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1 Introduction

Three-dimensional N = 2 superconformal field theories with flavor symmetry admit su-
persymmetric “real mass” deformations [1]. As explained in [1], the real mass parame-
ters, denoted here generically by m, are introduced by first coupling the conserved current
multiplet to a background vector multiplet, and then giving the vector multiplet scalars
supersymmetry-preserving expectation values proportional to m. These real mass defor-
mations can be constructed not only in flat space, but also on curved manifolds, and in
this work we will be interested in the case of the round sphere S3. As explained in [2, 3],
the mass-deformed S3 free energy FS3(m) can be computed exactly in any Lagrangian
N = 2 theory using the technique of supersymmetric localization (see [4–6] for reviews
and references). Although we will not make use of this fact explicitly, we should point out
that the mass-deformed sphere free energy is related by analytic continuation to the trial
R-charge deformations used in the F -maximization procedure [2, 7], so we will not make a
distinction between trial R-charges and mass parameters in the following discussion.

The focus of our work is to study FS3(m) in holographic theories at leading order in
the bulk derivative expansion. In recent work [8], it was pointed out that, in a holographic
setup, FS3(m) receives contributions only from a restricted class of supersymmetric terms
in the bulk effective action in AdS4. In the terminology introduced in [8], the bulk defor-
mations that affect the sphere free energy are chiral F-terms and flavor current terms. On
the other hand, FS3(m) is independent of bulk D-terms, 1/4-BPS terms, and non-chiral
F-terms. At the two-derivative level in the bulk effective action, the only chiral F-terms are
prepotential interactions, so in theories without flavor current terms, one concludes that
the mass-deformed sphere free energy should be completely determined by the prepotential
of the bulk supergravity theory on AdS4.

In this paper we study SO(4)-invariant “domain wall” solutions of N = 2 supergravity
theories with asymptotically AdS4 metrics, which are putatively dual to 3d N = 2 super-
conformal field theories (SCFTs) on S3 deformed by the mass parameters m. We conjecture
a simple formula relating the classical prepotential of the theory to its mass-deformed free
energy FS3(m). Since the free energy can be viewed as an observable of the bulk theory, this
formula should follow from the structure of the bulk Lagrangian, whether or not a theory
has an AdS/CFT dual. The conjectured formula is verified in several explicit models with
only vector multiplets, and in models with an added hypermultiplet. We next introduce
the essential machinery of vector multiplet models needed to present our conjecture with
details to be further explained in section 2.

1.1 The conjecture

The Lagrangian of a model containing nV vector multiplets is determined by its prepotential
F(XI), a homogeneous function of degree two, i.e. F(λXI) = λ2F(XI). The XI , with
I = 0, 1, . . . nV , are holomorphic projective coordinates of a special Kähler manifold of
complex dimension nV . The XI are related to physical scalar fields τα, α = 1, 2, . . . , nV ,
which provide intrinsic coordinates for this manifold. In Lorentzian signature, the fields τα

have τ̄ ᾱ as their complex conjugates; however, in Euclidean signature the two sets of fields
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are independent, and in order to emphasize this fact we use the notation τ̃ α̃ instead of
τ̄ ᾱ. The Kähler potential K(τ, τ̃) is determined by the prepotential. As usual, the Kähler
metric is Kαβ̃ = ∂α∂β̃K;1 the Kähler covariant derivative of XI is ∇αXI = ∂αX

I + 1
2KαX

I ,
with Kα = ∂αK.

The conjecture may be stated in terms of the boundary limits of the quantities above,2

and it employs a complex frame basis for the boundary Kähler metric

eaαẽ
b̃
β̃
δab̃ = K∗

αβ̃
(1.1)

with frame fields eaα, their inverses eαa , and their conjugates ẽb̃
β̃
.3 The physical real masses

of the boundary CFT, called ma in the frame basis, are related to the coefficients of next-
to-leading terms in the boundary expansion of τα and its conjugate, as explained in more
detail in the next section. The sphere free energy FS3(m) can then be immediately obtained
from the prepotential F(XI) via

FS3 = 2πiL2

GN
F(Y I) , Y I ≡ XI

∗ + i

2e
α
a (∇αXI)∗ma , (1.2)

where GN is the 4d Newton constant. To resolve the projective ambiguity of the XI , we
impose the conditions

XI
∗ = X̃I

∗ , (∇αXI)∗ = (∇α̃X̃I)∗ . (1.3)

The conjectured relation (1.2) provides a far simpler way to find the sphere free en-
ergy FS3(m) than the traditional method which starts from the BPS equations of a given
bulk theory. Next, one must obtain the BPS solutions which is never easy, often requir-
ing numerical work. Then come holographic renormalization of the on-shell action, and
implementation of a Legendre transform because the real mass deformation involves some
operators whose bulk dual fields obey alternate quantization [9]. The conjecture delivers
the same information simply by substituting XI → Y I in the prepotential.

1.2 Background

That, at leading order in the supergravity approximation, FS3(m) is related to the bulk
prepotential had also been noticed in certain examples in [10] (see also [11] for a review).
The logic described in [10] is as follows. First, in explicit 3d N = 2 SCFTs with holographic
duals where the sphere free energy scales as N3/2 or N5/3 at large N , it was noticed that, at
leading order in 1/N , the mass-deformed sphere free energy and the topologically twisted
index [12] on S2 × S1 are related. In particular, the sphere free energy and the “Bethe
prepotential,” which is an auxiliary quantity used in the index computation, are given by
matrix models that can be derived using supersymmetric localization. At large N , these
matrix models agree precisely up to normalization. Second, in supergravity, the topologi-
cally twisted index is computed by the entropy of certain extremal black holes. In the few

1We use the notation ∂α ≡ ∂
∂τα

and ∂α̃ ≡ ∂
∂τ̃α

.
2We use the subscript ∗ to indicate a quantity evaluated at the boundary, e.g. XI

∗ , (∇αXI)∗.
3In all the examples we consider, we will be able to choose eaα to be real, so ẽãα̃ = eaα.
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known top-down examples of such black holes, the attractor mechanism [13] implies that
the Bethe prepotential agrees with the prepotential of the supergravity theory. Thus, in a
set of examples where one knows both an explicit Lagrangian description of the SCFT and
also the bulk dual of this SCFT in enough detail to construct supersymmetric black hole
solutions, ref. [10] argued that the sphere free energy is proportional to the bulk prepoten-
tial. One can also incorporate gauged hypermultiplets, at least in principle. Indeed, in the
attractor mechanism, hypermultiplets yield algebraic constraints [14, 15], which suggests
that the equivalence between the sphere free energy and the bulk prepotential should hold
provided that certain constraints associated with the hypermultiplets are obeyed.

A particularly simple and important example is an N = 2 supergravity theory with
three vector multiplets, no hypermultiplets, and prepotential F = −2i

√
X0X1X2X3. This

theory can be embedded as a consistent truncation of N = 8 gauged supergravity and
it has an AdS4 solution of curvature radius L. This theory thus describes a subsector
of the U(N)k × U(N)−k ABJM theory [16], when the Chern-Simons level is k = 1 or
2 and the ABJM theory has N = 8 superconformal symmetry. For ABJM theory at
k = 1, it was shown in [17] that sphere free energy in this case takes the form FS3 =
4πN3/2

3
√

2∆1∆2∆3∆4, where ∆i are the R-charges of the bifundamental fields of the theory
obeying

∑
i ∆i = 2. (As mentioned above, the trial R-charges are related to the real mass

deformations by analytic continuation.) Thus, in this case, it is clear that the sphere free
energy is proportional to the prepotential, provided that one identifies the ∆I parameters
with the XI .

Part of our goal in this work is to show that it is possible to prove more directly
the relation (1.2) between FS3(m) and the bulk prepotential. Indeed, the relation (1.2)
should follow solely from bulk physics, without invoking either the explicit form of the
matrix models obtained after supersymmetric localization in the boundary theory, or the
attractor mechanism, or the supersymmetric index computation. The sphere free energy
can be viewed as an observable of the asymptotically AdS bulk theory, so the existence of
an SCFT dual should not be necessary. In the case of ABJM theory, such a direct proof is in
fact available: ref. [18] constructed asymptotically AdS4 backgrounds in 4d N = 8 gauged
supergravity that are dual to mass deformations of ABJM theory on S3.4 The on-shell
action of these solutions does reproduce the sphere free energy FS3 = 4πN3/2

3
√

2∆1∆2∆3∆4
given above, and therefore the correspondence between the sphere free energy and the bulk
prepotential is explicitly proven without making reference to the properties of the boundary
SCFT. We will thus generalize the construction of [18] to other AdS4 supergravity theories
and derive the relation (1.2) in the examples we study.5

This rest of this paper is organized as follows. In section 2, we introduce all the
ingredients needed to compute the free energy for AdS4 supergravity theories with vector
multiplets only, and we check that the direct computation of the free energy agrees with our
conjecture in a few examples. In section 3 we state our conjecture for theories who contain
hypermultiplets as well, and work out other examples with one added hypermultiplet. We

4These solutions can be uplifted to solutions of eleven-dimensional supergravity.
5For other examples where there is agreement between the sphere free energy and the bulk prepotential,

see [19–22].
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end with a discussion of our results and future directions in section 4. Several technical
details are relegated to the appendices.

2 The free energy in the absence of hypermultiplets

2.1 Setting up the computation

Let us begin by considering an N = 2 supergravity theory with nV Abelian vector multi-
plets and no hypermultiplets. The construction of the bulk action for such a theory is well
known, so we give a rather minimalist presentation based on Chapter 21 of [23]. With two
exceptions, we adhere to the conventions of this reference:

1. The gravitational coupling 1/κ2 = 1/8πGN is scaled out as an overall factor of the
action. Thus scalar fields are dimensionless.

2. Starting in section 2.3, expressions valid in Lorentzian signature are converted to
Euclidean signature. Quantities related by complex conjugation in Lorentzian quan-
tum field theory are independent in Euclidean. We will use X̃I rather than X̄I as a
reminder of this fact, and the same for other quantities. We use the conventions for
Euclidean supersymmetry from appendix A of [18].

There are nV complex scalars τα, the “physical” fields, which parametrize a special
Kähler manifold. The basic data of a specific model is contained in its prepotential F(XI),
with I = 0, . . . , nV , a homogeneous function of degree 2 in the XI which determines the
kinetic term and the scalar potential. To relate the XI to the physical scalars, we use the
homogeneous coordinates

XI = yZI(τα) , (2.1)

where the ZI(τα) are holomorphic functions.
To proceed toward the physical action we need the two matrices:6

NIJ = −i(FIJ − F̄IJ) = 2=FIJ ,

NIJ(τ, τ̄) = F̄IJ(τ̄) + i
NIKZ

K(τ)NJLZ
L(τ)

NMNZM (τ)ZN (τ) .
(2.2)

Note that FI = NIJXJ . The Kähler potential is then defined by two equivalent formulas:

e−K = −i(ZIF̄I(Z̄)− Z̄IFI(Z)) = −NIJZ
I Z̄J ≡ 1/yȳ . (2.3)

The last equality defines the product yȳ, leaving the freedom to redefine y → ty, ȳ → t−1ȳ,
with |t| = 1. As usual, the Kahler metric is Kαβ̄ = ∂α∂β̄K. In our case of Abelian vector
multiplets and no hypermultiplets, the scalar potential is given by

V (τ, τ̄) =
(
−1

2 (=N )−1|IJ − 4XIX̄J
)
~PI · ~PJ . (2.4)

6Derivatives of the prepotential are indicated by subscripts, e.g. FI(X) = ∂F(X)
∂XI

.
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The ~PI are triplet moment maps. If there are no hypermultiplets, they are the Fayet-
Iliopoulos couplings and must point in a common direction fixed by the unit vector ê;
hence ~PI = gI ê and ~PI · ~PJ = gIgJ [24]. We will make the choice ê = (0, 0, 1).

Since the domain wall solutions of our N = 2 theories involve only scalars and no
vectors, it is valid to truncate to an N = 1 description for which the formalism is far
simpler (see Chapter 18 of [23]). The N = 1 truncation contains a graviton multiplet
(consisting of the metric and a gravitino) and nV chiral multiplets (each consisting of a
complex scalar and a Weyl fermion). With the help of (20.190) of [23], the potential can
be written in the standard form of an F-term interaction:

V = eK(−3WW̄ +Kαβ̄∇αW∇β̄W̄ ) , (2.5)

which contains the usual Kahler covariant derivative:

∇αW = ∂αW + (∂αK)W . (2.6)

Comparing with (2.4), we see that the holomorphic superpotential is related to the N = 2
data by

W (τ) = gIZ
I(τ) . (2.7)

We can now write the bosonic action of the N = 1 truncation (in mostly plus Lorentzian
signature):

Sbulk =
∫
d4x
√
−gLbulk = 1

8πGN

∫
d4x
√
−g

[1
2R−Kαβ̄∂µτ

α∂µτ̄ β̄ − V (τ, τ̄)
]
. (2.8)

2.2 AdS4 solution, N = 2 SCFT interpretation, and alternate quantization

In the examples we study, the potential V (τ, τ̄) has a critical point at τα = τα∗ , τ̄
β̄ = τ̄ β̄∗ ,

which yields an AdS4 solution of the theory (2.8), where

gµν = gµν
∣∣
AdS , τα = τα∗ , τ̄ β̄ = τ̄ β̄∗ , (2.9)

and all other fields vanish. This supersymmetric critical point is defined by the 2nV
conditions ∇αW = ∇β̄W̄ = 0; these, in turn, imply that ∂αV = ∂β̄V = 0. The value
of the potential at the critical point is then related to the AdS curvature radius L by

V∗ = −3
L2 = −3eK∗W (τ∗)W̄ (τ̄∗) . (2.10)

In the N = 2 theory that truncates to (2.8), the condition (2.10) reads
∣∣∣gIXI

∗

∣∣∣2 = 1/L2, as
can be seen from combining (2.10) with (2.1), (2.3), and (2.7). Here and in the following
discussion, we denote with a subscript ∗ quantities evaluated at the critical point of the
potential, namely XI

∗ = XI(τ∗, τ̄∗), etc. Upon using the transformation y → ty, ȳ → t−1ȳ

with |t| = 1, we can assume without loss of generality that

gIX
I
∗ = gIX̄

I
∗ = 1

L
. (2.11)
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In the N = 2 theory, this AdS solution preserves eight linearly-independent supersymme-
tries. With the choice in (2.11), the Killing spinor equations obtained from the vanishing
of the gravitino variations δψiµ = δψiµ = 0 (see eq. (21.42) of [23]) take the form

Dµε
i = − 1

2Lγµτ
ij
3 εj , Dµεi = − 1

2Lγµτ3ijε
j , (2.12)

where i, j are SU(2)R indices raised and lowered7 with the epsilon symbol, and (τ3)ij ≡
i(σ3)ij .

