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Abstract

The advancement in nano-manufacturing and many other industries calls for high-
performance metrology and inspection methods. Nano-manufacturing has witnessed
shrinking critical dimension and demonstrated mass production capability: the lithog-
raphy process has reached 5nm node and could potentially reach 2nm node by 2024;
one production line can produce 125 wafers in one hour, each 300mm in diameter.
Therefore, the desired metrology method must be non-invasive to achieve full sam-
ple and batch inspection, have high resolution to keep up with the shrinking critical
dimensions, and feature high speed to be compatible with high-throughput manufac-
turing needs.

Ellipsometry gains popularity due to its advantages of non-invasiveness, high
speed, and high resolution. The technology is an important metrology and inspection
tool in many industries. Ellipsometry is a major tool in new material characteri-
zation, and considered an important metrology method for the next generation of
semiconductor devices in nano-manufacturing. In addition, the technology finds its
application in biomedical detection and surface roughness estimation. The working
principles of ellipsometry are as follows. An ellipsometer experimentally measures the
samples’ changing effects on a light beam’s polarization state, quantified by ellipso-
metric parameters or a Mueller matrix. The experimental results are then fitted to an
optical model to extract the sample’s critical dimensions and/or optical properties.

This thesis improves the performance of ellipsometry through three aspects.
The first part of this thesis quantifies and mitigates the mixed Poisson-Gaussian

noise induced errors to improve ellipsometer’s measurement accuracy and precision.
The measurement accuracy can be significantly affected by the existence of Poisson-
Gaussian noise originated from detection and environment. This work characterizes
and quantifies the noise through experiments on an in-house setup. Error propagation
analysis is then performed to quantify the measurement error in terms of normalized
Mueller matrix elements. The effects of system parameters on the Poisson-Gaussian
noise induced errors are studied, including signal strength, the signal sampling fre-
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quency, and the first-order coefficient between the signal variance and mean. This the-
sis then proposes a signal demodulation method in spectroscopic ellipsometry based
on maximum likelihood, in order to reduce the effects of Poisson-Gaussian noise. The
method accounts for the signal’s statistical distribution and solves for the Fourier coef-
ficients by maximizing the probability of the observed signal. The method’s capability
of achieving higher Mueller matrix accuracy as well as higher dimension precision is
demonstrated.

The second part develops a reconstruction method for dimensions. The objective
is to improve the dimension reconstruction precision and the reconstruction’s sensi-
tivity to changes in dimensions. The reconstruction algorithm along with weights’
selection are formulated. The method assigns higher weights to the more important
configurations, where the measurement is sensitive to dimension changes. The selec-
tion is based on partial derivatives of the Mueller matrix elements with respect to
dimensions. Improved precision is demonstrated through experimental measurements
of thin film standards and gratings.

The third part of this thesis shows the design and effectiveness of a Faraday effect-
based photometric ellipsometer. The new instrument eliminates mechanical motions
and enables high-speed and controllable modulation frequency. In addition, it features
a linear relationship between the applied current and the rotation of the polarization
plane and thus enables fast and easy demodulation. This thesis presents the design,
data reduction and the calibration procedure. Air and thin film sample experiments
validate the effectiveness of the prototype.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Objective of High-Performance Ellipsometry

The advancement in many industries calls for high-performance metrology and inspec-

tion methods. One major application requiring such a metrology method is nanoman-

ufacturing. The field has been experiencing rapid advancements. A prominent ad-

vancement is the shrinking critical dimensions: lithography had a linewidth of 10 nm

back in year 2016, and now has achieved 5 nm node, and is expected to reach 2 nm by

2024 [1]. In addition, the manufacturing speed has increased. Wafer mass production

has been demonstrated and one line can produce 125 wafers in an hour, up to 300

mm in diameter [2]. It is also a multi-stage process [3] and increase the necessity of

high-speed or high-throughput. The quality control in the industry renders challenges

to the metrology and inspection methods. And more importantly, if full inspection is

needed, the method have to be fast and non-invasive to avoid sample damage. Nowa-

days the golden standard is the scanning electron microscopy, which can only perform

selective examination due to the cost and the complex sample preparation. Current

inspections also rely a lot on functionality test. In manufacturing process, a desired

method will enable inline batch inspection instead of selective examination. Such a

method can be integrated with the manufacturing process so it can detect defects even

at intermediate stages. For this, the method needs to be compatible with large-range

measurements.
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The metrology or inspection method is important in many other industries and

applications in addition to nano-manufacturing. One example is surface roughness

examination. Currently painting surfaces such as those on luxury cars rely entirely

on human visual and haptic inspection. To automate the process, the inspection

method must be capable of large range and high speed. The thin film thickness

measurement application requires a metrology method to be of high resolution and

non-invasive to avoid sample damage. Another application lies in medical testing,

which generally favors non-invasiveness. An example is glucose measurement through

optical methods. Finally, the material characterization application also requires high

precision and non-invasiveness.

The above-mentioned applications require high-performance metrology methods.

Firstly, to achieve full sample and batch examination, the method must be non-

invasive. Secondly, the metrology needs high resolution to keep up with the shrinking

critical dimensions. Thirdly the method needs to be of high speed to be compatible

with high-throughput processes, and the multi-stage processes increase the workload

and further promote the necessity of high speed.

Many of the existing metrology methods do not meet the industries’ needs. A

lot of high-resolution methods are invasive. The commercial atomic force micro-

scopes (AFM) achieve angstrom lateral resolution, but are slow and for small-range

applications. Recent development on high-speed imaging AFM enabled 37 Hz on

50 𝜇m scanning size [4–7], far below the large-throughput and large-range require-

ments. Moreover, AFM is invasive in its contact mode, where the mechanical contact

between the probe and the sample introduces wear to the tip and the sample. Scan-

ning Electron Microscopy (SEM) [8,9] and Transmission Electron Microscopy [10,11]

achieve nm resolution by scanning with a focused beam of electrons, but is invasive

as the scanning process leaves the sample radioactive. The method also requires

vacuum environment and is time-consuming in sample preparation. In addition, the

method only acquires 2D images. Coherent diffraction imaging uses X-rays or elec-

trons [12, 13] to achieve high resolution, and the high-energy beam could leave the

sample radioactive. The method is also costly for high-volume and large-range in-
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spection. Fluorescence labeling-based methods such as stimulated emission depletion

(STED) [14,15] and photoactivated localization microscopy (PLAM) [16,17] are lim-

ited to large molecular-weight samples. Capacitive and optical methods are two im-

portant non-invasive metrology methods, but often do not have the desired resolution.

A scanning electrostatic force microscope is an example of capacitive sensing [18,19].

Optical methods are are subject to the diffraction limit. Conventional structured

illumination improves the diffraction limit by 2 times and is incapable of resolving

the critical dimensions in nano-manufacturing [20, 21]. Near-field methods capture

evanescent wave to get the diffraction-free information [22–24]. However, the optical

probe must be kept at a distance under one wavelength from the sample surface, and

has the disadvantage of slow scanning. Near field and far-field superlens and hyper-

lens have demonstrated resolving lines 125-nm apart at a wavelength of 365nm [25],

but is not ready for wafer critical dimension inspection [26,27].

Ellipsometry has the potential of meeting the industries’ needs. The method

is inherently non-invasive, compatible with large-throughput applications, and has

the potential of high resolution. The method also has the additional benefits of

being able to measure multi-layer and buried structures. Ellipsometry is suitable

for a large range of applications, including metrology in nano-manufacturing [28–33],

thin film thickness measurement [34–36], surface roughness estimation, and medical

applications [37]. Moreover, the method can measure the critical dimensions of multi-

layer and buried structures. The technology also finds its application in underwater

imaging [38–40] and astronomy [41,42]. The working principles of ellipsometry are as

follows. An ellipsometer experimentally measures the samples’ changing effects on a

light beam’s polarization state. The experimental results are then fitted to an optical

model to extract the sample’s critical dimensions and/or optical properties, and the

feature dimension below the diffraction limit can be extracted [43].

The goal of this thesis is to improve the performance of ellipsometry to make

it more suitable for non-invasive, high-resolution, and high-throughput applications.

Ellipsometry, in its current form, is incapable of industrial requirements and needs

further study. Among factors affecting the ellipsometry performance, there are two
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major sources of inaccuracy and imprecision: the effects of optical signal randomness

causes inaccuracy and impression [37]; the limited sensitivity in inverse problem limits

the dimension reconstruction precision. Among different configurations, rotating-

component ellipsometry is the most common type of commercial product and is widely

used [44, 45], the speed of which is fundamentally limited by the motor speed. The

goal of this thesis is therefore to focus on the above-mentioned problems and improve

ellipsometry performance.

1.2 Background

Ellipsometry has been applied in a plethora of industries as a metrology and inspec-

tion tool. The technology gains popularity due to its advantages of non-invasiveness,

high-speed, and high-resolution. One major application lies in new material devel-

opment, where material characterization relies heavily on ellipsometry [46–51]. The

technology has been successful in thin film thickness measurement, and is consid-

ered a promising metrology tool for the next generation of semiconductor devices in

nano-manufacturing industry [52–54]. In addition, ellipsometry finds its application

in other fields including biomedical detection [37,55,56], surface inspection and rough-

ness estimation [57,58] and environment monitoring such as dust formation in a large

plasma device [59].

An ellipsometer measures the sample’s changing effects on a light’s polarization

state, quantified by ellipsometric parameters or a Mueller matrix. There are ellip-

someters based on temporal polarization changes [44] or spatial polarization distribu-

tion [59–62], and time-varying or spatially varying light intensity signal are obtained

respectively during measurement.

Rotating-component ellipsometers fall under the category of temporal polarization

change-based ellipsometers. These have been the most popular type of commercial

ellipsometry products [44, 45], due to their simple design and implementation, wide

spectral range, and capability of parallel broadband wavelength scanning for high

speed in spectroscopic ellipsometry. The latest development features spectroscopic

Mueller matrix ellipsometry [46], capable of parallel broadband wavelength scanning
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(a) DRCE setup illustration in transmission mode

(b) DRCE setup illustration in reflection mode

Figure 1-1: Dual rotating-compensator ellipsometry setup illustration

as well as characterizing complex samples exhibiting inhomogeneity and anisotropy.

Recently in academia, the Mueller matrix ellipsometer has been increasingly used to

characterize anisotropic materials. In addition, the semiconductor industry is devel-

oping towards finer dimension and higher complexity from 2D to 3D, also calling for

Mueller matrix measurements. Spectroscopic Mueller matrix ellipsometry is mostly

achieved through dual-rotating component compensator ellipsometers (DRCE). Fig-

ure 1-1 illustrates the device in its transmission mode and reflection mode. The setup

consists of a light source, an incident arm containing a polarizer (P) and the first

rotating compensator (C1), the mounted sample (S), a reflective arm containing the

second rotating compensator (C2) and an analyzer (A), and a detector. The azimuthal

plane is marked by the attached coordinate. In transmission mode, the light beam

goes through the components, and the output Stokes vector is the product of the input

Stokes vector, the polarizing components’ Mueller matrices, and the rotation matri-

ces. During the experiment, the two compensators rotate at constant speeds at a fixed

ratio. The output light intensity is a time-varying spectrum, and the time-domain
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intensity output is a sum of harmonics at any specific wavelength. The principle is

the same for the reflective mode.

Photoelastic modulator (PEM)-based ellipsometry is a well-established ellipsom-

etry configuration. A PEM is excited at its resonance frequency, ranging from 20

kHz to 100 kHz and typically 50 kHz. The modulator acts as an oscillating retarder

to provide the necessary polarization manipulation together with other polarizing

components. PEMs have several advantages including high speed, resistance to low-

frequency noise, low operating power requirements, and greater numerical aperture.

On the other hand, PEMs have limitations. The high modulation frequency poses

challenges on the detection system [45], and a PEM-based ellipsometry cannot achieve

parallel measurement at multiple wavelengths ellipsometry for the same reason.

Ellipsometers enabled by magneto-optical components were developed in early

years of ellipsometry. The Faraday effect is a phenomenon where a polarization plane

is rotated in a material when a magnetic field is applied, and the rotation angle is

proportional to the magnetic field projected on the light propagation direction. The

first real-time spectroscopic ellipsometer took advantage of Faraday rotators [63]. The

ellipsometer uses a "null" configuration, where the minimum irradiance is determined

as a function of the azimuthal angle of the polarizer and the analyzer as well as the

Faraday rotation angle, and the ellipsometric parameters are then determined [63–67].

The configuration has its drawbacks. Firstly, the configuration does not allow parallel

measurement at multiple wavelengths. Secondly, the measurement is susceptible to

random noises in determining the nulling position, especially when the light source

is weak. In contrast, later development of photometric ellipsometers components is

capable of parallel wavelength scanning [45] and can work with weak light sources [68].

There are temporal polarization changing ellipsometers based electro-optical com-

ponents. The usage of liquid-crystal variable retarder (LCVR) was introduced in

Mueller matrix ellipsometry in 2000 [69] to enable compact design [70]. The retar-

dance of the electro-optical component changes with the voltage applied to it. Due

to the voltage-retardance nonlinearity, most studies select a few voltage values to

perform calibration and measurements. Because measurements are only taken at
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discrete retardance values instead of a continuous range of retardance, the instru-

mentation is potentially more sensitive to calibration errors and random noises. To

counter this problem, some studies focused on measuring the voltage-retardance re-

lationship and the continuously variable voltage. Many earlier setups used only one

or few wavelengths [69, 71, 72] due to wavelength dependency. Later research started

to use broadband light sources and proposed calibration methods [73, 74]. There

have also been studies to optimize the ellipsometer setups using LCVR [75, 76], and

a Mueller matrix error lower than 0.5% has been reported for one wavelength on a

polarizer sample [73]. In summary, excellent works have advanced the application

of electro-optical components in ellipsometry, but the voltage-retardance nonlinearity

and sensitivity to alignment errors remain challenging.

1.3 Thesis Contributions and Outline

This thesis improves the performance of ellipsometry through three contributions.

The first contribution lies in the quantification and mitigation of errors induced by

mixed Poisson-Gaussian noise present in the ellipometer system. The measurement

accuracy of ellipsometry could be significantly affected by the existence of Poisson-

Gaussian mixed noise. This thesis first characterizes and quantifies the noise through

experiments on an in-house setup. This is then followed by an error quantification in

terms of normalized Mueller matrix calculation through error propagation analysis.

Finally the thesis proposes an approach to ellipsometry demodulation, in order to

reduce the effects of Poisson-Gaussian noise. The method is based on maximum

likelihood, and takes into account the statistical model of the signal randomness.

The second contribution is an improved dimension reconstruction method. After

the experimental measurement is obtained, the result is fitted to an optical model for

dimension reconstruction. A method is developed to improve the reconstruction’s sen-

sitivity to changes in dimensions, and in turn improve the precision of the dimension

reconstruction.

The third contribution is the design and implementation of Faraday effect-enabled

photometric ellipsometry. The design utilizes Faraday effect for polarization manipu-
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lation to overcome the speed limit from motor rotation in rotating-component ellip-

someter. The design has the additional benefits of eliminating mechanical rotation,

vibration, and reduces the induced errors.

The rest of this thesis is organized as follows. In Chapter 2, the error quantifica-

tion and mitigation is presented. In Chapter 3, a reconstruction method is proposed

as well as its experimental verification. Chapter 4 presents the design and validation

of the proposed Faraday effect-based photometric ellipsometry. The experiments are

described in detail in Chapter 5. Chapter 6 provides the conclusion and recommen-

dations.
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Chapter 2

Quantification and Reduction of

Poisson-Gaussian Noise Induced

Errors in Spectroscopic Ellipsometry

2.1 Introduction

The measurement accuracy of ellipsometry can be significantly affected by the exis-

tence of Poisson-Gaussian mixed noise. This chapter focuses on rotating-component

ellipsometry and the Faraday effect-enabled photometric ellipsometer proposed in

Chapter 4.

This chapter achieves three goals. The first goal is noise characterization and

quantification through experiments on an in-house setup.

The second goal is a detailed error characterization and quantification in terms of

normalized Mueller matrix in the presence of Poisson-Gaussian noise. Specifically, the

distribution of the normalized Mueller matrix elements error is derived, accounting for

the nonlinear error propagation occurring at the normalization step. The derivation

is verified with Monte Carlo simulations. The derivation considers system parame-

ters including the signal strength, the signal sampling frequency, and the correlation

between the noise and signal. The effects of the parameters on the induced errors are

also studied.
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The third goal of this chapter is the development of a maximum likelihood method

to spectroscopic ellipsometry demodulation, in order to reduce the effects of Poisson-

Gaussian noise. Compared to the most commonly used method of DFT, the major

improvement of the proposed method is that it accounts for the signal’s probabilistic

distribution induced by the Poisson-Gaussian noise. The method then solves for the

Fourier coefficients by maximizing the probability of observed signal. he improved

performance of the method is demonstrated against DFT in terms of Mueller matrix

measurement accuracy and sample dimension reconstruction accuracy.

The rest of this chapter is organized as follows. In Section 2.2, the experimental

noise characterization and quantification are presented. Section 2.3 contains the anal-

ysis of the induced normalized Mueller matrix error, and the verification of the anal-

ysis through Monte Carlo simulations. Section 2.4 presents the proposed maximum

likelihood method to signal demodulation, and the method’s capability of achieving

higher Mueller matrix accuracy as well as higher dimension reconstruction accuracy

and precision. The chapter’s conclusion is in Section 2.5.

2.2 Experimental Noise Characterization and Quan-

tification

In this section, the experimental noise characterization and quantification is presented.

To characterize and quantify the noise, measurements are taken on an in-house

dual rotating-compensator ellipsometer (DRCE) setup. Fig. 1-1 is an illustration of

the device. The setup consists of a light source, a polarizer (P), the first compensator

(C1), a sample (S), the second compensator (C2), an analyzer (A), and a detector.

Fig. 1-1a and 1-1b show the setup in its transmission and reflective mode respec-

tively. The coordinates attached to the optical components indicate the azimuthal

angles. The description and figures of the in-house setup is shown in Chapter 5.

During the experiment, the setup is kept stationary in its transmission mode. The

integrated light intensity depends on the integration time, and light spot size, varied

by adjusting iris aperture. Given the light source in the setup, the intensity is also
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different at different wavelengths. Intensities are collected at different combinations

of integration time, spot size, and wavelength. The spectrometer reads a spectrum

at different wavelengths, and 3000 integrated intensities are taken consecutively. In

this experiment, results from 1256 wavelengths are analyzed, ranging from 450 nm to

1000 nm. The same procedure is repeated for an integration time of 30 ms and 100

ms, and at several light source intensities. The integration time can be changed in

the user interface software of the spectrometer.

The experiments indicate a mixed Poisson-Gaussian noise, and the distribution

properties are obtained. Ideally the integrated intensities are identical given the same

wavelength, integration time, and light source intensity. However the integrated in-

tensities involve noise. Fig. 2-1 shows 3000 consecutive measurements at 873 nm as

an example. The temporal noise is observed. Fig. 2-2 plots the signal variance versus

its mean and a linear fit. For each set of parameters, the variance and mean are

calculated from 3000 integrated intensities. The variance is observed to be linearly

correlated with the mean. The rest of this chapter is based on this uncertainty mea-

surement. To better understand the noise, the cumulative density function is plotted

for the experimental data and a simulated process, as in Fig. 2-3. The simulated pro-

cess is a mixed Poisson-Gaussian process, where the variable of the Poisson process is

multiplied by a constant. The blue line is from the experimental data, and the dashed

red line is from the simulated Poisson-Gaussian process. The match indicate the sig-

nal collection approximating a Poisson-Gaussian process. The first-order behavior

originates from a Poisson process in photon detection. The first-order coefficient is

0.32, representing the property of the CCD detector. The offset magnitude is 51.95

from fitting, owing to a Gaussian process. Higher orders of the variance-mean curve

represent other noise sources [77]. In this thesis, Poisson-Gaussian is recognized as

the dominant random noise in the setup, and the focus of this chapter is the study of

its effects in signal processing and mitigation.

In the case of mixed Poisson-Gaussian noise, the variance of each integrated in-

tensity is linearly related with its magnitude as in Eq. (2.1), where 𝜎2
𝑘 is the variance

associated with the 𝑘th integrated intensity. Both coefficients 𝛾1 and 𝛾2 are constants.
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Figure 2-1: Temporal noise
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Figure 2-2: Light intensity variance vs. mean

The offset 𝛾2 represents Gaussian noise. The first order coefficient 𝛾1 originates from

the photon shot noise. When the spectral irradiance incidents on the photodetector,

the generated photoelectrons follow a Poisson distribution. The scaling factor 𝛾1 repre-

sents the integrated intensity being proportional to the generated photoelectrons [78].

To further reduce the variance, binning N pixels improves the signal-to-noise ratio

from
√
S to

√
N · S and the variance-to-mean ratio retains its linear behavior.

