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Abstract

Nanofilled polymer composites and lubricants have gained significant attention in fuel-
efficient vehicle designs due to the superior material properties and economic poten-
tials with minimal filler loadings. However, mass-market applications are impeded
by a lack of understanding of the complex rheological behavior arising from addition
of nanofillers, especially in strong shear and extensional flows. In this thesis, these
challenges are addressed through design of a rapid characterization protocol for the
extensional rheology of such material systems, as well as a comprehensive rheologi-
cal study of a prototypical graphene-derived nanocomposite with the development of
a robust constitutive model framework to provide more insights into the microstruc-
tural variations that are induced through large deformations and strong flows during
material processing and manufacturing operations.

In the first part of this thesis, an improved version of capillary breakup extensional
rheometry (CaBER) is presented, with a special focus on quantifying the filament thin-
ning dynamics which are governed by multiple contributions to the total tensile stress
in the fluid. An Inelastic Rate-Thickening (IRT) constitutive model is proposed to char-
acterize the weakly rate-dependent response of commercial synthetic motor oils. The
evolution of the full-dimensional filament profiles is quantified through analytical and
numerical calculations from which an explicit empirical expression is developed based
on the magnitude of each stress contribution. Finally, a statistical strategy is proposed
to select the best-fit model with regularized parameters on the basis of the Bayesian
information criterion, paving the path for an automated industrial process to extract
accurate and meaningful constitutive parameters from CaBER measurements.

The second part of this thesis focuses on the filament thinning dynamics of entangled
polymer systems based on two modern tube models derived from reptation theory.
One-dimensional numerical solutions of the governing equations are demonstrated to
accurately capture a number of key observations reported in previous studies of con-
centrated polymer solutions, including rate-thinning behavior near filament breakup,
and markedly different relaxation time constants in shear and extensional flows. An
analytical expression for the ratio of these two relaxation times is obtained as a func-
tion of the polymer concentration and the number of entanglements, which shows
excellent agreement with the experimental results from a number of polymer systems
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with no additional fitting parameters. As a case study, the material response predicted
from the Rolie-Poly (Rouse-Linear-Polymer) model is used to interpret the rheology
and dynamics of concentrated cellulose/ionic liquid systems, which are beginning to
find application in fabric recycling and regeneration operations through a wet-spinning
process. To obtain an accurate set of constitutive parameters, the material response in
nonlinear shear and extensional flows are fitted to the model in order to obtain a uni-
versal set of constitutive parameters and scalings that can describe the rheology of
these complex nanocomposite solutions as the concentration, temperature and degree
of polymerization are varied.

The final part of this thesis presents a comprehensive study of the rheology of a graphene
oxide (GO)/polyvinyl alcohol (PVA) system. Distinct features of the low-frequency dy-
namic moduli indicate the formation of a fractal nanofiller microstructure as the GO
concentration is increased. A nonlinear fractional K-BKZ constitutive framework is
used to develop a comprehensive rheological equation of state for this nanocomposite
system in both the linear and non-linear regimes. In extensional flow the observed rhe-
ological behavior is similar to the prediction from the tube models due to the structural
similarity of the materials, and the nanofiller orientation can be readily described in
terms of the model parameters. The sensitivity of the nanofiller structural variations
to the flow kinematics inspires the design of a new rheometric method to optimize
nanofiller dispersion by using a periodic exponential shear flow. General principles
for the design of the required flow profiles are provided and are justified via proof-of-
concept experiments.

Thesis Supervisor: Gareth H. McKinley
Title: School of Engineering Professor of Teaching Innovation
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3-9 Mid-plane filament radius R̂mid(ẑ, t̂) for varying intrinsic elasto-capillary
numbers 0 ≤ Ec0 ≤ 1. (a) R̂mid against the thinning time t; the gray
dashed line represents the linear visco-capillary thinning derived from
the self-similar solution for a Newtonian fluid. (b) R̂mid against the time
distance to the pinch-off singularity τ≡ t̂C− t̂; the dashed gray line rep-
resents the linear visco-capillary thinning derived from the self-similar
solution for a Newtonian fluid. When Ec0 > 0, a quadratic thinning of
the filament radius is identified close to filament breakup. . . . . . . . . 95

3-10 Temporal evolution of the geometric correction factor X ( t̂) and its com-
ponents from two stress contributions, X1( t̂) and X2( t̂) for the IRT model
for a range of intrinsic elasto-capillary numbers 0≤ Ec0 ≤ 1. . . . . . . . 96

14



LIST OF FIGURES

3-11 (a) Curvature ratio at the filament mid-plane from the numerical calcu-
lations at varying intrinsic elasto-capillary numbers Ec0 as well as the
asymptotic solutions of Equation (3.43) with power-law trends (gray
lines). (b) The mid-plane radius R̂mid and curvature ratio Π plotted
against the time distance to the filament breakup τ̂ for the capillarity-
driven thinning dynamics governed solely by the extensional-thickening
contribution in the IRT model. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3-12 Apparent Trouton ratio Trapp against Weissenberg number from the nu-
merically calculated filament thinning dynamics predicted by the IRT
model (solid lines) as well as the asymptotic solutions governed by each
individual stress contribution (zero-shear: thin dotted lines; extensional-
thickening: thin solid lines) at intrinsic elasto-capillary numbers Ec0 =
0, 0.1 and 1. For Ec0 = 0, the asymptotic solution for a Newtonian
fluid is recovered, where Trapp = 3/(2XN − 1) ≈ 7.052 (purple dotted
line). In the numerical calculations, the apparent rate-thinning behav-
ior for Wi ≲ 0.7 is attributed to the filament acceleration at the onset of
filament thinning, and is thus excluded from the constitutive relation.
Linear interpretations based on the magnitudes of each stress contribu-
tion are plotted as thin dashed dotted lines, which show good agreement
with the numerical calculations. . . . . . . . . . . . . . . . . . . . . . . . . . 104

3-13 (a-b) Numerically calculated filament profiles predicted by the Oldroyd-
B model for OhS = 5 and λ̂ = 50 at different time: (a) η̂P = 0 (Newto-
nian fluid); (b) η̂P = 1. (c) Numerically calculated mid-plane filament
radius predicted by the Oldroyd-B model for a range of viscosity ratios
0 ≤ η̂1. The dashed line corresponds to the linear decaying asymptotic
solution for visco-capillary thinning with a slope of −0.0709/OhS. In-
set: Identical plot when the ordinate is replotted on a logarithmic scale.
The dashed line corresponds to the exponential decaying asymptotic so-
lution for elasto-capillary thinning with a slope of −1/(3λ̂). . . . . . . . . 107

3-14 (a) Temporal evolution of the geometric correction factor X and its two
contributions from the solvent viscosity term XS and the polymer stress
term XP predicted by the Oldroyd-B model. The dashed and solid lines in
gray correspond to the asymptotic solutions of XN = 0.7127 and XEC =
1, respectively. (b) Collapsed geometric correction factor assuming the
validity of Equation (3.47), which is shown as the black dashed line. A
broad agreement between the numerical calculation and the expression
of Equation (3.47) is manifested. The two gray lines show identical
asymptotic solutions as in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . 109

15



LIST OF FIGURES

3-15 Temporal evolution of the mid-plane filament radius predicted by the
Oldroyd-B model with X = X ( t̂) according to Equation (3.47) (black
solid line) and X = 1 (red solid line) for OhS = 5, λ̂= 50 and η̂P = 1; the
IRT model with X = X ( t̂) according to Equation (3.44) (black dashed
line) and X = 1 (red dashed line) with the constitutive parameters de-
fined in Equation (3.48); visco-capillary thinning with X = XN (black
dotted line) and X = 1 (red dotted line). The markers denote the time
when 3ηSε̇ = N1,P for two prediction lines from the Oldroyd-B model
(black: X = X ( t̂); red: X = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3-16 Filament thinning profiles for (a) CSB and (b) M1 motor oils fitted with
their best-fit models (CSB: Oldroyd-B; M1: IRT) based on cylindrical
filament assumptions (X = 1, black lines) and temporally-evolving geo-
metric correction factors (X (t), red lines). . . . . . . . . . . . . . . . . . . . 112

3-17 Flowchart of the statistics-based protocol to select the best-fit model
(BFM) for the data fitting and extraction of the constitutive parameters
from the measured filament thinning profiles. . . . . . . . . . . . . . . . . 115

3-18 Evolution in the measured minimum filament radius for the four ma-
terial systems: (a) Glycerol; (b) PEO/Water (0.20 wt%); (c) PIB/C16
(6.47 wt%); (d) PIB/C16 (4.07 wt%). In each subplot, the identical ex-
perimental data are fitted with four selected constitutive models: the
Newtonian fluid model (dotted line), the Oldroyd-B model in the elasto-
capillary limit (dotted dashed line), the IRT model (dashed line) and the
Oldroyd-B model (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

16



LIST OF FIGURES

4-1 Temporal evolution of the capillarity-driven thinning dynamics predicted
by the two selected models (dashed lines for DEMG model and solid
lines for Rolie-Poly model) with varying intrinsic elasto-capillary num-
bers Ec0 = 1/10, 1/3, 1 and 2 at a fixed number of entanglements per
polymer chain, Z = 10 (λD/λR = 8.97). An infinite extensibility of
the polymer chain (Λ → ∞) is assumed to simplify the calculation.
When Ec0 > 1/3, the filament thinning profiles are two-staged within
the scope of the figures. (a) Dimensionless filament radius R̂ plotted
on a logarithmic scale. The slope of −1/(3λ̂e) is identified close to the
filament breakup. (b) Dimensionless filament radius R̂ plotted on a lin-
ear scale. The thin solid lines correspond to the visco-capillary thinning
using an apparent shear viscosity defined in Equation (4.8) for Ec0 = 1
and Ec0 = 2. (c) Magnitude of the tube reorientation ∆S. The black
dashed line corresponds to ∆S = 1, where a uniform tube orientation
towards the extensional direction is induced. (d) Chain stretch Λ. An
exponentially-increasing region is identified with a slope of 1/(6λ̂e) that
corresponds to the region when the filament radius decays in an expo-
nential trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4-2 Apparent shear viscosity ηapp(Ec0) obtained from the filament radius
with an apparent linear decay trend in the early thinning regime. A valid
viscosity is obtained when Ec0 ≳ Ec∗0 = 0.395 (thin dashed vertical line)
in region II. As Ec0 grows sufficiently large, the apparent shear viscosity
approaches the zero-shear viscosity η0 = GλD predicted by both tube
models (thin solid horizontal line). Insets: Schematic of the filament
radius evolution with time for Ec0 < Ec∗0 (I) and Ec0 ≥ Ec∗0 (II). The
dashed lines are approximate reference lines where R̂ decreases linearly
with time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

17



LIST OF FIGURES

4-3 Capillarity-driven thinning dynamics described by the two selected tube
models (dashed lines: DEMG model; solid lines: Rolie-Poly model) with
varying finite extensibility factors Λm = 10, 50 and 100 and Λm →∞
(black solid/dashed lines) with a fixed intrinsic elasto-capillary number
Ec0 = 1 and a fixed number of entanglements per polymer chain Z = 10.
(a) The filament radius R̂≡ R/R0 plotted on a logarithmic scale at inter-
mediate times. A consistent exponential thinning trend is manifested for
both models. An exponential-thinning region is identified at intermedi-
ate time with an identical slope for each model, from which an apparent
extensional relaxation time λe can be obtained. The filament radius sub-
sequently deviates to zero due to the presence of a finite time singularity
if Λm is finite. (b) The polymer chain stretch Λ plotted on a logarithmic
scale. An exponentially-increasing trend is manifested at intermediate
time with a slope of 1/(6λ̂e). Close to the filament breakup, the value of
Λ approaches the specified maximum stretch of Λm (horizontal dashed
lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4-4 Apparent extensional relaxation time nondimensionalized by the Rouse
time λ̂e ≡ λe/λR extracted from the exponential-thinning trend for the
filament radius against the number of entanglements per polymer chain
Z . For the DEMG model (dashed line), a constant of 1/2 is identified.
For the Rolie-Poly model (solid line), a monotonic trend is observed,
which coincides with the asymptotic value from the DEMG model at Z →
∞. The range of 2< Z < 100 denote the applicability of Equation (4.1)
from Likhtman and McLeish [30]. The blue marker shows the result at
Z = 10 used in Figure 4-1, Figure 4-3 and Figure 4-5. . . . . . . . . . . . . 134

4-5 Temporal evolution of the filament radius with varying finite extensi-
bility factors Λm = 10, 50 and 100 at a fixed elasto-capillary num-
ber Ec0 = 1 and with the number of entanglements per polymer chain
Z = 10. The filament radius is plotted against τ= tC−t (nondimension-
alized by λR as τ̂), where tC is the time when the filament breaks up. A
linear decaying trend of the filament radius is identified in the proxim-
ity of filament breakup, which is comparable with the filament thinning
response for a Newtonian fluid. A terminal extensional viscosity ηe,∞
can be obtained analytically from the filament thinning solutions, from
which the asymptotic solutions are plotted as thin dashed lines and are
consistent with the numerical calculations from the two models when
the filament is close to breakup. The gray area specifies an optical limit
in practical measurements below R̂< 1× 10−3. . . . . . . . . . . . . . . . . 136

18



LIST OF FIGURES

4-6 The ratio of apparent extensional and shear relaxation timesλe/λs against
the number of entanglements per chain in entangled polymer solutions
Zsol(c) = Z0c1/(3ν−1). The dashed and solid lines correspond to the pre-
diction lines from the DEMG and the Rolie-Poly models, respectively,
within a range of 2< Zsol(c)< 100 due to the validity of Equation (4.1)
[30]. The experimental data from a variety of material systems with dif-
ferent molecular weights and concentrations are broadly collapsed onto
a monotonically descending master curve, and show excellent agree-
ment with the predictions from both tube models free of additional fit-
ting parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4-7 The transient apparent Trouton ratio Trapp ≡ ηe,app/η0 = ηe,app/(GNλD)
(from page 91) against the Weissenberg number based on the disen-
gagement time WiD ≡ λDε̇ extracted from the filament thinning dynam-
ics of the DEMG model (thick dashed lines) and the Rolie-Poly model
(thick solid lines) with varying finite extensibilitiesΛm = 10, 50 and 100
at a fixed intrinsic elasto-capillary number Ec0 = 1 and fixed num-
ber of entanglements Z = 10. As WiD increases, the transient exten-
sional viscosity undergoes the trend of rate-thinning, rapid thickening
and plateauing at ηe,∞ in sequence. Three reference lines are drawn
from the steady extension predicted by the Rolie-Poly model (thin black
solid line), the DEMG model (thin black dashed line) and the original
Doi-Edwards model (thin black dotted line) with an infinite extensibility
of the polymer chain stretch (if applicable). The prediction lines from
the steady extension of the two tube models that incorporate the poly-
mer chain stretch closely follow the trends of those extracted from fil-
ament thinning until approaching the finite extensibilities, and diverge
at Wi = Wi∗D. In contrary, the predicted response from the DE model
(dotted line) without additional chain stretch terms predict a persistent
rate-thinning trend for WiD ≫ 1. Inset: Same figure in a zoom-in view
for 1× 10−1 ≤WiD ≤ 1× 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

19



LIST OF FIGURES

4-8 Evolution in the dimensionless shear and apparent extensional viscosi-
ties, η(γ̇)/η0 (where η0 = GNλD, blue lines) and Trapp (black lines)
against the Weissenberg number based on the disengagement time WiD
for the Rolie-Poly model (solid lines), the DEMG model (dashed lines)
and the Doi-Edwards model (dotted lines) at Ec0 = 1, Z = 10 and
Λm → ∞ (if applicable). The shear viscosities among the three tube
models shows a persistent shear-thinning trend until close to WiD = 10.
In extensional flow, a broadly consistent extensional-thinning trend is
observed at low WiD for all the selected models. Beyond WiD ≈ 3, the
two more sophisticated tube models which incorporate the additional
polymer chain stretch predict a rapidly increasing extensional viscosity,
while the DE model continues to predict a steadily decreasing trend. The
asymptotic solutions of both the shear and extensional viscosities for the
DE model at a large value of WiD are plotted as thin lines, which exhibit
a power-law scaling of η/η0 ∼Wi−4/3

D and Trapp ∼Wi−1
D , respectively. . . 145

4-9 (a) Numerically calculated filament radius (nondimensionalized by the
initial radius) for aqueous polyethylene oxide (PEO) solutions over the
dilute and entangled concentrations, with both axes plotted on loga-
rithmic scales. (b) Filament radius in the dilute and semi-dilute regimes
described by a corrected FENE-P model [31], with the ordinate plotted
on a logarithmic scale. The asymptotic exponential-thinning trend using
the Zimm time (λe = λZ) is plotted as a black dashed line to show the
filament thinning in the limit of infinite dilution. (c) Filament radius in
the entangled regime described by the Rolie-Poly model, with the ordi-
nate plotted on a logarithmic scale. The asymptote using λe = λR/2 is
plotted as a gray dashed line to show the filament thinning in the limit
of a uniform tube orientation. (d) Same plot as (c) with the filament
radius plotted on a linear scale. The dashed dotted lines show the pre-
dictions from the visco-capillary thinning with the apparent zero-shear
viscosity from Equation (4.8). The markers in (a), (c) and (d) for the
entangled solutions denote the transition of the filament thinning to an
exponential-thinning trend under an elasto-capillary balance. . . . . . . . 149

20



LIST OF FIGURES

4-10 The filament breakup time tC (black line) obtained from extrapolating
the prediction line from the RP model to R = 0 against c/ce for 1 ≤
ce ≤ 2.4. The other two timescales tV-E (blue) and tC,V (red) are plotted
as ratios compared to tC on the right axis, where unity is plotted as a
thin dashed line for reference. The three selected concentrations in the
entangled regime illustrated in Figure 4-9 are marked in circles on each
curve. Inset: Schematic of the temporal evolution in the filament radius
and Weissenberg number to illustrate the three timescales. . . . . . . . . 150

4-11 Steady shear and transient extensional rheological characterizations for
cellulose/ionic liquid solutions at varying cellulose DoPs, cotton fibers
(CF) with DoP=2710 and filter papers (FP) with DoP=1340, at c =
2 wt% and 80 °C. (a) Temporal evolution of minimum filament radius
R(t) from CaBER measurements. (b) Apparent extensional viscosity
ηe,app against Hencky strain ε extracted from CaBER measurements.
Solid lines: fitted lines from Rolie-Poly model. (c) Steady-state shear
viscosities η and first normal stress coefficients Ψ1. Data of the first
normal stress coefficient are truncated below certain shear rates due
to approaching the limit of the normal force sensor. Solid and dashed
lines: fitted lines of η and Ψ1 from Rolie-Poly model, respectively. (d)
Disengagement time λD (filled markers), Rouse time λR (hollow mark-
ers) and ratio of the two timescales λD/λR (half-filled markers) against
the varying parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4-12 Steady shear and transient extensional rheological characterizations for
cellulose/ionic liquid solutions at varying cellulose concentrations c =
1 wt%, 2 wt%, 3 wt% and 4wt% for filter papers at 25 °C. (e) λD/λR

against c on logarithmic scales. A power law trend of with an exponent
of 1.54 can be obtained from numerical fitting. Other subfigure formats
are identical with Figure 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4-13 Steady shear and transient extensional rheological characterizations for
cellulose/ionic liquid solutions at varying temperatures 25 °C, 40 °C, 60 °C
and 80 °C for FP at c = 2 wt% for filter papers. Subfigure formats are
identical with Figure 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4-14 Filament thinning profiles for aqueous HEC solutions with molecular
weights of 0.72 MDa (circles) and 1.3 MDa (squares) at varying HEC
concentrations, with the ordinate plotted on (a) linear scales, and (b)
logarithmic scales. Solid lines are fitted lines from the Rolie-Poly model.
Experimental data provided by courtesy of Dinic et al. [32]. . . . . . . . 159

21



LIST OF FIGURES

4-15 Ratio of disengagement time and Rouse time, λD/λR against c[η], where
the intrinsic viscosities [η] are measured by Dinic et al. as 5.98 dL/g
(for M = 0.72 MDa) and 5.98 dL/g (for M = 1.3 MDa). The number
of entanglements per chain in solutions Zsol is extracted from Equa-
tion (4.1), and the results from both molecular weights approach the ex-
pected power-law trend of c1/(3ν−1) shown as a black dashed line, where
ν= 0.55 is taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5-1 Intercalation of nanofillers in GO/PVA nanocomposites, showing the for-
mation of hydrogen bonds between the carboxyl groups on GO molecules
and the hydroxyl groups on PVA chains. Reproduced from Ref. [33]. . . 166

5-2 Size distribution of the GO nanofillers extracted from SEM imaging. An
averaged nanofiller diameter can be obtained from fitting a log-normal
distribution (black solid line) as 2a = 3389.3nm. . . . . . . . . . . . . . . 167

5-3 Steady shear stress σ of GO/PVA systems against shear rates γ̇ at vary-
ing GO concentrations at 25 °C. The dashed lines are fitted from the
Herschel-Bulkley model (Equation (5.1)), and the solid lines are fitted
from the thixotropic Herschel-Bulkley model (Equation (5.4)). Inset:
Zoom-in view in the shear-rate range of 1 × 10−2 s−1 to 1 s−1 and the
stress range of 1× 10−1 Pa to 1× 101 Pa. . . . . . . . . . . . . . . . . . . . . 169

5-4 Parameters obtained from the H-B model (filled markers) and the thixotropic
H-B model (hollow markers): (a) Yield stress σy; (d) Power-law expo-
nent n. Solid line: Rejuvenation timescale λth. Legend indicates the GO
concentration, shared by both subfigures. . . . . . . . . . . . . . . . . . . . 170

5-5 (a) Schematic of the fractional Kelvin-Voigt (FKV) model with two spring-
pot components connected in parallel. (b-g) Frequency responses of
dynamic moduli with γ0 = 2% at varying concentrations (subfigures):
(b) 0 wt%; (c) 0.1 wt%; (d) 0.13 wt%; (e) 0.2 wt%; (f) 0.3 wt%; (g)
0.4 wt%. Solid and dashed lines: Fitting lines from the FKV model in
Equation (5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5-6 van Gurp-Palmen plot with the phase angle tan(δ) against the magni-
tude of complex modulus |G∗| at varying GO concentrations. Dashed
lines mark G′0 for each GO concentration. . . . . . . . . . . . . . . . . . . . 172

5-7 Fractional exponents 0 ≤ β ≤ α ≤ 1 extracted from fitting the FKV
model at varying GO concentrations. Solid and dashed lines show the
trendlines for α and β against GO concentrations from power-law fitting
with exponents of −0.053 and 0.077, respectively. . . . . . . . . . . . . . . 174

22



LIST OF FIGURES

5-8 Retardation time spectra predicted by the FKV model at varying GO
concentrations according to Equation (5.10) (solid lines) and discrete
retardation modes extracted from the measured dynamic moduli in Fig-
ure 5-5 with the ReSpect computing package (filler markers). . . . . . . . 175

5-9 Relaxation moduli against step time at varying step strains γ0 = 0.01 to 10.
Black dashed line (thick): Linear viscoelastic response predicted by Equa-
tion (5.15). Solid lines: Fitting lines to a modified K-BKZ constitutive
framework with two damping functions on each springpot at varying
step strains. A universal set of shape parameters can be obtained as
bα = 1.55, γC,α = 1.04, bβ = 1.53 and γC,β = 0.32. Black solid and
dashed lines (thin) show the trends of relaxation moduli at t1 = 0.1 s
and t2 = 80 s, which are plotted in Figure 5-10 explicitly to demonstrate
distinct damping terms at short- and long-time ranges. . . . . . . . . . . . 177

5-10 Damping functions evaluated at short- (0.1 s) and long-time (80 s) re-
sponses. Both data are fitted into Equation (5.17), and distinct shape
factors are obtained, showing inconsistent results with the prediction
from a universal damping function. . . . . . . . . . . . . . . . . . . . . . . . 178

5-11 (a) Transient stress response in a start-up flow with varying step shear
rates at a fixed GO concentration of 0.4 wt%. Solid lines: predictions
from the fractional K-BKZ framework. (b) Steady shear flow curve at a
fixed GO concentration of 0.4 wt% revisited from Figure 5-3(a). The
prediction line from the K-BKZ model describes the general trend of
shear-thinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5-12 Snapshots of the filament thinning profiles for GO/PVA nanocomposites
at varying GO concentrations from 0 wt% to 0.4 wt% measured on the
customized CaBER device. Time of each snapshot is marked. . . . . . . . 183

5-13 (a) Filament radius measured from the customized CaBER system at
600 fps at varying GO concentrations. (b) Apparent extensional viscos-
ity ηe,app(ε̇) and inelastic predictions from the shear viscosity ηe,N =
η(γ̇)/[(2XN−1)/3], where XN = 0.7127 is the geometric correction fac-
tor for Newtonian fluids. Both subfigures share an identical legend for
markers, as shown in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5-14 Filament thinning profiles at low GO concentrations c = 0wt% and 0.05 wt%.
Gray solid lines: Fitting lines with the Oldroyd-B model with a temporally-
evolving geometric correction factor X for data at t ≥ tM ≈ 50 ms. (a)
R on a linear scale; (b) R on a logarithmic scale. . . . . . . . . . . . . . . . 185

23



LIST OF FIGURES

5-15 (a-b) Filament thinning profiles for GO concentrations c ≥ 0.8 wt%
with (a) R plotted on a linear scale, and (b) R plotted on a logarith-
mic scale. Black solid lines: Fitting lines from the Rolie-Poly model with
the geometric correction factor set to XN = 0.7127. The time range for
data fitting is selected at the onset of a notably linear-decaying trend
in the filament radius (see text). (c) Magnitude of the tube orienta-
tion ∆S = Szz − Sr r at varying GO concentrations. (d) Schematic of the
nanocomposite microstructure at different stages of filament thinning
(as marked in (c)) with corresponding snapshots of the filament profiles. 186

5-16 Schematic of exponential shear flow on a nanofiller aggregate with a
principal direction p⃗1 and an extinction angle χ. As the Lagrangian
element that contains the aggregate element (ellipse with dashed-line
edges) is distorted, morphological variation may arise, if the stress in
the principal direction is sufficiently large. Replotted based on Ref. 34. . 191

5-17 (a) Steady shear-flow curve of 8.26 wt% PIB/C16 solution (markers)
fitted with Carreau-Yasuda model (black solid line). A set of model pa-
rameters can be obtained as η0 = 15.46Pa s, λ = 0.20 s, a = 0.92 and
n= 0.38. (b) Storage (filled) and loss (hollow) moduli of the 8.26 wt%
PIB/C16 solution measured at an oscillatory strain of γ0 = 1%. The
shear relaxation time can be obtained from the crossover of the two
moduli as λ ≈ 0.20 s, which is consistent with the value obtained from
fitting the Carreau-Yasuda model in (a). . . . . . . . . . . . . . . . . . . . . 194

5-18 Material responses under a PES flow at ε̇s = 1s−1 and ε̇sT0 = 10. Data in
the first half-periods (kT0 < t ≤ kT0+T0/2) are shown. (a) Evolutions of
shear stress σ12, normal stress difference N1 and principal normal stress
difference σP

11 −σ
P
22 (ordinate on the left), as well as extinction angle

χ (ordinate on the right) against normalized time 0 < (t − kT0)/T0) ≤
0.5. Data at the 50th cycle are shown. (b) Evolution of the transient
viscosity in principal direction ηes overlapped by the measurements of
all 50 cycles. (c) Transient viscosity in principal direction ηes against
shear rate (γ̇). Black solid and dashed lines show predictions from the
steady shear viscosity as η(γ̇) and 4η(γ̇). Data at the 50th cycle are
shown. (d) Evolution of averaged viscosity in principal direction η̄es

(Equation (5.31)) over PES cycles. . . . . . . . . . . . . . . . . . . . . . . . 195

24



LIST OF FIGURES

5-19 (a) Averaged Trouton ratio Tr (from data after 5th cycle) against elon-
gational rate ε̇s at varying ε̇sT0. (b) Averaged Trouton ratio Tr over all
elongational rates in (a) at fixed values of ε̇sT0. Data from the material
responses in both the first (filled black markers) and second (filled blue
markers) halves of one period are obtained. The reference of Tr = 4 is
drawn in black dashed line, above which strain-hardening behavior can
be justified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5-20 Normalized transient evolution of strain response in a half period by os-
cillatory strain γ0 = 2 sinh(ε̇sT0/2) and time period T0 at varying elon-
gational rates ε̇s and a fixed value of ε̇sT0 = 1. Blue dashed line corre-
sponds to an expected response according to Equation (5.30). . . . . . . 198

5-21 PES results on a “less-dispersed” GO/PVA system at a GO concentration
of 0.4 wt% with ε̇s = 5 s−1 and ε̇sT0 = 6 for 1500 cycles. (a) Evolution
of averaged viscosity in the elongational direction η̄es over cycles. (b)
Temporal evolution of the storage modulus G′ evaluated at ω= 1 rad/s
before and after the application of PES flows. . . . . . . . . . . . . . . . . . 199

A-1 Stroke tests for the linear actuator. The corresponding PID parameters
are manually fine-tuned in the control software. Three stroke distances,
2 mm, 5 mm and 8 mm are imposed, and a max stroke velocity of vmax ≈
0.2m/s is configured. The stroke trajectories are captured with a high-
speed camera using a frame rate of 5900 fps, from which the temporal
evolution of the end discs is extracted. The measured displacements
show good linearity with time in the rising region, and the final settling
times of the three strokes are approximately 17 mm/s, 32 mm/s and
46 mm/s, with overshoots of 8.7%, 4.9% and 2.7%, respectively. . . . . . 214

A-2 (a) Calibration of the laser micrometer using a series of aluminum rods
and optical fibers with independently measured diameters. The differ-
ence between measured voltage (V) and the ground voltage (Vmin =
−5 V) is taken. Dashed and solid lines show the first- and third-order
polynomial fitting to the data. A manufacturer-claimed minimum ob-
ject size of 100 µm in diameter is indicated by the shaded area, below
which data can only be accessed through a high-speed imaging system.
(b) Measurement of the laser beam thickness by slowly feeding the top
and bottom circular discs through the beam. An approximate value of
0.1 mm is obtained from the width of the transition region. . . . . . . . . 215

25



This page is intentionally left blank.



List of Tables

3.1 Shear viscosity, surface tension measurements, and characteristic di-
mensionless numbers of the two selected motor oils. . . . . . . . . . . . . 72

3.2 Experimental parameters of the customized CaBER instrument for the
characterizations of the two motor oils. . . . . . . . . . . . . . . . . . . . . 73

3.3 Number and weight average molecular weights for each mode obtained
from log-normal fitting for the two motor oils. . . . . . . . . . . . . . . . . 78

3.4 Constitutive parameters from the Newtonian fluid model, the Oldroyd-B
model and the IRT model obtained from data fitting for the two motor
oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 List of the selected material systems, extensional relaxation times, and
their elasto-capillary numbers EcV-E ≡ λΓ/[η0R(tV-E)], where tV-E is the
experimentally-measured transition time when the temporal evolution
of filament radius deviates from the linear visco-capillary thinning. The
results in which EcV-E < Ec∗V-E are shaded. . . . . . . . . . . . . . . . . . . . 87

3.6 Numerical calculation schemes of the capillarity-driven thinning pre-
dicted by the IRT model, including the nondimensionalization scheme
and initial/boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Numerical calculation schemes of the capillarity-driven thinning pre-
dicted by the Oldroyd-B model, including the nondimensionalization
scheme and initial/boundary conditions. . . . . . . . . . . . . . . . . . . . . 106

3.8 Estimates of the zero-rate viscosities extracted from steady-shear flow
measurements and fitting the filament thinning profiles with the best-fit
models based on cylindrical filament assumptions (X = 1) and temporally-
evolving geometric correction factors. Values in parentheses show error
percents compared with the measurements in shear flow. . . . . . . . . . 112

27



LIST OF TABLES

3.9 Selected material systems to validate the proposed statistics-based pro-
tocol for the selection of the best-fit constitutive model among the New-
tonian fluid (N), the Oldroyd-B model in the elasto-capillary limit [O-B
(EC)], the IRT model and the Oldroyd-B (O-B) model. Models with the
minimum values of BIC are marked in gray. . . . . . . . . . . . . . . . . . . 116

4.1 Nondimensionalization scheme for the numerical analysis of capillarity-
driven thinning dynamics for the selected tube models. . . . . . . . . . . . 125

4.2 Initial conditions based on the value of Ec0 for the numerical calcula-
tion of the capillarity-driven thinning dynamics predicted by the selected
tube models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Dynamic moduli G′ and G′′, the crossover angular frequency ωc at G′ =
G′′, and apparent shear and extensional relaxation times λs and λe for
the Hookean dumbbell model, the DEMG model, and the Rolie-Poly
model. The apparent extensional relaxation time in the limit of Z →∞
is also tabulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Polymer properties, concentrations and experimentally measured ratios
of the apparent shear and extensional relaxation times λe/λs for a se-
lected range of material systems from previous studies. . . . . . . . . . . . 139

4.5 List of properties and configurations for the numerical calculations of
filament thinning dynamics for aqueous PEO solutions at varying con-
centrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6 List of the selected concentrations and concentration-specific properties
of aqueous PEO solutions for the numerical calculation of filament thin-
ning dynamics. The colored lines next to the concentrations are consis-
tent with those in Figure 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Concentrations, temperatures and DoPs of the cellulose/IL solutions for
the rheological study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8 List of common constitutive models and the predicted form of the tempo-
ral evolution in the minimum filament radius for extensional rheological
characterizations using the capillary breakup technique. Table adapted
from Refs. 29 and 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.1 Key constitutive parameters extracted from CaBER measurements at
varying GO concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

28



List of Symbols

Here are listed the symbols that will be later used in the body of this thesis. Symbols
in square brackets are dimensionless variables.

Constants [Dimensionless]
k Boltzmann constant, 1.38× 10−23 J/K
[Ec∗V-E] Critical elasto-capillary number to distinguish weakly rate-thickening

and strongly viscoelastic filament thinning, with the value of approx-
imately 4.7

g Gravitational acceleration g = 9.81m/s2
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sion slightly varies for different constitutive models)
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LIST OF SYMBOLS

[EcV-E] Elasto-capillary number with the lengthscale evaluated at t = tV-E

[ν] Excluded volume parameter
Γ Surface tension
IIγ̇, IIIγ̇ Second and third invariants of the strain rate tensor
I1 First invariant of a tensor, with optional subscripts of “s” and “e”

indicating shear and extensional flows
I2 Second invariant of a tensor, with optional subscripts of “s” and “e”

indicating shear and extensional flows
K [K̂] Mean curvature of an axisymmetric liquid filament R(z, t).
lcap Capillary length
G′, G′′ Storage and loss modulus
[Oh] Ohnesorge number
δ Phase angle
λD Disengagement time
λe Extensional relaxation time
λR Rouse time
λs Shear relaxation time
λZ Zimm time
GN Plateau modulus
Me Molecular weight between entanglements
Z Number of entanglements per polymer chain
[φC] Percolation threshold (volume fraction)
H(λ) Relaxation time spectrum
R0 Disc radius or initial radius of a liquid filament (in CaBER)
Rmid [R̂mid] Filament radius at the symmetry plane (mid-plane) [nondimension-

alized by R0]
[ηr] Relative viscosity
[ℛ(ζ)] Self-similar function for the shape profile in filament thinning
[𝒱 (ζ)] Self-similar function for the axial velocity profile in filament thinning
[ζ] Self-similar variable as a function of ẑ and t̂ to describe the filament

thinning profile
ε̇ [Wi] Extensional rate [Weissenberg number]
γ̇ Shear rate
ε Hencky strain
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LIST OF SYMBOLS

[S] Averaged orientation tensor for tube segments
[Λ] Ensemble strain on polymer chain segments within the tubes
[Λm] Maximum extensibility of polymer chain segment within the tube
[θ] Structural variable
τ Time distance to filament breakup t − tC

T0 Absolute temperature in the unit of K
tC Filament breakup time
tM Motor actuation time (in CaBER)
tV-E Crossover time at which the filament radii predicted by the visco-

capillary (V) and the elasto-capillary (E) thinning are equal
η Shear viscosity
η0 Zero-shear viscosity
ηapp Apparent shear viscosity obtained from the linear decaying region in

a filament thinning process
ηe,app [Trapp] Apparent extensional viscosity [apparent Trouton ratio]
ηe [Tr] Extensional viscosity [Trouton ratio]
[X ] Geometric correction factor (in CaBER)
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1 | Introduction

1.1 Research background and thesis structure

Until 2019, the transportation sector has become the largest contributor (29%, or
1902 Mt/yr) to the annual emission of CO2 in the United States, in which 85-90% of the
emission comes from direct consumption of petroleum-based fuels [36, 37]. Despite
progressive engineering efforts over the past century, the energy efficiency of modern
automotive vehicles remains as low as 12% to 30% due to the energy losses from vari-
ous subsystems (e.g., power to wheels, parasitic losses and engine losses, etc) and the
thermodynamic limit of internal combustion engine [38–41]. The worldwide convic-
tion for reducing carbon footprints has significantly promoted innovations in automo-
tive manufacturing for more advanced fuel-economy technologies [42]. Meanwhile,
the burgeoning industries of electric vehicles and autonomous driving have brought
new inspirations and opportunities in the designing and manufacturing of automotive
vehicles that accord with the aim of improved driving and passenger experiences [43].
These trends in the automotive industry result in an increasing demand for the de-
velopment of advanced materials that feature lightweight, tunable material properties
(mechanical, thermal, electrical, tribological, chemical, etc), compatibility with var-
ious existing or innovative manufacturing processes, as well as cost and ecological
efficiencies [42,44]. Among numerous candidates of new materials, graphene-derived
nanocomposites (GDNC) have gained especial attention in recent decades due to its
superior properties and great potentials in the enhancements of material performance
with minimal loadings of nanofillers. Despite abundant studies on various chemical
formulations of GDNC over the past two decades [45–48], exploratory applications of
such materials to commercial automotive vehicles are observed recently in the pro-
duction of Ford Mustang and Ford F-150 [49, 50]. Compared with the conventional
foam materials used for pump and front engine covers, new designs using GDNC ma-
terials have exhibited outstanding performance with 17% noise reduction, 30% im-
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provement in heat resistance and 20% increase in mechanical strength [49, 51]. As
the supply chain of nanofillers steadily matures, more applications of GDNC materials
are being demonstrated and envisioned in different automotive subsystems. Examples
include the reinforcement of car bodies with abrasive resistance [37,52], interior dec-
orations with enhanced toughness, and the optimization of engine and transmission
systems with better thermal management and collision performance [37,43]. Notably,
recent progression in autonomous driving has motivated an extensive application of
smart sensors on the exterior car body for real-time perception and decision-making,
such as LiDARs, high-definition cameras and ultrasonic detectors [53]. A properly
functional autonomous-driving system is expected to interact seamlessly and robustly
under various weather conditions in a timely and accurate manner with minimal ef-
forts for maintenance. Such unattended nature has proposed higher standards for the
exterior sensors not only on the life time of electronic devices, but also on the dura-
bility of materials to accommodate extreme working conditions with additional capa-
bilities of self-deicing, self-cleaning, anti-scratching and defrosting by heating [43].
The GDNC materials with tunable mechanical, thermal and electrical properties have
become potential solutions for such applications, with a handful of proof-of-concept
studies available recently [54–57]. The more recent emergence of additive manufac-
turing techniques, such as fused filament fabrication provides additional versatility to
the customization of GDNC materials with engineered hierarchical structures at smaller
lengthscales (10 µm to 1000 µm) [58] and thus enables the manufacturing of more
functional devices [59,60].

However, mass-market applications of GDNC materials in the automotive industry have
been so far inhibited by numerous challenges that arise from increased structural and
dynamical complexities in these materials [47,50].

First, a comprehensive study of the complex fluid rheology and flow dynamics of GDNC
materials is absent. In particular, advanced techniques for rapid rheological characteri-
zations of these materials in varying flow types are less accessible. In addition, a robust
constitutive framework to quantify the multiphase interactions in both linear and non-
linear regimes is desired to enhance the understanding of structural variations induced
in large extensional deformation, which is expected in various manufacturing processes
for automotive vehicles (e.g., extrusion, spinning, stamping, forging, spraying, etc). As
a result, these fundamental understandings of complex nanocomposite materials can
provide insightful guidance from a rheological perspective to induce desired material
properties with an optimal manufacturing cost.

Beyond a lack of understanding in the rheology of GDNC materials and their flow dy-
namics in real manufacturing processes, the other major limitation that hampers mass-
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market applications of these materials lies in material processing, or to be more specific,
an optimal dispersion of graphene-derived nanofillers [59]. By virtue of the layered
structure of graphene-derived nanofillers, a large surface-volume ratio arises and pro-
motes unwanted nanofiller aggregations at smaller lengthscales, which adversely im-
pact the property enhancement due to spatial heterogeneity and an increased percola-
tion threshold that diminish nanofiller connectivity [61,62]. The existing compounding
processes that primarily rely on a steady-shear process are far from optimized for han-
dling such anisotropic nanofillers [63]. Innovative compounding protocols based on a
profound understanding of the complex structure-rheology relationship of the GDNC
materials are desired to introduce beneficial structural variations to the nanofiller ag-
gregation and dispersion that can be accessed on a generic compounding device with
additional flexibility and improved performance.

To address the remaining challenges that impede large-scale applications of GDNC
materials in automotive industry, this thesis is aimed at providing deeper insights into
the non-linear rheology of GDNC materials exhibited under large shear and particu-
larly extensional deformations experienced in real manufacturing processes. The thesis
work is primarily comprised of the construction of an improved capillary breakup ex-
tensional rheometer based on the author’s master’s thesis [64], which is subsequently
applied to a series of numerical and experimental studies on dilute and concentrated
polymer solutions, as well as prototypical nanocomposite systems that feature complex
material responses arising from multiphase interactions. These results further inspire
a systematic workflow that can be readily applied for rapid and accurate rheological
characterizations and identifications of constitutive models through the measurements
of extensional rheology. In addition, the detailed knowledge obtained through the
aforementioned measuring techniques is further demonstrated to inspire the develop-
ment of a rheology-assisted protocol to assist in the dispersion of graphene-derived
nanofillers, which will greatly benefit practical applications in manufacturing the ma-
terial processing.

The structure of this thesis is outlined as follows.

Chapter 1 introduces the background of graphene-derived nanocomposites (GDNC)
with especial focus on the applications in automotive industry and primary challenges
in the rheological characterizations and material processing that delay large-scale im-
plementation. The structure of this thesis is subsequently outlined, and a list of the
publications from this thesis is presented.

Chapter 2 provides a review of previous studies on the dynamics and applications of
GDNC materials. This chapter is laid out in three sections, covering the structures and
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properties of GDNC materials, the generic characterizing techniques, and the state-
of-the-art material processing techniques to improve the nanofiller dispersion. In ad-
dition, the fundamentals of non-linear shear and extensional rheology and structure-
rheology relationship, as well as a number of definitions of dimensionless variables are
presented as the theoretical dimensions for the following chapters.

Chapter 3 presents a comprehensive study of the extensional rheology for multiple
types of complex fluids. The construction of a customized capillary breakup extensional
rheometer (CaBER) is briefly introduced, followed by a series of experimental and nu-
merical studies to establish a comprehensive understanding of the complex capillarity-
driven thinning dynamics resulted from multiple stress contributions. A temporally-
evolving geometric correction factor is incorporated into the data fitting process, and a
statistics-based protocol is applied to obtain a more robust model identification, from
which accurate rheological constitutive parameters can be obtained.

Chapter 4 extends the study from the preceding chapter on extensional rheology to
concentrated polymer solutions in entangled regimes. A constitutive framework is pro-
posed based on reptation theory, aiming at capturing key features of flow-dependent
relaxation times and non-monotonic trends in viscosities that have been observed from
previous experimental measurements. A case study that applies the proposed consti-
tutive framework is presented on a benchmark cellulose/ionic liquid system near the
entangled regime that finds practical applications in fabric recycling through a wet-
spinning process. The rheological measurements in both shear and extensional flows
are compared with the model predictions at varying degrees of polymerization, con-
centrations and temperatures, from which constitutive parameters can be obtained and
described by more general scaling laws.

Chapter 5 describes the shear and extensional rheology for a prototypical GDNC ma-
terial, graphene-oxide (GO) nanofillers dispersed in aqueous polyvinyl alcohol (PVA)
solutions. A number of rheological techniques are demonstrated to describe the mate-
rial responses in shear and extensional flows, from which a robust non-linear constitu-
tive framework is proposed. The flow-induced morphological variation of nanofillers
exhibited from the rheological characterizations inspires a new protocol using period-
ical exponential shear flows to assist in nanofiller dispersion by generating augmented
tensile stresses in principal directions to break down large aggregates. The efficacy of
this protocol is justified through the application to a viscoelastic polymer solution, in
which the material responses exhibit significant strain-hardening responses that resem-
ble the behavior in an extensional flow. A proof-of-concept experiment is conducted
on a “less-well-dispersed” nanofilled system, and an improved state of dispersion can
be identified by measuring the low-frequency elastic response.
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1.2. Publications from this thesis (including manuscripts in preparation)

Chapter 6 summarizes the key outcomes from this thesis. A brief discussion is given
on the potential opportunities and remaining challenges of the techniques developed
in this thesis, as well as an outlook for the future works.

1.2 Publications from this thesis (including manuscripts
in preparation)

[1] J. Du, H. Ohtani, C. E. Owens, L. Zhang, K. Ellwood, and G. H. McKinley. An
improved Capillary Breakup Extensional Rheometer to characterize weakly rate-
thickening fluids: Applications in synthetic automotive oils. Journal of Non-Newtonian
Fluid Mechanics, 291:104496, May 2021.

