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An Efficient and Incentive-Compatible Mechanism
for Energy Storage Markets

Bharadwaj Satchidanandan and Munther A. Dahleh

Abstract—A key obstacle to increasing renewable energy pen-
etration in the power grid is the lack of utility-scale storage
capacity. Transportation electrification has the potential to over-
come this obstacle since Electric Vehicles (EVs) that are not in
transit can provide battery storage as a service to the grid.
This is referred to as EV-Power grid integration, and could
potentially be a key milestone in the pathway to decarbonize
the electricity and the transportation sectors. We first show that
if EV-Power grid integration is not done carefully, then contrary
to improving the cost efficiency of operating the grid, it could in
fact be counterproductive to it. This fundamentally occurs due
to two phenomena operating in tandem – the randomness of EV
usage patterns and the possibility of strategic behavior by EV
operators. We present a market-based solution to address this
issue. Specifically, we develop a mechanism for energy storage
markets using which the system operator can efficiently integrate
a fleet of strategic EVs with random usage patterns into the grid,
utilize them for storage, and satisfy the demand at minimum
possible cost.

Index Terms—Storage markets, Electric Vehicles, Stochastic
deadlines, Incentive compatible mechanism.

I. INTRODUCTION

A major impediment to high renewable energy penetration
in the power grid is the scarcity of energy storage capacity in
the grid. Utility-scale battery storage is expensive at current
technology, and so any energy that is generated must be con-
sumed immediately. This paradigm could change substantially
with increased Electric Vehicle (EV) penetration since EVs
that are not in transit can provide battery storage as a service
to the grid. Prior studies estimate that on an average, a car
is parked for more than 95% of the time [1], indicating the
huge potential for EVs to double as energy storage resources
in the grid. As an illustration, take the example of the state of
Massachusetts. It consumes an average of 146GWh of electric
energy per day [2]. On the other hand, the battery capacity of
a Tesla Model S EV is about 100kWh. This implies that about
1.4 million EVs possess enough battery capacity to power
Massachusetts for an entire day. This amounts to less than
64% of the vehicles registered in Massachusetts today [3].
The situation is similar in most other parts of the US and the
world, indicating that even moderate levels of EV penetration
could provide significant storage capacity.

The time periods during which an EV can lease its battery
to the grid are private knowledge of the EV operator. In
particular, it is unknown to the Independent System Operator
(ISO). However, the ISO requires this information to optimally
operate the grid, or more precisely, to determine the optimal
power dispatch of the generators and the optimal storage
schedule of the EVs. Consequently, the ISO requests the EV

operators to report to it in the day-ahead market the time
periods during which they can lease their battery the following
day. However, this brings forth two challenges that need to be
addressed.

The first challenge is that the travel times of people are in
general random, and so the EV operators may not precisely
know in the day-ahead market the time periods during which
they can lease their batteries the following day. Rather, they
may know these time periods only with some uncertainty. To
account for this, we model the time periods during which an
EV can lease its battery as a random variable, and require that
the EV operators only report the probability distribution of
this random variable in the day-ahead market.

The second challenge is that the EV operators could be
strategic, and so they may not report the aforementioned
probability distribution truthfully. As we elaborate in Section
III, each EV operator has associated with it a utility function,
and the EV operators bid strategically so as to maximize their
respective utilities. Moreover, having bid some probability
distribution in the day-ahead market, an EV may not remain
connected to the grid until its deadline the following day if
there is possibility for it to obtain a higher utility by doing so
than by disconnecting at its deadline. Such behavior could po-
tentially be counterproductive to the cost- and energy-efficient
operation of the grid. The following example illustrates this
issue.

Example 1. Suppose that a day consists of two time periods,
and suppose that the demand sequence d of the load in these
time periods is d = {0, 1}. Let the production function cg of
the generator be such that cg({1, 0}) = 0 and cg({0, 1}) = 2.
That is, it costs the generator 0 to produce 1J of energy at
time period 1 and 0J of energy at time period 2, and so on.
The cost cg for all other 2-tuples is infinite. We suppose that
this generator has a low ramping rate – a characteristic that
is typical of high-efficiency generators – and so its power
dispatch must be scheduled well in advance of the time
of power delivery. Specifically, its power dispatch must be
scheduled in the day-ahead market.

The system also consists of a reserve generator which has
a high ramping rate which can produce and sell energy in the
spot market to balance real-time demand-supply mismatches.
Let the production function cs of the reserves be such that
cs({0, 0}) = 0 and cs({0, 1}) = 11. The cost cs for all other
2-tuples is infinite.

Suppose that there is only one EV in the system with a
battery capacity of 1J. As we elaborate in Section III, the
usage pattern of an EV on any given day is specified by
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a quantity known as its “deadline” on that day. An EV’s
deadline on a given day is defined as the time period until
which the EV can lease its battery to the grid on that day. Then,
the usage pattern of an EV being random is equivalent to its
deadline being random. Suppose that the EV’s deadline takes
the value 1 with probability p and the value 2 with probability
1− p.

As elaborated in Section III, each EV has a cost function
associated with it. Suppose that the cost incurred by an EV is
equal to the negative of the net energy injected into it during
the time that it is connected to the grid.

Now, the ISO is confronted with two options to meet the
demand. The first option is for it to schedule the generator to
produce the energy sequence g = {0, 1} and use it to serve
the load. This results in a total cost of meeting the demand —
defined as the sum of the costs incurred by the generator, the
EV, and the reserves — to be equal to 2.

The second option is to schedule the generator to produce
the energy sequence g = {1, 0} and store the energy generated
in the first time step in the EV. If the EV remains connected
to the grid in the second time step, then the ISO discharges
it to satisfy the demand, resulting in a total cost of 0. On
the other hand, if the EV disconnects at time step 1, then the
ISO purchases 1J in the spot market at time step 2 at cost
cs({0, 1}) = 11 to satisfy the demand, thereby resulting in
a total cost of 10. Hence, if the EV disconnects at its true
deadline, then the total cost of meeting the demand equals
0 with probability 1 − p and equals 10 with probability p.
Hence, the total expected cost of meeting the demand if the
ISO decides on the second option is equal to 10p.

Now, the goal of the ISO, as we elaborate in Section III,
is to minimize the total expected cost of meeting the demand,
and so it must choose the first option if 2 ≤ 10p and the
second option if 2 > 10p. However, the difficulty is that the
ISO does not know the value of p, and must rely only on the
value p̂ reported by the EV in the day-ahead market in order
to make the decision. The EV bidding p̂ = p is not a dominant
strategy. To see this, suppose that p = 0.21. If the EV bids
p̂ = 0.21, then the ISO would decide on the first option, and
so the cost incurred by the EV would be equal to 0. On the
other hand, if the EV bids p̂ = 0.19, then that causes the ISO
to decide on the second option, thereby resulting in the EV
being charged with 1J in the first time step. If the EV then
disconnects at its deadline, then it would exit the system with
a charge of 1J with probability 0.21 and a charge of 0J with
probability 0.79. This would result in it incurring an average
cost of −0.21, which is lesser than the average cost of 0 that it
would incur if it bids p truthfully. However, the total expected
cost of meeting the demand as a result of the EV’s false bid
is equal to 2.1, which is greater than the total cost of 2 that
would result if the ISO simply decides to never utilize the EV
for storage.

The above example illustrates a scenario wherein the EV
can lower its average cost by misreporting only its deadline
distribution. However, the EV could also misreport its deadline
realization to lower its cost. To see this, consider the case when
p = 0.19 and suppose that the EV reports p̂ = p truthfully
in the day-ahead market. It follows from the above discussion

that the ISO would decide on the second option. Now, if the EV
reports its deadline truthfully in real time, then the expected
cost that it would incur is equal to −0.19. On the other hand,
by misreporting its deadline realization to be equal to time
step 1, the EV can exit the system with 1J of charge, thereby
resulting in it incurring a lower cost of −1. Since the ISO is
not privy to the EV’s deadline realization, it cannot ascertain
if the EV disconnects at the first time step due to its deadline
arriving at that time or due to strategic behavior. The total
expected cost of meeting the demand as a result of the EV’s
false report would equal 10, which is greater than both the
total expected cost of 1.9 that would result if the EV reports
its deadline realization truthfully, and also the total cost of 2
that would result if the ISO simply decides to never utilize the
EV for storage.

The above example illustrates how strategic EV behavior not
only defeats the purpose of utilizing EVs as energy storage
units, but could also be counterproductive to the cost- and
energy-efficient operation of the grid since it could potentially
result in real-time supply shortages which in turn increases
the ISO’s dependence on the expensive and energy-inefficient
reserves. Therefore, if EVs are to be efficiently integrated for
storage, it is imperative to devise incentive structures that
drive EV operators towards truthful behaviors. Specifically,
it is necessary to devise mechanisms that (i) incentivize the
EVs report the probability distribution of their usage patterns
truthfully in the day-ahead market, so that the ISO can
optimally plan the power dispatch and storage schedules, and
(ii) incentivize the EVs to remain plugged into the grid until
their actual deadlines, so that there are no untoward supply
shortages in real time. In this paper, we present a mechanism
that achieves both of these objectives.

At a high level, the mechanism consists of a decision
rule that specifies an optimal power dispatch sequence of
the generator and an optimal energy storage policy for each
EV as a function of the deadline distributions that the EVs
report in the day-ahead market, and a payment rule that
incentivizes EVs to report their deadline distributions and
deadline realizations truthfully. The payment rule consists of
two components — (i) a “day-ahead payment” that reflects
the expected cost savings in operating the grid due to the
storage opportunity that the EVs are expected to provide as
per their reported deadline distributions, and (ii) a carefully
designed “end-of-the-day settlement” that adjusts the transfers
meted out to each EV based on a comparison of what it had
reported in the day-ahead market and the actual departure
profiles of the EVs in real time. One of the functionalities of
the end-of-the-day settlement is to penalize EVs for deviations
of their empirically observed behavioral patterns from what is
expected as per the probability distributions that they report in
the day-ahead market. We show how the composite payment
rule renders truthful bidding in both the day-ahead market and
in real time a dominant strategy for every EV, thereby enabling
the ISO to satisfy the demand at minimum possible cost. To the
best of our knowledge, we are unaware of any other work that
addresses the problem of integrating a fleet of strategic EVs
with random usage patterns into the grid, encompassing both
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engineering and economic aspects of the composite system.
Notation: Given a vector x, we denote by x(i) the ith

component of x. Given a vector x(θ) which is a function of
the variable θ, we denote its ith component by x(i;θ). Given a
vector x, we denote by x−i the vector x with its ith component
removed, and by [y,x−i] the vector whose ith component
is y and the other components are x−i. Given a sequence
{x(1),x(2), . . .}, we use xl to denote the l−length sequence
{x(1), . . . ,x(l)}, and x∞ to denote the entire sequence. We
occasionally use [x∞i ,x

∞
−i] to denote x∞, especially when it

is necessary to draw attention to the ith component of the
vectors. We denote by 1{Statement} the indicator function that
takes the value 1 if Statement is true and takes the value 0
otherwise.