𝜎2
𝑘 = 𝛾1 · 𝐸[𝑆𝑘] + 𝛾2 (2.1)
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Figure 2-3: Cumulative density function of experimental and simulated processes

As the number of experiments increases, each integrated intensity follows a Gaus-

sian distribution according to the Central Limit Theorem (CLT). Fig. 2-4 shows the

histogram of integrated intensities at 873 nm using a 30 ms integration time and fixed

light source intensity. The probability density function is calculated using𝑀𝐴𝑇𝐿𝐴𝐵

function 𝑛𝑜𝑟𝑚𝑝𝑑𝑓 . The integrated intensities follow a Gaussian distribution according

to the Central Limit Theorem. In Fig. 2-5, the noise’s auto-correlation is plotted for a

lag of 1 to 100 integration period, and has a maximum magnitude of 0.043, indicating

the noise from integrated intensities are independent from or very weakly correlated

with each other.

Figure 2-4: Integrated intensity histogram at 873 nm
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Figure 2-5: Integrated intensities autocorrelation

2.3 Quantification of Poisson-Gaussian Noise Induced

Errors

In this section, the quantification of the measurement uncertainty and errors induced

by mixed Poisson-Gaussian noise is presented. The uncertainty and errors are quan-

tified by normalized Mueller matrix and reconstructed dimensions. In Subsection

2.3.1, the statistical analysis of the error quantification is presented. First, the distri-

butions of the normalized Mueller matrix elements are derived. The properties of the

distributions are also derived as functions of three parameters: light intensity, sam-

pling frequency, and the first-order coefficient between the signal variance and mean.

Second, the expected mean absolute error of the Mueller matrix elements are then

computed. In Subsection 2.3.2, Monte Carlo simulations are carried out to verify the

assumptions and results in the statistical analysis.

2.3.1 Statistical Analysis

In this subsection, the statistical analysis of the induced error on normalized Mueller

matrix is performed.
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The linear transformation between the measured signal and unnormliazed Mueller

matrix elements is first established. The transformation could be decomposed into

two parts: the linear transformation from the signal to the Fourier coefficients, and

the linear transformation from the Fourier coefficients to the unnormalized Mueller

matrix elements. As to the first part, the direct output of a rotating-component

spectroscopic ellipsometry is a time-varying spectrum resulting from the rotation of

designated polarizing components. The light intensity is a sum of harmonics at any

specific wavelength as in Eq. (2.2), where 𝐼(𝑡) is the light intensity exiting the light

path at time 𝑡, 𝐼𝑜 is the DC term, 2𝑛 is the harmonic order, 2𝑁 is the maximum

harmonic order, 𝛼2𝑛 and 𝛽2𝑛 are the Fourier coefficients associated with order 2𝑛,

and 𝜔 is the rotating components’ fundamental frequency. During experiments, the

polarizing components rotate at a constant speed. Broadband waveform integration

is commonly adopted: the spectrometer measures the integrated intensity over a

period of time. Integrating Eq. (2.2) gives the measured signal in Eq. (2.3), where

𝑆𝑘 is the 𝑘𝑡ℎ integrated intensity, 𝑡1 and 𝑡2 are the starting and ending time of the

integration period, and ∆𝑡 is the integration duration. Throughout this thesis, vectors

and matrices will be in bold.

𝐼(𝑡) = 𝐼𝑜 +
𝑁∑︁

𝑛=1

[𝛼2𝑛 cos(2𝑛𝜔𝑡) + 𝛽2𝑛 sin(2𝑛𝜔𝑡)] (2.2)

𝑆𝑘 =

∫︁ 𝑡2

𝑡1

𝐼(𝑡)𝑑𝑡 (2.3a)

= ∆𝑡 · 𝐼𝑜 +
𝑁∑︁

𝑛=1

sin(𝑛𝜔∆𝑡)

𝑛𝜔
cos[𝑛𝜔(2𝑘 − 1)∆𝑡]𝛼2𝑛

+
𝑁∑︁

𝑛=1

sin(𝑛𝜔∆𝑡)

𝑛𝜔
sin[𝑛𝜔(2𝑘 − 1)∆𝑡]𝛽2𝑛

(2.3b)

Each measured light intensity is therefore a linear function of the DC term and the

Fourier coefficients, which are to be determined during signal demodulation. Up to

now, the formalism follows the well-defined Hadamard equation method [79]. Define
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a column vector 𝜃 consisting of the DC term and the Fourier coefficients as in Eq.

(2.4). These are all the parameters to be solved for in signal demodulation. Eq. (2.3)

can then be rewritten as Eq. (2.5), where 𝜑𝑘 is the coefficient vector associated with

the 𝑘th integrated intensity. The coefficient vector associated with each measurement

is explicitly written out in Eq. (2.6).

𝜃 = [𝐼𝑜, 𝛼2, ..., 𝛼2𝑁 , 𝛽2, ..., 𝛽2𝑁 ]
𝑇 (2.4)

𝑆𝑘 = 𝜑𝑇
𝑘 𝜃 (2.5)

𝜑𝑘 = [∆𝑡,
sin(𝜔∆𝑡)

𝜔
cos[𝜔(2𝑘 − 1)∆𝑡], ...,

sin(𝑛𝜔∆𝑡)

𝑛𝜔
cos[𝑛𝜔(2𝑘 − 1)∆𝑡], ...,

sin(𝑁𝜔∆𝑡)

𝑁𝜔
cos[𝑁𝜔(2𝑘 − 1)∆𝑡],

sin(𝜔∆𝑡)

𝜔
sin[𝜔(2𝑘 − 1)∆𝑡], ...,

sin(𝑛𝜔∆𝑡)

𝑛𝜔
sin[𝑛𝜔(2𝑘 − 1)∆𝑡], ...,

sin(𝑁𝜔∆𝑡)

𝑁𝜔
sin[𝑁𝜔(2𝑘 − 1)∆𝑡]]𝑇

(2.6)

Integrated light intensities are measured consecutively with the same integration time,

leading to a system of linear equations as in Eq. (2.7), where S is the integrated in-

tensities vector, and 𝐾 is the number of integrated intensities in one optical period.

The elements in coefficient matrix Φ involve the rotation speed and sampling fre-

quency. The linear transformation between the integrated light intensities signal and

the Fourier coefficients is thus established.

S =
[︁
𝑆1 ... 𝑆𝑘 ... 𝑆𝐾

]︁
T (2.7a)

Φ =
[︁
𝜑1 ... 𝜑𝑘 ... 𝜑𝐾

]︁
T (2.7b)

S = Φ · 𝜃 (2.7c)

A linear relationship can further be established between the unnormalized Mueller

matrix elements and the integrated light intensities signal. The unnormalized Mueller

matrix elements are solved from 𝜃 through a system of linear equations, well estab-

lished in literature [80]. Here the transformation is written in Eq. (2.8). The elements

of the coefficient matrix B involve the optical components’ initial positions and the

34



compensators’ retardance. Eq. (2.9) describes the demodulation, a linear transforma-

tion from the integrated intensities to unnormalized Mueller matrix elements. Here

the unnormalized Mueller matrix is reshaped to a 16 by 1 column vector M𝑢. The

linear regression solution is given in Eq. (2.9) and (2.10).

𝜃 = B ·M𝑢 (2.8)

M𝑢 = A · S (2.9)

A = (B𝑇B)−1 ·B𝑇 · (Φ𝑇Φ)−1 ·Φ𝑇 (2.10)

An unnormalized Mueller matrix element can be modeled as following a Gaussian

distribution. From Eq. (2.9), an unnormalized Mueller matrix element is a linear

combination of integrated intensities. Given the assumption of independent integrated

intensities and Gaussian distribution of each integrated intensity, the unnormalized

Mueller matrix elements follow Gaussian distributions, as in Eq. (2.11), where 𝑀𝑢
𝑘 is

the 𝑘th element in M𝑢, A is the 𝑘th row of A, S𝑛 is a vector consisting of the noisy

integrated intensity variables.

𝑀𝑢
𝑘 = A𝑘 · S𝑛 (2.11)

The properties of error distribution are derived for each normalized Mueller matrix

element. The Mueller matrix is only independent of the incidence intensity after

normalization. When the matrix is normalized to the first element in the first row

as in Eq. (2.12), the normalized Mueller matrix describes the change in polarization

state without accounting for the change in light intensity. Theoretically, the first

element in the first row of the unnormalized Mueller matrix is the largest number in

the unnormalized Mueller matrix. In Eq. (2.12), M𝑛 is the column vector consisting

of the normalized Mueller matrix elements, and 𝑀𝑢
1 is the first element in M𝑢.

M𝑛 =
M𝑢

𝑀𝑢
1

(2.12)

Combined with Eq. (2.9), the normalized Mueller matrix elements are given in Eq.
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(2.13), where A1 is the first row of A.

𝑀𝑛
𝑘 =

A𝑘 · S𝑛

A1 · S𝑛

(2.13)

Each element in the normalized Mueller matrix therefore follows a ratio distribution

from the quotient of two Gaussian variables, or a Cauchy distribution, which does

not have a finite mean or variance. However, all normalized Mueller matrix elements

pass a Lilliefors test with 1% significance level in simulations, and therefore can be

approximated with a Gaussian distribution. This approximation is verified through

Monte Carlo simulations in the next subsection. The properties of the approximated

Gaussian distributions are derived as follows. The mean and variance of the numerator

and denominator are derived in Eq. (2.14) and Eq. (2.15) respectively, where 𝑄𝑁

denotes the numerator of the normalized Mueller matrix elements and is a scalar,

𝜇𝑄𝑁
is the mean of the numerator, 𝜎2

𝑄𝑁
is the variance of the numerator, 𝑄𝐷 denotes

the denominator of the normalized Mueller matrix elements and is a scalar, 𝜇𝑄𝐷
is

the mean of the denominator, and 𝜎2
𝑄𝐷

is the variance of the denominator. In the

equations, ∆S is a 𝐾 by 1 vector representing the noise, which is the difference

between the clean and noisy signal, · represents the inner product, and ⊙ represents

element-wise multiplication. The order of operations in the equations is: parentheses,

element-wise multiplication, inner product, and addition and subtraction.

𝑄𝑁 = A𝑘 · S𝑛 = A𝑘(S+∆S) (2.14a)

𝜇𝑄𝑁
= A𝑘 · S (2.14b)

𝜎2
𝑄𝑁

= A𝑘 ⊙A𝑘 · 𝜎2
𝑆 = A𝑘 ⊙A𝑘 · (𝛾1 · S+ 𝛾2) (2.14c)

𝑄𝐷 = A1 · S𝑛 = A1(S+∆S) (2.15a)

𝜇𝑄𝐷
= A1 · S (2.15b)

𝜎2
𝑄𝐷

= A1 ⊙A1 · (𝛾1 · S+ 𝛾2) (2.15c)
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The covariance of the numerator and denominator is calculated in Eq. (2.16), where

𝑐𝑜𝑣(𝑄𝑁 , 𝑄𝐷) is the covariance function, 𝐸[·] is the expected value, 𝐴𝑘𝑗 is the element

of A in the 𝑘𝑡ℎ row and 𝑗𝑡ℎ column, similarly 𝐴1𝑖 is the element of A in the first

row and the 𝑖𝑡ℎ column, 𝐴𝑘𝑖 is the element of A in the 𝑘𝑡ℎ row and the 𝑖𝑡ℎ column,

and 𝒩 refers to a normal distribution. The simplification in Eq. (2.16c) is based

on independent noise from each integrated light intensity. The expectation in Eq.

(2.16e) is obtained from the property of a Chi-squared distribution.

𝑐𝑜𝑣(𝑄𝑁 , 𝑄𝐷) = 𝐸 [(A1S𝑛)(A𝑘S𝑛)]− 𝐸 [A1S𝑛]𝐸 [A𝑘S𝑛] (2.16a)

= 𝐸 [(A1S)(A𝑘∆S) + (A1∆S)(A𝑘S) + (A1∆S)(A𝑘∆S)] (2.16b)

= 𝐸

[︃
(

𝑛∑︁
𝑖=1

𝐴1𝑖∆𝑆𝑖)(
𝑛∑︁

𝑗=1

𝐴𝑘𝑗∆𝑆𝑗)

]︃
(2.16c)

=
𝑛∑︁

𝑖=1

𝐸 [(𝐴1𝑖∆𝑆𝑖)(𝐴𝑘𝑖∆𝑆𝑖)] (2.16d)

=
𝑛∑︁

𝑖=1

𝐴1𝑖𝐴𝑘𝑖𝜎Δ𝑆𝐸[(𝒩 (0, 1))2] (2.16e)

= A1 ⊙A𝑘(𝛾1S+ 𝛾2) (2.16f)

The mean and variance of the approximated Gaussian distribution of a normalized

Mueller matrix element, 𝐸[𝑀𝑛
𝑘 ] and 𝜎2

𝑀𝑛
𝑘
, are then obtained from a second-order

Taylor expansion as in Eq. (2.17).

𝐸[𝑀𝑛
𝑘 ] =

𝜇𝑄𝑁

𝜇𝑄𝐷

+
𝜎2
𝑄𝐷
· 𝜇𝑁

𝜇3
𝑄𝐷

− 𝑐𝑜𝑣(𝑄𝑁 , 𝑄𝐷)

𝜎2
𝑄𝐷

(2.17a)

𝜎2
𝑀𝑛

𝑘
=
𝜎2
𝑄𝐷
· 𝜇2

𝑄𝑁

𝜇4
𝑄𝐷

+
𝜎2
𝑄𝑁

𝜇2
𝑄𝐷

− 2𝑐𝑜𝑣(𝑄𝑁 , 𝑄𝐷) · 𝜇𝑄𝑁

𝜇3
𝑄𝐷

(2.17b)

Error of the 𝑘th normalized Mueller matrix element is the difference between 𝑀𝑘 and

the true value, which is a constant, and therefore is also a Gaussian distribution. The

mean and variance of the error are 𝜇𝑒 and 𝜎
2
𝑒 , and are given in Eq. (2.18).

𝜇𝑒 =
𝜎2
𝑄𝐷
· 𝜇𝑄𝑁

𝜇3
𝑄𝐷

− 𝑐𝑜𝑣(𝑄𝑁 , 𝑄𝐷)

𝜎2
𝑄𝐷

(2.18a)
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𝜎2
𝑒 = 𝜎2

𝑀𝑛
𝑘

(2.18b)

Finally, the mean absolute error of a normalized Mueller matrix is a folded normal

distribution, and its expectation 𝐸[|∆𝑀𝑛
𝑘 |] is given by Eq. (2.19).

𝐸[|∆𝑀𝑛
𝑘 |] = 𝜎𝑒

√︂
2

𝜋
𝑒−(𝜇2

𝑒/2𝜎
2
𝑒) − 𝜇𝑒

(︂
1− 2ℎ(

𝜇𝑒

𝜎𝑒
)

)︂
(2.19)

where ℎ is the normal cumulative distribution function.

2.3.2 Monte Carlo Simulations

In this subsection, in order to verify the statistical analysis in Subsection 2.3.1, Monte

Carlo simulations are carried out. The expressions of induced normalized Mueller

matrix error are verified, as well as the Gaussian distribution approximation of nor-

malized Mueller matrix elements.

Monte Carlo simulations are carried out for different values of light intensity,

sampling frequency, and noise magnitude. For each set of parameters, the experiment

is simulated for 4000 times. In the simulations, the noise-free integrated intensities

are simulated given the sample and the light source intensity. For each simulated

noise-free integrated intensity,

the probabilistic distribution of the noisy integrated intensity is obtained according

to Eq. (2.1), where the variance is a first-order function of the noise-free integrated

intensity. By sampling from the distribution, the noisy integrated intensity is simu-

lated. The simulations are performed for air and a grating sample. The simulations

of both air and grating support the assumptions and results of the error propagation

analysis. For brevity of this chapter, only the simulation results for a grating sam-

ple are presented. The results for air can be found in Appendix A. The SiO2 on Si

grating sample has a pitch of 3 𝜇m, a step height of 1 𝜇m, and its theoretical Mueller

matrix is computed through rigorous coupled-wave analysis (RCWA) at an incident

wavelength of 384 nm, an incident angle of 55 and an azimuthal angle of 0∘. Fig. 2-6

shows the SEM image of a grating sample.

The Gaussian approximation of normalized Mueller matrix elements is verified
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Figure 2-6: SEM image of the grating sample

Figure 2-7: Histogram of normalized 𝑀𝑛
33 values from simulations

through simulations. All simulations are conducted at fixed nominal normalized

Mueller matrix elements values, obtained from simulation on the above-mentioned

grating. Due to presence of Poisson-Gaussian noise, the values of each normalized

Mueller matrix element form a distribution. For example, the fixed nominal value of

𝑀𝑛
33 is -0.4437, and the simulated measurements form a distribution ranging from -

0.5647 to -0.3072. Fig. 2-7 shows the histogram of normalized Mueller matrix elements

measurements from simulations. The blue bars represent the probability density func-

tion from the simulations, and the red lines show the Gaussian fit. Fig. 2-8 shows the

probability-probability plot (P-P plot) of each Mueller matrix element against a Gaus-

sian distribution. The blue markers show the data from simulations, and the red line
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Figure 2-8: Normal probability plot of normalized Mueller matrix values from simu-
lations

shows the normal distribution reference line. The match further validates the state-

ment that each normalized MM element statistically form a Gaussian distribution.

All normalized Mueller matrix elements present a valid Gaussian distribution, except

for 𝑀11, which is at a constant value of 1, due to the normalization with respect to

𝑀11. The Gaussian approximation is also examined and verified for a smaller number

of simulations. Fig. 2-9 is for 200 simulations. The Gaussian approximations pass a

Lilliefors test with 2% significance level. There are some discrepancies at both ends

of the lines, due to the small simulation set containing fewer samples from the low

probability region. For the major part with a cumulative density function from 0.03

to 0.97, the two lines show good agreement, indicating the Gaussian approximation

is valid.

The expression for induced Mueller matrix error is then verified. During each

simulation, the mean absolute error of the Mueller matrix elements is calculated
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Figure 2-9: Normal plot of 𝑀33 using 200 simulations

Figure 2-10: Averaged Mueller matrix elements converges

by averaging the absolute error over all elements. The mean absolute error is then

averaged over all simulations. The effects of three parameters are studied, namely

the first-order coefficient between an integrated intensity’s variance and mean 𝛾1, the
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Figure 2-11: The induced measurement error increases with 𝛾1

sampling frequency, and the light intensity. Fig.2-10 shows the averaged Mueller

matrix elements converge as the number of simulation increases. By inspecting the

simulation result, the averaged Mueller matrix elements converge after around 500

simulations. The large number of simulations ensures convergence.

Fig.2-11 plots the averaged mean absolute error versus the first-order coefficient

of signal variance to mean. Each subfigure represents a scenario with a different

combination of light intensity and sampling frequency. The light intensity is increased

from left to right, with the averaged light intensity 𝑆 obtained by averaging the

noise-free integrated intensities. The sampling frequency is increased from top to

bottom. Two parameters, optical period and sampling frequency, can both affect the

measurement accuracy, and the effects are dependent. By fixing one parameter, the

effects of the other can be studied. In the simulations, the total time is selected as one

optical period and fixed at 36s, and the sampling frequency is varied, and therefore

the number of integrated intensities. In the subfigures’ titles, 𝐾 is the number of

integrated intensities, and therefore, a larger 𝐾 indicates a higher sampling rate. In

42



each subfigure, the mean absolute error is plotted with respect to the variance-mean

first-order coefficient. The red curves are obtained from the probabilistic analysis, and

the blue curves are obtained from the Monte Carlo simulations. The match indicates

that the probabilistic analysis is verified by Monte Carlo simulation. In all scenarios,

the error increases with increased 𝛾1 as expected. The error significantly decreases

with increased light intensity. However, high intensity is not always feasible. For

example, larger electrode gaps are required for the operation of higher power lamps,

where the arc is susceptible to wandering [45]. Moreover, to be compatible with

high-throughput requirements, the ellipsometer should operate with high speed, and

therefore the integration time is shortened, and the integrated intensity magnitude

is lowered. Lastly, the signal strength could be further lowered when the sample

is absorbing. With respect to the effects of sampling frequency, the error slightly

decreases with increasing sampling frequency. However, when operating at higher

speed, only fewer integrated intensities can be obtained within one optical period

with the same detector sampling capability.

2.4 Maximum Likelihood-Based Signal Demodula-

tion for Noise Mitigation

In this section, a signal demodulation method is proposed to mitigate the Poisson-

Gaussian noise induced errors in spectroscopic ellipsometry. In Subsection 2.4.1, the

existing signal demodulation methods and noise-mitigation approaches are reviewed,

and the technical gaps are identified. In Subsection 2.4.2, a demodulation method

is proposed based on maximum likelihood method. The formalism and solution of

the maximum likelihood signal demodulation method is derived. In Subsection 2.4.3,

Monte Carlo simulations are
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2.4.1 Review and Technical Gaps of Existing Demodulation

and Noise-Mitigation Methods

Discrete Fourier Transform is the most recognized signal demodulation approach to

rotating-component spectroscopic ellipsometry. Signal demodulation involves two

steps: solving for the Fourier coefficients from the intensity signal, and in turn solving

for the Mueller matrix from the Fourier coefficients. The most popular methods to

solve for the Fourier coefficients are Discrete Fourier Transform (DFT) [45, 81–86]

and Hadamard transform [44, 79], with the same underlying approach. The work

in [79] unifies the two methods by establishing the relationship between the Fourier

coefficients found by DFT and by Hadamard equations.

