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Abstract

Efficient autonomous navigation in novel environments is crucial to enable embodied
agents to reach more sophisticated levels of autonomy. We are interested in improving
autonomous navigation and estimation in unknown environments of vehicles carrying
lightweight electro-optical sensor payloads. Due to sensing limitations, in non-trivial
novel environments much of the geometric structure of the world has not yet been
observed, leading to significant geometric ambiguity. Although collecting additional
geometric information can reduce ambiguity, doing so is often at odds with the ob-
jectives of the mission. We propose to combine object-level semantic information and
geometric information to tractably improve both navigation and estimation.

In this thesis, we present three contributions towards improving autonomous navi-
gation in novel environments. We first improve navigation efficiency in novel environ-
ments by encoding useful navigation behaviors in a sampling distribution informed by
partial occupancy and object-level maps. Recognizing that object-level estimation is
challenging under the limited viewpoints available while navigating efficiently, we also
develop two methods of building object-level representations online. In our second
contribution, we improve the view-point efficiency of object-level SLAM with ellip-
soid representations by introducing an additional texture measurement and semantic
class shape prior. Finally, in our third contribution, we propose a novel method of
deeply learned 3D object estimation that utilizes indirect image-space annotations
and intra-class shape consistency to enable 3D object estimation from a single RGB
image.
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Chapter 1

Introduction

We would like to enable autonomous agents under size, weight, and power (SWaP)

constraints to intelligently and efficiently model and navigate unknown, structured

environments using electro-optical sensors. Such capabilities are crucial to empow-

ering the meaningful operation of robotics into a diverse range of applications from

search and rescue to last-mile autonomous delivery. Although there is tremendous

interest in autonomous systems capable of operating in environments not known a

priori, doing so efficiently remains an open research problem.

Electro-optical sensors such as color and depth cameras are attractive options for

SWaP constrained agents compared to more conventional laser range finders, but also

have significant sensing limitations. Color (RGB) cameras and combined color and

depth cameras (RGB-D) have become increasingly available as a commercial off-the-

shelf products, and can be used to build relatively lightweight sensing payloads. Both

can provide detailed geometric and extra-geometric1 information about the surround-

ing environment. Depth cameras in particular have been used with great success to

build dense geometric representations that track occupied and free space [65, 149].

However, a property of electro-optical sensors is that they have limited ranges, fields

1We use the term extra-geometric to refer to properties that are not strictly geometric, such as
object class. Loosely, we consider geometric information to correspond to the where of objects, and
extra-geometric information to correspond to the what. We categorize properties such as size and
shape as geometric as they can define the parts of the world the object occupies. In the remainder
of this document, we will also interchangeably use the term semantic to align with previous work.
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Figure 1-1: Example illustration of geometric ambiguity during navigation. Given
detailed a priori geometric knowledge of the office environment shown in (a), an
occupancy representation of the environment can be constructed (b), where black in-
dicates free space and white indicates areas of the world where the robot would be in
collision with the environment. However, when navigating in unknown environments,
the geometric representations of the world must be built online. Due to the limited
range and field of view of electro-optical sensors as well as their line-of-sight mea-
surement properties, much of the environment relevant to navigation has not been
observed yet, as indicated by the grey regions in (c).

of view, and are non-penetrative, i.e., they do not see through opaque structure in

the environment. These sensing limitations result in portions of the environment re-

maining unobserved as the robot attempts to make progress to the goal. While RGB

sensors generally have longer ranges than depth cameras, because they do not provide

direct 3D measurements it is more challenging to use them to build dense geometric

representations. In large-scale spaces [88], where the goal is far beyond the sensing

range of the robot, a dense geometric representation built online by electro-optical

sensors is likely to be quite incomplete. Figure 1-1 illustrates a scenario where the

goal of a robot navigating an office environment is beyond the range of the known

map, and very little dense geometry is available to the robot to make a navigation

decision.

Incomplete dense geometric representations can introduce significant and often un-

modelled geometric ambiguity into navigation, rendering efficient autonomous nav-

igation particularly challenging in novel environments. Consider a robot, equipped

with a single forward facing RGB-D sensor, tasked with navigating to a specific lo-

cation in a novel environment. The robot can utilize a sequence of depth images

20



to build an occupancy map that tracks occupied space, free space, and unobserved

space [65]; such a map supports the planning of non-colliding trajectories. For plan-

ning purposes, when occupancy information is unavailable that part of the world is

often optimistically assumed to be unoccupied. The optimistic free-space assumption

causes many routes through the environment to appear equally promising due to the

lack of any evidence that they may pass through occupied regions. As a result, the

robot may attempt to follow trajectories only to find them very frequently unusable

as more of the environment comes within range, resulting in inefficient navigation be-

havior. The consequences of geometric ambiguity are especially evident in large-scale

spaces, where poor decisions made given little relevant geometric information early in

the navigation process can add significant distance to the overall distance travelled.

Furthermore, because many trajectories appear equally promising under geometric

ambiguity, computational resources are wasted evaluating routes unlikely to be suc-

cessful or low cost, leading to computational inefficiency and therefore higher latency.

Although exploring to construct a more complete map online can resolve ambiguity,

data collection usually negatively impacts the objective of efficient operation.

There is compelling evidence that humans are able to quickly estimate potential

routes and navigate without focusing only on building highly accurate a priori geo-

metric maps. Chase [26] found that expert taxi drivers operating in Chicago were not

appreciably better than novice drivers at drawing accurate maps of the city, despite

their ability to plan more efficient routes. Bonner and Epstein [15] presented human

test subjects with 2D images of artificially generated rooms with traversable (doors)

and untraversable (paintings) objects. Their experiments show that humans estimate

navigation affordances even when performing auxiliary tasks. These examples suggest

that looking beyond dense, accurate geometric models may be fruitful

We propose to mitigate the effects of geometric ambiguity by incorporating object-

level abstractions that encode both the extra-geometric what as well as the geometric

where, which have proven useful in several applications by providing sparse and com-

pact structure. For example, reasoning about the world with knowledge of object

class can improve the robustness of loop closures [171] and place recognition [48].
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Knowledge of object class enables the prescription of object affordances (i.e., what

actions can be applied to an object) for task and motion planning applications [75],

and provides useful models for tracking [86]. The higher-level navigation implica-

tions of object-level elements in the environment can be quite intuitive. For example,

the semantic bounding box detection of a door or an exit sign may help the robot

navigating an office environment resolve significant geometric ambiguity by providing

information about which modes of navigation are more likely to lie on the optimal

trajectory; rooms are often exited by travelling through doors and if the robot is going

outdoors it should prefer the door with the exit sign.

However, while the advent of low-cost semantic measurements such as 2D bound-

ing box detections [68, 104, 135] as a commodity technology has made semantic

measurements increasingly accessible to even SWaP-constrained vehicles, we argue

that two key difficulties prevent wide-spread use of object-level semantics to inform

navigation in novel environments. First, despite their intuitive usefulness, it is not

immediately obvious how to integrate object-level representations within planners de-

signed for unknown environments. Second, it is challenging to project readily avail-

able 2D image-space semantic detections to 3D world coordinates, especially under

challenging sensor motions typical of efficient autonomous navigation and without

extensive a priori geometric information.

In this thesis, we improve the efficiency of autonomous navigation by combining

geometric and semantic information to develop algorithms for building and utiliz-

ing object-level representations online. In order to use object-level representations we

must not only develop novel planning algorithms capable of incorporating object-level

cues into navigation decisions, but also develop methods for building such represen-

tations online with limited information. In the following sections, we describe in

more detail the key challenges we seek to make progress on, and outline our proposed

approaches.
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1.1 Incorporating semantics into navigation

In general, the goal of motion planning is to find a feasible trajectory from an initial

state to a terminal state. Let 𝒳 ⊂ R𝑑 denote the state space of the robot, where 𝑑 is

the dimension of the state. It is also commonly assumed that 𝒳 is composed of occu-

pied and unoccupied states, 𝒳𝑓𝑟𝑒𝑒 and 𝒳𝑜𝑐𝑐, and that there exists a known mapping

from every 𝒳 to its occupancy value. In practice, when occupancy information is

unavailable, the state is often assumed to be in 𝒳𝑓𝑟𝑒𝑒. We denote a trajectory to be a

continuous mapping through 𝒳 , i.e., 𝜆 : [0, 1] → R𝑑, the start and goal as 𝑥𝑠, 𝑥𝑔 ∈ 𝒳 ,

and the set of all paths as Λ. The planning problem can then be formally stated as

the minimization of some cost 𝑐 function that maps a trajectory to a scalar positive

cost, i.e., 𝑐 : Λ → R⩾0, subject to constraints:

𝜆* = argmin
𝜆∈Λ

𝑐(𝜆)

s.t. 𝜆*(𝑡) ∈ 𝒳𝑓𝑟𝑒𝑒 ∀𝑡 ∈ [0, 1]

𝜆*(0) = 𝑥𝑠, 𝜆
*(1) = 𝑥𝑔.

(1.1)

In this thesis, we will take cost function to be the length of the trajectory, although

other objectives such as minimizing control effort are also common. To support real-

world autonomous navigation, we are interested in not only the efficiency of the overall

distance travelled during the mission, but also focusing the search for trajectories.

The formulation of Equation 1.1 is notably dependent on geometric constraints,

and for good reason. Many of the properties of navigation that are of interest in

autonomous navigation are fundamentally grounded in geometry, such as the non-

collision constraint (intersection of the geometry of the robot and geometry of the

environment) and the minimum distance objective (the total geometric distance cov-

ered by the robot over the course of navigation). However, unlike applications where

a priori maps can be obtained by first exhaustively mapping an environment, and

then planning collision free trajectories within that known map, navigation in un-

known environments requires making decisions under incomplete information about
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the state of the world. We are interested in incorporating object-level representations

to inform the planning process.

Although a first-order approach to incorporating object-level information into nav-

igation algorithms would be to manually specify the effect of objects on navigation,

such a method is difficult to scale. For example, a system designer might consider

implementing a rule that doorways are useful for navigation. However, traversing

through doors is not always the best policy. Consider a scenario where the robot is

in a hallway and the goal is over a kilometer away. In such a case, it is likely that

entering a room via a doorway will result in the robot having to turn around and

eventually return to the hallway. However, the utility of object relationships can be a

complex function that may change conditioned on the ultimate objective; if there is

an exit sign adjacent to the doorway, the doorway likely leads outdoors. Therefore, if

the goal is outdoors, going through the doorway is a strategy likely to lead efficiently

to the goal. As the number of objects in the world increases, enumerating rules to

explicitly cover all potential implications induced by the interaction between objects,

geometry, and useful trajectories becomes increasingly impossible. Even if total enu-

meration is possible, constraining actions on noisy or mis-specified object information

could lead to unnecessary inefficiencies. For example, a planning approach that plans

solely using a topological map of doors would suffer if a door on the optimal trajectory

was not detected and therefore not under consideration.

To improve autonomous navigation, we take inspiration from the rich literature

of sampling-based motion planners (SBMPs) and planning in novel environments.

Modern sampling-based motion planners can reduce computational burden by build-

ing potential trajectories via random sampling. It has been shown that the efficiency

of SBMPs can be dramatically improved by intelligent sampling strategies [69, 70],

but the development of efficient sampling algorithms to speed up planning has largely

addressed problems given dense geometry in fully known environments. Various meth-

ods have been proposed to reduce the overall distance travelled when navigating in

novel environments, but usually aim to predict quantities to allow for better planning

decisions, rather than focusing on more efficient computation.
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In Chapter 3, we show how to augment incomplete geometric information with

partial object-level maps to improve autonomous navigation in novel environments.

Our key insight is to combine the computational power of randomized motion planners

with higher-level semantic information via a learned sampling distribution, enabling

intelligent navigation in structured, unknown environments. We propose optimizing

a predictive sampling distribution inferred from dense, local geometric representa-

tions that track unobserved space, explicit object-level contextual cues both within

and beyond the range of dense geometry, and information about the goal. Our ap-

proach enables SBMPs to not only find plans quickly, but in certain environments

plan trajectories that are more likely to reach the goal despite incomplete geometric

information. Rather than pre-specifying navigation rules and heuristics over our rep-

resentations, we show that a Convolutional Neural Network (CNN) can be leveraged

to synthesize multimodal map information into a proper sampling distribution. Fur-

thermore, we demonstrate that learning a sampling distribution over geometric and

semantic information improves navigation results in unknown environments.

Our proposed approach to improving autonomous navigation relies in part on an

object-level representation that encodes both the object class and geometric proper-

ties of the object in the world. In recent years, 2D object detections from monocular

images have become increasingly accessible for use on robotic platforms [134, 68],

providing measurements of objects in the image plane (where), but also object class

predictions (what). However, to inform our navigation approach, we would like to use

these 2D image-space measurements and monocular sensors to acquire 3D estimates

of objects along with their class labels. Additionally, we would like for the method to

provide estimates online as the vehicle executes efficient navigation maneuvers, which

often limit the diversity of views of the object. In the next sections, we discuss the

technical challenges induced by these requirements and our proposed approaches. In

particular, we make improvements to two main thrusts of approaches to 3D object

estimation to support providing contextual information for navigation: object-level

SLAM and deep 3D object estimation.
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1.2 Improving Object-Level SLAM with Limited Mea-

surements

To provide object-level information for autonomous navigation, we first formulate ob-

ject estimation as a simultaneous localization and mapping (SLAM) problem. Object-

level SLAM provides a probabilistic framework to estimate 3D object landmarks by

fusing sensor measurements of objects collected over time. Given a series of poten-

tially heterogeneous noisy measurements, object-level SLAM aims to solve for the

most probable robot and object states. For example, one may consider solving for

the most probable 𝐽 objects 𝑂 and 𝑇 robot states 𝑥 conditioned on 𝐾 observed

measurements 𝑦:

𝑥*
0:𝑇 ,𝑂

*
0:𝐽 = argmax

𝑥0:𝑇 ,𝑂0:𝐽

𝑝(𝑥0:𝑇 ,𝑂0:𝐽 |𝑦0:𝐾). (1.2)

It is common to take the state as 𝑥 ∈ SE(3), although other representations are cer-

tainly possible. In this thesis, we focus on building lightweight object representations

from monocular images (i.e., 𝑦 : Ω ∈ N2 → R, where Ω is the image pixel domain) and

2D object detections (parameterized by two corner pixel coordinates, i.e., 𝑦 ∈ Ω2).

We let 𝑂 ∈ R𝑝, where 𝑝 depends on the dimension of the representation. For example,

a 3D bounding box can be represented by the location of eight corner points in R3.

In contrast, a mesh model object representation can be represented by a set of edges

and vertices. To avoid the computational cost of building dense models of objects or

requiring a pre-processing step where a detailed geometric model is built before online

estimation, we consider an approximate geometric model that is expressive enough to

capture general object properties such as pose and size.

A key challenge in monocular object-level SLAM is that limited diversity in views

of an object can result in geometrically ambiguous estimation processes. Geomet-

ric ambiguity in object estimation when using approximate geometric models can

manifest as many potential object configurations of size, position and rotation being

possible due to perspective projective ambiguity. For example, if a bounding box
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Figure 1-2: Examples of geometric ambiguity in fitting 3D bounding boxes to a
detected 2D bounding box. There are many 3D bounding boxes (yellow) that may give
rise to the same 2D image-space bounding box detection (green); in this example, (a)-
(c) are poor estimates for the doorway compared to (d). There is significant geometric
ambiguity when considering the 2D bounding box as a geometric measurement only.

measurement is considered purely as a 2D geometric measurement of a 3D object,

there are many potential 3D bounding boxes2 that satisfy the projection, as shown

in Figure 1-2. Although the estimate may agree with the received measurements, it

may not be accurate enough to be useful for online navigation.

Therefore, under the challenging camera motions typical of efficient navigation

such as straight line, low baseline maneuvers, it can be difficult to obtain adequate

measurements to sufficiently mitigate geometric ambiguity. When using only 2D

bounding boxes to constrain all object models, which is exacerbated by common

types of vehicle motions such as straight line motions that do not generate diverse

viewpoints of the objects. The observability problem is similar to a recognized prob-

lem in point-based monocular SLAM [114]. Existing approaches to object-level SLAM

23D bounding boxes are a common approximate geometric model.
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often overcome the difficulty of geometric ambiguity by relying on a priori geometric

models of the objects [150, 154] or camera trajectories with diverse views of objects

[118].

Although collecting additional measurements can mitigate geometric ambiguity

in the object-level estimation process, doing so is often at odds with the objectives

of the mission. For example, various methods have been proposed in other contexts

to determine the next-best-view to collect of an object [12, 175, 41, 8] to reduce

uncertainty, but detours solely for the purpose of collecting additional measurements

of objects can result in longer trajectories overall. In contrast to mapping-centric

missions, where map accuracy and coverage is a priority, we would like to obtain

object estimates with as little disruption to the navigation process as possible. We

therefore focus our efforts on improving the performance of object-level SLAM under

the types of trajectories typical of efficient autonomous navigation, rather than tightly

coupling estimation and navigation.

In Chapter 4 we improve performance of online object-level SLAM with dual

ellipsoid representations under challenging camera motions by incorporating semantic

shape priors with bounding box and texture measurements. We choose the dual

ellipsoid representation as our approximate geometric representation for its convenient

mathematical form.3 Our key insight is to extract additional measurements from

RGB images: in addition to exploiting texture-based information, we also propose

incorporating a shape prior based on object class. We show that by triangulating

points on the surface of the object, we can induce a useful measurement to aid in

ellipsoid estimation. The shape prior is a heuristic suitable for many object classes of

interest such as people and cars and allows for single-shot initialization of new objects,

rather than the delayed initialization of the previous state of the art approach [118].

To demonstrate the usefulness of our approach under challenging camera motions,

we test on both simulated and real-world flight sequence data from an autonomously

navigating quadrotor.

3More detailed discussion of the benefits of the dual ellipsoid representation can be found in
Section 2.2.1.
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1.3 Reducing the Data Burden of Deep Object Esti-

mation

To enable 3D object estimation from a single view, we formulate object estimation

as a deep learning problem. Rather than requiring several measurements fused over

time, deep learning methods for 3D object estimation can potentially provide ob-

ject estimates from a single sensor image. Deep learning based approaches to 3D

object estimation achieve lower measurement latency by relying on large datasets

of annotations to learn mapping functions from input images to object properties.

Specifically, many deep learning approaches decompose object estimation into two

stages: an offline training stage and an online query stage. Let Φ denote a hyper-

parametric function approximator in the form of a convolutional neural network that

takes as input a measurement 𝑦𝐼 , outputs object representation 𝑂, and is parame-

terized by 𝜏 . In the offline training stage, given a dataset that pairs a series of 𝑁

inputs {𝑦𝐼0 , ...,𝑦𝐼𝑁
} with annotations4 {𝑦𝐿0

, ...,𝑦𝐿𝑁
}, the parameters 𝜏 of Φ are first

optimized using training data, i.e.,

𝜏 * =argmin
𝜏

𝑁∑︁
𝑖=1

ℱ(Φ(𝑦𝐼𝑖
, 𝜏 ),𝑦𝐿𝑖

) (1.3)

where ℱ is a function that measures how well the predicted object agrees with the

annotations and lower values indicate better agreement. The input is commonly

taken to be an image (i.e., 𝑦𝐼 : Ω ∈ N2 → R), while 𝑦𝐿 varies more widely between

approaches. At inference time, the optimized parameters 𝜏 * are used to define the

model Φ and a prediction is simply defined by applying the resulting function to

sensor measurements 𝑦𝐼 acquired online, rather than an inference process as in SLAM.

However, unlike SLAM formulations, where the form of the objective function is

generally well understood (i.e., as the conditional probability), a significant branch

in the study of deep learning approaches to object estimation involves the design of

an appropriate objective function ℱ .

4We use the terms annotations and labels interchangeably.
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Deep learning approaches reduce geometric ambiguity at inference time by rely-

ing on large datasets of direct labels or a priori models. For example, one way to

overcome the the ambiguity shown in Figure 1-2 is to build a dataset of ground-truth

3D bounding box annotations and images, and optimize the network to take as input

images and output the correct 3D bounding box. Given many examples, such a su-

pervised learning problem could in principle learn to predict reasonable 3D bounding

boxes online because it has seen many examples of doorways paired with pose and

size annotations. A priori object models are also an avenue for reducing geometric

ambiguity; given a detailed model of the doorway, the estimation process need only

estimate the pose of the object, therefore removing ambiguity in shape.

However, a significant practical hurdle to training state-of-the-art deep 3D bound-

ing box estimators is collecting a sufficiently large dataset of 3D bounding box labels

or a priori models. Unfortunately, in contrast to indirect 2D image plane annotations

such as 2D bounding boxes or pixel-wise segmentation, 3D annotations are more dif-

ficult and expensive to obtain, as in most cases they require additional information

or sophisticated interfaces [4, 185, 96]. Additionally, building detailed a priori geo-

metric models such as CAD models is a labor intensive task requiring expert domain

knowledge. Building accurate models from sensor data is possible, but can require

specialized hardware [22] or careful procedures [150]. The onerous effort required to

build 3D datasets for new objects hinders our ability to use deep 3D object estimation

to provide object-level contextual information for autonomous navigation.

In Chapter 5, we introduce a novel, weakly supervised, deep learning framework

for estimating 3D objects monocular 3D object estimation, which does not require

expensive 3D annotations or detailed a priori information. We assume a parallel

2D object detection process, and “lift” the detections to 3D using our network. Our

key insights are to approximate objects as ellipsoids, which allows us to estimate

object properties using indirect image-space annotations on 2D images as a weak

supervisory signal and to exploit low shape variance induced by semantic class.5 By

5The nomenclature and categorization of deep learning approaches is an evolving topic. We
refer to our method as weakly supervised because we do not rely on direct labels of the quantity of
interest, but instead rely on indirect labels, such as 2D bounding box annotations.
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approximating object geometry with ellipsoids, we can exploit differentiable geomet-

ric and algebraic relationships between ellipsoids and 2D annotations to enable a

weakly supervised learning process and significantly lower the annotation burden for

deeply learned methods. Assuming that the objects of interest have low size varia-

tion, we also impose a cost on intra-class shape variance to further mitigate geometric

ambiguity. Given online instance segmentation and point-cloud information, our ob-

ject estimates can be further optimized online. We present quantitative results on

a simulated dataset with access to ground-truth annotations, and qualitative results

on a real-world dataset without ground-truth annotations. Finally, we present an

integration of the planning method proposed in Chapter 3 and our weakly supervised

learning approach, demonstrating the suitability of the 3D object estimation pipeline

for informing autonomous navigation.

1.4 Combining Semantics and Geometry

In this thesis, we posit that combining object-level semantic information and geo-

metric information can tractably improve navigation and estimation. As we have

discussed in this chapter, both navigation and object-level estimation algorithms can

suffer from geometric ambiguity when navigating in novel environments. With the

understanding that to use object-level representations to improve autonomous nav-

igation we must also improve object-level estimation, we tackle both planning and

estimation — employing approaches characterized by the theme of combining se-

mantics and geometry. Rather than viewing semantics as a replacement for detailed

geometry, we continue to rely on the strengths of geometric representations and seek

to incorporate semantics to mitigate its weaknesses. In each case, we improve effi-

ciency along some pertinent metric6 by encoding the effects of semantic information

into our geometric optimizations as cost functions and priors. We seek to exploit both

dense geometry, which can provide precise information but is difficult in general to

6In Chapter 3 we consider the sample efficiency of a SBMP as well as the efficiency of the overall
distance travelled. In Chapter 4 we improve the measurement efficiency of object-level SLAM. In
Chapter 5 we improve the annotation efficiency of deep object estimation.
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obtain at scale, and object-level semantic information, which is compact and imposes

structure on the world, but can be relatively sparse.

Our approach to the synthesis of hybrid semantic and geometric representations

has several important benefits. First, we show that semantics can provide powerful

heuristic cues to inform geometric optimization when incomplete information induces

ambiguity, and thus improve the efficiency of autonomous navigation and estimation.

Second, because semantic abstractions are leveraged to bias geometric solutions in-

stead of incorporated as hard constraints, additional geometric measurements can po-

tentially overcome incorrect heuristics. Under our proposed framework, we guide the

optimization of geometric solutions even when geometric information is incomplete,

and can improve the solution as additional geometric measurements are obtained.

1.5 Statement of Contributions

Our contributions are as follows:

• A novel approach for improving planning efficiency in unknown environments

by encoding promising navigation strategies in learned sampling distributions

informed by partial occupancy and object-level maps (Chapter 3).

• Improvements to the measurement efficiency of object-level SLAM with ellipsoid

landmarks under challenging camera motions by incorporating semantic shape

priors and introducing a novel geometric texture measurement model (Chapter

4).

• A novel weakly-supervised deep learning framework for monocular 3D object

estimation, which combines geometric properties such as stereo projective con-

sistency with semantic properties such as intra-class consistency to avoid re-

quiring expensive 3D annotations or detailed a priori geometric information

(Chapter 5).

Portions of Chapter 2 were orginally presented in Liu [102]. The works presented

in Chapter 3, Chapter 4, and Chapter 5 were originally presented in Liu and Stadler
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et al. [100], Ok and Liu et al. [120], and Liu et al. [101], respectively.
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Chapter 2

Background

In this chapter, we review existing approaches to autonomous navigation and object-

level estimation, with the objective of establishing context and identifying deficiencies

that motivate our approaches. To this end, we assess both the computational and

operational efficiency of existing online navigation methods, as well as the suitability

of existing object-level estimation methods for supporting online applications. We

are especially interested in algorithmic performance under limited a priori geometric

information.

Beginning with Section 2.1, we discuss several approaches to solving the au-

tonomous planning problem, focusing on methods that attempt to reduce compu-

tational complexity via representational choices (Section 2.1.1). We then discuss

various methods of lowering the latency of the planning process using search heuris-

tics (Section 2.1.2). Section 2.1.3 delves into approaches designed for navigation in

uncertain environments. The section closes with methods specifically combining se-

mantics and geometry to enable more efficient navigation in uncertain environments

(Section 2.1.4).

Next, we discuss methods for object-level estimation, with a particular focus on

methods for online estimation suitable for supporting efficient navigation. Section

2.2.1 describes several common object models. We describe various methods of es-

timating object representations, including regression and classical detection (Section

2.2.2), SLAM (Section 2.2.2), deep learning (Section 2.2.4), and hybrid methods (Sec-
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tion 2.2.5).

2.1 Autonomous Navigation

Robot navigation from one location in the world to another is a fundamental compo-

nent of a wide variety of embodied robotic systems. In this thesis, we are primarily

interested in the problem of moving from some starting location to some goal location

defined in a known reference frame. Although goals specified in non-geometric terms

are certainly a natural way for humans to communicate goals, the “point-A-to-point-

B” planning problem is useful in many contexts where the exact coordinates of a goal

can be specified and may serve in the future as a valuable building block for more

sophisticated systems.1

In this section, we unpack various approaches to solving Equation 1.1 in the con-

text of realistic real-world robotic systems. To deploy a planning system that centers

on solving Equation 1.1 on realistic real-world robotic systems, the solutions must be

found fast enough to enable real-time planning2 under the computational constraints

of the vehicle3 in environments with potentially complex environmental geometry. We

explore two major thrusts in solving Equation 1.1 quickly – the representation of the

planning problem (Section 2.1.1), and the search heuristics used to find a solution

(Section 2.1.2). Additionally, a major limitation in many approaches to solving the

planning problem is the assumption of a known, deterministic mapping from a state

to a binary classification of whether the state is in collision with the environment or

not. Therefore, while the frontmatter of this section focuses largely on algorithms

developed with assumed access to a priori geometric maps only, in latter portions

we turn our attention to methods explicitly designed for navigation under uncer-
1Under the nomenclature of Anderson et al. [6], we focus on the PointGoal problem, rather than

the ObjectGoal or AreaGoal objectives. “Go to the couch” is, for example, an ObjectGoal that has
geometric implications but is not specified with exact coordinates, potentially because coordinates
may not be known a priori.

2We will occasionally refer to this property as op-tempo planning, for planning at operational
tempo.

3Although off-board computational infrastructure might enable plans to be computed using re-
sources that do not have to be carried by the vehicle, such systems can struggle in environments
and missions where communication is degraded.
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tainty (Section 2.1.3). Finally, we focus on recent methods that consider semantics

in addition to geometry to further improve planning outcomes (Section 2.1.4).

2.1.1 Speeding up Search via Representation

The chosen representation of a planning problem can have enormous practical and

theoretical impact on the quality and tractability of autonomous navigation. In this

section, we discuss three families of geometric representations: continuous, determin-

istic discretized graphs, and stochastic graphs.

Continuous Methods

Some methods solve Equation 3.1 by assuming a trajectory form, and iteratively op-

timizing an initial solution [139, 131] or solving a mixed integer linear program [152].

For example, both Ratliff et al. [131] and Richter et al. [139] assume a set number of

waypoints and define trajectory properties between the waypoints. Ratliff et al. [131]

allow the waypoints to move during the continuous optimization, while Richter et al.

