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Abstract

In this thesis, we study several extensions of the concept of interactive proofs. First,
we consider non-signaling multi-prover interactive proofs. Interacting with multiple
non-interacting provers increases the ability of the verifier to check the solution by
asking the provers different questions and checking the consistency of their answers.
In a non-signaling multi-prover proof, the provers can interact and correlate their an-
swers, but not in an unlimited way: non-signaling provers must make the distribution
of answers for any subset of provers only depend on the distribution of questions the
verifier sends to that same subset. Non-signaling proofs, have found applications in
cryptography and hardness of approximation. An important open problem is char-
acterizing the power of non-signaling proofs. It is known that 2-prover non-signaling
proofs are characterized by PSPACE, and that non- signaling proofs with poly(𝑛)-
provers are characterized by EXP. However, the power of 𝑘-prover non-signaling
proofs, for 2 < 𝑘 < poly(𝑛) remained an open problem. We show that 𝑘-prover
non-signaling proofs (with negligible soundness) for 𝑘 = 𝑂(𝑝 log 𝑛) are contained in
PSPACE. We prove this via two different routes that are of independent interest. In
both routes we consider a relaxation of non-signaling called sub-non-signaling. Our
main technical contribution (which is used in both our proofs) is a reduction showing
how to convert any sub-non- signaling strategy with value at least 1 − 2−𝑘

2 into a
non-signaling one with value at least 2𝑂(−𝑘2).

Second, we introduce pseudo-deterministic interactive proofs (psdIP): interactive
proof systems for search problems where the verifier is guaranteed with high proba-
bility to output the same output on different executions. As in the case with classical
interactive proofs, the verifier is a probabilistic polynomial time algorithm interact-
ing with an untrusted powerful prover. We view pseudo-deterministic interactive
proofs as an extension of the study of pseudo-deterministic randomized algorithms:
the goal of the latter is to find canonical solutions to search problems whereas the
goal of the former is to prove that a solution to a search problem is canonical to a
probabilistic polynomial time verifier. Alternatively, one may think of the powerful
prover as aiding the probabilistic polynomial time verifier to find canonical solutions
to search problems, with high probability over the randomness of the verifier. The
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challenge is that pseudo- determinism should hold not only with respect to the ran-
domness, but also with respect to the prover: a malicious prover should not be able
to cause the verifier to output a solution other than the unique canonical one. The
IP = PSPACE characterization implies that psdIP = IP. The challenge is to find con-
stant round pseudo-deterministic interactive proofs for hard search prob-lems. We
show a constant round pseudo-deterministic interactive proof for the graph isomor-
phism problem: on any input pair of isomorphic graphs (𝐺0, 𝐺1), there exist a unique
isomorphism from 𝐺0 to 𝐺1 (although many isomorphism many exist) which will be
output by the verifier with high probability, regardless of any dishonest prover strat-
egy. In contrast, we show that it is unlikely that psdIP proofs with constant rounds
exist for NP-complete problems by showing that if any NP-complete problem has a
psdIP protocol, then the polynomial hierarchy collapses.

Third, we define doubly-efficient pseudo-deterministic proofs for polynomial time
search problems: pseudo-deterministic proofs with the extra requirement that the
prover runtime is polynomial and the verifier runtime to verify that a solution is
canonical is significantly lower than the complexity of finding any solution, canonical
or otherwise. Naturally this question is particularly interest-ing for search problems
for which a lower bound on its worst case complexity is known or has been widely
conjectured.

We show doubly-efficient pseudo-deterministic algorithms for a host of natural
problems whose complexity has long been conjectured. In particular, linear program-
ming and a variety of problems studied at the center of the fine grained complexity
study.

Thesis Supervisor: Shafi Goldwasser
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis is putting together the work of three papers.

We introduce pseudo-deterministic interactive proofs (psdIP): interactive proof

systems for search problems where the verifier is guaranteed with high probability

to output the same output on different executions. As in the case with classical

interactive proofs, the verifier is a probabilistic polynomial time algorithm interacting

with an untrusted powerful prover.

We view pseudo-deterministic interactive proofs as an extension of the study of

pseudo-deterministic randomized polynomial time algorithms: the goal of the latter

is to find canonical solutions to search problems whereas the goal of the former is to

prove that a solution to a search problem is canonical to a probabilistic polynomial

time verifier. Alternatively, one may think of the powerful prover as aiding the prob-

abilistic polynomial time verifier to find canonical solutions to search problems, with

high probability over the randomness of the verifier. The challenge is that pseudo-

determinism should hold not only with respect to the randomness, but also with

respect to the prover: a malicious prover should not be able to cause the verifier to

output a solution other than the unique canonical one.

The 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸 characterization implies that psdIP = 𝐼𝑃 . The challenge is

to find constant round pseudo-deterministic interactive proofs for hard search prob-

lems. We show a constant round pseudo-deterministic interactive proof for the graph

isomorphism problem: on any input pair of isomorphic graphs (𝐺0, 𝐺1), there exist a
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unique isomorphism 𝜑 from 𝐺0 to 𝐺1 (although many isomorphism many exist) which

will be output by the verifier with high probability, regardless of any dishonest prover

strategy. In contrast, we show that it is unlikely that psdIP proofs with constant

rounds exist for NP-complete problems by showing that if any NP-complete problem

has a psdIP protocol, then the polynomial hierarchy collapses.

In [40] Goldwasser, Grossman and Holden introduced pseudo-deterministic inter-

active proofs for search problems where a powerful prover can convince a probabilistic

polynomial time verifier that a solution to a search problem is canonical. They stud-

ied search problems for which polynomial time algorithms are not known and for

which many solutions are possible. They showed that whereas there exists a constant

round pseudo deterministic proof for graph isomorphism where the canonical solution

is the lexicographically smallest isomorphism, the existence of pseudo-deterministic

interactive proofs for NP-hard problems would imply the collapse of the polynomial

time hierarchy.

In Chapter 4, we turn our attention to studying doubly-efficient pseudo-deterministic

proofs for polynomial time search problems, as defined in [34]: pseudo-deterministic

proofs with the extra requirement that the prover runtime is polynomial and the

verifier runtime to verify that a solution is canonical is significantly lower than the

complexity of finding any solution, canonical or otherwise. Naturally this question is

particularly interesting for search problems for which a lower bound on its worst case

complexity is known or has been widely conjectured.

We show doubly-efficient pseudo-deterministic algorithms for a host of natural

problems whose complexity has long been conjectured. In particular,

• We show a doubly efficient pseudo-deterministic proof for linear program-

ming where the canonical solution which the prover will provide is the lexi-

cographically greatest optimal solution for the LP. To this end, we show how

through perturbing the linear program and strong duality this solution can be

both computed efficiently by the prover, and verified by the verifier. The time

of the verifier is 𝑂(𝑑2) for a linear program with integer data and at most 𝑑 vari-

ables and constraints, whereas the time to solve such linear program is 𝑂̃(𝑑𝜔)
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by randomized algorithms [24] for 𝜔 the exponent for fast matrix multiplication

.

• We show a doubly efficient pseudo-deterministic proof for 3-SUM and problems

reducible to 3-SUM where the prover is a 𝑂(𝑛2) time algorithm and the verifier

takes time 𝑂̃(𝑛1.5).

• We show a doubly-efficient pseudo-deterministic proof for the hitting set prob-

lem where the verifier runs in time 𝑂̃(𝑚) and the prover runs in time 𝑂̃(𝑚2)

where 𝑚 =
∑︀

𝑆∈𝒮 |𝑆|+
∑︀

𝑇∈𝒯 |𝑇 | for inputs collections of sets 𝒮, 𝒯 .

• We show a doubly-efficient pseudo-deterministic proof for the Zero Weight

Triangle problem where the verifier runs in time 𝑂̃(𝑛2+𝜔/3) and the prover

runs in randomized time 𝑂̃(𝑛3). The Zero Weight Triangle problem is equivalent

to the All-Pairs Shortest Path problem, a well-studied problem that is the

foundation of many hardness results in graph algorithms [88, 87], under sub-

cubic reductions.

In the next chapter we turn our attention to non-signaling proofs. Non-signaling

proofs, motivated by quantum computation, have found applications in cryptography

and hardness of approximation. An important open problem is characterizing the

power of non-signaling proofs. It is known that 2-prover non-signaling proofs are

characterized by PSPACE, and that non-signaling proofs with poly(𝑛)-provers are

characterized by EXP. However, the power of 𝑘-prover non-signaling proofs, for

2 < 𝑘 < poly(𝑛) remained an open problem.

In [47], we show that 𝑘-prover non-signaling proofs (with negligible soundness) for

𝑘 = 𝑂(
√

log 𝑛) are contained in PSPACE. We prove this via two different routes that

are of independent interest. In both routes we consider a relaxation of no-signaling

called sub-no-signaling. Our main technical contribution (which is used in both our

proofs) is a reduction showing how to convert any sub-no-signaling strategy with

value at least 1− 2−Ω(𝑘2) into a no-signaling one with value at least 2−𝑂(𝑘2).

In the first route, we show that the classical prover reduction method for converting

𝑘-prover games into 2-prover games carries over to the non-signaling setting with the

11



following loss in soundness: if a 𝑘-player game has value less than 2−𝑐𝑘
2 (for some

constant 𝑐 > 0), then the corresponding 2-prover game has value at most 1 − 2𝑑𝑘2

(for some constant 𝑑 > 0). In the second route we show that the value of a sub-non-

signaling game can be approximated in space that is polynomial in the communication

complexity and exponential in the number of provers.

1.1 Pseudo-Deterministic Proofs

In [32], Gat and Goldwasser initiated the study of probabilistic (polynomial-time)

search algorithms that, with high probability, output the same solution on differ-

ent executions. That is, for all inputs 𝑥, the randomized algorithm 𝐴 satisfies

𝑃𝑟𝑟1,𝑟2(𝐴(𝑥, 𝑟1) = 𝐴(𝑥, 𝑟2)) ≥ 1− 1/𝑝𝑜𝑙𝑦(𝑛).

Another way of viewing such algorithms is that for a fixed binary relation 𝑅, for

every 𝑥 the algorithm associates a canonical solution 𝑠(𝑥) satisfying (𝑥, 𝑠(𝑥)) ∈ 𝑅,

and on input 𝑥 the algorithm outputs 𝑠(𝑥) with overwhelmingly high probability.

Algorithms that satisfy this condition are called pseudo-deterministic, because they

essentially offer the same functionality as deterministic algorithms; that is, they pro-

duce a canonical output for each possible input (except with small error probability)1.

In contrast, arbitrary probabilistic algorithms that solve search problems may output

different solutions when presented with the same input (but using different internal

coin tosses); that is, on input 𝑥, the output may arbitrarily distributed among all

valid solutions for 𝑥 (e.g. it may be uniformly distributed).

Several pseudo-deterministic algorithms have been found which improve (some-

times significantly) on the corresponding best known deterministic algorithm. This

is the case for finding quadratic non-residues modulo primes, generators for certain

cyclic groups, non-zeros of multi-variate polynomials, matchings in bipartite graphs

in RNC, and sub-linear algorithms for several problems [36, 39, 32, 44]. For other

problems, such as finding unique primes of a given length, pseudo-deterministic algo-

1In fact, by amplifying the success probability, one can ensure that as black boxes, pseudo-
deterministic algorithms are indistinguishable from deterministic algorithms by a polynomial time
machine.
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rithms remain elusive (for the case of primes, it has been shown that there exists a

subexponential time pseudo-deterministic algorithm which works on infinitely many

input sizes [66]).

In this work we extend the study of pseudo-determinism in the context of proba-

bilistic algorithms to the context of interactive proofs and non-determinism. We view

pseudo-deterministic interactive proofs as a natural extension of pseudo-deterministic

randomized polynomial time algorithms: the goal of the latter is to find canonical

solutions to search problems whereas the goal of the former is to prove that a solution

to a search problem is canonical to a probabilistic polynomial time verifier. Alter-

natively, one may think of the powerful but possibly untrusted prover as aiding the

probabilistic polynomial time verifier to find canonical solutions to search problems.

This naturally models the cryptographic setting when an authority generates system-

wide parameters (e.g. an elliptic curve for all to use or a generator of a finite group)

and it must prove that the parameters were chosen properly. Alternatively, one may

think of the powerful prover as aiding the probabilistic polynomial time verifier to find

canonical solutions to search problems, with high probability over the randomness of

the verifier.

1.1.1 Our Contribution

Consider the search problem of finding a large clique in a graph. A nondeterministic

efficient algorithm for this problem exists: simply guess a set of vertices 𝐶, confirm

in polynomial time that the set of vertices forms a clique, and either output 𝐶 or

reject if 𝐶 is not a clique. Interestingly, in addition to being nondeterministic, there

is another feature of this algorithm; on the same input graph there may be many

possible solutions to the search problem and any one of them may be produced as

output. Namely, on different executions of the algorithm, on the same input graph

𝐺, one execution may guess clique 𝐶 and another execution may guess clique 𝐶 ′ ̸= 𝐶,

and both are valid accepting executions.

A natural question is whether for each graph with a large clique, there exists a

unique canonical large clique 𝐶 which can be verified by a polynomial time verifier:
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that is, can the verifier 𝑉 be convinced that the clique 𝐶 is the canonical one for

the input graph? We note that natural candidates which come to mind, such as

being the lexicographically smallest large clique, are not known to be verifiable in

polynomial time (but seem to require the power of Σ2 computation). Indeed, the work

of Hemaspaandra et al [45] implies the collapse of the polynomial time hierarchy if for

every satisfiable SAT formula there exists a canonical assignment which is polynomial

time verifiable.

In this work, we consider this question in the setting of interactive proofs, going

beyond NP proofs to interactive proofs. Interactive proofs extend NP, and we ask

whether the interactive proof mechanism enables provers to convince a probailistic

verifier of the “uniqueness of their answer” (properly defined) with high probability.

We define pseudo-deterministic interactive proofs for a search problem 𝑅 (consist-

ing of pairs (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)) as a pair of interacting algorithms: a probabilistic

polynomial time verifier and a computationally unbounded prover which on a com-

mon input instance 𝑥 engage in rounds of interaction at the end of which with high

probability the verifier output a canonical solution 𝑦 for 𝑥 if any solution exists and

otherwise rejects 𝑥. Analogously to the case of interactive proofs for languages, we

require that for every input 𝑥, there exists an honest prover which sends a correct

solution 𝑦 to the verifier when one exists and for all dishonest provers the probability

that the verifier will accept an incorrect solution is small. Most importantly, we are

interested in an additional feature: for every input 𝑥 the verifier is guaranteed with

high probability over its randomness to accept a canonical (unique) solution 𝑦 if any

solution exists and otherwise reject. Importantly, a dishonest prover may not cause

the verifier to output a solution other than the canonical (unique) one (except with

very low probability).

One may think of the powerful prover as aiding the probabilistic polynomial time

verifier to find canonical solutions to search problems, with high probability over the

randomness of the verifier. The challenge is that pseudo-determinism should hold not

only with respect to the randomness, but also with respect to the prover: a malicious

prover should not be able to cause the verifier to output a solution other than the

14



canonical unique one. In addition to the intrinsic complexity theoretic interest in this

problem, consistency or predictability of different executions on the same input are

natural requirements from protocols.

We define pseudo-deterministic IP (psdIP) to be the class of search problems 𝑅

(relation on inputs and solutions) for which there exists a probabilistic polynomial

time verifier for which for every 𝑥 ∈ 𝑅𝐿, there is a good powerful prover that will

convince the verifier to output with high probability a unique witness 𝑠(𝑥) (referred

to as the “canonical” witness) such that (𝑥, 𝑠(𝑥)) ∈ 𝑅; and for every 𝑥 not in 𝑅𝐿 (the

set of 𝑥 such that there does not exist a 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅), for all provers the

verifier will reject with high probability. Furthermore, for all provers , the probability

that on 𝑥 ∈ 𝑅𝐿, the verifier will output any witness 𝑦 other than the “canonical” 𝑠(𝑥)

is small.

Important Remark: We remark that proving uniqueness of a witness for any

NP problem can obviously be done in by an interactive proof with a PSPACE prover

– the prover can convince the verifier that a witness provided is a lexicographically

smallest witness – using an Arthur-Merlin proof which takes a polynomial number of

rounds of interaction between prover and verifier following the celebrated Sum-Check

protocol by [77] (see preliminary section). The interesting question to ask is: do

constant-round pseudo-deterministic interactive proofs exist for hard problems in

NP for which many witnesses exist?

We let psdAM refer to those pseudo-deterministic interactive proofs in which a con-

stant number of rounds is used.

Our Results

Graph Isomorphism is in pseudo-deterministic AM: Theorem 3.1.1: There

exists a pseudo-deterministic constant-round Arthur-Merlin protocol for finding an

isomorphism between two given graphs.

Recall that the first protocol showing graph non-isomorphism is in constant round

IP was shown by [37] and later shown to be possible using public coins via the
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general transformation of private to public coins [42]. Our algorithm finds a unique

isomorphism by producing the lexicographically first isomorphism. In order to prove

that a particular isomorphism between input graph pairs is lexicographically smallest,

the prover will prove in a sequence of sub-protocols to the verifier that a sequence

of graphs suitably defined are non-isomorphic. In an alternative construction, we

exhibit an interactive protocol that computes the automorphism group of a graph in

a verifiable fashion.

SAT is not in pseudo-deterministic AM: Theorem 3.2.2: if any NP-complete

problem has a a pseudo-deterministic constant round AM protocol, then, NP ⊆ coNP/𝑝𝑜𝑙𝑦

and the polynomial hierarchy collapses to the third level, showing that it is unlikely

that NP complete problems have pseudo-deterministic constant round AM protocols.

This result extends the work of [45] which shows that if there are polynomial time

unique verifiable proofs for SAT, then the polynomial hierarchy collapses. Essentially,

their result held for deterministic interactive proofs (i.e., NP), and we extend their

result to probabilistic interactive proofs with constant number of rounds (i.e., AM).

Every problem in search-BPP is in subexponential-time pseudo-deterministic

MA: Theorem 3.3.3: For every problem in search-BPP, there exists a pseudo-deterministic

MA protocol where the verifier takes subexponential time on infinitely many input

lengths.

The idea of the result is to use known circuit lower bounds to get pseudo-deterministic

subexponential time MA protocols for problems in search-BPP for infinitely many in-

put lengths. We remark that recently Oliveira and Santhanam [66] showed a subex-

ponential time pseudo-deterministic algorithm for infinitely many input lengths for

all properties which have inverse polynomial density and are testable in probabilistic

polynomial time. (An example of such a property is the property of being prime, as

the set of primes has polynomial density.) In their construction, the condition of high

density is required in order for the property to intersect with their subexponential-size

hitting set. (Subsequent work in [46] also drops this requirement but only results in
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an average-case pseudo-deterministic algorithm.) In the case of MA, unconditional

circuit lower bounds for MA with a verifier which runs in exponential time have been

shown by Miltersen et al [64], which allows us to no longer require inverse polyno-

mial density. Hence, we can obtain a pseudo-deterministic MA algorithm from circuit

lower bounds. Thus, compared to [66], our result shows a pseudo-derandomization

(for a subexponential verifier and infinitely many input sizes 𝑛) for all problems in

search-BPP (and not just those with high density), but requires a prover.

Pseudo-deterministic NL equals search-NL: Theorem 3.4.1: For every search

problem in search-NL, there exists a pseudo-deterministic NL protocol.

We define pseudo-deterministic NL to be the class of search problems 𝑅 (a relation

on inputs and solutions) for which there exists log-space non-deterministic algorithm

𝑀 (Turing machines) such that for every input 𝑥, there exists a unique 𝑠(𝑥) such

that 𝑅(𝑥, 𝑠(𝑥)) = 1 and 𝑀(𝑥) outputs 𝑠(𝑥) or rejects 𝑥. Namely, there are no two

accepting paths for input 𝑥 that result in different outputs.

To prove the above theorem, we look at the problem of directed connectivity (that

is, given a directed graph 𝐺 with two vertices 𝑠 and 𝑡, we find a path from 𝑠 to 𝑡), and

we show that it is possible to find the lexicographically first path of shortest length

in NL. To do so, we first find the length 𝑑 of the shortest path, which can be done

in NL. Then, we find the lexicographically first outneighbor 𝑢 of 𝑠 such that there

is a path of length 𝑑 − 1 from 𝑢 to 𝑡. This can be done by going in order over all

outneighbors of 𝑠, and for each of them checking if there is a path of length 𝑑 − 1

to 𝑡 (if there is not such a path, that can be demonstrated in NL since NL = coNL

[50, 78]). By recursively applying this protocol to find a path from 𝑢 to 𝑡, we end up

obtaining the lexicographically first path of shortest length, which is unique.

Structural Results: We show a few structural results regarding pseudo-deterministic

interactive proofs In Section 3.5. Specifically, we show that psdAM equals to the class

search−Ppromise−(AM∩coAM), where for valid inputs 𝑥, all queries to the oracle must be

in the promise. We show similar results in the case of pseudo-deterministic MA and
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pseudo-deterministic NP.

1.1.2 Other Related Work

In their seminal paper on NP with unique solutions, Valiant and Vazirani asked the

following question: is the inherent intractability of NP-complete problems caused by

the fact that NP-complete problems have many solutions? They show this is not

the case by exhibiting a problem – SAT with unique solutions – which is NP-hard

under randomized reductions. They then showed how their result enables to show the

NP-hardness under randomized reductions for a few related problems such as parity-

SAT. We point out that our question is different. We are not restricting our study to

problems (e.g. satisfiable formulas) with unique solutions. Rather, we consider hard

problems for which there may be exponentially many solutions, and ask if one can

focus on one of them and verify it in polynomial time. In the language of satisfiability,

𝜑 can be any satisfiable formula with exponentially many satisfying assignments; set

𝑠(𝜑) to be a unique valued function which outputs a satisfying assignment for 𝜑. We

study whether there exists an 𝑠 which can be efficiently computed, or which has an

efficient interactive proof.

The question of computing canonical labellings of graphs was considered by Babai

and Luks [6] in the early eighties. Clearly graph isomorphism is polynomial time re-

ducible to computing canonical labellings of graphs (compute the canonical labeling

for your graphs and compare), however it is unknown whether the two problems

are equivalent (although finding canonical labellings in polynomial time seems to be

known for all classes of graphs for which isomorphism can be computed in polyno-

mial time). The problem of computing a set of generators (of size 𝑂(log 𝑛)) of the

automorphism group of a graph 𝐺 was shown by Mathon [62] (among other results)

to be polynomial-time reducible to the problem of computing the isomorphism of a

graph. We use this in our proof that graph isomorphism is in psdAM.

Finally, we mention that recently another notion of uniqueness has been studied in

the context of interactive proofs by Reingold et al [71], called unambiguous interactive

proofs where the prover has a unique successful strategy. This again differs from

18



pseudo-deterministic interactive proofs, in that we don’t assume (nor guarantee) a

unique strategy by the successful prover, we only require that the prover proves that

the solution (or witness) the verifier receives is unique (with high probability).

1.1.3 Subsequent Work

In [46], inspired by this work, Holden shows that for every BPP search problem

there exists an algorithm A which for infinitely many input lengths 𝑛 and for every

polynomial-time samplable distribution over inputs of length 𝑛 runs in subexponential

time and produces a unique answer with high probability on inputs drawn from the

distribution and over A’s random coins.

