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Abstract

In databases, many data do not come from scratch. They are derived from some
other data and what describes this is called data lineage. Knowing the data lineage
could help us do data validation, error detection, data debugging, and privacy and
access control. Unfortunately, many databases do not have well documented data
lineage information, and most existing works in this area heavily relies on extra input
such as metadata, source code or annotations. In this paper, we build upon Tracer,
a previously purposed machine learning approach to this problem, and make it more
accurate, more general, and more intuitive.
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Chapter 1

Introduction

Data lineage (or data provenance) provides information about the data flow across

databases, applications, and systems, and is useful in a number of settings. For

example, knowing where the data come from helps us building more intuition of

the data and grouping related fields together, and thus leads to more in-depth data

analysis. Once we have found any error in the data, knowing the lineage could help

us tracing to its root cause, which leads to easier data debugging. In enterprises

environment, full lineage information can easily help determining which fields contain

sensitive information, or are derived from sensitive information. This way, knowing

the lineage can help us with privacy related regulations. We refer our readers to two

in-depth survey papers [11, 5] for a more detailed discussion on the importance and

applications of this problem.

The data lineage problem can be formulated as the following [11]: input relations

(tables) 𝐼1, ..., 𝐼𝑘 are fed into a series of transformations 𝑇1, ..., 𝑇𝑛 (which might be

known or unknown) and output relations 𝑂1, ..., 𝑂𝑚 are produced. One who seeks to

do data analysis, data debugging, or privacy control, using lineage information will

then ask the following two questions:

(1) Given some output cell, field, or table, which inputs did the output come from?

This is the where-lineage problem.

(2) Given some output, how were the inputs manipulated to produce the output?

This is the how-lineage problem.
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We will go over a brief example later in Section 1.1 to further illustrate what these

two questions are.

Depending on the granularity of the answer, we can then classify lineage prob-

lems into two sub-categories: schema-level (coarse-grained) and instance-level (fine-

grained)[11]. Using both the granularity, and how/where classifications, we are able to

divide the data lineage problem into four big classes: the schema-level where-lineage

problem, the schema-level how-lineage problem, the instance-level where-lineage prob-

lem, and the instance-level how-lineage problem. Later in Section 1.2 and Table 1.2,

we will classify existing work into these four classes.

We can also classify lineage problems by what the focus of the problem solver

is. When the applied transformations are fully known, for example when we already

have the source code that generated the data, the focus typically is to efficiently

represent and store the lineage information in metadata, or to augment existing big

data computation platforms (e.g. Spark) so that we can record the lineage information

during data processing with little overhead (e.g., see [21]) and we refer to this type

of problems as lineage tracking. Likewise, when the transformations are not fully

known, the thus the focus is to infer from the inputs and outputs, and we will refer

to this problem as the lineage tracing problem. However, we want to emphasize that,

depending on how much is known about the transformations, it is very common for

a research to focus on both doing inference and managing metadata.

In this project, we will answer both where-lineage and how-lineage problem for the

fine-grained, lineage tracing problem where the transformations are entirely unknown.

The whole architecture is built upon Hofmann’s previous Tracer project[9].

1.1 Motivating example

In this section, we will provide an example to illustrate the previous definition of

data lineage and motivate some of our sub-problem definitions. First of all, it is

beneficial to introduce the two main classes of row transformations: dispatcher and

aggregator[6]. Dispatcher maps one row from the source table into zero or more rows,
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while aggregator maps one or more rows from the source table into one row. We will

further discuss the types of aggregators1 in Section 3.4.

In the following tables, the transformation from Table 1.1 to Table 1.2 splits the

prod-list field by comma, extracts fields prod and num from each term, and creates a

new row for each term - therefore, it is a dispatcher. The transformation from Table

1.2 to Table 1.3 sums up the num field by the corresponding cust-id field and thus is

an aggregator.

order-id cust-id date prod-list

0101 AAA 2/1/1999 333(10), 222(10)
0102 BBB 2/8/1999 111(10)
0379 AAA 4/9/1999 222(5), 333(5)

Table 1.1: Source table

order-id cust-id date prod num

0101 AAA 2/1/1999 333 10
0101 AAA 2/1/1999 222 10
0102 BBB 2/8/1999 111 10
0379 AAA 4/8/1999 222 5
0379 AAA 4/8/1999 333 5

Table 1.2: Output of dispatcher

cust-id num-ordered

AAA 30
BBB 10

Table 1.3: Output of aggregator

As for column operations, we only consider many-to-one and one-to-one opera-

tions. For example, summing up several columns, or copying a column. An example

of summation is illustrated in Table 1.4 and 1.5. The reason we are not considering

one-to-many column operations is that it can actually be viewed as a dispatcher,

which is already discussed in row operations.

1We will also discuss some typical dispatchers that Tracer will support, but we are currently
unable to find any such example in our database.
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For example, Table 1.4 is generated from Table 1.1 by mapping the date field

into month, day, and year. Meanwhile, this transformation can also be viewed as

a dispatcher just in the same way as we explain the transformation from Table 1.1

to 1.2. We split the date field by comma (it does not contain any commas, so this

splitting operation creates exactly one term for each cell), extracts fields day, month

and year from each term, and creates a new row for each term - therefore, it is a

dispatcher.

We will from now on consider a database only consisted of Table 1.1 and 1.3, and

try to answer the where-lineage of the num-ordered field in Table 1.3. Recall that the

entries in num-ordered are generated using the entries in prod-list by first dispatching

the numbers in every single entry and then suming them up by the associated cust-id.

This means the where-lineage of the num-ordered field in Table 1.3 is the prod-list

field in Table 1.1.

One very important note is that usually there are many different ways to generate

a target field in small databases. In the above example, we may also generate the num-

ordered field in the following way. We first dispatch the date field in Table 1.2 into

day, month, and year, which gives Table 1.4, then sum up the day and month fields

into a day_plus_month field, as in Table 1.5, and finally sum the day_plus_month

field up by the associated cust-id, which gives Table 1.6.

order-id cust-id month day year prod num

0101 AAA 2 1 1999 333 10
0101 AAA 2 1 1999 222 10
0102 BBB 2 8 1999 111 10
0379 AAA 4 8 1999 222 5
0379 AAA 4 8 1999 333 5

Table 1.4: Dispatch the date field into day, month and year

However, this does not imply that there are many possible answers to this where-

lineage problem. The answer is always “how was the target field actually gener-

ated”, instead of “how can we use other fields to produce the target field”. And in

the above example, the lineage is always the prod-list field. Fortunately, when the

databases get larger, the chance that multiple maps explains the same field will get

16



order-id cust-id day_plus_month year prod num

0101 AAA 3 1999 333 10
0101 AAA 3 1999 222 10
0102 BBB 10 1999 111 10
0379 AAA 12 1999 222 5
0379 AAA 12 1999 333 5

Table 1.5: Sum day and month into day_plus_month

cust-id generated field

AAA 30
BBB 10

Table 1.6: Sum day_plus_month by the associated cust-id

much smaller. For example, if we add more rows to the above database, it is un-

likely that day_plus_month will continue to match num-ordered as these two fields

in nature describes different things. In this case, we can say with confidence that the

prod-list field is the only possible lineage.

We then briefly illustrate how our Tracer approaches this problem. The detailed

solutions will be revisited later in Chapter 3.

1. We first identify the primary keys and then the foreign keys in this database.

This allows us to link Tables 1.1 and 1.3 together, and thus know it is possible

for fields in 1.3 to come from Table 1.1.

2. We then try to reproduce Table 1.2 by applying all pre-defined dispatchers to

Table 1.1.