Many of the current demodulation methods, such as DFT, are not designed to

tackle the signal-dependent noise. Poisson-Gaussian mixed noise exists in an opti-

cal system, and introduces errors on measurements. Gaussian noise represents the

random and thermal noise. Poisson noise rises from the photon detection being a

Poisson process, and its presence means the noise has strong correlation with the

signal, and can potentially induce significant errors on the Mueller matrix and in

turn the sample measurement. In addition, environmental vibrations and the setup’s

thermal expansion affect the light path and therefore generate signal-correlated noise.

The error propagation analysis and error estimation for systematic random noise have

been studied in [77], covering major error sources including setup errors, random er-

rors in experiment, and reconstruction errors. In addition, the chapter accounts for

other types of random noise than Poisson-Gaussian noise. Excellent works have been

devoted to DFT and its advanced variants in optical system: Fourier domain peak

phase (FDPP), Fast Peak Locating (FPL), and linear regression (LR) have been ap-

plied to estimate the optical path in spectral interferometry in the presence of additive

Gaussian noise [87]. However, the above-mentioned methods do not account for the

noise at the signal frequency or signal-noise correlation. To achieve Poisson denois-

ing, an efficient way is transforming Poisson to white Gaussian distribution through

Anscombe transform. However, signal in rotating-component ellipsometry changes in

the temporal domain, and a different Gaussian distribution is generated after trans-
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formation for each time point on the signal. The Fourier coefficients are then obtained

from all signal points with varying Gaussian distribution properties. Therefore, the

popular filters for white Gaussian noise such as DFT do not apply, because the noise

distribution varies from each integrated intensity to another. Other works use re-

dundant spatial or temporal information to achieve high imaging performance [88],

but the methods do not apply to temporal varying ellipsometry. Similarly [89] uses

redundant information, where the authors merge multiple frames to restore an image.

In addition to signal post-processing, there are studies seeking to reduce the sensitiv-

ity to noise through setup optimization, and choosing specific polarization generation

and analysis states in order to minimize the measurement variance when the system is

subject to Gaussian and/or Poisson noise [90–94]. These works take an important step

towards noise mitigation, but is only suitable for discrete measurement method. This

chapter focuses on continuously-rotating measurement method, having its advantages

of being compatible with high-speed and accurate measurement and imposing fewer

motion control requirements.

2.4.2 Maximum Likelihood-Based Signal Demodulation

This subsection proposes an alternative maximum likelihood method to spectroscopic

ellipsometry demodulation for improved accuracy. This subsection derives the maxi-

mum likelihood formalism for general rotating-component spectroscopic elllipsometry

signal demodulation, as well as its solution as a system of nonlinear equations.

The maximum likelihood method described here solves for the Fourier coeffi-

cients, taking into account the probabilistic distribution of the signal. In the existing

Hadamard method, to obtain the Fourier coefficients, linear regression minimizes the

root mean squared error (RMSE) of the expected integrated intensities. Linear re-

gression is based on the assumption of independent and identical noise distribution

at each integrated intensity, which is violated in the case of the ellipsometry system.

In practice, the ellipsometry system is subject to dominant Poisson-Gaussian noise,

and therefore the noise distribution depends on the signal, and its distribution varies

from each integrated intensity to another. Instead of minimizing the RMSE of the
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expected integrated intensities, this chapter finds the Fourier coefficients by maximiz-

ing the probability of the signal as in Eq. (2.20), where �̂� is the expected unknown

parameters, and 𝑆𝑛
𝑘 is the 𝑘th element of S𝑛.

�̂� = argmax
𝜃

𝑃 ({𝑆𝑛
1 , ..., 𝑆

𝑛
𝑘 , ..., 𝑆

𝑛
𝐾}|𝜃) (2.20)

The probability of one integrated intensity taking on its observed value is in Eq.

(2.21) when it follows a Gaussian distribution, where 𝑃 (𝑆𝑛
𝑘 ) is the probability of

the 𝑘th integrated intensity taking on the value of 𝑆𝑛
𝑘 , 𝜎𝑘 is the variance of the 𝑘th

integrated intensity. The probability of all observations assuming independence is

shown in Eq. (2.22), where 𝑝 is the likelihood function of the all integrated intensities

taking on the observed values.

𝑃 (𝑆𝑛
𝑘 ) =

1√︀
2𝜋𝜎2

𝑘

exp

[︂
−(𝑆𝑛

𝑘 − 𝑆𝑘)
2

2𝜎2
𝑘

]︂
(2.21)

𝑝 = 𝑃 ({𝑆𝑛
1 , ..., 𝑆

𝑛
𝑘 , ..., 𝑆

𝑛
𝐾}|𝜃) =

𝐾∏︁
𝑘=1

1√︀
2𝜋𝜎2

𝑘

exp

[︂
−(𝑆𝑛

𝑘 − 𝑆𝑘)
2

2𝜎2
𝑘

]︂
(2.22)

Sk = Ŝk = 𝜑T
k 𝜃 ∀ k = 1, ...,K (2.23)

The clean signal is unknown, and the expected signal is used instead as in Eq.

(2.24),where 𝑆𝑘 is the expected 𝑘th integrated intensity. Taking the natural log of

the likelihood function yields the log-likelihood function in Eq. (2.25).

𝑝 =
𝐾∏︁
𝑘=1

(︂
1

2𝜋𝜎2
𝑘

)︂ 1
2

exp

[︃
−(𝑆𝑘 − 𝑆𝑛

𝑘 )
2

2𝜎2
𝑘

]︃
(2.24)

ln 𝑝 = −𝐾
2
ln(2𝜋)− 1

2

𝐾∑︁
𝑘=1

ln𝜎2
𝑘 −

1

2

𝐾∑︁
𝑘=1

1

𝜎2
𝑘

(︀
𝜑𝑇

𝑘 𝜃 − 𝑆𝑛
𝑘

)︀2
(2.25)

Due to the monotonic nature of the natural log function, the objective is to max-

imize the log-likelihood function. After a sign flip, the formalism is equivalent to

minimizing the objective function f, defined in Eq. (2.26a). The optimization prob-

lem is shown in Eq. (2.26). The constraint function 𝑔𝑘(𝜃) dictates that all the
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predicted integrated intensities are non-negative as in Eq. (2.26c). The optimal con-

dition is described by Eq. (2.26d) through (2.26h) from the Karush-Kuhn-Tucker

(KKT) conditions, where H is the Hessian matrix, and 𝜇𝑘 is a slack variable.

𝑓 =
𝐾∑︁
𝑘=1

ln𝜎2
𝑘 +

𝐾∑︁
𝑘=1

1

𝜎2
𝑘

(𝜑𝑇
𝑘 𝜃 − 𝑆𝑛

𝑘 )
2 (2.26a)

�̂� = argmin
𝜃

𝑓 (2.26b)

𝑔𝑘(𝜃) = −𝜑𝑇𝜃 ≤ 0 ∀ 𝑘 = 1, ..., 𝐾 (2.26c)

𝜕𝑓

𝜕𝜃
+

𝐾∑︁
𝑘=1

𝜕𝑔𝑘
𝜕𝜃

= 0 (2.26d)

H =
𝜕2𝑓

𝜕𝜃2 is positive definite (2.26e)

𝜇𝑘 ≥ 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.26f)

𝜇𝑘𝜑
𝑇
𝑘 𝜃 = 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.26g)

−𝜑𝑇
𝑘 𝜃 ≤ 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.26h)

After equation manipulation and simplification, Eq. (2.27) gives the solution to

the optimization problem.

𝐾∑︁
𝑘=1

[︂
𝛾1 + 𝜑𝑇

𝑘 𝜃

𝛾1𝜑
𝑇
𝑘 𝜃 + 𝛾2

+
𝛾2𝜑

𝑇
𝑘 𝜃 − 2𝛾2𝑆

𝑛
𝑘 − 𝛾1(𝑆𝑛

𝑘 )
2

(𝛾1𝜑
𝑇
𝑘 𝜃 + 𝛾2)2

− 𝜇𝑘

]︂
· 𝜑𝑘 = 0 (2.27a)

The Hessian matrix H is positive definite with elements 𝐻𝑖𝑗 given by

𝐻𝑖𝑗 =
𝐾∑︁
𝑘=1

[︂
(𝛾2 − 𝛾21)𝜑𝑘𝑖𝜑𝑘𝑗

(𝛾1𝜑
𝑇
𝑘 𝜃 + 𝛾2)2

+
𝛾1𝜑𝑘𝑖𝜑𝑘𝑗(𝛾1𝜑

𝑇
𝑘 𝜃 − 2𝛾2𝜑

𝑇
𝑘 𝜃 + 𝛾2 + 4𝛾2𝑆

𝑛
𝑘 + 2𝛾1(𝑆

𝑛
𝑘 )

2)

(𝛾1𝜑
𝑇
𝑘 𝜃 + 𝛾2)3

]︂ (2.27b)

𝜇𝑘 ≥ 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.27c)

𝜇𝑘𝜑
𝑇
𝑘 𝜃 = 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.27d)
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−𝜑𝑇
𝑘 𝜃 ≤ 0 ∀ 𝑘 = 1, ..., 𝑘, ..., 𝐾 (2.27e)

K∑︁
k=1

[
c1 + 𝜑T

k 𝜃

c1𝜑
T
k 𝜃 + c2

+
c2𝜑

T
k 𝜃 − 2c2Sk − c1S

2
k

(c1𝜑
T
k 𝜃 + c2)2

] · 𝜑𝑘 = 0 (2.28a)

In practice when the signal is strong, all measurements are much greater than zero,

and solving the unconstrained optimization will result in positive expected intensity.

Therefore to save computation time, it is often sufficient to solve the unconstrained

optimization as a first step, the solution of which is given in Eq. (2.29) and (2.27b).

If the constraint is violated, then Eq. (2.27) should be solved.

K∑︁
k=1

[︂
c1 + 𝜑T

k 𝜃

c1𝜑
T
k 𝜃 + c2

+
c2𝜑

T
k 𝜃 − 2c2Sk − c1S

2
k

(c1𝜑
T
k 𝜃 + c2)2

]︂
· 𝜑k = 0 (2.29)

2.4.3 Monte Carlo Simulations

The improved performance of the proposed maximum likelihood method is demon-

strated comparing to the existing DFT method. The Fourier coefficients are solved

from the maximum likelihood formalism in MATLAB using fsolve function. The

performance indicators are the Mueller matrix mean absolute error and the grating’s

reconstructed pitch. Table 2.1 tabulates the reduction in averaged Mueller matrix

mean absolute error by using the maximum likelihood method compared to using

DFT in Monte Carlo simulations. In all scenarios, the maximum likelihood method

outperforms the linear regression method. Intuitively the maximum likelihood ac-

counts for the varying variance and puts less confidence on the noisier integrated

intensities.

The performance of the maximum likelihood method is then evaluated in terms of

reconstructed grating pitch. During the reconstruction, the RCWA model is realized

with different pitch values, and the closest match to the measurement is used to

determine the sample pitch. In this chapter, the reconstruction has a resolution of 1

nm. Due to the presence of noise, the reconstructed pitch value shows a variation.

Fig. 2-12a shows the histogram of the reconstructed pitch, where the blue and red

bars are the results from the DFT and maximum likelihood method respectively. Fig.

2-12b presents another scenario where the light intensity is increased, and therefore
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Table 2.1: Percent reduction in Mueller matrix mean absolute error

𝛾1 = 0.1 𝛾1 = 0.32 𝛾1 = 0.5 𝛾1 = 1

K = 50

𝑆 = 102 3.99% 3.15% 2.89% 2.46%

𝑆 = 103 3.47% 4.50% 3.19% 3.04%

𝑆 = 104 3.55% 3.33% 3.45% 2.93%

K = 70

𝑆 = 102 3.59% 3.27% 2.46% 2.63%

𝑆 = 103 3.48% 3.25% 3.82% 3.28%

𝑆 = 104 3.77% 3.72% 3.03% 3.24%

the error is reduced. In both cases, the result from the maximum likelihood method is

more centered at the pitch nominal value of 3 micrometer. The maximum likelihood

method reduces the standard deviation from 3.9 nm to 3.8 nm in the first case, and

from 2.3 nm to 2.1 nm in the second case. The result shows that the signal-correlated

noise, specifically Poisson-Gaussian noise, can induce large errors on the reconstructed

dimension, and the maximum likelihood method mitigates the effect to some extent.

2.5 Conclusion

Ellipsometry, as a metrology and inspection tool, plays an important role in many

industries. However, the existence of Poisson-Gaussian mixed noise can significantly

affect the measurement accuracy in ellipsometry.

This chapter then quantifies the induced measurement error by deriving the expres-

sion for the expected error of normalized Mueller matrix elements. The expression is

verified through Monte Carlo simulations for various scenarios of light intensity, sam-

pling frequency, and the first order coefficient of the integrated intensity’s variance

and mean. As expected, the error is reduced with increasing signal strength, increas-

ing sampling frequency, and decreasing first order coefficient of the signal’s variance

to mean. The method can be also generalized to other types of random noises such

as light source uncertainty using the same procedure. The distribution of the noise

is first obtained, and the signal demodulation is carried out using maximum likeli-

hood method. The error quantification serves as a guide in identifying the system’s
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Figure 2-12: Histogram of reconstructed pitch from a signal wavelength

optimal operating conditions and providing an evaluation to measurements. These

are the major takeaways from this analysis. The Poisson-Gaussian noise originating

from detection and environment is identified as a significant error source in Mueller

matrix and in turn dimension measurement, and the Poisson-Gaussian noise induced

error is quantified. In practice, this analysis gives the confidence interval for various

experiment configuration on a spectroscopic ellipsometer, and can serve as a guidance

for improving the system performance or making trade-offs in an industrial scenario.

For example, higher light intensity is not always feasible: larger electrode gaps are

required for the operation of higher power lamps, where the arc is susceptible to wan-
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dering. In another example, pixel binning and averaging will reduce the first-order

coefficient of variance to mean.

This chapter then proposes a maximum likelihood estimation approach to sig-

nal demodulation in spectroscopic ellipsometry, in order to mitigate the effects of

Poisson-Gaussian noise. The method is compared to the existing DFT method, and

shows improvements in terms of normalized Mueller matrix accuracy and dimension

reconstruction performance. The method could be applied in many applications and

provide more accurate measurements.
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Chapter 3

Dimension Reconstruction

3.1 Introduction

This chapter focuses on the dimension reconstruction of ellipsometry. The experi-

mental results are fitted to an optical model, and the closest match determines the

dimensions of the sample. The fitting, together with the experimental measurement

and optical modeling, determines the accuracy and precision of the reconstructed di-

mensions. In order to improve the precision of reconstructed dimensions, an algorithm

is proposed to improve the reconstruction sensitivity. Higher weights are given to the

more important configurations, where the measurement is sensitive to changes in di-

mensions. Lower weights are given to measurements at less critical configurations to

reserve robustness. In this chapter, the reconstruction method and weight selection

are studied.

For the rest of this chapter, the current reconstruction methods are reviewed in

Section 3.2. In Section 3.3, the reconstruction problem is formulated, and the pro-

posed algorithm is presented. Section 3.4 presents the experimental results to validate

the proposed algorithm, and its improved precision is demonstrated. Conclusions are

summarized in Section 3.5.
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3.2 Review of Dimension Reconstruction and Tech-

nical Gaps

Dimension reconstruction is a critical step in ellipsometry measurement. In recent

years, there has been work aiming to improve the accuracy of reconstruction.

The first problem that attracted attention is the limited dimension resolution

during library search. When fitting the experimental result to a library generated

by an optical model, the number of dimensions stored in the library is finite, and

therefore the dimension resolution in the library is limited. To solve this problem,

Chen et al. proposed two methods to go beyond the library’s dimension resolution.

Reference [95] proposed interpolating the fitting error to obtain values between the

entries stored in the library. The work in [96] estimated the difference between the

reconstructed dimensions and the library search solution using a linear model. Zhu

et al. proposed two methods for higher reconstruction accuracy. In [97] and [98], Zhu

et al. proposed a least trimmed squared estimator regression, where the authors use

a squared error objective and iteratively remove the data that generate large fitting

errors. In [99], [100] and [101], the authors extended the work in [96] by pre-storing

Jacobian and introducing robust correction to the inverse problem.

The second problem in reconstruction is the capability of optical model to cap-

ture the properties of the experiment setup and/or the sample, which calls for work

on the optical modeling. One factor that attracted attention in literature is the de-

polarizing effects. Reference [102] modeled depolarization from numerical aperture,

finite bandwidth, and the residual layer thickness variation. The work in [103] also

modeled and experimentally determined the depolarization from focus lens and finite

spectral resolution. The Jones matrix quality factor was proposed in [104] to estimate

depolarization. The proper modeling of the above-mentioned depolarizing effect will

improve the modeling accuracy and in turn reduce the error carried over to dimension

reconstruction.

There has also been work to improve the reconstruction speed. In [105], a de-

pendence analysis was performed on the measured data to eliminate redundant data.
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Specifically the authors used eigen-decomposition of the Jacobian matrix to iden-

tify the most independent measurements. The reconstruction was sped up due to

the shrunken data set. A second approach is to use faster matching algorithm, for

example [106] used SVM to match experimental and simulated profiles.

3.3 Improved Dimension Reconstruction Method

In this section, a method is proposed to improve the sensitivity of the dimension

reconstruction. The dimension reconstruction is first formulated in Subsection 3.3.1,

and the proposed method is described in Subsection 3.3.2.

3.3.1 Problem Formalism

The dimension reconstruction problem is formulated as follows. The sample is mea-

sured at different configurations, sequentially or simultaneously. The configurations

include incident angle, wavelength, and the sample’s azimuthal orientation. The quan-

tity to characterize the sample is often referred to as "signature" in the literature.

From these experiments, the measured signature, Mueller matrix elements in this case,

can be obtained. The measured signature is fitted to simulated signatures generated

by an optical model, and the closest match determines the reconstructed critical di-

mensions.

The goal of the reconstruction is to minimize the difference between measured and

simulated signature. In Eq. (3.1), x is an 𝑛𝑥 by 1 vector representing the dimensions,

x̂ is the reconstructed dimension vector with the same dimension, Ω is the dimension’s

domain, y is the measured signature and is an 𝑚 by 1 vector, f(x) is the simulated

signature and is an 𝑚 by 1 vector, W is the weight matrix and is an 𝑚 by 𝑚 diagonal

matrix, and 𝑤𝑖 is the matrix’s 𝑖𝑖th element. The squared error is minimized.

x̂ = argmin
x∈Ω

[y − f(x)]𝑇W[y − f(x)] (3.1)

While optimal reconstructed dimensions can always be obtained from the standard

in Eq. (3.1), the range of the dimension should be given to account for the uncer-
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tainties of measurement and simulation. Two criterion for determining the range are

used in this chapter. Using the first criterion, a dimension is within the range if its

fitting error is within the minimum fitting error multiplied by a constant, formulated

as in Eq. (3.2), where 𝐽 is a constant.

[y − f(x)]𝑇W[y − f(x)] ≤ 𝐽 [y − f(x̂)]𝑇W[y − f(x̂)] (3.2)

Using the second criterion, a dimension is within the range if its fitting error is within

3𝜎 from the minimum fitting error, and 𝜎 is the standard deviation of the fitting error

originated only from random error. The criterion is described in Eq. (3.3).

[y − f(x)]𝑇W[y − f(x)] ≤ 3𝜎 + [y − f(x̂)]𝑇W[y − f(x̂)] (3.3)

3.3.2 Improved Dimension Reconstruction Sensitivity

To improve the reconstruction sensitivity, different weights are given to the measure-

ments from different configurations. The weights are chosen such that the reconstruc-

tion is sensitive to dimensions, and reserves information at less critical configurations

to keep robustness.

The algorithm below outlines the implementation of the method. The dimensions

are initialized to their nominal or estimated values. While the dimensions do not

converge, in each step, the weights are selected to be proportional to the partial

derivative of the simulated signature to the dimension at the current dimension values.

Therefore, if the signature is sensitive to change in a dimension, it is given higher

weight when that dimension is being reconstructed.

3.4 Experimental Verification of Improved Sensitiv-

ity

In this section, the experimental results are presented to validate the proposed re-

construction methods. Two types of samples are used. The first type is a SiO2 on Si

56



Algorithm Improved reconstruction sensitivity with one parameter

x̂← x𝑛 ◁ Initialize the dimension to its nominal value

while x̂ does not converge do

for 𝑗 in [1, 2, ..., 𝑛] do

for 𝑖 in [1, 2, ...,𝑚] do

𝑤𝑖 ∝ 𝜕𝑓𝑖(x)
𝜕x𝑗
|�̂�𝑗

◁ Update weight to improve sensitivity

end for

�̂�𝑗 = argmin
𝑥𝑗∈Ω𝑗

[y − f(x)]𝑇W[y − f(x)] ◁ Update reconstructed dimension

end for

end while

thin film standard. The thickness of the SiO2 layer is either about 310 nm for the

first and the second sample, and about 1000 nm for the third sample. The dimension

of interest is the thickness of the SiO2 layer. The second type of sample is a grat-

ing, usually used for AFM calibration. The SiO2 grating is formed on Si layer. The

dimensions to be measured are the step height and the ridge width. The grating is

illustrated in Fig. 3-1. The experiments are performed on a in-house dual-rotating

compensator ellipsometer, due to the device’s advantages introduced in Chapter 1 and

2. Two experiment setup systems have been implemented, and the experimental re-

sults presented in this chapter were obtained only from the dual-rotating compensator

ellipsometer. The Mueller matrix at different incident angles are measured sequen-

tially. At each incident angle, the Mueller matrix at all wavelengths are measured

simultaneously using a broadband light source. The experimental setup is described

in detail in Chapter 5.