[46] expands on the work of Oliveira and Santhanam [66] in several ways. Whereas

the latter give a pseudo-deterministic algorithm for estimating the acceptance proba-

bility of a circuit on inputs of a given length, the former applies to general search-BPP

problems, where the input is a string of a given length over some alphabet and al-

gorithm’s A goal is to output a solution that satisfies a BPP testable relation with

the input string. Holden [46] shows that for infinitely many input lengths, average-

case (over the input distribution) pseudo-deterministic algorithms are possible for

problems in search-BPP.
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1.2 Doubly-Efficient Pseudo-Deterministic Proofs

Pseudo-deterministic algorithms, introduced by Gat and Goldwasser [32], are proba-

bilistic (polynomial-time) algorithms for search problems that, with high probability,

find a unique output for each input except with negligible error probability. Such

output for input 𝑥 is referred to as the ”canonical” output for 𝑥. Algorithms that sat-

isfy the aforementioned condition are of importance whenever uniqueness or "repro-

ducibility" of the answer is important. This is of particular relevance in a distributed

or parallel setting when an algorithm is executed by multiple parties for whom it

is challenging (for reasons of trust or efficiency requirement) to agree on a common

sequence of unbiased random coins.

More recently, Goldwasser, Grossman and Holden [40] extended the study to

pseudo-deterministic interactive proofs for search problems, denoted psdIP. The new

goal was to prove to a probabilistic polynomial time verifier that a solution to a search

problem is canonical. The motivation was to address those search problems for which

polynomial time algorithms are not known and for which many solutions are pos-

sible, such as for graph isomorphism. In this case the search problem is to find an

isomorphism between two graphs if one exists and an example of a canonical solution

would be the lexicographically smallest isomorphism. One may think of the powerful

prover as aiding the probabilistic polynomial time verifier to find canonical solutions

to search problems, with high probability over the randomness of the verifier. The

challenge is that a malicious prover should not be able to convince the verifier to ac-

cept any solution other than the unique canonical one and that the interaction should

be constant round. If unbounded number of rounds are allowed, the 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸

characterization implies that psdIP = 𝐼𝑃 .

In this work, we turn our attention to studying doubly-efficient pseudo-deterministic

proofs. That is pseudo-deterministic proofs with the extra requirement that the prover

is efficient as well. Our aim is to show doubly-efficient pseudo-deterministic proofs for

polynomial time problems, where the prover runs in polynomial time in the complex-

ity of the problem and the verifier can verify that a solution is canonical significantly
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more efficiently than solving the problem without the presence of the prover. We re-

mark that in the doubly-efficient pseudo-deterministic proofs below, except for linear

programming, the runtime of the prover is at most a constant times the runtime of

the best known deterministic algorithm.

1.2.1 Our Results

A new notion: Doubly-efficient pseudo-deterministic interactive proofs

We define doubly-efficient pseudo-deterministic interactive proofs for a search prob-

lem 𝑅 of complexity 𝑇 (𝑛) (consisting of pairs (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)) with associated

canonization function 𝑐 as a pair of interacting algorithms: a probabilistic polynomial

time prover which runs in time 𝑝𝑜𝑙𝑦(𝑇 (𝑛)) and a probabilistic verifier which runs in

time 𝑜(𝑇 (𝑛)) which on a common input instance 𝑥 engage in constant number of

rounds of interaction at the end of which with high probability the verifier outputs a

canonical solution 𝑦 = 𝑐(𝑥) if any solution exists and otherwise rejects 𝑥. Analogously

to the case of completeness in interactive proofs for languages, we require that for

every input 𝑥, there exists an honest prover which can send the correct solution 𝑐(𝑥)

to the verifier when one exists. Analogously to the case of soundness, no dishonest

prover can cause the verifier to output a solution other than 𝑐(𝑥) (the canonical one)

(except with very low probability).

A few remarks are in order.

• Naturally this question is particularly interesting for search problems for which

a lower bound on its worst case complexity 𝑇 (𝑛) is known or has been widely

conjectured. This will drive our choice of problems for which we show doubly

efficient pseudo-deterministic proofs.

• Doubly-efficient pseudo-deterministic proofs for search problems 𝑅 with associ-

ated canonization function 𝑐 are closely related to computation delegation of

computing 𝑐(𝑥) on input 𝑥. The delegation problem was posed by Goldwasser,

Kalai, and Rothblum [41] and become known under the name doubly-efficient

interactive proof systems. The difference in the requirements is that [41] allow
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the prover to be any polynomial time algorithm and the verifier to run in linear

(up to log factors) time and addresses deterministic computations. Doubly-

efficient interactive proofs have been shown by [41] for log-space uniform sets

in NC (or, more generally, to inputs that are acceptable by log-space uniform

bounded-depth circuits, where the number of rounds in the proof system is lin-

early related to the depth of the circuit). Reingold, Rothblum and Rothblum

[71] showed that any set decidable in polynomial-time by an algorithm of space

complexity 𝑠(𝑛) ≤ 𝑛0.499, has a constant-round interactive proof system in which

the prover runs in polynomial time and the verifier runs in time 𝑂̃(𝑛). Finally

Goldreich and Rothblum [38] show direct constructions of doubly-efficient in-

teractive proof systems for problems in P that are believed to have relatively

high complexity such as 𝑡-CLIQUE and 𝑡-SUM.

We remark that works on proof systems and delegation did not stay within

the realm of theory alone. Rather, they became the theoretical basis for sev-

eral system implementations of a delegation system as they offered reason-

ably efficiently realizable protocols. Indeed, there is a flourishing literature

surrounding the refinement and implementation of these theoretical protocols

[7, 8, 72, 11, 12, 16, 22, 25, 26, 30, 59, 67, 74, 76, 75, 79, 80, 83, 84] (see [85]

for a survey). We hope that our proposed study of doubly-efficient pseudo-

deterministic proofs can similarly impact practice (and beyond).

• The setting of doubly-efficient interactive proofs naturally models a crypto-

graphic setting where users wish to have access to common cryptographic system-

wide keys or parameters, such as a pair (𝑔, 𝑝) for 𝑍𝑝 with prime 𝑝 and generator

𝑔 for a given input length 𝑛. A central authority (with additional computa-

tional power) can of course choose the common system-wide parameter and

broadcast it to all, but then who is to say that the central party did not chose

its randomness in a way that would force an output for which the trusted center

knew some “trapdoor” information which would enable it to break the under-

lying cryptographic security? Viewing the generation of a cryptographic key
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as a solution to a search problem 𝑅 per security parameter, a doubly-efficient

pseudo-deterministic proof for 𝑅 would ensure that the prover had no choice in

which parameter to broadcast as he could prove that his solution is canonical.

Doubly-efficient pseudo-deterministic algorithms for linear programming

and fine-grained complexity problems

Linear Programming: We show a doubly-efficient pseudo-deterministic proof for

the linear programming problem. Verifying an optimal solution to a linear program-

ming problem can be done thanks to strong duality: there exists a solution to the

dual problem with the same value as the solution to the primal problem. We show

that a special optimal solution, namely the lexicographically greatest solution, can

be efficiently obtained by the prover, and that the prover can convince the verifier

that the LP solution it gives to the verifier is indeed the lexicographically greatest

solution; this is done through perturbing the linear program and strong duality. More

concretely, every linear program (say, where the objective is to maximize) has a cor-

responding dual linear program, a minimization problem, with the property that (i)

(weak duality) any feasible solution to the dual provides an upper bound on the opti-

mal primal value and (ii) (strong duality) there exists an optimal solution to the dual

with the same value as the primal optimal solution. Furthermore, there exist compact

polynomial-sized solutions to the primal and dual linear programs. Therefore such a

polynomial-sized feasible solution to the dual with an equal value as a primal solution

provides a compact certificate for the optimality of this primal solution.

The currently best known time to solve a linear program with integer data and at

most 𝑑 variables and constraints is 𝑂̃(𝑑𝜔) randomized [24] where 𝜔 corresponds to the

exponent for fast matrix multiplication which is currently at ≈ 2.37 and 𝑂̃() hides

polylog factors including a log(1/𝛿) factor to account for the accuracy 𝛿 in solving the

linear program. The time of the verifier to verify a pair of primal and dual optimal

solution is only 𝑂(𝑑2) as this only requires matrix-vector multiplication.
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Problems studied in fine-grained complexity: We next show doubly-efficient

pseudo-deterministic proofs for several fine-grained complexity problems where the

verifier significantly beats the conjectured time. The challenge is to find a proof where

the prover’s running time does not change too much from the running time of the

deterministic algorithm. In the case of two of our problems, making the running time

close to the running time of the deterministic algorithm requires the prover to run in

a randomized fashion.

The 3-SUM problem has an easy 𝑂(𝑛2) time algorithm which can be improved

by polylogarithmic factors. It is an outstanding open question whether there is an

algorithm that significantly improves 𝑂(𝑛2). Finding such an algorithm would yield

algorithms for a host of other problems in computational geometry [31, 27]. Here, we

show a doubly-efficient pseudo-deterministic proofs that outputs the lexicographically

first such triple of elements where the verifier takes time 𝑂̃(𝑛1.5). We crucially use

the fact that [20] gives a nondeterministic proof that there is no triple of elements

that sum to 0 where the verifier takes time 𝑂̃(𝑛1.5).

The hitting set problem is the problem of finding a set in a collection of sets that

intersects every set in a different collection of sets. We show a pseudo-deterministic

proof for the hitting set problem where the verifier runs in time 𝑂̃(𝑚) and the prover

runs in time 𝑂̃(𝑚2) where 𝑚 =
∑︀

𝑆∈𝒮 |𝑆| +
∑︀

𝑇∈𝒯 |𝑇 | for inputs 𝒮, 𝒯 collections of

sets. This problem has been conjectured to take 𝑚2−𝑜(1) time [82].

The All-Pairs Shortest Path problem is a well-studied problem that is the

foundation of many hardness results in graph algorithms [88, 87]. In particular, the

Zero Weight Triangle problem is equivalent to the All-Pairs Shortest Path problem

under subcubic reductions. We show a doubly efficient pseudo-deterministic proof for

the Zero Weight Triangle problem where the verifier runs in time 𝑂̃(𝑛2+𝜔/3) and the

prover runs in randomized time 𝑂̃(𝑛3).

Techniques

All our results take on the following flavor: For a search problem 𝑅, the pseudo-

deterministic algorithm, given 𝑥, finds the lexicographically first 𝑦 such that 𝑅(𝑥, 𝑦).
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To do this, it asks whether there exists 𝑦′ such that (𝑥, 0𝑦′) ∈ 𝑅, 𝑦′ such that

(𝑥, 1𝑦′) ∈ 𝑅, etc. and finds the first 𝑦 such that 𝑅(𝑥, 𝑦) recursively. The notion of

"lexicographically first" can be easily generalized to allow other orderings and other

encodings of the input. This suggests that more generally doubly-efficient pseudo-

deterministic proofs for search are the ones where there is a doubly-efficient proof

of existence and a doubly-efficient proof of nonexistence of solutions to said search

problem. A more general theorem (Lemma 4.1.3) follows under general conditions.
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1.3 Non-Signaling

Shortly after interactive proofs were introduced, multi-party interactive proofs were

introduced by Ben-Or, Goldwasser, Kilian and Wigderson [10]. In a multi-prover in-

teractive proof (MIP) a verifier is interacting with several non-communicating provers.

This class was proven to be extremely powerful, by Babai, Fortnow and Lund, who

showed that MIP = NEXP [5]. The power of this class stems from the assumption

that the provers behave locally, namely, they see only the messages sent to them, and

do not have any information about messages sent to the other provers.

In reality, however, it is not clear how to ensure that the provers behave locally.

Even if the provers are placed in different rooms, with no communication channels

between them, they may share quantum entanglement, which can cause their strate-

gies to be correlated, and non-local. These attacks can be powerful, even though at

first they may seem to be benign [23].

These quantum strategies motivated the notion of no-signaling strategies, which

is the subject of this work. The notion of no-signaling strategies was first studied in

physics in the context of Bell inequalities by Khalfin and Tsirelson [58] and Rastall

[70], and it has gained much attention after it was reintroduced by Popescu and

Rohrlich [69]. No-signaling attacks are more general than quantum attacks. In a

no-signaling attack the cheating provers can collude, and thus each answer can be

a function of all the queries. The only restriction is that for any subset of provers

the answers provided by these provers should not convey any information about the

queries given to the other provers. Namely, the only restriction that is placed on

the (possibly colluding) cheating provers, is that their answers cannot be seen as

“evidence" that information has travelled between them.

If we think of the provers as being placed very far away from each other (say in

different planets), then the no-signaling restriction allows the provers to behave arbi-

trarily, as long as they adhere to the physical principle that information cannot travel

faster than light, a consequence of Einstein’s special relativity theory. In particular,

all the strategies that can be realized by provers that share entangled quantum states
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are no-signaling strategies. Moreover, the principle that information cannot travel

faster than light is a central principle in physics, and is likely to remain valid in any

future ultimate theory of nature, since its violation means that information could be

sent from future to past. Therefore, soundness against no-signaling strategies is likely

to ensure soundness against provers that obey a future ultimate theory of physics, and

not only the current physical theories that we have, that are known to be incomplete.

Importantly, although no-signaling strategies are motivated by quantum entan-

glement, they found compelling applications outside the realm of quantum physics.

In particular, they have been proved to be instrumental for constructing succinct

delegation schemes (under standard cryptographic assumptions), and in the realm of

hardness of approximation.

The applicability of no-signaling to computation delegation. Kalai, Raz,

and Rothblum [56] demonstrated the significance of no-signaling by showing that any

MIP that is secure against no-signaling attacks2 can be converted into a single-prover

one-round proof system (with computational soundness). More specifically, they show

that the PIR (or FHE) heuristic, proposed by Biehl, Meyer, and Wetzel et. al. [13],

for converting any MIP to a single prover one-round proof system is sound if the

underlying MIP has no-signaling soundness.

In [57], the same authors constructed an MIP that is secure against no-signaling

attacks for every language in EXP, thus yielding the first one-round delegation scheme

for all deterministic computations, under standard cryptographic assumptions. This

application of no-signaling to computation delegation has proved to be very fruitful,

and yielded numerous followup works (e.g., [54, 15, 9])

The applicability of no-signaling to hardness of approximation. Kalai, Raz

and Regev [55] showed the significance of no-signaling to hardness of approximation.

In particular, they showed that it is hard to approximate the value of a linear program

in space 2log𝑛𝑜(1) , even if the polytope is fixed (i.e., even if the algorithm has unbounded

2To be precise, [56] considered a slightly more relaxed notion, which they called statistical no-
signaling. We neglect this difference here.
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time to preprocess the polytope), and even if all the coefficients are non-negative

(which is the regime where hardness of approximation is most meaningful). More

specifically, they showed that there exists a fixed polytope (corresponding to the set

of all possible non-signaling strategies) such that approximating the value of a linear

program (with positive coefficients) is P-complete with a polylog-space reduction.

Prior work [28, 73, 29, 61], demonstrated such hardness of approximation for the case

where the polytope was not fixed (and preprocessing is not allowed).

The importance of the notion of no-signaling, gives rise to the following fundamental

question:

What is the power of multi-prover proofs that are sound against no-signaling strate-

gies?

This is precisely the question we study in this work. In what follows, we denote the

class of one-round multi-prover interactive proofs with no-signaling soundness by NS

MIP. We denote by 𝑘-prover NS MIP the class of one-round 𝑘-prover interactive

proofs with no-signaling soundness.

1.3.1 Prior Work

Ito, Kobayashi and Matsumoto [53] proved that 2-prover NS MIP contains PSPACE

(by proving that the 2-prover scheme of Cai, Condon, and Lipton [18] is in fact secure

against no-signaling strategies). Shortly after, Ito [51] proved that 2-prover NS MIP

is contained in PSPACE, thus characterizing the power of 2-prover NS MIP. The

power of 𝑘-prover NS MIP, for 𝑘 ≥ 2, remained open.

It is known that NS MIP is contained in EXP since one can find the best no-

signaling strategy by solving an exponential-size linear program. Therefore, the power

of a 𝑘-prover NS MIP lies between PSPACE and EXP. More recently, Kalai, Raz

and Rothblum [57] showed that there exists a constant 𝑐 ∈ N such that for every

𝑘 ≥ log𝑐 𝑛, 𝑘-prover NS MIP contains EXP, thus characterizing the power of 𝑘-prover

NS MIP for 𝑘 ≥ log𝑐 𝑛.

These works left open the following question: What is the power of 𝑘-prover NS
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MIP for 2 < 𝑘 < log𝑐 𝑛?

1.3.2 Our Results

Throughout this manuscript, we assume that an MIP has completeness at least

1 − negl(𝑛), and has soundness negl(𝑛), for some negligible function negl(𝑛).3 This

assumption is standard in cryptography. We mention that often in the definition of

interactive proofs (or possibly in the definition of MIPs), completeness is required to

be greater than 2/3 and soundness at most 1/3; this is because it is well known that

this gap can be amplified to 1 − negl(𝑛) and negl(𝑛) via parallel repetition (where

the verifier accepts if 2/3− 𝜖 of the repetitions are accepted, for some small constant

𝜖 > 0). In the no-signaling regime we do not have a parallel repetition theorem [49],

and hence cannot amplify soundness via parallel repetition.

We prove that 𝑘-prover NS MIP with 𝑘 = 𝑂(
√

log 𝑛) is contained in PSPACE.

More generally, we prove the following theorem.

Theorem 1.3.1 (Informal). There exist constants 𝑐, 𝑑 > 0 such that any 𝑘-prover

MIP with no-signaling soundness at most 2−𝑐𝑘
2 and completeness at least 1 − 2−𝑑𝑘

2,

is contained in SPACE
(︁
poly(𝑛, 2𝑘2)

)︁
.

We emphasize that this theorem holds only for MIPs that have negligible sound-

ness and almost perfect completeness. In particular, we don’t rule out the existence of

a 𝑘-prover MIP with NS soundness 1/3 and completeness 2/3 for EXP, with 𝑘 = log 𝑛.

However, the soundness and completeness gap of such MIPs could not be amplified

(to 1− negl(𝑛)) without adding provers.

We present two alternative routes for proving Theorem 1.3.1, each is of indepen-

dent interest. Both routes consider the more relaxed notion of sub-no-signaling, as

defined in [60] (for the goal of obtaining a parallel repetition theorem for no-signaling

strategies). Both rely on the following theorem that asserts that one can convert any

sub-no-signaling strategy into a no-signaling one, albeit with a substantial loss in the

success probability.
3A function 𝜇 : N → N is said to be negligible if approaches zero faster than the inverse of any

polynomial.
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Theorem 1.3.2 (Informal). There exist constants 𝑐, 𝑑 > 0 such that for any 𝑘-prover

MIP, if there exists a sub-no-signaling strategy that succeeds with probability at least

1 − 2−𝑑𝑘
2, then there exists a no-signaling strategy that succeeds with probability at

least 2−𝑐𝑘
2.

The proof of this theorem contains the bulk of technical difficulty of this work,

and is used as a building block in both proofs of Theorem 1.3.1. See Section ?? for

the proof idea, and see Section 5.2 for the precise theorem statement and proof.

We note that a related theorem was proven by Lancien and Winter [60], who

showed that, for every game, if there exists a sub-no-signaling strategy that succeeds

with probability at least 1− 𝜖 then there exists a no-signaling strategy that succeeds

with probability at least 1− Γ𝜖, where Γ may be as large as exponential in the com-

munication complexity. This bound does not seem to be tight enough in order to

obtain Theorem 1.3.1.

We next present our two alternative routes for proving Theorem 1.3.1 (using The-

orem 1.3.2). The first is via a prover reduction method, and the second is via approx-

imating the sub-no-signaling value efficiently.

Reducing the number of provers. We show that (a slight variant of) the classical

prover reduction method for converting a 𝑘-prover MIP into a 2-prover MIP, carries

over to the no-signaling setting, albeit a substantial loss in soundness (which depends

on 𝑘).

More specifically, in the seminal work of Ben-Or, Goldwasser, Kilian and Wigder-

son [10], they presented a general method for converting a 𝑘-prover MIP into a 2-

prover MIP, where in the resulting 2-prover MIP the verifier sends one prover the

queries (𝑞1, . . . , 𝑞𝑘) corresponding to all the 𝑘 provers in the underlying 𝑘-prover

scheme, and expects to get back 𝑘 answers (𝑎1, . . . , 𝑎𝑘); he sends the other prover a

single query 𝑞𝑖 corresponding to a random index 𝑖 ∈ [𝑘], and gets back an answer 𝑎′𝑖.

The verifier accepts if and only if 𝑎′𝑖 = 𝑎𝑖 and if the verifier in the 𝑘-prover MIP

accepts the answers (𝑎1, . . . , 𝑎𝑘).
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In the no-signaling setting, we slightly modify this transformation, by having the

verifier in the 2-prover MIP send the second prover a subset of queries {𝑞𝑖}𝑖∈𝑆 for a

randomly chosen subset 𝑆 ⊂ [𝑘] (as opposed to a single query 𝑞𝑖 corresponding to a

single index 𝑖 ∈ [𝑘]), and accepts if and only if the answers (𝑎1, . . . , 𝑎𝑘) of the first

prover are accepted by the verifier in the 𝑘-prover MIP and if the answers of the

second prover, denote by (𝑎′𝑖)𝑖∈𝑆 satisfy that 𝑎′𝑖 = 𝑎𝑖 for every 𝑖 ∈ 𝑆.

Theorem 1.3.3 (Informal). There exist constants 𝑐, 𝑑 > 0 such that for every 𝑘-

prover MIP Π = (𝑃1, . . . , 𝑃𝑘, 𝑉 ) with no-signaling soundness at most 2−𝑐𝑘
2, the 2-

prover MIP, obtained by performing the prover reduction transformation (described

above) on Π, has no-signaling soundness at most 1− 2−𝑑𝑘
2.

We prove Theorem 1.3.3 by using Theorem 1.3.2. We refer the reader to Section ??

for the proof idea, and Section 5.1.1 for the precise theorem statement and proof.

We next argue that Theorem 1.3.3 implies Theorem 1.3.1. Let 𝑐, 𝑑 be the constants

from Theorem 1.3.3. We prove Theorem 1.3.1 with constants 𝑐′ = 𝑐 and 𝑑′ = 2𝑑. To

this end, fix any 𝑘-prover MIP for a language 𝐿 with no signaling soundness 2−𝑐𝑘
2 and

completeness 1− 2−2𝑑𝑘
2 . Use Theorem 1.3.3 to convert this MIP into a 2-prover MIP

with no-signaling soundness 1− 2−𝑑𝑘
2 . By [51], the no-signaling value of any 2-player

game can be approximated up to an additive factor of 𝜖 in space poly(𝑛, 1/𝜖). Setting

𝜖 = 2−2𝑑𝑘
2 , there exists an algorithm 𝒜 that runs in space poly(𝑛, 2𝑘2), such that on

input an element 𝑥 ∈ {0, 1}𝑛∩𝐿 it outputs a value 𝑣 ≥ 1−2 ·2−2𝑑𝑘2 , and on input an

element 𝑥 ∈ {0, 1}𝑛 ∖𝐿 it outputs a value 𝑣 ≤ 1− 2−𝑑𝑘
2

+ 2−2𝑑𝑘
2 . This algorithm can

be used to decide whether 𝑥 ∈ 𝐿 (assuming without loss of generality that 𝑑 > 2
𝑘2

),

implying that 𝐿 ∈ SPACE(poly(𝑛, 2𝑘2)).

