0,52 - =0.71 0.71 ‘ 0.7¢C

C.(.‘,24 "‘0002 -O,QQ 0.7‘.‘ 0.7q
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TARLE A28

COMPYTED AND EXPEPIMENTAL VELCZCITY ANC SALINITY DISTRIBUTIONS

JELFT TEST 122

X/L1 = 0.¢7
€ NEAN= 0,220 LS/0X MEAN= -0,822 C2S/0X2 MEAN= 4,124
N= 0.,75F-04 S¢ MJSEC K= 0460E-05 SQ M/SEC
Y/H “XP /IYF CCMP 1y/UF zXP S/S0 Camp S/S0
0.077 243€ 2452 0.04 -0.01
NelB% 2.33 2.37 0.05 C.02
7.231 \ 2.,2¢ 2.15 0.0% 0.07
C.303 2,21 1. 86 0.07 0.12
0.345 2.0¢ 153 0.0 0.18
004{.’2 1071 lolo 0016 0-23
0.530 1.32 0.R2 0.23 0.27
Ces14 0.82 045 0.30 0.31
Qer™23 Nets2 Celé 0.39 0,34
C.779 0,07 -0.1% Ne45 0. 137
Nean7? - Ce 31 -0.37 0.4 0.38

Ooq.—.’/‘“ ’ “‘Ooﬂr‘ -0952 0063 C.‘?O
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TARLE A29
COMPUTED AND EXPEP IMINTAL VELOCTTY ANC SALINITY DISTRIBUTIONS

CELFY TEST 122

X/L1 = 0.71
€ MEAN= 0,125 NS/DX MEAN® =0,457 [28/0X2 MEAN= = 1,819
Dx N,B4%-04 §Q "/STC K= 0, 18E=05 SQ M/SEC
Y /H TXP U/LUYF CTMP U/UF EXP §/%4 1 CNMp §/89
C.Q77 1.90 2410 0,03 ; »T,48
Jel54 1,93 1.99 0,02 »7,40
0.231 1,21 1.23 0,03 =723
Q335 1.3 l1e3° O’Qq ~h. 4R
0.462 1.3’ lq l3 Oqﬂ? ’Bu?c
Cpi?”: 1012 0!37 0011 ""4"'5’1
Cat®3 D42 0,37 0,22 0,89
0.770 C, 20 Q.17 0,27 %, 6¢
0,847 ~0,08 - 0401 N¢30 12.10

Co924 -3, 34 -0,10 0,33 2C. 11



G8T1

S MEAN=

Y/H

vel(
Ged7
Veld3
Ledi
Ce37
Ve43
Vebu
Leb7
LVeb3
Celu
Cel7
vel3
v
Ve 7

TABLE A30

CUMPUTED ANU EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

vellT

U= Lea4bc=-u3

EXP U/UF

29.21
21623
14452
Be 71
327
-de 36
‘8017
-13,97
-18s51
-19060
-18.33
“156690
“13.43
-1lce 70

JAMES RIVER 18 JUNE - 23 JUNE

X/LL =

JS

SQ M/>kC

/DX MEAN=

COMP U/UF

2Ne 39
19,42
17,62
15.13
12.79
Be62
4088
1.00
-2.88
-6462
-10.08
=13.13
-15.62
‘17042

Ze19

~1.419

D2S/DX2 MEAN= =-4,148

K= fal16E-03 SQ M/SEC

EXP S/sn

Neb4
Cob4
Ceb4
665
Ce b6
Ce68
NeT1
DeT3
Jel4
{te T4
CeT5
feT5
Ce 16
Ce76

COMP S/s+

Ne b4
e 64
Ne 65
Teb65
e 66
Yo 68
1469
Ne T
Te T2
Ne T3
LTS5
Ne 76
Te 7T
n.78
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TABLE A3l

CUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

- JAMES RIVER 18 JUNE - 23 JUNE

X/L1 = re3)
S MEANE  Gebed U3/DX MEAN= -2,%480 G25/DX2 MEAN= =8,295
D2 ue T5E=U3  SQ M/>EC Kz 3,21E=(:3 SQ M/SEC
Y/H EXP U/ UF LOMP U/UF EXP S/S80 COMP S/57
Vel ’ 16449 l4.36 Nebb Y.
vedl ‘ 13.5u 13.69 e . Ve 46
JVeld 3 LDe52 12445 e kb "o &b
veldu 725 17 T4 Qe4b Ned?
el 4055 8464 Ne b fe48
v043 le42 6025 {‘047 M6 49
Vebu “Ze13 3.68 eS80 "e51
Ve b1 -5+ 69 le20 ‘ Ce51 Ne 52
Ve 3 -8 67 -1.67 Qe 56 e 54
vellk “1lCel9 ~4425 Ce5T (e 55
el “luesli6 -6+ 64 e57 e . Ne 56
ve b3 “‘9095 ‘8073 13.53 00 58
Vo9l =1U.8C ~1Ce &5 {e58 Ne 59

