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Abstract
When I initially set out to research in the intersection of statistical signal processing
and neuroscience (neural signal processing), my research advisor, Professor Emery N.
Brown, explained at length that the signals from seemingly complex neural/biological
systems are not purely random, but rather those that have latent structures that can
be recovered with principled approaches. This insight has stuck with me since that
moment and my research throughout graduate school has been understanding and
practicing what I thought was the appropriate neural signal processing framework. In
this thesis, I define this framework from the Bayesian/optimization perspective and
emphasize translating and integrating the clinical and scientific domain knowledge,
obtained from constant interaction/collaboration with the experimental neuroscientists
and clinicians. The thesis specifically focuses on uncovering latent structures in the
neural time series data, by using domain priors/constraints, such as Gaussian process,
shift-invariance, sparsity, and smoothness, among many others. It is demonstrated in
the thesis that the Bayesian approach with careful integration of these constraints
produces results/structures in the data that are not only intepretable but also better
performing for the metrics of interest.

Thesis Supervisor: Emery N. Brown
Title: Edward Hood Taplin Professor of Medical Engineering and Computational
Neuroscience
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Chapter 1

Introduction

With recent technological advances, it has become possible to collect and analyze

neural data from diverse modalities to understand the systemic properties of the

brain and its dynamics [1, 2, 3]. These include electroencephalogram (EEG) [4],

magnetoencephalogram (MEG) [5], functional magnetic resonance imaging (fMRI) [6],

2-photon calcium imaging [7], and neural spikes [8]. From the signal processing

perspective, this trove of multimodal data presents an unprecedented opportunity

for an engineer to make a contribution to scientific discovery in neuroscience and

engineering applications, such as brain-computer interface (BCI) [9] and brain-machine

interface (BMI) [10].

In this thesis, we are interested in a principled framework for neural signal process-

ing [11], or computational neuroscience, from the generative (Bayesian) perspective.

Specifically, we treat the brain or a sub-system of the brain as a complicated generative

model, which generates the neural data observations collected by the recording devices.

Given the data, the goal is to solve the inverse problem of estimating/inferring certain

properties of the neural system,. In other words, we establish the process of 1) de-

signing/formulating a generative model, 2) training/optimizing the objective function

yielded by the generative model (or some augmented version of this), and 3) performing

posthoc analysis using the quantities derived from the posterior distribution. This is

indeed a standard statistical inference procedure across many disciplines.

What now becomes important is how we adapt this standard paradigm to neu-
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roscience, by incorporating the domain knowledge and constraints specific to the

neural system and the data modalities. In addition to constant experimentation

with different models and parameter settings by the engineers, this effort crucially

depends on constant collaboration with the experimental neuroscientists and clinicians,

who have first-hand intuitions and domain knowledge. Numerous examples can be

found where domain knowledge has shaped the neural signal processing approaches.

In spike sorting [8], a template matching approach is popular [2, 12, 13], since we

understand that 1) the action potential of each neuron is distinct, 2) the shape of

an action potential is maintained throughout the recording session (shift-invariance),

and 3) the neurons emit action potentials sparsely due to biophysical constraints. In

fMRI, the hemodynamic response function for blood-oxygen-level-dependent (BOLD)

signal is modeled as a difference of two Gamma distribution functions, based on our

understanding of how the blood oxygenation level changes in response to a single

neural activity [14].

The main goal of the thesis is to explore the interplay between neural signal

processing and the generative paradigm, with a focus on how different neural data

modalities and neural systems impose constraints/priors on the whole procedure. We

first start with reviewing the Bayesian framework.

1.1 Central theme: The Bayesian perspective

The central theme of the thesis revolves around the Bayesian perspective [15], captured

in the ever-present Bayes’ rule

𝑝(x | y; 𝜃) = 𝑝(y | x; 𝜃)𝑝(x; 𝜃)
𝑝(y; 𝜃) = 𝑝(y | x; 𝜃)𝑝(x; 𝜃)∫︀

x 𝑝(y | x; 𝜃)𝑝(x; 𝜃)𝑑x ∝ 𝑝(y | x; 𝜃)𝑝(x; 𝜃), (1.1)

where y is an observation, x is a latent random variable, and 𝜃 represents a set of

parameters for the likelihood and the prior distribution. Although Eq. 1.1 could further

incorporate hyperpriors on 𝜃, we restrict ourselves to the simplest form. This simple

equation establishes that the posterior distribution 𝑝(x | y; 𝜃) is simply a multiplication
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of the likelihood 𝑝(y | x; 𝜃) and the prior 𝑝(x; 𝜃), up to some normalization constant

𝑝(y; 𝜃). Within the Bayesian framework, one needs to address the following three

questions, regardless of the application domain.

1. What is the latent x?

2. What should be the likelihood and the prior?

3. How do you perform posterior inference?

We now address each of these questions in connection with neural signal processing.

1.1.1 What is the latent x?

As one would expect, the identity of the latent x (and consequently its dimension)

is highly application-dependent. In neural signal processing, there have been three

different levels of abstraction for the latent x, although we note there exist grey areas

between these categories.

1. Unobserved quantity The latent x corresponds to an intuitive and physical,

yet unobserved quantity that one wants to estimate. Therefore the forward

(generative) model is relatively simple, usually a combination of simple linear &

nonlinear mappings. For example, x could represent a firing rate of the population

of neurons [16, 17] or oscillatory sub-process of the EEG data [18, 19, 20].

2. latent state The latent x corresponds to an abstract brain state or identity.

For example, x could represent the cognition level of animals [21, 22], sleep

stages [23, 24], or different levels of unconsciousness [25, 26, 27]. It could also

correspond to the cluster identity for a neuron in a functional clustering of

neuron population clustering framework [28]. One needs to carefully specify the

forward model mapping the latent states to the observations, for x to faithfully

represent the brain states that one had originally intended.

3. low-dimensional latent embedding In this furthest level of abstraction, x

represents an abstract low-dimensional embedding of neural observations, for
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which the interpretation could be less trivial. The forward model is highly

nonlinear and usually involves neural networks [29], also rendering the inverse

problem highly nonlinear - the inference procedure usually relies on variational

approximation [30, 31]. This has been an active research area in computational

neuroscience, specifically the formulation of appropriate/robust deep generative

models for specific neural data modalities and the interpretation/identification

of the latent x [32, 33, 34].

In this thesis, latent x is defined exclusively as an unbiased quantity, i.e., from the

first category. This allows the practitioner to directly interpret the estimated ̂︀x and

establish direct connection to a scientific/physical quantity of the neural system.

For instance, in Chapters 2 and 3, ̂︀x corresponds to a vector of estimated Fourier

coefficients. In Chapter 4, ̂︀x corresponds to a frequency-modulated & bandlimited

time series. In Chapters 5, 6 and 7, ̂︀x corresponds to the sparse codes that indicate

the locations/amplitudes of the dictionary templates.

1.1.2 The formulation of likelihood and the prior

Among the three questions, the formulation of the likelihood and the prior is perhaps

the most influenced by the domain constraints. Below are several examples of this

relationship in neural signal processing.

• Data type (likelihood) If the data is continuous and real-valued, such as

electrophysiological recording, it makes sense to use the Gaussian distribution.

If the data is count-valued, such as neural spikes or other Poisson-type obser-

vations, it makes sense to use binomial, Poisson, or other generalized count

distributions [35]. If the data is category-valued, such as animal behaviors or

cognitive test scores, it is reasonable to use the multinomial distribution. The

likelihood will then be dictated by 1) the choice of data distribution and 2)

the choice of the link function that maps x to y. In this thesis, we use the

generalized linear model (GLM) framework [36] to account for many different

distributions of the exponential family.
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• Shift-invariance (likelihood) If a certain set of patterns is repeated in the

data, we can incorporate the shift-invariance constraint into the generative model

setup, which is a common practice in neural signal processing. In spike sorting,

the algorithms assume that the action potential from each neuron is distinct

and shift-invariant throughout the recording regime. In calcium imaging [7, 37]

and functional MRI [6], we observe calcium fluorescent signal or blood-oxygen-

level-dependent (BOLD) signal, respectively, modeled as a convolution between

neural activities and modality-dependent shift-invariant kernels.

• Sparsity (prior) The idea that a signal can be decomposed into a sparse

number of elements in some basis set is a powerful idea, which has found its

footing in nearly all applications of science and engineering [38]. In neural signal

processing, sparsity is used across different spatio-temporal scales. For example,

the problem of source-localization [39, 40] for EEG, where the goal is to identify

a sparse number of hypothetical sources for signals recorded across the EEG

channels, requires sparsity. For neural spiking data, sparsity is often used for

spike-sorting and calcium deconvolution problems [37], due to the refractoriness

period of the neurons (neuron has to recharge for a certain period before firing

again [41]). The commonly used sparsity constraints are ℓ0 psuedo-norm, which

penalizes the number of nonzero elements, ℓ1 norm, which penalizes the sum of

the absolute values of the elements, and mixed-norm.

• Smoothness (likelihood & prior) Smoothness is a fundamental concept that

has different characterizations in different fields. From the signal processing

perspective, the signal is bandlimited and does not (or minimally) contain

a high-frequency content. From the statistical perspective, the first/second-

order derivatives of the signal are bounded [42]. Intuitively, these different

characterizations commonly describe that if a signal is smooth, the adjacent

data points are not too different from each other.

In neural signal processing, we use smoothness in two different manners. First,

we can reasonably assume that the finite-length activation patterns/kernels in
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response to certain stimulus/activities are smooth. For example, smoothness

is typically assumed, either explicitly or implicity, for the analysis frameworks

for the action potential from a neuron [43], BOLD signal in fMRI [14], calcium

transient in 2-photon calcium imaging [37], and point spread functions in optical

imaging [44]. These kernels are either assumed to be linear combinations of

smooth basis functions (explicit) or learned with a smooth regularizer function

(implicit).

We can also impose smoothness on the latent process. Without external in-

tervention and stimulus, the neural dynamics of the idle/resting-state brain

are usually assumed to be smooth. The state-space priors [16, 45] or Gaussian

process priors [46] have been popular choices for this. Examples include neuron

firing rate [16, 17, 47], and the cognitive learning process [21, 22].

1.1.3 Posterior inference

The term broadly refers to the two related tasks: 1) estimating the parameters ̂︀𝜃
of the generative model by maximizing some criteria, such as the likelihood, and 2)

obtaining a quantity of interest derived from the posterior distribution E
𝑝(x|y;̂︀𝜃)[𝑓(x)],

where 𝑓 is a pre-defined function. Since these tasks are tightly coupled, we collectively

refer to them as the posterior inference in this thesis.

The main challenge of the posterior inference is evaluating
∫︀

x 𝑝(y | x; 𝜃)𝑝(x; 𝜃)𝑑x

in the denominator of Eq. 1.1. This is due to the fact that for a given generative model

setup, the prior is usually not a conjugate prior of the likelihood, which makes the

integral in Eq. 1.1 intractable. In neural signal processing, this has usually been dealt in

three different approaches: 1) exact posterior inference through Monte-Carlo sampling

(with possibly data augmentation) [28, 48, 49], 2) approximate variational posterior

inference [32, 33, 50], and 3) maximum-a-posteriori point estimation [37, 45, 51].

We use the last option throughout the thesis, and maximize the log-posterior
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objective log 𝑝(x | y; 𝜃)

max
x,𝜃

log 𝑝(x | y; 𝜃) = max
x,𝜃

log 𝑝(y | x; 𝜃) + log 𝑝(x; 𝜃) + 𝐶, (1.2)

where 𝐶 represents the terms that are constant with respect to x and 𝜃. This approach

essentially casts the problem of Bayesian inference as an optimization problem, for

which numerous off-the-shelf convex/non-convex optimization algorithms are available.

Although we do not have access to the full posterior distribution contrary to the

first/second approaches (we only have access to ̂︀xMAP = arg max log 𝑝(x | y; ̂︀𝜃)),
we demonstrate throughout the thesis that for the purposes of interpretation and

downstream tasks, this is often good enough.

For the optimization of 𝜃, we follow either of the two approaches. First, we can

perform alternating minimization (or block coordinate descent) on x and 𝜃 until

convergence. Second, if a validation dataset is available and 𝜃 is low-dimensional

(i.e. hyperparameters of dimension 1 or 2), we can perform cross-validation. We

predominantly use the first approach throughout the thesis, although we use cross-

validation in Chapter 4 and Chapter 6.

We can further improve the efficiency of the optimization algorithm, depending

on the choice of the likelihood and the prior, making it more scalable for a big-data

regime. For instance, the state-space prior used in Chapters 2, 3, and 4 allows us to

solve the optimization problem with several iterations of Kalman filtering/smoothing,

which are more efficient than its convex optimization algorithm alternatives [18]. In

Chapter 6, leveraging the exponential family likelihood and the quadratic penalty

function induced by the prior, we can use the computationally efficient iteratively

reweighted least squares (IRLS) algorithm to solve the optimization problem. In

Chapter 7, we use the constrained auto-encoder neural network architecture to solve

the problem more efficiently on GPU, leveraging the iterative nature of the proximal

algorithms used for solving optimization problems with ℓ1 sparsity constraints [52, 53].
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1.2 Neural signal processing for time series with

structured prior

Now that we have developed the Bayesian framework for neural signal processing, we

examine two different approaches for modeling latent x in the context of time series.

1. x as the latent process: We treat x as the dynamical latent process that

evolves at some timescale of interest (e.g., certain intervals, sampling timestamps).

In this context, x ∈ R𝑑×𝑇 , where x𝑡 ∈ R𝑑 represents the 𝑑-dimensional latent

process at time 𝑡. It will generally take form of the state-space model

x𝑡 = Ax𝑡−1 + 𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 𝑄),

𝑝(y𝑡 | x𝑡) = 𝑓(x𝑡)
(1.3)

where the state x𝑡, the transition A, the state covariance 𝑄, and the link function

𝑓 all depend on the specifics of the application. This is equivalent to having the

following Markov process prior

𝑝(x1:𝑇 ) =
𝑇∏︁

𝑡=1
𝑝(x𝑡 | x1:𝑡−1) or log 𝑝(x1:𝑇 ) =

𝑇∑︁
𝑡=1

log 𝑝(x𝑡 | x1:𝑡−1). (1.4)

2. x as the latent codes: We treat x as sparse latent codes that indicate the

locations and amplitudes of temporal patterns with finite supports. We denote

{h𝑐}𝐶
𝑐=1, where h𝑐 ∈ R𝐿 ∀𝑐 and 𝐿 ≪ 𝑇 , as the set of these temporal patterns

and x𝑐 ∈ R𝑇 −𝐿+1, as the code vector which has non-zero elements only for the

locations of h𝑐. We can then formulate

‖x𝑐‖𝑝 ≤ 𝛽𝑐,∀𝑐 for 0 ≤ 𝑝 ≤ 1

r𝑡 =
𝐶∑︁

𝑐=1
(h𝑐 * x𝑐)𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 𝑄)

𝑝(y𝑡 | {x𝑐
𝑡}𝐶

𝑐=1) = 𝑓(r𝑡),

(1.5)

with ‖x𝑐‖𝑝 ≤ 𝛽𝑐 representing a sparsity constraint. This is equivalent to having
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the following sparsifying prior

𝑝(x1:𝑇 ) ∝
𝑇∏︁

𝑡=1
exp(−𝜆|x𝑡|𝑝) or log 𝑝(x1:𝑇 ) = −𝜆

𝑇∑︁
𝑡=1
|x𝑡|𝑝 + 𝐶. (1.6)

For 𝑝 = 1, we have the Laplace prior, which leads to the popular LASSO regulariza-

tion [38]. We note that these cover only a small subset of interesting time series priors,

which includes sparse prior [18, 54] and nonlinear state-space prior [55].

1.3 Thesis organization

The thesis covers several neural signal processing pipelines with a focus on the neural

time series data. This thesis is comprised of three major parts.

• Time-frequency analysis of neural time series (Chapter 2, 3, 4) We

study several generative models for continuous neural time series, specifically

EEG and electrophysiological recordings, with the main focus on modeling the

evolving spectral dynamics in the time-frequency domain. We use Gaussian

distribution for the likelihood and focus on random-walk or GP prior within the

state-space framework.

These chapters are based on the following works

[56] Andrew H. Song*, Sourish Chakravarty*, and Emery N. Brown, A

Smoother State Space Multitaper Spectrogram, IEEE EMBC, 2018

[24] Andrew H. Song et al., Multitaper Infinite Hidden Markov Model for

EEG, IEEE EMBC, 2019

[20] Andrew H. Song, Demba Ba, and Emery N. Brown, PLSO: A generative

framework for decomposing nonstationary timeseries into piecewise stationary

oscillatory components, Uncertainty in Artificial Intelligence (UAI), 2021

[.] Andrew H. Song*, Seong-eun Kim*, and Emery N. Brown, Adaptive State-

Space Multitaper Spectral Estimation, Submitted to IEEE Signal Processing

Letters, 2021
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• Smooth convolutional dictionary learning (Chapter 5, 6) Convolutional

dictionary learning (CDL), the problem of estimating shift-invariant templates

from data, gained popularity with the seminal work of [57] in computational

neuroscience. In addition to the shift-invariance and sparsity constraints, we

use a smoothness constraint to further constrain the generative model. Chapter

5 and 6 study different CDL generative models for the same goal of learning

smooth and interpretable dictionaries. We apply these frameworks on diverse

biological data, such as spike sorting and super-resolution microscopy application,

to demonstrate how smoothness constraints contribute to improved performance.

These chapters are based on the following works

[13] Andrew H. Song, Francisco Flores, and Emery N. Brown, Convolutional

Dictionary Learning with Grid Refinement, IEEE Transactions on Signal Pro-

cessing, 2020

[58] Andrew H. Song, Bahareh Tolooshams, and Demba Ba, Gaussian Process

Convolutional Dictionary Learning, IEEE Signal Processing Letters, 2021

• Constrained neural networks for efficient inference (Chapter 7) Whereas

the previous two parts focused on how to set up a generative model and in-

corporate relevant domain constraints, we focus specifically on improving the

optimization/inference procedure for a given generative model. Specifically,

we introduce a highly constrained neural network autoencoder as an efficient

inference and learning framework for CDL generative model. We show that this

architecture can solve the CDL optimization orders of magnitudes faster than

off-the-shelf optimization algorithms, a crucial improvement in analyzing neural

data with explosive growth in size [2].

These chapters are based on the following works

[59] Bahareh Tolooshams*, Andrew H. Song*, Simona Temereanca, and

Demba Ba, Convolutional dictionary learning based auto-encoders for natural

exponential-family distributions, International Conference on Machine Learning

(ICML), 2020
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[60] Alexander Lin, Andrew H. Song, and Demba Ba, Mixture Model Auto-

Encoders: Deep Clustering through Dictionary Learning, Submitted to IEEE

ICASSP, 2021

Each chapter contains the thesis-adapted version of the manuscripts. In between

the chapters, we also provide a brief insight on how each chapter relates to other

chapters or the central topic.
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Chapter 2

Time-frequency analysis with

second-order state-space model

Primer This chapter is adapted from the following work

- Andrew H. Song*, Sourish Chakravarty*, and Emery N. Brown, A Smoother State

Space Multitaper Spectrogram, IEEE EMBC, 2018

Frequency domain analysis of time series data with cyclic signature is an informative

approach extensively used across multiple disciplines encompassing science, engineering

and medicine. Due to the noiseness of the time series in general, it is often modeled

as a realization of a stochastic process. Consequently, accurate estimation of the

unknown true spectrum from sequential observations becomes vital. When the time

series data can be assumed to be realizations of a second order stationary (s.o.s.)

stochastic process, one can define the Power Spectral Density (PSD) as the Fourier

transform of the autocovariance of the s.o.s. process [61]. In practice, estimation based

on the Fourier transform on finite data sequences results in a tradeoff between bias

and variance of the PSD estimate [62]. In this regard, the multitaper spectral (MT)

analysis method [63] provides PSD estimators with optimal bias-variance tradeoffs.

In practical applications, a stochastic process may demonstrate non-stationarity,

such as the electroencephalogram (EEG) recording from a patient undergoing anes-

thesia [62]. Nevertheless, for short time windows, such as a few seconds as in the
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anesthesia example, it is reasonable to assume s.o.s., allowing the MT to be applied

to each window. To derive a dynamic description of the spectrum (spectrogram) it is a

common practice to calculate the spectra for consecutive locally s.o.s. data segments

which may or may not be overlapping. The choice of the overlap duration is somewhat

arbitrary and, moreover, this approach does not allow for statistical inference on the

entire time series. The State-Space Multitaper (SSMT) spectral analysis framework

was recently introduced to address this gap [19]. The SSMT method is based on a

state-space (SS) model formulation comprising: (1) the observations which are Fourier

transforms of the multiple tapered versions of each locally s.o.s. segment, and (2)

multiple mutually-independent 1-dimensional discrete time states (one for each Fourier

coefficient) following a first-order random walk, thus imposing stochastic continuity

across consecutive s.o.s. segments.

In this work, we assume that each state underlying the observations are discretely

sampled version of an Integrated Wiener Process (IWP). Specifically, we choose

a simple model where the time derivative of each state follows a Wiener Process.

The imposition of a stochastic continuity on the first-order time derivatives in this

framework (referred henceforth as IWP-SSMT) leads to smooth estimates. We augment

each state from SSMT with its time-derivative and adapt the parameters in the SS

framework accordingly. The rest of the paper is organized as follows: Section 2.1

provides an overview of the SSMT framework. Section 2.2 introduces the IWP-SSMT

method. In sections 2.3 and 2.4 , the results and conclusions are presented, respectively.

2.1 Overview of the SSMT paradigm

Consider a sequence of real-valued scalar data {𝑦1, 𝑦2 · · · , 𝑦𝑇}, sampled at a rate 𝐹𝑠

(in Hz), from a non-stationary time series {𝑥1, 𝑥2 · · · , 𝑥𝑇} such that, 𝑦𝑡 = 𝑥𝑡 + 𝜀𝑡

where, 𝜀𝑡 is a Gaussian white noise process with zero-mean and constant variance

𝜎2
𝜀 and 𝑥𝑡 is assumed to be a zero-mean, locally s.o.s. Gaussian process. We assume

that 𝐽 observations within each non-overlapping window are s.o.s., but not necessarily

34



across 𝐾 windows (𝑇 = 𝐾𝐽). A vectorized representation of the time sequences is,

𝑌𝑘 = 𝑋𝑘 + 𝐸𝑘, (2.1)

where the 𝑗-th member of the column vectors are: 𝑌𝑘,𝑗 = 𝑦𝐽(𝑘−1)+𝑗, 𝑋𝑘,𝑗 = 𝑥𝐽(𝑘−1)+𝑗

and 𝐸𝑘,𝑗 = 𝜀𝐽(𝑘−1)+𝑗 for 𝑘 = 1, 2 · · · , 𝐾 and 𝑗 = 1, 2, · · · , 𝐽 . Furthermore, 𝑋𝑘

can be decomposed into orthogonal sequences in the frequency domain by virtue

of the Spectral Representation Theorem [61], 𝑋𝑘 = 𝑊Δ𝑍𝑘,where, 𝑊 ∈ C𝐽×𝐽 and

𝑊𝑙𝑗 = 𝐽−1/2 exp(𝑖(𝑙−1)𝑗(2𝜋/𝐽)), 𝜔𝑗 = 2𝜋(𝑗−1)/𝐽 and Δ𝑍𝑘,𝑗 ≡ Δ𝑍𝑘(𝜔𝑗) is a sequence

of complex-valued orthogonal Gaussian increments Δ𝑍𝑘 = [Δ𝑍𝑘(𝑤1), · · · ,Δ𝑍𝑘(𝑤𝐽)]𝑇 .

By taking a discrete Fourier transform (DFT) of Eq. (2.1),

𝑌
(𝐹 )

𝑘 = Δ𝑍𝑘 + 𝐸
(𝐹 )
𝑘 , (2.2)

where, 𝑌 (𝐹 )
𝑘 = 𝑊−1𝑌𝑘 and 𝐸

(𝐹 )
𝑘 = 𝑊−1𝐸𝑘. Using the principles of MT algorithm

applied to data vector 𝑌𝑘, one can write the following equations

𝑌
(𝑚, 𝐹 )

𝑘 = Δ𝑍(𝑚)
𝑘 + 𝐸

(𝑚, 𝐹 )
𝑘 (2.3)

where, 𝑌 (𝑚, 𝐹 )
𝑘 is the DFT of 𝑌𝑘 tapered with the𝑚-th Slepian taper, 𝑚 = {1, 2, · · · , 𝑀}.

The MT estimate is given by,

𝑓
(𝑀𝑇 )
𝑘 (𝜔𝑗) = 1

𝑀

𝑀∑︁
𝑚=1
‖𝑌 (𝑚, 𝐹 )

𝑘 (𝜔𝑗)‖2 (2.4)

The MT estimator in Eq. (2.4) has an optimal narrow-band vs. broad-band bias

tradeoff and has lower variance than the single tapered estimates ([62, 63]). Note that

𝐸
(𝑚, 𝐹 )
𝑘 in Eq. (2.3) is a complex-valued Gaussian random vector with a covariance

matrix Σ(𝑚, 𝐹 )
𝐸 = (𝜎(𝑚)

𝜀 )2𝐼𝐽 , where 𝐼𝐽 denotes an 𝐽 × 𝐽 identity matrix and 𝜎2
𝜀 =∑︀𝑀

𝑚=1(𝜎(𝑚)
𝜀 )2/𝑀 . The SSMT assumes that the increments Δ𝑍(𝑚)

𝑘 follows a first-order

random walk per, Δ𝑍(𝑚)
𝑘 = Δ𝑍(𝑚)

𝑘−1 + 𝑉
(𝑚)

𝑘 where, 𝑉 (𝑚)
𝑘 is a complex valued Gaussian

random vector with a diagonal covariance matrix Σ(𝑚)
𝑉 , with the (𝑗, 𝑗)-th component
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as 𝜎(𝑚)
𝑣, 𝑗 . This setup allows for a SS description independently for each frequecy bin

and for each taper per,

Δ𝑍(𝑚)
𝑘, 𝑗 = Δ𝑍(𝑚)

𝑘−1, 𝑗 + 𝑣
(𝑚)
𝑘, 𝑗 (2.5)

𝑌
(𝑚,𝐹 )

𝑘, 𝑗 = Δ𝑍(𝑚)
𝑘, 𝑗 + 𝜀

(𝑚, 𝐹 )
𝑘, 𝑗 (2.6)

where, 𝑣(𝑚)
𝑘, 𝑗 ∼ 𝐶𝑁(0, (𝜎(𝑚)

𝑣, 𝑗 )2) and 𝜀
(𝑚, 𝐹 )
𝑘, 𝑗 ∼ 𝐶𝑁(0, (𝜎(𝑚)

𝜀 )2) 1. SS formulation allows
the user to estimate the states Δ𝑍(𝑚)

𝑘, 𝑗 recursively from sequential observations 𝑌 (𝑚,𝐹 )
𝑘, 𝑗

using 𝑀𝐽 independent Kalman filters. The SSMT spectral estimate from the 𝑘-th
time window is,

𝑓
(𝑆𝑆𝑀𝑇 )
𝑘|𝑘 (𝜔𝑗) =

𝑀∑︁
𝑚=1
‖Δ𝑍

(𝑚)
𝑘|𝑘 (𝑤𝑗)‖2/𝑀 (2.7)

where, 𝑥𝑖|𝑗 refers to the estimate of the process at the 𝑖-th window, based on the

observations up to the 𝑗-th window.

2.2 SSMT with Δ𝑍(𝑡) modeled as an IWP

2.2.1 Motivation

As an extension to SSMT, we model Δ𝑍𝑘 as a discrete process sampled regularly from

a continuous process, Δ𝑍(𝑡), where Δ𝑍(𝑡) is assumed to follow an IWP. This is a

different modeling assumption from SSMT, where Δ𝑍𝑘 was assumed to obey a first

order random walk (a discretized representation of the Wiener Process). The main

motivation for IWP comes from a connection between the IWP and the smoothing

spline [64] - if a continuous process is an IWP, then the maximum aposteriori estimate of

the process conditioned on observations (perturbed by Gaussian noise) is asymptotically

equivalent to discrete samples from a smoothing spline fitted to the same observations.

1𝑥 ∼ 𝐶𝑁(𝜇𝑥, 𝜎2
𝑥) refers to a circularly symmetric complex normal distribution. 𝑥 ∈ C
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2.2.2 State-space formulation

We assume that the underlying continuous process for 𝑅𝑒{Δ𝑍(𝑚)
𝑘, 𝑗 } and 𝐼𝑚{Δ𝑍(𝑚)

𝑘, 𝑗 }
each follow simple IWP independently. It is a reasonable assumption as the real and
imaginary DFT coefficients are asymptotically independent [61, Appendix C]. By
simple IWP, we mean 𝑑( Δ𝑍) = 𝑊 (𝑡)𝑑𝑡, where 𝑊 (𝑡) is a Wiener process. The discrete
process Δ𝑍𝑘, sampled from Δ𝑍(𝑡) following a simple IWP, can be formulated into
SS framework via Laplace transform [65]. In the ensuing discussion, we will use the
following matrices, where 𝜏 = 𝐽/𝐹𝑠 is a stationary interval length,

Φ =

⎛⎜⎝1 𝜏

0 1

⎞⎟⎠ , 𝑄 =

⎛⎜⎝𝜏3/3 𝜏2/2

𝜏2/2 𝜏

⎞⎟⎠ , 𝐴 =
(︂

1 0
)︂

. (2.8)

The state and observation equations, respectively, are
⎛⎜⎝Δ𝑍

(𝑚)
𝑘, 𝑗

Δ�̇�
(𝑚)
𝑘, 𝑗

⎞⎟⎠ = Φ

⎛⎜⎝Δ𝑍
(𝑚)
𝑘−1, 𝑗

Δ�̇�
(𝑚)
𝑘−1, 𝑗

⎞⎟⎠+ 𝑣
(𝑚)
𝑘, 𝑗 , where,

𝑣
(𝑚)
𝑘, 𝑗 ∼ 𝐶𝑁

⎛⎜⎝
⎛⎜⎝0

0

⎞⎟⎠ , (𝜎(𝑚)
𝑣, 𝑗 )2𝑄

⎞⎟⎠ , and (2.9)

𝑌
(𝑚, 𝐹 )

𝑘, 𝑗 = 𝐴

⎛⎜⎝Δ𝑍
(𝑚)
𝑘, 𝑗

Δ�̇�
(𝑚)
𝑘, 𝑗

⎞⎟⎠+ 𝜀
(𝑚, 𝐹 )
𝑘, 𝑗 where,

𝜀
(𝑚, 𝐹 )
𝑘 ∼ 𝐶𝑁(0, (𝜎(𝑚)

𝜀 )2) . (2.10)

Similar to Eq. (2.7), we define the IWP-SSMT spectral estimate as,

𝑓
(𝐼𝑊 𝑃 -𝑆𝑆𝑀𝑇 )
𝑘|𝑘 (𝜔𝑗) =

𝑀∑︁
𝑚=1
‖Δ𝑍

(𝑚)
𝑘|𝑘 (𝑤𝑗)‖2/𝑀 (2.11)

where, Δ𝑍(𝑚)
𝑘|𝑘 (𝑤𝑗) is estimated using a Kalman filter based on the SS model per

Eqs. (2.9) and (2.10). For notational convenience, we define a new random state

vector 𝑔
(𝑚)
𝑘, 𝑗 = [Δ𝑍(𝑚)

𝑘, 𝑗 ,Δ�̇�
(𝑚)
𝑘, 𝑗 ]𝑇 . We indicate the conditional mean by ̂︀𝑔𝑘, 𝑗|𝑙 =

𝐸[𝑔𝑘, 𝑗|𝑌 (𝐹 )
1, 𝑗 , · · · , 𝑌

(𝐹 )
𝑙, 𝑗 ] and its associated error covariance by Γ𝑘, 𝑗|𝑙 = 𝐸[(𝑔𝑘, 𝑗−̂︀𝑔𝑘, 𝑗|𝑙)(𝑔𝑘, 𝑗−

̂︀𝑔𝑘, 𝑗|𝑙)𝐻 |𝑌 (𝐹 )
1, 𝑗 , · · · , 𝑌

(𝐹 )
𝑙, 𝑗 ] where (·)𝐻 indicates complex conjugate transpose. The filtered
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(̂︀𝑔(𝑚)
𝑘, 𝑗|𝑘 and Γ(𝑚)

𝑘,𝑗|𝑘) and smoothed (̂︀𝑔(𝑚)
𝑘, 𝑗|𝐾 and Γ(𝑚)

𝑘,𝑗|𝐾) estimates can be calculated using

standard Kalman filtering and smoothing equations [61]. Here, the Kalman Gain

(KG), 𝐶(𝑚)
𝑘,𝑗 , is

𝐶
(𝑚)
𝑘,𝑗 = Γ(𝑚)

𝑘,𝑗|𝑘−1𝐴
𝑇
(︁
𝐴Γ(𝑚)

𝑘,𝑗|𝑘−1𝐴
𝑇 + (𝜎(𝑚)

𝜀 )2
)︁−1

(2.12)

We define a roughness metric, 𝑅𝑗,𝑚 = ∑︀𝐾
𝑘=2 𝑟𝑘/(𝐾−1), where 𝑟𝑘 ≡ 𝐸

[︁
(𝑥𝑘 − 𝑥𝑘−1)2|𝑌 𝐹

1:𝐾,𝑗

]︁

Figure 2-1: Spectrograms (dB scale) from synthetic data. (a) True spectrogram
(dB) for an AR process 𝑥𝑡 = 3.9515𝑥𝑡−1 − 7.885𝑥𝑡−2 + 9.7340𝑥𝑡−3 − 7.7435𝑥𝑡−4 +
3.8078𝑥𝑡−5 − 0.9472𝑥𝑡−6 + 𝜀𝑡 ∼ 𝑁(0, ((𝑘/𝐾) sin(𝑘/𝐾))2) for 𝑡 ∈ ((𝑘 − 1)𝐽, 𝑘𝐽 ] and
𝑦𝑡 = 𝑥𝑡 + 𝜀𝑜 ∼ 𝑁(0, 102), and spectrograms estimated by (b) MT (c) SSMT (d)
IWP-SSMT methods. The calibration data for both SSMT and IWP-SSMT is taken
from 𝑡 = 0 to the time indicated by the solid white vertical line. (e, f) Comparing
spectra at two time points. 𝐹𝑠 = 64𝐻𝑧, 𝐽 = 1024, 𝐾 = 125, 𝑤𝑟 = 0.25𝐻𝑧, 𝑀 = 3,
and calibration length = 13 min.
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and 𝑥𝑘 can denote either 𝑅𝑒(Δ𝑍(𝑚)
𝑘,𝑗 ) or 𝐼𝑚(Δ𝑍(𝑚)

𝑘,𝑗 ). Roughness metric quantifies the

expected value of differences between the consecutive states conditioned on the entire

data. The lower the metric, the smoother the spectral estimates across time.

Figure 2-2: Spectrograms (dB scale) from EEG data based on (a) MT, (b) SSMT,
(c) IWP-SSMT methods. The calibration data for both SSMT and IWP-SSMT is
taken from 𝑡 = 0 to the time indicated by the solid white vertical line, 𝑡 = 5 min. (d)
Comparing spectra at two time points. Parameters: 𝐹𝑠 = 250𝐻𝑧, 𝐽 = 500, 𝑁 = 670,
𝑤𝑟 = 2𝐻𝑧, 𝐾 = 4.

2.2.3 Parameter estimation

To estimate the parameters in the IWP-SSMT framework we apply an Expectation
Maximization (EM) algorithm [66] on a short calibration dataset. In the E-step, we
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compute the expectation of the complete data log-likelihood based on the parameter
estimates from the previous EM step and on the filtered/smoothed state estimates
and error covariances. In the M-step, the expectation is maximized with respect to
the parameters of interest (Eqs. (2.13) and (2.14) ). These steps are iterated until
some convergence crtieria is reached.