Via the AdS/CFT duality, the AdS4 solution is dual to a 3d N = 2 SCFT that lives
on the boundary in cases where the model (2.15) can be obtained from a top-down string
theory or M-theory construction. We do not attempt to embed the model (2.15) into ten-
dimensional or eleven-dimensional supergravity, however, so the existence of a boundary
SCFT is an assumption that we make. The fluctuations of the metric, scalar fields, gauge
fields, gravitino, and fermions are dual to certain operators in the boundary SCFT. In
particular, these operators belong to the stress tensor multiplet of the boundary SCFT,
which is dual to the N = 2 Weyl multiplet in the bulk, as well as nV conserved current
multiplets, which are dual to the nV vector multiplets.

An important subtlety in the details of the AdS/CFT dictionary involves the bound-
ary conditions on the scalar and fermion fields. The nV vector multiplets contain 2nV
real scalars and 2nV Majorana fermions. When expanded around the AdS solution to
quadratic order, one can prove that all the scalar fields are conformally coupled, i.e. they
have squared mass m2 = −2/L2, and all the fermions are massless — see appendix A. In
AdS, scalar fields of this mass can obey regular boundary conditions or alternate boundary
conditions depending on whether they are dual to boundary operators of dimension 2 or 1,
respectively [9]. In fact, both cases should occur for us, because each of the nV conserved
current multiplets in the boundary theory contains a scalar superconformal primary Jα of
dimension 1 and another scalar conformal primary Kα of dimension 2. The question then
is: which scalar fields in the bulk obey regular boundary conditions, and which ones obey
alternate boundary conditions? A similar question can be asked about the fermions. The
massless bulk fermions correspond to dimension 3/2 operators in the boundary theory. In
the bulk it is a priori not clear which boundary components of the fermions correspond to
field theory sources and which ones correspond to VEVs. It is important that no similar
ambiguity occurs for the gauge fields, gravitino, or the metric fluctuations, which all obey
the regular quantization that identifies the coefficient of the leading behavior close to the
boundary as the source for the dual boundary operator.

The boundary conditions for scalars and fermions can be determined by examining
the asymptotic behavior of the fluctuations around the AdS4 solution and how the vari-
ous coefficients in the asymptotic expansion transform under supersymmetry. The guiding
principle is that, under supersymmetry, sources for boundary operators should transform
into sources. Since we know which coefficients in the asymptotic expansions of the guage
fields correspond to sources for the boundary conserved currents, the supersymmetry trans-
formations would then determine which coefficients should be interpreted as sources for the

7For details, see appendix 20A of [23].
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operator dual field ∆
Jα <τα 1
Kα =τα 2

Table 1. Correspondence between bulk fields and boundary operators in the N = 2 SCFT.

fermions and the scalar fields as well. Note that N = 2 supersymmetry is crucial in this
case, because N = 1 supersymmetry transformations do not relate scalars to gauge fields.

We perform the analysis outlined above in appendix B. For the scalar fields, the result
is that

BI ≡ =
(
(τα − τα∗ )(∇αXI)∗

)
(2.13)

should be quantized with regular quantization, while

AI ≡ <
(
(τα − τα∗ )(∇αXI)∗

)
(2.14)

should obey alternate quantization. Alternatively, one can say that =(XI − XI
∗ ) obeys

regular boundary conditions while <(XI −XI
∗ ) obeys alternate boundary conditions.

In practice and with no loss of generality, one can take τα∗ = 0 and (∇αXI)∗ real, and
then =τα will be regularly quantized while <τα will obey alternate quantization. In this
simplified setup, the correspondence between bulk fields and SCFT operators is given in
table 1. We will discuss the precise normalization of the boundary operators Jα and Kα

later on in section 2.3.4.

2.3 Solutions with sphere slicing

In the rest of this section we work in Euclidean signature, where the action (2.8) becomes

Sbulk = 1
8πGN

∫
d4x
√
g

[
−1

2R+Kαβ̃∂µτ
α∂µτ̃ β̃ + V (τ, τ̃)

]
. (2.15)

As mentioned in the Introduction, we are interested in constructing classical solutions of
the theory (2.15) that correspond to real mass deformations of the putative dual N = 2
SCFT on S3. Such solutions have an SO(4)-invariant asymptotically AdS metric tensor
that conforms to the ansatz (see [18]):

ds2 = L2e2A(r)ds2
S3 + e2B(r)dr2 . (2.16)

The frame fields are
ei = LeA(r)êi e4 = eB(r)dr , (2.17)

where the index i runs over i = 1, 2, 3 and the êi are a choice of S3 frame fields. With ω̂ij

denoting an S3 connection, the spin connection for (2.17) is

ωij = ω̂ij , ωi4 = A′e−Bei . (2.18)

It is redundant to specify two radial functions in (2.16), but it is convenient since we
will use two different gauges. The conformally flat (CF) gauge, with eB(r) = L

r e
A(r), is

– 8 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
5

somewhat more convenient in the search for analytic solutions of the BPS equations, while
the Fefferman-Graham (FG) gauge, with B = logL, is better suited for numerics and for
holographic renormalization.

The scalar fields τ(r), τ̃(r) of the domain wall approach a supersymmetric critical
point of the potential (2.5) at the AdS boundary, i.e. τα(r) → τα∗ , τ̃

β̃(r) → τ̃ β̃∗ as r → ∞
in the FG gauge. The real mass parameters appear in the asymptotic expansion close to
the boundary of the fields τα and τ̃α, as made explicit below.

2.3.1 The BPS equations

The next item of business is the BPS equations satisfied by supersymmetric SO(4)-invariant
solutions of the theory. These are first order partial differential equations derived from
the requirement that SUSY variations of the fermions vanish. Any solution of the BPS
equations is also a solution of the bosonic equations of motion. Our discussion follows
the treatment in [18]. In the Euclidean signature N = 1 truncation of a theory without
hypermultiplets, the BPS equations are

δψµ =
(
∂µ + 1

4ω
ab
µ σ[aσ̄b] −

i

2Aµ
)
ε+ 1

2σµe
K/2Wε̃ = 0 ,

δψ̃µ =
(
∂µ + 1

4ω
ab
µ σ̄[aσb] + i

2Aµ
)
ε̃+ 1

2 σ̄µe
K/2W̃ ε = 0 ,

δχα = σµ∂µτ
αε̃− eK/2gαβ∇̃βW̃ ε = 0 ,

δχ̃β = σ̄µ∂µτ̃
βε− eK/2gαβ∇αWε̃ = 0 ,

(2.19)

where Aµ is the Kähler connection, Aµ = i
2

(
∂µτ

α∂αK − ∂µτ̃α∂̃αK
)
.

We are interested in solutions where the scalars τα(r) are strictly radial and the frame
and connection come from (2.16)–(2.18) above. The 2-component spinors ε and ε̃ are
Killing spinors. Due to rotational symmetry, a given solution has either the structure
ε = i(r)ζ, ε̃ = ĩ(r)ζ or ε = j(r)ξ, ε̃ = j̃(r)ξ, where ζ, ξ are Killing spinors of S3 and satisfy

∇iζ = i

2σiζ , ∇iξ = − i2σiξ . (2.20)

The choice of the ζ or ξ structures determines whether the solution is invariant under the
left or right SU(2) factor of the isometry group of the sphere, SO(4) = SU(2)l × SU(2)r.
We choose the ζ structure and look for solutions of the BPS equations in this case. (In
solutions with the ξ structure, the roles of τα and τ̃α are switched.)

We now group the BPS equations for the spin 1/2 fermions and the gravitinos (for
µ = i 1,2, or 3) into a (2nV + 2) × 2 dimensional matrix. After insertion of A(r), B(r)
from (2.16) and (2.17) and use of (2.20), we obtain

1 + LA′eA−B −iLeAWeK/2

−iLeAW̃eK/2 1− LA′eA−B

−eK/2Kαβ∇̃βW̃ −ie−B(τα)′

ie−B(τ̃β)′ −eK/2Kαβ∇αW


ε
ε̃

 = 0 . (2.21)
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A non-trivial solution of these equations is possible only if all 2 × 2 minors of this
matrix vanish. In this way we look for solutions for the scalar fields τα, τ̃α and the metric
functions. Once this is achieved, we can rewrite the BPS equations δψr = 0 and δψ̃r = 0
as the 2× 2 linear system that determines the spinors ε and ε̃

∂r

ε
ε̃

 =

 1
2 iAr

i
2e
BWeK/2

− i
2e
BW̃eK/2 −1

2 iAr

ε
ε̃

 . (2.22)

2.3.2 Computation of the renormalized on-shell action:

The next step in the evaluation of the sphere free energy is to compute the on-shell action
obtained by substitution of a solution of the field equations, in our case a solution of the
BPS equations, in the bulk action Sbulk of (2.15). However, the radial integral diverges
near the AdS boundary. So the integral must be cut off at r = rc and boundary coun-
terterms added to cancel the divergences. This is the well known process of holographic
renormalization [25], adapted to our application in section 6.1 of [18].

As usual when working in a spacetime with boundary, we introduce the Gibbons-
Hawking-York term

SGHY = − 1
8πGN

∫
∂
d3x
√
hK

∣∣∣
r=rc

, (2.23)

where hij is the induced metric at the cutoff and K is the trace of the extrinsic curvature.8

Its role is to provide a well defined variational principle for the √gR term in the bulk
Lagrangian.We then need two other counterterms, the first because the boundary metric
is curved with Ricci scalar Rh = 24e−2rc/L2:

Sh = L

16πGN

∫
∂
d3x
√
hRh

∣∣∣
r=rc

. (2.24)

The second is needed to cancel divergences while maintaining supersymmetry:

SSUSY =
∫
∂
d3x
√
hLSUSY = 1

4πGN

∫
∂
d3x
√
h eK/2|W |

∣∣∣
r=rc

. (2.25)

Let us begin to put these ingredients together, working with the redundant met-
ric (2.16). The goal is to obtain an integral formula for the sum of the on-shell action
plus the three counterterms which converges at short and long distances and depends only
on the metric functions A(r), B(r). Since fields and metric depend only on r, the integra-
tion over coordinates of S3 produces the volume factor of h0ij which is 2π2. The first step
is to take Sbulk + SGHY and integrate by parts to cancel the A′′ term. The boundary term
is cancelled by the counterterm, leaving

Sbulk+SGHY= πL

4GN

∫ rc

rIR
dreA+B

[
−3
(
1+(eA−BLA′)2

)
+L2e2A

(
e−2BKαβ∂rτα∂r τ̃β+V

)]
.

(2.26)

8In the FG gauge, where the metric behaves asymptotically as ds2 = L2
(
dr2 + e2r

4 dΩ2
S3

)
, then the

induced metric is hij = (Lerc/2)2h0ij , where h0ij is a metric on the unit sphere. Then K = L−1∂rc log
√
h.
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The Euler variation of this expression with respect to A(r) then produces

L2e2A+2B(e−2BKαβ∂rτα∂r τ̃β + V ) = e2B − L2e2A
(
3(A′)2 − 2A′B′ + 2A′′

)
. (2.27)

We insert this in the integrand of (2.26), which then reads

Sbulk + SGHY|on-shell = − πL

2GN

∫ rc

rIR
dr eA+B

[
1 + L2e2A−2B(3(A′)2 −A′B′ +A′′)

]
. (2.28)

Now let’s look at the counterterms. We can simplify SSUSY using the BPS equations.
In particular the vanishing of the determinant of the first two lines of (2.21) gives the
equation

1− (LA′eA−B)2 + L2e2AeKWW̃ = 0 . (2.29)

Thus we can write

SSUSY = 1
4πGN

∫
S3
d3x
√
h eK/2|W |

∣∣∣
r=rc

= πL2

2GN

[
e2A

√
(LA′eA−B)2 − 1

]
r=rc

. (2.30)

Similarly,

Sh = πL2

8GN
3eA(rc) . (2.31)

The sum of Sbulk plus all counterterms can then be written as

Sreg = − πL

2GN
lim

rc→rUV

(∫ rc

rIR
dr eA+B

[
1 + L2e2A−2B(3(A′)2 −A′B′ +A′′)

]
−

−Le3A
[3

2e
−2A +

√
(LA′e−B)2 − e−2A

]
r=rc

)
.