[2] J. Du, H. Ohtani, K. Ellwood, and G. H. McKinley. Macromolecules. In preparation.

[3] J. Du, H. Ohtani, K. Ellwood, and G. H. McKinley. Journal of Non-Newtonian Fluid
Mechanics. In preparation.

[4] J. Du, P. B. Sanchez, C. E. Owens, G. H. McKinley. ACS Sustain. Chem. Eng. In
preparation.

[5] P. B. Sanchez, C. E. Owens, J. Du, G. H. McKinley. Biomacromolecules. In prepara-
tion.
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2 | Literature Review on GDNC
Rheology and Applications

2.1 Graphene-derived nanocomposites (GDNC)

2.1.1 Graphene-derived nanofillers

Graphene-derived nanofillers, while commonly sharing a layered honeycomb structure,
may differ slightly in their molecular conformation and microscopic behavior due to
distinct chemical compositions, states of exfoliation that arise from different synthesis
methods, as well as external conditions such as temperature and humidity, thus show-
ing different degrees of property enhancement in practice [45,62,65,66]. In principle,
two routes of production of graphene-derived nanofillers are widely adopted. The first
route is chemical synthesis, from which small quantities and sizes of nanofillers with
well-controlled single or few-layered structures and minimal structural defects can be
produced [62]. A number of techniques are currently available for the synthesis of su-
perlative graphene structures, including self-assembly methods [67], chemical vapor
deposition (CVD) [68], reduction of carbon monoxide [69] and arc discharge [70]. Ev-
idently, a mass application of chemical synthesis for the production of nanofillers is less
likely due to the relatively low production rates with high costs. As a result, the sec-
ond route of production, mechanical or chemical exfoliation, is more widely applied in
industry. Such exfoliation process, commonly performed on easily-accessible graphite,
graphite intercalation compounds (GIC) or graphite oxides [62], is more applicable
for scaled-up productions of larger quantities of graphene-derived nanofillers that can
be readily used for nanocomposites [71]. For graphite, common exfoliation methods
include micromechanical cleavage [72], ultrasonication [73], and electrochemical ex-
foliation [74]. Compared with graphite, GIC is more commonly used as a precursor
due to its larger layer spacing that arises from the additional alkali metals and min-
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Figure 2-1: A brief overview of applications of graphene-derived nanocomposites in
various fields, including advanced manufacturing, smart sensors, energy harvesting
and water purification and biomedical solutions. Images reproduced from: (a) Ref. 1;
(b) Ref. 2; (c) Ref. 3; (d) Ref. 4; (e) Ref. 5; (f) Ref. 6; (g) Ref. 7; (h) Ref. 8.

eral acids in the intercalation [75], which assists in the exfoliation process by virtue of
a weakened layer-to-layer van der Waals attraction [75]. In recent studies, expanded
graphite (EG) with an expanding volume ratio of approximately 300 has been obtained
through rapid heating (thermal shocking) of GIC dispersed in sulfuric and nitric acid
mixtures [76–78]. This expanded graphite can be further exfoliated through ultrason-
ication or pulverization to form graphene nanoplatelets (GNP) with an averaged thick-
ness of 5 nm to 10 nm and a lateral width of 15 µm [76, 79–81]. Similar to graphite-
derived precursors, graphene oxides (GO) are multi-layered oxidized graphenes with
an averaged interlayer spacing of 6 Å to 10 Å that is sensitive to humidity [82–84].
GO can be used to produce well-exfoliated few-layer or monolayer graphenes through
chemical and thermal reductions [10, 85–89]. In practice, large-scale synthesis of GO
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is possible through variations of the Staudenmaier [90] or Hummers [91]methods that
oxidize graphites using permanganates, chlorates and nitrite salts with nitric/sulfuric
acids. Unlike the well-established molecular structure of pristine graphenes, a puta-
tive model for the chemical structure of GO had been an ongoing research topic for
decades [92]. To this point, the Lerf-Klinowski model [9] is recognized as the most
realistic description. As shown in Figure 2-2(a), this model describes a single GO
molecule as a lamellar backbone mostly comprised of aromatic components, epoxy
and hydroxyl groups, with carboxyl groups decorated on the periphery [82, 93]. The
C/H/O ratio for a typical GO molecule is approximately 2:0.8:1 [82,94,95]. Because
of the additional functional groups, GO is readily hydrophilic and can be easily dis-
persed in protic solvents due to the enhanced repulsion of negative charges induced
by the carboxyl groups [82].

Previous studies have verified the existence of stable single-layer GO platelets in aque-
ous dispersions [96,97]. However, the excessive amount of oxygen (C/O ratio of 2:1)
inhibits the electron and phonon mobility, resulting in poor electrical and thermal con-
ductivities [82]. These physical properties can be partially restored through a reduc-
tion of the C/O ratio, resulting in what is commonly known as reduced GO (rGO) by
the application of strong reducing agents such as hydrazine [85,98], titanium dioxide
(TiO2) [99], sodium borohydride [82] and more recently benzyl alcohol [100]. These
chemically reduced GO platelets have been characterized with a higher C/O ratio in
the range of 10 to 29.9:1 [95, 101], which results in a higher electrical conductivity
up to 4600 S/m [102]. More recently, high temperature heating is applied to initiate
the reduction process in an inert-gas environment [88], in which the epoxy and hy-
droxyl bonds can be readily decomposed, resulting in a C/O ratio of 10:1 (which can
be further increased with extended heating time or higher temperature) [103]. This
reduction process can potentially reach a state of nearly complete exfoliation for GO
platelets due to the generation of small molecules such as CO and CO2 from decompo-
sition that increases the internal pressure in the nanofiller intercalation [10]. Notably,
the exfoliation method through thermal expansion is well-known to result in a crum-
pled shape for the GO nanofillers attributed to the intertwining of nanofillers during the
expansion process, as shown in Figure 2-2(b). Such crumpled shapes decrease the av-
eraged contact area with the neighboring nanofillers, thus are beneficial in minimizing
the nanofiller interaction and preventing the nanofillers from restacking. The reduced
GO platelets have a high surface area of 700 m2/g to 1500 m2/g [88], which is close
to the theoretical bound for pristine graphenes at 2600 m2/g. The resulting electrical
conductivity of rGO has been measured as 1000 S/m to 2000 S/m [95], and Young’s
moduli ranging from 208 GPa to 650 GPa [96,104]. The thermal shocking can also be
practically performed using microwave radiation, leading to a slightly lower C/O ratio
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Figure 2-2: (a) Lerf-Klinowski model for the chemical structure of a single graphene
oxide (GO) molecule. Reproduced from Ref. 9. (b) Scanning electron microscope
image of thermally expanded GO platelets, showing a crumpled shape due to the in-
tertwining during the expansion process. Reproduced from Ref. 10.

of 3:1 and a satisfactory electrical conductivity at approximately 270 S/m [105].

Despite the poor electrical and thermal properties of untreated GO, its high C/O ra-
tio introduces additional reactive functional groups that motivate a variety of chem-
ical, biomedical and mechanical applications [100, 106, 107]. In addition, the hy-
drophilic nature of GO and relatively monodisperse size assist in the formation of
a benchmark well-dispersed system in water-soluble polymer matrices, while keep-
ing the mechanical and geometrical fidelity of a layered nanofiller structure with the
pristine graphene [18,107]. Compared with nanocomposites filled with graphenes or
few-layered GNPs, the GO dispersion has a notably lower percolation threshold with
reversible flocculated network in dispersion [18, 107]. As a result, GO is widely used
as a prototypical material to study the rheology of graphene-derived nanocomposites,
or more generally, nanocomposite systems with high-aspect-ratio nanofillers.

2.1.2 Structure and rheology

Aspect ratio and percolation threshold

Addition of a small amount of well exfoliated nanofillers can lead to significant en-
hancement in the material properties of GDNC materials. The underlying mechanism
arises not only from the superior properties of the nanofillers, but also from an in-
creased surface area (more than 1000 m2/g [88]) due to a high nanofiller aspect ra-
tio [45]. The conformation of nanofillers dispersed in polymer melts or solutions can
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Figure 2-3: Schematic of the nanofiller conformation in a polymer matrix. The stacked
nanofillers, generally in the form of a few-layered structure, can be simplified as an
oblate spheroid with a semi-major axis a and a semi-minor axis b. The interlayer
spacing is primarily characterized by two lengthscales ranging from 0.1 nm to 10 nm,
depending on the state of exfoliation and the conformation of polymer chains in the in-
tercalation. When the nanofiller concentration increases above a percolation threshold
φC, an elastic backbone (dashed line) forms and substantially alters the macroscopic
properties. Notably, aggregates of the layered structures (in orange color) are serendip-
itous due to the persistent van der Waals attraction.

be illustrated in the schematic of Figure 2-3, in which monolayer nanosheets stack in
the [002] direction and form few-layered structures (known as “platelets”) with pos-
sible polymer chains in the intercalation. In practice, completely exfoliated nanofillers
in a continuous phase are less accessible due to the persistent van der Waals attraction
between nanosheets. As a result, the interlayer spacing within the stacked structure
depends on the local state of exfoliation, the chemical compositions, the method of
synthesis as well as exterior conditions, and can be generally characterized by two
lengthscales [45]: If no polymer chains exist in the intercalation, the interlayer spac-
ing is solely governed by the interaction between two adjacent nanosheets and falls
within a range of 0.1 nm to 1 nm (e.g., 0.36 nm for graphenes and 0.6 nm to 0.8 nm for
graphene oxides [45]). In contrary, polymer chains in the intercalation can increase
the interlayer spacing by a factor of 3 to 10 due to reduced nanosheet attraction as
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well as additional intermolecular repulsion arising from the polymer thermal motion
(e.g., 2.2 nm for polyvinyl alcohol intercalated in graphene oxide [108]). At even larger
lengthscales, the van der Waals interactions become weak, and the integrity of stacked
structures is subject to the variations of nanofiller concentration and macroscopic dy-
namics, thus does not conform to a fixed topology. Consequently, the few-layered
structure with an interlayer spacing between 0.1 nm and 10 nm can be treated as a
unit structure to study the nanofiller morphology and its impact on the macroscopic
properties. In light of its stacked geometry, this unit component can be simplified as an
oblate spheroid quantified by its semi-major axis a and semi-minor axis b. The aspect
ratio of this structure can be readily defined as

ξ≡
a
b

. (2.1)

The nanofiller morphology at larger lengthscales (> 10nm) can be subsequently de-
termined by the oblate geometry as well as the concentration. As Figure 2-3 illustrates,
at small nanofiller concentrations, dynamics of the nanocomposite system are primar-
ily governed by the continuous phase as well as the hydrodynamic interactions arising
from individual oblate structures. As more nanofillers are added to the system, there
is a critical volume fraction φC, above which a sample-spanning filler network forms
through an elastic backbone and substantially alters the macroscopic properties. The
value of φC, defined as the percolation threshold, can be connected with the aspect
ratio ξ [109] as

φC ≈
1.5
ξ
=

1.5b
a

. (2.2)

As a result, nanofillers with high aspect ratios are more likely to form a lower fractal
dimensional network through the edge-to-edge or face-to-edge interactions [33]. Ex-
tensive studies have found evident enhancement in the material properties beyond the
percolation threshold, which commonly follows a power-law trend with the quantity
(φ−φC) [45,62]. Consequently, the approach to the percolation threshold is critical in
practice, if significant property improvement is desired. Equation (2.2) readily ratio-
nalizes the application of graphene-derived nanofillers due to their large aspect ratios,
which typically range from 50 to 1000 [45]. As a hallmark of the percolated network,
the electrical percolation threshold has been measured for various GDNC materials,
including GNP/polymethyl methacrylate (PMMA) at 1 vol% [110] and GNP/Nylon-6
at 1.8 vol% [111]. These values are notably lower than those for the nanocomposites
filled with carbon blacks, which normally range from 8 vol% to 9 vol% [65,112,113].
During the processing of GDNC materials, restacking of nanofillers is spontaneous due
to persistent van der Waals attractions, resulting in a decreased effective aspect ratio
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due to an increased layer thickness, thus increasing the percolation threshold propor-
tionally according to Equation (2.2) [62,114]. Due to high aspect ratios of graphene-
derived nanofillers, factors that alter the percolation threshold also include external
deformation imposed on the bulk material that reorients or migrates the anisotropic
nanofillers due to convection [69, 115]. A non-trivial averaged particle orientation
can increase the percolation threshold because of a decreased fractal dimension of the
filler network [116]. Such particle reorientation is particularly common in a number
of manufacturing processes that involve large shear or extensional deformation, which
can adversely impact the resulting properties of the processed materials [116,117]. As
a result, long-time annealing is commonly performed above the glass transition tem-
perature [45] at the end of material processing. The morphology of nanofillers is thus
a combined result of the dispersion state induced by the exfoliation process, the affin-
ity of nanofillers to the surrounding nanofillers and polymer matrices, as well as the
external deformation imposed on the bulk nanocomposites. As a result, it is critical
to understand the morphological variations under various flow conditions in order to
maintain a good dispersion state of nanofillers for effective property enhancement with
minimal filler loadings.

Nanofiller dispersion and rheology

As shown in previous sections, a well-dispersed state for the nanofillers is critical to
induce desired material properties of the bulk nanocomposites, and is highly subject to
variations in the nanofiller geometry, rigidity, and its affinity with different phases in the
material system. As a result, it is prerequisite to justify a satisfying dispersion state of
nanofillers for optimal property enhancement, and it is necessary to seek a connection
between the dispersion state and the micro- or macroscopic measures [17].

In general, the dispersion state of nanofillers in a typical nanocomposite system can
be evaluated either through direct, optical observation of the nanofiller morphology
(e.g., electron microscopic and spectroscopic studies) or indirect measurements of the
nanocomposite properties (e.g., thermal, electrical, rheological or dynamical analy-
sis). Transmission electron microscopy (TEM) is one of the most-used instruments
to provide a direct visualization of the layered nanofiller structure and to measure
the interlayer spacing accurately, from which a local dispersion state can be accessed
[73,118–122]. Figure 2-4(a) and (b) show two examples of the TEM micrographs ob-
tained from individual graphene oxide sheets and exfoliated graphenes in a polymer
matrix, in which the number of layers, aspect ratio and layer spacing can be read-
ily measured and used to justify their dispersion states [11, 12]. However, challenges
remain in the observation of highly-deformed or single-layer nanosheets due to the
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limited resolution [62, 119]. In addition, measurements from TEM are highly local-
ized (with an observation window from 0.1 µm to 10 µm) and can result in biased
characterizations if the system is non-homogeneous [62]. To obtain structural infor-
mation on a lengthscale closer to bulk nanocomposites, X-ray diffraction (XRD) is ap-
plied to examine the averaged layer spacing, which is a practical measure to infer the
state of intercalation and stacking [13, 121]. Here, an example is shown in Figure 2-
4(c) for a GO/PMMA nanocomposite system with optional addition of microazoinitia-
tor (MAI) [13], and an increased layer spacing is captured from the shift of 2θ peak
value due to the presence of MAI in the intercalation. However, valid measurements
of XRD require sufficient amounts of crystalline structures, which are less accessible
for a nanocomposite system with nearly complete exfoliation [62]. Besides the two
major observation techniques, local nanosheet topology can also be probed accurately
through atomic force microscopy (AFM). An example is shown in Figure 2-4(d), where
the AFM image of functionalized graphene sheets is captured in a contact mode, and
the thickness of a single-layer graphene sheet can be read out from the stepped height
along the microscopic tip path [14].

More recently, scattering techniques have been widely applied to obtain more compre-
hensive information of the nanofiller morphology in bulk nanocomposites over a wide
range of lengthscales [123]. The intensity profile plotted as a function of wavenum-
ber is captured from scattering at different lengthscales and can be used as a measure
to infer the structural information, including the layer spacing (at a wide scattering
angle) and the fractal dimension (at a small scattering angle) [124]. As shown in Fig-
ure 2-4(e), the intensity profile obtained from x-ray scattering techniques is plotted for
graphite and functionalized graphite sheets in polyethylene naphthalate (PEN) [15].
The top and middle subfigures show the intensity profiles at wide scattering angles
to characterize the structural information at a smaller lengthscale (0.1 nm to 10 nm).
The peak of the scattering intensity disappears at q ≈ 18.4nm−1 for the functional-
ized graphite sheets (middle subfigure), which corresponds to an interlayer spacing for
graphite of approximately 0.34 nm, justifying an exfoliated state with better dispersion.
At smaller scattering angle, small-angle X-ray scattering (SAXS) and ultra-small-angle
X-ray scattering (USAXS) techniques can be used to measure the fractal dimension df.
This fractal dimension quantifies the connectivity of the percolated network and pro-
vides a more complete knowledge of the nanofiller morphology, which has been directly
connected to the bulk material properties [45]. An example is shown at the bottom of
Figure 2-4(e) with a notably small wavenumber range of 0.01 nm−1 to 1 nm−1 (corre-
sponding to a characteristic lengthscale of 6.28 nm to 628 nm). Via the intensity profile
at low wavenumbers, the fractal dimension df can be obtained by examining the power-
law exponent, where the scattering intensity scales as I(q)∼ 1/qdf [17,125,126].
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(a)

(b)

(c)

Graphite

GO

PMMA
MAI/GO

(d)

(e)

Figure 2-4: Examples of direct observations of graphene-derived nanofillers via a num-
ber of techniques. (a) TEM micrograph of commercial graphene oxide (FL-GOc, top)
and better exfoliated reduced graphene oxide (FL-RGOc, bottom) platelets. Repro-
duced from Ref. 11. (b) TEM micrograph of Py-PGMA-graphene/epoxy nanocompos-
ites. Reproduced from Ref. 12. (c) XRD measurement of GO/PMMA with optional
addition of macroazoinitiators in the intercalation. Reproduced from Ref. 13. (d) AFM
image of functionalized graphene sheets. Reproduced from Ref. 14. (e) X-ray scat-
tering intensity profile for graphite (top) and functionalized graphite sheets (middle)
in PEN. The bottom figure is obtained from small angle X-ray scattering (SAXS), from
which a fractal dimension can be obtained. Reproduced from Ref. 15.

Admittedly, the direct observations by microscopic and scattering techniques provide
clear visualizations of the nanofiller morphology. A more practical (and possibly more
“direct” in the context of property enhancement) method to probe the dispersion state
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is through examining the resulting bulk-phase material properties. In particular, a
number of rheological techniques are available that permit versatile protocols to char-
acterize the material responses under small and large deformations that are consistent
with the working conditions in real manufacturing processes, from which a compre-
hensive picture of the bulk structure-rheology relationship can be established [17,45].

The results from previous studies have provided rich rheological information for a va-
riety of nanocomposites with high-aspect-ratio nanofillers [15,17,45,62,69,127–132].
General rheological studies primarily focus on both the linear and nonlinear regimes.
Linear rheology characterizes the dynamic responses resulted from the material struc-
ture and nanofiller morphology, whereas non-linear rheology characterizes the mor-
phological variations that are subject to large material deformation. The most promi-
nent observation for a percolated nanocomposite system from linear rheology is the
progressive formation of a non-trivial low-frequency storage modulus G′0 as the con-
centration increases, which can be attributed to the additional elasticity arising from
the percolated backbone. Figure 2-5(a) shows an example for the nanocomposite sys-
tem filled with graphite and functionalized graphite sheets (FGS), in which the storage
moduli of both material systems progressively flatten as the concentration reaches the
percolation threshold [15]. Notably, a smaller concentration at which the storage mod-
ulus flattens can be identified for the FGS (orange lines), indicating an improved state
of dispersion [15]. The detection of G′0 can be assisted by a number of alternative plots,
including the van Gurp-Palmen plot (i.e., the phase angle δ against |G∗|) and Han plot
(G′ against G′′), in which the convergence of G′ in the low-frequency limit can be more
clearly visualized [133]. Figure 2-5(b) shows an example of the van Gurp-Palmen plot
for multi-walled carbon nanotubes (MWCNT) suspensions, from which the value of G′0
was readily determined by extrapolating to a vanishing phase angle, or δ = 0 [16].
The low-frequency storage modulus G′0 is a measure of the percolated network elastic-
ity, and its value commonly scales with the volume fraction as G′0 ∼ (φ −φC)α ∼ φα
in the limit of φ ≫ φC, as exemplified in Figure 2-5(c) for two clay/polypropylene
nanocomposites [17]. The exponent α can be further connected to the bulk structural
information of the fractal dimension [17,109,134] as

α=
3+ x
3− df

, (2.3)

where df is the fractal dimension of the percolated network, and x is a shape factor
that is dependent on the number of particles in the oblate structure as illustrated in
Figure 2-3. Equation (2.3) thus constructs a practical relationship between the mea-
sured rheology and the nanofiller structure, which can be readily used to evaluate the
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dispersion state.

Because of a plateau storage modulus at low frequencies, nanocomposites with φ ≥
φC feature a non-zero yield stress, which can be obtained through steady flow tests.
Figure 2-5(d) shows an example steady flow curve for aqueous GO dispersions, where
the shear stress plateaus at low shear rates (corresponding to Peclet numbers Pe≪ 1)
and high concentrations [18]. This trend of the steady shear stress can be practically
described by the Herschel-Bulkley model [135] as

σ(γ̇) = σ0 + kγ̇n, (2.4)

where σ0 is the yield stress, and k and n describe the shear-thinning behavior at high
shear rates in a power-law manner. The yield stress σ0 can be connected to the low-
frequency storage modulus G′0 by σ0 = G′0γ0,c, where γ0,c is the critical oscillatory
strain beyond which non-linear behavior arises [136]. In light of the high-aspect-ratio
nature, a flow-induced nanofiller orientation can alter the bulk rheology as well, as
a result of the induced anisotropy that effectively reduces the structural dimension
[62]. This change in the fractal dimension is evident in the limit of low nanofiller
concentrations, when the increase in the shear viscosity is mainly attributed to the
hydrodynamic interactions between the nanofillers and the continuous phase. As a
result, classical semi-empirical expressions of the Einstein-Batchelor (E-B) [137, 138]
or the Krieger-Dougherty (K-D) [139] equations are applicable, which can be expressed
as

E-B: ηr = 1+ 2.5φ + 6.2φ2, (2.5a)

K-D: ηr =
�

1
1−φ/φm

�[η]φm

, (2.5b)

where ηr = η/ηcon is the dimensionless relative viscosity and ηcon is the viscosity of
continuous phases. Here, [η] is the intrinsic viscosity and φm is the maximum packing
fraction. In an ideal scenario of spherical monodisperse fillers, the value of φm is
0.64 [20, 140]. Figure 2-5(f) shows an example for the evolution of relative viscosity
as a function of the volume fraction for low- and high-aspect-ratio nanofillers, both of
which can be well described by the K-D equation, thus justifying the viscosity increase
arising from the hydrodynamic interactions at low nanofiller concentrations [19, 20].
However, discrepancies in the viscosity between the two shapes of nanofillers mainly
arise from a decreased maximum packing fraction due to the anisotropic nature of
nanofillers with high aspect ratios, which broadly scales inversely with the nanofiller
aspect ratio [19,114].
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This relation can be similarly interpreted from the perspective of the percolation thresh-
old according to Equation (2.2). Taking carbon nanofibers as an example, the perco-
lation threshold can be reduced to 0.05 [20]. The filler-induced microstructures at
varying nanofiller concentrations, while exhibiting different behavior in the bulk rhe-
ology as a result of distinct filler-filler (percolated network) or filler-matrix (hydro-
dynamic) interactions, still share similar rheological trends. Such similarity can be
described through time-concentration superposition (TCS) [127]. The development
of a robust superposition model remains an ongoing research topic. Recently, phe-
nomenological models have been proposed to construct the TCS for a number of ma-
terial systems [127, 141–145], from which modulus and frequency shifting factors as
well as other rheological parameters such as the yield stress can be extracted. Despite
a number of studies on the TCS of nanoparticle filled systems, the application of TCS
to GDNC systems has been scarce so far. Figure 2-5(f) shows the collapsed storage
moduli through TCS for a number of different nanocomposite systems [21]. The col-
lapsed moduli data exhibit similar material responses shared by different nanofillers to
describe the interplay between the continuous and nanofiller phases in dominating the
resulting linear rheology over a wide frequency range. Consequently, a practical TCS
model can promote better understanding for the origins of the rheological behavior
from a material perspective [21,127].
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Figure 2-5: Typical rheological characterizations for various nanocomposite systems.
(a) Dynamic moduli of graphite and functionalized graphite sheets (FGS) through
small amplitude oscillatory shear. An estimated G′0 is marked in orange at the percola-
tion threshold. Reproduced from Ref. 15. (b) van Gurp-Palmen plot for multi-walled
carbon nanotubes. Reproduced from Ref. 16. (c) Top: Low-frequency plateau stor-
age modulus and critical strains for clay/polypropolene nanocomposites. Middle and
bottom: SAXS and TEM results to characterize the fractal dimension. The rheological
and scattering information are combined to determine the dispersion state. Repro-
duced from Ref. 17. (d) Steady shear flow curve of GO dispersions, fitted with the
Herschel-Bulkley model (solid lines). Reproduced from Ref. 18. (e) Relative viscos-
ity for low- and high-aspect-ratio nanofillers fitted with the Einstein-Batchelor (E-B)
and Krieger-Dougherty (K-D) equations. Reproduced from Ref. 19 and originally from
Ref. 20. (f) Reduced storage moduli through both modulus and frequency shifting for
the nanocomposite systems with various types of nanofillers. Reproduced from Ref. 21.

51



CHAPTER 2. Literature Review on GDNC Rheology and Applications

Methods to improve dispersion

In order to improve the state of nanofiller dispersion to optimize property enhance-
ment, different processing methods have been applied, depending on the state of pre-
cursors and the compatibility with various manufacturing processes. In general, these
dispersion methods can be subsumed into two categories.

The first category, as introduced previously for the production of nanofillers, is to break
down large agglomerates or to delaminate the nanofiller layers [62]. While this process
occurs concomitantly in the exfoliation process induced by chemical reactions or ther-
mal shocking as briefly introduced previously, the most common protocol, applied in
both lab and industry, is through solution or melt blending to induce non-covalent dis-
persions. In this protocol, dried nanofillers, readily exfoliated nanofiller suspensions or
solutions are added to the desired polymer matrix and subsequently mixed under high-
shear deformation. For solution mixing, the nanocomposites can be obtained through
either precipitation with a non-solvent, or by mold casting and subsequent removal of
solvent [45]. Ultrasonication can be also subsumed into this category because of a sim-
ilar mechanism. The method of blend mixing has been widely adopted for exfoliated
graphene-derived platelets due to its compatibility with a variety of polymers [45], in-
cluding polystyrene [146], polyimides [147], polymethyl methacrylate (PMMA) [148]
and polyvinyl alcohol (PVA) [149]. In addition, thermal or chemical methods have
been recently used to reduce or screen the platelet interactions for better dispersion.
Examples include the application of surfactants [150], lyophilization [151] and phase
transfer [152].

The second category of the dispersion methods is through in situ polymerization, which
generally renders a better dispersion state without the application of extremely high-
shear conditions [45]. The polymerization process can result in delaminated layers
with improved exfoliation through the intercalation of monomers with relative rigid
structures and consequently a more homogeneous system [62]. An evident advantage
of this technique is tunable nanofiller-matrix interactions through the reactive func-
tional groups on the nanofiller surface that readily react with the monomers, which en-
able the nanofillers to be grafted with long polymer chains through physical of chemical
bonds. Such grafting can be either covalent [153,154] or non-covalent (e.g., hydrogen
bonding) [13, 81, 108, 155–158]. A number of previous studies have demonstrated
an increased interlayer spacing with in situ polymerization, which results in signif-
icantly improved dispersion [76, 111, 155, 159]. However, the in situ polymerization
technique has so far been limited to the monomers that can be simultaneously polymer-
ized in solvents and are compatible with a selected range of nanofillers. In addition,
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the filler-monomer suspension needs to maintain a low-to-medium viscosity to achieve
homogeneous polymerization in the bulk phase [45]. These limitations have inhibited
the application of this technique for mass productions.

In industry, melt blending is deemed a cost-efficient and scalable method for the mass
production of thermoplastic polymer nanocomposites [15,69,121,124,160]. The large
stress resulting from a vigorous shearing process as well as high viscosity of the polymer
melts has proven to assist in direct exfoliation of layered silicate nanocomposites [161].
Studies have also found generally higher alignment of the nanofillers than the solution
mixing method at same nanofiller loadings due to a confined geometry and higher
shear rates [162]. Previous studies on the melt-blending technique have focused on
thermally expanded GO and GNP particles dispersed in various polymer matrices that
are directly fed into a compounding process for industrial applications, as exemplified
by polypropylene [110,163], polyethylene [164], polyethylene naphthalate (PEN) [15]
polyurethane [162], polycarbonate [69] and natural rubbers [160]. However, it re-
mains challenging for the melt-blending technique to reach the same level of dispersion
for graphene-derived nanofillers as obtained from solution mixing [45, 162]. In addi-
tion to the relatively poor level of dispersion, challenges that barricade the approach to
an optimal dispersion state also include proper handling of low-density nanofillers and
biotoxicity that arises from these nanofillers during the loading process [165,166].

In general, the performance of a compounding process primarily depends on the de-
sign of flow kinematics, which are critical in altering the nanocomposite morphology,
especially for nanofillers with high aspect ratios [167]. In practice, the design of flow
kinematics for a melt blending process is limited by the material properties, such as the
thermal instability of polymer matrices or even nanofillers at high temperature, and the
drastic density difference between the matrix and dried nanofillers that result in large
aggregations prior to the dispersion process [168]. As a result, an effective protocol
is desired to induce optimal dispersion without impairing the structural integrity of
nanocomposite systems.

More recently, a number of studies have proposed innovative designs to improve the
conventional twin-screw extrusion process with the introduction of strong extensional
flow to break down the aggregates and optimize the pulverization and dispersion of
fillers in the nanocomposites [168,169]. The idea of using extensional flow originally
came from Grace [22] in the study of dispersing an immiscible fluid-fluid emulsion
system. As shown in Figure 2-6 reproduced from the original paper, an extensional
flow, here labeled as an “irrotational shear” flow (dashed line) showed superior ad-
vantages over the shear counterpart (solid line) in effectively breaking up small drops
(area above the lines) when the viscosities of the two phases significantly contrast,
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whereas a maximum viscosity ratio of µD/µC ≈ 4 is identified for shear flow, beyond
which drops become unbreakable regardless of the magnitude of input shear stress1.

Breakable

Unbreakable

Figure 2-6: Critical drop draw-ratio against viscosity ratio of the two phases. The
critical drop value for rotational shear flow (solid lines) is bounded at a viscosity ratio of
approximately 4, beyond which the drops are unbreakable through shear flow, whereas
an extensional flow (dashed line) shows the capability to break up large drops even
at high viscosity ratios, providing that a sufficient stress is imposed. Reproduced from
Ref. 22.

A number of prototypes have since been available that enable a strong extensional flow
to the existing compounding process, either as standalone devices (e.g., extensional
flow mixer [170] and elongational flow reactor & mixer [171]), or as attachments to
a commercial compounder (e.g., extensional mixing element [169, 172]). The exten-
sional flow has been proved to be effective in dispersing graphites and carbon blacks
in a number of polymer matrices, such as polystyrene [173], PMMA [173], ethylene
propylene diene monomer (EPDM) rubber [171] and polylactic acid (PLA) [174]. Nev-
ertheless, the new compounding devices or attachments bring engineering challenges
for durability and maintenance in the context of mass production, as well as extra costs
for the update of existing compounding lines. In addition, the extensional deforma-
tion, commonly induced by a hyperbolically converging channel, is driven by a large
pressure gradient, and the accumulated Hencky strain is primarily set by the geometry,

1The “irrotational shear” flow essentially specifies an extensional flow, and the terminology was used
in the original paper to refer to the 4-roll system, from which the flow was generated.
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which may not suffice to break up smaller aggregates. As a result, new protocols based
on existing compounding instruments with increased flexibility are desired and being
actively explored.

Due to the simple configuration and optimal scalability for mass production, flow-
induced dispersion methods have gained increased attention by automotive indus-
tries [169, 172, 175]. In many contexts, large deformation of polymer composites is
inevitable in a number of applicable manufacturing processes, such as blow molding,
fiberspinning and 3D printing [17, 62]. However, a comprehensive understanding of
the non-linear rheology for the composite systems with anisotropic nanofillers is still
absent, which inhibits further optimization of the material synthesis, design of disper-
sion protocols and manufacturing processes [62]. In light of the remaining limitations,
this thesis is aimed at understanding the rheology of graphene-derived nanocomposite
and probing the structural variation under strong shear and extensional flows in the
non-linear regime.

2.2 Techniques for rheological characterizations

2.2.1 Shear rheology

Shear rheology can be characterized by a commercial shear rheometer. In the most
common experimental set-up on a rotary rheometer, a sample is placed between two
precisely manufactured coaxial conic or plate geometries, and one geometry axially
rotates to impose shear motion to the interstitial fluid. The temporal evolution of the
shear rate and shear stress is obtained by the angular velocity and torque measured
from the embedded encoder and force transducer. The linear rheology is probed pri-
marily through small amplitude oscillatory shear (SAOS), where a sinusoidal shear
motion with a small oscillatory strain is imposed to the sample, and a sinusoidal stress
response is expected with modified amplitudes and phases due to viscous and elas-
tic responses. The storage and loss moduli, G′ and G′′, obtained from the sinusoidal
histories reveal the viscoelastic dynamics of the tested sample in the linear region,
from which the structural information arising from the complex material components
and their interactions can be implied. By plotting G′ and G′′ in the van Gurp-Palmen
form (δ or tan(δ) against |G∗|, as introduced previously in this chapter), the liquid-
to-solid transition can be captured as the filler loading increases and the phase angle
progressively vanishes, and the low-frequency storage modulus G′0 as introduced in the
previous sections can be obtained from extrapolation.
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The dynamic moduli are further fitted into a number of well-established constitutive
models to extract meaningful physical parameters. Alternatively, the complex linear
viscoelastic response can be clearly visualized through inspecting the relaxation time
spectrum. As Figure 2-7(a) illustrates, the Maxwell model, as a well-known bench-
mark, is comprised of a spring (with a modulus G0) and a dashpot (with a viscosity
ηP) connected in series, which gives rise to a single relaxation time λ = ηP/G0, and
the resulting constitutive equation can be expressed as

σ+λσ̇ = ηPγ̇, (2.6)

where σ and γ= γ1+γ2 are the stress and strain imposed on either end of the spring-
dashpot structure. By taking Fourier transform on both sides of Equation (2.6), the
storage and loss moduli can be obtained as

G′(ω) =
G0(λω)2

1+ (λω)2
, (2.7a)

G′′(ω) =
G0(λω)

1+ (λω)2
, (2.7b)

(2.7c)

as plotted in Figure 2-7(b) as thin solid and dashed lines. For a complex viscoelastic
fluid, multiple relaxation modes may exist, and a continuous relaxation time spectrum
H(λ) can be defined based on the results from the single-mode Maxwell model, such
that the storage and loss moduli can be expressed [136] as

G′(ω) =

∫ ∞

0

H(ξ)
(ξω)2

1+ (ξω)2
d lnξ, (2.8a)

G′′(ω) =

∫ ∞

0

H(ξ)
ξω

1+ (ξω)2
d lnξ. (2.8b)

To incorporate multiple relaxation modes in the constitutive model, the spring-dashpot
structure for Maxwell model illustrated in Figure 2-7(a) can be aligned in parallel
with individual sets of parameters (ηP,i, G0,i), resulting in a series of discrete relax-
ation modes H(λ) =

∑n
i=1 G0,iλiδ(λ−λi), where δ(t) is the Dirac delta function, and

λi ≡ ηP,i/G0,i. In this thesis, the concept of a fractional “springpot” (as a semantic
combination of “spring” and “dashpot”) is implemented to derive a more compact de-
scription for a broad relaxation time spectrum [23,176]. Under a special circumstance
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}
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Figure 2-7: Derivations and characterizations of a fractional springpot. (a) Spring-
dashpot analogy of the Maxwell model, the generalized Maxwell model and notation
of a springpot parameterized by a quasiproperty V and fractional exponent α. (b) Fre-
quency responses of the dynamic moduli for the Maxwell model (thin lines) and a frac-
tional springpot (thick lines). Solid and dashed lines correspond to storage modulus
G′ and loss modulus G′′. (c) Continuous relaxation time spectrum for the generalized
Maxwell model (series of Direc delta functions) and a fractional springpot (continuous
power-law function). (d) Spring-dashpot analogy for a fractional springpot. Repro-
duced from Ref. 23.

when the discrete time spectrum shows a broad power-law trend, the constitutive equa-
tion can be written in a simple form using the fractional derivative [177] as

σ = V
dαγ
dtα
≡
V

Γ (1−α)

∫ t

0

(t − ξ)−αγ̇(ξ)dξ, (2.9)

where dα/dtα is the fractional derivative operator, and Γ (x) is the gamma function. In
the limit of α= 0 and α= 1, Equation (2.9) is reduced to the constitutive relations for a
spring and a dashpot, respectively. The single springpot can be equally represented by
an infinite series of springs and dashpots, which has been demonstrated previously [23]
as shown in Figure 2-7(d). The resulting storage and loss moduli can be similarly
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calculated from Equation (2.9) as

G′(ω) = Vωα cos
�

πα

2

�

, (2.10a)

G′′(ω) = Vωα sin
�

πα

2

�

, (2.10b)

both of which show power-law trends with frequency with an identical exponent α,
as illustrated in Figure 2-7(b) in thick solid and dashed lines. By combining multiple
springpot components, a more complex time spectrum can be generated. It will be
shown in later sections that this model provides a compact, however, accurate descrip-
tion of the linear rheological behavior for a range of materials.

The non-linear shear rheology can be probed through the transient flow response by
either imposing a step strain, a step-up strain rate or a constant stress and monitor-
ing the resulting dynamics [136]. For a complex fluid with a broad relaxation time
spectrum, the material response can exhibit distinct rheological behavior at different
timescales. When the input strain or stress is sufficiently large, the resulting material
response can substantially deviate from the linear behavior, and the nanocomposite
morphology is subject to variations. An enhanced understanding of the non-linear rhe-
ology constitutes a practical measure of the flow-induced material properties, which
in turn provides insights into the beneficial modifications to the nanofiller morphology
with possibly improved structural and rheological performance. In this thesis, a K-BKZ
constitutive framework combining the linear viscoelasticity using the fractional models
and damping functions [177] will be applied to produce a robust model for the GDNC
systems to describe the microstructural variations under large deformation for multiple
phases in the system, and more detailed will be provided in Chapter 5.

2.2.2 Extensional rheology

In addition to the rheological characterization in shear flow, material responses in an
extensional flow are less focused for the GDNC systems, however, of paramount im-
portance in real manufacturing processes. In an extensional flow, a fluid deforms in an
irrotational manner. Mathematically, its kinematics can be described by a strain-rate
tensor with only diagonal terms as

γ̇=





−ε̇ 0 0
0 −ε̇ 0
0 0 2ε̇



 . (2.11)
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Figure 2-8: Examples of extensional flows at different lengthscales. (a) Kinetoplast
deformed in a planar extensional flow. Reproduced from Ref. 24. (b) Pudding samples
before and after contact with human saliva under extensional flow. Reproduced from
Ref. 25. (c) Lava splashing during active volcano eruption2. (d) Illustration in memory
of the Great Molasses Flood that occurred in the North End neighborhood of Boston,
1919, depicting the moment of explosion of the molasses tank3.

Extensional flow is prevalent in real life over a wide range of lengthscales. As shown
in Figure 2-8, a number of examples are illustrated over a lengthscale range from 1×

2T. Sasaki, Getty Images. [Online]. Available: https://science.howstuffworks.com/
nature/natural-disasters/single-volcanic-eruption-destroy-all-life.htm, Ac-
cessed on: Aug. 30, 2021.

3B. Walker, Scholastic News. [Online]. Available: https://sn4.scholastic.com/issues/
2018-19/010719/the-great-molasses-flood.html, Accessed on: Aug. 30, 2021.

59

https://science.howstuffworks.com/nature/natural-disasters/single-volcanic-eruption-destroy-all-life.htm
https://science.howstuffworks.com/nature/natural-disasters/single-volcanic-eruption-destroy-all-life.htm
https://sn4.scholastic.com/issues/2018-19/010719/the-great-molasses-flood.html
https://sn4.scholastic.com/issues/2018-19/010719/the-great-molasses-flood.html


CHAPTER 2. Literature Review on GDNC Rheology and Applications

10−6 m to 1 × 102 m, including the deformation of kinetoplasts [24] and the mixture
of pudding and human saliva [25], lava splashing during volcano eruption and the
explosion of molasses tank in memory of the Great Molasses Flood that took place in
Boston, 19194.

Unlike shear flow, the steady extensional flow is deemed a strong flow due to its ex-
ponentially increasing principal elongational ratio, λ1 = exp(ε̇t/2), where ε̇ is the
magnitude of the extensional rate [136]. Therefore, the rheological response in ex-
tensional flow is noticeably different from that in shear flow. To describe the material
response in extensional flow, an extensional viscosity can be defined using the first
normal stress difference as

ηe =
σ11 −σ22

ε̇
, (2.12)

where σ11 and σ22 are the first and the second normal stress component of the stress
tensor. For a Newtonian fluid in uniaxial extension, this corresponds a constant exten-
sional viscosity of ηe = 3η, where η is the shear viscosity [178].

Because of the nature of irrotational deformation, the rheological behavior in exten-
sional flow cannot be captured directly by a shear rheometer. Unlike a rotary shear
flow where a steady state can be readily obtained, pure extensional flow is commonly
transient, and special care in the data processing is necessary to justify the obtained
measurements. The dynamics of extensional deformation greatly diversify as the rhe-
ological complexity of the tested sample varies. In addition, measurements in exten-
sional flow can be potentially modified by additional factors, such as the fluid inertia,
gravity and the surface tension, while these factors are relatively easy to handle with
in the shear flow. As a result, a universal instrument to quantify extensional rheology
is hardly accessible, and existing extensional rheometers are generally applicable to a
certain operating spaces bounded by viscosities or characteristic strain rates [26, 35].
Figure 2-9 provides an overview of the existing extensional rheometers with their oper-
ating regimes [26]. Based on the imposed strain rates, common extensional rheometers
can be fitted into three categories, and they are briefly introduced as follows.

The first category is filament stretching rheometer. This type of extensional rheometer
operates in the similar principle as a commercial shear rheometer by imposing a con-
stant strain rate, but in extensional flow. A sample is placed between two coaxial discs,
which are separated in a pre-programmed profile in order to induce the desired flow
kinematics. The material response is quantified by the normal stress measured from the

4Regretfully, even though the explosion of the molasses tank that induced a strong extensional flow
was characterized by a lengthscale of 1×102 m, the disastrous shear flow of the molasses that followed
affected an area with a lengthscale of more than 1× 103 m.
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Figure 2-9: Existing extensional rheometers and their applicable ranges of viscosity
and strain rates. Reproduced from Ref. 26.

end of the discs, commonly by force or stress sensors, and the material properties can
be calculated subsequently. The major advantages of this type of extensional rheometer
include no necessary a priori knowledge of the constitutive equation, and customizable
kinematic profiles to investigate more complex rheological behavior. However, unlike
the shear rheometer on which a steady state can be reached by imposing a constant
rotational speed, a steady extension requires an exponentially increasing disc separa-
tion. Such rapidly increasing actuation cannot last long due to the limitations in the
instrument size, motor acceleration and sensor resolution as the filament approaches
pinch-off. In addition, the transient measurements can be susceptible to surface ten-
sion due to the non-trivial filament curvature as well as gravity, when the material
response is altered profoundly. To alleviate the measuring bias induced by unwanted
environmental factors, advanced control strategies need to be implemented, adding
up to the complexity of the instrument design and operation [179]. In light of these
limitations, the filament stretching technique is found useful for the measurements of
highly viscous complex fluids, such as polymer melts or rubber-like liquids [178]. Ex-
amples of this type of extensional rheometer include the Münstedt creepmeter [180],
the Meissner’s rheometer with rotary clamps [181], the Reotens tensile test [182],
the SER device [183] and a number of filament stretching extensional rheometers
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(FiSER) [183–185].

The second category is capillarity-driven extensional rheometer. In this type of exten-
sional rheometer, a similar geometrical configuration as in filament stretching rheome-
ters is identified with a liquid sample (approximately 10 µL to 50 µL) placed between
two coaxial discs. Instead of a pre-programmed profile to induce a constant strain
rate in the first category, a sufficiently large step-strain is imposed to the liquid sample
beyond its Rayleigh-Plateau limit, subsequently initiating a transient filament thin-
ning process [35]. The filament kinematics are primarily resulted from a balance
between the driving capillary pressure and the resistance from the viscous and elas-
tic stresses described by the constitutive equation. The constitutive parameters can
be obtained by fitting the measured filament thinning profile with the prediction line
from the specified constitutive model. Compared with the first category of extensional
rheometer, the instability-induced rheometer requires less stringent control of the in-
strument actuation, thus simplifying the instrument design and experimental proce-
dures with improved robustness in the measurements. However, a priori knowledge
of the constitutive equation is necessary to calculate a reference prediction of the fila-
ment thinning profile in order to obtain valid constitutive parameters through fitting
and data processing. As a result, the instability-induced extensional rheometry is not
suitable for constructing new constitutive models for an unknown complex fluid, but
to obtain meaningful constitutive parameters based on an appropriately selected con-
stitutive model. In practice, this constitutive model is selected empirically from the
measured filament thinning profile. However, if the capillarity-driven thinning dy-
namics are complex, the model selection can be heavily biased, and the subsequent
fitting of the measured filament thinning profile may lead to biased understanding of
the rheological behavior that only applies to a particular range of strain rates. It is un-
doubtedly an ongoing work to introduce new constitutive equations to the arnesal of
model candidates for more accurate and comprehensive measurements of the material
properties [35], but it remains a challenge so far to choose the best-fit model with a par-
simonious set of parameters [29]. Over the past few decades, a number of different ex-
tensional rheometers that adopt the instability-driven mechanism have been designed,
and representative examples include the microfilament rheometer [186], the capillary
breakup extensional rheometer and its variations [35,187,188], and the jetting-based
extensional rheometer (free jet elongation rheometer [189], Rayleigh-Ohnesorge jet-
ting extensional rheometer [190]), and dripping-on-substrate devices [191]).