[139] update only the polynomials connecting the waypoints, or repair trajectory seg-

ments that come into collision with the environment by adding waypoints to further

constrain the trajectory. Although the trajectories are discretized in this fashion, the

parameters under optimization usually take on continuous values, enabling gradient-

based optimization methods and in some cases constrained optimization frameworks.

While these approaches are promising for agents with complex dynamics, they usually

require initial trajectory estimates that can be difficult to obtain in complex environ-

ments without auxiliary planning processes. For example, Richter et al. [139] assume

an initial trajectory provided by a rapidly exploring random tree, which we discuss

in Section 2.1.1.

Deterministic Discretized Graph Methods

Discretized approaches to planning divide the state space of the robot into discrete

intervals, thereby reducing the number of possible states considered by the robot
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Figure 2-1: Illustration of a deterministic discretized graph vs. a stochastic graph.
The vertices are represented by green circles and edges by blue lines. The start
and goal are indicated with yellow vertices, where the ordering is irrelevant. The
shortest valid path in each representation is indicated by bolded blue outlines. In the
underlying occupancy map, black indicates free space and white indicates occupied
space. (a) Deterministic discretized graph methods assume a deterministic (and often
constant) discretization over the state space, illustrated by the red grid. Discretized
graph methods require several implementation choices, including the discretization
strategy and how states are connected for navigation purposes. In this example, the
discretization is assumed to be constant and an action set comprising of the four
cardinal directions as well as four diagonal directions is assumed. Each vertex is
assumed to fall within the center of the discretization, and edges are assumed to
be straight-line paths and removed if they are in collision with the environment.
(b) Stochastic graph methods randomly sample vertices and typically use an edge
connection strategy to add only edges to the graph that represent collision-free paths.
In some cases, stochastic graphs can find solutions similar to discretized methods
using a smaller number of nodes, although in this illustration both the discretized
method and the stochastic method fail to find the shortest path between the two
yellow vertices.
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during planning from infinity to some finite, countable number of states. Consider, for

example, a discretization of a robotic agent operating in two dimensions. With a 10×

10 meter environment and 1 meter discretization, the state space will have 100 unique

states, rather than the potentially infinite set of states considered by continuous

methods. Many early approaches to planning therefore chose graph representations

over discretized state spaces and applied graph search algorithms to find trajectories.

The state space discretization defines vertices 𝑉 of a graph, and the edges 𝐸 are

defined by a set of valid actions 𝑢, where 𝑓(𝑥, 𝑢) maps from an initial state to the

state after applying action 𝑢. Vertices have the same domain as the robot state. As

in LaValle [95], we define the navigation graph 𝐺 as follows4:

𝐺 = {𝑉,𝐸}, 𝑒𝑖,𝑗 ∈ 𝐸 ⇐⇒ ∃𝑢 ∈ 𝑈(𝑥)s.t.𝑣𝑗 = 𝑓(𝑣𝑖, 𝑢), (2.1)

where 𝑈(𝑥) defines actions that can be taken from the state 𝑥. To manage the branch-

ing factor of the graph, the number of potential actions is limited, i.e., by allowing

navigation between neighboring nodes using only the four cardinal directions. An

example of a discretized planning approach is given in Figure 2-1a. After discretizing

the environment to build a graph representation of the problem in Equation 1.1, graph

search algorithms such as breath first search (BFS) or Dikjstra’s [36] shortest-path

algorithm may be applied.

State space discretization is the backbone of many classical planning algorithms,

but such approaches can still suffer from the curses of scale and dimensionality, quickly

becoming computationally infeasible. As the scale of the environment increases, the

size of the state space increases rapidly. Doubling the extents of our hypothetical

environment from 10 × 10 meters to 20 × 20 meters while holding the discretization

constant results in a four-fold increase in the number of unique states; in this case the

scale of the environment increases the state space quadratically. Adding a dimension

to the consideration of the algorithm (consider a 3D environment of 10 × 10 × 10

meters) results in a 10-fold increase in the number of unique states.

4LaValle [95] refers to the graph as defined as the state transition graph; we will refer the graph
as the navigation graph.
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Another practical difficulty in using discretized methods is that the discretiza-

tion is often considered constant, and tuned to meet the requirements of the mission.

For example, the smallest expected aperture that the robot is expected to be able

to traverse through is a common requirement that drives planning and estimation

discretization levels. For example, in Figure 2-1a, a shorter path could be found

by increasing the resolution of the discretization so that there exists a valid connec-

tion through the left most doorway, but increasing the discretization level can be

computationally expensive. In contrast, Larsson et al. [92] propose an information-

theoretic method for generating useful multi-resolution discretized representations.

Despite there being nothing in the formulation of general graph search that precludes

multi-resolution discretization, such approaches have not yet been widely adopted.

Stochastic Graph Methods

Rather than pre-divide the state space into discrete intervals, stochastic methods re-

duce computational complexity by randomly sampling from the configuration space.

Sampling-based motion planners (SBMPs) stochastically build graphs by sampling

candidate vertices, therefore avoiding total enumeration of the state space and ex-

plicit construction of 𝒳𝑓𝑟𝑒𝑒. SBMPs are especially suited for applications involving

navigation over long length scales and robots with high-dimensional state spaces. In

Chapter 3, we utilize a SBMP for navigation over long length-scales.

Two key functions drive the graph building process in SBMPs. The first is vertex

generation (i.e., generating the set of 𝑉 ), and the second is edge selection (i.e., deter-

mining the set of 𝐸). In general, SBMPs build planning graphs such that all vertices

are located in free space, and all edges represent sub-trajectories traversing between

the two vertices they connect. Some, such as Probabilistic Roadmaps (PRMs) [81]

first construct the graph and then search in two distinct stages. Others, especially

tree-variants such as Rapidly-Exploring Random Trees (RRTs) [94] and Fast March-

ing Trees (FMTs) [72], interleave graph construction and graph search for any-time

algorithms; feasible solutions are refined given additional computation time. Many

SBMPs have asymptotically optimal variants; several of which (such as the RRT*)
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were presented in the seminal work of Karaman and Frazzoli [78], which introduced

conditions on how vertices are added to the graph and the concept of “re-wiring” the

graph by changing the connectivity between vertices to achieve optimality. A simple

illustration of a SBMP is given in Figure 2-1b.

Stochastic graphs are powerful representations for enabling faster planning, but

still suffer from sample complexity. Early implementations of SBMPs suggested the

use of uniform sampling to ensure diverse coverage of the configuration space. How-

ever, uniform sampling can lead to planning difficulties in non-trivial environmental

geometries. For example, to improve the solution found in Figure 2-1b, one approach

might involve simply allowing the planner to sample more vertices until the shorter

trajectory is found, but the construction of large graphs can be at odds with main-

taining a low-latency online planner. Another more promising strategy to enable the

planner to find the shortest trajectory is to bias the generation of vertices to enable

useful graph connectivity. In this case, placing vertices in doorways may be a useful

strategy to enable finding the shortest route quickly. Various methods of this strategy

are discussed in the following section.

2.1.2 Speeding up Planning via Heuristics

Another important method of increasing search speed is to use heuristics to effectively

deploy computational resources. A simple heuristic that reduces computation time

is to approximate the planning problem by focusing on making locally reasonable

solutions within some horizon [152, 153]. However, such methods can be prone to

exacerbating myopic navigation behavior if they consider only local information when

making decisions.5 For instance, as Schouwenaars et al. [153] demonstrate, accounting

for navigation within a limited time horizon can result in the vehicle being in a state

that yields future collisions due to dynamics. The authors propose a method for

ensuring safe navigation by including a future feasibility constraint, but do not focus

5The most dramatic instance of this planning paradigm is reactive planning, which makes deci-
sions solely using the most recent sensor measurements. We defer discussion of methods combining
short-range planners with longer range planners to Section 2.1.3
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on improving total distance travelled in addition to feasibility.

In this section, we focus on heuristics that are used to find a solution to the entire

planning problem from the start to the goal, even if the solution is sub-optimal or

approximate. In particular, we focus on heuristics used in conjunction with SBMPs,

given their potential for efficient planning in large scale planning as discussed in

Section 2.1.1.

Geometric Heuristics

Rather than limiting the planning horizon, methods that use geometric heuristics

exploit geometric properties of the planning problem to guide the search over the

possible space of plans in an efficient manner. Such approaches realize that although

there may be many feasible solutions in a planning graph, not all are relevant to

obtaining a final solution, and avoiding the computational expense of considering

those solutions can reduce overall computation time. For example, the Euclidean

distance heuristic paired with the ubiquitous 𝐴* algorithm is a canonical example

of a geometric heuristic applied to path planning. In this case, the cost to go is

estimated by the Euclidean distance from the expanded node to the goal; crucially,

this heuristic is an admissible heuristic, meaning that it is guaranteed to be less than

or equal to the true cost that will be incurred. Although the Euclidean distance is

often a crude estimate of the remaining distance to be travelled, it can nevertheless

drastically reduce search times, while being provably resolution-optimal.

Geometric heuristics are particularly well-deployed with SBMPs, not only to

search the planning graphs for solutions, but to bias the building of the graph it-

self. In particular, given that a trajectory would eventually be found with a uniform

sampling strategy if one exists, we discuss methods that attempt to find such solutions

much sooner than the limit of infinite samples. Practitioners of SBMPs have long in-

vestigated how to improve solutions using non-uniform sampling. Early approaches

to intelligent sampling targeted a scenario noticeably difficult for SBMPs: the nar-

row passageway. Although the iterative, random construction of planning graphs in

SBMPs leads to appreciable computational gains for large problems, it also means
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that it can difficult to construct useful planning graphs in areas of the environment

that require very specific kinds of trajectories to traverse. For the narrow passage-

way, vertices must be sampled so that connecting edges do not intersect with the

walls of the passageway. In other words, the corresponding region of the passageway

in the configuration space is low volume, leading to low probability of being sampled

under uniform sampling strategies. To overcome such geometrically adversarial envi-

ronment features, approaches such as Gaussian sampling [16] and the bridge test [69]

were developed to sample vertices in or near environmental features. For example,

Gaussian sampling is biased towards free space near occupied regions, thus intuitively

increasing the probability that samples will be placed along narrow passageways.

Although early geometric heuristics provided large gains in planning efficiency

under certain circumstances, they are not inherently adaptive, and choosing which

heuristics to apply can be challenging in practice. The selection of planning heuristics

largely falls to system designers with specific domain knowledge, capable of identi-

fying heuristic strategies likely to enable more efficient planning. Indeed, Geraerts

and Overmars [55] compare several different sampling strategies on a diverse set of

planning problems, concluding that methods developed for narrow corridors should

only be deployed in regions with narrow corridors.

Later, more modern methods were developed that focused on improving solutions

faster once a feasible solution has been found. These methods largely exploit geo-

metric bounds on optimization. For example, Batch Informed Trees (BIT*) [51] and

Informed RRT* (IRRT*) [50] both use ellipsoid-based bounds to focus vertex gener-

ation to those that will improve solutions. Akgun and Stilman [5] suggest sampling

near the current best solution for local improvements as well as actively managing

the tree to not add vertices that do not improve the solution, to keep the number of

vertices in the tree low (and therefore manage computational overhead). However,

while the heuristics we have discussed for improving solutions once an initial feasible

solution is found are powerful and quite general, they do not generally aid in finding

feasible solutions faster. The time to the first feasible solution is equally important

to trajectory quality for op-tempo autonomous navigation.
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Learned Heuristics

In an effort to overcome the brittleness of hand-coded heuristics, some SBMP methods

have turned to learned heuristics. We differentiate adaptive workspace biasing, a

method that uses previous sampling outcomes to iteratively improve future planning

performance, from directed sampling, which prescribes a priori distributions over the

configuration space. However, we observe that adaptive workspace biasing can be

seen as online learning of sampling distributions, just as learned directed sampling

can be iteratively updated.

Adaptive workspace biasing methods aim to improve planning performance over

time. Some focus on improving search during a single query [73, 91]. For example,

Joshi and Panagiotis [73] propose to use various geometric heuristics over kernel

vertices to choose which vertex to extend next. Lai et al. [91] model tree growth as a

Multi-Arm Bandit (MAB) problem and update proposal distributions via a Bayesian

framework to adapt online to the configuration space. Other methods use features

of the environment to iteratively optimize sampling distributions modelled by Gibbs

distributions [191] or Gaussian mixture models [24]. Given access to features extracted

from new environments, these methods have shown some generalization success.

In recent years, there has also been increased interest in applying deep learning

to heuristic discovery. For example, Ichter et al. [70] show how, given a dataset of

optimal trajectories paired with maps, a neural network can be trained to learn a sam-

pling distribution to inform a SBMP. The authors first train a conditional variational

autoencoder (CVAE) conditioned on workspace information such as occupancy maps.

The CVAE is then used to generate samples for a SBMP. By augmenting the samples

drawn from the trained network with a uniform sampling strategy, the authors also

discuss how asymptotic properties of the planners are preserved. In later work, Ichter

et al. [71] suggest training a neural network to predict so-called critical samples, which

are related to a graph-theoretic centrality metric. The Neural RRT* [179] trains a

convolutional neural network (CNN) to predict pixel-wise sampling probabilities from

a modified occupancy map input. Although these methods can be seen as learned
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methods of directed sampling as they are largely trained offline, some methods such

as the one proposed by Ichter et al. [70] have shown compelling results from iterative

training of the networks with data produced by the learned sampling distributions.

Learned heuristics have shown great promise in speeding up search using prior

experience, rather than hand-selecting geometric heuristics. However, because they

in general are largely based on geometric properties only, they rely on a priori known

maps. The requirement for known geometry makes existing literature on learned

heuristics difficult to apply to problems where the environment is inherently uncer-

tain. In particular, Ichter et al. [70] suggest incorporating semantics as a promising

avenue for future work. In Chapter 3, we present a method for learning a sampling

distribution that considers both object-level semantic representations and dense ge-

ometry, both of which can be partially observed.

2.1.3 Navigation in Unknown Environments

Thus far, we have focused on methods of planning specifically designed and optimized

to work in known environments. Much of the existing literature regarding planning

representations and search heuristics focus on lowering planning latency. In practice,

action-perception loops in known environments often involve estimating the pose of

the vehicle and deploying some closed-loop controller to follow an extracted trajec-

tory.6 When uncertainty is considered, it is often uncertainty that stems from random

noise in the sensing or actuation process. For example, various methods have been

proposed to enable planning routes that consider state estimation accuracy [145, 128].

In this thesis, we are interested in improving autonomous navigation in environments

that are unknown a priori.

Navigation in novel environments with finite geometric sensing induces geometric

ambiguity. Consider, for example, an extreme case where the depth sensor of a robot

can observe structure at a maximum of 5 meters away, but the nearest pertinent

structure is 10 meters away from the robot. In this case there is little to no infor-

6Of course, in carefully controlled environments where actuation is extremely accurate and pre-
cise, open-loop execution may be possible.
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mation to disambiguate which direction is most promising. The performance of the

action-perception loop during navigation in novel environments is often even more

critical in unknown environments because the world is incrementally revealed to the

agent, potentially requiring the trajectory to be substantially updated. In the action

step, the agent must choose a trajectory given the potentially incomplete information

that it has. Upon executing some portion of the trajectory, new portions of the envi-

ronment are revealed, which in turn requires re-planning. Trajectories that were once

thought to be feasible may be revealed to pass through obstacles that were occluded

or beyond the range of the sensor. Reducing re-planning latency is a first order so-

lution to planning in unknown environments, enabling the agent to react quickly to

new information as it is acquired.

Choosing better actions given limited perceptions is another avenue that can im-

prove navigation. In this section, we discuss methods designed specifically for navi-

gation in novel environments. The benefits of such approaches are that rather than

simply reacting quickly to new information about the environment, the algorithms

are in general designed to attempt to make reliable planning decisions in the face

of uncertainty. We note that many of these approaches are built upon frameworks

described in the previous section.

Multi-Scale Planning

A common system design in planning in unknown environments is to generate plans

of varying levels of fidelity to different ranges. Liu et al. [103] propose combining

a short and long-range planner, where the short-range planner plans trajectories to

a frontier determined by various properties including nearness to the goal, and a

long-range planner is used if the short-range planner fails to find a trajectory under

the required conditions. The short-range planner uses only the most recent sensor

measurement. Similarly, Ryll et al. [149] propose filtering motion primitives based

on a sliding local body-centered map and instantaneous depth measurements. A

global plan that assumes straight-line trajectories beyond the extents of the local

map is used to further rank the local trajectory selection. These approaches use local
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dense geometry to plan dynamically feasible trajectories, deferring detailed decisions

about navigation in ambiguous portions of the map for which dense geometry is not

available. One benefit of such approaches is their modularity; they can in principle be

combined with more sophisticated methods as well. However, because these methods

largely defer decisions beyond some range, they can also suffer from myopic navigation

behaviors.

Environment Estimation

One approach to improving planning in novel environments is to estimate the prop-

erties of the portions of the environment for which dense geometry is unknown. Such

methods seek to mitigate geometric ambiguity by predicting the structure of unob-

served portions of the environment. In recent years, various methods have been pro-

posed to leverage datasets of partial maps to predict environmental geometry beyond

the frontiers of observed space. Deep learning has emerged as a popular choice for

occupancy prediction, given that 2D occupancy maps of constant discretization are

similar in domain to image-space measurements (i.e., greyscale images) and therefore

lend themselves particularly well to integration into existing network architectures

designed for images. Katyal et al. [79] perform analysis of several different genera-

tive neural network models for occupancy map prediction, and Shrestha et al. [157]

propose map completion using a variational auto-encoder network.

Although generative models are intuitive models for occupancy prediction as they

attempt to model distributions over environments, rather than single predictions, it

can be unclear how to leverage the implicit distribution at run time. Elhafsi et al. [44]

show that occupancy predictions from a non-generative neural network can be used

to bias dynamics constrained planning. The authors train a neural network to predict

occupancy values in unknown regions of the map, and use the predictions at runtime

to bias trajectories away from regions with high predicted probability. Notably, the

authors discuss the benefits of using the prediction as a soft penalty on the trajectory

optimization, rather than choosing a hard threshold for occupancy.

Successful methods for map prediction tend to do so either do so with relatively
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small portions of the map missing [79, 157], or to short horizons [44]. Such limitations

are likely due to the inherent complexity in modelling map distributions.

Utility Estimation

An alternative approach to improving planning under environmental uncertainty is

to instead estimate the utility of future actions or regions of the state space. In this

section, we consider both estimating properties of actions as well as directly estimating

the next action to take. Utility estimation approaches differ from environmental

estimation in that they do not attempt to explicitly model all possible environment

configurations7, but instead do so implicitly. Utility estimation techniques mitigate

geometric ambiguity by indicating which actions or regions are more likely to lead to

the goal, essentially attempting to resolve the issue of many trajectories appearing

equally feasible due to lack of information.

Previous work has shown that estimating useful properties over a set of potential

actions can improve planning outcomes in unknown environments. For example,

rather than attempting to predict the exact geometry of the unobserved portions of

the world, Richter and co-authors [140, 137, 138, 141] enable the high speed navigation

of an autonomous RC car by learning to predict the collision probabilities of a set of

motion primitives. Stein et al. [164] show that rather than simply predicting collision

probabilities, learning can be deployed to directly predict the costs of a POMDP

planning formulation. The authors compactly abstract the navigation problem to the

high-level problem of choosing the next best frontier, and train the network to predict

costs such as the expected cost-to-go to the goal from a frontier as well as the cost

that would be incurred if the frontier is incorrectly chosen.

Other methods instead focus on learning an intermediate representation encod-

ing the next best action. Directly predicting an action allows for some methods to

navigate in unknown environments without maintaining a map representation, i.e.,

so-called map-less navigation. Such methods map directly from sensor measurements

7One potential way to conceptualize action estimation approaches is as the result of marginaliz-
ing out the distribution over environments from some joint distribution between environments and
actions.
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to actions. Tai et al. [170] employ reinforcement learning to predict the optimal ac-

tion from a vector of laser range measurements, the previous vehicle velocity, and

the goal relative to the robot. Loquercio et al. [105] propose learning steering angles

in addition to the probability of collision from images to enable reactive navigation

of a quadrotor. Kaufmann et al. [80] enable map-less drone racing by learning to

predict a goal in image-coordinates and scaled target speed. Bansal et al. [11] learn

to predict intermediate waypoints and then optimize trajectories via an optimal LQR

controller. While these approaches have the potential to be low latency, they will

struggle in large-scale environments with complex geometry. Without using map rep-

resentations as a historical artifact of past actions, map-less planners can in principle

be particularly susceptible to infinite loops where the agent chooses a series of actions

leading to the same outcome repeatedly.8

A common theme in action utility estimation for navigation in unknown environ-

ments is the use of clever abstractions such as using motion primitives [138] or using

frontiers as sub-goals [164] to limit the dimension of the required prediction. However,

such abstractions can potentially be difficult to extend to new problems, and may be

brittle. Consider using frontiers as sub-goals — in noisy maps there can be many spu-

rious discontinuities in the map that appear to be frontiers, and 3D frontiers are more

difficult to robustly identify than 2D frontiers. To overcome the potential brittleness

of limiting to an action set that may not encompass all necessary maneuvers, as well

as the potential representation limits of waypoint prediction, a promising approach

is to estimate intermediate properties of the environment to enable the selection of

trajectories, which can be seen as a hybrid of the two classes of approaches discussed

thus far. For example, Zeng et al. [190] propose an end-to-end learning method that

predicts cost volumes over the state space. The predicted cost volumes are then used

to score candidate trajectories. Rather than explicitly enumerating all possible ac-

8Imagine, for example, a robot choosing to follow a hallway that will lead to a dead-end. Once
reaching the dead end, if the reactive controller directs the robot back to the initial state, the agent
may again recieve the same sensor measurements that once again lead to the agent traversing the
same hallway. Methods that maintain fused representations over time are more robust to this failure
model; even if a history of all past actions is not maintained, the map will reflect that the hallway
is a dead-end, helping to avoid a similar decision from being made again.
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tions, in Chapter 3 we use a deep neural network to predict areas of the environment

useful for navigation and select trajectories.

2.1.4 Semantics and Geometry in Uncertain Environments

Semantic representations have demonstrated compelling abilities to improve navi-

gation outcomes by providing contextual information that is difficult to obtain from

geometry alone. Various semantic representations have been proposed for inclusion in

navigation algorithms for a range of purposes, including to provide additional context

when geometric information is missing.

Using Hierarchical Semantic Representations

The use of hierarchical semantic representation has been explored in the context

of robotic navigation as early as the 1970s. For example, Kuipers and Levitt [88]

describe a spatial semantic hierarchy comprised of four levels and present several

planning algorithms under the proposed framework. The TOUR model [87], for

example, stores experiential data to build a spatial model that can be queried for

plans.

More modern methods exploit the the development of increasingly sophisticated

perception and mapping. For instance, the Deep Spatial Affordance Hierarchy (DASH)

[129], includes a perceptual layer, a peripersonal layer, a topological layer, and a se-

mantic layer. The perceptual and peripersonal layer capture dense geometric (i.e.,

occupancy) and semantic (i.e., objects and landmarks) with respect to the robotic

agent, while the topological layer captures the high level structure of the environment

via a set of poses, some of which can be labelled as placeholders for unknown space.

Although the authors do not provide navigation experiments, they observe that their

representation is specifically designed with navigation in mind. Ravichandran et al.

[132] propose a method that uses graph neural networks paired with reinforcement

learning to to learn a policy from 3D Dynamic Scene Graphs (DSG) [144]. The DSG

used by the authors features layers that include objects and agents, places and struc-
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ture, rooms, and buildings; the DSG is condensed to an “observation graph structure”,

from which a graph neural network is used to learn a feature representation, which is

in turn used to train a reinforcement learning algorithm via actor-critic methods.

Both the DSG and DASH representations relate geometric information with the

semantic, and further explicitly relate information between different layers of seman-

tic geometric information. For example, DASH uses a deep generative model, which

enables both bottom up inference (i.e., estimating whether a given occupancy map

representation is a doorway, corridor, etc) and top down inference (i.e., generating

candidate occupancy maps given a partial map and label that the location is a hall-

way). Such a methodology is similar to the map prediction methods discussed in

Section 2.1.3, except that explicit semantics are used to improve prediction. DSG

representations model relationships via edge connections between entities at different

layers in the hierarchical model. Although promising, complex hierarchical semantic

models are generally not lightweight models to build online.

Using Dense Overhead Representations

Rather than relying on complex hierarchical semantic models, other methods use

learning to estimate intermediate planning properties to enable sub-goal selection

using top-down representations. Everett et al. [45] estimated the cost-to-go over a

discrete set of states. The input to the system is a RGB-D camera measurement,

which when paired with a semantic segmentation approach enables the construction

of a 2D overhead semantic map. An image-to-image translation network, Deep Cost to

Go, is trained to convert partial overhead semantic maps to cost-to-go representations

using ground-truth data. Although the number of training environments is limited,

the authors discuss how to generate many different pairs of cost to go maps and partial

maps by generating diverse masks over the annotated overhead semantic maps. At run

time, the Deep Cost to Go network is used to choose a frontier to explore. Georgakis

et al. [54] propose a method for navigating to an object of unknown location in novel

maps. The authors use a deep neural network to predict occupancy maps from partial

occupancy maps. The predicted occupancy maps are combined with the observed
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image-space semantic segmentation projected into an overhead semantic map, and

passed to a second neural network that predicts the probability of different semantic

values in unobserved portions of the map. Using an upper confidence bound, the

algorithm then chooses the best intermediate subgoal to find the object, balancing

between exploration and exploitation. A deep reinforcement learning model is then

used to navigate to the sub-goal.

Using Object Level Representations

Dense representations built by semantic segmentation and sophisticated hierarchical

semantic models are generally more expensive to build than object maps. Previous

work has shown the object-level semantic context can be used to improve navigation.

Sünderhauf [169] assumes an a priori known environment modelled by a graph with

locations as well as static objects (such as sofas) and trains a graph neural network

to predict a distribution over goals to find moveable objects (i.e., a remote). In un-

known environments, Vasilopoulos et al. [174] present a method for a provably safe

reactive planner that can not only incorporate object estimates for collision avoid-

ance, but also use cues from tracked humans to effect navigation (i.e., using hand

gestures to stop robot navigation). Cosgun and Christensen [31] build semantic rep-

resentations that include truncated planes, door signs, and humans. The robot is

tasked with following a person, but a naive strategy without contextual context can

cause the robot to impede the person’s ability to open the door. The authors describe

a system whereby the robot monitors the human’s proximity to doors (inferred from

door-signs), and responds to a human-pointing gesture to not block a doorway. The

so-called door-blocking scenario is an excellent example scenario demonstrating how

semantic representations can enable seemingly subtle shifts in strategy that lead to

more sophisticated navigation. However, although hand-coded behaviors triggered by

semantic context are a practical solution in simple contexts, the list of desired behav-

iors presented is limited in scope. The interaction between semantics and geometry

can grow increasingly complex, requiring a larger and larger database of rules to be

specified.
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Notably, the approaches discussed thus far in this subsection focus only on improv-

ing metrics such as overall distance travelled, but do not explicitly consider utilizing

semantic context to focus computation. As discussed in Sections 2.1.2 and 2.1.2,

there is a large literature of geometry-only approaches that use geometric context to

improve planning speed by identifying planning states useful for finding a solution.

Existing approaches to using semantics for motion planning to focus computation

largely focus on per-object learning, which can be brittle. Previously described meth-

ods to enable sampling in narrow passageways are hand-designed heuristics to exploit

specific types of geometric patterns such as hallways. For example, some methods

model sampling distributions as multinomial Dirchelet distributions [10] or Gaussian

mixture models [9] over so-called semantic fields, where both geometric (where) and

extra-geometric (what) information should determine the best navigation strategy.

The results are focused on learning the effect of single semantic entities such as door-

ways or traffic circles, and therefore either do not involve dense geometry [9] or assume

fully known geometry and semantic maps [10]. Unlike DSG and DASH, they do not

explicitly model the interaction between geometry and semantics. Furthermore, the

utility of object relationships can be a complex function that may change conditioned

on the ultimate objective. For example, the usefulness of a door with an exit sign is

determined by whether the goal is outdoors.

A key insight in this thesis is that both semantics and geometry should be used

to improve the computational efficiency of autonomous navigation. In Chapter 3, we

present an algorithm that enables more efficient navigation in unknown environments

by exploiting both semantics and geometry. We choose object-level representations

over denser and hierarchical representations as our choice of semantic information for

their compactness and ability to be built online on a SWaP vehicle. To this end,

we rely on light-weight object-level representations that can be projected to discrete

maps of a similar form to discrete occupancy maps.
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2.2 Object-Level Estimation

While there are many types of extra-geometric information, we focus in this work on

object-level representations as they have the potential to be compact and semanti-

cally meaningful for the navigation process. The main goal of object-level estimation

is to infer or predict useful geometric and semantic properties of objects in the envi-

ronment. Useful properties often include the semantic class of the object as well as

its geometric extents.