Ve 7 “ile8 -11.69 "a59 Co 6
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TABLE A32

CUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 18 JUNE - 23 JUNE

S MEAN= Ue2l4 U>/DX MEAN= -2,.851 02S/DX2 MEAN= -4,148
D= Gel2E-v2 SQ M/>EC K= 0.35E={3 SQ M/SEC
Y/H EXP U/UF COMP U/UF EXP S/S¢ COMP S/t
Gelu 17.16 8499 Lel? Nelb
Uol? 70""0‘ 8.59 ""017 ; e l7
UVed> le98 T.85 Uel7 Vel7
Ve3 U -lel9 6482 Tel? "el8
Ue3 7 -3.27 557 ((e18 NHelB8
LVe4a3 ~%9416 4el4 {{el8 tel9
UebU 6245 24 60 Ce 20 Ce 20
UedT7 ~Ts24 1404 .22 7021
Veb3d "70 T4 =l e 64} veldé Me 22
Vell ~Te9% ~-2.14 (e 24 Ne23
vell ~T¢94 ~3457 Ce25 e 24
Vet 3 ~Te9% ~-44 82 0e25 ’ Ne25
Ve9 Ul ~T7e9% -5485 {e25 "e26

0097 "'7094 -6¢59 Ge26 1027
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TABLE A33

CUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RiVER 26 JUNE - 7 JuLy

/L1 = {el9
S MEANS  Uel713 JS/DX MEAN= =1,4342 D2S/DX2 MEAN= -§5,311
D= ¢e35€E-U3 SQ M/s5cl K= Ue26E-(3 SQ M/SEC
Y/H EXP U/UF LOMP U/UF EXP S/SD COMP S/S7
Celd 35, 7C 28415 Cebb V.67
vedd , 28056 2679 (e67 TebT
Ued3 2le42 24428 f'.b" "e 6T
ve 33U L3.63 204 719 (eb67 “e 68
Ge31 4ell 16452 Ceb68 e 69
U-‘*B -5041 11.67 .68 Ne 69
Cedu -il.92 6644 (o7 NeTH
Ge57 -16.01 1o 030 e 72 M 71
Ve b3 -1be82 -4e43 (073 ""072
veli -21e20 ~0.67 CeT4h “e T3
Cel7 ) ~24e12 -14,51 (e 15 Ne T4
veb3 =24e23 -18.,78 Le?5 “e15
Ve 9L "25. 10 "22. 27 (;.75 f"o 75

Ve 7 =25475 -24479 (e76 1e 16
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TABLE A34
CuMPUTE) AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 26 JUNE - 7 JULY

X/LI = "e29
S MEAN= Le538 US/DX MEAN= =-2,159 D2S/0X2 MEAN= =1:0:,622
D= Ueb5E-U3 SQ M/SEC ; K= 0e¢31E-(3 SQ M/SEC
Y/H EXP U/ UF COMP U/UF EXP S/SC COMP S/S°-
Lel? 17.12 18,51 0449 449
Uel3 13.56 16,80 (e 49 Ve 49
ve 3U 9466 14443 (144G (e 50
ve3dl 5693 1l.54 (ia 5 Ve 5
Ce43 1.53 Be24 Ce51 e 5]
CedyU -2e54 4469 Le52 Ne52
\4057 -5e93 10(10 Ce54 {e54
Ueb3 “8e 64 -2468 (456 1455
Ve lu -1l 86 -6e24% "e57 T e56
Le?7 -15459 ~9453 Cab57 "e 57T
vedd "18.47 "12.43 (057 e 58
Le9b -19. 83 -14,80 558 e 59

ve9 7 =190 49 =16.51 0e59 "e 59



061

TABLE A35
CUMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 26 JUNE - 7 JULY