The third category is microfluidic-based rheometer. This type of extensional rheome-
ter utilizes precisely fabricated microfluidic channels to induce a well-defined planar
extensional flow. Because of the channel flow in the absence of free surface, a steady-
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state extensional flow can be achieved to obtain more accurate characterizations with
additional in situ measurements, such as microscopic or birefringence observations to
probe the structure-rheology relationship. It also creates a miniature extensional-flow
environment that is increasingly applied to enhance the understanding of the material
responses to the external mechanical deformation for a number of bioactive matters,
such as bacteria, single cells and single DNA strands [24, 192]. The primary chal-
lenges that barricade the application of this type of extensional rheometer are in the
design and fabrication of the flow channels, as well as a precise control of the flow
rate or pressure at each in- and outlet to induce the desired flow field. In addition,
a relatively large volume of fluid samples is needed to maintain the steady state, and
the allowed viscosity of the tested sample is limited (≲ 1Pa s) by the flow actuator
capability and the mechanical strength of the flow circuit, due to the inversely propor-
tional relation between the millimeter-scaled channel size and the channel pressure
difference, ∆P ∼ 1/R4 (at a fixed flow rate) according to the Hagen–Poiseuille equa-
tion [193]. Examples of this type of extensional rheometer include the E-VROC [194]
microfluidic chip and the cross-slot geometry with the addition of birefringence mea-
surements [195].

As Figure 2-10 shows, extensional flow is observed in various manufacturing processes,
with typical examples of melt blowing, molding and spinning, as well as extrusion in
food processing [196]. However, a profound knowledge for the extensional rheology
of the raw materials in these applications, as well as rapid measuring protocols are
yet to be attained [196,197]. For polymer melts or entangled polymer solutions, rhe-
ological characterizations in extensional flow are mostly obtained from the filament
stretching technique [178, 198], while applications of the capillarity-driven thinning
technique are limited in dilute or semi-dilute regimes [35,199–201]. Previous studies
on the extensional rheology of polymer nanocomposites are mostly phenomenological,
with a number of exploratory works focusing on simplified subsystems such as aque-
ous dispersions [202], yield stress fluids [203–205] and emulsions [206], while their
rheological fidelity to the more complex real nanocomposites is yet to be justified in
the absence of morphological information.

Capillary breakup extensional rheometry

The capillary breakup extensional rheometer (CaBER) is a typical measuring instru-
ment of the second category as introduced above, which has been extensively used to
characterize the rheological behavior of various complex fluids in an effective and ac-
curate manner [35]. As shown in Figure 2-11, in a typical geometrical configuration,
a cylindrical fluid sample (approximately 60 µL) is placed between two coaxial discs
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(a) (b)
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Polyer chains (not in intercalation)

Figure 2-10: Examples of industrial applications featuring extensional deformation.
(a) Melt blowing process for the production of surgical masks5. Zoom-in view: Non-
woven structure from melt-blown polypropylene/polyethylene glycol copolymers. Re-
produced from Ref. 27. (b) Extrusion blow molding process6. (c) Schematic of melt
spinning process. Reproduced from Ref. 28. (d) Pasta extruded from semolina flour7.

of radius R0 with an initial separation of L0. The two discs are separated axially by
a rapid step-strain to a distance of Lf beyond the Rayleigh-Plateau limit. As the discs
separate, a liquid filament forms and subsequently undergoes a self-thinning process,
which is governed by the visco-elasto-capillary interactions. The temporal evolution of
the minimum filament radius R(t) is recorded by an optical device such as a laser mi-
crometer or a high-speed camera. The measurements are fitted to the prediction from
a suitable selection of the constitutive model for the extraction of material parameters.

In the data processing of CaBER measurements, the inertial and gravitational effects

5Wikipedia contributors, Melt Blowing. [Online]. Available: https://en.wikipedia.org/
wiki/Melt_blowing, Accessed on: Aug. 30, 2021.

6Alison, Injection Blow Molding vs Extrusion Blow Molding. [Online]. Available: https://
e2global.com/injection-blow-molding-vs-extrusion-blow-molding, Accessed on: Aug.
30, 2021.

7Lucy Vaserfirer, More Adventures in Extruded Pasta. [Online]. Available: http://www.
hungrycravings.com/2014/02/more-adventures-in-extruded-pasta.html, Accessed on:
Aug. 30, 2021.
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Step 1 Step 4Step 3Step 2
Data processing

Figure 2-11: Steps of a generic CaBER measurement. Reproduced from Ref. 29.

are commonly negligible to simplify the calculation. These conditions are often jus-
tified through the dimensionless Ohnesorge number Oh and the initial Bond number
Bo0, which are expressed [35] as

Oh≡
η
p

ρΓR0

≳ 0.1, (2.13a)

Bo0 ≡
ρgR2

0

Γ
≪ 1, (2.13b)

where η, ρ, Γ are the characteristic shear viscosity, density, and surface tension of the
liquid sample, respectively. Finally, the temporal evolution of the filament radius can
be solved analytically from the stress balance in the axial direction of the filament as

Fa(t)
πR2
− ΓK = σzz −σr r ≡ η+e ε̇, (2.14)

where σzz and σr r are the corresponding components of the stress tensor σ, and η+e
is the transient extensional viscosity. At the minimum filament radius where the mea-
surements are taken, the local strain rate of the slender filament can be calculated
as

ε̇= −
2Ṙ(t)
R(t)

. (2.15)

The term Fa(t) describes an axial force exerted at the end of the filament from adjacent
fluid elements, which, by dimensional analysis, can be expressed as Fa(t) = 2πXRΓ .
Here, X is a dimensionless geometric correction factor that accounts for the slenderness
of the filament shapes (i.e., X = 1 corresponds a cylindrical filament). The capillary
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pressure contribution ΓK is calculated from the Young-Laplace equation [193], and the
mean curvature K can be expressed as

K =
1

R[1+ (∂zR)2]1/2
+

∂zzR
[1+ (∂zR)2]3/2

, (2.16)

where ∂zR≡ ∂ R/∂ z = 0 and ∂zzR≡ ∂ 2R/∂ z2 ≈ 0 at the position where the filament ra-
dius reaches minimum under the assumption of a slender filament. In Equation (2.14),
the first normal stress difference N1 ≡ σzz−σr r must be derived from the selected con-
stitutive equation. For a Newtonian fluid with constant shear viscosity η, the temporal
evolution of R(t) can be expressed as

R(t) = R0 − (2XN − 1)
Γ

6η
t, (2.17)

where R0 is the filament radius at t = 0, and the non-trivial geometric correction factor
XN = 0.7127 for a Newtonian fluid arises from a similarity solution of the filament
shape [207]. Another widely-adopted solution is derived from the Hookean dumbbell
model to describe the elasto-capillary thinning of dilute viscoelastic polymer solutions,
in which a single polymer chain can be modeled as two masses connected by a massless
Hookean spring, and the constitutive equation is derived from an ensemble average of
all the dumbbell conformations. Consequently, the temporal evolution of the filament
radius can be expressed [208] as

R(t) =
�GR4

0

2Γ

�1/3

exp
�

−
t

3λ

�

, (2.18)

where G = nkT is the elastic modulus that can be alternatively derived from kinetic
theories [209], and λ is the relaxation time incorporated in the dumbbell model.

The capillary breakup extensional rheometry has been extensively applied to a wide
range of complex material systems for accurate measurements of their extensional rhe-
ological properties. A number of examples from previous studies include Newtonian
fluids [210], dilute polymer solutions [29,208,211,212], yield-stress fluids and emul-
sions [203,205,206], particulate suspensions [202,213,214], magnetorheological flu-
ids [204], as well as more complex systems such as cellulose solutions [215], liquid
food additives [216,217] and consumes products such as nail varnishes [218]. When
there are multiple stress contributions in the constitutive model, the corresponding fil-
ament thinning profile becomes increasingly complex, and numerical calculations may
be necessary to obtain more detailed fluid kinematics. In Chapter 3 and 4, the filament
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thinning solutions for more complex constitutive models are calculated, from which a
robust constitutive model for the GDNC materials can be progressively attained.

2.3 Summary

This chapter has provided an extensive review of the material systems and rheologi-
cal techniques applied in this thesis. Section 2.1 presented the structures, properties,
production and applications of graphene-derived nanofillers and the GDNC materials,
showing their promising potentials in property enhancement for a variety of polymer
matrices. However, major challenges that inhibit or delay mass applications of the
GDNC systems arise from a lack of understanding in their complex rheology in both
shear and extensional flows for the optimization of material processing, in particular,
the state of dispersion. The emergent rheological complexity is primarily attributed
to the presence of nanofillers and the interactions of different phases over multiple
length- and timescales. Previous studies on the rheology of similar nanocomposite sys-
tems have captured generic features in both linear and non-linear regimes, including a
low-frequency plateau storage modulus, a yield stress and the shear-thinning behavior.
These findings have been further combined with microscopic or scattering studies to
reveal rich structure-rheology information manifested at different lengthscales, which
can be practically used to characterize the state of dispersion for nanofillers in the so-
lution or melt mixing processes through rheological characterizations. In Section 2.2,
the rheological techniques used in this thesis were briefly introduced. Notably, frac-
tional constitutive models comprised of “springpots” were demonstrated to produce
a broad relaxation time spectrum using a minimal set of parameters, which are suit-
able to describe complex viscoelastic responses of the GDNC systems that arise from
their sophisticated microstructures. In contrary, rheological characterizations of the
GDNC systems in extensional flow, despite being in the infancy, are pivotal in under-
standing the morphological variation under large deformation in a real manufacturing
process. Different state-of-the-art techniques to measure the extensional rheology were
introduced with a special focus on the capillary breakup extensional rheometry, which
can potentially provide a rapid measuring protocol to probe the complex dynamics for
generic nanocomposite systems. Nevertheless, in order to obtain accurate constitutive
parameters from the measured filament thinning profiles, an accurate calculation of
the filament thinning prediction based on an appropriately selected constitutive model
is prerequisite.
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3 | Extensional Rheology of Weakly
Elastic Complex Fluids

3.1 Construction of an improved Capillary Breakup Ex-
tensional Rheometer

In this section, the construction of a customized Capillary Breakup Extensional Rheome-
ter is briefly introduced based on the author’s master work [64]. This new instru-
ment, with improved performance in the motor actuation and filament measurements
as well as enhanced capability of environmental control, is aimed at rapid and ac-
curate characterizations of the extensional rheology for an expanded variety of in-
dustrial fluids under various working conditions. Figure 3-1 shows the design and
assembly of the customized CaBER instrument. The system is comprised of (i) two
linear motors (Model No. LCA8-010, SMAC-MCA Inc., USA) that are aligned ver-
tically in opposite directions; (ii) a charged-coupled device (CCD) laser micrometer
(IG-028, Keyence Corp., Japan) with a minimum detectable object size of 100 µm, a
resolution of 5 µm, and a maximum sampling frequency of 2000 Hz; (iii) a high-speed
imaging system (Camera: Phantom M320s, Vision Research Inc., USA; Lens: Nikon
Corp., Japan) with an averaged frame rate of 4000 fps and an observation window
sized 500 px × 700 px with a resolution of 17 µm/px (the resolution can be further
improved with a higher-magnification lens); (iv) a uniform backlighting system (IR
Backlight, Phlox Inc., France) sized 40 mm×40 mm and an approximate luminous flux
of 530 lm; (v) a number of home-manufactured interchangeable threaded aluminum
discs with different diameters (2 mm, 4 mm and 6 mm) attached to the heads of linear
motors for sample holding; (vi) two resistance heating jackets incorporating resistance
temperature detectors (RTD) attached to the aluminum discs driven by pulse width
modulation (PWM), which enables a maximum attainable temperature of 250 °C with
an accuracy of ±1 °C; (vii) a I/O device (USB-6002, National Instruments, USA) con-
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trolled in a LabVIEW-based graphical user interface (National Instruments, USA); (viii)
a customized aluminum-based frame to assemble the instrument. Appendix A shows
the necessary calibrations for the motors and the laser micrometer in detail.

(a) Motor

(b) Laser micrometer

(c) Heating modules

(d) Chamber and backlight

(e) Threaded discs

100mm

6mm 2mm 1mm

Figure 3-1: Assembly of the customized CaBER instrument with detailed views of the
components: (a) Namecard-sized linear-motion motors. (b) Laser micrometer aligned
close to the center of the two linear-motion motors. (c) Two heating jackets attached
to the head of the linear-motion motors. (d) Acrylic chamber enclosing both heads
of the linear-motion motors with the backlight turned on. (e) Home-manufactured
interchangeable discs with a range of diameters (2 mm, 4 mm and 6 mm).

3.2 Dilute polymer solutions with viscous solvents

3.2.1 Synthetic automotive lubricants

In this section, the complex extensional rheology of two commercially-available syn-
thetic automotive lubricants are characterized through the aforementioned CaBER in-
strument. As will be shown in later sections, these results eventually inspire the design
and application of a more accurate measuring protocol for the polymer nanocompos-
ite systems that feature increased rheological complexity with multiple stress contri-
butions in the constitutive models.

From a rheological perspective, the everyday automotive lubricants are representa-
tive of a family of synthetic nanofilled lubricants that find extensive applications in
automotive industry [219]. This type of materials is generally comprised of alkane
refined from crude oil and undergoes further modifications by low-concentrated ad-
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ditives to introduce enhanced thermal, chemical and tribological performance [220].
For synthetic automotive lubricants, a broad range of additives has been developed
over the past few decades, including polymers as viscosity index improvers [221],
zinc dithiophosphate (ZDDP) [222–224] and other metal compounds [225], micro-
or nanoparticles [226–228], antioxidants [225, 229, 230] and surfactants [231]. The
search for more effective additives has been an ongoing topic in both industry and
academia [225].

Synthetic automotive lubricants are commonly categorized as multi-grade oils based
on the fluid kinematic viscosities at cold and hot temperatures [219]. The additives as
viscosity index improvers effectively reduce the viscosity difference at the extremes of
temperatures to introduce enhanced durability and functionality. Concomitantly, they
add up to the rheological complexity that arises from the dispersed additive phases and
the resulting hydrodynamic interactions, which has been extensively studied in similar
material systems such as particle suspensions [232, 233], emulsions [234] and poly-
mer solutions [196]. In addition, the fluid properties become increasingly susceptible
to the extreme working conditions (e.g., pressure, humidity, temperature, electric or
magnetic field) as well as the geometrical complications (e.g., converging pipes and
ducts, jet impingement and atomization), in which the shear and extensional defor-
mation coexist [235]. In such a complex flow field, substantial morphological changes
to the fluid may lead to material anisotropy, particle jamming and strain-hardening of
the polymer chains [35, 136]. Such rheological complexities ultimately drive signif-
icant modifications to the lubricant performance [236]. Consequently, it is essential
to obtain a comprehensive knowledge of the fluid rheological properties with a rapid
characterizing protocol to optimize the lubricant performance and the service lifetime.

For this purpose, two commercially-available synthetic motor oils are selected for the
rheological characterizations: Castrol High-Mileage Synthetic Blends (denoted as CSB;
Castrol, UK) and Mobil 1 (denoted as M1; ExxonMobil, USA). An SAE grade of 10W-
30 [219] is identified for both oils, indicating similar shear viscosity measurements
under the same working conditions. This agreement is verified by independent shear
measurements on a commercial rotary rheometer (DHR-3, TA Instruments, USA) at
25 °C as shown in Figure 3-2. Table 3.1 lists the necessary shear rheological charac-
terizations as well as the surface tension measurements (DCAT, dataphysics, Germany)
of the two motor oils. The Ohnesorge number, Oh ≡ η/

p

ρΓR0 and the initial Bond
number Bo0 ≡ ρgR2

0/Γ (Equation (2.13)) are calculated for both motor oils and are
identified to a range of Oh ≳ 0.5 and Bo0 > 1, which justifies negligible inertial and
gravitational effects in the capillarity-driven thinning dynamics.

To investigate the extensional rheology of the two motor oils using the customized
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Figure 3-2: Measurements of steady shear viscosity for the two motor oils at 25 °C.

Table 3.1: Shear viscosity, surface tension measurements, and characteristic dimen-
sionless numbers of the two selected motor oils.

Material Viscosity index η (Pa s) Γ (mN/m) Oh Bo0

CSB 138.1 0.132± 0.002 23.10± 0.02 0.54 3.29
M1 146.0 0.142± 0.001 24.80± 0.01 0.56 3.07

CaBER instrument, a general configuration of the experimental parameters is applied
and listed in Table 3.2. This configuration of parameters will be used for all the CaBER
measurements throughout this thesis, unless otherwise specified.

Figure 3-3(a) and (b) show the snapshots of the capillarity-driven thinning profiles for
the CSB and M1 motor oil under the experimental parameters as stated in Table 3.2,
respectively. In Figure 3-3(c) and (d), the liquid bridge profiles at different times dur-
ing the filament thinning process before the singularity occurs are extracted from the
snapshots, in which the r- and z-axis are nondimensionalized using the disc radius R0

and the final gap of two discs Lf, respectively. The shaded regions where |z/Lf| ≳ 0.3
correspond to the liquid reservoirs formed within a distance of the capillary length
lcap ≡
p

Γ/ρg ≈ 1.52mm (lcap/Lf ≈ 0.20). In these regions, the liquid profiles are
primarily governed by the interaction between the gravitational and capillary effects,
hence are not accounted for in the data processing.

As shown in Figure 3-3, the liquid profiles at t ≲ 90 ms for both motor oils exhibit
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Table 3.2: Experimental parameters of the customized CaBER instrument for the char-
acterizations of the two motor oils.

Parameters Values

Disc diameter, 2R0 6 mm
Temperature 25.0 °C± 0.5 °C
Actuation time, tM 30 ms
Initial and final gaps, L0 and Lf 2.0 mm and 7.7 mm
Hencky strain, ε 1.35
Frame rate of high-speed camera 6700 fps
Image resolution 17 µm/px

similar curved shapes that are skewed slightly downwards due to gravity. Such filament
shapes qualitatively resemble the classic self-similar solution for a Newtonian fluid
[207]. As t ≳ 90ms, the liquid profiles for both motor oils diverge in their shapes,
while the liquid filament of the CSB oil becomes increasingly cylindrical with a more
retarded breakup time compared with the M1 counterpart.

To quantify the kinematics in the capillarity-driven thinning process for both motor
oils, the minimum filament radius R(t) is extracted from the snapshots of Figure 3-3.
The results for both motor oils can be plotted in Figure 3-4, which displays a consistent
trend as in the snapshots from Figure 3-3. When t ≲ 90 ms, the minimum filament
radius decays linearly with time. In this regime, the filament thinning dynamics are
akin to the behavior predicted by a Newtonian fluid under a visco-capillary balance
described by Equation (2.17). This prediction line can be determined based on the
material properties from Table 3.1, and is plotted as the dotted curve in Figure 3-4. The
experimental data for both motor oils show excellent agreement with this prediction for
t ≲ 90ms. In contrary, when t ≳ 90ms, the capillarity-driven thinning dynamics for
both motor oils progressively deviate from the Newtonian prediction. This discrepancy
becomes significant when the filament radius becomes sufficiently small (and the strain
rate becomes large according to Equation (2.15)), and can be better visualized by
switching the ordinate to a logarithmic scale as in Figure 3-4(b) and (c). Consequently,
a retardation in the filament breakup is captured for both motor oils, in which the
breakup time can be determined as tC ≈ 123 ms for the CSB oil and tC ≈ 108 ms for
the M1 oil.

Because of an identical shear viscosity implied by the viscosity index for the two motor
oils, their difference in the capillarity-driven thinning dynamics at t ≳ 90ms is rea-
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Region 1: Visco-capillary Region 2: Elasto-capillary
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Gravity Gravity 
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Figure 3-3: (a-b) Snapshots of the liquid filament captured by the high-speed imaging
system during the capillarity-driven thinning process for the two motor oils: (a) CSB;
(b) M1. (c-d) Extracted filament profiles at varying times for the two motor oils: (c)
CSB; (b) M1.

soned to arise from the additives that introduce rheological complexity at high strain
rates. Noticeably, the two motor oils behave differently in this region by virtue of the
distinct chemical and mechanical features introduced by the additives. As a result, dif-
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(a)

(b) (c)

Figure 3-4: Temporal evolution of the minimum filament radius R(t) for both motor
oils, overlapped with the fitting lines from the selected constitutive models. (a) The
ordinate plotted on a linear scale. (b-c) The ordinate plotted on a logarithmic scale for
(b) CSB; (c) M1.

ferent constitutive models must be applied to account for their rheological responses
accurately. Revisiting the trend of the filament thinning curves at t ≳ 90ms reveals
an exponential decay with time for the CSB oil. This exponential trend is reminiscent
of the filament thinning dynamics under an elasto-capillary balance as described by
Equation (2.18). By fitting experimental data in this segment (dotted dashed line in
Figure 3-4(b)), an extensional relaxation time can be extracted as λe = 4.56 ms, and
the strain rate of the slender filament remains constant at ε̇= 2/(3λe) = 146.2 s−1, or
in the form of a dimensionless notation using the Weissenberg number as

Wi≡ λeε̇= 2/3. (3.1)

As a result, the CSB oil exhibits two distinct trends in the filament thinning dynamics
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as the strain rate grows, signaling a transition in the dominant stress balance of the fil-
ament thinning dynamics from a visco-capillary balance at low strain rates (t ≲ 90ms)
to an elasto-capillary balance at high stain rates (t ≳ 90ms) that is likely to arise from
the stretching of the additive polymer chains [237]. The M1 oil experiences a more
progressive deviation from the linear decay but an exponential-decaying trend is never
attained. Compared with the filament thinning under an elasto-capillary balance in-
duced by the stretching of polymer chains, the hydrodynamic interactions between the
dispersed additives and the continuous base oils play more critical roles in altering the
rheological response of the M1 oil. Therefore, the prediction from an elasto-capillary
balance (Equation (2.18)) results in an overestimated retardation in the filament thin-
ning, and is thus not suited for the data fitting to extract accurate constitutive param-
eters.

To describe the rheological responses of the two motor oils in extensional flow more
accurately, two constitutive models are proposed to provide more comprehensive pre-
dictions of the filament thinning kinematics that reconcile the asymptotic solutions
under a visco-capillary balance (Equation (2.17)) at low strain rates (t ≲ 90ms) and
the non-Newtonian behavior at high strain rates (t ≳ 90ms). The applied constitu-
tive models are featured with multiple stress contributions, which result in strain- or
rate-dependent rheological properties. The results justify the necessity of an optimal
model selection with a well-regularized set of constitutive parameters to retain the
fitting fidelity with the experimental data.

Oldroyd-B model

The Oldroyd-B model is a well-studied constitutive model to describe the rheological
response of viscoelastic liquids such as Boger fluids and dilute solutions of flexible poly-
mer chains [136,201,211,212]. The constitutive relation is expressed as the addition
of two stress contributions - a Newtonian stress and a viscoelastic stress to describe the
contributions from the solvent and the polymer chains, respectively. Mathematically,
the constitutive equation can be expressed [136] as

σ = ηS
▽
γ+σP, (3.2a)

▽
σP +

1
λ
σP = G

▽
γ, (3.2b)

where ηS is the solvent viscosity, andσP is the viscoelastic stress governed by the Upper
Convective Maxwell (UCM) model [136]. The constitutive parameters G and λ corre-
spond to the elastic modulus and the relaxation time in the UCM model. The notation
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of “▽” refers to the upper-convected derivative defined as
▽
A≡ DA/Dt − (∇v)T ·A−A ·

(∇v) for any tensor A to describe a frame-invariant material derivative [136]. Using
this notation, the strain rate tensor defined in Equation (2.11) can be equivalently ex-
pressed as

▽
γ= γ̇. From kinetic theories, the Oldroyd-B model describes an asymptotic

solution in the limit of infinite extensibilities in the polymer chains of the Finite Exten-
sible Non-linear Elastic (FENE) model [209], which has been widely utilized to model
a variety of dilute polymer solutions [35].

The filament thinning dynamics predicted by the Oldroyd-B model can be solved nu-
merically by substituting Equation (3.2) into Equation (2.14) with the first normal
stress difference σzz − σr r . The resulting filament radius shows two asymptotes at
low and high strain rates. In the initial stage of the filament thinning, where Wi ≡
λε̇≪ 2/3, the stress contribution from the Newtonian solvent dominates the filament
thinning dynamics, and the temporal evolution of the filament radius resembles Equa-
tion (2.17). As Wi approaches 2/3, the magnitude of the viscoelastic contribution
increases rapidly and overtakes the Newtonian counterpart. As a result, the solution
for the filament radius is reduced to Equation (2.18) under an elasto-capillary balance.
The numerical solution is subsequently fitted to the experimental data of the CSB oil,
as shown in Figure 3-4(b) in the solid line, which are in good agreement with the
evolution of R(t) over a broad range of filament lifetime (40 ms≤ t ≤ tC ≈ 120ms).

Inelastic rate-thickening (IRT) model

It is evident that the filament thinning prediction from the Oldroyd-B model with an
asymptote of exponential decay provides a poor description for the experimental data
of the M1 oil, and a new constitutive model is worth further exploration. From the
kinetic theory, the stretching of a polymer chain simplified by a spring-dumbbell model
generates a large stress along the spring axis, contributing to a strong elasticity to
the bulk solution. However, under the circumstances of low additive concentrations
or increased additive rigidity with small extensibilities, the resulting elasticity arising
from the entropy-driven chain retraction is less evident. Instead, the hydrodynamics
interactions between the additives and the continuous phase appear to contribute to
the filament thinning dynamics in an inelastic manner.

The difference of additive phase between the two selected motor oils can be better
demonstrated by their molecular weight distributions measured from gel permeation
chromatography (GPC). Here, tetrahydrofuran (THF) is chosen as the eluent at 30 °C,
and monodisperse polystyrenes dissolved in THF are used for the calibration. In Fig-
ure 3-5, the relative number concentration RC is plotted against the molecular weight
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Table 3.3: Number and weight average molecular weights for each mode obtained
from log-normal fitting for the two motor oils.

Sample Peak number Mn (Da) Mw (Da) PDI

CSB
1 163 212 1.30
2 27173 63 305 2.33

M1

1 164 207 1.26
2 321 335 1.04
3 723 1578 2.18
4 38617 59 292 1.54

M (Da). From this figure, the lowest molecular weights (M < 1× 103 Da) correspond
to the base oil with the number of carbon ranging from 15 to 40 [238]. In addition,
both motor oils show broadly similar molecular distributions at high molecular weights
(M > 1× 104 Da), which is consistent with the characteristics of the macromolecular
additives. Notably, the M1 oil features additional modes in an intermediate range of
molecular weights (1×103 Da≤ M ≤ 1×104 Da). The characteristic molecular weight
of each component in the solutions can be identified by fitting the relative number con-
centration with a sum of log-normal distributions, or Wesslau distributions [239] that
describes the natural distributions of single-mode molecular weights. The number and
weight average molecular weights, Mn and Mw, can be calculated accordingly for each
mode as

Mn =

∑

RCi
∑

RCi/Mi
, (3.3a)

Mw =

∑

RCi Mi
∑

RCi
, (3.3b)

where Mi and RCi are the molecular weight and the normalized relative number con-
centration of the i-th discrete component. The results of each molecular-weight mode
for the two motor oils are summarized in Table 3.3.

From Table 3.3, the M1 oil is featured with two additional modes at Mn = 321Da and
Mn = 723Da. As the strain rate increases, these intermediate-molecular weight com-
ponents appear to be more susceptible to the flow deformation and reaches the finite
extensibility more rapidly than the high-molecular-weight counterparts. Beyond this
point, the contribution from the additives to the rheological response of the bulk solu-
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Figure 3-5: Measurements of the molecular weight distribution for the two motor oils
from gel permeation chromatography. Inset: The molecular weight distribution in the
high-molecular-weight region (M > 1× 104 Da).

tions primarily arises from the hydrodynamic interactions with the continuous phase,
and the rheological properties are altered in an inelastic manner that relies increasingly
on the strain-rate variation. Notably, the stress contributions from the solvent and
the additive phases remain comparable in magnitude over a large strain-rate range.
Therefore, an inelastic model is necessary to describe the rheological responses that
arise from the hydrodynamic interactions. In the absence of a molecular-level descrip-
tion, the number of constitutive parameters in an inelastic model is likely to decrease
compared with the Oldroyd-B model, leading to a more parsimonious and general con-
stitutive framework for this type of the materials.

Here, a simple Inelastic Rate-Thickening (IRT) model is proposed to describe the rhe-
ological responses in both shear and extensional flows. Inspired by the previous study
of Debbaut and Crochet [240], the constitutive equation of the IRT model is written in
the form of a Generalized Newtonian Fluid (GNF) [136,241] as

σ = η(IIγ̇, IIIγ̇)γ̇, (3.4)
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where the rate-dependent viscosity η(IIγ̇, IIIγ̇) is expressed as a function of the second
and third invariants of the strain rate tensor γ̇ (the first invariant vanishes for incom-
pressible fluids) [136] as

IIγ̇ = tr(γ̇ · γ̇), (3.5a)

IIIγ̇ = tr(γ̇ · γ̇ · γ̇). (3.5b)

The magnitudes of the strain rates in a simple shear flow and a uniaxial extensional flow
can be expressed in combination of the two invariants with mathematical equivalence
to Equation (2.15) as

γ̇(IIγ̇, IIIγ̇) =

√

√1
2

IIγ̇, (3.6a)

ε̇(IIγ̇, IIIγ̇) =
IIIγ̇
IIγ̇

. (3.6b)

Notably, rate-dependent flow behavior is observed exclusively in an extensional flow
for the M1 oil. As a result, the simplest possible form for the viscosity η(IIγ̇, IIIγ̇) is
taken as

η(IIγ̇, IIIγ̇) = η0 + k2ε̇, (3.7)

where η0 is the zero-shear viscosity, and k2 is defined as the rate of extensional thicken-
ing. Equation (3.7) describes a linear extension-thickening relation, and the stress con-
tributions from the solvent and the dispersed phase remain comparable in magnitude
when the extensional rate ε̇ ∼ η0/k2. Accordingly, a new an alternative Weissenberg
number can be defined using a new characteristic timescale as Wi ≡ k2ε̇/η0 ∼ 1. The
expression of Equation (3.7) can be derived from the steady extensional viscosity of
an Oldroyd-B fluid in the limit of Wi ≪ 1 [136], when the accumulated strain on an
entropic spring connecting the dumbbell remains low in magnitude as

ηe = 3ηS+
2Gλ

1− 2λε̇
+

Gλ
1+λε̇

Wi≪ 1
−−−−−→ 3(ηS+ Gλ) + 3Gλ2ε̇. (3.8)

In this limit, the number of constitutive parameters is reduced from 3 (ηS, G and λ) to
2 (η0 and k2).

Finally, the capillarity-driven thinning dynamics described by the IRT model can be
calculated numerically by substituting Equation (3.7) into Equation (2.14). This nu-
merical result is fitted into the experimental data of both motor oils, as shown in
Figure 3-4(b) and (c) in the dashed lines. For the M1 oil, the experimental data at
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Table 3.4: Constitutive parameters from the Newtonian fluid model, the Oldroyd-B
model and the IRT model obtained from data fitting for the two motor oils.

Sample Model Parameters Values

CSB

Newtonian η0 (Pa s) 0.138

Oldroyd-B
ηS (Pa s) 0.236
G (Pa) 9.49
λ (ms) 4.94

M1
Newtonian η0 (Pa s) 0.141

IRT
η0 (Pa s) 0.290
k2 (mPa s2) 0.647

t > 40ms agree well with the fitting curves till filament breakup (tC ≈ 105ms). In con-
trary, substantial deviations are observed for the CSB oil close to the filament breakup
(t > 90 ms), which justify a stronger elasticity in the fluid that is poorly described by
the inelastic model. The obtained constitutive parameters of both motor oils using
the Newtonian fluid model, as well as the two comprehensive constitutive models are
shown in Table 3.4.

Compared with the filament thinning dynamics predicted by the Oldroyd-B model, in
which a strong elasto-capillary balance dominates the filament breakup at sufficiently
high strain rates (Wi= 2/3), the IRT model predicts a more progressive rate-thickening
trend with a milder retardation in the approach to filament breakup. As a result, the
strain rate (or the Weissenberg number) described by the IRT model is not bounded
by an upper limit throughout the filament thinning process, whereas in the Oldroyd-B
model, the Weissenberg number is constrained by Wi ≤ 2/3 because of the exponen-
tially increasing elastic stress that balances the capillarity-driven thinning of the fila-
ment radius. To better visualize the extensional rheological response at different strain
rates for the two motor oils, an apparent extensional viscosity is calculated from the
transient filament radius R(t) according to

ηe,app(t)≡
Γ/R(t)
ε̇(t)

=
Γ

−2Ṙ(t)
, (3.9)

where ε̇(t) is the transient strain rate calculated at the minimum filament radius (neck-
ing position) defined in Equation (2.15), and Γ is the surface tension with the values
tabulated in Table 3.1. The expression of Equation (3.9) is different from the true
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extensional viscosity ηe by a factor of (2X − 1) according to

ηe(t) = [2X (t)− 1]ηe,app(t), (3.10)

where X (t) is the geometric correction factor that accounts for the capillary pressure
in a non-cylindrical filament. When the filament thinning is dominated by the bal-
ance between the capillary pressure and a single stress contribution, the geometric
correction factor is broadly constant, as has been shown in Section 2.2 for a Newto-
nian fluid (X = XN = 0.7127) and the Hookean dumbbell model (X = 1). For more
complex constitutive models, such as the Oldroyd-B and the IRT models, the value of
X (t) evolves temporally with a transition in the stress contribution that balances the
driving capillary pressure. To calculate the apparent extensional viscosity according
to Equation (3.9), the first-order derivative of R(t) is obtained using a Savitzky-Golay
(S-G) filter with a polynomial order n and a filtering length 2L+1 [242]. Here, an op-
timal parameter set of the S-G filter is taken from a previous study [243] as n= 2 and
L = 14 to guarantee the smoothness of the filtered curve, while keeping the fidelity
of the filter with the original experimental data. The results are shown in Figure 3-6,
where both ηe,app and η measured in steady shear flow are compared, as well as the
predictions lines from fitting in the Newtonian fluid model (dotted line), the Oldroyd-
B model (solid line) and the IRT model (dashed line). It is evident that the apparent
extensional viscosities of both motor oils remain broadly constant at low strain rates,
and progressively increase in magnitude as the strain rate goes beyond approximately
100 s−1. This critical strain rate is found to be consistent with the transient strain rate
at t ≈ 90 ms, which is the transition time when the filament thinning profiles for both
motor oils deviate from the linear-decaying trend under a visco-capillary balance. The
CSB oil exhibits a stronger viscoelastic response beyond this point, and the value of
ηe,app grows unbounded as the strain rate approaches 135s−1 (Wi→ 2/3). For the M1
oil, the increase of ηe,app is more progressive over an unbounded range of the strain
rate. Compared with the Oldroyd-B model, fitting with the IRT model leads to a better
agreement with the experimental data of this more weakly rate-thickening oil.

Selection of the best-fit model (BFM)

The two selected motor oils, despite their identical viscosity index that leads to similar
shear viscosity measurements, exhibit substantially distinct rheological responses in
extensional flow due to the variations in their molecular structures or conformation of
the additive polymer chains in a strong flow. As a result, different constitutive models
are applied for the extraction of a parsimonious set of constitutive parameters with
faithful reflection of the kinematics and the physics behind the rheological complex-
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(a) (b)

(c)

Figure 3-6: Apparent extensional viscosity ηe,app plotted against strain rate ε̇ for the
two motor oils with the prediction lines from the Newtonian fluid model (dotted lines),
the Oldroyd-B model in the elasto-capillary limit (dashed dotted lines), the Oldroyd-B
model (solid lines) and the IRT model (dashed lines): (a) CSB; (b) M1. (c) Shear vis-
cosity η and apparent extensional viscosity ηe,app plotted against shear and extensional
rates, γ̇ and ε̇ for the two motor oils, respectively.

ity. In practice, the selection of the best-fit model (BFM) is an insight-driven process
based on a profound knowledge of the capillarity-driven thinning dynamics predicted
by a variety of constitutive models. However, in industrial applications, a rapid testing
protocol with a determinate algorithm for the selection of the BFM is more desired
to assist in high-throughput characterizations of multiple material samples through
autonomous data processing. Therefore, a more rigorous and unambiguous criterion
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is needed to distinguish and evaluate the goodness of fitting for various constitutive
models.

Here, a kinematic-based criterion is proposed specifically to select the BFM between
the Oldroyd-B model and the IRT model based on the temporal evolution of the mini-
mum filament radius R(t). A robust statistics-based criterion will be proposed in Sec-
tion 3.2.2 to provide a more generic guideline of automating the selection of the BFM
from a library of suitable constitutive models and to subsequently obtain the constitu-
tive parameters that retain excellent fidelity with the material physics.

By reviewing the kinematics of the minimum filament radius R(t), the difference in
the filament thinning kinematics derived from the weakly rate-thickening IRT model
and the strongly viscoelastic Oldroyd-B model arises at sufficiently high strain rates,
when the non-Newtonian stress contribution progressively increases in magnitude and
dominates the subsequent filament thinning dynamics. At a transition time tV-E < tC,
the temporal evolution of R(t) starts to evolve from the trend of a linear decay at low
strain rates (which is characterized by the zero-rate viscosity or the solvent viscosity)
to a different asymptote at higher strain rates. When the extension-thickening is strong
(e.g., Oldroyd-B model or similar bead-spring models), an abrupt change in the fila-
ment profiles of R(t) is identified close to t = tV-E. Such change in R(t) has been
documented by a number of analytical and numerical studies [32, 244, 245]. Due to
the continuity of R(t), the two asymptotic solutions coincide at t = tV-E, leading to

RN(tV-E) = REC(tV-E), (3.11)

where RN(t) and REC(t) are the asymptotic solutions of the filament radius predicted by
a Newtonian fluid (Equation (2.17)) and the elasto-capillary thinning (Equation (2.18)),
respectively. When the material exhibits a more weakly rate-thickening response, the
resulting evolution of the filament radius R(t) is interposed between the two asymp-
totic solutions when t > tV-E, and the filament breakup is slightly retarded compared
with that of a Newtonian fluid with the identical zero-shear viscosity. The most sig-
nificant feature between the strongly viscoelastic Oldroyd-B model and the weakly
rate-thickening IRT model is the profile of transition at t = tV-E, which exhibits more
abrupt for the Oldroyd-B model. To quantify the transition in the filament profile, an
elasto-capillary number EcV-E is defined at t = tV-E to describe the relative magnitude
of the non-Newtonian stress over the visco-capillary interaction at the transition time
as

EcV-E ≡
λΓ

η0R(tV-E)
. (3.12)
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By definition, the elasto-capillary number EcV-E is an intrinsic material property that
describes characterizes the ratio of the elasto-capillary and visco-capillary timescales,
tE = λ and tV = η0R(tV-E)/Γ evaluated at the transition time tV-E.

Despite the necessity of Equation (3.11) to describe a continuous evolution in the fila-
ment thinning dynamics, no information of the sharpness in the transition is provided.
This is described by an additional constraint in the form of a critical elasto-capillary
number Ec∗V-E, which can be obtained when the two asymptotic solutions are smoothly
connected at t = tV-E, or mathematically described as

ṘN(tV-E) = ṘEC(tV-E). (3.13)

Combining Equation (3.11) and Equation (3.13), the critical value of Ec∗V-E can be
analytically expressed as

Ec∗V-E ≡
λΓ

η0R(tV-E)
=

2
2XN − 1

≈ 4.7, (3.14)

where the subscript of R(tV-E) is hidden due to equal filament radii from both asymp-
totic solutions at t = tV-E. The zero-shear viscosity η0 is a measure obtained from
fitting Equation (2.17) into the experimental data at t < tV-E. Equation (3.14) de-
scribes a critical condition under which the two asymptotic solutions of R(t) are C1

continuous at t = tV-E. It can be used as a dimensionless criterion to select the BFM
between the Oldroyd-B model and the IRT model. When EcV-E < Ec∗V-E, the filament
radius profile is inflection-free, representing a weakly rate-thickening behavior that
can be described by the IRT model. If EcV-E exceeds the critical value of Ec∗V-E, the
filament radius profile exhibits a strong exponential decay beyond the transition time
tV-E, and the Oldroyd-B model is justified to be a better-fit model. In the study of the
two motor oils, the elasto-capillary numbers for the CSB and M1 oils can be calculated
as EcV-E = 11.4 > Ec∗V-E and EcV-E = 3.7 < Ec∗V-E, respectively. As a result, an identi-
cal conclusion is reached for the selection of the best-fit models for both motor oils as
shown previously in Figure 3-6.

The condition of Equation (3.14) can be retroactively substantiated from a number of
previous experimental studies on different viscoelastic fluid systems [32,243,246,247].
The calculated transition elasto-capillary number (EcV-E) for each combination and the
extensional relaxation time are summarized in Table 3.5, as well as their molecular
weights and polymer concentrations. In the two studies with aqueous polyethylene
oxide solutions, an evident exponential thinning of the filament radius is identified
when EcV-E ≫ Ec∗V-E. The resulting filament thinning dynamics are consistent with
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those for the CSB oil under an elasto-capillary balance, as shown in Figure 3-4. For
the other two material systems, as EcV-E decreases and approaches the critical value of
Ec∗V-E, the temporal evolution of the filament departs from the visco-capillary thinning
more progressively. The Oldroyd-B model with an exponential decay in the filament
radius close to the filament breakup is thus less applicable to provide an accurate de-
scription of the filament thinning behavior. Particularly, in the first material system
at a concentration of c = 0.2 wt% with a molecular weight of Mw = 306kg/mol, the
elasto-capillary number EcV-E = 3.2 drops below the critical value. The resulting fil-
ament thinning profile in Figure 8 of Ref. 243 thus does not exhibit an evident trend
of exponential decay. Consequently, the extracted extensional relaxation time λe is
biased from conceivable overfitting and hence shows substantial deviation from the
other three samples with higher concentrations or larger molecular weights. Notably,
the inverse trend of EcV-E with concentrations in Refs. [246] and [32] demonstrates a
decoupled relation between an increased polymer concentration and an exponential
decay of the filament radius expected from an elasto-capillary balance because of the
viscous stress that can grow more rapidly than the elastic counterpart, thus delaying
the transition to the elasto-capillary balance to a higher strain rate. Therefore, the cri-
terion based on a dimensionless number of Ec∗V-E, which directly compares the stress
contributions from the viscous and the elastic terms, appears to be a better metric than
the dimensional extensional relaxation time to evaluate the application of a viscoelastic
model in fitting the experimental data and extracting accurate constitutive parameters.
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Table 3.5: List of the selected material systems, extensional relaxation times, and their
elasto-capillary numbers EcV-E ≡ λΓ/[η0R(tV-E)], where tV-E is the experimentally-
measured transition time when the temporal evolution of filament radius deviates from
the linear visco-capillary thinning. The results in which EcV-E < Ec∗V-E are shaded.

Material system Mw (kg/mol) c (wt%) λe (ms) EcV-E Ref.

Polystyrene/Diethyl
phthalatea

110 0.5 0.197± 0.016 19.6

243
210 0.4 0.092± 0.014 9.1
306 0.2 ≈0.030 3.2
488 0.1 0.083± 0.005 9.3

Polyethylene
oxide/Waterb 7000

0.5 194± 49 2677
246

0.05 6± 3 13800

Polyethylene
oxide/Waterc 4000

0.025 10.1± 0.4 293.1

247

0.05 19.4± 0.5 563.0
0.075 26.5± 1.8 571.3
0.1 33.4± 4.2 560.0
0.25 105± 9 720.2
0.5 182± 18 305.2

Hydroxyethyl
cellulose/Waterd 720

0.17 0.22 42.0

32
0.25 0.23 24.1
0.40 0.24 13.1
0.50 0.29 9.4
0.75 0.45 4.4

a From Table 2 of Ref. 243. The critical filament radius is estimated from Figure 8
as R(tV-E)≈ 30µm.

b From Table 1 of Ref. 246. The critical filament radius is estimated from Figure 6
as R(tV-E)≈ 25µm.

c The zero-shear viscosity is estimated from Figure 1 of Ref. 247 at 10 s−1, and the
outer radius of the nozzle as stated in section "Dripping-on-substrate rheology
measurements" is applied to approximate the critical filament radius R(tV-E).

d Only concentrations lower than ce ≈ 0.5wt% to 1wt% are taken for the calcu-
lation to avoid rheological complexities arising from the polymer chain entan-
glements. The critical filament radius R(tV-E) ≈ 0.15R0 = 95.3µm is estimated
from Figure 3(b) and (c) of Ref. 32. The surface tension measurement is not
available, and a reference value of 40 mN is taken from Nahringbauer [248] for
the calculation.
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3.2.2 Dynamics governed by multiple stress contributions

A numerical study for the full filament profiles predicted by IRT model

The constitutive models proposed and applied in the previous section provide insights
for a more comprehensive understanding of the filament thinning dynamics for a com-
plex fluid, in which their capillarity-driven dynamics are resulted from a balance be-
tween the capillary pressure and multiple stress contributions from the constitutive
equation. In the Oldroyd-B model, a sharp transition in the filament radius evolution
can be identified in the proximity of the transition time tV-E, and the asymptotic solu-
tions of the visco-capillary and the elasto-capillary thinning can be applied separately
in distinct time ranges to extract the underlying constitutive parameters. In contrary,
the IRT model predicts more progressively increased rate-thickening behavior accord-
ing to Equation (3.7), in which the contribution from the rate-dependent term k2ε̇
remains comparable in magnitude with the zero-shear viscosity η0 over a large strain-
rate range. Under this circumstance, a full capillarity-driven thinning solution, rather
than the asymptotic solutions dominated by a singe stress contribution, needs to be
applied for the fitting process, if accurate constitutive parameters are to be obtained.

