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Abstract

In-hand object reorientation has been a challenging problem in robotics due to high
dimensional actuation space and the frequent change in contact state between the
fingers and the objects. We present a simple model-free framework that can learn to
reorient objects with both the hand facing upwards and downwards. We demonstrate
the capability of reorienting over 2000 geometrically different objects in both cases.
The learned policies show strong zero-shot transfer performance on new objects. We
provide evidence that these policies are amenable to real-world operation by distilling
them to use observations easily available in the real world.
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Chapter 1

Introduction

A common maneuver in many tasks of daily living is to pick an object, reorient it in

hand and then either place it or use it as a tool. Consider three simplified variants of

this maneuver shown in Figure ??. The task in the top row requires an upward-facing

multi-finger hand to manipulate an arbitrary object in a random orientation to a goal

configuration shown in the rightmost column. The next two rows show tasks where

the hand is facing downward and is required to reorient the object either using the

table as a support or without the aid of any support surface respectively. The last task

is the hardest because the object is in an intrinsically unstable configuration owing

to the downward gravitational force and lack of support from the palm. Additional

challenges in performing such manipulation with a multi-finger robotic hand stem from

the control space being high-dimensional and reasoning about the multiple transitions

in the contact state between the finger and the object. Due to its practical utility

and several unsolved issues, in-hand object reorientation remains an active area of

research.

Past work has tackled the in-hand reorientation problem via several approaches: (i)

The use of analytical models with powerful trajectory optimization methods [1, 2, 3].

While these methods demonstrated remarkable performance, the results were largely in

simulation with simple object geometries and required detailed knowledge of the object

model and physical parameters. As such, it remains unclear how to scale these methods

to real-world and generalize to new objects. Another line of work has employed (ii)
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model-based reinforcement learning [4, 5]; or (iii) model-free reinforcement learning

with [6, 7, 8, 9] and without expert demonstrations [10, 11, 12, 13]. While some of

these works demonstrated learned skills on real robots, it required use of additional

sensory apparatus not readily available in the real-world (e.g., motion capture system)

to infer the object state, and the learned policies did not generalize to diverse objects.

Furthermore, most prior methods operate in the simplified setting of the hand facing

upwards. The only exception is pick-and-place, but it does not involve any in-hand

re-orientation. A detailed discussion of prior research is provided in Section 5.

In this paper, our goal is to study the object reorientation problem with a multi-

finger hand in its general form. We desire (a) manipulation with hand facing upward

or downward; (b) the ability of using external surfaces to aid manipulation; (c) the

ability to reorient objects of novel shapes to arbitrary orientations; (d) operation from

sensory data that can be easily obtained in the real world such as RGBD images

and joint positions of the hand. While some of these aspects have been individually

demonstrated in prior work, we are unaware of any published method that realizes

all four. Our main contribution is building a system that achieves the desiderata.

The core of our framework is a model-free reinforcement learning with three key

components: teacher-student learning, gravity curriculum, and stable initialization of

objects. Our system requires no knowledge of object or manipulator models, contact

dynamics or any special pre-processing of sensory observations. We experimentally

test our framework using a simulated Shadow hand. Due to the scope of the problem

and the ongoing pandemic, we limit our experiments to be in simulation. However,

we provide evidence indicating that the learned policies can be transferred to the real

world in the future.

A Surprising Finding: While seemingly counterintuitive, we found that policies

that have no access to shape information can manipulate a large number of previously

unseen objects in all the three settings mentioned above. At the start of the project,

we hypothesized that developing visual processing architecture for inferring shape

while the robot manipulates the object would be the primary research challenge.

On the contrary, our results show that it is possible to learn control strategies for
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general in-hand object re-orientation that are shape-agnostic. Our results, therefore,

suggest that visual perception may be less important for in-hand manipulation than

previously thought. Of course, we still believe that the performance of our system

can be improved by incorporating shape information. However, our findings suggest a

different framework of thinking: a lot can be achieved without vision, and that vision

might be the icing on the cake instead of the cake itself.

15



16



Chapter 2

Method

We found that simple extensions to existing techniques in robot learning can be used

to construct a system for general object reorientation. First, to avoid explicit modeling

of non-linear and frequent changes in the contact state between the object and the

hand, we use model-free reinforcement learning (RL). An added advantage is that

model-free RL is amenable to direct operation from raw point cloud observations, which

is preferred for real-world deployment. We found that better policies can be trained

faster using privileged state information such as the velocities of the object/fingertips

that is easily available in the simulator but not in the real world. To demonstrate the

possibility of transferring learned policies to the real world in the future, we overcome

the need for privileged information using the idea of teacher-student training [14, 15].

In this framework, first, an expert or teacher policy (𝜋ℰ) is trained using privileged

information. Next, the teacher policy guides the learning of a student policy (𝜋𝒮) that

only uses sensory inputs available in the real world. Let the state space corresponding

to 𝜋ℰ and 𝜋𝒮 be Sℰ and S𝒮 respectively. In general, Sℰ ̸= S𝒮 .

We first trained the teacher policy to reorient more than two thousand objects

of diverse shapes (see Section 2.1). Next, we detail the method for distilling 𝜋ℰ to a

student policy using a reduced state space consisting of only the joint positions of the

hand, the object position, and the difference in orientation from the goal configuration

(see Section 2.2.1). However, in the real world, even the object position and relative

orientation must be inferred from sensory observation. Not only does this process
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require substantial engineering effort (e.g., a motion capture or a pose estimation

system), but also inferring the pose of a symmetric object is prone to errors. This is

because a symmetric object at multiple orientations looks exactly the same in sensory

space such as RGBD images.

To mitigate these issues, we further distill 𝜋ℰ to operate directly from the point

cloud and position of all the hand joints (see Section 2.2.2). We propose a simple

modification that generalizes an existing 2D CNN architecture [16] to make this

possible.

The procedure described above works well for manipulation with the hand facing

upwards and downwards when a table is available as support. However, when the

hand faces downward without an underlying support surface, we found it important

to initialize the object in a stable configuration. Finally, because gravity presents the

primary challenge in learning policies with a downward-facing hand, we found that

training in a curriculum where gravity is slowly introduced (i.e., gravity curriculum)

substantially improves performance. These are discussed in Section 4.2.

2.1 Learning the teacher policy

We use model-free RL to learn the teacher policy (𝜋ℰ) for reorienting an object

({𝑂𝑖|𝑖 = 1, ..., 𝑁}) from an initial orientation 𝛼𝑜
0 to a target orientation 𝛼𝑔 (𝛼𝑜

0 ̸= 𝛼𝑔).

At every time step 𝑡, the agent observes the state 𝑠𝑡, executes the action 𝑎𝑡 sampled

from the policy 𝜋ℰ , and receives a reward 𝑟𝑡. 𝜋ℰ is optimized to maximize the expected

discounted return: 𝜋 = argmax𝜋ℰ E
[︀∑︀𝑇−1

𝑡=0 𝛾𝑡𝑟𝑡
]︀
, where 𝛾 is the discount factor. The

task is successful if the angle difference ∆𝜃 between the object’s current (𝛼𝑜
𝑡 ) and the

goal orientation (𝛼𝑔) is smaller than the threshold value 𝜃, i.e., ∆𝜃 ≤ 𝜃.