̂︀𝜎2
𝜀 = 1

𝐽𝐾

𝐽,𝐾∑︁
𝑗,𝑘=1

(︁
‖𝑌 𝐹

𝑘,𝑗‖2 − 2𝑅𝑒
{︁(︁

𝑌 𝐹
𝑘,𝑗

)︁*
Δ𝑍𝑘,𝑗|𝐾

}︁
+ 𝐸

[︁
‖Δ𝑍𝑘,𝑗|𝐾‖2

⃒⃒
𝑌 𝐹

1:𝐾,𝑗

]︁)︁
(2.13)

̂︀𝜎2
𝑣,𝑗 = 𝑡𝑟

{︁
𝑄−1

(︁
𝑆11 − Φ𝑆𝐻

10 − 𝑆10Φ𝑇 + Φ𝑆00Φ𝑇
)︁}︁

/2𝐾 (2.14)

where, 𝑆11 = ∑︀𝐾
𝑘=1 ̂︀𝑔𝑘,𝑗|𝐾̂︀𝑔𝐻

𝑘,𝑗|𝐾 + Γ𝑘,𝑗|𝐾 , 𝑆10 = ∑︀𝐾
𝑘=1 ̂︀𝑔𝑘,𝑗|𝐾̂︀𝑔𝐻

𝑘−1,𝑗|𝐾 + Γ(𝑘,𝑘−1),𝑗|𝐾 , and

𝑆00 = ∑︀𝐾
𝑘=1 ̂︀𝑔𝑘−1,𝑗|𝐾̂︀𝑔𝐻

𝑘−1,𝑗|𝐾 + Γ𝑘−1,𝑗|𝐾

Figure 2-3: Comparing SSMT and IWP-SSMT from synthetic data. (a) Kalman gain
vs. frequency for the first taper at time point 𝑡 = 12 min (for IWP-SSMT we plot
first component of the KG matrix). (b-d) 𝑅𝑒(Δ𝑍(1)

𝑘|𝐾) with 95% confidence interval for
3 frequencies.

2.3 Results

We compare spectrograms among MT, SSMT [19] and IWP-SSMT, applied to two

cases. (1) A synthetic data (an autoregressive (AR) process) whose true and MT

spectrograms are presented in Fig. 2-1(a, b). (2) A brief snippet of EEG recording
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obtained via a frontal scalp electrode channel sampled at 250 Hz using a Sedline

monitor (Masimo Corp.) during general anesthesia induced by sevoflurane (MT

spectrogram is presented in Fig. 2-2(a)). The EEG recording is part of de-identified

data collected from patients at Massachusetts General Hospital (MGH) as a part of a

MGH Human Research Committee-approved protocol.

Figures 2-1(c, d) and 2-2(b, c), represent SSMT and IWP-SSMT filtered estimates

from noisy observations. With the ground truth spectra available for the AR example,

Fig. 2-1(a), we infer that both SSMT (Fig. 2-1(c)) and IWP-SSMT (Fig. 2-1(d))

are able to estimate the dynamics of the true spectrogram within the peak power

frequencies. Furthermore, we perform a simple quantitative comparison as such: we

consider the frequencies with PSD > 0 𝑑𝐵, in Figs. 2-1(e) and (f), which account for

> 97% of the power. For these frequencies, we find that the relative error 2 in the

PSDs (MT, SSMT, IWP-SSMT) relative to the true PSD are given by (64%, 65%,

64%) and (68%, 70%, 70%) for Figs. 2-1(e) and (f), respectively. From these point

estimates, we infer that the spectral estimates in Fig. 2-1(e, f), indicate that both

SSMT and IWP-SSMT approximate the spectrum with same level of accuracy as MT.

Relative to MT, the SSMT and IWP-SSMT spectrograms appear to have higher

contrast (Figs. 2-1(b - d) and 2-2(a - c)). This contrast-enhancing effect of SSMT and

IWP-SSMT is a consequence of the KG (Fig. (2-3)(a) and Fig. 2-4(a)). KG reflects

the degree to which a given SS model believes that there is a smooth underlying

process at specific frequencies. For a given model, if KG is close to 1 then it trusts the

observations more than the underlying process and hence assigns more weight on the

observations (𝑌 (𝐹 )
𝑘 ). On the other hand, lower KG indicates that the model trusts the

underlying process more. MT approach is blind to the underlying process and simply

follows the observations (equivalent to KG=1 for SS models) across all frequencies.

For a given model, SSMT or IWP-SSMT, if KG is nearly 1 (estimates dominated

by observations) then one can expect the same degree of smoothness (average sepa-

ration between consecutive estimates) as the observations, 𝑌 (𝐹 )
𝑘 , themselves as seen

in (Fig. (2-3)(c) and Fig 2-4(b)). If KG is low (model trusts process more), the

2e(x) = 100‖𝑥− 𝑥⋆‖/‖𝑥‖ where 𝑥⋆ indicates reference truth.
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Table 2.1: Roughness metric for the first taper.

Simulation (Fig. 2-1) EEG (Fig. 2-2)
freq. SSMT IWP freq. SSMT IWP
6.25 4.52 3.10 1.5 4110 3640
9.69 13330 13000 8.5 5.21 4.38
10.56 46.05 4.42 12.5 1050 8.05

estimates will reflect the smoothness property of the underlying process (both models

in Fig. (2-3)(b, d) and Fig 2-4(c) and only IWP-SSMT in Fig 2-4(d)). Thus low KG

seems to be indicative of a smoother estimate from a given model.

Figure 2-4: Comparing SSMT and IWP-SSMT from EEG data. (a) Kalman gain
vs. frequency for the first taper at time point 𝑡 = 10 min. (b-d) 𝑅𝑒(Δ𝑍(1)

𝑘|𝐾) with 95%
confidence interval for 3 frequencies.

Nevertheless, one needs to be cautious when using just KG to compare smoothness

at specific frequencies across different models. For instance, even if KG is nearly

identical for values lower than 1 the degree of smoothness could be different as seen

in Fig. 2-3(d). Moreover, even if KG is quite different, the degree of smoothness

could be similar as seen in Figs. 2-3(b) and 2-4(c). Therefore, to compare smoothness

across models, KG by itself is inadequate which necessitates the roughness metric

𝑅𝑗,𝑚 defined earlier. This roughness metric is appropriate for smoothness comparison

across models as it is agnostic to the model choice (SSMT vs. IWP-SSMT). The

inference drawn from smoothness comparison between the two models based on visual

inspection is corroborated by the roughness metric reported in Table 2.1.
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2.4 Conclusion

In this work, we have explored a variant of the SSMT [19] with a more complex

description of the process dynamics. In this variant, the Fourier increments in each

local s.o.s. time segment are considered discrete samples of the IWP. Both models

are able to provide spectrogram estimates that are denoised compared to the MT

method for both AR and EEG data analyzed here. Through this work, we have shown

that IWP-SSMT can generate smoother estimates of the Fourier coefficients. Since

anesthesiologists use EEG to gauge the level of sedation [67], IWP-SSMT and SSMT

can potentially be used to track the gradual changes in EEG-based biomarkers (due

to gradual changes in amount of drug in the system producing this response) and can

thus aid EEG-based drug-effect modeling studies, e.g., [68]. More work is required to

analyze the full consequences of the IWP-assumption in the IWP-SSMT. We believe

IWP-SSMT, SSMT [19] and variants of this general SS framework can coexist within

a prospective model selection toolkit for analysing non-stationary time-series.
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Chapter 3

Time-frequency analysis with

time-varying state-space model

Primer This chapter is adapted from the following work

- Andrew H. Song*, Seong-eun Kim*, and Emery N. Brown, Adaptive State-Space

Multitaper Spectral Estimation, Submitted to IEEE Signal Processing Letters, 2021

3.1 Introduction

Nonstationary time series with time-varying probability structures are ubiquitous.

Some examples include radar emissions [69], speech and image recordings [70, 71],

oceanographic and seismic signals [72], neural spike trains [17], and electroencephalo-

gram (EEG) [73]. We are interested in analyzing the nonstationary data through

the lens of the time-varying spectral dynamics, which yields valuable information

on the underlying system. The traditional approach has been to segment the data

into independent overlapping or non-overlapping windows, assuming local stationar-

ity [74] within each window, and to apply Fourier or wavelet transform for spectral

analysis [75, 76].

Despite the popularity, the windowing approach suffers from spectral estimates of

high variance within each window, due to finite window-length [77] and the restrictive

independence assumption for different windows. The state-space multitaper (SSMT)
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framework [78] and its extensions [79, 80, 56, 20] have been proposed as the solutions,

by positing a time-invariant latent state-space model in the time-frequency domain,

with each state representing the Fourier coefficients in each window. Since the states

are linked by stochastic continuity prior across the windows, the spectral estimates

are not independent.

However, the use of time-invariant parameters limits the capacity of these frame-

works to track strong nonstationarity, characterized by strong power fluctuations

due to state transitions of the system, which are quite common in systems neuro-

science [81]. Although the time-varying state-space model provides more flexibility,

this comes at a price, especially for real-time applications. Model parameters for

non-stationary process need to be re-estimated with every incoming batch of observa-

tions with expectation-maximization (EM) algorithm [82], which requires a prohibitive

computational cost.

We propose the time-varying extension of SSMT with an adaptive parameter

estimation scheme, termed adaptive SSMT (ASSMT). Based on the data-driven

metric to track nonstationarity, theoretically motivated from the generative model,

ASSMT adaptively switches between the time-variant and time-invariant state-space

model. The adaptive estimation scheme only requires a single pass through the data,

making ASSMT more suited for real-time application, compared to other frameworks

that require multiple passes through the data.

The rest of the paper is organized as follows. In Section II, the SSMT method is

reviewed. In Section III, the adaptive model parameter estimation is proposed. In

Sections IV and V, experimental results and conclusion are presented.

3.2 Review of State-Space Multitaper Method

We first review the SSMT algorithm in [78]. Consider a nonstationary time series 𝑦𝑡

sampled at frequency 𝑓𝑠 as

𝑦𝑡 = 𝑥𝑡 + ̃︀𝜀𝑡, 𝑡 = 1, . . . , 𝑇 (3.1)
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where 𝑥𝑡 is a locally stationary latent Gaussian process [83] with the measurement

noise ̃︀𝜀𝑡 follows ̃︀𝜀𝑡 ∼ 𝒩 (0, 𝜎2
𝜀). Leveraging the local stationary property, we divide

these signals into 𝐾 nonoverlapping stationary intervals of 𝐽 samples, such that

𝑇 = 𝐾𝐽 . The segmented vectors for interval 𝑘 are denoted as 𝑋𝑘, 𝑌𝑘, 𝜀𝑘 ∈ R𝐽 , with

the 𝑗th element as 𝑌𝑘,𝑗 = 𝑦𝐽(𝑘−1)+𝑗 for 𝑘 = 1, ..., 𝐾 and 𝑗 = 1, ..., 𝐽 .

To perform time-frequency analysis, we introduce the latent 𝑍𝑘 = (𝑍𝑘,1, ..., 𝑍𝑘,𝐽) ∈

C𝐽 , where 𝑍𝑘,𝑗 is a complex Gaussian variable with the magnitude corresponding to

the power at the normalized frequency 𝜔𝑗 = 2𝜋(𝑗− 1)/𝐽 and interval 𝑘 [84]. To model

the evolution of spectra across the windows, we assume that {𝑍𝑘}𝐾
𝑘=1 follow a random

walk prior

𝑍𝑘 = 𝑍𝑘−1 + 𝑣𝑘, (3.2)

where 𝑣𝑘 is a complex Gaussian noise with a diagonal covariance 𝐼(𝜎2
𝑣,𝑗), i.e., 𝑣𝑘 ∼

𝒞𝒩 (0, 𝐼(𝜎2
𝑣,𝑗)). This prior encodes two important properties of the latent process.

First, the state variance 𝜎2
𝑣,𝑗 controls the smoothness of the process, with large value

indicative of non-smooth or fluctuating process. Second, 𝑍𝑘,𝑗 and 𝑍𝑘,𝑗′ for 𝑗 ̸= 𝑗′ are

independent a-priori.

We can link the time-frequency process {𝑍𝑘}𝐾
𝑘=1 with time-domain observation 𝑌𝑘,

using the Fourier matrix F ∈ C𝐽×𝐽 with (𝐹 )𝑗,𝑙 = 𝐽−1/2 exp(−𝑖2𝜋(𝑙 − 1)𝑗/𝐽) and the

inverse-Fourier matrix W ∈ C𝐽×𝐽 , such that FW = 𝐼

𝑌𝑘 = 𝑋𝑘 + 𝜀𝑘 = W𝑍𝑘 + 𝜀𝑘 (3.3)

⇒ 𝑌 𝐹
𝑘 = F𝑌𝑘 = FW𝑍𝑘 + F𝜀𝑘 = 𝑍𝑘 + 𝜀𝐹

𝑘 ,

where 𝜀𝐹
𝑘 ∼ 𝒩 (0, 𝐼(𝜎2

𝜀)), since 𝐹𝐼(𝜎2
𝜀)𝐹 * = 𝐼(𝜎2

𝜀).

Along with the state-space model, we incorporate the data tapers to further reduce

the variance of the spectral estimates. Specifically, we use 𝑀 Slepian tapers, leading

to the multitaper (MT) method that optimally balances the bias-variance trade-off

via bandwidth adjustment [77, 85]. This essentially produces 𝑀 independent set of
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state-space models,

𝑌
(𝑚),𝐹

𝑘 = 𝑍
(𝑚)
𝑘 + 𝜀

(𝑚),𝐹
𝑘 (3.4)

𝑍
(𝑚)
𝑘 = 𝑍

(𝑚)
𝑘−1 + 𝑣

(𝑚)
𝑘 , (3.5)

where 𝑣
(𝑚)
𝑘 ∼ 𝒞𝒩 (0, 𝐼(𝜎2,(𝑚)

𝑣,𝑗 )), 𝑌 (𝑚)
𝑘 corresponds to the 𝑚th taper applied to 𝑌𝑘,

𝑌
(𝑚),𝐹

𝑘 = F𝑌 (𝑚)
𝑘 , and 𝑍

(𝑚)
𝑘 represents the 𝑚th spectral eigen-coefficient of 𝑍𝑘. The

extensions of SSMT and similar frameworks modify Eqs. 3.4 or 3.5 [79, 80, 56, 20].

Based on Eqs. 3.4 and 3.5, we derive a Kalman filter algorithm for the estimation

of 𝑍(𝑚)
𝑘,𝑗 using Kalman gain 𝐶

(𝑚)
𝑘,𝑗

𝑍
(𝑚)
𝑘|𝑘,𝑗 = (1− 𝐶(𝑚)

𝑘,𝑗 )𝑍(𝑚)
𝑘−1|𝑘−1,𝑗 + 𝐶

(𝑚)
𝑘,𝑗 𝑌

(𝑚),𝐹
𝑘,𝑗 (3.6)

𝜎
2,(𝑚)
𝑘|𝑘,𝑗 = (1− 𝐶(𝑚)

𝑘,𝑗 )(𝜎2,(𝑚)
𝑘−1|𝑘−1,𝑗 + 𝜎

2,(𝑚)
𝑣,𝑗 ), (3.7)

where we focus on 𝜔𝑗 for simplicity and 𝐶
(𝑚)
𝑘,𝑗 is given as

𝐶
(𝑚)
𝑘,𝑗 =

𝜎
2,(𝑚)
𝑘−1|𝑘−1,𝑗 + 𝜎

2,(𝑚)
𝑣,𝑗

𝜎
2,(𝑚)
𝜀 + 𝜎

2,(𝑚)
𝑘−1|𝑘−1,𝑗 + 𝜎

2,(𝑚)
𝑣,𝑗

. (3.8)

The notation 𝑘|𝑠 denotes the estimate on interval 𝑘 given the data observed up to

interval 𝑠. Finally, the SSMT spectrogram estimate at frequency 𝜔𝑗 on interval 𝑘 is

𝑓SSMT
𝑘 (𝜔𝑗) = 𝑀−1

𝑀∑︁
𝑚=1
‖𝑍(𝑚)

𝑘|𝑘,𝑗‖
2. (3.9)

The parameters {𝜎(𝑚),2
𝑣,𝑗 , 𝜎(𝑚),2

𝜀 }𝑀
𝑚=1 are estimated via EM algorithm [82]. SSMT tracks

nonstationarity with the time-invariant parameters 𝜎2,(𝑚)
𝑣,𝑗 , since 𝑍(𝑚)

𝑘|𝑘,𝑗 ̸= 𝑍
(𝑚)
𝑘−1|𝑘−1,𝑗

and thus 𝑓SSMT
𝑘 (𝜔𝑗) ̸= 𝑓SSMT

𝑘−1 (𝜔𝑗).
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3.3 Adaptive SSMT

Although SSMT can model slowly time-varying spectral dynamics, it is restrictive

for highly fluctuating spectral dynamics. Such strong nonstationarity (or fluctuation)

is common in EEG with external intervention to the brain or with change of the

brain state during anesthesia/sleep [81]. Fig. 3-1 shows a snippet of human anesthesia

EEG in which SSMT (Fig. 3-1(b)) cannot track the apparent dynamics shown in

MT approach (Fig. 3-1(a)). However, the proposed ASSMT (Fig. 3-1(c)) is able to

emphasize the spectral dynamics and denoise non-relevant background noise.
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Figure 3-1: A spectrogram snippet estimated with (a) MT (b) SSMT (c) ASSMT.

The failure of SSMT is due to the time-invariant parameters, as the Kalman

gain quickly converges to a steady-state value 𝐶(𝑚)
∞,𝑗 [86]. Denoting the observation

prediction error as Δ𝑌 (𝑚)
𝑘,𝑗 = 𝑌

(𝑚),𝐹
𝑘,𝑗 −𝑍(𝑚),𝐹

𝑘−1|𝑘−1,𝑗 and the change in the latent estimate as

Δ𝑍(𝑚)
𝑘,𝑗 = 𝑍

(𝑚)
𝑘|𝑘,𝑗−𝑍

(𝑚)
𝑘−1|𝑘−1,𝑗 , we can express Eq. 3.6 as Δ𝑍(𝑚)

𝑘,𝑗 = 𝐶
(𝑚)
∞,𝑗Δ𝑌

(𝑚)
𝑘,𝑗 . Therefore,

if 𝐶(𝑚)
∞,𝑗 is low as in SSMT for Fig. 3-1(b), 𝑓SSMT

𝑘 cannot reliably track the spectral

dynamics as 𝑍(𝑚)
𝑘|𝑘,𝑗 fails to reflect information in 𝑌

(𝑚),𝐹
𝑘,𝑗 .

To resolve this issue, adaptive SSMT (ASSMT) posits a time-varying state-space

model, to allow the adaptive change of 𝜎(𝑚),2
𝑣,𝑗 . We start by rewriting Eq. 3.5 as

𝑍
(𝑚)
𝑘,𝑗 = 𝑍

(𝑚)
𝑘−1,𝑗 + 𝑣

(𝑚)
𝑘,𝑗 , (3.10)
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where 𝑣(𝑚)
𝑘,𝑗 ∼ 𝒞𝒩 (0, 𝐼(𝜎2,(𝑚)

𝑣,𝑘,𝑗 )), to indicate the state variance’s dependence on time.

We still use constant 𝜎2
𝜀 since we assume stationary background noise.

With the modified generative model, we now address when and how ASSMT tracks

varying degrees of nonstationarity. We first quantify the notion of nonstationarity,

and then propose an adaptive parameter estimation approach.

3.3.1 Measure of nonstationarity

We define ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 = E‖𝑌 (𝑚),𝐹

𝑘,𝑗 − 𝑌 (𝑚),𝐹
𝑘−1,𝑗 ‖2, the expected observation difference, as

the measure of nonstationarity at window 𝑘. Intuitively, we use high fluctuation as a

proxy for high nonstationarity. Specifically, we utilize ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 as 1) an indicator of

high nonstationarity, i.e., when ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 exceeds a frequency-dependent threshold 𝛽𝑗

and 2) a component in the parameter estimation procedure.

To estimate ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2, we use exponential moving average (EMA), often used as a

simple, yet effective approach to estimate the expectation in filtering literature [87]

‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 = (1− 𝛼)‖ ̃︀𝑌 (𝑚),𝐹

𝑘−1,𝑗 ‖2 + 𝛼‖𝑌 (𝑚),𝐹
𝑘,𝑗 − 𝑌 (𝑚),𝐹

𝑘−1,𝑗 ‖2, (3.11)

where 0 ≤ 𝛼 ≤ 1 is a smoothing factor. We use it as a heuristic indicator to detect

the presence of strong nonstationarity, independent from the estimation procedure

of 𝑍(𝑚)
𝑘,𝑗 . The choice of 𝛼 reflects the belief on the impulsiveness of nonstationarity

and the volatile nature of the state transitions. With large 𝛼, ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 is sensitive

to instantaneous fluctuation.
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3.3.2 Estimation of parameters & adaptive thresholding

We now examine how to use ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 to set 𝛽𝑗 and subsequently estimate the

parameters. Using Eq. 3.4, we have

‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 = E‖𝑌 (𝑚),𝐹

𝑘,𝑗 − 𝑌 (𝑚),𝐹
𝑘−1,𝑗 ‖2 (3.12)

= E‖(𝑍(𝑚)
𝑘,𝑗 − 𝑍

(𝑚)
𝑘−1,𝑗) + (𝜀𝐹

𝑘 − 𝜀𝐹
𝑘−1)‖2

= E‖𝑍(𝑚)
𝑘,𝑗 − 𝑍

(𝑚)
𝑘−1,𝑗‖2 + E‖𝜀𝐹

𝑘 − 𝜀𝐹
𝑘−1‖2,

where we used the uncorrelatedness of the two differences. Next, we use the fact that

1) E‖𝑍(𝑚)
𝑘,𝑗 − 𝑍

(𝑚)
𝑘−1,𝑗‖2 = 𝜎

2,(𝑚)
𝑣,𝑗 from Eq. 3.5 and 2) 𝜀𝐹

𝑘 and 𝜀𝐹
𝑘−1 are independent with

variance 𝜎2,(𝑚)
𝜀 , hence E‖𝜀𝐹

𝑘 − 𝜀𝐹
𝑘−1‖2 = 2𝜎2

𝜀 , which leads to

E‖𝑌 (𝑚),𝐹
𝑘,𝑗 − 𝑌 (𝑚),𝐹

𝑘−1,𝑗 ‖2 = 𝜎
2,(𝑚)
𝑣,𝑘,𝑗 + 2𝜎2,(𝑚)

𝜀 . (3.13)

This establishes the connection between the nonstationarity metric, ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2, and

the two sources of variance.

With Eq. 3.11 and Eq. 3.13, we can now estimate 𝜎2,(𝑚)
𝑣,𝑘,𝑗 . For 𝜎2

𝜀 , we utilize ̂︀𝜎2,(𝑚)
𝜀,𝑗

estimated from SSMT. This leads to

̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 = ‖ ̃︀𝑌 (𝑚),𝐹

𝑘,𝑗 ‖2 − 2�̂�2,(𝑚)
𝜀 . (3.14)

We further lower bound the ̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 for two reasons. First, we impose that the

signal-to-noise ratio (SNR), 𝛾𝑘,𝑗 = 𝜎
2,(𝑚)
𝑣,𝑘,𝑗 /𝜎

2
𝜀 , is greater than a minimum baseline

SNR, i.e., 𝛾𝑘,𝑗 ≥ 𝛾min
𝑘,𝑗 . Second, we require nonnegative ̂︀𝜎2,(𝑚)

𝑣,𝑘,𝑗 . Since SSMT estimates

the baseline properties of the nonstationary data through EM, we naturally set

𝛾min
𝑘,𝑗 = ̂︀𝜎2,(𝑚),SSMT

𝑣,𝑗 /̂︀𝜎2
𝜀 , which yields

̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 = max(‖ ̃︀𝑌 (𝑚),𝐹

𝑘,𝑗 ‖2 − 2�̂�2,(𝑚)
𝜀 , �̂�

2,(𝑚),SSMT
𝑣,𝑗 ). (3.15)

This procedure obviates the need for EM beyond the initial phase for estimating

�̂�2
𝜀 and �̂�2,(𝑚),SSMT

𝑣,𝑗 . Although EM can be used for estimating the time-varying param-
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eters, it requires multiple forward/backward passes through the entire data, which

is computationally expensive. In addition, with every new observation, ̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 in the

past data need to re-estimated.

3.3.3 Estimation of nonstationary spectra

We use Kalman filter with ̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 to estimate the spectrogram 𝑓ASSMT

𝑘 (𝜔𝑗). ASSMT

therefore operates with two different modes depending on 𝛽𝑗 = 2�̂�2,(𝑚)
𝜀 + �̂�

2,(𝑚),SSMT
𝑣,𝑗 .

If ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 ≥ 𝛽𝑗, ASSMT adaptively uses larger state variance to track high non-

stationarity. Given 𝜎
2,(𝑚)
𝑘−1|𝑘−1,𝑗 and fixed ̂︀𝜎2

𝜀 in Eq. 3.8, we observe that the increase

in ̂︀𝜎2,(𝑚)
𝑣,𝑘,𝑗 leads to the increase in 𝐶

(𝑚)
𝑘,𝑗 . This agrees with our intuition, since we want

the Kalman gain to increase such that Δ𝑍(𝑚)
𝑘,𝑗 explains a greater portion of Δ𝑌 (𝑚)

𝑘,𝑗 .

For ‖ ̃︀𝑌 (𝑚),𝐹
𝑘,𝑗 ‖2 < 𝛽𝑗, ASSMT simply uses the baseline �̂�2,(𝑚),SSMT

𝑣,𝑗 . This explains how

ASSMT with adaptive state variance is able to track strong nonstationarity.

3.4 Results

We apply ASSMT to two datasets: 1) nonstationary simulated data and 2) human

EEG data under propofol anesthesia. We compare the spectrogram estimates between

MT, SSMT, and ASSMT. All spectrograms are in dB scale.

3.4.1 Application to Simulated Data

We simulate the data as a superposition of amplitude-modulated process 𝑦𝑡,1 and

frequency-modulated processes 𝑦𝑡,2 with high dynamic range. The process 𝑦𝑡,1 is

generated from an AR(6) process centered at 11 Hz and modulated by a cosine

function of 𝑓0 = 0.02 Hz. The process 𝑦𝑡,2 is generated from ARMA(6,4) with varying

pole loci. More details on 𝑦𝑡,1, 𝑦𝑡,2 can be found in [80]. The observations are given

by 𝑦𝑡 = 𝑦𝑡,1 cos(2𝜋𝑓0𝑡) + 𝑦𝑡,2 + 𝜎𝑣𝑡, where 𝑣𝑡 ∼ 𝒩 (0, 1) and 𝜎 is chosen to achieve an

SNR of 30 dB [80]. For MT, we use 6-second windows with 50% overlap and 𝑀 = 3

Slepian tapers, and 6-second non-overlapping windows for both SSMT and ASSMT.
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For SSMT, we use the entire data to estimate the parameters. For ASSMT, we use

initial 300 seconds of the data to compute the baseline parameters and use 𝛼 = 0.95.

Fig. 3-2 shows the ground truth and the estimated spectrograms. Although MT

captures the spectral dynamics reasonably well, it picks up background noise and

spectral artifacts (i.e., vertical lines), and induces mixing of adjacent frequency bands

due to low resolution. SSMT (Fig. 3-2 (c)) resolves these issues with sharper spectral

localization and removal of spectral artifacts, benefitting from the state-space prior.

ASSMT also shares the artifact rejection and noise reduction properties of SSMT.

Moreover, ASSMT performs better denoising, as evident in 5 ∼ 20 Hz frequency

band. The Itakura-Saito divergence (IS) [88] between the ground truth and the

spectrogram estimate also confirms this observation, with ASSMT attaining the lowest

value (ISMT = 6.51, ISSSMT = 3.16, ISASSMT = 2.75). We attribute this difference to

SSMT’s fixed high ̂︀𝜎2,(𝑚),SSMT
𝑣,𝑗 and consequently high Kalman gain across 5 ∼ 20 Hz.

This is because for any given frequency component, there exists strong nonstationary

regime within the parameter estimation window (the entire data), which inevitably

leads to high ̂︀𝜎2,(𝑚),SSMT
𝑣,𝑗 , ∀𝑗. However, since ASSMT does not commit to a fixed value,

it can adaptively change the parameter at different regimes of the data.

3.4.2 Application to anesthesic EEG data

The EEG was recorded (𝑓𝑠 = 250 Hz) from a volunteer receiving propofol administered

with increasing rate, followed by the decreasing rate [81]. This setup induces altering

states of unconsciousness (or brain states), resulting in varying levels of nonstationarity.

We used 𝑀 = 5 Slepian tapers, 𝐽 = 1, 000 samples. For SSMT, we estimate the

spectrogram based on the parameters estimated from 1) the initial 4 minutes of

data (Fig. 3-3 (b)) and 2) the entire data (Fig. 3-3 (c)). For ASSMT, we use the

initial 4 minutes to compute the baseline parameters. Fig. 3-3 shows the estimated

spectrograms.

SSMT vs. ASSMT SSMT based on the initial 4 minutes of the data (Fig. 3-3 (b))

produces low ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 estimates due to absence of spectral dynamics for the baseline

state. Although it denoises the background noise well as a result, it misses most of
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Figure 3-2: Spectrograms for simulated data (a) ground truth (b) MT (c) SSMT (d)
ASSMT with 𝛼 = 0.95.

the strong spectral fluctuation, as evident in extreme denoising of the spectra from 40

min to 120 min.

This can be mitigated by applying EM to a different section of the data, or as in

our case, to the entire data. Due to high ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 estimates, SSMT is better equipped

at capturing the strong nonstationarity (Fig. 3-3 (c)). However, it fails to denoise

the baseline state (0 ∼ 40 min) due to high Kalman gain, as similarly observed in

the simulation. These results identifies a drawback of the time-invariant paradigm,

as different ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 estimated from different sections could yield significantly different

spectrogram estimates.

In contrast, ASSMT adaptively denoises the spectrogram (Fig. 3-3 (d-e)) even

with the initial baseline parameters, the same setting for which SSMT failed (Fig. 3-3

54



0
10
20
30

-20

-10

0

10

0
10
20
30

-20

-10

0

10

0
10
20
30

-20

-10

0

10

0
10
20
30

-20

-10

0

10

20 40 60 80 100 120 140
0

10
20
30

-20

-10

0

10

Figure 3-3: Propofol anesthesia EEG spectrograms (a) MT (b) SSMT with initial
4-min EM window (c) SSMT with full data EM window (d) ASSMT with 𝛼 = 0.95 (e)
ASSMT with 𝛼 = 0.05. Both ASSMT use initial 4-min EM window. Red horizontal
lines correspond to 10 and 15 Hz.

(b)). The time-varying nature of the model allows it to switch between low ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 ,

excelling at denoising the background noise, and high ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 , excelling at capturing

the spectral fluctuation, without fully committing to either parameters.
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Figure 3-4: Kalman gain and state noise variance for SSMT and ASSMT for the first
taper 𝑚 = 1. (a) Kalman gain and (b) State noise variance at 10 Hz. (c) Kalman
gain and (d) state noise variance at 15 Hz.

Another important difference is the computation time. The inference procedure of

EM on the entire data & Kalman filtering is ∼ 400 seconds. For ASSMT, however, the

procedure takes ∼ 6 seconds, boasting huge computational time reduction, making it

more suitable for real-time application.

Effect of Kalman gain To further understand ASSMT, we analyze the evolution of

state variance and the Kalman gain across time at the representative frequency bands

(10 and 15 Hz), shown in Fig. 3-4. For both frequency bands, we observe that the

state variance and consequently the Kalman gain is increased above the threshold, in

tandem with the large spectral fluctuation. As discussed previously, a large Kalman

gain is imperative for this purpose. The SSMT Kalman gain stays fixed at either

0.1 (for initial 4-min estimation, red in Fig. 3-4) or 0.9 (for entire data estimation,
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magenta in Fig. 3-4).

Effect of 𝛼𝛼𝛼 We observe that the denoising performance of ASSMT is robust towards

the choice of 𝛼. To further understand how 𝛼 affects the filtering/denoising operation,

we analyze how ̂︀𝜎2,(𝑚)
𝑣,𝑗,𝑘 and Kalman gain change over time. ASSMT with 𝛼 = 0.95

(light-blue) is dominated by the heavy fluctuation, ‖𝑌 (𝑚),𝐹
𝑘,𝑗 − 𝑌 (𝑚),𝐹

𝑘−1,𝑗 ‖2. In contrast,

ASSMT with small 𝛼 = 0.05 (blue) shows smoother state variance and Kalman

gain. In this case, ASSMT starts adapting when there is significant evidence for

nonstationarity. This explains why ASSMT with 𝛼 = 0.05 has a superior denoising

effect, as it is less susceptible to instantaneous fluctuations (40 min., 0 ∼ 10 Hz) and

background noise (75 ∼ 95 min., 2 ∼ 10 Hz).

3.5 Conclusion

We introduced an adaptive state-space multitaper (ASSMT) framework, a state-space

model for adaptively estimating spectral dynamics in the nonstationarity time series.

By relaxing the time-invariant parameters assumption and proposing an adaptive

parameter estimation scheme, we demonstrated that ASSMT was able to capture

strong power fluctuations much more reliably compared to SSMT.
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Chapter 4

Time-frequency analysis with

Gaussian Process

Primer To impose smoothness on the latent process, the previous chapters focused

on using stochastic continuity on the Fourier coefficients across different windows.

While these frameworks exhibit superior denoising performance in the time-frequency

domain compared to the baseline MT spectrograms, there is no guarantee that this

continuity is maintained in the time domain. As we will see in this chapter, it does not.

Consequently, the recovered time-domain estimates, obtained by performing inverse

Fourier transform on estimated Fourier coefficients for each window, are discontinuous

and distorted around the window boundaries. To resolve this issue, we propose a new

time-domain generative model, the Piecewise Locally Stationary Oscillation (PLSO)

framework, which guarantees stochastic continuity in both the time and time-frequency

domain. This chapter is adapted from the following work

- Andrew H. Song, Demba Ba, and Emery N. Brown, PLSO: A generative framework for

decomposing nonstationary timeseries into piecewise stationary oscillatory components,

Uncertainty in Artificial Intelligence (UAI), 2021
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4.1 Introduction

With the collection of long time-series now common, in areas such as neuroscience

and geophysics, it is important to develop an inference framework for data where

the stationarity assumption is too restrictive. We restrict our attention to data 1)

with spectral properties that change slowly over time and 2) for which decomposition

into several oscillatory components is warranted for interpretation, often the case in

electroencephalogram (EEG) or electrophysiology recordings. One can use bandpass

filtering [89] or methods such as the empirical mode decomposition [90, 91] for these

purposes. However, due to the absence of a generative model, these methods lack a

framework for performing inference. Another popular approach is to perform inference

in the time-frequency (TF) domain on the short-time Fourier transform (STFT) of

the data, assuming stationarity within small intervals. This has led to a rich literature

on inference in the TF domain, such as [92]. A drawback is that most of these

methods focus on estimates for the power spectral density (PSD) and lose important

phase information. To recover the time-domain estimates, additional algorithms are

required [93].

This motivates us to explore time-domain generative models that allow time-domain

inference and decomposition into oscillatory components. We can find examples

based on the stationarity assumption in the signal processing/Gaussian process (GP)

communities. A superposition of stochastic harmonic oscillators, where each oscillator

corresponds to a frequency band, is used in the processing of speech [94] and

neuroscience data [95, 96]. In GP literature [46], the spectral mixture (SM) kernel [97,

98] models the data as samples from a GP, whose kernel consists of the superposition

of localized and frequency-modulated kernels.