In a more complex system, such as graphene-derived nanocomposites, the bulk ex-
tensional rheology is susceptible to the strong hydrodynamic interactions between the
matrix and the nanofiller phases. The elasto-capillary number EcV-E defined in Equa-
tion (3.12) remain relatively small in magnitude because of the high polymer matrix
viscosity (η∼ 10Pa s to 1×103 Pas for concentrated polymer matrix or polymer melts at
the processing temperatures [249]). As a result, both continuous and dispersed phases
actively contribute to the rheological complexity over a large range of strain rates, and
fitting with a full-dimensional constitutive equation that incorporates multiple stress
contributions is more applicable to a CaBER measurement for such complex-fluid sys-
tems.

The feature of multiple stress contributions in the IRT model and other similar con-
stitutive models concomitantly brings increased complexity to the filament thinning
dynamics, i.e., a time-varying geometric correction factor X = X (t). As explained in
Section 3.2, the factor of X arises from a non-cylindrical filament shape. Expressed in
the stress balance relation of Equation (2.14), this factor is essential to determine an
accurate value of the apparent extensional viscosity ηe,app, as well as the filament radius
evolution. Despite a handful of previous studies on the extensional rheology of com-
plex material systems that exhibits an interplay of multiple stress contributions in the
filament thinning have been studied in the past [206,211,244], a non-trivial evolution
of the factor X has been persistently neglected in the data analysis and calculations.
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Because of a close connection between the liquid filament shape and the geometric
correction factor, the evolution of X can be obtained through the numerical analysis
of full filament profiles. Here, numerical calculations are performed on the IRT model
to elucidate the transition in the stress contributions during a filament thinning pro-
cess. The momentum equation that governs the filament thinning dynamics is solved
numerically in a geometrical configuration as shown in Figure 3-7, which resembles
an axisymmetric filament undergoing the self-thinning process upon the separation of
the coaxial discs with radius R0 to a final distance of L in a CaBER measurement. The
filament kinematics can be characterized by the filament radius R(z, t) and the axial ve-
locity v(r, z, t), both of which vary in the time and space dimensions. To obtain a more
general description of the filament kinematics, the following nondimensionalization
schemes are used as shown in Table 3.6.

Figure 3-7: Geometrical configuration of the capillarity-driven thinning predicted by
the IRT model. All quantities have been nondimensionalized.

In Table 3.6, the visco-capillary timescale tV is defined in Equation (3.12), where
R = R0. The separation of the two discs L is nondimensionalized to describe the geo-
metric aspect ratio of the filament L̂, and the axial position between the two discs is set
by − L̂/2 ≤ ẑ ≤ L̂/2. For a sufficiently slender filament, or when L̂ ≫ 1, Eggers [250]
has rigorously proved by perturbation analysis that the leading order of r̂ in the ex-
pression of the axial velocity field v̂(r̂, ẑ, t̂) is higher than that of ẑ. Consequently, the
axial velocity can be treated as uniform in any cross section of the filament, and thus
is simplified to be independent on r̂. In the numerical analysis, appropriate initial and
boundary conditions are specified following the previous study by Papageorgiou [207]
for a Newtonian fluid and the instability criterion by Slobozhanin and Perales [251],
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Table 3.6: Numerical calculation schemes of the capillarity-driven thinning predicted
by the IRT model, including the nondimensionalization scheme and initial/boundary
conditions.

Type Definitions

Position and time r̂ ≡
r

R0
, ẑ ≡

z
R0

, t̂ ≡
t
tV
=

t
η0R0/Γ

Kinematics and geometry R̂≡
R
R0

, v̂ ≡
v

R0/tV
, L̂ ≡

L
R0

Operators ∇̂ ≡ R0∇, ∂ t̂ ≡ tV∂t , ∂ẑ ≡ R0∂z

Dimensionless parameters

Intrinsic elasto-capillary number Ec0 Ec0 ≡
k2/η0

tV
=

k2Γ

η2
0R0

Weissenberg number Wi Wi≡ tVε̇

Initial conditions

R̂(ẑ, 0) = 0.5− 0.1 cos
�

2πẑ

L̂

�

v̂(ẑ, 0) = 0

Boundary conditions

∂ẑR̂(± L̂/2, t̂) = 0

v̂(± L̂/2, t̂) = 0

as summarized in Table 3.6. Under the assumption of a slender filament, the momen-
tum equation can be derived from the Navier-Stokes equation in the radial and axial
directions in a cylindrical coordinate system. Together with the continuity equation, a
closed-form of the governing equations can be expressed as

∂ t̂(R̂
2 v̂) + ∂ẑ(R̂

2 v̂2) = ∂ẑ

�

R̂2
�

K̂ + Tr ·Wi+
(∂ t̂ R̂)2

2

��

− R̂2 · Bo0, (3.15a)

∂ t̂(R̂
2) + ∂ẑ(R̂

2 v̂) = 0, (3.15b)

where the dimensionless strain rate for a slender filament can be denoted using the
Weissenberg number defined in Equation (3.1) with Wi = ∂ẑ v̂ = −2∂ t̂ R̂/R̂ from the
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continuity equation. The time-varying Bond number is defined by Equation (2.13).
The dimensionless mean curvature K̂ of the liquid profile in the cylindrical coordinate
system is expressed according to Equation (2.16) by substituting R → R̂ and z → ẑ.
The true extensional viscosity is nondimensionalized with the zero-shear viscosity as
the Trouton ratio Tr≡ ηe(Wi)/η0, and can be calculated from the constitutive equation
as Tr= 3(1+Ec0·Wi), where Ec0 ≡ k2Γ/(η2

0R0) is defined as the intrinsic elasto-capillary
number using the zero-shear viscosity η0 and the rate of extensional thickening k2.

To capture the underlying capillarity-driven thinning dynamics predicted by the consti-
tutive model, assumptions are made with negligible inertial and gravitational effects.
As a result, the third and fourth terms on the right-hand side of Equation (3.15a) van-
ish, and from the boundary conditions, Equation (3.15) is further connected to the
stress balance relation of Equation (2.14), and the transient geometric correction fac-
tor can be expressed as

X ( t̂) =
[Tr ·Wi+ K̂mid( t̂)]R̂mid( t̂)

2
, (3.16)

where K̂mid( t̂) ≡ K̂(0, t̂) and R̂mid( t̂) ≡ R(0, t̂) are defined as the dimensionless mean
curvature and filament radius at the symmetry plane (ẑ = 0).

Equation (3.15) is solved numerically following the procedures of Eggers and Dupont
[250]. The dimensionless filament radius R̂(ẑ, t̂) and the axial velocity v̂(ẑ, t̂) are dis-
cretized both temporally and spatially: At the n-th time step (n = 0, 1, ..., T), R̂n,i de-
fines the discrete filament radius on the i-th grid node (i = 0,1, ..., N) at ẑ = ẑ i, while
vn,i+1/2 is defined on the edge that connects the ẑ i and ẑ i+1. Consequently, the discrete
derivative term ∂ẑ(R̂2∂ẑ v̂) that appears in Equation (3.15) can be expressed as

[∂ẑ(R̂
2∂ẑ v̂)]n,i =

(R̂n,i+1)2(∂ẑ v̂)n,i+1 − (R̂n,i)2(∂ẑ v̂)n,i

ẑ i+1 − ẑ i−1
, (3.17)

where discrete partial derivative of v̂ is calculated from

(∂ẑ v̂)n,i =
vn,i+1/2 − vn,i−1/2

ẑ i+1/2 − ẑ i−1/2
. (3.18)

Finally, a finite-difference form of Equation (3.15) can be obtained from the substitu-
tions of Equation (3.17) and Equation (3.18). The final expression is rearranged by

91



CHAPTER 3. Extensional Rheology of Weakly Elastic Complex Fluids

moving the time derivative term ∂ t̂ to the left-hand side as

(R̂2 v̂)n+1,i − (R̂2 v̂)n,i

t̂n+1 − t̂n
=ℱi(R̂

n+θ , v̂ n+θ ), (3.19a)

(R̂2)n+1,i − (R̂2)n,i

t̂n+1 − t̂n
= 𝒢i(R̂

n+θ , v̂ n+θ ), (3.19b)

where R̂n+θ and v̂ n+θ represent all the spatially discrete values at time step n + θ .
ℱi and 𝒢i represent the right-hand sides of the discretized forms of Equation (3.15)
evaluated at the (n + θ )-th time step, where 0 ≤ θ ≤ 1. The discretized equations
become completely explicit or implicit when θ = 0 or 1. Here, a semi-implicit scheme
is implemented to produce smoother discrete solutions while keeping the leading-order
truncation errors in the time marching process sufficiently small. Specifically, the forms
of the discrete filament kinematics at the (n+ θ )-th time step can be defined as

R̂n+θ ≡ R̂n + θ (R̂n+1 − R̂n), (3.20a)

v̂ n+θ ≡ v̂ n + θ (v̂ n+1 − v̂ n). (3.20b)

Here, a value of θ = 0.55 is taken to be consistent with Eggers and Dupont [250].
The number of the grid nodes is set to N = 128 and ∆ t̂ = t̂n+1 − t̂n = 0.01 for n =
0, 1, ..., N −1. The magnitude of Ec0 is confined to Ec0 ≤ 1 to conform to the condition
of Equation (3.14). The characteristic aspect ratio is set as L̂ = 10.

In Figure 3-8(a) and (b), a family of filament profiles at different time are plotted for
Ec0 = 0 (Newtonian fluid) and Ec0 = 0.5 (weakly rate-thickening). Comparisons of the
filament profiles at approximately identical radius show that the profiles for Ec0 = 0.5
are more slender in shape, which can be attributed to the additional stress contribution
in the constitutive equation that scales quadratically in magnitude with the strain rate
and overtakes the Newtonian stress in finite time. As the filament approaches the pin-
choff singularity, this quadratic stress component progressively dominates the filament
thinning dynamics. Figure 3-8(c) and (d) further plot the axial velocity v̂(ẑ, t̂) for the
two values of Ec0, respectively. Two scaling factors Z( t̂) and V( t̂) are extracted from
the coordinate of the maximum axial velocity where the strain rate vanishes (∂ẑ v̂ = 0).
Filament within −Z( t̂) ≤ ẑ ≤ Z( t̂) are deemed slender. The abscissa and the ordi-
nate are subsequently normalized by the extracted scaling factors (ẑ/Z, v̂/V), such
that the position where ∂ẑ v̂ = 0 is reduced to (±1,±1). The resulting profiles of the
scaled velocity are plotted in Figure 3-8(e) and (f) in the window of −1 ≤ ẑ/Z ≤ 1
and −1 ≤ v̂/V ≤ 1. When Ec0 = 0, the curves at different time overlap with each
other, indicating a scale-free velocity profile during the filament thinning process. On
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the contrary, the reduced velocity profile for Ec0 = 0.5 substantially reshapes while
approaching the filament breakup, where the dominant stress contribution from ex-
tensional thickening gives rise to a distinct velocity profile from the one induced by the
rate-independent stress contribution.

The filament radius at the symmetry plane R̂mid( t̂) can be extracted from the nu-
merically calculated filament profiles for a range of intrinsic elasto-capillary numbers
0 ≤ Ec0 ≤ 1, as shown in Figure 3-9(a). In Figure 3-9(b), the mid-plane radius is
plotted against the temporal distance to the pinch-off singularity where R̂mid vanishes,
τ̂ ≡ t̂C − t̂. Here, t̂C is the dimensionless breakup time and its notation is consistent
with the definition on page 73. The value of t̂C is obtained through extrapolation due
to the numerical singularity arising at R̂mid = 0. When Ec0 = 0 (Newtonian fluid,
blue line), the mid-plane radius exhibits a linear decay with time. This numerical
result is in good agreement with the prediction of Equation (2.17) with a slope of
−(2XN − 1)/6 ≈ −0.0709 (dashed line). When Ec0 > 0, however, the evolution of
the mid-plane radius becomes substantially different from the Newtonian-fluid coun-
terpart. An apparent retardation in the filament breakup is identified to increase from
approximately 6.6 (Ec0 = 0) to 12.6 (Ec0 = 1), and can be attributed to the additional
resistance to the capillarity arising from the extensional thickening. In addition, the
evolution of the mid-plane filament radius deviates from the linear decay to a quadratic
trend regarding to τ̂ close to filament breakup. This filament thinning trend suggests
a new self-similar solution dominated by the balance between the capillarity and the
stress from extensional thickening (k2ε̇

2).

To substantiate this new asymptotic solution, the temporal evolution of the geometric
correction factor X is subsequently calculated according to Equation (3.16). For plot
legibility, the contribution to the overall geometric correction factor is decomposed as

X (t) =
3Wi · R̂mid

2
︸ ︷︷ ︸

X1(t)

+
3Ec0 ·Wi2 · R̂mid

2
︸ ︷︷ ︸

X2(t)

+
K̂midR̂mid

2
︸ ︷︷ ︸

Xcap(t)

, (3.21)

where X1, X2 and Xcap denote the contributions to the geometric correct factor X from
the zero-shear viscosity term, the extensional-thickening term and the capillarity term,
respectively. The contribution from the capillarity Xcap remains constant of 0.5 through-
out the filament thinning process according to Equation (2.16). In Figure 3-10, the
temporal evolution of X1( t̂) (squares), X2( t̂) (triangles) and X ( t̂) (diamonds) are plot-
ted for an identical range of the elasto-capillary number 0 ≤ Ec0 ≤ 1. The increase
in the overall geometric correction factor X ( t̂) from t̂ = 0 to t̂ ≈ 4 is attributed to
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(a) (b)

(c) (d)

(e) (f)

Figure 3-8: Filament kinematics predicted by the IRT model at (a,c,e) Ec0 = 0 and
(b,d,f) Ec0 = 0.5 at varying time. (a-b) Filament radius. (c-d) Axial velocity with
the evolution of the maximum velocity illustrated with dashed lines. (e-f) Collapsed
axial velocity with the coordinate of the maximum axial velocity (Z( t̂), V( t̂)) different
time. Inset: evolution of the maximum axial velocity V( t̂) and the axial position of the
maximum axial velocity V( t̂).
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(a) (b)

Figure 3-9: Mid-plane filament radius R̂mid(ẑ, t̂) for varying intrinsic elasto-capillary
numbers 0 ≤ Ec0 ≤ 1. (a) R̂mid against the thinning time t; the gray dashed line
represents the linear visco-capillary thinning derived from the self-similar solution for
a Newtonian fluid. (b) R̂mid against the time distance to the pinch-off singularity τ ≡
t̂C− t̂; the dashed gray line represents the linear visco-capillary thinning derived from
the self-similar solution for a Newtonian fluid. When Ec0 > 0, a quadratic thinning of
the filament radius is identified close to filament breakup.

the filament acceleration due to the static initial condition, and is thus not accounted
for as part of the asymptotic solution [207]. Beyond t̂ ≈ 4, the evolution of the geo-
metric correction factors exhibits two distinct trends distinguished by the value of Ec0:
For Ec0 = 0 (Newtonian fluid), X1 remains constant. The overall geometric correction
factor X ( t̂) approaches the asymptote under a visco-capillary balance at XN ≈ 0.7127.
When Ec0 > 0, however, the value of X1( t̂) reaches a maximum value at t̂ ≈ 4 and sub-
sequently follows a decaying trend. The magnitude of max(X1) also decreases as Ec0

increases, showing a diminished impact from the rate-independent stress contribution
on the overall filament thinning dynamics. On the contrary, the contribution from the
extensional-thickening contribution X2( t̂) increases steadily from zero in magnitude,
and ultimately overtakes X1( t̂) to dominate the filament thinning process when suffi-
ciently close to filament breakup. Notably, the overall geometric correction factor X ( t̂)
for Ec0 > 0 converges to a new constant XRT (not plotted) with a smaller magnitude
than the result of XN ≈ 0.7127 that describes the visco-capillary thinning.

The temporal evolution of the geometric correction factor X ( t̂) in the IRT model shows
an increased complexity in the analysis of the filament thinning dynamics due to the
interplay of two distinct stress contributions. By substituting the unknown constant XRT
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Figure 3-10: Temporal evolution of the geometric correction factor X ( t̂) and its com-
ponents from two stress contributions, X1( t̂) and X2( t̂) for the IRT model for a range
of intrinsic elasto-capillary numbers 0≤ Ec0 ≤ 1.

into Equation (2.14), one can obtain an asymptotic solution for the mid-plane filament
radius governed by the extensional-thickening contribution as

R̂mid(τ̂; Ec0) =
2XRT − 1

48Ec0
τ̂2, (3.22)

in which the time distance to the filament breakup τ̂ is used to express in the vicinity
of the pinch-off singularity. This quadratic trend is also evident in Figure 3-9. A similar
expression has been previous obtained by McKinley [35], albeit XRT was assumed to
be unity based on the assumption of a cylindrical filament shape.

Inspired by the analytical solution from Renardy [252] and Papageorgiou [207], the
constant of XN that characterizes the filament shape of a Newtonian fluid can be derived
from a self-similar solution. The analytical solution is based on the ansatz of the liquid
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profiles as

R̂(ẑ, τ̂) = τ̂αℛ(ζ), (3.23a)

v̂(ẑ, τ̂) = τ̂γ𝒱 (ζ). (3.23b)

A self-similar variable ζ = ζ(ẑ, τ̂) that incorporates both the temporal and spatial in-
formation is defined as

ζ≡
ẑ
τ̂β

. (3.24)

The parameters α, β , γ are the self-similar exponents. For a Newtonian fluid under
a visco-capillary balance, Renardy [252] has analytically derived αN = 1, βN = 0.175
and γN = βN − 1 = −0.825. The forms of the self-similar functions ℛN and 𝒱N are
expressed as functions of the self-similar variable ζ and can be calculated numerically
or analytically under the condition of an infinitely long filament shape.

Here, the new self-similar solution governed by the extensional-thickening contribu-
tion in the IRT model is premised on a similar procedure. Specifically, in the limit
of vanishing zero-shear viscosity contribution as well as the inertial and gravitational
effects, the momentum equation (Equation (3.15)) can be rewritten as

∂ẑ[R̂
2(K̂ + 3Ec0 ·Wi · |Wi|)] = 0, (3.25)

where the absolute sign is originated from Equation (3.7), in which the extensional rate
ε̇ is derived from the second and third invariants of the strain-rate tensor, and remains
non-negative regardless of the flow direction. Because of the self-similar nature, a
solution in the same form of the ansatz in Equation (3.23)) can be presumed with a
different set of self-similar parameters (αRT, γRT, βRT, ζRT, ℛRT, 𝒱RT). In the following
analysis, the subscript “RT” is dropped for writing simplicity. The value of α can be
readily obtained by substituting Equation (3.23) with the new self-similar parameters
into Equation (3.25) as

∂ẑ

�

τ̂α∂ζℛ + (12Ec0)τ̂
2α−2
��

αℛ − βζ∂ζℛ
� �

�αℛ − βζ∂ζℛ
�

�

�	

= 0, (3.26)

which is valid for any τ̂. Therefore, all terms with τ̂ should cancel out, leading to
α = 2. This value is consistent with the asymptotic solution of Equation (3.22), in
which the mid-plane filament radius has a quadratic dependence on τ̂. To calculate
other parameters, the equivalence of the axial position z in a Lagrangian frame can be
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defined as

φ(ẑ, τ̂)≡
∫ ẑ

0

R̂2(ξ, τ̂)dξ, (3.27)

which scales with the filament volume between the axial positions from 0 to ẑ. Because
of the monotonicity of φ with ẑ, there is a determinate inverse function such that ẑ =
ẑ(φ, τ̂), where the underline corresponds to a function defined in the Lagrangian frame
that satisfies f (ẑ, τ̂) = f [φ(ẑ, τ̂), τ̂]. By using the chain rules, the aforementioned
functions and operators in a Eulerian frame can be transformed to a Lagrangian frame
according to

∂φ ẑ = R̂
−2
(φ, τ̂), (3.28a)

∂τ̂ẑ = −v̂(φ, τ̂), (3.28b)

∂φ = R̂
−2
(φ, τ̂)∂ẑ. (3.28c)

As a result, Equation (3.25) can be transformed to

−
1
2

∂φφ ẑ

(∂φ ẑ)3/2
− 3Ec0∂φ

�

∂φτ̂ẑ
�

�∂φτ̂ẑ
�

�

(∂φ ẑ)3

�

= 0, (3.29)

where ∂x y() ≡ ∂ 2()/(∂ x∂ y). Using the transformation of Equation (3.28) again and
substituting z(φ, τ̂) with R̂(φ, τ̂), the momentum equation in a Lagrangian frame can
be expressed as

∂φR̂+ 12Ec0∂φ(∂τ̂R̂|∂τ̂R̂|) = 0. (3.30)

Similar to R̂(ẑ, τ̂) in Equation (3.23), R̂(φ, τ̂) in a Lagrangian frame is expected to
follow the identical form with a different self-similar variable ζ ≡ φ/τ̂β . The value of
β can be determined from the definition of φ in Equation (3.27), as in a leading-order

expression, φ = τ̂βζ ∼ R̂2ẑ = τ̂4+βℛ3(ζ)ζ. To retain the self-similar nature of ζ, the
following ansatz is imposed in a Lagrangian frame as

ζ≡
φ

τ̂β+4
, (3.31a)

R̂(φ, τ̂) = τ̂2ℛ(ζ). (3.31b)

By substituting Equation (3.31) into Equation (3.30), and integrating on both sides
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regarding to ζ, one can obtain

𝒞 (τ̂) =ℛ + 12Ec0[2ℛ − (β + 4)ζ∂ζℛ]
2. (3.32)

Here, the absolute sign is eliminated by noticing that ∂τ̂R̂= τ̂[2ℛ−(β+4)ζ∂ζℛ]> 0,
which can be rigorously proved from ∂τ̂ℛ > 0 at ζ= 0 (the mid-plane filament radius
decreases monotonically), and that Equation (3.32) is valid for ℛ > 0. Because the
right-hand side of Equation (3.32) is a function of ζ only, if letting k(ζ)≡ (𝒞 −ℛ)1/2,
Equation (3.32) can be rearranged to

k

2
p

12Ec0

= 𝒞 − k2 + (β + 4)kζ∂ζk. (3.33)

By separating k and ζ to either side of the equation, and integrating both sides, one
can finally obtain

ln

�

�

�

�

�

ζ

ζ
0

�

�

�

�

�

= (β + 4)

∫ k

k0

κdκ

κ2 +
κ

2
p

12Ec0

−𝒞
. (3.34)

When ζ
0
→ 0+, κ approaches k0, and singularities arise on both sides. To retain the

equality for any values of k, these singularities must cancel each other. Therefore, k0

and 𝒞 can be calculated as

k0 =
1

4
p

12Ec0(β + 3)
, (3.35a)

𝒞 =
2β + 7

192Ec0(β + 3)2
. (3.35b)

From Equation (3.34) and Equation (3.35), one can obtain an explicit form of ζ as a
function of k as

ζ(k) =

�

1

2
p

12Ec0

β + 4
β + 3

�−(β+3)/2�

k+
1

4
p

12Ec0

2β + 7
β + 3

�(2β+7)/2

(k− k0)
1/2 . (3.36)

From the transformation in Equation (3.28) and Equation (3.36), there exists f (ζ)
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such that ∂ζ f = k−2, and the integration of Equation (3.33) leads to

2
p

12Ec0𝒞 =

∫∞
−∞ f −3dζ
∫∞
−∞ f −4dζ

. (3.37)

Finally, this equation is expressed in term of hypergeometric integrals [253] as

(2β + 7)(−1− β)
2(β + 3)(−1/2− β)

=
F [−(5+ 2β)/2,−1− β;−1/2− β;−7− 2β]

F [−(5+ 2β)/2,−β; 1/2− β;−7− 2β]
. (3.38)

Using the bisection method, this equation can be numerically solved with six significant
figures as

β = βRT = 0.212515... (3.39)

The solution of the mid-plane radius R̂mid(τ̂) close to the filament breakup for the IRT
model can thus be expressed as

R̂mid(τ̂) =
0.00324253...

Ec0
τ̂2. (3.40)

Consequently, the overall geometric correction factor XRT can be calculated as

XRT =
7− 2βRT

4(3+ βRT)
= 0.577821... (3.41)

By comparing with Figure 3-10, this result is consistent with the new asymptotic value
close to the filament breakup for Ec0 > 0. This self-similar solution of the capillary thin-
ning dynamics governed by the extensional-thickening contribution in the IRT model
can be justified more rigorously by comparing with the numerically calculated filament
profiles. The simplest idea is to directly substitute the value of XRT into the asymptotic
solution of Equation (3.22) and to compare with the mid-plane filament radius in Fig-
ure 3-9. However, this method requires an accurate evaluation of the filament breakup
time t̂C, which is hardly accessible due to numerical singularity. In practice, the deter-
mination of t̂C requires extrapolation to the limit of R̂mid = 0 by horizontally shifting
the curve of R̂mid( t̂) to coincide a power-law trend. Because the asymptotic solution of
Equation (3.22) becomes evident only when sufficiently close to the filament breakup,
or when τ̂ approaches zero, the extracted filament breakup time is subject to a large
error. Here, instead of using R̂mid directly for the comparison, another dimensionless
variable is adopted that is expressed in a time-implicit form to avoid the conversion
from t̂ to τ̂. For this purpose, the ratio of filament profile curvatures in the axial and
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radial directions, Π is evaluated at the mid-plane (ẑ = 0), which can be expressed as

Π≡
κz

κr
=

�

�

�

�

�

∂ẑẑR̂
�

1+ (∂ẑR̂)2
�3/2

�

�

�

�

�

Á

�

�

�

�

�

1

R̂
�

1+ (∂ẑR̂)2
�1/2

�

�

�

�

�

. (3.42)

By including the curvatures in both axial and radial directions, this ratio quantity incor-
porates the full-dimensional information of the filament geometry. Subsequently, the
ansatz of Equation (3.23) is substituted into Equation (3.42) to obtain an asymptotic
solution governed by the zero-shear viscosity contribution (denoted as “N”) and the
rate-thickening contribution (denoted as “RT”) respectively as

ΠN(τ̂)∼ τ̂2−2βN ∼ R̂2−2βN
mid (τ̂), (3.43a)

ΠRT(τ̂)∼ τ̂4−2βRT ∼ R̂2−βRT
mid (τ̂). (3.43b)

In Figure 3-11, the numerical calculations of the curvature ratio are plotted for differ-
ent values of Ec0. The analytically obtained power-law relations from Equation (3.43)
are also plotted as gray lines. As shown in this figure, the numerical calculations follow
closely with the asymptotic power-law trends as R̂mid→ 0 for Ec0 = 0 (black solid line),
and when the filament thinning dynamics are solely governed by the rate-thickening
contribution (Equation (3.25)) with Ec0 = 1 (solid blue line). As Ec0 grows posi-
tive, both the zero-shear viscosity and extensional-thickening contribute in comparable
magnitude to the capillarity-driven thinning dynamics. The resulting curvature ratio
departs from the power law of (2−2βN) for a Newtonian fluid towards a new exponent
of 2− βRT. This new curvature ratio asymptote with a smaller exponent corresponds
to a more slender liquid filament profile, as has been demonstrated in Figure 3-8. No-
tably, as shown in Figure 3-11(a), even a weakly rate-thickening response quantified by
a small positive value of Ec0 can substantially alter the resulting capillarity-driven thin-
ning dynamics close to the filament breakup, which is attributed to a faster-growing
axial stress that scales quadratically with the time to filament breakup, arising from
the extensional-thickening contribution.

In Figure 3-11(b), the mid-plane radius (blue thick line) and the curvature ratio (pink
thick line) from numerical calculations are plotted against the time distance to the
filament breakup τ̂ when the zero-shear viscosity contribution is set to vanish and the
intrinsic elasto-capillary number is set to unity. The value of t̂C is obtained from the
best manual horizontal shift such that both curves coincide power-law trends close to
the filament breakup, as predicted from the analytical results shown as the thin solid
lines. The numerical results of the filament mid-plane radius and the mean curvature
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(a) (b)

Figure 3-11: (a) Curvature ratio at the filament mid-plane from the numerical calcu-
lations at varying intrinsic elasto-capillary numbers Ec0 as well as the asymptotic solu-
tions of Equation (3.43) with power-law trends (gray lines). (b) The mid-plane radius
R̂mid and curvature ratio Π plotted against the time distance to the filament breakup
τ̂ for the capillarity-driven thinning dynamics governed solely by the extensional-
thickening contribution in the IRT model.

ratio are in excellent agreement with the asymptotic solutions that exhibit a power-law
relation with the exponent of 2 and (4− 2βRT), respectively. Notably, the asymptotic
solution of the filament mid-plane radius (thin blue line) coincides with the numerical
result not only in the power-law trend, but also in the front factor within 7% error. Such
an error is likely to arise from the conversion from t̂ to τ̂, the numerical calculation
close to the filament breakup as well as the infidelity to the assumption of an infinitely
long filament in the ansatz of Equation (3.23) in the numerical calculation.

CaBER measurements with a time-varying geometric correction factor

An accurate value of the geometric correction factor X is necessary to recover the
true extensional viscosity from the measured filament thinning kinematics using Equa-
tion (3.10). For a Newtonian fluid, this value has been obtained with a constant of
XN ≈ 0.7127. However, in the IRT model (and other models with multiple stress con-
tributions to the capillarity-driven thinning dynamics), the value of X evolves with
time, and an explicit form of X (t) is not readily accessible without a priori knowledge
of the constitutive parameters and a full-dimensional numerical calculation of the fil-
ament profiles. Inspired by the numerical calculation from the previous section, an
implicit method is proposed here that will finally lead to a measuring and dataprocess-
ing protocol to account for the temporal variation in the geometric correction factor.
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The apparent Trouton ratio defined on page 91 using the apparent viscosity (obtained
from Equation (3.9)) can be plotted from the numerical calculation for the IRT model
at Ec0 = 0, 0.1 and 1 in Figure 3-12 as solid lines. The segments of the curves with
Wi ≲ 0.7 exhibit an artifact rate-thinning region due to to the initial acceleration of the
liquid filament in the numerical calculation, and does not reflect the real constitutive
relation. The evolution of the apparent Trouton ratio for each Ec0 is compared with
the two asymptotic solutions of XN ≈ 0.7127 (thin dashed lines) and XRT ≈ 0.5778
(thin solid lines). When Ec0 = 0, the solution of a Newtonian fluid is recovered, and
the apparent Trouton ratio from the numerical calculation Trapp = 3/(2XN−1)≈ 7.052
agrees with the asymptotic solution under a visco-capillary balance. When Ec0 > 0, the
apparent Trouton ratio Trapp is contributed by both the zero-shear viscosity and rate-
thickening contributions, and hence its magnitude remains between the two asymp-
totic solutions (shaded area). As the Weissenberg number increases, the apparent Trou-
ton ratio seamlessly evolves from the asymptote governed by X = XN to X = XRT. For
Ec0 = 0.1 at Wi = 10, the magnitude of Trapp reaches 23 in the numerical calcula-
tion, approximately 54% higher than the asymptotic solution from X = XN (where
Trapp ≈ 14.1) and 283% higher than the asymptotic solution from X = 1 (where
Trapp = 6). This specific combination of the intrinsic elasto-capillary number and the
Weissenberg number is carefully selected to represent the fluid and flow properties for
a number of automotive lubricants under their working conditions [26, 201]. Conse-
quently, the application of a Newtonian-fluid assumption X = XN or an assumption of
cylindrical filament shapes X = 1 in processing the CaBER measurements is likely to
generate large errors when the true extensional viscosity is to be recovered, even at
moderate strain rates for a weakly rate-thickening fluid.

To render a more accurate measurement of the extensional viscosity from filament
thinning techniques, an approximation of the transient geometric correction factor can
be obtained through a linear interpolation based on the magnitudes of the each stress
contributions as

X (Wi)− XN

XRT − XN
=

∆σRT

∆σN +∆σRT
=

Ec0 ·Wi
1+ Ec0 ·Wi

, (3.44)

where ∆σN = 3η0ε̇ and ∆σRT = 3k2ε̇
2 are the stress contributions from the zero-

shear viscosity term and the rate-thickening term, respectively. This expression leads
to a new prediction line of the apparent Trouton ratio at each selected value of Ec0, as
plotted in Figure 3-12 in dash-dotted lines. The new prediction lines based on linear
interpolation are bounded by the two asymptotic solutions for each Ec0 and are in good
agreement with the corresponding numerical calculations. In practice, the true Trouton
ratio (hence the true extensional viscosity) can be readily obtained by incorporating
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Figure 3-12: Apparent Trouton ratio Trapp against Weissenberg number from the nu-
merically calculated filament thinning dynamics predicted by the IRT model (solid
lines) as well as the asymptotic solutions governed by each individual stress contribu-
tion (zero-shear: thin dotted lines; extensional-thickening: thin solid lines) at intrinsic
elasto-capillary numbers Ec0 = 0, 0.1 and 1. For Ec0 = 0, the asymptotic solution for
a Newtonian fluid is recovered, where Trapp = 3/(2XN − 1) ≈ 7.052 (purple dotted
line). In the numerical calculations, the apparent rate-thinning behavior for Wi ≲ 0.7
is attributed to the filament acceleration at the onset of filament thinning, and is thus
excluded from the constitutive relation. Linear interpretations based on the magni-
tudes of each stress contribution are plotted as thin dashed dotted lines, which show
good agreement with the numerical calculations.

Equation (3.44) into Equation (2.14), considering that X = X (σ). The modified stress
balance equation is subsequently fitted to the experimental data to obtained a more
accurate measurement of all the constitutive parameters.

A time-varying geometric correction factor for the Oldroyd-B model

A similar interpolation protocol can also be applied to the more widely-used Oldroyd-
B model to incorporate a time-varying geometric correction factor for the measure-
ments of constitutive parameters. As justified in the previous section, even if the
asymptote solutions for ε̇ → 0 (visco-capillary thinning governed by the solvent vis-
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3.2. Dilute polymer solutions with viscous solvents

cosity) and ε̇→ 2/(3λ) (elasto-capillary limit) are available, an increasing number of
the materials with larger solvent viscosities, low polymer concentrations or molecular
weights exhibit the capillarity-driven thinning behavior with a more progressive transi-
tion between the two asymptotic solutions governed by individual stress contributions
(3ηSε̇ and the polymer stress N1,P) as the filament thinning dynamics evolve. It has
been shown previously that an intrinsic elasto-capillary number Ec0 ≡ λΓ/(η0R0) ≲ 1
can be utilized to categorize such behavior. To obtain an accurate solution of the
capillarity-driven thinning dynamics predicted by the Oldroyd-B model, a similar nu-
merical protocol is applied with the inertial term being retained in the momentum
equation to avoid numerical instability. The numerical calculation schemes including
the initial/boundary conditions are summarized in Table 3.7, which resemble Table 3.6
except that the Rayleigh timescale tRa ≡

Æ

ρR3
0/Γ is adopted for the nondimensional-

izing purpose.

As a result of the nondimensionalization, three constitutive parameters arise in mo-
mentum equation: the dimensionless relaxation time λ̂≡ λ/tRa, the solvent Ohnesorge
number OhS ≡ ηS/

p

ρΓR0, and the zero-shear viscosity ratio between the elastic stress
and the viscosity stress (denoted as “viscosity ratio”) η̂P ≡ Gλ/ηS. In addition, a Weis-
senberg number can be defined using the Rayleigh timescale as Wi ≡ tRaε̇. One may
notice that during the elasto-capillary thinning, the value of σP,zz increases exponen-
tially with time and becomes progressively larger than its r r-counterpart. As a result,
the stress balance and continuity equations for the numerical calculation are simplified
in the limit of N1,P ≈ σP,zz with the gravitational and inertial effects to vanish, similar
to the form of Equation (3.15) as

∂ t̂(R̂
2 v̂) + ∂ẑ(R̂

2 v̂2) = ∂ẑ

�

R̂2
�

K̂ + 3OhS ·Wi+ N̂1,P

��

, (3.45a)

∂ t̂(R̂
2) + ∂ẑ(R̂

2 v̂) = 0, (3.45b)

∂ t̂ N̂1,P =
�

2Wi−
1

λ̂

�

N̂1,P +
2η̂P ·OhS

λ̂
Wi, (3.45c)

where the polymer stress contribution is nondimensionalized as N̂1,P ≡ N1,P/(Γ/R0).
For the numerical calculation, the filament aspect ratio is set as L̂ = 10 to be consistent
with the numerical study for the IRT model. Identical configurations of the initial
conditions, the boundary conditions, and the finite-difference scheme are applied as
for the IRT model in the numerical calculation. In addition, previous studies have found
numerical singularities close to the boundaries on both sides due to the failure of the
slender assumption [237]. This singularity can been reconciled by imposing a solvent
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Table 3.7: Numerical calculation schemes of the capillarity-driven thinning pre-
dicted by the Oldroyd-B model, including the nondimensionalization scheme and ini-
tial/boundary conditions.

Type Definitions

Position and time r̂ ≡
r

R0
, ẑ ≡

z
R0

, t̂ ≡
t

tRa
=

t
Æ

ρR3
0/Γ

Kinematics and geometry R̂≡
R
R0

, v̂ ≡
v

R0/tRa
, L̂ ≡

L
R0

Operators ∂ t̂ ≡ tRa∂t , ∂ẑ ≡ R0∂z

Dimensionless constitutive parameters

Relaxation time λ̂ λ̂≡
λ

tRa

Solvent Ohnesorge number OhS OhS ≡
ηS
p

ρΓR0

Relative polymer viscosity η̂P η̂P ≡
Gλ
ηS

Weissenberg number Wi Wi≡ t ε̇

Initial conditions

R̂(ẑ, 0) = 0.5− 0.1 cos
�

2πẑ

L̂

�

v̂(ẑ, 0) = 0

Boundary conditions

∂ẑR̂(± L̂/2, t̂) = 0

v̂(± L̂/2, t̂) = 0

∂ẑN̂1,P(± L̂/2, t̂) = 0
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(a) (b)

(c)

Figure 3-13: (a-b) Numerically calculated filament profiles predicted by the Oldroyd-
B model for OhS = 5 and λ̂ = 50 at different time: (a) η̂P = 0 (Newtonian fluid);
(b) η̂P = 1. (c) Numerically calculated mid-plane filament radius predicted by the
Oldroyd-B model for a range of viscosity ratios 0 ≤ η̂1. The dashed line corresponds
to the linear decaying asymptotic solution for visco-capillary thinning with a slope of
−0.0709/OhS. Inset: Identical plot when the ordinate is replotted on a logarithmic
scale. The dashed line corresponds to the exponential decaying asymptotic solution
for elasto-capillary thinning with a slope of −1/(3λ̂).
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viscosity that increases dramatically near the boundaries to progressively “freeze” the
fluid motion. Here a specific form of the solvent viscosity is taken as

η̃S(ẑ) =

¨

ηS, |ẑ| ≤ α L̂
ηS exp[β(|ẑ| −α L̂)/ L̂], |ẑ|> αL̂

(3.46)

where η̃S is the assigned solvent viscosity for numerical purposes only. The two dimen-
sionless control parameters α and β are supposed to control the affected range and the
rate of increase for the assigned solvent viscosity. In this numerical study, α= 0.9 and
β = 1 are taken to optimally accommodate the calculation without impairing the ac-
curacy.

As shown in Figure 3-13(a) and (b), the filament profiles with identical parameters of
OhS = 5 and λ̂ = 50 but different η̂P = 0 and η̂P = 1 are calculated and plotted at
different time t̂ < t̂C . The filament profiles for Ec0 = 0 reduce to the predictions from
a Newtonian fluid, which have been illustrated in Figure 3-8. As η̂P grows positive,
the filament becomes close to a cylindrical shape in the approach to filament breakup
due to the exponentially increased axial stress contribution from the polymer. In Fig-
ure 3-13(c), the mid-plane filament radius for a range of 0 ≤ η̂P ≤ 1 is extracted.
While η̂P = 0 exhibits a linear trend that is consistent with the visco-capillary thin-
ning, a clear transition in the filament shape is manifested for η̂P > 0. At t̂ ≲ 30, the
minimum filament radius exhibits a linear trend with the slope of −0.0709/OhS (black
dashed line), and the filament thinning dynamics are dominated by the visco-capillary
thinning governed by the solvent viscosity. Beyond t̂ ≈ 30, the temporal evolution of
the filament radius progressively approaches an exponential trend as expected for the
elasto-capillary thinning with a slope of −1/(3λ̂) on a logarithmic scale in the ordi-
nate (dotted line in the inset). This exponential-thinning has been described by the
asymptotic solution of Equation (2.18).

Following a similar protocol for the calculation of the axial driving force as in Figure 3-
10, the contributions to the geometric correction factor from the two stress terms in
the constitutive equation, XS( t̂) (solvent) and XP( t̂) can be calculated, while the con-
tribution from the capillary pressure remains at constant of Xcap = 0.5. Figure 3-14(a)
plots the temporal evolution of XS, XP and X for η̂P = 1. Notably, the magnitude of
X ( t̂) evolves from XN = 0.7127 (gray dashed line) to an asymptote of XEC = 1. This
transition appears to be more rapid than the IRT model in Figure 3-10 because of the
exponentially increased viscoelastic stress contribution, compared with the quadrati-
cally increased rate-thickening contribution in the IRT model. Nonetheless, the scheme
using a linear interpolation similar to Equation (3.44) can still be applied to render a
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time-implicit expression for a varying geometric correction factor as

X (Wi)− XN

XEC − XN
=

N1,P

3ηSε̇+ N1,P
, (3.47)

where XN = 0.7127 and XEC = 1 are the geometric correction factors solely governed
by a visco-capillary balance and an elasto-capillary balance, respectively. As shown
in Figure 3-14(b), Equation (3.47) leads to a collapsed curve for a range of η̂P, and
the linear interpolation (dashed line) shows broad agreement with the collapsed curve
from the numerical calculation.

(a) (b)

Figure 3-14: (a) Temporal evolution of the geometric correction factor X and its two
contributions from the solvent viscosity term XS and the polymer stress term XP pre-
dicted by the Oldroyd-B model. The dashed and solid lines in gray correspond to the
asymptotic solutions of XN = 0.7127 and XEC = 1, respectively. (b) Collapsed geo-
metric correction factor assuming the validity of Equation (3.47), which is shown as
the black dashed line. A broad agreement between the numerical calculation and the
expression of Equation (3.47) is manifested. The two gray lines show identical asymp-
totic solutions as in (a).

Equation (3.47) is subsequently combined with Equation (2.14) and the constitutive
relation of Equation (3.2), leading to a modified ordinary differential equation with
a more accurate description of the filament thinning dynamics by virtue of multiple
stress contributions. In Figure 3-15, two evolutions of the mid-plane filament radius
predicted by the Oldroyd-B model are plotted with X = 1 (red solid line) and X [σ( t̂)]
according to Equation (3.47) (black solid line). In both numerical solutions, the consti-
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tutive parameters are set as OhS = 5, λ̂= 50 and η̂P = 1. Two reference lines predicted
by the visco-capillary thinning are plotted for X = 1 (red dotted line) and X = XN

(black dotted line) with substantially different slopes. When the value of X differs,
the exponential decaying trend predicted by the elasto-capillary thinning is retained
with an identical slope of −1/(3λ̂). However, the prediction line with a temporally-
evolving X produces a consistent result with the self-similar solution predicted by the
visco-capillary thinning (black dotted line) when the solvent viscosity dominates the
filament thinning dynamics. The transition time between the visco-capillary thinning
and the elasto-capillary thinning tV-E, as defined previously and marked in black, is
thus delayed by approximately 100% compared with that for X = 1 (marked in red),
showing a substantial change in the filament thinning patterns. The mid-plane filament
radius predicted by the IRT model as introduced in Section 3.2 is plotted as well for
comparison purposes, as shown in the red dashed line for X = 1, and the black dashed
line for X [σ( t̂)] according to Equation (3.44). To keep the constitutive parameters
comparable between the two models, the asymptotic solution from Equation (3.8) is
applied such that the constitutive parameters in the IRT model are set as

Oh≡
η0
p

ρΓR0

(IRT)⇒ OhS(1+ η̂P) (Oldroyd-B)= 5.5, (3.48a)

Oh · Ec0 ≡
k2

ρR2
0

(IRT)⇒ η̂POhSλ̂ (Oldroyd-B)= 25. (3.48b)

From Figure 3-15, a better comparison can be made between the Oldroyd-B model
and the IRT model with consistent constitutive parameters. From inspecting the fila-
ment thinning profiles, the IRT model predicts a more progressive deviation from the
visco-capillary thinning trend (dotted lines) due to the slowly increased magnitude of
the extensional-thickening contribution, and the transient extensional viscosity at an
early stage of the filament thinning is larger for the IRT model. The filament thin-
ning profiles predicted by the IRT model become distinct in shape from the Oldroyd-B
model only in the late stage of filament thinning, where the strain rate becomes large
in magnitude (Wi ∼ 2/3), and the approximation of Equation (3.8) fails. Despite
that the constitutive equation of the IRT model can be derived from Equation (3.8)
as an asymptotic solution of the Oldroyd-B model, these two models are treated in-
dependently in this study. The rate-dependent contributions to the filament thinning
dynamics differ substantially in either model, as depicted by their distinct asymptotic
geometric correction factors (XRT = 0.5778 for the IRT model, and XEC = 1 for the
Oldroyd-B model). Noticeably, the two asymptotic values of X lie on either side of
XN for a Newtonian fluid. For the IRT model, both the r r- and zz-components of the
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stress tensor grow in magnitude in a filament thinning process, and a self-similar solu-
tion can be identified to describe the shape of the filament profiles. The value of X is a
physical quantification that describes the self-similar nature, which has been explicitly
expressed for other analytical solutions of the filament profiles [254,255]. The result-
ing filament can grow increasingly slender than the Newtonian counterpart, despite
that the value of X evolves farther away from X = 1 (assumed for a cylindrical fila-
ment). In contrary, for the Oldroyd-B model, the zz-component grows overwhelmingly
large in magnitude than the r r-component in the elasto-capillary thinning region, and
the fluid becomes increasingly anisotropic. Consequently, a self-similar solution fails to
describe the whole filament thinning profiles accurately, and the value of X is merely
a summation of the stress contribution in the axial direction.