II. RELATED WORK

Technologies that utilize EVs as energy storage resources
are broadly referred to as vehicle-to-grid technologies, and
a large body of literature exists on this topic. Reference
[4] provides a feasibility study of vehicle-to-grid systems.
Reference [5] presents a framework for vehicle-to-grid im-
plementation. Among other aspects, it recognizes the need
for incentive mechanisms to ensure adequate participation of
EV operators. Mechanisms to elicit private valuations of EVs
under a variety of settings and to achieve various objectives
are presented in [6]–[11] among many other papers. However,
most of the existing literature fail to model at least one, if not
all, of the following aspects of EVs: (i) the heterogeneity of
EV deadlines, (ii) the stochasticity of EV deadlines, (iii) the
storage opportunity provided by EVs, and (iv) the possibility
of strategic behavior by EV operators. The concoction of
aspects (ii) and (iv) demands particular attention since the
stochastic nature of EV deadlines provides EVs significant
leeway for strategic behavior since the grid operator cannot
ascertain whether an EV’s departure at any given time on
any given day is a consequence of its deadline arrival or is
a consequence of strategic behavior. In this paper, we model
all of the aforementioned aspects in a holistic framework and
address them thoroughly.

III. PROBLEM FORMULATION

Consider a power system with a single generator, a single
load, and ns storage units or EVs. In addition to EVs, the
storage units could also include devices such as Powerwalls
[12] that individual households and firms could have installed.
We divide time into days, and divide a day into T time
intervals. Denote by dl(t) the energy demand of the load on
the lth day at time t, l ∈ Z+ and t ∈ {1, . . . , T}. The demand
sequence dl :=

[
dl(1), . . . , dl(T )

]
is a random variable and

can typically be forecast in the day-ahead market to an
accuracy of within 5% [13]. However, in order to minimize
clutter and expose the main ideas clearly, we assume that it
is known exactly in the day-ahead market, and furthermore,
that it remains the same on all days. Consequently, we drop
the subscript l and denote the demand sequence simply as
d = [d(1), . . . , d(T )]. We describe in Section VI how this
assumption can be relaxed.

A. EV Deadlines

On any day l, l ∈ Z+, the time intervals in which an
EV i can lease its battery to the grid are characterized by
a parameter δi(l) ∈ {1, . . . , T} called EV i’s “deadline” on
day l. An EV i on day l is said to have deadline δi(l) if it can
lease its battery to the grid at all times lesser than or equal to
δi(l) and incurs a large cost for remaining connected beyond
time δi(l).

1) Deadline distributions: The deadline δi(l) is modeled as
a random variable, and we suppose that the deadline sequence
{δi(1), δi(2), . . . , } is Independent and Identically Distributed
(IID). Since δi(1) takes values from the set {1, . . . , T}, the set
of distributions that it can assume is parameterized by the RT -
dimensional probability simplex Θ. We denote by θi ∈ Θ the
parameter vector corresponding to EV i’s deadline distribution,
and by Pθi the probability distribution of the deadline. That
is, for any t ∈ {1, . . . , T}, the quantity Pθi(t) denotes the
probability that δi(1) equals t.

While in general, θi could take any value in Θ, we assume
for certain technical reasons that there exists εθ > 0 such that
for all i ∈ {1, . . . , ns} and for all t ∈ {1, . . . , T}, Pθi(t) ≥ εθ.
Consequently, given εθ, we define the set

Θ := {θ ∈ Θ : Pθ(t) ≥ εθ for all t ∈ {1, . . . , T}},

so that for all i ∈ {1, . . . , ns},

θi ∈ Θ. (1)

We assume that the deadlines of different EVs are inde-
pendent random variables so that the joint distribution of the
EVs’ deadlines on any given day is the product distribution
Pθ1 × . . .× Pθns . We define θ := [θ1, . . . , θns ].

2) Deadline realizations: We suppose that for every i ∈
{1, . . . , ns} and every l ∈ Z+, the realization of δi(l) is drawn
“by nature” at the beginning of day l according to Pθi and
is revealed to EV i at the beginning of day l. In particular,
the realization of δi(l) is unknown in the day-ahead market
corresponding to day l. The details of the day-ahead market
are described in later subsections.

B. Cost functions

We denote by cg : RT≥0 → R the production function of the
generator so that cg(g) is the cost incurred by the generator for
producing the energy sequence g =

[
g(1), . . . , g(T )

]
on any

given day, where g(t) denotes the amount of energy produced
at time t.

Demand-supply mismatches that occur in real-time are typi-
cally compensated by the ISO by purchasing additional energy
in the spot market. We denote by cs : RT → R the production
function of the reserves so that cs(gs) is the cost incurred by
it if it produces the energy sequence gs = [gs(1), . . . , gs(T )]..
We allow for the reserves to also consume excess energy, and
so a negative value of gs(t) denotes an absorption of gs(t)
units of energy at time t, t ∈ {1, . . . , T}. In case it is infeasible
for the reserves to absorb energy in real time, the cost of
T−tuples that contain negative entries are set to infinity.

For any EV i, we mean by the term “storage sequence of the
EV i on day l” a T−length sequence that specifies the energy
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stored in EV i at each time of the day. Note that the storage
sequence of an EV uniquely specifies how much energy must
be injected or consumed from the EV at each time of the day
— a decision that, as we will see shortly, the ISO must make
for every EV for optimal operation of the grid. Every EV i
has associated with it a cost function cEVi : {1, . . . , T} ×
{1, . . . , T} × RT → R that specifies the cost incurred by the
EV on any day l as a function of (i) its deadline δi(l) on that
day, (ii) the actual time δ̂i(l) at which it disconnects from the
grid on that day, and (iii) its storage sequence hi,l on that day,
and is defined as

cEVi (δi(l), δ̂i(l),hi,l) = −hi,l(δ̂i(l))1{δ̂i(l)≤δi(l)}
+Jm1{δ̂i(l)>δi(l)}, (2)

where Jm ∈ R>0 denotes the cost incurred by the EV if it
misses its deadline. In other words, if EV i has deadline δi(l)
but disconnects from the grid only after its deadline, then it
incurs a cost Jm for missing its deadline, but on the other
hand, if it disconnects from the grid before its deadline, then
the cost that it incurs is proportional to the net energy injected
into it, viz., −hi,l(δ̂i(l)). The above cost function models a
situation in which the deadlines of EVs are hard constraints as
defined in Section III-A. Relaxing this assumption would entail
defining the cost for missed deadlines to gradually increase as
a function of the duration by which the deadline is missed.

C. Storage Policy
The stochasticity of EV departure times necessitates the ISO

to devise a storage policy in order to determine the storage
sequence of each EV on each day. The storage policy, in
general, could be a randomized policy. Specifically, a storage
policy π is specified by a probability space (Ωπ,Fπ,Pπ) and
collection of functions {π1, . . . , πns} where the ith function
πi : {1, . . . , T} × {1, . . . , T}ns × Ωπ → [0, Bi] specifies the
energy that must be stored in EV i at each time of the day
as a function of (i) the departure profiles of the EVs on that
day, and (ii) a variable that serves as the source of random-
ness of the policy. More precisely, if δ̂(l) ∈ {1, . . . , T}ns
denotes the vector of departure times of EVs on day l, then
πi(t, δ̂(l), ωπ(l)) specifies the energy that must be stored in
EV i at time t on day l, where ωπ(l) ∈ Ωπ is a random
variable that the policy draws on day l according to Pπ
independently of all other random variables realized until that
day. We denote by

πi(δ̂(l), ωπ(l)) := [πi(1, δ̂(l), ωπ(l)) . . . πi(T, δ̂(l), ωπ(l))]

the storage sequence of EV i on day l as a function of the
EVs’ departure profiles δ̂(l) and the “coin flip” ωπ(l) of the
storage policy.

For a storage policy π to be implementable by the ISO, it
must not charge or discharge any EV after it disconnects from
the grid. That is, the policy π must satisfy the condition that
for every i ∈ {1, . . . , ns}, every δ̂(l) ∈ {1, . . . , T}ns , and
every ωπ(l) ∈ Ωπ,

πi(t, δ̂(l), ωπ(l)) = πi(δ̂i(l), δ̂(l), ωπ(l))

for all t ≥ δ̂i(l). We denote by Π the set of all implementable
storage policies.

D. The Independent System Operator’s Objective

Prior to each day, the ISO runs a day-ahead market in which
it must decide the energy dispatch sequence of the generator
and the storage policy of the EVs for that day. As mentioned
before, the deadlines of the EVs for any given day realize
only after the day-ahead market for that day closes, and so
the only information on which the ISO can base its day-ahead
market decisions are the deadline distributions that the EVs
bid in the market. Suppose for a moment that the EVs are
not strategic and that they bid the deadline distributions θ
truthfully. How should the ISO compute the energy dispatch
sequence and the storage policy? Since the ISO does not know
the deadline realizations in the day-ahead market, it chooses
these quantities so as to minimize the expected cost of meeting
the demand on the following day. This is elaborated in more
detail below. Note that since the deadline distributions of the
EVs are assumed to remain the same on all days, it suffices for
the ISO to compute these quantities just once, namely, in the
day-ahead market prior to day 1, and reuse them on all days.
We describe in Section VI how to address the more general
scenario wherein the deadline distributions could be different
on different days.

Suppose that the ISO decides the generator’s energy dis-
patch sequence to be g = [g(1), . . . , g(T )] and the storage
policy to be π in the day-ahead market. Then,

gs(t, δ(l),g,π, ωπ(l))

= d(t)−
[
g(t) +

ns∑
i=1

(
πi(t− 1, δ(l), ωπ(l))

− πi(t, δ(l), ωπ(l))

)]
(3)

is the real-time demand-supply mismatch at time t on day l.
Hence, the ISO has to purchase the energy sequence

gs(δ(l),g,π, ωπ(l))

=[gs(1, δ(l),g,π, ωπ(l)), . . . , gs(T, δ(l),g,π, ωπ(l))]

in the spot market on day l at price cs(gs(δ(l),g,π, ωπ(l))).
Therefore, the total cost of satisfying the demand on day l –
defined as the sum of the costs incurred by the generator, the
reserves, and the EVs – is

cg(g) + cs(gs(δ(l),g,π, ωπ(l)))−
ns∑
j=1

πj(δj(l), δ(l), ωπ(l)).