The advent of deep learning has led to a proliferation of methods of so-called 2D

“semantic extractors” such as 2D bounding box detection and semantic segmentation

[184]. 2D bounding box detection algorithms (such as YOLO [135, 133, 134], SSD

[104], and RCNN variants [56, 136]) predict axis-aligned rectangles on the image

plane that tightly surround the objects of interest from query images (usually grey-

scale or RGB images). In general, object detection is more difficult than object

classification, as the algorithm must not only estimate what an object is but also where

it is. The measurements generated by modern object detectors therefore provide

both geometric and extra-geometric information. Similarly, semantic segmentation

methods such as U-Net [142] label the class of every pixel in an image, while instance

segmentation methods such as Mask R-CNN [61] provide segmentation for individual

detected objects. The density of the annotation can potentially require a more time

consuming annotation process.

Although the availability of object-detection in particular has naturally led to a

renewed interest in utilizing semantic object measurements for a variety of robotic

tasks, estimating the 3D geometry of objects from 2D image-space measurements

remains a challenge. As seen in Figure 1-2, an object estimate that appears to be

consistent with a 2D bounding box detection may be very incorrect. One of the

key technical challenges of lifting image-space detections to world coordinates for

the purposes of autonomous navigation is geometric ambiguity, similar to the issues

faced by monocular vision-based SLAM. To estimate 3D object geometry from images

object-level estimation algorithms must concurrently perform pose estimation and
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geometric reconstruction. The quality of the estimate depends on the quality of

measurements available, and efficient autonomous navigation often does not provide

ideal measurements for estimation processes.

In this section, we first discuss several common geometric models used in object-

level estimation (Section 2.2.1), with particular focus on the benefits of approximate

geometric models. We then describe three key methods of estimating object-level

geometry: online regression (Section 2.2.2), simultaneous localization and mapping

(Section 2.2.3), and deep learning (Section 2.2.4). Finally, we present hybrid methods

that use a combination of different estimation approaches (Section 2.2.5).

2.2.1 Object Representations

Key to any estimation process is determining the model to be optimized. There

are a plethora of options for object representations, ranging from highly detailed to

extremely approximate. We briefly describe several common object-level representa-

tions that will be utilized in later sections on optimization techniques over object-level

representations.

Detailed Geometric Models

Point-based representation are a mainstay of vision-based mapping techniques. Point-

cloud representations are defined by a set of unique points, where each point in the set

has a 3D position and corresponds to the surface of the surrounding geometry. Meshes

include a set of points (interpreted as vertices) combined with edges connecting nearby

points such that finite planes can be defined between points. Commonly used in

vision-based simultaneous localization and mapping (vSLAM) as landmark represen-

tations, meshes [59] and point-clouds [114] can describe arbitrarily complex surface

geometry because the surface approximation becomes more refined as more points

are added. Another popular representation are truncated signed distance functions

(TSDFs). Proposed by Curless and Levoy [33], TSDFs are voxel-based volumetric

representations, where the value encoded by each voxel represents the signed distance
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to the nearest surface. Unlike mesh models, TSDFs are continuous representations

parameterized the discrete voxel grid; the surface of an object encoded by a TSDF can

therefore be extracted from solving for points in space such that the signed distance

is zero. TSDFs have shown great promise, especially paired with a depth sensor for

dense mapping [115].

Detailed geometric models are intuitive object representations and a common

paradigm for how humans record object models. Many object-level datasets pro-

vide object models in the form of point-clouds or meshes. For example, Calli et al.

[22] present the Yale-CMU-Berkeley (YCB) dataset, which includes mesh models of

household objects geared towards advancing robotic manipulation. Other databases

of objects include ShapeNet [25] and the 3D Warehouse [2].

Although expressive, detailed geometric models of real-world objects can be diffi-

cult in practice to obtain, and may not be necessary for providing semantic context for

navigation. For instance, the mesh model generation process for the YCB dataset [22]

required that objects be placed on a turnable and observed by specialized scanning

hardware. Additionally, the computational overhead required to estimate low-level

detailed geometry may not always be useful for autonomous navigation. While de-

tailed mesh models of household goods are likely necessary for robotic manipulation,

we posit that semantic class and approximate geometry may be sufficient for providing

first-order semantic context to guide navigation.

Pose-Only Models

While meshes and point-clouds encode fine detailed geometric details of objects, other

methods estimate only components of the pose of objects. For example, some methods

only estimate the position of objects, approximating objects as point features [38].

Other methods estimate the full 6D pose of the objects [186, 173]. Pose-only object

models avoid the difficulty of reconstruction and focus on accurately estimating the

location of the object in world coordinates.

Point-based models can enable the computation of more sophisticated estimation

approaches such as multi-hypothesis approaches [17, 38], but we observe that the size
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Figure 2-2: Illustration of dual ellipsoid measurement model. Ellipsoids are a special
class of quadrics that are especially useful for object approximate as they are finite
(unlike other classes of quadrics, such as hyperboloids and infinite cylinders). In this
figure, we illustrate an ellipsoid approximation of a care by the blue mesh surrounding
the yellow car. The dual ellipsoid is implicitly defined by the infinite set of 3D planes
that are tangent to the ellipsoid, and the projection of the ellipsoid onto the image
plane is a conic (shown in pink). The axis-aligned bounding box can be extracted from
the conic by solving a system of equations. Intuitively, each bounding box edge can
be interpreted as projecting into a plane that is tangent to the ellipsoid (visualized
here by the semi-transparent plane projecting to the top edge of the image-space
bounding box). The dual ellipsoid formulation is especially attractive because it
provides a closed-form function that projects ellipsoid estimates to 2D image-plane
bounding boxes (green box).

and orientation of objects can also be semantically meaningful for navigation. For

example, one could imagine the orientation of a doorway indicating the direction of

a hallway, and the size of a doorway indicating the potential for the doorway to be a

main entrance or exit to a building.

Approximate Geometric Models

In terms of model expressiveness, approximate geometric models such as cubes, ellip-

soids, etc, lie between detailed geometric models and pose-only models. Unlike meshes

and point-clouds, approximate geometric models abstract object geometry to simple

volumetric primitives defined by several parameters. For example, cuboid represen-
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tations are a popular primitive model [187, 53, 28, 29, 108, 173] as they can capture

the size of objects in addition to orientation. Superquadric representations allow for

a diverse range of primitive shapes including objects that are qualitatively cube-like

[161, 176]. Quadrics, a special case of superquadrics, still offer a range of primitives

such as cones, cylinders, planes, and ellipsoids. The recently proposed QuadricSLAM

algorithm [146] demonstrates how the dual form of the ellipsoid representation, which

is implicitly defined by the infinite set of 3D planes tangent to the ellipsoid, can be

used to provide an intuitive measurement function relating 2D image space bounding

box detections to 3D ellipsoid estimates. An illustration of the dual ellipsoid model

is shown in Figure 2-2.

Approximate geometric models are an attractive choice for object-level represen-

tations for autonomous navigation because they can offer a compromise in terms

of semantically useful geometric information such as rotation and size, while also

avoiding the computation of properties which may not be useful for the purposes of

navigation.9 Additionally, there is compelling evidence that such models can be com-

posed heterogeneously with other primitive types to describe world geometry [67, 188],

homogeneously to better represent object geometry [123, 124], or hierarchically to in-

crease estimation robustness [121]. In Chapters 4 and 5 we will leverage the ellipsoid

representation as an approximate geometric model for object-level estimation.

2.2.2 General Object Estimation

In this section, we discuss several general methods of object estimation including

single view and multi-view regression. We classify regression methods as those that

estimate the pose and or shape of objects from either a single or multiple views of an

object by solving an optimization problem to minimize some cost function. We also

briefly discuss 3D object detection methods.

Given a priori geometric models, iterative closest point (ICP) methods can be

deployed. A method of point-cloud registration, ICP enables estimating the position

9This sentiment echos the observation of Rosen et al. [143] that semantics are contextual and the
properties of import vary given the objective of the robot.
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and rotation of a known model to agree with a measured pointcloud [14]. Given

parametric models of the object, single and multi-view regression methods optimize

object parameters to fit observed data. Implicit shape models such as quadrics and

super-quadrics are particularly popular due to their continuous implicit representa-

tions, which can be used to formulate a regression problem. Since the seminal work

of Solina and Bajcsy [161], most existing approaches [177, 43] to modelling objects

as superquadrics have focused on directly regressing superquadric parameters to fit

data via online gradient descent. Vezzani et al. [176] propose a system to estimate

the parameters of a superquadric online from a segmented point-cloud measurement

to enable robot manipulation. In a later work, Vezzani et al. [177] demonstrate that

first categorizing the shape of an object can speed up inference times. The authors

note that estimation quality depends on the viewing angle of the object.

One downside to single-view regression is geometric ambiguity. Multi-view meth-

ods can provide better estimates by fusing observations from different sensor poses

with respect to the object. Methods such as structure from motion estimate world

structure by projecting object estimates into camera measurements, and minimizing

the disagreement between the induced measurement and the observed measurement.

Crocco et al. [32] introduce a structure from motion method for estimating objects as

3D ellipsoid and affine camera calibrations from a set of 2D bounding box measure-

ments by first fitting 2D image-space conics to the bounding boxes and exploiting

the dual conic form. The work was then extended for perspective cameras [146].

The authors of EllipseRCNN [40] train a neural network to detect objects in images.

Rather than using a 2D bounding box measurement, the method models objects as

2D ellipses, which can then be synthesized over multiple views to obtain a 3D ellip-

soid estimate. Later work explores more sophisticated uncertainty modelling in the

context of ellipse detection [39].

Beyond approximate geometric models, detailed geometric models can also be

reconstructed given a set of 3D laser scans [148] or RGB images [19]. Similar to

general structure and motion paradigms, Brown and Lowe [19] propose to associate

RGB views of an object using SIFT features, and formulate object reconstruction as
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optimizing the pose of individual cameras and points of the object. Ruhnke et al. [148]

filter out background points from a series of 3D laser scans to obtain partial object

pointclouds. To merge two candidate partial pointclouds, several randomly sampled

viewpoints from each pointcloud are used project the pointclouds into depth images.

Corner points are detected and local pixels used to generate feature vectors. Given the

features, the algorithm searches for correspondences. After further verification, the

models can be joined. The process enables the reconstruction of pointcloud models

of objects. Finding appropriately discriminating feature points is crucial to both

methods, and thus they are likely to struggle for extremely symmetric objects in the

case of depth images, or repeating patterns in the case of RGB images.

Some early 3D object detection methods from RGB images extended early ap-

proaches to 2D detection methods, such as template matching and Hough Forests.

Hinterstoisser et al. [63] propose multi-modal templates over both RGB and depth

information to detect and estimate discrete object poses by comparing to features

from reference images. Wang and Posner [178] train a linear SVM to perform clas-

sification using a sliding window method over pointcloud data converted to a voxel

representation. Fidler et al. [46] use a deformable cuboid model with six faces and

performed template matching in the image-space. Doumanoglou et al. [41] utilize de-

tailed textured 3D models of objects to enable an approach that builds Hough Forests

using patch features learned from an auto-encoder. The 6D pose is determined using

Hough voting.

2.2.3 SLAM

Unlike single-measurement online regression methods, simultaneous localization and

mapping (SLAM) methods use a series of measurements to estimate both the pose of

the robot as well as the pose of landmarks, with the implicit goal of enabling online

estimation. SLAM methods were historically developed to enable autonomous agents

to concurrently estimate the pose of 𝐽 landmarks 𝑙 and also use 𝐾 measurements 𝑦

of the landmarks to estimate the pose of the robot state 𝑥 over time. The state 𝑥

is often assumed to be of the special Euclidean group SE(3) such that 𝑥 ∈ SE(3),
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although other representations are certainly possible. As we discuss in this section, the

domains of landmarks 𝑙 and measurements 𝑦 vary between approaches. We assume

the existence of some deterministic functions 𝑓(𝑥) and ℎ(𝑥) that define the motion

model and measurement model respectively. In stochastic frameworks, these models

are assumed to be corrupted by additive noise, leading to the following expressions:

𝑥𝑡+1 = 𝑓(𝑥𝑡,𝑢𝑡) + 𝑤 (2.2)

𝑦𝑘 = ℎ(𝑥𝑖𝑘 , 𝑙𝑗𝑘) + 𝑣 (2.3)

where 𝑢𝑡 is the control input to the system at time 𝑡. The additive noise terms 𝑤 and

𝑣 are drawn from the motion and measurement noise models, respectively, and are

usually taken to be normally distributed such that 𝑤 ∼ 𝒩 (0,W), 𝑣 ∼ 𝒩 (0,V). Note

that under the deterministic motion model and measurement models, the state 𝑥𝑡+1

depends only on the previous state 𝑥𝑡 and the control input 𝑢𝑡, and the measurement

𝑦𝑘 depends only on the state of the robot at the time of measurement 𝑥𝑖𝑘 and the

state of the landmark 𝑙𝑗𝑘 . It is common for modern visual SLAM algorithms to be

formulated as dependent on measurements only, but we include the motion model

with control inputs here for completeness. We can express the joint probability over

the robot states, landmark states, and measurements as

𝑝(𝑥0:𝑇 ,𝑦0:𝐾 , 𝑙0:𝐽) = 𝑝(𝑥0)
𝑇∏︁
𝑖=1

𝑝(𝑥𝑖|𝑥𝑖−1;𝑢𝑖)
𝐾∏︁
𝑘=1

𝑝(𝑦𝑘|𝑥𝑖𝑘 , 𝑙𝑗𝑘), (2.4)

assuming a uniform prior over landmark positions and that the control inputs are

given parameters. The problem of associating measurements to landmarks is also

usually assumed to be solved in a separate process.

Good choices for feature-based sparse landmarks10 are those that are re-observable,

distinguishable from other landmarks, and have useful measurement functions that

10It is important to note that while in the development of this section we have focused on sparse
features as landmark examples, dense map representations also exist. For instance, modern visual
SLAM methods have explored dense map representations such as DTAM [116] and KinectFusion
[115]. However, sparse landmark representations most naturally develop into the modern object-level
SLAM methods we are ultimately interested in.
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allow for the state of the vehicle and landmarks to be observed. Over the years,

various types of landmarks have been used, from radar reflectors artificially added to

the environment [37] to point-based landmarks [47, 114, 85] extracted using image

features (i.e., SIFT [106], ORB [147], etc) detected in images.

Although early backend11 implementations of SLAM largely relied on Kalman

filtering [160, 77], or particle filtering [111, 110], in recent years smoothing tech-

niques have been popularized. Introduced by Dellaert and Kaess [34], Square-Root

Smoothing and Mapping (
√
SAM) began a line of one of the most well-known modern

smoothing methods. The goal of the smoothing problem is to find the maximum a

posteriori (MAP) estimate of the trajectory and landmark positions.12 Instead of

marginalizing to solve only for the most recent robot and landmark poses,
√
SAM

solves for the entire history of robot and landmark poses by optimizing the negative

log-likelihood of the joint probability from Equation 2.4:

𝑥*
0:𝑇 , 𝑙

*
0:𝐽 = argmax

𝑥0:𝑇 ,𝑙0:𝐽

𝑝(𝑥0:𝑇 , 𝑙0:𝐽 |𝑦0:𝐾)

= argmin
𝑥0:𝑇 ,𝑙0:𝐽

−log(𝑝(𝑥0:𝑇 ,𝑦0:𝐾 , 𝑙0:𝐽)).
(2.5)

Given the static world assumption, only the robot poses are indexed with time. Sub-

stituting Equations 2.2, 2.3 into Equation 2.5 and applying the Gaussian noise model

assumption, we can express Equation 2.4 as a nonlinear least squares problem:

𝑥*
0:𝑇 , 𝑙

*
0:𝐽 = argmin

𝑥0:𝑇 ,𝑙0:𝐽

𝑀∑︁
𝑖=1

‖𝑓(𝑥𝑖−1,𝑢𝑖)− 𝑥𝑖‖2Λ +
𝐾∑︁
𝑘=1

‖ℎ(𝑥𝑖𝑘 , 𝑙𝑗𝑘)− 𝑦𝑘‖2Σ, (2.6)

where ‖‖2Σ is the Mahalanobis norm that directly scales the modeling error inversely

proportional to the square root of the covariance term Σ. Dellaert and Kaess [34]

show that the linearized form of Equation 2.6 can be efficiently solved using sparse

linear algebra tools, such as Cholesky factorization. Kaess et al. [76] later introduced

11The process by which the probabilistic model is optimized is often referred to as the backend of
a SLAM system, while the generation of the individual terms is referred to as the frontend.

12As discussed by Cadena et al. [21], under certain conditions the MAP estimation problem is
reduced to a problem of maximum likelihood estimation (MLE).
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iSAM, an incremental approach to lower computational latency.

Object-level SLAM is in many ways a natural extension to existing SLAM meth-

ods, and may be equally aptly described as SLAM with object landmarks, where in-

stead of single point entities the landmarks encode the parameters and properties of

objects. The object-landmark paradigm contrasts to approaches that seek to extract

object-level representations from more general world representations.13 The evolution

from point landmarks to object level landmarks presents many exciting opportunities

for expanding robotic performance. In their survey of important historical topics and

future directions in SLAM research, Cadena et al. [21] speculate that the development

of object-level representations will be important in the “future of SLAM”. In partic-

ular, they observe the utility of estimating properties beyond position. Additionally,

the higher-level abstraction presents opportunities to exploit semantic structure such

as scale [49] and inter-object relationships [188]. We are particularly interested in

the use of object-level maps to aid in autonomous navigation, and consider various

representations choices to this end.

Pose-Only Object-Level SLAM

A common choice of geometric representation is to only optimize the pose of land-

marks, which can be achieved either by representing objects as point landmarks or

assuming access to a priori geometric models. Point-landmarks are often seen in so-

phisticated multi-hypothesis SLAM methods such as those proposed by Bowman et al.

[17] and Doherty et al. [38]. Such methods are powerful in that they can overcome

the brittleness that results from incorrect data associations or uncertain class labels.

However, as discussed previously, estimating objects as point landmarks can remove

potentially useful information for autonomous navigation. SLAM++ [150] is one of

the earliest methods of object-level SLAM and is an example of a pose-only method

that does not assume objects are points. SLAM++ assumes a database of known a

priori dense 3D geometric object models, allowing for a RGB-D camera to compare

13For example, Pillai and Leonard [127] demonstrate that a “SLAM-aware” object recognition sys-
tem could exploit a point-landmark based map along with vehicle pose estimates to enable multi-view
object recognition, but do not explicitly incorporate object-landmarks into the SLAM optimization.
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depth measurements against complete geometric models. SLAM++ utilizes objects

as a compact representation encoding the geometric patterns of the surrounding en-

vironment. Instead of having to track against partial models typical of early-stage

mapping, SLAM++ leverages prior information about the objects to predict infor-

mation not yet densely mapped — without requiring an entire a priori map. A later

example of object-level SLAM, Deep-SLAM++, exploits class-specific deep neural

networks to predict class specific binary occupancy grids that can then in turn be

converted to pointclouds to enable point set registration factors. In both instances,

significant geometric pre-processing is required. For SLAM++, the object database

is created using KinectFusion and then cleaned up in a manual post-processing step.

The mapping is interactive, and the authors note that the object is circled during

the mapping process and put in an environment without occlusions. Deep-SLAM++

requires a network pre-trained on a large dataset of detailed geometric models.

Object-Level SLAM with Detailed Geometric Representations

TSDFs are another representational choice for object-level SLAM. McCormac et al.

[109] present Fusion++, which builds a single TSDF per object (reconstruction) while

concurrently estimating the object pose (pose estimation). The scale of each TSDF

voxel representation varies with the object, allowing for object models with differ-

ent resolutions. Each object in Fusion++ takes the average over observed class

labels to provide a class-wise distribution. The scene background is used to esti-

mate camera-to-camera constraints (i.e., vehicle motion) and the objects are used

to estimate object-to-camera constraints (i.e., map-based localization). TSDFs are

generally quite computationally expensive, although the notion of object-ness allows

such methods to maintain a single TSDF per object, instead of a single consolidated

TSDF over the entire environment. Recent work by Sharma et al. [156] demonstrates

that the compositional nature can aid in estimation and rendering, especially when

exploiting a GPU.
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Object-Level SLAM with Approximate Geometric Representations

Approximate geometric models present a compelling representational option, as they

provide a compromise between expressiveness of detailed geometric models and the

computational benefits of pose-only point models. CubeSLAM [187] models object

landmarks as cubes. Determining the projected 2D image-space bounding box in-

duced by a 3D bounding box involves taking the maximum and minimum of the eight

3D bounding box corners projected onto the image plane, requiring special attention

while optimizing.14 Recently, dual ellipsoid measurements have become a represen-

tation of interest in the SLAM community due to their intuitive and differentiable

(in some regimes) relationship to bounding box measurements. Nicholson et al. [118]

extend the work of Rubino et al. [146] and developed the use of the dual ellipsoid

formulation in their proposed algorithm, QuadricSLAM, which uses bounding box

measurements in a SLAM framework, estimating both the camera pose and object

properties.

As we will show in this thesis, utilizing approximate geometric models in SLAM

frameworks can result in geometrically ambiguous estimation under efficient naviga-

tion motions, which often are often characterized by straight-line, low-baseline mo-

tions. Jointly estimating both pose and shape can be ambiguous unless given many

diverse viewpoints15; methods that require a priori detailed geometric models avoid

significant ambiguity by helping to constrain the solution space by virtue of having a

known surface, or refraining from estimating the size. In the original QuadricSLAM

experiments, the carefully constructed orbiting trajectories and offline batch compu-

tation helped to overcome the additional ambiguity induced by unknown approximate

geometric models. In the case of CubeSLAM, Yang and Scherer explicitly acknowl-

14Numerical gradient calculations are one method of handling the maximum and minimum opera-
tors. Alternatively, an approach similar to the maxpool operator for deep neural networks could be
considered, where the gradient propagates only through the vertex that induces the bounding box
edge.

15Consider, for example, approaching a large building from a distance, in a straight-line trajectory.
Although bounding box measurements may help constrain the position estimate in the horizontal and
vertical directions with respect to the image place, the position of the building along the direction
pointing into the image plane is ambiguous. The ambiguity can largely be reduced by orbiting the
building to provide many diverse views to further constrain the solution.
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edge that many 3D bounding boxes project into the same 2D image space bounding

box and therefore generate 3D bounding box proposals by sampling vanishing points.

The proposals are then scored using geometric heuristics such as angle alignment of

detected line segments and penalizing objects with large size skew. Others have sug-

gested augmenting the ellipsoid model with semantic key-points [154], but semantic

keypoint detectors are usually computationally expensive.

In Chapter 4, we discuss improvements to object-level SLAM with dual ellipsoid

landmarks to improve the performance under challenging vehicle motions typical of

efficient autonomous navigation. We exploit additional geometric measurements ex-

tracted from a series of RGB images and impose a shape prior over the object.

2.2.4 Deep Learning Methods

Deep learning methods for 3D object estimation exploit datasets during an offline

training stage to train deep neural networks.16 Again, let Φ(𝑦𝐼 , 𝜏 ) be a neural net-

work parameterized by 𝜏 that takes as input some measurement 𝑦𝐼 and outputs the

parameters 𝑂 of an object estimate. Given 𝑁 training labels 𝑦𝐿, the offline training

stage involves optimizing the parameters 𝜏 to minimize the cost function ℱ (often

referred to as a loss) that measures the agreement between the predictions and labels.

We reproduce Equation 1.3 for readability:

𝜏 * =argmin
𝜏

𝑁∑︁
𝑖=1

ℱ(Φ(𝑦𝐼𝑖
, 𝜏 ),𝑦𝐿𝑖

), (2.7)

It is important to observe that ℱ can also involve optimization objectives to enable

object detection, in addition to estimating the 3D properties of objects. One benefit

of learning methods is that they can potentially enable single-view estimation, i.e.,

predict object properties with a single sensor measurement, rather than requiring a

series of measurements collected over time. This is by accomplished querying the

16For brevity, we defer a comprehensive overview of deep neural networks and convolutional neural
networks to Goodfellow et al. [58], which provides an excellent foundation. In this work, we consider
neural networks to be general models and instead choose to focus on the high level optimization
methodologies used to train the networks.

66



trained network with a measurement 𝑦𝐼 i.e.,:

𝑂* = Φ(𝑦𝐼 , 𝜏
*) (2.8)

For the purposes of autonomous navigation, obtaining the semantic context of the

environment sooner is intuitively useful. The potential upside in image to estimate

latency is gained by the offline training stage that can require potentially difficult to

obtain data to feed the offline training phase.

Learning methods are often categorized based on the type of label 𝑦𝐿𝑖
required.

Although many terms exist, we observe that the field is a diverse and prolific area of

research in recent years and the chosen terminology is still being developed. For the

purposes of our discussion, we choose to organize the following sections according to

the type of annotation or a priori information required. In particular, we consider

methods which use a subset of the following types of information for training:

• Direct Annotations: Annotations that label exactly the quantities of interest,

i.e., pose and shape of a primitive object model. An example annotation would

be the parameters of a 3D bounding box for a 3D bounding box estimator.

Direct annotations provide directly supervision to the learning problem; full

supervision is possible when direct annotations are available for all quantities

of interest.

• Indirect Annotations: Annotations that indirectly capture geometric prop-

erties of the object. For example, annotations in 2D pixel coordinates such

as class segmentation or image-space keypoints can provide information about

the pose and shape of objects, although they require intermediate calculations.

Indirect annotations provide weak supervision as they provide signals of the

quantities of interest, rather than the quantities themselves.

• A Priori Geometric Models: Geometric model of objects, either per object,

or in general database form. We focus on methods that utilize mesh models of

known scale and known object 3D bounding box sizes as a priori models.
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We are primarily interested in methods that consume RGB images at inference

time. As noted by Arnold et al. [7], many deep learning methods which operate on

pointcloud data are computationally expensive due to the practical consequences of

3D convolution operations and input size. While methods for object estimation with-

out annotations or prior models of any type do exist, they usually involve involving

computations over over LiDAR data [148] or pointclouds [183]. Additionally, the re-

cent success of pseudo-LiDAR methods [180, 130, 181] that convert RGB images into

the dataform of LiDAR measurements are a potential route for avoiding expensive

sensors at inference time. Such methods in general do not avoid computational issues

unless they use networks that consume LiDAR data in the form of a bird’s eye view

(BEV) measurements, which in turn imposes potentially undesirable 2.5 assumptions.

It is also important to note that 3D object estimation and 3D object detection are

closely related. Many 3D object detection frameworks perform detection (i.e., finding

objects) and estimation (i.e., estimating the size of the 3D bounding box). While

some methods for 3D object detection are end-to-end, some are multi-stage methods

that separate the detection of objects and the estimation of object parameters to

different stages of the algorithm[173].17 In Chapter 5 we assume a parallel process for

2D object detection.

Direct Annotations

Early approaches to 3D bounding box detection formulated object estimation as a

fully supervised learning problem, and thus relied on datasets of images labelled with

object sizes, orientations and shape. Building on previous success in 2D object detec-

tion, Mono3D [28] focuses on 3D object proposal generation. The algorithm takes into

consideration semantic segmentation, shape, context, and object location to generate

proposals. Ultimately, the 3D bounding boxes are scored by a detection algorithm

using a modified Fast R-CNN and a multi-task loss over classification, orientation and

offsets for the bounding boxes. Chen et al. [29] present an approach that combines

17Unlike Kim and Hwang [83], we consider end-to-end methods as those which do not involve
further computation such estimating 3D pose from 2D correspondences.
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different modalities of information from several different views including a bird’s eye

view and a front view of lidar data, in addition to RGB images. ROI-1OD [108] is

an end-to-end learning approach that fuses the features of a RGB image and a depth

image estimated by a neural network. From the fused feature representation, for each

2D detection the ROI is “lifted" to a 3D bounding box detection. In both Chen et al.

[29] and ROI-10D, the detection is scored by comparing the eight 3D bounding box

corners to the ground-truth 3D bounding box corners.

Although 3D bounding boxes are by far the most popular approximate geometric

model for estimating object pose and shape, recent works have begun to extend

supervised learning methods to other primitive model types given labels. For instance,

[159] propose learning the parameters of superquadrics from range images.

In general, supervised learning presents practical challenges attempting to ex-

tended to novel object classes due to the onerous burden that 3D annotation presents,

especially compared to 2D image-space annotation. In contrast to 2D labelling prob-

lems such as bounding boxes or pixel-wise segmentation, which are annotated purely

on the image plane, annotating the 3D object parameters from 2D image data often

requires interfacing with additional information beyond the image itself, such as dense

3D pointclouds [53], detailed geometric models [185], or using pre-trained 3D object

detection neural networks [96]. Although modern object detectors such as Redmon

et al. [135], He et al. [61] have benefited immensely from large open-sourced datasets

with 2D annotations over diverse classes of objects such as [99], such datasets are

much more difficult to obtain for 3D object estimation tasks. Existing large-scale

datasets are largely focused on the autonomous driving domain, such as the KITTI

dataset [53] and the Waymo Open Dataset [168]), or the household domain such as

the Google Objectron Dataset [4]. The relative lack of diverse 3D datasets and the

cost of obtaining 3D annotations pose practical limitations to extending supervised

approaches to arbitrary classes. In Chapter 5 we present a deep learning method for

3D object estimation that does not require 3D annotations.
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A Priori Geometric Models

Rather than assuming a labelled dataset of 3D bounding box annotations per object,

some methods assume access to geometric models of the objects to learn latent rep-

resentations of objects that can potentially enable unsupervised learning methods for

deep object estimation. State-of-the-art methods [13, 122] pair large object datasets

with differentiable rendering.