These time-domain models can be applied to nonstationary data by partitioning

them into stationary intervals and performing time-domain inference within each

interval. However, we are faced with a different kind of challenge. As the inference

is localized within each interval, the time-domain estimates in different intervals

are independent conditioned on the data and do not reflect the dependence across
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intervals. This also causes discontinuity/distortion of the time-domain estimates near

the interval boundaries, and consequently any quantities derived from these estimates.

To address these shortcomings, we propose a generative framework for data with

slow time-varying spectra, termed the Piecewise Locally Stationary Oscillation (PLSO)

framework1. The main contributions are:

Generative model for piecewise stationary, oscillatory components PLSO

models time-series as the superposition of piecewise stationary, oscillatory components.

This allows time-domain inference on each component and estimation of the time-

varying spectra.

Continuity across stationary intervals The state-space model that underlies

PLSO strikes a balance between ensuring time-domain continuity across piecewise

stationary intervals and stationarity within each interval. Moreover, by imposing

stochastic continuity on the interval-level, PLSO learns underlying smooth time-varying

spectra accurately.

Inference procedure We propose a two-stage inference procedure for the time-

varying spectra and the time-series. By leveraging the Markovian dynamics, the

algorithm combines Kalman filter theory [99] and inexact accelerated proximal gradient

approach [100].

In Section 6.2 we introduce necessary background, followed by the PLSO framework

in Section 4.3. In Section 6.3, we discuss inference for PLSO. In Section 4.5, we discuss

how PLSO relates to other frameworks. In Section 6.5, we present experimental results

and conclude in Section 4.7.

4.2 Background

4.2.1 Notation

We use 𝑗 ∈ {1, . . . , 𝐽} and 𝑘 ∈ {1, . . . , 𝐾} to denote frequency and discrete-time

sample index, respectively. We use 𝜔 ∈ [−𝜋, 𝜋] for normalized frequency. The 𝑗th

1Code is available at https://github.com/andrewsong90/plso.git
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latent process centered at 𝜔 = 𝜔𝑗 is denoted as z𝑗 ∈ C𝐾 , with z𝑗,𝑘 ∈ C denoting the 𝑘th

sample of z𝑗 and zℜ
𝑗,𝑘, zℑ

𝑗,𝑘 its real and imaginary parts. We also represent z𝑗,𝑘 as a R2

vector, ̃︀z𝑗,𝑘 = [zℜ
𝑗,𝑘, zℑ

𝑗,𝑘]T. The elements of z𝑗 are denoted as z𝑗,𝑘:𝑘′ = [z𝑗,𝑘, . . . , z𝑗,𝑘′ ]T.

The state covariance matrix for z𝑗,𝑘 is defined as P𝑗
𝑘 = E[̃︀z𝑗,𝑘 (̃︀z𝑗,𝑘)T]. To express an

enumeration of variables, we use {·} and drop first/last index for simplicity, e.g. {z𝑗}𝑗

instead of {z𝑗}𝐽
𝑗=1.

We use y𝑘 and z𝑗,𝑘 for the discrete-time counterpart of the continuous observation

and latent process, 𝑦(𝑡) and 𝑧𝑗(𝑡). With the sampling frequency 𝑓𝑠 = 1/Δ, we have

y𝑘 = 𝑦(𝑘Δ), z𝑗,𝑘 = 𝑧𝑗(𝑘Δ), and 𝑇 = 𝐾Δ.

4.2.2 Piecewise local stationarity

The concept of piecewise local stationarity (PLS) for nonstationary time-series with

slowly time-varying spectra [83] plays an important role in PLSO. A stationary process

has a constant mean and a covariance function which depends only on the difference

between two time points.

For our purposes, it suffices to understand the following on PLS: 1) It includes local

stationary [101, 102] and amplitude-modulated stationary processes. 2) A PLS process

can be approximated as a piecewise stationary (PS) process (Theorem 1 of [83])

𝑧(𝑡) =
𝑀∑︁

𝑚=1
1(𝑢𝑚 ≤ 𝑡 < 𝑢𝑚+1) · 𝑧𝑚(𝑡), (4.1)

where 𝑧𝑚(𝑡) is a continuous stationary process and the boundaries are 0 = 𝑢1 <

· · · < 𝑢𝑀+1 = 𝑇 . Note that Eq. 4.1 does not guarantee continuity across different PS

intervals,

lim
𝑡→𝑢−

𝑚

𝑧(𝑡) = lim
𝑡→𝑢−

𝑚

𝑧𝑚−1(𝑡) ̸= lim
𝑡→𝑢+

𝑚

𝑧𝑚(𝑡) = lim
𝑡→𝑢+

𝑚

𝑧(𝑡).
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4.3 The PLSO model and its mathematical prop-

erties

Building on the Theorem 1 of [83], PLSO models nonstationary data as PS processes.

It is a superposition of 𝐽 different PS processes {z𝑗}𝑗, with z𝑗 corresponding to

an oscillatory process centered at frequency 𝜔𝑗. PLSO also guarantees stochastic

continuity across PS intervals. We show that piecewise stationarity and continuity

across PS intervals are two competing objectives and that PLSO strikes a balance

between them, as discussed in Section 4.3.2.

Figure 4-1: A simulated example. (a) Time domain. Data (black) around boundaries
(gray) and inferred oscillatory components using PLSO (red) and regularized STFT
(blue). (b) Frequency domain. Spectrum of the data (gray), PLSO components for
𝐽 = 2 (purple) and their sum (red).

Fig. 4-1 shows an example of the PLSO framework applied to simulated data.

In the time domain, the oscillation inferred using the regularized STFT (blue) [19],

which imposes stochastic continuity on the STFT coefficients, suffers from discontinu-

ity/distortion near window boundaries, whereas that inferred by PLSO (red) does not.

In the frequency domain, each PLSO component corresponds to a localized spectrum

𝑆𝑗(𝜔), the sum of which is the PSD 𝛾(𝜔), and is fit to the data STFT (or periodogram)

𝐼(𝜔). We start by introducing the PLSO model for a single window.
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4.3.1 PLSO for stationary data

As a building block for PLSO, we use the discrete stochastic harmonic oscillator for a

stationary time series [103, 94, 95]. The data y are assumed to be a superposition of

𝐽 independent zero-mean components

̃︀z𝑗,𝑘 = 𝜌𝑗R(𝜔𝑗)̃︀z𝑗,𝑘−1 + 𝜀𝑗,𝑘

y𝑘 =
𝐽∑︁

𝑗=1
zℜ

𝑗,𝑘 + 𝜈𝑘,
(4.2)

where R(𝜔𝑗) =

⎛⎜⎝cos(𝜔𝑗) − sin(𝜔𝑗)

sin(𝜔𝑗) cos(𝜔𝑗)

⎞⎟⎠, 𝜀𝑗,𝑘 ∼ 𝒩 (0, 𝛼𝑗I2×2), and 𝜈𝑘 ∼ 𝒩 (0, 𝜎2
𝜈), corre-

spond to the rotation matrix, the state noise, and the observation noise, respectively.

The imaginary component zℑ
𝑗,𝑘, which does not directly contribute to y𝑘, can be seen

as the auxiliary variable to write z𝑗 in recursive form using R(𝜔𝑗) [104]. We assume

P𝑗
1 = 𝜎2

𝑗 · I2×2 ∀𝑗.

We reparameterize 𝜌𝑗 and 𝛼𝑗, using lengthscale 𝑙𝑗 and power 𝜎2
𝑗 , such that 𝜌𝑗 =

exp(−Δ/𝑙𝑗) and 𝛼𝑗 = 𝜎2
𝑗 (1 − 𝜌2

𝑗). Theoretically, this establishes a connection to

1) the stochastic differential equation [105, 106], detailed in Appendix A, and 2)

a superposition of frequency-modulated and localized GP kernels, similar to SM

kernel [97]. Practically, this ensures that 𝜌𝑗 < 1, and thus stability of the process.

Given Eq. 4.2, we can readily express the frequency spectra of PLSO in each

interval, through the autocovariance function. The autocovariance of z𝑗 is given as

𝑄𝑗(𝑛′) = E[zℜ
𝑗,𝑘zℜ

𝑗,𝑘+𝑛′ ] = 𝜎2
𝑗 cos(𝜔𝑗𝑛

′) exp (−𝑛′Δ/𝑙𝑗). It can also be thought of as an

exponential kernel, frequency-modulated by 𝜔𝑗. The spectra for z𝑗, denoted as 𝑆𝑗(𝜔),

is obtained by taking the Fourier transform (FT) of 𝑄𝑗(𝑛′)

𝑆𝑗(𝜔) =
∞∑︁

𝑛′=−∞
𝑄𝑗(𝑛′) exp (−𝑖𝜔𝑛′) = 𝜙𝑗(𝜔) + 𝜙𝑗(−𝜔)

𝜙𝑗(𝜔) =
𝜎2

𝑗 (1− exp (−2Δ/𝑙𝑗))
1 + exp (−2Δ/𝑙𝑗)− 2 exp (−Δ/𝑙𝑗) cos(𝜔 − 𝜔𝑗)

,

with the detailed derivation in Appendix B.
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Given 𝑆𝑗(𝜔), we can show that PSD 𝛾(𝜔) of the entire process ∑︀𝐽
𝑗=1 z𝑗 is simply

𝛾(𝜔) = ∑︀𝐽
𝑗=1 𝑆𝑗(𝜔). First, since z𝑗 is independent across 𝑗, the autocovariance can

be simplified, i.e., E[∑︀𝑗 zℜ
𝑗,𝑘

∑︀
𝑗 zℜ

𝑗,𝑘+𝑛′ ] = ∑︀
𝑗 E[zℜ

𝑗,𝑘zℜ
𝑗,𝑘+𝑛′ ]. Next, using the linearity of

FT, we can conclude that 𝛾(𝜔) is a superposition of individual spectra.

4.3.2 PLSO for nonstationary data

If y is nonstationary, we can still apply stationary PLSO of Eq. 4.2 for the time-domain

inference. However, this implies constant spectra for the entire data (𝑆𝑗(𝜔) and 𝛾(𝜔)

do not depend on 𝑘), which is not suitable for nonstationary time-series for which we

want to track spectral dynamics. This point is further illustrated in Section 6.5.

We therefore segment y into 𝑀 non-overlapping PS intervals, indexed by 𝑚 ∈

{1, . . . ,𝑀}, of length 𝑁 , indexed by 𝑛 ∈ {1, . . . , 𝑁}, such that 𝐾 = 𝑀𝑁 . We then

apply the stationary PLSO to each interval, with additional Markovian dynamics

imposed on 𝜎2
𝑗,𝑚,

log(𝜎2
𝑗,𝑚) = log(𝜎2

𝑗,𝑚−1) + 𝜂𝑗,𝑚

̃︀z𝑗,𝑚𝑁+𝑛 = 𝜌𝑗R(𝜔𝑗)̃︀z𝑗,𝑚𝑁+(𝑛−1) + 𝜀𝑗,𝑚𝑁+𝑛

y𝑚𝑁+𝑛 =
𝐽∑︁

𝑗=1
zℜ

𝑗,𝑚𝑁+𝑛 + 𝜈𝑚𝑁+𝑛,

(4.3)

where 𝜀𝑗,𝑚𝑁+𝑛 ∼ 𝒩 (0, 𝜎2
𝑗,𝑚(1 − 𝜌2

𝑗)I2×2), 𝜂𝑗,𝑚 ∼ 𝒩 (0, 1/
√
𝜆) and 𝜈𝑚𝑁+𝑛 ∼ 𝒩 (0, 𝜎2

𝜈).

We define P𝑗
𝑚,𝑛 as the covariance of ̃︀z𝑗,𝑚𝑁+𝑛, with P𝑗

1,1 = 𝜎2
𝑗,1I2×2,∀𝑗. The graphical

model is shown in Fig. 4-2.

We can understand PLSO as providing a parameterized spectrogram defined by

𝜃 = {𝜆, 𝜎2
𝜈 , {𝑙𝑗}𝑗, {𝜔𝑗}𝑗} and {𝜎2

𝑗,𝑚}𝑗,𝑚 of the time-domain generative model. The

lengthscale 𝑙𝑗 controls the bandwidth of the 𝑗th process, with larger 𝑙𝑗 corresponding

to narrower bandwidth. The variance 𝜎2
𝑗,𝑚 controls the power of z𝑗 and changes across

different intervals, resulting in time-varying spectra 𝑆(𝑚)
𝑗 (𝜔) and PSD 𝛾(𝑚)(𝜔). The

center frequency 𝜔𝑗 , and −𝜔𝑗 , at which 𝑆(𝑚)
𝑗 (𝜔) is maximized, controls the modulation

frequency.
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Figure 4-2: The graphical model for PLSO.

As discussed previously, the segmentation approach for nonstationary time-series

produces distortion/discontinuity artifacts around interval boundaries - The PLSO, as

described by Eq. 4.3, resolves these issues gracefully. We now analyze two mathematical

properties, stochastic continuity and piecewise stationarity, to gain more insights on

how PLSO accomplishes this.

Stochastic continuity

We discuss two types of stochastic continuity, 1) across the interval boundaries and 2)

on {𝜎2
𝑗,𝑚}.

Continuity across the interval boundaries In PLSO, the state-space model

(Eq. 4.3) provides stochastic continuity across different PS intervals. The following

proposition rigorously explains stochastic continuity for PLSO.

Proposition 1. For a given 𝑚, as Δ→ 0, the samples on either side of the interval

boundary, which are ̃︀z𝑗,(𝑚+1)𝑁 and ̃︀z𝑗,(𝑚+1)𝑁+1, converge to each other in mean square,

lim
Δ→0

E[Δ̃︀z𝑗,(𝑚+1)𝑁Δ̃︀zT
𝑗,(𝑚+1)𝑁 ] = 0,

where we use Δ̃︀z𝑗,(𝑚+1)𝑁 = ̃︀z𝑗,(𝑚+1)𝑁+1 − ̃︀z𝑗,(𝑚+1)𝑁 .

Proof. We use the connection between PLSO, which is a discrete-time model, and

its continuous-time counterpart. It suffices to show that limΔ→0 exp(FΔ) = I2×2 and

66



limΔ→0 E[𝜀𝑗,(𝑚+1)𝑁+1𝜀
T
𝑗,(𝑚+1)𝑁+1] = 0. We have,

lim
Δ→0

exp(FΔ) = I2×2 + lim
Δ→0

∞∑︁
𝑘=1

Δ𝑘

𝑘! F𝑘 = I2×2

lim
Δ→0

E[𝜀𝑗,(𝑚+1)𝑁+1𝜀
T
𝑗,(𝑚+1)𝑁+1]/𝜎2

𝑗,𝑚+1

= lim
Δ→0

∫︁ Δ

0
exp (F(Δ− 𝜏)) exp (F(Δ− 𝜏))T 𝑑𝜏 = 0.

Since this implies limΔ→0 E[Δ̃︀z𝑗,(𝑚+1)𝑁Δ̃︀zT
𝑗,(𝑚+1)𝑁 ] = 0, we have convergence in mean

square.

This matches our intuition that as Δ→ 0, the adjacent samples from the same

process should coverge to each other. For PS approaches without the sample-level

continuity, even with the interval-level constraint [107, 19, 56, 108, 109], convergence

is not guaranteed.

We can interpret the continuity in the context of posterior for z𝑗 . For PS approaches

without continuity, we have

𝑝({z𝑗}𝑗 |y) ∝
𝑀∏︁

𝑚=1
𝑝(
{︁
z𝑗,(𝑚−1)𝑁+1:𝑚𝑁

}︁
𝑗
|y(𝑚−1)𝑁+1:𝑚𝑁), (4.4)

where {𝜎2
𝑗,𝑚}𝑗,𝑚 and 𝜃 are omitted for notational ease. This is due to 𝑝({z𝑗}𝑗) =∏︀𝑀

𝑚=1 𝑝({z𝑗,(𝑚−1)𝑁+1:𝑚𝑁}𝑗), as a result of absence of continuity across the intervals.

Consequently, the inferred time-domain estimates are conditionally independent across

the intervals. On the contrary, in PLSO, the time-domain estimates depend on the

entire y, not just on a subset.

Continuity on 𝜎2
𝑗,𝑚 For a given 𝑗, we impose stochastic continuity on log 𝜎2

𝑗,𝑚.

Effectively, this pools together estimates of {𝜎2
𝑗,𝑚}𝑚 to 1) prevent overfitting to the

noisy data spectra and 2) estimate smooth dynamics of {𝜎2
𝑗,𝑚}𝑚. The use of log 𝜎2

𝑗,𝑚

ensures that 𝜎2
𝑗,𝑚 is non-negative.

The choice of 𝜆 dictates the smoothness of {𝜎2
𝑗,𝑚}𝑚, with the two extremes corre-

sponding to the familiar dynamics. If 𝜆 → 0, we treat each window independently.

If 𝜆 → ∞, we treat the data as stationary, as the constraint forces 𝜎2
𝑗,𝑚 = 𝜎2

𝑗 , ∀𝑚.
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Practically, the smooth regularization prevents artifacts in the spectral analysis, arising

from sudden motion or missing data, as demonstrated in Section 6.5.

Piecewise stationarity

For the 𝑚th window to be piecewise stationary, the initial state covariance matrix

P𝑗
𝑚,1 should be the steady-state covariance matrix for the window, denoted as P𝑗

𝑚,∞.

The challenge is transitioning from P𝑗
𝑚,∞ to P𝑗

𝑚+1,∞. Specifically, to ensure

P𝑗
𝑚+1,1 = P𝑗

𝑚+1,∞, given that P𝑗
𝑚,𝑁 = P𝑗

𝑚,∞ ̸= P𝑗
𝑚+1,∞, the variance of the process

noise between the two samples, 𝜀𝑗,(𝑚+1)𝑁+1, has to equal P𝑗
𝑚+1,∞−exp (−2Δ/𝑙𝑗) P𝑗

𝑚,∞.

However, this is infeasible. If P𝑗
𝑚+1,∞ < P𝑗

𝑚,∞, the variance is negative. Even if it

were positive, the limit as Δ → 0 does not equal zero, i.e., P𝑗
𝑚+1,∞ − P𝑗

𝑚,∞. As a

result, the Proposition 1 no longer holds and the trajectory is discontinuous.

In summary, there exists a trade-off between maintaining piecewise stationarity

and continuity across intervals. PLSO maintains continuity across the intervals while

ensuring that the state covariance quickly transitions to the steady-state covariance.

We quantify the speed of transition in the following proposition.

Proposition 2. Assume 𝑙𝑗 ≪ 𝑁Δ, such that P𝑗
𝑚,𝑁 = P𝑗

𝑚,∞. In Eq. 4.3, the difference

between P𝑗
𝑚,∞ and P𝑗

𝑚+1,∞ decays exponentially fast as a function of 𝑛,

P𝑗
𝑚+1,𝑛 = P𝑗

𝑚+1,∞ + exp(−2𝑛Δ
𝑙𝑗

)(P𝑗
𝑚,∞ −P𝑗

𝑚+1,∞).

Proof. We prove this result by induction. We first obtain the steady-state covariance

P𝑗
𝑚,∞, similar to Appendix B. Since we assume P𝑗

1,1 = 𝜎2
𝑗,1I2×2, we can show

that ∀𝑚,𝑛, P𝑗
𝑚,𝑛 is a diagonal matrix, noting that R(𝜔𝑗)RT(𝜔𝑗) = I2×2. Denoting

P𝑗
𝑚,∞ = 𝛼I2×2, we now use the discrete Lyapunov equation

P𝑗
𝑚,∞ = exp(−2Δ/𝑙𝑗)R(𝜔𝑗)P𝑗

𝑚,∞RT(𝜔𝑗)

+ 𝜎2
𝑗,𝑚 (1− exp (−2Δ/𝑙𝑗)) I2×2

⇒ 𝛼 = exp(−2Δ/𝑙𝑗)𝛼 + 𝜎2
𝑗,𝑚 (1− exp (−2Δ/𝑙𝑗))

⇒ P𝑗
𝑚,∞ = 𝜎2

𝑗,𝑚I2×2.
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We now prove the proposition by induction. For fixed 𝑗 and 𝑚, and for 𝑛 = 1,

P𝑗
𝑚+1,1 = exp(−2Δ/𝑙𝑗)R(𝜔𝑗)P𝑗

𝑚,𝑁RT(𝜔𝑗) + 𝜎2
𝑗,𝑚+1 (1− exp (−2Δ/𝑙𝑗)) I2×2

=
{︁
𝜎2

𝑗,𝑚+1 + exp (−2Δ/𝑙𝑗)
(︁
𝜎2

𝑗,𝑚 − 𝜎2
𝑗,𝑚+1

)︁}︁
I2×2.

Assuming the same holds for 𝑛 = 𝑛′ − 1, we have for 𝑛 = 𝑛′,

P𝑗
𝑚+1,𝑛′ = exp(−2Δ/𝑙𝑗)R(𝜔𝑗)P𝑗

𝑚,𝑛′−1RT(𝜔𝑗) + 𝜎2
𝑗,𝑚+1 (1− exp (−2Δ/𝑙𝑗)) I2×2

= exp(−2Δ/𝑙𝑗)𝜎2
𝑗,𝑚+1I2×2 + exp (−2𝑛′Δ/𝑙𝑗)

(︁
𝜎2

𝑗,𝑚 − 𝜎2
𝑗,𝑚+1

)︁
I2×2

+ 𝜎2
𝑗,𝑚+1 (1− exp (−2Δ/𝑙𝑗)) I2×2

=
{︁
𝜎2

𝑗,𝑚+1 + exp (−2𝑛′Δ/𝑙𝑗)
(︁
𝜎2

𝑗,𝑚 − 𝜎2
𝑗,𝑚+1

)︁}︁
I2×2.

By the principle of induction, Eq. 2 holds for 1 ≤ 𝑛 ≤ 𝑁 .

This implies that, except for the transition portion at the beginning of each window,

we can assume stationarity. In practice, we additionally impose an upper bound on 𝑙𝑗
during estimation and also use a reasonably-large 𝑁 . Empirically, we observe that

the transition period has little impact.

4.4 Inference

Given the generative model in Eq. 4.3, our goal is to perform inference on the posterior

distribution

𝑝({z𝑗}𝑗 , {𝜎
2
𝑗,𝑚}𝑗,𝑚 | y, 𝜃)

= 𝑝({𝜎2
𝑗,𝑚}𝑗,𝑚 | y, 𝜃)⏟  ⏞  

window-level posterior

· 𝑝({z𝑗}𝑗 | {𝜎
2
𝑗,𝑚}𝑗,𝑚,y, 𝜃)⏟  ⏞  

sample-level posterior

. (4.5)

We can learn 𝜃 or fix the parameters to specific values informed by domain knowledge,

such as the center frequency or bandwidth of the processes. The posterior distribution

factorizes into two terms as in Eq. 4.5, the window-level posterior 𝑝({𝜎2
𝑗,𝑚}𝑗,𝑚|y, 𝜃) and

the sample-level posterior 𝑝({z𝑗}𝑗|{𝜎2
𝑗,𝑚}𝑗,𝑚,y, 𝜃). Accordingly, we break the inference
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into two stages.

Stage 1 We minimize the window-level negative log-posterior, with respect to 𝜃

and {𝜎2
𝑗,𝑚}𝑗,𝑚. Specifically, we obtain maximum likelihood (ML) estimate 𝜃ML and

maximum a posteriori (MAP) estimate {̂︀𝜎2
𝑗,𝑚,MAP}𝑗,𝑚. We drop subscripts ML and

MAP for notational simplicity.

Stage 2 Given {̂︀𝜎2
𝑗,𝑚}𝑗,𝑚 and 𝜃, we perform inference on the sample-level posterior.

This includes computing the mean ̂︀z𝑗 = E[z𝑗|{̂︀𝜎2
𝑗,𝑚}𝑗,𝑚,y, 𝜃] and credible intervals,

which quantifies the uncertainty of the estimates, or any statistical quantity derived

from the posterior distribution.

4.4.1 Optimization of {𝜎2
𝑗,𝑚}𝑗,𝑚 and 𝜃

We factorize the posterior, 𝑝({𝜎2
𝑗,𝑚}𝑗,𝑚 | y, 𝜃) ∝ 𝑝(y | {𝜎2

𝑗,𝑚}𝑗,𝑚, 𝜃) · 𝑝({𝜎2
𝑗,𝑚}𝑗,𝑚 | 𝜃).

As the exact inference is intractable, we instead minimize the negative log-posterior,

− log 𝑝({𝜎2
𝑗,𝑚}𝑗,𝑚 | y, 𝜃). This is an empirical Bayes approach [110], since we estimate

{𝜎2
𝑗,𝑚}𝑗,𝑚 using the marginal likelihood 𝑝(y | {𝜎2

𝑗,𝑚}𝑗,𝑚, 𝜃). The smooth hyperprior

provides the MAP estimate for {𝜎2
𝑗,𝑚}𝑗,𝑚.

We use the Whittle likelihood [111], defined for stationary time-series in the

frequency domain, for the log-likelihood 𝑓({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) = log 𝑝(y | {𝜎2

𝑗,𝑚}𝑗,𝑚, 𝜃),

𝑓({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) = −1

2

𝑀,𝑁∑︁
𝑚,𝑛=1

log(𝛾(𝑚)(𝜔𝑛) + 𝜎2
𝜈) + 𝐼(𝑚)(𝜔𝑛)

𝛾(𝑚)(𝜔𝑛) + 𝜎2
𝜈

, (4.6)

where the log-likelihood is the sum of the Whittle likelihood computed for each inter-

val, with discrete frequency 𝜔𝑛 = 2𝜋𝑛/𝑁, and data STFT (periodogram) 𝐼(𝑚)(𝜔𝑛) =⃒⃒⃒∑︀𝑁
𝑛′=1 exp (−2𝜋𝑖(𝑛′ − 1)(𝑛− 1)/𝑁) y𝑚𝑁+𝑛′

⃒⃒⃒2
. The Whittle likelihood, which is non-

convex, enables frequency-domain parameter estimation as a computationally more

efficient alternative to the time domain estimation [112]. The concave log-prior

𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) = log 𝑝({𝜎2

𝑗,𝑚}𝑗,𝑚 | 𝜃), which arises from the continuity on {𝜎2
𝑗,𝑚}𝑗,𝑚, is

given as

𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) = −𝜆2

𝐽∑︁
𝑗=1

𝑀∑︁
𝑚=1

(︁
log 𝜎2

𝑗,𝑚 − log 𝜎2
𝑗,𝑚−1

)︁2
. (4.7)
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This yields the following nonconvex problem

min
{𝜎2

𝑗,𝑚}𝑗,𝑚,𝜃
− log 𝑝

(︁
{𝜎2

𝑗,𝑚}𝑗,𝑚 | y, 𝜃
)︁

= min
{𝜎2

𝑗,𝑚}𝑗,𝑚,𝜃
−𝑓({𝜎2

𝑗,𝑚}𝑗,𝑚; 𝜃)− 𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃).

(4.8)

We optimize Eq. 4.8 by block coordinate descent [113] on {𝜎2
𝑗,𝑚}𝑗,𝑚 and {𝜎2

𝜈 , {𝑙𝑗}𝑗, {𝜔𝑗}𝑗}.

For 𝜎2
𝜈 , {𝑙𝑗}𝑗, and {𝜔𝑗}𝑗, we minimize −𝑓({𝜎2

𝑗,𝑚}𝑗,𝑚; 𝜃), since 𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) does not

affect them. We perform conjugate gradient descent on {𝑙𝑗}𝑗 and {𝜔𝑗}𝑗.

Estimation for 𝜎2
𝜈

There are two possible ways to estimate the observation noise variance 𝜎2
𝜈 . The first

approach is to perform maximum likelihood estimation of 𝑓({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) with respect

to 𝜎2
𝜈 . The second approach, which we found to work better in practice and use

throughout the manuscript, is to directly estimate it from the Fourier transform of the

data. Given a cutoff frequency 𝜔𝑐, informed by domain knowledge, we take the average

power of the Fourier transform of y in [𝜔𝑐, 𝑓𝑠/2]. For instance, it is widely known that

the spectral content below 40 Hz in anesthesia EEG dataset is physiologically relevant

and we use 𝜔𝑐 ≃ 40 Hz.

Optimization of {𝜎2
𝑗,𝑚}𝑗,𝑚

We introduce an algorithm to compute a local optimal solution of {𝜎2
𝑗,𝑚}𝑗,𝑚 for the

nonconvex optimization problem in Eq. 4.8, by leveraging the regularized temporal

structure of {𝜎2
𝑗,𝑚}𝑗,𝑚. It extends the inexact accelerated proximal gradient (APG)

method [100], by solving the proximal step with a Kalman filter/smoother [99]. This

follows since computing the proximal operator for 𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃) is equivalent to MAP

estimation for 𝐽 independent 1-dimensional linear Gaussian state-space models

{log 𝜎(𝑙+1),2
𝑗,𝑚 }𝑗,𝑚 = prox−𝛼(𝑙)𝑔(v(𝑙))

= arg min
{𝜎2

𝑗,𝑚}𝑗,𝑚

∑︀𝐽,𝑀
𝑗,𝑚 (v(𝑙)

𝑗,𝑚 − log 𝜎2
𝑗,𝑚)2

2𝛼(𝑙) − 𝑔({𝜎2
𝑗,𝑚}𝑗,𝑚)⏟  ⏞  ∑︀𝐽

𝑗=1 𝑞𝑗

(4.9)
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where 𝛼(𝑙) > 0 is a step-size for the 𝑙th iteration, 𝑞𝑗 = ∑︀𝑀
𝑚=1

(v(𝑙)
𝑗,𝑚−log 𝜎2

𝑗,𝑚)2

2𝛼(𝑙) + 𝜆
2 (log 𝜎2

𝑗,𝑚−

log 𝜎2
𝑗,𝑚−1)2, and v(𝑙)

𝑗,𝑚 = log 𝜎(𝑙),2
𝑗,𝑚 + 𝛼(𝑙) 𝜕𝑓({𝜎2

𝑗,𝑚}𝑗,𝑚)
𝜕 log 𝜎2

𝑗,𝑚

⃒⃒⃒⃒
{𝜎

(𝑙),2
𝑗,𝑚 }𝑗,𝑚

.

The 𝑗th optimization problem, min{𝜎2
𝑗,𝑚}𝑚

𝑞𝑗 , is equivalent to estimating the mean of

the posterior for {log 𝜎2
𝑗,𝑚}𝑚 in a linear Gaussian state-space model with observations

{v(𝑙)
𝑗,𝑚}𝑚, observation noise variance 𝛼(𝑙), and state variance 1/𝜆. Therefore, the

solution can efficiently be computed with 𝐽 1-dimensional, Kalman filters/smoothers,

with the computational complexity of 𝑂(𝐽𝑀).

Note that Eq. 4.9 holds for all non-negative 𝜆. If 𝜆 = 0, the proximal operator is

an identity operator, as log 𝜎(𝑙+1),2
𝑗,𝑚 = v(𝑙)

𝑗,𝑚. This is a gradient descent with a step-size

rule. If 𝜆 → ∞, we have log 𝜎2
𝑗,𝑚 = log 𝜎2

𝑗,𝑚−1, ∀𝑚, which leads to log 𝜎(𝑙+1),2
𝑗,𝑚 =

(1/𝑀)∑︀𝑀
𝑚=1 v(𝑙)

𝑗,𝑚. The algorithm is guaranteed to converge when 𝛼(𝑙) < 1/𝐶, where

𝐶 is the Lipschitz constant for 𝑓({𝜎2
𝑗,𝑚}𝑗,𝑚; 𝜃). In practice, we select 𝛼(𝑙) according

to the step-size rule [114]. In Appendix F & G, we present the full algorithm for

optimizing {𝜎2
𝑗,𝑚}𝑗,𝑚 and a derivation for 𝐶.

4.4.2 Inference for 𝑝({z𝑗}𝑗 | {𝜎2
𝑗,𝑚}𝑗,𝑚,y, 𝜃)

We perform inference on the posterior distribution 𝑝({z𝑗}𝑗 | {̂︀𝜎2
𝑗,𝑚}𝑗,𝑚,y, 𝜃). Since this

is a Gaussian distribution, the mean trajectories {̂︀z𝑗}𝑗 and the credible intervals can

be computed analytically. Moreover, Eq. 4.3 is a linear Gaussian state-space model,

we can use Kalman filter/smoother for efficient computation with computational

complexity 𝑂(𝐽2𝐾), further discussed In Appendix H. Since we use the point

estimate {̂︀𝜎2
𝑗,𝑚}𝑗,𝑚, the credible interval for {̂︀z𝑗}𝑗 will be narrower compared to the

full Bayesian setting which accounts for all values of {𝜎2
𝑗,𝑚}𝑗,𝑚.

Monte Carlo Inference

We can also obtain posterior samples and perform Monte Carlo (MC) inference on

any posterior-derived quantity. To generate the MC trajectory samples, we use the

forward-filter backward-sampling (FFBS) algorithm [115]. Assuming 𝑆 number of

MC samples, the computational complexity for FFBS is 𝑂(𝑆𝐽2𝐾), since for each
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sample, the algorithm uses Kalman filter/smoother for sampling. This is different from

generating samples with the interval-specific posterior in Eq. 4.4. In the latter case,

the FFBS algorithm is run 𝑀 times, the samples of which have to be concatenated to

form an entire trajectory. With PLSO, the trajectory sample is conditioned on the

entire observation and is continuous across the intervals.

One quantity of interest is the phase. We obtain the phase as 𝜑𝑗,𝑘 = tan−1(zℑ
𝑗,𝑘/zℜ

𝑗,𝑘).

Since tan−1(·) is a non-linear operation, we compute the mean and credible inter-

val with MC samples through the FFBS algorithm. Given the posterior-sampled

trajectories {z(𝑠)
𝑗 }𝑗,𝑠, where 𝑠 ∈ {1, . . . , 𝑆} denotes MC sample index, we estimatê︀𝜑𝑗,𝑘 = (1/𝑆)∑︀𝑆
𝑠=1 tan−1(zℑ,(𝑠)

𝑗,𝑘 /zℜ,(𝑠)
𝑗,𝑘 ), and use empirical quantiles for the associated

credible interval.

4.4.3 Choice of 𝐽 and 𝜆

We choose 𝐽 that minimizes the Akaike Information Criterion (AIC) [116], defined as

AIC(𝐽) = −(2/𝑀) · log 𝑝(y | {̂︀𝜎2
𝑗,𝑚}𝑗,𝑚, 𝜃) + 2 · 3 · 𝐽, (4.10)

where 3 · 𝐽 corresponds to the number of parameters ({𝑙𝑗}𝑗, {𝜔𝑗}𝑗, {𝜎2
𝑗,𝑚}𝑗). The

regularization parameter 𝜆 is determined through a two-fold cross-validation, where

each fold is generated by aggregating even/odd sample indices [18].

4.4.4 Choice of window length 𝑁

The choice of window length 𝑁 presents the tradeoff between 1) spectral resolution

and 2) the temporal resolution of the spectral dynamics [89]. For a shorter window,

the estimated spectral dynamics have a finer temporal resolution, coarser spectral

resolution, and higher variance. For a longer window, these trends are reversed.

This suggests that the choice is application-dependent. For electrophysiology data,

a window on the order of seconds is used, as scientific interpretations are made on

the basis of fine spectral resolution (< 1Hz). For audio signal processing [117], short

windows (10 ∼ 100 ms) are used, since audio data is highly nonstationary and thus
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requires fine temporal resolution for processing. A survey of window lengths used in

different applications can be found in the supporting information of [19].