(2.32)

Further simplification occurs in the FG gauge, where B = logL. We can use the
asymptotic form of A for large r,

e2A = e2r

4 + constant + . . . , (2.33)

to further simplify the boundary term

e3A
[3

2e
−2A +

√
(A′)2 − e−2A

]
∼ e3AA′ + eA +O(e−r) . (2.34)

Then (2.32) becomes

Sreg = − πL
2

2GN
lim
rc→∞

[∫ rc

0
dr
(
eA
(
1 + 3e2A(A′)2 + e2AA′′

))
− eA

(
e2AA′ + 1

)∣∣∣
rc

]
(2.35)

We can write the boundary term as an integral of a total derivative, with no contribution
in the IR, since eA(r) ∼ r as r → 0 is required for a non-singular bulk metric. Sweet
cancellations occur and we are left with the convergent final result for the renormalized
on-shell action:

Sreg = πL2

2GN

∫ ∞
0

dr eA(A′ − 1) . (2.36)
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2.3.3 Legendre transform

It might be tempting to identify Sreg with the sphere free energy, but one needs to be
careful because, as discussed in section 2.2, some of the bulk scalar fields are dual to
boundary operators of dimension 1 and therefore require alternate quantization. Working
under the simplifying assumptions τα∗ = 0 and (∇αXI)∗ real mentioned at the end of
section 2.2, the fields requiring alternate quantization are τα + τ̃α; these fields are the
Euclidean continuations of 2<τα from Lorentzian signature. As instructed by [9], the free
energy in the boundary theory is given by the Legendre transform of Sreg with respect to
the leading coefficients in the asymptotic expansions of τα + τ̃α.

In more detail, a general SO(4)-invariant solution of the second order equations of
motion in the FG gauge has, close to the boundary, the following asymptotic form

τα = aαe−r + bαe−2r + . . . ,

τ̃α = ãαe−r + b̃αe−2r + . . . .
(2.37)

The on-shell action Sreg is naturally a function of (aα, ãα) (as well as other boundary
sources) because when deriving the second order equations of motion from the Lagrangian,
one has to hold (aα, ãα) fixed. The alternate quantization procedure amounts to a Legendre
transformation that takes us from Sreg(aα, ãα) to a function of aα− ãα and the canonically
conjugate variable to aα + ãα:

FS3 = Sreg(aα, ãα)− 1
2
∑
α

(aα + ãα)
(
∂Sreg
∂aα

+ ∂Sreg
∂ãα

)
. (2.38)

This is our final formula that we will evaluate in several examples below. To compute the
variations of Sreg with respect to the aα’s, it is convenient to use the fact that

∂Sreg
∂aα

= 2π2L3 lim
r→∞

e−re3A
(
L
∂Lbulk
∂(∂rτα) + ∂LSUSY

∂τα

)
, (2.39)

which will be written out explicitly on a case by case basis.

2.3.4 Real mass deformation in the boundary theory

Let us now make the connection between the asymptotic expansion (2.37) and the boundary
real mass parameters ma appearing in our conjecture (1.2). As already mentioned, our work
does not necessarily assume that the bulk supergravity theory is dual to a boundary QFT,
so the boundary mass parameters ma written below can simply be taken as a definition.
However, in cases where there is a boundary dual description, the definition of ma is
motivated by the field theory description, so let us take that perspective in the following
discussion.

As discussed in section 2.2, each vector multiplet in the bulk corresponds to a conserved
current multiplet, which contains scalar operators of dimension 1 and 2. Let us denote these
scalar operators by Ja and Ka and normalize them so that, in flat space, they give the
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two-point functions

〈Ja(~x)Jb(0)〉 = Cδab

16π2 |~x|2
, C ≡ L2

2πGN

〈Ka(~x)Kb(0)〉 = Cδab

8π2 |~x|4
.

(2.40)

With this normalization, after mapping these operators to an S3 of unit radius, we can
write the real mass deformation as [7]

∑
a

ma
∫
S3
d3~x

√
g(~x) [iJa(~x) +Ka(~x)] . (2.41)

In particular, the mass parameters ma are sources for the dimension 2 operators Ka. Thus,
they must be linear combinations of the coefficients of e−r in the boundary expansion of
τα − τ̃α, since it is the τα − τ̃α fields that are regularly quantized.

In order to relate the boundary mass parameters to the asymptotic expansions (2.37),
we first rescale the scalar fields τα and τ̃α so that, close to the boundary, they become
canonically normalized. This is achieved by defining

τa ≡ eaατα , τ̃a ≡ eaατ̃α , (2.42)

where the frame fields are defined in (1.1), and we assumed that eaα is real, as will be the case
in all our examples. Because τα− τ̃α is regularly quantized then so is τa− τ̃a. This means
that the coefficient of e−r in the large r expansion of τa − τ̃a is proportional to the source
for the dual operator Ka = eaαK

α, which is the mass parameter ma. In particular, we define

ma = eaα
aα − ãα

2i . (2.43)

Here, the normalization was chosen in a way consistent with (2.40)–(2.41). In particular,
from (2.41), it follows that to quadratic order in the small ma expansion, we have9

∂2<FS3

∂ma∂mb
=
∫
S3
d3~x

√
g(~x)

∫
S3
d3~y

√
g(~y)

[
〈Ja(~x)Jb(~y)〉 − 〈Ka(~x)Kb(~y)〉

]
. (2.44)

With (2.40), the integrals over S3 can be performed as in [7] with the result

∂2<FS3

∂ma∂mb
= δab

π2

2 C = δab
L2π

4GN
. (2.45)

We will see that the normalization in (2.43) ensures that (2.45) is obeyed in all models we
study.

With this definition, the sphere free energy FS3 from (2.38) can be expressed in terms
of ma. As we will see in the examples below, the frame vectors eaα will cancel in all practical
computations, and the free energy will take a simpler form in terms of ma.

9We take the real part of FS3 because, as explained in [7], the imaginary part may also receive scheme-
dependent contributions from contact terms in the 〈JaKb〉 correlators.
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2.3.5 Independence of the FI parameters

When written in terms of ma and L, the free energy FS3 should not depend on the FI
parameters gI . As discussed in the Introduction, this follows from the general arguments
presented recently in [8], and we will check it for generic gI in examples in sections 2.4
and 2.5 and appendix C. One practical consequence is that if we are interested in the
expression for FS3 in a given supergravity theory, we do not have to compute it for arbitrary
gI . Instead, we can compute it for a convenient choice of gI that simplifies the computation.

2.4 F = i
4ηIJX

IXJ

The first example we study is a model with nV multiplets, described by the quadratic
prepotential

F = i

4ηIJX
IXJ , (2.46)

where I = 0, . . . , nV and ηIJ = diag(−,+, . . . ,+). Black hole solutions in this model were
studied in [26]. It is convenient to parametrize the ZI coordinates as

ZI =
(

1− 1
g0
~g · ~τ , τ i − gi

g0

)
, (2.47)

where i = 1, . . . , nV and the scalar product denotes ~g · ~τ = giτ
i. This parametrization was

chosen after some exploration; one advantage is that the fields τ i and τ̃ i vanish at the AdS
boundary (as we will see).

Using the formulae in section 2.1, we find that

FI(Z) = i

2ZI , (2.48)

where the I index of ZI is lowered by ηIJ , and the Kähler potential is

e−K = −ZI Z̄I = g2 + |~g · ~τ |2 − g2
0|~τ |2

g2
0

, (2.49)

with g2 ≡ −gIgJηIJ . Another advantage of the choice (2.47) is that the superpotential is
particularly simple,

W = gIZ
I = g2

g0
. (2.50)

The scalar potential, computed using (2.5), is

V = −g2 3g2 + |~g · ~τ |2 − g2
0|~τ |2

g2 + |~g · ~τ |2 − g2
0|~τ |2

= −g2
[
3 + 2 g2

0|τ |2 − |~g · τ |2

g2 − g2
0|τ |2 + |~g · τ |2

]
. (2.51)

The unique extremum10 of the potential is at τ i = 0, where it takes the value (see (2.10)):

V∗ = −3g2 = −3/L2 . (2.52)
10This extremum is a maximum, and the mass eigenvalues are m2 = −2/L2, as expected for the scalars

of vector multiplets.
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This determines the radius of AdS as a function of the couplings, and we require g2 > 0,
as appropriate for AdS.

We now have all the ingredients needed to search for non-trivial solutions of the BPS
equations. We consider the 2 × 2 minors of (2.21) as well as the equations of motion
obtained by extremizing (2.15). The first step is to set up a series expansion around r = 0,
and solve for the first few orders. We require regularity at the origin; the scalars τ i are
finite at r = 0 while eA(r) ∼ r in the CF coordinates that we use. In this model the
series expansion allows us to guess the full solutions. The non-trivial solution to the BPS
equations (2.21) and (2.22) is

τα = cα(1− r2) , τ̃α = 0 , e2A = 4r2

(1− r2)2 , (2.53)

with cα arbitrary constants, and the Killing spinors areε
ε̃

 = 1√
1− r2

 r

−i

 ζ . (2.54)

If we were to consider the Killing spinors proportional to ξ (see (2.20)), then we would find
a solution with the τα and τ̃α swapped.

The metric tensor of this solution is undeformed Euclidean AdS. There is no back-
reaction on the metric, despite the presence of non-constant scalar fields. This might seem
surprising at first, but it is allowed in Euclidean signature because the fields τα and τ̃α are
independent. The scalar stress tensor contains only products such as τατ̃β or ∂µτα∂ν τ̃β .
Since the τ̃ fields vanish, there is no back-reaction on the metric. This behavior would not
be possible in Lorentzian signature where τ̃α and τα are related by complex conjugation.

We now compute the free energy of the boundary theory. For this we pass to the
FG gauge, via the coordinate transformation is r → tanh r/2, and evaluate (2.36). The
transformed metric is

ds2 = L2
(
dr2 + e2A(r) ds2

S3

)
. (2.55)

and the BPS solutions are

τα = cα sech2 r

2 , τ̃α = 0 , e2A = sinh2 r . (2.56)

We get

Sreg = πL2

2GN
. (2.57)

The next step is the Legendre transform. To prepare for this we record the asymptotic
form of the scalars and identify aα and bα:

τα = 4cαe−r − 8cαe−2r + . . . ≡ aαe−r + bαe−2r . (2.58)

Since the τ̃α vanish, the general form in (2.38) reduces to

FS3 = Sreg −
1
2
∑
α

aα
∂Sreg
∂ãα

. (2.59)
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We then use the “conjugate” of (2.39),

∂Sreg
∂ãα

= 2π2L3 lim
r→∞

e−re3A
(
L
∂Lbulk
∂(∂r τ̃α) + ∂LSUSY

∂τ̃α

)
= πL4

32GN

(
−g2

0 b
α + gα

∑
γ

gγb
γ

)
.

(2.60)
We insert this information in (2.59) and, using g2 = L−2 as well, we write the free energy
of this model as

FS3 = πL2

2GN

[
1− 1

g2

(
g2

0 ~c · ~c− (~g · ~c)2
)]

. (2.61)

We observe that the quadratic expression above involves the boundary Kähler metric,
which is real,

K∗
αβ̃

= 1
g2

(
g2

0δαβ̃ − gαgβ
)

= eaαδabe
b
β , (2.62)

whose frame field form from (1.1) is given in the final equality. Using this, we can re-
cast (2.61) as

FS3 = πL2

2GN
[1− ~c · K∗ · ~c] . (2.63)

Next, we combine (2.43) and (2.58) to express cα in terms of the real mass parameters:

cα = i

2e
α
am

a . (2.64)

Using eαaebα = δba, the free energy becomes

FS3 = πL2

2GN

[
1 + 1

4
~m · ~m

]
. (2.65)

No trace of the frame field and thus no trace of the gI couplings remains in the final formula,
in agreement with the discussion in section 2.3.5.

Comparison with the conjecture. We now reproduce the result (2.65) from the con-
jecture (1.2). The only ingredients needed are

XI
∗ = 1√

g2 (g0,−gi) , (2.66)

(∇αXI)∗ = 1√
g2 (−gα, g0δ

i
α) . (2.67)

Using XI
∗ηIJX

J
∗ = −1, XI

∗ηIJ(∇αXJ)∗ = 0 and (∇αXI)∗ηIJ(∇βXI)∗ = −K∗αβ , we evalu-
ate the prepotential as instructed in (1.2), obtaining

FS3 = 2πiL2

GN
F(Y I) = − πL

2

2GN
ηIJY

IY J = πL2

2GN

[
1 + 1

4
~m · ~m

]
. (2.68)

This agrees with (2.65) and thus verifies the conjecture.
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2.5 F = −2i
√
X0X1X2X3

We now discuss the holographic free energy for the STU model which includes three vector
multiplets and is described by the prepotential

F = −2i
√
X0X1X2X3 . (2.69)

The S3 free energy for the specific choice of equal couplings gI was first calculated in [18]
without use of the prepotential.11 We review that calculation briefly, with emphasis on the
role of the prepotential and our conjectured relation with the free energy, and afterwards
we generalize this computation to the case of non-equal couplings.