To encourage the policy to be smooth, the previous action is appended to the

inputs to the policy (i.e., 𝑎𝑡 = 𝜋ℰ(𝑠𝑡, 𝑎𝑡−1)) and large actions are penalized in the

reward function. We experiment with two architectures for 𝜋ℰ : (1) an MLP policy

𝜋𝑀 , (2) an RNN policy 𝜋𝑅. We use PPO [17] to optimize 𝜋ℰ . More details about the

training are in Section A.3.1 and Section A.3.2 in the appendix.

18



Observation and action space: We define Sℰ to include joint, fingertip, object,

and goal information as detailed in Table A.1 in the appendix. Note that Sℰ does not

include object shape or information about friction, damping, contact states between

the fingers and the object, etc. We control the joint movements by commanding

the relative change in the target joint angle (𝑞𝑡𝑎𝑟𝑔𝑒𝑡𝑡 ) on each actuated joint (action

𝑎𝑡 ∈ R20): 𝑞𝑡𝑎𝑟𝑔𝑒𝑡𝑡+1 = 𝑞𝑡𝑎𝑟𝑔𝑒𝑡𝑡 + 𝑎𝑡 ×∆𝑡, where ∆𝑡 is the control time step. We clamp the

action command if necessary to make sure |∆𝑞𝑡𝑎𝑟𝑔𝑒𝑡𝑡 | ≤ 0.33 rad. The control frequency

is 60Hz.

Dynamics randomization: Even though we do not test our policies on a real

robot, we train and evaluate policies with domain randomization [18] to provide

evidence that our work has the potential to be transferred to a real robotic system

in the future. We randomize the object mass, friction coefficient, joint damping and

add noise to the state observation 𝑠𝑡 and the action 𝑎𝑡. More details about domain

randomization are provided in Table A.4 in the appendix.

2.2 Learning the student policy

We distill the teacher 𝜋ℰ into the student policy 𝜋𝒮 using Dagger [19], a learning-from-

demonstration method that overcomes the covariate shift problem. We optimize 𝜋𝒮

by minimizing the KL-divergence between 𝜋𝒮 and 𝜋ℰ :

𝜋𝒮 = argmin
𝜋𝒮

𝐷𝐾𝐿

(︀
𝜋ℰ(𝑠ℰ𝑡 , 𝑎𝑡−1)||𝜋𝒮(𝑠𝒮𝑡 , 𝑎𝑡−1))

)︀
Based on observation data available in real-world settings, we investigate two different

choices of S𝒮 .

2.2.1 Training student policy from low-dimensional state

In the first case, we consider a non-vision student policy 𝜋𝒮(𝑠𝒮𝑡 , 𝑎𝑡−1). 𝑠𝒮𝑡 ∈ R31

includes the joint positions 𝑞𝑡 ∈ R24, object position 𝑝𝑜𝑡 ∈ R3, quaternion difference

between the object’s current and target orientation 𝛽𝑡 ∈ R4. In this case, S𝒮 ⊂ Sℰ ,
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Figure 2-1: Visual policy architecture. MK stands for Minkowski Engine. 𝑞𝑡 is the
joint positions and 𝑎𝑡 is the action at time step 𝑡.

and we assume the availability of object pose information, but do not require velocity

information. We use the same MLP and RNN network architectures used for 𝜋ℰ on

𝜋𝒮 except the input dimension changes as the state dimension is different.

2.2.2 Training student policy from vision

In the second case, S𝒮 only uses direct observations from RGBD cameras and the

joint position (𝑞𝑡) of the robotic hand. We convert the RGB and Depth data into a

colored point cloud using a pinhole camera model [20]. Our vision policy takes as

input the voxelized point cloud of the scene 𝑊𝑡, 𝑞𝑡, and previous action command

𝑎𝑡−1, and outputs the action 𝑎𝑡, i.e., 𝑎𝑡 = 𝜋𝒮(𝑊𝑡, 𝑞𝑡, 𝑎𝑡−1).

Goal specification: To avoid manually defining per-object coordinate frame for

specifying the goal quaternion, we provide the goal to the policy as an object point

cloud rotated to the desired orientation 𝑊 𝑔, i.e., we only show the policy how the

object should look like in the end (see the top left of Figure 2-1). The input to 𝜋𝒮

is the point cloud 𝑊𝑡 = 𝑊 𝑠
𝑡 ∪𝑊 𝑔 where 𝑊 𝑠

𝑡 is the actual point cloud of the current

scene obtained from the cameras. Details of obtaining 𝑊𝑔 are in Section A.3.2.

Sparse3D-IMPALA-Net: To convert a voxelized point cloud into a lower-

dimensional feature representation, we use a sparse convolutional neural network. We
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extend the IMPALA policy architecture [16] for processing RGB images to process

colored point cloud data using 3D convolution. Since many voxels are unoccupied, the

use of regular 3D convolution substantially increases computation time. Hence, we use

Minkowski Engine [21], a PyTorch library for sparse tensors, to design a 3D version

of IMPALA-Net with sparse convolutions (Sparse3D-IMPALA-Net)1. The Sparse3D-

IMPALA network takes as input the point cloud 𝑊𝑡, and outputs an embedding vector

which is concatenated with the embedding vector of (𝑞𝑡, 𝑎𝑡−1). Afterward, a recurrent

network is used and outputs the action 𝑎𝑡. The detailed architecture is illustrated in

Figure 2-1.

Mitigating the object symmetry issue: 𝜋ℰ is trained with the the ground-

truth state information 𝑠ℰ𝑡 including the object orientation 𝛼𝑜
𝑡 and goal orientation 𝛼𝑔.

The vision policy does not take any orientation information as input. If an object is

symmetric, the two different orientations of the object may correspond to the same point

cloud observation. This makes it problematic to use the difference in orientation angles

(∆𝜃 ≤ 𝜃) as the stopping and success criterion. To mitigate this issue, we use Chamfer

distance [22] to compute the distance between the object point cloud in 𝛼𝑜
𝑡 and the goal

point cloud (i.e., the object rotated by 𝛼𝑔) as the evaluation criterion. The Chamfer

distance is computed as 𝑑𝐶 =
∑︀

𝑎∈𝑊 𝑜
𝑡
min𝑏∈𝑊 𝑔 ‖𝑎− 𝑏‖22 +

∑︀
𝑏∈𝑊 𝑔 min𝑎∈𝑊 𝑜

𝑡
‖𝑎− 𝑏‖22,

where 𝑊 𝑜
𝑡 is the object point cloud in its current orientation. Both 𝑊 𝑜

𝑡 and 𝑊 𝑔 are

scaled to fit in a unit sphere for computing 𝑑𝐶 . We check Chamfer distance in each

rollout step. If 𝑑𝐶 ≤ 𝑑𝐶 (𝑑𝐶 is a threshold value for 𝑑𝐶), we consider the episode to

be successful. Hence, the success criterion is (∆𝜃 ≤ 𝜃) ∨ (𝑑𝐶 ≤ 𝑑𝐶). In training, if the

success criterion is satisfied, the episode is terminated and used for updating 𝜋𝒮 .

