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ABSTRACT

A catchment evolution and channel network growth model is presented.
Elevations within the catchment are simulated by a sediment transport continuity
equation applied over geologic time. Sediment transport may by modelled by both
fluvial (e.g. Einstein—Brown) and mass movement (e.g. creep and landsliding)
mechanisms. An explicit differentiation between the channel and the hillslope is
made with different transport processes in each regime. The growth of the channel
network is governed by a physically based threshold, which is nonlinearly dependent
on discharge and slope and thus governed by hillslope form. Hillslopes and the
growing channel network interact through the different sediment transport processes
and ltlhe preferred drainage to the channels to produce the long term form of the
catchment.

General requirements for network formation in physically based models are
examined by use of a previously reported leaf vein growth model. Elements of chaos
were discovered that result in apparently random networks being generated. It was
argued that this is also true for the catchment and connections with topologically
random networks were provided.

Synthetic catchments were simulated using a nur.erical implementation of
the model and statistics for the catchments are analyzed. Drainage density and
elevation characteristics are correlated with nondimensional numbers arising from a
nondimensionalization of the governing equations. These nondimensional numbers
parameterize rates of tectonic uplift, sediment transport, both in the channel and
the hilislope, channel growth, and resistance to channelization. Runoff rate,
erodability and flood frequencies arise explicitly in these numbers. A fundamental
measure of catchment dissection based on one of the nondimensional numbers is
proposed. It follows that drainage density and hilislope length are dependent, in a
well defined way, on runoff rate, slopes and catchment erodability.

Simulation results are compared with reported field data and small scale
experimental catchment evolution studies and found to be consistent. A linear
log—log relationship between channel slope and area, observed in the field, is also
ooserved in the simulation data at dynamic equilibrium. An explanation based on
model physics is proposed, a central feature being the balance between tectonic
uplift and fluvial erosion at dynamic equilibrium. This explanation also accounts
for observed deviations from the linear log—log relationship where slopes are reduced
for small areas; these small areas are dominated by diffusive transport processes in
the hillslope. The channelization threshold based on discharge and slope is
compared with recently reported data of hillslope slopes and contributing areas at



channel heads; the threshold is consistent with the field data.

Observed differences between hypsometric curves, previously attributed to
catchment age, are found to result from differences in the tectonic uplift regime. A
scheme for landscape classiiication, based on the nondimensional numbers, is
proposed which is more consistent with the governing physical processes than
previous work. A one—dimensional advection—diffusion reformulation of the
sediment transport equation is proposed that predicts rates of hillslope retreat and
hillslope degradation, and provides a link to observed hillslope transport
mechanisms.

Thesis Supervisor: - Dr. Rafael L. Bras

Title: Professor of Civil Engineering
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CHAPTER 1
INTRCDUCTION

1.1 The Scope of this Work

For many years hydrologists and geomorphologists have been fascinated by
questions about catchment form. Why is it that channels form branched networks
reminiscent of blood veins, leaf veins, plant roots, and branches? Why is it that the
hillslopes adopt the form they do, draining directly to the channels with characteristic
patterns of runoff distribution? How do those properties interact with the hydrelogic
response of the catchment?. It is to these types of questions that this work is
addressed.

That networks occur in many different physical settings suggests that the
processes that create them should bear qualitative similarities that go beyond the
details of the specific physics. One of the first tasks of this work is to understand the
qualitative processes that govern the development of networks from initially uniform
conditions.

From an understanding of the qualitative processes the goal is then to develop a
quantitative understanding of how channel networks and hilislopes evolve with time.
Through a quantitative understanding of the evolution process general statements may
be made about the catchment form and hydrologic response at any point in time.
Catchment form is then seen in the context of the complete history of erosional
development of the catchment leading up to the present time.

The quantitative understanding of catchment evolution processes and their
effect on catchment form are the main thrusts of this work. Using a model of erosion
processes that has been theoretically and experimentally verified at small scales,
together with a physically based conceptualization of the channel growth process, a

large scale model of catchment evolution involving channel network growth and
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elevation cvolution has been developed. Insights into the importance of catchment
scale interactions to overall catchment form are developed through the incorporation of
large scale interactions between the extending channel network and the suhsequently
evolving hillslopes . It will be shown that neither the properties of the channel
network nor the properties of the hiilslopes can be viewed in isolation but must be
viewed as components of a complicated large scale nonlinear system; the drainage
basin.

Using a nondimensionalization of the physical equations a number of
nondimensional numbers that govern catchment form are proposed. These numbers
are dependent upon such physical inputs such as climate and geological conditions.
The basic tenet ol the work is that it is necessary to understand the physics of the
catchment processes to be able to fully understand the catchment form. The intention
is to “... identify linked process equations and so define geomorphological systems in
such a way that an analytical, predictive approach can be used ...” (p 48, Huggett,
1988). It is not claimed, nor was it intended, that the proposed model accounts for all
the processes occurring in the catchment. Rather a general model framework is
presented which is both physically realistic and provides a vehicie by which the
important interactions within the catchment can be examined.

There exists very little data at the basin scale with which a large scale model of
the kind proposed here can be completely verified. There exists channel network data
with which to verify, by themselves, the generated channel networks. There also
exists, independently of these data, hillslope data with which to verify the generated
hillslopes. Such comparisons of the individual components are successfully made.
Some of the limited data that geomorphologists have collected at the basin scale is
reinterpreted and alternative explanations for observed trends are offered which are
consistent with the presented model.

In summary, the guiding philosophy of this work is to develop a physicaliy
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based model at the basin scale that incorporates the important interactions, with time,
between the two domains of the catchment; the channel network and the contributing

hillslopes.

1.2 Report Outline

This report can be broadly divided into three main sections, each section
consisting of several chapters.

The first section is a literature review and analysis of previous work regarding
network generation models. Chapter 2 presents a review of channel network and
hillslope statistics and models. Chapter 3 briefly reviews physically based network
models from outside of the hydrology and geomorphology literature. One particular
nonhydrologic model, a model of leaf veins in leaves, is analyzed in detail in Chapter 4
50 as to understand the processes that govern network form and growth.

The second section of this report consists of the development of the physically
based channel network model. Chapter 5 presents the governing equations and
provides a justification of the physics adopted. A nondimensionalization of these
equations is presented in Chapter 6 and some of the geomorphological implications are
explored. Appendix A details the numerical solution technique for the governing
equations. Appendix B presents a reformulation of the sediment transport equations
used in the model and compares this new formulation with other work. Appendix C
derives the equations describing the sediment transport and channel initiation
mechanisms in greater detail than does Chapter 5.

The third section of this report is devoted to the analysis of the channel
networks and catchments simulated by this model. Chapter 7 presents an analysis of
simulation results and correlates these results with the physics adopted in the model.
Chapter 8 compares three sets of field data with results obtained from the simulations.

Appendix D gives the complete set of simulations performed and their corresponding

17




parameter set.

Chapter 9 summarizes this work and suggests further avenues for research.
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CHAPTER 2
EMPIRICALLY AND PHYSICALLY BASED CATCHMENT MODELS

2.1 Introduciion

This chapter will summarize research related to the description of channel
networks and hillslopes. A prodigious amount of work has been done in this area.
Only that work that has relevance to the interpretation and analysis of the catchment
simulations, that form the bulk of the results of this work, will be introduced here. A
more comprehensive treatment of channel network properties can be found in
Abrahams (1984).

Historically researchers have examined the channel networks within
catchments, and the hillslopes that contribute to these channels, separately. Work has
been reported on the form of the channel networks within the catchment independently
of the hillslopes. In a complementary fashion work has been reported in the form of
the hillslopes independently of the form of the channel network. This distinction is
artificial but has been forced by the complexity of the interaction between the regimes.

The treatment in this chapter will reflect this disparate research heritage. The
first half of the chapter details work on the nature and form of channel networks. The
second half of the chapter details work on the nature and form of the hillslope. A short
section at the end discusses some of the problems of parameterizing the interaction
between the two regimes. There is also a natural distinction between that work that
simply describes the catchment form at a given time and that which attempts to
describe how the catchment evolves to a particular form at a given time. Hence each
section on channel networks and hillslopes has been divided between that work that
describes the catchment characteristics independently of time, and that work that
explicitly addresses catchment evolution. The description of the time dependent

physical characteristics and the processes that control them is very important. These
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processes are at the heart of the physically based catchment model described in

Chapter 5.

2.2 Models of Channel Characteristics
2.2.i Descriptive, Time Independent Channel Models
2.2.1.1 Ordering Models

The most outstanding characteristic of the drainage channels in a catchment is
that they form a tree—like network. Proceeding upstream from the basin outlet, each
channel bifurcates into two smaller streams, each of these streams breaks into two
smaller streams, etc., until the upper reaches of the network are reached and the
channels terminate. An alternative, equally valid, view is that as you proceed
downstream, channels merge, two at a time, until the catchment outlet is reached. In’
topology nomenclature the channel network forms a J (i.e., binary) tree; each
bifurcation produces two branches.

The ordering models can be classified into two kinds: those that apply their
hierarchy from downstream in the upstream direction, and those that apply it from the
upstream source areas in a downstream direction. The former ha.vé generally been
unsucecnssful and will be briefly discussed first.

Gravelius in 1914 proposed a system (Figure 2.1) where the channel at the hasin
outlet is assigned an order of . The classification proceeds upstream. At the (irst
bifurcation upstream the minor stream is assigned an order of 2 and main stream
upstream of the bifurcation continues with order 1. In any general stream of order (i)
at the next upstream bifurcation the minor stream is assigned an order of (i+1) and
the major stream an order of (i). The selection of which stream is major and which is
minor i8 subjective. The main problem with Gravelius classification scheme is that
source streams will have different orders, depending upon their topological position in

the network. This is contrary to experimental evidence which points towards source
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streams having similar characteristics. In addition, if two nested catchments are
analyzed, then the same link in the field will have a different order depending upon
which of the nested catchments is being analyzed. Thus conditions downstream
evidently have an effect on the ordering sysiem in the upstream reaches. This ordering
scheme is thus unsatisfactory.

Horton (1945) took a fundamentally different approach to stream ordering. He
ordered his streams beginning at the sources proceeding downstream. This idea
underpins all contemporary network ordering schemes. As with Gravelius, Horton
makes a distinction between main streams and tributary streams. Proceeding
upstream on a stream of order (i), the mainstream upstream of the bifurcation is
assigned the order (i) and the tributary stream order (i—1). The order of a tributary
stream that is also a source (i.e., it terminates rather than bifurcates), is assigned an
order of 1. The Horton scheme has the same failings as the the Gravelius scheme.
Firstly, the distinction between main and tributary streams is subjective. Secondly,
for two nested catchments, it is possible for a given stream in the field to be assigned a
different order, depending upon the network topology downstream of that stream.

Strahler (1964) proposed an ordering scheme that removed many of the
inconsistencies inherent in the Horton scheme. Zavoianu (1985) claims a Soviet
researcher, B. Panos, proposed essentially the same scheme in 1948. In the scheme all
source links are assigned an order of 1. When two links of the same order (i) merge,
the downstream link is assigned an order one higher (i+1). When two links of unequal
order merge, the order assigned to the link downstream is that of the higher order
upstream link. Essentially the lower order link 3 topological contribution to the higher
order link is ignored. However, the contribution is reflected in the physical properties
of the streams that are correlated with order.

The most important channel network properties described by Strahler statistics

are listed in Table 2.1. Typical ranges observed for these statistics are also listed.
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TABLE 2.1
Observed Strahler Statistics

Statistic Deﬂnition* Observed Range
Ny (1) , 47(3)
Bifurcation Ratio Ry, = g— a.79(1) 4,87
i+1
5.74 « 1.2(1)
4.92 + 0.8(1)
3-5(2)
2 —6(4)
Lin (2)
Stream Length Ratio Ry=—— 21-29
1
9.37(1)
A (1)
Area Ratio RA = T 4.3 —-6.9
1
Stream Slope Ratio Rg = i 1.86(1)
Si+1
1.44 — 3.46(1)
*
i = order

Ni = total number of streams order i;

L, = average length of all order i streams;
S; = average slope of all order i streams;
Ai = mean area at downstream end of all order i streams

(I)Zavoianu (1985);(2)Strahler (1964);(3)Schumm (1956)

(4)shreve (1966) -

23




Many researchers have claimed that these ratios are independent of order i for any
given catchment. Others have ciaimed that they should be invariant over all
catchments and all orders. Shreve (1966), using topologically distinct random
networks (see Section 2.2.1.2), showed that the value of the bifurcation ratio is
constrained by topological arrangement of a branched network. Small sample sizes and
systematic effects have made it impossible to statistically validate these claims.

Shreve (1966) and Smart (1967) noted a slight decrease in the bifurcation ratio
with order. Tokunaga (1978) introduced a new stream number law, based on scale
invariance of network topology, that predicts such a trend in bifurcation ratio. This
new scheme has conceptual advantages when examining channe! network growth, a
central purpose of this work.

Tokunaga adopts the Strahler ordering scheme but abandons the stream
number law based on bifurcation ratio. Instead he describes the ratios of numbers of
lower order streams (i.e., (i-1), (i—2), ...) flowing laterally into the higher order stream

of order (i). These ratios are assumed constant irrespective of order. These ratios are

6 = i€ (2.1)

€y = &_or EtC, for all orders (i).

where i = order
i€; = average number of streams of order j flowing laterally into a
single stream of order i.
The ratios €] €9y ... ATE considered to be independent of order. Tokunaga
defines a second statistics K, that relates these ratios so that

€

€
K=—=£—=_,,=

1 "2

1 (

Al
+

o

&

A
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The statistic K is also considered to be independent of order. Tokunaga (1978)
shows that the assumption of K and ¢, independent of order is inconsistent with the
bifurcation ratio being independent of order. As will be shown below the effect on
bifurcation ratio is, for practical purposes, insignificant, but the conceptual value of
the Tokunaga stream number scaling will be seen to be important later.

An outline of the nonstationary bifurcation ratio result follows. For a basin of

order A, the average number of streams of order A is given by (Tokunaga, 1978)

’\t—“)‘_l
- P
Q-P

’\t"\‘“l A —A—1

Q(2+e1—-P)+P" (2+£l)
(2.3)

N(AA,) = &

where

p 2+61+K—-J(2+61+K)2—8K
- 2

. 2+ ¢+ K+{(2+¢+K?*-8K
= 2

Thus the bifurcation ratio for streams of order (A1) flowing into stream of

order X in a basin of order )\t is

NTGX)

Ry (A—A) =

(2.4)
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Substituting Equation (2.3) into Equation (2.4) yields the following expression

for the bifurcation ratio

Alg 1] ]

Ry(Ag=A) = [8‘] [‘ + [g] T

where

Bl

L _th]

Tokunaga shows that the only case where the bifurcation ratio is constant is
when A = 0. This is possible only in the case of K = 0 and 6+0;a degenerate case
that Tokunaga calls, for obscure reasons, ‘Structurally Hortonian networks”.
Additionally, it may be noted that Q > P so that the bifurcation ratio increases with
increasing (,\t—)\). The asymptotic result for bifurcation ratio as (At—/\) tends to

infinity is

lim  Ry(A-))  =-%-
(AA) a
= oK2 . 2 _
=2K2 -1+ 2K, { K> — | (2.6)
where
K, =
v 8K
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A plot of this asymptotic bifurcation ratio versus values of K ¢ is given in Figure
2.2. Tokunaga shows that the parameter values K = 2, 6= 1 correspond to the most
probable networks for Shreve 8 topologicaily distinct random networks (see section
2.2.1.2). The asymptotic bifurcation ratio in this case is Rb(oo) = 4. This point is
plotted on Figure 2.2. In addition, in Figure 2.3 the variation of bifurcation ratio with
(A;—1) is plotted (with parameters K = 2, ¢ = 1). It is apparent that the variation of
Rb with order is small, particularly in comparison with possible variations in K and €
Trends in Ry with order are likely to be difficult to distinguish from normal random
variations.

As previously noted, the main advantage of the Tokunaga scaling hypothesis is
that it characterizes networks with the order independent parameters K and € and
that it solves a fundamental scaling problem with the bifurcation ratio which becomes
apparent when describing growing channel networks. A more detailed consideration of
the advantages of the K, g statistics over the Rb statistic will be provided in Section
2.2.2, where the temporal aspects of channel network growth will be considered.

Finally, Tarboton, et al. (1988), have, using fractal arguments, postulated a
relationship between the Strahler bifurcation and length ratios for space filling

networks. They assert that
2

This result is only true asymptotically as the order of the catchment approaches

infinity. Thus this result is not inconsistent with the Tokunaga scaling hypothesis.

2.2.1.2 Topologically Distinct Random Networks

Complementary to the classification of networks by order is the classification of
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Figure 2.2: Variation of the bifurcation ratio
for an infinite catchment using
Tokunaga's number law

3 Tokunaga Parameters
K=2
a=1

Ri(A-D)

A—A

Figure 2.3: Variation of the bifurcation ratio
with catchment order using the
Tokunaga number law
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networks by magnitude. Magnitude is typically discussed in the context of
topologically distinct random networks (TDRN), first discussed by Shreve (1966, 1967,
1969) and further developed by other researchers (e.g., Mock, 1971). The concept of
magnitude will be discussed first.

The idea of link magnitude is similar to that of Strahler order (Figure 2.1). A
link is defined as that iength of stream between two bifurcations. Each source link is
assigned 2 magnitude of 1. Each downstream link is assigned a magnitude equal to the
sum of the magnitudes of its upstream tributary links. A link 8 magnitude can then be
interpreted as the number of source links contributing to that link. The total number
of links, n, in a network is related to the magnitude of the highest magnitude link, m,
by n = 2m-1. |

Shreve (1967) distinguished between source links and all other links. Source
links are called ‘exterior links”, all other links “interior links”. Shreve (1969), using
blue lines from 1:24000 topographic maps, observed a significant difference in the mean
length of interior and exterior links. Shreve (1974) presents data for Eastern Kentucky
that shows mean interior and exterior link lengths to be approximately equal. Using
digital elevation data Tarboton (unpublished data) analyzed a number of catchments
in the United States and found that mean link lengths for interior and exterior links
were not significantly different.

Mock (1971) further differentiated link types. Two types of exterior links were
defined:

1. Sciiice link: A link draining into a link downstream of magnitude 2.

2. Tributary source link: A link draining into a link downstream of
magnitude greater than 2. In this case the other stream merging at the
outlet is of higher magnitude and the other stream may be considered
the main stream.

Four types of interior link were defined.
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Bifurcating link: A link with equal magnitude links upstream and
merging with a lesser magnitude link downstream.

Tributary bifurcating link: A link with equal magnitude links upstream
and merging with a higher magnitude link downstream.

Tributary link: A link with unequal magnitude links upstream and
merging with a higher magnitude link downstream.

Cis—trans link: A. link with unequal magnitude links upstream and

merging with a lower magnitude link downstream.

The tributary notation refers to the case where the link being classified is the

lesser (on the basis of magnitude) of the two streams at its downstream confluence.

Abrahams (1984) makes a further distinction between cis and trans links. A cis link is

where the upstream lower magnitude link and the lower magnitude link downstream

both enter on the same side of the river. A trans link is where they enter from

opposite sides. Abrahams asserts that because of the space filling characteristics of

networks, where tributaries on one side of a stream are roughly uniformly spaced, that

the length distribution of cis and trans links should be different.

The notion of a topologically distinct random network (TDRN) was first
introduced by Shreve (1966). Two networks of equal magnitude are topologically
distinct if the arrangement of links in the networks is topologically different. They are
the same if the topological arrangement of the links is the same. Shreve (1967)
presents a strict definition of this concept. He symbolically represents a network by a
string of E’3 and I’5. Two networks of equal magnitude are topologically distinc: if
their EI string is different. The EI string is constructed as follows.

L.

Start at the outlet of the basin. Travel upstream on the network at each
bifurcation always taking the leftmost branch that has not already been
traversed.

Score an I the first time a particular interior link is traversed.
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3. Score an E the first time a particular exterior link is traversed.

Two networks of equal magnitvde are topologically distinct if their Ei strings are
different.

To obtain mean properties of the networks from the TDRNs (e.g. mean width
function, mean length of Strahler streams) it is necessary to postulate a probability
distribution of occurrence for each individual TDRN. Shreve (1966) proposed that
each TDRN of a given magnitude should have an equal likelihood of occurrence. Mock
(1971) grouped together TDRNs exhibiting lateral symmetry into what he referred to
as ambilateral groups. He calculated mean properties assuming that each ambilateral
group was equally likely. These mean properties included the mean number of links of
a particular type (e.g. Source, Tributary Source) conditioned on various topological
statistics of the catchment (e.g. magnitude). Two TDRNs are members of the same
ambilateral group if their only topological difference is that a subnetwork is switched
left to right (i.e. the subnetworks look the same if one subnetwork is viewed in a
mirror).

Neither Shreve nor Mock provided any evidence that justified their postulate for
the probability distribution for the occurrence of TDRNs. Proving their hypotheses has
been difficult because of the large data requirements. Indeed it may be that the
probability of cccurrence of TDRNSs is conditioned on the prevailing catchment
geometry or systematic geologic effects

Shreve (1966) noted that the bifurcation ratio for individual networks varied
between 2 and 5. His random networks showed a slight upward curvature in the mode
bifurcation ratio with order, which is consistent with the Tokunaga (1978) scaling
hypothesis.

It seems reasonable to assume that if link and Strahler stream distributions are

different for Shreve s and Mock s equal likelihood postulates, then derived properties
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such as travel time distributions and average width function will be dependent upon
the postulate used. Whether the effect is important hydrologically or is verifiable in

the field is an open question.