Figure 3-15: Temporal evolution of the mid-plane filament radius predicted by the
Oldroyd-B model with X = X ( t̂) according to Equation (3.47) (black solid line) and
X = 1 (red solid line) for OhS = 5, λ̂ = 50 and η̂P = 1; the IRT model with X = X ( t̂)
according to Equation (3.44) (black dashed line) and X = 1 (red dashed line) with
the constitutive parameters defined in Equation (3.48); visco-capillary thinning with
X = XN (black dotted line) and X = 1 (red dotted line). The markers denote the time
when 3ηSε̇= N1,P for two prediction lines from the Oldroyd-B model (black: X = X ( t̂);
red: X = 1).
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(a) (b)

Figure 3-16: Filament thinning profiles for (a) CSB and (b) M1 motor oils fitted with
their best-fit models (CSB: Oldroyd-B; M1: IRT) based on cylindrical filament assump-
tions (X = 1, black lines) and temporally-evolving geometric correction factors (X (t),
red lines).

Table 3.8: Estimates of the zero-rate viscosities extracted from steady-shear flow mea-
surements and fitting the filament thinning profiles with the best-fit models based on
cylindrical filament assumptions (X = 1) and temporally-evolving geometric correction
factors. Values in parentheses show error percents compared with the measurements
in shear flow.

Materials Best-fit models
Estimates of the zero-rate viscosities (Pa s)

η (Steady-shear) η0 (X = 1) η0 (X (t))

CSB Oldroyd-B 0.132 (-) 0.236 (78.8%) 0.134 (1.5%)
M1 IRT 0.142 (-) 0.290 (104.2%) 0.147 (3.5%)
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Finally, to show the significance of a temporally-evolving geometric correction factor
in extracting accurate constitutive parameters from the CaBER measurements, results
from the two motor oils as shown in Section 3.2.1 are revisited. To be more spe-
cific, the CaBER measurements in Figure 3-4 are refitted with the predictions using
temporally-evolving geometric correction factors. As shown in Figure 3-16, the fila-
ment thinning profiles from CaBER measurements for the CSB and M1 motor oils are
fitted with the Oldroyd-B model (solid lines) and the IRT model (dashed lines), respec-
tively, which correspond to the best-fit models for each fluid sample. Predictions by the
same constitutive models using temporally-evolving geometric correction factors based
on Equation (3.47) and 3.44 are plotted in red, which overlap with the solutions based
on cylindrical assumptions using X = 1 (black lines), and both fitting lines agree with
the experimental data very well. However, the extracted zero-rate viscosities as tab-
ulated in Table 3.8 are distinct in values as the geometric correction factor becomes
temporally-evolving. Comparing with independent steady-shear flow measurements,
only the predictions based on temporally-evolving geometric correction factors result
in accurate measurements of the zero-rate viscosities from both constitutive models,
while retaining the rate-dependent contributions in the constitutive equation. From
the fitting results in Figure 3-16, it can be concluded that accurate constitutive param-
eters can only be extracted with correct evaluations of the geometric correction factor,
in spite of apparent agreement in the fitted filament thinning profiles.

3.3 Statistics-based protocol for model selection

The increased rheological complexity observed in many material systems, including
nanocomposites, motivates the important topic of modeling selection in the capillary
breakup extensional rheometry. As prerequisite of the data fitting process, the best-fit
constitutive model, featured with sufficiently high fitting accuracy to the experimen-
tal data as well as a well-regularized set of fitting parameters, is key to the extraction
of valid extensional rheological parameters from the measured filament thinning dy-
namics. This idea has been briefly discussed in Section 3.2, where the weakly rate-
thickening behavior is distinguished from the strongly viscoelastic response through
a constraint on the elasto-capillary number. However, this constraint, as is derived
from the phenomenological observations of filament thinning dynamics, is not readily
extended to other constitutive models. In addition, the statistical ambiguity in this
criterion brings unwanted subjectivity to the model selection and the subsequent data
fitting. To address this limitation, a statistics-based protocol is proposed in this section
that enables a robust selection of the best-fit model (BFM) from a library of constitutive
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equations. The proposed protocol, without the introduction of additional parameters,
has the potentials to accelerate and automate the data processing that may constitute
a high throughput technique for extensional rheological characterizations.

Figure 3-17 shows the overall flowchart of the proposed protocol, which is comprised
of four main steps. First, the filament thinning profiles of a fluid sample are measured
by the capillary breakup extensional rheometer. During the capillarity-driven thinning
process, the temporal evolution of the minimum filament radius R(t) is captured by a
high-speed optical transducer (e.g., high-speed camera, or laser micrometer). With an
independent measurement of the fluid surface tension, the filament radius evolution
R(t) can be fitted into the predictions from a number of candidate constitutive mod-
els, and the corresponding model parameters can be extracted. In the fitting process
for each constitutive model, a non-trivial geometric correction factor X must be in-
corporated to obtain accurate constitutive parameters. If multiple stress contributions
are identified from the constitutive equation, this geometric correction factor will still
be expected to be time-varying, and can be simply expressed as a linear interpolation
based on the magnitude of each stress contribution, as exemplified in Equation (3.44)
for the IRT model. The asymptotic solutions of X governed by each individual stress
contribution can be obtained through full-dimensional analysis of the filament thinning
profiles, if necessary. Finally, each candidate model is assigned with a single metric that
incorporates both the regression errors and the model regularization, from which the
best-fit model (BFM) and the constitutive parameters can be readily selected. In the
proposed protocol, the parameter-free Bayesian information criterion (BIC) is applied,
which is defined [256] as

BIC≡ ln(n)Nθ − 2 ln(L̄), (3.49)

where n is the number of datapoints in an experimental dataset {x i, yi} (i = 1, 2, ..., n).
In the fitting process, there are Nθ = Nf +1 parameters, where θ = {p1, p2, ..., pN f

,σ2}.
Here, {p j} ( j = 1, 2, ..., Nf ) are Nf constitutive parameters, and σ2 is the variance as an
additional fitting parameter. The dataset {x i, yi} is fitted into the constitutive equation
f (x; {p1, p2, ..., pN f

}) with Nf parameters. In practice, the system output Y (x) as a
random variable is assumed to follow a Gaussian distribution with a mean value of
f (x; θ̄ ) and a variance of σ̄2, where the best estimator (with the bar notation) of the
model parameters θ̄ ≡ {p̄1, p̄2, ..., p̄N f

, σ̄2} is calculated by maximizing the likelihood
function L ≡ p({yi}|θ ) such that

θ̄ ≡ arg max[p({yi}|θ )]. (3.50)

A common form of the likelihood function L = p({yi}|θ ) is derived from least square
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Figure 3-17: Flowchart of the statistics-based protocol to select the best-fit model
(BFM) for the data fitting and extraction of the constitutive parameters from the mea-
sured filament thinning profiles.

regression (LSR), where a logarithmic form of L is expressed as

ln[L({x i, yi}; f ;θ )] = −
n
2

ln(2π)−
n
2

ln(σ2)−
1

2σ2

n
∑

i=1

�

yi − f (x; {p1, p2, ..., pN f
})
�2

.

(3.51)115
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The best estimator of model parameters θ̄ and the maximum value of the likelihood
function L can be obtained by letting ∇ ln L = 0, and solving the corresponding Nθ
equations. Consequently, the best estimator of the variance σ̄2 can be expressed as

σ̄2 =
1
n

n
∑

i=1

[yi − f (x; {p̄1, p̄2, ..., p̄N f
})
�2

. (3.52)

Finally, the magnitude of BIC can be calculated as

BIC(n, Nf , σ̄2) = ln(n)(Nf + 1) + n[ln(2π) + 1] + n ln(σ̄2), (3.53)

which provides an appropriate metric in the absence of additional parameters to eval-
uate the “fitness” of a constitutive model candidate with an optimal balance between
the fitting accuracy (σ̄2) and the number of constitutive parameters (n and Nf ). The
best-fit model can be selected as the one with the minimum value of BIC.

This proposed protocol is subsequently validated by applying to the experimental mea-
surements from a number of selected material systems at 25 °C: glycerol, aqueous PEO
solution (Mw ≈ 5 MDa; Sigma-Aldrich, USA) and polyisobutylene (PIB) (Mw ≈ 1 MDa;
Sigma-Aldrich, USA) solutions in hexadecane (C16; Sigma-Aldrich, USA). All samples
used for validation are summarized in Table 3.9.

Table 3.9: Selected material systems to validate the proposed statistics-based protocol
for the selection of the best-fit constitutive model among the Newtonian fluid (N),
the Oldroyd-B model in the elasto-capillary limit [O-B (EC)], the IRT model and the
Oldroyd-B (O-B) model. Models with the minimum values of BIC are marked in gray.

Materials
c BIC

Figure
(wt%) N O-B (EC) IRT O-B

Glycerol - −1696.77 −506.73 −1658.15 −1685.81 3-18(a)
PEO/Water 0.20 −1464.43 −5823.78 −3580.58 −5104.50 3-18(b)
PIB/C16 6.47 −8695.37 −5431.68 −18244.84 −16578.83 3-18(c)
PIB/C16 4.07 −768.64 −2651.67 −2325.62 −4495.58 3-18(d)

The capillarity-driven dynamics of the four material systems are measured using the
customized CaBER system introduced in Section 3.1 with an identical geometrical and
stretch configuration as in the measurements for the two motor oils (Table 3.2). As
shown in Figure 3-18, the measured filament radius is plotted separately for each

116



3.3. Statistics-based protocol for model selection

sample in four subplots. Four models are selected to fit the experimental data for
t > tM = 30ms (tM is specified in the CaBER software): the Newtonian fluid model
(Equation (2.17); dotted line), the Oldroyd-B model in the elasto-capillary limit (Equa-
tion (2.18); dotted dashed line), the IRT model (Equation (3.7); dashed line) and the
Oldroyd-B model (Equation (3.2); solid line). For the latter two models, a time-varying
geometric correction factor is applied following Equation (3.44) and Equation (3.47),
respectively. In the calculation of BIC in Equation (3.53), a logarithmic form of the
filament radius is used for regression (i.e., yi = ln(Ri)) to generate an unbiased fitting
regardless of the magnitude of the filament radius. This transform arises from Equa-
tion (3.9), in which the (apparent) extensional viscosity is independent of the filament
radius. Accordingly, all subplots of Figure 3-18 are plotted with the radius R on a loga-
rithmic scale to better visualize the fitting errors. The corresponding values of BIC for
each sample and constitutive model are calculated and reported in Table 3.9, in which
the minimum value of BIC is highlighted in gray.

The four material systems are selected such that each of the four model candidates is
justified as the BFM for one material. By comparing the fitting curves from the BFM
and the other model candidates in Figure 3-18, the proposed statistics-based crite-
rion provides accurate guidance in selecting the BFM with a sufficiently regularized
set of parameters. This is evidently demonstrated for glycerol (which is well-known to
behave as a Newtonian fluid) in Figure 3-18(a), where the Newtonian model outper-
forms the IRT model and the Oldroyd-B model in the value of BIC with the application
of a smaller number of parameters, despite that fitting from the latter two models
appears to be identically consistent, if not better, with the experimental data. This
principle of parsimony is also visualized in Figure 3-18 for an aqueous PEO solution
with a relatively large molecular weight, in which the elasto-capillary balance domi-
nates almost the entire lifetime of the filament thinning, and the Oldroyd-B model in
the elasto-capillary limit is conceivably the best choice. When multiple stress contribu-
tions are involved in the capillarity-driven thinning for PIB/hexadecane solutions, the
criterion using BIC enables us to distinguish the two complex models fairly well. As
the concentration of PIB decreases from 6.47 wt% (Figure 3-18(c)) to 4.07 wt% (Fig-
ure 3-18(d)), the best-fit model (BFM) switches from the IRT model to the Oldroyd-B
model by virtue of an enhanced contribution from the elasto-capillary balance. This
result is in excellent agreement with the rheology-based criterion of Equation (3.14),
where the elasto-capillary numbers EcV-E for the two samples can be calculated as 3.6
(6.47 wt%) and 7.8 (4.07 wt%), respectively, and lie on both sides of the critical value
of Ec∗V-E = 4.7.
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Figure 3-18: Evolution in the measured minimum filament radius for the four ma-
terial systems: (a) Glycerol; (b) PEO/Water (0.20 wt%); (c) PIB/C16 (6.47 wt%);
(d) PIB/C16 (4.07 wt%). In each subplot, the identical experimental data are fit-
ted with four selected constitutive models: the Newtonian fluid model (dotted line),
the Oldroyd-B model in the elasto-capillary limit (dotted dashed line), the IRT model
(dashed line) and the Oldroyd-B model (solid line).

3.4 Summary

This chapter explored the extensional rheological characterization measured by capil-
lary breakup techniques for a variety of material systems, in which the filament thin-
ning dynamics are governed by multiple stress contributions. Typical material systems
include polymer solutions with highly viscous solvents or weakly elastic behavior due
to small polymer molecular weights or concentrations. Distinct evolution of the stress
contributions gives rise to a multi-stage filament thinning profile, and the asymptotic
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solutions based on single stress contributions from previous studies are not sufficient
to describe the whole filament thinning dynamics accurately.

To progressively construct a theoretical framework and propose a measuring protocol
for such complex filament thinning dynamics, this chapter constitutes a series of exper-
imental and numerical studies on two constitutive frameworks, namely, the IRT model
for weakly rate-thickening fluids, and the Oldroyd-B model for strongly viscoelastic
fluids. These models provided accurate rheological characterizations for two selected
synthetic motor oils with subtle but critical rate-thickening behavior attributed to the
low-concentration polymer additives. In light of the “waxing and waning” of com-
parable stress contributions to the filament thinning dynamics from each term in the
constitutive equation, a temporally evolving geometric correction factor X (t) was in-
corporated in the data processing. The numerical calculations from the two constitutive
models justified the use of a linearly interpolated form of the geometric correction fac-
tor X [σ(t)] as a function of the magnitude of each stress contribution to accurately de-
scribe the transition of different asymptotic solutions. Revisiting the CaBER measure-
ments of the two motor oils shows the necessity of applying temporally-evolving geo-
metric correction factors to obtain accurate constitutive parameters. Finally, a practical
measuring protocol for the selection of a parsimonious best-fit model was proposed
based on the Bayesian information criterion (BIC). This protocol was demonstrated to
identify consistent constitutive relations with the previously-proposed rheology-based
criterion using a critical elasto-capillary number Ec∗V-E = 4.7 for a selected range of
fluid samples, from which accurate constitutive parameters were obtained to exhibit
their different degrees of viscoelasticity.

The models and measuring protocols proposed in this chapter provide valuable in-
sights into understanding the complex extensional rheology of fluids with multiple
significant stress contributions that are likely to arise from different material phases
or length scales. In Chapter 4, a multi-stage filament thinning profile reappears for
concentrated polymer solutions, the dynamics of which can be characterized by com-
prehensive constitutive equations based on tube models. It will be shown later that
the extensional rheology of GDNC materials can also be accurately described by these
tube models as a result of the dynamics governed by the interactions between the poly-
mer matrix and the nanofillers over a broad spectrum of length and time scales. All
of these calculations are based on the protocols proposed in this chapter for accurate
data processing and analysis.
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4 | Extensional Rheology of Entangled
Polymer Systems

4.1 Entangled polymer solutions

4.1.1 Tube models and reptation theory

The constitutive models in the previous chapter provide phenomenological descrip-
tions of a polymer solution dissolved in a viscous Newtonian solvent that exhibits
rate-thickening phenomena in extensional flow. Nonetheless, a direct application of
such models to the nanocomposite system is hampered with additional challenges.
First, common polymer matrices are in the state of melts or entangled solutions with
high polymer concentrations. Strong intermolecular interactions between the polymer
chains result in more complex microstructural dynamics that lead to distinct relaxation
mechanisms over a wide range of time- and lengthscales during the material deforma-
tion, processing and manufacturing [196,249]. Consequently, most entangled polymer
systems exhibit strongly nonlinear rheological behavior, such as rate-thinning viscosi-
ties, stress overshoots following step strains, and onset of transient elastic instabili-
ties [249]. In addition, the graphene-derived nanofillers in the GDNC systems further
contribute to the rheological complexity of bulk nanocomposites in a variation of en-
hanced polymer-filler and filler-filler interactions due to the increased surface area,
as well as a flow-induced anisotropy due to the nanofiller reorientation [17, 19, 196].
These additional complexities arising from multiple stress contributions are likely to
induce a broader relaxation time spectrum, as well as a non-monotonic extensional
viscosity with the strain or strain rate.

The filament thinning dynamics of polymer solutions in the semi-dilute or entangled
regimes have been an ongoing topic with a handful of experimental studies [32, 199,
200, 257] that cover a variety of material systems, including aqueous polyethylene
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oxide (PEO), polystyrene (PS), hydroxyethyl cellulose (HEC), and wormlike micelle
solutions. In these studies, a common pattern in the filament thinning profile is identi-
fied when the concentration increases beyond the entangled threshold, which deviates
notably from the elasto-capillary thinning behavior [208, 209]. Observations reveal
two unique features in the measured extensional rheological behavior in the entan-
gled regime. First, the extensional relaxation time λe fitted from an exponential de-
cay of the filament radius is evidently smaller than that independently extracted in
shear flow (λs), and the ratio of the two relaxation times λe/λs is found to decrease at
higher concentrations. Arnold et al. [200] has suggested the use of a damping func-
tion in the K-BKZ form of the constitutive equation to reconcile the different relaxation
times in shear and extensional flows. However, additional fitting parameters are in-
troduced in the fitting process, and it remains unclear if these parameters are robust
to material and concentration variations due to the absence of a clear physical inter-
pretation. Secondly, the evolution of the mid-plane filament radius in the entangled
regime progressively shifts away from an exponential decay expected for a dilute poly-
mer solution [201] towards a power-law relation with the time to filament breakup
τ= tC− t [32]. This power-law trend concomitantly results in a transient extensional
viscosity that decreases with an increased strain rate. Phenomenological inelastic mod-
els have been proposed by previous studies to fit the filament thinning profiles in this
regime [32, 258]. However, the microstructural origin of this rate-thinning trend has
not been considered in depth, and a physical model that incorporates the evolution of
polymer conformation inside the material element is lacking, hampering the extraction
of accurate constitutive parameters from the measured filament thinning response.

To introduce a comprehensive modeling framework that incorporates the structural
information in an entangled polymer system, extensive efforts have been made from
previous studies to characterize their rheological complexity [249, 259]. Significant
progress has been witnessed since the milestone work of the reptation theory, which
provides a coarse-grained canonical framework to understand the dynamical response
of interactive polymer chains [260]. In the reptation theory, each polymer chain is
fully or partially confined by surrounding polymer chains in a mean-field imaginary
tube. The entangled chains interact with each other at their topological crossovers, or
entanglements, which form geometrical constraints that inhibit the transverse motion
of a single chain and only allow for diffusive motion, or “reptation,” along the imag-
inary tube with a significantly reduced diffusivity [261, 262]. This low diffusivity in
the tube results in a conceivable slowdown in the polymer chain relaxation. Based on
this concept, Doi and Edwards [263] proposed a full-dimensional constitutive model
for monodisperse entangled linear polymers derived from the Lodge rubberlike liq-
uid [136]. In the original Doi-Edwards (DE) model, the tube segments are reoriented
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in the flow direction based on the “independent alignment approximation (IAA).” Un-
der this assumption, the bulk stress originates from an affine transformation of the tube
segments instead of the tube stretch [197]. The primitive chains between entangle-
ments are simplified as rigid rods. This approximation only applies to an intermediate
strain-rate range of 1/λD ≤ γ̇≪ 1/λR in the stress relaxation process [196]. Here λR

is the Rouse time quantifying the duration of retraction for a single polymer chain in
the tube, and λD is the disengagement time characterizing the time in which a single
polymer chain reptates out of its constraining tube. These two timescales are related
through a geometrical description of the entanglements [30] as

λD = p(Z)λR = p(Z)
ξ0(N b)2

6π2kT
, (4.1a)

p(Z) = 3Z
�

1−
3.38
p

Z
+

4.17
Z
−

1.55
Z3/2

�

, (4.1b)

where the Rouse time λR is defined explicitly as a function of the monomeric friction
coefficient ξ0 and the statistical contour length of (N b) [249]. Z = M/Me is the num-
ber of entanglements per polymer chain [264]. M and Me are the molecular weights of
a single polymer chain and that between entanglements, respectively. The form of the
function p(Z), the ratio of λD and λR is a truncated Taylor expansion of Z−1/2 that has
been numerically calculated by Likhtman and McLeish [30] to incorporate the effects
of contour length fluctuation (CLF) in polymer chains with realistic finite lengths and
the number of entanglements.

The DE model successfully captures a number of key rheological features for a variety
of entangled polymer systems, such as a molecular-weight independent storage modu-
lus, a non-trivial second-order normal stress difference in steady shear flow and strain-
softening behavior at long time in a step-strain experiment at large strains [264,265].
However, this model is well-known to produce an underestimated scaling of the zero-
shear viscosity with the molecular weight, η0 ∝ M3, compared with η0 ∝ M3.4

from experiments [249]. In addition, excessive levels of rate-thinning are predicted
in both steady shear and extensional flows that lead to flow instabilities [197, 264].
Subsequent studies have attributed these deficiencies to the absence of two critical
non-reptative contributions to this chain dynamics in the DE model: (i) a finite rate
of chain retraction at short timescales or at high strain rates (i.e., when t < λR or
λRγ̇ > 1), and (ii) convective constraint release over intermediate to long timescales
of a relaxation process (i.e., t > λD or 1/λD < γ̇ < 1/λR) [266]. These deficiencies
have been addressed by a number of more sophisticated constitutive models based on
the underlying micro-mechanical framework derived from the reptation theory, includ-
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ing the Doi-Edwards-Marrucci-Grizzuti model [266], the GLaMM model [267] and the
Rolie-Poly model [268].

To bridge the theoretical gap in describing the filament thinning dynamics of entangled
polymer solutions, two representative microstructural-based constitutive models are
selected, both of which are derived from reptation theory but differ slightly in the non-
reptative mechanisms that are included. Their capillarity-driven thinning dynamics are
numerically calculated based on the assumption of a cylindrical filament (∂zR= 0 and
∂zzR= 0) to simplify the calculation. In the remainder of this section, the resulting evo-
lution of the mid-plane filament radius predicted by both models is shown to exhibit
a shared complex three-stage sequence governed by the tube reorientation, the poly-
mer chain stretching and ultimately the finite extensibility of single polymer chains,
respectively. The asymptotic solutions for filament thinning evolution at each stage
are calculated analytically, from which a non-trivial expression for the ratio of appar-
ent shear and extensional relaxation times is obtained. The application of the selected
tube models is subsequently justified by comparing with the experimental data from
a variety of polymer systems reported in previous studies, and a general agreement is
observed in both shear and extensional rheological responses without introducing any
additional fitting parameters. Finally, a dimensional analysis of the filament thinning
profiles for aqueous polyethylene oxide (PEO) solutions with varying concentrations
is presented below, at and above the entangled concentration threshold. The close
similarity of the predicted filament thinning profiles to the previously published exper-
imental data provides additional physical insights into the capillarity-driven thinning
for an expanded variety of complex nanocomposite systems.

Doi-Edwards-Marrucci-Grizzuti (DEMG) model

Marrucci and Grizzuti [266]modified the DE model by introducing an additional relax-
ation process characterized by the Rouse time λR to describe the chain stretch of flexible
polymers, in conjunction with the tube reorientation and chain reptation characterized
by the disengagement time λD. This new relaxation process only becomes evident at
high strain rates when λRγ̇ ∼ O(1) [269], and quantifies the stretching of polymer
chains along its primitive path length within an orientated tube segment. Pearson et
al. [270] proposed a closed differential form of the constitutive equation for the DEMG
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Table 4.1: Nondimensionalization scheme for the numerical analysis of capillarity-
driven thinning dynamics for the selected tube models.

Type Definitions

Kinematics and time R̂≡
R
R0
=

R
R(0)

, t̂ ≡
t
λR

Operators ∂ t̂ ≡ λR∂t , ∂ẑ ≡ R0∂z

Dimensionless constitutive parameters

Weissenberg number Wi≡ λRε̇, WiD ≡ λDε̇

Intrinsic elasto-capillary number Ec0 ≡
GNR0

Γ

model as

▽
S = −2(∇vT : S)S−

1
λDΛ2

(S−
1
3

I), (4.2a)

Λ̇= (∇vT : S)Λ−
f (Λ)
λR
(Λ− 1), (4.2b)

σ = 3GN f (Λ)Λ2S. (4.2c)

In Equation (4.2), S is the averaged tube orientation tensor, which is the ensemble
average of the end-to-end vector for each tube segment. The scalar Λ describes the
ensemble strain imposed on the polymer chain segments within the tubes. The notation
of “▽” is the upper-convected derivative as defined on page 77, and ∇v is the velocity
gradient tensor.

The finite extensibility factor for a single polymer chain f (λ) is given by the inverse
Langevin function, which can be written in a single explicit form using Cohen’s Padé
approximation [271] as

f (Λ) =
1− 1/Λ2

m

3− 1/Λ2
m

·
3−Λ2/Λ2

m

1−Λ2/Λ2
m

, (4.3)

where Λm describes the maximum polymer extensibility which scales with square root
of the molecular weight, M1/2. From Equation (4.2)(a), evolution of the averaged tube
orientation tensor S is a result of the interplay between the imposed convective flow
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and the decay in the tube segment orientation characterized by the disengagement
time λD. By definition, the averaged tube orientation tensor is constrained by tr S ≡ 1
and S : S ≤ 1. When S = I/3, the tube segments are randomly oriented [266].

For mathematical simplicity, a nondimensionalizing scheme can be applied as shown
in Table 4.1 using the initial filament radius R0 and Rouse time λR. An intrinsic elasto-
capillary number specific to the tube models is defined as Ec0 ≡ GNR0/Γ . Noticeably,
an identical notation has been defined in the previous sections for the IRT model and
the Oldroyd-B model, which slightly differs in the definition. Nonetheless, both expres-
sions retain a similar physical interpretation in which the elasto-capillary timescale is
nondimensionalized by the specified characteristic timescale. Notably, in tube mod-
els the zero-shear viscosity η0 = GNλD. The expression for Ec0 can be rewritten as
Ec0 ∼ (η0R0/Γ )/λD, where the numerator denotes the elasto-capillary timescale1 as a
function of the plateau modulus GN.

The stress balance equation can be expressed in dimensionless form as

1

R̂
= 3Ec0 f (Λ)Λ2∆S, (4.4)

where ∆S ≡ Szz − Szz is the magnitude of the tube alignment calculated from the
difference between the zz- and r r-components of the tube reorientation tensor, and
Ec0 is the intrinsic elasto-capillary number defined in the foregoing Table 4.1. Because
of the axisymmetric filament shape and the irrotational nature in the extensional flow,
the r r- and θθ -components of the reorientation tensor are identical in magnitude.
Therefore, the trace of the reorientation tensor satisfies tr S = Szz + 2Sr r ≡ 1, and the
governing equation for the temporal evolution of∆S can be rewritten in a simpler form
as

∂ t̂∆S =Wi(∆S + 1)− 2Wi∆S2 −
1

p(Z)Λ2
∆S. (4.5)

where the ratio of disengagement and Rouse timescales in Equation (4.5), p(Z) =
λD/λR, can be expressed as a function of the number of entanglements per polymer
chain Z according to Equation (4.1).

1Admittedly, this elasto-capillary timescale is expressed in the form of a visco-capillary timescale
as defined in the vicinity of Equation (3.12). Such inconsistency, however, does not compromise the
validity of the elasto-capillary claim because the scaling relation between the shear viscosity and GNλD
only applies to small Weissenberg numbers (WiD) and can be treated as an asymptotic solution only.
The definition of Ec0 in Table 4.1 is also widely accepted in the rheological study of polymer solutions
[178,237,272], hence is retained by convention.
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Rolie-Poly (RP) model

In addition to the finite rates of polymer chain stretching and retraction within the
tube incorporated in the DEMG model, convective constraint release (CCR) has been
recognized more recently as another critical non-reptative mechanism that substan-
tially alters the non-linear rheology of entangled polymer systems in both steady and
transient flows [249,267,273,274]. This effect is manifested at an intermediate strain
rate ε̇ > 1/λD, when polymer chains disengage from the physically entangled net-
work at a rate faster than the reptation due to the surrounding polymer molecules
being convected away from the chain of interest in a strong flow field. To obtain a
more comprehensive understanding of how CCR affects the capillarity-driven thinning
dynamics, the more sophisticated Rolie-Poly (RP) model [268] is adopted and the re-
sulting temporal evolution of the filament thinning profiles is compared with that ob-
tained from the DEMG model. A specific form of the constitutive equation similar to
Equation (4.2) is taken that separates the averaged tube reorientation and the polymer
chain stretch [249] as

▽
S = −2(∇vT : S)S−

1
Λ2

��

1
λD
+ 2β f (Λ)

1− 1/Λ
λR

Λδ
��

S−
1
3

I
��

, (4.6a)

Λ̇= (∇vT : S)Λ−
f (Λ)
λR
(Λ− 1)−
�

1
λD
+ 2β f (Λ)

1− 1/Λ
λR

Λδ
�

Λ2 − 1
2Λ

, (4.6b)

σ = 3GN f (Λ)Λ2S, (4.6c)

where the notations for S, λ and ∇v are identical to those defined in Equation (4.2),
and the Padé approximation for the inverse Langevin function f = f (Λ) is evaluated
according to Equation (4.3). The dimensionless coefficients of β and δ are two model
parameters that quantify the magnitude of the CCR effect and the contribution of the
polymer chain stretch to the CCR effect, respectively. Previous studies have suggested
that β = 1 and δ = −0.5 produce the best-fitting results to the full kinetic model over
a wide range of shear rates [268,273], and these values are inherited in the following
calculation and asymptotic analysis.

Following the numerical procedure for the DEMG model, the differential equation for
the temporal evolution of the magnitude of the averaged tube orientation∆S ≡ Szz−Sr r

can be rewritten in a similar form as in Equation (4.5) with the addition of the CCR-
related term as

∂ t̂∆S =Wi(∆S + 1)− 2Wi∆S2 −
1
Λ2

�

1
p(Z)

+ 2β f (Λ)(1− 1/Λ)Λδ
�

∆S, (4.7)
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Table 4.2: Initial conditions based on the value of Ec0 for the numerical calculation of
the capillarity-driven thinning dynamics predicted by the selected tube models.

Condition for Ec0 Boundary conditions

Ec0 ≥
1
3

Sr r(0) =
1
3

�

1−
1

3Ec0

�

, Szz(0) =
1
3

�

1+
2

3Ec0

�

, Λ(0) = 1

Ec0 <
1
3

Sr r(0) = 0, Szz(0) = 1,

f [Λ(0)]Λ(0)2 =
1

3Ec0
(numerically solved)

where the time-varying Weissenberg number Wi ≡ λRε̇ has been defined previously,
and the stress balance equation given by Equation (4.4) remains applicable.

4.1.2 Evolution of filament thinning profiles

Numerical calculations of the capillarity-driven thinning dynamics for the two selected
tube models are performed for a range of representative material parameters. An initial
condition of the reorientation tensor and the chain stretch is shown in Table 4.2 for
both constitutive models separated by a critical value at 1/3. This critical value of Ec0

is selected when the tube segments approach a uniform orientation but the polymer
chains remain unstretched (Λ = 1) according to Equation (4.4), and a more rigorous
analysis and substantiation of this critical value will be shown shortly.

The filament radius R̂, the magnitude of the tube reorientation ∆S = Szz − Sr r and the
chain stretch Λ predicted by both models (dashed line for DEMG model, and solid line
for RP model) are plotted in Figure 4-1. Four intrinsic elasto-capillary numbers are
selected that range from 0.1 to 2 to represent the initial conditions of Table 4.2, and
the number of entanglements is fixed at Z = 10. The filament radius predicted by the
two tube models shows similar trends, except that the RP model predicts a noticeably
faster filament thinning (corresponding to a lower viscosity) due to the additional CCR
effect. Figure 4-1 sets an especial focus on the early-thinning stage, and the polymer
chain extensibility is presumed to only affect the filament thinning behavior close to
the filament breakup. As a result, a generic condition is set for all curves as Λm→∞.
By inspecting the temporal evolution of the filament thinning profiles at Ec0 = 2 (lines
in amber), two distinct filament thinning regimes can be identified. At early times, the
filament radius decays slowly (Figure 4-1(b)), and the magnitude of the tube reori-
entation ∆S increases progressively to unity (0 ≤ t̂ ≲ 80 in Figure 4-1(c)) in the ap-
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proach to a uniform tube alignment towards the extensional direction (zz); the polymer
molecules, however, remain broadly unstretched (Figure 4-1(d)). Once the magnitude
of tube reorientation saturates to unity, the filament radius starts to decay in an expo-
nential manner (Figure 4-1(a)). The filament dynamics in this exponential-thinning
stage can be attributed to the dominance of polymer chain stretch that resembles the
elasto-capillarity thinning in Equation (2.18). When Ec0 = 1/10< 1/3 (lines in violet),
the normal stress arising from the tube reorientation does not ever suffice to balance
the driving capillary pressure at t = 0. As a result, a non-trivial initial polymer stretch
Λ(0) > 1 is necessary to produce additional normal stress to counteract the driving
capillary pressure, which can be numerically solved as specified in Table 4.2. Con-
sequently, for Ec0 ≤ 1/3, only the second exponential-thinning regime is manifested.

When plotted on a linear scale as shown in Figure 4-1(b), the temporal evolution of
the filament radius exhibits a linear trend at R̂ ≳ 0.4 when Ec0 is sufficiently large (in
this case, Ec0 ≳ 1). Noticeably, the filament kinematics in this early-thinning regime
are similar to those predicted by a Newtonian fluid [210]. In practice, a measure of
the shear viscosity at low strain rates can be obtained from this linear decaying region
assuming that the filament remains a cylindrical shape. This apparent shear viscosity
ηapp can be analytically calculated by imposing Λ = 1 in the constitutive equations
(Equation (4.2) and Equation (4.6)) as

ηapp =

�

1+
1

6Ec0
−

2
9Ec2

0

�

GNλD. (4.8)

Equation (4.8) is further plotted against Ec0 in Figure 4-2. In this figure, a threshold
of Ec∗0 ≡ 8/(3+

p
297)≈ 0.395 can be identified when a positive apparent viscosity is

expected. This condition is substantially consistent with the piecewise initial conditions
as specified in Table 4.2, in which the filament thinning dynamics are solely dominated
by the tube reorientation in the early thinning stage for a sufficiently large value of Ec0.
As Ec0 increases, the apparent shear viscosity ηapp approaches the zero-shear viscosity
of η0 = GNλD as expected for the selected tube models.

The exponential-thinning regime observed from the filament thinning profiles pre-
dicted by the selected tube models at an intermediate time, as shown in Figure 4-1(a)
(e.g., when Ec0 = 1 for t̂ ≳ 35), is reminiscent of the elasto-capillary thinning profile as
stated in Equation (2.18). Nevertheless, it remains unclear if the relaxation process is
identical to that expected for a dilute polymer system. To obtain an accurate measure
of the extensional rheological properties from the capillarity-driven thinning dynam-
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(a) (b)

(d)(c)

Figure 4-1: Temporal evolution of the capillarity-driven thinning dynamics predicted
by the two selected models (dashed lines for DEMG model and solid lines for Rolie-
Poly model) with varying intrinsic elasto-capillary numbers Ec0 = 1/10, 1/3, 1 and
2 at a fixed number of entanglements per polymer chain, Z = 10 (λD/λR = 8.97).
An infinite extensibility of the polymer chain (Λ → ∞) is assumed to simplify the
calculation. When Ec0 > 1/3, the filament thinning profiles are two-staged within the
scope of the figures. (a) Dimensionless filament radius R̂ plotted on a logarithmic scale.
The slope of −1/(3λ̂e) is identified close to the filament breakup. (b) Dimensionless
filament radius R̂ plotted on a linear scale. The thin solid lines correspond to the
visco-capillary thinning using an apparent shear viscosity defined in Equation (4.8)
for Ec0 = 1 and Ec0 = 2. (c) Magnitude of the tube reorientation ∆S. The black
dashed line corresponds to ∆S = 1, where a uniform tube orientation towards the
extensional direction is induced. (d) Chain stretch Λ. An exponentially-increasing
region is identified with a slope of 1/(6λ̂e) that corresponds to the region when the
filament radius decays in an exponential trend.
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Figure 4-2: Apparent shear viscosity ηapp(Ec0) obtained from the filament radius
with an apparent linear decay trend in the early thinning regime. A valid viscosity
is obtained when Ec0 ≳ Ec∗0 = 0.395 (thin dashed vertical line) in region II. As Ec0

grows sufficiently large, the apparent shear viscosity approaches the zero-shear vis-
cosity η0 = GλD predicted by both tube models (thin solid horizontal line). Insets:
Schematic of the filament radius evolution with time for Ec0 < Ec∗0 (I) and Ec0 ≥ Ec∗0
(II). The dashed lines are approximate reference lines where R̂ decreases linearly with
time.
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ics, filament thinning profiles with varying finite extensibilities Λm are calculated with
a fixed elasto-capillary number Ec0 = 1 and the number of entanglements per poly-
mer chain set as Z = 10. As shown in Figure 4-3, a consistent exponential-thinning
trend can be observed at intermediate time for the both models with slightly different
slopes. From previous discussions, this exponential-thinning trend in the filament ra-
dius results from an exponentially increasing polymer chain stretch Λ induced by the
strong extensional flow. As Λ approaches the specified finite maximum chain stretch
Λm, the filament radius essentially deviates from the exponential-thinning trend and
approaches filament singularity.

While the filament thinning dynamics derived from the tube models for entangled poly-
mer systems are essentially distinct from those predicted by the Oldroyd-B model for
dilute polymer solutions, it is possible to extract an extensional relaxation time from
the exponential-thinning regime. To mitigate the ambiguity in the interpretation of
the measurements from the application of different models, an apparent extensional
relaxation time denoted as λe (which is nondimensionalized by the Rouse time λR, and
then denoted as λ̂e) can be defined with its value obtained from fitting the slope in the
exponential-thinning region, where R̂( t̂)∼ exp[− t̂/(3λ̂e)].

Analytical solutions of the apparent extensional relaxation time can be obtained for
both models by substituting the constitutive equations into Equation (4.4) in the limit
of Ec0→ 0 and Λm→∞ as

DEMG: λ̂e =
1
2

, (4.9a)

Rolie-Poly: λ̂e =
1

2+ 1/p(Z)
, (4.9b)

where p(Z) = λD/λR is the ratio of the two timescales from the constitutive model,
as defined in Equation (4.1). This formula is plotted in Figure 4-4, for a range of
2 ≤ Z ≤ 100 that is specified according to the validity of the numerical calculation of
Equation (4.1) [30]. The apparent extensional relaxation times λe derived from both
models scale primarily with the Rouse time λR. Compared with the DEMG model, the
expression for the Rolie-Poly model has an additional weak dependence on the disen-
gagement time λD (through p(Z)), which is attributed to the CCR effect and becomes
comparable in magnitude with the Rouse-time contribution when Z is relatively small
so that p ≪ 3. Notably, as Z → ∞, the value of λe in both models approaches an
identical limit of λR/2.

Finally, the filament thinning profiles close to the filament singularity are calculated nu-
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(a) (b)

Figure 4-3: Capillarity-driven thinning dynamics described by the two selected tube
models (dashed lines: DEMG model; solid lines: Rolie-Poly model) with varying finite
extensibility factorsΛm = 10, 50 and 100 andΛm→∞ (black solid/dashed lines) with
a fixed intrinsic elasto-capillary number Ec0 = 1 and a fixed number of entanglements
per polymer chain Z = 10. (a) The filament radius R̂ ≡ R/R0 plotted on a logarithmic
scale at intermediate times. A consistent exponential thinning trend is manifested for
both models. An exponential-thinning region is identified at intermediate time with an
identical slope for each model, from which an apparent extensional relaxation time λe

can be obtained. The filament radius subsequently deviates to zero due to the presence
of a finite time singularity if Λm is finite. (b) The polymer chain stretch Λ plotted on
a logarithmic scale. An exponentially-increasing trend is manifested at intermediate
time with a slope of 1/(6λ̂e). Close to the filament breakup, the value of Λ approaches
the specified maximum stretch of Λm (horizontal dashed lines).
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Figure 4-4: Apparent extensional relaxation time nondimensionalized by the Rouse
time λ̂e ≡ λe/λR extracted from the exponential-thinning trend for the filament ra-
dius against the number of entanglements per polymer chain Z . For the DEMG model
(dashed line), a constant of 1/2 is identified. For the Rolie-Poly model (solid line),
a monotonic trend is observed, which coincides with the asymptotic value from the
DEMG model at Z → ∞. The range of 2 < Z < 100 denote the applicability of
Equation (4.1) from Likhtman and McLeish [30]. The blue marker shows the result at
Z = 10 used in Figure 4-1, Figure 4-3 and Figure 4-5.

merically, where the polymer chain stretch Λ approaches the finite extensibility limit
Λm and the temporal evolution of the filament radius deviates from the exponential-
thinning trend. For plot legibility and better analysis close to the filament singularity,
the time axis is transformed to the time to filament breakup τ̂= t̂C− t̂ according to the
previous definition on page 73, nondimensionalized by the Rouse time. The value of
t̂C can be numerically obtained from the extrapolation of the filament radius to R̂= 0.
As shown in Figure 4-5, the temporal evolution of R̂( t̂) with the same parameter varia-
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tion as in Figure 4-3 is plotted for the two selected models. As the filament approaches
singularity (τ̂→ 0+), the filament radius starts to decay linearly, and the resulting kine-
matics from the two models with the same finite extensibility Λm become increasingly
close to each other.

The linear decay of the filament radius close to the filament breakup has also been
observed for the FENE-P model [244]. This asymptotic linear trend is comparable with
the visco-capillary thinning for a Newtonian fluid [210]. Accordingly, a finite terminal
extensional viscosity ηe,∞ can be extracted from the slope of thinning in this linearly-
thinning regime by rewriting Equation (4.4) in the form of a Taylor expansion with
respect to 1/Λ. Consequently, an analytical expression for the terminal extensional
viscosity can be obtained as

ηe,∞ =
3GNΛ

2
m

1− 1/Λm
. (4.10)

The asymptotic solution for the filament radius using ηe,∞ with varying finite extensi-
bilities Λm are plotted in Figure 4-5 as thin dashed lines. These values are consistent
with the numerical calculations of the filament thinning dynamics in the approach to
filament breakup.

4.1.3 Ratio of apparent extensional and shear relaxation times

In practice, the shear relaxation time λs can be routinely obtained from the small am-
plitude oscillatory shear (SAOS) as 1/ωc, where ωc is the critical angular frequency at
which the storage and loss moduli coincide. For dilute polymer solutions described by
the FENE-P model, there is a single relaxation time to characterize the polymer chain
retraction regardless of the flow types. However, a number of previous studies on the
filament thinning dynamics of different entangled polymer solutions have revealed dis-
tinct measures of the relaxation times in shear and extensional flows [32,199,200,257].
The dumbbell model with a flow-independent relaxation mode does not readily recon-
cile the difference in the relaxation times for polymer chains in an entangled state.

In this section, a theoretical framework is established using the tube models to inter-
pret the difference in shear and extensional relaxation times observed in the entangled
polymer solutions. It has been shown in Figure 4-3 that the temporal evolution of the
filament radius predicted by the selected tube models resulted features an exponential-
thinning trend at intermediate time. In this stage, an apparent extensional relaxation
time is obtained and broadly scales with the Rouse time λR. This, however, is in con-
trast with the shear relaxation time, which can be analytically calculated by imposing
an oscillatory shear to the DEMG and the Rolie-Poly constitutive equations. When the
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Figure 4-5: Temporal evolution of the filament radius with varying finite extensibil-
ity factors Λm = 10, 50 and 100 at a fixed elasto-capillary number Ec0 = 1 and with
the number of entanglements per polymer chain Z = 10. The filament radius is plot-
ted against τ = tC − t (nondimensionalized by λR as τ̂), where tC is the time when
the filament breaks up. A linear decaying trend of the filament radius is identified in
the proximity of filament breakup, which is comparable with the filament thinning re-
sponse for a Newtonian fluid. A terminal extensional viscosity ηe,∞ can be obtained
analytically from the filament thinning solutions, from which the asymptotic solutions
are plotted as thin dashed lines and are consistent with the numerical calculations from
the two models when the filament is close to breakup. The gray area specifies an opti-
cal limit in practical measurements below R̂< 1× 10−3.
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imposed oscillatory strain is infinitesimal, the dynamic moduli from both tube models
are reduced to the case of Hookean dumbbell model with a relaxation time of λ = λD

and the modulus of G = 3GN. This result is not surprising, as the tubes under small
shear strains can effectively shield non-reptative mechanisms that occur within. As a
result, the relaxation process in shear flow primarily results from the tube deformation
and reorientation, which can be characterized by the disengagement time λD. Table 4.3
summarizes the apparent shear and extensional relaxation times of the Hookean dumb-
bell model and the two selected tube models.