1We also experimented with a 3D sparse convolutional network based on ResNet18, and found
that 3D IMPALA-Net works better.
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Chapter 3

Experimental Setup

We use the simulated Shadow Hand [23] in NVIDIA Isaac Gym [24]. Shadow Hand

is an anthropomorphic robotic hand with 24 degrees of freedom (DoF). We assume

the base of the hand to be fixed. Twenty joints are actuated by agonist–antagonist

tendons and the remaining four are under-actuated.

Object datasets: We use the EGAD dataset [25] and YCB dataset [26] that

contain objects with diverse shapes (see Figure A-2) for in-hand manipulation experi-

ments. EGAD contains 2282 geometrically diverse textureless object meshes, while the

YCB dataset includes textured meshes for objects of daily life with different shapes

and textures. We use the 78 YCB object models collected with the Google scanner.

Since most YCB objects are too big for in-hand manipulation, we proportionally scale

down the YCB meshes. To further increase the diversity of the datasets, we create

5 variants for each object mesh by randomly scaling the mesh. More details of the

object datasets are in Section A.2.2.

Setup for visual observations: For the vision experiments, we trained policies

for the scenario of hand facing upwards. We place two RGBD cameras above the

hand (Figure A-4). The data from these cameras is combined to create a point

cloud observation of the scene [20]. For downstream computation, the point cloud is

voxelized with a resolution of 0.003m.

Setup with the upward facing hand: We first consider the case where the

Shadow Hand faces upward and is required to reorient objects placed in the hand (see
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(a) (b) (c) (d)

Figure 3-1: Examples of initial poses of the hand and object. (a): hand faces upward.
(b), (c), (d): hand faces downward. (b): both the hand and the object are initialized
with random poses . (c): there is a table below the hand. (d): the hand and the
object are initialized from the lifted poses.

Figure 3-1a). We use the coordinate system where the 𝑧-axis points vertically upward

and the 𝑥𝑦-plane denotes the horizontal plane. The object pose is initialized with

the following procedure: 𝑥𝑦 position of the object’s center of mass (COM) 𝑝𝑜0,𝑥𝑦 is

randomly sampled from a square region of size 0.09m × 0.09m. The center of this

square is approximately located on the intersection of the middle finger and the palm

so that the sampling region covers both the fingers and the palm. The 𝑧 position of

the object is fixed to 0.13m above the base of the hand to ensure that the object

does not collide with the hand at initialization. The initial and goal orientations are

randomly sampled from the full 𝑆𝑂(3) space.

Setup with the downward facing hand: Next, we consider the cases where the

hand faces downward. We experiment with two scenarios: with and without a table

below the hand. In the first case, we place a table with the tabletop being 0.12m

below the hand base. We place objects in a random pose between the hand and the

table so that the objects will fall onto the table. We will describe the setup for the

second case (without a table) in Section 4.2.2.

Evaluation criterion: For non-vision experiments, a policy rollout is considered

a success if 𝜃 ≤ 𝜃. 𝜃 = 0.1 rad. For vision experiments, we also check 𝑑𝐶 ≤ 𝑑𝐶 as

another criterion and 𝜃 = 0.2 rad, 𝑑𝐶 = 0.01. The initial and goal orientation are

randomly sampled from 𝑆𝑂(3) space in all the experiments. We report performance

as the percentage of successful episodes when the agent is tasked to reorient each

training object 100 times from arbitrary start to goal orientation. We report the mean

and standard deviation of success rate from 3 seeds.

24



Chapter 4

Results

We evaluate the performance of reorientation policies with the hand facing upward

and downward. Further we analyze the generalization of the learned policies to unseen

object shapes.

4.1 Reorient objects with the hand facing upward

Train a teacher policy with full-state information We train our teacher MLP

and RNN policies using the full state information using all objects in the EGAD

and YCB datasets separately. The progression of success rate during training is

shown in Figure A-5 in Appendix A.4.1 . Figure A-5 also shows that using privileged

information substantially speeds up policy learning. Results reported in Table 4.1

indicate that the RNN policies achieve a success rate greater than 90% on the EGAD

dataset (entry B1) and greater than 80% on the YCB dataset (entry G1) without any

explicit knowledge of the object shape1. This result is surprising because apriori one

might believe that shape information is important for in-hand reorientation of diverse

objects.

The visualization of policy rollout reveals that the agent employs a clever strategy

that is invariant to object geometry for re-orienting objects. The agent throws the

object in the air with a spin and catches it at the precise time when the object’s

1More quantitative results on the MLP policies are available in Table A.5 in the appendix.
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orientation matches the goal orientation. Throwing the object with a spin is a dexterous

skill that automatically emerges! One possibility for the emergence of this skill is that

we used very light objects. This is not true because we trained with objects in the

range of 50-150g which spans many hand-held objects used by humans (e.g., an egg

weighs about 50g, a glass cup weighs around 100g, iPhone 12 weighs 162g, etc.). To

further probe this concern, we evaluated zero-shot performance on objects weighing

up to 500g2 and found that the learned policy can successfully reorient them. We

provide further analysis in the appendix showing that forces applied by the hand for

such manipulation are realistic. While there is still room for the possibility that the

learned policy is exploiting the simulator to reorient objects by throwing them in the

air, our analysis so far indicates otherwise.

Next, to understand the failure modes, we collected one hundred unsuccessful

trajectories on YCB dataset and manually analyzed them. The primary failure is

in manipulating long, small, or thin objects, which accounts for 60% of all errors.

In such cases, either the object slips through the fingers and falls, or is hard to be

manipulated when the objects land on the palm. Another cause of failures (19%) is

that objects are reoriented close to the goal orientation but not close enough to satisfy

∆𝜃 < 𝜃. Finally, the performance on YCB is lower than EGAD because objects in

the YCB dataset are more diverse in their aspect ratios. Scaling these objects by

constraining 𝑙max ∈ [0.05, 0.12]m (see Section 3) makes some of these objects either

too small, too big, or too thin and consequently results in failure (see Figure A-6).

A detailed object-wise quantitative analysis of performance is reported in appendix

Figure A-9. Results confirm that sphere-like objects such as tennis balls and orange

are easiest to reorient, while long/thin objects such as knives and forks are the hardest

to manipulate.

Train a student policy with a reduced state space The student policy state is

𝑠𝒮𝑡 ∈ R31. In Table 4.1 (entries E1 and J1), we can see that 𝜋𝒮
𝑅 can get similarly high

success rates as 𝜋ℰ
𝑅. The last two columns in Table 4.1 also show that the policy is

2We change the mass of the YCB objects to be in the range of [0.3, 0.5]kg, and test 𝜋ℰ
𝑅 from the

YCB dataset on these new objects. The success rate is around 75%.
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Table 4.1: Success rates (%) of policies tested on different dynamics distribution. 𝜃 = 0.1rad.
DR: domain randomization and observation/action noise. X→Y: distill policy X into policy
Y. The full table is in Table A.5.