4.4.5 Initialization

For a given number of components 𝐽 , we first construct the spectrogram of the data

using STFT and identify the frequency bands with prominent power, i.e., frequency

bands whose average power exceeds pre-determined threshold. The center frequencies

of these bands serve as the initial center frequencies {𝜔init
𝑗 }𝑗, which are either fixed

throughout the algorithm or further refined through the estimation algorithm in the

main text. If 𝐽 exceeds the number of identified frequency bands from the spectrogram,

1) we first place {𝜔init
𝑗 }𝑗 in the prominent frequency bands and 2) we then place the

remaining components uniformly spread out in [0, 𝜔𝑐], where 𝜔𝑐 is a cutoff frequency

to be further determined in the next section. As for {𝑙init
𝑗 }𝑗, we set it to be a certain

fraction of the corresponding {𝜔init
𝑗 }𝑗 . We then fit {𝜎2

𝑗,𝑚}𝑗,𝑚 and 𝜃 with 𝜆 = 0, through

the procedure explained in Stage 1. We finally use these estimates as initial values for

other values of 𝜆.

4.5 Related works

We examine how PLSO relates to other nonstationary frameworks.

STFT/Regularized STFT In STFT, the harmonic basis is used, whereas quasi-

periodic components are used for PLSO, which allows capturing of broader spectral

content. Recent works regularize STFT coefficients with stochastic continuity across

the windows, to infer smooth spectral dynamics [18, 19]. However, this regularization

leads to discontinuities at window boundaries.

Piecewise stationary GP GP regression and parameter estimation are performed

within each interval [118, 119]. Consequently, the recovered trajectories are discontin-

uous. Also, the inversion of covariance matrix leads to an expensive inference. For

example, the time-complexity of mean trajectory estimation is 𝑂(𝑀𝑁3) = 𝑂(𝑁2𝐾),

whereas the time-complexity for PLSO is 𝑂(𝐽2𝐾). Considering that the typical
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sampling frequency for electrophysiology data is ∼ 103 (Hz) and windows are several

seconds, which leads to 𝑁 ∼ 103, PLSO is computationally more efficient. In the

Appendix I, we confirm this through an experiment.

Time-varying Autoregressive model (TVAR) The TVAR model [120] is given

as

y𝑘 =
𝑃∑︁

𝑝=1
𝑎𝑝,𝑘y𝑘−𝑝 + 𝜀𝑘,

with the time-varying coefficients {𝑎𝑝,𝑘}𝑝. Consequently, it does not suffer from

discontinuity issues. TVAR can also be approximately decomposed into oscillatory

components via eigen-decomposition of the transition matrix [121]. However, since the

eigen-decomposition changes at every sample, this leads to an ambiguous interpretation

of the oscillations in the data, as we discuss in Section 6.5.

RNN frameworks Despite the popularity of recurrent neural networks (RNN) for

time-series applications [122], we believe PLSO is more appropriate for time-frequency

analysis for two reasons.

1. RNNs operate in the time-domain with the goal of prediction/denoising and

consequently less emphasis is placed on local stationarity or estimation of second-

order statistics. Performing time-frequency analysis requires segmenting the

RNN outputs and applying the STFT, which yields noisy spectral estimates.

2. RNN is not a generative framework. Although variational framework can be

combined with RNN [123, 55], the use of variational lower bound objective could

lead to suboptimal results. On the other hand, PLSO is a generative framework

that maximizes the true log-posterior.

4.6 Experiments

We apply PLSO to three settings: 1) A simulated dataset 2) local-field potential

(LFP) data from the rat hippocampus, and 3) EEG data from a subject under

anesthesia.
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We use PLSO with 𝜆 = 0, 𝜆→∞, and 𝜆 determined by cross-validation, 𝜆CV. We

use interval lengths chosen by domain experts. As baselines, we use 1) regularized

STFT (STFT-reg.) and 2) Piecewise stationary GP (GP-PS). For GP-PS, we use the

same {̂︀𝜎2
𝑗,𝑚}𝑗,𝑚 and ̂︀𝜃 as PLSO with 𝜆 = 0, so that the estimated PSD of GP-PS and

PLSO are identical. This lets us explain differences in time-domain estimates by the

fact that PLSO operates in the time-domain.

4.6.1 Simulated dataset

We simulate from the following model for 1 ≤ 𝑘 ≤ 𝐾

y𝑘 = 10
(︃
𝐾 − 𝑘
𝐾

)︃
zℜ

1,𝑘 + 10 cos4(2𝜋𝜔0𝑘)zℜ
2,𝑘 + 𝜈𝑘,

where z1,𝑘 and z2,𝑘 are as in Eq. 4.2, with (𝜔0, 𝜔1, 𝜔2) = (0.04, 1, 10) Hz, 𝑓𝑠 = 200 Hz,

𝑇 = 100 seconds, 𝑙1 = 𝑙2 = 1, and 𝜈𝑘 ∼ 𝒩 (0, 25). This stationary process comprises

two amplitude-modulated oscillations, namely one modulated by a slow-frequency

sinusoid and the other a linearly-increasing signal [18]. We simulate 20 realizations

and train on each realization, assuming 2-second PS intervals. For PLSO, we use

𝐽 = 2. Additional details are provided in the Appendix J.

Results We use two metrics: 1) Mean squared error (MSE) between the mean

estimate ẑ𝑗 and the ground truth zTrue
𝑗 and 2) jump(z𝑗). The averaged results are

shown in Table 4.1. We define jump(z𝑗) = 1
𝑀−1

∑︀𝑀−1
𝑚=1 |ẑ𝑗,𝑚𝑁+1 − ẑ𝑗,𝑚𝑁 | to be the level

of discontinuity at the interval boundaries. If jump(z𝑗) greatly exceeds jump(zTrue
𝑗 ),

this implies the existence of large discontinuities at the boundaries.

Fig. 6-2 shows the true data in the time domain and spectrogram results. Fig. 6-2(c)

shows that although the regularized STFT detects activities around 1 and 10 Hz, it

fails to delineate the time-varying spectral pattern. Fig. 6-2(d) shows that PLSO with

stationarity (𝜆→∞) assumption is too restrictive. Fig. 6-2(e), (f) show that both

PLSO with independent window assumption (𝜆 = 0) and PLSO with cross-validated

𝜆 (𝜆 = 𝜆CV) are able to capture the dynamic pattern, with the latter being more

effective in recovering the smooth dynamics across different PS intervals.
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Figure 4-3: Spectrograms for simulation (in dB). (a) True data (b) True spectrogram
(c) regularized STFT (d) PLSO with 𝜆 → ∞ (e) PLSO with 𝜆 = 0 (f) PLSO with
𝜆 = 𝜆CV.

Table 4.1: Simulation results. For jump(z𝑗) and MSE, left/right metrics correspond
to z1/z2, respectively.

jump(z𝑗) MSE IS div.
Truth 0.95/12.11 0/0 0
𝜆 = 0 0.26/10.15 2.90/3.92 4.08
𝜆→∞ 0.22/10.32 3.26/4.53 13.78
𝜆 = 𝜆CV 0.25/10.21 2.88/3.91 3.93

STFT-reg. 49.59/81.00 6.89/10.68 N/A
GP-PS 16.99/23.28 3.00/4.04 4.08

For GP-PS and STFT-reg., jump(z𝑗) exceeds jump(zTrue
𝑗 ), indicating discontinuities

at the boundaries. An example is in Fig. 4-1. PLSO produces a similar jump metric

as the ground truth metric, indicating the absence of discontinuities. We attribute

the lower value to Kalman smoothing. For the TF domain, we use Itakura-Saito (IS)

divergence [88] as a distance measure between the ground truth spectra and the PLSO
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Figure 4-4: Result of analyses of hippocampal data. (a) Theta phase distribution of pop-
ulation neuron spikes, computed with bandpass-filtered LFP (black), PLSO estimate
of ẑ2 with credible intervals estimated from 200 posterior samples (red). Horizontal
gray line indicates the uniform distribution. (b-c) Spectrogram (in dB) for 500 seconds
(b) STFT (c) PLSO with 𝜆CV. Learned frequencies are (̂︀𝜔1, ̂︀𝜔2, ̂︀𝜔3) = (2.99, 7.62, 15.92)
Hz, with ̂︀𝜔4 ∼ ̂︀𝜔5 > 25 Hz. (d-e) Time-domain results. (d) Reconstructed signal (e)
phase for ̂︀z2 and interval boundary (vertical gray), with bandpass-filtered data (dotted
black), STFT-reg. (blue), and PLSO (red). Shaded area represents 95% credible
interval from 𝑆 = 200 sample trajectories.

estimates. That the highest divergence is given by 𝜆→∞ indicates the inaccuracy of

the stationarity assumption.

4.6.2 LFP data from the rat hippocampus

We use LFP data collected from the rat hippocampus during open field tasks [124],

with 𝑇 = 1, 600 seconds and 𝑓𝑠 = 1, 250 Hz2. The theta neural oscillation band

(5 ∼ 10 Hz) is believed to play a role in coordinating the firing of neurons in the

entorhinal-hippocampal system and is important for understanding the local circuit

computation.

We fit PLSO with 𝐽 = 5, which minimizes AIC as shown in Table 4.2, with

2-second PS interval. The estimated ̂︀𝜔2 is 7.62 Hz in the theta band. To obtain the

phase for non-PLSO methods, we perform the Hilbert transform on the theta-band

reconstructed signal. With no ground truth, we bandpass-filter (BPF) the data in the

theta band for reference.
2We use channel 1 of mouse ec013.528 for the LFP. The population spikes were simultaneously

recorded.
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Table 4.2: AIC as a function of 𝐽 for Hippocampus data

J 1 2 3 4 5 6
AIC 2882 2593 2566 2522 2503 2505

Spike-phase coupling Fig. 4-4(a) shows the theta phase distribution of popu-

lation neuron spikes in the hippocampus. The PLSO-estimated distribution (red)

confirms the original results analyzed with bandpass-filtered signal (black) [124]–the

hippocampal spikes show a strong preference for a specific phase, 𝜋 for this dataset,

of the theta band. Since PLSO provides posterior sample-trajectories for the entire

time-series, we can compute as many realizations of the phase distribution as the num-

ber of MC samples. The resulting credible interval excludes the uniform distribution

(horizontal gray), suggesting the statistical significance of strong phase preference.

Denoised spectrogram Fig. 4-4(b-c) shows the estimated spectrogram. We

observe that PLSO denoises the spectrogram, while retaining sustained power at
̂︀𝜔2 = 7.62 Hz and weaker bursts at (̂︀𝜔1, ̂︀𝜔3) = (2.99, 15.92) Hz.

Time domain discontinuity Fig. 4-4(d-e) show a segment of the estimated

signal and phase near a boundary for ̂︀𝜔2. While the estimates from STFT-reg.

(blue) and PLSO (red) follow the BPF result closely, the STFT-reg. estimates

exhibit discontiunity/distortion near the boundary. In Fig. 4-4(e), the phase jump

at the boundary is 38.4 degrees. We also computed jump(𝜑2) in degrees/sample.

Considering that the theta band roughly progresses 2.16 (= 7.5(Hz)× 360/1250 (Hz))

degrees/sample, we observe that BPF (2.23), as expected, and PLSO (𝜆CV : 2.40,

𝜆 → ∞: 2.66) are not affected by the boundary effect. This is not the case for

STFT-reg. (26.83) and GP-PS (25.91).

Comparison with TVAR Fig. 4-5(a-b) shows a segment of TVAR inference

results. Specifically, Fig. 4-5(a) and (b) shows a time-varying center frequency ̂︀𝜔1

and the corresponding reconstruction, for the lowest frequency component. Note

that the eigenvalues, which correspond to {𝜔𝑗}𝑗, and the eigenvectors, which are

used for oscillatory decomposition, are derived from the estimated TVAR transition
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Figure 4-5: Hippocampus data. (a) time-varying ̂︀𝜔1 for TVAR. (b-d) Inferred mean
trajectory (red) for (b) TVAR 𝑗 = 1, (c) PLSO 𝑗 = 1, and (d) PLSO 𝑗 = 2, with raw
data (black).

matrix. Consequently, we cannot explicitly control {𝜔𝑗}𝑗, as shown in Fig. 4-5(a),

the bandwidth of each component, as well as the number of components 𝐽 . This

is further complicated by the fact that the transition matrix changes every sample.

Fig. 4-5(b) shows that this ambiguity results in the lowest-frequency component of

TVAR explaining both the slow (0.1 ∼ 2 Hz) and theta components. With PLSO,

on the contrary, we can explicitly specify or learn the parameters. Fig. 4-5(c-d)

demonstrates that PLSO is able to delineate the slow/theta components without any

discontinuity.

4.6.3 EEG data from the human brain under propofol anes-

thesia

We apply PLSO to the EEG data from a subject anesthetized with propofol anesthetic

drug, to assess whether PLSO can leverage regularization to recover smooth spectral
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dynamics, which is widely-observed during propofol-induced unconsciousness3 [26].

The data last 𝑇 = 2,300 seconds, sampled at 𝑓𝑠 = 250 Hz. The drug infusion starts at

𝑡 = 0 and the subject loses consciousness around 𝑡 = 260 seconds. We use 𝐽 = 6 and

assume a 4-second PS interval.

Figure 4-6: Spectrogram (in dB) under propofol anesthesia. PLSO with (a) 𝜆 = 0 (b)
𝜆 = 𝜆CV (c) 𝜆→∞.

Smooth spectrogram Fig. 4-6(a-b) shows a segment of the PLSO-estimated

spectrogram with 𝜆 = 0 and 𝜆 = 𝜆CV. They identify strong slow (0.1 ∼ 2 Hz)

and alpha oscillations (8 ∼ 15 Hz), both well-known signatures of propofol-induced

unconsciousness. We also observe that the alpha band power diminishes between 1,200

and 1,350 seconds, suggesting that the subject regained consciousness before becoming

unconscious again. PLSO with 𝜆 = 0 exhibits PSD fluctuation across windows, since

{𝜎2
𝑗,𝑚}𝑗,𝑚 are estimated independently. The stationary PLSO (𝜆→∞) is restrictive

and fails to capture spectral dynamics (Fig. 4-6(c)). In contrast, PLSO with 𝜆CV

exhibits smooth dynamics by pooling together estimates from the neighboring windows.
3The EEG recording is part of de-identified data collected from patients at Massachusetts General

Hospital (MGH) as a part of a MGH Human Research Committee-approved protocol.
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The regularization also helps remove movement-related artifacts, shown as vertical

lines in Fig. 4-6(a), around 700 ∼ 800/1,200 seconds, and spurious power in 20 ∼ 25

Hz band. In summary, PLSO with regularization enables smooth spectral dynamics

estimation and spurious noise removal.

Fig. 4-7 is another example of PLSO in action for different propofol anesthesic

EEG data. Similar to the previous example, we observe the benefits of applying PLSO

to the nonstationary timeseries data.

Figure 4-7: Spectrogram (in dB) under propofol anesthesia. (a) STFT of the data (b)
PLSO with 𝜆→∞ (c) PLSO with 𝜆 = 0 (d) PLSO with 𝜆 = 𝜆CV.
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4.7 Conclusion

We presented the Piecewise Locally Stationary Oscillatory (PLSO) framework to model

nonstationary time-series data with slowly time-varying spectra, as the superposition

of piecewise stationary (PS) oscillatory components. PLSO strikes a balance between

stochastic continuity of the data across PS intervals and stationarity within each

interval. For inference, we introduce an algorithm that combines Kalman theory and

nonconvex optimization algorithms. Applications to simulated/real data show that

PLSO preserves time-domain continuity and captures time-varying spectra. Future

directions include 1) the automatic identification of PS intervals and 2) the expansion

to higher-order autoregressive models and diverse priors on the parameters that enforce

continuity across intervals.
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Chapter 5

Convolutional Dictionary learning

with grid refinement

Primer We now turn our attention to a completely different topic from the time-

frequency analysis. We study how we can incorporate the smoothness of the dictionary

elements into the convolutional dictionary learning (CDL) framework. This chapter is

adapted from the following work

• Andrew H. Song, Francisco Flores, and Demba Ba, Convolutional Dictionary

Leraning with Grid Refinement, IEEE Transactions on Signal Processing, 2020

5.1 Introduction

In recent years, the problem of decomposing an observed signal into a sparse linear

combination of elements drawn from a known dictionary, often referred to as sparse

approximation [125], has been of great interest to the signal processing community.

Specifically, representing the signal as the superposition of shifted (or shift-invariant)

templates with local support has received special attention [41]. This is due to the

observation that many examples of real-world signals can be modeled in this manner.

For instance, signals arising from electrophysiological recordings of neural activity can

be modeled as the sum of distinct action potentials produced by the neurons near

recording electrodes [126]. In studies involving electroencephalography (EEG), there
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is growing evidence that the signal should be studied in terms of the aggregation

of transient events with specific templates [127]. In microscopy imaging of single

molecules, an image of photoactivated single molecules can be modeled as a point

spread function (PSF) placed at each molecule’s location [128].

A generative model for these signals is the convolution, on a continuous domain,

between templates, a collection of which is referred to as dictionary, and a set of scaled

and shifted delta functions, referred to as codes. For one-dimensional signals, the

amplitude and the location of each code correspond to the magnitude and the time

when an event occurs, respectively. Given an observed signal, the goal of Convolutional

Dictionary Learning (CDL) frameworks [129] is to estimate the templates and the

codes under the generative model, with sparsity constraints on the codes. These

typically alternate between two steps, a Convolutional Sparse Coding (CSC) step to

estimate the codes, and a Convolutional Dictionary Update (CDU) step to estimate

the dictionary.

One of the drawbacks of existing CDL frameworks is the assumption that the

domain of the signal of interest is discrete when, in fact, the underlying signal occurs

on a continuous domain. For one-dimensional signals, the discrete approximation

of the generative model introduces errors known as time-quantization errors [130].

Specifically, if an event in the continuous-time model were to occur at a time that

does not coincide with any point on the discrete-time sampling grid, the CSC step

would inaccurately identify the event as occurring at a time on the grid. Consequently,

the dictionary estimate would be inaccurate in the CDU step.

Recently, sampling-grid-free methods have been introduced to address the sen-

sitivity of CSC to the discrete approximation of the continuous generative model.

Continuous Basis Pursuit (CBP) [131], a convex sparse regression framework, uses as

new set of templates, derived from the original dictionary, to approximate the subspace

of continuous-time-shifted copies of the original templates. With this new dictionary, it

solves an ℓ1-regularized convex regression problem, which yields continuous estimates

of the codes. Another line of works employs a greedy continuous framework, based

on the Frank-Wolfe algorithm (conditional gradient method) [132], [133], [134], to
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estimate continuous codes. This method first greedily searches for likely neighborhoods

of the codes, and then performs local optimization within these to identify accurate

off-the-grid code locations. Despite both families of methods being more accurate

compared to approaches that operate on the sampling grid, they do not scale well

with the size of modern datasets. More importantly, they do not include a CDU step,

and thus cannot be considered CDL frameworks.

To address the aforementioned drawbacks, we propose a CDL framework that

1) is scalable and efficient and 2) estimates a dictionary in a manner that accounts

for events occurring off the discrete sampling grid. The main principle behind our

framework is grid refinement: different from the above-mentioned grid-free methods,

all our operations occur on a refined grid several times finer than the original grid.

Specifically, we use smoothly-interpolated versions of the templates on the original

grid to obtain templates on the refined grid. Performing CSC and CDU on the

fine-resolution grid is more accurate than on the original grid. Grid refinement has

two additional advantages. First, it allows us to extend CSC approaches based on

greedy methods, which are known to be less computationally demanding than basis

pursuit and ℓ1-regularized methods [135, 136]. An efficient greedy implementation

significantly offsets the increase in computational cost due to the refined sampling

grid. Second, it allows us to learn the dictionary while incorporating the amplitudes

and the times of events that occur off the grid.

Our contributions are the following:

• A dictionary update framework that handles non-integer delays For

the first time, we introduce a CDU algorithm that accounts for estimates of the

sparse codes from the CSC step that correspond to events off the grid. When

compared to conventional dictionary update algorithms, the templates learned

from our approach are more accurate (Figs. 5-5, 5-9).

• A fast convolutional greedy pursuit algorithm We propose an efficient

algorithm for convolutional greedy pursuit under a discrete generative model.

When the events from the continuous model occur on the sampling grid, we term
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this algorithm Convolutional Orthogonal Matching Pursuit (COMP). COMP

is much faster than grid-free methods (Table 5.4). LocOMP [137] is a related

algorithm that differs from ours in one of the steps.

• A CSC framework that handles non-integer delays We introduce a dis-

crete generative model that accounts for events that do not occur on the original

sampling grid, but rather on a finer grid, with tunable precision. This model is

inspired by the concept of smooth interpolation in digital signal processing. To

perform CSC, we extend COMP and call the resulting algorithm COMP-INTERP.

Compared to the conventional grid-based CSC frameworks, COMP-INTERP is

more accurate in identifying the locations where off-the-grid events occur and

achieves an accuracy similar to grid-free methods (Fig. 5-4).

The rest of our treatment begins in Section 5.2, where we introduce the generative

model and the CDL objective functions. In Section 6.2, we review existing work. In

Section 5.4, we introduce COMP-INTERP, an efficient CSC algorithm that accounts

for events that occur off the grid. In Section 5.5, we introduce a CDU step that can

handle events off the grid. We use simulated and real datasets to show the performance

of our algorithms in Section 6.5. We conclude in Section 6.6.

5.2 Generative Model and Problem setup

The framework we propose for CDL with grid refinement applies to signals with

an arbitrary finite-dimensional domain. Our mathematical exposition focuses on

signals with a one-dimensional domain, namely time, with the understanding that a

generalization to signals whose domain is of higher dimension is simply a matter of

replacing one-dimensional convolutions with multi-dimensional ones. We assume that

the shift-invariant templates occur fully within the domain of the signal, i.e., we do

not consider border scenarios.
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5.2.1 Notation

Table 5.1 summarizes our notation. We introduce additional notation as necessary, at

the beginning of the section that uses it first. We use the expressions event off the

grid and event with a non-integer delay interchangeably. We define convolution, *,

and cross-correlation, ⋆, between h and y as follows

(h * y)[𝑛] =
∑︁
𝑚

h[𝑚]y[𝑛−𝑚],

(h ⋆ y)[𝑛] =
∑︁
𝑚

h[𝑚]y[𝑛+𝑚].
(5.1)

We treat h and y as discrete-time signals–instead of vectors–which can adopt zero

or negative indices.

Symbol Description

H Matrix
h Vector
𝒮 Set
H𝑖 𝑖th column from H
H𝑐 𝑐th block from H
h[𝑗] 𝑗th entry from h
𝒮𝑖 𝑖th element from set 𝒮
𝒮𝑗 𝑗th set

I𝐿×𝐿 Identity matrix of size 𝐿× 𝐿
r(𝑡) r at 𝑡th iteration
0𝐿 a length-𝐿 vector with all entries equal to 0
𝑛𝑐

𝑗,𝑖 Location of 𝑖th event from source 𝑐 in 𝑗th window
𝑁 𝑐

𝑗 Number of events from source 𝑐 in 𝑗th window
‖·‖𝑝 ℓ𝑝 norm

Table 5.1: Notational conventions.

5.2.2 Continuous and discrete-time generative models

Let 𝑦(𝑡) be a continuous-time signal observed in the interval (0, 𝑇 ] and {ℎ𝑐(𝑡)}𝑐 be

templates (filters) from 𝐶 sources. We assume that the templates each have the same

length and are localized in time. The shift-invariant continuous generative model
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expresses 𝑦(𝑡) as
𝑦(𝑡) =

𝐶∑︁
𝑐=1

𝑁𝑐∑︁
𝑖=1

𝑥𝑐
𝑖ℎ𝑐(𝑡− 𝜏 𝑐

𝑖 ) + 𝜀(𝑡), (5.2)

where 𝑁 𝑐 denotes the number of events from source 𝑐, 𝜏 𝑐
𝑖 and 𝑥𝑐

𝑖 denote the position

and the amplitude of the 𝑖th event from source 𝑐, respectively. The variable 𝜀(𝑡)

denotes i.i.d. white noise.

To formulate a discrete-time analogue of Eq. 5.2, let Δ denote the length of a

sampling interval and 𝑓𝑠 = 1
Δ the associated sampling frequency. The number of

intervals of size Δ in (0, 𝑇 ] is 𝑁 = ⌊ 𝑇
Δ⌋. Further let 𝑛 = 1, · · · , 𝑁 ∈ N+ be the

discrete-time index, and 𝑛𝑐
𝑖 denote the discrete-time approximation of 𝜏 𝑐

𝑖 , such that

𝑛𝑐
𝑖Δ ≤ 𝜏 𝑐

𝑖 < (𝑛𝑐
𝑖 + 1)Δ. Finally, we denote by h𝑐 ∈ R𝐿 the discrete time analogue of

ℎ𝑐(𝑡), which we assume is normalized such that ‖h𝑐‖2 = 1,∀𝑐. Using this notation, we

can obtain discrete-time samples y[𝑛] = 𝑦(𝑛Δ) of 𝑦(𝑡) that satisfy

y[𝑛] =
𝐶∑︁

𝑐=1

(︁
x𝑐 * h𝑐

)︁
[𝑛] + 𝜀𝜀𝜀[𝑛], (5.3)

where x𝑐[𝑛] = ∑︀𝑁𝑐

𝑖=1 𝑥
𝑐
𝑖𝛿[𝑛−𝑛𝑐

𝑖 ], for 𝑛 = 1, · · · , 𝑁 −𝐿+ 1, and x𝑐 =
[︁
x𝑐[1], · · · ,x𝑐[𝑁 −

𝐿+ 1]
]︁T

, are referred to as the code and the code vector, respectively.

We can express Eq. 5.3 in linear-algebraic form as

y = Hx + 𝜀𝜀𝜀, (5.4)

where H =
[︂
H1
⃒⃒⃒⃒
· · ·

⃒⃒⃒⃒
H𝐶

]︂
∈ R𝑁×𝐶(𝑁−𝐿+1) is a block-Toeplitz matrix with 𝑐th block

H𝑐 ∈ R𝑁×(𝑁−𝐿+1) for 𝑐 = 1, · · · , 𝐶, and x = [(x1)T, · · · , (x𝐶)T]T ∈ R𝐶(𝑁−𝐿+1). The

columns of the Toeplitz matrix H𝑐 represent delayed versions (time-shifts) of h𝑐, with

integer delay between 0 and 𝑁 − 𝐿, that have been zero-padded to length 𝑁 . For

each 𝑐, the non-zero entries of x𝑐 represent the discrete-time indices {𝑛𝑐
𝑖}𝑁𝑐

𝑖=1 when

source 𝑐 appears in the signal y. Fig. 5-1 illustrates Eq. 5.4.

In practice, we divide the signal y into 𝐽 non-overlapping windows of length 𝑊 ,

such that 𝑁 = 𝑊𝐽 . We assume that 𝐿 ≪ 𝑊 ≪ 𝑁 , so that the filters from each

source are localized within a window. We denote by Y ∈ R𝑊 ×𝐽 the matrix whose
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= +

Figure 5-1: A schematic of Eq. 5.4. The Toeplitz matrix H𝑐 represents all possible
time-shifts of h𝑐 with integer delays. The non-zero elements of each block x𝑐 from x
are the times when source 𝑐 appears in the signal y, 𝑐 = 1, . . . , 𝐶.

𝑗th column is Y𝑗 =
[︁
y[(𝑗 − 1)𝑊 + 1], · · · ,y[𝑗𝑊 ]

]︁T
∈ R𝑊 , namely the 𝑗th window

from y[𝑛]. Similarly, we denote by X ∈ R𝐶(𝑊 −𝐿+1)×𝐽 the coefficient matrix whose

𝑗th column X𝑗 = [(x1
𝑗 )𝑇 , · · · , (x𝐶

𝑗 )T]T ∈ R𝐶(𝑊 −𝐿+1) is the code vector associated with

window 𝑗.

5.2.3 CDL from optimization perspective

The goal of Convolutional Dictionary Learning (CDL) is to estimate {h𝑐}𝑐 and

{X𝑗}𝑗 that minimize the error of reconstructing Y𝑗 in each window using its linear

approximation HX𝑗 . We impose a sparsity constraint on the total number of nonzero

elements of {X𝑗}𝑗 for two reasons. First, without additional constraints, the problem

as posed leads to an under-determined system of equations that does not have a

unique solution. Second, in many applications, the rate of occurrence of events from

the sources of interest is small compared to 𝑇 , implying that each block x𝑐
𝑗 of the

vector X𝑗 is sparse. For example, in electrophysiological recordings of neural activity,

we expect a sparse number of action potentials from neurons due to their biophysical

properties [43]. Following [138], we use the ℓ0 quasi-norm ‖X𝑗‖0, which counts the

number of non-zero elements of a vector, to express the sparsity constraint. Using
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this notation, the CDL problem is

min
{h𝑐}𝑐,{X𝑗}𝑗

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
Y𝑗 −HX𝑗

⃦⃦⃦⃦2

2
s.t. ‖X𝑗‖0 ≤ 𝛽1, ∀𝑗, (5.5)

where 𝛽1 is a pre-defined sparsity threshold. One limitation of this approach comes

from approximating the continuous-domain generative model (Eq. 5.2) with the

discrete-domain generative model (Eq. 5.3). This approximation results in time-

quantization errors, which manifest themselves in two ways: 1) a mismatch between

the continuous time when the event occurs and its approximation in discrete time,

𝜏 𝑐
𝑗,𝑖 ̸= 𝑛𝑐

𝑗,𝑖Δ and 2) template mismatch, h𝑐[𝑚−𝑛𝑐
𝑗,𝑖] = ℎ𝑐(𝑚Δ−𝑛𝑐

𝑗,𝑖Δ) ̸= ℎ𝑐(𝑚Δ− 𝜏 𝑐
𝑗,𝑖).

One of our contributions is to introduce, in Section 5.4, a discrete-time generative

model that mitigates the effects of time-quantization errors.

CDL is a nonconvex optimization problem, due to the simultaneous optimization

over {h𝑐}𝑐 and {X𝑗}𝑗, and the presence of the ℓ0 penalty. A popular approach is to

alternatively minimize the objective over one set of variables while the other is fixed,

until convergence. At iteration 𝑠 + 1, X(𝑠+1) is computed based on H(𝑠) through a

sparse coding step, after which H(𝑠+1) is computed using X(𝑠+1) through a dictionary

update step. If H is a convolutional matrix, we refer to these steps as Convolutional

Sparse Coding (CSC) and Convolutional Dictionary Update (CDU), respectively. CSC

approaches fall into two categories based on how the sparsity contraint is enforced.

One class of approaches, the one we follow in this work, uses greedy methods to tackle

the original problem with the ℓ0 quasi-norm. Another class relaxes the ℓ0 quasi-norm

to the ℓ1 norm, which converts the CSC objective into a convex optimization problem

[129], [139], [140]. The advantage of greedy approaches is that they are more efficient

computationally [135, 136]. Existing CSC frameworks that reduce time-quantization

errors use the ℓ1 norm [131, 132, 133, 134]. In the next section, we review both classes

of CSC approaches, as well as approaches to solve the CDU step.
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5.3 Background for CDL

For notational simplicity, we use x instead of X𝑗 and y instead of Y𝑗.

5.3.1 Convolutional greedy pursuit

Matching Pursuit (MP) [141] and Orthogonal Matching Pursuit (OMP) [142] are

greedy methods to tackle the CSC step. We introduce the methods first when H is an

arbitrary matrix, and then discuss the convolutional case.

Classical greedy pursuit–MP and OMP

Both MP and OMP iteratively select columns from H to produce an approximation

Hx of y. At iteration 𝑡′ +1, the column of H with the maximal absolute inner product

with the residual r(𝑡′) is selected and added to set 𝒮(𝑡′) comprising indices of active

columns. The initial conditions are r(0) = y and 𝒮(0) = ∅. The two methods differ in

how they compute the coefficients of the chosen columns and the residuals. Let h(𝑡′)

denote the template chosen at iteration 𝑡′.

• MP The coefficient associated with h(𝑡′) and the residual are given, respectively,

by ⟨h(𝑡′), r(𝑡′)⟩ and r(𝑡′+1) = r(𝑡′) − ⟨h(𝑡′), r(𝑡′)⟩h(𝑡′).

• OMP The coefficients associated with h(1), · · · ,h(𝑡′) are those that minimize

the squared error between y and its linear reconstruction using the columns.

This is equivalent to projecting y onto the span of h(1), · · · ,h(𝑡′), and is called

the projection step.

The projection step implies two key differences between MP and OMP. First, OMP is

slower than MP, due to the matrix inversion and multiplication required in the former.

Second, as the residual r(𝑡′) in OMP is orthogonal to the span of previously selected

columns, OMP selects a different column from H at every iteration. This is not the

case for MP, which means that it can select the same column multiple times.
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Convolutional extensions

The convolutional extensions of MP and OMP exploit the fact that the templates are

localized and shorter than the signal (or residual). Convolutional Matching Pursuit

(CMP) [141], [143] has enjoyed popularity in biomedical applications [2] and image

recognition [144] due to its simplicity. As in OMP, a convolutional extension of OMP

involves computationally expensive selection and projection steps. In Section 5.4, we

introduce an efficient algorithm for convolutional OMP. LocOMP [137] is related to

this algorithm. The two algorithms differ in the projection step (Section 5.4-C).

5.3.2 CSC algorithms for estimating continuous-time shifts

Continuous basis pursuit (CBP) CBP approximates each continuous-time tem-

plate ℎ𝑐(𝑡) and its continuous-time shifts as the linear combination of 𝑝 > 1 basis

elements {𝜓𝜓𝜓(𝑐,𝑝)}𝑝. Popular choices for {𝜓𝜓𝜓(𝑐,𝑝)}𝑝 include the Taylor basis (𝑝 = 2), com-

prising ℎ𝑐(𝑡) and its derivative, and the Polar basis (𝑝 = 3) comprising triogonometric

splines. An ℓ1-regularized convex optimization objective is formulated with respect to

a shift-invariant representation using {𝜓𝜓𝜓(𝑐,𝑝)}𝑝. The coefficients for {𝜓𝜓𝜓(𝑐,𝑝)}𝑝 are then

mapped to the amplitudes and the times when ℎ𝑐(𝑡) occurs, with the mapping depen-

dent on the choice of basis {𝜓𝜓𝜓(𝑐,𝑝)}𝑝. The estimates of the times when events occur

are continuous and not confined to the discrete sampling grid. Recently, continuous

OMP [145] has been proposed as a greedy alternative to CBP that penalizes the ℓ0

quasi-norm.

Greedy continuous approaches A recent line of works uses greedy continuous ap-

proaches based on the Frank-Wolfe algorithm (conditional gradient method) [132], [133,

134] to solve the CSC problem in continuous time. At a high-level, methods in this

line of work alternate between a global and a local optimization step. We focus on the

Alternating Descent Conditional Gradient (ADCG) [133] method, as [132] and [134]

mostly differ from it in the local optimization step. At each iteration, ADCG greedily

selects a coarse location for a code, based on the inner product between templates and

the gradient of the residual, derived from the Frank-Wolfe algorithm. In practice, this
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step relies on discrete grids to compute the inner product. As a result, it is equivalent

to the selection step in CMP/COMP. Then, the codes in the active set are further

optimized locally by block coordinate descent, alternating between their locations and

amplitudes. This latter step is grid-free and thus the locations are continuous. Unlike

CBP, ADCG requires knowledge of the value of the template and its gradient at every

point. This aspect makes it hard to apply to real datasets for which the convolutional

filters are not known a-priori and need to be learned.

Grid refinement approaches This class of methods operates entirely on discrete

grids, finer than the original sampling grid [146], [147]. Specifically, in [146], the authors

demonstrate that the accuracy of sparse recovery on very-fine grids is competitive

with that of the off-the-grid methods [133, 134]. Existing work on grid refinement for

sparse recovery uses the ℓ1 norm. More importantly, it requires knowledge of values

of the templates on the refined grid. The CDL framework we propose also performs

CSC with grid refinement. Unlike existing approaches, it 1) uses the ℓ0 penalty and

2) only requires specification of the values of the templates on the original sampling

grid. Fig. 5-2 shows an application of CBP, ADCG, BP, COMP and COMP-INTERP

(COMP with interpolated dictionary) to the estimation of the continuous-time shift

and amplitude of a single event from one filter. CBP, ADCG, and COMP-INTERP,

the approach we propose in Section 5.4, are able to estimate the continuous-time shift

accurately. As we demonstrate in Section 6.5, COMP-INTERP is orders of magnitude

faster than CBP and ADCG. BP and COMP cannot capture the continuous-time

shift, as they are confined to the original sampling grid.