Since δ(l) and ωπ(l) are random variables, this cost is a
random variable for any energy dispatch sequence g and any
storage policy π that the ISO chooses in the day-ahead market.
The ISO’s objective is to minimize the total expected cost
of meeting the demand, and therefore it chooses the energy
dispatch sequence g∗ and the storage policy π∗ as a solution
to the stochastic program

Minimize
g∈RT ,π∈Π

E(δ,ωπ)∼Pθ×Pπ

[
cg(g) + cs

(
gs(δ,g,π, ωπ)

)
−

ns∑
j=1

πj(δj , δ, ωπ)
]
.

(4)
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We introduce a few definitions to compactify the notation.
Define

ĉs(δ,g,π) := Eωπ∼Pπ

[
cs(gs(δ,g,π, ωπ))

]
, (5)

which has the interpretation as the average cost of energy
purchase in the spot market if the generator produces the
energy sequence g, the EVs disconnect at times δ, and the ISO
employs the storage policy π. Here, the averaging is carried
out over the random choices made by the storage policy π.
Similarly define

π̂i(t, δ) := Eωπ∼Pπ [πi(t, δ, ωπ)] (6)

and let π̂i(δ) :=
[
π̂i(1, δ), . . . , π̂i(T, δ)

]
. Finally define

β(δ,g,π) := cg(g) + ĉs(δ,g,π)−
ns∑
j=1

π̂j(δj , δ). (7)

The ISO’s problem (4) can then be expressed compactly as

Minimize
g∈RT ,π∈Π

Eδ∼Pθ

[
β(δ,g,π)

]
. (8)

We define three functions based on (8). First, we define
g∗ : Θns → RT as a function that maps the EV parameters to
an energy dispatch sequence that solves (8). Specifically, for
ψ ∈ Θns , g∗(ψ) denotes an optimal energy dispatch sequence
that solves (8) if the EV parameters are ψ. Similarly, we define
π∗ : Θns → Π as the function that maps the EVs’ parameters
to an optimal storage policy that solves (8). Finally, we define
q∗ : Θns → R as the function that maps the EVs’ parameters
to the optimal average cost so that q∗(ψ) denotes the optimal
value of (8) if the EV parameters are ψ. We will assume
throughout that the cost functions cg and cs are such that for
some Q <∞ and for all ψ ∈ Θns ,

q∗(ψ) ≤ Q. (9)

Hence, the ISO’s objective in the day-ahead market is to
compute the functions g∗ and π∗ at the point θ. However,
if the EVs are strategic, then they may not bid their deadline
distributions truthfully in the day-ahead market, and so the
ISO has the additional task of eliciting θ truthfully. We will
discuss how the ISO can do this in an ensuing subsection.

Note also that if the EVs report their deadline realizations
truthfully every day, then the decisions g∗(θ) and π∗(θ), when
used on all days, almost surely minimize the time-averaged
cost of meeting the demand. That is, the long-term average
cost of operating the grid

lim sup
L→∞

1

L

L∑
l=1

[
β(δ(l),gl,πl)

]
(10)

where gl denotes the energy dispatch sequence on day l and
πl denotes the storage policy used on day l, is minimized by
setting gl = g∗(θ) and πl = π∗(θ) for all l. The minimization
could be carried out over all adapted policies that determine
gl and πl on each day l.

E. The EV Operator’s Objective

On each day l, each EV i receives a payment pi(l) from
the ISO in return for leasing its battery to the grid. Denoting
by hi,l the storage sequence of EV i on day l, its utility on
that day is defined as

ui(δi(l), δ̂i(l),hi,l) := pi(l)− cEVi (δi(l), δ̂i(l),hi,l).

Each EV i’s objective is to maximize its long-term average
utility defined as lim infL→∞

1
L

∑L
l=1 ui(δi(l), δ̂i(l),hi,l).

F. The Market Process

There are two impediments to the ISO operating the grid
at the optimal cost q∗(θ). The first is the ISO’s nescience
of the parameter vector θ, which renders it incapable of
computing the optimal decisions g∗(θ) and π∗(θ) in the
day-ahead market. As mentioned before, an EV’s deadline
distribution is its private knowledge and unknown to the ISO.
Consequently, the ISO requests each EV to report its parameter
in the day-ahead market so that it can compute the optimal
energy dispatch sequence and storage policy. However, since
the objective of any EV is only to maximize its own utility, it
may misreport its parameter if there is a possibility for it to
extract a higher utility by doing so than by bidding truthfully.
Consequently, we denote by φi ∈ Θ the parameter reported
by EV i in the day-ahead market, which may or may not be
equal to θi.

Based on the reported parameters φ := [φ1, . . . , φns ], the
ISO computes the energy dispatch as g∗(φ) and the storage
policy as π∗(φ). As mentioned before, since the deadline
distributions of the EVs are assumed to remain the same on
all days, it suffices for the EVs to report their parameters just
once, and for the ISO to run the day-ahead market just once,
namely, before day 1, to compute the above decisions. Once
the ISO computes these quantities, it reuses them on all days.

In the day-ahead market corresponding to any day l, the
ISO schedules the generator to produce the energy sequence
g∗(φ) on day l and decides on the storage policy π∗(φ) for
day l. After the day-ahead market closes, the EVs observe
their respective deadlines for that day. The ISO requests the
EVs to report their deadline realizations at the commencement
of day l. Based on the reported deadlines, the ISO computes
the storage sequence of each EV for that day using the policy
π∗(φ). Being strategic, the EVs may not bid their deadline
realizations truthfully, and so we denote by δ̂i(l) the deadline
reported by EV i on day l. Having bid δ̂i(l) as its deadline,
EV i is obliged to remain connected to the grid until time
δ̂i(l) on day l. The entire chronology is illustrated in Fig. 1.

G. The Mechanism Design Problem

Having fixed g∗(φ) and π∗(φ) in the day-ahead market,
the long-term average utility that EV i accrues is

u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

:= lim inf
L→∞

1

L

L∑
l=1

ui
(
δi(l), δ̂i(l),π

∗
i (δ̂(l), ωπ∗(φ)(l);φ)

)
,

(11)
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EVs report
φ

ISO computes
(g∗(φ),π∗(φ))

Generation g∗(φ)
scheduled for day 1

EVs observe
δ(1)

EVs report
δ̂(1)

ISO computes
storage sequence

for day 1

Day 1

Generation g∗(φ)
scheduled for day 2

EVs observe
δ(2)

EVs report
δ̂(2)

ISO computes
storage sequence

for day 2

Day 2

. . .

. . .

Time

Fig. 1. The market chronology: In the day-ahead market before day 1, each EV i reports a deadline distribution to the ISO, based on which the latter computes
the energy dispatch sequence and the storage policy. Then, at the commencement of any day l, l ∈ Z+, each EV i observes its deadline δi(l) for that day.
Following this, EV i reports δ̂i(l) as its deadline, which could potentially be adapted to δli, δ̂

l−1
i , δl−i, δ̂

l
−i,θ, and φ. Based on δ̂(l), the ISO computes the

storage schedule for each EV for that day using the storage policy. Day l then progresses, and the process repeats on day l + 1.

where π∗(δ̂(l), ωπ∗(φ)(l);φ) denotes the function π∗i (φ)

evaluated at
(
δ̂(l), ωπ∗(φ)(l)

)
. Note that in addition to φi,

the long-term average utility u∞i is also a function of the
times δ̂∞i that EV i reports. Consequently, if there exists
(φ−i, δ̂

∞
−i, ω

∞
π∗(φ)) such that EV i obtains a higher value for

(11) by misreporting either or both θi and δ∞i , then it may do
so. However, unless all EVs report their respective parameters
truthfully in the day-ahead market and report their respective
deadlines truthfully “almost all days,” the ISO cannot ensure
that the long-term average cost of meeting the demand defined
in (10) approaches the optimal value q∗(θ). This brings us to
the central problem that is addressed in the paper, namely, that
of designing mechanisms that incentivize EVs to report not
only their deadline distributions truthfully in the day-ahead
market, but also report their deadline realizations truthfully
almost all days. Specifically, we aim to design a mechanism
that renders truth-telling a dominant strategy so that for
every EV i, its average utility u∞i (φi, δ̂

∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

is maximized by setting φi = θi and δ̂i(l) = δi(l) for all
l ∈ Z+, regardless of what (φ−i, δ̂

∞
−i, ω

∞
π∗(φ)) is. The next

section develops the mechanism and establishes the incentive
and optimality properties guaranteed by it.

IV. MECHANISM FOR TRADING STORAGE CAPACITY OF
EVS WITH STOCHASTIC DEADLINES

In this section, we develop a mechanism that renders truth-
telling an individually rational dominant strategy for every EV.

First, the ISO computes g∗(φ) and π∗(φ) in the day-ahead
market as the generator’s energy dispatch sequence and the
storage policy. Recall that these quantities solve the stochastic
program

Min.
g,π

cg(g) + Eδ∼Pφ

[
ĉs(δ,g,π)−

ns∑
j=1

π̂j(δj , δ)
]
, (12)

and note that the solutions of (8) and (12) coincide if φ = θ.
We now describe the payment rule. The payment rule

consists of each EV receiving two payments on each day,
namely, a “day-ahead payment” that is determined based on
the parameters reported to the ISO in the day-ahead market,
and an “end-of-the-day settlement” that is determined at the
end of each day based on a comparison of the the actual
departure profile of the EVs with the deadline distributions
reported in the day-ahead market.

A. The Day-Ahead Payment

The day-ahead payment takes the form of a VCG payment.
For each i ∈ {1, . . . , ns}, define Pφ−i := Pφ1

× . . .×Pφi−1
×

Pφi+1
× . . . × Pφns and let q∗(φ−i) be the optimal value of

the stochastic program

Min.
g,π

cg(g) + Eδ−i∼Pφ−i

[
ĉs(δ−i,g,π)−

∑
j 6=i

π̂j(δj , δ−i)
]
.

Note that this is the optimization problem that the ISO would
have had to solve in the day-ahead market if EV i were
absent from the system. The day-ahead payment of EV i,
i ∈ {1, . . . , ns}, is defined as

pDAi (φi,φ−i) := q∗(φ−i)−

[
cg(g∗(φ))

+Eδ∼Pφ

{
ĉs(δ,g∗(φ),π∗(φ))−

∑
j 6=i

π̂∗j (δj , δ;φ)
}]
.

(13)

B. The End-of-the-Day Settlement

In addition to the day-ahead payment, the ISO also makes
an “end-of-the-day settlement” to each EV i on each day l.
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A negative value of this quantity indicates a “penalty” that
should be paid by the EV to the ISO.