1 2 3

Exp. ID Dataset State Policy
Train without DR Train with DR

Test without DR Test with DR Test with DR
B

EGAD
Full state RNN 95.95 ± 0.8 84.27 ± 1.0 88.04 ± 0.6

E Reduced state RNN→RNN 91.96 ± 1.5 78.30 ± 1.2 80.29 ± 0.9
G

YCB
Full state RNN 80.40 ± 1.6 65.16 ± 1.0 72.34 ± 0.9

J Reduced state RNN→RNN 81.04 ± 0.5 64.93 ± 0.2 65.86 ± 0.7

more robust to dynamics variations and observation/action noise after being trained

with domain randomization.

4.2 Reorient objects with the hand facing downward

The results above demonstrate that when the hand faces upwards, RL can be used to

train policies for reorienting a diverse set of geometrically different objects. A natural

question to ask is, does this still hold true when the hand is flipped upside down?

Intuitively, this task is much more challenging because the objects will immediately

fall down without specific finger movements that stabilize the object. Because with

the hand facing upwards, the object primarily rests on the palm, such specific finger

movements are not required. Therefore, the hand facing downwards scenario presents

a much harder exploration challenge. To verify this hypothesis, we trained a policy

with the downward-facing hand, objects placed underneath the hand (see Figure 3-1b),

and using the same reward function (Equation (A.1)) as before. Unsurprisingly, the

success rate was 0%. The agent’s failure can be attributed to policy needing to learn

to both stabilize the object under the effect of gravity and simultaneously reorient

it. Deploying this policy simply results in an object falling down, confirming the

hard-exploration nature of this problem.
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4.2.1 Reorient objects on a table

To tackle the hard problem of reorienting objects with the hand facing downward,

we started with a simplified task setup that included a table under the hand (see

Figure 3-1c). Table eases exploration by preventing the objects from falling. We

train 𝜋ℰ
𝑀 using the same reward function Equation (A.1) on objects sampled from

the EGAD and YCB datasets. The success rate using an MLP policy using full state

information for EGAD and YCB is 95.31%± 0.9% and 81.59%± 0.7% respectively.

Making use of external support for in-hand manipulation has been a challenging

problem in robotics. Prior work approach this problem by building analytical models

and constructing motion cones [27], which is challenging for objects with complex

geometry. Our experiments show that model-free RL provides an effective alternative

for learning manipulation strategies capable of using external support surfaces.

4.2.2 Reorient objects in air with hand facing downward

To enable the agent to operate in more general scenarios, we tackled the re-orientation

problem with the hand facing downwards and without any external support. In this

setup, one might hypothesize that object shape information (e.g., from vision) is

critical because finding the strategy in Section 4.1 is not easy when the hand needs

to overcome gravity and stabilize the object while reorienting it. We experimentally

verify that even in this case, the policies achieve a reasonably high success rate without

any knowledge of object shape.

A good pose initialization is what you need: The difficulty of directly

training the RL policies when the hand faces downward is mainly because of the

hard-exploration issue in learning to catch the objects that are moving downward.

However, catching is not necessary for the reorientation. Even for human, we only

reorient the object after we grasp it. More specifically, we first train an object-lifting

policy to lift objects from the table, collect the ending state (joint positions 𝑞𝑇 , object

position 𝑝𝑜𝑇 and orientation 𝛼𝑜
𝑇 ) in each successful lifting rollout episode, and reset

the hand and objects to these states (velocities are all 0) for the pose initialization in
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training the reorientation policy. The objects have randomly initialized poses and are

dropped onto the table. We trained a separate RNN policy for each dataset using the

reward function in Section A.3.2. The success rate on the EGAD dataset is 97.80%,

while the success rate on the YCB dataset is 90.11%. Note that objects need to be

grasped first to be lifted. Our high success rates on object lifting also indicate that

using an anthropomorphic hand makes object grasping an easy task, while many prior

works [28, 29] require much more involved training techniques to learn grasping skills

with parallel-jaw grippers. After we train the lifting policy, we collect about 250

ending states for each object respectively from the successful lifting episodes. In every

reset during the reorientation policy training, ending states are randomly sampled

and used as the initial pose of the fingers and objects. With a good pose initialization,

policies are able to learn to reorient objects with high success rates. 𝜋ℰ
𝑅 trained on

EGAD dataset gets a success rate more than 80% while 𝜋ℰ
𝑅 trained on YCB dataset

gets a success rate greater than 50%. More results on the different policies with and

without domain randomization are available in Table A.6 in the appendix. This setup

is challenging because if at any time step in an episode the fingers take a bad action,

the object will fall.

Improving performance using gravity curriculum: Since the difficulty of

training the re-orientation policy with the hand facing downward is due to the gravity,

we propose to build a gravity curriculum to learn the policy 𝜋ℰ . Since 𝜋ℰ already

performs very well on EGAD objects, we apply gravity curriculum to train 𝜋ℰ on

YCB objects. Our gravity curriculum is constructed as follows: we start the training

with 𝑔 = 1m/s2, then we gradually decrease 𝑔 in a step-wise fashion if the evaluation

success rate (𝑤) is above a threshold value (𝑤̄) until 𝑔 = −9.81m/s2. More details

about gravity curriculum are in Section A.3.4. In Table A.6 (Exp Q and T) in the

appendix, we can see that adding gravity curriculum (𝑔-curr) significantly boost the

success rates on the YCB dataset.
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Table 4.2: Performance of the student policy when the hand faces upward and
downward

Dataset Upward Downward (air) Downward (air, 𝑔-curr)
EGAD 91.96 ± 1.5 74.10 ± 2.3 ⧸
YCB 81.04 ± 0.5 45.22 ± 2.1 67.33 ± 1.9

Table 4.3: Zero-shot RNN policy transfer success rates (%) across datasets. U. (D.)
means hand faces upward (downward). FS (RS) means using full-state (reduced-state)
information.

EGAD → YCB YCB → EGAD
U.FS 68.82± 1.7 96.41± 1.2
U.RS 59.64± 1.8 96.38± 1.3
D.FS 62.73± 2.2 85.45± 2.9
D.RS 55.30± 1.3 77.91± 2.1

4.3 Zero-shot policy transfer across datasets

We have shown the testing performance on the same training dataset so far. How

would the policies work on a different dataset? To answer this, we test our policies

across datasets: policies trained with EGAD objects are now tested with YCB objects

and vice versa. We used the RNN policies trained with full-state information and

reduced-state information respectively (without domain randomization) and tested

them on the other dataset with the hand facing upward and downward. In the case of

the hand facing downward, we tested the RNN policy trained with gravity curriculum.

Table 4.3 shows that policies still perform well on the untrained dataset.