Table 4.3: Dynamic moduli G′ and G′′, the crossover angular frequencyωc at G′ = G′′,
and apparent shear and extensional relaxation times λs and λe for the Hookean dumb-
bell model, the DEMG model, and the Rolie-Poly model. The apparent extensional
relaxation time in the limit of Z →∞ is also tabulated.

Model G′(ω) G′′(ω) ωc λs λe λe

(Z →∞)

Hookean
Gω2λ2

1+ (ωλ)2
Gωλ

1+ (ωλ)2
1
λ

λ λ λ

DEMG
Gω2λ2

D

1+ (ωλD)2
GωλD

1+ (ωλD)2
1
λD

λD
λR

2
λR

2

Rolie-Poly
Gω2λ2

D

1+ (ωλD)2
GωλD

1+ (ωλD)2
1
λD

λD
λR

2+ 1/p(Z)
λR

2

Without introducing additional fitting parameters, an expression for the ratio of the
two relaxation times can be readily obtained using the constitutive parameters of the
tube models. For entangled polymer solutions, the molecular weight between entan-
glements Me grows larger than that for the polymer melts due to a sparser spacing of
the polymer chains. To incorporate the polymer concentration into the expression of
the relaxation time ratio, an effective molecular weight between entanglements in the
entangled solutions can be calculated [275,276] as

Me(c) = Me,0c−1/(3ν−1), (4.11)

where c is the mass fraction of the polymers in solutions, and Ment,0 is the molecular
weight between entanglements in the corresponding polymer melts (where c = 1). The
excluded volume parameter is ν = 0.5 for θ -solvents, and ν = 0.6 for good solvents.
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From Equation (4.1), the number of entanglements per chain in the entangled polymer
solutions Zsol can be expressed as a function of the polymer mass fraction c as

Zsol(c) =
M

Me,0
c1/(3ν−1) ≡ Z0c1/(3ν−1), (4.12)

where the number of entanglements for polymer melts is denoted as Z0 ≡ Z(1) =
M/Me,0. From Equation (4.12), the relaxation time ratio λe/λs can be finally evaluated
as a function of the number of entanglements per chain in polymer solutions Zsol(c) as

λe

λs
=
λ̂e[Zsol(c)]
p[Zsol(c)]

=































1

6Zsol(1−
3.38
p

Zsol

+
4.17
Zsol
−

1.55

Z3/2
sol

)
, (DEMG)

1

6Zsol(1−
3.38
p

Zsol

+
4.17
Zsol
−

1.55

Z3/2
sol

) + 1
, (Rolie− Poly)

(4.13)

where the dimensionless apparent extensional relaxation time λ̂e is referred in Ta-
ble 4.3 and the ratio of the disengagement time and the Rouse time p(Z) is expressed
in Equation (4.1). Equation (4.13) thus provides a theoretical prediction of the relax-
ation time ratio without additional fitting parameters.

To systematically substantiate the analytical prediction of Equation (4.13), we com-
pare the prediction with a number of experimental data points from previous stud-
ies [200, 257, 277] on two different polymer solutions at varying molecular weights
and concentrations. To ensure the validity for the application of the tube models, only
concentrations in the entangled regime (c > ce) are inspected. The material properties
and the experimental measurements of the selected materials systems are listed in Ta-
ble 4.4. The molecular weight between entanglements Me is evaluated at 20 °C, and
the number of entanglements per chain for the polymer melts Z0 is calculated based
on the assumption of monodisperse polymer chains.

As shown in Figure 4-6, the experimental data from Table 4.4 are compared with the
analytical prediction of Equation (4.13) from the two selected tube models (dashed
line: DEMG model; solid line: RP model). The predicted lines from both models show
an overall descending trend of the relaxation time ratio against the number of entangle-
ments per chain in the entangled polymer solutions. Both prediction lines are applica-
ble within the range of 2< Zsol(c)< 100 due to the validity of Equation (4.1) [30]. As
Zsol(c) increases, the two predictions coincide and the relaxation time ratio approaches
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Table 4.4: Polymer properties, concentrations and experimentally measured ratios
of the apparent shear and extensional relaxation times λe/λs for a selected range of
material systems from previous studies.

Materials Me (Da) M (Da) c (wt%) c/ce λe/λs

PEO/Water [200] 2200 [278]
1× 106 2.5 1.3 0.168± 0.042

3.0 1.5 0.197± 0.049

2× 106 1.5 1 0.125± 0.031
2.0 1.3 0.104± 0.026

PEO/Water [257] 2200

1× 106

2.0 1 0.34
2.5 1.3 0.24
3.0 1.5 0.24
3.5 1.8 0.15

2× 106 1.5 1 0.12
2.0 1.3 0.10

4× 106
1.0 1.5 0.10
1.5 2.3 0.05
2.0 3.0 0.02

PS/DEP [257] 16600 [279] 3× 106
3.0 1.2 0.71
4.0 1.6 0.50
5.0 2 0.24

PS/DEP [277] 16600 13.2× 106 1.41 1.8 0.36
1.77 2.2 0.31

an asymptotic scaling relation of λe/λs ∼ Z−1
sol . From Figure 4-6, the experimental data

of varying polymer systems, molecular weights and concentrations are broadly col-
lapsed onto a single master curve, which agrees well with the predictions from both
tube models. This general agreement between the experimental data and the analytical
prediction lines without additional fitting parameters provides a physical insight into
the origin of the non-trivial difference in the shear and extensional relaxation times ob-
served in experiments: The tube networks constitute the larger-scale topology of the
entangled polymer systems and effectively shield the contribution of chain stretching
from single polymer chains to the bulk shear rheology under small deformation. How-
ever, the integrity of these tube structures becomes increasingly susceptible to a strong
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extensional flow as the tubes are forced to align towards a uniform direction. This is
justified by the magnitude of reorientation ∆S approaching unity before the onset of
the elasto-capillary thinning, as shown in Figure 4-3. As a result, the free energy of
polymer chains decreases, and the material relaxation becomes less inhibited by the
tube structures.

10
0

10
1

Zsol(c)≡Z0c
1/(3ν 1)

10
2

10
1

10
0

λ
e/
λ

s

λe/λR∼Z
1

sol

DEMG
RP

PEO 1M/Water [200]
PEO 2M/Water [200]
PEO 1M/Water [257]
PEO 2M/Water [257]
PEO 4M/Water [257]
PS 3M/DEP [257]
PS 13.2M/DEP [277]

Figure 4-6: The ratio of apparent extensional and shear relaxation times λe/λs against
the number of entanglements per chain in entangled polymer solutions Zsol(c) =
Z0c1/(3ν−1). The dashed and solid lines correspond to the prediction lines from the
DEMG and the Rolie-Poly models, respectively, within a range of 2 < Zsol(c) < 100
due to the validity of Equation (4.1) [30]. The experimental data from a variety of
material systems with different molecular weights and concentrations are broadly col-
lapsed onto a monotonically descending master curve, and show excellent agreement
with the predictions from both tube models free of additional fitting parameters.
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4.1.4 Extensional-thinning for highly entangled polymer systems

Another critical feature extracted from the measured capillarity-driven thinning dy-
namics of the entangled polymer solutions is the rate-thinning extensional viscosity
[32]. This extensional-thinning feature becomes prominent when the polymer solu-
tions become increasingly viscoelastic and entangled (practically by increasing the con-
centration or the molecular weight). This trend can also be captured by the selected
tube models. As shown in Figure 4-7, the transient extensional viscosity is extracted
from the temporal evolution of the filament radius with the same parameter variation
as in Figure 4-3. The Trouton ratio has been defined previously as the transient exten-
sional viscosity scaled by the zero-shear viscosity η0. For both tube models studied in
this work, the zero-shear viscosity can be analytically calculated as η0 = GNλD. To be
consistent with the zero-shear viscosity, the strain rates are nondimensionalized by the
disengagement time λD as a new Weissenberg number WiD. When WiD → 0, the ap-
parent Trouton ratio approaches a constant of Trapp = 3, similar to a Newtonian fluid.

The transient Trouton ratio extracted from the filament thinning dynamics predicted
by the two tube models exhibit complex rate-dependent rheological behavior. When
1≪WiD≪ p(Z), the extension at an intermediate strain rate is resisted by the Brown-
ian motion of the chains in the tube and the flow-induced orientation of the tube. As a
result, these tubes are forced to align towards the direction of extension, which induces
a faster relaxation during the reptation process and hence a rate-thinning trend in the
extensional viscosity. In contrary, in a fast extensional flow where WiD≫ p(Z) or corre-
spondingly Wi≫ 1, the finite rate of the polymer chain retraction dominates the poly-
mer conformation. Consequently, the tube reorientation does not effectively contribute
to the extensional rheology of the systems. The entropic spring resistance arising from
the polymer chain stretch dominates the overall viscoelastic response from the mate-
rial, thus increasing the extensional viscosity. As the strain rate continues to increase,
the extensional viscosity approaches a terminal value expressed in Equation (4.10) as
the polymer chain approaches its maximum finite extensibility Λm.

In a filament thinning experiment, the strain rate ε̇mid(t) varies throughout the experi-
ment. The transient extensional viscosity extracted from these capillarity-thinning dy-
namics can be further compared with those obtained from steady extension. As shown
in Figure 4-7, the steady extensional viscosities from the two tube models (DEMG
model: black dashed line; RP model: black solid line) broadly overlap with the ob-
servation that would be made during the transient process (thick colored lines) at
low or intermediate strain rates. A major discrepancy between the steady and tran-
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Figure 4-7: The transient apparent Trouton ratio Trapp ≡ ηe,app/η0 = ηe,app/(GNλD)
(from page 91) against the Weissenberg number based on the disengagement time
WiD ≡ λDε̇ extracted from the filament thinning dynamics of the DEMG model (thick
dashed lines) and the Rolie-Poly model (thick solid lines) with varying finite exten-
sibilities Λm = 10, 50 and 100 at a fixed intrinsic elasto-capillary number Ec0 = 1
and fixed number of entanglements Z = 10. As WiD increases, the transient exten-
sional viscosity undergoes the trend of rate-thinning, rapid thickening and plateauing
at ηe,∞ in sequence. Three reference lines are drawn from the steady extension pre-
dicted by the Rolie-Poly model (thin black solid line), the DEMG model (thin black
dashed line) and the original Doi-Edwards model (thin black dotted line) with an infi-
nite extensibility of the polymer chain stretch (if applicable). The prediction lines from
the steady extension of the two tube models that incorporate the polymer chain stretch
closely follow the trends of those extracted from filament thinning until approaching
the finite extensibilities, and diverge at Wi =Wi∗D. In contrary, the predicted response
from the DE model (dotted line) without additional chain stretch terms predict a per-
sistent rate-thinning trend for WiD ≫ 1. Inset: Same figure in a zoom-in view for
1× 10−1 ≤WiD ≤ 1× 101.
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sient responses is the critical Weissenberg number Wi∗D at which the extensional vis-
cosity diverges. In steady homogeneous extension, this critical value is Wi∗D = p(Z)
(DEMG) and Wi∗D = (p(Z) + 1/2) (RP); whereas in the transient response, a new crit-
ical Weissenberg number can be analytically calculated as Wi∗D = 4p(Z)/3 (DEMG)
and Wi∗D = (4p(Z)+2)/3 (RP). The difference between steady extension and transient
capillarity-driven flows arises from the non-vanishing rate of chain stretch Λ̇ as a result
of the temporal evolution of Λ(t) in the filament thinning. Notably, the flow response
predicted by the RP model exhibits a metastable region for WiD > Wi∗D with a large
magnitude of Wi∗D compared with the DEMG model, which is likely to arise from the
additional CCR effect that accelerates tube disengagement while concomitantly induc-
ing chain stretch. In practice, if rate-thinning behavior is prominent in the capillarity-
driven thinning dynamics for a tested fluid, the elasto-capillary number is reasonably
large. As a result, the exponential-thinning regime of the filament radius derived from
the polymer chain stretch is unlikely to be observed within a measurable range. To
parsimoniously describe the rate-thinning kinematics, the original Doi-Edwards (DE)
model with no description of the polymer chain stretch is applied for reference. A
differential form of the constitutive equation can be obtained from Equation (4.2) by
setting Λ= 1 [249].

Figure 4-8 shows the dimensionless shear (blue) and extensional (black) viscosities
predicted by the RP model (solid line), the DEMG model(dashed line) and the DE
model (dotted line) for Ec0 = 1, Z = 10 and Λm→∞ (if applicable). A wide range of
Weissenberg numbers 0.1 <WiD < 10 is inspected here for the observation of a com-
prehensive rate-dependent behavior. All three models predict persistent shear-thinning
behavior, as a result of the progressive tube alignment at large shear rates. The exten-
sional viscosity, on the contrary, shows very distinct trends between the DE model and
the other two (more sophisticated) models that incorporate polymer chain stretch. The
asymptotic solutions of the shear and extensional viscosities as WiD →∞ predicted
by the DE model are representative of the rate-dependent material response expected
purely from tube reorientation. They are analytically calculated and approximated as
a function of WiD as

η

GNλD
≈

3

121/3Wi4/3D

·
1

1− 4/(122/3Wi2/3D )
∼Wi−4/3

D , (4.14a)

Trapp ≈
9

3WiD + 1
∼Wi−1

D . (4.14b)

Therefore, the shear and extensional viscosities asymptotically approach a scaling law
of Wi−4/3

D and Wi−1
D , respectively, in the limit of WiD≫ 1. The larger-than-unity power
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in the shear-flow scaling is well-known to produce flow instability [249]. Nevertheless,
the extensional-thinning trend predicted by the DE model shows a pronounced strain-
rate dependence and suggests a plateau in the extensional stress difference ∆δ (as
from Trapp ·WiD) when WiD grows sufficiently large. This predicted plateau provides
an underestimated extensional stress magnitude due to the absence of non-reptative
mechanisms in the DE model, and has been disproved in a number of experimental
studies [249]. However, the DE model still provides valuable insights in understanding
the extensional rheology behavior for highly viscous polymer melts, in which the tube
deformation plays a predominant role.

Analysis for a real material system: Polyethylene oxide

To demonstrate the capillarity-driven thinning dynamics of a real material system, a
well-studied polymer solution of polyethylene oxide (PEO) at a molecular weight of
1 MDa is selected for numerical calculations over a wide range of the concentrations
in both the dilute and the entangled regimes. Table 4.5 lists the polymer properties
and configurations obtained from previous experimental studies or derived from the
theories of polymer physics as noted at the end of the table. The modulus in the FENE-
P model for the dilute polymer solutions can be calculated from the kinetic theories

[244] as G = nkT = ckT/



R2
0

�3/2
. The plateau modulus of the entangled polymer

solutions can be calculated from the Graessley-Fetters definition [249] as

GN(c) =
4ρsolcRT
5Me(c)

, (4.15)

where ρsol is the solution density, and the molecular weight between entanglements
for solutions Me(c) is expressed in Equation (4.11). The constitutive equation for semi-
dilute polymer solutions is taken from Prabhakar et al. [31] by adding a concentration-
and strain-dependent correction factor to the relaxation time in the FENE-P model as

λ(c/c∗,Λ) = ν(c/c∗,Λ)λZ, (4.16)

where c∗ is the overlap concentration, and λZ is the Zimm time that describes the
relaxation time in the limit of infinite dilution. The polymer chain stretch Λ can be
expressed [31,209,244,282] as

Λ=

p

tr 〈QQ〉



R2
0

�1/2
, (4.17)
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Figure 4-8: Evolution in the dimensionless shear and apparent extensional viscosities,
η(γ̇)/η0 (where η0 = GNλD, blue lines) and Trapp (black lines) against the Weissenberg
number based on the disengagement time WiD for the Rolie-Poly model (solid lines),
the DEMG model (dashed lines) and the Doi-Edwards model (dotted lines) at Ec0 = 1,
Z = 10 and Λm→∞ (if applicable). The shear viscosities among the three tube mod-
els shows a persistent shear-thinning trend until close to WiD = 10. In extensional
flow, a broadly consistent extensional-thinning trend is observed at low WiD for all the
selected models. Beyond WiD ≈ 3, the two more sophisticated tube models which in-
corporate the additional polymer chain stretch predict a rapidly increasing extensional
viscosity, while the DE model continues to predict a steadily decreasing trend. The
asymptotic solutions of both the shear and extensional viscosities for the DE model at
a large value of WiD are plotted as thin lines, which exhibit a power-law scaling of
η/η0 ∼Wi−4/3

D and Trapp ∼Wi−1
D , respectively.

where Q is the end-to-end vector of a single polymer molecule and the angle brackets
correspond to the ensemble average of all dumbbells.
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Table 4.5: List of properties and configurations for the numerical calculations of fila-
ment thinning dynamics for aqueous PEO solutions at varying concentrations.

Properties Values

Molecular weight M (g/mol) 1× 106

Monomer size M0 (g/mol) 44
Degree of polymerization N 22727a

Molecular weight between entanglements in melts Me (g/mol) [278] 2200
Characteristic ratio C∞ [262] 5.6
Monomer length l (nm) [280] 0.35
Kuhn step NK 4058b

Kuhn length bK (nm) 2c

End-to-end distance



R2
0

�1/2
(nm) 125d

Statistical length b (nm) 0.83e

Temperature for solutions T (°C) 25
Surface tension Γ (mN/m) [281] 62.2
Initial filament radius R0 (mm) 1
Zimm time λZ (ms) [212] 0.51
Friction coefficient of monomer ζ0 1.4× 10−11

Rouse time λR (ms) 20.2f

Overlap concentration c∗ (wt%) [212] 0.161
Entanglement concentration ce (wt%) [257] 1.7

a N = M/M0.
b NK = N/C∞ and NK = Λ2

m in dilute polymer solutions [262].
c bK = C∞l [262].
d



R2
0

�1/2
=
p

NK bK [262].
e b = bK

p
N [249].

f λR = ζ0N 2 b2/(6π2kT ) [249].

To illustrate the filament thinning profiles, six concentrations are selected in the dilute
and semi-dilute regimes (c = 0.0016 wt%, 0.081wt% and 0.24wt%; predicted by the
FENE-P model with a corrected relaxation time; marked in blue) as well as the entan-
gled regime (c = 2.0wt%, 2.5wt% and 3.0 wt%; predicted by the RP model; marked
in yellow and red). Based on the properties listed in Table 4.5, all the concentration-
specific parameters can be calculated for the numerical calculation, as shown in Ta-
ble 4.6. It is noted that both the (plateau) moduli and the number of entanglements
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Table 4.6: List of the selected concentrations and concentration-specific properties of
aqueous PEO solutions for the numerical calculation of filament thinning dynamics.
The colored lines next to the concentrations are consistent with those in Figure 4-9.

Concentrations (wt%) c/c∗ c/ce G or GN (Pa) Zsol Λ2
m

0.0016 ( ) 9.9× 10−3 9.4× 10−4 0.02 N/A 4058
0.081 ( ) 0.50 0.048 1.06 N/A 4058
0.24 ( ) 1.49 0.14 3.17 N/A 4058

2.0 ( ) 12.42 1.17 135.59 1.5 1187
2.5 ( ) 15.53 1.47 224.02 2.3 898
3.0 ( ) 18.63 1.76 337.63 3.4 715

increase with the concentration, while the maximum polymer chain stretch decreases
as the polymers are increasingly entangled, thus shortening the length of a single tube
segment.

In Figure 4-9, the time axis is dimensional to help illustrate the magnitude of change
in the breakup time. As the concentration increases from below c∗ to above ce, the
filament breakup time is progressively retarded by approximately two orders of mag-
nitude. In Figure 4-9(b) and (c), the two exponential-thinning asymptotes character-
ized by the Zimm time (black dashed lines, in which λe = λZ) and the Rouse time
(gray dashed line, in which λe ≈ λR/2 from Table 4.3) are plotted separately. These
two asymptotes set two lower bounds for the filament radius evolution in dilute/semi-
dilute and entangled regimes, and can be practically used to identify the most appro-
priate constitutive model for the extraction of accurate extensional rheological proper-
ties. The kinematics of the filament radius evolve from a broadly exponential-thinning
trend under an elasto-capillary balance to a smoother thinning trend at concentrations
above ce. In this stage, the filament thinning rate is significantly slowed down as the
highly entangled tube structures increasingly impede the disengagement of the poly-
mer chains in an extensional flow.

In practice, the measurement of the filament radius is also limited by the resolution of
the image capturing devices. A measurable range that covers three orders of magnitude
down to R̂= 1×10−3 is realistic. As a result, the slow-thinning trend at the onset of the
filament thinning tend to last longer and is more evident in the experimental data. To
quantify the duration of the “slow-thinning” behavior in entangled solutions, a specific
time stamp tV-E is obtained when the transient strain rate reaches the critical value
under an elasto-capillary balance at Wi = 2/(3λ̂e) (marked in circles in Figure 4-9(c)
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and (d)). The notation of tV-E is inherited from Section 3.2 in the study of motor oils,
from which a similar description of the transition is retained. Beyond this time stamp,
the filament radius decays in an approximately exponential trend until the polymer
chain stretch approaches the maximum stretch, as illustrated in Figure 4-3. As shown
in Figure 4-9(d), where the filament radius for each polymer solution in the entangled
regime is plotted on a linear scale, the transition to the exponential-thinning trend
occurs considerably close to the filament pinch-off. As a result, the majority of the
filament thinning profile agrees well with the prediction from the DE model, of which
the initial shear viscosity is identical to the apparent zero-shear viscosity calculated in
Equation (4.8).

From the numerical calculations in the entangled regime, three timescales can be de-
fined and suffice for approximate description of the filament thinning profiles: (1)
the transition time tV-E when the exponential-thinning trend is manifested at Wi =
2/(3λ̂e); (2) the filament breakup time tC obtained by extrapolating the filament radius
to R= 0; (3) the filament breakup time tC,V predicted by extrapolating the linear-decay
trend generated from the visco-capillary thinning with the apparent zero-shear viscos-
ity in Equation (4.8). As shown in Figure 4-10, all three timescales are plotted against
a refined mesh for 1 ≤ c/ce ≤ 2.4, with the three selected concentrations in Table 4.6
marked out separately. From this figure, the filament breakup time tC (black line) in-
creases in a broadly exponential trend for c > ce. At c/ce ≈ 1.7, the filament breakup
time tC is approximately identical to tC,V, where the rate-thinning effect induced by
the tube reorientation are approximately in equal magnitude with the rate-thickening
effect from the polymer chain stretch. Beyond this point, the elasto-capillary tran-
sition time tV-E and the visco-capillary breakup time tC,V defined previously steadily
approach tC , while tC,V > tC > tV-E. The evolution of the three timescales illustrates a
delayed transition to the exponential-thinning regime as the concentration increases,
in conjunction with an extended filament thinning process governed by the tube re-
orientation. At sufficiently large concentrations, the tube reorientation that induces a
rate-thinning behavior becomes increasingly crucial in determining the final breakup
time than the polymer chain stretch where the extensional viscosity increases with the
strain rate. Correct asymptotic solutions can be selected accordingly to render a more
accurate description of the complex capillarity-driven thinning dynamics of entangled
polymer solutions as well as to obtain the key rheological parameters.

148



4.1. Entangled polymer solutions

Dilute

Semi-dilute
Entangled

Infinite dilution 

(Zim
m

)

C
hain stretch (R

ouse)

(a)

(b) (d)(c)

Figure 4-9: (a) Numerically calculated filament radius (nondimensionalized by the
initial radius) for aqueous polyethylene oxide (PEO) solutions over the dilute and en-
tangled concentrations, with both axes plotted on logarithmic scales. (b) Filament ra-
dius in the dilute and semi-dilute regimes described by a corrected FENE-P model [31],
with the ordinate plotted on a logarithmic scale. The asymptotic exponential-thinning
trend using the Zimm time (λe = λZ) is plotted as a black dashed line to show the
filament thinning in the limit of infinite dilution. (c) Filament radius in the entangled
regime described by the Rolie-Poly model, with the ordinate plotted on a logarithmic
scale. The asymptote using λe = λR/2 is plotted as a gray dashed line to show the
filament thinning in the limit of a uniform tube orientation. (d) Same plot as (c) with
the filament radius plotted on a linear scale. The dashed dotted lines show the pre-
dictions from the visco-capillary thinning with the apparent zero-shear viscosity from
Equation (4.8). The markers in (a), (c) and (d) for the entangled solutions denote the
transition of the filament thinning to an exponential-thinning trend under an elasto-
capillary balance.
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Figure 4-10: The filament breakup time tC (black line) obtained from extrapolating
the prediction line from the RP model to R= 0 against c/ce for 1≤ ce ≤ 2.4. The other
two timescales tV-E (blue) and tC,V (red) are plotted as ratios compared to tC on the
right axis, where unity is plotted as a thin dashed line for reference. The three selected
concentrations in the entangled regime illustrated in Figure 4-9 are marked in circles
on each curve. Inset: Schematic of the temporal evolution in the filament radius and
Weissenberg number to illustrate the three timescales.

150



4.2. A case study: Cellulosic solutions

4.2 A case study: Cellulosic solutions

4.2.1 Concentrated cellulose/ionic liquid solutions

In this section, the aforementioned filament thinning dynamics predicted by the tube
models are applied to a prototypical material system of concentrated cellulose/ionic
liquid solutions to derive an accurate description of their rheological behavior in both
shear and extensional flows. This material system has recently attracted great at-
tention by the rapidly expanding fashion industry as an effort of transition to a cir-
cular economy [283]. While cellulose, due to its abundance in nature and superior
biodegradability [284], has become one of the most promising alternatives to support
an effective and non-toxic workflow in the manufacturing hierarchy, its thermal and
chemical stability ascribed to the glucose structures also induce notorious processabil-
ity and incompatibility with most solvents without destructing the glycosidic bonds,
hence the overall polymer structures [285–288]. In many aspects, a recyclable uni-
versal solvent that can readily dissolve cellulose chains under mild conditions without
compromising the original degree of polymerization (DoP) is desired [289]. Recently
studies have suggested the use of ionic liquids for such applications. Ionic liquids (IL)
are salts that melt under 100 °C, commonly comprised of large ions that inhibit the
formation of crystalline structures. As a result, the amorphous molecular structures
with high free energy can induce salt-like properties such as extremely low volatili-
ties [290], while remaining in liquid state over a wide range of temperatures [291].
The free-moving ions can effectively disrupt the hydrogen-bond networks that abun-
dantly contribute to the strong intramolecular attractions in cellulose structures, thus
assisting the dissolution process and further tuning the cellulose properties (through
altering the conformations) [292]. In practice, acetate, phosphate or chloride based
ILs are commonly selected due to their high Kamlet-Taft parameters that enable strong
interactions with the hydrogen-bonds [293], and imidazolium derivatives [294, 295]
are adopted as the cations. Studies have interconnected the solvent qualities of ILs for
cellulose with external conditions such as mixing protocols, temperature and viscosity,
which in turn affects the dynamics of the resulting solutions (commonly referred as
“dopes”) [296, 297]. The dopes can be readily applied for the regeneration of cotton
cellulose fibers through fiber-spinning processes, during which the cellulose/ionic liq-
uid solutions undergo notably large shear and extensional deformations to induce the
microstructural conformation, and are subsequently coagulated by the diffusion of an-
tisolvent [298–301]. In practice, a high concentration of cellulose (into the entangled
regime) is preferred for economic reasons. However, as the dopes become increasingly
complex, it remains a challenge to obtain an optimal set of spinning parameters for the
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Table 4.7: Concentrations, temperatures and DoPs of the cellulose/IL solutions for the
rheological study.

Cellulose DoP c (wt%) Zsol Temperature (°C) Figure

CF 2710
2

2
25 4-11

FP 1340 ≈ 1

FP 1340

1 < 1

25 4-12
2 ≈ 1
3 2
4 4

FP 1340 2 ≈ 1

25

4-13
40
60
80

desired performance of spun fibers, due to an inadequate understanding of the dynam-
ics and structural evolution during the spinning process at variations of the cellulose
DoP, concentration and temperature. This limitation is addressed here by applying the
previously proposed constitutive framework from Section 4.1, from which meaningful
constitutive parameters can be obtained and further used as guidance to optimize of
the cellulose spinlines.

Here, two cellulose fibers are selected for the study of the extensional rheology at vary-
ing concentrations, temperatures and DoPs: cotton fiber (CF, DoP=2710) and filter pa-
per (FP, DoP=1340). The IL solvent is 1-ethyl-3-methylimidazolium, [C2C1Im][OAc]
(purity of 90%; Sigma-Aldrich, USA). All chemicals are used without further purifica-
tion. The cellulose solutions were prepared by slowly adding the weighted solute into
the selected IL at a temperature of 80 °C and stirring for 12 h to 36 h until no observa-
tion of the undissolved solute. The fully dissolved solution systems are removed from
the hot plate and stored at room temperature. A range of different concentrations and
temperatures are selected, with the highest temperature at 80 °C to be consistent with
the working temperature at the spinneret in a typical spinning process [302]. The se-
lected concentrations, temperatures and DoPs of the tested cellulose/IL solutions are
listed in Table 4.7.

The extensional rheology is characterized through the customized CaBER introduced
in Section 3.1 with a high-speed imaging system to capture the filament thinning pro-
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files. The results are shown in the subfigures (a) of Figures 4-11 to 4-13 with varying
DoP, concentrations and temperatures, respectively. From the snapshots, the minimum
filament radius broadly exhibits linear decays, which are consistent with the filament
thinning profiles governed by a visco-capillary balance. Close to the filament breakup,
the filament profiles become increasingly complex and deviates from the linear trend
due to the additional contributions from the large cellulose chain deformations. This
transient rheological response can be better demonstrated in the subfigures (b) of Fig-
ures 4-11 to 4-13, where the apparent extensional viscosity ηe,app is calculated accord-
ing to Equation (3.9). To induce consistent zero-rate viscosity (inelastic limit) with the
measurement from shear rheology, the constant geometric correction factor is set as
X = XN = 0.7127 predicted for a Newtonian fluid. Here, the surface tension is treated
as a fitting parameter, which solely shifts the extensional flow curve in the ordinate
without altering the overall trend, and a value of Γ ≈ 65 × 10−3 m N/m is obtained,
which is generally consistent with the previous measurements [215]. To demonstrate
the strain dependence of the spun fiber properties specifically relevant to a fiber spin-
ning process, the apparent extensional viscosity ηe,app is plotted against the accumu-

lated Hencky strain, which is defined as ε(t) = ε0 +
∫ t

0
ε̇(ξ)dξ = ε0 + 2 ln[R0/R(t)].

Here, ε0 represents a residue axial strain in the filament prior to the onset of capillarity-
driven thinning, which arises from the pre-induced polymer chain conformation that
cannot be randomized in a timely manner due to the large Strokes drag. By com-
paring subfigures (b) and subfigures (c), which plot steady shear flow curves from
independent measurements, the value of ηe,app is found to remain approximately at
3η0/(2XN − 1) ≈ 7.05η0 at small Hencky strains (ε ≲ 5), where η0 is the zero-shear
viscosity. At a small DoP (i.e., FP with DoP=1340) or concentration (e.g., c ≤ 2wt%),
where the polymer chains are less entangled, the apparent extensional viscosity in-
creases steadily beyond ε ≈ 5. In contrary, as the degree of entanglements increases,
the apparent extensional viscosity notably exhibits strain-softening behavior.
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(a)

(d)

(b)

(c)

Figure 4-11: Steady shear and transient extensional rheological characterizations
for cellulose/ionic liquid solutions at varying cellulose DoPs, cotton fibers (CF) with
DoP=2710 and filter papers (FP) with DoP=1340, at c = 2 wt% and 80 °C. (a) Tempo-
ral evolution of minimum filament radius R(t) from CaBER measurements. (b) Appar-
ent extensional viscosity ηe,app against Hencky strain ε extracted from CaBER measure-
ments. Solid lines: fitted lines from Rolie-Poly model. (c) Steady-state shear viscosities
η and first normal stress coefficients Ψ1. Data of the first normal stress coefficient are
truncated below certain shear rates due to approaching the limit of the normal force
sensor. Solid and dashed lines: fitted lines of η and Ψ1 from Rolie-Poly model, respec-
tively. (d) Disengagement time λD (filled markers), Rouse time λR (hollow markers)
and ratio of the two timescales λD/λR (half-filled markers) against the varying param-
eter.
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(a)

(d)

(b)

(c)

(e)

Figure 4-12: Steady shear and transient extensional rheological characteriza-
tions for cellulose/ionic liquid solutions at varying cellulose concentrations c =
1wt%, 2 wt%, 3 wt% and 4 wt% for filter papers at 25 °C. (e) λD/λR against c on
logarithmic scales. A power law trend of with an exponent of 1.54 can be obtained
from numerical fitting. Other subfigure formats are identical with Figure 4-11.
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(a)

(d)

(b)

(c)

Figure 4-13: Steady shear and transient extensional rheological characterizations for
cellulose/ionic liquid solutions at varying temperatures 25 °C, 40 °C, 60 °C and 80 °C
for FP at c = 2 wt% for filter papers. Subfigure formats are identical with Figure 4-11.

The evolution in ηe,app is instantly reminiscent of the predictions from the tube models
for entangled polymer solutions as illustrated in Section 4.12. Notably, the extensional
flow imposes an alignment to the entangled cellulose segments, and the overall resis-
tance to the capillary pressure decreases progressively, resulting in a faster capillarity-
driving thinning process close to the filament breakup.

The constitutive parameters can be obtained by fitting the theoretical predictions from
the tube models to the extracted flow curve from the CaBER measurements. However,

2In Section 4.1, the extensional viscosity as illustrated in Figure 4-7 is plotted against the strain rate
(or in the dimensionless form of WiD). Nevertheless, both the strain rate and Hencky strain increase
monotonically with time by definition, thus the evolution in the apparent extensional viscosity exhibit
similar trends.
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due to a limited imaging resolution, the CaBER measurements only capture partial
features of the theoretical prediction. As a result, a direct extraction that solely relies
on the measurements in extensional flow can lead to large overfitting errors. To im-
prove the fitting accuracy, independent steady-shear measurements are performed on
the tested samples (DHR-3, TA Instruments, USA) at identical conditions to obtain both
shear viscosities (filled markers) and first normal stress coefficients (hollow markers),
as shown in the subfigures (c) of Figures 4-11 to 4-13. Subsequently, a comprehensive
fitting protocol is implemented to incorporate the measurements from both flows by
the addition of their error functions, thus leading to a full-dimensional description of
the rheological behavior regardless of the flow type. In addition, the finite extensibility
term in the tube models is neglected by setting Λm→∞ due to the inaccessible mea-
surements at high Hencky strains, thus reducing the fitting parameters to the plateau
modulus GN, the disengagement time λD, the Rouse time λR and the surface tension
Γ . Finally, the fitting lines from the Rolie-Poly model are plotted in both subfigures (b)
and (c) of Figures 4-11 to 4-13 as solid and dashed lines, and they are in excellent
agreement with the experimental data at the selected ranges of DoP, concentration and
temperature.

The two extracted timescales λD and λR are explicitly plotted against the varying pa-
rameters in the subfigures (d) of Figures 4-11 to 4-13. As shown in these figures,
both the extracted disengagement time λD (filled markers) and Rouse time λR (hol-
low markers) increase in magnitude with DoP (Figure 4-11(d)) or concentration (Fig-
ure 4-12(d)), and their ratio λD/λR (half-filled markers) also exhibits similar trends.
Such increasing trends can be justified from an increased number of entanglements
per chains according to Equation (4.1). Notably, Figure 4-12(e) plots λD/λR against c
on logarithmic scales, and a piecewise trend can be identified. When c ≲ 2wt%, the
time ratio remains approximately constant at 3. From Equation (4.1), this corresponds
to a nearly unentangled state. However, beyond c ≈ 2 wt%, the time ratio is shows a
power-law trend, which can be numerically fitted to obtain an exponent of 1.54. This
value agrees well with Equation (4.12) and Equation (4.1) when an approximation of
ν = 0.55 is specified under a good-solvent condition. In contrary, the magnitude of
p(Z) remains broadly constant at varying temperatures (Figure 4-13(d)) because the
state of entanglements remains nearly unmodified.

The characterizations of the extensional rheological properties of the cellulose/ionic
liquid solutions unravel the details in the complex dynamics of the materials dur-
ing large extensional deformation occurring in a spinning process. In particular, the
strain-softening behavior is exclusively captured from the tube models. Such rate-
dependence may induce subtle flow instability, which can be critical to determine the
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dope “spinnability”. The extraction of the two timescales further justify a faster relax-
ation process dominated by the Rouse time in extensional flow at high Hencky strains,
compared with a longer disengagement time in shear flow. A more profound under-
standing of the extensional rheology has provided abundant information in designing
the optimal spinning parameters for the concentrated cellulose/IL solutions.

4.2.2 Hydroxyethyl cellulose solutions

Hydroxyethyl cellulose (HEC) is another type of derivative from natural cellulose,
which finds extensive applications in cosmetic and oil industries to improve dissolution
and flow assurance [26]. The extensional rheology is of central interest in the process-
ing of these materials and previous studies have applied capillarity-driven breakup
techniques to characterize the extensional rheology of these materials over a wide
range of strain rates that are closely related to real applications [26,32,245,303,304].

In particular, a recent study by Dinic et al. [32] using the dripping-on-substrate (DOS)
rheometry has identified general power-law trends for the filament radius, namely,
R∼ (tC− t)n at high HEC concentrations beyond the entangled concentrations ce. Close
to filament breakup, distinct filament thinning behavior arises, in which the filament
radius undergoes a short period of exponential thinning trend, followed by a linear
thinning trend till pinch-off singularity. This trend implies the existence of an elasto-
capillary thinning regime at high strain rates, as well as a finite terminal extensional
viscosity. To describe the measured filament thinning profiles, Dinic et al. fitted the
particular kinematic region close to the filament breakup using the four-parameter
phenomenological expression proposed by Anna and McKinley [258] which can be
written as

R(t)
R0
= A · exp(−Bt)− C t + D. (4.18)

This empirical expression is found to give good agreement with experiments for R/R0 ≲
0.2. In light of the dynamics characterized for entangled polymer solutions proposed in
this chapter, the original data (provided by Dinic et al.) are re-fitted with the Rolie-Poly
model. As shown in Figure 4-14, the filament thinning profiles measured from a series
of aqueous HEC solutions with molecular weights of 0.72 MDa (circles) and 1.3 MDa
(squares) at varying HEC concentrations show distinct filament thinning trends. The
entangled concentrations ce for the two molecular weights are measured as 0.5 wt%
and 0.2 wt%, respectively. When the HEC concentration is smaller than ce, the samples
generally exhibit extension-thickening behavior with a concave evolution in the fila-
ment radius with time. However, the filament thinning profiles become increasingly
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complex as the concentration exceeds ce, where rate-thinning trends can be observed
at early thinning regimes (0.1 ≲ R(t)/R0 ≲ 0.8), but subtle rate-thickening regimes
can be captured close to filament breakup, where a slight inflection in the filament
thinning profile can be noticed (below R(t)/R0 ≲ 0.1). This complex trend is par-
tially evident in the measurements of the highest concentrations of either molecular
weight. The filament thinning trends described in Figure 4-14 are very consistent with

(a) (b)

Figure 4-14: Filament thinning profiles for aqueous HEC solutions with molecular
weights of 0.72 MDa (circles) and 1.3 MDa (squares) at varying HEC concentrations,
with the ordinate plotted on (a) linear scales, and (b) logarithmic scales. Solid lines
are fitted lines from the Rolie-Poly model. Experimental data provided by courtesy of
Dinic et al. [32].

the predictions from the tube models at varying values of elasto-capillary numbers, as
illustrated in previous sections. As a consequence, the Rolie-Poly model can quanti-
tatively capture the filament thinning profiles at varying HEC molecular weights and
concentrations within a single unified constitutive framework. Here, Equation (4.7)
is numerically calculated, and a best-fit set of parameters (GN, λD and λR; an infinite
extensibility limit Λm →∞ is specified due to a limited range of experimental data)
is obtained through least square regression. The results, shown as solid lines in Fig-
ure 4-14 are in excellent agreement with the experimental data down to a filament
radius of as small as R/R0 ≈ 0.01. Considering a typical capillarity-driven experiment,
where R0 ≈ 1 mm to 3mm, this accuracy corresponds to a minimum filament radius
of approximately 10 µm, which is close to the instrument optical limitation. In Fig-
ure 4-15, we plot the timescale ratio λD/λR for each molecular weight against c[η] ex-
tracted from data fitting, where [η] is the intrinsic viscosity, measured as 5.98 dL/g (for
M = 0.72MDa) and 5.98 dL/g (for M = 1.3 MDa). From Equation (4.1), the number
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of entanglements per chain in solutions Zsol can also be numerically calculated, and the
results are plotted on the right ordinate as black markers. As the value of Z increases
far above unity, the polymer solutions of both molecular weights become increasingly
entangled, and the scaling law of Zsol ∼ c1/(3ν−1) from Equation (4.12) is recovered,
as shown in the figure with ν = 0.55 [32] as a black dashed line. The deviation from
this power-law trend at the lowest concentration of M = 0.72MDa can be attributed
to its marginally entangled state, with Zsol ≈ 1. The agreement between the measured

Figure 4-15: Ratio of disengagement time and Rouse time, λD/λR against c[η],
where the intrinsic viscosities [η] are measured by Dinic et al. as 5.98 dL/g (for
M = 0.72 MDa) and 5.98 dL/g (for M = 1.3MDa). The number of entanglements
per chain in solutions Zsol is extracted from Equation (4.1), and the results from both
molecular weights approach the expected power-law trend of c1/(3ν−1) shown as a black
dashed line, where ν= 0.55 is taken.

filament thinning profiles and the predictions from the Rolie-Poly model demonstrates
a more physical picture elucidated by the tube models applied in this chapter on the
conformation of polymer chains in entangled polymer solutions under extensional de-
formation, from which new insights can be provided in the filament thinning dynamics
that have been previously fitted with phenomenological expressions such as power-law
trends or Anna-McKinley equations.
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4.3 Summary

This chapter extended the analysis of capillarity-driven thinning dynamics to the en-
tangled polymer regime, which shows increasingly complex rheological behavior that
is governed by multiple timescales. To derive a robust model that incorporates the
dynamics of entangled polymer chains, reptation theory was applied and the filament
thinning dynamics based on two tube models (the DEMG model and the Rolie-Poly
(RP) model) were calculated numerically. While both models incorporate the idea of
“tube segments” to describe the interactions of polymer chains as well as the contour
length fluctuation in a mean-field framework, the two models differ slightly in consti-
tutive form due to the addition of convective constraint release (CCR) in the RP model.
Both models reveal complex filament thinning profiles governed by distinct stress con-
tributions in different thinning stages. At early times, the filament thinning profile is
similar to the prediction from a simple visco-capillary balance with a progressive rate-
thinning trend due to tube reorientation. An apparent viscosity ηapp can be determined
from numerical fitting that scales with GNλD, where GN is the plateau modulus and λD

is the disengagement time. As the tubes become uniformly aligned in the extensional
direction, the filament thinning profile is subsequently governed by the stretching of
the chain segments in the aligned tubes, which exhibits an exponential decay that is
consistent with the prediction from the Hookean dumbbell model. Notably, an apparent
extensional relaxation time λe can be extracted from fitting this exponential thinning
in Rmid(t), and its value approaches half the Rouse time (λR/2) as the number of en-
tanglements per chain Z increases. Finally, the tube extension approaches the finite
extensibility, and the filament thinning profile approaches a linear decay with time as
well as a terminal extensional viscosity of ηe,∞ = 2GNλRΛ

2
m/(1− 1/Λm).

Despite the general applicability of the FENE-P model for describing the shear and ex-
tensional behavior of dilute polymer solutions, it fails to capture the non-trivial ratio
of relaxation times extracted from shear and extensional flows, λe/λs, when the poly-
mer solutions become sufficiently concentrated. By virtue of the distinct timescales
that govern the tube reorientation and the chain stretch processes in the two selected
models, an analytical expression for such ratio can be readily derived as a function of
the concentration c and the molecular weight between entanglements in the melts Me,0

(see Equation (4.13) and Figure 4-6). This expression shows excellent agreement with
a number of previous studies focusing on different entangled polymer solutions, and
provides a physical origin of the distinct relaxation times arising from different flow
kinematics without introducing additional fitting parameters.

Finally, the extensional rheology predicted by the tube models was applied to a case
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study of cellulose/ionic liquid solutions, which have recently gained especial attention
in the clothing industry for the design of a circular economy through fiber spinning
and regeneration. In practice, a high concentration of these solutions in the entangled
regime is preferred for economic reasons, which contribute to the rheological complex-
ity of the spinning dopes. It is thus critical to obtain a comprehensive understanding of
the rheology of the spinning dopes to optimize the regeneration process and to reach
desired mechanical properties for the spun fibers. Both shear and extensional rheologi-
cal studies were carried out at various degrees of polymerization (DoP), concentrations
and temperatures through a commercial shear rheometer and a customized Capillary
Breakup Extensional Rheometer. The resulting shear viscosity, first normal stress coef-
ficient and the apparent extensional viscosity can be well described by the Rolie-Poly
model with a universal set of constitutive parameters. The measured ratio of the dis-
engagement time and the Rouse time showed consistent trends with the number of
entanglements per chain, providing a convenient relationship between the structural
information of cellulose conformation in the entangled regime and the resulting rheo-
logical behavior.