For i ∈ {1, . . . , ns}, t ∈ {1, . . . , T}, and l ∈ Z+, define

fi,t(l, δ̂
l
i, φi) :=

[
1

l

l∑
l′=1

1{δ̂i(l′)=t}

]
− Pφi(t) (14)

where Pφi(t), recall, denotes the probability that a random
variable distributed according to Pφi takes the value t. Let
{r} be any nonnegative sequence such that for some Lr ∈ N
and some γ > 1

2 ,

r(l) ≥
√

ln lγ

l
(15)

for all l ≥ Lr, and

lim
l→∞

r(l) = 0. (16)

For all l ∈ Z+ and all i ∈ {1, . . . , ns}, define event

Ei(l, δ̂li, φi) := { max
t∈{1,...,T}

|fi,t(l, δ̂li, φi)| ≥ r(l)}. (17)

Let {Jp} be any nonnegative sequence such that

lim
l→∞

Jp(l)

l
=∞. (18)

The end-of-the-day settlement of EV i on day l is defined
as

pSi (l,φ, δ̂li, δ̂(l), ωπ∗(φ)(l))

:=

[
Eδ∼Pφ

{π̂∗i (δi, δ;φ)} − π∗i (δ̂i(l),δ̂(l), ωπ∗(φ)(l);φ)

]
− Jp(l)1{Ei(l,δ̂li,φi)}.

(19)

The term within the square brackets in the above RHS has the
interpretation as the difference between the expected amount
of energy injected into EV i on day l as determined in the day-
ahead market and the actual energy injected into EV i on day
l. Note that if all EVs are truthful, then the long-term average
of this quantity approaches zero almost surely. The second
component of the end-of-the-day settlement essentially penal-
izes EV i for discrepancies between the empirical distribution
of its reported deadlines and the distribution Pφi that it reports
in the day-ahead market.

The total payment pi received by EV i on day l is the sum
of its day-ahead payment and its end-of-the-day settlement:

pi(l, φi,φ−i, δ̂
l
i, δ̂(l), ωπ∗(φ)(l))

= pDAi (φi, φ−i) + pSi (l,φ, δ̂li, δ̂(l), ωπ∗(φ)(l)). (20)

Theorem 1 establishes the incentive and efficiency proper-
ties of the mechanism defined by the decision rule (12) and the
payment rule (20). Before presenting the theorem, we explain
at a high level why the proposed mechanism provides the
desired incentive properties.

Arbitrarily fix an EV i. As mentioned before, one of the
functionalities of the end-of-the-day settlement is to penalize
the EV for deviations of its empirically observed departure
times from Pφi . To enforce this, on each day l and for each t ∈

{1, . . . , T}, the end-of-the-day settlement function constructs
a window of size r(l) centered at Pφi(t) and penalizes the EV
if the empirical frequency 1

l

∑l
l′=1 1{δ̂i(l′)=t} falls outside the

window.

Now, the window size must be designed carefully so as
to balance two competing objectives. On the one hand, the
window size must approach zero as l tends to infinity. If not,
the set of sequences from which the EV can choose its real-
time bids δ̂∞i without incurring a penalty would be “large,”
thereby resulting in the violation of incentive compatibility. On
the other hand, if the window size shrinks too quickly, then the
aforementioned empirical frequency sequence of truthful bid-
ders will fall outside the window infinitely often. This would
result in truthful bidders paying a penalty infinitely often,
thereby resulting in the violation of their individual rationality.
This brings us to the question of what the appropriate rate is at
which the window size should decay. Condition (15) answers
this question. To provide some intuition for this condition,
note that the empirical frequency 1

l

∑l
l′=1 1{δi(l′)=t} of EV

i’s true deadlines is approximately normally distributed for
large l with a standard deviation that scales as 1√

l
. Hence,

scaling the window size also at the same rate would result in
the probability of empirical frequencies of truthful bids falling
outside the window to remain at some fixed value which does
not scale with l. To avoid this, the window size must scale
slower than at least 1√

l
. Lemma 1 shows that by scaling it only

“slightly” slower than this rate, namely, at the rate specified by
(15), the truthful bidders are guaranteed to not incur a penalty.

Once an appropriate window sequence is chosen, EV i be-
comes subject to the constraint that its real-time bid sequence
δ̂∞i has a histogram that “looks like” Pφi . If not, the average
penalty that it would pay will be infinite – a property that
stems from (18) and is established in Lemma 4. We refer to
this constraint as C1. Henceforth, it suffices to restrict attention
only to those strategies that satisfy C1.

For θ ∈ Θ, denote by Fθ the cumulative distribution func-
tion corresponding to parameter θ. Suppose first that φi is such
that Fθi(t

′) > Fφi(t
′) for some t′ ∈ {1, . . . , T}, and suppose

that the EV reports δ̂∞i such that C1 is satisfied. Then, it is
easy to see that regardless of how δ̂∞i is fabricated, it will be
larger than the EV’s true deadline δ∞i at least Fθi(t

′)−Fφi(t′)
fraction of the days on average. This is established in Lemma
3. Hence, letting α(θi, φi) := supt∈{1,...,T} Fθi(t) − Fφi(t),
EV i must miss its deadline at least α(θi, φi) fraction of
the days on average, thereby incurring a cost of at least
Jmα(θi, φi) on average for missing its deadlines. What about
the payment that it receives though as a result of bidding such a
φi? Is there a possibility for the EV to obtain a higher payment
by bidding such a φi than by bidding θi? The answer is in the
affirmative. To elaborate, by remaining connected to the grid
beyond its deadline, the EV could aid the ISO in reducing the
cost of meeting the demand. The VCG payment rule would
reflect this positive externality and so the EV could potentially
obtain a larger payment every day in the day-ahead market by
bidding φi than by bidding θi. Now, is the increase in payment
sufficient to outweigh the cost incurred for missing deadlines?
The answer is in the negative, as established in Theorem 1.
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Basically, the cost q∗ possesses a Lipschitz-like property in
that the reduction in the ISO’s cost due false bid φi is bounded
by a term proportional to α(θi, φi). This is established in
Lemma 3. The composite payment rule is designed so that
the EV’s utility function inherits this property, and it follows
from this that the increase in the payment received by the
EV due to a false bid is upper bounded by a quantity that
is insufficient to make up for the cost incurred by missing
deadlines.

This leaves the EV with just one option for misreport-
ing in the day-ahead market, namely, bidding φi such that
Fφi(t) ≥ Fθi(t) for all t ∈ {1, . . . , T}. If this condition
holds and φi 6= θi, we say that φi ≺ θi, and term such
a φi as an “underbid” for θi. Now, for every φ−i, the
function q∗( · , φ−i) is monotonic in that if φi ≺ θi, then
q∗(φi,φ−i) ≥ q∗(θi,φ−i). This is established in Lemma 2.
The VCG payment rule would reflect this negative externality
and so the EV by underbidding θi would obtain a lower
payment every day in the day-ahead market than by bidding θi
truthfully. What about the cost that it incurs though as a result
of underbidding? Is there a possibility for it to incur a lower
cost by underbidding θi than by bidding it truthfully? The
answer is in the affirmative. Underbidding in the day-ahead
market affords the EV an extensive strategy space in real time
using which it can misreport its deadline realizations without
incurring a penalty or missing any deadlines. The EV may be
able to exploit this flexibility to lower its average cost. This is
best illustrated with the help of an example. Suppose that an
EV has a deterministic deadline τ, where τ ∈ {1, . . . , T}.
Instead of bidding this truthfully, the EV could bid any
distribution that has support {1, . . . , τ}. Consequently, on
any given day, the EV can choose any value in this set to
disconnect from the grid, and every one of these choices
would ensure that it doesn’t miss its deadline. Hence, only C1
remains to be satisfied, and this constraint is relatively easy to
satisfy if the EV on each day adapts its reported deadline to all
deadlines reported in the past. This still leaves the EV with
ample freedom to choose its real time bids, which it could
possibly exploit to disconnect with a higher level of charge,
or equivalently with a lower cost, than the cost it would incur
if it bids truthfully. Now, is the cost reduction sufficient to
outweigh the reduced payments? The answer in the negative,
as established in Theorem 1. Basically, the first term of the
end-of-the-day settlement (19) compares the battery charge
with which EV i disconnects on day l with that expected in
the day-ahead market. Any bias in this quantity appears as a
debit to the EV at the end of the day. It follows from this that
the cost reduction attained via strategic real-time bidding is
insufficient to outweigh the reduced day-ahead payments.

In summary, the EV can neither report φi such that φi ≺ θi
nor φi such that α(θi, φi) > 0. The only remaining option is
for it to report φi = θi. Theorem 1 establishes this rigorously.

We now present the theorem. The first statement of the
theorem states that truthful bidding in both the day-ahead
market and in real time is a dominant strategy for every
EV. The second statement states that under a certain mild
condition, truthful bidding is not only a dominant strategy
but it is also the unique dominant strategy in a certain sense.

Specifically, under a certain mild condition, an EV bidding its
deadline distribution truthfully in the day-ahead market and
bidding its deadline realization truthfully “almost all days”
is the unique dominant strategy. The third statement states
that truthful bidding is individually rational for every EV
regardless of how the other EVs bid. The final statement
shows that the mechanism aligns the EVs’ objectives with the
ISO’s objective in that every EV employing a selfish utility-
maximizing strategy automatically results in the ISO satisfying
the demand at minimum possible cost.

Theorem 1. Suppose that the ISO determines g∗(φ) and
π∗(φ) as a solution to (12) and determines the payments
according to (20). Then, for Jm sufficiently large, the following
hold.

1) For every i ∈ {1, . . . , ns} and every θi ∈ Θ, there exists
Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that for every
δ∞i /∈ Ei,

u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(θi,φ−i)

)

≥ u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ)) (21)

for every φ, δ̂
∞

, ω∞π∗(θi,φ−i), and ω∞π∗(φ).
I.e., for every EV i, truth-telling is P∞θi− almost surely
a dominant strategy.

2) Let i ∈ {1, . . . , ns} and suppose that θi is such that for
all φi 6= θi,

q∗(φi,φ−i) 6= q∗(θi,φ−i) (22)

for some φ−i ∈ Θns−1. If for some φi ∈ Θ, there
exists Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that
for every δ∞i /∈ Ei, φ−i, δ̂

∞
−i, ω

∞
π∗(φ), and ω∞π∗(θi,φ−i),

there exists δ̂∞i such that

u∞i (φi,δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

= u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(θiφ−i)

), (23)

then,

φi = θi, (24)

and

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)6=δi(l)} = 0. (25)

I.e., for every i ∈ {1, . . . , ns} such that (22) holds,
truth-telling in the day-ahead market and truth-telling
on almost all days is P∞θi− almost surely the unique
dominant strategy for EV i.