3. Next, we apply all pre-defined aggregators which aggregates any field by their

corresponding cust-id (which is a identified foreign key) field. Note that after

such aggregation, the rows will match the rows of Table 1.3, making it possible

for us to detect column map operations. We then select aggregated fields that

could potentially contribute to the target field (e.g. according to their cross-

entropy), and join all such fields together, as illustrated in Table 1.7. Note that

this step implicitly takes care of the join operation.

17



cust-id sum(num) max(num) avg(num) ... count(prod) ...

AAA 30 10 7.5 ... 4 ...
BBB 10 10 10 ... 1 ...

Table 1.7: Applying all pre-identified aggregators

4. Finally, we apply state-of-the-art machine learning techniques to find out which

fields did the target field come from. For example, we could answer that the

num-ordered field in Table 1.3 comes from the sum(num) field in Table 1.7,

which back-trace to the prod-list field in Table 1.1. We can do such back-tracing

because we carry out the transformation from Table 1.1 to 1.7 ourselves, and

therefore know exactly where each field comes from. This step allows us to

conclude that the lineage of the num-ordered field is the prod-list field.

1.2 Previous Work

Though there is plenty of literature on the data lineage problem, to the best of our

knowledge, all of them except Hofmann’s previous DataTracer [9] require some extra

information on the data or transformations and focuses on solving the lineage problem

for specific type(s) of databases, transformations, or data processing softwares.

We borrow this classification (Table 1.8) from [11].

Schema Instance

Where Workflow [8] Why and Where [2]
General Warehouse [6]
Warehouse View [7]
Non-Answers [10]
Approximate [18]
Trio [22]
Tracer [9]

How Curated [3]
Workflow [8]

Curated [3]

Table 1.8: A summary of previous work on the data lineage problem.

And we present a brief summary of the representative ones.
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1.2.1 Lineage tracking in curated database [3]

Buneman et al. in 2006 focused on the lineage tracking (i.e. lineage management)

problem in curated databases. In particular, the transformations supported are insert,

copy, and delete, and the authors managed to store the instance-level how-lineage

efficiently by (1) grouping operations into transactions and only record the net change

for each transaction and (2) summarize multiple operations as a hierarchical lineage.

1.2.2 Lineage tracing in general warehouse [6]

Cui and Widom in 2001 focused on solving the lineage tracing problem in the context

of general data warehouses. Specifically, the authors assumes that the transformation

graph is known, and provides lineage tracking algorithms that work particularly well

when properties of the transformations are known. These properties can classified

into three types:

1. Transformation class. The authors classified transformations into three types:

dispatcher, aggregator and black-boxes (examples of dispatchers and aggregators can

be found in Section 1.1). The authors argued with Example 1.2.1 that, for black-

box operators without any information, we can only conclude that the lineage of

any output is the entire input data set. However, though this is theoretically true,

we believe that when the data sets get huge, it is almost impossible that multiple

transformations in the space (this space is eventually limited no matter how complex

our solver is) we are searching for will give the same outputs. In the context of the

following example, when the number of rows gets larger, it will be easy for the solver

to tell if it’s a filter or aggregator.

Example 1.2.1. With no restrictions, the transformation taking Table 1.9 to Table

1.10 can be either (1) filtering out rows with negative 𝑌 values, or (2) aggregate by

𝑋 value, where the aggregation function is taking the sum of the 𝑌 values and then

multiply it by 2.

2. Schema mapping. Which is basically equivalent to column-level where lineage.

3. Existence of inverse transformation.
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X Y

a -1
a 2
b 0

Table 1.9: Input table

X Y

a 2
b 0

Table 1.10: Output table

The authors also discussed when is it appropriate to trace lineage across many

transformations at once.

Cui et al. in an earlier work[7] discussed a similar topic. They proposed algorithms

for extracting the precise lineage when transformations are specified as relational

operation or view.

1.2.3 The Tracer [9]

Unlike other solutions to the data lineage problem, the Hofmann in 2020 proposed

the Tracer, which novelly solves this problem through a machine learning approach

and does not rely on any additional input.

Taking in the raw database, the Tracer first predict a single-column primary key for

each table. Then, it predicts the non-composite foreign key relations in the database.

Finally, to predict the where-lineage, the Tracer uses the foreign keys predicted

and aggregates all other tables such that the rows now matches the target column.

Just as we illustrated in Section 1.1 at the very end with Table 1.2 and 1.7. From

here, the Tracer trains a random forest regressor, which takes in all columns in Table

1.7 and tries to predict the target column num-ordered. Once this regressor is trained

on the tables we have, the Tracer will predict the columns with significant feature

importance as the where-lineage of the target column.

While the previous Tracer offers this novel framework, it is not very successful in
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solving the data lineage problem2 primarily due to the following reasons:

• It is designed only to predict single-column primary keys and foreign keys. If

the database actually have composite primary or foreign keys, the Tracer will

be incapable of detecting these keys and therefore relevant lineage.

• There is a problem in the way that the foreign key detection machine learning

module is trained. The training data for this machine learning module is nat-

urally skewed due to the fact that among all column pairs in a database, very

few of them are actual foreign keys. However, the author has not recognized

this issue, which resulted in a very poorly trained machine learning module.

• The regressor trained in the column map detection step suffers from over-fitting.

As explained in Section 1.1, we are not looking for a possible way of generating

the target column, but we are solving for how was that the target column

actually generated. Unfortunately, when over-fitting happens, we usually end up

getting a very complicated map which happens to generate the target column,

which falls in the former case.

In this thesis, we will build upon the framework proposed in [9] and take it to a

new level. More relevant details will be discussed in the next section.

1.3 Contributions of This Project

This project is built upon the framework of the previous Tracer [9], and make it more

accurate, more general, and more intuitive. The previous Tracer has working primary

key, foreign key and column map detection primitives that only support single keys.

This means that when the primary key is composite, the previous Tracer will not be

able to detect that key, and therefore all subsequent foreign keys and lineage relations

referencing this key. However, many of the real-world databases3 have composite keys,
2On our testing set, the previous Tracer only achieves an average F1 score of 0.275, while our

new Tracer achieves an average F1 score of 0.701.
3Among the tables in our testing databases, which will be described in Chapter 4 and are quite
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and not supporting them will lead to a huge inability of the Tracer library to recover

many of the lineage information. The first contribution of this project is that we

update the Tracer framework, APIs, and primitives to support composite keys. The

full APIs will be introduced in Chapter 2, and the solutions will be introduced in

Chapter 3.

Next, we optimized the foreign key, and “where” column map detection primitives

for much higher precision and recall. And we also developed a “how” column map

detection primitive, which not only answers where does the target column come from,

but also how it was generated. The API and solution will be introduced in Chapter

2 and 3, respectively.

We also developed a benchmarking module, which allows the user to easily com-

pare between different solutions on their databases, and developers to test the stability

of their solutions. The details will be introduced in Chapter 4.

Finally, we developed a lineage visualization user interface, that allows the user

to straightforwardly explore the database, as well as the relation between tables and

lineage information. It will be introduced in Chapter 6.

1.4 Limitations

While in practice, there is no limitation on what we can do with a table and how can

we generate a field from others, and we would like to support as many of them as

possible, we admit that there is currently no general-purpose transformation detection

algorithm. For practicability, we have to restrict our scope to the following:

• Theoretically we support all data types, but the Tracer works best with numer-

ical, boolean, and categorical data, while we only support strings upto basic

concatenation and split operations, and do not yet support operations involv-

ing both strings and numerical values.

• All transformations must be reducible to row operations and column operations.

representative of real-world big databases, 50% of them have composite primary keys.
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• The lineage must be unambiguous. Equivalently, there can not be any essen-

tially duplicate rows or columns.

• All data must be provided in tables.

• For the how lineage primitive to run properly, the transformation must be fully

deterministic.