5.3.3 CDU frameworks

The majority of existing CDU frameworks estimate the templates {h𝑐}𝑐 by minimizing

the error of reconstructing y using its linear approximation Hx. The key differences

between existing approaches are the constraints imposed on the templates and the

optimization methods used, as detailed in a recent survey [129]. To the best of our

knowledge, existing CDU approaches do not address the problem of learning the

templates when the events of interest may occur off the discrete sampling grid.
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Figure 5-2: An application of CSC, where an event (black, flipped for clarity) occurs off
the sampling grid. COMP and BP can only approximate the time of occurrence of the
event on the grid, with spacing Δ. CBP, ADCG, and COMP-INTERP (COMP with
interpolated dictionary) recover the time of occurrence accurately. COMP-INTERP
uses grid refinement and operates on finer grid with resolution Δ𝐾 ≤ Δ.

5.4 Convolutional Orthogonal Matching Pursuit with

Interpolated Dictionary

For the CSC step in the alternating-minimization approach to CDL, we introduce

an algorithm for off-the-grid sparse coding called Convolutional OMP (COMP) with

interpolated dictionary (COMP-INTERP). This is a convolutional greedy pursuit

method that uses grid refinement to mitigate the effect of events that occur off the

sampling grid. From a computational perspective, COMP-INTERP is an efficient

alternative to the ℓ1-based CSC frameworks described previously.

We use x ∈ R𝑊 and y ∈ R𝑊 , instead of X𝑗 and Y𝑗, for notational simplicity. We

use 𝑠 and 𝑡′, respectively, to denote an iteration of alternating-minimization and an

iteration of COMP within it. Since the discussion in this section involves a single

iteration of the alternating-minimization procedure, we drop 𝑠.

5.4.1 Non-integer delay through smooth interpolation

The discrete-time model from Eq. 5.3 is restrictive because events from the continuous-

time generative model of Eq. 5.2 do not necessarily occur at multiples of the sampling
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Figure 5-3: Illustration of the process for obtaining h(𝑐,𝑘) (red) from h𝑐 (blue). The two
discrete-time templates in the rightmost panel highlight the difference between h(𝑐,𝑘)
and h𝑐. The Interpolation and Resampling steps correspond, respectively, to D/C
(Discrete-to-Continuous) conversion and C/D (Continuous-to-Discrete) conversion in
digital signal processing theory.

interval Δ. We address this limitation by partitioning Δ into finer intervals of length

Δ𝐾 := 1
𝐾

Δ, and modifying H and x accordingly. The resulting CSC framework,

with finer resolution Δ𝐾 , can approximate 𝜏 𝑐
𝑖 with 𝑚Δ + 𝑘Δ𝐾 , where 𝑚 ∈ N and

𝑘 = 0, · · · , 𝐾 − 1, rather than 𝑚Δ, leading to a reduction in time-quantization error.

That is, |𝜏 𝑐
𝑖 −𝑚Δ| ≥ |𝜏 𝑐

𝑖 − (𝑚Δ + 𝑘Δ𝐾)|. By definition, each template h𝑐 corresponds

to discrete-time samples of ℎ𝑐(𝑡) with resolution Δ. Our challenge is to modify H

to account for versions of ℎ𝑐(𝑡) delayed by a non-integer amount 𝑘Δ𝐾 , that is not

an integer multiple of Δ, and sampled at resolution Δ. Let h(𝑐,𝑘) ∈ R𝐿 denote ℎ𝑐(𝑡)

delayed by a non-integer amount 𝑘Δ𝐾 and sampled at resolution Δ. This definition

motivates us to reformulate Eq. 5.3 to account for non-integer shifts of the templates

at a finer scale Δ𝐾

y[𝑛] =
𝐶∑︁

𝑐=1

𝐾−1∑︁
𝑘=0

(︁
x(𝑐,𝑘) * h(𝑐,𝑘)

)︁
[𝑛] + 𝜀𝜀𝜀[𝑛], (5.6)

where x(𝑐,𝑘) denotes the code vector corresponding to h(𝑐,𝑘). For notational simplicity,

we let h(𝑐,0) = h𝑐. Note that h𝑐 ̸= h(𝑐,𝑘) for 𝑘 ̸= 0, as illustrated in Fig. 5-3. We discuss

the systematic method for obtaining h(𝑐,𝑘) from h𝑐 in the next section. We use {h(𝑐,𝑘)}𝑐,𝑘
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to construct the interpolated convolutional dictionary HINTERP ∈ R𝑊 ×𝐶𝐾(𝑊 −𝐿+1)

HINTERP

=
[︂
H(1,0)

INTERP

⃒⃒⃒⃒
· · ·

⃒⃒⃒⃒
H(1,𝐾−1)

INTERP

⃒⃒⃒⃒
· · ·

⃒⃒⃒⃒
H(𝐶,0)

INTERP

⃒⃒⃒⃒
· · ·

⃒⃒⃒⃒
H(𝐶,𝐾−1)

INTERP

]︂
,

(5.7)

where H(𝑐,𝑘)
INTERP is the Toeplitz matrix whose columns consists of all integer shifts

of h(𝑐,𝑘). Note that when 𝐾 = 1, we obtain the original convolutional dictionary,

i.e., HINTERP = H. In linear-algebraic form, we can write the generative model as

Y = HINTERPX + 𝜀𝜀𝜀, where X ∈ R𝐶𝐾(𝑊 −𝐿+1)×𝐽 .

5.4.2 Smooth interpolation of h𝑐

We use the concept of continuous-time operations on discrete-time signals from digital

signal processing theory [89] to obtain h(𝑐,𝑘) from h𝑐 via smooth interpolation. Smooth

interpolation assumes that ℎ𝑐(𝑡) is smooth, in the sense that the template does not

change abruptly from one sample on the grid to the next. The process consists of

three steps: interpolation, shifting by a non-integer amount, and resampling. These

steps, illustrated in Fig. 5-3, perform

1. Interpolation Interpolate h𝑐 with a smooth interpolator to obtain ℎ̃𝑐(𝑡).

2. Non-integer shift Shift ℎ̃𝑐(𝑡) to obtain ℎ̃𝑐(𝑡− 𝑘Δ𝐾).

3. Resampling Resample ℎ̃𝑐(𝑡− 𝑘Δ𝐾) with resolution Δ to obtain h(𝑐,𝑘).

We ca write this three-step process concisely as a convolution. Let 𝑓 be a generic

smooth interpolator function, e.g. the cubic or the sinc interpolator. Then, ℎ̃𝑐(𝑡) is

given by

ℎ̃𝑐(𝑡) =
∞∑︁

𝑚=−∞
h𝑐[𝑚]𝑓(𝑡−𝑚Δ), (5.8)
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from which we can obtain

h(𝑐,𝑘)[𝑛] = ℎ̃𝑐(𝑛Δ− 𝑘Δ𝐾)

=
∞∑︁

𝑚=−∞
h𝑐[𝑚]𝑓(𝑛Δ− 𝑘Δ𝐾 −𝑚Δ)

=
∞∑︁

𝑚=−∞
h𝑐[𝑚]

f𝑘[𝑛−𝑚]⏞  ⏟  
𝑓 ((𝑛−𝑚)Δ− 𝑘Δ𝐾)

= h𝑐 * f𝑘.

(5.9)

Effectively, h(𝑐,𝑘) is the convolution between h𝑐 and f𝑘[𝑛] = 𝑓(𝑛Δ − 𝑘Δ𝐾) for 𝑛 =

−𝐿−1
2 , . . . , 𝐿−1

2 , where f𝑘 ∈ R𝐿 is 𝑓 shifted by a non-integer amount 𝑘Δ𝐾 and resampled.

Even though different interpolators have different lengths, we zero-pad and truncate

f𝑘, such that f𝑘 is of length 𝐿.

We can express convolution in linear-algebraic form, which will be useful for the

CDU step with the interpolated dictionary, detailed in Section 5.5: h(𝑐,𝑘) = F𝑘h𝑐,

where F𝑘 ∈ R𝐿×𝐿 is the Toeplitz matrix associated with f𝑘 and defined as

F𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f𝑘[0] f𝑘[−1] · · · f𝑘[−𝐿−1
2 ] 0𝑇

(𝐿−1)/2

f𝑘[1] f𝑘[0] · · · f𝑘[−𝐿−1
2 ] 0𝑇

(𝐿−3)/2
... ... ...

0𝑇
(𝐿−1)/2 f𝑘[𝐿−1

2 ] · · · f𝑘[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.10)

In general, ℎ̃𝑐(𝑡) depends on the interpolator and does not necessarily coincide

with the true template ℎ𝑐(𝑡). Nevertheless, if ℎ𝑐(𝑡) is sufficiently bandlimited, different

interpolators should give ℎ̃𝑐(𝑡) that are very similar to ℎ𝑐(𝑡) [89]. In particular, if ℎ𝑐(𝑡)

is bandlimited, and the sampling frequency 𝑓𝑠 is above its Nyquist rate, we can recover

ℎ𝑐(𝑡) from its discrete-time samples h𝑐 using the sinc interpolator. This process, often

referred to as bandlimited interpolation [89], guarantees that ℎ𝑐(𝑡) = ℎ̃𝑐(𝑡). Using the

sinc interpolator 𝑓(𝑡) = sinc(𝑡/Δ) = sin 𝜋(𝑡/Δ)
𝜋(𝑡/Δ) , we have

f𝑘[𝑛] = sin 𝜋(𝑛− 𝑘/𝐾)
𝜋(𝑛− 𝑘/𝐾) . (5.11)
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In practice, since the sinc interpolator has infinite support, we use a truncated sinc

interpolator, with truncation performed using a Kaiser window to mitigate truncation

artifacts.

5.4.3 Efficient algorithm for COMP and COMP-INTERP

Matrix operations involving convolutional dictionaries H or HINTERP are expensive

both in terms of computation and storage requirements. This is because typical

recordings can last on the order of minutes, if not hours, and sampling rates can be

on the order of ∼ 104 Hz for electrophysiology and 103 Hz for EEG, to name a few

examples. Existing greedy algorithms for CSC can handle high-dimensional data in

the selection step [143], [137]. Here, we focus instead on accelerating the projection

step.

We explore efficient implementations of COMP and COMP-INTERP, focusing

on the projection step for a convolutional matrix H (or HINTERP). For completeness,

we describe the key principles of the efficient implementation of the selection step,

proposed in [137]. For notational simplicity, we focus on H, noting that the same

argument holds for HINTERP.

Selection step The selection step requires the inner product between time-shifted

h𝑐 and r(𝑡′), expressed as HTr(𝑡′). For large H, explicit computation of the inner

product is expensive. However, the convolutional structure of H lets us compute 𝐶

cross-correlations instead,

HTr(𝑡′) =
[︁
(h1 ⋆ r(𝑡′))[1], · · · , (h1 ⋆ r(𝑡′))[𝑊 − 𝐿+ 1], · · · ,

(h𝐶 ⋆ r(𝑡′))[1], · · · , (h𝐶 ⋆ r(𝑡′))[𝑊 − 𝐿+ 1]
]︁T
.

(5.12)

This formulation has two computational benefits. First, we do not need to construct

the convolutional matrix H explicitly. We only require 𝑂(𝑊 ) memory to store {h𝑐}𝐶
𝑐=1

and r(𝑡′), as opposed to 𝑂(𝐶𝑊 2) memory to store the matrix. Second, we can compute

the 𝐶 cross-correlation operations using the FFT, which is much more efficient than
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computing them by multiplication of HT and r(𝑡′).

Furthermore, we can exploit the fact that the templates are much shorter than

the residual, implying that r(𝑡′) and r(𝑡′−1) only differ locally. Therefore, we only

need to compute the cross-correlation for local segments in which the two differ. For

CMP, the length of such segments is always fixed, whereas for COMP, the length can

increase due to potential overlaps with other templates. The authors who introduced

LocOMP [137] are arguably the first to recognize this. As pointed out in [137], in the

regime of a large number of overlaps between templates, the selection step dominates

the difference in computation time between CMP and COMP. Our focus is on the

regime in which the number of overlaps is small. In this regime, the projection step

is the dominating factor. The applications we consider in Section 6.5 fall into this

regime.

Projection step In this step, we project the residual onto the span of H
⃒⃒⃒
𝑡′
, which

requires the inversion of H
⃒⃒⃒T
𝑡′
H
⃒⃒⃒
𝑡′
. The matrix H

⃒⃒⃒
𝑡′
∈ R𝑊 ×𝑡′ refers to a convolutional

dictionary restricted to columns that have been selected by COMP up to iteration 𝑡′.

Consequently, the code x|𝑡′ ∈ R𝑡′ refers to the nonzero coefficients from x ∈ R𝑊 −𝐿+1

corresponding to the columns H
⃒⃒⃒
𝑡′
. To avoid the computational cost of inversion in the

projection step, [148] suggested an efficient method for computing the Cholesky factor

L(𝑡′), which is a lower triangular matrix such that L(𝑡′)
(︁
L(𝑡′)

)︁T
= H

⃒⃒⃒T
𝑡′
H
⃒⃒⃒
𝑡′
∈ R𝑡′×𝑡′ .

The key idea is that for OMP, H
⃒⃒⃒
𝑡′−1

and H
⃒⃒⃒
𝑡′

differ only by one column, which is the

column selected by OMP at step 𝑡′, and therefore L(𝑡′) can be easily computed from

L(𝑡′−1) as

L(𝑡′) =

⎛⎜⎝L(𝑡′−1) 0

wT
√︁

1− ‖w‖2
2

⎞⎟⎠
where L(𝑡′−1)w = H

⃒⃒⃒T
𝑡′−1

h(𝑡′),

(5.13)

and h(𝑡′) ∈ R𝑊 denotes the column of H selected at iteration 𝑡′ of COMP. The code

x
⃒⃒⃒
𝑡′

is is the solution to L(𝑡′)
(︁
L(𝑡′)

)︁T
x|𝑡′ = H

⃒⃒⃒T
𝑡′
y, which can be solved more efficiently

than H
⃒⃒⃒T
𝑡′
H
⃒⃒⃒
𝑡′
x|𝑡′ = H

⃒⃒⃒T
𝑡′
y.

We extend this idea to the convolutional case, noting that Eq. 5.13 still requires
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us to construct H
⃒⃒⃒
𝑡′

and to perform multiplications that are expensive in terms of

memory and computation. We replace the multiplication operation involving H
⃒⃒⃒T
𝑡′

with a cross-correlation operation, as outlined in Algorithm 1. To keep track of the

selected filters, we utilize two sets: 1) The set 𝒮 of indices of active template chosen

by COMP and defined in Section 6.2, and 2) the set ℐ of times when events associated

with each of the templates from 𝒮 occur. At COMP iteration 𝑡′, h𝒮(𝑡′)
𝑖

refers to the

template selected at iteration 𝑖, where 𝑖 ≤ 𝑡′, and ℐ(𝑡′)
𝑖 refers to the time of occurrence

of the corresponding template.

Algorithm 1: Cholesky factorization for CSC at iteration 𝑡′

Input: L(𝑡′−1), 𝒮(𝑡′), ℐ(𝑡′), {h𝑐}𝑐, y
Output: L(𝑡′), x|𝑡′

1 Initialization: v = 0𝑡′−1, 𝛼𝛼𝛼 ∈ R𝑡′

2 if 𝑡′ = 1 then
3 L(𝑡′) ← [1]
4 else
5 for 𝑖← 1 to 𝑡′ − 1 do
6 if

⃒⃒⃒⃒
ℐ(𝑡′)

𝑖 − ℐ(𝑡′)
𝑡′

⃒⃒⃒⃒
≤ 𝐿 then

7 v[𝑖] =
(︂

h𝒮(𝑡′)
𝑖

⋆ h𝒮(𝑡′)
𝑡′

)︂[︂
ℐ(𝑡′)

𝑖 − ℐ(𝑡′)
𝑡′

]︂
8 Solve for w ∈ R𝑡′−1: L(𝑡′−1)w = v

9 L(𝑡′) ←
(︃

L(𝑡′−1) 0
wT

√︁
1− ‖w‖2

2

)︃
10 for 𝑖← 1 to 𝑡′ do
11 𝛼𝛼𝛼[𝑖] = (h𝒮(𝑡′)

𝑖

⋆ y)
[︂
ℐ(𝑡′)

𝑖

]︂
12 Solve for L(𝑡′)

(︁
L(𝑡′)

)︁T
x|𝑡′ = 𝛼𝛼𝛼

With 𝒮 and ℐ, neither the convolutional matrix H
⃒⃒⃒
𝑡′
, nor the zero-padded filters

are required. As we demonstrate in Section 6.5, the efficiency gain from the modified

projection step reduces the performance gap betwen CMP and COMP.

Algorithm We summarize COMP-INTERP in Algorithm 2. When 𝐾 = 1, COMP-

INTERP is equivalent to COMP with the original dictionary. The INTERPOLATE

function refers to the process of obtaining the interpolated templates. The CHOLESKY
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function refers to the efficient projection step. The superscript (*) denotes the

quantities at convergence. As in OMP, the convergence criterion can either be when

the residual falls below a certain threshold or when a certain sparsity level is reached.

We note that, as mentioned previously, we only need to compute the cross-correlation

(line 5) for local segments where consecutive residuals differ.

Algorithm 2: COMP-INTERP
Input: y, {h𝑐}𝑐, Δ𝐾

Output: x(*),𝒮(*), ℐ(*)

1 Initialization: r(0) = y, L(0) = 1, 𝒮(0), ℐ(0) = ∅
2 {h(𝑐,𝑘)}𝑐,𝑘 ←Interpolate({h𝑐}𝑐, Δ𝐾)
3 while 𝑡′ = 0 to convergence do
4 (Selection step)
5 𝑐*, 𝑘*, 𝑖* ← arg max𝑐,𝑘,𝑖{

⃒⃒⃒
h(𝑐,𝑘) ⋆ r(𝑡′)

⃒⃒⃒
[𝑖]}𝑐,𝑘,𝑖

6 𝒮(𝑡′+1) = 𝒮(𝑡′) ∪ {(𝑐*, 𝑘*)}
7 ℐ(𝑡′+1) = ℐ(𝑡′) ∪ {𝑖*}
8

9 (Projection step)
10 L(𝑡′+1),x|𝑡′+1 ←CHOLESKY(𝜃), where
11 𝜃 =

{︁
L(𝑡′),𝒮(𝑡′+1), ℐ(𝑡′+1), {h(𝑐,𝑘)}𝑐,𝑘,y

}︁
12 r(𝑡′+1) ← y
13 for 𝑖← 1 to 𝑡′ + 1 do
14 Subtract h𝒮(𝑡′+1)

𝑖

x|𝑡′+1 from the segment of r(𝑡′+1) that starts at ℐ(𝑡′+1)
𝑖

5.4.4 Equivalence between interpolating the template and in-

terpolating the residual

As described thus far, COMP-INTERP mitigates errors from events that occur off the

original sampling grid by introducing smoothly-interpolated versions of the templates

on a refined grid, while preserving the signal of interest on the original grid. Because

the algorithm relies on correlation operations between the interpolated templates and

the signal, what is important in fact is the relative placement of the templates with

respect to the signal y (or r). This motivates an alternate approach that, instead,

preserves the templates on the original grid and smoothly interpolates y (or r) on the
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refined grid. This section examines the equivalence between these two approaches.

Specifically, we show that COMP-INTERP is equivalent to COMP using a smoothly-

interpolated augmented data set (Theorem 1). We first develop two Lemmas showing

the equivalence between certain cross-correlation and convolution operations. The Lem-

mas assume that the discrete interpolator f is symmetric, which holds for interpolators

such as the linear, cubic, sinc, and Lanczos interpolators.

Lemma 1. For a symmetric interpolator f and signal (or residual) r, we have

f𝑘 ⋆ r = f−𝑘 * r.

Proof.

f−𝑘 * r =
∑︁
𝑚

𝑓
(︁
𝑚Δ + 𝑘Δ𝐾

)︁
r[𝑛−𝑚]

=
∑︁
𝑚′
𝑓
(︁
−𝑚′Δ + 𝑘Δ𝐾

)︁
r[𝑛+𝑚′]

=
∑︁
𝑚′
𝑓
(︁
𝑚′Δ− 𝑘Δ𝐾

)︁
r[𝑛+𝑚′] = f𝑘 ⋆ r,

(5.14)

where the second equality is a simple change of variables, and the third equality uses

the fact that f is symmetric.

The next Lemma applies Lemma 1 to the COMP-INTERP selection step.

Lemma 2. h(𝑐,𝑘) ⋆ r = h𝑐 ⋆ (f−𝑘 * r).

Proof.

h(𝑐,𝑘) ⋆ r = (h𝑐 * f𝑘) ⋆ r

=
∑︁
𝑚

(︁∑︁
𝑝

h𝑐[𝑝]f𝑘[𝑚− 𝑝]
)︁
r[𝑚+ 𝑛]

=
∑︁

𝑝

h𝑐[𝑝]
(︁∑︁

𝑚

r[𝑚+ 𝑛]f𝑘[𝑚− 𝑝]
)︁

=
∑︁

𝑝

h𝑐[𝑝](f𝑘 ⋆ r)[𝑛+ 𝑝] = h𝑐 ⋆ (f𝑘 ⋆ r)

(5.15)

Using Lemma 1, we have h(𝑐,𝑘) ⋆ r = h𝑐 ⋆ (f−𝑘 * r).
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Lemma 2 states that performing the COMP-INTERP selection step with interpolated

h(𝑐,𝑘), on the original r, is equivalent to performing a COMP selection step with the

original h𝑐, on f−𝑘 * r, which is r delayed by −𝑘Δ𝐾 .

Before stating the theorem, we introduce some notation. COMP-INTERP(y, {h(𝑐,𝑘)}𝑐,𝑘)

refers to COMP-INTERP applied to y (using the interpolated dictionary) and

COMP({f−𝑘 * y}𝑘, {h𝑐}𝑐) refers to COMP on an augmented dataset denoted by

{f−𝑘 * y}𝑘. We define COMP on the augmented set, {f−𝑘 * y}𝑘, as follows: At

iteration 𝑡′, in the selection step, compute 𝑐(*,𝑘) and 𝑖(*,𝑘) for each f−𝑘 * r(𝑡′) with

𝑘 = 0, · · · , 𝐾 − 1, via the usual COMP selection step. Next, choose 𝑘* such that

𝑘* = arg max
𝑘

{︂⃒⃒⃒⃒
h𝑐(*,𝑘) ⋆ (f−𝑘 * r(𝑡′))

⃒⃒⃒⃒
[𝑖(*,𝑘)]

}︂
𝑘
. (5.16)

Finally, we add the indices to the active sets, such that 𝒮(𝑡′+1) = 𝒮(𝑡′) ∪ {(𝑐(*,𝑘*), 𝑘*)},

ℐ(𝑡′+1) = ℐ(𝑡′) ∪ {𝑖(*,𝑘*)} to complete the selection step. The projection step is same as

that of COMP-INTERP(y, {h(𝑐,𝑘)}𝑐,𝑘).

Theorem 1. The two algorithms, COMP({f−𝑘*y}𝑘, {h𝑐}𝑐) and COMP-INTERP(y, {h(𝑐,𝑘)}𝑐,𝑘),

are equivalent. That is, 𝒮(*), ℐ(*), and r(*) are same for both upon convergence.

Proof. We proceed by induction. At iteration 𝑡′ = 0, 𝒮(0) = ∅ and r(0) = y. In the

selection step, Lemma 2 implies that 𝑐*, 𝑘*, 𝑖* from the COMP-INTERP selection

step are same as 𝑐(*,𝑘*), 𝑘*, 𝑖(*,𝑘*) from the COMP selection step. In turn, this implies

that 𝒮(1) and ℐ(1) are the same. Since the projection steps of the two methods are

equivalent, and the active sets are same, both methods yield the same residual r(1).

Now, assume that the equivalence holds for 𝒮(𝑡′−1), ℐ(𝑡′−1), and r(𝑡′−1). For iteration 𝑡′,

the same argument as for iteration 𝑡′ = 0 holds. Hence, the two algorithms produce

the same 𝒮(𝑡′), ℐ(𝑡′), and r(𝑡′). We conclude that both approaches are equivalent.

Remark: The key component of the proof is the equivalence of the selection step.

The equivalence between the two algorithms gives us a different understanding of

COMP-INTERP and does not provide additional computational gains.
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5.4.5 Comparison with the continuous approaches

The continuous-basis approximation methods (CBP [131] and continuous OMP [145]),

the greedy continuous methods (ADCG [133]), and the methods based on grid re-

finement (COMP-INTERP) implicitly assume smoothness of the continuous-time

templates. The continuous-basis approximation relies on this assumption for the

derivation of the mapping between the local basis and the templates. ADCG re-

quires the gradient of each template at every point. COMP-INTERP uses smooth

interpolators to model the non-integer effect.

The methods differ in many ways, as summarized in Table 5.2. The most notable

difference is the nature of the estimated event locations. COMP/COMP-INTERP

estimate them on a discrete grid, whether it is the original sampling grid or a refined

one. On the other hand, CBP and ADCG estimate do not confine event locations to

a discrete grid. These methods, however, require operations on a discrete grid as an

intermediate step for computing the continuous event locations.

COMP COMP-INTERP ADCG CBP
Smoothness No Yes Yes Yes
Functional form No No Yes No
FIR Yes Yes No Yes

(a) Assumptions on the templates. FIR refers to finite impulse response.

COMP COMP-INTERP ADCG CBP
Original grid Yes No No No
Refined grid No Yes No No
Continuous No No Yes Yes

(b) Domain of esimated event times.

Table 5.2: Comparison of convolutional CSC approaches

Compared to the continuous methods, the advantages of COMP-INTERP are its

simplicity and speed. It is simpler as it requires neither a mapping between local basis

and the original templates, as in CBP, nor functional forms for the templates or their

gradients, as in ADCG. It is also faster due to its greedy nature, and because of the
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efficient implementations of operations that involve the convolutional dictionary.

5.5 Convolutional Dictionary Update with inter-

polated dictionary

COMP-INTERP is an algorithm to tackle the CSC step of CDL using an interpolated

dictionary that can approximate continuous shifts. In this section, we develop an

algorithm to solve the CDU step using the interpolated dictionary.

The CDU step involves an optimization problem with respect to {h𝑐}𝑐. To simplify

it, we first re-write HX𝑗 as

HX𝑗 =
𝐶∑︁

𝑐=1

𝑁𝑐
𝑗∑︁

𝑖=1
𝑥𝑐

𝑗,𝑖S𝑛𝑐
𝑗,𝑖

h𝑐, (5.17)

where we introduce the matrix representation S𝑛𝑐
𝑗,𝑖
∈ R𝑊 ×𝐿 of the linear operator that

shifts h𝑐 by 𝑛𝑐
𝑗,𝑖 samples. S𝑛𝑐

𝑗,𝑖
is a zero-padded identity matrix defined as follows

S𝑛𝑐
𝑗,𝑖

=
(︂

0𝑛𝑐
𝑗,𝑖×𝐿 I𝐿×𝐿 0(𝑊 −𝐿−𝑛𝑐

𝑗,𝑖)×𝐿

)︂T
. (5.18)

Eq. 5.17 is a result of the commutativity of the convolution operation. It allows us to

re-write the optimization problem in Eq. 5.5, with respect to {h𝑐}𝑐, as follows

min
{h𝑐}𝑐

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
Y𝑗 −

𝐶∑︁
𝑐=1

𝑁𝑐
𝑗∑︁

𝑖=1
𝑥𝑐

𝑗,𝑖S𝑛𝑐
𝑗,𝑖

h𝑐

⃦⃦⃦⃦2

2
. (5.19)

Compared to Eq. 5.5, Eq. 5.19 is simpler because h𝑐 appears as a vector, as opposed

to a matrix. Using the interpolated dictionary HINTERP to account for the non-integer

delays, we can write the objective similarly

min
{h𝑐}𝑐

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
Y𝑗 −

𝐶∑︁
𝑐=1

𝐾−1∑︁
𝑘=0

𝑁
(𝑐,𝑘)
𝑗∑︁
𝑖=1

𝑥
(𝑐,𝑘)
𝑗,𝑖 S

𝑛
(𝑐,𝑘)
𝑗,𝑖

h(𝑐,𝑘)

⃦⃦⃦⃦2

2

s.t. h(𝑐,𝑘) = F𝑘h𝑐, ∀𝑘, 𝑐,

(5.20)
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where F𝑘 is the discrete interpolator matrix defined previously. The constraint enforces

the fact that we obtain h(𝑐,𝑘) from h𝑐 by interpolation. As is customary in the CDL

literature, we assume the templates have unit norm, which we enforce by normalizing

the solutions of Eq. 5.19 or Eq. 5.20.

Remark: For notational simplicity, we use 𝑥𝑖 and S𝑖 for 𝑥(𝑐,𝑘)
𝑗,𝑖 and S

𝑛
(𝑐,𝑘)
𝑗,𝑖

, respectively.

That is, we overload the index 𝑖. As a result, Eq. 5.19 becomes

min
{h𝑐}𝐶

𝑐=1

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
⃦⃦Y𝑗 −

𝐶∑︁
𝑐=1

𝑁𝑐
𝑗∑︁

𝑖=1
𝑥𝑖S𝑖h𝑐

⃦⃦⃦⃦
⃦⃦

2

2

(5.21)

and Eq. 5.20 becomes

min
{h𝑐}𝐶

𝑐=1

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
⃦⃦Y𝑗 −

𝐶∑︁
𝑐=1

𝐾−1∑︁
𝑘=0

𝑁
(𝑐,𝑘)
𝑗∑︁
𝑖=1

𝑥𝑖S𝑖h(𝑐,𝑘)

⃦⃦⃦⃦
⃦⃦

2

2

s.t. h(𝑐,𝑘) = F𝑘h𝑐, ∀𝑘, 𝑐.

(5.22)

5.5.1 CDU with original, non-interpolated, dictionary

To solve Eq. 5.19, we can use any least-squares based algorithm. We focus on

KSVD [138], specifically its shift-invariant version [149]. We emphasize two key ideas

from KSVD: 1) the templates {h𝑐}𝑐 are updated sequentially, i.e., one at a time, and

2) when updating a given template, only windows of the data where the template

occurs need to be considered.

Suppose we want to update h𝑑. Let Ω𝑑 ⊂ {1, · · · , 𝐽} denote the set of indices of

windows from which COMP selects at least one occurrence of h𝑑. For each window

𝑗 ∈ Ω𝑑, we split the sum from Eq. 5.19 into two parts, namely one that involves h𝑑

and another that involves the remaining templates. The new estimate of h𝑑, denoted̂︀h𝑑, is given by

̂︀h𝑑 = arg min
h𝑑

∑︁
𝑗∈Ω𝑑

⃦⃦⃦⃦
⃦⃦E𝑗 −

𝑁𝑑
𝑗∑︁

𝑖=1
𝑥𝑖S𝑖h𝑑

⃦⃦⃦⃦
⃦⃦

2

2

,

where E𝑗 = Y𝑗 −
𝐶∑︁

𝑐 ̸=𝑑

𝑁𝑐
𝑗∑︁

𝑖=1
𝑥𝑖S𝑖h𝑐

(5.23)
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is the residual from approximating Y𝑗 with templates other than h𝑑. The solution ̂︀h𝑑

to the least-squares problem is

̂︀h𝑑 =
⎛⎝ ∑︁

𝑗∈Ω𝑑

𝑁𝑑
𝑗∑︁

𝑖=1

𝑁𝑑
𝑗∑︁

𝑚=1
𝑥𝑖

(︂
S𝑖

)︂T
S𝑚𝑥𝑚

⎞⎠−1

×

⎛⎝ ∑︁
𝑗∈Ω𝑑

𝑁𝑑
𝑗∑︁

𝑖=1
𝑥𝑖

(︂
S𝑖

)︂T
E𝑗

⎞⎠.
(5.24)

We can interpret Eq. 5.24 as the weighted average of segments E𝑗, or
(︁
S𝑖

)︁T
E𝑗 ∈ R𝐿,

in which template h𝑑 occurs. The average is normalized by a factor that accounts for

occurrences of h𝑑 that overlap: the term
(︁
S𝑖

)︁T
S𝑚 ∈ R𝐿×𝐿 is a matrix that is non-zero

only if the offset |𝑛𝑑
𝑗,𝑖−𝑛𝑑

𝑗,𝑚| between occurrences of h𝑑 is less than the template length

𝐿.

5.5.2 CDU with interpolated dictionary (CDU-INTERP)

To solve Eq. 5.20, we follow an approach similar to that used to solve Eq. 5.19. The

constraint from Eq. 5.20 implies that

S𝑖h(𝑐,𝑘) = S𝑖F𝑘h𝑐. (5.25)

Eq. 5.25 allows us to rewrite Eq. 5.20 as an unconstrained optimization problem

min
{h𝑐}𝑐

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
⃦⃦Y𝑗 −

𝐶∑︁
𝑐=1

𝐾−1∑︁
𝑘=0

𝑁
(𝑐,𝑘)
𝑗∑︁
𝑖=1

𝑥𝑖S𝑖F𝑘h𝑐

⃦⃦⃦⃦
⃦⃦

2

2

. (5.26)

Suppose we want to update h𝑑. Let ̃︀Ω𝑑 = ∪𝐾−1
𝑘=0 Ω(𝑑,𝑘) be the set of indices of windows

from which COMP-INTERP selects at least one occurrence of a template from the

set {h(𝑑,𝑘)}𝑘. Re-arranging Eq. 5.26 yields the estimate ̂︀h𝑑 of h𝑑
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̂︀h𝑑 = arg min
h𝑑

∑︁
𝑗∈̃︀Ω𝑑

⃦⃦⃦⃦
⃦⃦E𝑗 −

𝐾−1∑︁
𝑘=0

𝑁
(𝑑,𝑘)
𝑗∑︁
𝑖=1

𝑥𝑖S𝑖F𝑘h𝑑

⃦⃦⃦⃦
⃦⃦

2

2

,

where E𝑗 = Y𝑗 −
𝐶∑︁

𝑐 ̸=𝑑

𝐾−1∑︁
𝑘=0

𝑁
(𝑐,𝑘)
𝑗∑︁
𝑖=1

𝑥𝑖S𝑖F𝑘h𝑐, and

(5.27)

the solution of which is given by

̂︀h𝑑 =
⎛⎝ ∑︁

𝑗∈̃︀Ω𝑑

𝐾−1∑︁
𝑘=0

𝑁
(𝑑,𝑘)
𝑗∑︁
𝑖=1

𝑁
(𝑑,𝑘)
𝑗∑︁

𝑚=1
𝑥𝑖

(︁
F𝑘
)︁T(︁

S𝑖

)︁T
S𝑚F𝑘𝑥𝑚

⎞⎠−1

×

⎛⎝ ∑︁
𝑗∈̃︀Ω𝑑

𝐾−1∑︁
𝑘=0

𝑁
(𝑑,𝑘)
𝑗∑︁
𝑖=1

𝑥𝑖

(︁
F𝑘
)︁T(︁

S𝑖

)︁T
E𝑗

⎞⎠.
(5.28)

The interpretation of the term
(︁
F𝑘
)︁T(︁

S𝑖

)︁T
E𝑗 in Eq. 5.28 is as follows. First, (F𝑘)T

performs a cross-correlation, and thus
(︁
F𝑘
)︁T(︁

S𝑖

)︁T
E𝑗 = f𝑘 ⋆

(︂(︁
S𝑖

)︁T
E𝑗

)︂
. Next, using

Lemma 1 from Section 5.4.4, we have
(︁
F𝑘
)︁T(︁

S𝑖

)︁T
E𝑗 = f−𝑘 *

(︂(︁
S𝑖

)︁T
E𝑗

)︂
. This

operation 1) extracts from E𝑗 the segment corresponding to the code and 2) shifts the

segment by −𝑘Δ𝐾 , thereby aligning the extracted segments. This alignment results

in a more accurate dictionary update, as demonstrated in Section 6.5.