3) For every i ∈ {1, . . . , ns} and every θi ∈ Θ, there exists
Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that for all
δ∞i /∈ Ei,

u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(θi,φ−i)

) ≥ 0 (26)

for all φ−i, δ̂
∞
−i, and ω∞π∗(θi,φ−i).

I.e., for every EV i, truth-telling is P∞θi− almost surely
individually rational.
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4) If (22) and (23) hold for every i ∈ {1, . . . , ns}, then

lim sup
L→∞

1

L

L∑
l=1

β
(
δ̂(l),g∗(φ),π∗(φ)

)
= q∗(θ) (27)

P∞θ − almost surely.
I.e., if every EV employs a dominant strategy, then the
time-averaged cost at which the ISO satisfies the demand
is equal to the optimal average cost at which it satisfies
the demand if all EVs are truthful.

Proof. See Appendix A.

V. ALGORITHMS AND NUMERICAL RESULTS

Implementing the mechanism presented in the previous
section and operating the grid optimally requires the ISO to
solve the stochastic program (12) in the day-ahead market.
Note that (12) is essentially an economic dispatch problem
for a power system that has EV storage integrated into it.
One of the primary difficulties in solving (12) arises from
the fact that its decision space is infinite-dimensional; the
optimization algorithm must search over the space of all
implementable storage policies in order to solve (12). In what
follows, we show that for an important special case which the
ISO frequently encounters in practice, (12) can be reduced to
a finite-dimensional optimization problem. The special case
corresponds to the situation where the production function cs

of the reserves is additively separable over time. In today’s
electricity markets, not only is the function cs additively
separable, it is also linear, and so is the function cg . We
first present the approach by which (12) reduces to a finite-
dimensional optimization problem, and then use it in our
simulations to compute the expected cost savings.

A production function cs : RT → R is said to be additively
separable over time if there exist functions cs1, . . . , c

s
T : R→

R such that

cs([gs(1), . . . , gs(T )]) =

T∑
t=1

cst (gs(t)) (28)

for all gs ∈ [Gsmin, G
s
max]T , where Gsmin and Gsmax denote the

minimum and maximum generation capacity of the reserves.
Throughout this section, we assume that cs is of the form (28).

The reduction technique stems from the rather simple ob-
servation that the stochastic program (12) can equivalently be
expressed as

Min.
g

{
Min.
π

Eδ∼Pθ

[
β(δ,g,π)

]}
, (29)

which suggests a two-stage approach to solve the problem.
Specifically, if the “inner program”

Min.
π

Eδ∼Pθ

[
β(δ,g,π)

]
,

can be solved for any g to result in a storage policy π†(g),
then (29) can be solved by solving the “outer program”

Min.
g

β(g), (30)

where β(g) := Eδ∼Pθ

[
β(δ,g,π†(g))

]
. This outer program is

finite-dimensional. While it may not be convex or otherwise

solvable by polynomial-time algorithms, the fact that the ISO
has to solve it just once, and that it consists of only few tens
of decision variables in practice, implies that its complexity
may not be of significant concern.

The above reduction technique hinges on the ability to solve
the inner program which is infinite dimensional. For the case
when cs is additively separable, the inner program can be for-
mulated as a finite-horizon Markov Decision Process (MDP),
thereby rendering it solvable via dynamic programming. In
what follows, we define the state space, the action set, the
transition kernels, the stage costs, and the terminal costs which
define the MDP.

A. States

On any day l, we define the state sEVi (t) of EV i at the end
of time interval t as sEVi (t) := (ei(t), hi(t)) where ei(t) is a
0− 1 variable indicating whether or not EV i is connected to
the grid at the end of time interval t, and hi(t) is the amount
of energy stored in EV i at the end of time interval t. If the
EV is not connected to the grid at the end of time interval t,
then hi(t) is defined as the amount of energy that was stored
in the EV at the time that it disconnected from the grid.

We denote by Hi the set of energy levels to which EV i’s
battery can be charged. While typically Hi = [0, Bi], we allow
for Hi to be more general, namely, we allow for it to be any
subset of [0, Bi].

Consequently, the state space SEVi of EV i is

SEVi := {0, 1} ×Hi.

The initial state sEVi (0) of every EV i is (1, 0), that is, every
EV is connected to the grid at the beginning of time interval
1, and no energy has been stored in any EV by the ISO at that
time.

Based on the state of each EV, we define the state s(t) of
the entire EV-integrated power system as

s(t) := (sEV1 (t), . . . , sEVns (t)).

Consequently, the state space S of the system is

S = SEV1 × . . .× SEVns ,

and its initial state is s(0) =
(
(1, 0), . . . , (1, 0)

)
.

B. Actions

For i ∈ {1, . . . , ns} and t ∈ {1, . . . , T}, we define the EV-
action for EV i at time t as the energy storage decision that
the ISO makes for EV i at time interval t, namely, the amount
of energy that the ISO decides to inject into EV i at time t.
We denote this by ai(t), and a negative value for ai(t) denotes
energy discharge. We define the EV-level action set AEVi of
EV i as

AEVi = [−Bi, Bi],

which contains every action that the ISO can ever take for EV
i.

Now, The constraints that (i) the ISO cannot discharge from
an EV more energy than it has stored in the EV, (ii) the ISO
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cannot exceed the EV’s battery capacity, (iii) the ISO cannot
charge or discharge energy from the EV if it is no longer
connected to the grid, and (iv) the amount of energy stored in
any EV i must belong to Hi, translate into constraints on what
actions from the set [−Bi, Bi] the ISO can take when EV i is
in a given state. This results in the EV-level action sets being
state-dependent. Specifically, for sEVi = (ei, hi) ∈ SEVi , the
set AEV

sEVi
of feasible actions that the ISO can take when EV

i is in state sEVi is

AEVsEVi :=

{
{a ∈ AEVi : a+ hi ∈ Hi} ; if ei = 1,

{0} ; if ei = 0.

Based on the sets AEV1 , . . . ,AEVns , we define the system-
level action set A, or simply the action set, as

A := AEV1 × . . .×AEVns .

The set A collects every combination of actions that the ISO
can ever take for all EVs.

Since not all actions in the EV-level action sets are feasible
for all EV states, not all actions in the action set are feasible
for all system states. That is, the feasible action sets are state-
dependent. It is easy to verify that for s ∈ S, the set As of
feasible actions that the ISO can take when the system is in
state s is

As = AEVs1 × . . .×A
EV
sns

,

where si denotes the ith element of s.

C. Transition kernels

Suppose that EV i’s state at the end of time interval t is
(1, hi(t)), and that the ISO takes a feasible action a in time
interval t+1. Then, the only states that the EV can transit to at
the end of time interval t+1 are (0, hi(t)+ai) and (1, hi(t)+
ai). The probability that it transits to the state (0, hi(t)+ai) is
the conditional probability that EV i disconnects from the grid
at time t + 1 given that it has remained connected until time
t, which is equal to Pθi (t+1)

1−Fθi (t)
. The probability that it transits

to the state (1, hi(t) + ai) is 1− Pθi (t+1)

1−Fθi (t)
.

On the other hand, if EV i is not connected to the grid
at time t so that its state at time t is (0, hi(t)) for some
hi(t) ∈ Hi, then, regardless of what feasible action the ISO
takes, the only state that the EV can transit to at time t + 1
is (0, hi(t)), which it does with probability 1. This yields the
EV-level probability transition law for EV i as

PEV
i

(
sEV
i (t+ 1)

∣∣sEV
i (t), ai(t+ 1)

)

=



Pθi (t+1)

1−Fθi
(t)
1hi(t+1)=hi(t)+ai(t+1) ;

[
ei(t)

ei(t+ 1)

]
=

[
1

0

]

[1−
Pθi (t+1)

1−Fθi
(t)

]1hi(t+1)=hi(t)+ai(t+1) ;

[
ei(t)

ei(t+ 1)

]
=

[
1

1

]
1{sEVi (t+1)=sEVi (t)} ; ei(t) = 0.

The transition kernel for the entire system can be com-
puted based on the above EV-level probability transition laws.
Specifically, for t ∈ {0, . . . , T − 1}, if the system is in state s

at the end of time interval t and the ISO takes action a ∈ As

at time interval t+ 1, then the probability that it transitions to
state s′ at the end of time interval t+ 1 is

Pt+1(s′|s,a)

:= Pr(s(t+ 1) = s′|s(t) = s,a(t+ 1) = a)

=

ns∏
i=1

PEVi (s′i
∣∣si, ai), (31)

where s′i, si, and ai denote the ith component of s′, s and a
respectively.

D. Stage costs

The stage costs capture the costs incurred by the reserves
at each time interval. For t ∈ {0, . . . , T − 1}, the stage cost
ct+1(s(t),a(t + 1)) is defined as the cost incurred by the
reserves at time interval t+1 if action a(t+1) is taken at that
time. The demand-supply mismatch at time interval t + 1 if
action a(t+1) is taken is equal to d(t+1)+

∑ns
i=1 ai(t+1)−

g(t + 1), and this energy must be produced by the reserves.
Hence, the stage cost at time t+ 1 equals

ct+1(s(t),a(t+ 1))

= cs
(
g(t+ 1)− d(t+ 1)−

ns∑
i=1

ai(t+ 1)
)
. (32)

E. Terminal costs

It follows from the discussion in Section V-C that for any
EV i, the term hi(T ) in its final state sEVi (T ) specifies the
amount of energy stored in it at the time that it disconnects
from the grid. This allows us to capture the costs incurred by
the EVs by means of a terminal cost function . Specifically,
for any state s =

(
(e1(T ), h1(T )), . . . , (ens(T ), hns(T )

)
∈ S,

we define the terminal cost vT (s) as

vT (s) :=

ns∑
i=1

−hi(T ), (33)

which equals the sum of the costs incurred by all EVs in the
system.

F. Computing an optimal storage policy

Consider the Markov Decision Process defined by(
S, {As}, {Pt(s′|s,a)}, {ct}, vT

)
. That the MDP admits an

optimal policy that is deterministic and Markovian can be
established using routine arguments from Markov decision
theory, see for example [14, Section 5.4]. Consequently, the
MDP can, in principle, be solved optimally using dynamic
programming, which uses the following backward recursion
to compute the value function and an optimal policy:

vt(s) = min
a∈As

[
ct+1(s,a) +

∑
s′∈S

Pt+1(s′
∣∣s,a)vt+1(s′)

]
(34)

for all s ∈ S and t = T − 1, . . . , 0. It is easy to verify that
cg(g) + v0(s(0)) = β(g), and that the policy obtained by
collecting an argument that minimizes the RHS of (34) at each
state and each time is an optimal policy π†(g).
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Fig. 2. The total expected cost of satisfying the demand is plotted as a
function of varying levels of EV penetration for five different profiles of EV
deadline distributions. The solid curve corresponds to the scenario where all
EVs can lease their battery to the grid for the entire day, and denotes the
minimum possible cost at which the ISO can satisfy the demand.