2.2.1.3 Applications of Ordering and TDRN Models
The Strahler/Horton/Tokunaga ordering and the TDRN/magnitude topological

classification models for channel networks do not explicitly address temporal
components of catchment form. Despite this these models have proved to be useful
descriptors of catchment form at any given point in geologic time. In addition, a
number of researchers have used statistics derived from these classifications schemes to
develop models for the instantaneous unit hydrograph (IUH).

For many years it has been recognized that catchment geomorphology statistics
can be used as predictors of catchment flood properties. The literature is replete with
examples of simple applications of this kind (Chow, 1964). For instance, independent
variables such as mean channel slope and mean channel length being commonly used to
describe the ‘time of concentration” of catchments.

The first major step beyond this type of statistical study was the development
of the geomorphologic instantaneous unit hydrograph (GIUH) by Rodriguez—Iturbe
and Valdes (1979). In this work the IUH was interpreted as being the probability
distribution that any raindrop that fell in the catchment would reach the outlet of the
catchment at a given time. Roughly speaking the runoff process was conceptualized as
a series of linear reservoirs, each reservoir corresponding to the area of the catchment
that drained into channels of the various Strahler orders. Discharge out of the
catchment resulted from a drop having a random chance of proceeding from a low

order reservoir to a higher order reservoir (Figure 2.4).
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Rodriguez—Iturbe and Valdes derived the following relationships for the peak
discharge and the time to peak of the IUH

Q, = % RYHv (2.8)

T, = 0.44 —39 Rp%% 0-95 g 0-38 (2.9)
where

Rb’Re’ R A = Strahler bifurcation, length and area ratios respectively.

Lo = length scale of the catchment, length of the order Q stream,

where the order of the basin is .

\Y = velocity of flood wave peak, assumed constant over both the

hydrograph and the catchment.

The important contribution of this work was the conceptual link between the
stati-tics parameterizing the catchment geomorphology and the [IUH. Later work by
Gupta and Waymire (1983) and van der Tak (1988) has corrected and clarified a
number of minor details in the methodology. A major assumption is the constant
velocity assumption. There exists evidence to both support and refute this
assumption; i.e. that flow velocities are constant within the catchment (e.g. Pilgrim,
1977) or that the wave speed is variable over the period of a single hydrograph and
varies substantially with discharge (e.g. Price, 1975; Wong and Laurenson, 1983).
There have been a number of attempts to remove this dependency on constant velocity
(Gupta, et al., 1980; Rodriguez—Iturbe, et al., 1982).

The other important application of geomorphology is in the determination of
the so—called ‘width function” (e.g. Surkan, 1969; Troutman and Karlinger, 1984).
The roots of idea are based in the TDRN concept developed by Shreve. The width
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function at some distance x is defined as the number of links whose outlets are (x—I)
links distant from the outlet. Thus the width function represents the topological width
of the catchment with distance. This can easily be related to the physical width of the
basin. If the mean link léngth is independent of order or magnitude and if the mean
area draining to any link is also independent of both order and magnitude, then the
width function is directly proportional to the mean area draining at a given distance
from the catchment outlet, the distance—area diagram. Thus the width function is
equivalent to the distance—area diagram commonly used in synthetic unit hydrograph
studies. If the assumption is made that the flood wave velocity is constant in both
space and time, then the time—area diagram and IUH follow directly.

Mesa, (1986) extended the width function by modeling the channel network as a
spatially homogeneous birth/death Markov process with increasing topological distance
from the catchment outlet (each link from the outlet is considered to be a generation in
the birth death process). He then developed expressions for the width function
conditioned on magnitude. This is equivalent to conditioning the generated network

on the expected area of the catchment since (Shreve, 1969)

E [Area] = E [mean link area] - number of links

= E [mean link area] - (2 x magnitude —1)

Mesa compares the expected width function, conditioned on magnitude and
maximum length, independently, and finds that they both give satisfactory
approximations (+ 50%) to the.actual width functions at 6 field sites.

As an aside it may be noted that Mesa (1986) modelled the topologically
random networks as birth/death Markov processes with each generation being
interpreted as increasing topological distance from the catchment outlet. At any

distance there is a probability of bifurcation or death (i.e., to channel bifurcation ot
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source area). This process, which models TDRNs conditioned on magnitude, implies
some distribution of likelihood for the individual TDRNS of any given magnitude. The
expected or mean width function results from an averaging over the population
distribution of TDRNs generated. This can be compared with Shreve (1966) who
considered each TDRN of set magnitude to be equally likely, or Mock (1971) who
considered each ambilateral class to be equally likely. Gupta and Waymire (1983)
showed that the birth/death modeling of Mesa (1986) is equivalent to assuming the .
TDRNSs to be equally likely, as assumed by Shreve (1966). Thus the mean statistics of
Shreve s work and Mesa s work are comparable. The same cannot be said of Mock %
statistics.

In conclusion, the application of geomorphological principles te catchment
response is, as yet, in a rudimentary stage. Several ideas from the literature have been
briefly discussed. The techniques described above use as inputs the measured
characteristics of the channel networks and the surrounding hillslopes. That the
landscape results from erosion during flood events is an accepted concept. It thus
seems reasonable that the catchment, sediment transport and flood hydrograph form
should be fundamentally linked. An approach unifying the geomorphology and the
response could potentially generalize the geomorphological instantaneous unit
hydrograph and width function. Such a unification may also answer outstanding
questions about the flood wave velocity distribution in space and perhaps lead to

techniques relating remotely sensed elevation data to catchment response.

2.2.2 Models for Channel Network Evolution

2.2.2.1 Introduction

The channel network classification models described in Section 2.2.1 have one
property in common; they all describe the channel network form independent of

temporal aspects. They ignore how the network developed and lock at the network at
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a given time. Any attempt at geographic regicnalization across a broad range of
catchments implicitly assumes one of two things

1. That the characteristics described by the ordering/ TDRN models are

independent of time.

2. That the characteristics described by the ordering/TDRN models are

dependent on time, but that all catchments are at dynamic equilibrium.

Neither of these points have been well addressed in the literature. The
independence of time of ordering/TDRN statistics have never been satisfactorily
examined. Many people have claimed the landscape to be in dynamic equilibrium, but
as will be discussed in Chapter 6, there is considerable argument over this point.
Nobody has looked at the time scales of landscape adjustment and compared them to
time scales of variation of tectonic uplift or climate to see if the landscape has enough
time to adjust to changing geologic and climatic conditions. The reason for this
paucity of study is obvious: except at very small scales, the time scales of change are
too long to make a study of timescales a realistic proposition. In addition, the
statistical scatter from basin to basin makes it difficult to assert with any certainty
that descriptive statistics are even regionalizable.

So far all descriptive models of channel network growth have been based on
some conceptualization of reality. A major limitation is that they only model planar
form of the catchment, without regard to the elevation characteristics of the network.
Energy considerations are ignored. For instance, the outflow of sediment from a
catchment causes a net reduction in the elevation potential energy of the catchment,
yet no attempt is made to model the processes dissipating this energy. Consequently,
the mechanism for growth of the network is at best conceptual. At worst there is no
physical justification of the growth mechanism. '

The major models that simulate network growth will be described in the

following sections. All of these models consider network growth in the plane, without
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regard to elevation. One model for channel network evolution will not be considered
here. This model is the channel elevation, heat—engine, analogy of Leopold and
Langbein (1962). This model is fundamentally different from the ones discussed in this
section. It does not model network growth. Rather the elevation characteristics of a
fully grown network are analyzed, on the basis of a thermodynamic analogy. It
displays substantial similarities with the hillslope evolution models to be examined in

Section 2.3.3 and will be discussed with these models.

2.2.2.2 Headward Growth Model |

Conceptually headward growth is both the easiest to understand and the easiest
to ascribe a physical interpretation. It was introduced by Howard (1971). Recently
van der Tak (1988) reexamined the characteristics of the Howard model.

The principle of the headward growth model is simple. The network is
simulated on a rectilinear grid of points. The channel network is a connected set of
these points. This connection process of these points will now be described. A node
(or nodes) on the boundary is selected as the outlet of tie catchment. This point is
used as the beginning of the network simulation process. The simulation proceeds in
generations or ‘time steps”. At each generation the existing network of points is
examined and active growth sites, where growth may potentijally occur in the coming
generation, are identified. The criteria for deciding which sites are active are

L. The active point is on a channel

2. There is at least one empty node adjacent (i.e., not occupied by a

channel) to the active site, so that growth is physically possible.

For any given simulation a growth probability, pg, for each active site is
assigned. By random selection this probability is used to determine which active sites
will actually grow by one grid length in the next generation. At any growth site the

actual growth direction is randomly determined. Various ad hoc rules need to be
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defined to ensure that, for instance, two growing sites do not grow into the same grid
point, and form a closed loop in the process.

Growth of the network stops when either of two conditions are satisfied

L. all nodes are occupied by channels, the ultimate drainage density is
achieved,
2. a predetermined drainage density has been achieved (i.e., a given number ~

of nodes are occupied by channels).

The model is called headward growth since the heads of the channels grow into
the ‘“hillslopes” from the growing sites.

There are a number of implementation details of the model that have important
consequences for the form of the simulated networks. These details will also be
significant when this technique is compared with other network simulation techﬁiques
described in later chapters. All of these details involve aspects of how the network
grows. Howard (1971) and van der Tak (1988) looked solely at the form of the
networks at ultimate drainage density. The final network generated follows directly
from the growth processes. Once a stream segment is generated by the simulation, it is
fixed in space forever. Both Howard and van der Tak note significant differences in
the qualitative form of generated networks, depending on the probability parameters
used in the simulation. The discussion that follows will concentrate on more subtle
aspects of the growth process that are implicit in the model structure. These issues
will become important in later chapters.

The first important point is the question of the locality of the growth process.
Active growth nodes are determined solely on the basis of whether adjacent nodes are
already occupied by channels or not. If adjacent nodes are not occupied, then the
direction of growth at that node, if it is chosen to grow in the next generation, is
totally random. The selection of growth direction pays no heed to the existing pattern

of the network. It is only required that other channels not occupy nodes adjacent to
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the active site. For instance, two channels may grow towards each other, totally
“‘unaware” of each other s existence, until they are adjacent. At this time they cannot
continue growth in the same direction and they must turn away from each other in
some fashion (Figure 2.5). In diffusion limited aggregation research (sée Chapter 3)
this property is sometimes called locality since growth conditions are determined solely
on the conditions of the network in the adjacent nodes, rather than some more global
characteristic such as the overall network pattern. Thus locality property has its most
apparent effect on channels near the domain boundaries, with the channels strongly
reflecting the boundary geometry.

The second important point is the spatial distribution of the points selected for
growth in the next generation. In Howard s model all active growth sites are
considered equally likely to grow in the next generation. Thus an active site at the
base of the network, and an active node at the outer extremities of the network are
equally likely to grow. This effect is important when the pattern of network growth
with time is considered. The question of the distribution of growth sites in space is
addressed in detail in Chapter 3 where the concept of growth site screening is
introduced. Screening effectively reduces the probability of growth for interior nodes.
This is a consequence of the network around that point suppressing growth. The result
of the lack of screening in the Howard model is that at intermediate times the drainage
density at the root of the network will be higher than at the extremities. Ultimately
the drainage density will be constant throughout the catchment — that is a
requirement of the model — but at intermediate times the drainage density will be
higher at the network root. This situation can be contrasted with that in the
physically based network models discussed in later chapters where screening is
observed.

The third important point is about the rate of growth of the network. Neither

Howard nor van der Tak were concerned with how fast networks grow. They were
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solely concerned with the uitimate form of the network. Interest in the use of
headward growth models in more general channel/hillslope models is developing (Shaw
and Mooers, 1988). These autixors modelled channel and hillslope processes as spatially
diffusive processes with greater diffusivity in the channel. The relative rates of channel
growth to channel and hillslope elevation response are important in determining the
transient form of catchment elevations.

The mean rate of growth of a single active site in the Howard model is given by

dé _
arpg

where { = length of an individual channel, units of the grid interval
t = time, units of generations

Some first order estimates of rates of network growth for the Howard model will

now be determined. As a simple initial case consider the case where all nodes on the
channel network are active sites. That is, if the network has a total length of £ grid
units, there are fn active sites. This is a reasonable approximation to the early stages

of network growth when drainage density is low. In this case the rate of growth of the

network is
den _ ., de
dt- ~ ndt

where { = total length of all streams in the network, unite are the grid interval.
An upper bound on the rate of growth of the network at early times and low

drainage densities is then

¢ =eb (2.10)

Some estimate can be obtained of the effect of inactive nodes by examining the
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situation near viiimate drainage density or later times. If all remaining unfilled nodes
are isolated (i.e., not clustered together) then the potential sites to be filled can be

given by

a
n_ ~ df
Elt-'-(lu_tn)af

where (u = length of streain at the ultimate drainage density
= (n x m) for a n x m rectangular grid
Near the ultimate drainage density an upper bound on the rate of growth of the

network is given by

t,=t —ae 8 (2.11)

Development of an expression for the rate of growth of the drainage network at
intermediate times and drainage densities is complicated by the inability to obtain
explicit expressions for the number of active sites at any stage in network
development. An upper bound on this rate at early times is given by Equation (2.10).
An upper bound or w8 rate at later times is given by Equation (2.11). A postulated
variation of network length with time is given by Figure 2.6. At early times the
growth curve is concave upwards, reflecting the form of Equation (2.10). At later
times the growth curve is concave downward reflecting the form of Equation (2.11).
At some intermediate time there is an inflection point in the growth curve. Whether
the curve exhibits a period of constant growth rate will be addressed later in work, in
the context of the physically based channel growth model.

Note that the ultimate drainage density (and thus the mean hillslope length) of
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the simulated network is fixed by the grid size and spacing. The irregularity of the
channel is also fixed by the grid. An alternative way to simulate networks of variable
drainage is to apply an area threshold on the ultimate network, ala Tarboton, et al.
(1988). Nodes with drainage areas less than the area threshold are defined to be
hillslopes. A growth process could be simulated by gradually reducing the area
threshold with time. This is a form of allometric grewth model, to be discussed in

Section 2.2.2.4.

2.2.2.3 Random Walk Models

A simulation model that is opposite in philosophy to the headward growth
model is the random walk model. First introduced by Leopold and Langbein (1962) it
amounts to modeling the channel network in a downward direction from the runoff
source areas to the catchment outlet.

In this model source areas are considered to be distributed randomly in space,
with a Poisson distribution. The model tracks the random flow downhill from the
source until it either hits the boundary of the domain, in which case the boundary
point is considered to be a catchment outlet, or it hits another stream, in which case it
is considered to be a tributary of the stream it hits.

The single conceptual advantage of this model over the headward growth model
is that it includes the idea of ruroff source areas, even if somewhat loosely. A key
issue is the assumption that source areas are uniformly distributed in space. The
network is assured to be space filling, this follows from the Poisson distribution of
source areas in space.

As with the headward growth model, this model is a local model for channel
growth. Every channel grows independently of any other channel, unless they are
adjacent, in which case the two channels join. As with the headward growth model,

this means that channel growth occurs independently of any global drainage pattern,
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imposed by the pre—existing channel network.

A difference of the random walk model from the headward growth model is the
role screening plays in the form of the simulated network. Attributing a growth
process with time to the random walk is clearly unreasonable. This makes it more
difficult to conceptualize how the preexisting network may influence the “future”
network form. It might be reasonable to condition the simulated network upon some
required magnitude (it may then be interesting to look at the network form with
variable magnitude). As far as screening is concerned the random walk is
fundamentally different from the headward growth model. In this respect the random
walk model exhibits similarities to the DLA models (see Chapter 3) because both grow
by a random walk like process.

The fractal dimension of the channels in the simulated networks will be that of
a random walk; that is, a fractal dimension of 1.5. The available experimental evidence
for river channels indicates that this value is too hkigh (Tarboton, et al., 1988). Thus

the channels simulated by the random walk model are too irregular.

2.2.2.4 Allometric or Topological Growth

The idea of allometric growth of networks is deeply rooted in the scaling ideas
of Horton (1945) and Strahler (1964). The allometric growth process may be loosely
demonstrated by taking a given channel network and averaging (blurring) the network
at a large horizontal scale and then gradually reducing the scale of averaging. Initially
a very coarse network will be observed with more and more detail becoming visible
with time as the blurring is reduced. Allometric growth can be modelled by allowing a
topological representation of the network, either Strahler order or topologically distinct
random networks, to grow a single link at a time. This is rel_ated to Horton and
Strahler 3 work because they envisaged a scale independence of their topological

statistics. A third order basin can be interpreted as an early time version of a fourth
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order basin, with all the first order links removed. Woldenburg (1966) was the first to
formalize this notion of topological growth of networks.

It is important to recognize that the allometric growth process is fundamentally
different to either the headward growth or the random walk model. The latter models
simulate the physical dimensions of the network. The allometric growth models are
topological growth models. Strahler first order streams spawn lower order streams;
these lower order stream even lower order streams, etc. Physical properties are not
considered except that a priori distribution on link or Strahler stream characteristics
may be applied. Conceptually the growth models are more closely related to the
infinite topologically distinct random networks of Shreve (1967).

Very little work has been done with allometric growth simulation models. The
exreption is a landscape simulation study of Kelley, et al. (1988). The main reason for
discussing the allometric growth is to note the conceptual advantages of the Tokunaga
(1978) stream number law over that of Horton or Strahler.

Tokunaga (1978) points out that the Horton/Strahler bifurcation ratio of any
particular order of stream is dependent upon the order of the catchment. This
characteristic was first observed by Smart (1967), though Shreve (1966) noted an order
dependence in a slightly different context. The Tokunaga stream numbers hypothesis,
parameterized by constants K and € has been described earlier. These constants are
independent of catchment order and predict a bifurcation ratio dependent on
catchment order. The Tokunaga model gives the number of (i--1), (i-2),...,(i) streams
that will be tributaries to an order (i) stream. All the stream orders may be
incremented by 1, and new first order streams added and the Tokunaga scheme will
still be applicable to the new allometrically grown network. The same is not true for
the Horton/Strahler bifurcation ratio. Thus the Tokunaga stream numbering scheme
exhibits scale independence in the growth processes (at least in the mean stream

numbers), whereas the bifurcation ratio does not. It must be noted, however, that
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both the bifurcation ratio and Tokunaga 8 number rule are relationships for the mean
number of streams; they do not parameterize the variability about the mean. It will be
shown in Chapter 7 that neither number law is particularly good for normal sized
networks because of the large variability around the mean. In the mean it would
appear that the Tokunaga. hypothesis is more appealing, simply because of this scale
independence, but for practical purposes neither measure is particularly satisfactory

because of this variability.

2.3 Models of Hillslope Characteristics

2.3.1 Introduction

The hillslope is defined as the intervening area between the channel network.
This, rather vague, definition of what constitutes hillslope is taken as fact in much -
work on hillslope geomorphology. Traditionally geomorphology has been artificially
divided into two areas: channel network geomorphology and hillslope gecmorphology.
The interaction between the two regimes has, until recently, been largely ignored so
that accurate, and general, definitions of where channels end and hillslope begins, have
not been necessary.

For the purposes of this section, a channel will be defined as a well contained
flow of limited extent perpendicular to the flow direction and with a width of flow
comparable to the depth of flow. Hillslope will constitute everything else. Hillslope
prdcesses may or may not be dominated by either Horton (i.e., overland flow) or
Dunne (i.e., subsurface saturation) runoff production mechanisms. Figure 2.7
illustrates what this channel definition may look like in nature. This is a rather more
pragmatic, less accurate, definition of hillslope and channel than some consider
acceptable (e.g. Kirkby,1988). Nevertheless this definition will suffice for the
discussion of hillslope processes in this section. It will also allow the discussion of what

constitutes hillslope and channel in a separate, self—contained section (Section 2.4)
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Channel Head

Figure 2.7: Schematic of channel and hillslopes
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devoted to hillslope channel interactions.

Analogously to the treatment of channel networks in the previous section, this
section will be divided into two parts. The first part will concentrate on those
descriptive measures of the hillslope that attempt to characterize hillsldpe form at any )
give time, i.e., no explicit consideration of temporal effects. The second part of this
section will be devoted to models of hillslope evolution. In contrast to the channel
network case, most hillslope research has been devoted to understanding temporal

aspects of hil'slope form.

2.3.2 Descriptive, Time Independent Hillslope Models
Rather surprisingly, considering the amount of research that has been devoted

to hillslope hydrology and hillslope geomorphology, there is a dearth of statistics for
summarizing hillslope form. This may reflect the infant state of knowledge about
hillslope runoff processes. It may also reflect ihe relative ease with which channel
properties may be identified, even from a low resolution topographic map. Hillslope
form is a distributed property, channel are easily identified lines. Hillslope runoff is
also much more complicated than channel flow. Most of the statistics to be described
below provide no direct insight into hillslope runoff processes. The work of Beven
(1979) and O Loughlin (1981) on subsurface saturation is an obvious exception to this
gross generalization.

Mandelbrot (1983) triggered an interest in fractal characterization of landscape
and hillslopes with his beautiful three—dimensional pictures of mountain landscapes,
simulated using fractal techniques. Numerous other authors have duplicated this work.
These techniques will not be discussed here, nor will the techriques for measuring
fractal dimensions. Detailed discussion of these results will be delayed until Section
2.3.4 because the interpretation of these measurements will require some consideration

of hillslope evolution processes like creep, erosion, and rockfall, which are discussed in
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Section 2.3.3.
Horton (1945) introduced the most fundamental statistic for hilislope

characterization, the drainage density. The drainage density is defined as

Dg=x%x

where D4 = drainage density
{ = total length of channels in the catchment
A = total area of the catchment

and it is related to the mean hillslope length by the relationship

4 = ﬂlrd (2.12)

where t’h = mean hillslope length.