Beker et al. [13] propose a self-supervised learning method that relies on a learned

representation that can be used to render objects. First, an object latent space is

learned from a large repository of 3D CAD models of cars using an auto-encoder

structure that outputs both a detailed shape and texture for the object. Given the

shape, texture, object pose, and object dimensions, a differential renderer generates

the 2D projection of the object. Because both the renderer and the decoder network

are fully differentiable, the 3D properties of a 2D detection can be determined via

analysis-by-synthesis. In particular, a variety of losses are constructed, including

RGB appearance, bounding box comparisons, and depth map comparisons.

LatentFusion [122] further exploits large datasets of a priori geometric models to

generalize to novel objects. Park et al. train a neural network to predict a latent

object that can be transformed using rigid body 3D transformations and from which

RGB images and depth images can be differentiably rendered. To train the network,

12 reference RGB images, segmentations, and poses are sampled from around a given

object from the dataset, in addition to 12 targets. The network learns to use the

reference frames and poses to predict latent objects that can be used to render the

measurements matching the target frames. To estimate the pose of an arbitrary object

without requiring an a priori model, the network is again queried using reference

information. Because the rendering pipeline is differentiable, pose of the object can

be iteratively optimized to minimize error between the rendered measurements and

observed measurements.

Despite the expressiveness of the methods discussed, they both require potentially

difficult data to collect, i.e., a dataset of detailed CAD models for a single class [13]
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or reference frames with known object poses [122].

Indirect and Direct Annotations

Indirect annotations have the potential to be much easier to annotate if they are

performed in the image-space. The proliferation of datasets and annotation tools for

2D bounding box and 2D image segmentation speaks volumes of the relative ease of

obtaining indirect annotations.

The algorithm proposed by Mousavian et al. [113] is an example of requiring

both direct and indirect annotations. The proposed approach requires labels only of

the size and orientation of the object for training. After the network is trained to

predict the size and orientation of the 3D bounding box, the authors propose using

a 2D bounding box measurement of the object to lift the estimate into 3D using

geometric constraints. Therefore, while some direct labels are required, properties

such as position are estimated by the indirect annotation of 2D bounding boxes.

Specifically, by assuming that the 2D bounding box should tightly enclose the 3D

bounding box, a corner of a 3D bounding box should induce one of the 2D bounding

box edges when projected into the image space. Although for arbitrary 3D bounding

boxes there are thousands of candidate correspondences of 3D bounding box corners

to 2D bounding box edges to consider, given the assumption that the object is upright

and object roll is minimal the authors consider only 256 correspondences.

Direct Annotations and A Priori Geometric Models

Pairing direct annotations with a priori geometric models can enable more expressive

learning. In ROI-10D, the authors discuss how the 3D bounding box estimator can

be augmented with a shape space learned from commercially available models of cars.

The learned shape space allows ROI-10D to additionally predict a detailed geometric

shape of the object. Similarly, 3D-RCNN [89] uses a database of detailed geometric

models to determine a shape basis via principle component analysis (PCA). The

algorithm supervises directly on pose and shape if annotations are available. Among

other terms, the loss function for 3D-RCNN includes a render-and-compare cost,
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which compares a projected 2D segmentation or depth image generated by the 3D

models to the ground-truth measurements.

The combination of direct annotations and a priori geometric models can also

enable methods that estimate the pose of objects only, assuming known object mod-

els or dimensions. Xiang et al. [186] propose PoseCNN, an algorithm for learning to

detect objects and estimate their 6D poses. The authors assume ground-truth posi-

tion annotations, but do not use ground-truth orientations directly. Instead, given

a priori mesh models of the objects, they propose a novel loss function to regress

the rotation of the object by comparing the points on the mesh model transformed

by the pose estimate to the points on the mesh model transformed by the true pose.

The ground-truth rotation is still required to acquire the ground-truth object mesh

in world coordinates, but access to the detailed object model enables the authors to

propose a novel method for orientation regression.

Indirect Annotations and A Priori Geometric Models

Given detailed a priori geometric models, some methods have shown promising re-

sults by relaxing the direct annotation requirement to indirect annotations, such as

2D keypoints. Keypoint-based methods combine indirect 2D-pixel point annotations

with a priori geometric models to enable deep 3D object estimation. Keypoint-based

methods use a priori geometric models to predict where specific points on the object

models project into image-coordinates. The type of keypoint predicted varies from

general to object-specific. Tremblay et al. [173] present Deep Object Pose Estima-

tion (DOPE). Using a photo-realistic simulator, they project the ground-truth 3D

bounding box corners of rendered objects into image pixel coordinates. They then

train a neural network to predict the projected 2D pixel coordinates of the bound-

ing box corners and solve for the 6D pose of a 3D bounding box of known size by

solving a Perspective-n-Point (PnP) problem.18 Pavlakos et al. [126] use a dataset

18A case could be made for considering DOPE a method that combines direct annotations and
priori geometric models, given that the authors leverage large-scale photo-realistic simulators enabled
by detailed geometric models and known ground-truth in simulation is what enables the 3D bounding
box keypoint annotations. We choose to categorize the method as using indirect labels to highlight
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of annotated object-specific keypoints in image-coordinates to train a neural network

to predict their pixel-coordinates. At inference time, a deformable shape model is

optimized so that the projected keypoint locations agree with the predicted keypoint

location using a weighted loss function that attempts to model the noise in the key-

point prediction. Both approaches require a priori geometric knowledge, i.e., size

information in the case of DOPE and a detailed deformable shape model in the case

of Pavlakos et al. [126].

Direct Annotations, Indirect Annotations, and A Priori Geometric Mod-

els

Unsurprisingly, using both direct and indirect annotations in addition to a priori

geometric models is also a candidate approach if all three types of information are

obtainable. In SSD-6D, Kehl et al. [82] use detailed models of specific objects to render

different “viewpoints" of objects. Rather than estimating a continuous rotation value,

the network is then tasked with learning to score a discrete set of possible viewpoints of

the object in a candidate 2D bounding box image. As the size of the object is known,

bounding box ratios are used to determine the position of the object. To verify the

final solution, the algorithm again renders the object and scores based on image-space

gradient properties compared to the observed image. The a priori geometric model

additionally enables further online fitting by considering the rendered contour of the

object and rendered depth image. In the case of SSD-6D, a priori geometric models

provide direct annotations by enabling the generation of synthetic training data, and

enable the use of indirect labels such as object contours and depths.

As discussed in this section, various combinations of direct annotations, indirect

annotations, and a priori geometric models have been proposed to enable deep 3D

object estimation. Direct annotations for 3D properties are onerous to obtain as they

usually require data that is more difficult to interact with for annotation purposes.

A priori geometric models are often non-trivial to obtain for arbitrary classes. In

Chapter 5, we propose a method for training a deep neural network to predict 3D

the use of 2D image-space annotations, which could potentially come from a human annotator.
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object properties from a monocular image using indirect annotations only.

2.2.5 Hybrid Methods

Hybrid methods use deep 3D object estimation in conjunction with multiple estima-

tion techniques. One promising direction for hybrid methods is to learn represen-

tations or measurement functions that are then incorporated into larger estimation

frameworks. For instance, Sucar et al. [167] show how a latent representation can be

learned using an auto-encoder architecture, whose objective is to reconstruct a voxel

occupancy mapping of an object. After the auto-encoder has been trained, the re-

sulting latent space is used as the representation of the landmark. The authors show

how depth measurements can be used to update the learned representation using dif-

ferentiable rendering and the trained decoder. The resulting measurement function

is incorporated into a SLAM framework called NodeSLAM.

Another intuitive method for using multiple object estimation techniques together

is exploiting one method to generate priors and another to continue online estimation.

For example, in PoseCNN [186], the initial neural network pose estimate of the object

is used to seed an iterative closest point optimization. The authors show large im-

provements in estimation qualitative after additional online optimization. Deng et al.

[35] propose PoseRBPF, which utilizes a Rao-Blackwellized Particle Filter where ob-

ject states are encoded by a learned representation for 6D object pose estimation.

Importantly, they demonstrate that by adding particles sampled near PoseCNN es-

timates in addition to their proposed method, object estimation performance can

exceed both PoseCNN and PoseRBPF for some objects in the YCB Video Dataset.

In Chapter 5, we show how our deep learning approach to object estimation can be

further optimized online given additional sensor measurements.

2.3 Summary

In this chapter, we have reviewed existing approaches to autonomous navigation and

object-level estimation. We discussed various methods of solving the autonomous
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planning problem, from representational choices to defining search heuristics. We

then described planning methods developed specifically for navigation in uncertain

and unknown environments, closing with methods that seek to combine semantics

and geometry. We then focused on object-level estimation, first discussing com-

mon geometric representations for objects. Finally, we explored various methods for

optimizing object-level representations, including regression and classical detection,

SLAM, deep learning, and hybrid methods, with emphasis on SLAM and deep learn-

ing approaches.

In the following chapters, we develop methods that combine geometric and seman-

tic information to improve autonomous navigation (Chapter 3), object-level SLAM

(Chapter 4, and deep 3D object estimation (Chapter 5).
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Chapter 3

Learned Sampling Distributions for

Efficient Planning

3.1 Introduction

In this chapter, we develop a method for improving navigation in unknown environ-

ments using both object level semantics and dense geometry. As we discussed in

the introduction, algorithms that rely on dense geometric representations to generate

motion plans often result in myopic behavior when deployed in novel, unknown en-

vironments. Although object-level semantic information is an intuitive modality to

provide important contextual cues, it is not immediately obvious how to incorporate

it into planning formulations. For example, we have discussed in Section 2.1.4 how

some methods intelligently factor the environment into frontiers (i.e., boundaries be-

tween known and unknown space), but while doors are frontiers between rooms and

hallways, not all objects should be navigation waypoints — exit signs are objects

that provide information about nearby doors, and windows indicate the extents of

buildings. Furthermore, the utility of object relationships can be a complex func-

tion that may change conditioned on the ultimate objective; the usefulness of a door

with an exit sign is determined by whether the goal is outdoors. Other methods use

rich hierarchical semantic representations that are dense and potentially difficult to

quickly build online.
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Our key insight is to combine the computational power of randomized motion

planners with higher-level semantic information via a learned sampling distribution,

enabling intelligent navigation in structured, unknown environments. We predict a

sampling distribution from local dense geometric representations that track unob-

served space, explicit object-level contextual cues both within and beyond the range

of dense geometry, and information about the goal. The ability to predict this dis-

tribution enables SBMPs to not only find plans quickly, but in certain environments

also reason about which plans are most likely to reach the goal despite incomplete

geometric information. Rather than pre-specifying navigation rules and heuristics

over our representations, we show that a Convolutional Neural Network (CNN) can

be leveraged to synthesize multimodal map information into a proper sampling dis-

tribution, and that learning a sampling distribution over geometric and semantic

information improves navigation results in unknown environments. We first train a

network general sampling distribution, then train a second network to modify the

general sampling distribution given contextual information about the goal. Addition-

ally, as ground-truth labels of sampling distributions are extremely difficult to obtain,

our network is weakly supervised on expert trajectories.

Our method combines ideas from Chapter 2 to tackle both the sample efficiency

and operational efficiency of autonomous navigation in unknown environments using

SBMPs. We avoid the use of potentially brittle action abstractions such as frontiers

and instead learn the utility of different areas of the workspace (Section 2.1.3), by

encoding promising navigation strategies in a sampling distribution for use with a

SBMP. Furthermore, our approach extends the use of learned distributions to focus

computation from domains requiring a priori geometric environment representations

(Section 2.1.2) to partially observed hybrid geometric and semantic environment rep-

resentations (Section 2.1.4). We propose to use the learned distribution not only for

focusing computation, but to bias solutions to pass through regions predicted to be

more likely to lie on the optimal path by setting planning graph edge weights using

predicted probabilities.

In the following section, we formalize the planning problem, describe our proposed
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neural network architecture and training procedure, and detail how our learned dis-

tribution is used online (Section 3.2). In Section 3.3, we evaluate the performance of

our learned sampling distribution in novel environments for a simulated holonomic

robot, and show that a PRM using our learned distribution is not only more likely to

find trajectories in partially-mapped environments, but can also result in lower over-

all distances travelled on average. Finally, we demonstrate the utility of the learned

sampling measure on a real-world RC car platform.

Figure 3-1: In this work, we combine geometric (c) and object-level (d) representations
built from depth images (a) and object detections (b) to predict sampling distributions
for sampling-based motion planners (e). Myopically assuming that unknown space is
always traversable results in trajectories such as the blue path. Our learned sampling
distribution can be used to leverage contextual cues such as the existence of a door
to exit the room and to generate paths similar to the illustrative green path.

3.2 Learned Sampling Distributions

In this section, we first review the definition of a planning problem, then re-formulate

the problem in the context of learning a maximum-likelihood sampling distribution

informed by multimodal information. Finally, we describe how to generate training

data and the structure of the model.
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3.2.1 Optimal Planning in Unknown Environments

Recall the planning problem introduced in Chapter 1, repeated here for readability:

𝜆* = argmin
𝜆∈Λ

𝑐(𝜆)

s.t. 𝜆*(𝑡) ∈ 𝒳𝑓𝑟𝑒𝑒 ∀𝑡 ∈ [0, 1]

𝜆*(0) = 𝑥𝑠, 𝜆
*(1) = 𝑥𝑔

(3.1)

where 𝒳 ∈ R𝑑 is the state of the robot, 𝒳𝑓𝑟𝑒𝑒 is the set of unoccupied states, and

𝑥𝑠, 𝑥𝑔 ∈ 𝒳 are the start and goal states respectively. A path is denoted 𝜆, the set of

all paths is denoted Λ, and the cost of a path given as 𝑐(𝜆). Equation 3.1 seeks to

find a collision free path from the start to the goal that also minimizes the length of

the trajectory.

Sampling-based motion planners solve this optimization problem by extracting

random graphs [51] to approximate a solution to Equation 3.1. Graphs are generated

by sampling states 𝑥 ∈ 𝒳 from a sampling distribution 𝑃 (𝑥; Γ), where Γ are optional

additional inputs to the distribution, then constructing a navigation graph 𝐺 from

valid states, where 𝐺 = {𝑉,𝐸}, 𝑉 = {𝑣0, 𝑣1, ...𝑣𝑛 : 𝑣 ∼ 𝑃 (𝑥; Γ)}, 𝐸 = {𝑒0, 𝑒1, ...𝑒𝑚},

and 𝑉,𝐸 ∈ 𝒳𝑓𝑟𝑒𝑒. For notational convenience, we will also interchangeably express

an edge as 𝑒𝑖𝑗 to represent the directed edge from 𝑣𝑖 to 𝑣𝑗. In this representation, the

𝑛 vertices of the graph correspond to the sampled states, and the 𝑚 edges represent

feasible traversals from one state to another1. A valid trajectory 𝒯 is a connected,

acyclic sub-graph of 𝐺𝑡. The optimization in Equation 3.1 can then be formulated

as:
𝒯 * = argmin

𝒯
𝐶(𝒯 )

s.t. 𝒯 * = {𝑉 *, 𝐸*}, 𝑏(𝑒0) = 𝑥𝑠, 𝑡(𝑒𝑚) = 𝑥𝑔,

𝑣 ̸= 𝑣′ ∀𝑣, 𝑣′ ∈ 𝑉 *

𝑡(𝑒𝑖) = 𝑏(𝑒𝑖+1) ∀𝑖 ∈ {1...𝑚− 1}

𝑉 * ∈ 𝑉,𝐸* ∈ 𝐸,

(3.2)

1We observe that the vertex connection strategy varies between different algorithms, but neglect
the notation here for readability.
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where 𝐶(𝒯 ) ∈ R is a scalar cost function that evaluates the cost of a sub-graph, 𝑡(𝑒)

indicates the terminal node of edge 𝑒, 𝑏(𝑒) indicates the start node of edge 𝑒, and

𝑉,𝐸 ∈ 𝒳𝑓𝑟𝑒𝑒.

Intuitively, a good choice of 𝑃 (𝑥; Γ) is one more likely to sample 𝐺s that contain

𝒯 s that are close to the solution to Equation 3.2. A common approach is to leverage

a fully known geometric map and or the geometric location of the goal (𝑀*
𝑔 and 𝑥𝑔)

as conditioning parameters, Γ = {𝑀*
𝑔 , 𝑥𝑔} [189, 20, 70]. However, this choice of pa-

rameterization is often limiting in real-world environments, where sensor limitations

mean that geometric models are almost certainly inaccurate and incomplete. Assum-

ing maps are complete is particularly detrimental when traditional methods rely on

complete geometric information to eliminate low-cost but ultimately infeasible paths

by searching only in the space of valid trajectories (i.e. {𝒯 | ∀𝑒 ∈ 𝒯 , 𝑒 ∈ 𝒳𝑓𝑟𝑒𝑒}).

3.2.2 Multimodal Information for Navigation

In this work, we propose a novel approach to navigation in unknown environments,

which learns a sampling strategy from both geometric and non-geometric navigational

cues. Specifically, we would like to take advantage of sparse, metrically aligned object-

level maps, which can provide semantic information both within and beyond the

partial dense geometric map, to inform planning. By learning a predictive sampling

distribution inferred from information about unknown space, low-level geometry, and

explicit object-level contextual cues such as doorway and exit signs, we can empower

SBMPs to reason about the pertinent structure of environments that have only been

partially observed and therefore find better plans. For example, instead of having

to densely map the walls of a room in order to exit it, the presence of a door is

a clear semantic cue for a navigation strategy that has high probability of success

(see Figure 5-1). Formally, we let Γ = {ℳ,Υ}, where ℳ denotes a hybrid form of

map representation that incorporates low-level geometric information with semantic,

object-level information (both of which may be incomplete). Υ denotes planning

context parameters, such as the goal location and whether the goal is indoors or

outdoor. We solve Equation 3.2 over the graph sampled from 𝑃 (𝑥;ℳ,Υ).
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Figure 3-2: Neural network used to generate learned sampling distributions. The
network uses geometric and semantic information to learn general and task specific
sampling distributions that empower a robot to reason about navigational modes in
unknown space. Layer data indicates, in order, layer size, convolution size, stride
size, and number of filters. Dropouts are not pictured but used for regularization.
The context information is a vector with the first two values proportional the relative
location of the goal, and a scaled indicator variable indicating whether the goal is
inside or outside.
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However, even with an optimized sampling distribution, we observe that simply

being more likely to place samples along the optimal path does not encourage more

likely trajectories to be chosen if the objective function of the graph search is not also

informed by the information in the hybrid map. It is easy to see that in the limit of

infinite samples, an objective function that utilizes distance only would revert back to

the myopic behavior of SBMPs using uniform sampling when operating in unknown

environments. To mitigate this, we propose using the probability function not only

to define the implicit planning graph, but also as a cost function over graph edges:

𝐶(𝒯 ) ∝ −log(P((𝒯 )). (3.3)

3.2.3 Learning Sampling Distributions

In general, determining the form of 𝑃 (𝑥;ℳ,Υ) analytically is intractable. Instead,

we would like to approximate the distribution with some mapping 𝜑 that depends on

the hybrid map representation and the contextual information:

𝑃 (𝑥;ℳ𝑖,Υ𝑖) ≈ 𝜑(𝑥;𝛼,ℳ𝑖,Υ𝑖). (3.4)

where 𝛼 denotes the parameters of the predictive sampling distribution model. A

naive approach to the optimization of 𝜑 is to assume a dataset of optimal sampling

distributions 𝑃 *(𝑥;ℳ𝑖,Υ𝑖), then attempt to minimize some distance metric between

𝑃 *(𝑥;ℳ𝑖,Υ𝑖) and 𝜑(𝑥;𝛼,ℳ𝑖,Υ𝑖). In practice, specifying 𝑃 *(𝑥;ℳ𝑖,Υ𝑖) is extremely

difficult, especially because such a distribution must account for the existence of

multiple optimal trajectories that may exist in a complex environment.

While it is difficult to obtain example ground-truth sampling distributions, ob-

taining a representative dataset 𝒟 of 𝑞 example trajectories along with partial, hybrid

environmental information and context information such that 𝒟 = {(𝒯0,ℳ0,Υ0),

(𝒯1,ℳ1,Υ1), ..., (𝒯𝑞,ℳ𝑞,Υ𝑞)} is a far more tractable endeavor. The dataset pairs

complete trajectories through incomplete maps, as seen in Figure 3-6. Therefore, we

propose learning a mapping for the sampling distribution by maximizing the probabil-

83



ity that an optimal trajectory 𝒯𝑖 will be sampled given ℳ𝑖 and Υ𝑖, over the training

dataset:

argmin
𝛼

𝑞∑︁
𝑖

−log𝑃 (𝒯𝑖;ℳ𝑖,Υ𝑖), (3.5)

where the maximum likelihood optimization has been converted into a negative log-

likelihood minimization. The dataset 𝒟 may be obtained offline in simulation, or in a

gradual online fashion running any traditional planner that eventually finds optimal

plans.

However, learning a joint distribution over 𝑉 and 𝐸 is extremely difficult due to

the exponential state space of all possible sampled graphs. We therefore approximate

Equation 3.5 as the joint distribution over nodes only:

argmin
𝛼

𝑞∑︁
𝑖

−log𝑃 (𝑉𝑖;ℳ𝑖,Υ𝑖). (3.6)

Equation 3.6 abstracts trajectories into collections of nodes, rather than edges, and is

similar to the approach taken in [70]. For tractability, we make a final approximation

that the vertices 𝑉𝑖 = 𝑣𝑖0 ...𝑣𝑖𝑗 in the sampled trajectory are conditionally independent:

argmin
𝛼

𝑞∑︁
𝑖

−log(

|𝒯𝑖|∏︁
𝑗=0

𝑃 (𝑣𝑖𝑗 ;ℳ𝑖,Υ𝑖)). (3.7)

Finally, we substitute in our learned approximation 𝜑 for 𝑃 :

argmin
𝛼

𝑞∑︁
𝑖

(

|𝒯𝑖|∑︁
𝑗=0

−log𝜑(𝑣𝑖𝑗 ;𝛼,ℳ𝑖,Υ𝑖)). (3.8)

In practice, we optimize a scaled version of Equation 3.8 for numerical stability.

3.2.4 Neural Network Model Structure and Optimization

In this work, a convolutional neural network serves as the base form of model 𝜑, and

the optimization over 𝛼 in Equation 3.8 is the optimization of the network weights.

CNNs are particularly attractive due to their demonstrated successes in feature ex-
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traction, especially for multi-modal data inputs [117]. Nevertheless, how to condition

multi-modal information for deep learning algorithms is still an area of open research.

To effectively use both geometric and semantic information we must determine an ap-

propriate representation for combining our geometric and object-level information.

We choose to represent object-level information as a discretized overhead map,

with the same scale and origin as the occupancy map. To encode semantic informa-

tion, the value at a discrete location is determined by the object class. There are

several benefits to this choice. First, we can represent an arbitrary number of objects

with a fixed-size representation.2 Second, by translating object-level information into

a representation very similar to occupancy information, we can reasonably exploit the

modeling power of stacked convolutional layers to form our hybrid representation, i.e.,

ℳ = [𝑀𝑔;𝑀𝑠] such that ℳ ∈ R𝑘×𝑘×2, where 𝑀𝑔 ∈ R𝑘×𝑘 is a local pixel-wise map

with occupancy information, 𝑀𝑠 ∈ R𝑘×𝑘 is a discretized local semantic information

map. Practically, we can still maintain the sparsity of an online object estimation

algorithm, projecting the list of known objects to a 2D discrete representation when

needed.

The two maps 𝑀𝑔 and 𝑀𝑠 are concatenated together depth-wise before being

passed to an encoding CNN 𝜑𝑒𝑛𝑐, whose output is then decoded via 𝜑𝑑𝑒𝑐 to form a

general un-normalized distribution 𝜑𝑔𝑒𝑛:

𝜑𝑔𝑒𝑛(𝑥𝑑;𝛼{𝑑𝑒𝑐,𝑒𝑛𝑐},ℳ) = 𝜑𝑑𝑒𝑐(𝜑𝑒𝑛𝑐(𝑥𝑑;𝛼𝑒𝑛𝑐,ℳ);𝛼𝑑𝑒𝑐), (3.9)

where 𝑘 ∈ Z>0, 𝑥𝑑 ∈ 𝒳𝑑, 𝒳𝑑 is a discretized form of 𝒳 , and 𝛼𝑑𝑒𝑐, 𝛼𝑒𝑛𝑐 denote the

network weights for their respective networks. To incorporate contextual information

with map-level information, we concatenate the output of the encoding CNN with

Υ, and pass the new matrix through a second decoding 𝜑𝑐𝑠 that modifies the general

distribution from Equation 3.9 to form an unnormalized context-specific distribution

2This benefit is also exploited by Driess et al. [42] who use an overhead depth image to predict
plan feasibility when there are an arbitrary number of objects in a table-top setting.
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𝜑𝑃 , i.e.,

𝜑𝑃 (𝑥𝑑;𝛼{𝑑𝑒𝑐,𝑒𝑛𝑐,𝑐𝑠},ℳ,Υ) = 𝜑𝑔𝑒𝑛(𝑥𝑑;𝛼{𝑑𝑒𝑐,𝑒𝑛𝑐},ℳ) ∘ 𝜑𝑐𝑠(𝜑𝑒𝑛𝑐(𝑥𝑑;𝛼𝑒𝑛𝑐,ℳ); Υ, 𝛼𝑐𝑠),

(3.10)

where the context variable includes the relative location of the goal and a flag indi-

cating whether the goal is indoors or outdoors, such that Υ ∈ R𝑑+1. To enforce a

proper probability distribution 𝑃 , we pass the raw output of the network through a

softmax layer to obtain the final normalized distribution:

𝜑(𝑥𝑑;𝛼{𝑑𝑒𝑐,𝑒𝑛𝑐,𝑐𝑠},ℳ,Υ) = softmax(𝜑𝑃 (𝑥𝑑;𝛼{𝑑𝑒𝑐,𝑒𝑛𝑐,𝑐𝑠},ℳ,Υ)). (3.11)

Figure 3-3: High-level overview of the inputs, outputs, and loss function evaluation
of the network. Partial occupancy and object maps, where a learned model predicts
a probability distribution (see Figures 3-2 and 3-4 for additional details on the form
of the model). The probability that the labelled, resolution optimal, trajectory would
be sampled under the predicted distribution is then calculated using Equation 3.8.

We propose a two-stage optimization that learns two types of navigational modes

separately. In the first stage, we optimize 𝛼𝑒𝑛𝑐 and 𝛼𝑑𝑒𝑐 and learn a task-independent

sampling distribution that highlights general navigation modes of the environment.

In the second stage, we freeze the network weights associated with general navigation

modes to avoid task-specific overfitting, and learn a task-specific modifier of the orig-

inal distribution that takes into account the context associated with a specific task
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(i.e., optimize 𝛼𝑐𝑠). See Figure 3-2 for network details, and Figure 3-5 for a quali-

tative example of how the general distribution and task-specific distribution differ.

The network optimizes Equation 3.11 via back-propagation and stochastic gradient

descent (SGD) with mini-batches.

3.2.5 Online Planning in Unknown Environments

To use the learned distribution online, we first optimize Equation 3.8 offline by ap-

plying SGD to the structure in Equation 3.11. During each timestep of online use, we

generate incomplete local geometric and semantic maps, then run the feed-forward

model to recover a normalized probability distribution over the current, partially

known map. Grid locations outside of the local sliding window are set to the min-

imum probability of the predicted window, and the sampling distribution over the

entire map is again re-normalized. In practice, we sample from the discretized state

for efficiency, but observe that uniformly sub-sampling within a discretized state

could extend this approach to more complex systems3. Finally, we use a probabilistic

roadmap (PRM) to generate a trajectory from the current robot position to the goal,

but modify the planner to sample graph vertices from the learned distribution and to

score graph edges using the objective defined in Equation 3.3.

3.3 Experiments

In this section, we describe the experimental procedure used to benchmark our learned

sampling distribution against a uniform sampling distribution in simulated floorplan

environments, and report aggregate metrics. Finally, we show qualitative results on

data collected by a real-world vehicle.