To summarize, the stochastic program (12) when the pro-
duction function cs is additively separable reduces to a finite-
dimensional optimization program which has embedded in
it a dynamic program. We have used this reduction in our
simulations to compute an optimal energy dispatch, storage
policy and cost savings.

In our simulations, we have divided a day into a total of
five time intervals. The simulation parameters are specified
in Table I. In order to obtain conservative estimates of the
cost reduction, we have assumed all EVs to have a capacity
of 10kWh, which is an order of magnitude lesser than the
battery capacity of many EVs that are commercially available
today. With the view of rendering the dynamic program to
have a finite state space and action set, we have quantized the
energy levels to which the EVs can be charged. Specifically,
we have assumed Hi = {0, 10kWh}. We have also quantized
the generator’s energy output so that at any time, the generator
can only produce an integer multiple of 10 kWh. This renders
the outer program to be finite. In our simulations, we have
solved the outer program using a combination of heuristics
and exhaustive search.

The production functions that are used in the simulations
are

cg(g) =

5∑
t=1

cgt (t)g(t)

and

cs(gs) =

5∑
t=1

[
cstgs(t)1{gs(t)≥0} + cstg

2
s(t)1{gs(t)<0}

]
where the numerical values for [cg1 . . . cg5] and [cs1 . . . cs5]
are specified in Table I. The coefficients cg1, . . . , c

g
5 have

been drawn at random and sorted, and the range from which
they have been drawn has been obtained from the range of
locational marginal prices at which electricity was traded in

October 2020 in ISO New England’s day-ahead market [15].
The function cs can be thought of as indicating that it is in
some sense easier for the reserves to produce energy in real
time than to consume it.

Fig. 2 plots the total cost q∗(θ) at which the ISO satisfies
the demand for four different deadline distribution profiles
θ of the EVs. In all cases, the expected cost of satisfying
the demand decreases almost linearly with EV penetration in
the considered regime. Moreover, the distribution θD corre-
sponds to larger deadlines than the distribution θC in that
FθD (t) ≤ FθC (t) for all t ∈ {1, . . . , 5}. Similarly, we also
have FθD (t) ≤ FθB (t) ≤ FθA(t) for all t ∈ {1, . . . , 5}. Hence,
in addition to showing the reduction in costs due to increased
EV penetration, Fig. 2 also illustrates the value that larger EV
deadlines provide in reducing the operating cost. Note that
these cost reductions are only lower bounds in that solving the
dynamic program and the outer program with finer or even no
discretization would result in cost reductions that are higher
than those indicated in Fig. 2.

Finally and most importantly, these cost reductions can be
attained only if the EVs bid their deadline distributions and
deadline realizations truthfully, which in turn is guaranteed
only in the presence of a mechanism that renders truth-telling
a dominant strategy both in the day-ahead market and in real
time. As illustrated in the example in Section I, in the absence
of such a mechanism, strategic behavior of EVs could result
in total costs in Fig. 2 that are in excess of 6.5 for all EV
penetration levels and all deadline distributions, implying that
the ISO would be better off not utilizing the EVs at all for
storage. The magnitude of the cost excess depends on the
specifics of each EV’s bidding strategy, which in turn could
be unpredictable in the absence of a unique dominant strategy.

TABLE I
SIMULATION PARAMETERS

Variable Value Units
d [36.7387 38.5138 56.6975 73.9188 57.6061] kWh
cg [12.4198 18.8367 19.1754 31.0088 33.3978] $

/
MWh

cs [27.8936 28.2861 29.3702 30.5788 34.3765] $
/

MWh
θA [0.2000 0.2000 0.2000 0.2000 0.2000]

θB [0.0770 0.2442 0.0783 0.0716 0.5290]

θC [0.0378 0.2430 0.1449 0.5683 0.0059]

θD [0.0212 0.0462 0.1019 0.2061 0.6245]

θE [0 0 0 0 1]

θ1 [θA θA θA θA]

θ2 [θB θB θB θB ]

θ3 [θC θC θC θC ]

θ4 [θD θD θD θD]

θ5 [θE θE θE θE ]

VI. EXTENSIONS

We have assumed the deadline distributions and the demand
sequence to remain the same on all days. An immediate
extension is to address the scenario where the deadline dis-
tributions of the EVs and the demand sequence of the load
could potentially be different on different days. Denote by
{θ(1),θ(2), . . .} the sequence of EV parameters on different
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days, θ(l) ∈ Θns , and by {d1,d2, . . .} the demand sequence
on different days. If the number of distinct elements in
{θ(1),θ(2), . . .} and {d1,d2, . . .} are finite, then the results
of this paper can be readily extended to this more general
setting. Specifically, by requiring the EVs to report their
parameters in the day-ahead market on all days, categorizing
each day into one of a finite number of “bins” such that the re-
ported deadline distributions and the demand sequence remain
the same on all days belonging to a bin, and instantiating in
parallel the mechanism presented in the paper – one for each
bin – we obtain a mechanism that has the desired incentive
and optimality properties.

We have also assumed that the deadlines of all EVs are
independent random variables. Relaxing this assumption and
developing an analogous mechanism for the case where the EV
deadlines could be correlated is an important generalization
since it could more accurately model the usage patterns of
EVs in real world. Extending the results to the context of
multi-bus power systems is another important generalization.

VII. CONCLUSION

We have considered the problem of integrating a fleet of
strategic EVs with random deadlines into the grid and utiliz-
ing them for energy storage. Without appropriate incentive
structures, EV-power grid integration could potentially be
counterproductive to the cost- and energy-efficient operation
of the grid. This fundamentally arises because of two phe-
nomena operating in tandem – the randomness of EV usage
patterns and the possibility of their strategic behavior. We
have shown how this problem can be addressed by means
of a carefully-designed energy storage market. Specifically,
we have designed a mechanism for energy storage markets
that guarantees certain incentive and optimality properties. The
mechanism allows the ISO to achieve efficient EV-power grid
integration and satisfy the demand at minimum possible cost.

We have also presented a dynamic programming-based
algorithm using which the ISO can compute its day-ahead
market decisions in an EV-integrated power system. This
algorithm has been used to obtain certain numerical results
that demonstrate the cost benefits that EV storage services
– unreliable though they may be – offer the ISO. A few
extensions have also been outlined.
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PROOF OF THEOREM 1
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Lemma 1. There exists Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0
such that for all δ∞i /∈ Ei,

lim
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δli,θi)} = 0. (35)

Proof. See Appendix B.

The next lemma establishes the monotonicity of the optimal
cost function q∗ in a certain sense.

Lemma 2. Let λi, λ̃i ∈ Θ be any two parameters such that
Fλ̃i(t) ≥ Fλi(t) for all t ∈ {1, . . . , T}. Then,

q∗(λ̃i,φ−i) ≥ q∗(λi,φ−i)

for all φ−i ∈ Θns−1.

Proof. See Appendix C.

Lemma 3. Suppose that φi is such that

α(θi, φi) := sup
t∈{1,...,T}

{Fθi(t)− Fφi(t)} > 0. (36)

Then,
1) for some finite K ≥ 0,

q∗(θi,φ−i)− q∗(φi,φ−i) ≤ Kα(θi, φi). (37)

for all φ−i ∈ Θns−1.
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2) There exists Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such
that for all δ∞i /∈ Ei,

lim
L→∞

1

L

l∑
l=1

1{δ̂i(l)>δi(l)} ≥ α(θi, φi) (38)

whenever δ̂∞i is such that
∑∞
l=1 1{Ei(l,δ̂li,φi)}

<∞.

Proof. See Appendix D.

Lemma 4. If δ̂∞i such that
∑∞
l=1 1{Ei(l,δ̂li,φi)}

=∞, then,

lim sup
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,φi)}
=∞. (39)

Proof. See Appendix E.

We are now ready to prove the theorem. We first have

u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

= pDAi (φi,φ−i)

+ lim inf
L→∞

1

L

L∑
l=1

[
pSi (l,φ, δ̂li, δ̂(l), ωπ∗(φ)(l))

− cEVi
(
δi(l), δ̂i(l),π

∗
i (δ̂(l), ωπ∗(φ)(l);φ

)]
.

Substituting (2), (13) and (19) in the above equality and
carrying out some algebra yields

u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

=
[
q∗(φ−i)− q∗(φ)

]
− lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δ̂li,φi)}

+ Jm1{δ̂i(l)>δi(l)}

]
− lim sup

L→∞

1

L

L∑
l=1

[
π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)

− π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)1{δ̂i(l)≤δi(l)}

]
. (40)

Using the above expression, applying Lemma 1, and carrying
out some algebra implies the existence of Ei ⊂ {1, . . . , T}∞
with P∞θi (Ei) = 0 such that for all δ∞i /∈ Ei,

u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗([θi,φ−i])

)

− u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(φ))

=
[
q∗(φi,φ−i)− q∗(θi,φ−i)

]
+ lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δ̂li,φi)}

]
+ lim sup

L→∞

1

L

L∑
l=1

[
π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)

− π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)1{δ̂i(l)≤δi(l)}

]
+ lim sup

L→∞

1

L

L∑
l=1

Jm1{δ̂i(l)>δi(l)}. (41)

We first show that the above random variable is nonnegative,
thereby establishing (21). We do this by considering three
cases and showing that (41) is nonnegative in all the three
cases.

We first consider the case when δ̂∞i is such that∑∞
l=1 1{Ei(l,δ̂li,φi)}

= ∞. Note that
∣∣q∗(φi,φ−i) −

q∗(θi,φ−i)
∣∣ < ∞ owing to (9), and that all other terms in

the RHS of (41) are nonnegative. Consequently, substituting
(39) in (41) implies the nonnegativity of the (41).

We next consider the case when φi is such that Fθi(t) ≤
Fφi(t) for all t ∈ {1, . . . , T}. It then follows from Lemma 2
that q∗(φi,φ−i) ≥ q∗(θi,φ−i), and so the first term in the
RHS of (41) is nonnegative. Since every other term in the
RHS of (41) is nonnegative, (41) is nonnegative.

We are finally left with the case when δ̂∞i is such that∑∞
l=1 1{Ei(l,δ̂li,φi)}

<∞ and φi is such that Fθi(t) > Fφi(t)

for some t ∈ {1, . . . , T}. Lemma 3 applies, and so combining
(37) and (38) with (41) implies that P∞θi− almost surely,

u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗([θi,φ−i])

)

−u∞i (φi, δ̂
∞
i ,φ−i, δ̂

∞
−i,ω

∞
π∗(φ))

≥ (Jm −K)α(θi, φi).

It follows that for Jm ≥ K, the LHS is nonnegative, thereby
completing the proof of (21).