4.4 Object Reorientation with RGBD sensors

In this section, we investigate whether we can train a vision policy to reorient objects

with the hand facing upward. As vision-based experiments require much more compute

resources, we train one vision policy for each object individually on six objects shown

in Table 4.4. We leave training a single vision policy for all objects to future work. We

use the expert MLP policy trained in Section 4.1 to supervise the vision policy. We also
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Table 4.4: Vision policy success rate (𝜃 = 0.2 rad, 𝑑𝐶 = 0.01)
Object Success rate (%)

025_mug 89.67± 1.2

065-d_cups 68.32± 1.9

072-b_toy_airplane 84.52± 1.4

073-a_lego_duplo 58.16± 3.1

073-c_lego_duplo 50.21± 3.7

073-e_lego_duplo 66.57± 3.1

performed data augmentation on the point cloud input to the policy network at each

time step in both training and testing. The data augmentation includes the random

translation of the point cloud, random noise on the point positions, random dropout

on the points, and random variations on the point color. More details about the data

augmentation are in Section A.4.5. We can see from Table 4.4 that reorienting the

non-symmetric objects including the toy and the mug has high success rates (greater

than 80%). While training the policy for symmetric objects is much harder, Table 4.4

shows that using 𝑑𝐶 as an episode termination criterion enables the policies to achieve

a success rate greater than 50%.
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Chapter 5

Related Work

Dexterous manipulation has been studied for decades, dating back to [30, 31]. In

contrast to peg insertion [32], parallel-jaw grasping, pushing, pivoting [33], or pick-

and-place, dexterous manipulation typically involves continuously controlling force

to the object through the fingertips of a robotic hand [34]. Some prior works used

analytical kinematics and dynamics models of the hand and object, and used trajectory

optimization to output control policies [1, 2, 35] or employed kinodynamic planning to

find a feasible motion plan [36]. However, due to the large number of active contacts

on the hand and the objects, model simplifications such as simple finger and object

geometries are usually necessary to make the optimization or planning tractable.

Sundaralingam and Hermans [35] moved objects in hand but assumes that there is

no contact breaking or making between the fingers and the object. Furukawa et al.

[37] achieved a high-speed dynamic regrasping motion on a cylinder using a high-

speed robotic hand and a high-speed vision system. Prior works have also explored

the use of a vision system for manipulating an object to track a planned path [38],

detecting manipulation modes [39], precision manipulation [40] with a limited number

of objects with simple shapes using a two-fingered gripper. Recent works have explored

the application of reinforcement learning to dexterous manipulation. Model-based

RL works learned a linear [4, 7] or deep neural network [5] dynamics model from

the rollout data, and used online optimal control to rotate a pen or Baoding balls

on a Shadow hand. However, when the system is unstable, collecting informative
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trajectories for training a good dynamics model that generalizes to different objects

remains challenging. Another line of works uses model-free RL algorithms to learn a

dexterous manipulation policy. For example, OpenAI et al. [11] and OpenAI et al. [12]

learned a controller to reorient a block or a Rubik’s cube. Van Hoof et al. [41] learned

the tactile informed policy via RL for a three-finger manipulator to move an object

on the table. To reduce the sample complexity of model-free learning, [9, 13, 8, 42, 6]

combined imitation learning with RL to learn to reorient a pen, open a door, assemble

LEGO blocks, etc. However, collecting expert demonstration data from humans is

expensive, time-consuming, and even incredibly difficult for contact-rick tasks [8]. Our

method belongs to the category of model-free learning. We use the teacher-student

learning paradigm to speed up the deployment policy learning. Our learned policies

also generalize to new shapes and show strong zero-shot transfer performance. To the

best of our knowledge, our system is the first work that demonstrates the capabilities

of reorienting a diverse set of objects that have complex geometries with both the

hand facing upward and downward.
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Chapter 6

Discussion and Conclusion

Our results show that model-free RL with simple deep learning architectures can be

used to train policies to reorient a large set of geometrically diverse objects. Further,

for learning with the hand facing downwards, we found that a good pose initialization

obtained from a lifting policy was necessary, and the gravity curriculum substantially

improved performance. The agent also learns to use an external surface (i.e., the

table). The most surprising observation is that information about shape is not required

despite the fact that we train a single policy to manipulate multiple objects. Perhaps

in hindsight, it is not as surprising – after all, humans can close their eyes and easily

manipulate novel objects into a specific orientation. Our work can serve a strong

baseline for future in-hand object reorientation works that incorporate object shape

in the observation space.

While we only present results in simulation, we also provide evidence that our poli-

cies can be transferred to the real world. The experiments with domain randomization

indicate that learned policies can work with noisy inputs. Analysis of peak torques

during manipulation (see Figure A-11 in the appendix) also reveals that generated

torque commands are feasible to actuate on an actual robotic hand.

Finally, Figure A-9 and Figure A-10 in the appendix show that the success rate

varies substantially with object shape. This suggests that in the future, a training

curriculum based on object shapes can improve performance. Another future work

is to directly train one vision policy for a diverse set of objects. A major bottleneck
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in vision-based experiments is the demand for much larger GPU memory. Learning

visual representations of point cloud data that can ease the computational bottleneck

is, therefore, an important avenue for future research.
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Appendix A

A.1 Evidence indicating transfer to real-world

Due to the scope of the problem and the ongoing pandemic, we limit our experiments

to be in simulation. However, we provided evidence indicating that the learned policies

can be transferred to the real world in the future in the paper. We summarize this

evidence as follows.

Convex decomposition The objects after the convex decomposition still have

geometrically different and complex geometries as shown in Figure A-3. The objects

in the EGAD dataset are 3D printable. The YCB objects are available in the real

world.

Action space We control the finger joints via relative position control as explained

in Section 2.1. This suffers less sim-to-real gap compared to using torque control on

the joints directly.

Student policies We designed two student policies and both of them use the

observation data that can be readily acquired from the real world. The first student

policy only requires the joint positions and the object pose. Object pose can be

obtained using a pose estimation system or a motion capture system in the real world.

Our second student policy only require the point cloud of the scene and the joint

positions. We can get the point cloud in the real world by using RGBD cameras such
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as Realsense D415, Azure Kinect, etc.

Domain randomization We also trained and tested our policies with domain

randomization. We randomized object mass, friction, joint damping, tendon damping,

tendon stiffness, etc. Table A.4 lists all the parameters we randomized in our experi-

ments. We also add noise to the state observation and action commands as shown

in Table A.4. For the vision experiments, we also added noise (various ways of data

augmentation including point position jittering, color jiterring, dropout, etc.) to the

point cloud observation in training and testing as explained in Section A.4.5.

The results in Table A.5, Table A.6, and Table 4.4 show that even after adding

randomization/noise, we can still get good success rates with the trained policies.

Even though we cannot replicate the true real-world setups in the simulation, our

results with domain randomization indicates a high possibility that our policies can

be transferred to the real Shadow hand. Prior works [11] have also shown the domain

randomization can effectively reduce the sim-to-real gap.

Torque analysis We also conducted torque analysis as shown in Section A.4.4. We

can see that the peak torque values remain in an reasonable and affordable range

for the Shadow hand. This indicates that our learned policies are less likely to cause

motor overload on the real Shadow hand.
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A.2 Environment Setup

Figure A-1: We learn policies that can reorient many objects in three scenarios
respectively: (1) hand faces upward, (2) hand faces downward with a table below the
hand, (3) hand faces downward without any table. The extra object in each figure
shows the desired orientation.

A.2.1 State definition

The full state space Sℰ includes joint, fingertip, object and goal information detailed

in Table A.1. To compute the angle difference between two quaternion orientations 𝛼1

and 𝛼2, we first compute the difference rotation quaternion: 𝛽 = 𝛼1𝛼
−1
2 . Then the

angle difference (distance between two rotations) ∆𝜃 is computed as the angle of 𝛽

from the axis-angle representation of 𝛽.

Table A.1: Full state 𝑠ℰ𝑡 ∈ R134 information. Orientations are in the form of quater-
nions.