3.4.1 Reconstructed Dimension

Table 3.1 shows the measurement results. The first three samples are thin film stan-

dards. The thickness measured by the manufacturer and on the in-house setup are
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Figure 3-1: Illustration of grating

tabulated. The measurement and range is in the resolution of 0.1 nm. The fourth

sample is a grating and is measured in our lab using an AFM and the ellipsometer.

The ridge height given by the manufacturer is in the resolution of 1 nm, and measured

with a resolution of 0.1 nm by the AFM and ellipsometer.

A range is given for all measurement to compensate for the uncertainties and errors

involved in the measurement and optical modeling. The range for all ellipsometer

measurements are calculated using the two criterion described in the last section. In

all the scenarios, the range is smaller using the proposed method compared to fitting

without weight adjustment. Therefore, reconstruction precision is improved.

3.4.2 Thin Film Measurement

Three 𝑆𝑖𝑂2 on 𝑆𝑖 thin film samples are measured, each at an incident angle of 40∘,

50∘, and 60∘.

The first thin film sample is mounted on a 3D-printed disk, shown in Fig. 3-

2. The experimental and fitted Mueller matrix spectrum at an incident angle of

40∘ is presented in Fig. 3-3. Each subfigure shows the spectrum for one Mueller

matrix element. The wavelength ranges from 450 nm to 1000 nm. The blue lines are

experimental, and the red lines are best fitted spectra from simulation. A good fit is

demonstrated. The fitted spectrum for sample 1 at incident angles of 50∘ and 60∘ can

be found in Appendix A.

Similarly, sample 2 is mounted on 3D-printed disk. Sample 2 has a similar thick-

ness with sample 1, and therefore leads to similar experiment result. For brevity, the

result of sample 2 is presented in Appendix A, where a picture of the mounted sample

is presented, as well as the experimental and fitted Mueller matrix spectrum of it at

incident angles of 40∘, 50∘, and 60∘.
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Figure 3-2: Thin film sample 1

Figure 3-3: Experimental and fitted Mueller matrix spectrum of thin film sample 1
at 40∘ incident angle

The experimental and fitted Mueller matrix spectrum of the third sample is pre-

sented in Fig 3-4. Each subfigure shows the spectrum for one Mueller matrix element.

The result is significantly different from that of sample 1 because the thickness is

different. The wavelength ranges from 450 nm to 1000 nm. The blue lines are ex-

perimental, and the red lines are best fitted spectra from simulation. A good fit is

demonstrated. The picture of mounted sample 3, and the fitted spectrum for sample

3 at incident angles of 50∘ and 60∘ can be found in Appendix A.
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Figure 3-4: Experimental and fitted Mueller matrix spectrum of thin film sample 3
at 40∘ incident angle

3.4.3 Grating Measurement

A grating sample, TGZ2 from K-TEK Nanotechnology, is measured. The sample is

mounted on a metallic disk and then a 3D-printed disk, as shown in Fig. 3-5. Fig.

3-6 shows the AFM picture taken in our lab.

Fig. 3-7 is the experimental and fitted Mueller matrix spectrum of this grating at

an incident angle of 50 degree. Each subfigure shows the spectrum for one Mueller

matrix element. The wavelength ranges from 450 nm to 1000 nm. The blue lines

are experimental, and the red lines are best fitted spectra from simulation. A good

fit is demonstrated. The most noisy region falls under 450 nm to 550 nm, due to

the light source having the lowest intensity in this range. The size of the grating

sample is small, and light intensity reflected off the sample is small. Therefore, the

noise-induced error is the largest in this region.
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Figure 3-5: Mounted grating sample Figure 3-6: AFM image of grating sample

Figure 3-7: Experimental and fitted Mueller matrix spectrum TGZ2 at 40∘ incident
angle

3.5 Conclusion

This chapter focused on improving the dimension reconstruction precision. A method

is proposed to improve the reconstruction sensitivity to changes in dimensions. High

weights are given to the critical configurations. The weight selection and reconstruc-

tion method are formulated.

Two types of samples are experimentally measured to verify the improved pre-

cision resulted from the proposed method. The first type of samples are thin film
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standards, and the thickness of which is reconstructed. The second type of sample

is a grating sample, and the step height and ridge width of which are reconstructed.

Two criterion are proposed to determine the range of reconstructed dimension. In

all scenarios, the proposed reconstruction and weight selection demonstrated higher

dimension reconstruction precision.
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Chapter 4

Faraday Effect-Based Photometric

Spectroscopic Ellipsometry

4.1 Introduction

Most popular commercial ellipsometers are based on moving polarizing components.

However, the mechanical motion causes vibrations and inaccuracy, and limits the

measurement speed. This chapter presents the design and demonstration of a Fara-

day effect-based photometric ellipsometer. The proposed design has several advan-

tages. The elimination of mechanical motion enables high-speed and high-accuracy.

In addition, the linear relationship between the applied current and the rotation of

the polarization plane enables fast and easy demodulation. Lastly, the operating

frequency of the Faraday rotator is controllable, making it compatible with most de-

tection systems. The proposed instrument is useful in industrial applications where

time resolution is critical, such as film growth and etching observations. This chapter

presents the proposed ellipsometry’s setup, data reduction, calibration procedures,

and validation. The measurements on air and thin film is presented.

The rest of this chapter develops as follows. Section 4.2 motivates the Fara-

day effect-enabled photometric ellipsometry and provides a background. Section 4.3

presents the system design, calibration and data reduction of the proposed device.

Section 4.4 shows the experimental results of calibration, sample measurements and
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validates the design. Conclusions are summarized in 4.5.

4.2 Background and Motivation

There has been a lot of interest in eliminating mechanical motion in ellipsometry. The

methods to remove moving components in ellipsometry for higher accuracy and speed

include the following: electro-optics, photoelastic modulation (PEM), and magneto-

optics. Among the methods, polarization manipulation through Faraday rotation

is advantageous due to their high speed and high precision, high degree of current-

polarization angle linearity, controllable modulation frequency, and capability of par-

allel wavelength scanning. The usage of Faraday-rotation enabled polarization ma-

nipulation is motivated in Subsection 4.2.1.

4.2.1 Motivation of Faraday Effect-Enabled Ellipsometry

There has been a lot of interest in eliminating mechanical motion in ellipsometry.

Rotating-component ellipsometers have been the most popular commercial ellipsome-

ters due to its simple implementation and parallel scanning over a wide spectral

range [44, 45]. However, the rotation of polarizing components come with its disad-

vantages: mechanical vibrations cause measurement inaccuracy and position shift over

time [107], and the speed of rotating-component ellipsometry is fundamentally limited

by the mechanical rotation speed [45]. The methods to remove moving components

in ellipsometry for higher accuracy and speed include the following: electro-optics,

photoelastic modulation (PEM), and magneto-optics.

The use of electro-optical components in ellipsometry serves the purpose of elim-

inating mechanical rotating components. Liquid-crystal variable retarder (LCVR)

was introduced in Mueller matrix ellipsometry in 2000 [69]. In addition to removing

mechanical rotation and its associated errors, the utilization of LCVR also enables

compact design [70]. However, electro-optical components do come with their disad-

vantages, and a major one is the nonlinear voltage-retardance behavior [108]. The non-

linear behavior has been demonstrated and measured in previous studies [107,109,110].
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Due to the nonlinearity, most studies select a few voltage values to perform calibra-

tion and measurements. While the method enables a non-moving ellipsometer, it is

potentially less robust, because measurements are only taken at discrete retardance

values instead of a continuous range of retardance, which is potentially more sensitive

to calibration errors and random noises. To counter this problem, some studies are

devoted to the measurement of nonlinear voltage-retardance relationship and the us-

age of continuously variable voltage. Unfortunately, the effort did not report higher

accuracy [107]. The second disadvantage is that LCVR exhibits retardance variations

with ray incidence angle and ray position in the aperture, rendering challenges on

calibration procedures and instrument design that are not previously found [70,111].

The last disadvantage of wavelength dependency is not unique to ellipsometers using

LCVR. Many earlier setups use only one or few wavelengths [69,71,72]. Later research

started to use broadband light sources and proposed calibration methods [73, 74].

There have also been studies to optimize the ellipsometer setups using LCVR [75,76],

and a Mueller matrix error lower than 0.5% has been reported for one wavelength on

a polarizer sample in [73]. In summary, excellent works have advanced the application

of electro-optical components in ellipsometry, but the voltage-retardance nonlinearity

and sensitivity to alignment errors remains a challenge.

Photoelastic modulator (PEM)-based ellipsometry is a well-established ellipsom-

etry configuration with advantages including no mechanically moving parts. In such

an ellipsometer, a PEM is excited at its resonance frequency, ranging from 20 kHz

to 100 kHz and typically 50 kHz. The modulator acts as an oscillating retarder

to provide the necessary polarization manipulation together with other polarizing

components. PEMs have several advantages including high speed, resistance to low-

frequency noise, low operating power requirements, and greater numerical aperture.

On the other hand, PEMs have limitations. First, the high modulation frequency

poses challenges on the detection system. A charge-coupled device that is commonly

used in 2-dimensional imaging cannot be used with PEM due to the readout time dif-

ference [45]. Second, a PEM-based ellipsometry cannot achieve parallel measurement

at multiple wavelengths as a rotating-component ellipsometry for the same reason.
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Therefore, the experiment time significantly increases when measurements at many

spectral positions are required. Lastly, the time dependence of the light intensity from

PEM is complex [45] and therefore so is the demodulation.

Magneto-optical components also enable ellipsometers with no moving parts, and

therefore enables high-speed and high-precision modulation. The Faraday’s effect is a

phenomenon where a polarization plane is rotated in a material when a magnetic field

is applied, and the rotation angle is proportional to the magnetic field projected on

the light propagation direction. Faraday rotators have been applied in ellipsometry

before. The first real-time spectroscopic ellipsometer took advantage of Faraday rota-

tors [63]. The ellipsometer uses a "null" configuration, where the minimum irradiance

is determined as a function of the azimuthal angle of the polarizer and the analyzer

as well as the Faraday rotation angle, and the ellipsometric parameters are then de-

termined [63–67]. While the configuration does achieve accurate measurement, it has

drawbacks. First, the configuration does not allow parallel measurement at multiple

wavelengths. One separate measurement has to be performed for each wavelength,

and therefore the measurements are slowed when many spectral positions are required.

Second, the measurement is susceptible to random noises in determining the nulling

position, especially when the light source is weak. In contrast, later development

of photometric ellipsometers with moving components can work faster [45] and with

weak light sources [68].

This chapter presents the design and demonstration of a Faraday effect-based

photometric ellipsometer. Using a Faraday rotator together with other stationary po-

larization components for polarization manipulation is potentially very advantageous.

First of all, polarization states can be varied without moving components, enabling

high speed and accuracy. Secondly, the modulation frequency is easily controlled us-

ing a Faraday rotator, and the system could be easily compatible with most signal

processing and detecion systems. The last advantage is easy signal processing. Due to

the high degree of linearity between the polarization rotation angle and the magnetic

field, the light intensity can be easily demodulated. Negligible non-linearity exist

due to magnetostriction. In contrast to previous application of Faraday rotator in
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“null” ellipsometers, the proposed instrument operates in a photometric manner, and

therefore is capable of parallel wavelength measurement. The instrument has many

advantages. The instrumentation combines the strength of using Faraday rotator and

photometric ellipsometer.

4.2.2 Background

Faraday’s effect is a rotation of the polarization plane using a magnetic field along

the direction of the light propagation, as illustrated in Fig. 4-1 [112]. The rotation

angle of the polarization plane 𝛽 is a function of the magnetic field and the medium

properties, and is given by Eq. (4.1) [113]. The variables are: 𝛽 is the rotation angle

of the polarization plane, 𝑉 is the Verdet constant, 𝐵 is the magnetic flux density, and

𝐿𝑚 is the length of the optically active medium. The Verdet constant of a material

depends on the wavelength and the temperature, shown in Eq. (4.2) [114], where 𝛾

is an empirical constant, 𝑒 and 𝑚𝑒 are electron charge and mass, 𝜆 is the wavelength

of the incident light, 𝑐 is the speed of light in vacuum, and 𝑛 is the refractive index.

Figure 4-1: Illustration of Faraday rotation

𝛽 = 𝑉

∫︁ 𝐿𝑚

0

𝐵(𝑙)𝑑𝑙 (4.1)

𝑉 = 𝛾
−𝑒𝜆
2𝑚𝑒𝑐

· 𝑑𝑛
𝑑𝜆

(4.2)

The Faraday-rotation only rotates the polarization plan and does not change the

state of polarization for a linearly polarized light beam, meaning the exit light beam

is still linearly polarized. The detailed derivation can be found in [115] and is outlined
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below. A linearly polarized light can be decomposed into right-handed and left-handed

polarized light with equal amplitude, as in Eq. (4.3), where 𝐸𝑖𝑛 represents the electric

field of the light beam before going through the Faraday rotator, 𝑧 is the direction

of light propagation, 𝑡 is time, 𝐸+ represents the electric field of the right-handed

polarized light, 𝐸− represents the electric field of the left-handed polarized light, 𝜔𝑙

is the light frequency, u and v are two orthogonal unit vectors and are both normal

to the light’s propagation direction. As in Eq. (4.3c), the superposition of the right-

handed and left-handed circularly polarized light is indeed a linearly polarized light

beam in the u direction.

𝐸𝑖𝑛(𝑧 = 0, 𝑡) =
1√
2

[︁
𝐸+(0, 𝑡) + 𝐸−(0, 𝑡)

]︁
(4.3a)

=
1

2

[︁
(u+ 𝑖v)𝑒−𝑖𝜔𝑙𝑡 + (u− 𝑖v)𝑒−𝑖𝜔𝑙𝑡

]︁
(4.3b)

= u𝑒−𝑖𝜔𝑙𝑡 (4.3c)

The refractive index of the right-handed and left-handed polarized light are different

in a Faraday medium. In Eq. (4.4), 𝑛+ and 𝑛− are the refractive index for right-

handed and left-handed polarized light, �̄� is the average of 𝑛+ and 𝑛−, ∆𝑛 is the

difference between 𝑛+ and 𝑛−,

𝑛+ = �̄�+
∆𝑛

2
(4.4a)

𝑛− = �̄�− ∆𝑛

2
(4.4b)

The electric field of the light beam, after going through Faraday rotator, is described

by 𝐸𝑜𝑢𝑡 in Eq. (4.5),

𝐸𝑜𝑢𝑡(𝑧 = 𝐿, 𝑡) =
1

2

[︁
(u+ 𝑖v)𝑒

𝑖𝜔𝑙𝑛+𝐿

2𝑐 𝑒−𝑖𝜔𝑙𝑡 + (u− 𝑖v)𝑒
𝑖𝜔𝑙𝑛−𝐿

2𝑐 𝑒−𝑖𝜔𝑙𝑡
]︁

(4.5a)

=
1

2
𝑒−𝑖𝜔𝑙𝑡𝑒

𝑖𝜔𝑙𝐿�̄�

𝑐

[︁
(u+ 𝑖v)𝑒

𝑖𝜔𝑙Δ𝑛𝐿

2𝑐 + (u− 𝑖v)𝑒−
𝑖𝜔𝑙Δ𝑛𝐿

2𝑐

]︁
(4.5b)

Define the rotation angle in Eq. (4.6), and Eq. (4.7) is in turn obtained from Euler’s
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formula.

∆𝜃 =
𝜔𝑙∆𝑛𝐿

2𝑐
(4.6)

𝑒𝑖Δ𝜃 = cos∆𝜃 + 𝑖 sin∆𝜃 (4.7a)

𝑒−𝑖Δ𝜃 = cos∆𝜃 − 𝑖 sin∆𝜃 (4.7b)

Eq. (4.5) can be rewritten and simplified in Eq. (4.8).

𝐸𝑜𝑢𝑡(𝑧 = 𝐿, 𝑡) =
1

2

[︁
(u+ 𝑖v)(cos∆𝜃 + 𝑖 sin∆𝜃)

+ (u− 𝑖v)(cos∆𝜃 − 𝑖 sin∆𝜃)
]︁
𝑒−𝑖𝜔𝑙𝑡𝑒

𝑖𝜔𝑙𝐿�̄�

𝑐

(4.8a)

=
[︁
u cos∆𝜃 − v sin∆𝜃

]︁
𝑒−𝑖𝜔𝑙𝑡𝑒

𝑖𝜔𝑙𝐿�̄�

𝑐

=u𝑛𝑒
−𝑖𝜔𝑙𝑡𝑒

𝑖𝜔𝑙𝐿�̄�

𝑐

(4.8b)

where

u𝑛 = u cos∆𝜃 − v sin∆𝜃 (4.9)

Therefore, the light beam is still linearly polarized after going through Faraday rota-

tor, and the plane of polarization is rotated by angle ∆𝜃.

4.3 Design and Analysis

In this section, the proposed Faraday effect-enabled photometric ellipsometer is de-

scribed in detail. The design and instrumentation is presented in Subsection 4.3.1,

the data reduction is presented in Subsection 4.3.2, and the calibration procedure is

presented in Subsection 4.3.3.

4.3.1 System Design

In this subsection, the design of the Faraday rotator and the Faraday effect-enabled

ellipsometer are presented.
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Faraday Rotator Design

A Faraday rotator is designed to allow for controllable rotation angle of the polariza-

tion plane. It consists of three major components: a solenoid, Faraday-effect material,

and the current controller. The current controller consists of a power source and an

amplifier. Commercial products focus on Faraday isolators, where the rotation angle

is fixed at 45∘, and eliminate backward light [116–124]. In-house Faraday rotators

with controllable rotation angle have been built for the purpose of material charac-

terization and magnetic sensing [125–133].

In this work, SF-59 glass rod is chosen as the Faraday-effect material for its high

Verdet constant and ease of procurement. Fig. 4-2 illustrates the design. The glass

rod is placed in the holder, and inserted into the solenoid.

Figure 4-2: Illustration of the designed Faraday rotator

Table 4.1 lists four independent design parameters, and the eight design param-

eters that can be derived. The two major principle for the design are the capability

of providing the necessary polarization rotation angle and the proper mechanical in-

tegration into the ellipsometer system. Table 4.2 lists the design criterion and the

corresponding mathematical expressions.

Rotation angle of polarization plane - current linearity

The rotation angle of polarization plane as a function of the applied current is derived.

Fig. 4-3 shows a single loop of the solenoid in free-space, where 𝑧 is the longitudinal

direction of the solenoid and also the light’s propagation direction, and 𝑟 is the loop’s

diameter. The coordinate’s origin coincides with the center of the loop. A point

𝑇 is arbitrarily selected along the z-axis, and an infinitesimal segment is arbitrarily

selected on the loop, and the line connecting the point 𝑇 to point 𝑍 on the infinitesimal
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Table 4.1: Faraday rotator design parameters

Independent design parameters Dependent design parameters

𝐿 length of holder 𝑛𝑐 number of loops per layer

𝑑𝑖 inner diameter of the holder 𝑑𝑜 outer diameter of the holder

𝑛𝑙 number of layers 𝑑𝑤 diameter of electrical wire

𝐺 electrical wire gauge 𝐿𝑤 total length of electrical wire

𝑅 resistance per unit length

𝐿𝑚 material (glass rod) length

𝑊 wire weight

𝑤 wire weight per unit length

Table 4.2: Faraday rotator design criterion

Design criterion Mathematical expression

The glass rod can be inserted into the holder 𝑑𝑖 ≥ 7.8𝑚𝑚

The coil does not interfere with the cage system 𝑑𝑜 ≤ 54𝑚𝑚

𝑑𝑜 = 𝑑𝑖 + 2𝑛𝑙 · 𝑑𝑤
Coils can be wrapped within the holder length 𝑛𝑐 · 𝑑𝑤 ≤ 𝐿

Voltage across the coil 𝑉 = 𝐿𝑤 ·𝑅 · 𝐼

𝐿𝑤 ≈ 𝜋(𝑑𝑖 + 𝑑𝑜)/2 · 𝑛𝑐 · 𝑛𝑙

Polarization rotation angle 𝛽 = 𝑉 ·𝐵 · 𝐿𝑚

𝐿𝑚 = 99.1𝑚𝑚

𝑉 = 23𝑟𝑎𝑑/(𝑇𝑚)

Reasonable wire weight 𝑊 = 𝐿𝑚 * 𝑤

segment is 𝑇𝑍. The angle between 𝑇𝑍 and the z-axis is 𝜂, and the length of 𝑇𝑍 is

𝑅𝑝. The magnetic field generated by the infinitesimal segment along the z-direction

is given by 𝑑𝐵𝑧 in Eq. (4.10), where 𝜇0 is the vacuum permeability, 𝐼𝑐 is the current

through the solenoid, and 𝑑𝑙 is the length of the infinitesimal loop segment.

𝑑𝐵𝑧 =
𝜇0 · 𝐼𝑐 · 𝑑𝑙
4𝜋𝑅2

𝑃

· 𝑠𝑖𝑛𝜃 (4.10)
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Figure 4-3: A single loop of the solenoid

The magnetic field generated by a single loop along the z-direction 𝐵𝑧 is given by Eq.