• Finally, while current implementation can utilize multi-processing, it is not

designed to run distributedly and therefore is impractical for solving the data

lineage problem in databases sizing more than 10GB. In our experiments, it on

average takes the Tracer 9 hours to solve a single lineage in a 4GB database

while occupying one Intel Xeon Platinum 8260 processor core (@2.40 GHz).
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Chapter 2

System Design

Overall, the Tracer library solves the where and how lineage problem by breaking it

down into many sub-problems, from primary key detection to the final column map

detection, and executing in a relational database by executing the primitives designed

for solving these sub-problems. This recovers the database’s metadata step-by-step.

We further assemble these primitives into pipelines so that each problem can be solved

by a single execution of the corresponding pipeline.

API

Raw Data

Primitives

Metadata

End Users

Interact

UI

Tracer UI

Tracer

System Dataset

...

Dataset

...

Data Ingestion
EngineRaw Data System Dataset

...

Figure 2-1: Tables with lineage but without lineage metadata are produced by vari-
ous systems, and are converted into the appropriate format by data ingestion engine.
The tables are then fed into the Tracer. By executing pipelines, the Tracer recov-
ers the lineage information and presents this to the end-users through the lineage
visualization UI.
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At a larger scale, the Tracer also interacts with other modules in the same context

[9], as shown in Figure 2-1.

Firstly, raw databases are fed into some systems where fields with lineage are pro-

duced and ingested into the tables. These systems can range from Spark computation

platform, MySQL database, to even excel sheets. Unfortunately, the metadata are

often poorly maintained as these tables gets updated and spread out. Especially, data

lineage information often gets lost in this process. To make things even worse, we do

not always know which system(s) generated these tables and therefore cannot easily

infer what transformations are likely applied to the tables, which exaggerated the loss

of data lineage.

These tables, which are in various formats, are then fed into the Data Ingestion

Engine that helps us to transform the tables into standardized table and metadata

formats. The standardized tables and metadata are then presented to end-users

through various service APIs, and also passed into the Tracer, which will help recover

its data lineage metadata.

The tracer then attempts answer the data lineage problem by executing various

pipelines on the tables, update the metadata if necessary, and pass the metadata to

the Lineage Visualization module, which is our second focus of the thesis.

Finally, the Lineage Visualization module interacts with the end-users, allowing

them to straightforwardly explore the relations and data lineage in the database.

In this chapter, we will describe the primitive APIs and how are them assembled

into pipelines.

2.1 Tracer Primitives and Pipelines

Tracer has two very similar end-to-end pipelines, which are responsible for answering

the where and how lineage problem, respectively.1 They both take in the database,

pass it through a series of steps, called primitives, where each primitive takes in the

output of the previous primitives and attempts to answer a sub-problem of the data

1The names ‘Where-column-map detection’ and ‘How-column-map detection’ are inconsistent
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Figure 2-2: The ‘Where’ Column Map Detection pipeline
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Figure 2-3: The ‘How’ Column Map Detection pipeline

lineage problem, and finally output the desired lineage.

As illustrated in Figure 2-2 and 2-3, both pipelines utilize the same upstream prim-

itives, the Primary Key Detection primitive and the Foreign Key Detection primitive.

The Primary Key Detection primitive takes in the database and detects the primary

keys of the tables. Then the Foreign Key Detection primitive uses the database and

the detected primary keys to detect the foreign key relations in the database. Finally,

the “How” (“Where”, resp.) Column Map Detection primitive takes in the database

and the foreign keys to produce the how (where, resp.) lineage information as the

final output. We will formally define the data formats and primitive APIs in the next

section.

2.2 Data Formats and Primitive APIs

In this section, we will define the data formats and primitive APIs, which will be used

throughout the rest of the thesis.

The data formats are our internal representation of the database and metadata-

related information, as listed in Table 2.1 and 2.2.

The primitives, as briefly introduced in Section 2.1, are the Primary Key Detection

with the current tracer implementation, and the purpose of this rename is for better clarity.
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Name Description Example

database, or
tables (dictio-
nary)

A set of tables in a rela-
tional database. Each table
has a unique name, one or
more named fields, and zero
or more rows.
It is represented using a
dictionary mapping table
names to the corresponding
dataframes.

{
table1: DataFrame1,
table2: DataFrame2

}

Primary key It indicates which col-
umn(s) are the primary key
of a table, which might be
single or composite.
It is represented using a list
of the field name(s) in the
primary key.

[‘coach_id’, ‘year’]

Primary keys
(dictionary)

The primary keys in a
database.
It is represented using a dic-
tionary mapping table name
to its primary key.

{
table1: [‘year’,
‘coach_id’],

table2: [‘team’]
}

Foreign key It indicates a foreign key re-
lation in the database. Rep-
resented using a dictionary
with fields table, field,
ref_table, and ref_field.
Here, table and ref_table
are table names, ref_field
is a primary key of
ref_table, and field
is a list of field names in
table.

{
‘table’: ‘coaches’,
‘field’: [‘year’,
‘id’],

‘ref_table’:
‘roster’,

‘ref_field’:
[‘year’,
‘coach_id’]

}

Foreign keys
(list)

It indicates all the foreign
key relations in a database.
In the format of a list of for-
eign keys.

[foreignKey1,
foreignKey2, ...]

Table 2.1: Tracer Data Formats
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Name Description Example

Lineage
column

It describes one of the
columns that contributes to
the generation of a spec-
ified column. It is rep-
resented using a dictionary
with fields table and field
indicating the table and
field name of this column.

{
table: ‘roster’,
field: ‘wins’

}

Lineage
columns (list)

It describes all the lineage
columns of a specified col-
umn, in the form of a list of
lineage columns.

[lineageColumn1,
lineageColumn2, ...]

“How” lineage
column

It describes how a lineage
column is transformed to
contribute towards the gen-
eration of a specified col-
umn by using a dictionary
specifying (1) the lineage
column, (2) according to
which foreign key relation
is it aggregated and (3)
what aggregation function
is used.

{
‘field’:
lineageColumn,

‘foreign_key’:
foreignKey,

‘aggregation’:
‘count’

}

How lineage
(dictionary)

It fully describes how a
specified field is gener-
ated from other fields
in the same database
using a dictionary with
fields lineage_columns,
which gives a list of “how”
lineage columns, and
transformation that de-
scribes what transformation
function is used to obtain
the values in the target
field.

{
‘lineage_columns’:
[howLineageCol-
umn1, ...],

‘transformation’:
‘sum’

}

Table 2.2: Tracer Data Formats (Cont.)
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Name Input Output

Primary Key Detec-
tion

A database. A primary keys dictio-
nary.

Foreign Key Detection A database and a pri-
mary keys dictionary.

A foreign keys list.

“Where” Column Map
Detection

A database, a foreign
keys list, a target table
name and target field
name.

A lineage columns list.

“How” Column Map
Detection

A database, a foreign
keys list, a target table
name and target field
name.

A how lineage dictio-
nary.

Table 2.3: Tracer primitive I/Os

primitive, the Foreign Key Detection primitive, the “Where” Column Map Detection

primitive, and the “How” Column Map Detection primitive. Their corresponding I/O

formats are listed out in Table 2.3. Please note that all the I/O formats are defined

in Tables 2.1 and 2.2.

On top of these specified I/O formats, each primitive is also supposed to have the

following properties:

• Each primitive should have a fit and solve method. In the fit method,

it takes in databases with well-documented metadata, and trains its machine

learning sub-modules, if any. In the solve method, it takes in input as specified

in Table 2.3 and produces the corresponding output.