Approximating the sub-no-signaling value. We next present an alternative

route for proving Theorem 1.3.1, without going through the prover reduction method

presented above. Instead we prove the following theorem, which is of independent

interest.

Theorem 1.3.4 (Informal). The sub-no-signaling value of any 𝑘-prover MIP can be

approximated up to an additive factor 𝜖 by a poly(𝑛, 2𝑘, 1/𝜖)-space algorithm.
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In particular this theorem implies the following corollary.

Corollary 1.3.5 (Informal). 𝑘-prover subNS MIP is contained in SPACE
(︀
poly(𝑛, 2𝑘)

)︀
.

We mention that a related (yet weaker) theorem was proven in [48], where it was

shown that given an MIP, one can distinguish between the case that its value is 1

(i.e., there exists a local strategy that is accepted with probability 1) and the case

that its sub-no-signaling value is at most 1 − 𝛿, in space poly(𝑛, 2𝑘, 1/𝛿). This does

not seem to be strong enough for us to use in order to obtain Theorem 1.3.1.

We next argue that Theorem 1.3.4 and Theorem 1.3.2 imply Theorem 1.3.1. To

this end, let 𝑐, 𝑑 > 0 be the constants from Theorem 1.3.2. We prove Theorem 1.3.1

with any constants 𝑐′, 𝑑′ such that 𝑐′ > 𝑐 and 𝑑′ = 2𝑑. Fix any 𝑘-prover MIP with

soundness at most 2−𝑐
′𝑘2 < 2−𝑐𝑘

2 and completeness at least 1−22𝑑𝑘2 . By Theorem 1.3.2

for every 𝑥 ∈ {0, 1}𝑛 ∖ 𝐿 the sub-no-signaling value the MIP on input 𝑥 must be less

than 1− 2−𝑑𝑘
2 . By Theorem 1.3.4, applied with 𝜖 = 2−2𝑑𝑘

2 , there exists an algorithm

𝒜, that given any 𝑥 ∈ {0, 1}𝑛, runs in space poly(𝑛, 2𝑘2) and approximates the sub-no-

signaling value of this MIP on input 𝑥 up to an additive factor 2−2𝑑𝑘
2 . Therefore for

every 𝑥 ∈ {0, 1}𝑛∖𝐿, the algorithm𝒜(𝑥) outputs an element 𝑣 ≤ 1−2−𝑑𝑘
2
+2−2𝑑𝑘

2 , and

for every 𝑥 ∈ {0, 1}𝑛∩𝐿 the algorithm 𝒜(𝑥) outputs an element 𝑣 ≥ 1−2·2−2𝑑𝑘2 . This

algorithm can be used to decide whether 𝑥 ∈ 𝐿 (assuming without loss of generality

that 𝑑 > 2
𝑘2

), implying that 𝐿 ∈ SPACE(poly(𝑛, 2𝑘2)).
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Chapter 2

Preliminaries

Here are the definitions that will be used throughout this thesis.

2.1 Pseudo-determinism

2.1.1 Definitions of Pseudo-determinism

In this section, we define pseudo-determinism in the context of nondeterminism and

interactive proofs. We begin by defining a search problem. Intuitively speaking,

a search problem is a problem where for an input, there may be multiple possible

outputs.

Definition 2.1.1 (Search Problem). A search problem is a relation 𝑅 consisting of

pairs (𝑥, 𝑦). We define 𝐿𝑅 to be the set of 𝑥’s such that there exists a 𝑦 satisfying

(𝑥, 𝑦) ∈ 𝑅. An algorithm solving the search problem is an algorithm that, when given

𝑥 ∈ 𝐿𝑅, finds a 𝑦 such that (𝑥, 𝑦) ∈ 𝑅. When 𝐿𝑅 contains all strings, we say that 𝑅

is a total search problem. Otherwise, we say 𝑅 is a promise search problem.

We now define pseudo-determinism in the context of interactive proofs. Intuitively

speaking, we say that an interactive proof is pseudo-deterministic if an honest prover

causes the verifier to output the same unique solution with high probability (canonical

completeness), and dishonest provers can only cause the verifier to output either the

unique solution or ⊥ with high probability (canonical soundness). In other words,
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dishonest provers cannot cause the verifier to output an answer which is not the unique

answer. Additionally, we have the condition that for an input 𝑥 with no solutions,

for all provers the verifier will output ⊥ with high probability (standard soundness)

We note that we use psdIP, psdAM, psdNP, psdMA, and so on, to refer to a class of

promise problems, unless otherwise stated.

Definition 2.1.2 (Pseudo-deterministic IP). A search problem𝑅 is in pseudo-deterministic

IP (often denoted psdIP) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅 satisfy

(𝑥, 𝑠(𝑥)) ∈ 𝑅, and an interactive protocol between a probabilistic polynomial time ver-

ifier algorithm 𝑉 and a prover (unbounded algorithm) 𝑃 such that for every 𝑥 ∈ 𝐿𝑅:

1. (Canonical Completeness) There exists a 𝑃 such that Pr𝑟[(𝑃, 𝑉 )(𝑥, 𝑟) = 𝑠(𝑥)] ≥
2
3
. (We use (𝑃, 𝑉 )(𝑥, 𝑟) to denote the output of the verifier 𝑉 when interacting

with prover 𝑃 on input 𝑥 using randomness 𝑟).

2. (Canonical Soundness) For all 𝑃 ′, Pr𝑟[(𝑃
′, 𝑉 )(𝑥, 𝑟) = 𝑠(𝑥) or ⊥] ≥ 2

3
.

And (Standard Soundness) for every 𝑥 /∈ 𝐿𝑅, for all provers 𝑃 ′, Pr𝑟[(𝑃
′, 𝑉 )(𝑥, 𝑟) ̸=

⊥] ≤ 1
3
.

One can similarly define pseudo-deterministic MA, and pseudo-deterministic AM,

where MA is a 1-round protocol, and AM is a 2-round protocol. One can show

that any constant-round interactive protocol can be reduced to a 2-round interactive

protocol [3]. Hence, the definition of pseudo-deterministic AM captures the set of all

search problems solvable in a constant number of rounds of interaction. Furthermore,

in the definition of pseudo-deterministic AM, we use public coins. One can show that

any protocol using private coins can be simulated using public coins1[42].

Definition 2.1.3 (Pseudo-deterministic AM). A search problem 𝑅 is in pseudo-

deterministic AM (often denoted psdAM) if there exists a function 𝑠 where all 𝑥 ∈

𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅, a probabilistic polynomial time verifier algorithm 𝑉 , and

polynomials 𝑝 and 𝑞, such that for every 𝑥 ∈ 𝐿𝑅:
1In the case where the prover is not unbounded, private coins may be more powerful than public

coins.
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1. Pr𝑟∈{0,1}𝑝(𝑛)(∃𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) = 𝑠(𝑥)) ≥ 2
3

2. Pr𝑟∈{0,1}𝑝(𝑛)(∀𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) ∈ {𝑠(𝑥),⊥}) ≥ 2
3
.

And for every 𝑥 /∈ 𝐿𝑅, we have Pr𝑟∈{0,1}𝑝(𝑛)(∀𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) = {⊥}) ≥ 2
3
.

Definition 2.1.4 (Pseudo-deterministic MA). A search problem 𝑅 is in pseudo-

deterministic MA (often denoted psdMA) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅

satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and |𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), a probabilistic polynomial time verifier 𝑉

such that for every 𝑥 ∈ 𝐿𝑅
2:

1. There exists a message 𝑀 of polynomial size such that Pr𝑟[𝑉 (𝑥,𝑀, 𝑟) = 𝑠(𝑥)] ≥
2
3
.

2. For all 𝑀 ′, Pr𝑟[𝑉 (𝑥,𝑀 ′, 𝑟) = 𝑠(𝑥) or ⊥] > 2
3
.

And for every 𝑥 /∈ 𝐿𝑅, for all 𝑀 ′, Pr𝑟[𝑉 (𝑥,𝑀 ′, 𝑟) ̸= ⊥] ≤ 1
3
.

Pseudo-determinism can similarly be defined in the context of nondeterminism

(which can be viewed as a specific case of an interactive proof):

Definition 2.1.5 (Pseudo-deterministic NP). A search problem 𝑅 is in pseudo-

deterministic NP (often denoted psdNP) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅

satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and |𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), and there is a deterministic polynomial

time verifier 𝑉 such that for every 𝑥 ∈ 𝐿𝑅:

1. There exists a message 𝑀 of polynomial size such that 𝑉 (𝑥,𝑀) = 𝑠(𝑥).

2. For all 𝑀 ′, 𝑉 (𝑥,𝑀 ′) = 𝑠(𝑥) or 𝑉 (𝑥,𝑀 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all 𝑀 ′, we have 𝑉 (𝑥,𝑀 ′) = ⊥.

A similar definition for pseudo-deterministic NL follows naturally:

Definition 2.1.6 (Pseudo-deterministic NL). A search problem 𝑅 is in pseudo-

deterministic NL (often denoted psdNL) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅

satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and |𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), there is a nondeterministic log-space ma-

chine 𝑉 such that for every 𝑥 ∈ 𝐿𝑅:
2We remark that we use 𝑀 to denote the proof sent by the prover Merlin, and not the algorithm

implemented by the prover.
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1. There exist nondeterministic choices 𝑁 for the machine such that such that

𝑉 (𝑥,𝑁) = 𝑠(𝑥).

2. For all possible nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = 𝑠(𝑥) or 𝑉 (𝑥,𝑁 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = ⊥.

It is valuable to contrast the above definition with the definition of search-NL, in

which it is possible to have different nondeterministic guesses of the machine result

in different answers:

Definition 2.1.7 (search-NL). A search problem 𝑅 is in search-NL if there is a

nondeterministic log-space machine 𝑉 such that for every 𝑥 ∈ 𝐿𝑅,

1. There exist nondeterministic choices 𝑁 for the machine such that such that

𝑉 (𝑥,𝑁) = 𝑦, and (𝑥, 𝑦) ∈ 𝑅.

2. For all possible nondeterministic choices𝑁 ′, (𝑥, 𝑉 (𝑥,𝑁 ′)) ∈ 𝑅, or 𝑉 (𝑥,𝑁 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = ⊥.

Intuitively speaking, in the case of search-NL, it is okay for the algorithm to output

different correct solutions when using different nondeterministic choices. In the case

of pseudo-deterministic-NL, there should not be two nondeterministic choices for the

algorithm which result in different answers (on input 𝑥, every set of nondeterministic

choices which leads to an answer which is not ⊥ should lead to the same answer 𝑠(𝑥)).

We will also use the following definition of search-BPP, the class of search problem

solvable (and verifiable) in probabilistic polynomial time:

Definition 2.1.8 (Search-BPP). A binary relation 𝑅 is in search-𝐵𝑃𝑃 if there exist

probabilistic polynomial-time algorithms 𝐴,𝐵 such that

1. Given 𝑥 ∈ 𝑅𝐿, 𝐴 outputs a 𝑦 such that with probability at least 2/3, (𝑥, 𝑦) ∈ 𝑅.

2. If 𝑦 is output by 𝐴 when run on 𝑥, and (𝑥, 𝑦) /∈ 𝑅, then 𝐵 rejects on (𝑥, 𝑦) with

probability at least 2/3. Furthermore, for all 𝑥 ∈ 𝐿𝑅, with probability at least

1/2 𝐵 accepts on (𝑥, 𝑦) with probability at least 1/2.
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When 𝑥 /∈ 𝑅𝐿, 𝐴 outputs ⊥ with probability at least 2/3.

The intuition of the above definition is that 𝐴 is used to find an output 𝑦, and

then 𝐵 can be used to verify 𝑦, and amplify the success probability.

2.1.2 Polynomial-round pseudo-determinism

Consider what happens in the polynomial-round case. From [77], we know that IP =

PSPACE. It is also known that finding the lexicographically first witness to any NP

problem is in PSPACE. Thus, we have the following lemma:

Lemma 2.1.9. Every language 𝐿 ∈ NP has an polynomial-round psdIP protocol.

Proof. Let us consider the function 𝑓(𝑥) which outputs the lexicographically first

witness that 𝑥 ∈ 𝐿 if 𝑥 ∈ 𝐿 or ⊥ otherwise. It is easy to see that determining whether

𝑓(𝑥) = 𝑦 is in PSPACE. As a result, there is an polynomial-round IP protocol to

determine whether 𝑓(𝑥) = 𝑦. Then, the psdIP protocol is as follows; the prover gives

the verifier 𝑦 and then they run the protocol, and the verifier accepts and outputs 𝑦

if the protocol accepts. This satisfies the conditions for pseudo-determinism because

of the completeness and soundness properties of the IP protocol.

Definition 2.1.10. A linear program is, given a matrix 𝐴 and vectors b, c, the

problem max{c⊤x} subject to the constraints 𝐴x ≤ b and x ≥ 0. Its dual is the

linear program min{b⊤y} subject to the constraints 𝐴⊤y ≥ c and y ≥ 0.

Theorem 2.1.11. (Weak duality) If x,y are feasible solutions to a linear program

given by max{c⊤x} subject to 𝐴x ≤ b and x ≥ 0 and its dual respectively, then

c⊤x ≤ b⊤y. (Strong duality) Furthermore x,y are optimal solutions if and only if

c⊤x = b⊤y.

2.2 Doubly-Efficient Pseudo-Deterministic Proofs

In this section we will introduce concepts needed to give pseudo-deterministic proofs

that improve on the best known deterministic algorithms for problems studied in

fine-grained complexity.
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Definition 2.2.1 (Search Problem). A search problem is a relation 𝑅 consisting of

pairs (𝑥, 𝑦) and we define 𝐿𝑅 to be the set of 𝑥 such that ∃𝑦(𝑥, 𝑦) ∈ 𝑅.

The goal of an algorithm solving a search problem is to find a 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅. The focus of pseudo-determinism is to give algorithms for search problems

that find canonical solutions; a pseudo-deterministic algorithm will output the same

solution to a search problem with high probability over its randomness. [40] extended

the notion of pseudo-determinism to interactive proofs and brought the concept of

NP search problems with unique answers under the umbrella of pseudo-determinism.

We will refer to this work’s definition of a pseudo-deterministic proof. The pseudo-

deterministic proofs in our setting will always either output the unique solution or

⊥.

Definition 2.2.2 (Pseudo-deterministic proof [40]). A search problem 𝑅 is in pseudo-

deterministic IP (often denoted psdIP) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅

satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅, and an interactive protocol between a probabilistic polynomial

time verifier algorithm 𝑉 and a prover (unbounded algorithm) 𝑃 such that for every

𝑥 ∈ 𝐿𝑅:

1. (Canonical Completeness) There exists a 𝑃 such that Pr𝑟[(𝑃, 𝑉 )(𝑥, 𝑟) = 𝑠(𝑥)] ≥
2
3
. (We use (𝑃, 𝑉 )(𝑥, 𝑟) to denote the output of the verifier 𝑉 when interacting

with prover 𝑃 on input 𝑥 using randomness 𝑟).

2. (Canonical Soundness) For all 𝑃 ′, Pr𝑟[(𝑃
′, 𝑉 )(𝑥, 𝑟) = 𝑠(𝑥) or ⊥] ≥ 2

3
.

And (Standard Soundness) for every 𝑥 /∈ 𝐿𝑅, for all provers 𝑃 ′, Pr𝑟[(𝑃
′, 𝑉 )(𝑥, 𝑟) ̸=

⊥] ≤ 1
3
.

This is analogous to the definition of pseudo-deterministic NP, except we allow

the prover and verifier to interact. In the setting we consider, the prover and verifier

both run in polynomial time, with the prover given more time than the verifier. Our

goal is to construct pseudo-deterministic proofs for problems such that the verifier

runs in time faster than the best known deterministic algorithm for the problem.
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2.3 Non-Signaling Interactive Proofs

2.3.1 No-Signaling Games

Definition 2.3.1. A 𝑘-prover, one-round game is a tuple 𝒢 = (𝑄1, ..., 𝑄𝑘, 𝐴1, ..., 𝐴𝑘, 𝑉, 𝜋),

where 𝑄1, ..., 𝑄𝑘 are sets of queries, 𝐴1, ..., 𝐴𝑘 are sets of answers,

𝑉 : 𝑄1 ×𝑄2 × ...×𝑄𝑘 × 𝐴1 × 𝐴2 × ...× 𝐴𝑘 → {0, 1}

is a polynomial-time computable function, and 𝜋 is a polynomial-time sampleable

probability distribution over (𝑄1, ..., 𝑄𝑘).

Notation. We denote by 𝒬 , 𝑄1 × 𝑄2 × ...𝑄𝑘 and 𝒜 , 𝐴1 × 𝐴2 × ... × 𝐴𝑘. We

also denote by 𝒬𝑆 , 𝑄𝑠1 ×𝑄𝑠2 × ...×𝑄𝑠|𝑆| , where 𝑆 = {𝑠1, 𝑠2, ..., 𝑠|𝑆|}, and similarly

for 𝒜𝑆.

We denote by [𝑘] = {1, . . . , 𝑘}. For every 𝑞 = (𝑞1, . . . , 𝑞𝑘) ∈ 𝒬, every 𝑎 =

(𝑎1 . . . , 𝑎𝑘) ∈ 𝒜, and every 𝑆 ⊆ [𝑘], we denote by 𝑞𝑆 = (𝑞𝑖)𝑖∈𝑆 and 𝑎𝑆 = (𝑎𝑖)𝑖∈𝑆.

Definition 2.3.2. A strategy for a game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) is a family of probability

distributions {𝑝𝑞}𝑞∈𝒬 over 𝒜 ∪ {⊥}.

For any 𝑞 ∈ 𝒬, any 𝑎 ∈ 𝒜, and any subset 𝑆 ⊆ [𝑘], we denote by

𝑝𝑞(𝑎𝑆) ,
∑︁

𝑎*∈𝒜:𝑎*𝑆=𝑎𝑆

𝑝𝑞(𝑎
*).

Definition 2.3.3. A strategy {𝑝𝑞}𝑞∈𝒬 for a 𝑘-player game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) is said to

be no-signaling if there exists a family of probability distributions {Sim𝑆,𝑞𝑆}𝑆⊆[𝑘],𝑞𝑆∈𝒬𝑆
,

where each Sim𝑆,𝑞𝑆 is a distribution over 𝒜𝑆, such that for every 𝑞 ∈ 𝒬, every 𝑆 ⊆ [𝑘],

and every 𝑎𝑆 ∈ 𝒜𝑆,

𝑝𝑞(𝑎𝑆) = Sim𝑆,𝑞𝑆(𝑎𝑆).

Namely, a strategy is no-signaling if the marginal distributions of the answers

are the same regardless of the other queries. Note that if {𝑝𝑞}𝑞∈𝒬 is a no-signaling
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strategy then for every 𝑞 ∈ 𝒬,

∑︁
𝑎𝑆

Pr[𝑝𝑞 = 𝑎𝑆] =
∑︁
𝑎𝑆

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆] = 1,

which implies that Pr[𝑝𝑞 = ⊥] = 0.

Two relaxations of the notion of no-signaling were considered in the literature: the

first is the notion of sub-no-signaling, by Lancien and Winter [60], and the second is

the notion of honest-referee no-signaling by Holmgren and Yang [49]. In both cases

these relaxed notions were motivated by the goal of proving a parallel repetition

theorem for no-signaling strategies. We begin by defining the latter notion.

Definition 2.3.4. A strategy {𝑝𝑞}𝑞∈𝒬 for a 𝑘-player game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) is said

to be honest-referee no-signaling if the no-signaling condition holds for every 𝑞 ∈ 𝒬

such that Pr[𝜋 = 𝑞] > 0 (and is not required to hold for queries that are not in the

support of 𝜋).

Formally, {𝑝𝑞}𝑞∈𝒬 is a honest-referee no-signaling strategy for 𝒢 if there exists

a family of probability distributions {Sim𝑆,𝑞𝑆}𝑆⊆[𝑘],𝑞𝑆∈𝒬𝑆
, where each Sim𝑆,𝑞𝑆 is a

distribution over 𝒜𝑆, such that for every 𝑞 ∈ 𝒬 in the support of 𝜋, every 𝑆 ⊆ [𝑘],

and every 𝑎𝑆 ∈ 𝒜𝑆,

𝑝𝑞(𝑎𝑆) = Sim𝑆,𝑞𝑆(𝑎𝑆).

Definition 2.3.5. A strategy {𝑝𝑞}𝑞∈𝒬 for a 𝑘-player game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) is said to

be sub-no-signaling if there exists a family of probability distributions {Sim𝑆,𝑞𝑆}𝑆⊆[𝑘],𝑞𝑆∈𝒬𝑆
,

where each Sim𝑆,𝑞𝑆 is a distribution over 𝒜𝑆, such that for every 𝑞 ∈ 𝒬, every 𝑆 ⊆ [𝑘],

and every 𝑎𝑆 ∈ 𝒜𝑆,

𝑝𝑞(𝑎𝑆) ≤ Sim𝑆,𝑞𝑆(𝑎𝑆).

If {𝑝𝑞}𝑞∈𝒬 is a sub-no-signaling set of probability distributions, then for every

𝑞 ∈ 𝒬, if ∑︁
𝑎𝑆

𝑝𝑞(𝑎𝑆) <
∑︁
𝑎𝑆

Sim𝑆,𝑞𝑆(𝑎𝑆) = 1,

then in the remaining probability 𝑝𝑞 outputs ⊥.
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Definition 2.3.6. Let NS(𝒢) be the set of no-signaling strategies of a 𝑘-prover game

𝒢 = (𝒬,𝒜, 𝑉, 𝜋). The no-signaling value of 𝒢 is

𝒱NS(𝒢) = max
{𝑝𝑞}𝑞∈𝒬∈NS(𝒢)

∑︁
𝑞∈𝒬

𝜋(𝑞)
∑︁
𝑎∈𝒜

𝑝𝑞(𝑎)𝑉 (𝑞, 𝑎).

Similarly, let hrNS(𝒢) be the set of honest-referee no-signaling strategies of 𝒢. The

honest-referee no-signaling value of 𝒢 is

𝒱hrNS(𝒢) = max
{𝑝𝑞}𝑞∈𝒬∈hrNS(𝒢)

∑︁
𝑞∈𝒬

𝜋(𝑞)
∑︁
𝑎∈𝒜

𝑝𝑞(𝑎)𝑉 (𝑞, 𝑎).

Let subNS(𝒢) be the set of sub-no-signaling strategies of 𝒢. The sub-no-signaling

value of 𝒢 is

𝒱subNS(𝒢) = max
{𝑝𝑞}𝑞∈𝒬∈subNS(𝒢)

∑︁
𝑞∈𝒬

𝜋(𝑞)
∑︁
𝑎∈𝒜

𝑝𝑞(𝑎)𝑉 (𝑞, 𝑎).

2.3.2 Linear Programming

Definition 2.3.7 ([63]). Fix any linear program given by max c⊤x subject to x𝑆 ≥ 0,

x𝑇 unrestricted, 𝐴𝑈x ≤ b𝑈 , and 𝐴𝑉 x = b𝑉 , where 𝑆, 𝑇 are disjoint and 𝑆 ∪ 𝑇 = [𝑛],

where 𝑛 = |𝑥|, and where 𝑈, 𝑉 are disjoint and 𝑈 ∪ 𝑉 = [𝑚] where 𝑚 is the number

of rows of 𝐴, where 𝐴 is defined to be the matrix whose rows are the rows of 𝐴𝑈 and

the rows of 𝐴𝑉 .