3It is important to note that although the state is discretized, we avoid the extremely limited
action set the discretized methods discussed in Section 2.1.1 use in practice.
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Figure 3-4: Overview of two stage network training process.. Learned distributions
are plotted as filled contour plots (blue is high probability, grey-green is low proba-
bility) overlaid on occupancy maps. In the first half of the network, local occupancy
(a) and semantic (b) maps are passed through a CNN that learns a latent represen-
tation (c) and a context-agnostic distribution (d). A second network takes the latent
layer (c) and contextual information (e) to learn a context-specific modifier, which is
multiplied against the general distribution to obtain a context-dependent distribution
(f). Without contextual information, the distribution learns only general navigation
heuristics.
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Figure 3-5: Qualitative examples of the effect of different contextual inputs to the
second, context-dependent distribution. Goal indicators for qualitative purposes only;
goals indicated by red arrows are beyond the local map. After adding contextual in-
formation about the goal, the network learns to encode different navigation strategies.
For example, when the goal is to the right and inside, the exit sign seen in Figure
3-4b has low probability (a), but when the goal is to the left and outside, the exit
sign has higher probability, biasing the planner to exit the building (d). The learned
distribution is able to place probability near the exit sign, despite not having densely
mapped the region.
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Dataset II II II II IO IO IO IO
N 100 500 1000 5000 100 500 1000 5000
𝐶 0.84 0.95 0.92 0.90 0.95 1.11 1.01 0.99
||𝐷|| 1500 1162 1016 783 1500 550 705 595
||𝐷𝑚|| 642 819 787 669 140 132 229 215
𝑅2 Score 0.81 0.87 0.77 0.82 0.67 0.34 0.63 0.59
𝐶𝑙/𝐶* 1.21 ±0.01 1.24 ±0.01 1.31 ±0.02 1.42 ±0.03 1.22 ±0.03 1.73 ±0.16 1.75 ±0.09 2.41 ±0.09
𝐶𝑏/𝐶* 1.40 ±0.02 1.32 ±0.01 1.38 ±0.02 1.51 ±0.03 1.24 ±0.02 1.51 ±0.06 1.69 ±0.07 2.35 ±0.08

Table 3.1: A comparison of plan costs between the learned sampling distribution and
baseline planners when both planners succeed, broken out by dataset and planner
iterations per query (𝑁), which is correlated to the number of samples drawn per step.
||𝐷|| and ||𝐷𝑚|| are the total number of trials run and the number of trials where
both planners succeeded. ||𝐷|| varies over 𝑁 due to the time involved in running
longer trials. For each mutually successful trial, given the length of a resolution-
optimal trajectory (assuming an a priori map, with soft costs) 𝐶*, the total distance
travelled by the learned planner 𝐶𝑙, and the total distance travelled by the baseline
planner 𝐶𝑏, we quantify performance via several metrics. 𝐶 and 𝑅2 score are the slope
and fit score of a linear regression (i.e., of 𝐶𝑏 vs 𝐶𝑙) with zero intercept. 𝐶𝑙/𝐶* and
𝐶𝑏/𝐶* are the mean and standard error of the mean of the trajectory cost divided
by the resolution-optimal trajectory cost for learned and baseline respectively. In the
Inside-Inside dataset, the learned sampling distribution finds lower cost plans than
the baseline, indicating that using the learned sampling distribution with our chosen
SBMP results in better navigation outcomes.

3.3.1 Experimental Setup

We first demonstrated our approach in simulation using real-world floorplan data from

MIT [182], which included floorplans from 13 buildings, split into 10 train buildings

and 3 test buildings. The data were used to generate discretized occupancy and

semantic maps, where door locations were provided by the dataset; plausible windows

and exit signs were manually annotated. We assumed a holonomic vehicle with a

planar depth sensor similar to an Intel RealSense sensor with an 85.2 degree field of

view and 5 meter range and a RGB vision system with a 69.4 degree field of view

capable of observing objects from 10 meters away, with no sensor or pose estimate

noise.

3.3.2 Dataset Generation

We generated 1500 navigation tasks in known maps, categorized by indoor or outdoor

start and goal locations, omitting outdoor only tasks due to the lack of semantic
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information outdoors in our environments. We simulated a robot completing each

navigation task using a modified open source implementation of the PRM [166] and

a Euclidean objective function without a priori map information.

Figure 3-6: Example illustration of dataset generation. The robot navigates an un-
known environment. (a) At regular intervals, several goals are sampled and optimal
trajectories computed the using ground-truth map. The trajectories and goals are
then paired with the (b) partial occupancy map and (c) partial object map at the
time of the query. The procedure allows for the generation of a training dataset that
pairs incomplete partial maps with expert trajectories. Paths are hand-drawn for
illustration purposes only.

At each timestep, the robot generated and executed a plan, uncovering geometric

and semantic information. We assumed that both maps were well approximated by

raycasting in known maps according to the sensor characteristics. To generate diverse

expert trajectories, at random intervals during the task we randomly selected a new

goal location and solved for a dense, resolution optimal path to the goal location

using a graph-based search over the ground-truth occupancy map with soft costs.

In practice, we found it important to simulate the types of maps generated by sub-

optimal navigation, as the robot may make sub-optimal decisions at planning time.

Figure 3-6 provides a high-level illustration. In practice, expert trajectories may be

generated in many ways. We have assumed that these paths approximate optimal

sub-graphs and can be represented as a set of edges and vertices. We then extracted

body-centered local maps of 160x160 pixels (i.e., 𝑀𝑔,𝑀𝑠) and labelled them with

the points in the example trajectory. This dataset was then used to train the model

91



in Equation 3.8. To examine the utility of our approach under different contexts,

we created two evaluation datasets, the first where the robot begins indoors, and is

told that the goal is also inside (Inside-Inside, or II ), and another where the robot

begins indoors, and is informed that the goal is outdoors (Inside-Outside, or IO). An

evaluation dataset where the robot begins outdoors is not included, as our floorplans

lack outdoor semantic information.

3.3.3 Simulation Evaluation Results

To evaluate our approach, we simulated a robot completing online navigation tasks

in unknown environments using a modified version of the PRM [166] with our learned

sampling distribution and cost function. We compared the PRM using our learned

sampling distribution (PRM + LSD) to a baseline approach using a uniform sampling

distribution (PRM + Unf ) on a test set composed of random start and goal locations

over three unseen floorplans. To estimate the cost in Equation 3.3, each edge was

weighted using an approximate integral cost. To simulate different types of initial

partial maps, initial yaws were uniformly sampled at the beginning of each trial;

the initial yaws varied between experiments but were consistent between the two

approaches for each single trial. PRM + LSD used an integral approximation of the

negative log probability of the learned sampling distribution along each edge as a

search objective. PRM + Unf used a Euclidean search objective. We varied a value

roughly proportional to the number of samples used to build the graph the respective

planners were allowed to draw to generate a roadmap, and simulated trials for start

and goal locations for which feasible trajectories existed. We allowed the simulated

robot to follow a trajectory for up to 20 planning timesteps, with re-planning triggered

if occupancy information is acquired indicating a collision. Given that both planners

rely on a stochastic planner, under sample constraints it is possible for both planners

to fail to build a graph that is sufficiently useful to find a feasible trajectory. If no

trajectory was found at a given timestep, or the simulation of a trial exceeded 10,000

timesteps, the entire trial was marked as a failure.

We generate several figures of qualitative results to demonstrate our algorithm per-
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Figure 3-7: Selected scatter plots of distance travelled in simulation units for PRM
+ LSD vs. PRM + Unf (blue circles) and the slope calculated by linear regression
(red line) for various test conditions, where 𝑁 is as in Table 3.1. The dotted line is
plotted as a reference for equal cost.

formance. Figure 3-5 shows a qualitative result for the distribution trained without

context, as well as the distribution after multiplication with various context-specific

modifiers. The results demonstrate the utility of adding the semantic context of the

goal. In the example shown, whether the exit sign is an area of high probability

is related to goal being located inside or outside. In Figure 3-9, we show several

timesteps in a single trial, where the baseline planner greedily explores many rooms,

while the learned planner places probability in the hallways and exit doors and nav-

igates directly to the goal. Figures 3-10 and 3-11 show example final trajectories of

both approaches in the II and IO environments respectively. In cases such as 3-11-(b),

a suboptimal learned distribution causes PRM + LSD to suffer from failure modes

similar to those of PRM + Unf, which leads to inefficient trajectories.

Our simulation results indicate that our approach to combining geometry and

extra-geometric representations into a heuristic prior for sampling helps to focus both

computation and navigation to promising areas even when geometric information is

incomplete, resulting in greater sample efficiency and in some test sets, more efficient

navigation. For similar sample counts, PRM + LSD was more likely to find feasible

plans than PRM + Unf, as shown in Figure 3-8. For example, for the 𝑁 = 500

case, PRM + Unf had a success rate of 25%, while PRM + LSD had a success

rate of 69%. The largest gains in sample efficiency were observed in the IO test set.

However, although PRM + LSD enabled more successful planning in both scenarios,

the maximum percent of successful trials for the IO test set was significantly lower

93



Figure 3-8: A comparison of plan success rates between the learned (PRM + LSD,
shown in red) and baseline (PRM + Unf, shown in black) planners, where 𝑁 is as
in Table 3.1. The learned sampling distribution finds plans more frequently than the
baseline, demonstrating that our learned sampling measure empowers PRM to find
plans more quickly. We observe that the limitations placed on the timesteps per trial
may inhibit the convergence of the harder IO test set. A small percentage (< 2%)
of trials were marked as failures due to the vehicle coming into collision with the
environment; these trials were removed when calculating success statistics.

than for the II test set. The differences in performance may be because goals outside

the buildings are biased to be further away than goals inside the house and thus involve

navigating over longer length-scales. It is worth observing that the feed-forward

distribution prediction step of the neural network poses additional computational

overhead as compared to PRM + Unf, but in general, the minimum number of samples

required to be likely to find a plan increases as the environment size increases, inducing

a trade-off between sample efficiency and network complexity. Additionally, our real-

world experiments indicate that even without a GPU our approach is able to run

online.

We also demonstrated that our approach enables efficient navigation in certain

domains. A comparison of plan costs is shown in Table 3.1; Figure 3-7 includes

scatter plots of trajectory costs for a selection of scenarios. For the II test set, we

demonstrated between a 5% and 16% decrease in plan cost (determined by linear

regression) when using the learned sampling distribution. In the IO test set, the

overlap of the standard error of the mean (SEM) estimates in the bottom two rows of
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Figure 3-9: Example intermediate and final trajectories of the baseline and our
method. In the left image, we show the sampling distribution overlaid on the robot’s
most recent occupancy map (darker blue is higher probability). The goal is set to
the top right corner of the map, and the learned sampling distribution is also given
the context that the goal is outdoors. Unlike the baseline (e)-(h), which uses only a
Euclidean distance metric and greedily explores more rooms in the hopes of reaching
the goal, the learned distribution largely encourages the planner to follow the hallway
(a)-(d). Without the contextual information implicit in the learned sampling distri-
bution, the baseline travels a much longer distance to reach the goal (i).
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Figure 3-10: Comparative examples of planning performance, where the robot begins
inside and is given the contextual information that the goal is also indoors (II).
We show the final trajectories of the learned (green) and baseline (blue) planners
traversing from start (red cross) to goal (red circle). In (a), the baseline planner
mistakenly exits the building although the goal is indoors, but the learned planner
largely remains in hallways and reaches the goal. In (b), the baseline planner fails to
find a trajectory with the allotted sample count, while the learned planner mistakenly
visits many rooms. Such a case is not included in the aggregate metrics as the baseline
planner failed. In (c), both the learned and baseline planners mistakenly enter rooms
prior to reaching the goal.
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Figure 3-11: Comparative examples of planning performance for Inside-Outside trials
(IO), where the robot begins inside and is given the contextual information that the
goal is outdoors. We show the final trajectories of the learned (green) and baseline
(blue) planners traversing from start (red cross) to goal (red circle). In (a), the
baseline planner fails to find a plan somewhat early in the trial, while the learned
planner successfully navigates the robot out the building. In (b), both the baseline
and the learned planners take inefficient routes but successfully reach the outdoor
goal. In (c), the baseline planner finds a shorter path to the goal than the learned
approach. We observe that while trial (c) is included in the aggregate metrics and is
in favor of the baseline planner, trial (a) is used only to calculate success rates.
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Table 3.1 suggests no statistically significant differences in plan cost between the two

approaches, although the IO-500 results are nearly overlapping. In general, due to the

large differences between the success rates between PRM + LSD and PRM + Unf in

the IO domain, the aggregate cost metrics are likely less meaningful in the IO trials.

For example, in Figure 3-11-(a) we show an experimental trial where the learned

planner finds a near optimal plan and the baseline fails. Although this trial clearly

demonstrates the ability of the learned planner to find low cost trajectories, it is not

a mutually successful trial and therefore is not included in the aggregate statistics.

Overall, we demonstrate that our learned sampling distribution significantly improves

the success rate of PRM, and decreases plan costs over the II test set.

3.3.4 Real-World Evaluation Results

To evaluate the performance of a SBMP paired with the learned sampling distribution

on real-world data, we integrated our approach on a real world robot. We qualitatively

compare the planning performance of PRM + LSD and PRM + Unf on the same

dataset. The dataset was collected by a 1/10th scale racecar platform, carrying the

Intel RealSense T265 and D435i modules (which provide state estimates and RGB-D

images, respectively) and an Intel Nuc i7. Dense geometric maps were generated

using a standard geometric estimation and mapping stack [65]. An object detector

based on SSD-Mobilenet [68, 104, 3] was fine-tuned to detect doors and windows with

data from the OpenImages dataset [90], and an exit sign detector was written using

HSV filtering. Discrete 2D object-level maps were generated by a rough conversion 4

of the output of an object mapping system [120] described in Chapter 4.

Our experiments show that our proposed neural network architecture is lightweight

enough to run on a CPU to enable real-time navigation on SwAP vehicles. We ob-

serve that unlike in the simulation environment, the object-level maps built online

are noisier and less accurate. We first compared PRM + LSD and PRM + Unf on

the same input data to compare planning performance with identical inputs. Figure

4The rough conversion sometimes led to inconsistencies in the 2D estimates of objects, especially
in orientation. We describe a more accurate conversion via orthographic projection in Chapter 5.
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Figure 3-12: Sensor data and plans at similar points on the same real-world dataset.
RGB images show the object detections (green) and the estimated volume of objects
projected into the image plane (red). PRM + LSD generally plans to go down the
middle of the hallway, while PRM + Unf greedily attempts to go through an unseen
wall. In this case, the learned distribution empowers the PRM to plan outside of the
known geometric map by generally guiding the agent down the middle of the hallway,
despite the noisy occupancy and object-level maps. All images are approximately
aligned

3-12 shows qualitative examples of trajectories and RGB images at various points

during navigation, comparing the planning performance PRM + LSD and PRM +

Unf. The learned method was more likely to plan trajectories down the middle of the

hallway, rather than attempting to greedily plan through the wall. We then tested

our approach for in the loop planning. Although the network was only ever trained

in environments with open doors, the when in-the-loop planning test environment

featured a closed door early in the trajectory. Because our proposed approach syn-

thesizes the extra-geometric information into a sampling distribution with non-zero

probability at all locations, PRM + LSD is still able to plan a collision-free trajectory

to the goal given sufficient samples, as seen in Figure 3-13.
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Figure 3-13: Qualitative demonstration of faulty semantic information. Sensor images
as well as planning artifacts are shown for two timesteps in real-world, in the loop
planning. Before the closed door has been observed in the dense occupancy map,
high probability regions are present near the detected door. However, as further
occupancy information is collected, planner adjusts to the hard constraint of non-
collision, despite the fact that the learned distribution has never seen a closed door.

3.4 Limitations

As shown in Table 3.1 and Figure 3-8, we observed significant differences between

the performance of our approach on the trials where the robot’s goal was inside

versus outside. In particular, the learned planner proved to be significantly more

sample efficient compared to the baseline planner (i.e., with a greater margin of

improvement in the IO trials vs the IO trials), but both the baseline and our planner

were less sample efficient in the Inside-Outside trials than the Inside-Inside trials.

Additionally, for the Inside-Outside trials, our planner performed about as well as

the baseline planner. This suggests that while our learned sampling distribution has

captured useful properties for finding feasible plans, the task of choosing near-optimal

trajectories to navigate from inside the building to the outside is a harder task than

navigating from one point inside a building to another point inside a building and that

greater structure in planning may be needed. For instance, it is key that the planner

exit a door with an exit sign. However, if an exit sign has not yet been observed, our

proposed strategy does not explicitly use an exploration phase to search for such a

signal.
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There is also evidence that the use of the learned sampling distribution as a cost

function may require additional structure. For example, we occasionally observed

waffling behavior as seen in Figure 3-10c, where the robot backtracked several times,

indicating that a history of trajectories may be helpful. Additionally, later analysis

presented by Stadler [163] suggests that using a Euclidean search metric with the

graph built using our learned sampling distribution did not significantly degrade

performance. However, using the learned sampling distribution to weight graph edges

results in a clear reduction in the frequency of necessary re-planning. Essentially,

using the cost function to weight graph edges resulted in trajectories that could be

followed for longer without being rendered invalid, indicating that the cost function

is more useful locally. We suggest potential routes for improvements in Chapter 6.

3.5 Chapter Summary

We have presented a novel method for extending sampling-based motion planners into

unknown environments by learning a sampling distribution. We demonstrated that

our method results in significantly higher success rates compared to a uniform sam-

pling strategy and can lower traversal costs in some domains. We have shown that

learning a sampling distribution using object-level semantic information and geomet-

ric maps can enable long-horizon navigation in unknown environments, outperforming

baseline, uniform sampling strategies.

Notably, our approach uses geometric and semantic information to learn heuristics

to bias the both the construction and search of a planning graph. The distribution is

specifically formulated so that there is strictly positive probability at each discretized

location, and edges are still pruned using geometric evidence. Even if a state is

incorrectly predicted to have high likelihood of lying on the optimal trajectory, the

sampled vertex will be rejected if the location is occupied. Therefore, as the limit of

complete geometric information is approached, the resulting trajectories will comply

with the observed detailed geometric information. When geometric information is

sparse, the learned distribution can be leveraged to apply structure to the problem
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to mitigate geometric ambiguity.

However, our proposed approach relies on the ability to build metric and semantic

object-level maps online. In particular, we require maps of objects with class labels

as well as geometric object properties that can be projected into a representation

similar to occupancy maps. For our simulation experiments, we approximate the

construction of such maps using raycasting techniques, but for online deployment as

in Section 3.3.4 we require a lightweight online process. The next two chapters of this

thesis are therefore devoted to improving object-level estimation to support hybrid

semantic and geometric planning.
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Chapter 4

Object Level-SLAM for Autonomous

Navigation

4.1 Introduction

In this chapter, we improve object-level SLAM for the purposes of autonomous navi-

gation. Although some state of the art methods have assumed the existence of tightly

coupled hierarchical semantic representations (Section 2.1.4) to inform navigation, in

the previous chapter we presented an approach that requires only light-weight object

representations in world coordinates. As discussed in Chapter 2, approximate geo-

metric models are a promising compromise between requiring detailed a priori models

and overly simplistic point-based object representations (Section 2.2.1). Object-level

SLAM approaches that estimate approximations of objects generally do so by fit-

ting bounding box measurements from an object detector to generic low-dimensional

parametric models, ranging from cuboids to ellipsoids (Section 2.2.3.). The recently

popularized ellipsoid model is particularly attractive due to a differentiable relation-

ship between the object estimate and bounding box measurement.

A key challenge in estimating geometric object properties online to support au-

tonomous navigation is that common types of vehicle maneuvers such as straight line

motions may not generate viewpoints diverse enough to accurately estimate the ob-

jects. Therefore, to support our planning approach we specifically require an object
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(a) Orbit Path (b) Forward Path

Figure 4-1: Comparison of final ellipsoid estimates generated by an orbiting camera
path vs. a forward path. Ground-truth estimates (black) and final estimates (red)
of ellipsoids and cameras inferred with an online approach using a bounding box
measurement model, similar to the model proposed by Nicholson et al. [118]. As
seen in (a), estimating the parameters of the ellipsoids using diverse viewpoints of an
orbiting vehicle path resulted in a small error in shape and position for both methods.
However, when using measurements from a forward-moving vehicle path, where only
limiting views were available as exemplified in (b), estimation performance severely
degrades. Details of both the experiment and simulation environment are provided
in Section 4.4.

level mapping approach that can estimate objects under challenging camera motions.

Previous approaches [146, 118] have shown promising results in building lightweight

approximations of objects offline by fitting bounding box measurements. One benefit

of offline batch optimization is that the algorithm can utilize all views to estimate

the ellipsoid. However, early estimates in online versions of this approach do not

have access to all views of the object that will be collected over time. Additionally,

under the constraints of realistic autonomous navigation, the robot may never collect

a large set of diverse views. As shown in Figure 4-1, given diverse views generated by

an orbiting camera path, an ellipsoid-based SLAM system that consumes only bound-

ing box measurements can perform quite reasonably under certain conditions of the

trajectory. However, when the camera trajectory is instead composed of straight-line,

forward facing trajectories which are more common in efficient autonomous naviga-

tion, estimation performance degrades.

Our key observation is that RGB images contain additional information useful for

3D object estimation, beyond just 2D bounding box measurements. For instance,
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object texture can be used to triangulate points on the surface of the object. Fur-

thermore, the object class as given by the bounding box detector provides important

semantic context for the optimization. In order to better constrain an object-based

SLAM system that lacks diversity in viewpoints, we show how to use these two addi-

tional sources of information: texture on objects that can be used to infer the distance

to the objects and semantic knowledge of shapes of objects that can mitigate the

scale unobservability problem in monocular cameras. While similar to recent work

[67] which uses surface normals from RGB-D cameras to further constrain quadrics,

we focus on adding only the information available in a monocular camera.

We propose robust object-based SLAM for high-speed autonomous navigation

(ROSHAN), where we represent semantically-meaningful objects volumetrically as

ellipsoids, and infer the parameters of the ellipsoids online using three sources of in-

formation: bounding box detections, texture, and semantic shape. We introduce our

factor-graph based SLAM [34] formulation, that contrary to modern offline meth-

ods [146, 118] do not assume known data associations or batch optimization. We

additionally propose a single measurement initialization scheme that can be useful

on a fast-moving vehicle. Finally, we demonstrate the advantages of ROSHAN in

simulation using 50 randomly generated maps of ellipsoids, where we outperform the

baseline, reducing the median error on the shape estimates by 83% and the median

error on the position estimates by 72% when compared to the baseline in a forward-

moving camera sequence. In addition, we present promising results running ROSHAN

real-time on simulated and real autonomous high-speed flight sequences.

4.2 Problem Overview

In ROSHAN, we represent objects as ellipsoids and infer their parameters using object

detections, object texture, and semantic knowledge in a SLAM framework. In this

section, we first discuss the strengths of our landmark representation then formulate

our object-based SLAM problem.
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Figure 4-2: In ROSHAN, we combine bounding box detections (green), texture planes
(blue), and semantic knowledge of the shape of objects (yellow) to achieve an ellipsoid-
based object SLAM system robust to undesirable camera motions.

4.2.1 Ellipsoids as Object Representation

We choose the ellipsoid representation, a specific form of quadric representation as

the low-dimensional parametric form of our objects. Similar to Rubino et al. [146],

we minimally parametrize the ellipsoid with 9 independent parameters that represent

the orientation 𝑅 ∈ SO(3), position 𝑡 ∈ R3, and shape 𝑑 ∈ R3 of the ellipsoid.

While there are two forms of ellipsoids, the primal form 𝑄 and the dual-form 𝑄* =

adjoint(𝑄), in this chapter we are primarily interested in the dual-form. As discussed

by Hartley and Zisserman [60], the dual matrix 𝑄* can be transformed by some

transformation matrix 𝑍 via the relationship

𝑄* = 𝑍�̆�*𝑍𝑇 . (4.1)

We take 𝑍 to be a homogeneous transformation matrix and as in Rubino et al. [146]

we define �̆�* as a scaled dual ellipsoid at the origin:

𝑍 =

⎡⎣ 𝑅 𝑡

03
𝑇 1

⎤⎦ , �̆�* =

⎡⎣ 𝐷 03

03
𝑇 −1

⎤⎦ , (4.2)
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and where 𝐷 ∈ R3×3 is a positive diagonal shape matrix with the diagonal entries

formed with regularized squared shape parameters. In this chapter, we define 𝐷𝑖,𝑖 =

𝑑2
𝑖 + 𝛾, where 𝛾 ∈ R is a regularization constant enforcing a minimum shape. We

constrain our representation under the parameterizations of Equations 4.1 and 4.2,

yielding 𝑄* ∈ E4×4, where E4×4 represents the subset of all 4× 4 symmetric matrices

defined by

𝑄* =

⎡⎣𝑅𝐷𝑅𝑇 − 𝑡𝑡𝑇 −𝑡

−𝑡𝑇 −1

⎤⎦ . (4.3)

While an ellipsoid is only a rough approximation of an object in 3D, a strong

advantage of the ellipsoid representation is that its entire parametrization can be

constrained using only bounding box measurements from camera images. This prop-

erty of ellipsoids comes from the dual-form where all homogeneous planes 𝜋𝑘 ∈ R4

tangent to the dual-form of an ellipsoid 𝑄*
𝑗 must obey

𝜋𝑇
𝑘𝑄

*
𝑗𝜋𝑘 = 0. (4.4)

This system of equations, when solved as a function of the vehicle pose 𝑥𝑡𝑘 ∈ SE(3)

and the observed ellipsoid 𝑄*
𝑗𝑘

as illustrated in section 4.3.1, forms a closed-form

differentiable bounding box measurement model

�̂�𝑘 = ℎ𝑏𝑏(𝑄
*
𝑗𝑘
,𝑥𝑡𝑘 ;𝐾), (4.5)

where 𝐾 ∈ R3×3 in the camera intrinsic matrix and 𝐵𝑘 ∈ R4 is the predicted bound-

ing box measurement. While the family of quadrics all share the same smooth mea-

surement model, we specifically limit our landmarks to ellipsoids to further constrain

the landmarks without losing the ability to approximate objects for the purpose of

collision-checking.

Coupled with computationally inexpensive object detectors [133, 68], the above

closed-form measurement model allows for the use of readily available bounding box

detections as the only source of measurements to fully constrain vehicle poses and

approximate object volumes. This property makes the ellipsoid representation at-
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tractive for graph-based SLAM [34] formulations, and is similar to the property of

point-based landmarks in feature-based SLAM [119] that associated feature detec-

tions in camera images can be the only source of information to constrain the entire

system.

4.2.2 SLAM Formulation

We would like to solve for all ellipsoidal approximations of objects 𝒬 = {𝑄*
𝑗}𝐽𝑗=0

with 𝐽 objects of interest, and 𝑇 poses of the vehicle 𝒳 = {𝑥𝑡}𝑇𝑡=0, where 𝑥𝑡 ∈ SE(3).

We are given 𝑇 images ℐ = {𝐼 𝑡}𝑇𝑡=0 with 𝐼 𝑡 : Ω ∈ N2 → R, where Ω is the image

pixel domain. Using an object detector, we extract 𝐾 bounding box measurements

of objects ℬ = {𝐵𝑘 ∈ Ω2}𝐾𝑘=0 along with the semantic class labels 𝒞 = {𝑐𝑘 ∈ N}𝐾𝑘=0,

where each bounding box is parametrized by two pixel locations representing the

opposite corners of the bounding box. We extract features [147] from the texture

of the objects in images, and fit a homogeneous plane 𝜋𝑡
𝑑 ∈ R4 to the triangulated

locations of the features of each object; these 𝐷 planes Π𝑡 = {𝜋𝑡
𝑑}𝐷𝑑=0 that we call

texture planes, e.g. the blue plane in Fig. 5-1, represent measurements of the distance

between the cameras and the camera-facing sides of objects. Assuming a uniform prior

on the measurements and independence assumptions between all measurements, we

write our object-level SLAM problem as

𝑃 (𝒳 ,𝒬|ℬ,Π𝑡,ℐ;𝒞) ∝
𝐾∏︁
𝑘=0

𝑃 (𝐵𝑘|𝑄*
𝑗𝑘
,𝑥𝑡𝑘)⏟  ⏞  

Bounding Box (4.3.2)

×

𝐷∏︁
𝑑=0

𝑃 (𝜋𝑡
𝑑|𝑄*

𝑗𝑑
,𝑥𝑡𝑑)⏟  ⏞  

Texture (4.3.3)

𝐽∏︁
𝑗=0

𝑃 (𝑄*
𝑗; 𝑐𝑗)⏟  ⏞  

Semantic Prior (4.3.4)

𝑇∏︁
𝑡=0

𝑃 (𝑥𝑡|𝐼0:𝑡)⏟  ⏞  
Pose Prior

,

(4.6)

where we assume that the data association problem has been pre-solved (implemen-

tation details discussed in section 4.5.1), i.e., that the associated indices 𝑗𝑘 and 𝑗𝑑

for objects and 𝑡𝑘 and 𝑡𝑑 for poses are known for each of the measurements 𝐵𝑘 and

𝜋𝑡
𝑑, and that the class labels 𝑐𝑗 for ellipsoids are deduced from labels 𝑐𝑘 of bounding
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boxes.

We can then obtain optimal estimates of vehicle poses 𝒳 * and objects 𝒬* by

maximizing the posterior probability

𝒳 *,𝒬* = argmax
𝒳 ,𝒬

𝑃 (𝒳 ,𝒬|ℬ,Π𝑡,ℐ;𝒞). (4.7)

In the following sections, we discuss the details of the bounding box measurement

model (4.3.2), texture plane measurement model (4.3.3) and the semantic prior on the

ellipsoids (4.3.4) to demonstrate how multiple sources of information can be combined

to constrain ellipsoidal approximations of objects. However, in this work we assume

an external vision-based1 localization system 𝑓𝑝𝑜𝑠𝑒 [165] produces pose estimates 𝑥𝑡 =

𝑓𝑝𝑜𝑠𝑒(𝐼0:𝑡) to be consumed by our system and incorporate the MAP estimates along

with a heuristic covariance as priors on our vehicle poses. In the next section, we

describe a limitation in the state-of-the-art bounding box measurement model [118],

and suggest an improved bounding box measurement model.