• It should be independent of the implementation of other primitives. This way,

developers can isolate things and focus on implementing new solutions to just

a small sub-problem, and the users can also freely build up pipelines that fits

their databases the best.
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Chapter 3

Tracer Subproblems

In this chapter we discuss how to break down the data lineage tracing problem into

proper sub-problems, the nature of those sub-problems, and propose basic solutions,

as well as how to create machine-learning-based solutions.

Overall, we break down the data lineage problem into two major components:

detecting all possible row maps, and determining the column map.

The row map component has two sub-problems: (1) detecting the primary keys

of the tables and (2) detecting the foreign key relations across the tables1, assuming

the primary keys are known. Using the foreign key relations detected, we will be able

to know the possible row maps between the tables. Extensive work has been done

on these two problem. We will review these existing works in details and discuss our

extensions in Section 3.2 and 3.3.

The column map detection component has two independent sub-problems, one is

the where-lineage problem and another one is the how-lineage problem. Both sub-

problems assume knowledge of the foreign keys and asks for the where (how, resp.)

lineage of a given column. Recall from Section 1.1 that the where-lineage problem of a

column asks “from which columns do this column come from” whereas the how-lineage

problem asks “how exactly did we derived this column”. They are the problems we

primarily tackle in this project, and we will discuss our solution in details in Section

3.4 and 3.5.
1In this paper, we also refer to a set of related tables as a database.
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3.1 Data we use

As we discussed in the previous sections, we tackle this entire data lineage problem

through a machine learning approach, which naturally requires training data. In this

section, we discuss the data we use to train and test our models.

We use data from 66 real world relational databases originally maintained by

Motl and Schulte [13]. These databases have primary key and foreign key meta-

data, and have then been widely used for testing and training various data-related

algorithms [16, 14, 20]. However, none of them contains lineage metadata. Be-

cause of this, we have created many fields with lineage using the DataReactor li-

brary [23], as well as the corresponding lineage metadata, for the purpose of test-

ing our lineage detection solutions, and the agumented databases are maintained at

tracer-data.s3.amazonaws.com. We summarize these databases in Table 3.1, and

we will revisit them later in Chapter 4 when we come to testing.

Number of databases 66
Total number of tables 572

Total number of columns 9671
Total number of primary keys 5282

Fraction of tables with composite primary keys3 44%4

Size of the largest primary key 4
Total number of foreign keys 750

Fraction of composite foreign keys 5%
Size of the largest foreign key 3
Number of fields with lineage 55855

Total size 9.0G

Table 3.1: Summary of the training databases

2Some tables in the databases do not have a primary key documented in the metadata (we believe
that information is either not collected by the database maintainer or lost), and few tables actually
do not have any primary keys.

3By composite primary key, we mean a primary key with more than one columns.
4We care about the fraction of the tables with composite primary keys since predicting composite

keys is in nature a harder problem than predicting single-column keys, as will be discussed in the
following section.

5The original databases do not have any lineage fields, and we generate this many using the
DataReactor package.
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3.2 Primary Key Detection

In this section, we handle the basic of everything - figuring out the primary keys of

tables. We tackle this problem using a machine learning approach, which is universal.

That is, once the primary key detector is trained on tables with ground-truth primary

key metadata (for our solution, we train it on the tables in databases described in

Section 3.1), it can then be applied on any table to detect the primary key. Needless

to say, if more training tables are provided, these primitives will be able to improve

over time.

In the following sections, we will review the state-of-the-art non-machine-learning-

based, and machine-learning-based solutions. Then, we will discuss how our Tracer

tackles this problem.

3.2.1 Non-machine-learning solutions

Naturally, the problem of primary key detection can be broken down into two sub-

problems: (1) determining which column combinations6 could serve the indexing

purpose and therefore is a primary key candidate, and (2) finding the true primary

key among all candidates.

Abedjan et al. [1] have summarized a few algorithms for efficiently detecting the

primary key candidates.

Specifically, a set of columns in a table can be a primary key candidate if they can

serve the indexing purpose. In other words, it can be a primary key candidate if no

two rows take the same values in all of these columns. Columns with this property

are known as a Unique Column Combination (UCC).

However, the total number of column combinations in a table with 𝑚 columns is

2𝑚, which means it is exponentially hard to search all of them. Because of this, there

is a natural trade-off between the number of UCCs we search, thus higher primary key

detection accuracy, and the speed of this approach. As suggested in [12], we restrict

the scope of UCC search to all minimal UCCs to achieve a balance between precision

6We use the phrasecolumn combination as a primary key can be composite, or in other words,
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and speed. Here, by minimal UCC we mean an UCC which does not contain any

other UCCs. For example, if we have a unique column 𝑎, and a non-unique column 𝑏,

then column combinations {𝑎} and {𝑎, 𝑏} are both UCCs, but only {𝑎} is minimal as

{𝑎, 𝑏} does contain {𝑎} as a subset so {𝑎, 𝑏} is not minimal. A algorithm for retrieving

all minimal UCCs suggested in [1] is pretty straightforward. It is as the following:

As a little preparation, we call a column combination with 𝑘 columns a 𝑘-non-

unique if it is not a UCC, or a 𝑘-UCC otherwise. A brute force checking will tell

us if a 𝑘-column-combination is a 𝑘-UCC in linear time. We simply go over all the

tuples and keep all of them in a hash set. If in this process we ever see a tuple that

is already in the hash set, then it is not an UCC, and otherwise it is an UCC.

1. We start by setting 𝑘 = 1, and classifying all single columns as either 1-non-

unique or 1-UCC. 1-UCCs are automatically minimal UCCs. Note that we

cannot say any 1-UCC is the primary key at this step, as the values in a column

can be unique for a number of reasons. For example, for a column that contains

high-precision floating point numbers, it is very likely to be unique while it is

almost surely not a primary key.

As the 1-UCC columns cannot be contained in any other minimal UCCs, they

will be set aside, and only the 1-non-uniques will remain in the game for the

remaining steps.

Then we move onto recursively finding out all 𝑘-non-uniques and minimal 𝑘-

UCCs for all 𝑘.

2. After we have got the list of all minimal 𝑘-UCCs and 𝑘-non-uniques, we can

move forward to investigating the (𝑘+1)-column-combinations. As the ultimate

goal for us is to get the minimal UCCs, we are only interested in investigating

the (𝑘 + 1)-column-combinations which do not contain any other UCCs. Thus,

instead of investigating all (𝑘+1)-column-combinations, we only investigate all

the combinations of a 𝑘-non-unique and a 1-non-unique.

have multiple columns.

34



3. For these (𝑘+1)-column-combinations of the form 𝑘-non-unique + 1-non-unique,

we first see if it already contains any other UCCs we have classified so far. If it

does not include any other UCC, we classify them as either (𝑘+1)-non-uniques

or minimal (𝑘 + 1)-UCCs using the above-mentioned brute-force procedure.

4. If we have identified any (𝑘 + 1)-non-uniques, and that 𝑘 + 1 is smaller than

the number of columns, we set 𝑘 = 𝑘+ 1 and go back to Step 2. Otherwise, we

conclude that we have found all the minimal UCCs.

We will refer to this algorithm as the UCC detector module later in our solution.

While the worst case runtime of this algorithm is still exponential, as we can have bad

examples where any column combination is non-unique and therefore the algorithm

will need to go over all column combinations, it is in practice very efficient since 4

or 5 column combinations are almost surely guaranteed to be unique in real world

tables.

Surprisingly, not much work has been done on the topic of finding the true primary

key among all candidates.

Papenbrock and Naumann, 2017, in EDBT [15] proposed several heuristic

features to distinguish true primary keys from other candidates, such as the ordinal

position of the columns, the length of its fields, and if its column names contain “id”

or “key”. Then, they simply add up all feature scores and predict the highest scoring

candidate as the true primary key.