5.5.3 CDL algorithm

We summarize the alternating-minimization procedure for CDL in Algorithm 3. COMP-

INTERP refers to Algorithm 2 and CDU-INTERP performs the dictionary update.

The * notation from 𝒮𝑗,(*) and ℐ𝑗,(*) refer to the index sets for window 𝑗 at COMP-

INTERP convergence. We use {h(*,Δ𝐾)
𝑐 }𝑐 to denote the templates learned with COMP-

INTERP/CDU-INTERP with discretization Δ𝐾 . COMP-INTERP is parallelizable

across 𝐽 windows, and therefore amenable to parallel processing. The CDU step is not

parallelizable because it needs to aggregate the occurrences of the templates across all

𝐽 windows.
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Algorithm 3: CDL with an interpolated dictionary
Input: Y, {h(0)

𝑐 }𝑐, Δ𝐾

Output: X(*), {h(*,Δ𝐾)
𝑐 }𝑐

1 while 𝑠 = 0 to convergence do
2 (CSC step)
3 for 𝑗 = 1 to 𝐽 do
4 X(𝑠+1)

𝑗 , 𝒮𝑗,(*), ℐ𝑗,(*)

5 ← COMP-INTERP
(︁
Y𝑗, {h(𝑠)

𝑐 }𝑐,Δ𝐾

)︁
6

7 (CDU step)
8 for 𝑐 = 1 to 𝐶 do
9 ̂︀h𝑐 ←CDU-INTERP(𝜃), where

10 𝜃 = {Y, {h(𝑠)
𝑐 }𝑐,{X(𝑠+1)

𝑗 , 𝒮𝑗,(*), ℐ𝑗,(*)}𝑗,Δ𝐾}
11 {h(𝑠+1)

𝑐 }𝑐 ← {̂︀h𝑐}𝑐

5.6 Experiments

We apply the proposed CDL framework to 1D 1) simulated and 2) real electrophysiolog-

ical data from the brain, and 2D 3) simulated single molecule localization microscopy

(SMLM) data. We use two criteria for evaluation: 1) the accuracy and speed of the

CSC step, and 2) the accuracy of the CDU step. For the CSC step, we compare CBP

and ADCG to the following convolutional greedy methods: COMP, CMP, COMP-slow,

and COMP-INTERP. CMP does not have a projection step. The projection step

from COMP-slow inverts H
⃒⃒⃒T
𝑡′
H
⃒⃒⃒
𝑡′

directly without Cholesky factorization. Table 5.3

summarizes the similarities and differences of the greedy methods. For the interpolator

f , we use a cubic interpolator [150].

Efficient selection Efficient projection Δ𝐾

COMP Yes Yes Δ
CMP Yes · Δ
COMP-slow Yes No Δ
COMP-INTERP Yes Yes Δ/𝐾

Table 5.3: Convolutional greedy methods.
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5.6.1 Simulated 1D electrophysiology dataset

We simulated a signal according to the continuous-time generative model of Eq. 5.2.

We used two 10-ms-long gamma-tone templates [131] defined for 𝑡 from −5 to 5 ms

ℎ1(𝑡) ∝
(︁
103𝑡

)︁
exp

(︂
−
(︁
103𝑡

)︁2
)︂

cos
(︂
𝜋

2
(︁
103𝑡

)︁)︂
ℎ2(𝑡) ∝

(︁
103𝑡

)︁
exp

(︂
−
(︁
103𝑡

)︁2
)︂
.

(5.29)

We assumed the same number of occurrences 𝑁1 = 𝑁2 of the templates. We chose

the times when events occur uniformly at random, i.e., 𝜏 𝑐
𝑖 ∼ Uniform[0, 𝑇 ] for 𝑐 = 1, 2

and 𝑖 = 1, · · · , 𝑁1. We chose the amplitude of each event uniformly at random,

i.e., 𝑥𝑐
𝑖 ∼ Uniform[1, 2]. As explained in subsequent sections, we used a range of values

for the variables 𝑇 and 𝑁1. We used a sampling rate 𝑓𝑠 = 104 Hz and obtained

the discrete-time signal y by sampling 𝑦(𝑡) at every Δ = 10−4 seconds. We added

white Gaussian noise 𝜀𝜀𝜀 ∼ 𝒩 (0, 𝜎2I) in discrete time, where 𝜎 was set according to

a desired Signal-to-Noise ratio (SNR). We obtained h1,h2 ∈ R101 by acquiring 101

samples from ℎ1(𝑡) and ℎ2(𝑡) and normalizing the resulting vectors to have unit length:

‖h1‖2 = ‖h2‖2 = 1.

5.6.2 Results from electrophysiology simulations: CSC step

We set the sparsity level for greedy methods to be the number of events, and fine-tuned

the regularization parameter for CBP (with polar basis) and ADCG to match the

same sparsity level. We used the true h1,h2 as dictionary elements.

Sparse-coding computation time We computed the duration of the CSC step,

using CBP, ADCG, and the above-mentioned greedy methods, as a function of

data length 𝑇 and total number of 𝑁tot. = 𝑁1 +𝑁2. Specifically, we ran two sets of

experiments: 1) 𝑇 ∈ [1, 2, 3, 4, 5] s with fixed 𝑁tot. = 30 and 2) 𝑁tot. ∈ [10, 20, 30, 40, 50]

with fixed 𝑇 = 3 s. For each experiment, we report durations averaged over 50

independent repeats (trials). Due to relatively low 𝑁tot. compared to 𝑇 , the data do

not contain many occurrences of overlapping filters. Consequently, the selection steps
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of CMP and COMP take a similar amount of time, which allows us to highlight the

importance of the efficient projection step.

Table 5.4 shows the duration of the CSC step for various methods, as a function

of 𝑇 and 𝑁tot.. We draw the following conclusions

1. COMP is much faster than CBP, with two possible explanations. In terms

of implementation, CBP constructs the full convolutional dictionary, whereas

COMP does not. Moreover, it is well-known that greedy methods are faster

than BP-like methods [135, 136].

2. COMP is also faster than ADCG. Even though ADCG is as fast as COMP

for the greedy selection step, the computational bottleneck is the block coordi-

nate descent algorithm for local optimization, which is critical for estimating

timestamps off the discrete sampling grid.

3. COMP is as fast as CMP. This is true even for large 𝑇 or 𝑁tot., which involve a

computationally-demanding projection step. This, along with a comparison of

COMP to COMP-slow highlights the importance of making the projection step

efficient. COMP reduces the computation time of COMP-slow by 48% to 85%

on average.

4. As 𝑁tot. increases, the computation time for ADCG and COMP/COMP-INTERP

increases, as they rely on greedy algorithms to iteratively identify codes. On

the other hand, the computation time of CBP stays constant as a result of ℓ1

regularization, which identifies the active codes simultaneously.

5. COMP is faster than COMP-INTERP, since the selection step of the former

requires 𝐶 cross-correlation operations, while that of the latter requires 𝐾𝐶

operations. The computation time of the projection step is the same.

Sparse coding accuracy We computed the average hit error [145] for COMP, ADCG,

CBP, and for COMP-INTERP as a function of the discretization Δ𝐾 . The average

hit error measures how far, in terms of absolute displacement, the recovered sparse

113



1 s 2 s 3 s 4 s 5 s
COMP 0.066 0.114 0.175 0.223 0.271
CMP 0.049 0.089 0.131 0.180 0.237
COMP-slow 0.176 0.350 0.545 0.759 1.002
COMP-INTERP 0.445 0.781 1.161 1.565 2.038
ADCG 11.96 26.77 47.25 78.35 169.64
CBP 13.55 51.75 145.27 · ·

(a) Computation time as a function of 𝑇 .

10 20 30 40 50
COMP 0.096 0.204 0.267 0.340 0.438
CMP 0.082 0.168 0.218 0.276 0.345
COMP-slow 0.194 0.666 1.189 2.111 3.043
COMP-INTERP 0.744 1.416 1.811 2.377 3.112
ADCG 14.89 27.36 47.60 70.20 82.90
CBP 152.44 134.25 135.10 132.60 133.53

(b) Computation time as a function of 𝑁tot..

Table 5.4: Computation time in seconds.

codes are relative to the true sparse codes. We simulated 50 trials with 𝑇 = 1 s

and 𝑁1 = 𝑁2 = 10 and computed the median average hit error across trials for each

method. The average hit error of COMP, ADCG, and CBP is independent of Δ𝐾 , as

they do not rely on grid refinement.

Fig. 5-4 shows that the average hit error for COMP-INTERP is lower than that for

COMP. The finer the discretization, the greater the precision with which COMP-

INTERP identifies the sparse codes, resulting in lower error. The reduction in error

is marginal below a certain threshold (Δ𝐾 = 1
10Δ). The finer the discretization, the

more correlated the interpolated templates and, in turn, the columns of the dictionary.

Therefore, as discretization becomes smaller, the returns, in terms of average hit

error, from expanding the dictionary diminish. With no discretization, COMP and

COMP-INTERP achieve the same average hit errors as expected. Fig. 5-4 also shows

that there is a small gap, between CBP/ADCG and COMP-INTERP. The difference is

due to the fact that COMP-INTERP is not as accurate as CBP/ADCG in the presence

of significant template overlaps. Due to its greedy nature, OMP has worse performance
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Figure 5-4: Average hit error as a function of Δ𝐾 , on a log scale, for CBP, ADCG,
COMP, and COMP-INTERP. Each point represents the median average hit error
computed across 50 trials of simulated data.

in resolving overlaps than approaches based on basis pursuit [139]. Heuristics [151]

can mitigate this.

5.6.3 Results from electrophysiology simulations: CDU step

Dictionary learning accuracy To assess the accuracy of the CDU algorithms, we

use the following error distance metric [152] between two templates ̂︀h𝑐 and ̃︀h𝑐

err(̂︀h𝑐, ̃︀h𝑐) =
√︁

1− ⟨̂︀h𝑐, ̃︀h𝑐⟩2, for ‖̂︀h𝑐‖2 = ‖̃︀h𝑐‖2 = 1. (5.30)

The lower the metric, the closer ̂︀h𝑐 and ̃︀h𝑐. If ̂︀h𝑐 = h(𝑠)
𝑐 and ̃︀h𝑐 = h𝑐, the metric

measures how close the learned template at iteration 𝑠 is to the true template. If̂︀h𝑐 = h(0)
𝑐 and ̃︀h𝑐 = h(*)

𝑐 , the metric measures how much the template at convergence

has changed from the initial template.

We compared the accuracy of the CDU step with the interpolated and the original

dictionary. We simulated 50 trials of data, with 𝑇 = 5 s and 𝑁1 = 𝑁2 = 150, for several

levels of SNR. We obtained the initial templates h(0)
1 and h(0)

2 by perturbing the original
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Figure 5-5: Illustration of the initial h(0)
1 , learned h(*)

1 , and the true template h1. (a)
h(*,Δ)

1 , (b) h(*,0.1Δ)
1 . (c) err(h(*)

1 ,h1) plotted against the initial err(h(0)
1 ,h1) for SNR=10

dB.

templates h1 and h2 with varying levels of Gaussian noise, such that err(h(0)
𝑐 ,h𝑐) ≥ 0.5.

We performed 10 iterations of the alternating-minimization algorithm for the following

methods: 1) COMP & CDU with Δ and 2) COMP-INTERP & CDU-INTERP with

Δ𝐾 = 0.1Δ, converging to {h(*,Δ)
𝑐 }𝑐 and {h(*,0.1Δ)

𝑐 }𝑐, respectively.

Fig. 5-5 shows {h(*,Δ)
𝑐 }𝑐 and {h(*,0.1Δ)

𝑐 }𝑐 at convergence. A visual inspection of

one of the trials (Figs. 5-5(a, b)) shows that h(*,0.1Δ)
1 matches the true h1, whereas

h(*,Δ)
1 learns a shape that disagrees with the true h1 in the middle portion. Fig. 5-5(c)

shows that even with high initialization distance err(h(0)
1 ,h1) (close to 1), err(h(*)

1 ,h1)

at convergence is close to 0 in general. On average, we observe that err(h(*,0.1Δ)
1 ,h1)
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is lower than err(h(*,Δ)
1 ,h1), which highlights the importance of the interpolated dic-

tionary. Although not shown here, we observed that err(h(*,0.1Δ)
2 ,h2) < err(h(*,Δ)

2 ,h2)

on average.

5.6.4 Real 1D electrophysiology dataset: spike sorting

We applied our framework to spike sorting. Given a recording of extracellular voltage,

the goal of spike sorting is to learn the action potentials (templates) from neurons

(sources), and the times when they occur [43]. We used a dataset that consists of

an extracellular recording from the rat hippocampus, along with a simultaneous

intracellular recording [153] from one neuron. The intracellular recording provides the

ground truth data, as it unequivocally associates an action potential to a single neuron,

and thus enables us to evaluate the accuracy of the CDL frameworks. For this dataset,

620 events occurred from the neuron that was recorded intracellularly. The sampling

rate of the extracellular data, which comprise 4 channels, is 𝑓𝑠 = 104 Hz. We used

𝑇 = 150 seconds of data from channel 1 and preprocessed them, following standard

procedures [12]. Specifically, we applied a high-pass filter with cut-off frequency 400

Hz, and whitened the data. In addition, we identified peaks that crossed a pre-defined

threshold [154] and extracted a segment of length 81 samples centered around each

peak. The resulting collection Y ∈ R5000×81 of 5, 000 segments is the input to our

analyses of the real data.

Method setup We assumed 𝐶 = 3, namely that the extracellular recording can

detect activity from 3 neurons. We used templates {h𝑐}3
𝑐=1 ∈ R41, each of length 4 ms.

We applied, to the extracellular data, 1) COMP & CDU with Δ to obtain {h(*,Δ)
𝑐 }3

𝑐=1

and 2) COMP-INTERP & CDU-INTERP with Δ𝐾 = 0.1Δ to obtain {h(*,0.1Δ)
𝑐 }3

𝑐=1.

We used the following procedure to initialize the templates to
{︁
h(0)

𝑐

}︁3

𝑐=1
. Following

segment extraction, we first performed PCA on Y for dimensionality reduction, and

then K-means clustering with three clusters in the lower-dimensional space. We used

the centroids of the clusters to obtain
{︁
h(0)

𝑐

}︁3

𝑐=1
. We used an estimate of the variance

of the background noise as the termination criterion for the CSC step of COMP and

COMP-INTERP. We computed this estimate by extracting data from a segment that
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remained below a pre-defined threshold for more than 500 ms. We ran 15 iterations of

the CDL algorithm.

We compared CBP and ADCG with {h(0)
𝑐 }3

𝑐=1 to the CSC step of COMP with

{h(*,Δ)
𝑐 }3

𝑐=1 and COMP-INTERP with {h(*,0.1Δ)
𝑐 }3

𝑐=1. We used {h(0)
𝑐 }3

𝑐=1 for CBP and

ADCG, not the learned templates, to emphasize that these frameworks lack the means

of updating the initial filters. For a given true spike event from the intracellular data,

we associate an event identified using the extracellular data as a true positive if the

event is within 30 samples (3 ms) of a true event from the intracellular data. Among

the learned templates, we associate the template with the highest number of true

positive with the neuron from the intracellular data and refer to it as h1. As we do not

have access to the true h1, we treat h(*,Δ)
1 , h(*,0.1Δ)

1 , or h(0)
1 , depending on the CSC

approach, as the best estimate of the true spike template. Since ADCG requires values

of the templates off the grid, we performed cubic interpolation on each of the filters.

We approximated the gradients using finite differences of the interpolated template

values.

5.6.5 Results from spike sorting application

Detection error curve We used two statistics to evaluate the spike sorting perfor-

mance. Following CSC, a threshold is set to identify the times when action potentials

occur. A true miss is a true spike from the intracellular data within 3 ms of which no

threshold-crossing event occurs in the extracellular data. A false alarm is a threshold-

crossing event from the extracellular data that is not a true spike. Varying the

threshold leads to a trade-off between true misses and false alarms. A high-amplitude

threshold leads to a low number of false alarms and a large number of true misses,

and vice versa for a low-amplitude threshold.

Fig. 5-6 shows the result of sorting spikes associated with h1 using CBP, ADCG,

COMP and COMP-INTERP. The figure shows that the greedy approaches rival CBP

and ADCG, and are better in the low true miss regime. The number of true misses for

CBP and ADCG do not decrease below 27 and 7, respectively, even with thresholds of

low amplitude. This indicates that CBP and ADCG are not able to identify a subset

118



0 20 40 60 80
Number of true misses

0

10

20

30

40

50

60

N
u

m
b

er
of

fa
ls

e
al

ar
m

s

CBP

COMP

COMP-INTERP

ADCG

Figure 5-6: Error curves for events associated with h1 (true spike template). The
curves, computed for CBP, ADCG, COMP and COMP-INTERP, show the trade-off
between the number of false alarms and the number of true misses for each method.

of true events that the greedy approaches correctly identify.

Difference between ℓ0 and ℓ1 The discrepancy in the number of true misses from

CBP and COMP/COMP-INTERP motivated us to examine segments for which the

number of errors from CBP and the greedy methods differ. Fig. 5-7 shows examples

of such segments. Fig. 5-7(a) shows that CBP fails to capture the true spike event

(red dot), resulting in a true miss, whereas COMP-INTERP (Fig. 5-7(b)) uses h1 to

correctly identify the event. The failure of CBP and the success of COMP-INTERP

point to a key difference between the ℓ1 and ℓ0-based CSC step. To minimize its

objective function, ℓ1-based CBP must strike a balance between the reconstruction

error, which can be reduced by using additional templates, and the ℓ1 penalty, which

can be reduced by using fewer templates or ones with lower amplitude. In Fig. 5-7(a),

the choice of regularization parameter 𝜆 is such that CBP chooses to use one template

with large amplitude, thereby missing the true event. Although a smaller 𝜆 can lower

the number of true misses, this would result in spurious events that would increase

the number of false alarms. This points to a limitation of ℓ1-based methods, the need
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to tune 𝜆 carefully. COMP-INTERP (and COMP), on the other hand, can select as

many events as needed to make the reconstruction error below the error threshold. In

Fig. 5-7(b), COMP-INTERP first selects h3, and then h1, which corresponds to the

true event.

Example of a non-integer shift Fig. 5-7(c) is an example of a segment where

COMP results in a false alarm, but COMP-INTERP does not (Fig. 5-7(d)). COMP

is forced to use the true spike template, h1, whereas COMP-INTERP uses h3 to select

the secondary peak. This highlights the benefits of using the interpolated dictionary.

That being said, we observe from Fig. 5-6 that these two have similar performance,

with COMP-INTERP slightly outperforming in the low true miss regime.

Learned templates Fig. 5-8 shows the templates that were learned by CDL using

the extracellular data, and COMP-INTERP in the CSC step. We observed that

h(*,Δ)
𝑐 and h(*,0.1Δ)

𝑐 are nearly identical, possibly due to the high sampling rate of 104

Hz. The fact that the shapes of the learned templates are not significantly different

from those of the initial templates suggests that we initialized the templates well. To

determine how different the learned templates are from the initial ones, we computed

err(h(0)
𝑐 ,h(*,Δ)

𝑐 ) for 𝑐 = 1, 2, 3, and then took the maximum of the three values. We

found that the maximum equaled 0.32, which indicates that, although not obvious

visually, the CDL algorithm did learn new templates.

5.6.6 Simulated 2D dataset: single molecule localization mi-

croscopy (SMLM)

We also applied our framework to SMLM [44]. The task is to accurately localize the

locations of activated single molecules given a series of 2D low-resolution images taken

by an optical microscope. Specifically, given images of size 64×64 pixels, with each

pixel corresponding to an area of size 100 nm × 100 nm, the goal is to determine the

location of molecules with up to 10 nm accuracy, a task referred to as super-resolution

microscopy. The images are assumed to be generated through a two-dimensional

convolutional generative model, where a point spread function (PSF) is convolved with
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Figure 5-7: Example of applying CBP, COMP, and COMP-INTERP to segments of
real data (black trace). The red dot shows where the true event occurs. The green,
red, and blue traces are reconstructions of the segments using only h1 (true spike
template), h2 and h3, respectively. (a) A segment where CBP fails to correctly identify
the occurrence of an event, and (b) COMP-INTERP does. (c) A different segment
where COMP incorrectly uses h1, but (d) COMP-INTERP does not.
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sparse codes (the locations of molecules) and perturbed by photon noise. Fig. 5-9(a)

shows an example of SMLM data.

We use a publicly-available simulated dataset, where a symmetric 2D Gaussian

template with FWHM = 723 nm, equivalent to 𝜎 = 110 nm, was used for simulation.

Fig. 5-9(b) shows a sampled template with the ground truth 𝜎 = 110 nm. We used

𝐽 = 100 image frames for the CDL task, equivalent to Y ∈ R64×64×100. The number

of single molecules and their locations are different across the frames. With 𝐽 = 100,

we have approximately 700 occurrences of the single molecules.

Method setup We assumed 𝐶 = 1 and used h1 ∈ R9×9, equivalent to a patch of

size 900 nm ×900 nm. We define additional notations as follows. Let h1[𝑢, 𝑣] denote

element (𝑢, 𝑣) of h1. We initialized h(0)
1 to a symmetric Gaussian template with

𝜎 = 200 nm (Fig. 5-9(c)), which is wider than the true template (𝜎 = 110 nm). For

the CSC step, we terminated COMP/COMP-INTERP when the residual norm ‖r‖2,

which decreases with correct identification of the codes at each iteration, began to

increase. As in the earlier applications, we used two versions of the CDL, 1) COMP

& CDU with a single pixel resolution and 2) COMP-INTERP & CDU-INTERP with

0.1 sub-pixel resolution. A sub-pixel resolution of 0.1 indicates that the method has

access to a total of 100 non-integer shifts (a combination of 10 non-integer delays in

the horizontal and vertical directions). We ran 5 iterations of the CDL algorithm to

obtain h(*,Δ)
1 and h(*,0.1Δ)

1 , respectively.
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5.6.7 Results from SMLM application

Learned templates Figs. 5-9(d-f) show the learned filters. Compared to the initial

Gaussian template (Fig. 5-9(c)), h(*,0.1Δ)
1 (Fig. 5-9(d)) is much narrower and resembles

the true template in Fig. 5-9(b). Although not shown here, h(*,Δ)
1 is visually similar

to h(*,0.1Δ)
1 . Since the true filter is a symmetric template, with rows equidistant from

the center row having the same shape, we expect to see this property for the learned

filters as well. To analyze this, we define a distance metric dist(h, 𝑖) as follows

dist(h, 𝑖) =
(︃

𝑉∑︁
𝑣=1

(h[𝑚+ 𝑖, 𝑣]− h[𝑚− 𝑖, 𝑣])2
)︃0.5

for 𝑖 = 0, · · · ,𝑚− 1, and ‖h‖2 = 1,
(5.31)

where 𝑚 is the index for the center row (𝑚 = 5 and 𝑉 = 9 for this application) and

𝑖 represents the offset from the center row. The closer the metric is to 0, the more

symmetric the template. Fig. 5-9(f) shows this metric for h(0)
1 , h(*,Δ)

1 , and h(*,0.1Δ)
1 .

We observe that dist(h(*,0.1Δ)
1 , 𝑖) is lower than dist(h(*,Δ)

1 , 𝑖) for all offsets, with the

largest deviations coming from 𝑖 = 1, 2. This suggests that CDU-INTERP preserves

the symmetry of the initial template much better than CDU. The difference comes

from the alignment operation that implicitly happens in CDU-INTERP, as previously

discussed. CDU-INTERP shifts/aligns the extracted patches. On the other hand,

simple CDU takes a weighted average of the extracted patches, losing information on

the symmetry of the filter.

We emphasize that the existing sparse approximation approaches for SMLM [133], [146], [155]

assume access to the ground-truth template. Our framework learns the optimal tem-

plate from the data and obviates the need for this assumption.

Performance curve We used two metrics to evaluate localization accuracy. First,

we used the F-index, given as the harmonic mean of the precision and recall, and a

common measure of localization accuracy [44]. The F-index is a function of the radius

of tolerance. For a given radius 𝑟, if the distance between a true and a recovered

code is less than 𝑟, the recovered code is considered a true positive. The larger the

radius, the larger the number of true positives, and the higher the F-index. Second,
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Figure 5-9: SMLM application. (a) A single 64 × 64 frame of SMLM data with 8
molecules, with 100 nm ×100 nm /pixel. (b) A Gaussian template with ground truth
𝜎 = 110 nm. (c) h(0)

1 with large 𝜎. (d) h(*,Δ)
1 for COMP & CDU with single pixel

resolution. (e) Center row of h(0)
1 (blue), h(*,Δ)

1 (orange), and h(*,0.1Δ)
1 (green). (f)

Metric dist(h1, 𝑖) defined in Eq. 5.31.
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Figure 5-10: SMLM performance for ADCG (blue), COMP-INTERP with h(0)
1 (red),

COMP-INTERP with h(*,Δ)
1 (orange), and COMP-INTERP with h(*,0.1Δ)

1 (green). (a)
F-index (b) RMSE.

we used RMSE, given as a root mean-squared error between the true locations and

the true-positive locations. RMSE also depends on the radius. The lower the RMSE,

the closer the true-positive codes are to the true codes.

Fig. 5-10 shows the F-index (Fig. 5-10(a)) and the RMSE (Fig. 5-10(b)) for ADCG

with the ground-truth filter, COMP-INTERP with h(0)
1 , COMP-INTERP with 0.1

sub-pixel resolution and h(*,Δ)
1 , and 4) COMP-INTERP with 0.1 sub-pixel resolution

and h(*,0.1Δ)
1 . We observe that both ADCG and COMP-INTERP with h(*,0.1Δ)

1 achieve

the best performance in terms of F-index and RMSE. Although COMP-INTERP

with h(*,Δ)
1 eventually achieves a similar F-index with increasing radius, the wide

gap in F-index, ranging for radii between 0 to 30 nm suggests that the recovered

codes are located further away from the true codes, compared to those recovered by

the best two methods. This is further supported by the much higher RMSE value

for COMP-INTERP with h(*,Δ)
1 . Finally, COMP-INTERP with h(0)

1 suggests that

mis-specifying the dictionary leads to poor performance in terms of both metrics. In

conclusion, 1) the difference between h(*,0.1Δ)
1 and h(*,Δ)

1 and 2) the performance gap

between COMP-INTERP with h(*,0.1Δ)
1 and the other greedy methods demonstrate

the importance of CDL with interpolation.
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5.7 Discussion

We introduced novel Convolutional Sparse Coding (CSC) and Convolutional Dictionary

Update (CDU) algorithms using discrete samples of continuous-domain signals that

consist of shifted copies from multiple sources, each with its template.

For CSC, unlike existing methods to estimate events that occur on the continuous

domain, and off the grid, our algorithm operates on a refined discrete sampling grid,

with tunable precision. To overcome the lack of access to values of the templates or

the signal outside the original grid, we construct an expanded, overcomplete dictionary

that comprises discrete shifts of the original templates, along with non-integer shifts

aligned with the refined grid, and obtained by smooth interpolation. The expanded

dictionary increases the computational demands of CSC. To mitigate this, we focus

on greedy pursuit methods and proposed an efficient implementation of convolutional

OMP (COMP), which forms the basis of an efficient implementation of COMP

with the interpolated dictionary (COMP-INTERP). The efficient COMP exploits

the locality of the templates. It is faster than continuous basis pursuit [131] and

greedy continuous frameworks [132], [133, 134], which are grid-free CSC algorithms,

and achieves competitive coding accuracy. We demonstrated this empirically in an

application to 1D real and simulated electrophysiology data, as well as 2D super-

resolution microscopy.

For CDU, we proposed a novel algorithm to update the templates while accounting

for non-integer delays. Empirically, we showed that accounting for non-integer delays in

the CDU step leads to more accurate dictionary learning and better code identification

than otherwise. In an application to super-resolution microscopy [44], we demonstrated

that our algorithm can automatically learn the underlying point-spread function,

obviating the current need to assume it is known.

We conclude that our approach is a simple, yet efficient paradigm for convolutional

dictionary learning, that faithfully accounts for the continuous nature of the domain

of signals.
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Chapter 6

Smoooth convolutional dictionary

learning with GP constraint

Primer In the previous chapter, we performed smooth convolutional dictionary learn-

ing in a favorable setting of high signal-to-noise ratio (SNR). The dictionary (the

collection of the templates) is usually learned in a data-driven manner, without con-

straints. In this chapter, we have the same goal of learning smooth convolutional

dictionary and their corresponding codes, but in the low SNR setting. To circumvent

the problem of overfitting in the low SNR setting, we introduce explicit smoothness

constraint via Gaussian Process (GP) prior on the dictionary elements. This chapter

is adapted from the following work

- Andrew H. Song, Bahareh Tolooshams, and Demba Ba, Gaussian Process Convolu-

tional Dictionary Learning, IEEE Signal Processing Letters, 2021

6.1 Introduction

In practice, when data are scarce or have a low signal-to-noise ratio (SNR), learned

dictionaries overfit the data in the absence of constraints. Consequently, the inter-

pretability of the dictionary and its predictive performance on unobserved data suffer.

The problem is aggravated for data from non-Gaussian distributions such as binomial
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data, due to the non-linear mapping from dictionary to observations [156]. There

is also evidence that the templates for naturally-occurring data could be considered

smooth [157, 43].

The recent literature suggests that there are several approaches to learning smooth

shift-invariant templates. One approach models the templates with parametric func-

tions, such as the bi-exponential [51] function or a mixture of Gaussians [158]. Another

line of work imposes total variation or Tikhonov-like penalties [159, 160, 161] on

the templates. More recently, smooth templates were obtained by passing learned

dictionary through pre-designed lowpass filters [157, 13, 162].

We propose an alternative flexible, nonparametric approach, by assuming that the

templates are generated from a Gaussian Process (GP) [46]. We make the following

contributions1

CDL via GP regularization We introduce GPCDL, a framework for CDL with

GP regularization, which can be applied to observations from the natural exponential

family [163]. We show that the learned dictionary is accurate in conditions where the

unregularized alternatives overfit. The learning procedure is a simple extension of

iteratively reweighted least squares and allows us to easily incorporate the GP prior.

GP prior as Wiener filter We show that, under some assumptions, the GP prior

acts as a lowpass Wiener filter [164], which allows GPCDL to learn smooth dictionaries.

From this unique perspective, we elucidate the trade-off between the amount of training

data and the parameters of the GP prior.

The paper is organized as follows: Section 6.2 and 6.3 introduce the background

and the GPCDL framework. Section 6.4 develops the interpretation of GPCDL as

Wiener filtering. In Section 6.5 and 6.6, the results and conclusion are presented.

1The code can be found at https://github.com/andrewsong90/gpcdl
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6.2 Background

6.2.1 Notation

We denote the zero and identity matrices as 0 and I, with appropriate dimensions.

A(𝑘,𝑘′) refers to the entry of matrix A at location (𝑘, 𝑘′). The diag(·) refers to a

diagonal matrix, with entries equal to the vector argument. When applied to a vector,

a function operates in an element-wise manner.

6.2.2 Natural exponential family

Let y𝑗∈R𝑁 be observations from the natural exponential family with mean 𝜇𝜇𝜇𝑗 = E[y𝑗 ],

for 𝑗 = 1, . . . , 𝐽 . With 1𝑁 as the 𝑁 -length vector of ones, the log-likelihood is given as

log ℓ(y𝑗) = 𝑓(𝜇𝜇𝜇𝑗)Ty𝑗 − 1T
𝑁𝑏(𝑓(𝜇𝜇𝜇𝑗))

𝜑
+ 𝑐(y𝑗, 𝜑), (6.1)

where 𝜑 is a dispersion parameter and the functions 𝑏(·), 𝑐(·), as well as the invertible

link 𝑓(·), are distribution-dependent.

We consider 𝑓(𝜇𝜇𝜇𝑗) to be the sum of scaled and time-shifted copies of 𝐶 finite-

length templates {h𝑐}𝐶
𝑐=1 ∈ R𝐾 , each localized, i.e., 𝐾 ≪ 𝑁 . We express 𝑓(𝜇𝜇𝜇𝑗) as

a convolution, i.e., 𝑓(𝜇𝜇𝜇𝑗) = ∑︀𝐶
𝑐=1 h𝑐 * x𝑗

𝑐 + a𝑗, where the code vector x𝑗
𝑐 ∈ R𝑁−𝐾+1

is a train of scaled impulses and a𝑗 ∈ R𝑁 is a baseline. The entry of x𝑗
𝑐 at in-

dex 𝑛𝑗
𝑐,𝑖 corresponds to the location of the 𝑖𝑡ℎ event with amplitude 𝑥𝑗

𝑐,𝑖. Alter-

natively, we can write 𝑓(𝜇𝜇𝜇𝑗) − a𝑗 = ∑︀
𝑐 X𝑗

𝑐h𝑐 = ∑︀
𝑐

∑︀𝑁𝑗
𝑐

𝑖=1 𝑥
𝑗
𝑐,𝑖S

𝑗
𝑐,𝑖h𝑐, where S𝑗

𝑐,𝑖 =

[0𝐾×(𝑛𝑗
𝑐,𝑖−1) I𝐾×𝐾 0𝐾×(𝑁−𝐾−𝑛𝑗

𝑐,𝑖+1)]T ∈ R𝑁×𝐾 is the linear operator that shifts h𝑐 by

𝑛𝑗
𝑐,𝑖 samples and 𝑁 𝑗

𝑐 is the number of occurrences of h𝑐 in y𝑗 [13].

6.2.3 Gaussian Process

Gaussian Processes (GPs) offer a nonparameteric and flexible Bayesian approach

for signal modeling [46], which we use as a smooth prior on h𝑐. We first define

functions ℎ𝑐 : [0, 𝑇 ) → R, ∀𝑐, generated from a GP prior with zero-mean and
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stationary kernel 𝜅𝑐(𝑡, 𝑡′), i.e., ℎ𝑐(𝑡) ∼ GP(0, 𝜅𝑐(𝑡, 𝑡′)), ∀𝑐. We assume that the filter

h𝑐 is sampled from ℎ𝑐(·), and for simplicity, with constant sampling interval Δ such

that 𝑇 = 𝐾Δ. This yields h𝑐 ∼ 𝒩 (0,Σ𝑐), where Σ𝑐 ∈ R𝐾×𝐾 is the covariance matrix

and Σ𝑐,(𝑘,𝑘′) = 𝜅𝑐(𝑘Δ, 𝑘′Δ).

We focus on kernels in the Matern family [165], parameterized by 𝜈, variance 𝜎2
𝑐 ,

and lengthscale ł𝑐. The parameter 𝜈 controls the smoothess of the kernel and is defined

a priori by the user. The popular choice is 𝜈 = 𝑝+ 1/2, 𝑝 ∈ N+, since this leads to

simplification of the kernel expression. The parameters 𝜎2
𝑐 and 𝑙𝑐 can be chosen by

maximum-likelihood estimation or cross-validation [46].

The power spectral density (PSD) of the kernel, denoted 𝛾𝑐(𝜔), a function of the

normalized frequency 𝜔 ∈ [−𝜋, 𝜋], is obtained by taking the Fourier transform of the

kernel [166]. We focus on 𝜈 = 1.5 throughout this work, noting that the same holds

for any other GP kernels. For 𝜈 = 1.5, we have

Σ𝑐,(𝑘,𝑘′) = 𝜎2
𝑐

(︂
1 +
√

3(𝑘 − 𝑘′)Δ
𝑙𝑐

)︂
exp

(︂
−
√

3(𝑘 − 𝑘′)Δ
𝑙𝑐

)︂
𝛾𝑐(𝜔) = (4/

√
3)𝜎2

𝑐 𝑙𝑐/(1 + 𝑙2𝑐𝜔
2/3)2.