We also apply our theory to data reported in a previous study which measured fila-
ment thinning profiles of a series of aqueous hydroxyethyl cellulose (HEC) solutions.
The Rolie-Poly model was applied to the data fitting, and the results showed excellent
agreement with the experimental measurements at a range of HEC concentrations and
molecular weights.

To conclude this chapter, the filament thinning dynamics for a number of frequently
used constitutive models are summarized in Table 4.8 with the addition of the works
from this thesis. For readers’ information, this table is aimed at providing convenient
lookup information to quantify the extensional rheology of an unknown sample mea-
sured through the capillary breakup techniques.

Table 4.8: List of common constitutive models and the predicted form of the temporal
evolution in the minimum filament radius for extensional rheological characterizations
using the capillary breakup technique. Table adapted from Refs. 29 and 35.

Constitutive model R(t) = (full or asymptotic) Ref.

Bingham plastic
Γ
p

3τy

§

1− exp
�

τy(t − tC)

2
p

3η0

�ª

35

(Continued)

162



4.3. Summary

Table 4.8 (continued)

Constitutive model R(t) = (full or asymptotic) Ref.

Power-law fluid
R0Φ(n)Γ

K
(tC − t)n 35,305

Newtonian fluid
0.0709Γ
η0

(tC − t) 207,210,306

Inelastic
rate-thickening (IRT)a

ε̇≪ η0/k2 :
Γ

6η0
(tC − t)

ε̇≫ η0/k2 :
Γ

48k2
(tC − t)2

This thesis, 29

Upper-convected
Maxwell (UCM)b

�GR4
0

2Γ

�1/3

exp
�

−
t

3λ

�

208,237

FENE-Pc

ε̇≪ 2/(3λ) :
Γ

6ηS
(tC − t)
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a Assume X = 1 for the two asymptotic solutions. The incorporation of a
temporally evolving X is detailed in Section 3.2.2.

b Assume X = 1.5. A mathematical derivation of this value can be found in
Clasen et al. [237].

c Assume X = 1 in the limit of ε̇ ≪ 2/(3λ) and ε̇ ≫ 2/(3λ). When ε̇ ∼
2/(3λ), a scaling relation is presented rather than an asymptotic solution
with a determinate prefactor, as the solution of X under the elasto-capillary
thinning is still an ongoing debate. In practice, the slope, instead of the
prefactor is commonly extracted to obtain an extensional relaxation time.
The terminal extensional viscosity ηe,∞ = 2GλΛ2

m.
d Using DEMG model. Terminal extensional viscosity ηe,∞ = 3GNλRΛ

2
m/(1−

1/Λm) (Equation (4.10)).

164



5 | Characterization of Graphene-
Derived Nanocomposites and
Optimization of Dispersion

5.1 Material preparation and structural characteriza-
tion

In this chapter, a prototypical GDNC system is selected for a comprehensive rheological
characterization based on the measuring protocols proposed in previous chapters. The
extracted rheological information can be further connected to a structural characteri-
zation obtained from scattering methods to justify the correlation between the material
responses and the microstructure. Here, the aqueous graphene-oxide (GO)/polyvinyl
alcohol (PVA) system is selected due to the hydrophilic nature of GO molecules as well
as their excellent compatibility with the PVA chains to minimize nanofiller agglom-
eration. The affinity of GO with PVA molecules arises from the formation of strong
hydrogen bonds between a number of the carboxyl groups from GO molecules and
the hydroxyl groups from PVA molecules, as illustrated in Figure 5-1. As a result, the
GO/PVA nanocomposites are widely used as an easily synthesized system for a variety
of applications [307–312].

In this study, the weight concentration of PVA is fixed at 9.1 wt% to produce solutions
with moderate viscosities to facilitate the measurements. A range of GO concentra-
tions is selected from 0 wt% to 0.4 wt% to investigate the rheological modifications
at different GO loadings. Such concentration selections are consistent with the range
of loadings for the industrial applications of graphene-derived nanofillers due to eco-
nomic reasons, in which the state of dispersion becomes critical in the property en-
hancement [313,314].
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Carboxyl groups Hydroxyl groupsHydrogen bond

GO PVA

Figure 5-1: Intercalation of nanofillers in GO/PVA nanocomposites, showing the for-
mation of hydrogen bonds between the carboxyl groups on GO molecules and the
hydroxyl groups on PVA chains. Reproduced from Ref. [33].

The GO/PVA nanocomposites are synthesized by first mixing 0.4 wt% aqueous GO
masterbatch (Graphenea, Spain) with deionized water (VWR International, USA) to
obtain the dispersion with desired GO concentrations. The size distribution for the
GO nanofillers is characterized using scanning microscope microscope (Zeiss Merlin
High-resolution SEM; Zeiss, Germany), and the results are shown in Figure 5-2. A log-
normal distribution can be readily fitted and an averaged nanofiller diameter can be
obtained as 2a = 3389.3nm. The aqueous GO dispersion is subsequently sonicated for
1 hr to obtain a well-exfoliated system. Finally, the aqueous GO dispersion is heated to
90 °C in a water bath with the application of stirring at 400 rpm. PVA powders (Mw:
89 000 Da to 98000 Da; Sigma-Aldrich, USA) are weighted and gently added to the GO
dispersion with a funnel. The mixture is kept stirred for another 2 hrs in the water bath
at 90 °C until the solution becomes homogeneous. The solutions are removed from the
water bath and cooled to 60 °C, before moving onto a roller mixer for another 2 hrs.
All the samples are stored at a temperature of 4 °C.

5.2 Shear rheology

The shear rheology of the PVA/GO nanocomposites is investigated on a commercial
shear rheometer (ARES-G2; TA Instruments, USA) with a 40 mm, 2° cone-and-plate
geometry at 25 °C. To prevent dehydration during long shearing measurements, the
sample between the cone and plate geometry is sealed with nonpolar n-decane (Sigma-
Aldrich, USA) with negligible impact on the rheological measurements due to its much
smaller viscosity (approximately 0.89 mPas).

The steady flow curves are shown in Figure 5-3 for a shear-rate range of 0.01 s−1
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Figure 5-2: Size distribution of the GO nanofillers extracted from SEM imaging. An
averaged nanofiller diameter can be obtained from fitting a log-normal distribution
(black solid line) as 2a = 3389.3nm.

to 100 s−1. A clear manifestation of shear-thinning behavior is captured when GO
nanofillers are added, and the overall shear viscosity increase with the GO concen-
tration. From Figure 5-3, the shear stress at low shear rates approach constant as a
result of the elasticity arising from the formed nanofiller network. This trend in the
shear stress can be broadly described by the three-parameter Herschel-Bulkley (H-B)
model [135], which can be expressed as

σ(γ̇) = σy + kγ̇n. (5.1)

Here, σy = limγ̇→0σ(γ̇) is the yield stress. The power-law trend of the shear stress at
high shear rates can be described by k and n. As shown in Figure 5-3(b), the H-B model
(dashed lines) broadly agrees with the experimental data at varying GO concentrations.
Notably, at low GO concentrations (c ≲ 0.2wt%), a non-monotonic trend in the shear
viscosity arises at low shear rates, which cannot be accurately captured by the H-B
model. This trend has been reported by previous studies on aqueous GO dispersions
[106, 107], in which the stress increase at low shear rates can be attributed to the
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Brownian diffusion of nanofillers that drives structural reconstruction. As the shear
rate increases, the diffusion-driven mechanism is disturbed by a strong convective flow,
which weakens the structural integrity of the spanning nanofiller network, leading to
a rheological response that is primarily dominated by the hydrodynamic interaction
between the nanofillers and the continuous phase. To better describe the trend in the
flow curve, a thixotropic term can be readily added to the H-B model, in which the
yield stress can be expressed as a function of a structural variable θ [315] as

σy = θσy,0, (5.2)

where σy,0 is the yield stress with full microstructural integrity. The structure parame-
ter is a dimensionless internal state variable to characterize the microstructure, and its
value is constrained within a range of 0≤ θ ≤ 1, where θ = 0 implies full breakdown
of the microstructure, and θ = 1 implies a fully recovered structure. The temporal
evolution of the structural variable is resulted from shear-induced breakdown and si-
multaneous buildup. Here, a canonical governing equation can be adopted [316] as

θ̇ = −θ |γ̇|+
1− θ
λth

, (5.3)

where λth characterizes a timescale in which the microstructure rejuvenates. Con-
sequently, under a steady-state condition by imposing θ̇ = 0, Equation (5.2) can be
substituted into the original H-B model (Equation (5.1)), leading to new expression
for the steady-state shear viscosity incorporating the microstructural evolution as

σ(γ̇) =
σy,0

1+λthγ̇
+ bγ̇n. (5.4)

The term λthγ̇ serves as a measure for the flow-induced microstructural variation. As
Figure 5-3 shows, the new fitting results, as plotted as solid lines, capture the trend
of shear stress at low shear rates accurately. Figure 5-4 further plots the constitutive
parameters extracted from both models (H-B model: filled markers; thixotropic H-
B model: hollow markers). General trends in the yield stress (σy and σy,0) and the
power-law exponent n can be identified as the GO concentration varies. In brief, the
addition of nanofillers increases the yield stress, while the power-law exponent of n
decreases as the concentration increases, resulting in more apparent shear-thinning
behavior. As shown in Figure 5-4, the extracted rejuvenation timescale λth remains
broadly constant at approximately 10 s to 15 s at intermediate GO concentrations (c ≤
2 wt%). The rapid decrease of λth at higher GO concentration can be attributed to the
non-monotonic trend in shear stress being shifted to a lower shear rate, which is out
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Figure 5-3: Steady shear stress σ of GO/PVA systems against shear rates γ̇ at varying
GO concentrations at 25 °C. The dashed lines are fitted from the Herschel-Bulkley
model (Equation (5.1)), and the solid lines are fitted from the thixotropic Herschel-
Bulkley model (Equation (5.4)). Inset: Zoom-in view in the shear-rate range of 1 ×
10−2 s−1 to 1 s−1 and the stress range of 1× 10−1 Pa to 1× 101 Pa.

Because the structural rejuvenation process is primarily driven by the Brownian diffu-
sivity, the Peclet number, Pe can be used as an alternative metric to evaluate the flow
strength [107] as

Pe≡
a2γ̇

D
, (5.5)

where a is the major-axis lengthscale of spheroidal nanofillers as defined in Figure 2-
3, and D is the diffusivity of nanofillers. Due to a high aspect ratio, the nanofiller
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(a) (b)

Figure 5-4: Parameters obtained from the H-B model (filled markers) and the
thixotropic H-B model (hollow markers): (a) Yield stress σy; (d) Power-law exponent
n. Solid line: Rejuvenation timescale λth. Legend indicates the GO concentration,
shared by both subfigures.

mobility is mainly attributed to rotation, and the diffusivity for oblate spheroids can
be thus approximated [114] as

D ≈
3kT
4ηSa

, (5.6)

where ηS is the viscosity of the continuous phase. Due to the similarity of λthγ̇ and the
Peclet number in their physical interpretations, the rejuvenating timescale λth can be
expressed in a form of the nanofiller geometry as

λth ∼
4ηSa3

3kT
. (5.7)

In the studied GO/PVA system, the averaged nanofiller is approximately a = 1.7µm
from Figure 5-2, and the viscosity of continuous phase is η ≈ 0.1 Pa s, leading to an
estimated rejuvenating timescale λth ≈ 158 s. This estimate is consistent with the
extracted λth from the steady flow curve, as shown in Figure 5-4(b).

The linear viscoelasticity is characterized through small amplitude oscillatory shear
(SAOS). A small strain of γ0 = 2% is selected to probe the frequency response in the
linear regime. As shown in Figure 5-5, the dynamic moduli (storage moduli G′: filled
markers; loss moduli G′′: hollow markers) are plotted separately for each concentra-
tion with shared ranges of both the abscissa and ordinate.
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Figure 5-5: (a) Schematic of the fractional Kelvin-Voigt (FKV) model with two spring-
pot components connected in parallel. (b-g) Frequency responses of dynamic moduli
with γ0 = 2% at varying concentrations (subfigures): (b) 0 wt%; (c) 0.1 wt%; (d)
0.13 wt%; (e) 0.2 wt%; (f) 0.3 wt%; (g) 0.4 wt%. Solid and dashed lines: Fitting lines
from the FKV model in Equation (5.9).

To describe the frequency response of the GO/PVA nanocomposites at varying concen-
trations arising from both the nanofiller structures and the interactions between the
nanofiller and the polymer matrix, a constitutive model with a broad relaxation time
spectrum is desired. Notably, the storage moduli at low frequencies approach plateau
as the GO concentration increases, indicating a gel-sol transition [317]. Nevertheless,
a true plateau storage modulus is unlikely to reach due to Brownian diffusion, which
induces infinite structural variations. This trend can be further visualized using the van
Gurp-Palmen plot as shown in Figure 5-6, in which the phase angle δ s plotted against
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the magnitude of complex modulus |G∗| =
p

G′2 + G′′2. As the GO concentration in-
creases, the curve is shifted towards a lower phase angle with a larger magnitude of
complex modulus. The dashed lines show the storage moduli at ω = 0.1 rad/s, which
can be used to represent the asymptotes of |G∗| at low angular frequencies. The decay-
ing phase angle in this frequency region demonstrates elasticity-dominated material
response.

Figure 5-6: van Gurp-Palmen plot with the phase angle tan(δ) against the magnitude
of complex modulus |G∗| at varying GO concentrations. Dashed lines mark G′0 for each
GO concentration.

To describe the frequency response of the dynamic moduli accurately, the fractional
Kelvin-Voigt (FKV) model is applied, in which two fractional springpots are connected
in parallel [177, 318], as shown in the schematic of Figure 5-5(a). The constitutive
equation can be expressed as

σ = V
dαγ
dtα
+G

dβγ
dtβ

, (5.8)
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where V (in the unit of Pa sα) and G (in the unit of Pa sβ) are the quasiproperties of
the two springpots with fractional exponents α and β , respectively. The fractional
derivative dα/dtα has been introduced and defined in Equation (2.9). The storage
and loss moduli predicted by the FKV model can be extracted by taking the Fourier
transform of Equation (5.8) as

G′(ω) = Vωα cos
�

απ

2

�

+Gωβ cos
�

βπ

2

�

, (5.9a)

G′′(ω) = Vωα sin
�

απ

2

�

+Gωβ sin
�

βπ

2

�

. (5.9b)

To distinguish the two symmetric springpots, a constraint on the fractional exponents
is imposed as α ≥ β . When α = 1 and β = 0, the FKV model is reduced to the
conventional Kelvin-Voigt model. As shown in Figure 5-5, the FKV model is fitted to the
experimental data as solid (G′) and dashed (G′′) lines. Both fitting lines are in excellent
agreement with the measurements of dynamic moduli at all the tested concentrations.
The extracted fractional exponents are further plotted against the GO concentrations
for c > 0, as shown in Figure 5-7. From this figure, a general trend in the two fractional
exponents can be identified as the GO concentration increases, where β increases from
0 and α decreases from unity. Two power-law relations can be obtained from numerical
fitting as α ∼ c−0.053 (solid line) and β ∼ c0.077 (dashed line). The departure of both
exponents of α and β from integer limits implies more complex viscoelastic responses
governed by a broader retardation time spectrum H(λ) (as introduced in Section 2.2)
attributed from the microstructures at different lengthscales. For the FKV model, the
retardation time spectrum can be analytically expressed [319] as

H(λ) =
V
π
λ−α sin(πα) +

G
π
λ−β sin(πβ). (5.10)

From Equation (5.10), two power-law asymptotes are identified as H(λ) ∼ λ−α when
λ≪ λC and H(λ) ∼ λ−β when λ≫ λC. Here, a characteristic retardation time λC is
calculated from dimensional analysis as

λC =
�

V sin(πα)
G sin(πβ)

�1/(α−β)

. (5.11)

This prediction from the FKV model is subsequently compared with the experimental
measurements. To extract the retardation modes from G′(ω) and G′′(ω), the ReSpect
computing package [320] is applied. Here, a discrete mode is adopted to capture a
discernible trend of the time spectrum without overfitting. For each GO concentration,
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Figure 5-7: Fractional exponents 0≤ β ≤ α≤ 1 extracted from fitting the FKV model
at varying GO concentrations. Solid and dashed lines show the trendlines for α and
β against GO concentrations from power-law fitting with exponents of −0.053 and
0.077, respectively.

a parsimonious number of 3 to 4 retardation modes are selected using the ρ-ηmethod
[320]. As shown in Figure 5-8, the extracted retardation modes from experimental
measurements (filled markers) exhibit consistent trends with the prediction from a
continuous time spectrum H(λ). In the limit of short retardation time λ < 0.1 s, the
retardation modes at varying GO concentrations are similar, justifying contributions
from the polymer matrix or hydrodynamic effects. In contrary, the continuous spectra
or discrete modes at the tail of long retardation time are elevated significantly as the
GO concentration increases, which are consistent with the increasing storage moduli
at low angular frequencies.

To describe the non-linear rheological response, the FKV model can be subsumed into
the more comprehensive K-BKZ constitutive framework [136, 177]. Here, the consti-
tutive equation can be expressed in a general integral form as

σ(t) =

∫ t

−∞

∂ G(t − ξ)
∂ ξ

�

2
∂W
∂ I1

C−1 − 2
∂W
∂ I2

C
�

dξ, (5.12)

where G(t) is the relaxation modulus measured from linear viscoelasticity. A poten-
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Figure 5-8: Retardation time spectra predicted by the FKV model at varying GO con-
centrations according to Equation (5.10) (solid lines) and discrete retardation modes
extracted from the measured dynamic moduli in Figure 5-5 with the ReSpect comput-
ing package (filler markers).

tial function W can be expressed in a frame-invariant form using the first and second
invariants, I1 and I2 of the Finger strain tensor C−1 ≡ (F−1)TF , which are defined as

I1 ≡ tr C−1, (5.13a)

I2 ≡ tr C . (5.13b)

At small deformation gradients, I1 = I2 → 3 [136]. In shear deformation, I1 = I2 =
γ2 + 3. As a result, the potential function can be expressed in a more compact form
as W = W (I1) [321]. Alternatively, if letting h(γ) ≡ W (I1), the resulting constitutive
equation can be expressed specifically as

σ(t) =

∫ t

−∞

∂ G(t − ξ)
∂ ξ

h[γ(t,ξ)]γ(t,ξ)dξ, (5.14)

where γ(t,ξ)≡ γ(t)−γ(ξ) denotes the shear history, and h(γ) is defined as the damp-
ing function [136, 322], which incorporates strain-dependent response of a material.
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From this equation, it is evident that the linear viscoelastic behavior is separated from
the non-linear response described by the damping function. Here, the relaxation mod-
ulus is derived from the FKV model by taking Laplace transform of Equation (5.8) as

G(t) =
V

Γ (1−α)
t−α +

G
Γ (1− β)

t−β , (5.15)

where V, G, α and β correspond to the quasiproperties and fractional exponents ex-
tracted from the linear viscoelastic measurements. Notably, by letting γ(t) = γ0ℋ (t),
where ℋ (t) is the Heaviside step function, the resulting stress response from Equa-
tion (5.14) is given by

σ(γ0, t) = γ0h(γ0)G(t) = γ0G(γ0, t). (5.16)

Consequently, the damping function can be practically determined through stress re-
laxation experiments at different step strains γ0. From Equation (5.16), relaxation
moduli at different step strains predicted by the K-BKZ constitutive framework are dis-
tinguishable only by their prefactors.

To demonstrate the validity of this constitutive framework, a specific GO concentration
c = 0.4wt% is selected for non-linear rheological characterizations. A range of step
stains γ0 = 0.01 to 10 is selected and imposed with a relaxation duration of 600 s for
each strain. As shown in Figure 5-9, the relaxation moduli at different step strains
exhibit broadly similar decaying trends on logarithmic scales. The prediction of a re-
laxation modulus in the linear regime, as described by Equation (5.15) is plotted as the
black dashed line, which shows excellent agreement with the stress relaxation curves
at small step strains at γ0 ≲ 0.1. Beyond γ0 ≈ 0.3, the stress relaxation curves G(γ0, t)
are shifted downward due to the damping term. To estimate the damping function, two
time points are selected at t1 = 0.1 s and t2 = 80 s to represent the material responses
in short and long times, respectively. The corresponding values of G(γ0, t i)/G(t i) are
plotted against different step strains in Figure 5-10 as filled and hollow markers. At
both time points, the value of G(γ0, t i)/G(t i) remains broadly at unity for γ0 ≲ 0.1 and
exhibits power-law trends in the non-linear regime. Such trends can be described by a
specific form of the damping function proposed by Soskey and Winter [323], in which
a generalized sigmoidal function is specified as

h(γ0) =
1

1+ (γ0/γC)b
, (5.17)

where γC is a critical strain, and b is an exponent to describe the strain-softening be-
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Figure 5-9: Relaxation moduli against step time at varying step strains γ0 = 0.01 to 10.
Black dashed line (thick): Linear viscoelastic response predicted by Equation (5.15).
Solid lines: Fitting lines to a modified K-BKZ constitutive framework with two damping
functions on each springpot at varying step strains. A universal set of shape parameters
can be obtained as bα = 1.55, γC,α = 1.04, bβ = 1.53 and γC,β = 0.32. Black solid and
dashed lines (thin) show the trends of relaxation moduli at t1 = 0.1 s and t2 = 80s,
which are plotted in Figure 5-10 explicitly to demonstrate distinct damping terms at
short- and long-time ranges.

havior in the non-linear regime. From numerical fitting, the shape parameters can be
obtained as b = 1.38 and γC = 0.45 at t1 = 0.1 s, and b = 1.54 and γC = 0.33 at
t2 = 80s. Evidently, the non-linear material responses in a stress relaxation process
substantially differ at short and long times. As a result, the constitutive framework
with a universal damping function, as expressed in Equation (5.12) cannot describe
the non-linear behavior accurately over a broad time spectrum.

To characterize such a complex non-linear response, it is noticed that for a nanofilled
system, a percolated network formed by nanofillers at high filler concentrations can
induce a new strain-energy relation that is substantially different from that for the
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Figure 5-10: Damping functions evaluated at short- (0.1 s) and long-time (80 s) re-
sponses. Both data are fitted into Equation (5.17), and distinct shape factors are ob-
tained, showing inconsistent results with the prediction from a universal damping func-
tion.

polymer matrix. The linear viscoelastic responses at short and long times are primarily
dominated by the springpots with quasiproperties of V,α and G,β , respectively (since
α > β). Therefore, two distinct damping functions of the Soskey-Winter form (Equa-
tion (5.17)) can be assigned to each springpot. From a physical perspective, these two
damping functions are related to the strain energy that arises from different material
structures, which subsequently dominate the short- and long-time non-linear responses
with separable constitutive relations. In the limit of γ0≪ γC, both damping functions
reduce to unity, and the fractional Kelvin-Voigt structure is retained. According to this
assumption, the overall relaxation modulus can thus be expressed as

G(γ0, t) =
V

Γ (1−α)
t−αh(γ0; bα,γC,α) +

G
Γ (1− β)

t−βh(γ0; bβ ,γC,β). (5.18)

To obtain accurate measurements of the two damping functions, numerical fitting of
Equation (5.18) is performed to the experimental data at varying step strains, and
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the four shape parameters are obtained as bα = 1.55, γC,α = 1.04, bβ = 1.53 and
γC,β = 0.32. The predictions from Equation (5.18) are subsequently plotted in Figure 5-
9 in colored solid lines, which show excellent agreement with the measurements at
both short- and long-time ranges. Admittedly, measurements at close to t = 600 s
show slight deviation from the predictions, which may arise from inaccessible data of
the dynamic moduli below ω= 0.1 rad/s (as in Figure 5-5).

With the linear viscoelastic response characterized by the FKV model, the modified K-
BKZ constitutive framework with two damping functions provides a full-dimensional
description of the material response in the non-linear regime. To validate this consti-
tutive framework, the stress response of a transient start-up shear flow is inspected, in
which the shear history can be described as γ(t) = ℋ (t)γ̇0 t. From Equation (5.12)
and 5.18, this transient response can be analytically expressed as

σ+(γ̇0, t) = σ+(γ̇0, t;V,α, bα,γC,α) +σ
+(γ̇0, t;G,β , bβ ,γC,β), (5.19)

i.e., a summation of the contributions from the two springpots. The transient stress
response from either springpot has an identical form, which can be expressed as

σ+(γ̇0, t;V,α, bα,γC,α) =
Vh(γ̇0 t; bα,γC,α)γ̇0

Γ (1−α)
t1−α

+
αVγ̇0 t1−α

Γ (2−α)
F
�

1,
1−α

bα
;

1−α
bα
+ 1;−
�

γ̇0 t
γC,α

�bα�

,
(5.20)

where F denotes the hypergeometric function as introduced in Chapter 3. As shown
in Figure 5-11(a), a series of start-up flow measurements are performed at varying
step shear rates γ̇0 = 0.01 s−1 to 100 s−1 on logarithmic scales. Notably, the K-BKZ
constitutive framework (solid lines) accurately captures the transient stress responses
at short times for all shear rates. At longer times, predictions of the stress response
at high shear rates (γ̇ > 1 s−1) are consistent with the measurement. As the shear
rates decrease, the predicted stress progressively deviates from the measured values.
Such discrepancy is discussed shortly. Nevertheless, the short-time responses remain
in excellent agreement with the predictions.

The trend in the terminal stress response can be better visualized by comparing with
the steady-shear viscosity. As shown in Figure 5-11(b), the steady-shear flow curve
from Figure 5-3 is revisited (hollow markers). In addition, the complex viscosity from
linear viscoelasticity η∗(ω) ≡ |G∗(ω)|/ω (solid markers) is plotted at ω = γ̇, where
the notation of |G∗| =

p

G′2 + G′′2 represents the magnitude of complex modulus and
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(a) (b)

Figure 5-11: (a) Transient stress response in a start-up flow with varying step shear
rates at a fixed GO concentration of 0.4 wt%. Solid lines: predictions from the frac-
tional K-BKZ framework. (b) Steady shear flow curve at a fixed GO concentration of
0.4 wt% revisited from Figure 5-3(a). The prediction line from the K-BKZ model de-
scribes the general trend of shear-thinning.

has been used in Figure 5-6. The measurements from both flows agree closely over a
wide range of shear rates, attesting to the Cox-Merz rule [136]. In contrary, the Rutger-
Delaware rule [324], which is commonly used for a yield-stress fluid, fails drastically
with γ0 = 2%. The applicability of the Cox-Merz rule suggests a well-defined linear
regime, in which the strain remains recoverable. Compared with dense particulate
suspensions and other viscoplastic materials that exhibit intrinsically non-linear be-
havior [177], nanocomposites with intercalated polymer chains introduce additional
polymer-nanofiller interactions, which increases the averaged nanofiller distance and
diminishes the strong repulsion between nanofillers. As a result, the critical strain
beyond which the system becomes non-linear increases significantly and is primar-
ily determined by the extensibility of the polymer matrices, and the bulk rheology of
nanocomposites is substantially different from dense nanofiller suspensions, especially
under large deformation and shear rates. In Figure 5-11(b), two power-law asymptotes
arise at low and high shear rates. From the linear viscoelastic responses, the power-law
exponents of these two asymptotes can be analytically determined as β −1 and α−1,
respectively. These two power-law predictions are further plotted as thin dashed and
dotted lines, and they agree with the trends of both steady-shear and complex viscosi-
ties in the limits of low and high shear rates (angular frequency), respectively. Finally,
these viscosity measurements are compared with the prediction from the modified K-
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BKZ model. From Equation (5.19), a terminal viscosity can be readily expressed by
letting t →∞, and an explicit expression can be obtained using Euler’s transforma-
tion [253] as

η(γ̇) = lim
t→∞
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(5.21)

As plotted in Figure 5-11(b), this prediction shows good agreement with the trends
of both steady-shear and complex viscosities. In particular, Equation (5.21) predicts
two power-law asymptotes with identical exponents as in linear viscoelasticity. Such
consistency demonstrates the validity of a K-BKZ constitutive framework to describe
both the linear and non-linear rheological responses of a nanofilled system. Admit-
tedly, predictions of the terminal viscosity at low shear rates γ̇0 < 1s−1 slightly deviate
from the measurements. This deviation is likely to arise from a systematic offset in the
measured damping function due to thixotropy. From Equation (5.21), the asymptotic
solution of the steady-shear viscosity at low shear rates is primarily determined by both
the low-frequency response of the dynamic moduli (through β andG) and the damping
function associated with the low-frequency springpot (through bβ and γC,β). As β ≪ 1,
the value of (1−β)/bβ is not far from unity, hence F[(1−β)/bβ , (1−β)/bβ ; (1−β)/bβ+
1;1] increases rapidly (as F(1,1, 1;1)→∞) with decreasing bβ . Since bβ is close to
unity, if its value is overestimated, the low-shear-rate component in Equation (5.21)
can decrease dramatically, giving rise to an offset in the steady-shear viscosity between
the predictions from the K-BKZ model and the experimental measurements. From the
steady-shear measurements, it is evident that the studied nanofilled system exhibits
non-trivial thixotropic behavior. This additional complexity in rheology is not mani-
fested in the linear regime. However, in a stress relaxation process, where the sample
is subject to large step strains, the internal structures undergo rapid destruction with
large transient shear rates, resulting in systematic underestimations of the relaxation
modulus, and hence a large value of bβ . Nevertheless, the K-BKZ constitutive frame-
work still provides a simple description of the material responses with accurate scaling
laws over wide range of shear rates.
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5.3 Extensional rheology

The extensional rheology of the GO/PVA nanocomposites is characterized through the
customized CaBER device introduced in Chapter 3 with an identical set of experimen-
tal parameters as in Table 3.2. Here, the concentration of PVA remains at 9.1 wt%, but
a slightly different range of GO concentration is selected to investigate the extensional
rheology resulted from varied polymer-nanofiller interactions. Figure 5-12 shows the
snapshots of filament evolution for each selected GO concentration, filament thinning
profiles at different transient times. The captured snapshots show a significant increase
in the filament breakup time tC from approximately 140 ms to 1100 ms as the GO
concentration increases from 0 wt% to 0.4 wt%. At relatively high GO concentrations
(e.g., 0.4 wt%), the filament profile exhibits an apparent necking shape, in contrast
with the more slender filament shapes at lower GO concentrations. In addition, the
fluid reservoir close to the end discs at c = 0.4 wt% is conically shaped, distinct from
the approximately truncated-spherical shapes at lower GO concentrations as a result
of the interaction between gravity and capillary effect. These differences show sub-
stantial variations of the capillarity-driven thinning dynamics as the GO concentration
increases. The temporal evolution of the minimum filament radius R(t) can be read-
ily extracted from the snapshots. As plotted in Figure 5-13(a), the minimum filament
radius at varying GO concentrations exhibits distinct kinematics. When the GO concen-
tration is approximately below 0.08 wt%, the filament profiles evolve from self-similar
shapes and become increasingly cylindrical close to the filament breakup. This is rem-
iniscent of the filament thinning dynamics predicted by the viscoelastic models that
have been extensively studied in previous chapters. Due to low GO loadings, such be-
havior can be primarily attributed to the stretching of PVA polymer chains as well as the
hydrodynamic interactions arising from low-concentrated nanofillers. This presump-
tion is further justified by the linear decay of minimum filament radius at t ≲ 200ms,
in which the filament thinning profiles are primarily governed by the visco-capillary
thinning. Due to a weakly elastic response arising from low-molecular-weight PVA
chains, the elasto-capillary thinning appears to arise only sufficiently close to the fila-
ment breakup. In contrary, the filament thinning profiles at larger GO concentrations
(c ≥ 0.08wt%) evidently deviate from the linear-decaying trends at intermediate time
(t ≈ 0.6tC), leading to a faster filament thinning rate. Notably, the filament thinning
appears to slow down very close to filament breakup, as subtly shown for c = 0.4wt%
at t > 1×103 ms. Such piecewise filament thinning trend reveals a much more complex
rheological response in the GO/PVA nanocomposites as the extensional rate is varied.

Prior to fitting the measured filament thinning profile to specific constitutive models,
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Figure 5-12: Snapshots of the filament thinning profiles for GO/PVA nanocomposites
at varying GO concentrations from 0 wt% to 0.4 wt% measured on the customized
CaBER device. Time of each snapshot is marked.

a direct comparison between the shear and extensional rheology can be performed
through the apparent extensional viscosity ηe,app(ε̇) (Equation (3.9)) extracted from
the filament thinning dynamics and an inelastic prediction of the apparent extensional
viscosity from shear rheology as ηe,N(γ̇) = 3η(γ̇)/(2XN − 1), where η = η(γ̇) is the
steady shear viscosity, and XN = 0.7127 is the geometric correction factor for New-
tonian fluids. As shown in Figure 5-13(b), the apparent extensional viscosities from
both shear and extensional flows are plotted against the strain rates1. The shear and
extensional curves are broadly consistent over a wide range of the strain rates, demon-
strating inelastic responses at small to intermediate strain rates (ε̇≲ 10 s−1). At larger
strain rates, the apparent extensional viscosity ηe,app becomes larger than the inelastic
prediction due to additional elastic responses. Notably, this departure leads to global

1Admittedly, a direct comparison between the shear and extensional flow curves without modifica-
tions to the magnitude of strain rates is flawed due to frame transformation [136]. From Equation (3.6),
the shear and extensional rates can be rewritten in the forms of IIγ̇ and IIIγ̇. As a result, the apparent ex-
tensional viscosities extracted from shear (inelastic) and extensional rheology exhibit slightly different
material responses. Nevertheless, slopes of the flow curves remain unchanged when plotted on loga-
rithmic scales, and can be used to signal different material responses in shear and extensional flows.
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(a) (b)

Figure 5-13: (a) Filament radius measured from the customized CaBER system at
600 fps at varying GO concentrations. (b) Apparent extensional viscosity ηe,app(ε̇) and
inelastic predictions from the shear viscosity ηe,N = η(γ̇)/[(2XN − 1)/3], where XN =
0.7127 is the geometric correction factor for Newtonian fluids. Both subfigures share
an identical legend for markers, as shown in (a).

rate-thickening behavior at lower GO concentrations (as exemplified for the pure PVA
solution at γ̇ ≈ 60s−1). At higher GO concentrations, the apparent extensional viscos-
ity keeps decreasing at high strain rates, but the value progressively deviates from the
inelastic prediction, as a result of two competitive interactions with opposite effects on
the extensional rheology.

Because of distinct filament thinning behavior exhibited at low and high GO loadings,
two constitutive models are applied to fit the filament thinning profiles and to ex-
tract meaningful model parameters. For c < 0.08 wt%, in which extensional-thinning
behavior is absent, the Oldroyd-B model (Equation (3.2)) is used. Here, a temporally-
evolving form of the geometric correction factor X is incorporated into the fitting pro-
cess according to Equation (3.47) to produce a more accurate filament thinning predic-
tion. As shown in Figure 5-14, predictions from the Oldroyd-B model (gray solid lines)
are in excellent agreement with the experimental data for both GO concentrations over
the whole filament thinning process. The extracted model parameters are tabulated
in Table 5.1, in which the zero-shear viscosities are consistent with the steady-shear
measurements from Figure 5-3. Using Equation (3.12), the elasto-capillary numbers
for these two samples are calculated as EcV-E = 2.6 and 2, and their weakly elastic
responses can be readily justified according to the criterion proposed Section 3.1.

As shown in Figure 5-15, at larger GO concentrations, the extensional-thinning trend
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(a) (b)

Figure 5-14: Filament thinning profiles at low GO concentrations c =
0wt% and 0.05 wt%. Gray solid lines: Fitting lines with the Oldroyd-B model with
a temporally-evolving geometric correction factor X for data at t ≥ tM ≈ 50ms. (a) R
on a linear scale; (b) R on a logarithmic scale.

in apparent extensional viscosity is reminiscent of the filament thinning behavior pre-
dicted by tube models as introduced in Chapter 4. Specifically, the extensional-thinning
region where the apparent extensional viscosity broadly coincides with the inelastic
prediction from shear rheology corresponds to the filament thinning dynamics gov-
erned by tube reorientation. In light of such similarity in kinematics, a tube model is
explored to describe the filament thinning dynamics of nanocomposite systems at high
nanofiller concentrations. Here, the Rolie-Poly model with an infinite chain extensibil-
ity Λm→∞ is selected for data fitting. The filament thinning behavior dominated by
polymer chain stretch at large strain rates cannot be captured directly due to limited
optical resolution, but their impact on the extensional rheology can be readily substan-
tiated from Figure 5-13(b), in which the rate-thinning behavior is characterized by a
power-law trend with the exponent larger than −1, in contrary to the prediction of
−1 from the Doi-Edwards model without chain stretch (see Figure 4-8). To simplify
the fitting process, a constant geometric correction factor of X = XN = 0.7127 for a
Newtonian fluid is assumed because of a pronounced filament thinning kinematic de-
scribed by viscous-capillary thinning. The time range for fitting is selected from which
an evident linear decay is observed (80 ms for c = 0.08 wt% and 0.1 wt%; 120 ms for
c = 0.2wt% and 200 ms for c = 0.4 wt%). As shown in Figure 5-15(a) and (b), the
black solid lines show the best fitting lines from the Rolie-Poly model for GO concen-
trations c ≥ 0.08wt%, which is in excellent agreement with the experimental data
down to R = 20µm. The constitutive parameters extracted from numerical fitting are
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summarized in Table 5-15.

Nanofillers Unstretched
polymer Stretched polymer

(a) (b)

(c) (d)

Figure 5-15: (a-b) Filament thinning profiles for GO concentrations c ≥ 0.8wt% with
(a) R plotted on a linear scale, and (b) R plotted on a logarithmic scale. Black solid
lines: Fitting lines from the Rolie-Poly model with the geometric correction factor set to
XN = 0.7127. The time range for data fitting is selected at the onset of a notably linear-
decaying trend in the filament radius (see text). (c) Magnitude of the tube orientation
∆S = Szz − Sr r at varying GO concentrations. (d) Schematic of the nanocomposite
microstructure at different stages of filament thinning (as marked in (c)) with corre-
sponding snapshots of the filament profiles.

A close agreement between measured filament thinning profiles and predictions from
the Rolie-Poly model reveals pivotal rheological and conformational similarities be-
tween entangled polymer solutions and nanofilled systems. At high GO concentrations,
nanofillers form disordered networks at crossovers characterized by larger lengthscales.
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Do to their high rigidity, these nanofillers significantly inhibit the mobility of inter-
calated polymer chains in a similar mechanism as in the tubes formed by entangled
polymer chains. Reorientation and deformation of these nanofillers induce complex
conformational variations during flow extension and become dominant factors of the
resulting material response at intermediate strain rates. As nanofillers approach a well-
aligned state, the extensional viscosity decreases. As the strain rate increases, the
aligned nanofillers further disengage, exposing the intercalated polymer chains un-
der the strong extensional flow. Beyond this point, the stretch of polymer chains start
to dominate the filament thinning behavior, deviating the material response from the
inelastic prediction.

The distinct filament thinning profiles predicted by tube models provides new insights
into the structural evolution of a nanofilled system in extensional flow. Using the ob-
tained constitutive parameters, a transient evolution of the magnitude of orientation
∆S = Szz − Sr r as in Equation (4.7) can be readily obtained to describe the conforma-
tion of nanofillers, as plotted in Figure 5-15(c). It is worth noting that Figure 5-15(a)
and (c) share an identical time axis, and a direct comparison can be made between
the filament thinning kinematics and the nanofiller orientation. Similarly, the evo-
lution of tube reorientation ∆S is three-folded. As demonstrated for c = 0.4wt%,
when t ≲ 650 ms (represented by stage I), the magnitude of ∆S remains low (≲ 0.3),
and the filament radius decays linearly with time. As the filament thinning progresses
(900ms ≲ t ≲ 1100ms, represented by stage II, the magnitude of ∆S rapidly in-
creases and approaches unity. In this stage, the minimum filament radius decays from
R≈ 0.4mm to R≈ 0.05 mm with increasing thinning rates, implying rate-thinning be-
havior for the transient extensional viscosity. When the magnitude of ∆S approaches
sufficiently close to unity after t ≳ 1100ms (represented by stage III), the evolution of
the filament thinning profile is subtly inflected from the previous convex trend (R̈< 0)
to an exponential decay (R̈> 0), which can be clearly captured in Figure 5-13(b) close
to filament breakup (t > 1× 103 ms), and the extensional viscosity subsequently de-
viates from the inelastic rate-thinning trend. The microstructural variations in these
three stages of filament thinning can be illustrated in Figure 5-13(d). In stage I, the
nanofillers and intercalated polymer chains undergo affine deformation, and the fila-
ment profiles are shaped similarly as the predictions from a Newtonian fluid. As the
nanofillers rapidly reorient towards the flow direction in stage II, the mobility of poly-
mer chains starts to increase, but polymer chains remain broadly unstretched. As a
result, a faster filament thinning trend in this stage can be primarily attributed to a de-
creased hydrodynamic interaction arising from aligned nanofillers. In the final stage,
nanofillers are fully aligned towards the direction of extension. Further disengage-
ment of these nanofillers is retarded by the chain stretch of intercalated polymers. As
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Table 5.1: Key constitutive parameters extracted from CaBER measurements at varying
GO concentrations.

Model c (wt%) G, or GN (Pa) λ, or λD/λR (ms) ηS or η0 = GNλD (Pa s)

Oldroyd-B
(G, λ, ηS)

0 0.017 4.30 0.23
0.05 0.015 4.32 0.21

Rolie-Poly
(GN, λD, λR)

0.08 141.3 10.0/5.3 1.41
0.1 403.2 4.5/1.0 1.81
0.2 238.7 25.5/5.8 6.08
0.4 135.5 141.2/12.8 19.13

a result, the filament thinning dynamics in this stage are primarily dominated by an
elasto-capillary balance similarly as in a dumbbell model. This structural similarity is
broadly consistent with the characterizations of shear rheology in Section 5.2, where
the steady-shear viscosity and the complex viscosity from linear viscoelasticity collapse
through the Cox-Merz rule. In general, entangled polymer systems can be well de-
scribed by the Cox-Merz rule due to their broad relaxation time spectra, as has been
substantiated by numerous studies in the past [273,325,326]. Consequently, it can be
concluded that a polymer nanocomposite system exhibits similar rheological behavior
as an entangled polymer system in both shear and extensional flows. From such rheo-
logical similarity, critical structural information of the nanofillers in a polymer matrix
under strong flows can be inferred, which may lead to new designs of the flow pro-
files for beneficial modifications of the nanofiller morphology, as will be introduced in
Section 5.4.

5.4 Rheology-assisted nanocomposite compounding

5.4.1 Exponential shear flow

The results from Sections 5.2 and 5.3 reveal a substantial connection between a strong
flow and the morphological variation of nanofillers. While a profound understanding
of the complex rheological behavior under large deformation is being actively pur-
sued, strong flow that generates a large local stress may potentially assist in an ef-
fective breakdown of large-nanofiller aggregates for a nanocomposite system. As in-
troduced in Section 2.2, dispersion methods using strong flows have been historically
implemented in the conventional methods of polymer melt blending and solution mix-
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ing [121]. However, steady shear flows have shown limitations in the optimization of
nanocomposite dispersion when the viscosity ratio of continuous and dispersed phases
is sufficiently contrasted [22]. A number of recent studies have justified the application
of extensional flow to beneficially modify nanofiller dispersions [169–172]. However,
prototyping instruments that enable strong extensional flow exist as either standalone
devices or attachments, and additional costs are incurred for maintenance. As a result,
innovative flow designs are desired to provide accessible strong flows on existing com-
mercial compounders for industrial applications with minimal costs of maintenance.

In this section, a conceptual dispersion method using a periodical exponential shear
(PES) flow is conceived to induce a rheologically equivalent extensional flow from
shear deformation. Proof-of-concept experiments are performed to justify similar ma-
terial responses from a PES flow as in an extensional flow, and guidance to an optimal
flow profile to a nanofilled system is provided.

For a material system described by continuum mechanics under an arbitrary flow, the
first principal elongation ratio λ1 provides a frame-invariant description of the defor-
mation for an infinitesimally small material element in a Lagrangian frame. The tem-
poral evolution of λ1 can be effectively used as a metric to evaluate the flow strength
regardless of flow types. From finite strain theories [136], the principal elongation
ratios can be obtained by solving the eigenvalues of the Cauchy-Green deformation
tensor C ≡ FTF , where F is the deformation gradient tensor. In a shear deforma-
tion with time-varying shear strain γ(t), the Cauchy-Green deformation tensor can be
expressed as

Cs =





1 γ(t) 0
γ(t) 1+ γ(t)2 0

0 0 1



 , (5.22)

where the subscripts “s” corresponds to shear flow, and the corresponding first principal
elongation ratio λ1 can be calculated as

λ1,s =
γ+
p

γ2 + 4

2
. (5.23)

In a steady simple shear flow, where γ(t) increases linearly with time, the principal
elongation ratio λ1,s(t) asymptotically approaches γ(t), and becomes a linear function
with time. In contrast, for a planar extensional flow with a constant extensional rate
ε̇, the first principal elongation ratio can be expressed [136] as

λ1,e = exp(ε̇t) = exp(ε), (5.24)
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where the subscript “e” corresponds to extensional flow. From this equation, the mag-
nitude of λ1,e increases exponentially with time, demonstrating a faster-varying, and
substantially stronger flow than the simple shear counterpart. Notably, in shear and
planar extensional flows, the first and second invariants of the Finger tensor C−1 can
be calculated respectively [136] as

Shear flow: I1,s = I2,s = 3+ γ2, (5.25a)

Plannar extensional flow: I1,e = I2,e = exp(2ε) + exp(−2ε) + 1, (5.25b)

and the third invariant I3 for both flows remains unity. Evidently, the first and second
invariants are equal in the two flow types despite their distinct natures in deformation,
indicating similar kinematics shared by both flows. If one lets I1,s = I1,e, the two flows
become substantially identical regarding deformation in the principal directions. Con-
sequently, a transient shear flow with a well-designed flow profile can exhibit kinematic
equivalence to a planar extensional flow.