Mainly using Papenbrock and Naumann’s features, Jiang and Naumann, 2020,

in JIIS [12] proposed an iterative algorithm for predicting the primary and foreign

keys together, and their algorithm is in practice more accurate. However, the action

of summing up the scores does not utilize full predictive power of these features.

3.2.2 Machine learning based solutions

Hofmann, 2020, in his masters’ thesis [9] took a machine learning approach in

the previous Tracer. He used a classifier, which takes in the features of the primary

key candidates, and predicts if it is the actual primary key, and thus makes use of

35



the full predictive power of these features. However, it is designed for detecting the

primary key only when a table has a single-column primary key, and thus lost its

power in almost 50% of the real world tables.

A summary of the previous works is provided in Table 3.2. Our solution takes

advantage from all of them, and lies in the top left corner of the table.

Machine-learning-based Non-machine-learning-
based

Composite
Keys

Holistic PK/FK detection
by Jiang and Naumann,
2020 [12]
Heuristic features by Pa-
penbrock and Naumann,
2017 [15]

Single Key Tracer by Hofmann, 2020 [9]

Table 3.2: Previous work on primary key detection

3.2.3 Primary Key Detection in the Tracer

To solve this primary key detection sub-problem, for each table we basically go

through three steps as illustrated in Figure 3-1:

Unique Column
Commbination

Detection

UCC
Featurizer

Classifier
UCCTable

(PK candidate)

Features Primary Keys

Figure 3-1: Workflow of the Primary Key Detection primitive.

1. Find out all primary key candidates using the Unique Column Combination

(UCC) detector module. The algorithm is described in Section 3.2.1.

2. Featurize every primary key candidate.

For this step, we build our features mainly upon the hand-crafted heuristics

proposed in [15, 1].

Specifically, for each column in a UCC, we extract these features:

36



• Ordinal position. The position of this column in this table, represented

in its percentage (i.e. index / total number of columns). This is because

primary keys tend to be the first few columns in a table.

• Name. Binary: if “key" or “id” is in the field name. This is due to the

fact that these keywords often suggest the corresponding column is a key.

• Datatype. If the entries are integers or strings. This is not only because

primary key tends to be integers or strings, but also to counter-act the fact

that floating number columns tends to be unique and appears more often

in the UCCs.

• Text length. The maximum length of the values in this column in human-

readable format. We use this feature as identifiers tends to be short.

Finally, for each UCC, its feature is the average of the features of its columns,

plus an additional feature:

• UCC size. The number of columns in this UCC. This feature is useful as

usually primary key will not contain too many columns.

3. Feed the feature vectors into a classifier and predict the candidate with the

highest score as the primary key.

This is the only part that needs to be trained, and the training method is

straightforward. We simply feed the labeled tables through the first two steps,

and train this classifier in a fully supervised manner. Once this classifier is

trained, it is universal and thus can be applied to any table.

One thing we have not described in detail is the machine learning model we

use here. Due to the small number of features we use, we believe the choice

of machine learning model can only have very minimal impact on the actual

performance, as long as it has enough model capacity and is fully trained.

Therefore, we use the random forest classifier with default parameters specified
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in scikit-learn v0.23.07.

Design choices

Our solution, as well as most of the mainstream primary key detection algorithms,

can be run a single table, and there is no need for this implementation to take in a

whole database, as required in the API defined in Section 2.2. And requiring so seems

to have led to a loss of flexibility in terms of the overall framework design, and the

possibility of computing distributedly. For example, have different machines solve for

the primary keys for different tables and then put them together no longer seems to

be an option with the current API.

However, we still make this design choice observing the following advantages.

• A unified framework. While all downstream primitives require knowledge to

the whole database, this design choice creates a more unified framework where

each primitive in the pipeline is called exactly once.

• Extendability. While most primary key detection algorithms do not need

knowledge to the whole database, some algorithms do require so. For example,

[12] suggests that the foreign key detection process also provides constructive

feedback to the primary key detection, as the fact that a primary key candidate

is likely to be referenced somewhere else significantly increases its possibility of

being the primary key. And the authors suggests that instead of scoring a single

primary key candidate, scoring the whole primary keys and foreign keys choices

of the entire database leads to higher precision. Currently, we have not adopted

this solution as our databases are too big, and finding out all possible primary

and foreign keys alone would take days on a 48-core machine. However, our

current API design choice will easily allow the developer to easily adopt these

solutions to the primary key detection primitive.
7The key parameters are: n_estimators = 10, criterion = mse, max_depth = None,

min_samples_split = 2, min_samples_leaf = 1, and bootstrap = True. We have also experi-
mented with the default parameters in scikit-learn v1.0.1, which describes a much bigger ran-
dom forest, and no significant difference in performance was observed.
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3.3 Foreign Key Detection

Then we move on to the final step of pin-pointing row maps. Similar to our Primary

Key Detection primitive, we will build an universal machine learning solution, which

can be applied to any database after it is trained.

We proceed by briefly reviewing past work on this topic.

3.3.1 Non-machine-learning Solutions

Similar to the primary key detection problem, this foreign key detection problem can

be naturally broken down into determining the foreign key candidates, and predicting

which are the true foreign key relations among all candidates.

A set of columns 𝑈 in a table 𝒜 is able to reference the primary key 𝑃 (which is

also a set of columns) of table ℬ if for each row 𝑡 in 𝒜, there is also a row 𝑡′ in ℬ

such that the values 𝑡[𝑈 ] and 𝑡′[𝑃 ] are the same. Such two sets 𝑈, 𝑃 is known as a

Inclusion Dependency (IND). Therefore, all the foreign key candidates are just all the

INDs where the columns being referenced is a primary key. A brute-force yet very

efficient algorithm is summarized in Abedjan et al.[1].

For a primary key 𝑃 of table ℬ, and a target table 𝒜, we go over the following

steps. We will also be doing a running example, with 𝑃 = {1, 2} amd 𝒜 having four

columns {3, 4, 5, 6}.

1. For their to be a inclusion dependency 𝒜[𝑈 ] ⊂ ℬ[𝑃 ], the corresponding columns

have to include one another. We write 𝑃 = {𝑝1, ..., 𝑝𝑘} for convenience. For

each column 𝑝𝑖 ∈ 𝑃 , we find all columns 𝑢 ∈ 𝐴 such that there is a single

column dependency 𝒜[𝑢] ⊂ ℬ[𝑝], and call the collections of such columns 𝑈𝑖.

This can be found via a brute-force search, which only takes linear time for each

column in 𝑃 .

For example, we might end up having 𝑈1 = {3, 4}, 𝑈2 = {4, 5}. Note that these

sets do not necessarily have to be disjoint.

2. Then we investigate the combinations of the single columns we got in Step
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1 by considering every element in the Cartesian product 𝑈1 × 𝑈2 × ... × 𝑈𝑘.

Specifically, for every column combination 𝑈 = {𝑢1, ..., 𝑢𝑘} where 𝑢𝑖 ∈ 𝑈𝑖, that

is, 𝒜[𝑢𝑖] ⊂ ℬ[𝑝𝑖], we check with brute force if every tuple in 𝒜[𝑈 ] appears

in ℬ[𝑈 ]. Therefore, we can know if there is inclusion dependency inclusion

dependency 𝒜[𝑈 ] ⊂ ℬ[𝑃 ]. Checking each 𝑈 takes linear time, and this step will

give us all the IND of columns in table 𝒜 referencing 𝑃 in ℬ.

Using the previous example, all set 𝑈s we will be investigating at this step are

{3, 4}, {3, 5} and {4, 5}.

While in worst case this algorithm runs in |𝒜||𝑃 | time as we can simply have all

the columns be the same and therefore the number of INDs is this many, in practice

it is very efficient since there are not many single-column IND to begin with, thus

very few column combinations to check. We later refer to this algorithm as the IND

detector module.