An example of 𝛾𝑐(𝜔) for 𝜈 = 1.5 is depicted in Fig. 6-1(a) for varying 𝑙𝑐. As 𝜔 increases,

𝛾𝑐(𝜔) decays monotonically.

6.3 CDL with GP regularization

6.3.1 Objective

Combining the log-likelihood log 𝑝(y|{h𝑐}), where we use y to denote {y𝑗}, and the

log-prior, we cast the GPCDL problem as minimizing the negative log-posterior ℒ(y),

min
{h𝑐}𝐶

𝑐=1
{x𝑗

𝑐}𝐶,𝐽
𝑐=1,𝑗=1

ℒ(y)⏞  ⏟  ∑︁
𝑗

−𝑓(𝜇𝜇𝜇𝑗)Ty𝑗 + 1T
𝑁𝑏(𝑓(𝜇𝜇𝜇𝑗))

𝜑⏟  ⏞  
− log 𝑝(y|{h𝑐})

+
∑︁

𝑐

hT
𝑐 Σ−1

𝑐 h𝑐

2

s.t. ‖x𝑗
𝑐‖0 < 𝛽 and ‖h𝑐‖2 ≤ 1,∀𝑗, 𝑐.

(6.2)
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We use the ℓ0 pseudo-norm for the sparsity constraint (number of nonzeros), with

sparsity level 𝛽. The GP prior is incorporated as a quadratic regularizer on h𝑐. This

formulation can be naturally extended to the multivariate setting.

Parametric approaches express {h𝑐} as combinations of parametric functions [51,

158]. Despite requiring few parameters, these approaches require a careful choice of

functions and parameters (e.g., the number of functions) to minimize model misspeci-

fication error. GPCDL is a nonparametric approach and avoids the misspecification

issue at the expense of more parameters, i.e., the templates. By imposing structure

on {h𝑐} with the GP prior, GPCDL promotes smooth templates, while maintaining

the flexibility of the nonparametric paradigm.

We use alternating minimization to solve Eq. (6.2), where ℒ(y) is minimized

with respect to {h𝑐} and {x𝑗
𝑐}, by alternating between a convolutional sparse coding

(CSC) step, optimizing for {x𝑗
𝑐}, and a convolutional dictionary update (CDU) step,

optimizing for {h𝑐} [167]. For CSC, we use Convolutional Orthogonal Matching

Pursuit (COMP) [168, 59], a greedy algorithm that iteratively identifies the template

and the code that minimize − log 𝑝(y|{h𝑐}). We define 𝛽 as the minimal active number

of elements which, when reconstructed in the form of 𝜇𝜇𝜇, results in − log 𝑝(y|{h𝑐})

lower than a threshold computed from the baseline period of each dataset. More

details can be found in [59].

6.3.2 Convolutional Dictionary Update

Given the estimates for X𝑗
𝑐, we use Newton’s method to minimize ℒ(y) with respect

to h𝑐, referred to, in the context of the exponential family, as iteratively reweighted

least squares (IRLS) [36]. At iteration 𝑡, we compute its gradient and Hessian

∇h𝑐ℒ(y) = −𝜑−1∑︁
𝑗

(X𝑗
𝑐)T(y𝑗 − 𝜇𝜇𝜇𝑗,(𝑡)) + Σ−1

𝑐 h(𝑡)
𝑐 , (6.3)

∇2
h𝑐
ℒ(y) = 𝜑−1∑︁

𝑗

(X𝑗
𝑐)T diag((𝑓 ′(𝜇𝜇𝜇𝑗,(𝑡)))−1)X𝑗

𝑐 + Σ−1
𝑐 ,
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where 𝑓 ′ denotes the derivative of 𝑓 . We briefly discuss how the gradient and the

Hessian were obtained - For notational simplicity, we drop dependence on 𝑗 and 𝑡.

The gradients of the first and the last term of ℒ(y), which are −∇h𝑐𝑓(𝜇𝜇𝜇)Ty and

∇h𝑐hT
𝑐 Σ−1

𝑐 h𝑐 respectively, are given as follows

−∇h𝑐𝑓(𝜇𝜇𝜇)Ty = −(X𝑐)Ty

∇h𝑐hT
𝑐 Σ−1

𝑐 h𝑐 = 2Σ−1
𝑐 h𝑐.

For the gradient of the second term ∇h𝑐1T
𝑁𝑏(𝑓(𝜇𝜇𝜇)), denoting 𝜂𝜂𝜂 = 𝑓(𝜇𝜇𝜇) for simplicity,

we have the following

∇h𝑐1T
𝑁𝑏(𝜂𝜂𝜂) = 𝜕𝑏(𝜂𝜂𝜂)

𝜕h𝑐

1𝑁

= 𝜕𝜂𝜂𝜂

𝜕h𝑐

𝜕𝑏(𝜂𝜂𝜂)
𝜕𝜂𝜂𝜂

1𝑁

= XT
𝑐 diag(𝜇𝜇𝜇)1𝑁 = XT

𝑐 𝜇𝜇𝜇.

We use the well-known relationship for the natural exponential family [16], which

states that 𝑑𝑏(𝜂𝜂𝜂𝑖)/𝑑𝜂𝜂𝜂𝑖 = E[y𝑖] = 𝜇𝜇𝜇𝑖 with the subscript 𝑖 referring to 𝑖th element of the

corresponding vector. We get ∇h𝑐ℒ(y) in Eq. (3) by collecting these terms. For the

Hessian, we compute 𝜕(XT
𝑐 𝜇𝜇𝜇)/𝜕h𝑐 as follows

𝜕XT
𝑐 𝜇𝜇𝜇

𝜕h𝑐

= 𝜕𝜇𝜇𝜇

𝜕h𝑐

X𝑐 = 𝜕𝑓−1(𝜂𝜂𝜂)
𝜕h𝑐

X𝑐

= 𝜕𝜂𝜂𝜂

𝜕h𝑐

𝜕𝑓−1(𝜂𝜂𝜂)
𝜕𝜂𝜂𝜂

X𝑐

= XT
𝑐 diag((𝑓 ′(𝜇𝜇𝜇𝑖))−1)X𝑐.

Letting W𝑗,(𝑡)
𝑐 = diag((𝑓 ′(𝜇𝜇𝜇𝑗,(𝑡)))−1), we have

h(𝑡+1)
𝑐 = h(𝑡)

𝑐 − (∇2
h𝑐
ℒ(y))−1∇h𝑐ℒ(y) (6.4)

= (𝜑−1∑︁
𝑗′

(X𝑗′

𝑐 )TW𝑗′,(𝑡)
𝑐 X𝑗′

𝑐 + Σ−1
𝑐 )−1∑︁

𝑗

(X𝑗
𝑐)Tz𝑗,(𝑡+1)

𝑐 ,

where z𝑗,(𝑡+1)
𝑐 = 𝜑−1(W𝑗,(𝑡)

𝑐 X𝑗
𝑐h(𝑡)

𝑐 +(y𝑗−𝜇𝜇𝜇𝑗,(𝑡))) ∈ R𝑁 . After each update, we normalize
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h(𝑡+1)
𝑐 to have unit norm. We update h𝑐 in a cyclic manner and proceed to the next

CSC step. The role of (X𝑗
𝑐)T in (X𝑗

𝑐)Tz𝑗,(𝑡+1)
𝑐 is to extract the segments of z𝑗,(𝑡+1)

𝑐 where

h(𝑡)
𝑐 occurs, and take their weighted average [13]. Since 𝐾 ≪ 𝑁 , the computational

complexity of matrix inversion for Σ𝑐 and ∇2
h𝑐
ℒ(y) is negligible.

In summary, the CDU step seamlessly incorporates the GP constraint into the

classical IRLS algorithm [163]. Since the optimization is not dependent on the form of

Σ𝑐, we can choose different Σ𝑐 to enforce different degrees of smoothness. This is simpler

compared to approaches utilizing total-variation like penalties [159, 160], which require

custom, dedicated primal-dual optimization methods for different penalties [169].

6.4 Analysis of converged dictionary

We now analyze how GPCDL promotes the smoothness of h𝑐. We focus mainly on the

case where the observations are Gaussian for intuition. We assume that the templates

are non-overlapping, that is (S𝑗
𝑐,𝑖)TS𝑗

𝑐,𝑖′ = 0 for 𝑖 ̸= 𝑖′.

Gaussian case IRLS converges in a single iteration (we omit the index 𝑡), with 𝑓

as the identity and W𝑗
𝑐 = I𝑁×𝑁 . This yields z𝑗

𝑐 = 𝜑−1(y𝑗 −∑︀𝑐′ ̸=𝑐 X𝑗
𝑐′h𝑐′ − a𝑗). The

dispersion is the observation noise variance, i.e., 𝜑 = 𝜎2
𝜀 .

h𝑐 =
(︂
𝜎−2

𝜀

∑︁
𝑗

(X𝑗
𝑐)TX𝑗

𝑐 + Σ−1
𝑐

)︂−1∑︁
𝑗

(X𝑗
𝑐)Tz𝑗

𝑐

=
(︂
𝜎−2

𝜀

∑︁
𝑗,𝑖

(𝑥𝑗
𝑐,𝑖)2I + Σ−1

𝑐

)︂−1∑︁
𝑗

(X𝑗
𝑐)Tz𝑗

𝑐,

(6.5)

where the second equality follows from (S𝑗
𝑐,𝑖)TS𝑗

𝑐,𝑖′ = 0 for 𝑖 = 𝑖′. The factor 𝛼2 =

𝜎−2
𝜀

∑︀
𝑗,𝑖(𝑥𝑗

𝑐,𝑖)2, which we term code-SNR, represents the SNR of the sparse codes, since∑︀
𝑗,𝑖(𝑥𝑗

𝑐,𝑖)2 and 𝜎2
𝜀 are the energy of the codes and the noise, respectively.

Let us now examine Fh𝑐, the spectra of h𝑐, where F ∈ C𝐾×𝐾 is a discrete Fourier

transform matrix, with F𝑘,𝑘′ = exp(−2𝜋𝑖(𝑘 − 1)(𝑘′ − 1)/𝐾), and 𝜔𝑘 = 2𝜋𝑘/𝐾. Using

the eigen-decomposition for a stationary kernel [112], we get

Σ𝑐 ≃ F−1 diag([𝛾𝑐(𝜔1), . . . , 𝛾𝑐(𝜔𝐾)])F. (6.6)
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Denoting E𝑐 = ∑︀
𝑗(X𝑗

𝑐)Tz𝑗
𝑐 for notational simplicity, and using FF−1 = I, we have

Fh𝑐 ≃ F(𝛼2I + F−1 diag([𝛾−1
𝑐 (𝜔1), . . . , 𝛾−1

𝑐 (𝜔𝐾)])F)−1E𝑐

= diag
(︁
g
)︁
F̃︀h𝑐, (6.7)

where g𝑘 = 𝛾𝑐(𝜔𝑘)/(𝛾𝑐(𝜔𝑘) + 𝛼−2) and ̃︀h𝑐 = E𝑐/𝛼
2. We can interpret Eq. (6.7) as

Wiener filter [164] with gain g𝑘 at 𝜔 = 𝜔𝑘 on ̃︀h𝑐, the learned template without the

regularization.

The gain g𝑘 depends on two factors: 1) the code-SNR 𝛼2 and 2) the PSD of the GP

prior 𝛾𝑐(𝜔𝑘). For fixed 𝛼2, the larger (and smaller) 𝛾𝑐(𝜔𝑘), the closer g𝑘 to 1 (and 0).

Therefore, g𝑘 acts as a lowpass filter and suppresses high-frequency content, allowing

accurate learning of smooth h𝑐. Fig. 6-1 demonstrates how different 𝑙𝑐 lead to different

gains g. If 𝛼2 is increased by collecting more data (increasing 𝐽), g𝑘 increases across

the entire 𝜔 axis and the filtering effect diminishes. This agrees with the Bayesian

intuition that with more data, the likelihood dominates the prior. Note that with

increasing 𝐽 , ̃︀h𝑐 itself becomes more accurate [170].

This suggests that GPCDL shares the same philosophy as [157, 13], since the

learned dictionary is lowpass-filtered. However, the filters are designed differently.

For GPCDL, the Wiener filter is data-adaptive, as the gain is determined a posteriori

from the balance between the likelihood (data) and the prior. In contrast, the filter

is designed a priori in [157, 13, 162], without reference to the data or optimization

criteria.

We note that a similar form has been studied in the spectral filtering theory for

Tikhonov regularization [171]. Tikhonov regularization can be recovered from Eq. (6.2)

with Σ𝑐 = 𝜎2
𝑐 I. The diagonal covariance yields 𝛾𝑐(𝜔𝑘) = 𝛾𝑐, ∀𝑘, and consequently

constant gain g𝑘 = g, ∀𝑘, resulting in ̃︀h with a smaller norm, shown in Fig. 6-1 (green).

For GPCDL, however, Σ𝑐 is symmetric and non-diagonal. This allows GPCDL to

have frequency-dependent Wiener filter gain.

General case For non-Gaussian distributions, two factors complicate the interpreta-

tion: 1) IRLS requires multiple iterations to converge and 2) W𝑗,(𝑡)
𝑐 is dependent on
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Figure 6-1: (a) PSD 𝛾𝑐(𝜔) for Matern kernel with 𝜈 = 1.5 and varying 𝑙𝑐 for fixed 𝛼.
The green line corresponds to Tikhonov regularization with diagonal 𝜎2

𝑐 . (b) The filter
gain g.

𝜔𝑘 and iteration 𝑡. However, we conjecture that smoothing still takes place. Specif-

ically, R(𝑡) = (X𝑗
𝑐)TW𝑗,(𝑡)

𝑐 X𝑗
𝑐 is still a diagonal matrix with R(𝑡)

(𝑘,𝑘) = 𝜑−1∑︀
𝑗,𝑖(𝑥𝑗

𝑐,𝑖)2 ·

(𝑓 ′(𝜇𝜇𝜇𝑗,(𝑡)
𝑛𝑗

𝑐,𝑖+𝑘−1))
−1. This consequently yields g𝑘 = 𝛾𝑐(𝜔𝑘)/(𝛾𝑐(𝜔𝑘) + (R(𝑡)

(𝑘,𝑘))−1), com-

puted using R(𝑡) = F−1R(𝑡)F. Therefore, the relation between 𝛾𝑐(𝜔𝑘) and (R(𝑡)
(𝑘,𝑘))−1

holds as in the Gaussian case. Consequently, g𝑘 filters the spectra of weighted-averaged

segments from z𝑗,(𝑡)
𝑐 , extracted by the operator (X𝑗

𝑐)T. Empirically, we observe that

low-pass filtering still occurs.

6.5 Experiments

We apply our framework to two datasets: 1) simulated data (Gaussian) and 2) neural

spiking data from rats (Bernoulli). We use the Matern kernel with 𝜈 = 1.5, fix

𝜎2
𝑐 = 1, and vary 𝑙𝑐 to control the regularization. We use the mixture of Gaussians

(MOG) model hMOG
𝑐 [𝑘] = ∑︀𝐷

𝑑=1 𝑎𝑐,𝑑 exp(−(𝑘−𝜇𝑐,𝑑)2/𝜎2
𝑐,𝑑) as baseline, with parameters

{𝑎𝑑, 𝜇𝑑, 𝜎
2
𝑑}𝐷

𝑑=1 determined by maximum-likelihood estimation. MOG represents a

smooth parametric approach. We run 15 iterations of our algorithm, with ̂︀h𝑐 and ̂︀x𝑐

denoting the solutions at convergence.
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Figure 6-2: Simulation results for 𝐽=100 and 𝜎2
𝜀 = 10. (a) An example data trace

and true codes. (b-c) Dictionary elements.

6.5.1 Simulated data

Dataset We simulated Gaussian data with {hTrue
𝑐 }2

𝑐=1∈R50 (Fig. 6-2 (black) Gaussian

and sigmoid), each appearing 4 times with magnitude uniformly sampled from [10, 20],

throughout the length 𝑁 = 1,000 signal. The signal is perturbed with Gaussian

noise with variance 𝜎2
𝜀 = 5. For evaluation, we use the dictionary error, err(̂︀h𝑐) =

(1 − ⟨̂︀h𝑐,hTrue
𝑐 ⟩2) 1

2 [170]. We perturbed hTrue
𝑐 with Gaussian noise and obtain hInit

𝑐

(dotted black) with err(hInit
𝑐 ) > 0.7. We averaged the power 𝜔 ∈ [0.5𝜋, 𝜋] to obtain

the dispersion ̂︀𝜑 = ̂︀𝜎2
𝜀 .

Results Table 6.1 shows the error, averaged over 10 independent runs, for varying

SNR and lengthscale 𝑙𝑐. The larger the 𝑙𝑐, the stronger the GP regularization, resulting

in considerably lower errors, as visually supported in Fig. 6-2. The learned ̂︀h𝑐 for

𝑙𝑐 =0.1 (blue) corresponding to minimal regularization, contains high-frequency noise.

With GP regularization (𝑙𝑐 =10, red), the noise is filtered out, and thus ̂︀h𝑐 is more

accurate with the same code-SNR. As expected, the overall errors are lower with

higher code-SNR, where (𝐽, 𝜎2
𝜀)=(10, 10) and (100, 5) correspond to the lowest and

the highest code-SNR. Even with high code-SNR, we observe the benefits of GP
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Table 6.1: Dictionary error err(̂︀h𝑐) for simulated data with 𝐽 = {10, 100} and 𝜎2
𝜀 =

{5, 10}.

𝑙𝑐 0.1 25 100

Error
𝜎2

𝜀

𝐽 10 100 10 100 10 100

err(̂︀h1) 5 0.29 0.18 0.18 0.12 0.13 0.06
err(̂︀h1) 10 0.45 0.30 0.36 0.23 0.20 0.11
err(̂︀h2) 5 0.32 0.18 0.21 0.11 0.10 0.06
err(̂︀h2) 10 0.46 0.31 0.28 0.24 0.17 0.14

regularization.

Figs. 6-2 (b-c) also depict ̂︀hMOG
1 and ̂︀hMOG

2 , optimized with 𝐷 = 1 and 2, re-

spectively. This shows potential issues of model misspecification in the parametric

approach, as observed in Fig. 6-2 (c), where ̂︀hMOG
2 cannot adequately model the

sigmoid. On the other hand, the nonparametric GPCDL does not face this issue.

6.5.2 Neural activity data from barrel cortex

Dataset We used neural spiking data collected from the barrel cortex of mice [172].

The experiments consist of multiple trials, with each trial 𝑁 = 3,000 ms and y𝑗 ∈

{0, 1}𝑁 . During each trial, a stimulus (Fig. 6-3 (b)) is used to deflect the whisker of a

mouse every 125 ms. We set 𝐾 = 125 accordingly. Because of the presence of a single

stimulus, we assumed 𝐶=1 as in [59]. For hInit
1 , we used the first-order difference of

the stimulus (dotted black). We used the logit function as the canonical link and set

𝜑 = 1. We assumed a constant baseline a𝑗 = a,∀𝑗 and estimate it from all 𝐽 segments.

We also assumed x𝑗
1 = x1,∀𝑗.

We used 𝐽=30 trials for training and 𝐽test =10 trials for testing for each neuron.

We performed 3-fold cross-validation on the training data to find 𝑙CV
1 that yields the

highest predictive log-likelihood (pll). We used the entire training data to estimate ̂︀h1

and ̂︀x1. We used pll and 𝑅2 [50] as performance metrics.

Results Table 6.2 shows the metrics for two neurons. Figs. 6-3 (c-d) shows ̂︀h1

corresponding to varying 𝑙1 for Neuron 1 with 𝐽 = 30 (red). Both the highest pll

and 𝑅2 for the cross-validation is achieved for 𝑙CV
1 = 25. For the test data, 𝑙CV

1 also
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Table 6.2: Metrics (the higher the better) for two neurons with 𝐽 = 30. MOG
represents the mixture of Gaussians.

Train Test
ID 𝑙𝑐 0.01 25 200 0.01 25 200 MOG
1 pll 0.57 0.60 0.57 0.61 0.65 0.5 0.62
1 𝑅2 0.28 0.30 0.25 0.27 0.30 0.25 0.29
2 pll 0.59 0.63 0.62 0.64 0.70 0.67 0.69
2 𝑅2 0.22 0.24 0.23 0.18 0.23 0.21 0.23
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Figure 6-3: Real data for Neuron 1. (a-b) Raster plot of the spikes and periodic
stimulus. (c-d) ̂︀h1 with 𝐽 = 30 (red) and 𝐽 = 10 (blue) for various ł1. (e) The
parametric baseline, ̂︀hMOG

1 .

performs the best. We observe the two peaks in ̂︀h1 (red), around 30 and 100 ms,

validated by the repeated pattern of the strong bursts of spikes followed by the weak

burst. For 𝑙1 =0.01, although the two peaks can be identified, ̂︀h1 lacks smoothness,

as a result of overfitting to the integer-valued observations without the smoothness

constraint. For 𝑙1 =200 with strong regularization, ̂︀h1 is overly smoothed and produces

lower metrics.
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Comparison between 𝐽 = 10 (blue) and 𝐽 = 30 (red) shows the benefits of the

regularization for limited data. Without regularization (Fig. 6-3 (c)), ̂︀h1 for 𝐽=10 is

noisier than that for 𝐽=30 due to the scarcity of data, in addition to the nonlinear

link. For 𝑙CV
𝑐 , ̂︀h1 for both cases are similar, showing that the regularized dictionary is

robust for limited data.

Finally, we compared ̂︀h1 with ̂︀hMOG
1 . We chose 𝐷 = 6 that minimizes the Akaike

Information Criterion [116]. Fig. 6-3 (e) shows that ̂︀hMOG
1 is indeed very similar

to ̂︀h1 with 𝑙CV
1 . However, Table 6.2 shows that the nonparametric and regularized

approaches outperform the parametric alternative, indicating the flexibility of the

nonparametric approach.

6.6 Conclusion

We proposed a framework for learning convolutional dictionaries using data from the

natural exponential family by regularizing the classical objective with a Gaussian

process prior. We show that the smoothness constraint leads to a dictionary with

better performance. GPCDL is a powerful framework that combines 1) the smoothness

previously achieved by parametric functions, which is vulnerable to model misspec-

ification issues, or penalty functions, which are nontrivial to optimize, and 2) the

flexibility of the nonparametric dictionary.
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Chapter 7

Model-based deep learning

Primer This chapter is adapted from the following work (* Equal contribution)

- Bahareh Tolooshams*, Andrew H. Song*, Simona Temereanca, and Demba Ba,

Convo- lutional dictionary learning based auto-encoders for natural exponential-family

distributions, International Conference on Machine Learning (ICML), 2020

- Alexander Lin, Andrew H. Song, and Demba Ba, Mixture Model Auto-Encoders:

Deep Clustering through Dictionary Learning, Submitted to IEEE ICASSP, 2021

7.1 Introduction

Learning shift-invariant patterns from a dataset has given rise to work in different

communities, most notably in signal processing (SP) and deep learning. In the former,

this problem is referred to as convolutional dictionary learning (CDL) [173]. CDL

imposes a linear generative model where the data are generated by a sparse linear

combination of shifts of localized patterns. In the latter, convolutional neural networks

(NNs) [174] have excelled in identifying shift-invariant patterns.

Recently, the iterative nature of the optimization algorithms for performing CDL

has inspired the utilization of NNs as an efficient and scalable alternative, starting

with the seminal work of [53], and followed by [175, 176, 177]. Specifically, the

iterative steps are expressed as a recurrent NN, and thus solving the optimization
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simply becomes passing the input through an unrolled NN [178, 179]. At one end

of the spectrum, this perspective, through weight-tying, leads to architectures with

significantly fewer parameters than a generic NN. At the other end, by untying the

weights, it motivates new architectures that depart, and could not be arrived at, from

the generative perspective [53, 176].

The majority of the literature at the intersection of generative models and NNs

assumes that the data are real-valued and therefore are not appropriate for binary

or count-valued data, such as neural spiking data and photon-based images [180].

Nevertheless, several works on Poisson image denoising, arguably the most popular

application involving non real-valued data, can be found separately in both communi-

ties. In the SP community, the negative Poisson data likelihood is either explicitly

minimized [181, 156] or used as a penalty term added to the objective of an image

denoising problem with Gaussian noise [182]. Being rooted in the dictionary learning

formalism, these methods operate in an unsupervised manner. Although they yield

good denoising performance, their main drawbacks are scalability and computational

efficiency.

In the deep learning community, NNs tailored to image denoising [183, 184, 185],

which are reminiscent of residual learning, have shown great performance on Poisson

image denoising. However, since these 1) are not designed from the generative model

perspective and/or 2) are supervised learning frameworks, it is unclear how they can be

adapted to the classical CDL, where the task is unsupervised and the interpretability

of the parameters is important. NNs with a generative flavor, namely variational

auto-encoders (VAEs), have been extended to utilize non real-valued data [186, 187].

However, these architectures cannot be adapted to solve the CDL task.

To address this gap, we make the following contributions:

Auto-encoder inspired by CDL for non real-valued data We introduce a

flexible class of auto-encoder (AE) architectures for data from the natural exponential-

family that combines the perspectives of generative models and NNs. We term this

framework, depicted in Fig. 7-1, the deep convolutional exponential-family auto-

encoder (DCEA).
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Unsupervised learning of convolutional patterns We show through simu-

lation that DCEA performs CDL and learns convolutional patterns from binomial

observations. We also apply DCEA to real neural spiking data and show that it fits

the data better than baselines.

Supervised learning framework DCEA, when trained in a supervised manner,

achieves similar performance to state-of-the-art algorithms for Poisson image denoising

with orders of magnitude fewer parameters compared to other baselines, owing to its

design based on a generative model.

Gradient dynamics of shallow exponential auto-encoder Given some as-

sumptions on the binomial generative model with dense dictionary and “good” initial-

izations, we prove in Theorem ?? that shallow exponential auto-encoder (SEA), when

trained by gradient descent, recovers the dictionary.

7.2 Problem Formulation

Natural exponential-family distribution For a given observation vector y ∈ R𝑁 ,

with mean 𝜇𝜇𝜇 ∈ R𝑁 , we define the log-likelihood of the natural exponential family [163]

as

log 𝑝(y|𝜇) = 𝑓
(︁
𝜇𝜇𝜇
)︁T

y + 𝑔(y)−𝐵
(︁
𝜇𝜇𝜇
)︁
, (7.1)

where we have assumed that, conditioned on 𝜇𝜇𝜇, the elements of y are independent.

The natural exponential family includes a broad family of probability distributions

such as the Gaussian, binomial, and Poisson. The functions 𝑔(·), 𝐵(·), as well as the

invertible link function 𝑓(·), all depend on the choice of distribution.

Convolutional generative model We assume that 𝑓(𝜇𝜇𝜇) is the sum of scaled and

time-shifted copies of 𝐶 finite-length filters (dictionary) {h𝑐}𝐶
𝑐=1 ∈ R𝐾 , each localized,

i.e., 𝐾 ≪ 𝑁 . We can express 𝑓(𝜇𝜇𝜇) in a convolutional form: 𝑓(𝜇𝜇𝜇) = ∑︀𝐶
𝑐=1 h𝑐 * x𝑐,

where * is the convolution operation, and x𝑐 ∈ R𝑁−𝐾+1 is a train of scaled impulses

which we refer to as code vector. Using linear-algebraic notation, 𝑓(𝜇𝜇𝜇) = ∑︀𝐶
𝑐=1 h𝑐 *

x𝑐 = Hx, where H ∈ R𝑁×𝐶(𝑁−𝐾+1) is a matrix that is the concatenation of 𝐶
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Toeplitz (i.e., banded circulant) matrices H𝑐 ∈ R𝑁×(𝑁−𝐾+1), 𝑐 = 1, . . . , 𝐶, and

x = [(x1)T, . . . , (x𝐶)T]T ∈ R𝐶(𝑁−𝐾+1).

We refer to the input/output domain of 𝑓(·) as the data and dictionary domains,

respectively. We interpret y as a time-series and the non-zero elements of x as the

times when each of the 𝐶 filters are active. When y is two-dimensional (2D), i.e., an

image, x encodes the spatial locations where the filters contribute to its mean 𝜇𝜇𝜇.

Exponential convolutional dictionary learning (ECDL) Given 𝐽 observations

{y𝑗}𝐽
𝑗=1, we estimate {h𝑐}𝐶

𝑐=1 and {x𝑗}𝐽
𝑗=1 that minimize the negative log-likelihood∑︀𝐽

𝑗=1 𝑙(x𝑗) = −∑︀𝐽
𝑗=1 log 𝑝(y𝑗|{h𝑐}𝐶

𝑐=1,x𝑗) under the convolutional generative model,

subject to sparsity constraints on {x𝑗}𝐽
𝑗=1. We enforce sparsity using the ℓ1 norm,

which leads to the non-convex optimization problem

min
{h𝑐}𝐶

𝑐=1
{x𝑗}𝐽

𝑗=1

𝐽∑︁
𝑗=1

𝑙(x𝑗)⏞  ⏟  
−(Hx𝑗)Ty𝑗 +𝐵(𝑓−1

(︁
Hx𝑗)

)︁
+𝜆‖x𝑗‖1, (7.2)

where the regularizer 𝜆 controls the degree of sparsity. A popular approach to deal

with the non-convexity is to minimize the objective over one set of variables, while the

others are fixed, in an alternating manner, until convergence [170]. When {x𝑗}𝐽
𝑗=1 is

being optimized with fixed H, we refer to the problem as convolutional sparse coding

(CSC). When H is being optimized with {x𝑗}𝐽
𝑗=1 fixed, we refer to the problem as

convolutional dictionary update (CDU).

y𝑗 ỹ𝑗
𝑡 𝛼HT 𝒮𝑏 x𝑗

𝑡 x𝑗
𝑇 H

H𝑓−1(·)

DecoderEncoder

-

Repeat 𝑇 times

Figure 7-1: DCEA architecture for ECDL. The encoder/decoder structure mimics
the CSC/CDU sequence in CDL. The encoder performs 𝑇 iterations of CSC. Each
iteration uses working observations (residuals) ̃︀y𝑗

𝑡 obtained by iteratively modifying
y𝑗 using the filters H and a nonlinearity 𝑓−1(·) that depends on the distribution of y𝑗 .
The dictionary H is updated through the backward pass.
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7.3 Deep convolutional exponential auto-encoder

We propose a class of auto-encoder architectures to solve the ECDL problem, which

we term deep convolutional exponential-family auto-encoder (DCEA). Specifically, we

make a one-to-one connection between the CSC/CDU steps and the encoder/decoder

of DCEA depicted in Fig. 7-1. We focus only on CSC for a single y𝑗 , as the CSC step

can be parallelized across examples.

7.3.1 The architecture

Encoder The forward pass of the encoder maps the input y𝑗 into the sparse code x𝑗 .

Given the filters {h𝑐}𝐶
𝑐=1, the encoder solves the ℓ1-regularized optimization problem

from Eq. (7.2)

min
x𝑗

𝑙(x𝑗) + 𝜆‖x𝑗‖1 (7.3)

in an iterative manner by unfolding 𝑇 iterations of the proximal gradient algo-

rithm [188]. For Gaussian observations, Eq. (7.3) becomes an ℓ1-regularized least

squares problem, for which several works have unfolded the proximal iteration into a

recurrent network [53, 189, 176, 190].

We use 𝒮𝑏 ∈ {ReLU𝑏, Shrinkage𝑏} to denote a proximal operator with bias 𝑏 ≥ 0.

We consider three operators,

ReLU𝑏(z) = (z− 𝑏) · 1{z≥𝑏}

Shrinkage𝑏(z) = ReLU𝑏(z)− ReLU𝑏(−z),
(7.4)

where 1 is an indicator function. If we constrain the entries of x𝑗 to be non-negative,

we use 𝒮𝑏 = ReLU𝑏. Otherwise, we use 𝒮𝑏 = Shrinkage𝑏. A single iteration of the

proximal gradient step is given by

x𝑗
𝑡 = 𝒮𝑏

(︂
x𝑗

𝑡−1 − 𝛼∇x𝑗
𝑡−1

log 𝑝
(︁
y𝑗|{h𝑐}𝐶

𝑐=1,x
𝑗
𝑡−1

)︁)︂
= 𝒮𝑏

(︁
x𝑗

𝑡−1 + 𝛼HT(y− 𝑓−1
(︁
Hx𝑗

𝑡−1

)︁
⏟  ⏞  ̃︀y𝑗

𝑡

)
)︁
, (7.5)
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where x𝑗
𝑡 denotes the sparse code after 𝑡 iterations of unfolding, and 𝛼 is the step size

of the gradient update. The term ̃︀y𝑗
𝑡 is referred to as working observation. The choice

of 𝛼, which we explore next, depends on the generative distribution. We also note

that there is a one-to-one mapping between the regularization parameter 𝜆 and the

bias 𝑏 of 𝒮𝑏. We treat 𝜆, and therefore 𝑏, as hyperparameters that we tune to the

desired sparsity level. The matrix HT effectively computes the correlation between ̃︀y𝑗
𝑡

and {h𝑐}𝐶
𝑐=1. Assuming that we unfold 𝑇 times, the output of the encoder is x𝑗

𝑇 .

The architecture consists of two nonlinear activation functions: 𝒮𝑏(·) to enforce

sparsity, and 𝑓−1(·), the inverse of the link function. For Gaussian observations 𝑓−1(·)

is linear with slope 1. For other distributions in the natural exponential family, the

encoder uses 𝑓−1(·), a mapping from the dictionary domain to the data domain, to

transform the input y𝑗 at each iteration into a working observation ̃︀y𝑗
𝑡 .

Decoder & training We apply the decoder H to x𝑗
𝑇 to obtain the linear predictor

Hx𝑗
𝑇 . This decoder completes the forward pass of DCEA. We use the negative log-

likelihood ℒunsup.
H = ∑︀𝐽

𝑗=1 𝑙(x𝑗) as the loss function applied to the decoder output for

updating the dictionary. We train the weights of DCEA, fully specified by the filters

{h𝑐}𝐶
𝑐=1, by gradient descent through backpropagation. Note that the ℓ1 penalty is

not a function of H and is not in the loss function.

Table 7.1: Generative models for DCEA.

Gaussian Binomial Poisson
y𝑗 R [0..𝑀𝑗] [0..∞)

𝑓−1(·) 𝐼(·) sigmoid(·) exp(·)
𝐵(z) zTz −1T log(1− z) 1Tz̃︀y𝑗

𝑡 y𝑗 −Hx𝑗
𝑡−1 y𝑗 −𝑀𝑗 · sigmoid(Hx𝑗

𝑡−1) y𝑗 − exp(Hx𝑗
𝑡−1)

x𝑗
𝑡 𝒮𝑏

(︁
x𝑗

𝑡−1 + 𝛼HT̃︀y𝑗
𝑡

)︁
𝒮𝑏

(︁
x𝑗

𝑡−1 + 𝛼HT( 1
𝑀𝑗
̃︀y𝑗

𝑡)
)︁
𝒮𝑏

(︁
x𝑗

𝑡−1 + 𝛼HT
(︁
Elu(̃︀y𝑗

𝑡)
)︁)︁

7.3.2 Binomial and Poisson generative models

We focus on two representative distributions for the natural exponential family:

binomial and Poisson. For the binomial distribution, y𝑗 assumes integer values from
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0 to 𝑀𝑗. For the Poisson distribution, y𝑗 can, in principle, be any non-negative

integer values, although this is rare due to the exponential decay of the likelihood for

higher-valued observations. Table 7.1 summarizes the relevant parameters for these

distributions.