The dual of this linear program is defined by minb⊤y, where |y| = 𝑚, subject to

y𝑈 ≥ 0, y𝑉 unrestricted, 𝐴⊤𝑆y ≥ c𝑆, 𝐴⊤𝑇 y = c𝑇 .

Theorem 2.3.8 (Strong duality [63]). If the value of a linear program is finite then

it is equal to the value of its dual.

Definition 2.3.9 ([89]). A mixed packing and covering problem is a pair of non-

negative matrices 𝐴,𝐶 and a pair of non-negative vectors 𝑏, 𝑑. A solution to a mixed

packing and covering problem is a vector 𝑥 such that 𝑥 ≥ 0, 𝐴𝑥 ≤ 𝑏, and 𝐶𝑥 ≥ 𝑑.
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Theorem 2.3.10 ([89]). Let (𝐴, 𝑏, 𝐶, 𝑑) be a mixed packing and covering problem.

Then, there exists an algorithm running in space poly(log(|(𝐴, 𝑏, 𝐶, 𝑑)|), 1/𝜖) to deter-

mine whether there does not exist a solution to the mixed packing and covering problem

or to output a solution to the mixed packing and covering problem (𝐴, 𝑏(1 + 𝜖), 𝐶, 𝑑).
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Chapter 3

Pseudo-Deterministic Proofs

3.1 Pseudo-deterministic-AM algorithm for graph iso-

morphism

In this section we give an algorithm for finding an isomorphism between two graphs

in AM that outputs the same answer with high probability. The way this algorithm

works is that the prover will send the lexicographically first isomorphism to the verifier

and then prove that it is the lexicographically first isomorphism. To prove that the

isomorphism is the lexicographically first isomorphism, we label the graph and run

a sequence of graph non-isomorphism protocols to show no lexicographically smaller

isomorphism exists. We present an alternate proof of the same result in the appendix

(the proof in the appendix is more group theoretic, whereas the proof below is more

combinatorial).

Theorem 3.1.1. Finding an isomorphism between graphs can be done in psdAM.

Proof. Let the vertices of 𝐺1 be 𝑣1, 𝑣2, . . . , 𝑣𝑛, and the vertices of 𝐺2 be 𝑢1, 𝑢2, . . . , 𝑢𝑛.

We will show an AM algorithm which outputs a unique isomorphism 𝜑. Our algorithm

will proceed in 𝑛 stages (which we will later show can be parallelized). After the 𝑘th

stage, the values 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘) will be determined.

Suppose that the values 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘) have been determined. Then we

will determine the smallest 𝑟 such that there exists an isomorphism 𝜑* such that for
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1 ≤ 𝑖 ≤ 𝑘, we have 𝜑*(𝑣𝑖) = 𝜑(𝑣𝑖), and in addition, 𝜑*(𝑣𝑘+1) = 𝑢𝑟. If we find 𝑟, we

can set 𝜑(𝑣𝑘+1) = 𝜑*(𝑣𝑘+1) and continue to the 𝑘 + 1𝑡ℎ stage.

To find the correct value of 𝑟, the (honest) prover will tell the verifier the value

of 𝑟 and 𝜑. Then, to show that the prover is not lying, for each 𝑟′ < 𝑟, the prover

will prove that there exists no isomorphism 𝜑′ such that for 1 ≤ 𝑖 ≤ 𝑘, we have

𝜑′(𝑣𝑖) = 𝜑(𝑣𝑖), and in addition, 𝜑′(𝑣𝑘+1) = 𝑢𝑟′ . To prove this, the verifier will pick 𝐺1

or 𝐺2, each with probability 1/2. If the verifier picked 𝐺1, he will randomly shuffle

the vertices 𝑣𝑘+2, . . . , 𝑣𝑛, and send the shuffled graph to the prover. If the verifier

picked 𝐺2, he will set 𝑢′𝑖 = 𝜑(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑘, and 𝑢′𝑘+1 = 𝑢𝑟′ , and shuffle the rest of

the vertices. If the prover can distinguish between whether the verifier initially picked

𝐺1 or 𝐺2, then that implies there is no isomorphism sending 𝑣𝑖 to 𝜑(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑘,

and sending 𝑣𝑘+1 to 𝑢𝑟′ . The prover now can show this for all 𝑟′ ≤ 𝑟 (in parallel),

as well as exhibit the isomorphism 𝜑, thus proving that 𝑟 is the minimum value such

that there is an isomorphism sending 𝑣𝑖 to 𝜑(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑘, and sending 𝑣𝑘+1 to

𝑢𝑟.

The above 𝑛 stages can be done in parallel in order to achieve a constant round

protocol. To do so, in the first stage, the prover sends the isomorphism 𝜑 to the

verifier. Then, the verifier can test (in parallel) for each 𝑘 whether under the assump-

tion that 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘) are correct, 𝜑(𝑣𝑘+1) is the lexicographically minimal

vertex which 𝑣𝑘+1 can be sent to. The correctness of this protocol follows from the

fact that multiple AM protocols can be performed in parallel (as shown in appendix

C.1 of [35]).

We note that in the above protocol, the prover only needs to have the power to

solve graph isomorphism (and graph non-isomorphism). Also, we note that the above

protocol uses private coins. While the protocol can be simulated with a public coin

protocol [42], the simulation requires the prover to be very powerful. It remains open

to determine whether there is a pseudo-deterministic AM protocol for graph isomor-

phism which uses public coins, and uses a “weak" prover (one which is a polynomial

time machine with access to an oracle solving graph isomorphism).
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3.2 Lower bound on pseudo-deterministic AM algo-

rithms

In this section, we establish that if any NP-complete problem has an AM protocol

that outputs a unique witness with high probability, then the polynomial hierarchy

collapses. To do this we show the analog of AM ⊆ NP/𝑝𝑜𝑙𝑦 for pseudo-deterministic

algorithms, and then use this fact to get a NP/𝑝𝑜𝑙𝑦 algorithm with a unique witness.

We can then use [45] to show that NP ⊆ coNP/𝑝𝑜𝑙𝑦.

We begin by proving that psdAM ⊆ psdNP/𝑝𝑜𝑙𝑦:

Lemma 3.2.1. Suppose that there is a psdAM protocol for a search problem 𝑅,

which on input 𝑥 ∈ 𝐿𝑅, outputs 𝑓(𝑥). Then, the search problem 𝑅 has a psdNP/𝑝𝑜𝑙𝑦

algorithm which, on input 𝑥, outputs 𝑓(𝑥).

Proof. The idea of the proof is similar to the proof that AM ⊆ NP/𝑝𝑜𝑙𝑦 (which in itself

uses techniques similar to those of Adleman’s theorem [1], showing BPP ⊆ P/𝑝𝑜𝑙𝑦).

Consider the psdAM protocol, and suppose that on input 𝑥 ∈ 𝐿𝑅, it outputs 𝑓(𝑥).

Since we are guaranteed that when the verifier of the the psdAM accepts, it will

output 𝑓(𝑥) with high probability, we can use standard amplification techniques to

show that the verifier will output 𝑓(𝑥) with probability 1− 𝑜(exp(−𝑛)), assuming an

honest prover, and will output anything other than 𝑓(𝑥) with probability 𝑜(exp(−𝑛)),

even with a malicious prover. Then, by a union bound, there exists a choice of random

string 𝑟 that makes the verifier output 𝑓(𝑥) for all inputs 𝑥 ∈ {0, 1}𝑛 of size 𝑛 with an

honest prover, and that for malicious provers, the verifier will either reject or output

𝑓(𝑥). We encode this string 𝑟 as the advice string for the NP/𝑝𝑜𝑙𝑦 machine.

The NP/𝑝𝑜𝑙𝑦 machine computing 𝑓 can read 𝑟 off the advice tape and then guess

the prover’s message, and whenever the verifier accepts, 𝑓(𝑥) will be output by that

branch. Thus 𝑓(𝑥) can be computed by an NP/𝑝𝑜𝑙𝑦 machine.

Next, we show that if an NP-complete problem has a pseudo-deterministic-NP/𝑝𝑜𝑙𝑦

algorithm, then the polynomial hierarchy collapses.

45



Theorem 3.2.2. Let 𝐿 ∈ NP be an NP-complete problem. Let 𝑅 be a polynomial

time algorithm such that there exists a polynomial 𝑝 so that 𝑥 ∈ 𝐿 if and only if

∃𝑦 ∈ {0, 1}𝑝(|𝑥|)𝑅(𝑥, 𝑦). Suppose that there is a psdAM protocol that when given

some 𝑥 ∈ 𝐿, outputs a unique 𝑓(𝑥) ∈ {0, 1}𝑝(|𝑥|) such that 𝑅(𝑥, 𝑓(𝑥)) = 1. Then,

NP ⊆ coNP/𝑝𝑜𝑙𝑦 and the polynomial hierarchy collapses to the third level.

Proof. From Lemma 3.2.1, we have that there exists psdNP/𝑝𝑜𝑙𝑦 algorithm that given

𝑥 ∈ 𝐿, outputs a unique witness 𝑓(𝑥) for 𝑥. Refer to [45] for the proof that a NP/𝑝𝑜𝑙𝑦

function that outputs a unique witness implies that NP ⊆ coNP/𝑝𝑜𝑙𝑦.

3.3 Pseudo-deterministic derandomization for BPP

in subexponential time MA

In this section, we will show how to use known circuit lower bounds to get pseudo-

deterministic subexponential time (time𝑂(2𝑛𝜖
) for every 𝜖) MA protocols for problems

in search-BPP for infinitely many input lengths. In [66], it is shown that there is a

subexponential time pseudo-deterministic ZPP algorithm for infinitely many input

lengths for all properties which have inverse polynomial density, and are testable in

polynomial time1. A notable example of such a property is primality. So as a corollary,

in [66] it is shown that given some integer 𝑛, one can find a prime greater than 𝑛 in

pseudo-deterministic subexponential time, for infinitely many input lengths.

In their construction, the condition of high density is required because they show

that either there exists a subexponential sized hitting set for infinitely many input

lengths which can be used to find strings with the property deterministically, or a

complexity collapse happens which implies circuit lower bounds which give pseudo-

deterministic algorithms. In the case of MA, unconditional circuit lower bounds

for Merlin-Arthur proofs where the verifier is allowed at least half-exponential time

have been shown [17, 64], which means that inverse polynomial density is no longer

1We believe that their analysis can be improved to get a half-exponential time bounded-error
pseudo-deterministic algorithm, which is better than our result for properties of inverse polynomial
density.
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required. Hence, we can obtain a pseudo-deterministic MA algorithm directly from

circuit lower bounds. Compared to [66], our result manages to show a certain pseudo-

derandomization for all problems in search-BPP (and not just those with high den-

sity), but requires a prover.

Our pseudo-deterministic algorithm uses the Nisan-Wigderson pseudo-random

generator. The main lemma that we will use is the lemma that shows that given

the truth-table of a hard function, you can get a pseudorandom generator with the

right parameters.

Lemma 3.3.1 (Lemma 2.4 of [65]). Let 𝑚,𝑛, 𝑙 be integers; let 𝑓 : {0, 1}𝑚 → {0, 1}

be a boolean function that cannot be approximated with error 1
2
− 1

2𝑛2 by any circuit

of size 𝑛2.

To obtain the best running time for our pseudo-deterministic algorithm, we will

need the iterated exponential functions first used in complexity theory by [64]. We

will be considering functions with half-exponential growth, i.e. functions 𝑓 such that

𝑓(𝑓(𝑛)) ∈ 𝑂(2𝑛𝑘
) for some 𝑘.

Definition 3.3.2 (Fractional exponentials [64]). The fractional exponential function

𝑒𝛼(𝑥) will be defined as 𝐴−1(𝐴(𝑥) + 𝛼), where 𝐴 is the solution to the functional

equation 𝐴(𝑒𝑥 − 1) = 𝐴(𝑥) + 1. In addition, we can construct such functions so that

𝑒𝛼(𝑒𝛽(𝑥)) = 𝑒𝛼+𝛽(𝑥). It is clear from this definition that 𝑒1(𝑛) = 𝑂(2𝑛) as desired.

Theorem 3.3.3. Given a problem 𝑅 in search-BPP, it is possible to obtain a pseudo-

deterministic MA algorithm for 𝑅 where the verifier takes subexponential time for

infinitely many input lengths.

Proof. From [64], we see that MA∩ coMA where the verifier runs in half-exponential

time cannot be approximated by polynomial-size circuits. Using the Lemma from

[65], this means that in half-exponential time MA, we can construct a pseudorandom

generator with half-exponential stretch which is secure against any given polynomial-

size circuit for infinitely many input lengths. Let 𝑇 be the truth-table of the hard

function that the pseudorandom generator uses. Then, let 𝑅 be a relation in search-

BPP. Recall from Definition 2.1.8 that there is an algorithm 𝐴 that given 𝑥, produces
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𝑦 such that (𝑥, 𝑦) ∈ 𝑅 with high probability if 𝑥 ∈ 𝑅𝐿. We will now describe the

protocol. First, the prover sends 𝑇 to the verifier and proves that it is indeed the

truth table of the hard function in half-exponential time MA (which can be done in

half-exponential time). With 𝑇 in hand, the verifier can then compute the output of

the pseudorandom generator. The verifier loops through the seeds in lexicographic

order and uses the pseudorandom generator on each seed to create pseudo-random

strings, which the verifier then uses as the randomness for 𝐴. Each time, the verifier

tests whether (𝑥,𝐴(𝑥, 𝑟)) ∈ 𝑅 (which can be done in BPP, and hence also in MA)

and returns the first such valid output.

This will output the same solution whenever the verifier both gets the correct

truth-table for the PRG, and succeeds in testing for each PRG output whether the

output it provides is valid. Both of these happen with high probability, and thus

this is a pseudo-deterministic subexponential-time MA algorithm for any problem in

search-BPP which succeeds on infinitely many input lengths.

3.4 Uniqueness in NL

In this section, we prove that every problem in search-NL can be made pseudo-

deterministic:

Theorem 3.4.1 (Pseudo-determinism NL). Every search problem in search-NL is in

psdNL.

One can think of the complete search problem for NL as: given a directed graph

𝐺, and two vertices 𝑠 and 𝑡 such that there is a path from 𝑠 to 𝑡, find a path from

𝑠 to 𝑡. Note that the standard nondeterministic algorithm of simply guessing a path

will result in different paths for different nondeterministic guesses. Our goal will be

to find a unique path, so that on different nondeterministic choices, we will not end

up with a path which is not the unique one.

The idea will be to find the lexicographically first shortest path (i.e, if the min-

length path from 𝑠 to 𝑡 is of length 𝑑, we will output the lexicographically first path of
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length 𝑑 from 𝑠 to 𝑡). To do so, first we will determine the length 𝑑 of the min-length

path from 𝑠 to 𝑡. Then, for each neighbor of 𝑠, we will check if it has a path of length

𝑑 − 1 to 𝑡, and move to the first such neighbor. Now, we have reduced the problem

to finding a unique path of length 𝑑− 1, which we can do recursively.

The full proof is given below:

Proof. Given a problem in search-NL, consider the set of all min-length computation

histories. We will find the lexicographically first successful computation history in

this set.

To do so, we first (nondeterministically) compute the length of the min-length

computation history. This can be done because coNL = NL (so if the shortest com-

putation history is of size 𝑇 , one can show a history of size 𝑇 . Also, because it is

coNL to show that there is no history of size up to 𝑇 − 1, we can show that there is

no history of size less than 𝑇 in NL).

In general, using the same technique, given a state 𝑆 of the NL machine, we can

tell what is the shortest possible length for a successful computation history starting

at 𝑆.

Our algorithm will proceed as follows. Given a state 𝑆 (which we initially set

to be the initial configuration of the NL machine), we will compute 𝑇 , the length

of the shortest successful computation path starting at 𝑆. Then, for each possible

nondeterministic choice, we will check (in NL) whether there exists a computation

history of length 𝑇 − 1 given that nondeterministic choice. Then, we will choose the

lexicographically first such nondeterministic choice, and recurse.

This algorithm finds the lexicographically first computation path of minimal length

which is unique. Hence, the algorithm will always output the same solution (or reject),

so the algorithm is pseudo-deterministic.

3.5 Structural Results

In [36], Goldreich et al showed that the set of total search problems solved by pseudo-

deterministic polynomial time randomized algorithms equals the set of total search
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problems solved by deterministic polynomial time algorithms, with access to an oracle

to decision problems in BPP. In [39], this result was extended to the context of

RNC. We show analogous theorems here. In the context of MA, we show that for

total search problems, psdMA = search−PMA∩coMA.2 In other words, any pseudo-

deterministic MA algorithm can be simulated by a polynomial time search algorithm

with an oracle solving decision problems in MA ∩ coMA, and vice versa.

In the case of search problems that are not total, we show that psdMA equals to

the class search−Ppromise−(MA∩coMA), where when the input 𝑥 is in 𝐿𝑅, all queries to

the oracle must be in the promise. We note that generally, when having an oracle to

a promise problem, one is allowed to query the oracle on inputs not in the promise,

as long as the output of the algorithm as a whole is correct for all possible answers

the oracle gives to such queries. In our case, we simply do not allow queries to the

oracle to be in the promise. Such reductions have been called smart reductions [43].

We show similar theorems for AM, and NP. Specifically, we show psdAM =

search−Ppromise−(AM∩coAM) and psdNP = search−Ppromise−(NP∩coNP), where the reduc-

tions to the oracles are smart reductions.

In the case of total problems, one can use a similar technique to show psdAM =

search−PAM∩coAM and psdNP = search−PNP∩coNP, where the oracles can only return

answers to total decision problems.

Theorem 3.5.1. The class psdMA equals the class search−Ppromise−(MA∩coMA), where

on any input 𝑥 ∈ 𝐿𝑅, the all queries to the oracle are in the promise.

Proof. The proof is similar to the proofs in [36] and [39] which show similar reduc-

tions to decision problems in the context of pseudo-deterministic polynomial time

algorithms and pseudo-deterministic NC algorithms.

First, we show that a polynomial time algorithm with an oracle for promise−(MA∩

coMA) decision problems which only asks queries in the promise has a corresponding

pseudo-deterministic MA algorithm. Consider a polynomial time algorithm 𝐴 which

uses an oracle for promise−(MA ∩ coMA). We can simulate 𝐴 by an MA protocol

2What we call search−P is often denoted as FP.
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where the prover sends the verifier the proof for every question which 𝐴 asks the

oracle. Then, the verifier can simply run the algorithm from 𝐴, and whenever he

accesses the oracle, he instead verifies the proof sent to him by the prover.

We note that the condition of a smart reduction is required in order for the prover

to be able to send to the verifier the list of all queries 𝐴 will make to the oracle. If 𝐴

can ask the oracle queries not in the promise, it may be that on different executions of

𝐴, different queries will be made to the oracle (since 𝐴 is a adaptive, and the queries

𝐴 makes may depend on the answers returned by the oracle for queries not in the

promise), so the prover is unable to predict what queries 𝐴 will need answered.

We now show that a pseudo-deterministic MA algorithm 𝐵 has a corresponding

polynomial time algorithm 𝐴 that uses a promise−(MA ∩ coMA) oracle while only

querying on inputs in the promise. On input 𝑥 ∈ 𝐿𝑅, the polynomial time algorithm

can ask the promise−(MA∩ coMA) oracle for the first bit of the unique answer given

by 𝐵. This is a decision problem in promise−(MA ∩ coMA) since it has a constant

round interactive proof (namely, run 𝐵 and then output the first bit). Similarly, the

algorithm 𝐴 can figure out every other bit of the unique answer, and then concatenate

those bits to obtain the full output.

Note that it is required that the oracle is for promise−(MA∩ coMA), and not just

for promise−MA, since if one of the bits of the output is 0, the verifier must be able to

convince the prover of that (and this would require a promise−coMA protocol).

A very similar proof shows the following:

Theorem 3.5.2. The class psdNP equals the class search−Ppromise−(NP∩coNP), where

on any input 𝑥 ∈ 𝐿𝑅, all queries to the oracle are in the promise.

We now prove a similar theorem for the case of AM protocols. We note that this is

slightly more subtle, since it’s not clear how to simulate a search−Ppromise−(AM∩coAM)

protocol using only a constant number of rounds of interaction, since the search-P

algorithm may ask polynomial many queries in an adaptive fashion.

Theorem 3.5.3. The class psdAM equals the class search−Ppromise−(AM∩coAM), where

on any input 𝑥 ∈ 𝐿𝑅, the all queries to the oracle are in the promise.
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Proof. First, we show that a polynomial time algorithm with an oracle for promise−(AM∩

coAM) decision problems where the queries are all in the promise has a corresponding

pseudo-deterministic AM algorithm. We proceed similarly to the proof of Theorem

3.5.1. Consider a polynomial time algorithm𝐴 which uses an oracle for promise−(AM∩

coAM). The prover will internally simulate that algorithm 𝐴, and then send to the

verifier a list of all queries that 𝐴 makes to the promise−(AM∩ coAM) oracle. Then,

the prover can prove the answer (in parallel), to all of those queries.

To prove correctness, suppose that the prover lies about at least one of the oracle

queries. Then, consider the first oracle query to which the prover lied. Then, by

a standard simulation argument, one can show that it can be made overwhelmingly

likely that the verifier will discover that the prover lied on that query.

Once all queries have been answered by the verifier the algorithm 𝐵 can run like

𝐴, but instead of querying the oracle, it already knows the answer since the prover

has proved it to him.

The proof that a pseudo-deterministic MA algorithm 𝐵 has a corresponding poly-

nomial time algorithm 𝐴 that uses an promise−(AM ∩ coAM) oracle is identical to

the proof of Theorem 3.5.1

As a corollary of the above, we learn that private coins are no more powerful than

public coins in the pseudo-deterministic setting:

Corollary 3.5.4. A pseudo-deterministic constant round interactive proof using pri-

vate coins can be simulated by a pseudo-deterministic constant round interactive proof

using public coins.

Proof. By Theorem 3.5.3, we can view the algorithm as an algorithm in search−PAM∩coAM.

By a similar argument to that in Theorem 3.5.3, one can show that psdIP =

search−PIP∩coIP, where in this context IP refers to constant round interactive proofs

using private coins, and AM refers to constant round interactive proofs using public

coins. Since promise−(AM ∩ coAM) = promise−(IP ∩ coIP), since every constant

round private coin interactive proof for decision problems can be simulated by a

constant round interactive proof using public coins [42], we have:
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psdAM = search−Ppromise−(AM∩coAM) = search−Ppromise−(IP∩coIP) = psdIP.

3.6 Discussion and Open Problems

Pseudo-determinism and TFNP: The class of total search problems solvable

by pseudo-deterministic NP algorithms is a very natural subset of TFNP, the set

of all total NP search problems. It is interesting to understand how the set of total

psdNP problems fits in TFNP. For example, it is not known whether TFNP = psdNP.

It would be interesting either to show that every problem in TFNP has a pseudo-

deterministic NP algorithm, or to show that under plausible assumptions there is a

problem in TFNP which does not have a pseudo-deterministic NP algorithm.