On the attempts to predict the actual foreign keys from all candidates, a handful

of heuristic features and pruning rules have been proposed.

Rostin et al., 2009, in SIGMOD [19] proposed ten feature scores to help

evaluating the chance that an IND is an actual foreign key, for example, the similarity

between the column names, etc. These features have been widely used by later works,

including ours. However, their algorithm only works for single-column foreign keys.

On top of these features, Zhang et al., 2010, in VLDB [24] proposed the

randomness feature, which measures the data distribution similarity between the two

sides of the IND and the higher the similarity is the more likely it is to be a foreign

key.

On top of these features, many research have been done on the topic of IND

pruning, defining a set of rules that a foreign key relation, or the set of all foreign

key relations, should satisfy. Chen et al., 2014, in VLDB [4] proposed that, for

example, a one-to-one correspondence, or in other words a primary key referencing

another primary key, cannot be a foreign key relation. However, for efficiency they

also assumed that there can be at most one foreign key relation between any two
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tables, which is not true in big real-world databases.

Jiang and Naumann, 2020, in JIIS [12] further proposed pruning rules, such

as there cannot be cyclic reference, and have achieved the best performance among

all existing methods. However, all these pruning rules are for the purpose of elimi-

nating false positive foreign key predictions, and as they are not 100% accurate, it

will eliminate a few true positives at the same time. As will be discussed in later

sections, our downstream primitives’ are very sensitive to false negative foreign keys

predictions, but very robust against false positives. For this reason, we will not adapt

these pruning rules in our solution.

3.3.2 Machine learning based solutions

Rostin et al., 2009, in SIGMOD [19] first proposed the idea of using machine

learning classifier to help predict foreign keys. After featurizing the foreign key can-

didates, the authors train a machine learning classifier to predict the true foreign

keys.

Hofmann, 2020, in his masters thesis [9] used the same idea in previous

Tracer. However, both works only support single-column foreign keys.

A summary of the previous works is provided in Table 3.3. Our solution takes

advantage from all of them, and lies in the top left corner of the table.

Machine-learning-based Non-machine-learning-
based

Composite
Keys

Holistic PK/FK detection
by Jiang and Naumann,
2020 [12]
Pruning rules by Chen et
al., 2014 [4]
Randomness by Zhang et
al., 2010 [24]

Single Key Tracer by Hofmann, 2020[9]
Heuristics-based by Rostin
et al., 2009 [19]

Table 3.3: A selection of previous work on foreign key detection
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3.3.3 Foreign Key Detection in the Tracer

In order to find out the foreign key relations, we follow a very similar three-step

approach as in Section 3.2.

Inclusion
Dependency

Detection

IND
Featurizer

Classifier
IND

(FK candidate)

Features Foreign KeysDataset

Primary Key

Figure 3-2: Workflow of the Foreign Key Detection primitive.

1. Find out all foreign key candidates using the Inclusion Dependency (IND)

detector module. The algorithm has been discussed in Section ??.

2. Featurize every foreign key candidate.

For each column pair (column, ref_column) in the IND, we featurize it mainly

using the hand-crafted heuristics proposed in [12] and [19]:

• Ordinal position. The position of the child (parent, resp.) in the correspond-

ing table, represented in its percentage. This is because keys usually have high

ordinality.

• Name similarity. The similarities between the field names, measured in terms

of the fuzzy similarity, as column referencing another column tends to have

similar names.

• Name. If “key” or “id” is in the child (parent, resp.) field name. These keywords

are strong indicators that the column is a key.

• Data distribution. The difference in the data distribution between the child

and parent columns, measured in terms of the earth-moving distance. This is

helpful as columns in a foreign key relation tends to have its entries coming

from the same distribution, while columns that accidentally have an inclusion

dependency do not. The reason that we use EMD as a distribution difference

measure is it is empirically studied to better capture the difference between two

numerical distributions in [24] and [19].
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• Data type. Same as in the primary key detection part, if the entries in the

child (parent, resp.) column are integers or strings helps us determine if it is

actually a key.

Finally, the feature for an IND is calculated as the average of its column pairs’

features.

3. Feed the feature vectors into a classifier and predict the foreign keys.

Similarly, this is the only part that needs to be trained, and the training method

is still simply feeding the labeled tables through the first two steps and training

this classifier in a supervised manner. As discussed in Section 3.2, due to the small

number of features we are using, the choice of classifier does not have a significant

impact on the final performance, and we use the default random forest classifier8 in

scikit-learn v0.23.0.

One thing to note here is that among all foreign key candidates, only a small

portion of them are actual foreign keys. In other words, the training set of the

classifier is significantly imbalanced, and regularization is required in order to achieve

a good performance on the foreign key detection problem.

3.4 “Where” Column Map Detection

Now we can come to solving the where-lineage problem. One thing to note here is

that, while our solution for the column map detection problems is machine-learning-

based, the machine learning module is more of a tool to help us studying the relation

within the data, and the whole solution is in fact a randomized algorithm. As a result,

these approaches, and the two primitives do not need to be trained.

As briefly illustrated in Section 1.1 and Figure 3-3, we solve this sub-problem

through a three-step approach.

1. The transform step. In this step, we aggregate other tables using our pre-

identified aggregation functions, according to the detected foreign keys, and
8For a copy of the key parameters, please refer to the footnote where we first mention the random
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Transform Step
Apply aggregations
and join the tables

Special Linear
Map Detector

Train regressor:
(other fields) > Target field

Backward
Transform

Full-join tableDatasets, FKs

Target fieldTarget field

Important
Features

Success

Failure

Lineage

Figure 3-3: Workflow of the “Where” Column Map Detection primitive

full-join them to the target table. We will further explain this step, including

what are the aggregation functions we are considering, in Section 3.4.1

2. The column map detection step. Now the rows are fully aligned, and the prob-

lem becomes detecting which other columns generate the target column. In

this step we will use two modules, a special linear map detector and a general

machine learning regressor, for higher accuracy. The intuition and the imple-

mentation details will be discussed in Section 3.4.2.

3. The back-transform step. After we have identified the lineage in the fully-

joined table, we need to take it back to the original tables. To achieve this, we

simply record where does each column in the new table come from, and use this

information to recover the original lineage.

It is note-worthy that while this solution does not need many hand-crafted heuris-

tics, it does not need any training data as well. We will discuss the implementation

details of step 1 and 2 in the following sections.

3.4.1 The Transform step

It is beneficial to first discuss what aggregators (please refer to Section 1.1 for the

definitions) are under our consideration. While there are potentially infinitely many

aggregators, we can only try to apply very few of them due to time considerations.

Therefore, we adapt the following list of basic aggregators from Peng et al.’s work

in 2018 [17]: sum, count, minimum, maximum, average, standard deviation, and

forest model in Section 3.2.
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variance. As the current Tracer only supports numerical data, dispatchers are un-

fortunately not supported for now since they are almost surely applied to strings

only.

In the transform step, we produce a more useful representation of the data. Basi-

cally, for every column that is not in the target table, we consider the possible ways

that it can contribute towards the target column by applying an aggregation function

to itself, and store all columns after aggregations in a big table.

Specifically, we go over every foreign key relation that referenced the target table.

Suppose in foreign key relation 𝐹 , the columns 𝑈 of table 𝒜 reference the primary

key 𝑃 of our target table ℬ. Then for every aggregation function 𝑓 , and column 𝑐 of

𝒜 that is not part of the key 𝑈 , we aggregate it according to the foreign key 𝐹 using

function 𝑓 , into a column 𝑐′ by doing the following:

1. For every row 𝑖 of table ℬ, we first take the value of the primary key in that

row. For simplicity, we denote it as 𝑝𝑖 = ℬ[𝑃 ][𝑖], which is a tuple.