4.3 Robust Object-based SLAM for High-speed Au-

tonomous Navigation

In ROSHAN, we combine bounding box measurements, texture plane measurements,

and semantic shape priors in an online optimization framework to realize an object-

level SLAM system that is more robust under undesirable vehicle motions. Before

introducing the two additional sources of information, texture and semantic knowl-

edge, we first revisit the state-of-the-art bounding box measurement model [118].

4.3.1 Geometric Bounding Box Measurement Model

The projection of a dual-form of a quadric on a camera plane is called a dual-conic

𝐶* ∈ R3×3, and has a similar property that all tangent lines must obey

𝑙𝑇ℎ𝐶
*𝑙ℎ = 0, (4.8)
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where 𝑙ℎ ∈ R3 is a homogeneous form of a line. Since a dual-form of a quadric can

be projected to a dual-conic [118] by

𝐶* = 𝐾[𝑅𝑡|𝑡𝑡]𝑄*
𝑗[𝑅𝑡|𝑡𝑡]𝑇𝐾𝑇 , (4.9)

where 𝐾 ∈ R3×3 is the camera intrinsic matrix, 𝑅𝑡 ∈ SO(3) is the rotation, and

𝑡𝑡 ∈ R3 is the translational portion of the pose 𝑥𝑡 ∈ SE(3), we can solve Eq. 4.8 in

closed-form for the bounding box edges 𝑙𝑢 = [1, 0,−𝑢] and 𝑙𝑣 = [0, 1,−𝑣], i.e.,

�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 =
1

𝐶*
3,3

[𝐶*
1,3 ±

√︁
𝐶*

1,3
2 −𝐶*

1,1𝐶
*
3,3],

𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 =
1

𝐶*
3,3

[𝐶*
2,3 ±

√︁
𝐶*

2,3
2 −𝐶*

2,2𝐶
*
3,3],

(4.10)

to form the closed-form measurement model in Eq. 4.5, where the predicted bounding

box is a collection of these edge locations, i.e., 𝐵𝑘 = [�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]𝑘.

4.3.2 ROSHAN Bounding Box Measurement Model

The assumption that each bounding box edge measurement 𝑙ℎ projects to a plane

𝜋ℎ tangent to the object of interest is broken in the case of partial, occluded, or

truncated detections. A naive approach to using bounding boxes as measurements

might simply keep all measurements, and hope that enough additional measurements

will be made to mitigate the erroneous measurements. Nicholson et al. [118] present

a truncated measurement model that ignores the portion of the measurement error

that is outside of the image boundaries. When an object is well estimated, the

truncated geometric model does reduce false measurement errors on edges that do

not constrain the object by recognizing that the measured bounding box edge is the

best observation the object detector can make. However, the truncated measurement

model underestimates error in cases where the instantaneous bounding box estimate

of the object position in the image plane is poor and a measured bounding box edge

is in fact a constraining edge. For example, if the true object projects entirely into

the image, but the instantaneous estimate of that object in the image plane is an
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Figure 4-3: An example of bounding box detections containing different types of non-
constraining edges. The right edge of the rightmost window is a non-constraining edge
at an image boundary, and the right edge of the leftmost window is a non-constraining
edge formed by an occlusion between two objects: a pillar and a window. The car in
the middle is tightly detected, as expected in the nominal case. Figure generated by
Nicholas Villanueva.

overestimate that extends off the image, the truncated model will underestimate the

error.

In ROSHAN, we first classify a bounding box edge as constraining (tangent to the

object) or non-constraining (not tangent to the object) based on the proximity to the

closest image boundary, before adding the edge as a constraint on the detected object.

As shown in Fig. 4-3, we observe that a non-constraining edge can be formed both

near the image boundaries and the occlusion boundaries between objects. However,

as is the case of the truncated measurement model [118], we focus on identifying only

the non-constraining edges near the image boundaries and leave potential ways to

identify occlusions between objects, such as using depth discontinuities from learned

depth images [57], as future work. Once a bounding box edge is classified as non-

constraining based on the distance to the closest image boundary, instead of applying

a truncated measurement model, we simply discard the edge, realizing that it is not

an actual constraint.

Note that the closed-form measurement model in Eq. 5.10 has imaginary solu-
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tions when the term under the square root is negative. Geometrically, the imaginary

solutions represent a camera being inside or axis-aligned with an observed ellipsoid,

which may happen when the estimates of the ellipsoid parameters move during the

optimization. In the case of this degeneracy, we set the measurement error to be high

to discourage the iterative optimizer from stepping towards the degenerate solution;

an alternative way would be to add an explicit cost such as the inverse barrier cost

[23].

4.3.3 Texture Plane Measurement Model

While bounding box measurements from diverse viewpoints can fully constrain an

ellipsoid, given any single viewpoint, there are parameters of an ellipsoid that a

bounding box measurement simply cannot observe. This is similar to the case in

feature-based monocular SLAM where in any single image, a 2D landmark detection

can only constrain the bearing of the landmark, but not the depth [114]. Similarly, a

bounding box detection, which is a set of 4 orthogonal planar constraints induced by

each of the bounding box edges, cannot fully constrain an ellipsoid inside a cuboid,

i.e., fully constrain the volume of the ellipsoid, without two additional orthogonal

planes for the missing faces of the cuboid.

However, there is a fifth measurable plane that is parallel to the camera image

plane and fit to the high-gradient texture on the object. This plane that we refer to

as the texture plane can be measured using triangulated feature points on the surface

of the object, i.e., detected inside the bounding box, with co-observations in two or

more cameras. Assuming that the triangulated feature points are all observations of

the same tangent plane 𝜋𝑡
𝑑 = [0, 0, 1,−𝑧], we can utilize the plane exactly the same

way that bounding box planes are used to constrain an ellipsoid, i.e., solve the system

of equations

[0, 0, 1,−𝑧]𝑇 ([𝑅𝑡|𝑡𝑡]𝑄*
𝑗[𝑅𝑡|𝑡𝑡]𝑇 ) [0, 0, 1,−𝑧] = 0, (4.11)

and obtain the predicted measurement of the texture plane 𝑧 as a differentiable closed-
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form solution, i.e.,

𝜋𝑡
𝑑 = ℎ𝑡𝑝(𝑄

*
𝑗𝑑
,𝑥𝑡𝑑 ;𝐾). (4.12)

This additional texture plane helps better constrain our SLAM system, when the

vehicle motion is not orbital and diverse viewpoints of objects cannot be guaranteed.

4.3.4 Semantic Shape Prior

While the texture plane introduces a fifth plane to constrain an ellipsoid, for any

single viewpoint there is one more orthogonal plane needed to mimic a 3D bounding

box constraint. In the absence of this plane or a different view, the scale of the

ellipsoid is ambiguous and the ellipsoid may be arbitrarily long on the other side of

the texture plane.

To mitigate this problem of scale unobservability, we introduce semantic priors

on the ellipsoids where we assume a semantically-informed Gaussian priors on the

shape 𝑑 ∈ R3 and uniform priors on the position and the orientation of ellipsoids.

While the semantic priors could be learned from large data sets as done in [52],

we observe that many objects of interest are relatively consistent in size to allow a

model-free specification using standard sizes. In this work, we create a function ℎ𝑠ℎ𝑎𝑝𝑒

using publicly available data on the metric shape of objects to approximate the mean

𝜇𝑐𝑗 ∈ R3 based on the class label 𝑐𝑗 ∈ N, i.e., 𝜇𝑐𝑗 = ℎ𝑠ℎ𝑎𝑝𝑒(𝑐𝑗), and specify a diagonal

covariance matrix Σ𝑐𝑗 ∈ R3×3 per object class to reflect the degree of consistency

in the shape of objects. In our real-world and simulated flight experiments, we use

the dimensions of a Toyota Camry as a reasonable mean of the prior over objects

recognized as cars, with the largest covariance on the length of the car to account for

longer size cars.

4.3.5 Single Image Initialization

Similar to undelayed-initialization methods for point-based landmarks such as inverse

depth initialization [30], we can also initialize ellipsoids using a single bounding box

measurement without having to do the delayed initialization in Nicholson et al. [118],
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allowing ROSHAN to quickly perceive and avoid obstacles during high-speed flight.

To realize a fast initialization scheme for the full 9 parameters of an ellipsoid, we make

three reasonable assumptions. First, we assume that the position of the ellipsoid is

somewhere along the camera ray that passes through the center of the bounding

box [17]; the depth along this ray is estimated to be at an experimentally chosen

reasonable object distance similar in spirit to the average scene depth initialization

in [47]. Second, while there are single-image object orientation estimators [151], we

assume the initial orientation to be the identity for simplicity. Lastly, we assume the

shape of the ellipsoid to be at the mean of the semantic shape prior.

Given these assumptions, we initialize an ellipsoid with the first detection, trading

off the accuracy in our initial estimates for faster perception. In ROSHAN, the

inaccuracy in the initial estimates is mitigated by the faster converging bounding box

model discussed in the previous sections.

4.3.6 Online Optimization

Assuming Gaussian measurement and process models, we can write Eq. 4.6 as a

nonlinear least-squares problem [34]:

𝒳 *,𝒬* = argmin
𝒳 ,𝒬

− log𝑃 (𝒳 ,𝒬|ℬ,Π𝑡,ℐ;𝒞)

= argmin
𝒳 ,𝒬

{︁ 𝑇∑︁
𝑡=0

‖𝑓𝑝𝑜𝑠𝑒(𝐼0:𝑡)− 𝑥𝑡‖2Σ𝑜𝑡
+

𝐾∑︁
𝑘=0

‖ℎ𝑏𝑏(𝑄
*
𝑗𝑘
,𝑥𝑡𝑘 ;𝐾)−𝐵𝑘‖2Σ𝑏𝑘

+

𝐷∑︁
𝑑=0

‖ℎ𝑡𝑝(𝑄
*
𝑗𝑑
,𝑥𝑡𝑑 ;𝐾)− 𝜋𝑡

𝑑‖2Σ𝑡𝑑
+

𝐽∑︁
𝑗=0

‖ℎ𝑠ℎ𝑎𝑝𝑒(𝑐𝑗)− 𝑑(𝑄*
𝑗)‖2Σ𝑐𝑗

}︁
,

(4.13)

where ‖·‖2Σ is the Mahalanobis norm that directly scales the measurement error in-

versely proportional to the square root of the covariance term Σ. The covariance on

the pose prior Σ𝑥𝑡 ∈ R6×6, which is computationally expensive to obtain from the

external source, is set to a heuristically chosen value, the diagonal covariance on the

1In later work, Chen et al. [27] propose to improve our method by considering the average depth
of points triangulated on the object, in addition to their own novel initialization approach.
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(a) Baseline (Orbit Path) (b) ROSHAN (Orbit Path)

(c) Baseline (Forward Path) (d) ROSHAN (Forward Path)

Figure 4-4: Final estimates (red) of ellipsoids and cameras inferred using the base-
line (bounding boxes only) and ROSHAN in a randomly generated map of ellipsoids.
Shown in (a) and (b), estimating the parameters of the ellipsoids using diverse view-
points of an orbiting vehicle path resulted in a small error in shape and position for
both methods. However, when using measurements from a forward-moving vehicle
path, where only limiting views were available, ROSHAN outperformed the baseline
by a larger margin showing the strength of our approach under undesirable but com-
mon vehicle motions. Sub-figures (a) and (c) are reproduced from 4-1 for viewing
convenience.

bounding box measurements Σ𝑏𝑘 ∈ R4×4 is also set to an experimentally chosen noise

value, the variance on the texture plane Σ𝑡𝑑 ∈ R is the empirical variance in the depth

of the triangulated points for real-world experiments, and the covariance on the prior

Σ𝑝𝑗 ∈ R6×6 is specified as described in section 4.3.4.

We periodically linearize the problem in Eq. 4.13, and optimize in real-time for

the cameras and the objects using Levenberg-Marquardt [112] algorithm. In the

next section, we present experimental results on simulated and real flight sequences

using an online optimization scheme, which can be more susceptible to poor solutions

compared to offline batch methods, to demonstrate the advantages of ROSHAN.
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Table 4.1: Median error in estimated ellipsoids for ROSHAN and the baseline in 50
randomly simulated maps of ellipsoids.

Orbit Path Forward Path
shape pos. orient. shape pos. orient.

Baseline 0.26 0.11 26.81 1.16 1.66 43.65
ROSHAN 0.17 0.10 17.97 0.20 0.47 30.93

4.4 Experimental Results in Simulation

We tested ROSHAN in an OpenGL simulation, where all objects are exactly ellip-

soids, so that the ground-truth parameters of the ellipsoids can be used to evaluate

the estimation accuracy of ROSHAN and a baseline in terms of shape, position, and

orientation. In the following experiments, we considered the baseline to only use

the bounding box measurements as done in [118], but kept our online optimization

framework with improvements on shape regularization and the bounding box mea-

surement model to obtain a baseline meaningful for comparison. Rather than using

triangulated texture points on the object, the simulator provides a fifth plane mea-

surement to ROSHAN at every timestep. The simulator also provides ground-truth

data association for each measurement.

We compared ROSHAN against the baseline in 50 randomly generated maps in

two sequences with diverse (Orbit) and non-diverse (Forward) paths with Gaussian

noises added to the bounding boxes and initial estimates for poses and ellipsoids.

There are many potential methods for determining distances between ellipsoids as

all parameters are deeply coupled; in this work we compare shape, translation, and

rotation parameters of the ellipsoids directly, and attempt to account for symmetries

in ellipsoids by bounding the rotation error. The development of additional compar-

ison metrics may also lead to further insights in future work. Summarized in Table

4.1, we observed that all systems performed similarly well when given diverse view-

points (Orbit). However, as illustrated in Fig. 4-4, when given degenerate viewpoints

typical of forward-moving vehicle motions (Forward), ROSHAN outperformed the

baseline with a 83% reduction in the error in the shape estimates (meters) based on

the median error across average error per map, and 72% error reduction in the posi-
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tion estimates (meters); there was a smaller improvement of 29% on the orientation

estimates (degrees) but neither method performed particularly well.

To further analyze the effect of degenerate viewpoints on the systems, we randomly

sampled 20 ellipsoids, and for each ellipsoid, estimated its parameters using randomly

sampled views from a Gaussian clipped to fixed ranges of viewpoints (yaw) around

the ellipsoid. Shown in Fig. 4-5, for the baseline method, more views from a greater

viewpoint range was required to reduce the error in both the shape and the position.

However, for ROSHAN, the error in the shape estimate was small even with a single

view due to the usage of shape information, and the error in position was also relatively

small even with less views and viewpoint ranges, indicating a more robust system

under challenging motions.

These results show that ROSHAN is able to estimate the parameters of the ob-

jects more efficiently than the baseline by leveraging both geometric measurements

(bounding box edges and the plane induced by texture tracking) and extra-geometric,

semantic information (class shape priors). Specifically, given the same camera mo-

tions, ROSHAN is able to more accurately estimate object parameters, indicating

better suitability for supporting efficient autonomous navigation.

4.5 Experimental Results on Flight Sequences

To demonstrate the advantages of ROSHAN, we evaluated the performance of the

algorithm both in simulation and on real-world data collected in an urban environ-

ment using a flight stack developed by the MIT/Draper team for the DARPA Fast

Lightweight Autonomy (FLA) program. The photo-realistic simulation environment

is a mock city rendered via the Unity Game Engine [74]; for the simulation experi-

ments we used ground-truth poses and added Gaussian noise to the bounding boxes

at run-time. On the real flight data, the pose estimates were provided by an external

SAMWISE VIO algorithm [165], which consumed monocular images and measure-

ments from an IMU. For object detection on the real flight, we used the Mobilenet-

SSD network [68, 104] running at roughly 8 Hz. In both flight segments, the vehicles
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Figure 4-5: Median shape error (top row) and position error (bottom row) for base-
line (left column) and ROSHAN (right column) computed using different number of
viewpoints (y-axis) randomly sampled from varying allowed ranges of yaw (x-axis).
For the baseline method, more views from a greater viewpoint range was required to
reduce the error (meters) in both shape and position. However, for ROSHAN, both
errors were small even with less views from limiting viewpoints due to combining
multiple sources of information.
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observed three cars, and did not explicitly orbit the cars.

4.5.1 Implementation details

Each valid bounding box detection was associated to an existing ellipsoid, or triggered

a new landmark creation. Given a new bounding box detection, we filtered out

ellipsoids using the distance between the measured centroid and predicted centroid,

and the best match was chosen using a correlation score between the image hue

and saturation histograms within a detection and those of previous detections; if no

match was found, we initialized a new landmark. To exploit texture information,

we extracted ORB features [147] from the bounding box patches, and used Lucas-

Kanade [107] to track the features, both implementations utilizing the open-source

OpenCV library [18]. While a more sophisticated sparse SLAM system [114] could be

used instead, in this work we used a minimal technique, where a simple triangulation

was performed between two detections of the object; the texture plane was then

fit to the mean depth of the points. We observed that our assumption that all

triangulated points lie on the same tangent plane can be broken here if an object

is oblong and sufficiently rotated; we carefully chose which planes to add to the

graph using metrics such as the variance of the triangulated points and the length

of the baseline. This differs from the experiments in Section 4.4 in that not every

bounding box measurement is accompanied by a fifth plane measurement. As in the

OpenGL simulation experiments, the baseline had improvements in ROSHAN but

did not incorporate the texture plane or the semantic shape prior. As the system was

run online, measurements were sometimes dropped from the measurement buffer; we

present here representative results from both methods.

4.5.2 Results on Simulated and Real Flight

We tested ROSHAN on data collected both in simulation and in the real-world,

qualitatively demonstrating the online capabilities of our approach. For visualization

purposes, in each experiment the objects were overlaid on an overhead image in
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Figure 4-6: Ellipsoids estimated by ROSHAN (red) and the baseline (yellow) drawn
as orthographic projections along with the raw trajectory (black) and ROSHAN es-
timated poses with valid object detections (green). In the photo-realistic simulation
(top), ROSHAN had a lower average position error of 0.84m, compared to the 1.54m
of the baseline. In the real-world experiment (bottom), the origin of the projected
estimates were hand-aligned in 2D to a metrically scaled overhead GPS image for
qualitative analysis only.
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(a) (b) (c)

Figure 4-7: Comparison of the projected ellipsoid estimates of ROSHAN (red) and
the baseline (yellow) implementations onto the images at similar points in the raw test
trajectory for the photo-realistic simulation (top) and the real-world flight (bottom).
The noisy bounding boxes (green) correspond to the baseline run. Projected conics
estimated with ROSHAN better approximated the outline of the cars.

Fig. 4-6. Figure 4-7 shows that given similar measurements2, our approach generates

estimates that better fit the object in question on the image plane. Without semantic

shape information, the baseline often optimized to low-volume ellipsoids that still

satisfied the bounding box constraints. By adding the semantic shape information,

we were able to avoid solutions of unreasonable volumes. These results complement

those obtained in the texture-less OpenGL simulation, showing that by combining

additional geometric information with extra-geometric, class specific priors, ROSHAN

is capable of obtaining better estimates under difficult navigation behaviors.

2As the system was run online, measurements were sometimes stochastically dropped; we present
here representative results from both methods.
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4.6 Limitations

There are several limitations to the work presented in this chapter that may be of

particular interest for future exploration. First, while we do not hand-label data as-

sociations as done in the experiments for QuadricSLAM [118], the objects mapped

in our experiments are relatively well spaced apart and of a single class. Therefore,

our simple data association methods were aggressively tuned to try to limit erroneous

associations, but may struggle in more cluttered scenes where disambiguation is more

difficult (such as when many objects occlude each other). Some methods we have

explored to make this process more robust include learning deep bounding box de-

scriptor spaces [155] and applying traditional patch tracking methods to ensure stable

object tracks in the image-space before estimating objects as ellipsoids [121], but fur-

ther work in improving object-level data association will lead to increasingly robust

object-SLAM systems. Second, we rely on hand-specified object shape priors, which

while suitable for many objects may be more difficult to obtain for unique objects

such as buildings.

4.7 Chapter Summary

We have presented ROSHAN — an ellipsoid-landmark based object-level SLAM sys-

tem that improves estimation quality in the case of vehicle trajectories characterized

by those typical of efficient autonomous navigation by incorporating additional ge-

ometric and semantic information. These improvements are achieved by the intro-

duction of a texture plane factor, which constrains the depth of the landmark by

exploiting texture information, and a prior on object shape that enables fast object

initialization, useful for high-speed vehicle motions. We have shown in an OpenGL

simulation featuring forward-motion that using these extra sources of information

reduced the median errors on shape and position by 83% and 72% respectively, com-

pared to the baseline. Similar improvements were also observed in a photo-realistic

Unity simulation environment, and qualitative results were obtained on a real-world
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dataset, where ROSHAN estimated the shape and the position of cars reasonably

well. Our approach allows for accurate estimates even under challenging camera mo-

tions, and contrary to modern offline methods [146, 118] runs online and can initialize

landmarks from a single detection.

In the continued theme of combining geometric and semantics, our approach for-

mulates a new geometric constraint in addition to introducing a class-based shape

prior. Formulating the extra-geometric information as a shape prior rather than a

hard constraint has two key benefits: first, it biases the geometric optimization to a

reasonable estimate which enables fast landmark initialization. Second, it allows the

shape to be improved as additional geometric measurements are acquired.

Although object-level SLAM is a powerful and general framework, the approach

presented in this chapter is designed with the expectation of multiple measurements

being fused together before reliable estimates are obtained. In the next chapter, we

explore an alternative avenue for 3D object estimation from a single sensor measure-

ment, seeking to lower the latency between detection and estimate.

123



124



Chapter 5

Learning Deep Object Estimation

from Indirect Annotations

5.1 Introduction

In the previous chapter, we discussed a vision-based simultaneous localization and

mapping approach that fuses multiple object-level measurements to build an object-

level map. While fusing a number of measurements can benefit the estimation ac-

curacy and aid with observability issues, the inference process introduces latency

between image registration and estimation. Although methods for single view object

regression exist, they still require an online optimization process (Section 2.2.2). In

this chapter, we leverage deep learning to enable low-latency object-level estimation

from RGB sensors.

As we explored in Chapter 2, deep learning has gained popularity as a method

to exploit offline datasets to reduce latency and enable single-shot 3D object estima-

tion, but generally requires direct annotations or a priori geometric labels that are

typically more difficult to obtain than 2D image-space annotations (Section 2.2.4).

Unlike 2D image-space annotations, such as 2D bounding boxes or pixel-wise segmen-

tation, 3D annotations often require additional infrastructure (Section 2.2.4). This

requirement presents a practical difficulty when attempting to use deep object esti-

mation to provide context for autonomous navigation. Therefore, while deep learning
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approaches have the potential to enable object prediction from a single measurement

by leveraging an offline learning phase, the information required for that learning

process raises the barrier to entry.

In this work, we introduce a novel framework for learned volumetric monocular

estimation (VoluMon) capable of estimating the position, orientation, and size of ob-

jects, while requiring only indirect, image-space annotations on 2D images at training

time instead of detailed geometric models or 3D labels. By approximating object ge-

ometry with ellipsoids, we can exploit differentiable geometric and algebraic relation-

ships between ellipsoids and 2D annotations to enable a weakly supervised learning

process (i.e., supervised via indirect annotations only) and significantly lower the an-

notation burden for deeply learned methods. VoluMon trains a deep neural network

to predict the 3D size and 6D pose of objects using annotated bounding boxes, in-

stance segmentations paired with depth images, or both. VoluMon also encourages

objects of the same class to be similar sizes by penalizing intra-class shape variance.

The core of our approach requires only a bounding box detection and single RGB

image at inference time; obtaining an estimate of the pose and size of an object is

simply a feed-forward pass through the network, rather than an iterative optimiza-

tion process. However, given additional segmented depth information at run-time,

the ellipsoid approximation also allows for object pose estimates from VoluMon to

be further refined without requiring a priori geometric models. An overview of our

approach is given in Figure 5-1.

We demonstrate the advantages of our approach by exploring several variants of

VoluMon depending on the available sensors (i.e., RGB vs. RGB-D) and annotations

(bounding boxes and or instance segmentations) at training time and run time on

subset of the Falling Things Dataset [172]. We show that using only a monocular

sensor at inference time, VoluMon performs similarly to a naive point-cloud based

online ellipsoid estimation approach while requiring less than 1% of the time.1 Given

segmented depth information to further refine pose estimates at inference time, for

some metrics we approach or surpass the performance of a deeply learned 6D object

1Detailed timing results can be found in Table 5.1.
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Figure 5-1: (Top row) VoluMon predicts the 3D object pose and shape from a monoc-
ular image and bounding box detections (green box) by approximating objects as el-
lipsoids (blue mesh). We weakly supervise learning by exploiting two different forms
of 3D ellipsoid representations. (Middle row) The primal form of the ellipsoid pro-
vides a differentiable algebraic metric to fit to 3D points (green points) extracted
from an instance segmentation annotation and depth image. (Bottom row) The dual
form of the ellipsoid provides a differentiable geometric metric for VoluMon to com-
pare annotated bounding boxes from a stereo pair with the projected bounding box
from the ellipsoid estimate. Without requiring an a priori model, VoluMon can also
further refine the estimated ellipsoid parameters online given a pointcloud.

pose algorithm that assumes groundtruth size information.

As the ultimate goal of our work is to lower the annotation and a priori geom-
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Figure 5-2: VoluMon system diagram. Given an image and bounding box, VoluMon
passes the resized contents of the bounding box to the local patch sub-network, and
the resized full image with contents outside of the bounding box set to zero in all chan-
nels to the global image sub-network. Each image and bounding box pair yields one
ellipsoid estimate. Both sub-networks utilize MobilenetV2 as a convolutional feature
extractor that feeds into a series of fully connected layers. To improve generalization
performance, VoluMon predicts the image coordinates of the projected object cen-
troid, the allocentric rotation, and shape parameters from the contents in the region
of interest only, while depth of the centroid of the object is predicted using features
from the global image. The raw output of the network 𝜑 are reconstructed to 𝑞 to
constrain predictions to reasonable ellipsoids. The subscript notation 𝑖 is dropped for
readability.

etry barrier for low-latency deep object estimation, we conduct several additional

experiments. First, we present promising qualitative results on a real-world dataset

of objects without annotated ground-truth pose or size, using only bounding box

annotations from a stereo pair. Second, we extend our base approach to perform

end-to-end detection and 3D objectprediction of seven objects and show preliminary

results that suggest our method can ultimately be made even faster. Finally, we

integrate VoluMon with the planning approach proposed in Chapter 3, and show

an example of how contextual cues provided by VoluMon can inform autonomous

navigation.

5.2 Preliminaries

Similar to the approach described in the previous chapter, VoluMon approximates

3D objects with ellipsoidal volumes parameterized by the orientation 𝑅 ∈ SO(3)

and position 𝑡 ∈ R3 with respect to the sensor viewing the object, as well as the
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size 𝑑 ∈ R3 of the major axes of the ellipsoid2. In particular, we consider two

mathematically convenient forms of the ellipsoidal representation: the dual and the

primal.

As discussed in Chapter 4, the dual form of the ellipsoid defines the infinite set of

planes 𝜋 tangent to the surface of the ellipsoid, i.e., 𝜋𝑇𝑄*𝜋 = 0, where

𝑄* =

⎡⎣𝑅𝐷𝑅𝑇 − 𝑡𝑡𝑇 −𝑡

−𝑡𝑇 −1

⎤⎦ . (5.1)

In contrast, the primal ellipsoid in 3D can be expressed as the set of all ho-

mogeneous points satisfying the implicit algebraic relationship 𝑥𝑇𝑄𝑥 = 0. A naive

approach to obtaining the primal ellipsoid might be to exploit the fact that 𝑄 is equal

to the inverse of 𝑄* if 𝑄* is invertible (up to scale), as given by Hartley and Zisser-

man [60]. However, the inversion of an arbitrary matrix can be difficult to integrate

into conventional optimization algorithms.3 Instead, we derive a simple closed-form

solution for the primal ellipsoid, much as we did for the dual ellipsoid in Section 4.2.1.