Similarly, it is interesting to understand the relationship of psdNP to other sub-

classes of TFNP. For example, one can ask whether every problem in PPAD has a

pseudo-deterministic NP algorithm (i.e., given a game, does there exists a pseudo-

deterministic NP or AM algorithm which outputs a Nash Equilibrium), or whether

under plausible assumptions this is not the case. Similar questions can be asked for

CLS, PPP, and so on.

Pseudo-determinism in Lattice problems: There are several problems in the

context of lattices which have NP (and often also NP∩coNP) algorithms [2]. Notable

examples include gap-SVP and gap-CVP, for certain gap sizes. It would be inter-

esting to show pseudo-deterministic interactive proofs for those problems. In other

words, one could ask: does there exists an AM protocol for gap-SVP so that when

a short vector exists, the same short vector is output every time. Perhaps more in-

teresting would be to show, under plausible cryptographic assumptions, that certain

such problems do not have psdAM protocols.
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Pseudo-determinism and Number Theoretic Problems: The problem of gen-

erating primes (given a number 𝑛, output a prime greater than 𝑛), and the problem

of finding primitive roots (given a prime 𝑝, find a primitive root mod 𝑝) have efficient

randomized algorithms, and have been studied in the context of pseudo-determinism

[44, 32, 66], though no polynomial time pseudo-deterministic algorithms have been

found. It is interesting to ask whether these problems have polynomial time psdAM

protocols.

The Relationship between psdAM and search−BPP: One of the main open

problems in pseudo-determinism is to determine whether every problem in search−BPP

also has a polynomial time pseudo-deterministic algorithm. This remains unsolved.

As a step in that direction (and as an interesting problem on its own), it is interesting

to determine whether search−BPP ⊆ psdAM. In this chapter, we proved a partial

result in this direction, namely that search−BPP ⊆ 𝑖.𝑜.psdMASUBEXP.

Zero Knowledge Proofs of Uniqueness: The definition of pseudo-deterministic

interactive proofs can be extended to the context of Zero Knowledge. In other words,

the verifier gets no information other than the answer, and knowing that it is the

unique/canonical answer. It is interesting to examine this notion and understand its

relationship to psdAM.

The Power of the Prover in pseudo-deterministic interactive proofs: Con-

sider a search problem which can be solved in IP where the prover, instead of being

all-powerful, is computationally limited. We know that such a problem can be solved

in psdIP if the prover has unlimited computational power (in fact, one can show it

is enough for the prover to be in PSPACE). In general, if the prover can be com-

putationally limited for some IP protocol, can it also be computationally limited for

a psdIP protocol for the same problem? It is also interesting in general to compare

the power needed for the psdIP protocol compared to the power needed to solve the

search problem non-pseudo-deterministically. Similar questions can be asked in the

context of AM.
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The Power of the Prover in pseudo-deterministic private vs public coins

proofs: In our psdAM protocol for Graph Isomorphism, the verifier uses private

coins, and the prover is weak (it can be simulated by a polynomial time machine with

an oracle for graph isomorphism). If using public coins, what power would the prover

need? In general, it is interesting to compare the power needed by the prover when

using private coins vs public coins in psdAM and psdIP protocols.

Pseudo-deterministic interactive proofs for setting cryptographic global

system parameters: Suppose an authority must come up with global parameters

for a cryptographic protocol (for instance, a prime 𝑝 and a primitive root 𝑔 of 𝑝,

which would be needed for a Diffie-Hellman key exchange). It may be important that

other parties in the protocol know that the authority did not come up with these

parameters because he happens to have a trapdoor to them. If the authority proves

to the other parties that the parameters chosen are canonical, the other parties now

know that the authority did not just pick these parameters because of a trapdoor

(instead, the authority had to pick those parameters, since those are the canonical

ones). It would be interesting to come up with a specific example of a protocol along

with global parameters for which there is a pseudo-deterministic interactive proof

showing the parameters are unique.

3.7 Alternate Algorithm for Graph Isomorphism in

pseudo-deterministic AM

In this section, we present another psdAM algorithm for Graph Isomorphism, this

one more group theoretic (as opposed to the more combinatiorial approach of the

algorithm in Section 3.1). The method we use to do this involves finding the lex-

icographically first isomorphism using group theory. In particular, the verifier will

obtain the automorphism group of one of the graphs from the prover and verify that

it is indeed the automorphism group, and then the verifier will convert an isomor-

phism obtained from the prover into the lexicographically first isomorphism between
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the two graphs. We will define the group-theoretic terms used below.

Definition 3.7.1 (Automorphism Group). The automorphism group 𝐴𝑢𝑡(𝐺) of a

graph is the set of permutations 𝜑 : 𝐺→ 𝐺 such that for every 𝑢, 𝑣 ∈ 𝑉 (𝐺), (𝑢, 𝑣) ∈

𝐸(𝐺) ⇐⇒ (𝜑(𝑢), 𝜑(𝑣)) ∈ 𝐸(𝐺) (i.e., 𝜑 is an automorphism of 𝐺).

Definition 3.7.2 (Stabilize). Given a set 𝑆 and elements 𝛼1, 𝛼2, ..., 𝛼𝑖 ∈ 𝑆, we say

that a permutation 𝜑 : 𝑆 → 𝑆 stabilizes {𝛼1, 𝛼2, ..., 𝛼𝑘} iff 𝜑(𝛼𝑖) = 𝛼𝑖 for 𝑖 ∈ {1, ..., 𝑘}.

We also say that a group 𝐺 stabilizes {𝛼1, 𝛼2, ..., 𝛼𝑘} when every 𝜑 ∈ 𝐺 stabilizes

{𝛼1, 𝛼2, ..., 𝛼𝑘}.

Definition 3.7.3 (Stabilizer). The stabilizer of an element 𝑠 in 𝑆 for a group 𝐺

acting on 𝑆 is the set of elements of 𝐺 that stabilize 𝑠.

Lemma 3.7.4. Suppose that we are given a tuple (𝐺1, 𝐺2, 𝐻, 𝜑) where 𝐺1 and 𝐺2 are

graphs, 𝐻 = 𝐴𝑢𝑡(𝐺1) is represented as a set of generators, and 𝜑 an isomorphism

between 𝐺1 and 𝐺2. Then, in polynomial time, we can compute a unique isomorphism

𝜑* from 𝐺1 to 𝐺2 independent of the choice of 𝜑 and the representation of 𝐻.

Proof. We use the algorithm given in [19] to compute a canonical coset representa-

tive, observing that the set of isomorphisms between 𝐺1 and 𝐺2 is a coset of the

automorphism group of 𝐺1. Let 𝛼1, ..., 𝛼𝑡 be a basis of 𝐻, i.e., a set such that any

ℎ ∈ 𝐻 fixing 𝛼1, ..., 𝛼𝑡 is the identity. Let 𝐻𝑖 be the subgroup of 𝐻 that stabilizes

𝛼1, ..., 𝛼𝑖−1. Now, let 𝑈𝑖 be a set of coset representatives of 𝐻𝑖+1 in 𝐻𝑖. Given the

generators of 𝐻𝑖, we can calculate 𝑈𝑖, and by Schreier’s theorem we can calculate the

generators for 𝐻𝑖+1. In this fashion, we can get generators and coset representatives

for all the 𝐻𝑖. To produce 𝜑*, we do the following. Find-First-Isomorphism

𝜑* = 𝜑 For 𝑖 = 1, ..., 𝑡 Let 𝑃𝑖 = {𝜑*𝑢|𝑢 ∈ 𝑈𝑖}. Set 𝜑* = arg min𝜑∈𝑃𝑖
(𝜑(𝛼𝑖)). To see

that this produces a unique isomorphism that does not depend on 𝜑, observe that

𝜑*(𝛼1) is the minimum possible value of 𝜑(𝛼1) over all isomorphisms of 𝐺1 to 𝐺2 as

𝑈1 is a set of coset representatives for the stabilizer of 𝛼1 over 𝐻. Also, if 𝜑*(𝛼𝑖) is

fixed for 𝑖 ∈ {1, ..., 𝑘}, then 𝜑*(𝛼𝑘+1) is the minimum possible value of 𝜑(𝛼𝑘+1) over

all isomorphisms which take 𝛼1 to 𝜑*(𝛼1), 𝛼2 to 𝜑*(𝛼2),..., and 𝛼𝑘 to 𝜑*(𝛼𝑘), as 𝑈𝑖+1
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stabilizes 𝛼1, ..., 𝛼𝑘, so everything in 𝑃𝑖+1 takes 𝛼1 to 𝜑*(𝛼1), 𝛼2 to 𝜑*(𝛼2),..., and 𝛼𝑘

to 𝜑*(𝛼𝑘). This implies that 𝜑* does not depend on 𝜑 and is unique.

Given this result, this means that it suffices to show a protocol that lets the verifier

obtain a set of generators for the automorphism group of 𝐺1 and an isomorphism that

are correct with high probability, as by the above lemma this can be used to obtain

a unique isomorphism between 𝐺1 and 𝐺2 independent of the isomorphism or the

generators.

Theorem 3.7.5. There exists an interactive protocol for graph isomorphism such that

with high probability, the isomorphism that is output by the verifier is unique, where

in the case of a cheating prover the verifier fails instead of outputting a non-unique

isomorphism. In other words, finding an isomorphism between graphs can be done in

psdAM.

Proof. From Lemma 3.7.4, it suffices to show an interactive protocol that computes

the automorphism group of a graph in a verifiable fashion. [62] reduces the problem

of computing the generators of the automorphism group to the problem of finding iso-

morphisms. Using this reduction, we can make a constant-round interactive protocol

to determine the automorphism group by finding the isomorphisms in parallel. The

reason we can do this in parallel is that [62] implies that there are 𝑂(𝑛4) different pairs

of graphs to check and for each pair of graphs we either run the graph isomorphism

protocol or the graph non-isomorphism protocol. In the case of the graph isomor-

phism protocol, the verifier need only accept with an isomorphism in hand; for graph

non-isomorphism, the messages sent to the prover are indistinguishable between the

two graphs when they are isomorphic, so since the graphs and permutations are cho-

sen independently, there is no way for the prover to correlate their answers to gain a

higher acceptance probability for isomorphic graphs. Thus this means that the veri-

fier can determine the automorphism group of a graph and verify that it is indeed the

entire automorphism group. Using Lemma 3.7.4 we then see that the prover just has

to give the verifier an isomorphism, and verifier can compute a unique isomorphism

using the automorphism group.
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Chapter 4

Doubly-Efficient

Pseudo-Deterministic Proofs

4.1 Doubly-efficient pseudo-deterministic proofs

We want to extend the concept of pseudo-deterministic proofs to the setting where the

prover also runs in polynomial time, and we want to extend the concept of doubly-

efficient interactive proofs to the setting where the verifier outputs a unique solu-

tion. Both of these tasks are accomplished by introducing doubly-efficient pseudo-

deterministic proofs : proofs where both the verifier and prover run in polynomial

time, the verifier running in time asymptotically faster, and where the verifier will

output a unique solution given an input.

Definition 4.1.1. A (𝑡1(𝑛), 𝑡2(𝑛)) pseudo-deterministic proof is a pseudo-deterministic

proof where the verifier 𝑉 runs in (probabilistic) time 𝑡1(𝑛) and the prover 𝑃 runs in

(probabilistic) time 𝑡2(𝑛).

Ideally, we want the prover to run in time almost equal to the deterministic run-

ning time of the problem, as this means the total work is not much more than the work

of solving this problem deterministically. However, we say that pseudo-deterministic

proof is non-trivial as long as the verifier runs faster than the deterministic run-

ning time of the problem. To demonstrate the concept, we will consider the pseudo-
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deterministic proof for graph isomorphism. The prover from [40] only needs the power

to compute 𝑛2 instances of graph isomorphism. We know from [4] that graph isomor-

phism is in quasi-polynomial time. Thus, the result of [40] about graph isomorphism

can be restated as:

Corollary 4.1.2. Graph Isomorphism has a (𝑝𝑜𝑙𝑦(𝑛), 𝑞𝑢𝑎𝑠𝑖𝑝𝑜𝑙𝑦(𝑛)) pseudo-deterministic

proof.

A large class of pseudo-deterministic algorithms have the following format: for a

search problem 𝑅, the pseudo-deterministic algorithm, given 𝑥, finds the lexicograph-

ically first 𝑦 such that 𝑅(𝑥, 𝑦). To do this, it asks whether there exists 𝑦′ such that

(𝑥, 0𝑦′) ∈ 𝑅, 𝑦′ such that (𝑥, 1𝑦′) ∈ 𝑅, etc. and finds the first 𝑦 such that 𝑅(𝑥, 𝑦)

recursively. For instance, [32] gives a pseudo-deterministic algorithm for testing if a

polynomial is non-zero by finding the lexicographically first non-zero solution. Given

𝑝(𝑥1, ..., 𝑥𝑛), the algorithm tests if 𝑝(0, ..., 𝑥𝑛) is zero everywhere. If it is not zero ev-

erywhere, then the algorithm checks if 𝑝(0, 0, ..., 𝑥𝑛) is zero everywhere, and otherwise

the algorithm checks if 𝑝(1, ..., 𝑥𝑛) is zero everywhere. This continues recursively until

the algorithm finds the first element that is non-zero or rejects. Also, [40] provides

a pseudo-deterministic proof for graph isomorphism where the verifier outputs the

lexicographically first isomorphism by going recursively. The algorithm starts by fig-

uring out where the first vertex is mapped in the lexicographically first isomorphism

by looping through the vertices, then where the second vertex is mapped, and so on

until the lexicographically first isomorphism has been found.

We will use a structure similar to this to define doubly-efficient pseudo-deterministic

proofs for a large class of problems studied within the fine grained complexity litera-

ture.

Lemma 4.1.3. Suppose we have a search problem 𝑅(𝑥, 𝑦) such that |𝑦| = 𝑝𝑜𝑙𝑦(𝑥),

finding the lexicographically first 𝑦 given 𝑥 such that 𝑅(𝑥, 𝑦) takes time 𝑡1(𝑛), com-

puting 𝑅(𝑥, 𝑦) takes time 𝑡2(𝑛), and 𝑦 can be written as 𝑦1...𝑦𝑘 such that the following

holds:

• Given 𝑥, 𝑦1, ..., 𝑦𝑖, the problem ∃𝑧𝑖 < 𝑦𝑖∃𝑦𝑖+1, ..., 𝑦𝑘𝑅(𝑥, 𝑦1, ..., 𝑦𝑖−1, 𝑧𝑖, 𝑦𝑖+1...𝑦𝑘)
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can be solved in co-nondeterministic time 𝑡3(𝑛) where the prover runs in time

𝑡4(𝑛).

Then there exists a (𝑡2(𝑛) +𝑘 * 𝑡3(𝑛), 𝑡1(𝑛) +𝑘 * 𝑡4(𝑛)) pseudo-deterministic proof that

outputs the lexicographically first 𝑦 such that 𝑅(𝑥, 𝑦).

Proof. Our algorithm proceeds in two stages: in the first stage, the prover gives

𝑦, taking time 𝑡1(𝑛) to find the lexicographically first 𝑦 such that 𝑅(𝑥, 𝑦), and the

verifier checks whether 𝑅(𝑥, 𝑦) and outputs ⊥ otherwise; this takes time 𝑡2(𝑛). In

the next stage we prove that 𝑦 is the lexicographically first such 𝑦; that is, for all

𝑧 <𝑙𝑒𝑥 𝑦, ¬𝑅(𝑥, 𝑧). To do so, we only need to check that there is no 𝑖 such that

∃𝑧𝑖 < 𝑦𝑖∃𝑧𝑖+1, ..., 𝑧𝑘 such that 𝑅(𝑦1, 𝑦2, ..., 𝑦𝑖−1, 𝑧𝑖, 𝑧𝑖+1, ..., 𝑧𝑘) for 1 ≤ 𝑖 ≤ 𝑘. Since we

have to do this 𝑘 times, the total time of this stage is 𝑘 * (𝑡2(𝑛)) for the verifier and

𝑘 * 𝑡4(𝑛) for the prover. Our algorithm clearly outputs the lexicographically first 𝑦

such that 𝑅(𝑥, 𝑦), and a cheating prover cannot make the verifier output a different

𝑦.

Now that we have shown a general framework for constructing pseudo-deterministic

proofs, we will proceed to show a number of problems for which there exist pseudo-

deterministic proofs where the verifier runs in time faster than the best known de-

terministic algorithms. In addition, there is evidence suggesting that the best known

deterministic algorithms are nearly optimal; in particular, there is evidence against

being able to turn these pseudo-deterministic proofs into deterministic algorithms

where the running time of the deterministic algorithm is the same as the running

time of the verifier for the pseudo-deterministic proof.

4.2 Linear programming

In [40], we use the fact that graph non-isomorphism has an AM proof to give a pseudo-

deterministic AM proof for graph isomorphism. Here we show a pseudo-deterministic

proof for linear programming. Linear programming is the class of optimization prob-

lems with linear constraints and a linear objective function. We exploit the fact that
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linear programming admits a good characterization, a compact way of certifying the

optimality of a solution. Indeed every linear program (say, where the objective is to

maximize) has a corresponding dual linear program, a minimization problem, with

the property that (i) (weak duality) any feasible solution to the dual provides an

upper bound on the optimal primal value and (ii) (strong duality) there exists an

optimal solution to the dual with the same value as the primal optimal solution.

Furthermore, there exist compact polynomial-sized solutions to the primal and dual

linear programs. Therefore such a polynomial-sized feasible solution to the dual with

an equal value as a primal solution provides a compact certificate for the optimality

of this primal solution.

In order to be able to turn this into a pseudo-deterministic proof, we need the

prover to identify a special, unique optimal solution (as there could be a continuum

of primal optimal solutions), and provide a way for the verifier to efficiently verify

it. As special solution, we use the lexicographically greatest optimal solution to the

primal. Among all optimal solutions, the lexicographically greatest first maximizes

𝑥1, then 𝑥2, and so on; see below for a precise definition. To verify it, one option

would be to provide dual optimal solutions to a squence of dual linear programs

corresponding to the definition of lexicographically greatest maximal solution. A

better (more efficient) way, which we describe in this section, is to show that we can

perturb the objective function of the primal linear program in such a way that there

is a unique optimal solution and that this solution is the unique lexicographically

greatest optimal solution for the unperturbed linear program.

We start with basic notation and linear programming fundamentals.

Definition 4.2.1. A linear program is the problem max{c⊤x} subject to the con-

straints 𝐴x ≤ b and x ≥ 0. Its dual is the linear program min{b⊤y} subject to the

constraints 𝐴⊤y ≥ c and y ≥ 0.

Theorem 4.2.2. (Weak duality) If x,y are feasible solutions to a linear program

given by max{c⊤x} subject to 𝐴x ≤ b and x ≥ 0 and its dual respectively, then

c⊤x ≤ b⊤y. (Strong duality) Furthermore x,y are optimal solutions if and only if
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c⊤x = b⊤y.

Furthermore, there exist optimal solutions of polynomial size, since any extreme

point (which cannot be expressed as a strict convex combination of feasible points)

has this property.

Theorem 4.2.3 ([33]). Let 𝑃 be the linear program given by max c⊤x subject to

𝐴x ≤ b, where all inputs are integers and 𝐴 is an 𝑚 × 𝑛 matrix. Define 𝐿 =

𝑚+ 𝑛+ log(max𝐴′ |𝑑𝑒𝑡(𝐴′)|) + log(max𝑖 |𝑏𝑖|) + log(max𝑗 |𝑐𝑗|), where 𝐴′ range over all

square submatrices of 𝐴. Then any extreme point x of 𝑃 is of the form 𝑥𝑖 = 𝑝𝑖
𝑞

where

𝑞 and 𝑝𝑖’s are integers satisfying 1 ≤ 𝑞 < 2𝐿 and 0 ≤ 𝑝𝑖 < 2𝐿 for all 𝑖.

This quantity 𝐿 is often used when referring to efficiency of linear programming al-

gorithms, and can be seen (see [33]) to be polynomially related to the binary encoding

of all the input data.

Definition 4.2.4. The lexicographically greatest optimal solution x* to a linear pro-

gram max{c⊤x} subject to 𝐴x ≤ b and x ≥ 0 is the solution that satisfies (i)

feasibility: 𝐴x* ≤ b and x* ≥ 0, (ii) optimality: c⊤x* = max𝐴x≤b,x≥0{c⊤x}, and

(iii) for every x ∈ arg max𝐴x≤b,x≥0{c⊤x}, either x = x* or there exists 𝑖 ≤ 𝑛 with

𝑥𝑖 < 𝑥*𝑖 and 𝑥𝑗 = 𝑥*𝑗 for 𝑗 < 𝑖.

Now that we have defined the necessary terminology, we can proceed to proving

that linear programming has a pseudo-deterministic interactive proof. To do so,

we perturb our linear program so that the only optimal solution to the new linear

program is the lexicographically greatest solution to the original program, and then

use the dual linear program to prove that the solution given to the verifier is optimal.

Theorem 4.2.5. Let 𝑃 be the linear program given by max c⊤x subject to 𝐴x ≤ b,

with 𝐿 defined as above. Then, the linear program 𝑃 ′ given by max c⊤x+ 𝜖𝑥1 + 𝜖2𝑥2 +

... + 𝜖𝑛𝑥𝑛, where 𝜖 = 2−3𝐿−2, has a unique solution which is the lexicographically

greatest solution of 𝑃 .

Proof. First consider the unperturbed linear program 𝑃 , and two extreme point so-

lutions x(1) and x(2), with corresponding denominators 𝑞1 and 𝑞2 respectively (see

Theorem 4.2.3).

63



If c⊤x(1) > c⊤x(2) then c⊤x(1) − c⊤x(2) ≥ 1
𝑞1𝑞2

> 2−2𝐿. Let c′ be the perturbed c

(by adding the vector (𝜖, 𝜖2, · · · , 𝜖𝑛)). Then

c′
⊤
x(1)−c′⊤x(2) > 2−2𝐿+

𝑛∑︁
𝑖=1

𝜖𝑖(𝑥
(1)
𝑖 −𝑥

(2)
𝑖 ) > 2−2𝐿−2𝐿

𝑛∑︁
𝑖=1

𝜖𝑖 > 2−2𝐿−2𝐿𝜖/(1−𝜖) > 0,

given our choice of 𝜖. This shows that, after perturbation, we still have that x(1) has

a greater objective value than x(2).

Suppose, on the other hand, that c⊤x(1) = c⊤x(2) and that x(1) is lexicographically

greater than x(2), i.e. that 𝑥1𝑖 > 𝑥2𝑖 while 𝑥1𝑗 = 𝑥2𝑗 for 𝑗 < 𝑖. Then

c′
⊤
x(1)−c′⊤x(2) =

𝑛∑︁
𝑘=𝑖

𝜖𝑘(𝑥1𝑘−𝑥2𝑘) ≥ 𝜖𝑖

(︃
1

𝑞1𝑞2
−

𝑛−𝑖∑︁
ℓ=1

𝜖ℓ2𝐿

)︃
> 𝜖𝑖

(︂
2−2𝐿 − 𝜖

1− 𝜖
2𝐿

)︂
> 0,

showing that, after perturbation, the lexicographically greater solution x(1) has greater

(perturbed) objective function value. Together, this shows that the unique optimal

solution to the perturbed problem is the lexicographically greatest solution to 𝑃 .

Observe that the parameter 𝐿′ of the perturbed linear program increases polyno-

mially to 𝑂(𝑛𝐿), but the precision needed to solve the linear program approximately

in order to be able to recover the unique extreme point solution is still 2−𝑂(𝐿) , as this

represents a lower bound on the difference in value between any two extreme point

solutions.