Considerable variation of drainage density among catchments has been
observed. Horton interpreted the mean hillslope length as that length of overland flow
that was just sufficient to initiate erosion. Once erosion began channels were formed.
This surface runoff dominated transport process for channel formation was the
predominate interpretation of drainage density ard hillslope length until Dunne (1969)
showed that groundwater runoff processes (e.g., subsurface saturation) can be
dominant in many catchments. It will be shown in Section 5.5 that the subsurface
saturaticn concept is consistent with the notion of a fixed support area, or source area,
for channel formation (Figure 2.8). That is, the area contributing to the channel head
is fixed. Effectively this means that the drainage density may be considered to be a

function of the channel support area and the planar geometry of the groundwater flow
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Figure 2.8: Schematic of hillslope regions in
a Strahier first order area
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on the hillslopes around the channel head.

Although the runoff processes proposed by Horton and Dunne are different the
effect on the interpretation of the drainage density is the same; it is the inverse of the
mean hillslope length. The only important difference between the Horton and Dunne
interpretation is the physical process that governs hillslope runoff. |

The research relating drainage density to catchment conditions is unfortunately
unable to differentiate between these two opposing runoff processes. Gregory and
Walling (1968) and Gregory (1976) summarized the important physical inputs to

drainage density. Increased drainage density has been positively correlated with

[y
.

increased extreme runoffs
increased mean runoffs

reduced soil permeability
reduced vegetative cover

increased relief

S o s W N

increased sediment yield

For instance, many authors have noted a relationship between drainage density

and the mean annual peak discharge of the form (Gregory, 1976)

where the power on the drainage density, £, is typically of the order of 2.
Rodriguez—Iturbe and Escobar (1982) examined this relationship between drainage
density ana extreme runoffs on the basis of energy conservation principles. They
concluded that “drainage density is both the cause and effect of energy expenditure of
the effective rainfall” (p. 137). Thus the drainage density and extreme runoffs should
be viewed as being interactive variables.

The other main statistic that has been used to characterize hillslope form is the

53



hypsometric curve. This curve is a function relating the amount of area in a
catchment above a given elevation, in a non—dimensional form. Schumm (1956)
examined the hypsometric curve over a range of catchments in a landfill in New Jersey
(Figure 2.9). He attributed differences in the hypsometric curve for different
catchments to differences in ages of the catchments. It must be cautioned, however,
that hypsometric curves for a single catchment through time have never been plotted,
so that such assertions about age differences are somewhat speculative at this stage.
Strahler (1952, 1964) present a number of statistics to summarize the form of

the hypsometric curve.

L. Relative area lying beneath the curve.
2. Slope of the hypsometric curve at the inflection point.
3. Degree of sinuosity.

He notes that, though did not explain why, many hypsometric curves can be

fitted by the curve

_f[d=x b )?
y_[x "d—b]

h

where y = relative height = H—:—Ha
x = relative area = %
b,d, z = fitting coefficients
a = area with elevation greater than elevation h
A = area of the catchment
H, HO = maximum and minimum elevations within the
catchment

It is generally believed that the hypsometric curve ténds, with age, to a

characteristic form called the monadnock stage. In this stage the catchment consists of
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Figure 2.9: Hypsometric curves, Perth Amboy, New Jersey.
) (from Schumm, 1956)
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a number of isolated bodies of resistant rock (called monadnocks) surrounded by a

“generally subdued surface” (p. 469, Strahler, 1964).
Strahler (1964) defines a ruggedness number for the hillslopes as

HD d
where R, = hillslope ruggedness number
H = mean hillslope drop from the divide to the stream

Dy, = drainage density
S, = mean slope of the hilislope.

For a uniform plane the hillslope ruggedness number is 0.5. Strahler (1958)
found that the average value for several catchments ranged from 0.3 to 1.0. No
explanation was offered as to how this variation reflected differences in the hillslope
form. An explanation for the variation will be offered in Section 7.5.

Strahler (1964) related hillslope and channel slopes. This relationship was of

the form
5, = as? (2.14)
where Sh’ S c = hillslope and channel slopes, respectively
a, B = fitting coefficients, 4 and 0.8, respectively.

Finally Beven and Kirkby (1979) and O Loughlin (1981) present models for
predicting regions of subsurface saturation. This distribution of saturated areas is

parameterized as that area where
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I%'S > threshold constant (2.15)

where q = discharge = RA
R = rainfall depth
A = upstream contributing area
K = subsurface conductivity
S = hydraulic slope of groundwater table

O Loughlin (1981) defines the threshold constant in this equation as
Threshold constant = h  + xS(M -S) (2.16)

where h 0= depth of water table

X, = width of the saturated region around the channel

M = surface slope of the hillslope

This equation defines the point at which the convergence of flow lines will result

in the groundwater table reaching the surface. Where M = S this definition is
essentially that of Beven and Kirkby (1979). A number of authors have noted the
patterns of subsurface saturation excess predicted by these models are qualitatively
consistent with those field workers. In addition, recent work in forested catchments in

South East Australia, indicates a positive correlation between the wetness coefficient,

defined as

wc:ﬂg

and surface soil moisture content (O Loughlin, personal communicationj. Such a result
is consistent with Beven (1983), where he parameterizes equation (2.15) in terms of a

moisture deficit. It would seem that measures of the spatial distribution of these
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wetted areas would be a useful measure of the form of the hillslope. Such work has not
been done.

This concludes the treat;ment of statistics used to describe hillslope form. The
following section will concentrate on models of hillslope evolution and the processes
that are important controlling agents in the evolution of the characteristics of

hillslopes.

2.3.3 Models for Hillslope Evolution

This section describes some models that have been proposed to simulate the
mass movement i)rocess on hillslopes. These models are of fluvial overland flow
erosion, creep, rainsplash and rockfall. One of the models discussed, that of Leobold
and Langbein (1962), was originally presented in the context of elevation evolution in
channels, rather than elevation evolution in hillslopes. It is discussed in this section
because conceptually it displays greater similarities to the hillslope models below than
it does tc the channel network models discussed earlier. The Leopold and Langbein -
heat equation model discussed below, unlike the channel evolution models, does not
model the growth of channel networks, but rather the elevation changes once they have
grown. In a similar way the hillslope models are solely concerned with elevation
changes with time.

There is general agreement in the literature that the elevation in the channel
networks and hillslopes may be modelled as an “open dissipative system” (Leopold and
Langbein, 1962; Scheidegger, 1970; Thornes, 1983; Huggett, 1988). The general form of

the governing equation for elevation changes in an open dissipative system is

dz(x)
—5¢— = sources - sinks + spatial coupling (2.17)
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where z = elevation
x = horizontal dimension, x € 2 where  is the catchment
t = time |

This equation expresses the continuity of sediment, and thus elevation, within
the catchment. Sediment mass may be considered as elevation per unit area so that a
continuity equation for sediment is equivalent to a state equation for elevation as in
equation (2.17). The equation is called a dissipative system because of the sink term.
There is an outflow of sediment; elevation is being dissipated away. For a catchment
this dissipation term will be the sediment transport process. The sediment transport
process will also be the coupling term since changes in spatial patterns of elevations
will cause changes in drainage pattern and sediment transport and thus further changes
in the spatial pattern of elevation.

Thus the sources, sinks and spatial couplings are the physical processes that will
sculpt the landscape. This section is devoted to the discussion of these processes.
There is some disagreement about which processes dominate at the catchment scale,
and thus need to be modelled. Given the right conditions, though, all the processes to
be discussed have the potential to dominate at some scale. The difficult, and largely
unanswered, question is to determine what those ‘right” conditions are. A
nondimensional analysis in Chapter 6 will begin to address this question.

The source term in Equation (2.17) is important since without a source term
the only steady state solution for the elevation will be zero everywhere, i.e., a flat
plain. In the catchment setting this source term will be tectonic uplift. It is difficult
to conceive of any other physical process that would result in a net increase in
elevation throughout the whole catchment frofn watershed to outlet. Because of the
processes of aggradation and degradation erosion processes can produce localized

elevation increases but the net elevation over the whole catchment must be decreased.
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The spatial coupling and sink terms are petentially the most important terms of
the equation. It is through these terms that the spatial pattern of hillslopes and
channel network come into being. The remainder of this section will be devoted to
discussing the physical processes that are operative at the catchment scale which can
be thought as being spatial coupling and sink terms.

Initially, fluvial sediment transport will be discussed. They typically operate as
either sheet or rill erosion. Other, secondary, processes that act at the hillslope scale
will then be discussed. These processes include creep, rainsplash, and rockfall. These
processes are typically modelled by a Fickian diffusion term, and it will be shown that
they act in a fundamentally different fashion to fluvial sediment transport.

~ This section will close with a consideration of soine of the applications of these
models. The development of characteristic hillslope cross—sections will be discussed in
this context. A number of simulation models will be described and the implication of
their results to interpretations of hillslope form discussed. Some important failings of
these models will be identified.

Kirkby (1971), in a seminal work on hillslope form, proposed a general
framework within which one—dimensional transport by Hortonian overland flow on the
hillslopes could be viewed. He used a continuity equation for sediment transport of
similar form to Equation (2.17). For low slopes he proposed a generai formulation of

the sediment transport—spatial coupling term of

%= 5Q (218)

where Qs is the transport law for the hillslope.
%
The sediment transport law was then related to the appropriate governing
process dominant in the hillslope. Kirkby suggested that a transport law of the

following form was appropriate.
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Q, a Q™" (2.19)

where Q = discharge
S  =slope
m, n = coefficients dependent on the governing process
= 0 and 1, respectively, for soil creep
= 0 and 1-2, respectively, for rainsplash
= 1.3-1.7 and 1.3-2, respectively, for soil wash
= 2—3 and 3, respectively, for fluvial transport in channels.
Though very comprehensive, Kirkby 5 model was by no means complete.
Better understanding of some of the physical processes has since been obtained; for
example, rock fall and rainsplash. in addition, Kirkby only considered
one—dimensional flow. More sophisticated treatments, all based on Hortonian flow
runoff mechanisms, will now be considered.
The case of overland flow sediment trangport will be dealt with first. To model
the slope development of a two—dimensional unchannelized basin, which can be

considered a hillslope, Luke (1974) propesed the continuity equation.

o _ 0 gzi 6z
*® T & [qs‘s—] +§; [qs‘as’_'—]
where S = maximum downhill slope
2 2)1/2
- 15"+ @]
qq = sediment flux/unit width.

This equation is simply a restatement of Equation (2.18) in two—dimensional
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form. Using a transport equation of the generic form

q = S(Q)
where f(-) = monotonically increasing function of Q.
Luke derived characteristic forms for the hillslopes based on some simple boundary
conditions. Slope profiles were consistent with those proposed by Kirkby (1971).

Smith and Bretherton (1972) looked at two hillslope characteristics.

L. The tendency of a one—dimensional hillslope to converge to a

characteristic form.

2. The tendency of a one—dimensional hillslope to channelize.
This latter work was carried out by deriving the flow and sediment transport
continuity equations for a smooth, one—dimensional hillslope, and applying a
two—dimensional elevation perturbation. If the perturbation grew, then this indicated
a tendency for the hillslope to rill or channelize. The governing equations used were

the continuity equations for Hortonian flow and sediment transport

A_, (2.20)

aQs_az
ax ~ @t

where a = runoff rate
QS = sediment transport equation = Qn sm,
After applying the two—dimensional perturbation to these governing equations,
a perturbation equation for elevation was obtained. This equation governed the

growth of the perturbations with time and was
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9 [1 & _0 (M) 010 Psaw], 185
& [B;m—] =% [B;gr] * & [B;a;[vr& ] s
where z’ = elcvation perturbation
= (2-7%)
z* = the nominal elevation about which the governing equations
were linea:.zed
X,y = streamwise and ci2ss—stream directions, respectively
Al’ Bl = constants dependent on the mea.. 2'ope S, and the mean

sediment transport, Q .

They examined the stability of this perturbation and fourd that it was always
unstable; that is, any initial perturbation in elevation always grew. They also found
that the narrower the perturbation was in the cross—stream direction, the faster it
grew. An important conclusion of this work was that whenever fluvial sediment
transport is the dominant transport process then uniform overland flow is unstable;
rilling will always occur. This conclusion is of some concern since it is contrary to
observation where uniform overland flow and sheet erosion have been observed with no
tendency toward rilling. Dunne and AuBrey (1986) demonstrated that in hillslope
regions where rainsplash, a stabilizing process, dominates fluvial transport the
tender.cy to rill is suppressed, but downslope as fluvial transport begins to become
important, rilling begins to occur.

There are a number of secondary processes that occur on the hillslopes that may
need to be considered, depending on the situation. Many of these processes have been

modelled by a Fickian diffusion term of the form

oz p | (2.21)
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where D, = diffusivity
S = slope

As previously noted Kirkby (1971) modelled creep and rainsplash with such a
term. Dunne (1980) supported the idea of modeling rainsplash by Equation (2.21) but _
Dunne (1988) noted that the proportion of the hillslope over which rainsplash is
important, at the field scale, is quite small. Coventry, et al. (1988) suggested that
rainsplash may be an important process for detachment of particles which are then
transported by traditional fluvial mechanisms. This process they called rainflow.
However, the rates of rainflow transport reported were 1—10 mm/1000 years, very
small by hillslope erosion standards, where sheet wash erosion may be as much as 1--2
mm/year, particularly in steep tropical environments. Culling (1963) first proposed
that soil creep could be modelled by a diffusive term as in Equation (2.21).

Leopold and Langbein (1962) pursued the idea of an analogy between the heat
equation and elevation. They based their argument on the second law of

thermodynamics; entropy in a closed system should always increase. On the basis of

their ideas, Scheidegger (1970) proposed that elevation could be modelled by

o
3]
o
~

oz 62z
=D (2.
[P

While this equation is the same as Equation (2.21), the underlying principle is
different. In this latter case, the researchers appealed to the principle that energy
dissipation within the catchment should be uniformly distributed throughout the
catchment.

The unifying principle of all the processes described above is that diffusivity of
elevation is spatially constant. Appendix B shows that it is possible to reformulate the

fluvial sediment transport formula of Equation (2.19) in the form of an
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advection—diffusion equation. In one dimension, that is

2

%=—V&+D

where v = advection velocity of an elevation perturbation
D = diffusivity of an elevation perturbation.
In this case of fluvial sediment transport, however, neither v or D are constant
and vary in a predictable fashion in space, dependent on both slope S and discharge Q.
Finally Kirkby (1971) and Andrews and Bucknam (1987) propose a mode! for
debris flows that for high slopes is in the form of nonlinear diffusion and for low slopes

becomes linear. For high slopes the equation is

]
Y

where K0 = diffusivity
o, = angle of repose of the debris material.

The expression simplifies to the following equation for low slopes (%— <0.1)
r

For a typical angle of repose of 300, the latter equation is applicable to slopes
up to about 7°. Fitting fault scarps with these equations and paleodating them,
Andrews and Buckman derived a value for K, of 0.61 m2/1000 year.

Geomorphologists have been interested in determining characteristic hillslope

formns. This is the nondimensional shape that a hillslope will achieve with time, given
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uniform inputs. Some of the studies that have examined the issue of characteristic
profiles are Scheidegger (1970), Smith and Bretherton (1972), Kirkby (1971), Luke
(1974), Ahnert (1976), and Andrews and Bucknam (1987). The major differences
between the studies are the form of transport law used and whether the hillslope was
considered one dimensional or two dimensional.

Scheidegger (1970) obtained an analytic expression for hillslope evolution using
Equation (2.22) as the governing equation. The solution for elevation is

ot .X
z=0:1e2 e3

In nondimensional form this can be written as

a:éx’
z' =e (2.25)

where 7z’ = —2% ___ — pondimensional elevation

/ 4
a2t

t/ = % = nondimensional time

x’ = [— = nondimensional horizontal distance
X

T = time scale

L = horizontal length scale

aé =ay T

aé =agL,
The importance of Equation (2.25) is that it shows that the hillslope has a

characteristic longitudinal profile which simply declines unifbrmly in space with time.

In some sense we might consider the nondimensionalized form of the elevation to be in
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dynamic equilibrium and to have some characteristic form. The important topic of
dynamic equilibrium will not be pursued further here but will be dealt with in detail in
Chapter 6.

Both Kirkby (1971) and Ahnert (1976) present qualitative indications of
characteristic hilislope profiles depending upon the form of the governing transport
process. Kirkby classifies his profiles on the basis of the transport law in Equation
(2.19). Ahnert (1976) presents his on the basis of the different types of physical
processes (e.g. creep, landslide, erosion). Both sets of results are consistent. This can
be seen in the one—dimensional hillslope illustrated in Figure (2.10). If tectonic uplift
is in equilibrium with the erosion, then, using Kirkby % formulation of transport from

Equation (2.19), the rate of change of elevation becomes
oz
W:O:T—ﬂQmSD (2.26)

where Q=Rx

T = rate of tectonic uplifi
Solving this differential equation yields the following solution for elevation

aleng the hillslope

(n—m+1 )

7= [ZO—- [ﬂzm]l/n e (2.27)

where ZO = the elevation of the watershed
Thus if the transport law is such that m > 1, then the final profile is concave up .
as shown in Figure (2.10b). If m < 1, then the final profile is concave down. Equation

(2.27) is consistent with the results presented by both Kirkby and Ahnert.
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Figure 2.10: Classification of characteristic hillsiope profiles

68

m>1

m<1



e e Al Kt b b A

Geomorphologists have also argued about the relative contributions of hillslope
retreat and hillslope degradation tc the hillslope form and how it develops. There has
been no quantitative analysis of this. The question is addressed in Appendix B.
Suffice to say that rates of hillslope retreat and hillslope degradation may be obtained
directly from the governing equations on the hillslope.

The aforementioned results are only true for one—dimensiona! hillslopes or for
very restrictive conditions in two dimensions. To generalize these results computer
simulations are necessary.

The two main approaches to catchment simulation are that of Ahnert (1976)
and that of Cordova, et al. (1982), and Roth, et al. (1989). The former author
developed a comprehensive hillslope simulation model that accounts for a large number
of transport processes including tectonism, weathering, rainsplash, fluvial erosidn,
plastic and viscous flows, and debris slides, the general form of which are in line with
the parameterizations given above. He used this model in two dimensional modeling of
terrain to demonstrate the effects of geological inhomogeneity. As previously noted he
had also examined characteristic profiles for hillslopes.

The studies of Cordova, et al. and Roth, et al. modelled solely fluvial transport.
They modelled flow, via Mannings equation, and elevation ¢volution, via continuity of
sediment transport. The transport law used was the Einstein—Brown equation (see
Section 5.5 for a discussion of fluvial transport laws). The stated intention of this
simulation model was to produce channel networks. The model, however, does not
explicitly model the development of channel-like features. For insfa.nce, it does not
model the concentration of flow along preferred directions characteristic of channel
networks. The “channel network” is determined a posteriori from an analysis of
elevations and flow directions. That channel networks can be inferred is a direct
consequence of the interpretation of drajnage directions; each node has many nodes

flowing into it, and only one flowing out of it. Because the model considers the
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surface, and all derived properties, to be smooth, the model could be better described
as a hillslope model. At the scale of the hillslope, 2 channel looks more like a line or
point, a dirac function. To m(;del this requires a much greater concentration of flow
than the Cordova model can provide. That a Dirac function represents a channel §
properties better than the smooth representation of preferred drainage directions and
flow used by Cordova is a central tenet of the model developed in Chapter 5. It will be
the preferential erosion in the channel, represented as line, that causes the convergence
of flow in the hillslopes around the channel network.

This concludes the consideration of time dependent processes and their effect on
the form of hillslopes. It has been shown that a wide diversity of governing processes
may be parameterized in a simple power law dependent solely on discharge and local
slope. The promise of computer simulation has been highlighted, particularly ih the
case' of two—dimensional flow problems. The importance of the channel-hillslope

interactions on hillslope form was also pointed out.

2.3.4 Fractal Characterization of Landscape and Hillslopes

As previously noted, interest in fractal characterization of the landscape has
increased in recent years. This interest has largely been a result of the stunning
landscape pictures of Mandelbrot (1983) and others. The discussion in the previous
section of the governing processes on the hillslope provides the groundwork for an
examination of the research about fractals in the landscape. The mechanics of
estimation of the fractal dimension of data will not be treated here. A treatment of
this may be found in Tarbeton, et al. (1988) or Mandelbrot (1983).

Ahnert (1984), Culling (1986), and Culling and Datko (1987) have studied the
fractal characterization of landscape. Ahnert found that the cumulative elevation was
fractal with a dimension between 0.5 and 10 This corresponds approximately to a

fractal dimension for elevations along a transect of between 1.5 and 2.0 and for
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elevation over an area of between 2.5 and 3.0. Culling (1986) and Culling and Datko
{1987) found the fractal dimensions of transects of laudscape to be between 1.2 and 1.5.
Chase (1988) demonstrated, with a landscape evolution model, that depending on the
dominant erosional regime the landscape areal fractal dimension can vary between 2.2
and 2.9.

Culling and Datko noted a change in the fractal dimension for horizontal scales
less than 400m. For length scales less than 400m, the estimated fractal dimension was
about 0.1 higher than the fractal dimension for length scales larger than 400m. Thus
at low length scales, the landscape was qualitatively rougher than at longer length
scales.