We next prove the second statement of the theorem. Suppose
that (23) holds. Using (40) to expand both sides of (23),
invoking (35), and simplifying the result implies that for every
δ∞i /∈ Ei, φ−i, δ̂

∞
, ω∞π∗(φ), ω

∞
π∗([θi,φ−i])

, there exists δ̂∞i such
that,

q∗(θi,φ−i)− q∗(φi,φ−i)

= lim sup
L→∞

1

L

L∑
l=1

Jp(l)1Ei(l,δ̂li,φi)

+ lim sup
L→∞

1

L

L∑
l=1

[
π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)

− π∗i (δ̂i(l), δ̂(l), ωπ∗(φ)(l);φ)1{δ̂i(l)≤δi(l)}

]
+ Jm lim sup

L→∞

1

L

L∑
l=1

1{δ̂i(l)>δi(l)}. (42)

Since the RHS of the above equality is always nonnegative,
we have that q∗(θi,φ−i) − q∗(φi,φ−i) ≥ 0 for every φ−i.
We show next that this inequality must hold with equality for
all φ−i.

Suppose for contradiction that q∗(θi,φ−i)− q∗(φi,φ−i) >
0 for some φ−i. Lemma 2 implies that supt∈{1,...,T}{Fθi(t)−
Fφi(t)} = α(θi, φi) > 0, and so Lemma 3 applies. Hence,

q∗(θi,φ−i)− q∗(φi,φ−i) ≤ Kα(θi, φi). (43)

Since the LHS of (42) is finite following (9), the RHS must
also be finite. This implies in particular that the first term
of the RHS is finite, and so, it follows from Lemma 4
that

∑∞
l=1 1{Ei(l,δ̂li,φi)}

< ∞. Consequently, (38) holds, and
substituting it in (42) implies that P∞θi− almost surely,

q∗(θi,φ−i)− q∗(φi,φ−i) ≥ Jmα(θi, φi). (44)
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Combining (43) and (44) yields a contradiction for Jm > K.
Hence, if (23) holds, then,

q∗(θi,φ−i) = q∗(φi,φ−i). (45)

for all φ−i.
Now, since (22) holds, combining it with (45) immediately

establishes (24), i.e., that φi = θi. Consequently, the RHS
of (42) is zero, and since every term in the RHS of (42) is
nonnegative, it follows that every term is zero. Hence,

lim
L→∞

1

L

L∑
l=1

Jp(l)1Ei(l,δ̂li,θi)
= 0 (46)

and

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)>δi(l)} = 0 (47)

P∞θi− almost surely.
From (46), we get limL→∞

1
L

∑L
l=1 1Ei(l,δ̂li,θi)

= 0, which
implies using (17) that for every t ∈ {1, . . . , T},

lim
L→∞

1

L

L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}
= 0. (48)

Since |fi,t(l, δ̂li, θi)| ≤ 1, we have that for all t ∈ {1, . . . , T}
and all L ∈ N,

L∑
l=1

|fi,t(l, δ̂li, θi)| ≤
L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}

+

L∑
l=1

r(l)1{|fi,t(l,δ̂li,θi)|<r(l)}
.

Dividing this inequality by L and taking the limit as L→∞
implies that for all t ∈ {1, . . . , T},

lim sup
L→∞

1

L

L∑
l=1

|fi,t(l, δ̂li, θi)|

≤ lim sup
L→∞

1

L

L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}

+ lim sup
L→∞

1

L

L∑
l=1

r(l)1{|fi,t(l,δ̂li,θi)|<r(l)}
.

We have using (16) that the last term of the RHS of
the above inequality equals zero, and using (48) that
its first term is zero. Hence, for all t ∈ {1, . . . , T},
we have limL→∞

1
L

∑L
l=1 |fi,t(l, δ̂li, θi)| = 0. This

implies using (14) that for all t ∈ {1, . . . , T},
limL→∞

1
L

∑L
l=1

[
1
l

∑l
l′=1 1{δ̂i(l′)=t}

]
= Pθi(t).

Multiplying this equality by t, summing both sides over t,
and simplifying yields

lim
L→∞

1

L

L∑
l=1

[
1

l

l∑
l′=1

δ̂i(l
′)

]
= µ(θi), (49)

where µ(θi) :=
∑T
t=1 tPθi(t) is the expected value of the

distribution corresponding to the parameter θi. Next, we use

this to show that limL→∞
1
L

∑L
l=1 1{δ̂i(l)<δi(l)} = 0, which

when combined with (47) would establish (25).
Suppose for contradiction that for some ε > 0,

lim sup
L→∞

1

L

L∑
l=1

1{δ̂i(l)<δi(l)} = ε. (50)

Note that

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)

]

= lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)=δi(l)}

]

+ lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]

+ lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)>δi(l)}

]
. (51)

Now,

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]

< lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]
+ ε

= lim sup
L→∞

[
1

L

L∑
l=1

(
δ̂i(l) + 1

)
1{δ̂i(l)<δi(l)}

]

≤ lim sup
L→∞

[
1

L

L∑
l=1

δi(l)1{δ̂i(l)<δi(l)}

]
,

where the equality follows from (50). It follows from (47)
that the last term in the RHS of (51) is P∞θi− almost surely
zero, and so substituting this and the above inequality in (51)
implies that P∞θi− almost surely,

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)

]
< lim sup

L→∞

[
1

L

L∑
l=1

δi(l)1{δ̂i(l)≤δi(l)}

]
.

It follows from (47) and SLLN that the RHS of
the above inequality P∞θi− almost surely equals µ(θi),
and so, lim supL→∞

1
L

∑L
l=1 δ̂i(l) < µ(θi). Combining

this inequality with (49) yields a contradiction. Hence,
limL→∞

1
L

∑L
l=1 1{δ̂i(l)<δi(l)} = 0, and combining this with

(47) establishes (25).
We now prove the third part of the theorem. Using (40) to

compute u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(θi,φ−i)

) yields

u∞i (θi, δ
∞
i ,φ−i, δ̂

∞
−i, ω

∞
π∗(θi,φ−i)

)

=
[
q∗(φ−i)− q∗(θi,φ−i)

]
− lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δli,θi)}

]
.

Substituting (35) in the above equality and noting that
[q∗(φ−i)− q∗(θi,φ−i)] ≥ 0 establishes (26).

Finally, (27) follows by substituting (24) in the LHS of (27)
and using (25) and SLLN to simplify the result.
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APPENDIX B
PROOF OF LEMMA 1

Proof. Denote by σ2
t = Pθi(t)

(
1−Pθi(t)

)
the variance of the

random variable 1{δi(1)=t} − Pθi(t). Since δ∞i is drawn IID
from the distribution Pθi , it follows from the Central Limit
Theorem (CLT) that for any z ∈ R,

lim
l→∞

sup
z∈R

∣∣∣P{√lfi,t(l, δli, θi) ≤ z} −Q( zσt )
∣∣∣ = 0 (52)

for all t ∈ {1, . . . , T}, where Q denotes the cumulative dis-
tribution function of the standard normal distribution. Define

r̃(l) := r(l)
√
l. (53)

It follows from (52) that

lim
l→∞

sup
q∈N

∣∣∣P{√lfi,t(l, δli, θi) ≤ −r̃(q)} −Q(−r̃(q)σt

)∣∣∣ = 0.

Hence,

lim
l→∞

∣∣∣P{√lfi,t(l, δli, θi) ≤ −r̃(l)} −Q(−r̃(l)σt

)∣∣∣ = 0,

which using (53) becomes

lim
l→∞

∣∣∣P{fi,t(l, δli, θi) ≤ −r(l)} −Q(−r̃(l)σt

)∣∣∣ = 0.

The above equality implies that for every ε0 > 0, there exists
L0 ∈ N such that for all l ≥ L0,

−ε0 ≤ P{fi,t(l, δli, θi) ≤ −r(l)} −Q
(−r̃(l)
σt

)
≤ ε0.

Using the bound Q(z) ≤ e−z
2/2 for z ≤ 0, the above

inequality implies that for all l ≥ L0,

P{fi,t(l, δli, θi) ≤ −r(l)} ≤ e−r̃
2(l)/2σ2

t + ε0.

It follows from (15) and (53) that r̃(l) ≥
√

ln lγ for all l ≥
Lr. Combining this with the above inequality and simplifying
yields that for all l ≥ max {Lr, L0},

P{fi,t(l, δli, θi) ≤ −r(l)} ≤
1

l
( γ

2σ2t
)

+ ε0,

and so, letting ε0 ↓ 0 and noting that 2σ2
t ≤ 1

2 implies

P{fi,t(l, δli, θi)} ≤ −r(l)} = O
( 1

l2γ

)
.

Since γ > 1
2 , the above equality implies
∞∑
l=1

P{fi,t(l, δli, θi) ≤ −r(l)} <∞. (54)

It can be shown by following the same sequence of arguments
that

∞∑
l=1

P{fi,t(l, δli, θi) ≥ r(l)} <∞. (55)

Combining (54) and (55) implies
∞∑
l=1

P{
∣∣fi,t(l, δli, θi)∣∣ ≥ r(l)} <∞.

Since the above inequality holds for arbitrary t ∈ {1, . . . , T},
it follows that

∑∞
l=1 P{Ei(l, δli, θi)} <∞. Invoking the Borel-

Cantelli lemma yields
∞∑
l=1

1{Ei(l,δli,θi)} <∞

almost surely, and (35) follows.

APPENDIX C
PROOF OF LEMMA 2

Proof. Since Fλ̃i(t) ≥ Fλi(t) for every t ∈ {1, . . . , T}, there
exists a probability space (Ωκ,Fκ,Pκ) and a function fS :
{1, . . . , T} × Ωκ → {1, . . . , T} such that

fS(t, ζ) ≤ t (56)

for all t ∈ {1, . . . , T} and all ζ ∈ Ωκ, and

fS(t, ζ) ∼ Pλ̃i (57)

when t ∼ Pλi and ζ ∼ Pκ.
Now, fix φ−i arbitrarily and define a storage policy ν as

follows. For each j ∈ {1, . . . , ns}, define

νj(t, δ, (ζ, ω)) = π∗j
(
t, [fS(δi, ζ), δ−i], ω ; [λ̃i,φ−i]

)
, (58)

with (ζ, ω) ∼ Pκ × Pπ∗([λ̃i,φ−i]). In words, the policy ν is

the result of implementing the policy π∗([λ̃i,φ−i]) under the
pretense that the deadline of EV i is fS(δi, ζ) when it is in
fact δi. It is straightforward to verify using (56) that if the
policy π∗([λ̃i,φ−i]) is implementable, then so is the policy
ν. For each j ∈ {1, . . . , ns}, define

νj(t, δ, ζ) := Eω∼P
π∗([λ̃i,φ−i])

[
νj(t, δ, (ζ, ω))

]
(59)

and

ν̂j(t, δ) := E(ζ,ω)∼Pκ×Pπ∗([λ̃i,φ−i])

[
νj(t, δ, (ζ, ω))

]
so that

ν̂j(t, δ) = Eζ∼Pκ
[
νj(t, δ, ζ)

]
and

E(δ,ζ)∼P([λi,φ−i])×Pκ
[
νj(t, δ, ζ)

]
= Eδ∼P(λi,φ−i)

[
ν̂j(t, δ)

]
.