Theorem 4.2.6. There exists a (𝑂(𝑑2 log(1/𝛿)), 𝑂̃(𝑑𝜔 log(1/𝛿))) pseudo-deterministic

interactive proof for finding an optimal solution to a linear program 𝑃 .

Linear programs with at most 𝑑 variables and constraints can be solved within an

error of 𝛿 in time 𝑂̃(𝑑2.5 log(1/𝛿)) deterministically [81], and in time 𝑂̃(𝑑𝜔 log(1/𝛿))

randomized [24] with 𝜔 (currently ∼ 2.37) corresponds to the exponent for fast matrix

multiplication. The notation 𝑂̃ hides polylog factors. The time to verify a pair

of primal and dual optimal solution is only 𝑂(𝑑2) (with a log(1/𝛿) factor for bit

complexity) as this only requires matrix vector multiplication. So, verification is

currently more efficient than finding the solution.
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Proof. By Theorem 4.2.5, we can perturb the objective function of 𝑃 and obtain a

linear program 𝑃 ′ which has a unique solution, namely the lexicographically greatest

solution of 𝑃 . Let 𝑄′ be the dual linear program to 𝑃 ′. The prover sends over

optimal solutions to 𝑃 ′ and 𝑄′. Then, the verifier checks to see whether the solutions

are feasible and also whether the value of the solution to 𝑃 ′ is equal to the value of the

solution to 𝑄′. If both of these conditions hold, the verifier outputs the solution to 𝑃 ′,

otherwise it outputs ⊥. If the prover is honest, then clearly the verifier will output

the solution to 𝑃 ′. A cheating prover cannot make the verifier output a different

solution to 𝑃 , as this would not correspond to an optimal solution of 𝑃 ′ since it is

unique.

4.3 Problems studied in fine-grained complexity

4.3.1 3-SUM and problems reducible to 3-SUM

3-SUM is the problem to find 3 numbers that sum to 0, where the numbers are drawn

from 3 lists. The 3-SUM problem has an easy 𝑂(𝑛2) time algorithm and this can be

improved by polylogarithmic factors [21]. It is an outstanding open question whether

there is an algorithm that is much faster than 𝑂(𝑛2), and finding such an algorithm

would give faster algorithms for a host of other problems in computational geometry

[31, 27]. We will show a pseudo-deterministic proof where the verifier runs in time

𝑂̃(𝑛1.5).

Definition 4.3.1. We say the 3-SUM problem is the problem of, given 3 lists 𝑎1, ..., 𝑎𝑛,

𝑏1, ..., 𝑏𝑛, 𝑐1, ..., 𝑐𝑛, of 𝑂(log 𝑛) bit integers, finding a triple 𝑎𝑖, 𝑏𝑗, 𝑐𝑘 such that 𝑎𝑖 + 𝑏𝑗 +

𝑐𝑘 = 0.

In addition, [20] gives a nondeterministic proof that there is no triple of elements

that sum to 0 where the verifier takes time 𝑂̃(𝑛1.5).

Theorem 4.3.2 ([20]). 3-SUM ∈ coNTIME(𝑂̃(𝑛1.5)).

Theorem 4.3.3. There exists a non-deterministic proof for 3-SUM where the verifier

runs in time 𝑂̃(𝑛1.5) and the prover runs in randomized time 𝑂̃(𝑛2).
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Proof. It takes a bit of work to show that the prover for this algorithm can run in

randomized time 𝑂(𝑛2). What the algorithm does is sends a prime 𝑝 such that fewer

than 𝑂̃(𝑛1.5) triples sum to 0 mod 𝑝, and all of the triples that add to 0 mod 𝑝. Since

there are 𝑛3 triples and each sum must be a product of at most log(𝑛) primes, we

get that there are 𝑂̃(𝑛3) pairs (𝑎𝑖, 𝑏𝑗, 𝑐𝑘, 𝑝) such that 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 = 0 (mod 𝑝). Thus,

in the first 𝑛1.5 primes, over half the primes 𝑝 will have 𝑂̃(𝑛1.5) triples that sum to

0 mod 𝑝 by Markov’s inequality. Thus if we sample a random prime in the first 𝑛1.5

primes, we will get a good prime with high probability. Finding the sums equal to 0

mod 𝑝 still takes time 𝑂̃(𝑛2) deterministically.

With this, we can construct a pseudo-deterministic proof for 3-SUM where the

prover runs in time almost equal to the best known deterministic algorithm for 3-

SUM.

Theorem 4.3.4. 3-SUM has a (𝑂̃(𝑛1.5), 𝑂̃(𝑛2)) pseudo-deterministic proof.

Proof. We split the answer 𝑦 into 𝑦1 = 𝑖, 𝑦2 = 𝑗, and 𝑦3 = 𝑘. We have a 𝑂̃(𝑛1.5)

algorithm for proving that a list has no 3 integers which sum to 0. To check whether

there is a 3-SUM with 𝑧𝑖 < 𝑦𝑖, we can simply replace the first 𝑖−1 lists with 𝑦1, ..., 𝑦𝑖−1

respectively and take out all of the elements of the 𝑖th list after and including 𝑦𝑖, and

then use a nondeterministic proof to show that there is no 3-SUM in these lists. It

takes time 𝑂̃(𝑛2) to find a 3-SUM and the prover takes randomized time 𝑂̃(𝑛2) in

the nondeterministic proof that there is no 3-SUM. Thus Lemma 4.1.3 implies that

there is a pseudo-deterministic proof where the verifier runs in time 𝑂̃(𝑛1.5) and the

prover runs in randomized time 𝑂̃(𝑛2).

Corollary 4.3.5. Determining whether there are three collinear points in a set of

points on the plane has a (𝑂̃(𝑛1.5), 𝑂̃(𝑛2)) pseudo-deterministic proof.

4.3.2 Hitting Set

The Hitting Set problem is, given two collections of sets, find a set in the first collection

that intersects every set in the second collection. The Hitting Set problem is also
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conjectured to take 𝑚2−𝑜(1) time [82]. Here we give a pseudo-deterministic proof in

which the verifier runs in linear time.

Definition 4.3.6. The Hitting Set problem is, given two collections 𝒮, 𝒯 of sets, find

a set 𝑆 such that 𝑆 ∩ 𝑇 ̸= ∅∀𝑇 ∈ 𝒯 .

Theorem 4.3.7 ([20]). There is a nondeterministic proof where the verifier runs in

time 𝑂(𝑚),𝑚 =
∑︀

𝑆∈𝒮 |𝑆| +
∑︀

𝑇∈𝒯 |𝑇 |, and the prover runs in time 𝑂(𝑚2) for the

Hitting Set problem and the complement of the Hitting Set problem.

Theorem 4.3.8. Hitting Set has a (𝑂(𝑚), 𝑂(𝑚2)) pseudo-deterministic proof.

Proof. We can reduce the problem of showing there is no set 𝑆 ′ that is a hitting set

before 𝑆 to Hitting Set by removing all of the sets after 𝑆 including 𝑆 and proving

that there does not exist a hitting set for 𝑇 . Then, by Lemma 4.1.3, this implies

there exists a pseudo-deterministic proof for Hitting Set where the verifier runs in

time 𝑂(𝑚) and the prover runs in time 𝑂(𝑚2).

4.3.3 Model checking of graph properties

A large number of different graph problems can be expressed as model checking of

first-order properties as observed by [20]. For instance both the 𝑘-Dominating Set

problem [68] and asking whether a graph has diameter 2 [14] can be written as model

checking problems. [86] shows that given a first-order property of a graph with 𝑘

quantifiers over vertices, checking whether the graph has this property can be done

in time 𝑂̃(𝑛𝑘−3+𝜔). We extend the work of [20] on sparse graphs to provide pseudo-

deterministic proofs.

Definition 4.3.9. We say a graph property is a formula𝑄1𝑥1 ∈ 𝑋1𝑄2𝑥2 ∈ 𝑋2...𝑄𝑘𝑥𝑘 ∈

𝑋𝑘𝜓, where 𝜓 is a quantifier-free formula on edge predicates and the model checking

problem for a graph property is to determine whether the property holds for a given

graph.
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Theorem 4.3.10 ([20]). If a formula with 𝑘 does not have the form ∃𝑘−1∀, then

the model checking problem for the formula can be solved in co-nondeterministic time

𝑚𝑘−2 where 𝑚 is the number of edges in the graph.

Theorem 4.3.11 ([20]). The deterministic complexity of model checking a 𝑘-quantifier

formula is 𝑂(𝑚𝑘−1).

Theorem 4.3.12. If a formula does not have the form ∃𝑘−1∀, there exists a (𝑂(𝑚𝑘−2), 𝑂(𝑚𝑘−1))

pseudo-deterministic proof for finding a setting to the first set of existential quantifiers

of that formula.

Proof. If the first 𝑖 quantifiers are ∃, then we can find 𝑥1, ..., 𝑥𝑖 such that𝑄𝑖+1𝑥𝑖+1...𝑄𝑘𝑥𝑘𝜓(𝑥1, ..., 𝑥𝑖)

nondeterministically in time 𝑂(𝑚𝑘−𝑖) for any 1 ≤ 𝑗 ≤ 𝑖, and we can check for any

1 ≤ 𝑗 ≤ 𝑖 that ∃𝑥′𝑗 < 𝑥𝑗𝑄𝑗+1𝑥𝑗+1...𝑄𝑘𝑥𝑘𝜓(𝑥1, ..., 𝑥𝑗−1) in co-nondeterministic time

𝑂(𝑚𝑘−2) by setting 𝑋 ′𝑗 = 𝑋𝑗 ∩ {𝑥|𝑥 < 𝑥𝑗}. For both of these checks, the prover has

to solve a model checking problem with at most 𝑘 quantifiers, which has complex-

ity 𝑂(𝑚𝑘−1). This shows that there is a 𝑂(𝑚𝑘−2) pseudo-deterministic proof where

the prover runs in time 𝑂(𝑚𝑘−1) for finding a setting to the first set of existential

quantifiers of a formula, if the formula does not have the form ∃𝑘−1∀.

4.3.4 Problems equivalent to All-Pairs Shortest Path

The All-Pairs Shortest Path problem has been the focus of much research in fine-

grained complexity. It has been shown by [88, 87] that many problems related to

graphs reduce to the All-Pairs Shortest Path problem and vice versa, so finding a

faster algorithm for any one of these problems would yield a fast algorithm for a

host of graph problems. [20] shows that the Zero Weight Triangle problem, which is

equivalent to the All-Pairs Shortest Path problem under subcubic reductions [87], has

a 𝑂(𝑛3−𝜖) co-nondeterministic algorithm, which is faster than all known deterministic

algorithms. We use this to construct a pseudo-deterministic proof for the Zero Weight

Triangle problem.

Definition 4.3.13. The Zero Weight Triangle problem is given a graph 𝐺 = (𝑉,𝐸)

and edge weights 𝑒(𝑖, 𝑗), find 𝑖, 𝑗, 𝑘 ∈ 𝑉 such that 𝑒(𝑖, 𝑗) + 𝑒(𝑖, 𝑘) + 𝑒(𝑗, 𝑘) = 0.
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Theorem 4.3.14 ([20]). The Zero Weight Triangle problem has a nondeterministic

proof and a co-nondeterministic proof where the verifier runs in time 𝑂(𝑛2+𝜔/3), where

𝜔 is the largest number such that matrix multiplication is in time 𝑂(𝑛𝜔).

Theorem 4.3.15. The Zero Weight Triangle problem has an (𝑂̃(𝑛2+𝜔/3), 𝑂̃(𝑛3))

pseudo-deterministic proof.

Proof. There is an easy reduction from Zero Weight Triangle to Zero Weight Triangle

on tripartite graphs. Then, we remove all edges in the first column going from 𝑖′ ≥ 𝑖

to 𝑗, and thus the resulting graph has a triangle with zero weight iff there exists a

triangle in the original graph with zero weight and 𝑖′ < 𝑖, where 𝑖 is the smallest

vertex in the claimed lexicographically first zero weight triangle. A similar argument

as the argument showing the prover for 3-SUM runs in randomized time 𝑂̃(𝑛2) shows

that the prover for the pseudo-deterministic proof of Zero Weight Triangle runs in

randomized time 𝑂̃(𝑛3). By Lemma 4.1.3, this implies that Zero Weight Triangle has

a pseudo-deterministic proof where the verifier runs in time 𝑂̃(𝑛2+𝜔/3) and the prover

runs in 𝑂̃(𝑛3).

4.4 Conclusions and Open Problems

We defined the notion of doubly-efficient pseudo-deterministic proofs and gave a num-

ber of examples of search problems for which we showed doubly-efficient pseudo-

deterministic proofs. In all of these cases, the verifier runs faster than the best known

probabilistic algorithm for the problem which can offer significant improvements for

settings in which a more powerful computer (cloud, special purpose device, central-

ized authority) can perform the computation first and prove it to a significantly less

powerful user. In all these cases the prover’s computation increases polynomially

from what is necessary to solve the problem without need for a canonical solution.

An interesting problem would be show that this is true in general. Namely, that for

any doubly-efficient pseudo-eterministic proof the computation of the prover need be

no more than whats necessary to find the canonical solution. Finally, we remark that
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in all the cases we treated, the canonical solution was the lexicographically smallest

(or largest as in the LP case) but other canonical solutions are possible.
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Chapter 5

Non-Signaling Proofs

5.1 Non-Signaling Games with 𝑘 Players and 2−Ω(𝑘2)

Soundness are in SPACE
(︁
poly(𝑛, 2𝑘2)

)︁
In what follows we state our main theorem.

Theorem 5.1.1. Fix any language 𝐿 /∈ SPACE(poly(𝑛, 2𝑘)) and any 𝑘-prover one-

round proof system (𝑃1, . . . , 𝑃𝑘, 𝑉 ) for 𝐿 with completeness 𝑐 ≥ 1− 2−5𝑘
2. For every

𝑥 consider the game 𝒢𝑥 = (𝒬,𝒜, 𝑉, 𝜋𝑥), where 𝒬 = 𝒬1× . . .×𝒬𝑘 and where 𝒬𝑖 is the

set of possible queries sent by 𝑉 to prover 𝑃𝑖, 𝒜 = 𝒜1×, . . . ,𝒜𝑘 and where 𝒜𝑖 is the

set of possible answers sent by 𝑃𝑖, and 𝜋𝑥 is the distribution of queries sent by 𝑉 (𝑥).

Then, there exists a constant 𝑎 > 0 and an infinite set 𝑁 ⊆ N, such that for every

𝑛 ∈ 𝑁 there exists 𝑥 ∈ {0, 1}𝑛 ∖ 𝐿 such that 𝒱NS(𝒢𝑥) ≥ 2−𝑎·𝑘
2.

We present two different proofs for Theorem 5.1.1. Both make use of the following

theorem which is the main technical contribution of this work.

Theorem 5.1.2. There exists a constant 𝑐 ∈ N, such that for any 𝑘 ∈ N and any

𝑘-player game 𝒢, if 𝒱subNS(𝒢) ≥ 1− 2−4𝑘
2 then 𝒱NS(𝒢) ≥ 2−𝑐·𝑘

2.

We defer the proof of Theorem 5.1.2 to Section 5.2, and refer the reader to Sec-

tion ?? for the high-level overview of the proof. In what follows we present our proofs

for Theorem 5.1.1, both using Theorem 5.1.2 as a building block.
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In the first proof, presented in Section 5.1.1, we rely on a prover reduction theorem

which shows that one can convert any 𝑘-player game with non-signaling value at most

2−𝑂(𝑘2) into a 2-player game with non-signaling value at most 1−2−Ω(𝑘2). In the second

proof, presented in Section 5.1.2, we rely on the fact that one can approximate the

sub-non-signaling of a 𝑘-player game up to an additive factor 𝜖, using an algorithm

running in space poly(cc, 2𝑘, 1/𝜖), where cc is the communication complexity of the

game.

5.1.1 From Multi-Prover Non-Signaling Proofs to 2-Prover

Non-Signaling Proofs

In the classical setting there is a well known reduction that converts any 𝑘-player

game into a 2-player. Below we present a slight variant of it, that will be useful in

the non-signaling setting.

Let 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) be a 𝑘-player game. Consider the following 2-player game,

denoted by 𝒯 (𝒢) = (𝒬*,𝒜*, 𝑉 *, 𝜋*):

• 𝒬* = (𝒬*1,𝒬*2), where 𝒬*1 = 𝒬 and 𝒬*2 = {𝑆, 𝑞𝑆}𝑆⊆[𝑘],𝑞𝑆∈𝒬𝑆
.

• 𝒜* = (𝒜*1,𝒜*2), where 𝒜*1 = 𝒜 and 𝒜*2 =
⋃︀

𝑆⊆[𝑘]𝒜𝑆.

• 𝜋* generates 𝑞 ← 𝜋 and generates a random subset 𝑆 ⊆ [𝑘]. It outputs

(𝑞, (𝑆, 𝑞𝑆)).

• 𝑉 *((𝑞, (𝑆, 𝑞𝑆)), (𝑎, 𝑎′𝑆)) accepts if and only if 𝑉 (𝑞, 𝑎) accepts and 𝑎𝑖 = 𝑎′𝑖 for

every 𝑖 ∈ 𝑆.

Theorem 5.1.3. Let 𝒢 be a 𝑘-player game with non-signaling value less than 2−𝑐𝑘
2

(where 𝑐 ∈ N is the constant from Theorem 5.1.2). Then the 2-player game 𝒯 (𝒢) has

non-signaling value at most 1− 2−5𝑘
2.

Proof. Let 𝒢 be a 𝑘-player game with non-signaling value less than 2−𝑐𝑘
2 . Suppose

for the sake of contradiction that the non-signaling value of the 2-player game 𝒯 (𝒢)
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is 1 − 𝜖, for 𝜖 < 2−5𝑘
2 . Let {𝑝𝑞,(𝑆,𝑞𝑆)} be a non-signaling strategy that convinces the

verifier 𝑉 * in the game 𝒯 (𝒢) to accept with probability 1− 𝜖.

Consider the sub-non-signaling strategy {𝑝𝑞} for the 𝑘-player game 𝒢, where 𝑃𝑞

samples answers as follows:

1. For every 𝑆 ⊆ [𝑘], sample (𝑎, 𝑎′𝑆)← 𝑝𝑞,(𝑆,𝑞𝑆).

2. If there exists 𝑆 ⊆ [𝑘] such that the above answers are rejecting (i.e., 𝑉 *((𝑞, (𝑆, 𝑞𝑆)), (𝑎, 𝑎′𝑆)) =

0) then output ⊥.

3. Otherwise, choose a random 𝑆 ⊆ [𝑘] and output 𝑎 corresponding to this 𝑆.

Claim 5.1.4. {𝑝𝑞} is a sub-non-signaling strategy for the 𝑘-player game 𝒢.

Proof. By definition, the fact that {𝑝𝑞,(𝑆,𝑞𝑆)} is a non-signaling distribution for the 2-

player game 𝒯 (𝒢), implies that there is a family of distributions {Sim𝑞}∪{Sim𝑆,𝑞𝑆}∪

{Sim𝑞,(𝑆,𝑞𝑆)} such that for every 𝑞 ∈ 𝒬, for every 𝑆 ⊆ [𝑘] and every 𝑎𝑆 ∈ 𝒜𝑆,

Pr[𝑝𝑞,(𝑆,𝑞𝑆)|(𝑆,𝑞𝑆) = 𝑎𝑆] = Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆].

We prove that {𝑝𝑞} is sub-non-signaling with respect to {Sim𝑆,𝑞𝑆}. Namely, we prove

that for every 𝑞 ∈ 𝒬, every 𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ 𝒜𝑆,

Pr[𝑝𝑞|𝑆 = 𝑎𝑆] ≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆]. (5.1)

We note that Equation (5.1) would clearly hold if we chose 𝑎 corresponding to the

specific set 𝑆 in the equation. However, recall that 𝑝𝑞 chooses 𝑎 corresponding to a

random subset 𝑆 ′ ⊆ [𝑘].

Thus, we define for every (fixed) 𝑆 ⊆ [𝑘] a strategy {𝑝𝑆𝑞 } which is identical to {𝑝𝑞},

except that if it doesn’t abort then it always outputs 𝑎 corresponding to the fixed

subset 𝑆. Therefore, to conclude the proof that {𝑝𝑞} is sub-non-signaling it suffices

to prove that for every 𝑞 ∈ 𝒬, every 𝑎 ∈ 𝒜, and every subsets 𝑆, 𝑆 ′ ⊆ [𝑘], it holds

that

Pr[𝑝𝑆𝑞 = 𝑎] = 𝑃𝑟[𝑝𝑆
′

𝑞 = 𝑎],
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which follows directly from the the fact that {𝑝𝑞,(𝑆,𝑞𝑆)} is non-signaling (together with

the definition of {𝑝𝑆𝑞 }).

Note that the sub-non-signaling strategy {𝑝𝑞} is rejected with probability at most

2𝑘 · 𝜖 (by the union bound).

This in particular implies that the sub-non-signaling value of 𝒢 is at least

1− 2𝑘 · 𝜖 ≥ 1− 2𝑘 · 2−5𝑘2 ≥ 1− 2−4𝑘
2

,

which by Theorem 5.1.2 implies that the non-signaling value of 𝒢 is at least 2−𝑐𝑘
2 ,

contradicting our assumption.

5.1.2 Approximating the Sub-Non-Signaling Value of 𝑘-Player

Game via a Space Efficient Algorithm

Theorem 5.1.5. There exists an algorithm ℬ and a polynomial 𝑝 such that for any

𝑘-player game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋), and any 𝜖 > 0, it holds that ℬ(𝒢, 𝜖) runs in space

𝑝(log(|𝒬,𝒜|), 1/𝜖, 2𝑘) and outputs a value 𝑣 such that |𝑣 − 𝒱subNS(𝒢)| ≤ 𝜖.

Corollary 5.1.6. Fix any language 𝐿 and any 𝑘-prover one-round proof system

(𝑃1, . . . , 𝑃𝑘, 𝑉 ) for 𝐿. For every 𝑥 consider the game 𝒢𝑥 = (𝒬,𝒜, 𝑉, 𝜋𝑥), where

𝒬 = 𝒬1× . . .×𝒬𝑘 and where 𝒬𝑖 is the set of possible queries sent by 𝑉 to prover 𝑃𝑖,

𝒜 = 𝒜1×, . . . ,𝒜𝑘 where 𝒜𝑖 is the set of possible answers sent by 𝑃𝑖, and 𝜋𝑥 is the

distribution of queries sent by 𝑉 (𝑥).

Denote by 𝑐 the completeness of this proof system.1 If there exists a constant 𝑑 ∈ N,

such that for every large enough 𝑛 ∈ N, and every 𝑥 ∈ {0, 1}𝑛∖𝐿, 𝒱subNS(𝒢𝑥) ≤ 𝑐− 1
𝑛𝑑 ,

then 𝐿 ∈ SPACE
(︀
poly(𝑛, 2𝑘)

)︀
.2

1A proof system is said to have completeness 𝑐 if for every 𝑥 ∈ 𝐿 the honest provers convince the
verifier to accept 𝑥 ∈ 𝐿 with probability at least 𝑐. In particular, this implies that 𝒱subNS(𝒢𝑥) ≥ 𝑐
for every 𝑥 ∈ 𝐿.