Parameter Description Parameter Description Parameter Description

𝑞𝑡 ∈ R24 joint positions 𝑣𝑓𝑡 ∈ R15 fingertip linear velocities 𝛼𝑔 ∈ R4 object goal orientation

𝑞𝑡 ∈ R24 joint velocities 𝑤𝑓
𝑡 ∈ R15 fingertip angular velocities 𝑣𝑜𝑡 ∈ R3 object linear velocity

𝑝𝑓𝑡 ∈ R15 fingertip positions 𝑝𝑜𝑡 ∈ R3 object position 𝑤𝑜
𝑡 ∈ R3 object angular velocity

𝛼𝑓
𝑡 ∈ R20 fingertip orientation 𝛼𝑜

𝑡 ∈ R4 object orientation 𝛽𝑡 ∈ R4 𝛼𝑜
𝑡 (𝛼

𝑔)−1

A.2.2 Dataset

We use two object datasets (EGAD and YCB) in our paper. To further increase

the diversity of the datasets, we create 5 variants for each object mesh by randomly
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scaling the mesh. The scaling ratios are randomly sampled such that the longest

side of the objects’ bounding boxes 𝑙max lies in [0.05, 0.08]m for EGAD objects, and

𝑙max ∈ [0.05, 0.12]m for YCB objects. The mass of each object is randomly sampled

from [0.05, 0.15]kg. When we randomly scale YCB objects, some objects become very

small and/or thin, making the reorientation task even more challenging. In total, we

use 11410 EGAD object meshes and 390 YCB object meshes for training.

Figure A-2 shows examples from the EGAD and YCB dataset. We can see that

these objects are geometrically different and have complex shapes. We also use V-

HACD [43] to perform an approximate convex decomposition on the object meshes for

fast collision detection in the simulator. Figure A-3 shows the object shapes before and

after the decomposition. After the decomposition, the objects are still geometrically

different.

Figure A-2: First row: examples of EGAD objects. Second row: examples of YCB
objects.

A.2.3 Camera setup

We placed two RGBD cameras above the hand, as shown in Figure A-4. In ISAAC gym,

we set the camera pose by setting its position and focus position. The two cameras’

positions are shifted from the Shadow hand’s base origin by [−0.6,−0.39, 0.8] and

[0.45,−0.39, 0.8] respectively. And their focus points are the points shifted from the

Shadow hand’s base origin by [−0.08,−0.39, 0.15] and [0.045,−0.39, 0.15] respectively.
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Figure A-3: Examples of EGAD objects. The first and third row shows the visual
mesh of the objects. The second and fourth row show the corresponding collision
mesh (after V-HACD decomposition).

Figure A-4: Camera positions

A.3 Experiment Setup

A.3.1 Network architecture

For the non-vision policies, we experimented with two architectures: The MLP policy

𝜋𝑀 consists of 3 hidden layers with 512, 256, 256 neurons respectively. The RNN policy
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𝜋𝑅 has 3 hidden layers (512− 256− 256), followed by a 256-dim GRU layer and one

more 256-dim hidden layer. We use the exponential linear unit (ELU) [44] as the

activation function.

For our vision policies, we design a sparse convolutional network architecture

(Sparse3D-IMPALA-Net). As shown in Figure 2-1, the point cloud 𝑊𝑡 is processed by

a series of sparse CNN residual modules and projected into an embedding vector. 𝑞𝑡

and 𝑎𝑡−1 are concatenated together and projected into an embedding vector via an

MLP. Both embedding vectors from 𝑊𝑡 and (𝑞𝑡, 𝑎𝑡−1) are concatenated and passed

through a recurrent network to output the action 𝑎𝑡.

A.3.2 Training details

All the experiments in the paper were run on at most 2 GPUs with a 32GB memory.

We use PPO [17] to learn 𝜋ℰ . Table A.2 lists the hyperparameters for the experiments.

We use 40K parallel environments for data collection. We update the policy with

the rollout data for 8 epochs after every 8 rollout steps for the MLP policies and 50

rollout steps for the RNN policies. A rollout episode is terminated (reset) if the object

is reoriented to the goal orientation successfully, or the object falls, or the maximum

episode length is reached. To learn the student policies 𝜋𝒮 , we use Dagger[19]. While

Dagger typically keep all the state-action pairs for training the policy, we do Dagger

in an online fashion where 𝜋𝒮 only learns from the latest rollout data.

For the vision experiments, the number of parallel environments is 360 and we

update policy after every 50 rollout steps from all the parallel environments. The

batch size is 30. We sample 15000 points from the reconstructed point cloud of the

scene from 2 cameras for the scene point cloud 𝑊 𝑠
𝑡 and sample 5000 points from the

object CAD mesh model for the goal point cloud 𝑊 𝑔.

We use Horovod [45] for distributed training and Adam [46] optimizer for neural

network optimization.

Reward function for reorientation: For training 𝜋ℰ for the reorientation task,
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we modified the reward function proposed in [24] to be:

𝑟(𝑠𝑡, 𝑎𝑡) = 𝑐𝜃1
1

|∆𝜃𝑡|+ 𝜖𝜃
+ 𝑐𝜃21(|∆𝜃𝑡| < 𝜃) + 𝑐3 ‖𝑎𝑡‖22 (A.1)

where 𝑐𝜃1 > 0, 𝑐𝜃2 > 0 and 𝑐3 < 0 are the coefficients, ∆𝜃𝑡 is the difference between the

current object orientation and the target orientation, 𝜖𝜃 is a constant, 1 is an indicator

function that identifies whether the object is in the target orientation. The first two

reward terms encourage the policy to reorient the object to the desired orientation

while the last term suppresses large action commands.

Reward function for object lifting: To train the lifting policy, we use the

following reward function:

𝑟(𝑠𝑡, 𝑎𝑡) = 𝑐ℎ1

1

|∆ℎ𝑡|+ 𝜖ℎ
+ 𝑐ℎ21(|∆ℎ𝑡| < ℎ̄) + 𝑐3 ‖𝑎𝑡‖22 (A.2)

where ∆ℎ𝑡 = max(𝑝𝑏,𝑧𝑡 − 𝑝𝑜,𝑧𝑡 , 0) and 𝑝𝑏,𝑧𝑡 is the height (𝑧 coordinate) of the Shadow

Hand base frame, 𝑝𝑜,𝑧𝑡 is the height of the object, ℎ̄ is the threshold of the height

difference. The objects have randomly initialized poses and are dropped onto the

table.

Goal specification for vision policies: We obtain 𝑊 𝑔 by sampling 5000 points

from the object’s CAD mesh using the Barycentric coordinate, rotating the points

by the desired orientation, and translating them so that these points are next to the

hand. Note that one can also put the object in the desired orientation right next to

the hand in the simulator and render the entire scene altogether to remove the need

for CAD models. We use CAD models for 𝑊 𝑔 just to save the computational cost of

rendering another object while we still use RGBD cameras to get 𝑊 𝑠
𝑡 .

A.3.3 Dynamics randomization

Table A.4 list all the randomized parameters as well the state observation noise and

action command noise.