2.5.1 All couplings equal

Following [27], we parametrize the ZI as

ZI = 1
2
√

2


(1 + τ1)(1 + τ2)(1 + τ3)
(1 + τ1)(1− τ2)(1− τ3)
(1− τ1)(1 + τ2)(1− τ3)
(1− τ1)(1− τ2)(1 + τ3)

 . (2.70)

The formula (2.3) gives the Kahler potential.

eK =
3∏

α=1

1
1− |τα|2 . (2.71)

For the specific choice of equal couplings, the superpotential (2.7) is

W =
√

2g
(
1 + τ1τ2τ3

)
, (2.72)

which agrees with [18]. The scalar potential (2.5) has a supersymmetric critical point at
τα = τ̄α = 0, with AdS scale L = 1/

√
2g. These are all the ingredients needed to find the

solutions of the BPS equations discussed in section 5 of [18]. In the conformally flat gauge,
the solutions are

τα = cα
1− r2

1 + c1c2c3r2 , τ̃α = −c
1c2c3

cα
1− r2

1 + c1c2c3r2 ,

e2A = 4r2(1 + c1c2c3)(1 + c1c2c3r4)
(1− r2)2(1 + c1c2c3r2)2 .

(2.73)

The final result of [18] is the sphere free energy, which is the Legendre transform renor-
malized on-shell action:

FS3 = πL2

2GN
(1− (c1)2)(1− (c2)2)(1− (c3)2)

(1 + c1c2c3)2 . (2.74)

11When the couplings gI are equal, this model can be obtained as a consistent truncation of 4d SO(8)
gauged supergravity. Ref. [18] used it to compute the holographic dual of the mass deformation of the S3

free energy for ABJM theory [16].
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In [18], this was shown to agree with the free energy in the dual SCFT, obtained by the
method of supersymmetric localization in [17].

Now we can identify the boundary real mass parameter in terms of the bulk quantities
cα. We make a coordinate transformation to go to the FG gauge. Its near boundary form is

r → 1− 2e−r + 2e−2r +O(e−3r) . (2.75)

In this gauge, the scalar fields close to the boundary behave as

τα ≡ aαe−r + . . . = 4cα

1 + c1c2c3 e
−r + . . .

τ̃α ≡ ãαe−r + . . . = − 4c1c2c3

cα(1 + c1c2c3)e
−r + . . .

(2.76)

A simplification occurs in our model, since the Kähler metric is the identity at the boundary,
so we can choose our frame fields to be eαa = δαa . This means that

mα = cα − c̃α

2i = 2
i

cα + c1c2c3

cα

1 + c1c2c3 . (2.77)

Now that we have all the ingredients to relate cα and mα, we find that

FS3 = πL2

2GN

√[
1+ i

2 (m1+m2+m3)
][

1+ i

2 (m1−m2−m3)
][

1+ i

2 (−m1+m2−m3)
][

1+ i

2 (−m1−m2+m3)
]
.

(2.78)
As discussed in section 1.2, the free energy of ABJM theory with trial R-charges was

computed in [17], and found to be FS3 ∼
√

∆1∆2∆3∆4, where ∆j are the R-charges of the
scalar fields transforming as bifundamentals of the U(N) × U(N) gauge group. The four
terms under the square root in (2.78) are proportional to these R-charges when we choose
pure imaginary mass parameters.12

Comparison with the conjecture. In this model the algebra needed to investigate
the conjecture is quite simple, yet instructive, so we will outline the process. Given (2.70)
and (2.71), we have the boundary values

XI
∗ = 1

2
√

2
(1, 1, 1, 1)T , (2.79)

and

(∇αXI)∗ = 1
2
√

2


1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


αI

. (2.80)

Then, remembering that the boundary Kähler metric is flat, and therefore eαa = δαa , we
build the objects (1.2)

Y I = 1
4i
√

2


2i−m1 −m2 −m3

2i−m1 + m2 + m3

2i+ m1 −m2 + m3

2i+ m1 + m2 −m3

 . (2.81)

When plugging this into F , as instructed by (1.2), we obtain exactly (2.78).
12See also [28–30] for a discussion of interesting phenomena when the real mass parameters are taken to

be large.
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2.5.2 Unequal couplings in the STU model

Let us now consider the case of unequal couplings gI . The equations become more com-
plicated. We will work out one case explicitly where g1 = g2 = g3 = g, but g0 = n2g with
n2 > 0. Solutions for general gI are presented in appendix C.

We parametrize the ZI as

ZI = 1
2
√

2



(
1 + y1) (1 + y2) (1 + y3)(
1 + y1) (1− y2) (1− y3)(
1− y1) (1 + y2) (1− y3)(
1− y1) (1− y2) (1 + y3)

 , (2.82)

with yα ≡ 1−n
1+n + τα. The parametrization is slightly different from the earlier one since we

prefer to work with fields that vanish on the boundary of AdS.
Following the usual procedure, we compute the Kähler potential

e−K =
3∏

α=1

(
1− |yα|2

)
, (2.83)

and the superpotential

W = g

2
√

2

[
(n2 + 3)

(
1 + y1y2y3

)
+ (n2 − 1)(y1 + y2 + y3 + y1y2 + y2y3 + y1y3)

]
.

(2.84)
Computing the scalar potential, we find an extremum at τα = τ̄α = 0, and we identify the
AdS radius as L = (

√
2ng)−1.

We insert W in the BPS equations (2.21), and look for zeros of the minors. In the
conformally flat gauge we find the BPS solutions

τα = cα
1− r2

1 + vαr2 , τ̃α = c̃α
1− r2

1 + ṽαr2 ,

e2A = 4r2(1 + w)(1 + wr4)
(1− r2)2(1 + wr2)2 ,

(2.85)

with
vα = w + (n2 − 1)

4n (w + 1)cα , ṽα = w + (n2 − 1)
4n (w + 1)c̃α

c̃α = −c
1c2c3

cα
2(n+ 1)2

8n+ 2(n2 − 1)
∑
β 6=α c

β + (n+ 1)2(n− 1) c1c2c3

cα

w = c1c2c3∏
α

(
4n

(1+n)2 + n−1
n+1c

α
) .

(2.86)

One can check that, for n = 1, these formulas reduce to those in (2.73).
We use (2.32) in the conformally flat gauge, plug in the form of A from (2.85), integrate

and take the rc → 1 limit. The result is

Sreg = 4π2L2

8πGN
1− w
1 + w

. (2.87)
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The next step is the Legendre transform. As before, we use the FG gauge, and the
asymptotic coordinate transformation (2.75) is applicable again. In this gauge, we use
equation (2.39)13

∂Sreg
∂aα

= L2π

32GN
(1 + n)4

64n3

[
−4nb̃α + (n2 − 1)(ãα)2 + (1 + n)2a

1a2a3

aα

]
, (2.88)

as well as the variation with respect to ãα. The final result for the free energy is

FS3 = πL2

2GN
16n

∏
α

[
4n+ 2(n2 − 1)cα − (1 + n)2(cα)2]

32n2 + 8n(n2 − 1)
∑
α c

α + 2(n2 − 1)2∑
α
c1c2c3

cα + (1 + n)3(3 + n2)c1c2c3
.

(2.89)
For n = 1, we reproduce the result (2.74).

We can now use the explicit expressions (2.85) and (2.86) in order to relate the bulk
quantities cα to the boundary real mass parameter ma. Since the boundary Kähler metric
is proportional to the identity, we can choose the frame fields

eaα = (1 + n)2

4n δaα . (2.90)

We go to the FG gauge, r → 1 − 2e−r + 2e−2r +O(e−3r), and we extract the asymptotic
behaviors of τα and τ̃α from (2.85). As before, the boundary real mass parameters are
given by

ma = eaα
aα − ãα

2i . (2.91)

At the end of the day, we obtain again (2.78). This quantity is independent of the couplings
gI , as expected.

Comparison with the conjecture. As done in the previous section, we now reproduce
this result using our conjecture (1.2). Using (2.82) and (2.83), we find

XI
∗ =

√
n

2
√

2

( 1
n2 , 1, 1, 1

)T
, (2.92)

and

(∇αXI)∗ = (1 + n)2

8
√

2n


1
n2 1 −1 −1
1
n2 −1 1 −1
1
n2 −1 −1 1


αI

. (2.93)

Then, using (2.90), we build

Y I =
√
n

4i
√

2


1
n2
(
2i−m1 −m2 −m3)

2i−m1 + m2 + m3

2i+ m1 −m2 + m3

2i+ m1 + m2 −m3

 . (2.94)

When plugging this into the prepotential F(Y ), the n dependence drops out and we
recover (2.78), showing again agreement between our conjecture and the direct computa-
tion.

13For n = 1 this result agrees with (6.12) of [18], after correcting the overall minus sign missing there.
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3 Adding hypermultiplets

We now consider two examples of theories with both vector multiplets and hypermultiplets,
where we deform the boundary SCFTs both by real mass parameters, as in the previous
section, as well as by a scalar operator dual to one of the hypermultiplet scalars. The bulk
BPS equations are more complicated, and analytic solutions seem beyond reach. So we
resort to numerics, but we are still able to verify the conjecture analytically. Both examples
contain one hypermultiplet, nH = 1, frequently called the universal hypermultiplet, based
on the quaternionic spaceMV = SU(2, 1)/SU(2)×U(1) [31]. Its structure is reviewed in ap-
pendix D. The most important feature is that the moment maps are no longer constant, but
are functions of the hyperscalars which are related to Killing vectors of the hypermanifold.

The first example we treat is the special case of section 2.4 with nV = 1 and essentially
generic couplings. We will discuss its BPS equations with the hyper added in detail. The
second example is the special case of the STU model with the specific choice of couplings
of [32]. We do not repeat the numerical analysis of that paper, but we apply the results to
our conjecture. In both models we find perfect agreement between the direct computation
of the free energy and our conjecture.

We briefly mention the extra ingredients needed to specify the bulk theory with nH
hypermutiplets; more details can be found in Chapter 20 of [23]. There are 4nH real14

hyperscalar fields qu and metric tensor huv. We must specify the commuting Killing vectors
kuI which correspond to the isometries ofMH which are gauged by the Abelian vector fields
AIµ of the theory. The moment maps ~PI are related to the Killing vectors. These ingredients
determine the entire bosonic action of theory. We report here the form the scalar potential:

V =
(
−1

2 (=N )−1|IJ − 4XIX̄J
)
~PI · ~PJ + 2X̄IXJkuI k

v
Jhuv . (3.1)

The structure indicates how basic quantities from the vector and hypermultiplets combine
when they interact.

The AdS/CFT dual of a bulk hypermultiplet is an N = 2, d = 3 chiral multiplet plus
its conjugate. The chiral multiplet contains the following operators: the superconformal
primary, which is a scalar operator of dimension ∆ and R-charge ∆; a spinor operator of
dimension ∆ + 1/2 and R-charge ∆− 1; another scalar operator of scale dimension ∆ + 1
and R-charge ∆ − 2. The conjugate operators have the same dimensions and opposite
R-charges. For more information see section 4.2 of [8].

One can consider a supersymmetry-preserving deformation of the SCFT by adding to
the Lagrangian a linear combination of the operator of dimension ∆ + 1 and its conjugate,
provided that ∆ < 2. On S3, such a deformation preserves the entire supersymmetry
algebra osp(2|4). In examples ofN = 2 gauge theories with chiral multiplet charged matter,
such a deformation can arise, for instance, as a relevant superpotential deformation. In
such a case, one adds to the superpotential the superconformal primary of dimension ∆,
and this modification of the superpotential induces a deformation of the Lagrangian by the
scalar superconformal descendant of dimension ∆ + 1.

14For the universal hypermultiplet, the four real qu can be combined into two complex scalars z1, z2 and
the metric huv becomes a Kahler metric of dimension two.
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3.1 The conjecture in the case of hypermultiplets

Given the new ingredients in the nH 6= 0 theory, we need to refine our conjecture. The
objects we need to build are still the Y I defined in the same way as (1.2). However, per-
turbing the boundary theory by the scalar superconformal descendants dual to the various
hypermultiplet scalars, as discussed above, breaks some of the flavor U(1) symmetries, and
we end up with fewer independent real mass parameters. We conjecture that for every
hypermultiplet in the bulk theory for which we turn on such a source for the corresponding
superconformal descendant, we have a further constraint

QIY
I = 0 . (3.2)

Here, the QI are the charges under the gauge fields AIµ of the hypermultiplet scalars dual
to the superconformal primary operators.

In principle, we expect to find a supersymmetric solution if nH ≤ nV . In the case
nH = nV our conjecture takes a particularly simple form. Remember that, in the case
without hypermultiplets, we had the objects Y I , defined in (1.2); it is easy to show that
they satisfy the property gIY

I = 1/L, where the gI are the FI constants. This can be
seen by the explicit form of the scalar potential (2.5), and by the critical point conditions
(∇αW )∗ = gI(∇αZI)∗ = 0 and V∗ = −3/L2, together with the fact that we are working in
a convention where XI

∗ = X̃I
∗ .

The same property holds in the case with hypermultiplets, with the only caveat that
since here the moment maps are not constants, but nontrivial functions of the hyperscalars,
we need to say what the gI correspond to exactly. We define the gI through the boundary
limit of the moment maps, or equivalently the values attained for the AdS4 vacuum. In
particular, at the boundary, we have ~P∗I = gI~e, where ~e is some unit vector. With this
definition, we again have gIXI

∗ = 1/L and gI(∇αXI)∗ = 0,15 meaning that

gIY
I = 1/L . (3.3)

Therefore, we have nV +1 variables Y I satisfying nH +1 constraints. In the case nH = nV ,
when the charges QI are non degenerate, the Y I are completely fixed by these constraints.
We will see this in the example of section 3.2.