Davis, et al. (1988) also noted a break in the fractal dimension at a horizontal
length scale around 500m. In their case they found the fractal dimensior to be lower
at short length scales. This result contradicts the findings of Culling and Datko.
However, Davis, et al. obtained their elevation data from contour maps. A possible
explanation is that this horizontal length scale corresponds to that length below which
significant smoothing of point elevations occurs due to the linear interpolation between
contours.

Culling (1986) attempts to explain the fractal nature of the landscape in terms
of Gaussian random fields. These landscapes were called “diffusion degradation

regimes” and are modelled by a diffusion equation for elevation; thai is

The previous section noted that this equation adequately models a number of
landscape forming processes (e.g., creep, rockfall, rainsplash).

A number of assumptions in Culling 3 analysis invalidate his conclusion for
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scales less than hillslope scale. He assumes mean slopes are zero; a satisfactory
assumption at longer length scales than the hillslope, but not satisfactory at the
hillslope scale. He assumes slope increments (i.e., the slope over the ruler length used
for determination of the fractal dimension; see Tarboton, et al., 1988) are independent. .
This is clearly incorrect at the hillslope scale since sediment transport and flow
continuity require that the slope increments be correlated, otherwise continuity cannot
be maintained.

Culling appears to recognize this limitation on his results to scales greater than
the hillslope by noting that “A transect taken across a landscape can be divided into a
series of interfluves.” (page 236)

In conclusion, it appears that natural landscape seems to have a fractal
dimension of between 2.0 and 2.5, for scales greater than the hillslope. The question of
whether a fractal dimension exists, either the same or different, at horizontal scales less

than the hillslope scale appears to be an open question.

2.4 Coupled Hillslope and Channel Evolution

The models presented above for channel network evolution and hillslope
evolution have an important feature in common. They ignore the coupling between
the hillslope and the channel. An important motivation of this work is to develop a
realistic model for the evolution of both the channel network and the hillslope; that is,
recognizing the unity of the catchment. In this context a number of important
questions arise that in previous work could be simply ignored or glossed over.

The first question i that the interest is in a model consisting of two states (i.e.
hillslope and channel), what constitutes a channel? This may seem a somewhat
vacuous question and indeed in many cases the distinction between channel and
hillslope is obvious. For instance, a river bed (i.e., channel) is a drainage path where

depths of flow are large, velocities high, and the flow is typically bounded by steep
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banks. However, near the source the distinction may be less obvious. The well defined
channel may become a series of poorly defined depressions and springs (e.g., McHugh
and Prestergaard, 1988). Alternatively, it could be a well defined channei head in a
fixed location (e.g., Coelho—Netto, et al., 1987). This distinction between channel and
hillslopes at the channel head is crucial since it is the position of the channel heads
that determines the drainage density of the catchment.

These considerations lead to the more difficult question of what are the physical
processes necessary to form a channel, and what governs the partition between the
hillslope and the channel. Dunne (1989) suggests a subsurface saturation criteria
dependent on the groundwater flow head gradient. Montgomery and Dietrich (1988)
have noted a relationship between source area and the local hillslope slope at the
channel heads in a number of catchments in California.

The question of what is “the” channel network is further complicated by strong
transient effects at short timescales. The portion of the channel network flowing varies
with a number of climatic variables and varies from storm to storm and within storms
(Gardiner and Gregory, 1981). For a long—term geomorphology model, it i3 necessary
to average out these short—term effects. It is necessary to consider the average wetted
length of the channel network. If the geomorphology results largely from the sediment
transport in flood events, then the effective network is the average wetted length of
channel network during these geomorphologically eifective events; the wetted length
between flood events is largely irrelevant since dry periods do not provide significant
erosive potential.

The average wetted length of channel can be determined from consideration of
the different types of hillslope processes. For overland flow, Horton postulated that
channels form when the tractive shear stress exceeded a threshold. The more intense
the rainfall, the shorter will be the hillsiope length. The average hillslope length will

then be averaged over the distribution of geomorphologically effective events. For
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subsurface saturation runoff a subsurface saturation criteria, such as developed by
Beven or O Loughlin, may be used. As in the case of overland flow, the region of
saturation (i.e., the channel) will increase with increased rainfall. Again averaging is
necessary to determine the mean channel network. In addition the effectiveness of
flood events needs to be considered. Since sediment transport is nonlinear with runoff,
large runoff events are disproportionately more important than small runoff events in
determining the landscape form. These major runoff events should be weighted more
than the minor runoff events. Thus there are two ways of defining the average channel
network which potentially yield different results.

1. Where runoff is the important issue, the network during runoff events is
averaged, weighting by the amount of runoff.

2. Where geomorphology is the important issue, the network during'
geomorphologically effective runoff events is averaged, weighting by the
effectiveness of each event in sculpting the landscape form.

This idea of weighting on the basis of geomorphologic effectiveness dates back
to Wolman and Miller (1960). The application of this idea to determination of the -
average channel network is obvious conceptually, but nontrivial practically.

A field orientated approach is to develop a measure of the mean hillslope length
and thus the drainage density. An example would be the fractal measures of the
previous section. The network that is found will be the geomorphologically effective
network rather than the effective network for runoff. Unfortunately this technique
does not answer the question of what are the physical runoff procesées that create the
channel network, so is of limited usefulness in designing a simulation model.

Another important question is how to distinguish between rills and channels, if
there is a distinction, and what physical process defines the distinction if there is..
Horton (1945) in his explanation of channel .forma,tion from overland flow did not

discuss rilling. Smith and Bretherton (1972) note that for overland flow when
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sediment transport occurs, then channel/rill formation must occur. Neither view is
realistic; rillé do occur in some cases, and hillslope sheet erosion has been observed
without rill formation. It was previously noted that rainsplash can suppress the
formation of rills by diffusive mechanisms. Chanrel formation occurs when fluvial
transport dominates the diffusive rainsplash effects. Another possible explanation is
that channel formation is suppressed by groundcover vegetation (e.g., grasses). Only
when the shear stresses are high enough to disrupt this mat and penetrate to the friable
underlying soil will channel formation begin. Either way channel formation is
controlled by more than simple shear stress or flow velocity thresholds. The
controlling process for channel head development will thus result from the interaction
of a number of poorly understood processes.

Another important issue for a coupled hillslope—channel model is determining
how fast a channel grows when the prevailing channel network is out of equilibrium
with the landscape and climate. This disecuilibrium may occur when the network is
growing initially, under changes in runoff counditions (e.g., urbanization, climatic
changes), or changes in geologic conditions (e.g., after an uplift event). The literature
is notably silent on this issue. Existing discussions of channel growth are purely
qualitative with little connection to physical principles (e.g., Schumm, 1956; Morisawa,
1964).

In conclusion, some of the important issues encountered in the coupling of the
hillslope and channel have been discussed. The most significant problem is how to
distinguish between channels and hillslopes. Temporal averaging is necessary because
of the variation of wetted channel length over time. The concept of the
geomorphologically effective channel network has been introduced. This
geomorphologically effective network may be different from.the effective channel
network active in runoff processes. Questions about channel growth rates were raised.

Many of the ideas presented here will form the basis of the coupled channel
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network—hillslope model developed in Chapter 5 and later chapters. Some of these
same concepts will also arise in discussion of the nonhydrologic network models

discussed in Chapters 3 and 4.

76



CHAPTER 3
REVIEW OF NON-HYDRGCLOGIC NETWORK MODELS

3.1 Introduction

Branched networks are ubiquitous in nature. They occur in metal solidification,
polymer growth, two—phase flow in groundwater, leaf veins, capillaries in lungs and, of
course, in the branches and roots of trees, from where they obtained their name.

That networks are so common, over such a broad range of physical pheromena,
suggests that there must also be a qualitative similarity in the mechanisms that
control the growth of these networks. Certainly the qualitative form of the networks
generated in each case is similar. For instance, there is a partitioning of the domain
into two regimes; one regime representing the network or aggregate, the other regime
representing a substrate from where the network developed. All of these phenomena
form networks that, outwardly at least, appear random in nature. Many of the
networks provide a transport capacity for the substrate from the tips of the network to
the root. It therefore seems logical to suggest that the governing processes must be
qualitatively similar.

In this chapter a number of physically based models that produce networks will
be briefly discussed. It will be shown that the governing physics for all these models
presented have qualitative, even quantitative similarities. This chapter cannot go into
details of these models, instead their essence will be presented.

The search for qualitative characteristics of the network formation process that
are essential to network generation will begin in this chapter, and be completed in the
next chapter. In the hydrologic setting the use of topological and qualitative
characteristics of networks has been extremely useful, as noted in Chapter 2. Similar
studies of the dominant qualitative characteristics of gehera.l network growth will

similarly be useful. It is believed that the essential topological requirements for
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network growth discovered here are preserved in the physically based model of river

network growth that will be presented in Chapter 5.

3.2 Diffusion Limited Aggregation (DLA) Models

The concept of diffusion limited aggregation (DLA) originated with Witten and
Sanders (1981). It attempts to model the development of branched clusters of
material. A related technique is cluster—cluster aggregation. Both DLA and
cluster—cluster aggregation form fractal clusters. However, only DLA forms clusters
that appear network like; the discussion that follows is thus restricted to DLA. ‘

DLA works in the following fashion. A grid is defined (typically triangular,
square, or hexagonal) and atoms are randomly placed at the nodes of the grid,
uniformly in space. This is the initial condition. At each time step, each atom is given
an independent (both in space and time) random perturbation to an adjacer* node. If
the adjacent node is empty, that particle moves to the adjacent node, if not then
collision rules are invoked to decide the subsequent motion of both of the colliding
particles. With correct choice of collision rules global momentum is conserved. This
description is one of a standard cellular automata (Rothman and Gunstenson, 1988).
In DLA, one particular atom is chosen to be a seed, and its position, in time, fixed. If
another atom hits the seed, or hits an atom conuected to that seed, it sticks and
becomes part of the stationary aggregate. Thus, with time, a network—like aggregate
will grow (Figure 3.1).

This process is diffusive and is a discrete simulation solution to the

two—dimensional isotropic diffusion equation (Witten and Sanders, 1981)

ac D32c P =0 3.1
AL A 1)
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Figure 3.1: Example of network generated using DLA.
(from Meakin, 1986)
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where D = diffusivity, reiated to the rate of movement of particles
c = average concentration of particles/unit area.

with the initial conditions

¢(0) = ¢y = %y

where N = initial number of atoms
X,Y = dimensions of the grid

A first type boundary condition, fixed concentration, at the edges may be
applied by embedding the solution domain within an even larger domain. In the
intervening region the number of atoms is kept constant, simulating an infinite store at
the fixed concentration. '

The network grows out into the substrate region. The network grows by atoms
sticking to the network, referred to as the aggregate. It is important to note that
atoms, once stuck to the network, never return to the substrate. Because of this, the
network can be considered to be a constant concentration boundary condition to the
substrate region (i.e. c=0 along the network); the concentration is zero at the interface
with the network (Ball, 1986). Within the network the concentration is actually ¢ =1
(1 atom/site) but as far as the substrate is concerned is only sees that the transport of
particles from the network back into the substrate is zero, which can only be modelled
by a ¢ = 0 boundary condition. This inconsistency between the actual concentration in
the network (c=1) and the concentration seen by the substrate (c=0) is a
conceptual problem with the way that boundary conditions are applied in the model
rather then in the transport processes within the substrate region. So the governing

equations are effectively
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: in the substrate

oot

c=0 : in the network

As the network grows, then this boundary condition at the network on the substrate-
region also grows.

Since most transport processes are driven by concentration gradients the zero
concentration in the network means that DLA is unable to model transport processes
within the network. This is a major failing of the DLA model if an analogy is sought
between the substrate concentration and the catchment elevation, and between the
aggregate and the channel network. DLA would model the channels as flat. Energy is
expended when water flows downhill. The DLA models, as described, cannot model
the balance of potential energy expenditure for flow and the sediment transi)ort,
partitioned })etween the hillslope and the channel. Because DLA models the
‘channels” as flat then all the energy expenditure occurs in the hillslopes.

An important characteristic of network growth with DLA that has recently
been identified (Stanley, 1986) is the property of network growth site screening.
Loosely speaking, screening is the capability of the existing network to bias the growth
in the various parts of the network. In DLA, the existence of the network surrounding
a potential growth site suppresses growth there. Fastest growth occurs in the
extremities of the network. In addition, Stanley proposed that the fractal
characteristics of any segment will be modified by the existence of the network around
it. The net result of this is that the fractal dimensions of the final network will vary
depending upon where and under what screening conditions that network branch grew;
thus the time history of network is crucial to describing the final form of the network.
A mathematical description of how screening governs the growth rate follows.

Network growth in DLA occurs by the transport of particles across the interface
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between the substrate and the aggregate. The more particles that are transported
across the interface, the faster the network grows. DLA models this transport in a
discrete fashion with the aggregate/network growing by 1 particle when 1 particle
crosses the interface from the substrate to the aggregate and sticks to the aggregate.

In a continuum form, this transport across the interface can be modelled as

R=T=D%
where T = transport/unit width
n = direction perpendicular to the aggregate interface with the
substrate
R = rate of growth/unit width of the aggregate perpendicular to the
interface.

This equation gives the rate of growth of a unit width of the interface. The

growth rate for the total aggregate or network follows directly and is

_ ac
Raggregate - f A D F; ds

where S = direction parallel to interface

A = the interface of the aggregate

Thus the relative rate of growth of some unit length of the aggregate interface

compared to the rate of growth of the total aggregate is

R ' ,
Rr — —_ (3-2)
—R_a:ggregate A -5% ds
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This expression is equivalent to the probability that, in the discrete DLA
simulation, the interface will grow by one unit or one atom in a unit width in a unit
period of time. Since gﬁ varies throughout the domain, the rate of growth of network
at various points in the network will also vary accordingly.

As previously mentioned in DLA, the network effectively acts as a
zero—concentration boundary condition. In addition, because the netwcrk grows
outward from the initial seed or root of the network, concentrations of substrate are
lowest near the root of the network. This is because the zero concentration boundary
conditions have greater time to diffuse outward from the network near the root of the
rnetwork than they have had near the extremities. The net effect of this is that g% is
highest at the extremities of the network so that the extremities of the network will
grow faster than the interior of the network. This is the essence of screening; the
existence of the network around growth sites near the root of the network reduces the
grow rate there. Alternatively if growth is viewed in the DLA sense as occurring an
atom at a time, the probability of growth is highest near the extremities of the
network.

If we return to the potential analogy between DLA and the catchment where
concentration is considered analogous to elevation, then 767% is the slope in the hillslope
perpendicular to the channel. Channel growth occurs proportionally to the hillslope
slope. The concentration within the network is analogous to the elevation of the
channel (considered fixed by DLA). The transport within the substrate region is of
sediment, which is analogous to reduction of elevation. The most important thing to
note, however, is the existence of the screening effect on network growth. Since the
screening effect on channel network growth has never been experimentally measured, it -
can only be assessed indirectly: For instance, the observation that drainage density is

constant spatially (Abrahams, 1984) suggests the existence of some screening effects.
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This might be contrasted for instance with the case of the Howard (1971)
network headward growth model described in Section 2.2.2.2. Superficially the Howard
headward growth model appears similar to DLA. Growth occurs in generations with
each generation representing the growth of a single link connecting two node points;
this can be considered analogous to DLA S growth one atom at a time. However,
Howards model displays deep dissimilarities in the mechanisms that govern the
network growth rate. Howard assigns each legal growth site an equal probability of
growth; nodes at the root of the network have an equal probability of growth as nodes
at the extremities of the network; there is no sort of screening. As noted in Section
2.2.2.2, this means that at intermediate times the network drainage density is high
around the root of the network and low at the extremities. Screening effects will be
returned to in the following chapters and will assume some significance in the
interpretation of experimental observations by Montgomery and Dietrich (1982) in
Chapter 8.

Consider a variant of the classical DLA problem, where coucentration is not
zero within the network, but varies from zero at the root of the network to some
concentration ¢ at the network extremities {assume c is less than the mean substrate
concentration). In this case if transport within the network is driven by a
concentration gradient, transport can be modelled. Let us now compare 'g% in the
substrate with that of the classical DLA solution. In the new situation the differences
between the concentration in the network and concentration in the substrate at the
extremities of the network are reduced. At the root since the network concentrations
are essentially unchanged the concentration gradient at the network, %91, is unchanged.
Compared with the classical DLA solution %& at the network extremities is reduced
relative to the gradient at the network root. Thus in the new case the growth rate at
the extremities of the network is reduced, while that at the network root wili be

unchanged. In a relative sense (i.e. Equation 3.2) network growth occurs faster at the
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network root than at the extremities — the screening effect of the network is reduced.
The importance of the screening property cannot be overstressed. It is through
screening that the spa.tia.l distribution of network growth is controlled. The functional
form of the screening will govern how fast the extremities of the network grow
compared with other parts of the network. These differences in the relative growth
rate of different parts of the network govern the distribution of the drainage density of
the network. And if Stanley (1986) is correct it will also govern the fractal
characteristics of the channel network. In addition, it should be noted that screening
results from the interaction of the network and the substrate. The substrate gradients
give the screening effect, but the substrate gradients result from the interaction of the
concentration boundary condition at the network and the substrate concentrations.

Thus there are a number of problems with using the standard DLA model to

simulate network growth in a catchment. These problems are:

1. The fixed concentratiorn. boundary condition at the aggregate means :hat
transport within the network cannot be modelled. Thus energy
expenditure cannot occur in the channels; a DLA model of catchment
erosion would force all erosional energy expenditure to occur on the
hillslope. The distribution of growth sites in the network is also biased
towards growth at network extremities.

2. DLA, as currently implemented by a cellular automata, is restricted to
linear diffusion. Diffusivities may vary in space and time (Toffoli and
Margolus, 1987, for instance, model refraction by using a spatially
variable diffusivity) but the diffusivity cannot depend upon the solution.
Thus nonlinear diffucion, with diffusivity dependent upon concentration,
cannot be modelled. Appendix B shows that sediment transport is .
modelled by a nenlinear diffusive process.

Neither of these problerns is essential to the DLA conceptualization, but both
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arise out of the current computational techniques for cellular automata.

Despite these difficulties DLA has been seen as a useful model for a number of
physical process that create networks including diffusion limited deposition of gaseous
metals on surfaces, solidification of metals (Ball, 1986), growth of polymers from the
basic monomer (Daoud, 1986), floculation and gelation (Kolb, et al., 1986) and
dielectric breakdown (e.g. lightning). The solidification processes, for instance, results
from modeling the heat equation (of the form of Equation 3.1), where the diffusivity. is

a function of the conductivity and specific heat of the material.

3.3 Viscous Fingering in Porous Media

This section will briefly discuss aspects of viscous fingering (Figure 3.2). It is
commmonly observed that network—like fingering occurs where

L. a less viscous fluid is injected into a more viscous fluid

2. a fluid is injected or infiltrates into a unsaturated media.

Similarities exist in the governing equations for fluid flow in a porous media in
the above cases and the DLA solution technique described in the previous section.

Darcy s law for flow in a porous media is (in tensor notation).
_ oh .

where = specific discharge in direction j

= hydraulic gradient in direction i

Bk

Kij = conductivity tensor

so that it follows that

oh_0 ([, oh
Syt = o [Kij ax“J] (3.4)
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Typicul viscous 8agers created by water ad-
vaucing into a linear Hele Shaw cell Blled with a puly-
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Figure 3.2: Examples of viscous fingering:
a less viscous fluid is injected into a
more viscous background fluid
(from Nittmann, et al, 1986)

87



where Ss = gtorativity of the aquifer

For a constant conductivity this gives

Kl

8

%

b (3.5)

@
,_§’

The similarity of Equations (3.4) and (3.5) with the governing equation for
DLA, Equation (3.1), should be noted where the head, h, above is analogous with the
concentration in DLA.

If a very low viscosity miscible fluid is injected into a high viscosity background
fluid then it has been shown that fractal networks are generated (Nittmann, et al.,

1985). The governing equations for the two phases are

g“t_ = Dij —‘721‘_- : injected fluid
x; B
g% =D}, ax'92 *;x : background fluid
where I Dy I << I D5l

If the fluid flow re313tance is low then Di j is high. For instance, in a Hele—Shaw flow

apparatus, as experimentally studied by Nittmann, et al. (1985, 1986) D.. is inversely

1)
proportiona! to viscosity. In the groundwater case D ; i it is just the conductivity Kij
again inversely proportional to viscosity. In the limit as thc viscosity ratio tends to
infinity, and for perfectly miscible flnids, this is analogous to the DLA model (Ball,

1986). In thigs case the pressure drop in the injected fluid (here the ar te or

-
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network) from the injection point to the interface with the background fluid (the
substrate) is negligible in comparison with the pressure drop in the background fluid
because the viscosity of the injected fluid is much smaller. For DLA to be an analogy
perfect miscibility of theé fluids is required so that there are no capillary pressures at
the interface to remove small scale irregularities at the interface.

In the terminology of the DLA discussion of the last section, the head variation
along the network or injected fluid is virtually zero so that the network may be
considered to be a constant head, but moving boundary condition, to the head in the
background fluid or substrate. Thus, the validity of the DLA approximation is a
function of the viscosity ratios, and is measured by how much the boundary head
varies within the network compared to the background fluid; as the viscosity ratio
drops the head variation will be increased and the DLA approximation becomes less
valid. As noted in the previous section the distribution of growth sites (i.e. viscous
fingers) will also depend on the amount of head variation within the aggregate due to
the screening effects on head.