2. Then we search for all row 𝑗 of table 𝒜 such that it references row 𝑖 of table ℬ.

In other words, we find the set 𝐽𝑖 := {𝑗 | 𝒜[𝑈 ][𝑗] = 𝑝𝑖}.

3. Therefore, we can get the set of 𝑐’s values in rows that references row 𝑖 of table

ℬ as: 𝑐𝑖 = {𝑐[𝑗]}𝑗∈𝐽𝑖 . Here 𝑐𝑖 is a multiple set, meaning that the same value

may appear many times in it.

4. Finally, we compute the aggregation, and set the corresponding value in 𝑐′ as:

𝑐′[𝑖] = 𝑓(𝑐𝑖).

Note that we will generate one such column for every plausible foreign key, col-

umn, and aggregation function combination. These 𝑐′s are the columns that matches

the target column’s rows and may directly contribute to it. To avoid a full-join opera-

tion, which will make the subsequent machine learning problem computationally very

costly, we will only select the aggregated columns (𝑐′ in the previous context) whose

cross-entropy with the target field is high, as candidates, and join them together into

a table called the intermediate table.
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3.4.2 The Column Map Detection step

Now that the transform step has already given us an intermediate table 𝑅 with rows

𝑟𝑖, and we shall separate the target column 𝑦 from 𝑅 for clarity.

The column map we are looking for is simply a function 𝑓 , when applied to a row

𝑟𝑖, gives us 𝑓(𝑟𝑖) = 𝑦𝑖. And our ultimate goal in this step is to answer the question

“which columns have an impact on 𝑓 ’s evaluation”.

Recognizing that in most systems, the most common column maps are the very

simple ones, the sum, average, or difference of some of the columns, and that they

are not easy to find using general machine learning models as they tend to overfit, we

implement a special linear map detection module just for this purpose. The special

linear map detection module will check using a brute-foce approach to see if any of the

aforementioned simple maps is the 𝑓 we are looking for. Only when this module fails,

or in other words that the target column cannot be expressed as the sum, difference,

or average of other columns, will we use a general machine learning approach to detect

the column map.

Note that while the column map in theory can be arbitrary, most of them in

practice, if not already detected in the previous special linear map detector, have the

following nice properties,

• Among all available (transformed) columns, only a small portion of them are

involved in the column map.

• It generally takes the form of the combination of conditioning on the values in

some fields, and simple arithmetic operations on some fields.

And we find that a decision tree model with a very shallow depth best fit this

purpose.

Therefore, in the machine learning approach, we fit a random forest regressor,

with all the default parameters9 specified in scikit-learn v0.23.0 but max_depth

restricted to 10, with input being 𝑅 and the prediction target being 𝑦. As this

9For a copy of the key parameters, please refer to the footnote where we first mention the random
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approach does not give an explicit expression for the map 𝑓 , we predict the lineage

columns as the columns with significant feature importance.

3.5 “How” Column Map Detection

As can be seen, the solution proposed in Section 3.4 is almost ready for the purpose

of answering how the target column is generated. Only two minor augmentations are

needed.

Transform Step
Apply aggregations
and join the tables

Special Linear
Map Detector

No Lineage
Detected

Backward
Transform

Full-join tableDatasets, FKs

Target fieldTarget field

Success

Failure

Lineage

Figure 3-4: Workflow of the “How” Column Map Detection primitive

• In the transform step, we not only need to record where does each column come

from, but also how. Specifically, we need to record which foreign key is used

and which aggregation function is used.

• In the column map detection step, the only module that we can rely on is the

special linear map detection module, but not the regressor module, as the latter

one does not answer the question of what the column map is in a clean way.

forest model in Section 3.2.
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Chapter 4

Benchmarking Tracer

In Tracer, we also provide a benchmarking module to enable our users to compare

pipelines and primitives against each other, and our developers to test the stability

and performance of their new pipelines and primitives.

In this chapter, we discuss the default benchmarking method and metrics provided.

Nonetheless, our developers are always welcomed to implement new methods and

introduce new metrics as long as they see a good fit.

4.1 Terminology

In the rest of this thesis, we have only discussed one possible solution for each tracer

sub-problem, and introduced one primitive of each kind (Primary Key Detection,

etc.). However, it is totally possible to have many solutions to the same problem,

and therefore multiple primitives of the same kind, each good for a particular type

of databases. For example, in the current Tracer, we have two different Primary

Key Detection primitives1: one imposes strict uniqueness on the primary key and

thus good for databases without duplicate rows, and another one imposes weaker

strict uniqueness on the primary key and therefore works better for databases with

duplicate rows.

1Not for the composite-key version, as strict uniqueness is required so that the primitive can be
run in a reasonable amount of time.
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Because of this, it is important to distinguish between a sub-problem and a prim-

itive for the purpose of this chapter. A sub-problem refers to a task with a specified

I/O API as specified in Section 2.2. And a primitive refers to a solver targeted at a

specific sub-problem. It is possible that a sub-problem has multiple primitives.

In the benchmarking module, a unit test will be the evaluation of a single inference

of a primitive. That is, comparing the output produced by a single invocation of a

primitive to the ground truth stored in the metadata of the database.

4.2 Benchmarking Method and Metrics

4.2.1 Benchmarking Method

We will test our primitives using 66 real world databases from [13]. A summary of

them are in Chapter 3 Table 3.1.

By default, we will use leave-one-out validation. Specifically, for all unit tests,

we will train the corresponding primitive on all but the database we are testing on,

and then feed the target database, as well as any applicable inputs, into the trained

primitive for further evaluation. The performance metrics we will use will be discussed

in the next section.

4.2.2 Metrics

For each unit test, if the standard output is a list of predictions of unspecified length,

we will use the following metrics in Table 4.1 by default.

Metric Name Description

Inference time The time it takes to do the inference.
Precision We take the fields in the output as predicted
Recall positives and the rest as predicted negatives. And
F1 calculate the precision, recall and F1 score of this

prediction accordingly.

Table 4.1: A list of metrics used in Tracer Benchmarking

Two special sub-problems are the Primary Key Detection problem and the “How”

50



Kernel

Datasets

Train
primitive

Unit test of
dataset #1Machines

Benchmark
Report

Primitives

#1

#2

...

...
...

... ... ...

...

#66
..

Unit test of
dataset #66

..

Train
primitive

Primitives

Figure 4-1: Workflow of the Tracer benchmark module

Column Map Detection problem. As a partially correct primary key prediction, say

in a composite primary key we get three of the five fields correct, will not lead to any

utility. And so does a partially correct how-lineage prediction, say the actual map is

aggregating field A by taking the sum while we only get the “taking the sum” part

correct. Hence, for these two sub-problems, we will treat every single prediction as

either correct or wrong, and evaluate the corresponding primitives only based on the

overall precision and inference time.

Finally, for all sub-problems, whenever applicable, we will also document the test

database name, table name, field name, and iteration number for more readability.

4.3 Benchmarking Framework

For the most efficient utilization of possibly distributed computation power, we im-

plement our benchmarking framework to shoot as many tests in parallel as possible.

As illustrated in Figure 4-1, all the databases are firstly downloaded and delivered

to every machine in the network. Each machine is then responsible for running all

unit tests on a specific database. And finally the results are aggregated into a final

report. To simplify things, if we are having less physical machines than the total

number of databases, we will run several virtual machines in a physical machine to

make the numbers equal.
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On a single machine, to achieve maximum concurrency while running all unit tests

on a specific database, we first train the primitive on all but the tested database, and

then we invoke all unit tests using this trained primitive concurrently.