A point quadric can be transformed by a transformation matrix 𝑍 as follows [60]:

𝑄 = 𝑍−𝑇 �̆�𝑍−1. (5.2)

We again take 𝑍 to be defined as in Equation 4.2 and for convenience we define �̆�

to be a scaled primal ellipsoid at the origin. As 𝑍 is a homogeneous transformation

matrix, the inverse takes the form [93]:

𝑍−1 =

⎡⎣𝑅𝑇 −𝑅𝑇 𝑡

03
𝑇 1

⎤⎦ . (5.3)

2Note that we have used 𝑑 to denote the minor axes of the ellipsoid in previous chapter.
3It is worth observing that most previous literature that model objects as ellipsoids use either

the primal or dual form in isolation. In Chapter 4, we induce a plane measurement from a set of
surface points, using only the dual form of the ellipsoid. Liao et al. [97] use a pointcloud from a depth
measurement to estimate an initial ellipsoid, but ultimately represent the measurement via bounding
planes in the optimization framework. Hosseinzadeh et al. [66] model points, planes, and quadrics
in a consolidated SLAM framework, with point-plane, plane-plane, quadric-plane constraints, but
not point-quadric constraints.
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To find the representation of a dual ellipsoid with primal size parameters 𝐷, rotation

𝑅, and translation 𝑡 we apply Equation 5.2:

𝑄′ =

⎡⎣ 𝑅 03

−𝑡𝑇𝑅 1

⎤⎦⎡⎣𝐷−1 03

0T
3 −1

⎤⎦⎡⎣𝑅𝑇 −𝑅𝑇 𝑡

0T
3 1

⎤⎦ , (5.4)

yielding

𝑄 =

⎡⎣ 𝐴 −(𝐴)𝑡

−𝑡𝑇 (𝐴) −1 + 𝑡𝑇 (𝐴)𝑡

⎤⎦ , (5.5)

where 𝐴 = 𝑅𝐷−1𝑅𝑇 , and 𝐷 = (diag(𝑑
2
))2.

A strong advantage of approximating objects as ellipsoids, as opposed to other

geometric models such as 3D bounding boxes, is that both the dual and primal forms

provide differentiable relationships between the object and quantities obtained from

image-space annotations paired with sensor measurements, suggesting their suitability

use in deep learning frameworks that are optimized via back-propagation. The dual

ellipsoid form allows for the closed-form calculation of a projected image axis-aligned

2D bounding box induced by an ellipsoid estimate, therefore providing a differentiable

geometric metric with which to compare bounding box detections of an object. The

primal form of the ellipsoid provides a differentiable algebraic metric to measure how

well an observed surface point of an object, which can be obtained from an instance

segmentation and depth image, agrees with an ellipsoid estimate. VoluMon trains

a deep neural network (described in Section 5.3) to predict the parameters 𝑞𝑖 =

(𝑑𝑖,𝑅𝑖, 𝑡𝑖) of an ellipsoid approximation using differentiable measurement functions

derived from the ellipsoid representation (described in Section 5.4).

5.3 Model Overview

VoluMon trains a model (shown in Fig. 5-2) to predict ellipsoid parameters from

images 𝐼 𝑡 : Ω ∈ N2 → R, where Ω is the image pixel domain, and bounding boxes 𝐵,

which are characterized by the pixel locations of the four corners. Let Φ be a neural

network parameterized by 𝛽 that takes as input a set of images ℐ = {𝐼 𝑖}𝐾𝑖=0 and
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bounding boxes ℬ = {𝐵𝑖 ∈ Ω2}𝐾𝑖=0 around the K objects of interest. The network

outputs free parameters 𝜑𝑖 = [𝜑𝑖,𝐷,𝜑𝑖,𝑅,𝜑𝑖,𝑈𝑉 ,𝜑𝑖,𝑍 ] ∈ R10 per object estimate, where

𝜑𝑖,𝐷 ∈ R3, 𝜑𝑖,𝑅 ∈ R4, 𝜑𝑖,𝑈𝑉 ∈ R2, and 𝜑𝑖,𝑍 ∈ R1 are used to reconstruct respectively

the size, rotation, centroid projection, and depth of the object in the camera frame.

To ensure the prediction of valid ellipsoids, we formulate an additional function 𝑓

that maps the outputs of the model Φ to reasonable 𝑞, yielding the relationship

𝑞 = 𝑓(Φ(ℐ,ℬ;𝛽),ℬ), (5.6)

where 𝑞 = {𝑞𝑖}𝐾𝑖=0, and 𝑓 takes as input ℬ to constrain the projection of the centroid

estimate to lie within the detected bounding box in the image frame.

Rather than predict the rotation, shape, and translation of an object from a single

set of shared features, which could be difficult to generalize to arbitrary object loca-

tions, VoluMon splits the prediction of object properties between two decoupled sub-

networks. The local patch sub-network predicts object properties that are indepen-

dent of where in the image the bounding box is located and outputs 𝜑𝑖,𝐷,𝜑𝑖,𝑅,𝜑𝑖,𝑈𝑉

per object, while the global image sub-network helps to estimate global pose proper-

ties and outputs 𝜑𝑖,𝑍 per object. Finally, the mapping from 𝜑 to 𝑞 developed in the

following sections defines the function 𝑓 required by Equation 5.6.

Global Image Sub-Network

The global image sub-network receives the RGB image resized to 224x224 pixels,4

with all channels outside the observed bounding box set to zero with some padding,

and predicts a bounded real number as the “disparity” of the centroid, 𝛿𝑖. The pos-

sible centroid depth is obtained by constraining the raw outputs such that 𝛿𝑖 =

𝛼𝛿sigmoid(𝜑𝑖,𝑍), and letting 𝑡𝑧,𝑖 = 𝑏𝑓/𝛿𝑖, where 𝑓, 𝑏 are set to roughly the focal

length and baseline of the stereo camera, and 𝛼𝛿 is the maximum allowed disparity.

This parameterization seeks to abstract prediction of the centroid depth from camera

parameters.

4We resize to use MobileNet as our feature extractor, and scale the image non-uniformly.
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Local Patch Sub-Network

The local prediction network receives the image in the bounding box, resized to 224×

224 pixels. Rather than allowing for arbitrary object location, VoluMon constrains

the projected centroid to lie within the 2D bounding box. To ensure reasonable 𝑡 and

𝑑, the raw outputs of the network are constrained such that [𝑑𝑖,0, 𝑑𝑖,1, 𝑑𝑖,2] = exp(𝜑𝑖,𝐷),

and [𝑢𝑖, 𝑣𝑖] = sigmoid(𝜑𝑖,𝑈𝑉 ), where exp and sigmoid are applied element-wise. We

then formulate the per-object translation and shape estimates as

𝑡𝑖 = [((𝑢𝑖𝑤𝑖+𝑢𝑚𝑖𝑛,𝑖)−�̄�𝑖)𝑡𝑧,𝑖/𝑓,

((𝑣𝑖ℎ𝑖+𝑣𝑚𝑖𝑛,𝑖)−𝑣𝑖)𝑡𝑧,𝑖/𝑓, 𝑡𝑧,𝑖]

𝑑𝑖 = 𝛼𝑦[𝑑𝑖,0, 𝑑𝑖,0 + 𝑑𝑖,1, 𝑑𝑖,0 + 𝑑𝑖,1 + 𝑑𝑖,2] + 𝜖𝑠,

(5.7)

where 𝑢𝑖, 𝑣𝑖 are the projected centroid coordinates with respect to the image bounding

box edges. Additionally, 𝑤𝑖, ℎ𝑖, 𝑢𝑚𝑖𝑛,𝑖, 𝑣𝑚𝑖𝑛,𝑖, �̄�𝑖, 𝑣𝑖 are the bounding box width, height,

the two coordinates of the lower left corner of the bounding box, and the image center,

respectively. 𝛼𝑦 is a size scaling parameter and 𝜖𝑠 enforces a minimum shape. In an

effort to reduce the optimization space due to the potentially ambiguous relationship

between rotation and shape, Equation 5.7 also constrains the representation of 𝑑 to

learn a shape where each axis is of increasing size.

From the local patch, we also predict the rotation 𝑅𝑣 with respect to the object,

i.e., the allocentric rotation. We constrain the raw output of the network such that

[𝑟𝑖,0, 𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3] =
𝜑𝑖,𝑅

||𝜑𝑖,𝑅||2 , where the left hand vector is interpreted as 𝑅𝑣 in quater-

nion form. Unlike the egocentric (i.e., camera-centric) rotation of the object, previous

works in deeply learned 3D bounding box detection [158, 89] have shown that objects

with similar allocentric (i.e., object-centric) rotations have similar visual appearances

in the local patch. To recover the egocentric rotation 𝑅𝑖 we use a similar transform

as described in [89] using 𝑡 and 𝑅𝑣.
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5.4 Learning Ellipsoid Prediction from Image-Space

Annotations

In this work, rather than assuming a dataset of 3D size and 6D pose annotations,

we rely instead on 2D image-space annotations on RGB and depth images, which we

posit are easier in practice to obtain. We assume in this work images are obtained

from a calibrated stereo pair and that 𝑃 𝐿,𝑃𝑅 ∈ R3𝑥4 are known and constant pro-

jection matrices from world coordinates to the image plane (i.e., includes both the

intrinsics and extrinsics) for the left and right cameras. We futher assume a dataset of

measurements of 𝐾 labelled objects by 𝒢 = {ℐ,ℬ𝐿,ℬ𝑅,𝒮}. ℬ𝐿 and ℬ𝑅 are the set of

bounding box observations from the left images ℐ and right image, respectively. The

set of pixel-wise segmentations 𝒮 = {𝑆𝑘}𝐾𝑘=0 is composed of individual segmentations

𝑆𝑘 : Ω ∈ N2 → {0, 1} that denote whether a pixel in the left image is associated with

the object in question.

From 𝒢, 3D points expected to lie on the surface of the object can also be extracted,

provided accurate depth images. Given a stereo dataset, we assume the existence of

a pre-processing step that calculates a depth image from a left and right image and

uses 𝑃 𝐿 and 𝑆 to return the set of 𝐽𝑘 3D points 𝑋𝑘 = {𝑥𝑘,𝑖}𝐽𝑘𝑗=0 corresponding to the

pixels annotated to be upon the object 𝑘. The respective sets of points for the objects

are then aggregated in 𝒳 = {𝑋𝑘}𝐾𝑘=0. We observe that 𝒳 could also in practice come

from an arbitrary depth sensor aligned with the RGB images.

To optimize the parameters of Equation 5.6, VoluMon leverages two loss functions

given different types of image-space annotation: a loss ℒ𝐷 based on the dual form

given two bounding box measurements of the object from a stereo pair (described

in Section 5.4.1), and a loss ℒ𝑃 based on the primal form given observed points

from the surface of the object from a segmented depth image (described in Section

5.4.2). Intuitively, VoluMon attempts to learn to predict ellipsoid parameters that
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are consistent with observed measurements. The overall loss function is

𝛽* =argmin
𝛽

𝛼𝑃ℒ𝑃 (𝑓(Φ(ℐ,ℬ𝐿;𝛽),ℬ𝐿),𝒳 )

+ 𝛼𝐷ℒ𝐷(𝑓(Φ(ℐ,ℬ𝐿;𝛽),ℬ𝐿),ℬ𝐿,ℬ𝑅)

+ 𝛼𝑆ℒ𝑆(𝑓(Φ(ℐ,ℬ𝐿;𝛽),ℬ𝐿))

(5.8)

where 𝛼𝑃 , 𝛼𝐷, 𝛼𝑆 ≥ 0 are all hand-tuned weighting terms. Equation 5.8 also includes

a regularization term ℒ𝑆 that encourages shape predictions of an object to be similar

(described in Section 5.4.3).

5.4.1 Bounding Boxes and Dual Ellipsoid Optimization

To develop a loss function that allows ellipsoid prediction to be learned from bounding

boxes, we work with the dual ellipsoid representation. 2D bounding box detections

from many state-of-the-art object detection pipelines can be interpreted as measure-

ments of axis-aligned bounding planes for objects approximated as 3D ellipsoids,

where each edge of a bounding box detection projects into a plane in 3D space which

constrains the ellipsoid. As in Chapter 4, to solve for the expected bounding box

measurements given some 𝑄* and camera projection matrix 𝑃 , we first project the

dual ellipsoid to a dual-conic 𝐶 on the image plane:

𝐶* = 𝑃𝑄*𝑃 𝑇 . (5.9)

Solving for axis aligned bounding boxes that satisfy the implicit dual conic function

in Equation 5.9 yields

𝐵𝑢𝑚𝑖𝑛, 𝐵𝑢𝑚𝑎𝑥=
1

𝐶*
3,3

[𝐶*
1,3 ±

√︁
𝐶*

1,3
2 −𝐶*

1,1𝐶
*
3,3 ],

𝐵𝑣𝑚𝑖𝑛, 𝐵𝑣𝑚𝑎𝑥=
1

𝐶*
3,3

[𝐶*
2,3 ±

√︁
𝐶*

2,3
2 −𝐶*

2,2𝐶
*
3,3 ].

(5.10)

Using Equations 5.9 and 5.10, we can form a closed-form, differentiable measure-

ment model �̂� = ℎ(𝑞,𝑃 ) that maps quadric parameters to an expected 2D bound-
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ing box measurement5. For any given ground-truth bounding box 𝐵 and predicted

bounding box �̂�, we define the projection error 𝑒𝑏(𝐵, �̂�) as the sum of squared

differences between the bounding box centroids and dimensions.

A single bounding box measurement is insufficient to fully constrain all parameters

of the ellipsoid representation. In the previous chapter, we explored partially resolving

the measurement ambiguity by triangulating the quantity of interest from multiple

views. In this work, we propose using stereo data at training time to impose projective

consistency, as visualized in the bottom panel of Figure 5-1. Let 𝑄* be defined with

respect to the left camera. The final loss function for using bounding boxes from a

stereo pair to estimate object parameters is then

ℒ𝐷(𝑞,ℬ𝐿,ℬ𝑅) =

1

𝐾

𝐾∑︁
𝑘=0

[𝑒𝑏(𝐵𝐿,𝑘,ℎ(𝑞𝑘,𝑃 𝐿)) + 𝑒𝑏(𝐵𝑅,𝑘,ℎ(𝑞𝑘,𝑃𝑅))],
(5.11)

where we have used the known and constant stereo projection matrices 𝑃 𝐿,𝑃𝑅. Al-

though the bounding box label in the right image is used at training time to calculate

the loss for back-propagation, it is not required at inference time.

5.4.2 3D Points and Primal Ellipsoid Optimization

To specify a loss function for ellipsoid prediction from segmented depth images, we

turn to the primal ellipsoid representation. An algebraic error metric on an observed

surface point 𝑥 can be obtained from implicit algebraic definition of a primal ellipsoid.

In particular, 𝑥𝑄𝑥𝑇 evaluates to strictly less than zero if 𝑥 is inside the ellipsoid,

strictly greater than zero if 𝑥 is outside the ellipsoid, and to zero if and only if the

point 𝑥 lies on the surface of the ellipsoid. An algebraic error metric follows directly:

𝑒𝑠(𝑥, 𝑞) = 𝑒𝑠(𝑥,𝑑,𝑅, 𝑡) =
√︀

𝑑0𝑑1𝑑2(𝑥𝑄𝑥𝑇 )2. (5.12)

5We have reproduced Equation 5.10.
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Similar to other approaches using superquadrics or quadrics [161, 98], an additional

term involving the product of the axes lengths is added to mitigate the bias of fitting

to larger primitive sizes.

Taking the average of Equation 5.12 per object over the entire dataset is then:

ℒ𝑃 (𝑞,𝒳 ) =
𝐾∑︁
𝑘=0

𝐽𝑘∑︁
𝑗=0

𝑒𝑠(𝑥𝑘,𝑗, 𝑞𝑘)

𝐽𝑘𝐾
. (5.13)

The middle panel of Figure 5-1 visualizes an example of an ellipsoid estimate and

points extracted from a pixel-wise segmentation paired with a depth image. Although

auxiliary information of segmentation and depth image are required during training,

they are not required for a feed-forward pass of the network.

5.4.3 Intra-Class Size Consistency Loss

While stereo triangulation provides up to eight bounding edges, the quality of the

triangulation can vary with the stereo baseline and size of the bounding box detection.

Additionally, although ℒ𝑃 relies on depths extracted from a stereo pair, severely self-

occluded views (such as seeing only the front surface of a box) can introduce significant

shape ambiguity. Therefore, to impose additional structure to the optimization, we

introduce an intra-class size consistency loss by penalizing the shape variance with

constant offset 𝜖𝑣:
ℒ𝑆(𝑞) = var({𝑑𝑖,0}𝑘𝑖=0) + var({𝑑𝑖,1}𝑘𝑖=0)

+ var({𝑑𝑖,2}𝑘𝑖=0) + 𝜖𝑣,
(5.14)

where the sets of 𝑑 can be obtained from 𝑞. The size consistency loss can be useful

for object classes that are expected to have similar dimensional characteristics, such

as mass-produced household objects.

5.4.4 Network Training and Post Inference Refinement

VoluMon optimizes network parameters to minimize Equation 5.8 via backpropaga-

tion using the PyTorch implementation of Adam [84]. In practice, we do not calculate
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losses over all 𝐾 objects in the dataset, but optimize over minibatches. At runtime,

we assume that an off-the-shelf object detector such as SSD [104] or YOLO [135] can

be used to provide an initial detection, and prediction is simply a feedfoward pass

through the network.

While VoluMon implicitly learns a regression of object parameters from measure-

ments, ellipsoid parameters may also be regressed directly. Given a segmented depth

image providing a measured pointcloud 𝑋𝑘 and bounding box 𝐵𝑘 at run-time, the

ellipsoid estimate provided by the network can also be used as an initial estimate for

further online optimization. Let 𝜑𝑘 again be free parameters for a given object. We

apply Equation 5.13 to directly update 𝜑𝑘 via gradient descent methods, i.e.,

𝜑*
𝑘 =argmin

𝜑𝑘

ℒ𝑃 (𝑓(𝜑𝑘,𝐵𝑘),𝑋𝑘). (5.15)

Although initial estimates for 𝜑𝑘 may be obtained from 𝑋𝑘, we will show in Section

5.5 that direct online regression can be both slow and inaccurate compared to a

learned model. However, using VoluMon’s learned model to provide an initial estimate

for the regression (similar in spirit to Xiang et al. [186]) enables faster and more

accurate estimates on some metrics. In this work, we choose to update only the pose

components 𝜑𝑘,𝑅,𝜑𝑘,𝑈𝑉 ,𝜑𝑘,𝑍 when using an initial estimate from VoluMon, keeping

𝜑𝑘,𝐷 fixed. The ellipsoid parameters can be reconstructed as 𝑞*𝑘 = 𝑓(𝜑*
𝑘,𝐵𝑘).

5.5 Simulation Experiments

To evaluate the performance of our proposed approach, we investigated the perfor-

mance of several variants of VoluMon compared to two baseline methods on simulated

data with ground-truth annotations.

5.5.1 Methods

We consider four variants of VoluMon in our experiments. In addition to training

on both the bounding box and segmentation annotations (where 𝛼𝐷 = 1, 𝛼𝑃 = 1,
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Figure 5-3: The performance of various variants of VoluMon as well as the two base-
lines are shown for translation error (lower better), ADI (lower better), and 3D bound-
ing box IOU (higher better). Trained on only 2D annotations, VoluMon Primal Only
(blue dashed) performs similarly to an online optimization approach (black) with
respect to translational error without requiring online optimization. After online op-
timization (solid blue) VoluMon approaches or surpasses the performance of DOPE
[173] (red), a deep 6D pose estimation approach, with respect to translational error
and ADI. All ellipsoid-based methods underperform DOPE in the 3D IOU metric,
which is not unexpected, given that DOPE is a 6D optimization assuming known
object dimensions, while the other methods estimate both pose and dimension.

denoted VoluMon Both), we evaluate the performance of the network using bounding

box annotations only (where 𝛼𝐷 = 1, 𝛼𝑃 = 0, denoted VoluMon Dual Only), the

network trained using segmented depth images only (where 𝛼𝐷 = 0, 𝛼𝑃 = 1, denoted
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Figure 5-4: Qualitative results for selected methods. Ellipsoid estimates visualized as
blue meshes. Although VoluMon PostOpt requires less steps of online optimization
compared to Optimize from scratch (100 iterations), the initial pose estimates pro-
vided by VoluMon Primal Only enable VoluMon PostOpt to generate more accurate
estimates of the ellipsoids. Potentially due to shape ambiguities, it can be difficult to
estimate the extents of the object; by keeping the size estimate from VoluMon Primal
Only, VoluMon PostOpt benefits from observations over a dataset to estimate size at
run-time.

VoluMon Primal Only). For training and evaluation purposes, we use ground-truth

bounding box and segmentation annotations as an input to our approach. To evaluate

the performance of VoluMon assuming noisy bounding boxes at run-time, we test

a variant of VoluMon Primal denoted VoluMon Noisy Primal where the test time

input data is obtained from MaskR-CNN trained on the same train test spilt. To

condition the network for noisy bounding boxes at run-time, we add random noise to

ground-truth bounding box input to the network during training, and keep the original

bounding box annotation for loss calculation.6 To ensure only a single detection per

6Adding random noise to the ground-truth bounding box annotations on the fly means that the
network has seen noisy, imperfect bounding boxes at training time. Using the ground-truth bounding
box annotation to calculate the loss ensures that the best possible label is used to fit the estimated
bounding box projections.
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Figure 5-5: Ellipsoid estimates from VoluMon Primal Only visualized as blue bound-
ing boxes, and the estimates from DOPE visualized as red bounding boxes using the
ground-truth object size. VoluMon constrains the projected centroid of the object to
fall within the 2D object bounding box, helping to avoid some failure cases of DOPE,
e.g., top row, right column. Additionally, while VoluMon tends to slightly overesti-
mate the size of the object, many of the estimates appear qualitatively reasonable.

image, we hand-tune for the minimum probability to accept a detection from the

object detector on the test set and keep the highest probability detection. We leave

further study of the interaction between object detector and VoluMon for future

work. We also test a variant of VoluMon (denoted VoluMon PostOpt) where the pose
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estimate of the VoluMon Primal Only network is further refined for 50 optimization

steps as described in Section 5.4.4.

Additionally, we consider a regression only technique (denoted Optimization from

scratch), which optimizes Equation 5.15 without learning, but for both shape and

pose parameters. Rather than use VoluMon to set an initial estimate, we use the

average depth of 100 points sampled from the observed object points as the initial

depth, and assume the projected centroid of the object is in the center of the bounding

box detection. The extents of the segmented pointcloud with respect to the frame of

reference of the camera set the initial shape parameters, and the initial rotation esti-

mate is set to identity. If a valid initial size estimate cannot be obtained, potentially

due to lack of diversity in the points measured or a violation of miniminum size con-

straints, an initial size estimate is approximately set to a sphere of 3 cm in diameter

(the minimum object size). We consider two variants of the regression only technique

with different numbers of optimization iterations, i.e., Optimize from scratch (500

iterations) and Optimize from scratch (50). Both VoluMon PostOpt and Optimize

from scratch approaches sample 300 points once at run-time for the primal loss cal-

culation and use a learning rate of 0.05. Finally, we compare our approach to a deep

6D object pose learning method [173] (DOPE ) that requires the training data to be

annotated with object dimensions and projected 3D bounding box vertices. DOPE

does not require depth images at training time and the results are not further refined

online.

All variants of VoluMon as well as the pure online optimization approach are

implemented in Python using PyTorch [125]. For VoluMon, we set 𝛼𝑆 = 100, 𝛼𝑦 =

10.0, 𝜖𝑠 = 3.0, 𝛼𝛿 = 150, 𝜖𝑣 = 0.1. We train with a batch size of 50 and a learning rate

of 0.00001 for 14000 epochs, resetting the optimizer state halfway through training.

We use open-source code released by Tremblay et al. [173] to train DOPE for 240

epochs, reducing the batch size at train time to 10 to optimize on lower cost GPUs.
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5.5.2 Dataset and Metrics

We test on a subset of the Falling Things Dataset [172], which provides groundtruth

bounding boxes, object pose, and geometry. The Falling Things Dataset is attractive

due to access to ground-truth annotations from simulation, while still being photo-

realistic. The dataset features a wide variety of household objects from the YCB

dataset [22]. Although for these experiments we consider only a single object, in later

experiments we expand to a wider variety of objects. In comparison to datasets for

autonomous cars, the Falling Things Dataset features objects of arbitrary rotation

(rather than assuming objects have only yaw).

We focus on the cracker box object data shown in Figure 5-4, which features three

different environment categories (kitchen, kite, and temple) with four variants in each

yielding a total of twelve different environments with one hundred data points per

camera. Each training sample includes the left RGB image, ground-truth depth im-

age, groundtruth 2D bounding boxes for the left and right images, and segmentation

images for all images. Each image contains a single object instance. For VoluMon,

we filter out data points with bounding boxes extending past the image boundaries,

and withhold one environment from each category kitchen_0, kite_0, temple_0

for the test set, resulting in 1066 datapoints in Cracker Train and 264 datapoints in

Cracker Test. For DOPE, we allow the network to train on all available data and

test on Cracker Test. While training VoluMon, we use built-in PyTorch functions

for random data augmentation, including adding random color jitter to the hue and

saturation and random erasing. In practice, we randomly sample 4 points from the

extracted surface points every epoch to calculate the primal loss.

We report translational prediction performance by comparing the true centroid

of the object to the predicted centroid. Additionally, given true mesh models, we

compare the distance between the mesh vertices {𝑚0...𝑚𝑀} and points on the surface

of the prediction {𝑝0...𝑝𝑁} [64], i.e.,

𝐴𝐷𝐼 =
1

𝑁

𝑁∑︁
𝑗=0

min
𝑖∈𝑀

||𝑚𝑗 − 𝑝𝑖||, (5.16)
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Estimated
Parameters

Train Time
Requirements

Inference Time
Requirements Timing Mean/STD (ms) Translation

AUC
ADI
AUC

3D
IOU

Translation
AUC (NF)

ADI
AUC (NF)

3D
IOU (NF)

VoluMon
PostOpt (50 Iterations)

Left bounding box
Left RGB image
Left segmentation

Depth image

Left bounding box
Left segmentation
Left RGB image

Depth image

15/9 for network
341/3 for optimization

+ detection time (variable)
8.49 8.65 0.52

VoluMon
Dual Only

Left bounding box
Right bounding box

Left RGB image
4.26 6.50 0.19

VoluMon
Primal Only

Left bounding box
Left RGB image
Left segmentation

Depth image

6.05 7.42 0.40

VoluMon
Both

Left bounding box
Right bounding box

Left RGB image
Left segmentation

Depth image

5.80 7.60 0.31

VoluMon Both
Noisy

𝑑,𝑅, 𝑡 Left bounding box
Right bounding box

Left RGB image
Left segmentation

Depth image

Left bounding box
Left RGB Image

15/9 for network
+ detection time (variable)

4.96 7.05 0.28 4.94 7.02 0.27

DOPE 𝑅, 𝑡
Projected cuboid corners

Bounding box size
RGB image

RGB image 220/12 8.02 8.80 0.65 6.71 7.37 0.55

Optimize from scratch
(500 iterations)

3346/17
+ detection time (variable) 6.03 8.85 0.34

Optimize from scratch
(50 iterations)

𝑑,𝑅, 𝑡 None

Left bounding box
Left segmentation
Left RGB image

Depth image 341/3
+ detection time (variable) 6.55 8.03 0.29

Table 5.1: Performance metrics over the various methods, with best performance
bolded and the second best underlined. (NF) indicates when aggregate metrics con-
sider instances when objects are not detected as failure to pass, where for VoluMon we
impose a minimum detection probability from the auxiliary object detector. Timing
results are collected using a GTX 1070Ti. We expect all variants of VoluMon to have
similar run time for a single feed-forward pass of the network, and for the same num-
ber of optimization steps to have similar run times, reporting accordingly. VoluMon
and Optimize from scratch timing results do not include detection and segmentation;
the object detector used to generate test time detections for VoluMon Both Noisy
requires roughly 200 ms per image, but the speed of the object detector can vary
depending on the architecture. Timing results for DOPE include detection and PnP
solving.
where 𝑝𝑖 are interpolated points from the surface of the prediction for the ellipsoid-

based methods, and true mesh model transformed using the estimated parameters for

the supervised method. Although this metric is generally used to compare two known

mesh models [186, 64], we apply it to measure surface fitting performance. Because

DOPE is both a detection and estimation algorithm, we report pass rates where

missed detections are removed entirely from the total number of samples considered,

and pass rates where the missed detections are penalized (denoted NF). We also

report the 3D IOU with groundtruth 3D bounding boxes.

5.5.3 Simulation Experimental Results

We show the pass rate metrics for selected variants of each algorithm in Figure 5-3,

and report area under the curve (AUC) and timing results in Table 5.1. Qualitative
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samples are depicted in Figures 5-4 and 5-5. The AUC metric is calculated using a

naive rectangular integral approximation. On simulated data, VoluMon Primal Only

and VoluMon Both outperform VoluMon Dual with respect to AUC for translation

and ADI. This matches our intuition that while using only two bounding box mea-

surements may struggle to overcome shape and rotation ambiguity for certain objects,

as reflected in the relatively poor ADI performance. However, it is important to note

that VoluMon Dual requires only bounding box annotations from a stereo pair for

training and a single camera at inference time, and yet achieves about 67% the ADI

AUC of the highest performing method in the table. We additionally observe that

training on both the primal and the dual objectives does not yield noticeable perfor-

mance benefits when using groundtruth depth images, motivating using Primal Only

in the post optimization experiments.