Invasion of an unsaturated porous media by a wetting fluid will result in
qualitatively similar, if not quantitatively identical, patterns. In the saturated region

behind the wetting front the conductivity Kij is much higher (||K >

ij"invading >
”Ki j”ba.ck groun d), than in front of the wetting front. The analogy with the low
viscosity invading fluid case is direct.
In conclusion, the important points to note from this section are:
1. The similarity of the porous media governing equations and those for the
DLA problem. Both involve gradient driven transport within the
background substrate (concentration in DLA, head in groundwater).
2. When the ratio of the conductivity in the porous media for the invading

fluid to the background fluid is infinite groundwater flow is modelled by

DLA. These large conductivity differences can be caused by variable
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viscosity or saturation.

3. Where the differences between the invading and background fluids are
not so strong head variation within the invading fluid may be of the
same order as in the background fluid. Because head variations within
the network are not negligible screening effects will be different to those
exhibited by DLA. Network characteristics should be different from
those exhibited by DLA.

3.4 Mitchison Leaf Vein Model

Mitchison (1980) proposed a model for chemical transport in leaf veins that
exhibits qualitative similarities to Equation (3.3) for transport by viscous fingering.

The flux of auxin (a growth chemical) is modelled by

Ac
where Y = auxin flux
D = diffusivity
Ac = change in auxin concentration between two adjacent cells

Ax = length of the cell
For vein formation to occur Mitchison notes that J‘ﬁ—[ must decrease as ||

increases and suggests that suitable formulations for this dependency are of the form
Drvy® ;n=2 (3.7)

A vein is ‘identified” as being a pathway in which the flux of auxin is
significantly greater than in the rest of the leaf.

The governing equation for the leaf is, in differential form

90



?,; [D(tp) 3,%] =0 (3.8)

This is the steady state analog of Equation (3.4). Combining Equations (3.6)
and (3.7), the diffusivity in Equation (3.8) can be expressed as a function of

concentration

D(p) ~D( (™)

which clearly shows that Equation (3.8) is nonlinear diffusion in the concentration.
Since D(yp) is variable in space, both within the leaf vein and within the background
substrate, then the equations are qualitatively but not quantitatively analogous to
DLA and two phase porous media flow.

The vein formation process proceeds as follows. As g}% decreases, the
diffusivity increases which further reduces the gradient. In Equation (36) the
transport in increased by these interactions. Thus preferred transport paths are
created in which %}% is low and D is high so that chemical transport is concentrated
along these paths. It is important to note that there exists a gradient of concentration
along these paths. Thus if the transport paths, here considered to be the network, are
considered to be fixed concentration boundary conditions with time on the remainder
of the domain, the applied concentration will be variable in space, lowest on the root,
highest at the branch tips. Again we note the difference with the DLA boundary
condition at the network of constant concentration. The higher the diffusivity in the
preferred transport path, or the greater the nonlinearity of Equation (3.7), the more
valid the DLA approximation will be because the concentration gradient will be lower
for equivalent fluxes. Mitchison showed that networks of preferred drainage paths

were created, but did not analyze them. The equations the investigator proposed show
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strong similarities to those of both DLA and viscous fingering problem.

3.5 Conclusions
The models presented in this chapter exhibit a number of qualitative and

quantitative similarities. Most importantly they all generate networks in space where
there are two phases, one phase being the network itself and the other phase being the
surrounding regions of substrate material. This chapter has attempted to quantify the
similarities on the basis of the governing equations of the physical processes involved.
It has been shown that these models, though from different fields of research, are
variants of the same problem.

Important points in the preceding discussions are:

L. All the models simulate some distributed property (e.g., concehtration,
pressure) using either a linear or norlinear diffusion process.

2. All the models are autocatalytic in the transport of this distributed
property. Autocatalysis is a form of positive feedback where a small
change in the property results in, through interactions in the nonlinear
system, an amplification of that change. In DLA, though the governing
equations in the substrate and the network are linear, nonlinearity arose
from the differentiation in transport processes between the network and
the background substrate. This property exhibits itself as preferred
transport pathways for the modelled properties.

3. In all models the generated network may be considered to be nearly a
constant concentration boundary condition on the substrate part of the
domain. In the case of groundwater flow and leaf vein growth, the head
and concentrations (respectively) in the network result {rom the
interaction of the transport pl'ocesses in the network and the substrate.

In DLA the concentration is zero in the network.
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4. All models exhibit some form of growth site screening governed by the
interaction between the network and the surrounding substrate. The
detailed physics of the screening process is different for each model, but
the concept that certain parts of the network are more likely to grow or
that parts of the network grow faster than others, and that these rates
are determined by substrate characteristics, is common to all models.
The distribution of drainage density during active network growth is
strongly influenced by the screening properties of the model.

With the exception of DLA, there is no explicit differentiation made between
the areas of preferred transport (the network) and the remainder of the region; in other
methods the network must be interpreted a posteriori in a somewhat arbitrary fashion
(e.g., transport rate above a threshold). It is the intention of this work to construct an
analogy between the preferred transport paths and the channel network and an analogy
between the remainder of the domain and the hillslopes. Channels, after all, are just
preferred transport paths for water and sediment. A means to make this
differentiation explicit, rather than implicit, is desired. The next chapter will examine
another non—hydrologic network model. This model displays deep similarities to the
models in this chapter, yet makes the differentiation between network and substrate,
and channel and hillslope, explicitly. In addition, its simple and explicit physics makes
it easy to examine some fundamental theoretical characteristics of network generation

in physical models.
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CHAPTER 4
THE MEINHARDT LEAF VEIN MODEL

4.1 Introduction

Building on the ideas of the previous chapter we present a model first
introduced by Meinhardt (1976), and further explored by Meinhardt (1982), that
simulates the growth of leaf veins. These vein cells demonstrate network—like patterns
within the simulated leaf.

The system of differential equation that Meinhardt (1976) presented were

chosen for detailed study for a number of reasons:

1. The model makes an explicit differentiation between two states in the
system; leaf vein cells and normal leaf cells. The leaf vein cells form a
network pattern in space. A qualitative analog can be seen between this
and the drainage basin where the leaf veins might be considered
channels, and leaf cells the surroundi~g hilislope.

2. The leaf vein networks grow headward in time in a similar fashion to
channel networks.

3. The growth process is governed by physical interactions, following
directly from the system of differential equations. . The simplicity of the
governing equations provides the opportunity for deeper understanding
of the network growth processes; even if only qualitatively.

This chapter will first present, and discuss, the equations of Meinhardt (1976).

The complicated nonlinear interactions between the various components of the
equation will be discussed, always searching to classify, simplify and generalize the
network producing behavior. _

It will be demonstrated that there are three qualitative characteristics of the

equations that create the differentiated pattern of leaf vein networks. Using sensitivity
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studies it will be argued that these three characteristics are not specific to Meinhardt %
equations, but are, in fact, powerful prerequisites of any network growth model based
on physical mechanisms.

The chapter will conclude with a discussion of the random properties displayed
by networks. Using concepts from chaos theory it will be shown how the apparently
random properties follow from the modelled physics. Some tentative hydrologic
analogies will be made with the three necessary conditions for network formation
referred to above. Consequently it will be suggested that the chaotic behavior
observed in the Meinhardt system of equations is a property common to many systems
thai exhibit networking and that this may be an explanation for why channel networks

appear random.

4.2 The Governing Equations
Meinhardt (1976, 1982) presented a system of partial differential equations that

simulate the growth of leaf veins. A slightly more general form of the equations will be
discussed to show the generality of the qualitative growth mechanisms of the system.

These equations, hereafter called the Meinhardt equations, are:

m
1
-g%=-c—ah—§—ﬂa+Da§%+p0Y (4.1a)
1
oh [ my #h ]
=CqlChca z—vh+D +p9Y (4.1b)
ot~ "3|1"2 h'g.f 1

%=c0—7c0z—§Yzm2+Dz-§2;5 . (4.1c)
i
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Meinhardt solved these equations on a rectangular grid with sides Lx nodes by
1

L. nodes. The boundary conditions applied to the equations are

=0 atX2=0,x2=Lx2

da _ch 0z _ Y
= = = =0 atx;=0,x,=L_.
3}(2 ax2 (')x2 6x2 1 1 Xy

These equations are identical to those of Meinhardt (1976) if

Of the four states modelled by these equations, three of them (a, h, z) model
chemical transport processes in the leaf. The fourth state, Y, models the spatial
pattern of leaf vein cells. From our perspective the latter state, differentiation, Y, is
the most interesting. Differentiation will be conceptualized as the chananelization in
the catchment. In Meinhardt’s work the four states represent:

L. a: activator, high values of activator tend to start or trigger the

differentiation process.

2. h: inhibitor, high values of inhibitor tend to stop production of

activator. Inhibitor is created by higher activator levels.

3. z: substrate, the substrate is consumed by the differentiation

process.

4, Y: differentiation, a 0—1 variable that signifies the spatial pattern of
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veins within the leaf.

Of the four states, differentiation is the most important. The other three states
are useful simply because their interactions produce spatial patterns of differentiation
that appear similar to channel networks. The exact physics of activator, inhibitor, and '
substrate will later be shown to be computationally and conceptually convenient but
practically unimportant.

Differentiation, Y, simulates the spatial pattern of leaf veins. If Y = 0 at a
point, then that point is a normal leaf cell. If Y =1 at that point, then that point is a
leaf vein cell. The Equations (4.1) ensure that the points where Y %~ | form a
network—like pattern in space (Figure 4.1).

The network simulation process proceeds as follows: Initially activator,
inhibitor and differentiation are small (approximately 0.0) everywhere and- the
substrate is z = 1 everywhere. This represents an undifferentiated leaf, with a
chemical substrate ready to be consumed. In addition, Meinhardt (1976) assumes that
coefficient ¢ is a random field so as to produce random networks. It will be shown
later that this random field is unnecessary. At the start of the simulation a single
point is chosen as the seed or starting point of network. Differentiation is set to Y =1
at this point. The nonlinear dynamics of Equation (4.1) is then sufficient to produce a
network of differentiated points, Y = 1, that grow headward with time eventually
filling the domain (Figure 4.1).

The process by which a single point in space differentiates in time will now be
explained. Initially the point will have a value for differentiation of Y = 0, i.e.,
undifferentiated. Finally, if the point lies on the network, it will have a value of
differentiation of Y = 1, i.e., differentiated. At the time the point differentiates there
will be a short period of transition where the value of differentiation is between 0 and 1.
Once a point differentiates, it remains differentiated for all time; differentiation is a

one—way process that cannot be reversed. The process of differentiation is triggered by
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Figure 4.1: Sample Meinhardt network showing
headward growth with time
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activator exceeding a threshold. Inhibitor and substrate values are irrelevant here
because they do not appear directly in the differentiation equation (Equation 4.1d).
They are only important insofar as they produce high levels of activator. This
differentiaticn process for a single point with time is shown in Figure 4.2.

How the differentiation process is controlled by the differentiation equation is
demonstrated in Figure 4.3. Figure 4.3 shows the differentiation equation for three
values of the activator term. The value of zero activator (Curve C) represents the
situaticn either at very early time (when Y = 0) or at very late time (when Y = 1).
There are three critical points (i.e. %\t—( = 0), two stable (Y = 0, Y = 1), and one
unstable point (Y = 0.1). Points at Y = 0 or Y = 1 are stable against fluctuations in
Y, or small fluctuations in activator. All values of Y are attracted to, and will
eventually convergeon, Y =0,0or Y = 1.

Curve A in Figure 4.3 shows the differentiation equation for a value of activator
above the activator threshold. For the case where the activator terr is greater than
0.0025 (Curve B) there is only one critical point, Y = 1. Values of Y are atiracted to
the value Y = 1. Thus an undifferentiated point (Y = 0) will tend to become
differentiated (Y is attracted to 1). Once Y is greater than 0.1, the activator value
may decline to zero, but the value of Y is now in the basin of attraction of Y = 1, and
so that point will tend inevitably to differentiate.

Other than the activator—differentiation connection there are other well defined
and impdrtant connections between Equations (4.la), (4.1c) and (4.1d). These
connections are shown in Figure 4.4. Some connections are not shown because they are
of secondary importance. The three important connections to note are that the
activator is an input to differentiation, differentiation is an input to substrate, and
substrate is an input to the activator and inhibitor equations. Thus there are three
conceptual components to Equation (4.1).

1. A component that triggers differentiation (i.e., activator)
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2. A component that is consumed by differentiation and which reinforces

the component that triggers differentiation (i.e., substrate).

3. A component th:azt describes the spatial pattern of differentiation (i.e.,

differentiation).

These conceptual components will be important in later chapters where
qualitative analogies are made between the biological model and the physically based
channel and hillslope model described in Chapter 5. In this latter model an analogy
wili be made so that the three components of the developed models are velocity or
shear stress, elevation, and channelization, respectively.

A number of authors have analyzed the mathematics of the Meinhardt
equations. The techniques used have concentrated on stability analyses at a point and
how patterns of activator and inhibitor develop in one dimension (e.g. Haken and
Olbrich, 1978; Briere, 1983; Segel, 1984). Bifurcations in the stable states with time
have been examined by Granero, et al. (1977) and Nicolis and Prigogine (1977). While
many of the concepts and techniques presented in these works are important, the
analyses, by necessity, were restricted to a single point in space or properties along a
line. The two dimensional, time varying effects that are central to network growth
were not studied because of their mathematical complexity.

Why the Meinhardt equations generate networks is the subject of the following
section. Some qualitative characteristics of the channel network growth process will be
identified and some general characteristics of a physically based network growth model

will be proposed.

4.3 Network Growth in the Meinhardt Equations

This section will examine the mechanisms whereby Equations (4.1) generate
networks in space. Some general, qualitative, rules will be proposed for space filling

network growth on the basis of the governing physical processes.
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It is important, first of all, to understand how a single point differentiates,
before it will be possible to explain network growth spatially. As previously noted, an
individual node differentiates because activator exceeds on activation threshold. Thus
an important question to be asked is under what conditions can the activator become

large? Consider the activator equation (4.la)

1 7
g%=%ﬁ—— ,ua+D —%-&-pOY

It can be shown by scaling analysis that, for the parameters of Meinhardt
(1976), the last two terms on the right—hand side are of secondary importance,

compared with the first two terms. The activator equation can be approxiinated by

It follows that activator can only grow (g% > 0), if

caml_lz

BT > 1 (4.2)

This threshold is a reliable indicator of growth potential for activator.
Figure 4.5 is a schematic cross—section along a line of differentiated nodes (i.e. along a
branch). It illustrates how the states in Equation (4.2) vary along and in front of the
branch. It is seen that that the criteria of Equation (4.2) is highest just in front of the
branch head. This effect is seen in plan also, where & region of high activator potential

is seen in front of the branch head.

The process of branching occurs by a similar process. The networks gain their
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tree structure from branching or budding from the main stream; branch tip or branch
head splitting into two parts is never observed. The mechanism by which networking
occurs is thus lateral branching. Buds off the branch occur far behind the growing tip
and result from asymmetries of the activator, inhibitor and substrate. As in branch
head growth, the region of activator growth is given by Equation (4.2). The
distribution in space of the states determines the distribution of the branching points.
Because of the screening near the network root, network growth sites are less likely
near the network root. MNear the network root substrate levels are low and inhibitor
levels are relatively high. Thus there is general inhibition of growth or lateral
branching behind the grewing branch heads. This s just the screening effect discussed
in Section 3.2; the physics that causes the screening is somewhat different here but the
qualitative effect on the spatial distributien of network growth is similar.

There are three prerequisites on the qualitative behavior of the activator
physics. These prerequisites ensure that network—like growth of differentiation occurs.

The first prerequisite is that the region of high activator must be localized
around the growing branch tip. The subtle asymmetries in the spatial distribution of
activator, inhibitor and substrate around the growing tip result in high values of
activator at small distances in front of the growing tip. This effect is illustrated in
Figure 4.6.

It is important to note that the actual position and shape of the ‘“activated”
region depends on the physics of the processes acting in the undifferentiated portion of
the leaf. The driving force for these processes is the line of differentiated nodes. Thus
there i3 a complicated interaction between the existing pattern of differentiation, the
processes in the leaf proper and thus the shape of the activated region, and the future
pattern of differentiated nodes.

The second prerequisite is that the region of high activator must move with the

growing branch tip. This movement of the activated region as the branch grows in
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Figure 4.6: Schematic of the mechanism for branch tip growth:
Activator is increased in front of the growing
branch tip by substrate gradients
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Figure 4.7: Schematic of the mechanism for maintaining linear
growth of branchs: Activator is locally reduced behind the growing
tip by substrate depletion to ensure growth occurs in only
the forward direction
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time results from the interaction between differentiated and undiiferentiated regions.
The process of channelization consumes substrate and this lowers the activator behind
the tip so that the region of l;igh activator moves with and in front of the tip. This
process is demonstrated in Figure 4.7. If the activator were not locaily suppressed
behind the growing tip then blobs of differentiation would form.

The third prerequisite of the activator distribution is that regions of high
activator must “repel” each other so that the branch tips grow away from each other.
This produces space filling characteristics, similar to those observed in channel
networks (e.g., Abrahams, 1984). The repulsion of growing tips and repulsion from
boundaries is shown in Figure 4.8. This effect arises from complex interactions
between the spatial distribution of activator and inhibitors driven by the diffusion
processes in the undifferentiated portions of the leaf. |

Gierer (1981) proposed that the system of equation with the correct
characteristics to produce spatial patterns, of the form in Figure 4.1, is more general
than that proposed by Meinhardt (1976). His conclusions were reached for an
activator—inhibitor system rather than the activator—inhibitor—substrate system of
Meinhardt (1976). Since activator is the only direct input into the differentiation
equation the differences between the system of equations Gierer studied and the
Meinhardt equations are relatively minor.

Gierer (1981), used general equations of the form

% — f(ah) + D,(a)
(4.3)
% _ glah) + Dy(h)

where D(-) is a general diffusion—like coupling in space. He proposed six conditions

required for pattern formation.
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These conditions are:

1. the existence of an autocatalytic term (i.e., g% ~ ca.m, m > |, for some
value of states).

2. the existence of an inhibitory (i.e., h) component.

3. the inhibitory effect must be strong enough to ensure that stable,
bounded solutions exist for activator.

4. the length scale of activation must be less than the length scale of the
total field size (otherwise boundary conditions stabilize the activator).

5. the inhibitory time scale must be less than the activating time scale (so
that activation does not run away from inhibition).

6. the length scale of inhibition must be greater than the length scale of
activation (so that activation is confined to areas near those already
activated).

These conditions can be linked to the three prerequisites on the activator
distribution that have been noted above (Figures 4.6, 4.7, and 4.8). To ensure a
localized region of activator around the branch head requires an autocatalytic activator
(point 1) with an inhibitor away from the branch head to suppress long range
activation (points 2, 3, 4, and 6). To ensure that the region of activation moves with
the branch head requires all of the above effects, plus it also requires that the inhibitor
acts faster than the time scale of branch head advance. Since branch head movement
cannot proceed faster than the activator growth of the branch head, then the irhibitor
must act at timescales less than the activator timescale (point 5). The repulsion of
branch heads results from the longer range inhibition and shorter range activation
(point 6).

Gierer 8 conditions suggest that the form of the equations that can generate
networks may be more general than those presented by Meinhardt (1976).

To test whether Gierer s conditions on activator and inhibitor in Equation (4.3)
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are sufficient to generate networks, a sensitivity study of the parameters used by
Meinhardt (1976) in Equation (4.2) was performed. The parameters were
systematically varied to determine their effect on the networks generated. Two related
subjects were of particular interest:

L Testing Gierer 8 six hypotheses regarding the activator and inhibitor

system in the context of the more general equations of Equation (4.1).

2. Determining parameter windows outside of which networks could not be

generated.

The parameters to be discussed below are all parameters in Equation (4.1). To
test the requirement for autocatalytic behavior (Gierer s point 1), m, was varied over a
broad range. Networks could be generated for values of m > 1, provided compensatory
changes were made in parameter ¢ so that activator magnitudes were maintained at
around the same level. As m, approached 1, the rate at which the network propagated
declined reflecting the lower autocatalytic strength.

To test Gierer’s points 2 and 3, the parameter Cy Was varied. This change
modified the relative balance between activator and inhibitor generation. If C, was
reduced by more than 25%, so reducing inhibition, runaway activation occurred and
the whole region differentiated into a blob-like structure. If c, was increased by more
than about 25%, network growth ceased. Thus it appears that the balance that exists
between activator and inhibitor magnitudes is very important.

To test Gierers point 6, regarding the relative length scales of activator and
inhibitor, the diffusivities of activator and inhibitor were varied. This variation was
equivalent to a change in the length scales of diffusion. Meinhardt’s ratio of
diffusivities was g% = 10. Reduction of Dh was possible until Dh was of comparable

. . Dy . .
magnitude to D (Meinhardt s D'; = 3) at which value a network was difficult to

generate. Changes in D, were negatively correlated to changes in drainage density,
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thus being in line with the changes in diffusion length scales. Meinhardt (1976) chose

the values of D, and 4 with an eye to maintaining connected networks. The length

scale of activator diffusion (= %31) was about 0.5 of a grid spacing. If either, D, was
increased, or pu was decreased, thus increasing the activator length scale, “networks”.
could still be generated but disconnected regions were common. That is, adjacent
nodes were not necessarily differentiated. This was a numerical, rather than a
conceptual, problem.

To test Geirer s point 5, regarding the inhibitor timescale being less than the
activator timescale, the parameter Cq Was reduced. A reduction in Cg results in an
increased reaction time for inhibitor. In a similar fashion to reductions in Co»
reductions in cq resulted in runaway activation. An interesting interaction with the
diffusive length scales occurred if cq was increased since cqDy s the inhibitor
diffusivity. As Cq Was increased drainage density was reduced. With pronounced
increases in cq (> 50%) network generation was suppressed; this resulted from the
inhibitor being increased compared to the activator.