X/L1 = Neél
S MEAN= J.2l0 J>/DX MEAN= -3,113 D2S/DX2 MEAN= -5,311
D= GellE-v2 SQ M/>cC K= DNea45E-C3  SQ M/SEC
Y/H EXP U/UF COMP U/UF EXP S/SC COMP S/S™
Celu 25046 11,48 (e18 Uel7
tol? 11.12 10.96 iole 3017
Uel3 ' ' 3419 . 9499 ‘ ‘el1l8 "el8
ve 3l -ie89 Bs 64 Col8 \ ! Tel8
5037 -5.09 6,99 3.18 Y619
Ved3 -6 50 ) 5612 (el9 Te20
Lvedu -6e86 3.10 Je 2l ne2l
5057 '6098 10CQ ?022 ﬁoZl
Ceb3 -Telu -le.10C ;e 23 Ne22
Vel -7.81 -3,12 Gelb "e23
L.?? -9.93 -4.99 r.24 i‘.zl’
LeB3 -1de)6 ~-6e 64 : {925 "e25
ve9u -l3.01 ‘7098 f.25 ?025

Ce9 7 -13.01 -84 96 (e25 626
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TABLE A36
CUMPUTED ANU EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 17 JuLY - 21 JuLY

X/LI = e 2D
S MEAN= (.687 Do/DX MEAN= =-1,216 D2S/DX2 MEAN= =4,746
D= LeduE=u3 S5Q M/scEC K= (e26E-0G3  SQ M/SEC
Y/H cXP U/UF COMP U/UF EXP S/Sn COMP S/sn
Uelwu 29¢ 94 254032 (165 g 64
Vel 23471 23482 Ceb65 e b4
Vel 3 l6e44 21460 Ceb65 "eb&
veldu 952 18.51 65 "y 65
Vel 3063 14,73 Je 66 e b6
Ue43 -1e9C 10,44 e 68 Pe 67
Gebuw -7.96 5681 CeTL ebT
U057 ”12.81 lop% Qo72 3068
Leb3 =-2ue:8 -3,8% Ve T3 g 69
Ve li ~21e98 ~Be 44 UaT4 e T
VelT7 -20e 17 -12.73 (e T4 "e Tl
Ge83 -19e56 -16.5% ie T4 Ne T2
veYu -19604% -19¢59 Cel5 NeT3

U.97 ‘ ‘19004 “21.82 Ge 75 N 74
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TABLE . A37
«UMPUTED AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 17 JULY - 21 JuLy

X/L1 = (e 37)
S MEAN® Laebaw JI/DX MEAN= =~]1,98¢ o D2S/DX2 MEAN= =9,49]
Us UebbE=U3 SQ M/acy K= N4.21E~-G3 SQ M/SEC
Y/H EXP UZUF COMP U/UF EXP §/5S0 COMP S/57
Vel 17076 15.14 (e&5 . Ge 44
ves l . 14451 l4.43 ebb » De 45
Ledd e 71 - 13.12 GCedb Ce4b
Vedl Te05 11.31 Ny 46 Ny 46
vedl 4420 9.08 Ge4T fedl
Ve Le49 6e56 Ve 7 Ne&8
Vedu =1 ¢ 90} 3,83 a5 Ve BT
U057 '4088 lafiC ) (e H3 fie51
Lebd ~be¥9l - ~1.83 » (e55 Teb53
Lelu -8495 -4e56 DeB6 Ne58
Gell R S S -7.n8 0457 456
LeB3 ' ~léelli ‘ -Ge 3T "Nae 57 ) N4 58
Ge 90 -13e15 -11e12 (eb57 499

ver T ~1l3e42 ~12443 f1e58 e 69
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TABLE A38
COMPUT LU AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 17 JuLy - 21 JuLY

X/LI = Te 43
S MEAN= a2l U>/DX MEAN= -2,872 D2S/DX2 MEAN= =-4,746
D= velJdE-u2 SQ M/S5cC K= 0e¢52E-*3 SQ M/SEC
Y/H eXP U/UF COMP U/UF EXP S/S" COMP S/S%
Veltl 1750 17430 Cel? Tel7
Cel7 9,56 9. 84% Cel? Nel7
Uel3 ‘ e l4 8497 Vel7 e l7
vell -1.51 T.78 Cel7 Tel8
Ced7 ‘4Q26 6e32 Col? ‘'el8
Ve&3 6,06 4466 Cesl1l8 "el9
Ceb U ~T7+29 2486 Gel9 De 211
veb1 -8e33 1e5:} (o2l el
Leb3 -8 99 -{1e 86 Lel2 T e22
Lo?U '9.65 ‘2065 QQZB 0023
ve (T ~-10.03 -4432 Cel& fe23
VelB3 -Lliele ~-5.,78 Cel4 Tel2b
Ce9U -10.31 -6497 (e 24 Te25

ve97 ”10031 -Te84 (ie25 925