Comparing the Column 1 and Column 2 in Table A.5, we can see that if we directly

49



Table A.2: Hyperparameter Setup

Hyperparameter Value Hyperparameter Value Hyperparameter Value
Num. batches 5 Entropy coeff. 0. Num. pts sampled from 𝑊 𝑠

𝑡 15000
Actor learning rate 0.0003 GAE parameter 0.95 Num. pts sampled from 𝑊 𝑔 5000
Critic learning rate 0.001 Discount factor 0.99 Num. envs 40000

Num. epochs 8 Episode length 300
Num. rollout steps per

policy update (MLP/RNN)
8/50

Value loss coeff. 0.0005 PPO clip range 0.1 𝑐𝜃1 1
𝑐𝜃2 800 𝑐3 0.1 𝜖𝜃 0.1
𝜃 0.1rad 𝑐ℎ1 0.05 𝜖ℎ 0.02
ℎ̄ 0.04 𝑐ℎ2 800

Table A.3: Mesh Parameters

Parameter Range
longest side of the bounding box of EGAD objects [0.05, 0.08]m
longest side of the bounding box of YCB objects [0.05, 0.12]m
mass of each object [0.05, 0.15]kg
No. of EGAD meshes 2282
No. of YCB meshes 78
No. of variants per mesh 5
Voxelization resolution 0.003 m

Table A.4: Dynamics Randomization and Noise

Parameter Range Parameter Range Parameter Range
state observation +𝒰(−0.001, 0.001) action +𝒩 (0, 0.01) joint stiffness ×ℰ(0.75, 1.5)

object mass ×𝒰(0.5, 1.5) joint lower range +𝒩 (0, 0.01) tendon damping ×ℰ(0.3, 3.0)
object static friction ×𝒰(0.7, 1.3) joint upper range +𝒩 (0, 0.01) tendon stiffness ×ℰ(0.75, 1.5)
finger static friction ×𝒰(0.7, 1.3) joint damping ×ℰ(0.3, 3.0)
𝒩 (𝜇, 𝜎): Gaussian distribution with mean 𝜇 and standard deviation 𝜎.
𝒰(𝑎, 𝑏): uniform distribution between 𝑎 and 𝑏. ℰ(𝑎, 𝑏) = exp𝒰(log(𝑎),log(𝑏)).
+: the sampled value is added to the original value of the variable. ×: the original value is scaled by the sampled value.

deploy the policy trained without domain randomization into an environment with

different dynamics, the performance drops significantly. If we train policies with

domain randomization (Column 3), the policies are more robust and the performance

only drops slightly compared to Column 1 in most cases. The exceptions are on C3

and H3. In these two cases, the 𝜋𝒮
𝑀 policies collapsed in training during the policy

distillation along with the randomized dynamics.
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A.3.4 Gravity curriculum

We found building a curriculum on gravity helps improve the policy learning for YCB

objects when the hand faces downward. Algorithm 1 illustrates the process of building

the gravity curriculum. In our experiments, we only test on the training objects once

(one random initial and goal orientation) to get the surrogate average success rate 𝑤

on all the objects during training. 𝑤̄ = 0.8, 𝑔0 = 1m/s2,∆𝑔 = −0.5m/s2, 𝐾 = 3, 𝐿 =

20,∆𝑇min = 40.

Algorithm 1 Gravity Curriculum
1: Initialize an empty FIFO queue 𝑄 of size 𝐾, ∆𝑇 = 0, 𝑔 = 𝑔0
2: for 𝑖← 1 to 𝑀 do
3: 𝜏 = rollout_policy(𝜋𝜃) ◁ get rollout trajectory
4: 𝜋𝜃 = optimize_policy(𝜋𝜃, 𝜏) ◁ update policy
5: ∆𝑇 = ∆𝑇 + 1
6: if 𝑖 mod 𝐿 = 0 then
7: 𝑤 = evaluate_policy(𝜋𝜃) ◁ evaluate the policy, get the success rate 𝑤
8: append 𝑤 to the queue 𝑄
9: if avg(𝑄) > 𝑤̄ and ∆𝑇 > ∆𝑇min then

10: 𝑔 = max(𝑔 −∆𝑔,−9.81)
11: ∆𝑇 = 0
12: end if
13: end if
14: end for

A.4 Supplementary Results

A.4.1 Hand faces upward

Learning curves Figure A-5 shows the learning curve of the RNN and MLP policies

on the EGAD and YCB datasets. Both policies learn well on the EGAD and YCB

datasets. The YCB dataset requires much more environment interactions for the

policies to learn. We can also see that using the full-state information can speed up

the learning and give a higher final performance.
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Figure A-5: Learning curves of the MLP and RNN policies on the EGAD (Left) and
YCB datasets (Middle). The Right plot shows that using the full state information
speeds up the policy learning compared to only using the reduced state information.

Testing performance - Teacher The testing results in Table A.5 show that both

the MLP and RNN policies are able to achieve a success rate greater than 90% on the

EGAD dataset (entries A1, B1) and greater than 70% on the YCB dataset (entries

F1, G1) without any explicit knowledge of the object shape. This result is surprising

because intuitively, one would assume that information about the object shape is

important for in-hand reorientation.

Testing performance - Student We experimented with the following three com-

binations: (1) distill 𝜋ℰ
𝑀 into 𝜋𝒮

𝑀 , (2) distill 𝜋ℰ
𝑀 into 𝜋𝒮

𝑅, (3) distill 𝜋ℰ
𝑅 into 𝜋𝒮

𝑅. The

student policy state is 𝑠𝒮𝑡 ∈ R31. In Table A.5 (entries C1-E1, H1-J1), we can see

that 𝜋ℰ
𝑅 → 𝜋𝒮

𝑅 gives the highest success rate on 𝜋𝒮 , while 𝜋ℰ
𝑀 → 𝜋𝒮

𝑀 leads to much

worse performance (36% drop of success rate in EGAD, and 47% drop in YCB). This

shows that 𝜋𝒮 requires temporal information due to reduced state space. The last two

columns in Table A.5 also show that the policy is more robust to dynamics variations

and observation/action noise after being trained with domain randomization.

Failure cases Figure A-6 shows some example failure cases. If the objects are too

small, thin, or big, the objects are likely to fall. If objects are initialized close to the

hand border, it is much more difficult for the hand to catch the objects. Another

failure mode is that the objects are reoriented close to the goal orientation but not

close enough to satisfy ∆𝜃 ≤ 𝜃.
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Table A.5: Success rates (%) of policies tested on different dynamics distribution.
𝜃 = 0.1rad. DR stands for domain randomization and observation/action noise. X→Y:
distill policy X into policy Y.