(4.11), where 𝑧 is the distance from the center of the loop. Extending to a solenoid,

the coordinate origin O coincide with the center of the coil in the middle.

𝐵𝑧 =

∫︁
𝑑𝐵𝑧 (4.11a)

=
𝜇0 · 𝐼𝑐 · 2𝜋𝑟

4𝜋𝑅2
* 𝑟
𝑅

(4.11b)

=
𝜇0 · 𝐼𝑐 · 𝑟2

2(𝑟2 + 𝑧2)3/2
(4.11c)

The magnetic field generated from multiple loops and multiple layers is then given in

Eq. (4.12), where 𝑖𝑙 is the index of the layers, 𝑖𝑐 is the index of loops per layer, 𝑟𝑖𝑙 is

the radius of the loop in layer 𝑖𝑙, 𝑧𝑖𝑐 is the longitudinal position of the loop 𝑖𝑐.

𝐵(𝑧) = 𝐼𝑐

𝑛𝑙∑︁
𝑖𝑙=1

𝑛𝑐∑︁
𝑖𝑐=1

[︃
𝜇𝑜𝑟

2
𝑖𝑙

2[𝑟2𝑖𝑙 + (𝑧 − 𝑧𝑖𝑐)2]
3
2

]︃
(4.12a)

𝑟𝑖𝑙 =
𝑑𝑖
2
+ 𝑑𝑤(𝑖𝑙 −

1

2
) (4.12b)

𝑧𝑖𝑐 =

(︂
𝑛𝑐 + 1

2
− 𝑖𝑐

)︂
𝑑𝑤 (4.12c)

The rotation angle of polarization plane 𝛽(𝜆) is given by Equation (4.13), where 𝜆 is

the incident wavelength, 𝑉 (𝜆) is the Verdet constant as a function of the wavelength,
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and 𝐷 is a parameter of the solenoid and the material.

𝛽(𝜆) = 𝑉 (𝜆)

∫︁ 𝐿𝑚
2

−𝐿𝑚
2

𝐵(𝑧)𝑑𝑧 (4.13a)

=𝑉 (𝜆)𝐼𝑐

[︃
𝑛𝑙∑︁

𝑖𝑙=1

𝑛𝑐∑︁
𝑖𝑐=1

(︃∫︁ 𝐿𝑚
2

−𝐿𝑚
2

𝜇𝑜𝑟
2
𝑖

2[𝑟2𝑖 + (𝑧 − 𝑧𝑖)2]
3
2

𝑑𝑧

)︃]︃
(4.13b)

=𝑉 (𝜆)𝐼𝑐𝐷 (4.13c)

Faraday effect on elliptically polarized light

This part addresses the Faraday effect on elliptically polarized light. An elliptically

polarized light beam can be viewed as a combination of right-handed and left-handed

polarized light with arbitrary amplitude, as in Eq. (4.14), where 𝑚1 and 𝑚2 are con-

stants representing the amplitudes associated with the right-handed and left-handed

polarized light.

𝐸𝑖𝑛(𝑧 = 0, 𝑡) = [𝑚1 · 𝐸+(0, 𝑡) +𝑚2 · 𝐸−(0, 𝑡)] (4.14a)

=
1√
2

[︀
(𝑚1u+ 𝑖v)𝑒−𝑖𝜔𝑡 +𝑚2(u− 𝑖v)𝑒−𝑖𝜔𝑡

]︀
(4.14b)

=
1√
2
[(𝑚1 +𝑚2)u+ (𝑚1 −𝑚2)𝑖v]𝑒

−𝑖𝜔𝑡 (4.14c)

The light beam after going through a Faraday medium is described by 𝐸𝑜𝑢𝑡 in Eq.

(4.15).

𝐸𝑜𝑢𝑡(𝑧 = 𝐿, 𝑡)

=
1√
2
[ 𝑚1(u+ 𝑖v)𝑒

𝑖𝜔�̄�𝐿
𝑐 𝑒

𝑖𝜔Δ𝑛𝐿
2𝑐 +𝑚2(u− 𝑖v)𝑒

𝑖𝜔�̄�𝐿
𝑐 𝑒−

𝑖𝜔Δ𝑛𝐿
2𝑐 ] 𝑒−𝑖𝜔𝑡

(4.15a)

=
1√
2
[𝑚1(u+ 𝑖v)𝑒

𝑖𝜔Δ𝑛𝐿
2𝑐 +𝑚2(u− 𝑖v)𝑒−

𝑖𝜔Δ𝑛𝐿
2𝑐 ]𝑒

𝑖𝜔�̄�𝐿
𝑐 𝑒−𝑖𝜔𝑙𝑡 (4.15b)
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Part of Eq. (4.15) can be rewritten and simplified as in Eq. (4.16).

𝑚1(u+ 𝑖v)𝑒
𝑖𝜔Δ𝑛𝐿

2𝑐 +𝑚2(u− 𝑖v)𝑒−
𝑖𝜔Δ𝑛𝐿

2𝑐 (4.16a)

=𝑚1(u+ 𝑖v)(cos∆𝜃 + 𝑖 sin∆𝜃) +𝑚2(u− 𝑖v)(cos∆𝜃 − 𝑖 sin∆𝜃) (4.16b)

=(𝑚1 +𝑚2)(cos∆𝜃u− sin∆𝜃v) + (𝑚1 −𝑚2)𝑖(sin∆𝜃u+ cos∆𝜃v) (4.16c)

The new unit vectors are defined as the following.

u𝑛 = cos∆𝜃u− sin∆𝜃v (4.17a)

v𝑛 = sin∆𝜃u+ cos∆𝜃v (4.17b)

Rewriting the exit beam gives

𝐸𝑜𝑢𝑡(𝑧 = 𝐿, 𝑡) =
1√
2
𝑒

𝑖𝜔�̄�𝐿
𝑐 𝑒−𝑖𝜔𝑙𝑡[(𝑚1 +𝑚2)u𝑛 + (𝑚1 −𝑚2)v𝑛] (4.18)

Therefore, similar to a linearly polarized light beam, an elliptically polarized light

beam maintains its polarization state after going through Faraday medium, and only

experience a rotation.

Faraday Effect-Enabled Ellipsometer Design

The proposed setup consists of an incident light arm, a sample stage, and a reflective

light arm. The incident arm is mounted with an optical fiber connected to a broadband

light source, an iris, a collimator, a polarizer (𝑃 ), and a Faraday rotator (𝐹𝑅1). The

reflective arm is mounted with a Faraday rotator (𝐹𝑅2), an analyzer (𝐴), and a fiber

connected to a spectrometer. The setup with its major components are illustrated in

Figure 4-4.

4.3.2 Data Reduction

The first Faraday rotator rotates the polarization plane of the light beam exiting the

polarizer before it incidents on the sample, and the second Faraday rotator is used

to cause rotation of polarization on the light beam reflected off the sample. During
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Figure 4-4: Setup illustration

each measurement, the current to the first Faraday rotator is kept constant, while the

rotation angle of the second Faraday rotator is varied linearly with time. The equation

of the light path is given by Equation (4.19), where S𝑜 is the exit Stokes vector; M𝐴

is the Mueller matrix of the analyzer 𝐴𝑠 is the azimuthal offset of the analyzer; R(𝐴𝑠)

is the rotation matrix associated with 𝐴𝑠; M𝐹𝑅2 is the Mueller matrix of the second

Faraday rotator; M𝑆 is the Mueller matrix of the sample; M𝐹𝑅1 is the Mueller matrix

of the first Faraday rotator; 𝑃𝑠 is the azimuthal offset of the polarizer R(−𝑃𝑠) is the

rotation matrix associated with −𝑃𝑠; M𝑃 is the Mueller matrix of the polarizer; S𝑖

is the Stokes vector of the incident light. The resulting time-varying light intensity

curve is harmonic as in Equation (4.20a). In the designed ellipsometer, the exit light

is measured by a CCD spectrometer, and the measurement is a series of integrated

intensity. The Fourier coefficient can be solved through Hadamard transform as in [80]

or the maximum likelihood method in Chapter 2. For an isotropic non-depolarizing

sample, there are two ellipsometric parameters to fully characterize the sample.

S𝑜 = M𝐴 ·R(𝐴𝑠) ·M𝐹𝑅2 ·M𝑆 ·M𝐹𝑅1 ·R(−𝑃𝑠) ·M𝑃 · S𝑖 (4.19)

𝐼 = 𝐼𝑜 [1 + 𝛼′
2 cos(2𝑉 𝑣𝐷𝑡) + 𝛽′

2 sin(2𝑉 𝑣𝐷𝑡)] (4.20a)

𝑣 =
𝑑𝐼𝑐
𝑑𝑡

(4.20b)

𝛼2 = 𝛼′
2 cos(2𝐴𝑠) + 𝛽′

2 sin(2𝐴𝑠) (4.21a)
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𝛽2 = −𝛼′
2 sin(2𝐴𝑠) + 𝛽′

2 cos(2𝐴𝑠) (4.21b)

The phase-corrected Fourier coefficients by the analyzer’s azimuthal offset is given by

Eq. (4.21) [134, eq. (4.60)]. The ellipsometric parameters 𝜓 and ∆ can be solved from

the Fourier coefficients and the DC terms, as in Equations (4.22) [134, eq. (4.24)],

where 𝑃𝑎 is the polarizer’s azimutha angle.

tan𝜓 =

√︂
1 + 𝛼2

1− 𝛼2

| tan𝑃𝑎| (4.22a)

cos∆ =
𝛽2√︀
1− 𝛼2

2

(4.22b)

For an isotropic sample, the normalized Mueller matrix is given by Equation (4.23),

where 𝑀 is the normalized Mueller matrix. The normalized Mueller matrix elements

can also be written out. Two elements are given in Equation (4.23) [45].

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 − cos(2𝜓) 0 0

− cos(2𝜓) 1 0 0

0 0 sin(2𝜓) cos(∆) sin(2𝜓) sin(∆)

0 0 − sin(2𝜓) cos(∆) sin(2𝜓) sin(∆)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.23)

𝑀12 =
𝛼2 − cos(2𝑃𝑠)

1− 𝛼2 cos(2𝑃𝑠)
(4.24a)

𝑀33 =
𝛽2 sin(2𝑃𝑠)

1− 𝛼2 cos(2𝑃𝑠)
(4.24b)

4.3.3 System Calibration

The calibration consists of the Verdet constant calibration, analyzer azimuthal angle

calibration, and polarizer azimuthal angle calibration.

The Verdet constant calibration can be completed before mounted on the setup.

The Malus law establishes the relationship between the intensity of light passing

through a polarizer and an analyzer and the angle between their transmission axes,

as in Equation (4.25), where 𝐼𝑙 is the light intensity transmitted through the analyzer,
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𝐼𝑙𝑜 is the intensity of linearly polarized light incident on the analyzer, and 𝜑 is the

angle between the polarizer and analyzer transmission axes. The transmission light

arm consists of an optical fiber connect to a broadband light source, an iris, a colli-

mator, a polarizer, the Faraday rotator to be calibrated, an analyzer, followed by an

optical fiber connected to a spectrometer. The analyzer is first mounted such that its

transmission axis is parallel with that of the polarizer. The solenoid is excited with

currents at different positive and negative magnitudes, and the maximum transmitted

intensity 𝐼𝑙𝑜 can be obtained. The Verdet constant is then estimated from the slope as

in Eq. (4.26a). For maximum sensitivity of determining Verdet constant, the analyzer

can be rotated such that its transmission axis is roughly 45 deg with respect to the

polarizer’s transmission axis. Nonlinear behavior might occur for reasons including

heating. The degree of linearity needs to be studied and verified during the calibration

process.

𝐼𝑙 = 𝐼𝑙𝑜 · cos2(𝜑+ 𝛽) (4.25)

𝑉 (𝜆) =
1

𝐼𝑐𝑃
𝛽 (4.26a)

=
1

𝐼𝑐𝑃

⎛⎝cos−1

√︃
𝐼(𝜆)

𝐼𝑜
− 𝜑

⎞⎠ (4.26b)

The analyzer azimuthal angle is calibrated on the ellipsometer in the transmission

mode. The current to the second solenoid is varied, until a maximum or minimum

measured intensity is observed or fitted. The angle offset between the polarizer and

analyzer transmission axes, 𝑃𝑠 − 𝐴𝑠, can be determined.

The azimuthal angle of the polarizer relative to the sample is calibrated using the

residual function method described in [45]. On the proposed setup, current is supplied

to the first Faraday rotator, and the second Faraday rotator is excited with linearly

varied current. The polarizer azimuthal offset is determined by fitting and minimizing

the residual function [45, Eq. (5.82)].
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4.4 Experimental Calibration and Measurement

In this section, the experimental calibration of the Verdet constant are presented in

Subsection 4.4.1, followed by the measurement results of air and a 𝑆𝑖 on 𝑆𝑖𝑂2 thin

film sample in Subsection 4.4.2.

4.4.1 Verdet Constant Calibration

The Verdet constant calibration was conducted for the Faraday rotators used on the

ellipsometer.

The calibration setup consists of the light path and the current signal generation

electronics. Figure 4-5a shows the light arm. The current generation is shown in

Figure 4-5b. The signal generation user interface is implemented in LabVIEW, where

the amplitude, frequency, and offset of the signal can be set. The real-time signal is

then generated by MyRIO and amplified by the power amplifier. MyRIO also sends a

trigger signal to the spectrometer, in order to synchronize the polarization modulation

by the Faraday rotator and the light intensity measurement by the spectrometer.

During the calibration, the solenoid is excited with a constant current, and consecutive

light intensity measurements are taken and averaged. The light intensity measurement

is repeated for different current values. The calibration is performed simultaneously

over the spectral range from 450 nm to 950 nm

The calibration lines are presented in Figure 4-6. Four equally spaced wavelengths

are arbitrarily selected for presentation, such that they span the spectral range. The

rotation angle of the polarization plane is plotted versus the current applied to the

solenoid. The experimental result is plotted in blue markers, and the best-fit lines

are plotted in red. Nonlinear rotation angle and current relationship exists in the

system due to solenoid heating and magnetostriction. To determine the degree of

nonlinearity, the coefficient of determination 𝑅2 is calculated. The minimum value of

𝑅2 is above 0.99 over all spectral range, verifying a high degree of linearity between

the applied current and the rotation angle. Therefore ignoring the nonlinearity is

acceptable, and future research can further address the issue.

The Verdet constant versus the wavelength is plotted in Figure 4-7. The blue
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(a) Verdet constant calibration setup - optical arm

(b) Verdet constant calibration setup - circuit

Figure 4-5: Verdet constant calibration setup

Figure 4-6: Calibration curve at four wavelengths

markers represent the experimental calibration, the red line shows the result from

[135], and the green dot shows the result from [136]. Overall, the experiment is

in good agreement with the literature. The difference can be due to design and
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implementation discrepancies and different experiment conditions. There are several

causes for design and implementation discrepancies: the length of the glass rod is not

exactly as its nominal value; the longitudinal centers of the glass rod and the solenoid

are not precisely aligned; the number of solenoid loops are not exactly the same as the

design due to limited fabrication capability. The different environment temperature

could also cause different Verdet constant.

Figure 4-7: Wavelength dependency of Verdet constant

A sawtooth signal was also sent to the Faraday rotator for the purpose of calibra-

tion as well as confirming the signal following performance. In Fig. 4-8, the red curve

is input sawtooth current to the solenoid, and the blue curve is the rotational angle.

The rotation angle is calculated from measured light intensity. As analyzed in Chap-

ter 2, the measured light intensity involves noise, and as a result, the measurement of

rotation angle is noisy.

4.4.2 Sample Measurement

Measurements are performed on air and a 𝑆𝑖 on 𝑆𝑖𝑂2 thin film sample.

The calibrated Faraday rotators are incorporated into the ellipsometer setup,

shown in Figure 4-9. The setup consists of an incident arm, a 6-degree of free-

dom (DOF) sample stage, and a reflective arm. The incident arm is mounted with a

fiber connected to the broadband light source, an iris, a collimator, a polarizer, and
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Figure 4-8: Signal following performance

a Faraday rotator. The reflective arm is mounted with a larger Faraday rotator, an

analyzer, and an optical fiber connected to the spectrometer. The two optical arms

are mounted on coaxial rotary stages with full rotation capability to allow for easy

incident angle adjustment.

Figure 4-9: Ellipsometer setup incorporating Faraday rotators

Measurement of air is taken with the setup in transmission mode. The spectra

of two normalized Mueller matrix elements 𝑀12 and 𝑀33 are plotted in Figure 4-10.

The Mueller matrix of air should be an identity matrix. The blue lines represent

experimental results, and the red lines show the theoretical values. In theory, any

normalized Mueller matrix elements should fall in [-1,1]. Here the ranges of the y-

axes are adjusted for easy visualization, and do not represent any physical significance.

The good match between the experimental and theoretical spectra indicates a well-
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functioning ellipsometer. The maximum discrepancy occurs in the spectral region

from 450 nm to 550 nm, because the intensity from the light source is low in this

region and the Poisson-Gaussian noise induced error is large [137].

Figure 4-10: Ellipsometric parameters’ spectra of air

The measurement result of the 𝑆𝑖 on 𝑆𝑖𝑂2 thin film sample is presented in Figure 4-

11. The measurement is taken at an incident angle of 50∘. The blue lines represent the

experimental spectra, which are fitted to a rigorous coupled-wave analysis (RCWA)

model. The closest match is plotted in red lines. The measured thickness is 322.60

nm, and the value given by the manufacturer is 322.20 nm. The discrepancy is well

within an acceptable range.

4.5 Conclusion

This chapter proposes and demonstrates a Faraday rotation-enabled photometric el-

lipsometer, operating in a parallel wavelength scanning mode. The proposed instru-

mentation has several advantages. The absence of moving components enables fast

and precise control. In addition, the current-rotation angle linearity enables fast

and easy signal demodulation. The two advantages improve speed and accuracy in
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Figure 4-11: Ellipsometric parameters’ spectra of thin film

ellipsometer measurement. The third major advantage is the controllable modula-

tion frequency. It can interface with most detection system. In this chapter, the

setup, data reduction, and calibration procedures are described, and the experimen-

tal measurement on air and thin film is presented. The measurement on air shows

good agreement with theory, and the instrument measures a thickness of 332.6nm,

while that provided by the manufacturer is 322.2 nm. This advancement can enable

higher-speed measurement and better catch real-time processes. One configuration

is designed and demonstrated in this chapter, capable of measuring the ellipsometric

parameters. More complicated configurations incorporating Faraday rotators can be

designed in the future to measure all Mueller matrix elements.
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Chapter 5

Experiment Setup and Procedures

5.1 Introduction

This chapter describes the experiment setup and procedures. The ellipsometer setup,

the integration of Faraday rotator, and the experiment procedures are introduced in

each section. Two ellipsometer systems have been implemented. The first system is a

dual-rotating compensator ellipsometer, with two rotating compensators. The second

system is a Faraday-rotator enabled photometric ellipsometer, which does not involve

moving components. The rest of this chapter develops as follows. Section 5.2 de-

scribes the in-house ellipsometer setup in detail, Section 5.3 describes the integration

of Faraday rotators into the ellipsometer, and Section 5.4 describes the experiment

procedures including sample mounting, motion control, and data collection.

5.2 Ellipsometer Setup

This section describes the in-house dual-rotating compensator ellipsometer setup. As

an overview, Fig. 5-1 displays the SolidWorks design of the dual-rotating compensator

ellipsometer setup. The setup mostly consists of an incident optical arm connected

to a light source (1), a 6-DOF sample stage (2), and a reflective arm connected to a

spectrometer (3). The three parts are connected through an elevated platform (4).

The implemented setup is presented in Fig. 5-2 in its reflection mode. Fig. 5-1 and
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5-2 show the complete setup. Zooming in on the key components, Fig. 5-3 is a zoomed

view on the key components.

Figure 5-1: In-house dual-rotating compensator ellipsometer

Figure 5-2: DRCE in reflection mode

The incident light arm consists of a fiber connected to the light source, a dovetail

beam mounted with a fiberport collimator, an iris, a polarizer, and a compensator

installed in a rotary mount. Fig. 5-4 shows the broadband light source and a laser

source, used for measurement and alignment respectively. The laser is aligned with
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Figure 5-3: DRCE in reflection mode zoomed

(a) Broadband light source (b) Laser source

Figure 5-4: Broadband and laser light sources

a fiber adapter to allow for easy fiber connection. The rotary mount of the compen-

sator is capable of full rotation in the plane perpendicular to the light’s propagation

direction. The beam is mounted on a rotary stage, which is in turn fixed onto the

elevated platform. The rotary stage is capable of full rotation in the x-y plane. Fig.

5-5a shows the fixture of the beam onto the rotary state, and Fig. 5-5b shows the

roller supporting the beam.

The reflective arm consists of a compensator installed in a rotary mount, an ana-

lyzer, and a fiber connected to the spectrometer. Similarly to the setup of the incident

beam, the rotary mount of the compensator is capable of full rotation in the plane
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(a) Beam mounted on a rotary stage (b) Beam roller

Figure 5-5: Incident arm fixture

perpendicular to the light’s propagation direction. The beam is mounted on a rotary

stage, which is in turn fixed onto the elevated platform. The rotary stage is capable

of full rotation in the x-y plane. The centers of the two rotary stages are aligned

vertically to ensure the two light paths intersect at the same location regardless of the

rotation of the two beams. Fig. 5-6 shows the fiber connected to the spectrometer.