2This is assuming the communication complexity is poly(𝑛). In the general case, where the
communication complexity is cc, we get that 𝐿 ∈ SPACE

(︀
poly(𝑛, cc, 2𝑘)

)︀
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Proof of Corollary 5.1.6. Fix any language 𝐿 and any 𝑘-prover one-round proof

system (𝑃1, . . . , 𝑃𝑘, 𝑉 ) for 𝐿 with completeness 𝑐. For every 𝑥 ∈ {0, 1}*, consider

the corresponding game 𝒢𝑥 as defined in the corollary statement. Suppose that there

exists a constant 𝑑 ∈ N, such that for every large enough 𝑛 ∈ N, and every 𝑥 ∈

{0, 1}𝑛 ∖ 𝐿, 𝒱subNS(𝒢𝑥) ≤ 𝑐− 1
𝑛𝑑 .

Fix 𝜖 = 1
10·𝑛𝑑 . From Theorem 5.1.5 we know that there exists an algorithm ℬ,

that given any 𝑘-prover game 𝒢 = (𝒬,𝒜, 𝑉, 𝜋), and any parameter 𝜖, approximates

the value of 𝒢 up to an additive 𝜖 error. Importantly ℬ is an algorithm with space

complexity poly(log(|(𝒬,𝒜)|), 1/𝜖, 2𝑘).

Given 𝑥 ∈ {0, 1}*, we determine if 𝑥 ∈ 𝐿 by running ℬ(𝒢𝑥, 1/𝜖), and if the value

is at least 𝑐− 𝜖 then we conclude that 𝑥 ∈ 𝐿, and otherwise conclude that 𝑥 /∈ 𝐿.

Note that 1/𝜖 is a polynomial in 𝑛 since 𝜖 = 1
10𝑛𝑑 . In addition, the size of 𝒬,𝒜 is

exponential in 𝑛, which implies that the space complexity of ℬ(𝒢𝑥, 1/𝜖) is poly(𝑛, 2𝑘),

as desired.3 Finally, we note that there may be a finite number of 𝑛’s for which we

do not have the guarantee that 𝒱subNS(𝒢𝑥) ≤ 𝑐− 1
𝑛𝑑 . For these 𝑛’s, we can hard-wire

the answers for whether 𝑥 ∈ 𝐿.

We next prove Theorem 5.1.5. We use the approach of [52] which proves that

the non-signaling value of a two-player, one-round game can be approximated in

PSPACE.

Proof of Theorem 5.1.5. Fix any game 𝒢 = (𝒜,𝒬, 𝑉, 𝜋). The sub-non-signaling

value of 𝒢 is given by the following linear program (where the variables are 𝑝𝑞(𝑎) and

3More generally, if (𝑃1, . . . , 𝑃𝑘, 𝑉 ) has communication complexity cc then |(𝒬,𝒜)| ≤ 2cc, in which
case the space complexity of ℬ(𝒢𝑥, 1/𝜖) is poly(𝑛, cc, 2𝑘), as desired.

75



Sim𝑆,𝑞𝑆(𝑎𝑆), for every 𝑞 ∈ 𝒬, 𝑎 ∈ 𝒜, and nonempty 𝑆 ⊆ [𝑘])

Maximize
∑︀

𝑞∈𝒬 𝜋(𝑞)
∑︀

𝑎∈𝒜 𝑝𝑞(𝑎)𝑉 (𝑞, 𝑎)

Subject to
∑︀

𝑎*∈𝒜:𝑎*𝑆=𝑎𝑆
𝑝𝑞(𝑎

*)) ≤ Sim𝑆,𝑞𝑆(𝑎𝑆) ∀𝑆 ⊆ [𝑘],∀𝑎𝑆 ∈ 𝒜𝑆,∀𝑞 ∈ 𝒬,

∑︀
𝑎𝑆∈𝒜𝑆

Sim𝑆,𝑞𝑆(𝑎𝑆) = 1 ∀𝑆 ⊆ [𝑘],∀𝑞𝑆 ∈ 𝒬𝑆

𝑝𝑞(𝑎) ≥ 0 ∀𝑎 ∈ 𝒜,∀𝑞 ∈ 𝒬
(5.2)

In what follows, we replace 𝑝𝑞(𝑎) with 𝑥𝑞(𝑎) = 𝜋(𝑞)𝑝𝑞(𝑎) to simplify the expression

of the objective value. This gives us the linear program

Maximize
∑︀

𝑞∈𝒬
∑︀

𝑎∈𝒜 𝑥𝑞(𝑎)𝑉 (𝑞, 𝑎)

Subject to
∑︀

𝑎*∈𝒜:𝑎*𝑆=𝑎𝑆
𝑥𝑞(𝑎

*) ≤ 𝜋(𝑞)Sim𝑆,𝑞𝑆(𝑎𝑆) ∀𝑆 ⊆ [𝑘],∀𝑎𝑆 ∈ 𝒜𝑆∀𝑞,∈ 𝒬

∑︀
𝑎𝑆

Sim𝑆,𝑞𝑆(𝑎𝑆) = 1 ∀𝑆 ⊆ [𝑘],∀𝑞𝑆 ∈ 𝒬𝑆

𝑥𝑞(𝑎) ≥ 0 ∀𝑎 ∈ 𝒜, ∀𝑞 ∈ 𝒬
(5.3)

Observe that the constraints in this linear program above imply that Sim𝑆,𝑞𝑆(𝑎𝑆) ≥ 0

for every 𝑆 ⊆ [𝑘], every 𝑞𝑆 ∈ 𝒬𝑆 and every 𝑎𝑆 ∈ 𝒜𝑆. Namely, these constraints

can be added without changing the value of the linear program. This implies (by

Definition 2.3.7), that the dual to this linear program can be written as
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Minimize
∑︀

𝑆⊆[𝑘]
∑︀

𝑞𝑆∈𝒬𝑆
𝑧𝑆(𝑞𝑆)

Subject to
∑︀

𝑆⊆[𝑘] 𝑦𝑆(𝑞, 𝑎𝑆) ≥ 𝑉 (𝑞, 𝑎) ∀𝑞 ∈ 𝒬, ∀𝑎 ∈ 𝒜

𝑧𝑆(𝑞𝑆) ≥
∑︀

𝑞*∈𝒬:𝑞*𝑆=𝑞𝑆
𝜋(𝑞*)𝑦𝑆(𝑞*, 𝑎𝑆) ∀𝑆 ⊆ [𝑘],∀𝑞𝑆 ∈ 𝒬𝑆,∀𝑎𝑆 ∈ 𝒜𝑆

𝑦𝑆(𝑞, 𝑎𝑆) ≥ 0 ∀𝑆 ⊆ [𝑘],∀𝑞 ∈ 𝒬, ∀𝑎𝑆 ∈ 𝒜𝑆

(5.4)

Observe that the constraints in this linear program imply that 𝑧𝑆(𝑞𝑆) ≥ 0 for every

𝑆 ⊆ [𝑘] and every 𝑞𝑆 ∈ 𝒬𝑆, and thus these constraints can be added without changing

the value.

Next, transform this linear program into a linear program with non-negative co-

efficients. To do so, observe that the optimal solution to the above linear program

satisfies that 𝑦𝑆(𝑞, 𝑎𝑆) ≤ 1 for every 𝑆 ⊆ [𝑘], every 𝑞 ∈ 𝒬 and every 𝑎𝑆 ∈ 𝒜𝑆. This

follows from the fact that 𝑉 (𝑎, 𝑞) ≤ 1 for every 𝑎 ∈ 𝒜 and every 𝑞 ∈ 𝒬. Therefore,

we can replace 𝑦𝑆(𝑞, 𝑎𝑆) by 𝑦𝑆(𝑞, 𝑎𝑆) = 1 − 𝑦𝑆(𝑞, 𝑎𝑆), without changing the value of
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the linear program. This gives us the linear program

Minimize
∑︀

𝑆⊆[𝑘]
∑︀

𝑞𝑆∈𝒬𝑆
𝑧𝑆(𝑞𝑆)

Subject to
∑︀

𝑆⊆[𝑘] 𝑦𝑆(𝑞, 𝑎𝑆) ≤ 2𝑘 − 1− 𝑉 (𝑞, 𝑎) ∀𝑞 ∈ 𝒬,∀𝑎 ∈ 𝒜

𝑧𝑆(𝑞𝑆) +
∑︀

𝑞*∈𝒬:𝑞*𝑆=𝑞𝑆
𝜋(𝑞*)𝑦𝑆(𝑞*, 𝑎𝑆) ≥

∑︀
𝑞*∈𝒬:𝑞*𝑆=𝑞𝑆

𝜋(𝑞*) ∀𝑆 ⊆ [𝑘],∀𝑞𝑆 ∈ 𝒬𝑆,∀𝑎𝑆 ∈ 𝒜𝑆

𝑦𝑆(𝑞, 𝑎𝑆) ≤ 1 ∀𝑆 ⊆ [𝑘],∀𝑞 ∈ 𝒬, ∀𝑎𝑆 ∈ 𝒜𝑆

𝑦𝑆(𝑞, 𝑎𝑆) ≥ 0 ∀𝑆 ⊆ [𝑘],∀𝑞 ∈ 𝒬, ∀𝑎𝑆 ∈ 𝒜𝑆

𝑧𝑆(𝑞𝑆) ≥ 0 ∀𝑆 ⊆ [𝑘],∀𝑞𝑆 ∈ 𝒬𝑆

(5.5)

Note that all of the coefficients of this linear program are non-negative.

Recall that our goal is to construct a poly(log(|(𝒬,𝒜)|), 1/𝜖, 2𝑘)-space algorithm

for computing 𝑣 such that

|𝑣 − 𝒱subNS(𝒢)| ≤ 𝜖.

To this end, we add to our linear program a constraint of the form

∑︁
𝑆⊆[𝑘]

∑︁
𝑞𝑆∈𝒬𝑆

𝑧𝑆(𝑞𝑆) ≤ 𝑣′

(for some value 𝑣′), and convert this (restricted) linear program into a mixed packing

and covering program, with the guarantee that for 𝛿 = (𝜖/2)
2𝑘

, a (1 + 𝛿)-approximate

solution to the mixed packing and covering program, implies a solution to the (re-

stricted) linear program, which is 𝜖/2-close an optimal solution. We can then use

binary search to find an 𝜖-approximation to the original linear program.

To turn this restricted linear program into a mixed packing and covering problem,

we use all of the constraints above and include the constraint
∑︀

𝑆⊆[𝑘]
∑︀

𝑞𝑆∈𝒬𝑆
𝑧𝑆(𝑞𝑆) ≤

𝑣′.

78



A (1 + 𝛿)-approximate solution to a mixed packing and covering problem is (by

definition) a solution to the problem where all of the inequalities of the form 𝑎𝑖𝑥𝑖 ≤ 𝑐

are relaxed to 𝑎𝑖𝑥𝑖 ≤ 𝑐(1 + 𝛿). In our case, it means that the above ≤ inequalities are

replaced with

𝑦𝑆(𝑞, 𝑎𝑆) ≤ 1 + 𝛿

and ∑︁
𝑆⊆[𝑘]

𝑦𝑆(𝑞, 𝑎𝑆) ≤ (2𝑘 − 1− 𝑉 (𝑞, 𝑎))(1 + 𝛿).

We next argue that a (1+𝛿)-approximate solution to our mixed packing and covering

problem implies a solution to our (restricted) linear program with value at most 𝑣′+𝜖.

To this end, suppose there these exists such a solution to the mixed packing and

covering problem, and denote it by

(︀
{𝑦𝑆(𝑞, 𝑎𝑆)}𝑆∈[𝑘],𝑞∈𝒬,𝑎𝑆∈𝒜𝑆

, {𝑧𝑆(𝑞𝑆)}𝑆∈[𝑘],𝑞𝑆∈𝒬𝑆

)︀
.

Consider the solution

(︀
{𝑦′𝑆(𝑞, 𝑎𝑆)}𝑆∈[𝑘],𝑞∈𝒬,𝑎𝑆∈𝒜𝑆

, {𝑧′𝑆(𝑞𝑆)}𝑆∈[𝑘],𝑞𝑆∈𝒬𝑆

)︀
.

where

𝑦′𝑆(𝑞, 𝑎𝑆) =
1

1 + 𝛿
𝑦𝑆(𝑞, 𝑎𝑆)

and

𝑧′𝑆(𝑞𝑆) = 𝑧𝑆(𝑞𝑆) + 𝛿
∑︁

𝑞*∈𝒬:𝑞*𝑆=𝑞𝑆

𝜋(𝑞*).

It is easy to see that this solution satisfies the constraints of the (restricted) linear

program, and thus is a solution to the linear program.
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The value of this solution is

∑︁
𝑆⊆[𝑘]

∑︁
𝑞𝑆∈𝒬𝑆

𝑧′𝑆(𝑞𝑆) =

∑︁
𝑆⊆[𝑘]

∑︁
𝑞𝑆∈𝒬𝑆

⎛⎝𝑧𝑆(𝑞𝑆) + 𝛿
∑︁

𝑞*∈𝒬*:𝑞*𝑆=𝑞𝑆

𝜋(𝑞*)

⎞⎠ =

∑︁
𝑆⊆[𝑘]

∑︁
𝑞𝑆∈𝒬𝑆

𝑧𝑆(𝑞𝑆) + 𝛿(2𝑘 − 1) ≤

𝑣′ + 2𝑘𝛿 < 𝑣′ + 𝜖/2

From Theorem 2.3.10 we can conclude that approximating the sub-non-signaling

value of a game with a constant number of provers takes space 𝑝(log(|(𝒬,𝒜)|), 1/𝜖, 2𝑘).

5.1.3 Proof of Theorem 5.1.1 via Corollary 5.1.6

In what follows we prove Theorem 5.1.1. In the proof we rely on Corollary 5.1.6

which implies that if 𝐿 /∈ SPACE(𝑛, 2𝑘) then there is an infinite set 𝑁 ⊆ N such that

for every 𝑛 ∈ 𝑁 there is an element 𝑥 ∈ {0, 1}𝑛 ∖ 𝐿 such that 𝒱subNS(𝒢𝑥) ≥ 𝑐 − 1
𝑛
.

Consider the infinite set 𝑁0 ⊆ 𝑁 such that for every 𝑛 ∈ 𝑁0 it holds that 𝑛 ≥ 25𝑘2 .

We conclude that for every 𝑛 ∈ 𝑁0 there exists 𝑥 /∈ {0, 1}𝑛 ∖ 𝐿 such that

𝒱subNS(𝒢𝑥) ≥ 𝑐− 1

𝑛
≥ 𝑐− 2−5𝑘

2 ≥ 1− 2−5𝑘
2 − 2−5𝑘

2 ≥ 1− 2−4𝑘
2

.

Therefore, to prove Theorem 5.1.1 it suffices to prove the following theorem.

The rest of this section is devoted to the proof of Theorem 5.1.2.

We refer the reader to Section ?? for a high-level overview of the proof of Theo-

rem 5.1.2.
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5.2 The Proof of Theorem 5.1.2

In this section we prove Theorem 5.1.2, which is our main technical theorem. In the

proof, we use the following theorem from [49].

Theorem 5.2.1. [49] For every 𝑘 ∈ N there exists a fixed value 𝛼𝑘 ≥ 2−𝑂(𝑘2) such

that for any 𝑘-player game 𝒢, 𝒱NS(𝒢) ≥ 𝛼𝑘 · 𝒱hrNS(𝒢).

Proof of Theorem 5.1.2. Let 𝒢 = (𝒬,𝒜, 𝑉, 𝜋) be a 𝑘-player game such that

𝒱subNS(𝒢) ≥ 1 − 𝜖, for 𝜖 = 2−4𝑘
2 . Let {𝑝𝑞}𝑞∈𝒬 be a sub-non-signaling strategy, such

that 𝒢 has sub-non-signaling value 1− 𝜖 with respect to {𝑝𝑞}𝑞∈𝒬. Let

GOOD = {𝑞| Pr
𝑎←𝑝𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1− 2𝜖]}.

Claim 5.2.2. Pr𝑞←𝜋[𝑞 ∈ GOOD] ≥ 1/2.

Proof. We know that

E𝑞←𝜋[ Pr
𝑎←𝑝𝑞

[𝑉 (𝑞, 𝑎) = 0]] ≤ 𝜖.

By Markov’s inequality this implies that

Pr
𝑞←𝜋

[ Pr
𝑎←𝑝𝑞

[𝑉 (𝑞, 𝑎) = 0] ≥ 2𝜖] ≤ 1/2

which in turn implies that Pr𝑞←𝜋[𝑞 ∈ GOOD] ≥ 1/2.

Consider the distribution 𝜋* = 𝜋|(𝑞 ∈ GOOD), and let 𝒢* = (𝒬,𝒜, 𝑉, 𝜋*). Note

that 𝒢* is a game with sub-non-signaling value at least 1 − 2𝜖, since {𝑝𝑞} is a sub-

non-signaling strategy for 𝒢* that succeeds with probability at least 1− 2𝜖.

We next define a sub-non-signaling strategy {𝑝𝑞} for the game 𝒢*, such that for

every 𝑞 ∈ GOOD, every 𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ 𝒜𝑆, it holds that

Pr[𝑝𝑞|𝑆 = 𝑎𝑆] ≤ E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]] (5.6)
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and for every 𝑞 ∈ GOOD,

Pr
𝑎←𝑝𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1− 2𝑘+2𝜖. (5.7)

To this end, we define 𝑝𝑞 in a greedy manner, so that Equation (5.6) holds, while

keeping the invariant that for every 𝑞 ∈ GOOD and 𝑎 ∈ 𝒜 it holds that 𝑝𝑞(𝑎) ≤ 𝑝𝑞(𝑎).

This is done as follows: Fix any 𝑞 ∈ GOOD. Start with 𝑝𝑞 = 𝑝𝑞. For every 𝑆 ⊆ [𝑘]

and every 𝑎𝑆, if

Pr[𝑝𝑞|𝑆 = 𝑎𝑆] > E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]]

then (arbitrarily) reduce 𝑝𝑞(𝑎*) for every 𝑎* ∈ 𝒜 such that 𝑎*𝑆 = 𝑎𝑆 so that

Pr[𝑝𝑞|𝑆 = 𝑎𝑆] = E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]],

and in the remaining probability output ⊥. For each 𝑆 and 𝑎𝑆, this step reduces the

probability that 𝑉 accepts by at most

𝛿𝑆,𝑎𝑆(𝑞) , max{0,Pr[𝑝𝑞|𝑆 = 𝑎𝑆]− E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]}.

This follows from the invariant that for every 𝑎 it holds that 𝑝𝑞(𝑎) ≤ 𝑝𝑞(𝑎). Since

we do this for every 𝑆 ⊆ [𝑘] and every 𝑎𝑆, in total the probability that 𝑉 accepts is

reduced by at most

𝛿(𝑞) =
∑︁
𝑆,𝑎𝑆

𝛿𝑆,𝑎𝑆(𝑞).

Note that Equation (5.6) holds by definition of {𝑝𝑞}. To prove Equation (5.7), it

suffices to prove the following claim.

Claim 5.2.3. For every 𝑞 ∈ GOOD, it holds that 𝛿(𝑞) ≤ 2𝑘+1𝜖.

Proof. Since {𝑝𝑞} is a sub-non-signaling strategy, there exists a family of distributions
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{Sim𝑆,𝑞𝑆} such that for every 𝑆 ⊆ [𝑘] and every 𝑞𝑆 ∈ 𝒬𝑆 and 𝑎𝑆 ∈ 𝒜𝑆,

max
𝑞* 𝑠.𝑡. 𝑞*𝑆=𝑞𝑆

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆] ≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆].

Therefore,

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆] ≥ E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆] + 𝛿𝑆,𝑎𝑆(𝑞),

which implies that

1 =
∑︁
𝑎𝑆

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆] ≥
∑︁
𝑎𝑆

E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)[Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]+
∑︁
𝑎𝑆

𝛿𝑆,𝑎𝑆(𝑞) ≥ 1−2𝜖+
∑︁
𝑎𝑆

𝛿𝑆,𝑎𝑆(𝑞).

We thus conclude that
∑︀

𝑎𝑆
𝛿𝑆,𝑎𝑆(𝑞) ≤ 2𝜖, which in turn implies that 𝛿(𝑞) =

∑︀
𝑆,𝑎𝑆

𝛿𝑆,𝑎𝑆(𝑞) ≤

2𝑘+1𝜖, as desired.

Thus, the strategy {𝑝𝑞} satisfies Equations (5.6) and (5.7).

We next define a family of sub-distributions4 {Sim
(1)
𝑆,𝑞𝑆
}, where Sim

(1)
𝑆,𝑞𝑆

is a sub-

distribution over 𝒜𝑆, such that for every 𝑆, 𝑇 ⊆ [𝑘] such that 𝑆 ⊂ 𝑇 , and every

𝑞 ∈ 𝒬 and 𝑎 ∈ 𝒜,

Pr[Sim
(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] ≤ Pr[Sim

(1)
𝑆,𝑞𝑆

= 𝑎𝑆] (5.8)

and for every 𝑞 ∈ GOOD,

Pr
𝑎←Sim

(1)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1− 23𝑘2𝜖. (5.9)

We start by defining {Sim′𝑆,𝑞𝑆} by

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆] , max
𝑞*∈GOOD|(𝑞*𝑆=𝑞𝑆)

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆].

4A sub-distribution is a distribution where the total probability can be less than 1, but the
probability of each event must still be non-negative.
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Note that this is a sub-distribution since by Equation (5.6),

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆] = max
𝑞*∈GOOD|(𝑞*𝑆=𝑞𝑆)

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆] ≤ E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆) Pr[𝑝𝑞*|𝑆 = 𝑎𝑆],

which together with the linearity of expectation, implies that indeed

∑︁
𝑎𝑆∈𝒜𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆] ≤
∑︁

𝑎𝑆∈𝒜𝑆

E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆) Pr[𝑝𝑞*|𝑆 = 𝑎𝑆] = E𝑞*←𝜋*|(𝑞*𝑆=𝑞𝑆)

∑︁
𝑎𝑆∈𝒜𝑆

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆] ≤ 1.

Moreover, Equation (5.7), together with the definition of {Sim′𝑆,𝑞𝑆}, implies that for

every 𝑞 ∈ GOOD,

Pr
𝑎←Sim′

[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1− 2𝑘+2𝜖. (5.10)

We next define {Sim
(1)
𝑆,𝑞𝑆
} by modifying {Sim′𝑆,𝑞𝑆} in a greedy manner, to ensure that

Equation (5.8) is satisfied. This is done by induction starting with sets of size 1. For

every set 𝑇 of size 1, and for every 𝑞𝑇 , define

Sim
(1)
𝑇,𝑞𝑇

, Sim′𝑇,𝑞𝑇 .

Suppose we defined Sim
(1)
𝑆,𝑞𝑆

for all sets 𝑆 of size less than 𝑖. We next define Sim
(1)
𝑇,𝑞𝑇

for sets 𝑇 of size 𝑖. To this end, fix any 𝑇 of size 𝑖 and fix any 𝑞𝑇 . Start by setting

Sim
(1)
𝑇,𝑞𝑇

= Sim′𝑇,𝑞𝑇 .