(60)

Substituting (58) and (6) in (59), we obtain

νj(t, δ, ζ) = π̂∗j
(
t, [fS(δi, ζ), δ−i]; [λ̃i,φ−i]

)
,

and so

E(δ,ζ)∼P(λi,φ−i)×Pκ
[
νj(t,δ, ζ)

]
= E(δ,ζ)∼P(λi,φ−i)×Pκ

[
π̂∗j
(
t, [fS(δi, ζ), δ−i]; [λ̃i,φ−i]

)]
=Eδ′∼P

(λ̃i,φ−i)

[
π̂∗j (t, δ′; (λ̃i,φ−i))

]
,

where the last equality follows from the fact that fS(δi, ζ) ∼
Pλ̃i and so [fS(δi, ζ), δ−i] ∼ P([λ̃i,φ−i])

. Substituting this in
(60) yields

Eδ∼P(λi,φ−i)

[
ν̂j(t, δ)

]
= Eδ′∼P

(λ̃i,φ−i)

[
π̂∗j
(
t, δ′; [λ̃i,φ−i]

)]
.

(61)
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Next, we have for every t ∈ {1, . . . , T} and every δ ∈
{1, . . . , T}ns ,

gs(t, δ;g∗([λ̃i,φ−i]),ν, (ζ, ω))

= d(t)− g∗(t; [λ̃i,φ−i])

−
ns∑
j=1

[
νj
(
t, δ, (ζ, ω)

)
− νj

(
t− 1, δ, (ζ, ω)

)]
= d(t)− g∗(t; [λ̃i,φ−i])

−
ns∑
j=1

[
π∗j (t, [fS(δi, ζ),δ−i], ω; [λ̃i,φ−i])

−π∗j (t− 1,[fS(δi, ζ), δ−i], ω; [λ̃i,φ−i])

]
= gs(t, [fS(δi, ζ), δ−i];g

∗([λ̃i,φ−i]),π
∗([λ̃i,φ−i]), ω),

where the first and the last equalities follow from (3), and the
second equality follows from (58). Hence,

cs(gs
(
δ ; g∗([λ̃i,φ−i]),ν, (ζ, ω)

)
)

= cs(gs
(
[fS(δi, ζ), δ−i] ; g∗([λ̃i,φ−i]),π

∗([λ̃i,φ−i]), ω
)
).

Taking expectation on both sides of the equality with respect
to ω ∼ Pπ∗([λ̃i,φ−i]) and using (5) gives

Eω∼P
π∗([λ̃i,φ−i])

cs(gs(δ;g∗([λ̃i,φ−i]),ν, (ζ, ω)))

= ĉs([fS(δi, ζ), δ−i];g
∗([λ̃i,φ−i]),π

∗([λ̃i,φ−i]))).

Consequently,

ĉs(δ ; g∗([λ̃i,φ−i]),ν)

:= E(ζ,ω)∼Pκ×Pπ∗(λ̃i,φ−i)

[
cs(gs(δ;g∗(λ̃i,φ−i),ν, (ζ, ω)))

]
= Eζ∼Pκ

[
ĉs([fS(δi, ζ), δ−i];g

∗([λ̃i,φ−i]),π
∗([λ̃i,φ−i])))

]
,

and so

Eδ∼P([λi,φ−i])
ĉs(δ ;g∗([λ̃i,φ−i]),ν)

= Eδ′∼P
([λ̃i,φ−i])

[
ĉs(δ′ ;g∗([λ̃i,φ−i]),π

∗([λ̃i,φ−i]))
]
,

(62)

where we have once again used the fact that fS(δi, ζ) ∼ Pλ̃i
and so [fS(δi, ζ), δ−i] ∼ P([λ̃i,φ−i])

.

The desired result follows by noting that

q∗(λi,φ−i) ≤

cg
(
g∗([λ̃i,φ−i])

)
+ Eδ∼P(λi,φ−i)

[
ĉs(δ;g∗([λ̃i,φ−i]),ν)

−
ns∑
j=1

ν̂j(δj , δ)

]
= q∗(λ̃i,φ−i),

where the equality follows using (61) and (62).

APPENDIX D
PROOF OF LEMMA 3

Proof. Let ψ be that element of Θ that has the distribution
function Fψ(t) = max{Fθi(t), Fφi(t)}. It is easy to see that

Fψ(t)− Fφi(t) ≥ 0 (63)

for all t ∈ {1, . . . , T}, and that

sup
t∈{1,...,T}

{Fψ(t)− Fφi(t)} = α(θi, φi). (64)

Note that for all t ∈ {1, . . . , T}, Pψ(t)−Pφi(t) = Fψ(t)−
Fψ(t−1)−

(
Fφi(t)−Fφi(t−1)

)
≤
∣∣Fψ(t)−Fφi(t)

∣∣+∣∣Fφi(t−
1)−Fψ(t−1)

∣∣ ≤ 2α(θi, φi), where the last inequality follows
from (63) and (64). Therefore,

sup
t∈{1,...,T}

{Pψ(t)− Pφi(t)} ≤ 2α(θi, φi). (65)

For t = 1, . . . , T, define

βφ,i(t;g,π) := Eδ∼Pφ

[
β(δ,g,π)

∣∣δi = t
]

(66)

so that βφ,i(t;g,π) denotes the conditional expected cost
of satisfying the demand given that EV i disconnects from
the grid at time t, the EV departure profiles is distributed
according to Pφ, the generator’s energy dispatch sequence
is g, and the storage policy is π. Note that the conditional
expectation in (66) is well defined for every t, thanks to (1).
Note also that

q∗(φi,φ−i) = Eδi∼Pφi
[
βφ,i(δi;g

∗(φ),π∗(φ))
]
. (67)

Now,

Eδi∼Pψ
[
βφ,i(δi;g

∗(φ),π∗(φ))
]

−Eδi∼Pφi
[
βφ,i(δi;g

∗(φ),π∗(φ))
]

=

T∑
t=1

(
Pψ(t)− Pφi(t)

)
βφ,i(t;g

∗(φ),π∗(φ))

≤
[ T∑
t=1

(Pψ(t)− Pφi(t))2
] 1

2
[ T∑
t=1

β2
φ,i(t;g

∗(φ),π∗(φ))
] 1

2

≤ 2
√
Tα(θi, φi)

[ T∑
t=1

β2
φ,i(t;g

∗(φ),π∗(φ))
] 1

2

,

(68)

where the last inequality follows from (65). It follows from
(67) and the definitions of the functions g∗ and π∗ that

Eδi∼Pψ
[
βφ,i(δi;g

∗([ψ,φ−i]),π
∗([ψ,φ−i]))

]
− Eδi∼Pψ

[
βφ,i(δi;g

∗(φ),π∗(φ))
]
≤ 0. (69)

Adding (68) and (69) yields

Eδi∼Pψ
[
βφ,i(δi;g

∗([ψ,φ−i]),π
∗([ψ,φ−i]))

]
−Eδi∼Pφi

[
βφ,i(δi;g

∗(φ),π∗(φ))
]

≤ 2
√
Tα(θi, φi)

[ T∑
t=1

β2
φ,i(t;g

∗(φ),π∗(φ))
] 1

2

,
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which using (67) implies

q∗(ψ,φ−i)− q∗(φi,φ−i) ≤ Kα(θi, φi) (70)

where

K := sup
φ∈Θns

2
√
T
[ T∑
t=1

β2
φ,i(t;g

∗(φ),π∗(φ))
] 1

2

.

That K is finite follows from (9).
Since Fψ(t) ≥ Fθi(t) for all t ∈ {1, . . . , T}, it follows

from Lemma 2 that q∗(θi,φ−i) − q∗(ψ,φ−i) ≤ 0. Adding
this inequality with (70) establishes (37).

We now turn attention to the second part of the lemma. Let
φi be such that (36) holds and denote by t0 that element of
{1, . . . , T} such that

Fθi(t0)− Fφi(t0) = α(θi, φi). (71)

We first have using the SLLN that P∞θi− almost surely,

lim
L→∞

1

L

L∑
l=1

1{δi(l)≤t0} = Fθi(t0). (72)

Now, let δ̂∞i be any sequence such that
∑∞
l=1 1{Ei(l,δ̂li,φi}

<

∞, i.e., {Ei(l, δ̂li, φi)} occurs only finitely often. Combin-
ing this with (17) implies the existence of L0 such that∑t0
t=1 |fi,t(L, δ̂Li , φi)| < t0r(L) for all L ≥ L0, which in turn

implies that |
∑t0
t=1 fi,t(L, δ̂

L
i , φi)| < t0r(L) for all L ≥ L0.

Substituting (14) in this inequality and carrying out some
algebra yields

L[Fφi(t0)− t0r(L)] <

L∑
l=1

1{δ̂i(l)≤t0}

< L[Fφi(t0) + t0r(L)]

for all L ≥ L0. Using (16), this implies that

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)≤t0} = Fφi(t0). (73)

Since
∑L
l=1 1{δi(l)<δ̂i(l)} ≥

∑L
l=1 1{δi(l)≤t0} −∑L

l=1 1{δ̂i(l)≤t0} for any L ∈ Z+, dividing both sides
of the inequality by L, taking the limit as L→∞, and using
(73) and (72) yields

lim
L→∞

1

L

l∑
l=1

1{δi(l)<δ̂i(l)} ≥ Fθi(t0)− Fφi(t0) = α(θi, φi)

P∞θi− almost surely, where the equality follows from (71). This
establishes (38).

APPENDIX E
PROOF OF LEMMA 4

Proof. Let

IL := {l ≤ L : 1{Ei(l,δ̂li,φi)}
= 1}.

Denote by I∗L the largest element of IL, and note that if
∞∑
l=1

1{Ei(l,δ̂li,φi)}
=∞,

then I∗L = L for infinitely many values of L. Now,

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,φi)}
=

1

L

∑
l∈IL

Jp(l) ≥
1

L
Jp(I

∗
L),

and so

lim sup
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,φi)}
≥ lim sup

L→∞

Jp(I
∗
L)

L
=∞,

where the last equality follows from (18) and the fact that
I∗L = L for infinitely many values of L.
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