3.2 F = i
4ηIJX

IXJ

We first consider the case nV = 1 of the theory with prepotential F = i
4X

IηIJX
J , as

described in section 2.4, but now coupled to the universal hypermultiplet [31]. For the
hypermultiplet we consider the gauging with Killing vectors

kI = (gIζ + qIξ) , (3.4)
15This can be seen by imposing the conditions for a critical point. See for example [23]; the critical point

condition corresponds to vanishing of the Goldstino, which implies the vanishing of the quantities W ij
α and

N i
A, defined in (21.40) there. The condition W ij

α = 0 implies, in our notation, gI(∇αXI)∗ = 0. Then,
from equation (21.46), with the definition (21.39), we obtain the relation gIXI

∗ = 1/L.
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where ζ and ξ are defined in (D.14); they are commuting Killing vectors as needed in our
Abelian theory.

In complex coordinates, the gauge invariant scalar kinetic term in Lorentzian signature
is

Lscalar kin = − |∂µτ |2

(1− |τ |2)2 −

 |Dµz1|2 + |Dµz2|2

1− |z1|2 − |z2|2
+ |z

∗
1Dµz1 + z∗2Dµz2|2(
1− |z1|2 − |z2|2

)2

 , (3.5)

where the covariant derivatives are defined as

Dµz1 = ∂µz1 −
i

2A
0
µ(g0 + q0)z1 −

i

2A
1
µ(g1 + q1)z1 ,

Dµz2 = ∂µz2 −
i

2A
0
µ(−g0 + q0)z2 −

i

2A
1
µ(−g1 + q1)z2 .

(3.6)

Although the necessary ingredients to compute the detailed form of the potential (3.1)
are given in appendix D, this form is very complicated. One simplification, with no loss of
generality16 is to focus on the choice of Killing vectors (3.4) with g0 = 1/L, g1 = 0. The
potential has a stationary point at τ = τ̄ = zi = z̄i = 0, where it has value V = − 3

L2 . We
now set L = 1 in the rest of this section to simplify the notation (hence g0 = 1). Expanding
close to the stationary point, we find

V = −3− 2τ τ̄ + (q0 + 1)(q0 − 2)z1z̄1 + (q0 − 1)(q0 + 2)z2z̄2 + . . . . (3.7)

From this we can determine the correspondence between bulk fields and boundary opera-
tors: the real and imaginary parts of τ are dual to SCFT operators J and K of dimension
1 and 2, as in the case with no hypers; then z1 and z̄1 are dual to complex operators O1
and Ō1 of dimension ∆1 = q0 + 1; finally z2 and z̄2 are dual to complex operators O2 and
Ō2 of dimension ∆2 = q0 + 2.

The UV boundary theory has a U(1)UVR and a U(1)UVF symmetry, with A0
µ and A1

µ their
respective bulk gauge fields.17 Therefore, we see from (3.6), that the UV R-charge of O1
is q0 + 1 and that of O2 is q0 − 1. This means that O1 is a BPS superconformal primary,
since its dimension and its R-charge coincide, and O2 is its descendant.18 From (3.6), we
can read off the charges of the fields under the U(1)F symmetry in the UV. All the UV
data for the hyperscalars zi are collected in table 2.

The simplest strategy now is to construct a solution of the BPS equations in which only
one of the two scalars z1, z2 is turned on. As per the discussion above, we should deform the
boundary theory by the scalar superconformal descendant O2 (and its conjugate), which
corresponds to z2 (and its conjugate). Therefore we simply set z1 = 0 and call z2 = z from

16One can check that the potential obtained with the parametrization (2.47) and the Killing vectors (3.4)
is invariant if we rotate the qI and the gI by the same SO(1, 1) rotation: gI → RI

JgJ and qI → RI
JqJ ,

with R =

(
cosh θ sinh θ
sinh θ cosh θ

)
.

17The bulk field dual to the UV R-symmetry can be obtained by the boundary limit of XI and ImNIJ .
See (6.80) of [24] for details.

18Another possibility from (3.7) is to assign ∆1 = 2 − q0 and ∆2 = 1 − q0; this is consistent with O2

being the superconformal primary and O1 its descendant.
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operator dual field ∆ UV R-charge rUV UV flavor charge f
J <τ 1 0 0
K =τ 2 0 0
O1 z1 q0 + 1 q0 + 1 q1

O2 z2 q0 + 2 q0 − 1 q1

Table 2. UV scaling dimensions and charges.

here onwards. (See also [32] and [33] where the same choice was made.) This choice is
consistent since

∂z1V |z1=z̄1=0 = ∂z̄1V |z1=z̄1=0 = 0 . (3.8)

Deforming the boundary theory by O2 breaks both the UV R-symmetry and the flavor
symmetry, but preserves a linear combination of the two. This remaining U(1)flowR is the
subgroup of U(1)UVR ×U(1)UVF under which O2 is invariant. This means that the charges of
the fields under the U(1)flowR symmetry are related to those of the UV symmetries by (see
table 2)

r = rUV + tf, t = 1− q0
q1

, (3.9)

where the value of t was determined from table 2 and the requirement that O2 has vanishing
charge.

In the bulk theory, we expect that in the flow toward the IR, the gauge field ARµ remains
massless, while the gauge field for the broken flavor symmetry Amµ becomes massive. We
now show that these gauge fields are

ARµ = A0
µ + tA1

µ , Amµ = A0
µ(q0 − 1) +A1

µq1 = (q0 − 1)
(
A0
µ −

1
t
A1
µ

)
. (3.10)

First, we can rewrite the second line of (3.6) as

Dµz = ∂µz −
i

2
[
(q0 − 1)A0

µ + q1A
1
µ

]
z = ∂µz −

i

2A
m
µ z (3.11)

and see that z is uncharged under ARµ , which is consistent with the fact that the dual
operator O2 is neutral under (3.9). Second, the vector mass term along the flow is contained
in the scalar kinetic term. A short calculation shows this contains only Amµ :

DµzD
µz̃ ⊃ +1

4zz̃(Amµ Amµ) , (3.12)

since z(r) , z̃(r) 6= 0 in the RG flow. The field ARµ is absent and thus remains massless.
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3.2.1 The BPS equations and their simplification

Let us start by writing the fermion transformation rules of the theory:19

δψpµ =
(
∂µ + 1

4ω
ab
µ γab −

i

2Aµ
)
εp + Vµqpεq + 1

2γµS
pqεq ,

δψµp =
(
∂µ + 1

4ω
ab
µ γab + i

2Aµ
)
εp + Vµqpεq + 1

2γµSpqε
q ,

δχαp = /∂ταεp +Kαβ̄W̄β̄pqε
q ,

δχpᾱ = /∂τ̄ ᾱεp +KβᾱWβ
pqεq ,

δζA = i

2f
pA

u/∂q
uεp + N̄A

p ε
p ,

δζĀ = − i2f
qB

uεqpρBĀ/∂q̄
uεp +Np

Aεp .

(3.13)

The transformation rules contain the quantities

Aµ = i

2
(
∂µτ

α∂αK − ∂µτ̄α∂̄αK
)
,

Vµqp = (Vµqp)
∗ = −ωuqp∂µqu ,

Spq = (Spq)∗ = PI
pqXI ,

Wα
pq =

(
W̄ᾱpq

)∗
= −P pqI ∇αX

I ,

N̄A
i = (N i

A)∗ = −iεijdABf jBukuI X̄I ,

(3.14)

and we have also used (D.7). The moment maps P pqI are expressed as rank-two symmetric
tensors with SU(2) fundamental indices, equivalent to the 3-vector notation in (D.15) (see
appendix 20A of [23] for more information).

Grouping together all the equations without derivatives of the spinors εq, εq, and pass-
ing from Lorentzian to Euclidean signature, we have

(1 + LA′eA−B)δpq −iLeASpq

−iLeASpq (1− LA′eA−B)δqp
Kαβ̃W̃β̃pq −ie−B(τα)′δqp
ie−B(τ̃α)′δpq Kαβ̃W pq

α

ÑA
q

1
2f

qA
ue
−B(qu)′

1
2f

pB
uεpqρBĀe

−B(q̃u)′ N q
A


·

εq
εq

 = 0 (3.15)

As already stated, we are interested in BPS solutions with z2 = z and z̃2 = z̃ non-vanishing,
but z1 and z̃1 set to zero. Important simplifications occur. First, we get decoupled systems
of equations for (ε1, ε2) and for (ε2, ε1). Further, by taking, for example, the third line
of (3.15), solving for the εq, and plugging this solution back in the last two lines, we find that

z′

z̃′
= z

z̃
. (3.16)

19These are written in Lorentzian signature in which the spinors are chiral projections of Majorana
spinors.
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This means that z and z̃ are proportional. Therefore, we simplify our equations henceforth
by defining

X ≡ zz̃ . (3.17)

We look at the system of equations for (ε1, ε2). With z1 = z̃1 = 0, moment maps
vanish, except in the direction P 3

I . This allows us to introduce the “superpotential”

W = −P 3
I Z

I = zz̄ (1 + q0 + q1τ)− 2
2(1− zz̄) , (3.18)

which is quadratically related to the scalar potential

V = eK
(
−3WW̄ +Kτ τ̄∇τW ∇̄τ̄W̄ + 4hzz̄∂zW∂z̄W̄

)
, (3.19)

where hzz̄ is the inverse of the quaternionic metric.
We write the simplified BPS equations in the FG gauge, which is most convenient for

numerics: 

1 +A′eA eAeK/2W

−eAeK/2W̃ 1−A′eA
√

1−τ τ̃
2

2τ−X (τ(q0+1)+q1)
(1−X ) τ ′

τ̃ ′
√

1−τ τ̃
2

2τ̃−X (τ̃(q0+1)+q1)
(1−X )√

X 1−qI Z̃I√
1−τ τ̃

X ′
2
√
X

X ′
2
√
X

√
X 1−qIZI√

1−τ τ̃


·

ε1
ε2

 = 0. (3.20)

Here, W is defined in (3.18), and we have omitted overall constants and common factors
of (1−X ). The same system of equations holds for (ε1, ε2)→ (ε2, ε1).

Again, we require all 2 × 2 minors of (3.20) to vanish. We start with the equations
obtained from three of these minors and check later that other minors also vanish. The
determinant of the third and fifth line gives an equation for τ ′; the fourth and sixth line
give us an equation for τ̃ ′; finally, the last two lines give us an equation for X ′:

τ ′ = q1X + τ((1 + q0)X − 2)
4X (1−X )

1− τ τ̃
qI Z̃I − 1

X ′ ,

τ̃ ′ = q1X + τ̃((1 + q0)X − 2)
4X (1−X )

1− τ τ̃
qIZI − 1X

′ ,

(X ′)2 = 4(1− qIZI)(1− qI Z̃I)
(1− τ τ̃) X 2 .

(3.21)

An advantage of the FG gauge is that these equations do not involve the metric. With
some work, we can derive an algebraic equation for e2A. Let us take the determinant of the
first and sixth line, and the determinant of the second and fifth line of (3.20); this gives
two equations for X ′:

X ′ = 4(1−X )X (1− qIZI)
X (1 + qIZI)− 2 (A′ + e−A) ,

X ′ = 4(1−X )X (1− qI Z̃I)
X (1 + qI Z̃I)− 2

(A′ − e−A) .
(3.22)
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By summing these two equations with the appropriate coefficients, we can eliminate A′,
and obtain an equation for X ′ in terms of A only. Then we plug this into the third line
of (3.21) and obtain

e2A = 4
q2

1

(1− qIZI)(1− qI Z̃I)
(τ − τ̃)2 (1− τ τ̃) . (3.23)

The equations (3.21) are symmetric under exchange of τ and τ̃ (as is (3.23)). However,
there are other minors in (3.20) which are symmetric only under the combined swap τ ↔ τ̃

and eA ↔ −eA. We choose one solution of (3.20) for which all minors vanish. There
is another solution obtained by the combined swap. The Killing spinors of these two
branches are invariant under opposite choices of the SU(2) factor of the isometry group
SO(4) = SU(2)l × SU(2)r of the sphere. The computation of the free energy is the same
for both solutions.

3.2.2 Asymptotic analysis

The goal now is to solve eqs. (3.21), and a numerical approach appears necessary. The first
step is to work out the behavior of solutions in the UV and IR. We will then obtain nu-
merical solutions which interpolate between these limits. In order to simplify our analysis,
we will focus on a specific range for q0. Remember that q0 determines the dimension of the
CFT operators dual to z and z̃,

∂2V

∂z∂z̃
= (q0 + 2)(q0 − 1) + . . . , (3.24)

and recall the AdS4 mass formula

∆± = 3
2 ±

√
9
4 +m2 . (3.25)

It is convenient to parameterize ∆+ = 2 + q0 and ∆− = 1 − q0, which is compatible with
the bounds ∆+ > 3/2, ∆− < 3/2 in the range

− 1
2 < q0 <

1
2 (3.26)

within which we will work.20

UV analysis. For large r, we assume the following series representations for the fields:21

τ =
∑
j=1

fje
−jr +

∑
n=1,j=0

fn,je
−(2n∆−+j)r ,

τ̃ =
∑
j=1

f̃je
−jr +

∑
n=1,j=0

f̃n,je
−(2n∆−+j)r ,

X =
∑

n=1,j=0
xn,je

−(2n∆−+j)r .