Fig. 5-7 shows the alignment of the two rotary stages.

Figure 5-6: Spectrometer Figure 5-7: Vertically aligned rotary stages

The sample stage is mounted on the elevated platform shown in Fig. 5-1. The

sample stage is a 6-DOF motorized stage assembled from three linear stages, two

goniometers, and one rotary stage. The stage is shown in Fig. 5-8.

Fig 5-9 is a top-view of the setup, showing the ellipsometer at two different incident

angles.
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Figure 5-8: 6-DOF sample stage

Figure 5-9: The ellipsometer at two different incident angles

5.3 Faraday Rotator Integration

The mechanical integration of the Faraday rotators is enabled by the glass holder and

the utilization of cage systems of different sizes. Fig. 5-10 shows an exploded view

of the holder. The glass rod is inserted in to the 3D-printed holder. The opening in

the middle allows for position adjustment of the glass rod. Fig. 5-11 shows a Faraday

rotator integrated into the light path. A cage system of larger size than the rest of the

light path is adopted to accommodate the Faraday rotator. The ends of the holder

fit into the adapter plate, and the holder rests on the posts.
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Figure 5-10: Glass holder

Figure 5-11: A Faraday rotator in light path

5.4 Experimental Procedure

This section provides information on the important experiment procedures: the sam-

ple preparation, the motion control, and the data collection.

5.4.1 Sample Mount

A 3D-printed part is used to hold and attach the thin film standard to the sample

stage. Fig. 5-12 shows the drawing of the holder, and the mounted thin film sample.

The blue region highlighted by the red circle is the effective region.

To attach the grating to the stage, first the sample is attached to a metal disk, and

the disk is attached to a 3D-printed holder. For taking an AFM image, the sample

and the attached metal disk are used. The grating sample has a small area, and

therefore it may be difficult to observe the 0th order reflection with white light. After

sample is mounted, a laser light source is first used for easy visual calibration, which

is then replaced with a broadband light source for measurement.
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(a) Thin film holder drawing (b) Mounted thin film sample

Figure 5-12: Mounted thin film sample

(a) Sample and metal disk (b) Metal disk on a 3D-printed disk

Figure 5-13: Mounted grating sample

5.4.2 Motion Control

The motion control in this experiment includes the motion control of the rotary

mounts of the compensators, and the motion control of the sample stage and the

optical arms.

In the dual-rotating compensator ellipsometer, the rotary mounts of the compen-

sators are controlled through ActiveX interfaced with LabVIEW. The LabVIEW front

panel is shown in Fig. 5-14, where the speed and initial positions of constant-speed

rotation and the speed ratio of the two compensators can be set.

From the analysis in previous sections, the measured light intensity is a sum of

harmonics at any specific wavelength, at the frequencies of 2𝑛𝜔. To validate the

experimental measurement, DFT is performed on the measured intensity signal at an

increment of 0.01𝜔 to identify the peak frequencies. The phase shift from integration is

accounted for. From Fig. 5-15, the peak frequencies occur at the expected frequencies.

There is leakage at adjust frequencies to the peaks, which is also expected.
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Figure 5-14: Motion control of rotary mounts.

(a) DFT of air measurement (b) DFT of thin film measurement

Figure 5-15: DFT analysis of measurement

Stages that constitute the 6-DOF sample stage and the two rotary stages that carry

the beams are controlled through LabVIEW. For each channel, a speed or position

command can be set. The user interface is shown in Fig. 5-16.

5.4.3 Data Collection

The integration time, pixel averaging, dark current compensation can be set from

the spectrometer’s user interface. At the beginning of the constant-speed rotation,
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Figure 5-16: Motion control of the stage and the light arms

the controller of the compensators’ rotary mounts sends sends a 5V level trigger to

the spectrometer, which starts collecting and transmitting data upon receiving the

trigger signal. Fig. 5-17 shows the trigger signal connection from the controller to the

spectrometer. The MATLAB parser of the data can be found in Appendix D.

5.5 Summary

This chapter presents the in-house experiment setup and procedures in detail. Two

ellipsometer systems have been implemented. The first system is a dual-rotating

compensator ellipsometer, with two rotating compensators. The second system is

a Faraday-rotator enabled photometric ellipsometer, which does not involve moving

components. The ellipsometer setup and the integration of Faraday rotators are de-

scribed, as well as the experiment procedures, including the sample mounting, motion
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(a) Trigger from controller (b) Trigger to spectrometer

Figure 5-17: Trigger from controller to spectrometer

control, and data collection. The content of this chapter supports the contributions

in Chapters 2, 3 and 4.
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Chapter 6

Conclusions & Recommendations

This chapter summaries the worth of this thesis in 6.1 and provides suggestions for

future work in 6.2.

6.1 Conclusions

Ellipsometry, as a metrology and inspection tool, has been applied in many indus-

tries including material characterization, thin film manufacturing, and medical in-

spection. High-performance ellipsometry can further promote its application in nano-

manufacturing. This thesis improved the performance of ellipsomtery through three

aspects.

In order to improve ellipsometery’s measurement accuracy and precision, this the-

sis proposed and verified a noise-mitigating method in ellipsometry. The measurement

accuracy of ellipsometry can be significantly affected by Poisson-Gaussian noise origi-

nated from detection and environment. This thesis firstly characterized and quantified

the noise through experiments on an in-house setup. The thesis then performed er-

ror propagation analysis, and provided measurement error quantification in terms of

normalized Mueller matrix. Specifically, the distribution of the normalized Mueller

matrix elements error was derived to analyze nonlinear propagation occurring at the

normalization step. The effects of system parameters on the Poisson-Gaussian noise

induced errors were studied, including signal strength, the signal sampling frequency,
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and the first-order coefficient between the signal variance and mean. As expected,

the error is reduced with increasing signal strength, increasing sampling frequency,

and decreasing first order coefficient of the signal’s variance to mean. In practice, this

analysis gives the confidence interval for various experiment configuration and pro-

vides an evaluation to measurements on a spectroscopic ellipsometer, and can serve

as a guidance for improving the system performance or making trade-offs in an in-

dustrial scenario. The analysis was verified by Monte Carlo simulations. This thesis

then proposed a signal demodulation method in spectroscopic ellipsometry based on

maximum likelihood, in order to reduce the effects of mixed Poisson-Gaussian noise.

The method accounts for the signal’s statistical distribution and solves for the Fourier

coefficients by maximizing the probability of observed signal. The method’s capability

of achieving higher Mueller matrix accuracy as well as higher dimension precision and

accuracy is demonstrated against DFT.

To improve the dimension reconstruction precision, this thesis developed a recon-

struction method. The method improves the reconstruction’s sensitivity to changes

in dimensions. Higher weights are given to the critical configurations, where the

measurement is sensitive to changes in dimensions. The weight selection and recon-

struction algorithm are formulated. The weights are selected as partial derivative

of signature with respect to dimensions. Two types of samples were experimentally

measured to verify the improved precision resulted from the method. The first type

of sample is thin film standard, and the thickness of which is reconstructed. The

second type of sample is a grating sample, and the step height and ridge width of

which are reconstructed. Two criteria were proposed to determine the range of recon-

structed dimension. In all scenarios, the proposed reconstruction and weight selection

demonstrated higher dimension reconstruction precision.

Lastly, a Faraday effect-based photometric ellipsometer was designed and demon-

strated. The instrument has several advantages. The elimination of mechanical mo-

tion enables high-speed and high-accuracy. In addition, the linear relationship be-

tween the applied current and the rotation of the polarization plane enables fast and

easy demodulation. Lastly, the operating frequency of the Faraday rotator is con-

98



trollable, making it compatible with most detection systems. In contrast to previous

application of Faraday rotator in “null” ellipsometers, the proposed instrument oper-

ates in a photometric manner, and therefore is capable of parallel wavelength scan-

ning. The design, data reduction, and calibration are developed. One configuration

is designed and demonstrated in this thesis, capable of measuring the ellipsometric

parameters. More complicated configurations incorporating Faraday rotators can be

designed in the future to measure all Mueller matrix elements. Experiments are per-

formed on air and thin film sample. The measurement on air showed good agreement

with theory, and the instrument measured a thickness of 332.6 nm, while that pro-

vided by the manufacturer is 322.2 nm. This advancement will enable higher-speed

measurement and better catch real-time processes.

6.2 Recommendations

This thesis opens up future research directions.

Denoising in imaging ellipsometry: In imaging ellipsometry, the accuracy

and precision of the measurement could be significantly affected by the presence of

mixed Poisson-Gaussian noise. This thesis proposed a Poisson denoising method in

temporal polarization change-based ellipsometry. The method can be extended to

imaging ellipsometry. The maximum likelihood estimation method can be applied in

both temporal and spatial domain, in order to achieve higher measurement accuracy

and precision in imaging ellipsometry.

Faraday effect-based photometric Mueller matrix ellipsometry: This the-

sis proposed a Faraday effect-based photometric ellipsometer, capable of measure-

ment spectra of ellipsometric parameters, but cannot measure the depolarization and

anisotropicity of the sample. Mueller matrix ellipsometers can measure complex sam-

ples with anistropicity and depolarization effects, and is becoming increasingly im-

portant in nanomanufacturing and material development. Future work can further

develop a Faraday effect-based photometric Mueller matrix ellipsometer. The min-

imum requirements of the ellipsometer will be determined, including the number of

Faraday rotators, the minimum rotation angle of each Faraday rotator, and the other
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required optical components.

Compact design of Faraday effect-based photometric ellipsometry: One

disadvantage of the proposed Faraday effect-enabled photometric ellipsometer is its

large size. Future work should be devoted to the compact design of the proposed

design.

Large-range scanning ellipsometer: The proposed ellipsometer measures a

single spot at one time, and is capable of large-range scanning by moving the sample.

The performance of the method can be affected by the positioning accuracy of the

sample stage, and the large-range measurement speed is limited by the motion speed of

the sample stage. To improve on the speed and positioning performance, an approach

is to redirect the light beam to scan through a large-range surface. A suggested future

work is to develop an ellipsometer with a light beam that can be redirected to achieve

high-speed large-range scanning.
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Appendix A

Supplementary Results

A.1 Supplementary Results of Chapter 2

In Chapter 2, the Monte Carlo simulation results of a grating sample is presented.

In this appendix, the Monte Carlo simulation results of air is presented. The results

provide supplementary support to the conclusions in Chapter 2. The number of sim-

ulations of air measurements is 4000. Fig. A-1 shows the histogram of normalized

Mueller matrix elements. The blue bars represent the probability density function

Figure A-1: Histogram of normalized air 𝑀𝑛
33 values from simulations

from the simulations, and the red lines show the Gaussian fit. Fig. A-2 shows the

probability-probability plot (P-P plot) of each MM element against a Gaussian dis-
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tribution. The blue markers show the data from simulations, and the red line shows

the normal distribution reference line. The air simulation also validates the approxi-

mation that each normalized MM element follows a Gaussian distribution except for

𝑀11, which is a constant of 1 due to the normalization. The Gaussian approximation

is also examined and verified for a smaller number of simulations. Fig. 2-9 shows

the P-P plot of 200 simulations. The convergence of the Monte Carlo simulations is

presented for air in Fig. A-4.

Figure A-2: Normal probability plot of normalized air MM from simulations

The derivation of normalized Mueller matrix error is also verified with Monte Carlo

simulations for air. Fig. A-5 plots the mean absolute error of normalized Mueller

matrix elements versus the first-order coefficient of signal variance to mean. The

blue lines are from the Monte Carlo simulations and the red lines are from statistical

analysis. Again the good match validates the error analysis. Same trends can be

reasoned and concluded for the effects of light intensity, sampling frequency, and the

first-order coefficient of signal variance to mean.
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Figure A-3: Normal plot of 𝑀33 using 200 simulations

Figure A-4: Averaged Mueller matrix elements converges
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Figure A-5: The induced measurement error increases with 𝛾1

A.2 Supplementary Results of Chapter 3

Fig. A-6 and A-7 provides a visualization on how some configurations are more critical

than the others. Fig. A-6 is the simulated Mueller matrix spectrum of a grating

sample. The SiO2 grating is formed on Si. The measurement is at an azimuthal angle

of 0∘ and an incident angle of 55∘. A step height of 1200 nm, and a pitch of 3010

nm and 3020 nm is simulated. The blue lines show the spectrum corresponding to a

pitch of 3010 nm, and the red lines show that corresponding to a pitch of 3020 nm.

Zooming in on 𝑀12, it can be observed that the maximum difference between the two

lines occur around 820 nm, and therefore this region is most useful in differentiating

the two dimensions.

Fig. A-7a presents the sensitivity of the normalized Mueller matrix element 𝑀12

with respect to pitch at different wavelengths. The horizontal axis represents the

wavelength, and the vertical axis represent the grating pitch. It can be observed

104



Figure A-6: Simulated Mueller matrix spectrum of a grating sample with a step height
of 1250 nm

(a) Sensitivity of 𝑀12 to pitch (b) Sensitivity of 𝑀12 at three configurations

Figure A-7: Color map

that for one pitch value, the measurement is sensitive to the pitch value at certain

wavelengths, and at other wavelengths for another pitch value. Taking measurements

at more configurations can further enhance measurement accuracy [138]. In Fig. A-

7b, each layer represents one incident angle. Therefore, the critical configurations can

be determined and given higher weights in dimension reconstruction.
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The second thin film standard has a thickness of approximately 322.2 nm, and

the third thin film standard has a thickness of 1031.9 nm. The pictures of the two

mounted samples are shown in Fig. A-8a and A-8b respectively.

(a) Thin film sample 2 (b) Thin film sample 3

Figure A-8: Mounted thin film standards

The experimental and fitted Mueller matrix spectrum of sample 1 at incident

angles of 50∘ and 60∘ are presented in Fig. A-9 and A-10 respectively.

Figure A-9: Experimental and fitted Mueller matrix spectrum of thin film sample 1
at 50∘ incident angle
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Figure A-10: Experimental and fitted Mueller matrix spectrum of thin film sample 1
at 60∘ incident angle

The experimental and fitted Mueller matrix spectrum of sample 2 at incident

angles of 40∘, 50∘, and 60∘ are presented in Fig. A-11, A-12, and A-13 respectively.

Figure A-11: Experimental and fitted Mueller matrix spectrum of thin film sample 2
at 40∘ incident angle
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Figure A-12: Experimental and fitted Mueller matrix spectrum of thin film sample 2
at 50∘ incident angle

Figure A-13: Experimental and fitted Mueller matrix spectrum of thin film sample 2
at 60∘ incident angle

The experimental and fitted Mueller matrix spectrum of sample 3 at incident

angles of 50∘ and 60∘ are presented in Fig. A-14 and A-15 respectively.
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Figure A-14: Experimental and fitted Mueller matrix spectrum of thin film sample 3
at 50∘ incident angle

Figure A-15: Experimental and fitted Mueller matrix spectrum of thin film sample 3
at 60∘ incident angle
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Appendix B

Bill of Materials

This appendix presents the bill of materials and the supplementary figures. The bill

of materials are split into the following categories: light sources and detection system,

major optical components, cage system construction components, motors and mo-

tion control components, Faraday rotators and the required electronics, construction

components, fasteners, and samples. For the tables in this appendix, "Qty" is an

abbreviation for "quantity".

Table B.1: Bill of materials - light sources and detection system

Component Vendor Model Qty

Deuterium-Tungsten Halogen source Ocean Insight DH-2000-BAL 1
Extreme solarization resistant fibers Ocean Insight QP600-2-XSR 2
Spectrometer Ocean Insight MAYA2000PRO 1
OceanView spectrometer software Ocean Insight OceanView 2.0 1
Collimated laser diode module, 520 nm Thorlabs CPS520 1
Collimated laser diode module, 635 nm Thorlabs CPS635 1
5 V DC regulated power supply Thorlabs LDS5 1

Table B.2: Bill of materials - major optical components

Component Vendor Model Qty

FiberPort collimator Thorlabs PAF2S-A4A 2
30 mm cage system iris diaphragm Thorlabs CP20S 1
Mounted achromatic collimator Thorlabs AC254-100-A-ML 1
𝛼-BBO Rochon polarizer Edmund 68-827 2
Achromatic quarter-wave compensator Thorlabs AQWP05M-600 2

111



Table B.3: Bill of materials - motors and motion control components

Component Vendor Model Qty

Motorized linear stage PDV PP110-50 3
Motorized rotary stage PDV PX110-200 3
Motorized goniometer PDV PJ110-15 2
PDV controller PDV KZ-100 2
Compact direct drive rotation mount Thorlabs DDR25 2
K-Cube brushless DC servo driver Thorlabs KBD101 2
2.4 A Power Supply Unit Thorlabs KPS101 2

Table B.4: Bill of materials - Faraday rotators and the required electronics

Component Vendor Model Qty

Solenoid - customized 2
Glass rod TeachSpin - 2
myRIO National Instruments - 1
Audio power amplifier Taidacent OPA549 1
DC power supply Amazon B07X2VZSL9 2
Heat shrink tube Amazon B08W2CX5F5 1

Table B.5: Bill of materials - construction components

Component Vendor Model Qty

Large breadboard PDV PT-02PB-300x600 1
Small breadboard Thorlabs MB2020/M 1
Heavy-duty posts PDV PCB05 (25.4-76.2) 6
Acrylic sheet, 12 x 12 x 1/4 in McMaster-Carr 4615T37 1
Acrylic sheet, 24 x 24 x 1/4 in McMaster-Carr 8589K83 2
18-8 stainless steel dowel pin McMaster-Carr 90145A477 12
Oil-resistant Buna-N O-ring McMaster-Carr 9262K127 24
Stainless steel ball bearing McMaster-Carr 57155K313 12
Push-on external retaining ring McMaster-Carr 92133A107 24
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Table B.6: Bill of materials - optical cage system construction components

Component Vendor Model Qty

SM05-threaded 30 mm cage plate Thorlabs CP32 2
SM1-threaded 30 mm cage plate Thorlabs CP33 12
Drop-in 30 mm cage mount Thorlabs DCP1 1
Cage plate stop Thorlabs ERCPS 8
30 mm to 60 mm cage plate adapter Thorlabs LCP6X 6
30 mm to 16 mm cage plate adapter Thorlabs SP05 2
Cage assembly rod, 6 in long Thorlabs ER6 12
Cage assembly rod, 8 in long Thorlabs ER8 12
Cage assembly rod, 10 in long Thorlabs ER10 8
Cage assembly rod, 18 in long Thorlabs ER18 8
Compact cage assembly rod, 1 in long Thorlabs SR1 4
Compact cage assembly rod, 2 in long Thorlabs SR2 4
Dovetail optical rail, 6 in long Thorlabs RLA0600 1
Dovetail optical rail, 12 in long Thorlabs RLA1200 2
Dovetail optical rail, 24 in long Thorlabs RLA2400 2
Dovetail rail carrier, 1 in x 1 in Thorlabs RC1 12
Dovetail rail carrier, 2 in x 1 in Thorlabs RC2 4
Ø1/2 in post holder, 2 in long Thorlabs PH2 6
Ø1/2 in post holder, 3 in long Thorlabs PH3 4
Ø1/2 in post holder, 6 in long Thorlabs PH6 6
Ø1/2 in optical post, 2 in long Thorlabs TR2 4
Ø1/2 in optical post, 3 in long Thorlabs TR3 6
Ø1/2 in optical post, 6 in long Thorlabs TR6 6
Fixed laser mounting adapter Thorlabs AD11F 1
FiberPort adapter for 30 mm cage system Thorlabs CP08FP 2
SMA fiber thread adapter plate Thorlabs SM05SMA 3
SM05-SM1 thread adapter Thorlabs SM1A1 2
SM1 thread to Ø1 in mount adapter Thorlabs SM1P1 2

113



Table B.7: Bill of materials - fasteners

Component Vendor Model

Balldriver and hex key kit with stand Thorlabs TC2
Threaded stud and rod driver McMaster-Carr 6197A21
Motor winding wire, 18 Gauge McMaster-Carr 7588K63
Threaded rod, 1/4 in-20 thread, 1/2 in long McMaster-Carr 95412A538
Threaded rod, 1/4 in-20 thread, 1 in long McMaster-Carr 98750A011
Threaded rod, 1/4 in-20 thread, 1-1/4 in long McMaster-Carr 98750A013
threaded rod, 1/4 in-20 thread, 4 in long McMaster-Carr 90322A652
Threaded rod, M6 x 1 mm thread, 10 mm long McMaster-Carr 93805A312
Threaded rod, M6 x 1 mm thread, 16 mm long McMaster-Carr 93805A316
4-40 cap screw, 5/16 in long Thorlabs SH4S031
4-40 cap screw, 3/8 in long Thorlabs SH4S038
1/4 in-20 screw set Thorlabs HW-KIT2
Flat head screw, 1/4 in-20, 1 in long McMaster-Carr 92210A542
Flat head screw, 1/4 in-20, 2 in long McMaster-Carr 92210A550
Socket head screw, M6 x 1 mm, 6 mm long McMaster-Carr 91290A310
Socket head screw, M6 x 1 mm, 8 mm long McMaster-Carr 91274A135
Socket head screw, M6 x 1 mm, 30 mm long McMaster-Carr 91290A332
Socket head screw, M6 x 1 mm, 60 mm long McMaster-Carr 91290A207
Socket head screw, M6 x 1 mm, 70 mm long McMaster-Carr 91290A208
Coupling nut, 1/4 in-20 thread Size, 3 in long McMaster-Carr 90268A215
Coupling nut, 1/4 in-20 thread Size, 7/8 in long McMaster-Carr 90977A130
Coupling nut, M6 x 1 mm thread, 18 mm long McMaster-Carr 93355A330

Table B.8: Bill of materials - samples

Component Vendor Model Qty

Thin film standard Filmetrics TS-Focus-SiO2-4-3100 2
Thin film standard Filmetrics TS-Focus-SiO2-4-10000 1
Grating K-TEK Nanotechnology TGZ2 1
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The following supplementary figures provide a more complete description of the

experiment setup. Fig. B-1 shows the isometric view, side view, and back view of

the 6-DOF sample stage, and how the platform is clamped to the heavy-duty optical

posts.