For every 𝑆 ⊂ 𝑇 and for every 𝑎𝑆, if

Pr[Sim
(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] > Pr[Sim

(1)
𝑆,𝑞𝑆

= 𝑎𝑆]

then (arbitrarily) reduce the total probability of Sim
(1)
𝑇,𝑞𝑇

by exactly

𝜉𝑆,𝑎𝑆(𝑇, 𝑞𝑇 ) , Pr[Sim
(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]− Pr[Sim

(1)
𝑆,𝑞𝑆

= 𝑎𝑆],
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so that

Pr[Sim
(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] = Pr[Sim

(1)
𝑆,𝑞𝑆

= 𝑎𝑆]

Clearly this ensures that Equation (5.8) holds. We next argue that despite this

reduction in probability, Equation (5.9) holds. To this end, note that for every 𝑆, 𝑇 ⊆

[𝑘] such that 𝑆 ⊂ 𝑇 , and every 𝑞 ∈ 𝒬 and 𝑎 ∈ 𝒜,

𝜉𝑆,𝑎𝑆(𝑇, 𝑞𝑇 ) ≤ max
{︁

0,Pr[Sim′𝑇,𝑞𝑇 |𝑆 = 𝑎𝑆]− Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆]
}︁
.

Define

𝜉𝑆(𝑇, 𝑞𝑇 ) ,
∑︁
𝑎𝑆

𝜉𝑆,𝑎𝑆(𝑇, 𝑞𝑇 ) and 𝜉(𝑇, 𝑞𝑇 ) ,
∑︁
𝑆(𝑇

𝜉𝑆(𝑇, 𝑞𝑇 ).

Claim 5.2.4. For every 𝑇 ⊆ [𝑘] and every 𝑞 ∈ 𝒬

𝜉(𝑇, 𝑞𝑇 ) ≤ 22𝑘2𝜖.

Note that Claim 5.2.4, together with Equation (5.10), implies that for every 𝑞 ∈

GOOD,

Pr
𝑎←Sim

(1)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1− 2𝑘+2𝜖− 22𝑘2𝜖 ≥ 1− 23𝑘2𝜖,

thus establishing Equation (5.9), as desired.
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Proof of Claim 5.2.4. Fix any 𝑇 ⊆ [𝑘] and any 𝑞 ∈ 𝒬. Note that for every 𝑆 ⊂ 𝑇

and for every 𝑎𝑆 ∈ 𝒜𝑆,

Pr[Sim′𝑇,𝑞𝑇 |𝑆 = 𝑎𝑆]

=
∑︁

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆

Pr[Sim′𝑇,𝑞𝑇 = 𝑎𝑇 ]

=
∑︁

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆

max
𝑞*∈GOOD|𝑞*𝑇=𝑞𝑇

Pr[𝑝𝑞*|𝑇 = 𝑎𝑇 ]

≤
∑︁

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆

E𝑞*←𝜋*|𝑞*|𝑇=𝑞𝑇 Pr[𝑝𝑞*|𝑇 = 𝑎𝑇 ]

= E𝑞*←𝜋*|𝑞*𝑇=𝑞𝑇 Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]

≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆].

By the definition of Sim′𝑆,𝑞𝑆 , Sim
(1)
𝑆,𝑞𝑆

, and 𝑝𝑞, it holds that

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆] ≥ Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆] ≥ Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆].

Therefore, the equations above imply that

𝜉𝑆,𝑎𝑆(𝑇, 𝑞𝑇 ) ≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆]− Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆],

which in turn implies that

𝜉𝑆(𝑇, 𝑞𝑇 ) =
∑︁
𝑎𝑆

𝜉𝑆,𝑎𝑆(𝑇, 𝑞𝑇 ) = 1−
∑︁
𝑎𝑆

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆]. (5.11)

Note that by definition

∑︁
𝑎𝑆

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆] =
∑︁
𝑎𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆]− 𝜉(𝑆, 𝑞𝑆). (5.12)

Therefore

𝜉𝑆(𝑇, 𝑞𝑇 ) ≤ 1−
∑︁
𝑎𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆] + 𝜉(𝑆, 𝑞𝑆) ≤ 2𝑘+2𝜖+ 𝜉(𝑆, 𝑞𝑆),
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where the second inequality follows from Equation (5.10). This implies that

𝜉(𝑇, 𝑞𝑇 ) ≤ 2|𝑇 | · 2𝑘+2𝜖+
∑︁
𝑆(𝑇

𝜉(𝑆, 𝑞𝑆). (5.13)

We use Equation (5.13), to prove that for every 𝑇 ⊆ [𝑘] and for every 𝑞𝑇 ,

𝜉(𝑇, 𝑞𝑇 ) ≤ 22|𝑇 |𝑘𝜖. (5.14)

We prove Equation (5.14) by induction on the size of 𝑇 , starting from |𝑇 | = 1. For

every 𝑇 of size 1 and for every 𝑞𝑇 , by definition 𝜉(𝑇, 𝑞𝑇 ) = 0.

Suppose Equation (5.14) holds for every 𝑇 of size less than 𝑖, we prove that it

holds for 𝑇 of size 𝑖 as follows:

𝜉(𝑇, 𝑞𝑇 ) ≤ 2|𝑇 | · 2𝑘+2𝜖+
∑︁
𝑆(𝑇

𝜉(𝑆, 𝑞𝑆)

≤ 2|𝑇 | · 2𝑘+2𝜖+ 2|𝑇 |22(|𝑇 |−1)𝑘𝜖

≤ 22𝑘+2𝜖+ 2|𝑇 |22|𝑇 |𝑘−2𝑘𝜖

≤ 22𝑘+2𝜖+ 22|𝑇 |𝑘−𝑘𝜖 ≤ 22|𝑇 |𝑘𝜖,

as desired, where the first inequality follows from Equation (5.13), the second inequal-

ity follows from the induction hypothesis, and the other inequalities follow from basic

arithmetic.

We next modify Sim
(1)
𝑆,𝑞𝑆

to ensure that its total probability is independent of 𝑞𝑆.

More specifically, we define Sim
(2)
𝑆,𝑞𝑆

, which is a modification of Sim
(1)
𝑆,𝑞𝑆

, such that for

every ℓ ∈ [𝑘] there exists 𝛼ℓ ∈ [0, 1] such that for every 𝑆 ⊆ [𝑘[ of size ℓ and for every

𝑞𝑆 ∈ 𝒬𝑆, it holds that ∑︁
𝑎𝑆

Pr[Sim
(2)
𝑆,𝑞𝑆

= 𝑎𝑆] = 𝛼ℓ (5.15)

In addition, we still ensure that for every 𝑆, 𝑇 ⊆ [𝑘] such that 𝑆 ⊂ 𝑇 , and for every
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𝑞 ∈ 𝒬 and 𝑎 ∈ 𝒜,

Pr[Sim
(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] ≤ Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆] (5.16)

and for every 𝑞 ∈ GOOD,

Pr
𝑎←Sim

(2)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ (1− 23𝑘2𝜖)𝑘+1 .5 (5.17)

To this end, for every 𝑆 ⊆ [𝑘] and every 𝑞𝑆 ∈ 𝒬𝑆 let

𝛽𝑞𝑆 =
∑︁
𝑎𝑆

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆].

We argue that for every 𝑆 ⊆ [𝑘],

𝛽𝑞𝑆 ≥ 1− 23𝑘2𝜖, (5.18)

as follows:

∑︁
𝑎𝑆

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆]

=
∑︁
𝑎𝑆

max
𝑞*∈GOOD|(𝑞*𝑆=𝑞𝑆)

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]− 𝜉(𝑆, 𝑞𝑆)

≥
∑︁
𝑎𝑆

max
𝑞*∈GOOD|(𝑞*𝑆=𝑞𝑆)

Pr[𝑝𝑞*|𝑆 = 𝑎𝑆]− 22𝑘2𝜖

≥
∑︁
𝑎𝑆

Pr[𝑝𝑞* |𝑆 = 𝑎𝑆]− 22𝑘2𝜖

≥ 1− 2𝑘+2𝜖− 22𝑘2𝜖

≥ 1− 23𝑘2𝜖,

where the first equation follows from Equation (5.12) together with the definition of

5Note that by our assumption that 𝜖 < 2−4𝑘
2

, Equation (5.17) implies that for every 𝑞 ∈ GOOD,

Pr
𝑎←Sim

(2)

[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ (1− 2−𝑘
2

)𝑘+1.
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Sim′𝑆,𝑞𝑆 , the second equation follows from Claim 5.2.4, the third equation holds for

every 𝑞* such that 𝑞*𝑆 = 𝑞𝑆, the forth equation follows from Equation (5.7), and the

last equation follows from basic arithmetic.

For every ℓ ∈ [𝑘], let

𝛼ℓ = (1− 2−3𝑘
2

𝜖)ℓ.

For every 𝑆 ⊆ [𝑘] of size ℓ, and for every 𝑞𝑆 ∈ 𝒬𝑆 and 𝑎𝑆 ∈ 𝒜𝑆, define

Pr[Sim
(2)
𝑆,𝑞𝑆

= 𝑎𝑆] , Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆] · 𝛼ℓ

𝛽𝑞𝑆
.

Note that by definition ∑︁
𝑎𝑆

Pr[Sim
(2)
𝑆,𝑞𝑆

= 𝑎𝑆] = 𝛼ℓ,

as desired. Moreover, Sim
(2)
𝑆,𝑞𝑆

is a sub-distribution, since

Pr[Sim
(2)
𝑆,𝑞𝑆

= 𝑎𝑆] = Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆] · 𝛼ℓ

𝛽𝑞𝑆
≤ Pr[Sim

(1)
𝑆,𝑞𝑆

= 𝑎𝑆],

where the first equality follows from the definition of Sim
(2)
𝑆,𝑞𝑆

and the last inequality

follows from Equation (5.18) together with the the definition of 𝛼ℓ.

We next argue that Sim
(2)
𝑆,𝑞𝑆

satisfies Equation (5.16). To this end, fix any 𝑆 ⊂

𝑇 ⊆ [𝑘] and fix any 𝑞 ∈ 𝒬 and 𝑎 ∈ 𝒜. Note that

Pr[Sim
(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] =

Pr[Sim
(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] ·

𝛼|𝑇 |
𝛽𝑞𝑇
≤

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆] ·
𝛼|𝑇 |
𝛽𝑞𝑇
≤

Pr[Sim
(1)
𝑆,𝑞𝑆

= 𝑎𝑆] ·
𝛼|𝑆|
𝛽𝑞𝑆

=

Pr[Sim
(2)
𝑆,𝑞𝑆

= 𝑎𝑆],

as desired, where the first equation follows from the definition of Sim
(2)
𝑇,𝑞𝑇

, the second

equation follows from Equation (5.8), the third equation follows from the definition
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of 𝛼ℓ together with Equation (5.18), and the last equation follows again from the

definition of Sim
(2)
𝑆,𝑞𝑆

.

Finally, note that for every 𝑞 ∈ GOOD,

Pr
𝑎←Sim

(2)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] = Pr
𝑎←Sim

(1)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1]·𝛼𝑘

𝛽𝑞
≥ Pr

𝑎←Sim
(1)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1]·𝛼𝑘 ≥ (1−23𝑘2𝜖)𝑘+1,

as desired, where the first equation follows from the definition of Sim
(2)
[𝑘],𝑞, the second

equation follows from the fact that 𝛽𝑞 ≤ 1, and the last inequality follows from Equa-

tion (5.9) and from the definition of 𝛼𝑘.

We next modify {Sim
(2)
𝑆,𝑞𝑆
} to a new family of sub-distributions {Sim

(3)
𝑆,𝑞𝑆
} that

satisfies that for every 𝑞 ∈ 𝒬 and every 𝑆 ⊆ [𝑘],

Pr[Sim
(3)
𝑆,𝑞𝑆

= 𝑎𝑆] ≥
𝑘−|𝑆|∑︁
𝑖=1

(−1)𝑖−1
∑︁

𝑇)𝑆,|𝑇 |=|𝑆|+𝑖

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]. (5.19)

To this end, we define

Pr[Sim
(3)
𝑆,𝑞𝑆

= 𝑎𝑆] ,
1

𝑘2|𝑆|
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆]

Claim 5.2.5. {Sim
(3)
𝑆,𝑞𝑆
} satisfies Equation (5.19).
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Proof. Fix any 𝑞 ∈ 𝒬 and any subset 𝑆 ⊆ [𝑘]. Note that

𝑘−|𝑆|∑︁
𝑖=1

(−1)𝑖−1
∑︁

𝑇)𝑆,|𝑇 |=|𝑆|+𝑖

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]

≤
𝑘−|𝑆|∑︁
𝑖=1

∑︁
𝑇)𝑆,|𝑇 |=|𝑆|+𝑖

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]

=

𝑘−|𝑆|∑︁
𝑖=1

∑︁
𝑇)𝑆,|𝑇 |=|𝑆|+𝑖

1

𝑘2(|𝑆|+𝑖)
Pr[Sim

(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]

≤
𝑘−|𝑆|∑︁
𝑖=1

∑︁
𝑇)𝑆,|𝑇 |=|𝑆|+𝑖

1

𝑘2(|𝑆|+𝑖)
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆]

≤
𝑘−|𝑆|∑︁
𝑖=1

(︂
𝑘 − |𝑆|

𝑖

)︂
1

𝑘2(|𝑆|+𝑖)
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆]

≤ 1

𝑘2|𝑆|
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆] ·
𝑘−|𝑆|∑︁
𝑖=1

(︂
𝑘 − |𝑆|

𝑖

)︂
1

𝑘2𝑖

≤ Pr[Sim
(3)
𝑆,𝑞𝑆

= 𝑎𝑆] ·
𝑘−|𝑆|∑︁
𝑖=1

(︂
𝑘 − |𝑆|

𝑖

)︂
1

𝑘2𝑖

≤ Pr[Sim
(3)
𝑆,𝑞𝑆

= 𝑎𝑆]

as desired, where the first equation follows from basic arithmetic, the second equation

follows from the definition of Sim
(3)
𝑇,𝑞𝑇

, the third equation follows from Equation (5.16),

the forth and fifth equations follow from basic arithmetic, the six follows from the

definition of Sim
(3)
𝑇,𝑞𝑇

, and the last equation follows from the fact that

𝑘−|𝑆|∑︁
𝑖=1

(︂
𝑘 − |𝑆|

𝑖

)︂
1

𝑘2𝑖
≤

𝑘−|𝑆|∑︁
𝑖=1

𝑘𝑖 · 1

𝑘2𝑖
=

𝑘−|𝑆|∑︁
𝑖=1

1

𝑘𝑖
≤

𝑘−|𝑆|∑︁
𝑖=1

2−𝑖 ≤
∞∑︁
𝑖=1

2−𝑖 = 1.

Equation (5.17), together with the definition of {Sim
(3)
𝑆,𝑞𝑆
} and the assumption that
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𝜖 ≤ 2−4𝑘
2 , implies that for every 𝑞 ∈ GOOD,

Pr
𝑎←Sim

(3)
[𝑘],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 2−3𝑘 log 𝑘. (5.20)

Equation (5.16), together with the definition of {Sim
(3)
𝑆,𝑞𝑆
}, implies that for every

𝑆, 𝑇 ⊆ [𝑘] such that 𝑆 ( 𝑇 , and every 𝑞 ∈ 𝒬 and 𝑎 ∈ 𝒜,

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] ≤ Sim

(3)
𝑆,𝑞𝑇 |𝑆 = 𝑎𝑆] (5.21)

since

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] =

1

𝑘2|𝑇 |
Pr[Sim

(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]

≤ 1

𝑘2|𝑇 |
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆]

≤ 1

𝑘2|𝑆|
Pr[Sim

(2)
𝑆,𝑞𝑆

= 𝑎𝑆]

= Pr[Sim
(3)
𝑆,𝑞𝑆

= 𝑎𝑆].

In what follows, we define an honest-referee non-signaling strategy for the game

𝒢* that convinces 𝑉 to accept with probability at least 2−3𝑘 log 𝑘. By Theorem 5.2.1

this implies that

𝒱NS(𝒢*) ≥ 2−𝑂(𝑘2) · 2−3𝑘 log 𝑘 = 2−𝑂(𝑘2).

By the definition of 𝒢* (and by Claim 5.2.2), this implies that

𝒱NS(𝒢) ≥ 1

2
· 2−𝑂(𝑘2) ≥ 2−𝑂(𝑘2),

as desired.

Therefore, it suffices to define an honest-referee non-signaling strategy for the

game 𝒢* that convinces 𝑉 to accept with probability at least 2−3𝑘 log 𝑘. We do this in

stages.

First, we define a strategy {𝑝(1)𝑞 }. This strategy is not defined over 𝒜 but over

𝒜* = 𝒜*1 × . . .×𝒜*𝑘, where for each 𝑖 ∈ [𝑘], 𝒜*𝑖 , 𝒜𝑖 ∪ {*}. Fix any 𝑞 ∈ 𝒬.

92



For any non-empty subset 𝑆 ⊆ [𝑘] and every 𝑎𝑆 ∈ 𝒜𝑆, we define

Pr[𝑝(1)𝑞 = (𝑎𝑆, (*)𝑘−|𝑆|)] ,
𝑘−|𝑆|∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆,|𝑇 |=|𝑆|+𝑖

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆].

Equation (5.19) implies that this value is non-negative. Moreover, note that for every

𝑎 ∈ 𝒜,

Pr[𝑝(1)𝑞 = 𝑎] = Pr[Sim
(3)
[𝑘],𝑞 = 𝑎].

We next ensure that 𝑝(1)𝑞 is a distribution. To this end, note that

∑︁
𝑎∈𝒜*

Pr[𝑝(1)𝑞 = 𝑎] =

∑︁
𝑆⊆[𝑘]:|𝑆|≥1

∑︁
𝑎𝑆∈𝒜𝑆

Pr[𝑝(1)𝑞 = (𝑎𝑆, (*)𝑘−|𝑆|)] =

∑︁
𝑆⊆[𝑘]:|𝑆|≥1

∑︁
𝑎𝑆∈𝒜𝑆

𝑘−|𝑆|∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆,|𝑇 |=|𝑆|+𝑖

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] ≤

∑︁
𝑆⊆[𝑘]:|𝑆|≥1

𝑘−|𝑆|∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆,|𝑇 |=|𝑆|+𝑖

∑︁
𝑎𝑆∈𝒜𝑆

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆]

Note that
∑︀

𝑎𝑆∈𝒜𝑆
Pr[Sim

(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆] =

∑︀
𝑎𝑇∈𝒜𝑇

Pr[Sim
(3)
𝑇,𝑞𝑇

= 𝑎𝑇 ] depends only on 𝑇 ,

and is otherwise independent of 𝑞𝑇 . This follows from Equation (5.15) and from the

definition of Sim
(3)
𝑇,𝑞𝑇

. Therefore,
∑︀

𝑎∈𝒜* Pr[𝑝
(1)
𝑞 = 𝑎] is independent of 𝑞. We denote

by

𝛼 ,
∑︁
𝑎∈𝒜*

Pr[𝑝(1)𝑞 = 𝑎].

If 𝛼 > 1 then we convert 𝑝(1)𝑞 to a distribution 𝑝
(2)
𝑞 defined as follows: For every

𝑎 ∈ 𝒜*,

Pr[𝑝(2)𝑞 = 𝑎] ,
1

𝛼
Pr[𝑝(1)𝑞 = 𝑎].
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If 𝛼 < 1 then we convert 𝑝(1)𝑞 to a distribution 𝑝(2)𝑞 defined as follows: Let

Pr[𝑝(2)𝑞 = (*)𝑘] , 1− 𝛼,

and for every 𝑎 ∈ 𝒜* ∖ {(*)𝑘} let

Pr[𝑝(2)𝑞 = 𝑎] , Pr[𝑝(1)𝑞 = 𝑎]

It is easy to see that in either case, 𝑝(2)𝑞 is a distribution.

Claim 5.2.6. {𝑝(2)𝑞 } satisfies the honest referee non-signaling condition.

Proof. In what follows, we use the following notation: If 𝑝(1)𝑞 satisfies 𝛼 =
∑︀

𝑎*∈𝒜* Pr[𝑝
(1)
𝑞 =

𝑎] > 1 then let 𝛾 = 1
𝛼
, and otherwise let 𝛾 = 1.

Fix any subset 𝑆 ⊆ [𝑘]. We argue that for every 𝑞, 𝑞* ∈ GOOD such that 𝑞𝑆 = 𝑞*𝑆,

and for every 𝑎𝑆 ∈ 𝒜*𝑆,

Pr[𝑝(2)𝑞 |𝑆 = 𝑎𝑆] = Pr[𝑝
(2)
𝑞* |𝑆 = 𝑎𝑆].

Define 𝑆 ′ ⊆ 𝑆 to be the subset for which for every 𝑖 ∈ 𝑆 ′ it holds that 𝑎𝑖 ∈ 𝒜, and

for every 𝑖 ∈ 𝑆 ∖ 𝑆 ′ it holds that 𝑎𝑖 = *.
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Pr[𝑝(2)𝑞 |𝑆 = 𝑎𝑆] =∑︁
𝑉⊆[𝑘]∖𝑆

∑︁
𝑎𝑣∈𝒜𝑉

Pr[𝑝(2)𝑞 = (𝑎𝑆′ , 𝑎𝑉 , (*)𝑘−|𝑆
′∪𝑉 |) =

∑︁
𝑉⊆[𝑘]∖𝑆

∑︁
𝑎𝑣∈𝒜𝑉

𝑘−|𝑆′∪𝑉 |∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆′∪𝑉,|𝑇 |=|𝑆′∪𝑉 |+𝑖

𝛾 · Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆′∪𝑉 = 𝑎𝑆′∪𝑉 ] =

∑︁
𝑉⊆[𝑘]∖𝑆

𝑘−|𝑆′∪𝑉 |∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆′∪𝑉,|𝑇 |=|𝑆′∪𝑉 |+𝑖

𝛾 ·
∑︁

𝑎𝑣∈𝒜𝑉

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆′∪𝑉 = 𝑎𝑆′∪𝑉 ] =

∑︁
𝑉⊆[𝑘]∖𝑆

𝑘−|𝑆′∪𝑉 |∑︁
𝑖=0

(−1)𝑖
∑︁

𝑇⊇𝑆′∪𝑉,|𝑇 |=|𝑆′∪𝑉 |+𝑖

𝛾 · Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′ ] =

𝛾 ·
∑︁
𝑇⊇𝑆′

Pr[Sim
(3)
𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′ ] ·

⎛⎝ ∑︁
𝑉⊆𝑇∖𝑆

(−1)|𝑇 |−|𝑆
′∪𝑉 |

⎞⎠
Therefore, to argue that indeed

Pr[𝑝(2)𝑞 |𝑆 = 𝑎𝑆] = Pr[𝑝
(2)
𝑞* |𝑆 = 𝑎𝑆]

it suffices to prove that for every 𝑇 ⊇ 𝑆 ′ such that ℓ , |𝑇 ∖ 𝑆| ≥ 1, it holds that

∑︁
𝑉⊆𝑇∖𝑆

(−1)|𝑇 |−|𝑆
′∪𝑉 | = 0,

or equivalently that for every such 𝑇 ,

∑︁
𝑉⊆𝑇∖𝑆

(−1)|𝑆
′∪𝑉 | = 0.

This follows from the following calculation:

∑︁
𝑉⊆𝑇∖𝑆

(−1)|𝑆
′∪𝑉 | = (−1)|𝑆

′| ·
∑︁

𝑉⊆𝑇∖𝑆

(−1)|𝑉 | =
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
(−1)𝑗 = (1− 1)ℓ = 0,
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as desired.
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