Other sensitivities examined were for parameters Cpr T € My, Dz‘ and ¢ The
substrate equation (4.1c) was relatively insensitive to changes in any of the parameters;
some processes were not even required. An exception was Cgr the source term for
substrate, which had to be non—zero for network formation. There had to be a source
of substrate to counteract the consumption of substrate by ether terms in the substrate
equation.

In the differentiation equation, ¢ controlled the drainage density of the
network. If ¢ was small, so that the activator threshold was high, then for a given
distribution of activator a node was less likely tc differentiate, and vice versa. Thus
changes in ¢, and drainage density were positively correlated.

In general, it seems that Gierer (1981) was correct. Provided that his generic
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rules are satisfied, then networks may be formed by a wide range of physical processes.
We did find, however, that the values of the coefficients on these physical processes
needed to be ‘Optimized” to generate the best looking networks; the form of the
processes, however, was not critical.

In conclusion, it has been shown that it is possible to generate space filling
networks from a very generic set of equations featuring diffusive coupling of processes
in space and autocatalysis in time. Three generic characteristics that must be shown
by the spatial pattern of activation were also proposed. It is believed, and supported
by the sensitivity studies, that these characteristics are generic requirements of all

network generating processes.

4.4 Input Randomness, Chaos and Random Networks
4.4.1 Introduction

All the network patterns presented here and in Meinhardt (1976, 1982) have a
random appearance. No two branches are alike and there are no obvious symmetries.
Nevertheless the qualitative form of the networks appears to be similar despite this
randomness. It is the purpose of this section to explore the reasons for this
randomness, and to demongtrate that the randomness in the networks arises because of
a phenomenon called transient chaos, a form of chaos that has only recently been
recognized in the mathematical literature (Moon, 1987).

The most obvious random input to Equation (4.1) is that Meinhardt (1976,
1982) applied a small random field to parameter c. These random fluctuations in c
were less than 1% of the mean value. No other random inputs were applied. However,
it should be noted that numerical errors add a small random input. It will be shown
that both these sources can be important in creating the qbserved randomness of the
networks. The important question that will be answered below is how these small

random fluctuations grow to dominate the overall form of the generated networks.
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The relevance of randomness in networks can be motivated by the simple
example in Figure 4.9. Here six different networks are presented. All six networks
were generated using identical parameters but varying the random inputs and the way
that the numerical calculations were performed. Figure 4.9a is the baseline case. It
uses the random field input on parameter ¢ (Equation 4.1a), and the equations are
solved in single precision on a microVAX (32 bit, 7 significant digits). The network is
clearly random with no apparent lateral symmetries resulting from the rectangular
domain. Figure 4.9b is the same as Figure 4.9a except that parameter c¢ is now
deterministic, a constant across the domain. There is some lateral symmetry in the
parts of the network developed at early time (the diagonal branch splitting the domain
in two) but it is lost in that part of the network that develops at later times. Figure
4.9c is the same as Figure 4.9b except that the internal calculation of the 5 point
centered finite difference for the activator diffusion term is slightly modified; the order
of addition of the nodes is anti—clockwise instead of clockwise. The two finite

difference approximations were:

Z. . + 2Z.. + 2. .. 4+ 2Z.. — 4z. .
[92_%_*_?%] _ _itl] i,j—l 1—;,1 i,j+1 i,j
& o) (i) (&%)
Pz, 2| G T A T it A T
P i) | P 2
o o (i) (&%)
where (i.j) = node coordinates for evaluation of the second derivative
approximation.

It is apparent that this extremely small change in numerics has a significant
effect on the network form &t later times. At early times, when numerical errors have '

not had a chance to propagate, the networks are identical. Numerical errors thus seem
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(a) Baseline (b) Single precision,

no randomness

(c) New diffusion, (d) Double precision,
no randomness no randomness
1
(e) New diffusion term, (f) Randomness in the
baseline randomness initial conditions on
activator

Figure 4.9: Iilustrating the effect of randomness
on networks from the Meinhardt equation :
Input randomness and numerical noise
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to be responsible for part of the randomness of the networks. Figure 4.9d confirms this
impression by solving the same problem as Figure 4.9b in double precision (64 bits, 15
significant digits). The net‘work exhibits lateral symmetry and close examination
indicates no randomness in any of the states of the equation (i.e., activator, inhibitor,
substrate or differentiation).

The random effects due to the numerics are smaller than the input randomness
on parameter c. Figure 4.9e shows a network with the diffusion term calculated as for
Figure 4.9b but with the input randomness of Figure 4.9a. That Figure 4.9a and 4.9e
are indistinguishable indicates that the numerical randomness is small in comparison
with the applied randomness in this simulation. In a large enough simulation, where
the network is actively growing over many timesteps, it is possible that the cumulative
effects of numerical errors may become important. ‘

Finally, although the results are not presented here, not all random effects
result in random networks. Minor perturbations were applied to the initial substrate
values. There was no perceptible differences with the network generated without the
substrate perturbation. On the other hand minor random perturbations on the initial
activator levels resulted in random networks comparable in randomness with the
networks resulting from the random parameter c (see Figure 4.9f).

There are four important features of this example that will be noted

L. Randomness in parameter ¢ has a very important effect on the

randomness of the simulated network.

2. Not all input randomness is created equal. Some input randomness has

no apparent effect on the networks generated.

3. Numerical error due to minor round—off errors in the space and time

discretization can propagate nonlinearly in time to dominate the network
form at later times.

4. . Despite this, parameter randomness is not essential for generation of
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networks from Meinhardt 3 equations. Parameter randomness modifies
the form of the final network. In addition, once the parameter
randomness is determined (i.e., a random field realization of the
parameter is chosen), in the absence of other perturbations, the resulting
network is fixed.

The reasons for this behavior will now be explored, but since the concepts that

are to be used are new, then some explanation of the methodology is in order.

4.4.2 Basgics of Nonlinear Systems and Chaos

Consider, initially, a first order, single state linear differential equation
= bs s=s5att=0 (4.4)
The exact solution of this equation is

8 =13, ebt (4.5)

If the system starts at a slightly perturbed initial condition s = sy + AsO at time zero,

then the solution is
bt bt
s=8ye " + Agje (4.6)

Whether the initial perturbation Aso grows with time or not depends on the
sign of b. If b is negative, then after a long enough time the exact and the perturbed
answers will be indistinguishable. If b is positive, however, the two answers will
diverge for all time. In the nomenclature of the chaos literature the solution of

Equation (4.4), for b positive, is sensitively dependent on the initial conditions.
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Unfortunately the linear system of Equation (4.4) is too simple to demonstrate
everything needed. Although, for b positive, the initial random fluctuation in
Equation (4.6) grows with time, it never dominates the exact solution, Equation (4.5),
because the exact solution grows at the same rate. Consideration of a nonlinear
equation similar to Equation (4.4) will demonstrate a case where both the exact

solution and perturbation grow, but at different rates. Consider the differential

equation
(al‘%zbs(l—s) s=sjatt =0

* £
Linearizing this equation about s = s , the exact solution at time t , using a Taylor

Series expansion up to the first order terms,

*
dls + 83) _ bs"(1—5") + (b—2bs )As (4.7)

The equation for the growth of the perturbation As, applied at time t*, is then
423 (b - 2bs")As (4.8)

This equation is linear in As so that, as in Equation (4.4), the perturbation As

X
grows if (b —2bs ) > 0. The perturbation will grow faster than the exact solution if

*
11-232 > 1

s (1 -8)

Under these conditions it is possible for the perturi)ation to grow to dominate

the exact solution. For a system of nonlinear differential equations, the situation is
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slightly more difficult. Consider the general n dimensional system with states 81y e 8

of the form

() | (4.9)

& &

where s(0) = S
|

1)
i

= states of the equation
S
To obtain the differential equation governing the perturbation growth, the
system is linearized in a similar fashion as was Equation (4.7), now using an

n—dimensional Taylor Series so that

ds+ 23) x
—g——={8) + Al )as (4.10)
af1 6f1 ' 0f1
w B,
where A(_s_*) =| :
0fn ﬁ’—‘ )
* Pnf [s=3
Asl
Asg = : = vector of perturbations on the states g.
Asn

*
Subtracting Equation (4.9) evaluated at 3§ = ¢ from Equation (4.10) gives the

differential equation governing the growth of ihe perturbations
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d(A *
_d__( tg) = A(s )As (4.11)

The solution of this equation, for small As, is a simple result from linear algebra

(e.g. Hirsch and Smale, 1§74)

*
A(s )t
As=e =~ Asg

80 (4.12)

The way to characterize whether the individual perturbations As, grow or
diminish with time is more complicated than in the one—dimensional case of Equation
(4.4). The answer involves determining the eigenvalues and eigenvectors of A(§*). A
strict, though difficult, derivation of this answer may be found in Hirsch and Smale
(1974). The derivation that follows is somewhat less strict and more intuitive.

The matrix exponential can be expanded as a series
*
Ag = [I +AS )+ ] As, (4.13)

or rearranging the truncated form of this equation

*

(As — Asy) = A(s ) Agyt (4.14)

The perturbations Asl, vy Asn will grow with time when the corresponding term on
the right—hand side of Equation (4.14) is positive. This i3 characterized by the
eigenvalues A, ..., A and the corresponding eigenvectors g, ..., €, of A(s*).

It is a basic result of linear algebra that the matrix A(s*) can be expressed in

*
terms of it8 eigenvalues and eigenvectors, (neglecting the s dependence for clarity)
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A=TIDT

where T =(nx n)' matrix, columns are the eigenvectors
D = (n x n) diagonal matrix of the eigenvalues
'/\1 0 ]
A
— 2
_ 0 ' ’\n_

Substituting this result into Equation (4.14) yields

(As—As)=T 'DTA

%) 5 ¢

Multiplying through by T, on the left—hand side, and transforming the equation

so that the basis of the vectorspace is the eigenbasis, yields the equation

(Ag’ — Ag(’)) =D Ag() t (4.15) -
where
Ag’ =T Asg (4.16)
= the original perturbations Ag, transformed into the
eigenspace
Agé =T Ago

Noting the definition of the diagonal matrix D, it is now clear that if an
individual eigenvalue A, > 0, then the corfesponding perturbation |As§ - A36i| will

be positive so that the perturbation As ; grows with time. This is clearer if the steps
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that took us from Equation (4.12) to (4.13) are reversed and applied to Equation (4.15)
so that

; _.Dtoa,
As =e A§0

X '\1'3 1A, -
e A2t 0 As(,)1
e © A302
= : : (4.17)
)\nt )
0 e | Asy, ]

Taking an individual perturbation As; then

) ,\it
Asi =e ASOi

Thus if A; > 0, the corresponding perturbation Asi will grow with time. The
chaos literature (e.g., Moon, 1987) defines the Lypanov exponent, loosely speaking, the

measure of how fast small perturbations grow or decline, as

o.=¢ ' (4.18)

where o; = ith Lypanov exponent.
If the ith Lypanov exponent is greater than 1, then the ith perturbation will
grow with time; if it is less than I, the corresponding perturbation wiil decay with time.
It is important to note that Equations (4.17} and (4.18) only give information
about whether perturbations in the eigenspace grow or decay, not whether and how
much the original perturbations Asl, veey Asn grow or decay. How the original

untransformed perturbations, As, grow and decay depends on the linear combination of
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the eigenvectors and eigenvalues implied by Equation (4.16).

In addition, for a non-linear system, the linearization that gives the
perturbation Equation (4.11) changes with time, dependent on the value of _s_* with
time. Thus, just as the linearization changes with time, so do the eigenvalues and
eigenvectors. This is why the definition of Lypanov coefficient above is only loosely
correct; the chaos literature uses a time averaged value removing the dependency of
the linearization on time (Holden, 1987).

The relevance of the preceding discussion to the Meinhardt equations will now
be presented. The perturbations that are important are the initial random field input
into the coefficients in the activator equation and the random numerical noise that
inevitably arises in the numerical solution of the equations. How they propagate into

the states of Equation (4.1) will be shown.

4.4.3 Analysis of the Chaotic Growth of the Meinhardt Equation

This section will analyze the Meinhardt equations to determine regions of
chaotic growth, where small perturbations can grow and eventually dominate the
solution of the equations. This will demonstrate how random errors, either input
. randomness or numerical errors, may modify the form of the network generated so that
it appears random.

Using the techniques described in the previous section, the Meinhardt equations
will be linearized around a nominal trajectory. This linearization gives the differential
equation of the perturbations from which the eigenvalues, eigenvectors, and Lypanov
exponents will be obtained. The distribution of positive eigenvalues (Lypanov
coefficients greater than 1) will be examined. These regions of positive eigenvalues will
be asserted to be regions of transient chaos, where small perturbations may grow and
dominate the solution of the equations.

The Meinhardt equation (Equation 4.1) may be formulated as in the form of the
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general nonlinear system of Equation (4.9) as

]
where
' e
0
s = 5(0) =
YA ZO
Ly Yo
rca,mlz 92a ﬂ
fa(§) —h———ﬂa'f'Dag?-'f’pOY
1
£ | lea(coca 2 = vh + D & Y)
h 3¢ h 52 74
fls) = = i
2
()
fz(g) Cg — Mgz — €YzZ" + D, g——g—
y? H
f (8 c,a—-0.1Y + —
LY’)_ 1 1+ 9Y?2

It follows that the equations for the perturbations As can be obtained from Equation

(4.19) by use of the linearizations in Equations (4.10) and (4.11) so that

by o«
57— = Alg )As
where
*
8
performed.
As = perturbations on the states g.
%*
A(s ) = (nxm) state matrix for the perturbations
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(4.20)

x*
= nominal states at ¢t = t , the point around which the linearization is



of, of, o, of,
B *® ® I

~ of, ofy of, ofy

= % *® &k I
of, of, of, of,
& R & Y
of, of, ofy ofy o
B H® ® gy ||T%

*
The individual derivatives in the matrix A(s ) are

* ml_l *
6fa cml(a. ) z
' §=§* = ;ﬁ —u+ Da (4.21a)
of mph
2l = ~da) o 5 (4.21b)
= (h)
of * M
T |ems™ = ﬁﬁy)— (4.21¢)
of
I |s=s = %o (4.21d)
3fh * ml—l *
Y s=s* = C3CoC m(a) 2z (4.21e)
ofy
m— S=S* =—-Vv+ Dh (421f)
3fh x My
T |g=g = C3oc(a ) (4.21g)
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v §=§_*=pl

of, *_6fz -

Ga |s=8 ~Oh [s=3

3fz x * *m2—l
T |s=s =1 €myY (2)

af .

o gyt =l

of

Y —

T lg=s =N

oy | L _dy| L _,

Hhs=s ~ % |s=8

af *

s gt =~ 01+ — s
=3 1+ 9Y %)

(4.21h)

(4.21i)

(4.21)

(4.21k)

(4.211)

(4.21m)

(4.21n)

The expressions for derivatives in Equation (4.21) are applicable at a point in

space and to determine them all that are needed is the values of the nominal states at

that point; the derivatives are independent of the values of the states at surrounding

points. Thus Equation (4.20) is not a partial differential equation.

This is an

important point since the original problem (Equation 4.19) was a partial differential

equation and to solve it discretization in space is required. The original problem is

coupled in space. However, due to the linearization the perturbations are uncoupled in

space; the solution for perturbations can be determined independently of the states at
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nearby grid points. Thus the perturbation equation can be solved at each grid point
independently of the other grid points. Thus for a 20 x 20 grid four hundred 4 x 4
problems must be soived to determine the eigenvalues and eigenvectors. If the
perturbations were coupled in space a single, 1600 x 1600 problem must be solved.
Hence determining the eigenvaluer and eigenvectors of A(s*) for the former problem is
reasonable with existing computer equipment while the latter is niot.

The reason for this decoupling in space of the perturbations is the linear spatial

coupling in the original state equations (Equation 4.19). The diffusion term D a D
ox

32 h 62 VA

50,73
ox” ox

would not be decoupled. It would then be necessary to linearize the diffusion terms to

Dy are linear. If these terms were not linear, then the perturbation
decouple them. Thus the following eigenvalue and eigenvector analysis is exact and
involves no approximation.

To demonstrate the stability properties of the Meinhardt equations, the stateé
from a partially grown network were used. These states were used as the nominal
states for the linearization. The parameters used to generate the sample data set were
those of Meinhardt (1982).

Contours of the four states activator, inhibitor, substrate and differentiation are
provided in Figure 4.10. Figure 4.10a shows contours of activator. The four, perhaps
five, peaks correspond to points near the network where active growth of activator is
occurring around the branch heads. The pattern of differentiation and branch heads is
shown in Figure 4.10d. The eigenvalues of A(§*) from the perturbation equaticns are
contoured in Figure 4.11. As noted in the previous section, these eigenvalues
correspond to the eigenvectors of A(g), ot the original states. Not only are the
eigenvectors linear combinations of the states, but they are linear combinations that
vary from point tc point in the grid, since the eigenvalues and eigenvectors vary from

point to point depending upon the linearization at that point.
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(a) Activator

(b) Inhibitor

Figure 4.10: Contours of the states of the Meinhardt equations:

=4

time = 3000

128




@ _
N )

(d) Differentiation

Figure 4.10 (ctd): Contours of the states of the Meinhardt equations:
time = 3000
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Figure 4.11: Contours of the eigenvalues of the linearized
Meinhardt equations: time = 3000
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While each eigenvalue corresponds to an eigenvector that ‘is a linear
combination of the four states, and this linear combination changes in space, so that a
positive value for a pa.rticula} eigenvalue cannot be categorically attributed to any
particular state, it is believed that Figure 4.11a largely corresponds to activator,
Figure 4.11b to inhibitor, Figure 4.11c to substrate, and Figure 4.11d to
differentiation. Negative eigenvalues correspond to stable Lypanov coefficients (i.e., o
< 1) while positive eigenvalues correspond to unstable Lypanov coefficients. The most
obvious result is the existence of large regions of stability in the undifferentiated
localities and the existence of instability for the points where the network is currently
growing for activator and differentiation. The eigenvalue roughly corresponding to
substrate is positive everywhere and that for inhibitor negative everywhere. Thus at
the tips random effects are very important, which is in accord with observations and
explains the sensitivity of the networking process to applied randomness.

We are now in a position to discuss propagation of randomness in the
Meinhardt equations. Figure 4.11a indicates that any random fluctuations in activator
near the branch head will propagate unstably. Outside this region around the branch
head activator fluctuations are suppressed.

Far from differentiated points because the equations are stable the initial
perturbations almost disappear, but not entirely. When the lines of differentiation
pass through these areas, the residual effects (though extremely small) are propagated
unstably in time and are sufficient to result in different patterns being formed for
different realizations of the random fields (Figure 4.9e).

Randomness also has other important effects. Since activation, and thus
differentiation, are dependent on activator exceeding the activator threshold of
Equation (4.2), then addition of random perturbations results in better activation.
Where activation would not have occurred, it has, and where it has, it occurs faster

when random perturbations are applied. Networks with random componerts
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differentiate and proceed to equilibrium faster than they would otherwise. Also
random effects mean that nodes exceeding the activator threshold are less determined
by boundary conditions and more by the spatially random perturbations on the
autocatalysis parameter, ¢, which propagate as chaotic fluctuations in activator.

The chaotic effects described in this section are believed to be the cause of the
random behavior of the networks exemplified in the introduction to this section. The
random effects on parameter ¢ obviously feed directly into activator and thus inte the
differentiation function. The numerical effects on the other hand are always feeding
into the activator equation, but at early times, their cumulative effect is small. Thus
the network symmetry at early times. At later times there is sufficient time for
chaotic effects to act on the accumulation of errors to send the solution a trajectory
entirely different to that of the exact solution (i.e., double precision solution). ' The
effect of the different diffusion formulations only serves to reinforce the idea that
accumulation of random effects can dominate network form.

A very important, but unanswered, question is whether the chaotic systems
mechanisms that generate the randomness in the networks are specific to the
Meinhardt equations or whether they are more generally applicable. Of course, there is
no way to be certain of this without testing more general forms of equations but some
general and powerful comments can be made.

The differentiation equation (Equation 4.1d) is driven by activator exceeding an
activator threshold. Three generic properties that the activator must possess, for
networks to form, were proposed in Section 4.3. It has also been noted that the only
direct input into the differentiation equation is activator. It is apparent from Equation

(4.21a) that for m. > 1, the autocatalytic behavior of activator will result in Lypanov

1
exponents for activator perturbations being greater than 1. When activator is growing,
perturbations in activator are also growing. Thus a result of the autocatalytic

behavior is the existence of a sensitive dependence on initial conditions, a central
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feature of chaotic systems. If the activator and inhibitor equations are replaced with
some other form of activator function, provided that this new activator is also
autocatalytic, it is suggested that this new activator function will also show sensitive
dependence to initial conditions. If a small change in activator propagates through the
system 8o as to produce a self—reinforcing change in activator, then that activator will
be sensitive to random effects.

It is believed that the physical system that will be proposed in Chapter 5
displays this behavior, and that this autocatalytic behavior is an explanation for the

random form of channel networks in the field.

4.5 Conclusions

This chapter examined some of the important characteristics of a set of
equations developed by Meinhardt (1976, 1982) that have been shown to exhibit
networking behavior. The governing physics of these equations is a chemical transport
model and the equations were first presented in the context of leaf vein growth within
a leaf.