(3.27)

20This also avoids the complication of mixing of the leading exponents among τ, τ̃ , and X that would
happen for q0 > 1/2. See (3.27).

21For some special values of q0, for which ∆− ∈ Z/2, then we can also have powers of r appearing in the
expansion. We will avoid such special values.
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The radial mode e−∆−r corresponds to a source for the operators O2 and Õ2. Notice
that, naively, one would expect powers of e−∆+r to appear as well. Indeed, the equations
of motion obtained from the bulk action allow both e−∆+r and e+∆+r behavior for the
hyperscalars z and z̃. However, we see from solving the BPS equations (3.21) that only
the e−∆+r behavior is allowed.

We can substitute these series in (3.21) and solve order by order for higher mode
coefficients in terms of f1, f̃1 and x1,0. However, we have the freedom to shift r; we use this
to reduce the number of UV parameters by one by requiring the convenient normalization

e2A = e2r

4 + . . . (3.28)

of the asymptotically AdS metric. Examining (3.23), the condition (3.28) gives us the
further constraint

f1 = f̃1 + 41− q0
q1

. (3.29)

The first subleading terms, after shifting r, are given by

f̃2 = 2f̃1 ,

f2 = −2
(
f̃1 + 41− q0

q1

)
,

x1,1 = −2
(
−2q0 + f̃1q1 + 2

)
x1,0 .

(3.30)

In practice, we compute a few orders further in order to extrapolate f̃1 and x1,0 from the
numerical solutions to good accuracy.

IR analysis. We now derive the asymptotic behavior in the IR, namely where the sphere
shrinks to zero size. Let us assume this happens at some r = r∗, where eA(r∗) = 0. We’ve
already used the freedom to shift r to control the UV behavior (see (3.28)), and therefore
we cannot shift away r∗. Defining ∆r = r − r∗, we can solve the BPS equations (3.21) for
small ∆r. The solutions contain only even powers of ∆r:

τ =
∑
j=0

tj∆r2j , τ̃ =
∑
j=0

t̃j∆r2j , X =
∑
j=0

yj∆r2j . (3.31)

Solving the BPS equations at leading order in ∆r gives the condition on the leading terms

t0 = 1− q0
q1

, y0 = 2t̃0
q1 + t̃0(1 + q0)

. (3.32)

One can then work out further subleading orders. We see that our solutions only depend
on one IR parameter, t̃0.

3.2.3 Numerics

We have seen that we can solve our BPS equations as a series expansion in the UV and in
the IR. However, we are interested in solutions which are regular all the way from the UV
to the IR, and in order to see if they exist, we need to solve these equations numerically.
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(a) q0 = 1/3, q1 = 4/5, t̃0 = 2/5. (b) q0 = 2/5, q1 = −1/2, t̃0 = −2/5.

Figure 1. Example of numerical solutions for different values of qI and t0. Orange: τ(r), blue:
τ̃(r), green: X (r).

Furthermore, we have seen that in the IR asymptotic analysis we have one free parameter,
while in the UV we have two. This means that, in the case of regular solutions, the two
UV parameters are not independent, and we will find numerically how they depend on the
IR parameter.

When doing the numerics, we first make a shift r → r+r∗; then, we would like, in prin-
ciple, to integrate the BPS equations from r = 0 to r =∞. However, in practice, we choose
a very small r1 and a very large r2 and numerically integrate the solutions from r1 and r2.
Then we use the asymptotic expansions to extrapolate from r1 to 0 and from r2 to ∞.

We notice that regular solutions all the way to infinity exist if t̃0 is in the range between
− q1

1+q0
and q1

1−q0
. We show examples of solutions in figure 1.

3.2.4 Computation of the free energy

Compared to the models in section 2, new counterterms may be needed to regulate the
on-shell bulk action because of the presence of hypermultiplets. These counterterms might
depend on the value of q0, since this determines the scaling of X in the UV (see (3.27)).
It turns out that, by explicit check, the choice (2.25) with the new superpotential (3.18)
makes the action finite. One can exclude additional finite counterterms due to X because
they do not occur at generic q0.

The computation of Sreg proceeds as in section 2.3.2. The extra kinetic term for the
hyperscalars and the different potential are absorbed via the EOM for A, leading again
to (2.28) (now in the FG gauge). The vanishing of the determinant of the first two lines
of (3.20) gives again (2.29). The net result is that Sreg takes the same form as before,
which we repeat here with L = 1:

Sreg = π

2GN

∫ ∞
0

dr eA(A′ − 1) . (3.33)

The integral converges, so it is well suited for numerical computation.
To very good numerical accuracy, and for several values of q0 and q1, we observe that

Sreg = π

2GN

(1− q0
2q1

f̃1 + 1
)
. (3.34)

This can be seen in figure 2.
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(a) q0 = 1/3, q1 = 4/5, t̃0 = 2/5. (b) q0 = 2/5, q1 = −1/2, t̃0 = −2/5.

Figure 2. Value Sreg in a few examples. The blue points are values of Sreg computed numerically
and the orange lines are the fit (3.34).

The expression (3.34) can be checked analytically as follows. First, let us point out
that the on-shell action Sreg is naturally a function of the leading coefficients in the near-
boundary asymptotic expansions (3.27), i.e. Sreg = Sreg(f1, f̃1, x1,0), because when de-
riving the second order equations of motion that follow from the action, we should hold
(f1, f̃1, x1,0) fixed. (See also the discussion in section 2.3.3.) The expression (3.34) equals
Sreg = Sreg(f1, f̃1, x1,0) evaluated on supersymmetric solutions where f1 is related to f̃1
via (3.29) and x1,0 is still arbitrary. However, if we do not use the supersymmetry assump-
tion, we can calculate the partial derivatives

∂Sreg(f1, f̃1, x1,0)
∂f1

= 2π2 lim
r→∞

e−re3A
(
∂Lbulk
∂τ ′

+ ∂LSUSY
∂τ

)
= − π

32GN
f̃2 ,

∂Sreg(f1, f̃1, x1,0)
∂f̃1

= 2π2 lim
r→∞

e−re3A
(
∂Lbulk
∂τ̃ ′

+ ∂LSUSY
∂τ̃

)
= − π

32GN
f2 ,

(3.35)

In order to consider the variation of Sreg(f1, f̃1, x1,0) with respect to x1,0, let us remem-
ber that we defined X = zz̃. If we assume, as the EOMs predict, an asymptotic behavior
z = h1e

−∆−r + h2e
−∆+r + . . ., and similarly for z̃, then we have x1,0 = h1h̃1 and we find

∂Sreg(f1, f̃1, x1,0)
∂x1,0

= 1
h̃1

∂Sreg(f1, f̃1, x1,0)
∂h1

+ 1
h1

∂Sreg(f1, f̃1, x1,0)
∂h̃1

. (3.36)

Then one can check that
∂Sreg(f1, f̃1, x1,0)

∂h1
∼ h̃2 , (3.37)

as well as its tilded version. Remember, however, that the BPS solutions behave asymp-
totically as (3.27), meaning that h2 = h̃2 = 0. Therefore we will have

∂Sreg(f1, f̃1, x1,0)
∂x1,0

∣∣∣∣∣
BPS

= 0 (3.38)

when evaluated on the BPS solution.
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Then, when evaluated on the supersymmetric solutions parametrized by f̃1 and x1,0,
we can use the chain rule:

∂Sreg(f̃1, x1,0)
∂f̃1

= ∂Sreg(f1, f̃1, x1,0)
∂f̃1

+ ∂Sreg(f1, f̃1, x1,0)
∂f1

∂f1(f̃1, x1,0)
∂f̃1

,

∂Sreg(f̃1, x1,0)
∂x1,0

= ∂Sreg(f1, f̃1, x1,0)
∂x1,0

+ ∂Sreg(f1, f̃1, x1,0)
∂f1

∂f1(f̃1, x1,0)
∂x1,0

.

(3.39)

Using (3.29) and (3.39) and then (3.30), we find
∂Sreg(f̃1, x1,0)

∂f̃1
= − π

32GN

(
f2 + f̃2

)
= π

4GN
1− q0
q1

,
∂Sreg(f̃1, x1,0)

∂x1,0
= 0 (3.40)

This, together with the fact that Sreg(0, 0) = π
2GN as evaluated in (2.57), gives indeed (3.34).

As explained previously, since the field τ + τ̃ is dual to a dimension one operator,
in order to compute the free energy for our boundary theory, we need to do a Legendre
transform of the on-shell action. The free energy is

FS3 = Sreg −
1
2
(
f1 + f̃1

)( ∂S
∂f1

+ ∂S

∂f̃1

)
= Sreg + π

64GN
(f1 + f̃1)(f2 + f̃2) =

= π

2GN

[
1−

(1− q0
q1

)2
]
.

(3.41)

We see that the dependence on f̃1 drops out, and the free energy is just a constant.
We now reinstate L in the final result

FS3 = πL2

2GN

[
1−

(1− Lq0
Lq1

)2
]
. (3.42)

3.2.5 Comparison to the proposal
Since here nV = nH = 1, we do not need to actually solve the bulk theory in order to
compute the sphere free energy: the constraints gIY I = 1/L = g0 and QIY

I = 0 fix
uniquely Y I = (Y 0, Y 1). The quantities QI are the UV charges of the field z under the
gauge potentials AIµ, and they can be read off from the covariant derivatives appearing in
the kinetic terms. Indeed, we have

Dµz ⊃ −iQIAIµz (3.43)

meaning that QI = 1
2(−g0 + q0, q1).22 Imposing the two constraints, we get

Y I =
(

1, Lq0 − 1
Lq1

)
. (3.44)

Therefore, according to our proposal, the free energy is

FS3 = πL2

2GN

[
1−

(1− Lq0
Lq1

)2
]
, (3.45)

which agrees with our direct computation (3.42).
In terms of boundary charges of the chiral operator, the free energy can be written as

FS3 = πL2

2GN

1−
(
rUV

f

)2
 . (3.46)

In can be checked that this is the value predicted by our conjecture for g1 6= 0 as well.
22We remind the reader that we choose g0 = 1/L and g1 = 0.
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3.3 STU model with hypermultiplets

The case of the STU model with the universal hypermultiplet was considered in [32], for a
specific choice of couplings. The authors find BPS solutions numerically and compute the
free energy analytically, thanks to some simplifications similar to those of our section 3.2.1.
We will show that their result fully agrees with our conjecture.

The choice of gauging in [32] corresponds to the Killing vectors (3.4) with the gI = 1,
for all I = 0, . . . , 3, and q0 = −3qi = 3, with i = 1, 2, 3 — see eq. (B.23) of [27];23 the
AdS scale has been fixed to L = 1√

2 , see equation (4.1). Notice that the conventions of
our paper and [32] are different: ταhere = −z̃αthere and τ̃αhere = −zαthere. We will thus translate
everything into our notation.

This theory is the bulk dual of ABJM theory perturbed by a superpotential deformation

∆W ∼ Tr(T (1)A1)2 , (3.47)

where A1 is the one of the four bifundamental scalars, and T (1) is a monopole operator
with appropriate gauge charges so as to make the superpotential deformation (3.47) gauge
invariant.

The authors of [32] found through their numerical analysis that the profiles of the
scalars τi change in a very simple way when the hyperscalar is included. They introduce
the parameter x0 = X (r∗), where X is again the product of the hyperscalars X = zz̃, such
that the hyperscalar decouples completely when x0 = 0. The boundary behavior of the τi
depends on x0, i.e.

τα = aα(x0)e−r + . . . , τ̃α = ãα(x0)e−r + . . . , (3.48)

but all quantities aα and ãα shift by the single function f(x0):

aα(x0) = aα(0) + f(x0) ãα(x0) = ãα(0) + f(x0) . (3.49)

The values aα(0), ãα(0) are those known from section 2.5. The fact that aα(x0)− ãα(x0) =
aα(0)− ãα(0) is independent of x0, i.e. the profile of the hyperscalars, is a major simplifi-
cation which ultimately allows the authors to find the free energy analytically.

Several quantities are the same as in section 2.5: we parametrize the ZI as in (2.70)
so that the Kähler potential is (2.71). The scalar potential can be computed, and there is
an extremum at τα = τ̃α = X = 0. This means that the objects needed to construct Y I ,
XI
∗ and (∇αXI)∗, are unchanged, see (2.79) and (2.80). Therefore we again find

Y I = 1
4i
√

2


2i−m1 −m2 −m3

2i−m1 + m2 + m3

2i+ m1 −m2 + m3

2i+ m1 + m2 −m3

 . (3.50)

23The scalar potential is invariant if we flip signs of both the gI and the qI , so we choose the gI to be
positive.
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operator R F1 F2 F3

A1 1/2 1/2 1/2 1/2
A2 1/2 1/2 −1/2 −1/2
B1 1/2 −1/2 1/2 −1/2
B2 1/2 −1/2 −1/2 1/2

Table 3. UV R and flavor charges of the chiral multiplet superprimaries.

We must now impose the constraint QIY I = 0. To do this, we first discuss the charges
QI of the field z. As before, we determine the charges from the covariant derivative, namely

Dµz ⊃ −iQIAIµz = i

2(gI − qI)AIµz = −i
(
A0
µ −A1

µ −A2
µ −A3

µ

)
z , (3.51)

so that we find
QI = (1,−1,−1,−1) . (3.52)

Then, the constraint QIY I = 0 gives

2i+ m1 + m2 + m3 = 0 . (3.53)

Remember that the real mass parameters are defined as

mα = aα(x0)− ãα(x0)
2i = aα(0)− ãα(0)

2i , (3.54)

where in the second equality we used the property (3.49). The relation between real mass
parameters and IR values of the fields cα = τα(0) then is the same as in the case with no
hypermultiplets, (2.77).