(a) Isometric view of the 6-DOF stage (b) Side view of the 6-DOF stage

(c) Back view of the 6-DOF stage

(d) Platform clamped to a heavy-duty optical

post

Figure B-1: Isometric, side, and back view of the 6-DOF sample stage
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Fig. B-2 shows a mounted polarizer. It is clamped between two cage plates for

secure fixation. Fig. B-3 shows a compensator inside a rotary mount.

Figure B-2: Mounted polarizer Figure B-3: Mounted compensator

Fig. B-4 shows the solenoid of a Faraday rotator. Fig. B-5 shows a glass rod, and

the 3D printed part designed to hold the glass rod. The solenoid is mounted on the

glass holder to construct the Faraday rotator in Fig. 5-11.

Figure B-4: Solenoid Figure B-5: Glass rod and its holder
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Appendix C

Fundamental concepts in statistics

and computation

C.1 Statistics

Mean: The mean of a random variable is its averaged value [139].

Variance and covariance: The variance of a random variable measures how spread

out it is from its mean. The variance of a random variable is calculated as the squared

difference from its mean [139].

Correlation and auto-correlation: The correlation between two random variables

measures how strongly they are linearly related [139]. Autocorrelation is the correla-

tion between a time series and a lagged copy of itself [139].

Lilliefors test: The Lilliefors test can test a data set to a null hypothesis and decide

if the data set is from a normal distribution [140].

C.2 Processes:

Folded normal distribution: Taking the absolute value of a normally distributed

random variable, the formed distribution is a folded normal distribution [141].

Poisson distribution: Poisson distribution is a discrete probability distribution.
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It describes the probability of a given number of events occurring in a fixed time

interval. The events occur with a known constant mean rate and the probability of

event occurring is independent of the elapsed time since the last event [142].

Cauchy distribution: Given two independent normally distributed random vari-

ables with zero mean, Cauchy distribution is the distribution of the ratio of the two

random variables [139].

Chi-squared distribution: Chi-squared distribution is obtained by summing 𝑘 in-

dependent standard standard normal random variables [141].

C.3 Computation methods

Monte Carlo simulation: Monte Carlo simulations are used to model the probabil-

ity of different outcomes by repeatedly and randomly sample from a distribution [143].

Maximum likelihood estimation: Maximum likelihood estimation is a method

for estimating the value of one more parameters of probability distributions based on

observations. The objective function is the probability of the observation occurring,

and should be maximized [139].

Discrete Fourier Transform: Discrete Fourier Transform (DFT) converts a series

of equally spaced samples of a signal or function to a sequence of complex numbers

in the frequency domain [144].

Hadamard Transform: is a generalized Fourier transform method [145] Only real

number additions and subtractions are required in the computation, and therefore a

high computation speed is achievable.

Anscombe Transform: Anscombe transform stabilizes the variance of a Poisson

random variable by converting it into a random variable with an approximately stan-

dard Gaussian distribution [146].

Rigorous Couple Wave Analysis: Rigorous coupled-wave analysis (RCWA) is a

semi-analytical method. It describes the diffraction of electromagnetic waves scatted

from by period dielectric structures [147].
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Appendix D

Codes

In this appendix, the important codes to support the work in this thesis are listed.

� Listing D.1 is the parser of spectrometer data.

� Listing D.2 and D.3 shows the high-level codes of Monte Carlo simulations to

study the effects and mitigation of Poisson-Gaussian noise in Chapter 2.

� Listing D.4 shows the top-level file of processing data from Dual-Rotating Com-

pensator Ellipsometer.

� Listing D.5 is the dimension reconstruction codes in Chapter 3.

� Listing D.6 is for calibrating the Verdet constant in Chapter 4.

� Listing D.7 shows the calibration and signal processing presented in 4.
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Listing D.1: Spectrometer data parser

1 clear all; close all; clc;

2

3 %% extract files

4 dirfol = '';

5

6 % find all files in the specified folder and extract the ...

filenames as an array

7 addpath(dirfol);

8 listing = dir(dirfol);

9 filenames = [];

10 for i = 3:size(listing,1)

11 filenames = [filenames string(listing(i).name)];

12 end

13

14 %% extract the time, wavelength, intensity and save with the filename

15 for i = 1:size(filenames,2)

16 filename = filenames(i);

17 maya_table = readtable(filename);

18 maya_time = maya_table(:,1);

19 maya_time = table2array(maya_time);

20 maya_data = maya_table(:,3:end); % one row contains all ...

wavelengths at one time

21 maya_data = table2array(maya_data);

22 filename = strrep(filename,'.txt','.mat');

23 file = strcat(dirfol,'/',filename);

24 save(file, 'maya_time', 'maya_data');

25 end
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Listing D.2: Monte Carlo simulations of broadband light source

1 clear all; close all; clc;

2

3 % user defined parameters

4 load('f')

5 n_sim = 6000;

6 P_exp = 0; Ps = 0; Pp = P_exp-Ps;

7 A_exp = 0; As = 0; Ap = A_exp-As;

8 n_Fcoeff = 1; % 0 is air, 1 is grating sample

9 int_int = 1; % 1 if using number of measurements, 0 if using dt

10 multi_int = 1; % 1 if using int matrix, 0 if using single value

11 multi_scale = 1; % 1 if using scale matrix, 0 if using a single value

12 multi_f = 1; % 1 if using multiple values

13

14 % intensity scale

15 if multi_scale

16 scale_m = logspace(1,4,4);

17 else

18 scale_m = 1e3;

19 end

20 n_scale = size(scale_m,2);

21

22 % noise magnitude (variance-mean first-order coefficients)

23 if multi_f

24 p1_m = [0.1 f.p1 1/2 1];

25 else

26 p1_m = f.p1;

27 end

28 n_f = size(p1_m,2);

29

30 % number of integrations during one optical period

31 if multi_int

32 n_int_m = [25 40 50 70];

33 else

34 n_int_m = 45;

35 end
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36 n_n_int = size(n_int_m,2);

37

38 % divide signal

39 n_int = 16;

40 omega = 5/180*pi;

41 T = pi/omega;

42 if int_int == 1

43 dt = T/n_int;

44 elseif int_int == 0

45 dt = 30/1000;

46 n_int = T/dt;

47 end

48

49 % load parameters

50 ind_wave = 51:10:111;

51 n_wave = max(size(ind_wave));

52 ind_thick = 5;

53 ind_pitch = 250;

54 ind_phi = 1;

55 ind_theta = 2;

56 if n_Fcoeff

57 load('Mueller8')

58 M_multi = squeeze(Mueller(:,:,ind_wave,...

59 ind_thick,:,:,ind_pitch, ind_phi,ind_theta));

60 clear('Mueller')

61 else

62 M_multi = zeros(4,4,n_wave);

63 for i_wave = 1:n_wave

64 M_multi(:,:,i_wave) = eye(4);

65 end

66 end

67 Δ1 = 2*pi/4;

68 Δ2 = 2*pi/4;

69

70 cali = 0;

71 M_log_wave = zeros(n_wave, n_n_int, n_scale, n_sim, n_f, 6, 4, 4);

72 Sn_log_wave = zeros(n_wave, n_n_int, n_scale, n_sim, n_f, ...

122



max(n_int_m));

73 Sm_log_wave = zeros(n_wave, n_n_int, n_scale, n_sim, n_f, ...

max(n_int_m));

74 Hs_wave = zeros(n_wave, n_n_int, n_scale, n_sim, n_f);

75

76 for i_wave = 1:n_wave

77 M = squeeze(M_multi(:,:,i_wave));

78 [M_log, Sn_log, Sm_log, Hs] = max_like_single(cali, M, Pp, ...

79 Ap, Δ1, Δ2, T, n_int_m, n_n_int, scale_m, n_scale, ...

80 p1_m, n_f, n_sim, omega, i_wave);

81 M_log_wave(i_wave,:,:,:,:,:,:,:) = M_log;

82 Sn_log_wave(i_wave,:,:,:,:,:,:) = Sn_log;

83 Sm_log_wave(i_wave,:,:,:,:,:,:) = Sm_log;

84 Hs_wave(i_wave,:,:,:,:) = Hs;

85 end
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Listing D.3: Monte Carlo simulations at a single wavelength

1 function [M_log, Sn_log, Sm_log, Hs] = max_like_single(cali, M, ...

2 Pp, Ap, Δ1, Δ2, T, n_int_m, n_n_int, scale_m, n_scale, ...

3 p1_m, n_f, n_sim, omega, i_wave)

4

5 ind = [1 2 3 4 5 6 7 8 10 11 13 16];

6 empty = setdiff(1:16,ind);

7 [I0_p alpha_p beta_p] = M2coeff(M,Pp,Ap,Δ1,Δ2);

8 save('I0_p','I0_p')

9 save('alpha_p','alpha_p')

10 save('beta_p','beta_p')

11

12 %% simulate many experiments and compare the two methods: ...

minimize RMSE and maximize probability

13 % pseudo code

14 % for i_n_int = 1:n_n_int

15 % calcualte Sm

16 % calculate M

17 % for i_scale = 1:n_scale

18 % scale Sm

19 % for i_f = 1:n_f

20 % reset f.p1

21 % for i_sim = 1:n_sim

22 % calcualte Sn

23 % end

24 % end

25 % end

26 % end

27 M_log = zeros(n_n_int, n_scale, n_sim, n_f, 6, 4, 4);

28 Sn_log = zeros(n_n_int, n_scale, n_sim, n_f, max(n_int_m));

29 Sm_log = zeros(n_n_int, n_scale, n_sim, n_f, max(n_int_m));

30 Hs = zeros(n_n_int, n_scale, n_sim, n_f);

31

32 % for each integration number, calculate coefficients, A matrix

33 for i_n_int = 1:n_n_int

34 n_int = n_int_m(i_n_int);
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35 dt = T/n_int;

36 tm = 0:dt:dt*(ceil(T/dt));

37 Sm = zeros(size(tm,2)-1, 1);

38 load('I0_p'); load('alpha_p'); load('beta_p');

39 for i = 1:size(Sm,1)

40 tmin = tm(i);

41 tmax = tm(i+1);

42 Sm(i) = I0_p*(tmax-tmin);

43 for i_ind = 1:16

44 Sm(i) = Sm(i) + 1/i_ind/omega * ...

sin((tmax-tmin)*i_ind*omega) * ( ...

alpha_p(i_ind)*cos((tmin+tmax)*i_ind*omega) + ...

beta_p(i_ind)*sin((tmin+tmax)*i_ind*omega) );

45 end

46 end

47 A = zeros(n_int,32); % find A matrix correlating ...

Fourier coefficients to Sm

48 for i_int = 1:n_int

49 tmin = (i_int-1)*pi/(n_int*omega);

50 tmax = i_int*pi/(n_int*omega);

51 for i_ind = 1:16

52 A(i_int,i_ind) = 1/i_ind/omega * ...

sin((tmax-tmin)*i_ind*omega) * ...

cos((tmin+tmax)*i_ind*omega);

53 A(i_int,i_ind+16) = 1/i_ind/omega * ...

sin((tmax-tmin)*i_ind*omega) * ...

sin((tmin+tmax)*i_ind*omega);

54 end

55 end

56 A(:, [empty,empty+16]) = [];

57 Ac2s = [ones(n_int,1)*dt A];

58 xa = [I0_p; alpha_p(ind); beta_p(ind)];

59 Am2c = m2c_getA(Δ1,Δ2,Pp,Ap);

60 Ax = Ac2s*Am2c;

61

62 % for each scale, scale Sm

63 for i_scale = 1:n_scale
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64 scale = scale_m(i_scale);

65 Sm_scale = scale*Sm;

66 Sm_scale(Sm_scale<0) = 0;

67 xa_scale = scale*xa;

68 alpha_p = zeros(16,1);

69 beta_p = zeros(16,1);

70 if cali

71 alpha_p(ind) = xa_scale(2:13);

72 beta_p(ind) = xa_scale(14:25);

73 [I0, alpha, beta, Ps, As, ¬] = ...

unprime(xa_scale(1), alpha_p, beta_p);

74 Δ1 = 2*atan(sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2) ...

75 /sqrt(alpha_p(6)^2+beta_p(6)^2)));

76 Δ2 = 2*atan(sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2)...

77 /sqrt(alpha_p(10)^2+beta_p(10)^2)));

78 Pp=P_exp-Ps; Ap=A_exp-As;

79 else

80 xa = linsolve(Ac2s,Sm_scale);

81 I0 = xa(1);

82 alpha(ind) = xa(2:13);

83 beta(ind) = xa(14:25);

84 end

85 Ma= m_eqns_pc_dft(I0,alpha,beta,Δ1,Δ2,Pp,Ap);

86

87 % for each noise magnitude, add noise

88 for i_f = 1:n_f

89 f.p1 = p1_m(i_f);

90 for i_sim = 1:n_sim

91 Sn = zeros(size(Sm_scale));

92 S_var = f.p1*Sm_scale+f.p2;

93 S_var(S_var<0) = 0;

94 for i_int = 1:n_int

95 Sn(i_int) = normrnd(Sm_scale(i_int),...

96 sqrt(S_var(i_int)));

97 end

98 Sn(Sn<0) = 1;

99 % 1) a system of linear equations to minimize ...
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rmse

100 x_lin = linsolve(Ac2s, Sn);

101 % 2) a system of nonlinear equations to ...

maximize probability

102 x0 = x_lin;

103 fun = @(x) prob_eqn(x, Ac2s, Sn, f);

104 options_eqn = ...

optimoptions('fsolve','Display','none');

105 x_eqn = fsolve(fun,x0,options_eqn);

106 % calculate probability solution

107 H = compute_Hessian(x_eqn,Ac2s,Sn,f);

108 if min(eig(H))>0

109 Hs(i_n_int, i_scale,i_sim,i_f) = 1;

110 end

111 % 3) an optimization to maximize probability

112 x0 = x_lin;

113 fun = @(x) probfun_int(x, Sn, Ac2s, f);

114 Af = -Ac2s;

115 b = zeros(size(Sn));

116 options = ...

optimoptions('fmincon','Display','off');

117 x_prob = fmincon(fun, x0, Af, b, [], [], [], ...

[], [], options);

118

119 alpha_p = zeros(16,1);

120 beta_p = zeros(16,1);

121 alpha = zeros(16,1);

122 beta = zeros(16,1);

123 if cali

124 alpha_p(ind) = x_lin(2:13);

125 beta_p(ind) = x_lin(14:25);

126 [I0, alpha, beta, Ps, As, ¬] = ...

127 unprime(x_lin(1), alpha_p, beta_p);

128 Δ1 = 2*atan...

129 (sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2)...

130 /sqrt(alpha_p(6)^2+beta_p(6)^2)));

131 Δ2 = 2*atan...
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132 (sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2)...

133 /sqrt(alpha_p(10)^2+beta_p(10)^2)));

134 Pp=P_exp-Ps; Ap=A_exp-As;

135 M_lin= m_eqns_pc_dft(I0,alpha,beta, ...

136 Δ1,Δ2,Pp,Ap);

137

138 alpha_p = zeros(16,1);

139 alpha_p(ind) = x_eqn(2:13);

140 beta_p = zeros(16,1);

141 beta_p(ind) = x_eqn(14:25);

142 [I0, alpha, beta, Ps, As, ¬] = ...

143 unprime(x_eqn(1), alpha_p, beta_p);

144 Δ1 = 2*atan...

145 (sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2)...

146 /sqrt(alpha_p(6)^2+beta_p(6)^2)));

147 Δ2 = 2*atan...

148 (sqrt(sqrt(alpha_p(4)^2+beta_p(4)^2)...

149 /sqrt(alpha_p(10)^2+beta_p(10)^2)));

150 Pp=P_exp-Ps; Ap=A_exp-As;

151 M_eqn= ...

m_eqns_pc_dft(I0,alpha,beta,Δ1,Δ2,Pp,Ap);

152 else

153 I0 = x_lin(1);

154 alpha(ind) = x_lin(2:13);

155 beta(ind) = x_lin(14:25);

156 M_lin= ...

m_eqns_pc_dft(I0,alpha,beta,Δ1,Δ2,Pp,Ap);

157 I0 = x_eqn(1);

158 alpha(ind) = x_eqn(2:13);

159 beta(ind) = x_eqn(14:25);

160 M_eqn= ...

m_eqns_pc_dft(I0,alpha,beta,Δ1,Δ2,Pp,Ap);

161 I0 = x_prob(1);

162 alpha(ind) = x_eqn(2:13);

163 beta(ind) = x_prob(14:25);

164 M_prob = ...

m_eqns_pc_dft(I0,alpha,beta,Δ1,Δ2,Pp,Ap);
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165 end

166

167 M1 = reshape((Ax'*Ax)^(-1)*Ax'*Sn,[4,4]);

168 M2 = reshape(linsolve(Am2c,x_lin),[4,4]);

169 M_log(i_n_int,i_scale,i_sim,i_f,1,:,:)=M_lin;

170 M_log(i_n_int,i_scale,i_sim,i_f,2,:,:)=M_eqn;

171 M_log(i_n_int,i_scale,i_sim,i_f,3,:,:)=Ma;

172 M_log(i_n_int,i_scale,i_sim,i_f,4,:,:)=M1;

173 M_log(i_n_int,i_scale,i_sim,i_f,5,:,:)=M2;

174 M_log(i_n_int,i_scale,i_sim,i_f,6,:,:)=M_prob;

175 Sn_log(i_n_int,i_scale,i_sim,i_f,1:n_int)=Sn;

176 Sm_log(i_n_int,i_scale,i_sim,i_f,1:n_int)=Sm_scale;

177 end

178 end

179 end

180 end

181 end
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Listing D.4: Top-level file of DRCE processing

1 clear all; close all; clc;

2 restoredefaultpath;

3

4 %% define parameters

5 addpath(dirfol);

6 addpath('data');

7

8 listing = dir(dirfol);

9 file_strs = [];

10 for i = 3:size(listing)

11 file_strs = [file_strs string(listing(i).name)];

12 end

13 file_strs = sort(file_strs);

14

15 P = 0;

16 A = 0;

17 omega = 5/180*pi;

18 n_p = 2; % number of periods to use

19 width = 1; % decide the spectral width of the light sources

20 scale = 1; % scale up/down the integrated intensity

21

22 t_interval = 30/1000;

23 t_initial = 0;

24

25 solver_ind = 1;

26 if solver_ind == 1

27 solver = 'dft';

28 elseif solver_ind == 2

29 solver = 'hadamard_linear';

30 elseif solver_ind == 3

31 solver = 'Fourier_maximum';

32 end

33 % solver takes 'dft', 'hadamard_nl', 'hadamard_linear'

34

35 load('maya_wavelen');
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36 w = maya_wavelen(maya_wavelen>450 & maya_wavelen<950);

37 w = w';

38 wl = min(w);

39 wu = max(w);

40

41 %% measure unknown sample(s)

42 Ps = Ps_m;

43 As = As_m + Ps;

44 Cs1 = Cs1_m + Ps ;

45 Cs2 = Cs2_m + Ps;

46

47 for i = 1:max(size(file_strs))

48 file_str = file_strs(i);

49 mode = 'calibrated';

50 [M_unknown, error_unknown, ¬] = air_pc(file_str, omega, ...

51 n_p, P, A, w, width, scale, Δ_air, t_interval, ...