1 2 3

Exp. ID Dataset State Policy
Train without DR Train with DR

Test without DR Test with DR Test with DR
A

EGAD

Full state
MLP 92.55 ± 1.3 78.24 ± 2.4 91.92 ± 0.4

B RNN 95.95 ± 0.8 84.27 ± 1.0 88.04 ± 0.6
C

Reduced state
MLP→MLP 55.55 ± 0.2 25.09 ± 3.0 23.77 ± 1.8

D MLP→RNN 85.32 ± 1.2 68.31 ± 2.6 81.05 ± 1.2
E RNN→RNN 91.96 ± 1.5 78.30 ± 1.2 80.29 ± 0.9
F

YCB

Full state
MLP 73.40 ± 0.2 54.57 ± 0.6 66.00 ± 2.7

G RNN 80.40 ± 1.6 65.16 ± 1.0 72.34 ± 0.9
H

Reduced state
MLP→MLP 34.08 ± 0.9 12.08 ± 0.4 5.41 ± 0.3

I MLP→RNN 69.30 ± 0.8 47.38 ± 0.6 53.07 ± 0.9
J RNN→RNN 81.04 ± 0.5 64.93 ± 0.2 65.86 ± 0.7

(a) (b) (c) (d)

Figure A-6: Examples of failure cases. (a) and (b): objects are too small. (c): the
object is reoriented close to the target orientation, but not close enough. (d): the
object is too big and initialized around the palm border.

A.4.2 Hand faces downward (in the air)

Testing performance For the case of reorienting objects in the air with the

hand facing downward Table A.6 lists the success rates of different policies trained

with/without domain randomization, and tested with/without domain randomization.

Example visualization We show an example of reorienting a cup in Figure A-7

and an example of reorienting a sponge in Figure A-8. More examples are available at

https://taochenshh.github.io/projects/in-hand-reorientation.

A.4.3 Success rate on each type of YCB objects

We also analyzed the success rates on each object type in the YCB dataset. Using

the same evaluation procedure described in Section 3, we get the success rates of

each object using 𝜋ℰ
𝑅. Figure A-9 shows the distribution of the success rates on YCB

objects with the hand facing upward while Figure A-10 corresponds to the case of
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Table A.6: Success rates (%) of policies trained with hand facing downward and to
reorient objects in the air. Due to the large number of environment steps required in
this setup, we fine-tune the model trained without DR with randomized dynamics
instead of training models with DR from scratch.

1 2 3

Exp. ID Dataset State Policy
Train without DR Finetune with DR

Test without DR Test with DR Test with DR
K

EGAD
Full state

MLP 84.29 ± 0.9 38.42 ± 1.5 71.44 ± 1.3
L RNN 82.27 ± 3.3 36.55 ± 1.4 67.44 ± 2.1
M

Reduced state
MLP→RNN 77.05 ± 1.6 29.22 ± 2.6 59.23 ± 2.3

N RNN→RNN 74.10 ± 2.3 37.01 ± 1.5 62.64 ± 2.9
O

YCB

Full state
MLP 58.95 ± 2.0 26.04 ± 1.9 44.84 ± 1.3

P RNN 52.81 ± 1.7 26.22 ± 1.0 40.44 ± 1.5
Q RNN + 𝑔-curr 74.74 ± 1.2 25.56 ± 2.9 54.24 ± 1.4
R

Reduced state
MLP→RNN 46.76 ± 2.5 25.49 ± 1.4 34.14 ± 1.3

S RNN→RNN 45.22 ± 2.1 24.45 ± 1.2 31.63 ± 1.6
T RNN + 𝑔-curr→ RNN 67.33 ± 1.9 19.77 ± 2.8 48.58 ± 2.3

Figure A-7: An example of reorienting a cup with the hand facing downward. From
left to right, top to bottom, we show the some moments in an episode.

reorienting the objects in the air with the hand facing downward. We can see that

sphere-like objects such as tennis balls and orange are easiest to reorient. Long or

thin objects such as knives and forks are the hardest ones to manipulate.

A.4.4 Torque analysis

We randomly sampled 100 objects from the YCB dataset, and use our RNN policy

trained without domain randomization with the hand facing downward to reorient

each of these objects 200 times. We record the joint torque values for each finger joint
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Figure A-8: An example of reorienting a sponge with the hand facing downward. From
left to right, top to bottom, we show the some moments in an episode.

at each time step. Let the joint torque value of 𝑖𝑡ℎ joint at time step 𝑗 in 𝑘𝑡ℎ episode

be 𝐽𝑘
𝑖𝑗 . We plot the distribution of {max𝑖=[[1,24]] |𝐽𝑘

𝑖𝑗| | 𝑗 ∈ [[1, 𝑇 ]], 𝑘 = [[1, 20000]]}, where

[[𝑎, 𝑏]] represents {𝑥 | 𝑥 ∈ [𝑎, 𝑏], 𝑥 ∈ Z}. Figure A-11 shows that the majority of the

maximum torque magnitude is around 0.2Nm.

A.4.5 Vision experiments with noise

We also trained our vision policies with noise added to the point cloud input. We

added the following transformations to the point cloud input.

We applied four types of transformations on the point cloud:

• RandomTrans : Translate the point cloud by [∆𝑥,∆𝑦,∆𝑧] where ∆𝑥,∆𝑦,∆𝑧 are all

uniformly sampled from [−0.04, 0.04].

• JitterPoints : Randomly sample 10% of the points. For each sampled point 𝑖, jitter

its coordinate by [∆𝑥𝑖,∆𝑦𝑖,∆𝑧𝑖] where ∆𝑥𝑖,∆𝑦𝑖,∆𝑧𝑖 are all sampled from a Normal
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distribution 𝒩 (0, 0.01) (truncated at −0.015m and 0.015m).

• RandomDropout : Randomly dropout points with a dropout ratio uniformly sampled

from [0, 0.4].

• JitterColor : Jitter the color of points with the following 3 transformations: (1)

jitter the brightness and rgb values, (2) convert the color of 30% of the points

into gray, (3) jitter the color contrast. Each of this transformation can be applied

independently with a probability of 30% if JitterColor is applied.

Each of these four transformations is applied independently with a probability of

40% for each point cloud at every time step. Table A.7 shows the success rates of

the vision policies trained with the aforementioned data augmentations until policy

convergence and tested with the same data augmentations. We found that adding the

data augmentation in training actually helps improve the data efficiency of the vision

policy learning even though the final performance might be a bit lower. As a reference,

we show the policy performance trained and tested without data augmentation in

Table A.7. For the mug object, adding data augmentation in training improves the

final testing performance significantly. Without data augmentation, the learned policy

reorients the mug to a pose where the body of the mug matches how the mug should

look in the goal orientation, but the cup handle does not match. Adding the data

augmentation helps the policy to get out of this local optimum.

Table A.7: Vision policy success rates when the policy is trained and tested
with/without data augmentation (𝜃 = 0.2 rad, 𝑑𝐶 = 0.01)

Object Without data augmentation (noise) With data augmentation (noise)

025_mug 36.51± 2.8 89.67± 1.2

065-d_cups 79.17± 2.3 68.32± 1.9

072-b_toy_airplane 90.25± 3.7 84.52± 1.4

073-a_lego_duplo 62.16± 3.7 58.16± 3.1

073-c_lego_duplo 58.21± 3.9 50.21± 3.7

073-e_lego_duplo 76.57± 3.6 66.57± 3.1
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Figure A-9: Reorientation success rates for each object in the YCB dataset when the
hand faces upward.
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Figure A-10: Reorientation success rates for each object in the YCB dataset when the
hand faces downward without a table.
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Figure A-11: Distribution of the maximum absolute joint torque values on all joints
for all the time steps. We exclude a few outliers in the plot, i.e., we only plot the data
distributions up to 99% quantile.
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