Again, the free energy can be written as (2.74)

FS3 = πL2

2GN
(1− (c1)2)(1− (c2)2)(1− (c3)2)

(1− c1c2c3)2 , (3.55)

where the extra constraint (3.53) translates to

c1 + c2 + c3 + c1c2 + c2c3 + c3c1

1 + c1c2c3 = 1 . (3.56)

This is the same constraint as (4.26) in [32], remembering that cherei = −c̃therei .
We can also consider more general perturbations of ABJM theory, of the form

∆W ∼ Tr(T (1)A1)p . (3.57)

(Only the cases p = 2, 3 correspond to relevant perturbations.) We can find the free energy
of the perturbed theories quite easily using the conjecture. The R and flavor charges of
the bifundamental chiral superprimaries can be found in table 3.
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R F1 F2 F3

A0 +A1 +A2 +A3 A0 +A1 −A2 −A3 A0 −A1 +A2 −A3 A0 −A1 −A2 +A3

Table 4. Bulk gauge field duals to the UV symmetries.

On the boundary, there are two operators, with charges

∆ R
O1

p
2

p
2

O2
p
2 + 1 p

2 − 2

(3.58)

and F charges F1 = F2 = F3 = p/2. As in previous cases, we turn on the operator O2.
Using table 4, the covariant derivative of its dual hyperscalar field z can be worked out. It
contains the terms

Dµz ⊃ −
i

2

(
p

2 − 2
)

(A0 +A1 +A2 +A3) z − ip

4 (3A0 −A1 −A2 −A3) z

= −i(p− 1)A0z + i(A1 +A2 +A3)z
(3.59)

From this, we read off the charges QI = (p− 1,−1,−1,−1). Then the free energy is given
by the usual (2.78), plus the constraint QIY I = 0, that is

2i−m1 −m2 −m3 = 8i
p
, (3.60)

which fixes Y 0 =
√

2
p .

4 Discussion

The main goal of this paper was to make more precise and provide additional evidence for
the conjecture first explored in [10, 11] that relates the mass-deformed S3 free energy in
holographic theories to the bulk prepotential, at the two derivative level in the bulk deriva-
tive expansion. In the case where the bulk theory can be consistently truncated to only
vector multiplet matter, this relation can be succinctly summarized in (1.2). In short, from
the real mass parameters ma of the boundary theory one constructs quantities Y I defined
in (1.2), and then the sphere free energy is proportional to the prepotential evaluated at Y I .
If the effective bulk theory contains charged hypermultiplets and one deforms the boundary
theory by the operator dual to one of the hypermultiplet scalars while preserving super-
symmetry, the only modification of our conjecture is that the possible real mass parameters
(or equivalently the Y I) obey one additional constraint for each such hypermultiplet.

We tested our conjecture in several examples with and without hypermultiplets by
explicitly constructing SO(4)-invariant solutions to the bulk BPS equations, evaluated
their regularized on-shell action, and performed a Legendre transform corresponding to
the fact that some of the bulk scalars obey alternate quantization. In the examples with
only vector multiplets, we were able to find analytical solutions to the BPS equations,
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but in the examples with both vector multiplets and hypermultiplets we had to resort
to numerical work. The main open question that we leave for future work is to prove
our conjecture (1.2) for any bulk supergravity theory coupled to vector multiplets and
hypermultiplets. We hope that the explicit examples worked out in this paper constitute
the basis for such a proof.

Besides proving our conjecture, a natural question to ask is how to generalize it. One
class of generalizations would be to consider higher-derivative interactions in the bulk.
Given the result of [8] stating that the mass-deformed S3 free energy is independent of bulk
D-terms, 1/4-BPS terms, and non-chiral F-terms, we expect that, in absence of real mass
terms for the hypermultiplets, the S3 free energy would still depend only on the prepoten-
tial of the bulk theory even when higher-derivative interactions are included. Nevertheless,
the relation between FS3 and the prepotential may not be as simple as equating the two
quantities. See also [34] for an exploration of four-derivative terms in 4d N = 2 theories
coupled to matter. Assuming that FS3 continues to be proportional to the bulk prepo-
tential, ref. [34] conjectured a specific form for the leading correction to the STU model
prepotential that arises in the bulk dual of ABJM theory.

Another interesting generalization of our conjecture that we hope to explore in the
future is to four-dimensional N = 2 SCFTs placed on a round S4, which are dual to
asymptotically AdS5 backgrounds. In this case too, the theory on S4 can be deformed
by a real mass parameter that is valued in the Cartan subalgebra of the flavor symmetry
algebra of the N = 2 SCFT. A well-known example is the 4d N = 4 super-Yang-Mills
theory, which at large N and large ’t Hooft coupling λ = g2

YMN is dual to weakly-coupled
type IIB string theory on AdS5 × S5, and which can be viewed as an N = 2 theory of
a vector multiplet and an adjoint hypermultiplet. Introducing a mass parameter for the
adjoint hypermultiplet yields the N = 2∗ theory. On S4, the free energy of the N = 2∗

theory can be calculated using supersymmetric localization [35] and it is a non-trivial
function of the mass m [36–41]. If it turns out that the S4 free energy of the N = 2∗

theory is also related to the prepotential of the effective 5d theory, then this relation is
bound to be much more complicated than in the examples studied in this paper because
even at leading order in the supergravity approximation, the S4 free energy is a non-trivial
function of the mass m [41].24 We hope to explore this topic in the future.
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A Mass spectra of abelian vector multiplet theories

The N = 2 theories discussed in section 2 involve only abelian vector multiplets whose
interactions are governed by the prepotential F(XI) and the Fayet-Iliopoulos constants gI .
The general formulas of section 21.3 of [23] simplify greatly for these theories, since there
are no hypermultiplets, and Killing vectors kαI vanish because all scalars are uncharged.

Some theories have holographic duals. In this case each abelian vector multi-
plet (Aµ, χ1, χ2, τ) is dual to a conserved current multiplet containing the operators
(J, ξ1, ξ2, j

a,K) with conformal dimensions ∆ = (1, 3/2, 3/2, 2, 2) and Daj
a = 0. The

bulk field masses that correspond to these values of ∆ are m2 = 0 for the vector and
spinors and m2 = −2/L2 for the scalar. In this appendix we derive these mass spectra
using only the properties of the bulk theory, independent of holography.

In the first step we use only N = 1 information to show that scalars have m2 = −2/L2

if two conditions are satisfied:

1. The boundary values of the scalars τα∗ correspond to a SUSY critical point (c.p.) where

∇αW (τ)|τ=τ∗ ≡ (∂α +Kα)W (τ)|τ=τ∗ = 0 . (A.1)

2. The fermion mass matrix, given in detail in (18.17) of [23], also vanishes at the critical
point

mab ≡ eK/2∇α∇βW |τ=τ∗ = 0 . (A.2)

We start with the standard N = 1 potential (2.5)

V = eK(−3WW̄ +Kγδ̄∇γW∇δ̄W̄ ) . (A.3)

We apply two derivatives and push them to the right, noting that ∂α(eK · · · ) = eK∇α(· · · ):

∂β̄∂αV = eK∇β̄∇α(−3WW̄ +Kcδ̄∇cW∇δ̄W̄ ) . (A.4)

Let’s consider the two terms separately. The first term is easy to take care of:

∂β̄∂αV1 = −3eK(∇αW∇β̄W̄ +Kαβ̄WW̄ )|τ=τ∗ = −3eKKαβ̄WW̄ . (A.5)

Notice that the Kähler metric appears. When working with the second term, we have
to push a little harder. The derivative ∇α acts covariantly with the metricity property
∇α(Kγδ̄ · · · ) = Kγδ̄(Da +Ka)(· · · ), where Da is the usual Riemannian covariant derivative
specialized to Kahler manifolds. We expand out ∇β̄∇α for clarity, and write

∂β̄∂αV2 = eK(∂β̄ +Kβ̄)Kγδ̄[((Dα +Kα)∇γW )∇δ̄W̄ +∇γWKαδ̄W̄ ] (A.6)

= eK
{
Kγδ̄[Kαβ̄∇γW∇δ̄W̄ + (∇α∇γW )(∇β̄∇δ̄W̄ )] +Rαβ̄

γδ̄∇γW∇δ̄W̄
+∇αW∇β̄W̄ +Kαβ̄WW̄

}
|τ=τ∗ = eKKαβ̄WW̄ .

The 3 terms in the second line come from the first term in (· · · ) in the line above, while the
second term in (· · · ) gives the 2 terms in the third line. The curvature tensor of the Kahler
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manifold comes from the commutator [Dα, Dβ̄ ]. All terms except the last one vanish when
the conditions at the SUSY c.p. are imposed. Finally, we combine the results for V1 and
V2 to obtain (at the c.p.)

∂β̄∂aV = −2eKKaβ̄WW̄ |τ=τ∗ = −2Kaβ̄/L
2 . (A.7)

By a similar calculation, we find

Dα∂βV |τ=τ∗ = eK
[
Kγδ̄(∇α∇β∇γW )∇δ̄W̄ − (∇α∇βW )W̄

]
|τ=τ∗ = 0 , (A.8)

showing that there are no exotic contributions to scalar masses.
The kinetic and mass Lagrangian for the scalar fields then reads, in Lorentzian signa-

ture,

L =
√
−gKαβ̄

[
−gµν∂µτα∂ντ β̄ + 2

L2 τ
ατ β̄

]
. (A.9)

Since Kαβ̄ , evaluated at the critical point, appears as an overall factor, the scalar mass is
indeed m2 = −2/L2.

We now bring in N = 2 information which shows that the fermion mass vanishes at a
SUSY critical point, so that (A.2) is actually a consequence of (A.1). The fermion mass
term in N = 2 supergravity is given in (21.38-.39) of [23] with Cαβγ defined in (20.236):

Lm = −1
2m

ij
αβ χ̄

α
i χ

β
j , mij

αβ = 1
2P

ij
I CαβγK

γδ̄∇δ̄X̄
I . (A.10)

Another N = 2 relation we need is (20.191) (which is proven above (5.75) of [24]):

∇β∇αXI = CαβγKγδ̄∇δ̄X̄
I . (A.11)

We must adapt this information to the N = 1 truncation we have been using. It is a
truncation because one of the two sets of gauginos χi is dropped. Note that the moment
maps P ijI are related to the FI constants by P ijI = gIσ

ij
1 where σij1 is the standard Pauli

matrix, with eigenvalues ±1. We will keep the fermion with positive eigenvalue in our
truncation. Thus (A.10) is replaced by

Lm = −1
2mαβ χ̄

αχβ , mαβ = CαβγKγδ̄∇δ̄(gIX̄
I) = eK/2CαβγKγδ̄∇δ̄W̄ . (A.12)

In the last equality we used gIX
I = eK/2W , see (2.7). We contract (A.11) with gI , and

rewrite the result as
eK/2∇β∇αW = eK/2CαβγKγδ̄∇δ̄W̄ . (A.13)

This equation shows that the N = 1 and N = 2 fermion mass matrices are the same.
Then (A.12) shows that this mass matrix vanishes at a SUSY critical point. Finally we
point out that gauge fields are massless in a theory of abelian vector multiplets without
hypermultiplets. The τα fields are gauge neutral, so no opportunity to generate a vector
mass term arises.
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B Asymptotic analysis

In this appendix, we consider an N = 2 supergravity theory coupled to nV vector multiplets
and determine which scalar fields obey which boundary conditions. Doing so requires that
we examine the fluctuations of the fields around an AdS background where the vector fields
and spinors all vanish, and the scalar fields are constant XI = XI

∗ , τα = τα∗ , etc. In such
a background, the SUSY variations of the bosonic fields vanish automatically. The SUSY
variations of the fermionic fields vanish provided that

δψiµ = Dµε
i + 1

2γµτ3ijgIX̄
I
∗ = 0 ,

δχαi = −gIτ3ijg
αβ̄
∗

(
∇̄β̄X̄

I
)
∗
εj = 0 ,

(B.1)

where, as in the main text, the subscript ∗ means that the quantities are evaluated at the
constant values of the fields corresponding to the AdS solution. In addition to (B.1), we
also have the complex conjugate equations.