Our results also show that a single forward pass through the network of Volu-

Mon Primal Only achieves a higher 3D IOU AUC score as compared to Optimize

from scratch (500 iterations), despite taking less than 1% of the time. Although

all network-only VoluMon variants underperform the pure optimization methods in

terms of ADI, because the ADI metric is the average over the minimum distance from

every true model point to the approximated ellipsoid, it can fail to capture certain

types of shape estimation errors as suggested by the 3D IOU results. As seen in Fig.

5-3, the translation performance of VoluMon Primal Only and Optimize from scratch

(500) are also relatively similar. After applying the same number of further post

optimization to the estimates from VoluMon Primal, VoluMon PostOpt outperforms

Optimize from scratch (500 iterations) on translation AUC by over 40% and on 3D

IOU AUC by over 50%, indicating that the estimates from VoluMon can be useful

initial estimates for downstream algorithms.

Additionally, assuming that pointcloud data is available, VoluMon PostOpt out-

performs DOPE with respect to translation AUC, and approaches the ADI perfor-

mance with an ADI AUC that is 98% of DOPE ’s. We observe that although one of

the contributions of Tremblay et al. [173] is to use large quantities of simulation data,

the performance on our much smaller datasets still enables an approximately 60%
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pass rate for both the 2 centimeter threshold for translation and ADI. By leveraging

the ellipsoid representation and object consistency properties, VoluMon does not re-

quire 3D annotations or a priori geometric models, and can still be further refined

online if additional computation time and segmented depth information is available.

5.6 MIT Desk Experiments

To test the performance of VoluMon on real-world objects, we collected additional

real-world datasets for four objects (a mug, a toy bus, an orange, and a bowl) using

a ZED Mini stereo sensor. An initial set of annotations was generated using Mask

R-CNN pre-trained on COCO, with inaccurate annotations removed in a manual post-

processing step. The networks were trained using bounding box annotations only (i.e.,

VoluMon Dual) on approximately 500 images per object, with a batch size of 25, and

a learning rate of 0.0001 for the mug, orange, and bus, and 0.00001 for the bowl. We

allow a maximum centroid disparity of 300, a minimum size of 3 cm and set a size

scaling factor of 10 cm. As seen in Figure 5-6, without requiring detailed 3D models or

3D annotations, for some objects VoluMon produces qualitatively reasonable pose and

size approximations on withheld evaluation data. We observed greater optimization

instability on real data, and report results from the stable regimes of training. We

also found that in practice, using the bounding box annotations only on real data

generally outperformed other VoluMon variants, and enabled the most reasonable

performance for the majority of objects investigated. This may be due to the noisier

nature of the stereo pointcloud, seen in Figure 5-7c.

The qualitative performance on real-world data demonstrates several key benefits

of our approach. Most importantly, VoluMon can learn qualitatively reasonable esti-

mates of 3D object properties given no 3D annotations. Additionally, because only

2D annotations are required, a 2D object detector also trained on 2D annotations can

be used to generate candidate labels. Although we may expect annotations from a

network such as Mask R-CNN to be less accurate than those generated by a manual

annotation pipeline, our results indicate reasonable qualitative performance. Finally,
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Figure 5-6: Qualitative results from the MIT Desk Dataset. The first and second
columns show projected conics (pink) and bounding boxes (blue) for the left and
right images respectively; the second column visualizes the primal ellipsoid (blue
mesh). While in this case bounding boxes from both the left and right sensor are
used at train time, VoluMon predicts object geometry and pose using only the left
image and bounding box input at run-time.

by using bounding boxes from a stereo pair, VoluMon can optimize multi-view pro-

jective consistency without requiring a separate process to estimate the pose of the

sensor during data collection.

5.7 Experiments in End-to-end Prediction

Although the system design of parallel object detection and estimation networks has

the benefit of the ability to substitute different bounding box detection algorithms,

running two separate neural networks may not be computationally feasible on all

systems. Additionally, the system as outlined in Section 5.3 does not consider class

probabilities of detections, and instead assumes a single network is trained per object
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Figure 5-7: To collect image space annotations on the real-world datasets, we leverage
a pretrained network to annotate bounding boxes (a) and object segmentations (b)
to use with the estimated pointcloud (c), reducing by-hand annotation burden.

and that the classes of detections are accurate. In this section, we briefly discuss

preliminary results in consolidating detection and object estimation for an end-to-

end ellipsoid multi-class estimation pipeline.

5.7.1 End-to-end Detection and 3D Object Estimation

To enable end-to-end detection and ellipsoid estimation, we propose integrating our

weakly supervised ellipsoidal prediction framework with Faster-R-CNN [136], a pop-

ular object detection framework that was previously used in parallel to provide de-

tections. We take the RoI feature vector used to predict class probabilities and 2D

bounding box regression parameters to predict VoluMon free parameters. We imple-

ment an architecture similar to the one visualized in Figure 5-2 except rather than

using MobileNet for feature extraction over the entire image, the RoI features from

Faster-R-CNN are directly passed to both the global and local branches. We remove

the average pooling layer and change the first fully connected layer to have an input

size of 1024. For each RoI, the newly added ellipsoid parameter prediction branch

outputs free parameters for ellipsoid prediction, denoted 𝜑 ∈ R𝑁×10, where 𝑁 is

the number of possible classes and each row of the matrix represents a class-specific

parameter estimate and is denoted 𝜑𝑖. A high-level diagram is given in Figure 5-8.
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Figure 5-8: High-level diagram for end-to-end object detection and prediction net-
work. VoluMon Multi-Class R-CNN is an augmentation of Faster R-CNN [136]. From
a given RoI feature vector, Faster R-CNN estimates the parameters for regressing an
estimated bounding box �̂� and the class probabilities 𝑝. VoluMon Multi-Class R-
CNN appends an additional sub-network to predict a matrix of free parameters from
which ellipsoid estimates can be re-constructed. This extension allows for the network
to concurrently detect objects and predict their 2D image-space bounding boxes, 3D
pose and size, and class probabilities.

The benefits of combining the systems is twofold. First, the overall computational

load can be potentially be reduced as the object detection and ellipsoid estimation

share a feature extractor. Second, because the network is optimizing both the class

probabilities as well as the object properties, we can investigate the utility of using

evolving estimates of class labels during ellipsoid estimation.7 Provided a method of

obtaining a single estimate of the free parameters �̂�, we can then project the expected

free parameters into our valid space of 𝑅,𝐷, 𝑡 using the mapping function 𝑓 :

𝑅,𝐷, 𝑡 = 𝑓(�̂�, ℬ̄), (5.17)

where ℬ̄ is now the estimated bounding box, rather than the ground-truth label.

We consider two methods of obtaining an estimate of the free parameters. First,

we can consider simply indexing the column of 𝜑 corresponding to the ground-truth

label 𝜑𝑔𝑡, i.e., �̂� = 𝜑𝑔𝑡, where �̂�. As an alternative method, we propose calculating

7It is important to distinguish here the difference between label uncertainty in the dataset versus
of the estimator. VoluMon R-CNN Multi-Class still requires a ground-truth dataset with correct
labels, but utilizes its own estimated class probabilities during optimization.
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the expectation over free parameter values as

�̂� = E[𝜑] =
𝑁∑︁
1

𝑝𝑖𝜑𝑖, (5.18)

where �̂� ∈ R10, and 𝑝𝑖 is the predicted probability that the RoI is of class 𝑖. We

observe that the described expectation is over the free parameter space, rather than

the constrained pose and shape space. While Equation 5.18 is simple to implement,

it is not a proper method of rotation averaging. Instead, the expected values of free

parameters are projected onto the space of valid rotations by Equation 5.17. We

leave further analysis of expectation calculation to future work. In the following

experiments, we will refer to the model VoluMon R-CNN Multi-Class Expectation

as the method that substitutes 5.17 into 5.8, and VoluMon R-CNN Multi-Class as

the method where the column of 𝜑 is selected based on the ground truth annotation

during the training stage, similar to the bounding box regression loss function.

5.7.2 Training and Testing

The network was trained end-to-end, by adding the VoluMon loss terms to the ex-

isting Faster-R-CNN loss terms which include a classification loss, a bounding box

regularization loss, and a loss indicating whether the RoI contains an object. In all

variants, loss terms were calculated only for those bounding box detections that have

been associated to ground-truth bounding box annotations, with the exception of the

intra-class variance loss, which was calculated over all object predictions and summed

over all the classes. After applying non-maximal suppression using the 2D detections,

each object detection returned a tuple containing a 2D bounding box, a 3D ellipsoid

estimate, a class and the probability of the object being of the class. The ellipsoid

estimates were then reconstructed from to the column of 𝜑 used corresponding to the

class of the prediction.

To evaluate the proposed extension, we again assumed a dataset of bounding box

annotations on the left and right images of a stereo pair. We included seven objects:
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a cracker box, a mustard bottle, a jello box, a banana, a tuna can, a soup can,

and a sugar box; we trained on 7688 training examples in total. The network was

implemented by modifying the open-source implementation of Faster-RCNN with a

MobileNet backbone provided by PyTorch [125]. We trained using only the dual loss

(scaled by a factor of 0.00001) and intra-class shape variance (scaled by a factor of

10.0). The network was trained using stochastic gradient descent for 750 epochs total

with a training parameter reset at 350 epochs, a learning rate of 0.001, momentum

of 0.9, and a burn in period of 5 epochs where only the original Faster-R-CNN loss

terms were used. We used a batch size of 32, enabled by spreading computation

over 4 GPUs. In practice, we also observed greater sensitivity to the parameters

governing minimum object size and object size scaling when learning to estimate the

sizes for several object classes. Fitting performance improved when the minimum

size and size scaling parameter were set so that the initial network estimates were

smaller than most of the objects in the dataset. The minimum shape was therefore

accordingly set to 𝜖𝑠 = 1 cm and 𝛼𝑦 = 10.

5.7.3 Experimental Results

Our results showed relatively little difference between VoluMon R-CNN Multi-Class

Expectation and VoluMon R-CNN Multi-Class in terms of our metrics of interest,

but the integration of VoluMon into R-CNN leads to computational benefits. The

translation, ADI, and 3D IOU metrics are shown in Figure 5-10 and qualitative ex-

amples on the withheld test data are shown in Figure 5-9. Although the integrated

detection and estimation versions of VoluMon output many object detection and esti-

mate pairs after non-maximal suppression, we exploited the fact that each image had

only one object of interest and took the highest probability object detected in the

image to compare to the single ground-truth object. The AUC for the version that

did not take the expectation over the free parameters was higher for translation and

ADI compared to the method which used the expectation. This may be because the

detection task was relatively simple; each image had only one un-occluded instance

of the object. Using the VoluMon R-CNN Multi-Class Expectation for classes with
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Figure 5-9: Qualitative results using VoluMon R-CNN Multi-Class for detection and
estimation. We trained and tested VoluMon R-CNN variants on a mustard bottle
(a, c), soup can (b), tuna can (d), banana (e), sugar box (f), cracker box (g, h),
and jello box (not pictured). The shape diversity in this dataset was larger than the
cracker box only dataset used to train VoluMon. We observe in particular that the
translation and shape estimates look largely reasonable, but the estimates for rotation
are less accurate. This may be due to the lack of use of the primal, or from taking
the expectation over free parameters instead of in the rotation space.
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Figure 5-10: The performance of VoluMon Multi-Class variants are shown for trans-
lation error (lower better), ADI (lower better), and 3D bounding box IOU (higher
better). Both methods are trained on only 2D annotations and perform similarly over
all metrics pictured.

greater visual class-ambiguity (i.e., different types of cans) or occlusions may outper-

form the baseline version, but we leave this for future work. In terms of timing, to

perform detection and estimation for seven objects, a single query to our VoluMon

R-CNN model took an average of 84 ms, with a standard deviation of 20ms. Although

slower than a single query through VoluMon (which takes an average of 15 ms), the

proposed end-to-end approach both detects and estimates the 3D parameters of 7

object classes, while VoluMon requires a parallel object detection process.

5.8 Object Estimation for Planning

One of the main motivations in this thesis for the development of deep 3D object esti-

mation with a lesser annotation burden is to make online object-level estimation more

accessible for use in downstream processes such as the planning approach described

in Chapter 3. In this section, we investigate the suitability of VoluMon estimates

to inform online planning. We first describe how we train VoluMon to predict the

pose and size of doorways in a simulated office environment (Section 5.8.1). We then

describe how estimates from VoluMon can be used to create and update simple 3D

object-level maps (Section 5.8.2). Finally, we describe a system that uses dense local

geometric maps in addition to object-level maps generated using VoluMon estimates

to predict a sampling distribution, and show that our proposed method results in
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more reasonable trajectories than a baseline method that considers geometry only

(Section 5.8.3).

5.8.1 Data Collection and Training

We trained the Dual-Only variant of VoluMon to predict the pose and size of the

doorways in the simulated office environment. Notably, the primal loss is not valid in

the doorway detection application as the doorway is defined by negative space rather

than measurable surface points. The simulator was built using the Unity render-

ing engine [74], using an office environment prefab [1] scaled to enable comfortable

navigation. To collect the training dataset, a stereo pair with a 2.0 meter baseline

was manually guided to observe doors from many diverse views, and ground-truth

associated bounding box detections provided by the simulator. Door detections with

bounding boxes less than 2000 square pixels, or less than 50 pixels from the edge of

the image boundary were filtered out of the dataset. The VoluMon Dual variant was

trained on 1178 doorway annotations. We observe that due to simulation artifacts,

highly occluded doorways were still detected as in Figure 5-11 both at training time

and test time. Instead of using the pseudo-disparity formulation to project the free

parameters to translation, the translation parameterization was changed to an ab-

solute parameterization, allowing for translation up to 50 meters. We set the shape

parameters as 𝜖𝑠 = 0.1𝑚, 𝛼𝑦 = 0.5. The network was trained with a learning rate

0.00001 and batch size of 10. Qualitative visualizations of performance on the training

data are shown in Figures 5-12 and 5-13.

5.8.2 Building Maps with VoluMon

To generate a map of objects, we implemented a very simple mapping approach.

Qualitative examples of various points in a single mapping run are shown in Figure

5-14. Unlike the subset of the Falling Things Dataset considered, or the MIT Desk

Dataset, there may be several of the same object of interest in the same RGB image

(i.e., if two doors are in view at the same time, as in Figure 5-11c). To associate 3D
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Figure 5-11: Examples of VoluMon estimates in office simulation under autonomous
navigation. Using the ground-truth detections from the simulator (green) and RGB
images, VoluMon predicts 3D ellipsoids visualized as 3D bounding boxes (blue). The
system is monocular only. The system can also handle two bounding box detections
as in (c) by building two separate bounding box and RGB queries.

object detections, the mapping system performed a simple centroid-based distance

check to greedily associate measurements to existing objects in the database, or decide

to instantiate a new entry. New 3D object measurements overwrote previous estimates

in the database. Although we tested in the same environment the training data was

collected in, images were generated by a vehicle navigating autonomously at test time,

rather than a camera being manually moved. A qualitative example of the map built

from VoluMon estimates is shown in Figure 5-14.

5.8.3 Integration Experiment

We integrated the VoluMon-generated maps with the planning approach described in

Chapter 3 to generate high-level global trajectories. 3D ellipsoids were projected to

conics onto a horizontal 2D plane using an orthographic projection, and the conics

were then discretized using the same discretization as the occupancy map8. Dense

local maps were generated from the depth image9 using a 3D sliding local window

approach before being converted to 2D occupancy maps, and the high level trajectory

found by LSD was used to guide a motion-primitive based planning method. Both

the geometric mapping method and motion primitive selection process were tuned

versions of the algorithms presented by Ryll et al. [149]. To predict sampling distri-
8We observe that this projection is a more proper projection than implemented in the real-world

experiments described in Chapter 3.
9For the purposes of obstacle avoidance, a depth image at a lower resolution than the RGB image

proved suitable.
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Figure 5-12: Qualitative examples of performance on the office training dataset. Given
a 2D bounding box and RGB image, VoluMon predicts 3D ellipsoids, visualized as a
3D bounding box (left column) and as a mesh in the pointcloud (right column). The
examples show different viewing angles and distances to the doors; we observe that
due to the bounding boxes coming from simulation, even highly occluded doors as in
the bottom corner can be estimated.
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Figure 5-13: 2D and 3D visualization of VoluMon prediction on office training data.
For a single datapoint in the training dataset, we show (a, top row) the 2D projection
of the ellipsoid as a 3D bounding box, (a, bottom row) the projected conic in magenta
and induced 2D bounding box projection in blue, and (b) the ellipsoid plotted as a blue
mesh in the pointcloud. Although a doorway is defined by negative space, VoluMon
Dual-Only is able to estimate a qualitatively reasonable volume.
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Figure 5-14: Qualitative example of simple mapping using VoluMon estimates. Volu-
Mon estimates plotted as red ellipsoids, and the sliding window 3D occupancy map
shown with white voxels. A 2D projection of the floorplan is visualized on the ground
plane. VoluMon predicts 3D doorway estimates, even in regions where the dense
mapping has little to no information.
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Figure 5-15: Overhead image of VoluMon and LSD integration with exemplar sim-
ulated measurements. In the simulated experiments, the depth image (top left) and
RGB image (bottom left) are used to build a dense geometric occupancy map and
object-level maps respectively. VoluMon lifts the doorway detection (pictured in
green in the RGB image) to 3D, populating the red ellipsoid in the overhead image
(right). LSD plans a trajectory (green) that passes through the doorway by using the
learned sampling distribution which is shown overlaid on an overhead projection of
the environment (teal is high probability, orange is medium probability, and purple is
low probability). In contrast, the blue trajectory shows how a PRM using a uniform
sampling distribution greedily plans through a corner of the room that has not been
densely mapped yet.
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butions, we used the same network that was used to generate results in Chapter 3,

even though the office simulation is not a floorplan from the MIT building system

and therefore likely subtly different. We compared our planner to a PRM using a

uniform sampling distribution and Euclidean search metric.

As we show qualitatively in Figures 5-15 and 5-16, object-level estimates provided

by VoluMon can be used to inform more efficient planning by providing context

to planning. As seen in Figure 5-15, given an RGB image and 2D detection of a

door, VoluMon estimates the doorway as a 3D ellipsoid, which the learned sampling

distribution predicts to be likely to lie on the optimal trajectory to the goal. As

shown in Figure 5-16, the naive planner planned through an unobserved wall, while

our proposed planner used the contextual information provided by VoluMon to bias

trajectories through the doorway. Importantly, VoluMon provided useful 3D object

estimation from a monocular sensor despite being trained only on 2D bounding boxes

from a stereo pair.10

5.9 Limitations

The experiments presented in this chapter have several limitations. First, while we

have presented evidence of the suitability of our approach when there is more than

a single object in the camera image (Figure 5-11c), we have relied on un-occluded

objects. In principle, if 2D bounding boxes can still be properly annotated the dual

loss may still be used. However, under heavily occluded examples the weighted primal

loss will be biased to underestimating the size of the object, as it will attempt to fit a

subset of the points that would be observed if the object were not occluded. Second,

like most learning algorithms, hyper-parameter tuning still plays a significant role in

performance. In particular, although the network is not given a ground-truth size

10Notably, this experiment demonstrated the potential benefits of incorporating semantics as a
prior rather than a constraint. The object-level maps built in the office simulation environment
had only doorway information, in contrast to the types of semantic maps the sampling distribution
prediction network was trained on in Chapter 3. Furthermore, unlike the maps the learned sampling
distribution network was trained on, the test environment was not a building from the MIT campus.
Despite the novelty in semantic map configurations and dense geometry, in this example our approach
still found a more reasonable plan than a planner that considered geometry only.

159



Figure 5-16: Qualitative 3D view of a single planning query comparing our approach
to a naive approach. In this figure, the blue trajectory is generated with a PRM
using a uniform sampling distribution and Euclidean search metric, which does not
consider semantic information in finding the shortest path global plan and therefore
plans through an as of yet unobserved corner of the room. In contrast, our method,
which is shown by the green trajectory, uses VoluMon to estimate the 3D parameters
of the doorway to inform our learned sampling distributions approach. LSD plans
through the doorway, rather than naively and optimistically planning through the
corner of the room.

160



for objects, the minimum object size, object size scaling parameter, and scaling of

the intra-class variance cost are hand-set. Third, we have considered objects where

the dimension is consistent between train and test time. While we expect the intra-

class variance penalty to prove useful in practice when there is size diversity, we leave

further exploration to future work. Finally, our representation is tested and trained

with data from the same sensor. Although care has been taken to parameterize the

objects using camera parameters where possible, further investigation is required to

enable successfully training and testing on cameras with different characteristics.

5.10 Chapter Summary

We have presented VoluMon, a novel method for weakly supervised monocular object

estimation. VoluMon leverages the ellipsoid representation to train a neural network

to predict the parameters of a bounding ellipsoidal volume for an object. It does so by

using both the primal and dual forms of the ellipsoid to enable weak supervision based

on image space annotations. Additionally, intra-class size is regularized to further

constrain the optimization. We have shown promising quantitative and qualitative

results on synthetic data.

We also demonstrated the utility of VoluMon to provide object-level context to

LSD. Although this result is qualitative, we believe it provides compelling evidence

that the object-level estimates can be used. Although the general performance of

the integration could be improved by re-training the LSD network in floorplans more

similar to the simulated office environment, the results also suggest that navigation

behaviors conditioned on object-level abstractions can be powerful tools for general-

ization. Additionally, because our planning and estimation systems are not tightly

coupled, as further improvements are made to the subsystems they can be incorpo-

rated with relative ease.
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Chapter 6

Conclusions and Future Work

In this thesis, we presented a collection of novel approaches aimed at improving the

efficiency of autonomous navigation in novel environments. To mitigate the effects

of geometric ambiguity, we introduced object-level abstractions to complement dense

geometric representations. We made contributions along two main thrusts: navigation

and estimation. Our contributions were made with an appreciation that the object

estimation process can inform autonomous navigation, but that efficient navigation

presents challenging measurement constraints on the object estimation processes. In

each case, we combined both geometric and extra-geometric information, building cost

functions and priors that can guide optimization when the lack of detailed geometry

results in ambiguity.

In Chapter 3, we presented a novel method for planning in unknown environments

by leveraging both traditional dense geometric representations and object-level maps.

Using expert trajectories, we trained a deep neural network to predict a sampling

distribution from a hybrid representation containing a partial occupancy map as

well as a partial object-level map. The partial occupancy map was built online,

tracking occupied, unoccupied, and unobserved space. The object-level map was also

assumed to be built online, and provided the pose, size, and class of a list of objects

built from object detections. Our learned sampling distribution exploits both dense

geometry and extra-geometric representations to guide the graph building of a SBMP

(in our case a PRM) to be more sample efficient than the canonical uniform sampling
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distribution. Our proposed approach found more efficient trajectories in terms of

total distance travelled in some environments in a simulated environment.

In Chapter 4, we improved object-level SLAM with ellipsoid representations to

better support the camera motions induced by efficient autonomous navigation. Our

key observation was to formulate additional measurements of the ellipsoid represen-

tation from RGB images. To augment the bounding box measurements proposed by

the state of the art approach, we formulated an additional geometric 3D plane mea-

surement inferred from texture on the object. To further constrain estimates under

limited views, we also incorporated a shape prior based on semantic class, effectively

leveraging the extra-geometric information to impose a geometric prior. We demon-

strated in simulation that our approach enabled more accurate estimates compared

to a baseline approach that did not use texture or semantic information. Finally, we

showed qualitative examples of performance on both real and simulated data collected

from a quadrotor.

In Chapter 5, we proposed a novel weakly-supervised learning approach for 3D

object estimation that predicts object properties from a single RGB image. We

proposed representing objects as ellipsoids and exploiting two mathematical forms of

the ellipsoid representation to estimate the position, rotation, and size of objects using

indirect image-space annotations, such as 2D bounding boxes from a stereo pair or

2D instance segmentation paired with a depth image. To further mitigate geometric

ambiguity we introduced a cost function that penalized intra-class shape variance,

using the intuition that for some objects, the size of the objects varies very little. Using

both geometric and semantic information, we showed our approach enabled much

faster prediction than an online regression method, and after further online refinement

performed similarly to a deep 6D pose estimation technique that assumes known

object sizes. We also showed promising qualitative results on a real-world dataset

without access to ground-truth, and on an extension to our approach that enables end-

to-end detection and estimation over several object classes. Finally, we demonstrated

via a qualitative experiment that the estimates from our weakly supervised deep

learning method could inform the planning method outlined in Chapter 3.
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Together, our contributions demonstrate that combining semantics information

and geometric information can tractably improve navigation and estimation.

6.1 Future Work: Efficient Autonomous Navigation

In Chapter 3, we observed that while our learned sampling distribution improved

computational efficiency statistics compared to a uniform sampling strategy in all

scenarios considered, it did not notably improve overall distance travelled statistics

for the trials where the robot begins indoors and the goal is outdoors. One of the key

difficulties in the indoor to outdoor navigation task is a relatively sparse semantic

signal that may not always be present; only doors that lead outdoors can be expected

to have an exit sign near them. In such a case, our intuition is that semantic search is

more useful than naively extending geometric coverage. Additionally, although Figure

3-5 clearly demonstrates that the learned distribution can predict that regions near

exit signs are important for navigation when the goal is outdoors. But, when the goal

is in the opposite direction of the high probability regions it may still be difficult for

the edge weighting to overcome the geometric bias of the location of the goal. This

phenomenon is likely especially true when a relevant decision a small proportion of

the total trajectory. This was a phenomenon we observed in several environments,

including the integration presented in Section 5.8.

These observations bring us to a larger point about the staging of navigation de-

cisions. One compelling way to enable such a capability is to introduce hierarchical

structure, i.e., by choosing higher-level actions such as sub-goals. Oftentimes, hierar-

chical abstractions are used to lower planning latency in large problems. For example,

Stadler et al. [162] use two levels of map discretization to improve planning speeds.

However, in Section 2.1.4 we presented several methods using geometry and seman-

tics for sub-goal prediction to improve overall distances travelled. One could envision

extending our work to learn sampling distributions at several different discretiza-

tion levels, or using the hybrid geometric-semantic maps to predict sub-goals for our

approach. Continuing to use learned sampling distributions in such systems could
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potentially continue to provide computational focus. A key challenge in pursuing this

extension is defining the relationships between the different levels of abstraction, as

well as maintaining computational tractability for real-time navigation.

6.2 Future Work: Object-Level Estimation

In Chapters 4 and 5, we presented two methods for enabling object-level estimation,

with different benefits. The approach in Chapter 4 synthesizes many measurements

over time to estimate object geometry, while the approach described in Chapter 5

estimates object geometry from a measurement from a single point in time. While the

lower latency can be useful for navigation, representations fused over time are often

more robust and stable. An intriguing future direction for object-level estimation

is task-driven estimation, tailored for navigation. If the learning problem presented

in Chapter 3 could be further factored to provide distributions over which objects

are pertinent to the estimation task at hand, or object sensitivities on navigation

estimated, different estimation techniques could be brought to bear. For example, it

may be useful to estimate more precisely the geometry of a doorway that the robot

intends to travel through, rather than doorways that are not of immediate importance.

The methods we have proposed have also focused primarily on estimating the

approximate geometric model of objects. However, object texture and appearance

can also have semantic import that can effect navigation. Numbered doorway signs

are an excellent example of semantic information that cannot as easily be reasoned

over in our frameworks (as opposed to exit signs, for example). Estimating the object

texture of approximate geometric models may require the use of more sophisticated

models such as general quadrics or superquadrics, rather than only ellipsoids.
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6.3 Future Work: Combining Semantics and Geom-

etry

In this thesis, we have shown how semantics can provide context when detailed ge-

ometric information has not been acquired yet. In this section, we outline potential

opportunities including re-incorporating geometric information and considering how

object classes effect the future state of the world.

First, it would be useful to consider how further geometric information could

be re-introduced to approaches that have begun to exploit semantic information.

Combining unsupervised depth prediction [57] with VoluMon may enable discarding

the requirement for depth images even at training time. The reliable range of depth

images on commodity RGB-D depth sensors can be limited, which in part motivated

the development of object-level SLAM approaches using bounding box detections.

However, we have shown in this thesis that both coarse semantic priors (i.e., intra-

class shape variance, class shape priors) can improve early estimation until higher-

fidelty geometric information can be obtained. Following this trend, future approaches

to object-level SLAM with ellipsoid representations may consider using an approach

such as the one presented in Chapter 5 to provide initial estimates, the approach

presented Chapter in 4 to incorporate lightweight bounding boxes online, and depth

measurements to further improve object estimates when the objects are in range of

dense geometric sensors.

Additionally, in this thesis we have considered the world to be a static environment.

Dynamic environments introduce computational complexity as the hypothesis space

increases quite quickly even when simply introducing velocity states. However, as

several of the approaches described in Section 2.1.4 demonstrate, dynamics such as

human motion can also imply future states of the world beyond simply the state

of the human (i.e., the future state of doors, etc). Key areas of investigation will

be efficiently estimating velocity, inferring the implications of semantic context on

navigation, and incorporating future states of a dynamic world in planning. Object-

level abstractions are beginning to prove useful in dynamic world modelling [62], just
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as they did in reconstruction. Capturing the effects of dynamic semantic objects on

navigation may also be well served by learned sampling distributions, given a more

sophisticated planning approach that considers temporal structure.
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