52 t_initial, mode, solver, Ps, As, Cs1, Cs2);

53

54 error_m(i,:) = error_unknown;

55 M(:,:,:,i) = M_unknown;

56

57 sample = 'general';

58 plot_results(sample, w, M_unknown, error_m)

59 end
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Listing D.5: Thin film thickness reconstruction

1 clear all; close all; clc;

2

3 inc_m = [40 50 60];

4 n_inc = size(inc_m,2);

5 diff_l = 550;

6 diff_u = 1800;

7 n_diff = diff_u - diff_l+1;

8 load('maya_wavelen')

9 n_wave = size(maya_wavelen,2);

10

11 for i_sample = 1:3

12 % load simulated data

13 if i_sample == 1

14 load('../new_data/sim/s303_Mueller');

15 dim = 292:0.1:312;

16 elseif i_sample == 2

17 load('../new_data/sim/s322_Mueller');

18 dim = 312:0.1:332;

19 elseif i_sample == 3

20 load('../new_data/sim/s1000_Mueller');

21 dim = 1022:0.1:1042;

22 end

23 n_dim = size(dim,2);

24 e_m = zeros(n_dim,1);

25

26 M = zeros(4,4,n_wave,n_inc); % measured data

27 for i_inc = 1:n_inc

28 M(:,:,:,i_inc) = find_M1(i_sample,i_inc);

29 end

30 M_reshape = M(:,:,diff_l:diff_u,:);

31 M_reshape = reshape(M_reshape,[4*4*n_diff*n_inc,1]);

32 n_y = size(M_reshape,1);

33

34 Mueller_dim = zeros(4*4*n_diff*n_inc,1); % simulated data

35 for i_dim = 1:n_dim
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36 t = squeeze(Mueller(:,:,diff_l:diff_u,i_dim,1,1,1,1,:));

37 Mueller_dim(:,i_dim) = reshape(t,[4*4*n_diff*n_inc,1]);

38 end

39

40 for i_dim = 1:n_dim

41 diff = M_reshape-squeeze(Mueller_dim(:,i_dim));

42 w = zeros(n_y,1);

43 % calculate derivative for each signature

44 for i_y = 1:n_y

45 if i_dim == 1

46 w(i_y) = Mueller_dim(i_y,i_dim+1) - ...

Mueller_dim(i_y,i_dim);

47 elseif i_dim == n_dim

48 w(i_y) = Mueller_dim(i_y,i_dim) - ...

Mueller_dim(i_y,i_dim-1);

49 else

50 w(i_y) = (Mueller_dim(i_y,i_dim+1) - ...

Mueller_dim(i_y,i_dim-1))/2;

51 end

52 end

53 w = abs(w); % weighted

54 w = ones(n_y,1); % averaged

55

56 % t = sqrt(diff.^2).*w;

57 % e1 = mean(t); % MAE

58 % t = mean(diff.^2.*w);

59 % e1 = sqrt(t); % RMSE

60 % e1 = mean(diff.^2.*w);% MSE

61 e_m(i_dim) = e1;

62 end

63 [a b] = min(e_m);

64 disp(dim(b))

65 figure()

66 plot(dim,e_m)

67

68 end
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Listing D.6: Verdet constant calibration

1 clear all; close all; clc;

2 restoredefaultpath;

3

4 % choose experiment

5 exper = '../FR_data/Verdet_H'; % two solenoids result

6 addpath(genpath(exper))

7 addpath('../param_data')

8

9 P = load_P(exper);

10 [c v] = load_cv(exper); % the current and voltage

11 n_c = size(c,2); % number of calibration points

12

13 Iind = load_Iind(exper); % interested wavelength index

14 n_Iind = size(Iind,1); % number of interested wavelengths

15 [I_back I0 Ia] = load_preI(exper,Iind); % background, I0, 0deg ...

analyzer

16 I0 = I0-I_back;

17

18 files = load_files(exper);

19 n_file = size(files,2);

20 I = zeros(n_Iind,n_file); % find all the light intensities minus ...

background

21 for i_file = 1:n_file

22 file_name = strcat(files{i_file},'.mat');

23 load(file_name);

24 I_temp = mean(maya_data);

25 I_temp = I_temp(Iind);

26 I_temp = I_temp' - I_back;

27 I(:,i_file) = I_temp;

28 end

29 I = I(:,1:end);

30

31 % calculate the Verdet constant at each wavelength

32 theta = zeros(n_Iind,n_c); % Faraday rotation angles

33 Verdet = zeros(n_Iind,1); % Verdet constant
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34 f = zeros(n_Iind,2);

35 Rsq = zeros(n_Iind,1);

36 for i_Iind = 1:n_Iind

37 theta(i_Iind,:) = acos(sqrt( I(i_Iind,:)./I0(i_Iind) ));

38 theta(i_Iind,:) = rad2deg(theta(i_Iind,:));

39 x = c;

40 y = theta(i_Iind,:);

41 f_temp = polyfit(x,y,1);

42 y_fit = f_temp(1)*x+f_temp(2);

43 SStot = sum((y-mean(y)).^2);

44 SSres = sum((y-y_fit).^2);

45 Rsq(i_Iind,:) = 1-SSres/SStot;

46 f(i_Iind,:) = f_temp';

47 Verdet(i_Iind) = f_temp(1)/P;

48 end

49

50 % plot the Verdet callibration curve at four wavelengths

51 plot_ind = 600:250:1600;

52 fig = figure;

53 for i_plot = 1:4

54 subplot(2,2,i_plot)

55 plot(c,theta(plot_ind(i_plot),:),...

56 'x','markersize',8,'linewidth',1); hold on;

57 plot(c,f(plot_ind(i_plot),1)*c+f(plot_ind(i_plot),2),...

58 'linewidth',1.5); hold on;

59 maya_wavelen_Iind = maya_wavelen(Iind);

60 title(num2str(maya_wavelen_Iind(plot_ind(i_plot))));

61 axis([-2.1 2.1 27 70])

62 grid on;

63 end

64 subplot(2,2,1); title('476nm');

65 subplot(2,2,2); title('588nm');

66 subplot(2,2,3); title('700nm');

67 subplot(2,2,4); title('808nm');

68 legend('Experimental','Best fit line')

69 sgtitle('Verdet calibration curve at four wavelengths')

70 han=axes(fig,'visible','off');
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71 han.XLabel.Visible='on';

72 xlabel(han,'Current (A)');

73 han.YLabel.Visible='on';

74 ylabel(han,'Rotation angle of polarization plane (deg)');

75

76 % plot the Verdet constant versus wavelength

77 wave_SF59 = maya_wavelen*1e-9;

78 a = 2843.2e-9;

79 b = 112.5192e-20;

80 lambda0 = 175.3e-9;

81 V_SF59 = pi./wave_SF59 .* (a+b./(wave_SF59.^2-lambda0^2));

82 figure()

83 plot(maya_wavelen(Iind), abs(Verdet), 'x', 'markersize', 3); hold on;

84 plot(wave_SF59*1e9,V_SF59,'linewidth',2); hold on;

85 scatter(650, 23, 'o', 'MarkerFaceColor', 'g')

86 legend('Experimental','From paper [1]','From paper ...

[2]','fontsize',18)

87 xlabel('Wavelength (nm)')

88 ylabel('Verdet constant (rad/(T.m))')

89 title('Verdet constant depends on wavelength')

90 axis([450 1000 0 100])

91 grid on
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Listing D.7: Faraday effect-enabled photometric ellipsometer codes

1 %% 1. Air measurement

2 restoredefaultpath;

3 addpath('../param_data');

4 load('maya_wavelen');

5 load('beta'); beta_angle = deg2rad(beta);

6 addpath(genpath('../FR_data/49_20211002/Air_rotating_H'));

7 light='H'; P=90; A_start=0;

8

9 % set motion parameters

10 n_P = size(P,2);

11 n_A = size(A_start,2);

12 n_w = size(maya_wavelen,2);

13 dt = 100/1000;

14

15 % load A, P calibration

16 A_cali = load_A_cali(light);

17 P_cali = (P+P_shift)*ones(n_w,1);

18

19 % initialize matrices

20 [I0_p_m, alpha_p_m, beta_p_m, alpha_m, beta_m] = ...

intialize_mat(n_A,n_w);

21

22 % extract Fourier coefficients

23 for i_A = 1:n_A

24 filename = strcat('P',num2str(P),...

25 'A',num2str(A_start(i_A)),'_24s_100ms.mat');

26 load(filename);

27

28 for i_w = 1:n_w

29 omega = beta_angle(i_w)/24;

30 % calculate As from calibration, motion, and starting ...

position

31 A_start=-rad2deg(beta_angle(i_w))/2;

32 As = calc_A_s_FR(A_cali, P_cali, A_start(i_A)); % in rad

33
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34 int = maya_data(:,i_w);

35 [I0_p, alpha_p, beta_p] = hadamard_PSAr(int, omega, dt);

36 alpha_p = alpha_p/I0_p;

37 beta_p = beta_p/I0_p;

38 % account for phase angle

39 alpha = cos(2*As(i_w))*alpha_p + sin(2*As(i_w))*beta_p;

40 beta = -sin(2*As(i_w))*alpha_p + cos(2*As(i_w))*beta_p;

41

42 % log

43 I0_p_m(i_A,i_w) = I0_p;

44 alpha_p_m(i_A,i_w) = alpha_p;

45 beta_p_m(i_A,i_w) = beta_p;

46 alpha_m(i_A,i_w) = alpha;

47 beta_m(i_A,i_w) = beta;

48 end

49 end

50

51 % calculate M11,M12,M33

52 M11 = zeros(n_P,n_w);

53 M12 = zeros(n_P,n_w);

54 M33 = zeros(n_P,n_w);

55 for i_P = 1:n_P

56 for i_w = 1:n_w

57 Ps_i = deg2rad(P(i_P)-P_cali(i_w));

58 A = [1 cos(2*Ps_i) 0;

59 cos(2*Ps_i) 1 0;

60 0 0 sin(2*Ps_i)];

61 B = [I0_p_m(i_P,i_w);

62 alpha_m(i_P,i_w)*I0_p_m(i_P,i_w);

63 beta_m(i_P,i_w)*I0_p_m(i_P,i_w)];

64 temp = linsolve(A,B);

65 M11(i_P,i_w) = temp(1);

66 M12(i_P,i_w) = temp(2);

67 M33(i_P,i_w) = temp(3);

68 end

69 end

70 M12n = M12./M11;
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71 M33n = M33./M11;

72 plot_M12_M33(M12n,M33n,light,maya_wavelen)

73

74 %% 2. Thin film measurement

75 clear all; close all; clc;

76 addpath('../param_data'); load('maya_wavelen');

77 addpath(genpath('../FR_data/47_20210820/5_Film_H'));

78 light = 'H';

79 P = load('P_discrete');

80 A_start=0; A_shift=0;

81

82 % load motion parameters

83 n_P = size(P,2);

84 n_w = size(maya_wavelen,2);

85

86 % initialize matrices

87 [I0_p_m, alpha_p_m, beta_p_m, alpha_m, beta_m] = ...

intialize_mat(n_P,n_w);

88 R_m = zeros(n_P,n_w);

89

90 % extract Fourier coefficients

91 for i_P = 1

92 filename = strcat('P',num2str(P(i_P)),'A0_100ms.mat');

93 load(filename);

94 maya_data = maya_data(3:end,:);

95

96 for i_w = 1:n_w

97 int = maya_data(:,i_w);

98 [I0_p, alpha_p, beta_p] = hadamard_PSAr(int, omega, dt);

99 alpha_p = alpha_p/I0_p;

100 beta_p = beta_p/I0_p;

101

102 % log

103 I0_p_m(i_P,i_w) = I0_p;

104 alpha_p_m(i_P,i_w) = alpha_p;

105 beta_p_m(i_P,i_w) = beta_p;

106 R_m(i_P,i_w) = 1- (alpha_p^2+beta_p^2);

139



107 end

108 end

109

110 f = fit2parab(P,R_m,n_w);

111 P_cali = v2angle(-f(:,2)./(2*f(:,1)),Verdet);

112 A_cali = load_A_cali(light)+a_pass;

113

114 % calculate M11,M12,M33

115 Ps = zeros(n_P,n_w);

116 M11 = zeros(n_P,n_w);

117 M12 = zeros(n_P,n_w);

118 M33 = zeros(n_P,n_w);

119

120 for i_P = 1:n_P

121 % calculate As from calibration, motion, and starting position

122 As = calc_A_s(omega, acc, A_cali, P_cali, A_start, A_shift); ...

% in rad

123

124 for i_w = 1:n_w

125 alpha = cos(2*As(i_w))*alpha_p_m(i_P,i_w) + ...

126 sin(2*As(i_w))*beta_p_m(i_P,i_w);

127 beta = -sin(2*As(i_w))*alpha_p_m(i_P,i_w) + ...

128 cos(2*As(i_w))*beta_p_m(i_P,i_w);

129

130 Ps_i = deg2rad(P(i_P)-P_cali(i_w));

131 A = [1 cos(2*Ps_i) 0;

132 cos(2*Ps_i) 1 0;

133 0 0 sin(2*Ps_i)];

134 B = [I0_p_m(i_P,i_w);

135 alpha*I0_p_m(i_P,i_w);

136 beta*I0_p_m(i_P,i_w)];

137 temp = linsolve(A,B);

138

139 alpha_m(i_P,i_w) = alpha;

140 beta_m(i_P,i_w) = beta;

141 Ps(i_P,i_w) = Ps_i;

142 M11(i_P,i_w) = temp(1);
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143 M12(i_P,i_w) = temp(2);

144 M33(i_P,i_w) = temp(3);

145 end

146 end

147 plot_M12_M33(M12./M11,M33./M11,light,maya_wavelen)

148 subplot(2,1,1)

149 hold on;

150 plot(maya_wavelen,squeeze(TF_Mueller_o(1,2,:,4)), 'r--', ...

'linewidth',1.5);

151 axis([450 950 -1 1])

152 subplot(2,1,2)

153 hold on;

154 plot(maya_wavelen,squeeze(TF_Mueller_o(3,3,:,4)), 'r--', ...

'linewidth',1.5);

155 axis([450 950 -1 1])
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Nomenclature

2𝑁 Maximum harmonic order

2𝑛 Harmonic order

𝛼2 Fourier coefficient

𝛼2𝑛 Fourier coefficient associated with order 2𝑛

�̄� Averaged refractive index of right-handed and left-handed polarized light

𝛽 Rotation angle of the polarization plane

𝛽(𝜆) Rotation angle of the polarization plane at wavelength 𝜆

𝛽2 Fourier coefficient

𝛽2𝑛 Fourier coefficient associated with order 2𝑛

Φ Coefficient matrix associated with the integrated intensities

𝜃 Vector consisting of the DC term and the Fourier coefficients

𝜑𝑘 Coefficient vector associated with the 𝑘𝑡ℎ integrated intensity

∆S The noise of the integrated intensity, a 𝐾 by 1 vector

∆𝜃 Rotation angle of the polarization plane

∆𝑛 Difference between 𝑛+ and 𝑛−

∆𝑡 Integration duration
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𝜂 Angle between 𝑇𝑍 and the z-axis

𝛾 Empirical constant

𝛾1 The first-order coefficient of integrated light intensity variance to mean

𝛾2 The offset of integrated light intensity variance to mean

�̂� The estimated value of 𝜃

x̂ Reconstructed dimensions, a 𝑛𝑥 by 1 vector

𝑆𝑘 The expected 𝑘𝑡ℎ integrated intensity

𝜆 Wavelength of incident light

A Coefficient matrix transforming S to M𝑢, a 𝐾 by 16 matrix

A1 The first row of A, a 𝐾 by 1 vector

A𝑘 The 𝑘𝑡ℎ row of A, a 𝐾 by 1 vector

B Coefficient matrix associated with the vector of the Fourier coefficients

f(x) Simulated signature, a 𝑚 by 1 vector

H Hessian matrix

M Normalized Mueller matrix

M𝑢 Unnormalized Mueller matrix, reshaped to a 16 by 1 column vector

M𝐴 Mueller matrix of the analyzer

M𝑛 Normalized Mueller matrix elements, reshaped to a 16 by 1 column vector

M𝑃 Mueller matrix of the polarizer

M𝑆 Mueller matrix of the sample

M𝐹𝑅1 Mueller matrix of the first Mueller matrix
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M𝐹𝑅2 Mueller matrix of the second Mueller matrix

R(−𝑃𝑠) Rotation Mueller matrix associated with −𝑃𝑠

R(𝐴𝑠) Rotation Mueller matrix associated with 𝐴𝑠

S Integrated intensity vector, a 𝐾 by 1 vector

S𝑖 Input Stokes vector

S𝑛 Noisy integrated intensities, a 𝐾 by 1 vector

S𝑜 Exit Stokes vector

u, v Orthogonal unit vectors

u𝑛, v𝑛 New orthogonal unit vectors

W Weight matrix, an 𝑚 by 𝑚 matrix

x Dimensions, a 𝑛𝑥 by 1 vector

x𝑛 Nominal dimensions, a 𝑛𝑥 by 1 vector

y Measured signature, an 𝑚 by 1 vector

𝒩 Normal distribution

𝜇0 Vacuum permeability

𝜇𝑒 Mean of the normalized Mueller matrix element error

𝜇𝑘 Slack variable

𝜇𝑄𝐷
Mean of 𝑄𝐷

𝜇𝑄𝑁
Mean of 𝑄𝑁

Ω Dimensions’ domain

𝜔 The rotating components’ fundamental frequency
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𝜔𝑙 Light frequency

𝜑 The angle between the polarizer and the analyzer transmission axes

𝜓, ∆ Ellipsometric parameters

𝜎 Standard deviation of fitting error

𝜎2
𝑀𝑛

𝑘
Variance of the approximated Gaussian distribution of a normalized Mueller

matrix element

𝜎2
𝑄𝐷

Variance of 𝑄𝐷

𝜎2
𝑄𝑁

Variance of 𝑄𝑁

𝜎2
𝑒 Variance of the normalized Mueller matrix element error

𝜎2
𝑘 The variance associated with the 𝑘𝑡ℎ integrated light intensity

𝐴𝑠 Azimuthal offset of the analyzer

𝐴1𝑖 The element of A in the first row and 𝑖𝑡ℎ column

𝐴𝑘𝑖 The element of A in the 𝑘𝑡ℎ row and 𝑖𝑡ℎ column

𝐴𝑘𝑗 The element of A in the 𝑘𝑡ℎ row and 𝑗𝑡ℎ column

𝐵 Magnetic flux density

𝐵𝑧 Magnetic field generated by a single loop along the z-direction

𝑐 Light speed

𝐷 Parameter of the solenoid and the material

𝑑𝑖 Inner diameter of the glass holder

𝑑𝑜 Outer diameter of the glass holder

𝑑𝑤 Diameter of electrical wire

𝑑𝐵𝑧 Magnetic field generated by the infinitesimal segment along the z-axis
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𝑑𝑙 Length of the infinitesimal loop segment

𝑒 Electron charge

𝐸[𝑀𝑛
𝑘 ] Mean of the approximated Gaussian distribution of a normalized Mueller

matrix element

𝐸+ Electric field of the right-handed polarized light

𝐸− Electric field of the left-handed polarized light

𝐸𝑖𝑛 Electric field of the light beam before a Faraday rotator

𝐸𝑜𝑢𝑡 Electric field of the light beam exiting a Faraday rotator

𝑓 Objective function

𝑓𝑖(x) The 𝑖𝑡ℎ simulated signature

𝐺 Electrical wire gauge

𝑔𝑘 Constraint function

𝐻𝑖𝑗 Element of 𝐻 in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column

𝐼(𝑡) Light intensity exiting the light path at time 𝑡

𝐼𝑐 Current through the solenoid

𝑖𝑐 Index of the solenoid loop per layer

𝐼𝑙 Light intensity transmitted through the analyzer

𝑖𝑙 Index of the solenoid layer

𝐼𝑜 DC term of the light intensity

𝐼𝑙𝑜 Intensity of linearly polarized light incident on the analyzer

𝐽 Constant

𝐿 Length of holder
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𝐿𝑚 Length of the optically active medium (glass rod) length

𝐿𝑤 Total length of electrical wire

𝑚 Length of the signature vector

𝑚1 Amplitude of right-handed polarized light

𝑀𝑢
1 The first element in M𝑢

𝑚2 Amplitude of left-handed polarized light

𝑚𝑒 Electron mass

𝑀𝑢
𝑘 The 𝑘𝑡ℎ element in M𝑢

𝑀12 Element of normalized Mueller matrix in the first row and second column

𝑀33 Element of normalized Mueller matrix in the third row and third column

𝑛 Refractive index

𝑛+ Refractive index of right-handed polarized light

𝑛− Refractive index of left-handed polarized light

𝑛𝑐 Number of loops per layer in the Faraday rotator

𝑛𝑙 Number of coil layers

𝑛𝑥 Length of the dimension vector

𝑂 Coordinate origin

𝑝 Likelihood function of all integrated intensities taking on the observed

values

𝑃 (𝑆𝑛
𝑘 ) Probability of the 𝑘𝑡ℎ intensity taking on the observed value

𝑃𝑎 Polarizer angle

𝑃𝑠 Azimuthal offset of the polarizer
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𝑄𝐷 The denominator of the normalized Mueller matrix elements

𝑄𝑁 The numerator of the normalized Mueller matrix elements

𝑅 Resistance per unit length

𝑅2 Coefficient of determination

𝑅𝑝 Length of 𝑇𝑍

𝑟𝑖𝑙 Radius of the loop in layer 𝑖𝑙

𝑆𝑘 𝑘𝑡ℎ integrated light intensity

𝑇 Point on the z-axis

𝑡 Time

𝑡1 Starting time of the integration period

𝑡2 Ending time of the integration period

𝑉 Verdet constant

𝑉 (𝜆) Verdet constant as function of wavelength

𝑊 Wire weight

𝑤 wire weight per unit length

𝑤𝑖 The element of W in the 𝑖𝑡ℎ row and 𝑖𝑡ℎ column

𝑍 Point on the infinitesimal segment

𝑧 Light’s propagation direction

𝑧𝑖𝑐 Longitudinal position of the loop 𝑖𝑐
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