The most important characteristic of these equations is that there is an explicit
consideration of a differentiation process in space; the differentiation between normal
leaf cells and leaf vein cells. A qualitative analogy between leaf veins and channel
networks appears to exist. The differentiation process is shown to be governed by
some very complex interactions of chemical transport properties in the leaf cells
surrounding the leaf veins. This chapter identified how the underlying physics
governed the form of the networks generated. This work suggests that interactions
between the channel and the hillslope are central to the growth and form of the
channel networks

Using sensitivity studies, it was shown that the physics of the Meinhardt

equations were not unique in generating networks of differentiated nodes. All that is
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required is that the physics comply with some very general rules. On the basis of the
sensitivity studies, three general rules were proposed on the characteristics of the
growth mechanisms of a line of differentiated nodes. They were:

1. A potential growth region must surround and precede the end of a
growing branch. This allows the branch te grow.

2. The potential growth region must move with the branch tip and the
growth potential must be actively suppressed immediately behind the
growing tip. This forces the branch to grow as a line rather than as a
blob.

3. The potential growth regions of two growing branches must repel each
other, and the domain boundaries must repel the potential growth
region. This assures that the resultant network is space filling. |

Finally, the cbserved randomness of the generated networks was explored in

terms of transient chaos. It was shown that while input randomness results in random
networks, the input randomness is not essential for the network growth process.
Networks can grow in the absence of random inpvt. The means by which random
input comes to dominate the network form was explained in terms of transient chaos
near the growing branch tips. Maps of Lypanov coefficients demonstrated that chaotic
behavior occurs in regions of active growth and showed how random effects may grow
and dominate the form of the generated networks. It was argued, on the basis of the
sensitivity studies, that this chaotic behavior may not arise from the specific form of
the Meinhardt equation but may, in fact, be a general characteristic of all differential

systems that exhibit autocatalysis in the state that governs network growth.
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CHAPTER 5
A PHYSICALLY BASED CHANNEL NETWORK
AND CATCHMENT EVOLUTION MODEL

5.1 Introduction
In this chapter a model is presented that realistically simulates the growth and

evolution of channel networks and their contributing hillslopes. The realism results
from the incorporation of continuity for flow and sediment transport. The constitutive
relation relating flow and sediment transport incorporates generally accepted physics.
The model explicitly describes the differentiation between channel and hillslopes, and
their responses to runoff and sediment transport. This differentiation is the most
important physical characteristic of catchments. The interaction of the hillslope and
channel regimes over long time scales is also taken into account. The dynamics of
channel and network growth are modelled using physically based mechanisms for
channel initiation and growth. In addition, other important effects such as tectonic
uplift, rockslide, and soil creep are described with their own physics, independently of
the sediment transport mechanism.

It is believed that the model presented in this chapter is a good representation
of the minimal physics necessary for a branched network of channels te be formed.
This will be argued on the basis of the qualitative understanding developed in Chapter
4 regarding the important processes involved in creating networks in the Meinhardt
equations. Where necessary the intuition thus gained will be used in formulating the
processes that are modelled in this and later chapters.

The philosophical justifications for selectively incorporating processes, rather
than incorporating all possible processes, are threefold:

L The smaller the number of processes involved in the evolution of the

networks and catchments, the easier it is to understand the complex

136



nonlinear interactions that occur.

2. Perhaps paradoxically, the smaller the number of processes involved, the
more general are the results. For each independent process that is
modelled, a new nondimensional parameter is created. To compare two
catchments using similitude, all nondimensional parameters must be
equated. If only dominant processes are modelled, then the number of
nondimensional parameters to be matched is minimal, and greatest
flexibility is obtained in scaling two catchments for similarity. These
similitude conditions are dealt with in detail in Chapter 6.

3. The smaller the number of processes, the less the computational
problems in solving the resulting equations. As will be seen later, the
computational problems of solving the equations presented here are quite
severe.

The major disadvantage of choosing a minimal physical system is that it is
probable that different processes may dominate at different scales. It is believed thai
all of the important processes at the catchment scale are included, so that this scale
problem is not an issue. In particular, a number of processes that are only important
at the hillslope scale, or in steep rocky catchments with thin soils, have been ignored.
The most important limiting assumption at the hillslope scale is that sediment
transport will be considered to be transport limited rather than source limited. That
is, the limiting condition on how much sediment is transported is the transport

capability, rather than the existence or lack of transportable material.

5.2 The Governing Equations of the Physical Model

This section presents the governing equations that will be used in this work.
The equations are used to simulate the growth and evolution of the channel networks

and the contributing hillslopes. Justification of the form of the crucial terms in these
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equations will be provided in following sections. The formulation of the governing
equations implicitly assumes that the equations will be solved on a grid of equally
spaced points in the plane, in an analogous fashion to the finite difference solution
technique for partial differential equations.

Two variables are solved for in the plane, elevation and an indicator function
that identifies where channels exist in space. On the basis of the direction of steepest
slope, a flow or drainage direction is assigned to each node. These drainage directions
are then used to determine area contributing to (i.e., flowing into) each node. From
these areas, and the sieepest slopes at the nodes, continuity equations for flow and
sediment transport are written. These areas and steepest slopes are also used to obtain
overland flow velocities, or the activator, which are then used in the channelization
function, as indicators of potential for channelization. Details of the numerical
implementation of the solution technique for these equations can be found in Appendix
A.

The governing differential equations are:

oz, m n .
1 1 1 |
= ¢ + ——— T1(Q) 1(5) 'L £(Y,)] +D,L
'Ht',l 0j ps(l—n) Lg ? i LA | z gb‘x?
(5.1a)
aY. Y2
g =d, [0.0025 ¢j2; + (= 0.1Y; + I_+J97j)] (5.1b)

and the constitutive equations are:
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m. N
a, =6;Q; 8g.9 (5.2a)

! mlj nl
Q; ={(Y) Q;'s; (5.2b)
Q = f, A?" (5.2¢)
f(Y. = 5.2d
(Y,) A (5.2d)

where the equations are solved on the domain Q. A rectangular domain is used in

much of the following work so that
Q=o, Ll] x [0, L2] (5.2e)

The variables in Equation (5.1) are
zj = elevation, at node j
Y. = indicator variable for channelization, at node j

{0 hillslope node

1 channel node

aj = activator of channelization, at node j

Qsj = sediment transport, at node j (units of mass/time)

Q i = discharge, at node j

t = time

X = horizontal distance, in direction i

Lg = grid spacing (equal in both planar directions)

coj = tectonic input

Py = density of eroded material

n = porosity of material before erosion and after deposition
Sj = glope in 3teepest downhill direction, at node j
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D = diffusivity for diffusive transport processes

z

L j = indicator function for whether node i drains into or ocut of node j

-1 i=j, drainage of node j
=4 1 node i drains into node j
0 node i does not drain into or out of node j
ﬁl = rate constant for sediment transport in channels
O, = ratio of rate constant for sediment transport in the hillslope region to
sediment transport in the channels

m,, n; = powers of Q and S in the sediment transport equation

dt = rate constant for channel growth

1/¢; = threshold coefficient on the activator of channelization

ﬂ5 = multiplicative constant on activator
Mg, Ng = powers on Q and S, respectively, in the activator equation
ﬁ3, mg = multiplicative constant and power, respectively, for relating the

characteristic discharge to the characteristic area.

5.3 Explaration of the Governing Equations

The governing equations (5.1) are nonlinear differential equations with two
states distributed in space. These two states are elevation and the indicator function
for channelization. The most important qualitative characteristic of a catchment, the
branched network o’ :nannels that form the backbone of the drainage system of a
basin, is thus explicitly modelled. There are five important properties distributed in
space that are derived directly from these two states. The first three are the steepest
downhill slope, contributing area and discharge. The other two important properties
are derived from the slopes and discharges and are the distribution of activator and
sediment transport in space. The activator and sediment transport distributions feed
back into the two state equations for elevation and channelization as inputs. Thus

there is a nonlinear interaction between the elevation and channelization, and the
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activator and channelization distributions in space. This interaction i$ the central
feature of the modei.

The differential equati(;n for elevation (5.1a) is a continuity equation in space
for sediment transport. Three physically based transport processes are modelled. The
most important process is the continuity term for fluvial sediment transport, which is
the second term in Equation (5.1a). This term is dependent on discharge and the
magnitude of the slope in the steepest downhill direction. Additionally, the magnitude
of the fluvial transport is dependent upon whether that point in space is channelized or
not. Typically, sediment transport on the hillslopes is much less than that in the
channel. This effect is parameterized by the f(Y) term of Equation (5.2d), where 0, is
much less than 1. The physics underlying the formulation of the fluvial transport term
of Equation (5.2c) is explained more fully in Section 5.4. The form of the surﬁma.tion
in Equation 5.2 follows from summing all the sediment inflows and outflows (expressed
as mass/(unit volume)), converting them to an effective voiume (using the density and
porosity) and applying the sediment transport imbalance over the area associated with

the node, Lg. That is

oz L2 _ sediment inflow - sediment outflow
* g pg (I-1)

The second important term in the elevation equation is the tectonic input; the
first term in Equation (5.1a). The form of this term may be quite general with
variability allowed both in space and time. For instance, an uplift event, such as may

result from an earthquake (see, for example, Morisawa, 1964) can be described by

co(i, t) = E-()(g ot - to)

141




where

€y = the uplift resulting from the tectonic event

t = time at which the event occurred

&t) = dirac delta functicn

Uplift that occurs continuously with time, but that may be variable in space,
such as may result from continuous buiging of the continental crest (see, for example,

Havlena and Gross, 1988) can be described by

co(%: t) = (%)

where —C-O = the uplift rate resulting from bulging, variable in space, constant
in time.

This tectonic term is important since it is the only mechanism to oppose the
continual downwasting of fluvial sediment transport. As will be described in detail in
Chapter 6, the so—called “dynamic equilibrium” of landscapes cannot occur without
the opposing processes of tectonic uplift and fluvial erosion.

The third term of the elevation evolution equation is the diffusive transport
term. As noted in Section 2.3, a number of hillslope transport processes can be
modelled by use of a spatially constant diffusion term. The processes that are lumped
together in this diffusion term include hillslope soil creep, rainsplash, and rockslide.
The literature indicates that the first two of these processes are only important in the
regions of the hillslopes near the watershed where discharge, and thus fluvial sediment
transport, is small. Rockslide, the third of the diffusive processes, is much more
uncertain. Little work has been done on determining the importance of this process at
long time scales. Since the adapted model was not primarily formulated for modeling

rocky, source limited transport environments, the diffusive process will be largely
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ignored in this work, even though the conceptual framework of Equation (5.1a) allows
it to be modelled. In Chapters 7 and 8, where the results of computer simulations will
be discussed, studies of the sensitivity to this term will be performed.

The channelization equatiion (5.1b) is the important equation with respect to
the development of channels and the extension of the networks. As noted in Chapter
4, the effect of the form of Equation (5.1b) is to make two values of Y stable
attractors, 0 and 1. Initially the catchment starts with Y = 0 everywhere, a situation
corresponding to no channels, only hillslope. When the value of the activator a exceeds
a critical threshold called the activation threshold, the value of Y = 0 becomes
unstable and Y goes into a transition state where it is increasing to Y = |, i.e., that
spot in space is in transition from hillslope to channel. When Y reaches a value of I, Y
remains at 1 forever, since the value of Y = 1 is stable irrespective of the value of
activator. That is, once a channel is formed, a channel cannot be unformed,
irrespective of what happens in the catchment after that. The effect of the activator
function is solely to trigger the beginning of the channelization process orce a given
threshold is exceeded. The rate at which a point is channelized once the activator
threshold is exceeded is determined by the parameter d,; a large value of d; results in
the point differentiating quickly. The form of the channelization process in Equation
(5.1b) is inspired by the form of the differentiation function in the Meinhardt
equations.

The details of how this channelization process leads to network extension and
pattern development is a central justification for the work described in Chapter 4.
While the quantitative definition of activator in the Meinhardt equations and that of
Equation (5.2a) is quite different, the qualitative behavior is very similar. This is
particularly true of the spatial distribution of activator q.round the growing channel
heads, and its influence upon the growth of the spatial pattern of channelization or

differentiation. In Section 4.3 three conditions were asserted to be necessary conditions
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on the qualitative, or topological, spatial distribution of activator if networks were to
be formed. These conditions will be restated in the context of Equations (5.1) and
(5.2).

The first conditicn is that regions of high activator must be formed around the
growing channel tip. As is shown in Figure 5.1, these regions of high activator result
from the localized high slopes and the convergence of the drainage flow patterns around
the channel head. Both of these effects result from the larger erosion along the
channels, compared to the hillslopes. This preferential erosion in the channels results
from the higher sediment transport rates in the channels since Ot << 1. Simply put,
channels erode faster than hillslopes and this bebavior is necessary for a channel to
grow. If channels do not erode faster than hillslopes, then there is no preferential
drainage to incipient channels, and no encouragement through autocatalysis for
channelization to occur.

The second condition for network formation was that the region of activation at
the channel head must move with the channel head. As shown in Figure 5.2, this
results from the capturing of the flow directions around the channel head. In this way
discharges behind the channel head are diminished, even though slopes are of
comparable magnitudes. Thus activator is lower behind the channel head than at the
channel head.

The third condition for network formation was that growing channel heads
should repel each other and that growing channel heads should be repelled by a
boundary. This requirement ensures that the resulting network is space filling, a
commonly assumed, if not observed, feature of channel networks (Abrahams, 1984).
The repulsion of growing channel heads, as shown in Figure 5.3, results from an
interaction between the drainage patterns and erosion. Provided that in the sediment .
transport Equation (5.2b) m > 1, then the rate of elevation change is positively

correlated with discharge. Thus everything else being equal, the region between the
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growing tips (region A) which has lower discharges, will have a siower rate of change of
elevation than the region outside the growing tips (region B). Since discharges follow
the steepest downhill directfon, that means that discharges will be highest on the
outside of the growing tip (region B). On the other hand, slopes will be highest inside
the growing tips, in region A. It appears that provided m, ~ n, that the higher
discharge in region B dominates the higher slope in region A. Thus the highest
activator is typically in region B so that growing tips repel each other.

The argument for repulsion from the boundaries proceeds in a similar fashion

(Figure 5.3). The boundary is modelled as a zero slope condition perpendicular to the

boundary, i.e.,
0z _ —
o =0 g =0, 1Ly
(5.3)
0z _ —
a@ =0 Xl = 0, Ll

for a rectangular solution domain, = [0,L,] x [0, L.

Postulate an image channel a.n' equal distance from the boundary, a mirror
image of the actual channel. The boundary is a similar flow divide to that which
develops naturally in Figure 5.3. The argument for mutual repulsion between the real
channel and the image channei proceeds exactly as that above for the repulsion of two
real channels. The boundary conditions of Equation (5.3) mean that the boundary of
the domain is simply an artificial watersked, identical in all but one respect to that
developed naturally in the interior of the domain. The one respect where the
watersheds differ is that the domain boundary, which is a straight line, artificially
constrains the form of the channel alongside it and reduces its irregularity. This is a

common problem of channel network generation schemes that apply fixed boundary
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conditions (e.g. van der Tak, 1988).

There is another boundary condition which is important. This is the elevation
condition imposed at the catchment outlet. All elevations in this work are defined
relative to the fixed elevation imposed at the outlet of the catchment (i.e. the elevation
of the notch). Thus the tectonic uplift rate, Co» is defined as the uplift relative to the
elevation of the outlet. As an example consider a small catchment with an outlet on a
the flood plain of a very large river. The outlet elevation may be dominated .by
elevation changes in the floodplain in the large river; i.e. from the point of view of the
small catchment the elevation condition at the outlet is externally imposed and
variable in time. In this case cg for the small catchment is the tectonic uplift relative
the flood plain of the large river (i.e. the catchment outlet elevation) not relative to sea
level.

The preferential erosion that occurs in the channel and the autocatalytic effect
this has on the activator is central to the branch head growth. It also has an
interesting consequence for hillslope erosion which is by definition unchannelized. For
the hillslope to be unchannelized, it must be that there is no autocatalytic tendency to
channelize. Something must be happening on the hillslope to stabilize the tendency to
channelization. This may result from there being no tendency for channels to erode
faster than the hillslope. If channels do not erode faster, then there is no positive
reinforcement for channelization. This may result from increased inputs to sediment
transport from rainsplash (a diffusive process in Equation 5.1) of the same order of the
fluvial erosion. Thus when fluvial erosion on hillslopes is comparable to the stabilizing
rainsplash effects, the self-reinforcing channel erosion is dominated by the channel
destroying diffusion. This mechanism is consistent with the first condition for network
formation, and the observed physics (Dunne and Aubrey, 1986). It would also explain
the disturbing conclusion of Smith and Bretherton (1972) who found, in a model

without diffusion, that channelization must occur in all regions that are undergoing
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active erosion.

It was noted in Chapter 4 that the idea of Y=0 representing hillslope and Y=1
representing channels is only'approximate. In particular, at a growing channel head
there is a period of time when the hillslope is in transition from hillslope to channel;
i.e. Y is between 0 and 1. Points intermediate between hillslope and channel have
sediment transport properties that are intermediate between that for hillslope and that

for channel. The adopted transition is of the form

( ﬂl Ot aY <0.1
Y
f(Y) = 4
ﬂl aY 21
Where « = a model parameter greater than 1

The model is insensitive to changes in a. A detailed discussion of numericel

issues related to the solution of the governing equations is provided in Appendix A.

5.4 Physical Justification of the Sediment Transport Equation

The generic sediment transport formula used in this work is

MM
Q=5Q 'S (5.4)
where
Qs = sediment transport, in mass/time
Q = discharge
S = channel or hillslope slope -
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Though a sediment transport equation of this form has been used by
geomorphologists in previous work (Smith and Bretherton, 1972), this formulation of
the sediment transport equation is unconventional compared with the form used by
specialists in fluvial sediment transport (e.g., Vanoni, 1975). The unconventional
formulation was adopted because it has a number of significant computational
advantages over the traditional formulation (see Appendix A for details). This section
aims to show how the new formulation may be obtained from the Einstein—Brown
equation, a commonly accepted fluvial sediment transport formula. It will be shown
that a minimal number of simplifying assumptions are required.

In addition, it will be shown how the Einstein—-Brown equation, an
instantaneous sediment transport relation, can be converted into a mean temporal
sediment transport relation for large timescales. It will be shown that the simple form
of Equation (5.4) can be maintained under this temporal averaging, and that only the
coefficient ﬂl is modified with coefficients m,, 0, unchanged. Thus the temporal
averaging results in the rate of sediment transport being changed; its form dependent
onmy, n, is unchanged.

This work adopted the Einstein—Brown sediment transport equation. This
equation captures the important dependencies of sediment transport; that is, its
dependence on depth, velocity, sediment size, and channel geometry.

The Einstein—Brown equation is expressed in terms of a non—dimensional
sediment transport ¢, and a nondimensional shear stress, % Vanoni (1975) gives the

governing equation as
¢ =40 (3)° (5.52)

where
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o=
3
7 Fy As(s = 1) 6§
1__To
Y s - 1) dg
S 362 | 362
3

gdd(s = 1) { gdi(s - 1)

and the notation used is:

qq = sediment discharge, mass/time/(unit width)
8 = specific gravity of sediment
= pg = specific weight of water

8
d50, the 50 percentile diameter, is used.

g = acceleration due to gravity
70 = 9RS = bottom shear stress
R = hydraulic radius

S = bed slope

v = kinematic viscosity of water.

Y
d = a representative diameter for the sediment particle.

(5.5b)

(5.5¢)

(5.5d)

Normally

If the sediment is considered homogeneous throughout the catchment this

equation may be simplified to yield

where

q = Fy (RS)3
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F, =401, FIJ gs — 1) & [(s——lf)_?i;]3 (5.6b)

= constant

Experimental evidence suggest that the exponent in Equation (5.6a) is

variable so that a more general formulation is used below where
qg = Fy(RS)° ' (5.7)

Equation (5.7) is not in the form of Equation (5.4) so that this equation must
be reformulated so that it is dependent on discharge Q rather than hydraulic radius.

This is achieved by use of Mannings equation for discharge

5/3c1/2
R P
RSP (5.8)
where P = wetted perimeter of flow
n = Mannings roughness coefficient

Eliminating the hydraulic radius R from Equations (5.7) and (5.8) yields a

sediment transport equation that is true for all cross—sections

3p 7
5? sTg (5.9)

Q= F'(P)Q

3
where F’(P) = F, (I‘})gp'
Note that the multiplicative constant F’ is dependent upon the wetted

perimeter. The form of this dependence depends on the channel geometry of the flow.
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A number of different channel geometries have been examined including

1. a wide channel with uniform depth across the cross—section
2. overland flow/unit width
3. a triangular channel with sideslopes a,
b
4. a general channel cross—section of the form y = a; |x| 1, where a; and

b, are variable.
The detailed derivations for each of these cases are presented in Appendix C.
The simplest case, a wide channel, will be used to illustrate the techniques involved.

In this case the governing sediment equation for the wide channel is

£

Q =F(Q s (5.10)
2
where F/ =Fy(3)
w = width of the channel.

The multiplicative constant F’ is dependent, in a well defined way, on flow
geometry and sediment characteristics. F’ is constant because the wetted perimeter i3
independent of flow depth. For the specific example of the Einstein—Brown equation

(p = 3), Equation (5.10) simplifies to
1.8
where F’ = [F, (%) ]
Note that for the wide channel Equations (5.10) and (5.11) are exact and

require no approximation. This is also the case for overland flow/unit width and for

the triangular channel. However, some very small approximatious are used to
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reformuiate the sediment transport for the general cross—section into the form of
Equation (5.4).