The fact that binomial and Poisson observations are integer-valued and have

limited range, whereas the underlying 𝜇𝜇𝜇𝑗 = 𝑓−1(Hx𝑗) is real-valued, makes the ECDL

challenging. This is compounded by the nonlinearity of 𝑓−1(·), which distorts the

error in the data domain, when mapped to the dictionary domain. In comparison, in

Gaussian CDL 1) the observations are real-valued and 2) 𝑓−1(·) is linear.

This implies that, for successful ECDL, y𝑗 needs to assume a diverse set of integer

values. For the binomial distribution, this suggests that 𝑀𝑗 should be large. For

Poisson, as well as binomial, the maximum of 𝜇𝜇𝜇𝑗 should also be large. This explains

why the performance is generally lower in Poisson image denoising for a lower peak,

where the peak is defined as the maximum value of 𝜇𝜇𝜇𝑗 [156].

Practical design considerations for architecture As the encoder of DCEA

performs iterative proximal gradient steps, we need to ensure that x𝑗
𝑇 converges.

Convergence analysis of ISTA [140] shows that if 𝑙(x𝑗) is convex and has 𝐿–Lipschitz

continuous gradient, which loosely means the Hessian is upper-bounded everywhere by

𝐿 > 0, choosing 𝛼 ∈ (0, 1/𝐿] guarantees convergence. For the Gaussian distribution,

𝐿 is the square of the largest singular value of H [52], denoted 𝜎2
max(H), and therefore

𝛼 ∈ (0, 1/𝜎2
max(H)]. For the Binomial distribution, 𝐿 = 1

4𝜎
2
max(H), and therefore

𝛼 ∈ (0, 4/𝜎2
max(H)].

The gradient of the Poisson likelihood is not Lipschitz continuous. Therefore,

we cannot set 𝛼 a priori. In practice, the step size at every iteration is determined

through a back-tracking line search [191], a process that is not trivial to replicate in

the forward pass of a NN. We observed that the lack of a principled approach for

picking 𝛼 results, at times, in the residual assuming large negative values, leading

to instabilities. Therefore, we imposed a finite lower-bound on the residual through

an exponential linear unit (Elu) [192] which, empirically, we found to work the best
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compared to other nonlinear activation units. The convergence properties of this

approach require further theoretical analysis that is outside of the scope of this paper.

7.4 Connection to unsupervised/supervised paradigm

We now analyze the connection between DCEA and ECDL. We first examine how the

convolutional generative model places constraints on DCEA. Finally, we explain how

DCEA can be modified for a supervised task.

7.4.1 Constrained structure of DCEA

We discuss key points that allow DCEA to perform ECDL.

- Linear 1-layer decoder In ECDL, the only sensible decoder is a one layer decoder

comprising H and a linear activation. In contrast, the decoder of a typical AE consists

of multiple layers along with nonlinear activations.

- Tied weights across encoder and decoder Although our encoder is deep, the

same weights (H and HT) are repeated across the layers.

- Alternating minimization The forward pass through the encoder performs the

CSC step, and the backward pass, via backpropagation, performs the CDU step.

7.4.2 DCEA as a supervised framework

For the supervised paradigm, given the desired output (i.e., clean image, y𝑗
clean,

in the case of image denoising), we relax the DCEA architecture and untie the

weights [176, 193, 190] as follows

x𝑗
𝑡 = 𝒮b

(︁
x𝑗

𝑡−1 + 𝛼(W𝑒)T(y− 𝑓−1
(︁
W𝑑x𝑗

𝑡−1

)︁
)
)︁
, (7.6)

where we still use H as the decoder. We use {w𝑒
𝑐}𝐶

𝑐=1 and {w𝑑
𝑐}𝐶

𝑐=1 to denote the filters

associated with W𝑒 and W𝑑, respectively. We train the bias vector b, unlike in the
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unsupervised setting where we tune it by grid search [190, 194]. Compared to DCEA

for ECDL, the number of parameters to learn has increased three-fold.

Although the introduction of additional parameters implies the framework is no

longer exactly optimizing the parameters of the convolutional generative model, DCEA

still maintains the core principles of the convolutional generative model. First, DCEA

performs CSC, as W𝑒,W𝑑, and H are convolutional matrices and 𝒮b ensures sparsity

of x𝑗
𝑇 . Second, the encoder uses 𝑓−1(·), as specified by natural exponential family

distributions. Therefore, we allow only a moderate departure from the generative

model to balance the problem formulation and the problem-solving mechanism. Indeed,

as we show in the Poisson image denoising of Section 7.5, the denoising performance

for DCEA with untied weights is superior to that of DCEA with tied weights.

Indeed, the constraints can be relaxed further. For instance, 1) the proximal

operator 𝒮b can be replaced by a deep NN [195], 2) the inverse link function 𝑓−1(·)

can be replaced by a NN [196], 3) W𝑑, W𝑒, and H can be untied across different

iterations [178], and 4) the linear 1-layer decoder can be replaced with a deep nonlinear

decoder. These would increase the number of trainable parameters, allowing for more

expressivity and improved performance. Nevertheless, as our goal is to maintain the

connection to sparsity and the natural exponential family, while keeping the number

of parameters small, we do not explore these possibilities in this work.

7.5 Experiments

We apply our framework in three different settings.

- Poisson image denoising (supervised) We evaluate the performance of super-

vised DCEA in Poisson image denoising and compare it to state-of-the-art algorithms.

- ECDL for simulation (unsupervised) We use simulations to examine how the

unsupervised DCEA performs ECDL for binomial data. With access to ground-truth

data, we evaluate the accuracy of the learned dictionary. Additionally, we conduct

ablation studies in which we relax the constraints on the DCEA architecture and
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assess how accuracy changes.

- ECDL for neural spiking data (unsupervised) Using neural spiking data collected

from mice [172], we perform unsupervised ECDL using DCEA. As is common in the

analysis of neural data [17], we assume a binomial generative model.

Table 7.2: PSNR performance (in dB) of Poisson image denoising for five different
models on test images for peak 1, 2, and 4: 1) SPDA, 2) BM3D+VST, 3) Class-agnostic,
4) DCEA constrained (DCEA-C), and 5) DCEA unconstrained (DCEA-UC).

Camera House Peppers Set12 BSD68 # of Params

Peak 1

SPDA 20.23 22.73 19.99 20.39 · 160,000
BM3D+VST 20.37 22.35 19.89 · 21.01 N/A
Class-agnostic 21.59 22.87 21.43 21.51 21.78 655,544

DCEA-C (ours) 20.68 21.70 20.22 20.72 21.27 20,618
DCEA-UC (ours) 21.47 23.00 20.91 21.37 21.84 61,516

Peak 2

SPDA 21.54 25.09 21.23 21.70 · 160,000
BM3D+VST 22.13 24.18 21.97 · 22.21 N/A
Class-agnostic 23.25 24.77 23.19 22.97 22.90 655,544

DCEA-C (ours) 22.01 23.22 21.70 22.02 22.31 20,618
DCEA-UC (ours) 22.94 24.52 22.94 22.79 22.92 61,516

Peak 4

SPDA 21.90 26.09 22.09 22.56 · 160,000
BM3D+VST 23.94 26.04 24.07 · 23.54 N/A
Class-agnostic 24.87 26.59 24.83 24.40 23.98 655,544

DCEA-C (ours) 23.60 25.11 23.68 23.51 23.54 20,618
DCEA-UC (ours) 24.66 26.47 24.71 24.37 24.10 61,516

7.5.1 Denoising Poisson images

We evaluated the performance of DCEA on Poisson image denoising for various peaks.

We used the peak signal-to-noise-ratio (PSNR) as a metric. DCEA is trained in a

supervised manner on the PASCAL VOC image set [197] containing 𝐽 = 5,700 training

images. 𝒮b is set to ReLUb. We used two test datasets: 1) Set12 (12 images) and 2)

BSD68 (68 images) [198].
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(a) Original (b) Noisy peak= 1 (c) DCEA-C (d) DCEA-UC

Figure 7-2: Denoising performance on test images with peak= 1. (a) Original, (b)
noisy, (c) DCEA-C, and (d) DCEA-UC.

Methods We trained two versions of DCEA to assess whether relaxing the generative

model, thus increasing the number of parameters, helps improve the performance:

1) DCEA constrained (DCEA-C), which uses H as the convolutional filters and 2)

DCEA unconstrained (DCEA-UC), which uses H, W𝑒, and W𝑑, as suggested in

Eq. (7.6). We used 𝐶 = 169 filters of size 11× 11, where we used convolutions with

strides of 7 and followed a similar approach to [193] to account for all shifts of the

image when reconstructing. In terms of the number of parameters, DCEA-C has

20,618 (= 169× 11× 11 + 169) and DCEA-UC has 61,516 (= 3× 169× 11× 11 + 169),

where the last terms refer to the bias b. We set 𝛼 = 1.

We unfolded the encoder for 𝑇 = 15 iterations. We initialized the filters using draws

from a standard Gaussian distribution scaled by
√︁

1/𝐿, where we approximate 𝐿 using

the iterative power method. We used the ADAM optimizer with an initial learning rate

of 10−3, which we decrease by a factor of 0.8 every 25 epochs, and trained the network

for 400 epochs. At every iteration, we crop a random 128× 128 patch, y𝑗
clean, from a

training image and normalize it to 𝜇𝜇𝜇𝑗,clean = y𝑗
clean/𝑄

𝑗, where 𝑄𝑗 = max(y𝑗
clean)/peak,

such that the maximum value of 𝜇𝜇𝜇𝑗,clean equals the desired peak. Then, we generate a
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count-valued Poisson image with rate 𝜇𝜇𝜇𝑗,clean, i.e., y𝑗 ∼ Poisson(𝜇𝜇𝜇𝑗,clean). We minimized

the mean squared error between the clean image, y𝑗
clean, and its reconstruction,

𝑄𝑗 ̂︀𝜇𝜇𝜇𝑗 = 𝑄𝑗 exp(Hx𝑗
𝑇 ).

We compared DCEA against the following baselines. For a fair comparison, we do not

use the binning strategy [181] of these methods, as a pre-processing step.

- Sparse Poisson dictionary algorithm (SPDA) This is a patch-based dictionary

learning framework [156], using the Poisson generative model with the ℓ0 pseudo-norm

to learn the dictionary in an unsupervised manner, for a given noisy image. SPDA

uses 400 filters of length 400, which results in 160,000 parameters.

- BM3D + VST BM3D is an image denoising algorithm based on a sparse represen-

tation in a transform domain, originally designed for Gaussian noise. This algorithm

applies a variance-stabilizing transform (VST) to the Poisson images to make them

closer to Gaussian-perturbed images [199].

- Class-agnostic denoising network (CA) This is a denoising residual NN for

both Gaussian and Poisson images [184], trained in a supervised manner.
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Figure 7-3: Simulated results with DCEA. (a) Example rate functions, 𝜇𝜇𝜇𝑗, for two
different groups. (b) Initial (blue), true (orange), and learned (green) filters for
binomial data. (c) err(h𝑐, ̂︀h𝑐) over 1, 000 epochs. (d) Total runtime for inference for
DCEA and BCOMP.

Results Table 7.2 shows that DCEA outperforms SPDA and BM3D + VST, and

shows competitive performance against CA, with an order of magnitude fewer pa-
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rameters. Fig. 7-2 shows the denoising performance of DCEA-C and DCEA-UC on

two test images from Set12 (see Appendix for more examples). We summarize a few

additional points from this experiment.

- SPDA vs. DCEA-UC DCEA-UC is significantly more computationally efficient

compared to SPDA. SPDA takes several minutes, or hours in some cases, to denoise a

single Poisson noisy image whereas, upon training, DCEA performs denoising in less

than a second.

- CA vs. DCEA-UC DCEA-UC achieves competitive performance against CA,

despite an order of magnitude difference in the number of parameters (650K for CA vs.

61K for DCEA). We conjecture that given the same number of parameters, DCEA-UC

would outperform CA. For example, we found that replacing the linear decoder with

a nonlinear two-layer decoder (≈ 120K number of parameters) in DCEA-UC resulted

in an increase in PSNR of ∼0.2 dB.

- DCEA-C vs. DCEA-UC We also observe that DCEA-UC achieves better

performance than DCEA-C. As discussed in Section 7.4.2, the relaxation of the

generative model, which allows for a three-fold increase in the number of parameters,

helps improve the performance.

7.5.2 Application to simulated neural spiking data

Accuracy of ECDL for DCEA

We simulated time-series of neural spiking activity from 𝐽 = 1,000 neurons according

to the binomial generative model. We used 𝐶 = 3 templates of length 𝐾 = 50 and,

for each example 𝑗, generated 𝑓(𝜇𝜇𝜇𝑗) = Hx𝑗 ∈ R500, where each filter {h𝑐}3
𝑐=1 appears

five times uniformly random in time. Fig. 7-3(a) shows an example of two different

means, 𝜇𝜇𝜇𝑗1 , 𝜇𝜇𝜇𝑗2 for 𝑗1 ̸= 𝑗2. Given 𝜇𝜇𝜇𝑗 , we simulated two sets of binary time-series, each

with 𝑀𝑗 = 25, y𝑗 ∈ {0, 1, . . . , 25}500, one of which is used for training and the other

for validation.

Methods For DCEA, we initialized the filters using draws from a standard Gaussian,

tuned the regularization parameter 𝜆 (equivalently 𝑏 for 𝒮𝑏) manually, and trained
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using the unsupervised loss. We place non-negativity constraints on x𝑗 and thus

use 𝒮𝑏 = ReLU𝑏. For baseline, we developed and implemented a method which we

refer to as binomial convolutional orthogonal matching pursuit (BCOMP). At present,

there does not exist an optimization-based framework for ECDL. Existing dictionary

learning methods for non-Gaussian data are patch-based [200, 156]. BCOMP combines

efficient convolutional greedy pursuit [137] and binomial greedy pursuit [168]. BCOMP

solves Eq. (7.2), but uses ‖x𝑗‖0 instead of ‖x𝑗‖1.

Results Fig. 7-3(b) demonstrates that DCEA (green) is able to learn {h𝑐}3
𝑐=1 accu-

rately. Letting {̂︀h𝑐}3
𝑐=1 denote the estimates, we quantify the error between a filter

and its estimate using the standard measure [170], err(h𝑐, ̂︀h𝑐) =
√︁

1− ⟨h𝑐, ̂︀h𝑐⟩2, for

‖h𝑐‖ = ‖̂︀h𝑐‖ = 1. Fig. 7-3(c) shows the error between the true and learned filters

by DCEA, as a function of epochs (we consider all possible permutations and show

the one with the lowest error). The fact that the learned and the true filters match

demonstrates that DCEA is indeed performing ECDL. Finally, Fig. 7-3(d) shows the

runtime for both DCEA (on GPU) and BCOMP (on CPU) on CSC task, as a function

of number of groups 𝐽 , where DCEA is much faster. This shows that DCEA, due to 1)

its simple implementation as an unrolled NN and 2) the ease with which the framework

can be deployed to GPU, is an efficient/scalable alternative to optimization-based

BCOMP.

Generative model relaxation for ECDL

Here, we examine whether DCEA with untied weights, which implies a departure

from the original convolutional generative model, can still perform ECDL accurately.

To this end, we repeat the experiment from Section 7.5.2 with DCEA-UC, whose

parameters are H, W𝑒, and W𝑑. Fig. 7-4 shows the learned filters, ̂︀w𝑒
𝑐, ̂︀w𝑑

𝑐 , and ̂︀h𝑐 for

𝑐 = 1 and 2, along with the true filters. For visual clarity, we only show the learned

filters for which the distance to the true filters are the closest, among ̂︀w𝑒
𝑐, ̂︀w𝑑

𝑐 , and ̂︀h𝑐.

We observe that none of them match the true filters. In fact, the error between the

learned and the true filters are bigger than the initial error.

This is in sharp contrast to the results of DCEA-C (Fig. 7-3(b)), where H =
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W𝑒 = W𝑑. This shows that, to accurately perform ECDL, the NN architecture needs

to be strictly constrained such that it optimizes the objective formulated from the

convolutional generative model.
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Figure 7-4: The learned (green) and true (orange) filters for DCEA-UC, when the
weights are untied.
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Figure 7-5: Dictionary error, err(h𝑐, ̂︀h𝑐), as a function of number of trials 𝑀𝑗 per
group for the (a) Binomial and (b) Gaussian models. Each point represents the median
of 20 independent trials.

Effect of model mis-specification on ECDL

Here, we examine how model mis-specification in DCEA, equivalent to mis-specifying

1) the loss function (negative log-likelihood) and 2) the nonlinearity 𝑓−1(·), affects the
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accuracy of ECDL. We trained two models: 1) DCEA with sigmoid link and binomial

likelihood (DCEA-b), the correct model for this experiment, and 2) DCEA with linear

link and Gaussian likelihood (DCEA-g). Fig. 7-5 shows how the error err(h𝑐, ̂︀h𝑐), at

convergence, changes as a function of the number of observations 𝑀𝑗.

We found that DCEA-b successfully recovers dictionaries for large 𝑀𝑗 (>15).

Not surprisingly, as 𝑀𝑗, i.e. SNR, decreases, the error increases. DCEA-g with

200 observations achieves an error close to 0.4, which is significantly worse than the

0.09 error of DCEA-b with 𝑀𝑗 = 30. These results highlight the importance, for

successful dictionary learning, of specifying an appropriate model. The framework we

propose, DCEA, provides a flexible inference engine that can accommodate a variety

of data-generating models in a seamless manner.
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Figure 7-6: A segment of data from a neuron and result of applying DCEA and
BCOMP. (a) A dot indicates a spike from the neuron. (b) Stimulus used to move
the whisker. (c) Whisker velocity covariate (blue) used in GLM analysis, along with
whisker velocities estimated with BCOMP (orange) and DCEA (green) using all 10
neurons in the dataset. The units are mm

10 per ms. (d) The estimated sparse codes
(onset of whisker deflection). (e) Analysis of Goodness-of-fit using KS plots. The
dotted lines represent 95% confidence intervals.

7.5.3 Neural spiking data from somatosensory thalamus

We now apply DCEA to neural spiking data from somatosensory thalamus of rats

recorded in response to periodic whisker deflections [172]. The objective is to learn the

features of whisker motion that modulate neural spiking strongly. In the experiment,

a piezoelectric simulator controls whisker position using an ideal position waveform.

156



As the interpretability of the learned filters is important, we constrain the weights of

encoder and decoder to be H. DECA lets us learn, in an unsupervised fashion, the

features that best explains the data.

The dataset consists of neural spiking activity from 𝐽 = 10 neurons in response to

periodic whisker deflections. Each example 𝑗 consists of 𝑀𝑗 = 50 trials lasting 3,000

ms, i.e., y𝑗,𝑚 ∈ R3000. Fig. 7-6(a) depicts a segment of data from a neuron. Each trial

begins/ends with a baseline period of 500 ms. During the middle 2,000 ms, a periodic

deflection with period 125 ms is applied to a whisker by the piezoelectric stimulator.

There are 16 total deflections, five of which are shown in Fig. 7-6(b). The stimulus

represents ideal whisker position. The blue curve in Fig. 7-6(c) depicts the whisker

velocity obtained as the first derivative of the stimulus.

Methods We compare DCEA to ℓ0-based ECDL using BCOMP (introduced in the

previous section), and a generalized linear model (GLM) [163] with whisker-velocity

covariate [201]. For all three methods, we let 𝐶 = 1 and h1 ∈ R125, initialized using

the whisker velocity (Fig. 7-6(c), blue). We set 𝜆 = 0.119 for DCEA and set the

sparsity level of BCOMP to 16. As in the simulation, we used 𝒮𝑏 = ReLU𝑏 to ensure

non-negativity of the codes. We used 30 trials from each neuron to learn h1 and the

remaining 20 trials as a test set to assess goodness-of-fit.

Results The orange and green curves from Fig. 7-6(c) depict the estimates of whisker

velocity computed from the neural spiking data using BCOMP and DCEA, respectively.

The figure indicates that the spiking activity of this population of 10 neurons encodes

well the whisker velocity, and is most strongly modulated by the maximum velocity of

whisker movement.

Fig. 7-6(d) depicts the 16 sparse codes that accurately capture the onset of stimulus

in each of the 16 deflection periods. The heterogeneity of amplitudes estimated by

DCEA and BCOMP is indicative of the variability of the neural response to whisker

deflections repeated 16 times, possibly capturing other characteristics of cellular and

circuit response dynamics (e.g., adaptation). This is in sharp contrast to the GLM–
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detailed in the Appendix–which uses the ideal whisker velocity (Fig. 7-6(c), blue) as

a covariate, and assumes that neural response to whisker deflections is constant across

deflections.

In Fig. 7-6(e), we use the Kolmogorov-Smirnov (KS) test to compare how well

DCEA, BCOMP, and the GLM fit the data for a representative neuron in the

dataset [202]. KS plots are a visualization of the KS test for assessing the Goodness-

of-fit of models to point-process data, such as neural spiking data (see Appendix for

details). The figure shows that DCEA and BCOMP are a much better fit to the data

than the GLM.

We emphasize that 1) the similarity of the learned h1 and 2) the similar goodness-

of-fit of DCEA and BCOMP to the data shows that DCEA performs ECDL. In

addition, this analysis shows the power of the ECDL as an unsupervised and data-

driven approach for data analysis, and a superior alternative to GLMs, where the

features are hand-crafted.

7.6 Conclusion

We introduced a class of neural networks based on a generative model for convolutional

dictionary learning (CDL) using data from the natural exponential-family, such as

count-valued and binary data. The proposed class of networks, which we termed deep

convolutional exponential auto-encoder (DCEA), is competitive compared to state-of-

the-art supervised Poisson image denoising algorithms, with an order of magnitude

fewer trainable parameters.

We analyzed gradient dynamics of shallow exponential-family auto-encoder (i.e.,

unfold the encoder once) for binomial distribution and proved that when trained with

approximate gradient descent, the network recovers the dictionary corresponding to

the binomial generative model.

We also showed using binomial data simulated according to the convolutional

exponential-family generative model that DCEA performs dictionary learning, in an

unsupervised fashion, when the parameters of the encoder/decoder are constrained.
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The application of DCEA to neural spike data suggests that DCEA is superior to

GLM analysis, which relies on hand-crafted covariates.
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Chapter 8

Conclusion

In this thesis, we studied a systematic pipeline for conducting neural signal processing

research from the generative perspective. By carefully identifying what the 1) latent

variables/processes and 2) the corresponding mathematical characterizations of the

domain priors should be, we demonstrated that more interpretable and better per-

forming results could be achieved. Specifically, we focused on the smoothness of the

neural dynamical processes (through Gaussian process), the smoothness of the neural

patterns (also through Gaussian process), the shift-invariance of the neural patterns

(through convolutional generative model), and the sparsity of the neural activations

(through ℓ0 and ℓ1 norms).

Although some of the principles laid out in this thesis could be familiar to the

readers who are well-versed in the Bayesian philosophy, we strongly believe that

restating these principles rooted in the neural signal processing context provides a

unique and interesting perspective for neuroscience. We hope that this thesis, which

not only contains scientific/engineering results but also insights/lessons that have been

accrued over several years of hard work and numerous failures, serves as a guideline

to prospective students who want to research in the field of neural signal processing.
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Appendix A

Appendix for Time-frequency

analysis with Gaussian Process

A.1 Continuous model interpretation of PLSO

We can establish the equivalent continuous model of the PLSO in Eq. 4.2, using

stochastic different equation

𝑑𝑧𝑗(𝑡)
𝑑𝑡

=

⎛⎜⎝(︃− 1
𝑙𝑗

)︃
⊕

⎛⎜⎝ 0 −𝜔𝑗

𝜔𝑗 0

⎞⎟⎠
⎞⎟⎠

⏟  ⏞  
F

𝑧𝑗(𝑡) + 𝜀(𝑡), (A.1)

where 𝑧𝑗(𝑡) : R → R2, ⊕ denotes the Kronecker sum and 𝜀(𝑡) ∼ 𝒩 (0, 𝜎2
𝑗 I2×2).

Discretizing the solution of Eq. A.1 at Δ, such that ̃︀z𝑗,𝑘 = 𝑧𝑗(𝑘Δ), yields Eq. 4.2.

Consequently, we obtain the following for Δ > 0

exp (FΔ) = exp(−Δ/𝑙𝑗)R(𝜔𝑗),

𝜎2
𝑗

∫︁ Δ

0
exp (F(Δ− 𝜏)) exp (F(Δ− 𝜏))T 𝑑𝜏 = 𝜎2

𝑗 (1− exp (−2Δ/𝑙𝑗)) I2×2.

This interpretation extends to the nonstationary PLSO. The corresponding con-

tinuous model for ̃︀z𝑗,𝑚𝑁+𝑛 in Eq. 4.3 is the same as Eq. A.1, with different variance

E[𝜀𝑗(𝑡)𝜀T
𝑗 (𝑡)] = ∑︀𝑀

𝑚=1 𝜎
2
𝑗,𝑚 · 1

(︁(︁
𝑚−1

𝑀

)︁
𝑇 ≤ 𝑡 <

(︁
𝑚
𝑀

)︁
𝑇
)︁

I2×2.
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A.2 PSD for complex AR(1) process

We compute the steady-state covariance denoted as P𝑗
∞. Since we assume P𝑗

1 = 𝜎2
𝑗 I2×2,

it is easy to show that P𝑗
𝑘 is a diagonal matrix from R(𝜔𝑗)RT(𝜔𝑗) = I2×2. Denoting

P𝑗
∞ = 𝛼I2×2, we use the discrete Lyapunov equation

P𝑗
∞ = exp(−2Δ/𝑙𝑗)R(𝜔𝑗)P𝑗

∞RT(𝜔𝑗) + 𝜎2
𝑗 (1− exp (−2Δ/𝑙𝑗)) I2×2

⇒ 𝛼 = exp(−2Δ/𝑙𝑗)𝛼 + 𝜎2
𝑗 (1− exp (−2Δ/𝑙𝑗))

⇒ P𝑗
∞ = 𝜎2

𝑗 I2×2,

which implies that under the assumption P𝑗
1 = 𝜎2

𝑗 I2×2, we are guaranteed P𝑗
𝑘 = 𝜎2

𝑗 I2×2,

∀𝑘. To compute the PSD of the stationary process z𝑗, we now need to compute the

autocovariance. Since only zℜ
𝑗,𝑘 contributes to y𝑘, we compute the autocovariance of

E[zℜ
𝑗,𝑘zℜ

𝑗,𝑘+𝑛] as

E[zℜ
𝑗,𝑘zℜ

𝑗,𝑘+𝑛] = E[zℜ
𝑗,𝑘 · ℜ(𝜌𝑛

𝑗 exp(𝑖𝜔𝑗𝑛)z𝑗,𝑘)]

= 𝜌𝑛
𝑗 E[zℜ

𝑗,𝑘zℜ
𝑗,𝑘 cos𝜔𝑗𝑛] = 𝜌𝑛

𝑗 cos𝜔𝑗𝑛 · E[{zℜ
𝑗,𝑘}2]

= 𝜌𝑛
𝑗 𝜎

2
𝑗 cos𝑤𝑗𝑛,

where ℜ(·) denotes the operator that extracts the real part of the complex argument

and we used the fact that E[zℜ
𝑗,𝑘zℑ

𝑗,𝑘] = 0. The spectra for the 𝑗th component, 𝑆𝑗(𝜔)

can be written as

𝑆𝑗(𝜔) =
∞∑︁

𝑛=−∞
E
[︁
zℜ

𝑗,𝑘zℜ
𝑗,𝑘+𝑛

]︁
exp (−𝑖𝜔𝑛)

=
∞∑︁

𝑛=−∞
𝜌𝑛

𝑗 𝜎
2
𝑗 cos𝑤𝑗𝑛 exp (−𝑖𝜔𝑛)

= 𝜎2
𝑗

∞∑︁
𝑛=−∞

𝜌𝑛
𝑗 {exp(𝑖𝜔𝑗𝑛) + exp(−𝑖𝜔𝑗𝑛)} exp (−𝑖𝜔𝑛)

= 𝜎2
𝑗

∞∑︁
𝑛=−∞

𝜌𝑛
𝑗 exp(−𝑖(𝜔 ± 𝜔𝑗)𝑛).
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Unpacking the infinite sum for one of the terms,

∞∑︁
𝑛=−∞

𝜌𝑛
𝑗 exp(−𝑖(𝜔 − 𝜔𝑗)𝑛) = 1 +

∞∑︁
𝑛=1

𝜌𝑛
𝑗 exp(−𝑖(𝜔 − 𝜔𝑗)𝑛) + 𝜌𝑛

𝑗 exp(𝑖(𝜔 − 𝜔𝑗)𝑛)

= 1 + 𝜌𝑗 exp(−𝑖(𝜔 − 𝜔𝑗))
1− 𝜌𝑗 exp(−𝑖(𝜔 − 𝜔𝑗))

+ 𝜌𝑗 exp(𝑖(𝜔 − 𝜔𝑗))
1− 𝜌𝑗 exp(𝑖(𝜔 − 𝜔𝑗))

= 1 +
2𝜌𝑗 cos(𝜔 − 𝜔𝑗)− 2𝜌2

𝑗

(1− 𝜌𝑗 exp(−𝑖(𝜔 − 𝜔𝑗))) (1− 𝜌𝑗 exp(𝑖(𝜔 − 𝜔𝑗)))

=
1− 𝜌2

𝑗

1 + 𝜌2
𝑗 − 2𝜌𝑗 cos(𝜔 − 𝜔𝑗)

.

Using the relation 𝜌𝑗 = exp(−Δ/𝑙𝑗) and unpacking the infinite sum for the other term,

we have

𝑆𝑗(𝑤) =
𝜎2

𝑗 (1− exp(−2Δ/𝑙𝑗))
1 + exp(−2Δ/𝑙𝑗)− 2 exp(−Δ/𝑙𝑗) cos(𝜔 − 𝜔𝑗)

+
𝜎2

𝑗 (1− exp(−2Δ/𝑙𝑗))
1 + exp(−2Δ/𝑙𝑗)− 2 exp(−Δ/𝑙𝑗) cos(𝜔 + 𝜔𝑗)

.

Since Fourier transform is a linear operator, we can conclude that 𝛾(𝜔) = 𝜎2
𝜈 +∑︀𝐽

𝑗=1 𝑆𝑗(𝜔).
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Appendix B

Appendix for model-based deep

learning

B.1 Generalized linear model (GLM) for whisker

experiment

In this section, for ease of notation, we consider the simple case of 𝑀𝑗 = 1 (Bernoulli).

However, the detail can be generalized to the binomial generative model.

We describe the GLM [17] used for analyzing the neural spiking data from the whisker

experiment [201], and which we compared to BCOMP and DCEA in Fig. 4. Fig.

4(b) depicts a segment of the periodic stimulus used in the experiment to deflect

the whisker. The units are in mm
10 . The full stimulus lasts 3000 ms and is equal to

zero (whisker at rest) during the two baseline periods from 0 to 500 ms and 2500

to 3000 ms. In the GLM analysis, we used whisker velocity as a stimulus covariate,

which corresponds to the first difference of the position stimulus s ∈ R3000. The

blue curve in Fig. 4(c) represents one period of the whisker-velocity covariate. We

associated a single stimulus coefficient 𝛽𝛽𝛽stim ∈ R to this covariate. In addition to the

stimulus covariate, we used history covariates in the GLM. We denote by 𝛽𝛽𝛽𝑗
𝐻 ∈ R𝐿𝑗

the coefficients associated with these covariates, where 𝑗 = 1, · · · , 𝐽 is the neuron
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index. We also define 𝑎𝑗 to be the base firing rate for neuron 𝑗. The GLM is given by

y𝑗[𝑛] ∼ Bernoulli(p𝑗[𝑛])

s.t. p𝑗[𝑛] =
(︂

1 + exp
(︁
− 𝑎𝑗 − 𝛽𝛽𝛽stim · (s[𝑛]− s[𝑛− 1])⏟  ⏞  

whisker velocity

−
𝐿𝑗∑︁
𝑙=1

𝛽𝛽𝛽𝑗
𝐻 [𝑙] · y𝑗[𝑛− 𝑙]

)︁)︂−1

(B.1)

The parameters {𝑎𝑗}𝐽
𝑗=1, 𝛽𝛽𝛽stim, and {𝛽𝛽𝛽𝑗

𝐻}𝐽
𝑗=1 are estimated by minimizing the negative

likelihood of the neural spiking data {y𝑗}10
𝑗=1 with 𝑀𝑗 = 30 from all neurons using

IRLS. We picked the order 𝐿𝑗 (in ms) of the history effect for neuron 𝑗 by fitting the

GLM to each of the 10 neurons separately and finding the value of ≈ 5 ≤ 𝐿𝑗 ≤ 100

that minimizes the Akaike Information Criterion [17].

Interpretation of the GLM as a convolutional model Because whisker position

is periodic with period 125 ms, so is whisker velocity. Letting h1 denote whisker

velocity in the interval of length 125 ms starting at 500 ms (blue curve in Fig. 4(c)),

we can interpret the GLM in terms of the convolutional model of Eq. 8. In this

interpretation, H is the convolution matrix associated with the fixed filter h1 (blue

curve in Fig. 4(c)), and x𝑗 is a sparse vector with 16 equally spaced nonzero entries

all equal to 𝛽𝛽𝛽stim. The first nonzero entry of x𝑗 occurs at index 500. The number

of indices between nonzero entries is 125. The blue dots in Fig. 4(d) reflect this

interpretation.

Incorporating history dependence in the generative model GLMs of neural

spiking data [17] include a constant term that models the baseline probability of

spiking 𝑎𝑗, as well as a term that models the effect of spiking history. This motivates

us to use the model

log 𝑝(y𝑗,𝑚 | {h𝑐}𝐶
𝑐=1,x𝑗,x𝑗

𝐻)
1− 𝑝(y𝑗,𝑚 | {h𝑐}𝐶

𝑐=1,x𝑗,x𝑗
𝐻)

= 𝑎𝑗 + Hx𝑗 + Y𝑗x𝑗
𝐻 , (B.2)
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where y𝑗,𝑚 ∈ {0, 1}𝑁 refers to 𝑚th trial of the binomial data y𝑗. The 𝑛th row of

Y𝑗 ∈ R𝑁×𝐿𝑗 contains the spiking history of neuron 𝑗 at trial 𝑚 from 𝑛− 𝐿𝑗 to 𝑛, and

x𝑗
𝐻 ∈ R𝐿𝑗 are coefficients that capture the effect of spiking history on the propensity

of neuron 𝑗 to spike. We use the same 𝐿𝑗 estimated from GLM. We estimate 𝑎𝑗

from the average firing probability during the baseline period. The addition of the

history term simply results in an additional set of variables to alternate over in the

alternating-minimization interpretation of ECDL. We estimate it by adding a loop

around BCOMP or backpropagation through DCEA. Every iteration of this loop first

assumes x𝑗
𝐻 are fixed. Then, it updates the filters and x𝑗. Finally, it solves a convex

optimization problem to update x𝑗
𝐻 given the filters and x𝑗. In the interest of space,

we do not describe this algorithm formally.

B.2 Kolmogorov-smirnov plots and the time-rescaling

theorem

Loosely, the time-rescaling theorem states that rescaling the inter-spike intervals (ISIs)

of the neuron using the (unknown) underlying conditional intensity function (CIF)

will transform them into i.i.d. samples from an exponential random variable with rate

1. This implies that, if we apply the CDF of an exponential random variable with

rate 1 to the rescaled ISIs, these should look like i.i.d. draws from a uniform random

variable in the interval [0, 1]. KS plots are a visual depiction of this result. They are

obtained by computing the rescaled ISIs using an estimate of the underlying CIF and

applying the CDF of an exponential random variable with rate 1 to them. These are

then sorted and plotted against ideal uniformly-spaced empirical quantiles from a

uniform random variable in the interval [0, 1]. The CIF that fits the data the best

is the one that yields a curve that is the closest to the 45-degree diagonal. Fig. 4(e)

depicts the KS plots obtained using the CIFs estimated using DCEA, BCOMP and

the GLM.
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