If a flow profile in shear flow is described by a time-varying strain as

γ(t) = 2sinh(ε̇s t), (5.26)

where ε̇s is an effective rate of elongational deformation, it can be readily shown that

I1,s = 3+ γ2 = exp(2ε̇s t) + exp(−2ε̇s t) + 1= I1,e, (5.27)

where the last equality arises when ε̇ = ε̇s. As a result, the proposed transient shear
profile in Equation (5.26), defined as an exponential shear flow, is kinematically equiv-
alent to a planar extensional flow with an identical extensional rate. The concept of
exponential shear flow is not new. First proposed by Sivanshinsky et al. [327], it was
used to demonstrate the rate- and history-dependent rheological behavior of polymer
solutions in a strong transient flow. By calculating and analyzing the resulting prin-
cipal elongation ratio, Doshi and Dealy [328] predicted an identical strain-hardening
effect arising from an exponential shear flow as seen in an extensional flow for polymer
solutions. This rheological equivalence has been subsequently verified by a number of
numerical and experimental studies on polymer solutions and polymer melts [34,329].
When applied to a nanofilled system, an exponential shear flow is expected to impose
identical deformation to a local material element as in a planar extensional flow. As
illustrated in Figure 5-16, a nanofiller aggregate under an exponential shear flow is
subject to both rotation and deformation. The deformation in the principal direction
can induce beneficial morphological variations to a nanofiller cluster, if a sufficiently
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large stress is provided in the principal direction.

Existing aggregate Aggregate
under extension

Figure 5-16: Schematic of exponential shear flow on a nanofiller aggregate with a prin-
cipal direction p⃗1 and an extinction angle χ. As the Lagrangian element that contains
the aggregate element (ellipse with dashed-line edges) is distorted, morphological vari-
ation may arise, if the stress in the principal direction is sufficiently large. Replotted
based on Ref. 34.

To describe the material response under an exponential shear flow, an appropriate
material function is necessary [34,328–332]. Because of a non-trivial vorticity arising
from shear deformation, the conventional definition of a material function from steady
shear flow is less applicable here. Instead, a local material response in its principal di-
rection needs to be captured, which is more relevant to the microstructural variation
than bulk properties. For this purpose, a rotation-invariant material function can be
obtained from the stress components projected on the principal elongation direction,
p⃗1. As shown in Figure 5-16, the temporally evolving principal direction describes
the rotation of an infinitesimally small Lagrangian element that starts at a spherical
shape. Due to shear deformation, the spherical element progressively becomes ellipti-
cal, during which a preferred direction p⃗ arises along its major axis. The direction of
p⃗ is described by an extinction angle χ, which can be readily derived from the polar
decomposition of the deformation tensor C [34,136,333] as

χ = tan−1
�

1
λ1,s

�

= tan−1
�

2

γ+
p

γ2 + 4

�

. (5.28)

Consequently, the viscosity function for an exponential shear flow can be defined in a
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similar form of Equation (3.9) but in the principal directions [34] as

ηes ≡
σ

p
11 −σ

p
22

ε̇s
=

N1 cos(2χ) + 2σ12 sin(2χ)
ε̇s

, (5.29)

where the superscript P indicates components in the principal directions, and ε̇s is
the effective elongational rate defined in Equation (5.26). The normal stress difference
N1 = σ11−σ22 and the shear stressσ12 are both defined in the original reference frame.
From Equation (5.29), for a Newtonian fluid ηes = 4η, where η is the shear viscos-
ity. This result is well consistent with the prediction from a planar extensional flow, in
which the Trouton ratio is a constant of 4. Notably, Equation (5.29) reduces to the form
proposed by Doshi and Dealy [328], ηes =

Æ

N 2
1 + 4σ2

12/ε̇s, only if the principal direc-
tions of strain and stress tensors coincide, or mathematically when tan(2χ) = 2σ12/N1.
The expression of Equation (5.29) has shown consistent numerical and experimental
results with the material functions obtained from simple shear flows [34].

Despite the rheological affinity of an exponential shear flow with a planar extension,
the former cannot be practically applied to a real compounding process to improve
the nanofiller dispersion due to its transient nature. By noticing that the dispersion
is induced through a large local stress regardless of the reference frame, a periodi-
cal exponential flow (PES) can be proposed with alternating exponential shear flows,
thus allowing for a steady compounding process to modify the nanofiller morphology.
Mathematically, such a flow profile can be designed as

γ(t) =







2sinh(ε̇s t), kT0 < t ≤ kT0 +
T0

2
2sinh
�

ε̇sT0

2

�

− 2 sinh
�

ε̇s t − ε̇s

�

kT0 +
T0

2

��

, kT0 +
T0

2
< t ≤ (k+ 1)T0

(5.30)
where k = 0,1, 2, ... and T0 is the period of PES flow. This flow profile corresponds
to alternating elongational motion in the principal directions that are perpendicular to
each other in the first and second-half time periods with identical elongational rates.

Given that the net energy input to a periodical flow arises from dissipation, a material
function characterizing an averaged viscosity can be readily defined based on Equa-
tion (5.29) in the elongational direction as

η̄es =

∫ kT0+T0/2

kT0
(σP

11 −σ
P
22)ε̇sdt

∫ kT0+T0/2

kT0
ε̇sdt

=
1

T0/2

∫ kT0+T0/2

kT0

ηesdt. (5.31)
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Notably, this equation is defined on the first half-period of one periodical cycle due to
flow symmetry from both half periods in a steady PES flow. For a Newtonian fluid with
viscosityη, Equation (5.31) again reduces to η̄es = 4η (Tr= 4), as expected for a planar
extensional flow. For a more complex viscoelastic fluid, the value of η̄es incorporates
additional elastic responses in the principal direction, as shown by a non-trivial normal
stress difference N1. By designing the PES flow profile with properly selected values
of ε̇s and T0, flow behavior that is commonly observed in an extensional flow can be
induced by a transient shear flow in the principal elongation directions.

5.4.2 Experimental verification

To validate the rheological similarity between a PES flow and a planar extensional flow,
measurements are taken on a well-studied viscoelastic polymer solution. Here, a poly-
isobutylene (PIB)/hexadecane (C16) solution is selected at a polymer concentration of
8.26 wt% (Me,0 = 8818 Da [278], and Zsol ≈ 5). Similar material systems with different
polymer concentrations have been used in Section 3.3 to justify the proposed protocol
to determine the best-fit model for CaBER measurements. In those results, strong vis-
coelastic responses with strain-hardening effects have been identified at varying PIB
concentrations in extensional flow.

The selected material system is first tested in shear flow on a commercial rheometer
(ARES-G2, TA Instruments, USA). As Figure 5-17(a) shows, strong shear-thinning be-
havior is exhibited beyond γ̇≳ 1 s−1. The overall viscosity trend can be well described
by the Carreau-Yasuda model [136] with vanishing plateau viscosity (η∞ = 0) as

η(γ) = η0[1+ (λγ̇)
a](n−1)/a. (5.32)

From numerical fitting, a set of constitutive parameters can be obtained as λ= 0.20 s,
η0 = 15.46 Pa s, a = 0.92 and n = 0.38. In Figure 5-17(b), the dynamic moduli from
linear viscoelasticity are measured over different angular frequencies, and a relaxation
time can be obtained from the crossover of the two moduli as λ ≈ 0.2 s. This result is
consistent with the value of λ obtained from steady shear flow.

The material response of the selected material system in a PES flow is inspected at
varying values of ε̇sT0 = 1, 2.5, 5, 7.5 and 10. For each value of ε̇sT0, the elonga-
tional rate ε̇s is selected from 0.1 s−1 to 100 s−1 (some values of ε̇s are, however, not
attainable due to instrument capability). For each set of flow parameters, 50 cycles
of periodical exponential shear are performed to reach a steady periodical response.
In a PES flow, the value of ε̇s, as introduced previously, characterizes the strength of
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(a) (b)

Figure 5-17: (a) Steady shear-flow curve of 8.26 wt% PIB/C16 solution (markers)
fitted with Carreau-Yasuda model (black solid line). A set of model parameters can be
obtained as η0 = 15.46Pa s, λ = 0.20 s, a = 0.92 and n = 0.38. (b) Storage (filled)
and loss (hollow) moduli of the 8.26 wt% PIB/C16 solution measured at an oscillatory
strain of γ0 = 1%. The shear relaxation time can be obtained from the crossover of the
two moduli as λ ≈ 0.20 s, which is consistent with the value obtained from fitting the
Carreau-Yasuda model in (a).

an effective extensional flow. Because of the periodical nature, the value of ε̇sT0 de-
termines the oscillatory strain, which provides additional control over the flow profile
over one cycle. From Equation (5.30), if the value of ε̇sT0 is fixed, the strain input at
varying elongational rates can be collapsed by normalizing the abscissa and ordinate
with T0 and γ0 = 2sinh(ε̇sT0/2), respectively. As a result, different values of ε̇sT0 can
be treated as distinct strain inputs to the system. The PES flow is thus suitable to probe
both strain-dependent and rate-dependent material responses via the control of ε̇sT0

and ε̇s, respectively.

In Figure 5-18, key transient responses in a PES flow are demonstrated at a specific
flow profile with ε̇s = 1 s−1 and ε̇sT0 = 10 to show distinct rheological behavior from
a shear flow. As shown in Figure 5-18(a), temporal evolutions of the shear stress σ12

(blue dashed line), normal stress difference N1 (red dashed-dotted line), principal nor-
mal stress difference σP

11 −σ
P
22 (black solid line), as well as the extinction angle χ are

plotted in the first half period of the 50th cycle. It is evident that as the strain in-
creases, both σ12 and N1 increase in magnitude. Meanwhile, as the extinction angle χ
vanishes, the magnitude of σP

11−σ
P
22 becomes progressively dominated by the normal
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(a) (b)

(d)(c)

Figure 5-18: Material responses under a PES flow at ε̇s = 1s−1 and ε̇sT0 = 10. Data
in the first half-periods (kT0 < t ≤ kT0 + T0/2) are shown. (a) Evolutions of shear
stress σ12, normal stress difference N1 and principal normal stress difference σP

11−σ
P
22

(ordinate on the left), as well as extinction angle χ (ordinate on the right) against nor-
malized time 0< (t− kT0)/T0)≤ 0.5. Data at the 50th cycle are shown. (b) Evolution
of the transient viscosity in principal direction ηes overlapped by the measurements of
all 50 cycles. (c) Transient viscosity in principal direction ηes against shear rate (γ̇).
Black solid and dashed lines show predictions from the steady shear viscosity as η(γ̇)
and 4η(γ̇). Data at the 50th cycle are shown. (d) Evolution of averaged viscosity in
principal direction η̄es (Equation (5.31)) over PES cycles.

stress contribution. Because of a large normal stress at high shear rates, the transient
viscosity in the principal direction, ηes increases rapidly, as shown in Figure 5-18(b).
To better compare the material response in a PES flow with that in a steady-shear flow,
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Figure 5-18(c) replots the viscosity function against transient shear rates. Here, a pre-
diction from the steady-state flow, η(γ̇) can be readily obtained from Equation (5.32)
(black sold line). Another reference line is plotted as 4η(γ̇) (black dashed line) to
show an inelastic contribution to the overall viscosity in an exponential flow (as Tr= 4
for a planar extensional flow). It is found that at low shear rates, the inelastic predic-
tion overlaps with the trend of ηes. This is consistent with Figure 5-18(a) when the
extinction angle is well above 0° and the principal normal stress difference is primarily
contributed from the shear stress. As the transient shear rate increases, viscosity in the
principal direction increases rapidly and deviates from the inelastic prediction. The
trend of ηes from Figure 5-18(c) is similar to the flow behavior of a polymer solution
in an extensional flow, where the stretch of polymer chains induces a strong elastic
response and subsequently exhibits rate-thickening behavior.

(a) (b)

Figure 5-19: (a) Averaged Trouton ratio Tr (from data after 5th cycle) against elonga-
tional rate ε̇s at varying ε̇sT0. (b) Averaged Trouton ratio Tr over all elongational rates
in (a) at fixed values of ε̇sT0. Data from the material responses in both the first (filled
black markers) and second (filled blue markers) halves of one period are obtained.
The reference of Tr = 4 is drawn in black dashed line, above which strain-hardening
behavior can be justified.

Finally, an averaged Trouton ratio under a PES flow can be calculated as

Tr≡
1
|{ni}|

∑

{ni}

η̄es

η(ε̇s)
, (5.33)

where η(ε̇s) is the steady-shear viscosity evaluated at ε̇s using Equation (5.32), and
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{ni} is a subset of cycles from which an averaged value is calculated. As justified in
Figure 5-18(b) and (d) (as well as the results for other combinations of ε̇s and T0,
which are not shown here), a steady periodical state is obtained after approximately
5 cycles. As a result, data starting from the 6th cycle are used for the calculation. As
shown in Figure 5-19(a), the averaged Trouton ratio is plotted against elongational
rates at varying accumulated strains (scales with ε̇sT0). Here, data at ε̇s > 10s−1 for
ε̇sT0 > 5 are not accessible due to instrument limitations. From Figure 5-19(a), a gen-
eral trend of the averaged Trouton ratio can be identified, in which Tr increases as the
accumulated strain increases and shows strain-hardening behavior. At a fixed accu-
mulated strain (constant ε̇sT0), however, the averaged Trouton ratio remains broadly
constant at varying elongational rates. Admittedly, at ε̇sT0 = 1, the averaged Trou-
ton ratio shows a decreasing trend as the elonagational ratio increases. It is worth
noting that at ε̇s = 100s−1, the half period is T0/2 = 0.005 s, which is smaller than
the minimum rise time the instrument can apply (0.01 s). As shown in Figure 5-20,
the strain evolution has deviated from the designed flow profile (blue dashed line)
at high elongational rates ε̇s, leading to an underestimated transient viscosity in the
principal direction. Consequently, this apparent rate-thinning behavior, which is more
evident at lower accumulated strains, can be attributed to an insufficient time of motor
acceleration at higher elongational rates.

From Figure 5-19(a), values of the averaged Trouton ratio, though slightly varying
with the elongation rate ε̇s, remain broadly constant at fixed accumulated strains. As
a result, a higher-level averaged Trouton ratio can be evaluated on the top of all elon-
gation rates at fixed values of ε̇sT0, and is plotted against ε̇sT0 in an attempt to show
strain-dependent behavior. As Figure 5-19(b) shows, the averaged Trouton ratio ex-
hibits a strain-hardening trend that goes beyond Tr = 4 which represents an inelastic
response. Notably, calculations from the second half-period kT0+T0/2< t ≤ (k+1)T0

are obtained as well and compared with those from the first half-period. Both results
are reasonably consistent, showing symmetrical rheological responses independent of
the flow direction.

In the previous sections, a structural similarity has been established and justified be-
tween an entangled polymer solution and a nanofilled system in both shear and exten-
sional flows. Consequently, a nanofilled system is expected to behave similarly in a PES
flow that exhibits strain- and rate-dependent behavior, which can be beneficial to the
dispersion of nanofillers under certain flow conditions. Here, preliminary results are
shown in Figure 5-21 for a “less-dispersed” GO/PVA nanofilled system. The synthesis
is identical to the procedures in Section 5.1, except that nanofillers are fetched from
the batch suspension without sonication. The PVA concentrations is fixed at 9.1 wt%
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Figure 5-20: Normalized transient evolution of strain response in a half period by
oscillatory strain γ0 = 2 sinh(ε̇sT0/2) and time period T0 at varying elongational rates
ε̇s and a fixed value of ε̇sT0 = 1. Blue dashed line corresponds to an expected response
according to Equation (5.30).

with the GO concentration selected at 0.4 wt%. A specific set of PES parameters are
selected at ε̇s = 5 s−1 and ε̇sT0 = 6, and 1500 cycles are applied to the sample. From
Figure 5-21(a), a steady increase of the averaged viscosity in the elongational direction,
η̄es can be identified as the material undergoes periodical shear deformation, showing
structural variation under PES flows. To quantify the state of dispersion before and
after applying the PES protocols, storage moduli at ω = 1 rad/s are evaluated in both
regimes, and the results are shown in Figure 5-21(b). From this figure, a dramatic
variation in the terminal storage modulus is captured with the value increasing from
3.8 Pa to 8.9 Pa before and after applying the PES flow. Compared with Figure 5-5. The
terminal storage modulus after applying the PES flow is close to a benchmark value of
approximately 10 Pa measured on the same nanocomposite system with sonicated GO
nanofillers, showing substantial improvement in the state of dispersion. Notably, the
storage modulus after applying the PES flow exhibits a long rise time of approximately
300 s. This timescale is consistent with the rejuvenation timescale as measured at high
GO concentrations in Figure 5-3. Such transient response justifies that the PES flow
enables effective breakdown of large nanofiller aggregates, and the terminal storage
modulus is a result of the buildup of a more percolated nanofiller network.
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(a) (b)

Figure 5-21: PES results on a “less-dispersed” GO/PVA system at a GO concentration
of 0.4 wt% with ε̇s = 5s−1 and ε̇sT0 = 6 for 1500 cycles. (a) Evolution of averaged
viscosity in the elongational direction η̄es over cycles. (b) Temporal evolution of the
storage modulus G′ evaluated at ω = 1 rad/s before and after the application of PES
flows.

To optimize the state of dispersion through the application of PES flows, a sufficiently
large principal stress in the vicinity of nanofiller aggregates is necessary to overcome
the filler cohesion. As a result, design of an optimal PES flow for nanofiller dispersion is
material-specific, and a priori characterizations of the nanofiller affinity, as well as other
forms of interaction are necessary. In light of the analytical and experimental results as
shown previously, a general principle is proposed here to assist in a systematic design
of an optimal PES flow. Based on the original work of Grace on drop deformation
and burst in immiscible fluids [22], the effectiveness of an external stress in modifying
the morphology of a dispersed phase can be quantified by a dimensionless capillary
number (Ca) as

Ca≡
k∆σP Ld

Γd
, (5.34)

where ∆σP is the principal stress difference as defined in Equation (5.29), and Ld

is a characteristic lengthscale of the dispersed phase. Γd is the surface energy of the
dispersed phase with an identical unit of surface tension. A dimensionless prefactor k
is added to characterize distinct mobilities of the continuous and dispersed phases, and
its value generally varies in a range of 1 to 1.2 [334]. Here, a trivial value of unity is
assumed for simplicity. In a nanofilled system, there exists a critical capillary number
Ca∗, beyond which an external stress is expected to break down nanofiller aggregates.
The value of Ca∗ in a planar extensional flow has been characterized both numerically
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and experimentally, which broadly remains between 0.1 to 1 for both Newtonian fluids
and viscoelastic fluids [22,335]. Similar critical values can be presumed for a nanofilled
system due to comparable material responses, though a more accurate quantification is
yet to be attained from additional experimental measurements. For a typical nanofilled
system with Ld ∼ 10µm to 100µm and Γd ∼ 10mJ/m2 [62,336], a critical stress can be
calculated as 100 Pa to 1000 Pa. This range of stress is consistent with the output from
a commercial twin-screw extruder [169]. From Equation (5.34), only a critical stress
is required to induce aggregate breakdown. As a result, a PES flow is advantageous
over steady-shear flow to initiate identical nanofiller dispersion at lower shear rates
due to thickened viscosity in the principal direction. An effective PES flow can be
readily designed by combining Equation (5.34) with independent characterizations of
the non-linear rheological responses, as presented in Section 5.2 and 5.3.

5.5 Summary

This chapter presented a comprehensive rheological study for a prototypical graphene-
derived nanocomposite system, i.e., graphene oxide (GO)/polyvinyl alcohol (PVA) at
varying GO concentrations to enhance the understanding of material responses under
large shear and extensional deformation.

In shear flow, materials at sufficiently high GO concentrations exhibited yield stresses
and power-law trends of shear-thinning at high shear rates, which can be captured
by the Herschel-Bulkley (H-B) model. At low shear rates, however, rejuvenation of
the nanofillers gives rise to a non-monotonic trend in shear stress, which can be cor-
rected by a modified H-B model that incorporates material thixotropy. The linear vis-
coelastic response at varying GO concentrations can be accurately described by the
fractional Kelvin-Voigt (FKV) model, from which a broad retardation time spectrum
was obtained and justified. The FKV model was subsequently subsumed into a slightly
modified K-BKZ constitutive framework with individual damping functions assigned to
each springpot to comprehensively describe the material responses in both linear and
non-linear regimes over the broad time spectrum. As demonstrated by a selected GO
concentration at 0.4 wt%, predictions from the obtained constitutive framework are
broadly consistent with a number of transient start-up flow and steady-shear measure-
ments. In addition, the Cox-Merz rule was verified from experimental measurements,
implying rheological similarity between the selected nanocomposite system and a poly-
mer solution.

The extensional rheology was probed through the customized CaBER device introduced
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in previous chapters. Different filament thinning dynamics arose at varying GO con-
centrations. Measurements at low GO concentrations (c ≤ 0.05 wt%) showed weakly
elastic responses primarily arising from the stretching of PVA chains, and a relaxation
time (2 ms to 4 ms) was obtained from fitting into the Oldroyd-B model. In contrary,
as nanofillers start to interact at high GO concentrations, the rheological response and
nanocomposite microstructure show similarity with those of entangled polymer so-
lutions. The Rolie-Poly model was subsequently applied for data fitting and showed
excellent agreement with the measured filament thinning profiles. From the extracted
constitutive parameters, the microstructural variation was illustrated in a three-staged
process that incorporates nanofiller orientation and polymer chain stretch.

The conformational variation in an extensional flow inspired a new flow design to
improve the nanofiller dispersion through a periodical exponential shear (PES) flow.
The material function to describe local material response can be defined in the princi-
pal elongational direction. The proposed flow profile was inspected on a polyisobuty-
lene/hexadecane solution (8.26 wt%). In contrast with a rate-thinning trend in steady-
shear flow, measurements in a PES flow at varying elongational rates and oscillatory
strains showed evident strain-hardening behavior, which is consistent with the mate-
rial response expected in extensional flow. The PES protocol was subsequently tested
on a “less-dispersed” nanofilled system synthesized from unsonicated nanofillers, and
the results showed effective breakdown of large aggregates, resulting in a more perco-
lated nanofiller network, as justified from the measurement of storage moduli. Finally,
a general principle for the design of an optimal PES flow was proposed by comparing
the local principal stress with cohesion between nanofillers. Due to a thickened viscos-
ity in a PES flow, a lower shear rate is required to induce an identical principal stress,
thus assisting in more accessible optimization of nanofiller dispersion using existing
compounding devices.
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6 | Conclusions and Future Works

6.1 Summary of results

The conviction of carbon footprint reduction from automotive vehicles has become
pivotal in controlling the worldwide greenhouse gas emission. It concomitantly brings
challenges and new opportunities to the automotive industry with an increasing de-
mand of enhanced energy efficiency through optimization of innovative product de-
signs as well as adoption of advanced materials and manufacturing processes. As
introduced in Chapter 1, the emergence and subsequent development of nanofilled
systems provide new insights in cost-effective alternatives to the existing material hi-
erarchy for automotive vehicle manufacturing. A mass deployment of these materials
to the manufacturing of commercial vehicles, however, has been mostly inhibited so far
by a limited understanding of complex material dynamics and the resulting morpholog-
ical variations of nanofillers during manufacturing processes under large deformation,
which are critical in obtaining and retaining the desired property enhancement.

In light of the structure-rheology complexity arising in anisotropic nanofilled systems,
Chapter 2 provides an extensive literature review of recent progress on the rheology of
graphene-derived nanocomposites (GDNC) as well as the preliminary knowledge for
this thesis. Current challenges in the characterization and processing of these complex
systems are introduced, with an especial focus on understanding the complex dynamics
in extensional flow, as well as obtaining an optimal state of nanofiller dispersion.

In Section 2.1, the structure of graphene nanofillers is briefly introduced, featuring a
two-dimensional layered structure with a large aspect ratio and a high specific surface
area. The superior mechanical, thermal and electric properties of graphene nanofillers
demonstrate their great potentials in enhancing polymeric materials with a minimal
nanofiller loading. Graphene-derived nanofillers in polymer matrices can differ in
structures and conformations in polymer matrices due to different precursors, syn-
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thesizing methods and compounding processes. In practice, nanofillers are selected
on the basis of their compatibility with the polymer matrix, which is critical in ob-
taining an optimal state of nanofiller dispersion to produce high surface areas, hence
maximizing the overall property enhancement. The state of dispersion can be charac-
terized through a number of microscopic and scattering techniques, as well as from the
rheological characterizations. The optimization of nanofiller dispersion in industry is
mostly obtained by solution or melt blending performed on commercial compounding
devices. However, the optimal degree of dispersion from a compounding process, in
which mixtures of polymer matrices and nanofillers primarily undergo steady shear
motion, is limited by a maximum viscosity ratio. Recent studies have presented new
designs of compounding instruments or as attachments that induces a strong exten-
sional flow to assist in more vigorous breakdowns of the nanofiller agglomerates, but
the kinematic design is limited by the channel geometry and is generally decoupled
from a priori knowledge of the nanocomposite rheology. These limitations motivate
a new design based on exponential shear flow to induce a flexible and more robust
rheology-inspired optimization of the nanofillers, which is further elaborated in Chap-
ter 5. Section 2.2 briefly introduces a number of rheological characterizing techniques
commonly applied to probe complex material dynamics. Compared with shear rheol-
ogy, material response in a strong extensional flow provides a more accurate descrip-
tion for the microstructural evolution of nanofilled systems under large deformation
and is more closely connected to a real manufacturing process. However, a paucity
of measuring procedures in extensional flow prompts the design and application of
rapid characterizing protocols as well as robust constitutive frameworks to capture
the rheological complexity of nanofillered systems arising from phase interactions and
conformational variations.

In Chapter 3, the limitation of characterizing protocols is addressed in two aspects.
Section 3.1 recapitulates the construction of a customized Capillary Breakup Exten-
sional Rheometer (CaBER) with key design parameters and measuring capabilities
based on the author’s master work. A progressive development and perfection of con-
stitutive frameworks allow for capturing complex filament thinning dynamics governed
by multiple stress contributions to the tensile stress in a fluid. In Section 3.2, an In-
elastic Rate-Thickening (IRT) model parameterized by a zero-rate viscosity and a rate
of extensional-thickening is proposed to characterize rate-dependent behavior of two
selected synthetic motor oils in extensional flow. When a viscoelastic response becomes
stronger, the Oldroyd-B model is applied and leads to evident elasto-capillary thinning
behavior with an exponentially decaying filament radius at a constant Weissenberg
number of Wi= 2/3. The selection of an appropriate model is determined by a critical
intrinsic elasto-capillary number Ec∗V-E = 4.7, which is obtained by imposing a non-
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inflective transition from visco-capillary to elasto-capillary thinning in the evolution
of filament radius. Due to multiple contributions to the tensile stress in the constitu-
tive equations, new challenges arise when applying the IRT model and the Oldroyd-B
model to obtain accurate constitutive parameters from a temporally-evolving geomet-
ric correction factor X . Analytical and numerical procedures are carried out to com-
pute full-dimensional filament profiles for both models, from which the evolution in
the geometric correction factor is identified. For the IRT model, the results show two
asymptotic solutions of XN = 0.7127 and XRT = 0.5778 when the filament thinning
dynamics are solely governed by the zero-rate and the rate-thickening contributions,
while for the Oldroyd-B model, the two asymptotic solutions become XN = 0.7127
and XEC = 1 arising from the solvent and polymer contributions, respectively. A time-
implicit expression of X (σ) can be obtained through linear interpolation of the mag-
nitude of each stress contribution and is subsequently validated through numerical
calculations to collapse the results at varying constitute parameters and geometrical
configurations. A corrected solution for the filament thinning profile incorporating
this expression of X (σ) is obtained and shown to agree with the asymptotic solutions
of Newtonian fluids at low strain rates. A revisit to the CaBER measurements of the
motor oils using protocols that incorporate temporally-evolving geometric correction
factors show significant improvement in the accuracy of extracted constitutive param-
eters. In Section 3.3, a statistics-based strategy is proposed to select the best-fit model
(BFM) with well-regularized constitutive parameters on the basis of the parameter-free
Bayesian information criterion (BIC). This strategy is substantiated by applying to the
measured filament thinning profiles of four fluid samples ranging from a Newtonian
fluid to a strongly viscoelastic polymer solution, from which the BFM is selected from
a number of constitutive models with varying viscoelastic responses. In particular, se-
lection between the IRT model and the Oldroyd-B model is in good agreement with
the rheology-based criterion with the critical intrinsic elasto-capillary number Ec∗V-E.

The filament thinning profiles predicted from the IRT model and the Oldroyd-B model
reveal substantially different filament thinning dynamics when multiple stress contri-
butions arise in the momentum equation. However, these two models failed to capture
a number of key observations from entangled polymer solutions, including extensional-
thinning behavior and distinct relaxation time measures in shear and extensional flows.
In Section 4.1, the reptation theory is applied in the form of tube models to construct
a robust description of the conformational variation of interactive polymer chains be-
yond entanglement concentrations. To explore the dynamics arising from both repta-
tion and other non-reptative mechanisms, two prototypical tube models are selected,
namely, the Doi-Edwards-Marrucci-Grizzuti (DEMG) model and the Rolie-Poly model,
both of which are featured with reptation and polymer chain stretch with the addition
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of constraint convective release (CCR) effect to the latter model. For both models, the
numerically calculated filament thinning dynamics reveal a broadly consistent multi-
staged filament thinning profile, varied at different intrinsic elasto-capillary numbers
Ec0 = GNR0/Γ : When Ec0 > 1/3, the filament thinning process undergoes a three-stage
process dominated by tube reorientation, polymer chain stretch and finite extensibil-
ity of tube segments, respectively. During the process of tube reorientation towards
a state of uniform alignment, the polymer chains remain broadly unstretched. The
resulting filament thinning is consistent with the kinematics under a visco-capillary
balance, with apparent rate-thinning behavior. A transient viscosity can be extracted
from the trend of filament thinning and is found to broadly scale with the zero-shear
viscosity η0 = GNλD (Equation (4.8)), where GN is the plateau modulus and λD is the
disengagement time. As the tube segments approach full alignment, the polymer chain
stretch of tube segments increases the total tensile stress and subsequently induces an
evident retardation in filament thinning, leading to elasto-capillary thinning behavior
with an apparent extensional relaxation time close to λR/2 (Equation (4.9)), where
λR is the Rouse time. In the final stage of filament thinning, the chain stretch of tube
segments approaches a specified finite chain extensibility, and the transient extensional
viscosity is limited at a plateau value of η0,∞ = 3GNΛ

2
m/(1− 1/Λm) (Equation (4.10)).

In contrary, when Ec0 ≤ 1/3, the initial tensile stress arising from fully aligned tube
segments does not suffice to balance the capillary pressure, and additional stress con-
tribution from the polymer chain stretch is necessary. Consequently, the filament thin-
ning profile becomes two-staged, skipping the tube reorientation process. The filament
thinning dynamics characterized from shear rheology and filament thinning dynamics
in extensional flow predicted for tube models give rise to an analytical, parameter-free
expression of the ratio between apparent extensional and shear relaxation times as a
function of the polymer concentration c and the number of entanglements per chain
Z . The ratio of the two relaxation time measures at varying polymer chain conforma-
tions can be collapsed onto a master curve, which shows excellent agreement with the
experimental results from a number of polymer systems.

In Section 4.2.1, this robust constitutive framework is applied to a concentrated cellu-
lose/ionic liquid system, which is beginning to find applications in fabric recycling and
regeneration. Two sources of cellulose (cotton fiber and filter paper) with different de-
grees of polymerization dissolved in [C2C1Im][OAc] are studied at varying temperature
(25 °C to 80 °C) and concentrations (1 wt% to 4 wt%). Measurements from a commer-
cial shear rheometer and the customized CaBER device reveal general shear-thinning
behavior but more complex non-monotonic extensional-rate dependence for both cel-
lulose sources. These measurements can be readily interpreted by the full-dimensional
Rolie-Poly model with a universal set of constitutive parameters fitted from steady shear
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viscosity, first normal stress coefficient and transient extensional viscosity (Figure 4-11,
Figure 4-12 and Figure 4-13). The extracted constitutive parameters, in particular the
ratio between the disengagement time and the Rouse time, exhibits consistent trends
with the cellulose concentration, from which the state of entanglement can be reliably
inferred. In Section 4.2.2, the measured filament profiles for a series of hydroxyethyl
cellulose (HEC) solutions from a previous study [32] are refitted with the Rolie-Poly
model. The fitted filament profiles show excellent agreement with the experimental
measurements at varying HEC molecular weights and concentrations down to the in-
strument optical limit (R/R0 ≈ 0.01). The extracted number of entanglements per
chain (Zsol) for samples in the entangled regime exhibits a collapsed power-law trend
with HEC concentration, and the exponent is well consistent with our prediction with
a value of 1/(3ν− 1) (Equation (4.12)).

In Chapter 5, a graphene-oxide (GO)/polyvinyl alcohol (PVA) system nanocomposite
is selected as a prototypical material to investigate the shear and extensional rheol-
ogy of a nanofilled system. In Section 5.2, shear rheology for a selected range of GO
concentrations is characterized through a number of rheological techniques. From
the measurements of low-frequency storage moduli, the formation of a percolated
nanofiller network at high GO concentrations can be justified. A broad retardation
time spectrum is captured from the frequency responses of dynamic moduli, which can
be ascribed to complex rheological contributions arising from polymer and nanofiller
phases. To characterize such a broad time spectrum, the fractional Kelvin-Voigt (FKV)
model is applied, and numerical fitting shows excellent agreement with the measure-
ments. A non-linear material response is subsequently established using the fractional
K-BKZ constitutive framework, which is exemplified by the GO/PVA nanocomposite
system with a selected GO concentration of 0.4 wt%. To describe the stress-relaxation
responses over a wide time range, individual damping functions of the Soskey-Winter
form are assigned to each springpot in the FKV model. Predictions from the non-
linear constitutive framework broadly agree with the material responses from a series
of start-up flows at varying step shear rates in both short- and long-time ranges, and
a steady-shear flow curve predicted by the K-BKZ model exhibits consistent power-law
asymptotes at low and high shear rates with the measurements. In contrary to the
Rutgers-Delaware rule, which commonly applies to dense particulate suspensions, the
Cox-Merz rule is validated from the measurements of both linear and steady-shear re-
sponses. This observation implies intrinsic rheological similarity of a nanocomposite
system with polymer systems due to increased flexibility in the conformation of con-
tinuous phases.

Finally, extensional rheology of the GO/PVA nanocomposite at varying concentrations
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is characterized in Section 5.3 by the customized CaBER device. Distinct filament
thinning profiles arise as the GO concentration is varied. At low concentrations (c ≤
0.05 wt%), the filament thinning profiles exhibit weakly viscoelastic behavior by virtue
of the extension of PVA chains. Such behavior is justified by the small extensional relax-
ation times (λ < 5 ms) from fitting to the Oldroyd-B model. As the GO concentration
increases, the transient material responses exhibit evident rate-thinning behavior be-
fore elasto-capillary thinning is captured. This trend resembles the filament thinning
dynamics predicted from tube models that characterize entangled polymer systems.
From the results in Section 4.1, a similar structural description can be established for
nanocomposites, in which rigid nanofillers significantly inhibit the mobility of interca-
lated polymer chains by the formation of structure-spanning percolated networks, and
conformation of polymer chains dominate the flow dynamics only at high extensional
rates. Inspired by such structural similarity, the Rolie-Poly model is applied and accu-
rately fits the measured filament thinning profiles, from which the temporal evolution
of nanofiller orientation as well as the disengagement time can be extracted. Follow-
ing predictions from the Rolie-Poly model, a three-stage filament thinning process can
be identified: At low strain rates, nanofillers initiate to rotate towards the flow direc-
tion due to convective flow, and the flow dynamics are governed by a visco-capillary
balance. As the strain rate increases, nanofillers progressively reorient until approach-
ing full alignment, during which the mobility of nanofillers increases, resulting in de-
creased extensional viscosity. Finally, the stretch of intercalated polymer chains domi-
nates the flow dynamics, and elasto-capillary thinning behavior is reproduced.

In Section 5.4, the morphological variation of nanofillers in extensional flow moti-
vates an innovative method to modify and optimize the dispersion state of nanofillers
using a periodical exponential shear (PES) flow. A material function can be defined
based on the stress components in principal elongational directions as a function of
the elongational rate ε̇s and the oscillatory strain ε̇sT0. To demonstrate similar material
responses from a PES flow and a planar extensional flow, proof-of-concept experiments
are performed on an entangled polyisobutylene/hexadecane solution (8.26 wt%), from
which a thickened viscosity is captured at large oscillatory strains ε̇sT0 ≳ 4. Prelimi-
nary results from applying the PES protocol to a “less-dispersed” nanocomposite system
show promising results, in which the storage modulus dramatically increases due to
an improved state of nanofiller dispersion and a more percolated nanofiller network.
A general principle is proposed to design an optimal PES flow for nanofiller dispersion
based on a critical stress. As the viscosity in principal elongational directions rapidly
increases at larger oscillatory strains, the maximum shear rate required to induce an
identical magnitude of principal stress decreases significantly, making it more accessi-
ble to perform optimal nanofiller dispersion on existing compounding devices.
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6.2 Future works

In this thesis, a number of key limitations in characterizing the complex rheology of
nanofilled systems were addressed through the applications of a variety of instrument
constructions and modeling techniques. Looking into the future, continuing efforts will
be primarily focused on bridging the gap to scaled-up industrial applications based on
the outputs of this thesis to motivate data-driven material characterization and tech-
niques. They are briefly summarized as follows.

6.2.1 Automated data processing of CaBER measurements

In Chapter 3, a more comprehensive protocol to interpret the measurements from
capillarity-thinning dynamics was proposed to extract an accurate and well-regularized
set of constitutive parameters. To better target more general audience in both academia
and industry, a computation library will be developed on an open-source platform with
well-documented tutorials and user guides. In this library, multiple features in data
processing are incorporated, including

• Efficient extraction of filament thinning profiles from image sequences captured
by high-speed imaging systems;

• Data fitting to a preloaded constitutive model, or a user-defined governing equa-
tion;

• Accurate calculations of fluid properties from the extracted constitutive parame-
ters;

• Automated selection of the best-fit model based on parameter-free statistical cri-
teria;

• Multi-processing capabilities to enable high-throughput characterizations for a
large number of samples.

In light of costly computation in the data-fitting process, machine-learning based pro-
tocols will be explored to construct a preselection process to trim the search range of
best-fit models prior to the inspection of individual constitutive models. In this pres-
election process, the measured filament thinning profiles are abstracted as a reduced
dataset through feature extraction, which is subsequently loaded to a pattern recog-
nition process to determine the likelihood of each constitutive model candidate. With
easily accessible training sets obtained from numerical calculations, these data-driven
techniques can provide accurate constitutive inferences for a variety of materials, which
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are finding practical interest in industry with an increasing demand for rapid rheolog-
ical characterizations.

6.2.2 Modeling of extensional deformation of entangled polymer
solutions in real manufacturing processes

In Chapter 4, a robust constitutive framework accurately described the complex rhe-
ological behavior of entangled polymer solutions in both shear and extensional flows
over a wider range of time- and lengthscales. Due to ubiquitous observation of strong
extensional flow in real manufacturing processes (e.g., fiber-spinning, melt blowing
and 3D printing process), a direct application of this constitutive framework is envi-
sioned to characterize and optimize manufacturing parameters.

In a wet-spinning process of cellulose/ionic liquid dopes, in particular, the addition
of a dry-jet process with an air gap between the spinneret and the coagulation bath
has shown significant enhancements of mechanical properties in the spun fibers [302].
While the mechanism of such property enhancement is less well understood, the flow
dynamics of entangled polymer solutions in an extensional flow presented in this the-
sis provide a new angle of perspective from flow-induced reorientation of cellulose
chains. As cellulose chains become progressively anisotropic, their coagulation dy-
namics are substantially modified due to variations in the solvent (ionic liquid) and
anti-solvent (water) diffusivities, thus altering the resulting properties. To seek a ro-
bust relation between the rheological properties of spinning dopes and the performance
of spun fibers, rheo-optic techniques will be applied to quantify the conformation of
cellulose chains during the coagulation process through online birefringence measure-
ments, from which a stress-optic relation will be established under different draw ratios
and residence times. This online measuring protocol is aimed at monitoring structural
variations and performance of cellulose fibers in a wet-spinning process without post
factum dynamical analysis. It will provide additional dimensions to evaluate and opti-
mize the fiber performance in generic spinning configurations.

6.2.3 Rheo-spectroscopic characterizations of periodical exponen-
tial flows

In Chapter 5, a new flow profile was designed using periodical exponential shear flows
to induce a strong principal stress to assist in nanofiller dispersion. However, current
designs of the periodical exponential flow profiles are primarily empirical, and a con-
nection is still absent between measured material responses in bulk fluid properties
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and morphological variations of nanofillers. Consequently, applications of in situ rheo-
spectroscopic techniques, such as rheo-nuclear magnetic resonance (rheo-NMR) [337]
and rheo-small angle neutron scattering (rheo-SANS) [338] are necessary to exam-
ine the spatial flow heterogeneities as well as the state of nanofiller conformations
while a transient flow profile is imposed. From these results, the dispersion mechanism
through a periodical exponential shear flow can be better understood. More generally,
the construction of a robust structure-rheology relationship extended into the non-
linear regime through these in situ measurements will provide more insights into the
flow-induced response of a nanofilled system that may appear in the form of a strong
anisotropy due to nanofiller reorientation or a modified percolated network structure
due to agglomerate variations. These findings will greatly benefit the optimization of
various manufacturing processes through the development of new strategies to retain
structural integrity during material processing, from which desired material properties
can be faithfully attained.
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A | Calibration of the improved CaBER
device

A.1 Motor actuation

As shown in Figure A-1, the linear motors used to actuate the step-stain motion for
CaBER measurements are calibrated with three different stroke lengths of 2 mm, 5 mm
and 8 mm. The temporal evolution of the linear motion is recorded by a high-speed
camera at a frame rate of 5900fps. With manually fine-tuned PID parameters, the linear
actuator shows a repeatable maximum velocity vmax ≈ 0.2 m/s with well controlled
linearity and minimal position overshoot (8.7%, 4.9% and 2.7%). Under this condition,
an overall stroke of 10 mm (5 mm stroke from each motor) leads to an approximate
actuation time of tM = 25 mm, which is 50% less than a commercial CaBER system
[201].

A.2 Laser micrometer and high-speed camera

The laser micrometer is calibrated with a series of surface-finished aluminum rods and
standard optical glass fibers with diameters measured by a caliper (precision: 5 µm).
For each reference object, five consecutive measurements of the voltage outputs are
taken, and the mean values are used for the fitting. As shown in Figure A-2, the mea-
sured diameter and analog output voltage from the laser micrometer are plotted. In
order to show the data on a logarithmic scale, all the measured voltages are offset by
the ground voltage of Vmin = −5V, which is provided by the sensor manufacturer. Data
in Figure A-2(a) are fitted with a linear (R2 = 0.990, green dashed line) and third-
order (R2 = 0.998, orange solid line) polynomial. A second-order fit is not utilized
here because of its monotonicity in the second-order derivative, which brings superflu-
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Figure A-1: Stroke tests for the linear actuator. The corresponding PID parameters
are manually fine-tuned in the control software. Three stroke distances, 2 mm, 5 mm
and 8 mm are imposed, and a max stroke velocity of vmax ≈ 0.2m/s is configured.
The stroke trajectories are captured with a high-speed camera using a frame rate of
5900 fps, from which the temporal evolution of the end discs is extracted. The mea-
sured displacements show good linearity with time in the rising region, and the final
settling times of the three strokes are approximately 17 mm/s, 32 mm/s and 46 mm/s,
with overshoots of 8.7%, 4.9% and 2.7%, respectively.

ous constraints to the data fitting. In general, the data show good linearity above the
manufacturer-claimed minimum object size of 100 µm (shaded area).

In Figure A-2(b), thickness of the laser beam is measured by slowly feeding the top
and bottom circular discs with finished surfaces (diameter: 6 mm) across the beam. A
transition region is incurred as the discs move, and the beam thickness is indicated by
the width of the rising region, which reads as approximately 0.1 mm and is consistent
in the measurements from both discs. This value is further used to compensate the gap
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(a) (b)

Figure A-2: (a) Calibration of the laser micrometer using a series of aluminum rods
and optical fibers with independently measured diameters. The difference between
measured voltage (V) and the ground voltage (Vmin = −5V) is taken. Dashed and solid
lines show the first- and third-order polynomial fitting to the data. A manufacturer-
claimed minimum object size of 100 µm in diameter is indicated by the shaded area,
below which data can only be accessed through a high-speed imaging system. (b)
Measurement of the laser beam thickness by slowly feeding the top and bottom circular
discs through the beam. An approximate value of 0.1 mm is obtained from the width
of the transition region.

during the zeroing process.

For more technical details on the customized CaBER device, readers are referred to the
author’s previous publications [29,64].
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