For comparison purposes, the exact sediment transport formulae for the wide
channel and a triangular channel (with side slope al) are tabulated in Table 5.1
together with those for a generalized cross—section. The channel cross—section has
very little effect on the functional dependence of sediment transport to channel slope.
The cross—section dependence is most apparent in the functional form of the discharge,
with a lesser dependence on the multiplicative constant. Table 5.1 indicates the range

of values that m and n; may take in Equation (5.4). That is

m; ¢ [0.375p, 0.6p]
n; € [0.7p, 0.813p)

my

L ¢ [0.413, 0.857]
1

Moore and Burch (1987) used unit stream power theory and the experimental
data of Mosley (Schumm, et. al., 1987) to derive a sediment transport equation for rills

and hillslopes. Their equation was

q ~qifsl®
. (Q¥53 50-6yp

where p = 3.

This equation corresponds well with a case intermediate between the wide
channel and the variable geometry channel (Table 5.1).

The derivations summarized above apply only to the instantaneous sediment

discharge this being the typical use of the Einstein—Brown equations. It remains to be
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TABLE 5.1

Sediment Transport Equations

Channel Geometry Parameters

Sediment Transport

2y b1 Formulas
. . n0-421P] J0.421p (0.789p
2 p Q
LS9 24P |
0.467p .
1 3 F2 n . Q0.467p SO.761p
L 29 99P |
0.495p
1 4 F2 n : Q0.4!~)5p S0.753p
- “2.360
3 ) n0-444P) 0.444p £0.778p
2 p Q '
L %9 46P
0.487p
3 3 F2 )i} . Q0.487p SO.757p
L “9.67P
3 A n®-312P1 J0.512p (0.744p
2 P Q
- C2.01P
0.455p .
10 9 F2 n . Q0.435p SO.773p
L % 2.665 -
0.496p]
10 3 F2 n . Q0.496p 80.7521)
- 3.21 -
0.518p
10 4 F2 n . Q0.518p SO.741p
3.66
n0.3'75p a
Triangular Channel Fy 12 Q0-375p g0.813p
(a.1=sideslope) | 72.38  1+a]
Wide Channel Fy (%)0-61’] qQ0-6p 9.7p
" 2.2
Henderson (1966) pQ°S
Moore and Burch (1987) sQlbgl8
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demonstrated that Equation (5.4) is also a satisfactory representation of the mean
temporal sediment discharge over long time scales.

The time scales of interest in this work are typically of the order of thousands of
years. By temporal averaging over the distribution of flood hydrographs, where
Equation (5.4) describes the instantaneous sediment discharge, a modified version of
Equation (5.4) can be obtained for the mean temporal sediment discharge. In the
process a new value of the multiplicative constant 3 is obtained that is dependent on
the moments of the distribution of flood events and the discharge, Q, used is the mean
annual discharge from a flood frequency analysis.

Hereafter, to avoid confusion of notation we will use the parameters of Equation
(5.4), i.e., ﬂl, m, and n; to represent those parameters applicable to the mean

temporal sediment discharge equation and the equation

m, 1
Q=10,Q 252 (5.12)

with its parameters [32, m, and n, to represent those parameters applicable to the
instantaneous sediment discharge equation. What follows is a brief summary of the
averaging over time of the instantaneous sedirnent transport to obtain the mean
temporal sediment transport equation. The complete details are provided in Appendix
C.

Consider a single flood hydrograph described by the discharge with time Q(t),
with a characteristic duration Tp, and a characteristic discharge Qp (Figure C.3), so

that

t
t’ =
T

em =9

p
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The sediment load of a single hydrograph can then be expressed as
m m, n
- Fler\Y 2 g4 2q 2
o =15T,] @) ar1e,’s

By considering the peak discharge, Qp, and the time of duration of the flood,
Tp, as random variables then the sediment transport per hydrograph, Q g is a random
variable. If, in addition, the rate at which the hydrographs occur with time is aiso a
random variable, independent and Poisson distributed in time, then the average

sediment transport rate is given by

_ (o4 My,
q, =WTA]_ @) 2
2 2
ag g
Q QT] m,n
L+ mg(m-1) —2 + m, —2-R| q 252 (5.13)
T2V 2 2 p
QP QP TP
where Tp = mean length of hydrographs
= rate at, which hydrographs arrive with time
Qp = mean peak discharge over all the hydrographs that carry
significant sediment load. Derived from fi..u frequency
analysis
0(3 = the variance of the peak discharge, derived from flood
2

frequency analysis
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o’é T = covariance between the peak discharge and the length of

PP
the flood hydrograph.

It should be noted that this equation is in the form of the generic sediment
transport equation where the correspondence between coefficients in the instantaneous -

equation (5.12) and the time averaged equation (5.4) is as follows.

4 —ﬂz[T @) 2dt]

2 2
() UQ T
[ 1 + my(my—1) :?—2 +m, j—L_R]
QP Qp TP

A more complete expression for ﬁl that allows for skewed distributions of peak

discharges (e.g. the log—Pearson Type III distribution) is given by

0 m
b =5 | Tl @y ™|

2 3/2
7Q (a
[1 + m? -Q—-g- + m, m2—1)(m2—2) % 3 p +
p p
QT
m, 6—’%2} (5.14)
p P

where
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Q. = skewness coefficient of Q D

1 : 3
S L@

i=1

2 \3/2
(UQ ) /
p
N = total number of flood events
Note that the incorporat on of skewness only modifies the value ﬂl, and not the
functional form (i.e. m,; and nl) of the selimeni transport equation.

The major difference between the instantaneou. =< time averaged equations is

ths definition of the discharge. The dependence of the mean temporal sediment

transport on the mean peak discharge is important. The discharge, Qp, in Equation

(5.13) is the average of all the peak discharges of flood events that carry significant

sediment loads. Thus Qp is the mean peak discharge from a flood frequency analysis
based on exceedance series, with the lower cutoff on discharge being that below which
sediment ioad is insignificant.

Finally the differentiation between the rates of sediment transport in the
channels and on the hillslopes, factor O,, needs to be justified. From Mannings
equation for dis:harge (Equation 5.8) if the discharge is fixed then an increase in flow
depth is balanced by a reduction in the wetted perimeter (all other factors being
equal). This decrease in wetted perimeter causes an increase in sediment discharge
(Equation 5.9). Thus as the flow concentrates and becomes deeper the sediment
transport increases. It is this effect that is conceptually modeled by the coefficient Ot'
Equation (5.9) indicates that the two important physical determinants of Ot are flow
cross—section geometry and sediment properties (parameterized by F,). The latter
may in turn be affected by the flow velocities. Clearly determining Ot apriori is a

difficult problem.
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Some experimental evidence exists to support the use of Ot < 1. Priest, et al.
(1975) measured sediment transport rates on the hillslope immediately ﬁpstream of a
gully head and then again in the gully immediately downstream of the head. These
data suggest a value of O, about 0.3 for an actively cultivated catchment. They found
that hillslope conservation measures (e.g. vegetation growth) did not significantly
reduce the gully sediment transport. If, in this case, hillslope sediment transport rates
are reduced then this would suggest that Ot in natural catchments shouid be less than
0.3.

The interpretation of discharge, Q, varies from the channel to the hillslope. For
channel it is. just the discharge. For the hillslope it is the discharge/(unit width) times
the effective width of a hillslope node, L o The numerical code implicitly assames
L g=1.

In conclusion, this section has shown three things:

L A commonly accepted instantaneous total load sediment transport
equation, Einstein—Brown, may be reformulated into the tunctional form
used in this work and thus this functional form may be related to
experimentally measurable quantities.

2. The instantaneous sediment transpo:t equation, in the functional form
adopted in this work, can be time averaged to give a mean temporal
sediment transport equation, again in the functional form used in this
work. The discharge in the new mean temporal equation is the mean
peak discharge. The transport coefficient 3 is dependent upon the
distribution of flood peaks, parameterized by mean annual peak
discharge.

3. There is evidence to support the use of different sediment transport rate.
coefficients in the channel and the hillslope parameterized in the model

by coefficient Ot‘
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5.5 Physical Justification of the Activator Mechanism

This section will provide a linkage between the types of processes that are
observed to trigger or activate channelization in the field, and Equatioxi (5.2a) which is
used to represent the activator mechanism in this work. It should be stated at the
outset that the state of the art understanding of these processes is, at best, primitive.
It may be stated that a qualitative understanding of the processes at work is
developing at the current time. Quantitative understanding of the range of processes is
less advanced, and is either the subject of current research, such as groundwater
induced stream growth (Dunne, 1988), or has yet to be fully addressed, such as is the
case for overland flow induced channel growth.

The generic equation used to represent the channelization activator is

2 =f Q 5g? (5.15)

As noted in Section 5.3, the purpose of the activator in the channelization
equation (5.1b) is to trigger the one way process modeling the transition from hillslope
to channel. This process is triggered at the time when the activator exceeds the
channelization threshold at that point. Once this threshold is exceeded, the
channelization process proceeds at a rate governed by the timescale for channelization,
dt' The importance of the activator is in the triggering of the channelization, rather
than in governing the rate of channelization. Once channelization is triggered, growth
occurs independently of the activator level.

The question that this section addresses is: What physical processes can
Equation (5.15) be claimed to simulate given the use activator and its threshold are

put to in the model of Equation (5.1)? Some examples of physical processes follow.
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A number of different physical processes will be examined that could trigger
channel head advance. One of the most common criteria for the design of erosion
works i8 overland flow velocity. Many engineering handbooks give tabulations of
allowable velocities for various forms of ground cover or ercsion protection (e.g.,
Henderson, 1966). We will show that overland flow velocity can be expressed in the
generic form of activator in Equation (5.15).

If the wide channel assumption is made so that hydraulic radius, R, is equal to
flow depth, v, and the wetted perimeter, P, is independent of discharge, then Mannings

equation can be written as

V= 53/3115—1/2_ (5.16)

and the discharge for a wide channel of width w can be written as

. R5/3 /2

= (5.17)
Combining these equations yields
v=p, Q"4 03 (5.18)

where [),5 = —“;27-5?75

A similar expression for velocity in a triangular channel may also be derived
where the exponents are different.
Another important concept in modern sediment transport theory is the concept

of a threshold bed shear stress, below which no sediment transport takes place. This
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concept was first clearly expressed by Shields (1936) (Vanoni, 1975) in his now famous
Shields diagram which relates bottom shear stress with sediment transport.
Thresholds on shear stress are included in transport formulae due to Duboys (in 1897),
Shields (in 1936) and Laursen (in 1958), among others.

For a wide channel, or overland flow region, the bottom shear stress 7, is given

by
7«=17RS (5.19)

In a similar fashion to the derivation for overland flow velocity we obtain an

activator expression of
= ﬁ5 Q0.6 S0.7 (5.20)

3/5
where B, = 7 () f

A similar expression for shear stress in a triangular channel may also be
derived.

Durne (1969) proposed a conceptualization of a groundwater process where
groundwater streamtubes converged onto a seepage face at a channel head causing
channel erosion. This conceptualization of gully advance is supported by other field
work (e.g. Priest, et al., 1975). Dunne (1989) suggested a threshold cn hydraulic

gradient above which erosion at the seepage force will occur by piping.

[dH = (s-1)(1-n) (5.21)

H] threshold
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where

%—Hi = groundwater hydraulic gradient at the seepage face
8 = specific gravity of the sediment material
n = pOrosity

Using Darcy s law for groundwater flow at the seepage face yields an activator

formulation of

dH 1

Ix = kil @ (5.22)
where

K = hydraulic conductivity

h = height of the seepage face

w = width of the seepage face

In summary three different and physically based mechanisms for controlling
channel growth have been examined. All three of these mechanisms can be formulated
in the form of the generic activator equation of Equation (5.15). In each case the
noriinear dependence of the activator mechanism on discharge and slope followed
directly from the physics of the activation mechanism. In all cases the nonlinear
dependence on discharge and slope was different.

The differentiating feature between the different activation mechanisms is the
ratio (m5/n5). In Appendix C techniques developed in Chapter 6 are used to show
that activator functions with the same value of (rn5/n5) are equivalent and differ only
in a transformation on the activator threshold above which channelization occurs.
Table 5.2 tabulates the activator mechanisms that have been examined, their
governing equations, and their (m, /n5) values. ‘

An important observation must be made about the definition of discharge. A

single definition is used in both the activator and sediment transport equations. In
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TABLE 5.2

. m5 n5
Activator Equations (a = Bs Q S )
.
Mechanism Governing Equation () mg /ng
. [ 0.4 0.3
Overland flow velocity V= ——373] Q""S 1.33
(wide channel) w n
Overland flow velocity v= ] ] qo‘4 50‘3 1.33
(/unit width) - n
r a 0.25
Overland flow(*) v=|—1r ] qQ0-25 g0-3
velocity - 4(1+ap)n
(triangular channel) 0.67
Overland flow shear 7= 7(%)3/ 5] QO'6 507 0.86
stress (wide channel)
Overland flow shear 7= 7n3/ 5 ] qO‘6 s0-7 0.86
stress (/unit width)
| 8/3
na, vy
Overland flow shea.r(+) T= [ 1 ]3/8 QO‘375 50'813
stress (triangular 4(1+a.21)1;2
channel) :
0.46
dH 1
Groundwater stream =g Q ®
sapping dx w
2.5m
3 0.40
Montgomery and a; =QS ——
Dietr ich (1988) threshold mg

X
(*) For notation, see the text.
(+) a; = sideslope of the triangular channel
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Se_ction 5.4 it was noted that for sediment transport this discharge may be interpreted
in two different ways, depending on the interpr.iation to be placed on the elevation
evolution equation (5.1a). They are:
L. If Equation (5.1a) is to be interpreted as the instantaneous change of
elevation with time, then Q is the instantaneous discharge.
2. If Equation (5.1a) is to be interpreted as the mean change of elevation

with time, elevation perturbations being averaged out, then Q is the

mean of all peak discharges of all significant flood events, Qp.
Activator must be interpreted in an analogous fashion. In the former case,
activator is considered to be that activator occurring instantaneously in time. In the
latter case, activator is considered to be the mean effective activator occurring at a

point over many storm events. The mean effective activator must be parameterizable

on the mean peak discharge Qp. The question of what constitutes the mean temporal
activator of channelization, over many flood events, is very poorly understood, and has
not been satisfactorily addressed in the literature. Calver (1978) provided a
preliminary understanding on the basis of a conceptualization of the instantaneous
channel growth mechanism. The lack of theoretical basis for the conceptualization,
and lack of any experimental evidence, make this work somewhat speculative.

There is some experimental evidence to support a channelization activation
mechanism of the functional form proposed here. Montgomery and Dietrich (1988)
present data relating source area versus local slope on the surrounding hillslope for a
large number of channel heads in California. This data is fitted very well by an

equation of the form

As2d - ¢ : (5.23)
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where C = constant

The ratio of m5/n5 for this data 0.4/m3. Recall that mg i3 the power on area in
the relationship between discharge and area (Equation 5.2c). If mg = 1 then this value
is substantially lower than any of the unrilled surfaces, but close to values for a
triangular channel. A detailed discussion of the data of Montgomery and Dietrich
(1988) is presented in Section 8.4.

If the proposed activator and autocatalytic channelization model is correct all
hillslopes wili have a value for activator which is less than the activator threshold.
Digital terrain data for a catchment was analyzed to determine if the channel network
could be identified from the areas and slopes of the terrain data. The techniques used
for determining areas and slopes are those described in Tarboton, et al. (1988) and are
a variant of the techniques described in Appendix A for determination of area’ and
slope in the simulation model. The catchment analyzed was W15, a 23km" catchment
in Walnut Gulch, Arizona, used by Tarboton, et al. Figure 5.4a shows that region of

the catchment where
AsPTS y385 (5.24)

which corresponds to the region that exceeds the overland flow activator threshold
when discharge is proportional to area (Equation 5.18). Figure 5.4b shows that region

of the same catchment where
astl? a1 (5.25)

which corresponds to the region exceeding the overland shear stress activator threshold
when discharge is considered proportional to area (Equation 5.20)

A rough network can be discerned in a background of disconnected pixels in
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(a) Regions where AS®"S > 3.85
(activator = average velocity)

Figure 5.4: Activator distribution for digital terrain data of
catchment W15
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(b) Regions where AS"!7 2 2.79
(activator = bottom shear stress)

Figure 5.4 (ctd) Activator distribution for digital terrain data of
catchment W15
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these figures. The disconnected pixels arise from noise in the elevations in the USGS
data elevation error {nominally *+ 8m on a 30m square grid). This noise creates
randomly distributed pixels with anomalously high slopes so the the activator for a
pixel may fall above thé threshold. This observation is true even if the thresholds in
Equations (5.24) and (5.25) are varied so the random background noise is not a
characteristic of the thresholds used to plot the figures. For instance, lowering the
threshold does make the network more detailed but it also increases the number of
background pixels above the threshold.

Tarboton, et al. (1988) used area above a threshold (called the support area) to

identify where his channels started. A channel began when
A > support area

Note that for uniform runoff over the catchment (so that Q = R A) this

definition is equivalent with the Dunne activator mechanism in Equation (5.22).

5.6 Sample Results

This section presents some sample results of the application of the computer
model documented in Appendix A, based on the theory described in this chapter. This
section is not intended to be a comprehensive consideration of all asperts of the model
and the simulations; that will be provided in Chapters 7 and 8. Rather, using a single
simulation through time, typical characteristics of the generated catchments will be
noted.

The simulation run discussed in this section is CR2—3, and the parameters used
for this, and all other, runs are listed in Appendix D. The results of the simulation
presented here are typical of results obtained in this work. Figures 5.5 through 5.10

show the spatial distribution of various properties for seiected times.
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Figure 5.5 shows the simulated channel network. It demonstrates the headward
growth of the channels from the initial seed on the bottom left—hand corner of the grid.
The directions of overland flow are also shown and they demonstrate the convergence
of flow directions on the hillslopes around the channel heads illustrated in Figure 5.1.
The branching pattern of the network resulting from lateral branching is qualitatively
similar to branching in the stream sapping hypothesis of Dunne (1969) and the pattern
of future branching is mirrored by the pattern of hillslope flow directions (Figure C.4).

As the network grows, it erodes valleys along the channels. This results from
the preferential erosion in the channels compared with the hillslopes. Figure 5.6,
contours of elevation, clearly shows this characteristic. It is the valley that results in
the convergence of hillslope flow directions noted above. These valleys result in the
preferred hillslope flow directions being towards the channel network. An alternative
view of this valley formation with time is given by Figure 5.7, which is an isometric
view of elevations within the catchments.

The network growth process is dominated by the spatial distribution of the
activator on the hillslopes. Figure 5.8 shows this spatial distribution of hillslope
activator. The spatial distribution complies with the three conditions on activator
distribution that have been proposed (see Figures 5.1 to 5.3). Most importantly the
activator is concentrated around the channel heads and moves with the channel heads.
It is apparent in Figure 5.8¢ that the highest peaks of the activator are at the growing
channel heads, and that other peaks within the interior parts of the network are
considerably lower. Verifying that the activator region repel each other, and that
boundaries repel them is more difficult. Figure 5.8a shows some repulsion from the
boundaries, the highest values of activator are away from the boundary so that future
channel growth is into the unchanneled catchment interior. At later times the
channels and high activator regions are relatively uniformly spaced which is consistent

with the repulsion hypothesis.
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Figure 5.5: Channel network and hillslope flow directions
with time: CR2-3 simulation
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(a) v =100 (b) t' =2000

(c) v = 6000 (d) ¢ =13000

® Catchment outlet

Max. Min.

Figuice 5.6: Elevations with time: CR2-3 simulation
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Figure 5.7: Isometric view of catchment with time:
Simulation CR2-3
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Figure 5.7 (ctd): Isometric view of catchment with time:
Simulation CR2-3
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Figure 5.8: Activator with time: CR2-3 simulation
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Figure 5.9 is a plot of contributing area to the network. Not surprisingly the
high areas are cbncentrated along the channel networks. This follows directly from the
valley development and consequent preferential drainage to the channel network. The
blotchy appearance of Figure 5.9a results from the initial minor random perturbations
on elevation which create large number of interior draining regions on the initially flat
surface.

Contours of hillslope sloi)e are provided in Figure 5.10. The most interesting
characteristic of this plot is that the steepest slopes do not occur around the growiang
head. The steepest slopes are on the laterally draining valley sides; the slopes draining
down the valley to the channel heads are quite low by comparison. Figure 5.10d shows
that as the catchment evolves with time the highest slopes are in the upstream reaches
of the catchment, with lower slopes downstream. These lower slopes result from the
hillslope erosion that has taken place in the older, root sections of the catchment of the
bottom left—hand corner (see Figure 5.6).

Activator can be high even if the slopes at the channel head are low. In Figure
5.5 the hillslopes contributing to the channel head are long compared to the hillslopes
draining laterally to the channel. Thus in the activator formulation of Equation (5.2a)
the area contribution overwhelms the slope contribution. This indicates that network
screening, which is primarily a result of reduction of contributing areas near the root of
the network, is an important process in governing the distribution of growth sices.

Figure 5.11 gives the hypsometric curves for the catchment. The shape and
trends with time of this curve are consistent with the interpretation of field data
proposed by Schumm (1956). Hypsometric curves are discussed in more detail in
Chapter 7.

Figure 5.12 shows the elevations of all the streams, normalized against both
Ygtance and elevation, for a variety of times both before and after the network has

stopped growing. The curvature of the profile is reasonable and consistent with
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Figure 5.9: Contributing area with time: CR2-3 simulation
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Figure 5.10 Hillslope slopes with time: CR2-3 simulation
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Figure 5.11: Hypsometric curve with time: CR2-3
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observed data.

Table 5.3 list some sampie statistics for the catchment for the instant in time at
which the network stops growing. These statistics will be discussed in greater detail in
Chapter 7. Suffice to say at t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>