As mentioned in the main text, we take gIX̄I
∗ = gIX

I
∗ = 1/L so that the first equation

in (B.1) reduces to the Killing spinor equation

Dµε
i = − 1

2Lγµτ
ijεj , Dµεi = − 1

2Lγµτijε
j . (B.2)

From the second equation in (B.1) and its complex conjugate, we have the SUSY conditions

gI
(
∇αXI

)
∗

= gI
(
∇̄ᾱX̄I

)
∗

= 0 . (B.3)

Even though we are interested in solutions in Euclidean signature, the question of
whether or not scalar fields obey alternate quantization can be settled using Poincaré
coordinates. we thus take the frame to be ea = er/Ldxa and e3 = dr, for a = 0, 1, 2. We
have ωa3 = ea/L and ωab = 0. The solution of the KS equation (B.2) corresponding to the
Poincaré supercharges25 is

εi = er/2Lηi+ , εi = er/2Lηi+ , (B.4)

where ηi and ηi are constant spinors obeying the radiality conditions

ηi+ = −γ3τ
ijηj+ , ηi+ = −γ3τijη

j
+ . (B.5)

Let us now study how SUSY acts on the coefficients of the boundary expansion of the
linearized fluctuations of the fields around the AdS solution. (For simplicity, L = 1.) We
have

τα = τα∗ + τα1 e
−r + τα2 e

−2r + · · · , XI = XI
∗ +XI

1e
−r +XI

2e
−2r + · · · ,

χαi = χαi3/2e
−3r/2 + χαi5/2e

−3r/2 + · · · ,

Aa = Aa1e
−r +Aa2e

−2r + · · · ,

ψia = ψia1/2e
−r/2 + ψia3/2e

−3r/2 + · · · ,

(B.6)

25We do not need the Killing spinors for superconformal charges, since those symmetries are broken in a
mass-deformed theory.
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where the gauge field is written with frame indices. For the fermions, we can split the
coefficients based on their radiality as in

χαi3/2± = ∓γ3τijχ
jα
3/2± , etc. (B.7)

SUSY acts on this asymptotic data via the transformation rules

δτα = 1
2 ε̄

iχαi , (B.8)

δAµ
I = 1

2ε
ij ε̄iγµχ

α
j (∇αXI)∗ + 1

2εij ε̄
iγµχ

jα(∇αX̄I)∗ + εij ε̄iψµj(XI)∗ + εij ε̄
iψjµ(X̄I)∗ ,

as well as their complex conjugates. The εi, εi are the Killing spinors of (B.4).
Before proceeding, we note that we are interested in the transformation of the nV

vector multiplet photons, which couple to the χα, rather than the gravi-photon, which
couples only to the gravitino. Near the boundary these properties of the couplings can be
seen by contracting the δAµI transformation rule with gI and using gIX̄I

∗ = gIX
I
∗ = 1/L

together with (B.3):
δgIAµ

I = [εij ε̄iψµj + εij ε̄
iψjµ]/L . (B.9)

Likewise, one can contract δAµI with any of the nV independent sets of coefficients hI
which satisfy hI(XI)∗ = 0. These vector multiplet photons hIAµI couple only to their
fermionic partners. Thus we drop the gravitino in the following with the understanding
that we are considering a contraction with a set hI .

Returning to (B.8), we use the first equation there, expanded at large r as in (B.6), to
obtain

δτα1 = 1
2 η̄

i
+χ

α
i3/2 , δτα2 = 1

2 η̄
i
+χ

α
i5/2 ,

δτ̄α1 = 1
2 η̄i+χ

iα
3/2 , δτα2 = 1

2 η̄i+χ
iα
5/2 , etc.

(B.10)

We have η̄i+χαin+ = −η̄i+χiαn+ and η̄i+χ
α
in− = η̄i+χ

iα
n−. Thus, if we write τα = Aα + iBα,

then
δAα1 = 1

2 η̄
i
+χ

α
i3/2− , δAα2 = 1

2 η̄
i
+χ

α
i5/2− ,

δBα
1 = − i2 η̄

i
+χ

α
i3/2+ , δBα

2 = − i2 η̄
i
+χ

α
i5/2+ , etc.,

(B.11)

where Aαn and Bα
n are the coefficients of e−nr in the boundary expansion of Aα and Bα.

From the second equation in (B.8), we get

δAa1
I = 1

2ε
ij η̄i+γaχ

α
j3/2(∇αXI)∗ + 1

2εij η̄
i
+γaχ

jα
3/2(∇αX̄I)∗ ,

δAa2
I = 1

2ε
ij η̄i+γaχ

α
j5/2(∇αXI)∗ + 1

2εij η̄
i
+γaχ

jα
5/2(∇αX̄I)∗ .

(B.12)

Note that εij η̄i+γaχαj3/2± = ±εij η̄i+γaχ
jα
3/2±, so

δAa1
I = 1

2ε
ij η̄i+γaχ

α
j3/2+(∇αXI +∇αX̄I)∗ + 1

2ε
ij η̄i+γaχ

α
j3/2−(∇αXI −∇αX̄I)∗ ,

δAa2
I = 1

2ε
ij η̄i+γaχ

α
j5/2+(∇αXI +∇αX̄I)∗ + 1

2ε
ij η̄i+γaχ

α
j5/2−(∇αXI −∇αX̄I)∗ .

(B.13)
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In the boundary expansion of the gauge field, we know that the leading coefficient AIa1
should be interpreted as the source for the dual conserved current on the boundary:

AIa,source = AIa1 . (B.14)

From the first line of (B.13) and the fact that sources transform into sources, we have

AIa,source = εij η̄i+γaχ
I
j,source , (B.15)

where we identify

χIj,source ≡ χαj3/2+(∇αXI +∇αX̄I)∗ + χαj3/2−(∇αXI −∇αX̄I)∗ . (B.16)

The quantities χIj,source then represent the sources for the dimension 3/2 fermionic operators
dual to the massless bulk fermions. Note that gIχIj,source = 0, so there are only nV linearly
independent χIj,source.

We have mentioned that in the boundary theory each conserved current multiplet
contains a dimension 2 scalar (dual to a regularly quantized bulk field) and a dimension 1
scalar operator (dual to an alternately quantized field). The source BIsource for the dimension
2 scalar operator must be a linear combination of the leading coefficients AI1 and BI

1 and
must obey the property that SUSY transformations take it to the fermion sources in (B.16)

δBIsource = η̄i+χ
I
i,source . (B.17)

Examining (B.11), we identify

δBIsource = iBα
1 (∇αXI +∇αX̄I)∗ +Aα1 (∇αXI −∇αX̄I)∗ = =(τα1 (∇αXI)∗) . (B.18)

Thus, it is the field BI = =((τα − τα∗ )(∇αXI)∗) that should have regular boundary condi-
tions, while AI = <((τα− τα∗ )(∇αXI)∗) should obey alternate quantization. The fields AI

and BI are not independent because the condition (B.3) implies gIAI = gIBI = 0. There
are of course only nV linearly-independent fields of each kind.

C The STU model with general couplings

The solutions to the BPS equations become a bit more complicated in the STU model
when we choose all couplings to be different; however, we’re still able to find a solution
analytically. We change slightly parametrization for the ZI , because we want the scalar
fields to vanish at the boundary

ZI = 1
2
√

2



(
1 + y1) (1 + y2) (1 + y3)(
1 + y1) (1− y2) (1− y3)(
1− y1) (1 + y2) (1− y3)(
1− y1) (1− y2) (1 + y3)

 (C.1)

with
yα = Ωα + τα . (C.2)
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For convenience, we use the notation

Ωa =
1
L2 − (ξ+

a )2+(ξ−a )2

2
ξ+
a ξ
−
a

,

ξ±a = √g0ga ±
√
g1g2g3√
ga

,

L2 = 1
2√g0g1g2g3

.

(C.3)

The solution to the BPS equations for the scalar fields and the metric is

τα = cα
1− r2

1 + vαr2

τ̃α = c̃α
1− r2

1 + ṽαr2

e2A = 4r2 (1 + w)(1 + wr4)
(1− r2)2(1 + wr2)2 ,

(C.4)

where we defined the constants

vα = w + cα
L2

2 ξ+
α ξ
−
α (1 + w)

ṽα = w + c̃α
L2

2 ξ+
α ξ
−
α (1 + w)

c̃α = c1c2c3

cα
(ξ+

1 ξ
+
2 ξ

+
3 )2

(ξ+
α )4

− 2
L2 −

∑
j 6=α

cjξ+
j ξ
−
j −

1
2
c1c2c3

cα
ξ+

1 ξ
+
2 ξ

+
3

(ξ+
α )2

g0 + gα −
∑
j 6=α

gj

−1

w = L6

8

∏
j

ξ+
j ξ
−
j

 ∑I

(
gI + 1

2L2
1
gI

)
∑
I

(
gI − 1

2L2
1
gI

) c1c2c3∏
j

(
1 + L2

2 ξ
+
j ξ
−
j c

j
) (C.5)

where sum and products over lower case letters are intended to be from 1 to 3, while upper
case ones are from 0 to 3.

The computation of Sreg follows from section 2.5, and is

Sreg = πL2

2GN
1− w
1 + w

. (C.6)

Notice that in the case of all couplings equal, w reduces to c1c2c3, as can be seen by (C.5).
In this case our result agrees with formula (6.19) of [18]. It can also be seen that the case
g0 = n2g, g1 = g2 = g3 = g agrees with (2.89).

Then we need to perform the Legendre transform. We find

∂Sreg
∂aα

= − L2π

32GN

 Ωα(̃aα)2

(1− Ωα)3 + b̃α

(1− Ωα)2 −
L6

8

∏
j

ξ+
j

2
a1a2a3

aα

 . (C.7)
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Putting everything together, we get that the free energy is

FS3 = 4π
GN

∏
j

( 2
L2 + 2ξ+

j ξ
−
j c

j − (ξ+
j c

j)2
)

×

 8
L4 + 4

L2

∑
j

ξ+
j ξ
−
j c

j + 2
∑
j

∏
i ξ

+
i ξ
−
i c

i

ξ+
j ξ
−
j c

j
+
∏
j

ξ+
j

∑
I

gI

−1

.

(C.8)

Then, using
aα − ãα

2i = −2i
(

cα

1 + vα
− c̃α

1 + ṽα

)
, (C.9)

as well as
K∗
αβ̃

= 1
(1− Ω2

α)2 δαβ̃ , (C.10)

one can express (C.8) in terms of the real mass parameters. The result is again (2.78).

D Details about the universal multiplet

We give here the details needed in order to describe the geometry of the SU(2,1)
SU(2)×U(1) manifold.

Its metric is given by

ds2 = 2

 |dz1|2 + |dz2|2

1− |z1|2 − |z2|2
+ |z∗1dz1 + z∗2dz2|2(

1− |z1|2 − |z2|2
)2

 , (D.1)

where the overall normalization is chosen so that

R = −12 . (D.2)

This metric can be obtained by the following Kähler potential

KH = −2 log
(
1− |z1|2 − |z2|2

)
. (D.3)

The hypermultiplet scalars are the zi and z̄i fields. To describe the manifold geometry,
it’s convenient to introduce a different set of coordinates (ρ, θ, φ, ψ), related to the zi’s as

z1 = ρ cos θ2e
i(ψ+φ)/2 , z2 = ρ sin θ2e

i(ψ−φ)/2 . (D.4)

Introducing the frame

e1 = ρ√
2
√

1− ρ2σ1 , σ1 = cosψdθ + sinψ sin θdφ ,

e2 = ρ√
2
√

1− ρ2σ2 , σ2 = − sinψdθ + cosψ sin θdφ ,

e3 = ρ√
2(1− ρ2)

σ3 , σ3 = dψ + cos θdφ ,

e4 =
√

2 dρ

1− ρ2 ,

(D.5)

then we can obtain the metric (D.1) in these new coordinates as ds2 = eae
a = huvdq

udqv.

– 42 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
5

We can also define some frame vectors f iAu. If we think of f iA as a one-form f iA =
f iAudq

u, then

f11 = ie3 + e4
√

2
, f12 = ie1 − e2

√
2

, f21 = ie1 + e2
√

2
, f22 = −ie

3 + e4
√

2
. (D.6)

This choice frame vectors satisfies many properties, many of which we do not report here,
but can be found for example in equation (4.142) of [24]; we mention only that

huv = f iAuεijCABf
jB

v(
f iAu

)∗
= f jBuεjiρBĀ ,

(D.7)

with the choices
CAB = εAB, ρAB̄ = εAB̄ . (D.8)

These two matrices are related by CAB = ρAC̄d
C̄
B, so, in this case,

dĀB = δAB , (D.9)

such that CAB = ρAC̄d
C̄
B. These frame fields define as well a hypercomplex structure

~J v
u = −f iAu fvjA~τ

j
i , (D.10)

where fvjA is defined as the inverse of f jAv ,

f iAv f
u
iA = δuv , f iAu f

u
jB = δijδ

A
B , (D.11)

with ~τij = i~σi
j . This hypercomplex structures are covariantly constant up to a rotation:

∇w ~Juv + 2~ωw × ~Ju
v = 0 . (D.12)

In particular, an explicit calculation gives that the one-forms ~ω = ~ωwdq
w are

ω1 = σ1

2
√

1− ρ2 , ω2 = σ2

2
√

1− ρ2 , ω3 = (2− ρ2)σ3
4(1− ρ2) . (D.13)

The manifold SU(2,1)
SU(2)×U(1) has eight Killing vectors (see equation (12) of [44]). We are

interested in two of them,

ζ = ∂φ = i(z1∂z1 − z2∂z2 − z̄1∂z̄1 + z̄2∂z̄2)
2 , ξ = ∂ψ = i(z1∂z1 + z2∂z2 − z̄1∂z̄1 − z̄2∂z̄2)

2 .

(D.14)
It can be checked that they obey ∇(uζv) = ∇(uξv) = 0. From the Killing vectors, we

can obtain the moment maps

P(ζ) = −1
2
~Ju
v∇vζu = −

(
sin θ sinψ√

1−ρ2
, sin θ cosψ√

1−ρ2
, (2−ρ2) cos θ

2(1−ρ2)

)
,

P(ξ) = −1
2
~Ju
v∇vξu = −

(
0, 0, ρ2

2(1−ρ2)

)
,

(D.15)

which are related to the Killing vectors by

∂u ~PI + 2~ωu × ~PI = ~Juvk
v
I , (D.16)

and
− 2nH ~PI = ~Ju

v∇vkuI . (D.17)
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