However, we do recognize that there is a trade-off between simplicity in design,

and precision in measuring the run-time. When we are trying to simplify the design

by creating a virtual machine for each testing database and invoking all unit tests

in parallel for maximum concurrency, many unit tests will be sharing the same CPU

core. As the time-sharing, which is “indeterministically” decided by the system kernel,

is not consistent throughout the tests, this will result in some inaccuracy in the run-

time measurement of the unit tests. While one could avoid such issues by using

slightly more complicated design, such as measuring the total CPU hours used, or

adding some mechanism ensuring that the number of threads will be no greater than

the number of CPU cores, we do not recognize an urgent need for this as the run-time

is not the most important metric we are looking at, as long as it stays on the same

order.
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Chapter 5

Results

In this chapter, we test our primitives according to the method described in Chapter

4, and report the results.

5.1 Testing setup

We will test our primitives using 66 datasets as described in Section 4.2.1, which have

572 tables in total, and sizing 9.0GB.

The tests will be run on 8 machines, each with 2 Intel Xeon Platinum 8260 pro-

cessors (2 x 24 cores @2.40 GHz) and 192GB RAM.

As most primitives have upstream primitives, we have to feed in appropriate input

rather than the raw dataset in order to test them. We have two options here: one

is to feed in the ground truth primary or forein keys as the input, and another one

is to create pipelines ending with the target primitive and test the entire pipeline.

For example, instead of testing the foreign key detection primitive alone, we build

a pipeline consisting of the primary key detection primitive, and then the foreign

key detection primitive, and this this pipeline instead. While the later one is more

complicated, and is technically not a test of the primitive alone, we believe it is a

better metric for the following reason. While we do want the primitive to perform

good based on 100% correct primary/foreign keys as inputs, in application it will run

on imperfect input generated by upstream primitives, and robustness against errors
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from upstream primitives is equally equivalent. Because of this, we believe testing

the whole pipeline will better indicate the primitives’ performance in real applications

and therefore adopt this method.

5.2 Results

As can be seen in Tables 5.1 and 5.2, the primary key detection primitive achieves an

average precision of 0.838 on all datasets, with an average precision of 0.980 on tables

with single primary key and an average precision of 0.594 on tables with composite

primary keys.1 As will be discussed in Chapter 7, while this is a relatively good result,

much of the errors is introduced by the fact that our minimal UCC assumption is too

strict in some cases for our Tracer to recognize the true primary key as a candidate,

and further research on this is needed.

The foreign key detection primitive, as shown in Tables 5.3 and 5.4, reaches an

average f1 score of 0.654, and recall of 0.661 across the datasets.2 We emphasize the

recall score here as it has the most affect on the downstream column map detection

primitive. While false positive foreign key predictions will rarely directly lead to inac-

curate lineage inference (they do increase the workload of the downstream primitive

and will cause timeout sometimes, which undermines the downstream task’s perfor-

mance), a false negative prediction will directly cause the downstream primitive’s

inability to detect any relevant lineage.

Finally, we report the performance of both the “where” and “how” column map

detection primitives together in Tables 5.5 and 5.6, as in the current implementation,

the “how” primitive succeeds if and only if the ”where” primitive detects the correct

linear map. The “where” primitive reaches an average f1 score of 0.701 across the

datasets3, and the “how” primitive” reaches an average precision of 0.685. While

these scores are far from being perfect, and the predictions of the Tracer cannot

1In contrast, the previous Tracer achieves an average precision of 0.985 on tables with single
primary key, but cannot predict composite primary keys.

2The previous Tracer achieves an average f1 of 0.562 and recall of 0.564 across the datasets.
3The previous Tracer only achieves an average f1 of 0.275 in contrast.

54



be used as ground truth, theses scores do suggest that the Tracer can detect most

lineages in real world datasets, and the predictions have high reference values.
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dataset tab prec sgl s_prec comp c_prec time

PremierLeague_v1 4 1.0 3 1.0 1 1.0 26.536
Bupa_v1 9 1.0 9 1.0 0 nan 0.023
financial_v1 8 0.875 8 0.875 0 nan 129.386
Countries_v1 4 0.75 3 1.0 1 0.0 209.593
nations_v1 3 0.667 2 1.0 1 0.0 7.407
DCG_v1 2 1.0 1 1.0 1 1.0 2.031
Student_loan_v1 10 1.0 8 1.0 1 1.0 0.199
VisualGenome_v1 6 0.667 3 1.0 3 0.333 188.952
Triazine_v1 2 1.0 1 1.0 1 1.0 0.527
UTube_v1 2 0.5 1 1.0 1 0.0 0.56
MuskSmall_v1 2 1.0 2 1.0 0 nan 21.454
tpcc_v1 9 0.25 2 1.0 6 0.0 225.796
Seznam_v1 4 1.0 1 1.0 1 1.0 163.617
Accidents_v1 3 1.0 2 1.0 0 nan 20.222
CORA_v1 3 1.0 1 1.0 2 1.0 14.106
Pyrimidine_v1 2 1.0 1 1.0 1 1.0 0.354
university_v1 5 1.0 3 1.0 2 1.0 0.104
Same_gen_v1 4 1.0 1 1.0 3 1.0 0.166
legalActs_v1 5 1.0 3 1.0 2 1.0 700.24
Hockey_v1 19 0.2 0 nan 10 0.2 303.683
Airline_v1 19 0.944 18 0.944 0 nan 1247.643
lahman_2014_v1 25 0.208 3 1.0 21 0.095 3287.838
Carcinogenesis_v1 6 1.0 6 1.0 0 nan 2.506
Credit_v1 8 1.0 8 1.0 0 nan 2210.336
Facebook_v1 2 1.0 1 1.0 1 1.0 34.529
mutagenesis_v1 3 1.0 2 1.0 1 1.0 0.932
TubePricing_v1 20 1.0 7 1.0 0 nan 193.556
trains_v1 2 1.0 2 1.0 0 nan 0.064
Hepatitis_std_v1 7 0.286 4 0.25 3 0.333 1.101
SalesDB_v1 4 1.0 4 1.0 0 nan 219.323
KRK_v1 1 1.0 1 1.0 0 nan 0.061
Basketball_women_v1 8 0.333 1 1.0 2 0.0 51.911
Pima_v1 9 1.0 9 1.0 0 nan 0.039

Table 5.1: Primary Key Detection primitive benchmark results. The columns in the
table are: dataset name, number of tables, overall prediction precision, number of
tables with single primary key, prediction precision on tables with single primary key,
number of tables with composite primary keys, prediction precision on tables with
composite primary keys, and inference time, resp. from left to right.
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dataset tab prec sgl s_prec comp c_prec time

Telstra_v1 5 1.0 2 1.0 3 1.0 23.747
stats_v1 8 1.0 8 1.0 0 nan 1371.514
NCAA_v1 9 0.444 3 1.0 6 0.167 29.42
FNHK_v1 3 0.333 1 1.0 2 0.0 24.685
ftp_v1 2 1.0 1 1.0 1 1.0 25.622
classicmodels_v1 8 0.75 6 1.0 2 0.0 4.554
PTE_v1 38 0.472 15 1.0 21 0.095 1.72
UW_std_v1 4 1.0 2 1.0 2 1.0 0.244
tpcd_v1 8 0.875 6 1.0 2 0.5 3082.716
TalkingData_v1 9 0.625 5 1.0 3 0.0 2878.345
sakila_v1 15 0.933 13 1.0 2 0.5 52.568
WebKP_v1 3 1.0 1 1.0 2 1.0 7.709
imdb_ijs_v1 7 0.714 3 1.0 4 0.5 282.405
NBA_v1 4 1.0 3 1.0 1 1.0 1.351
imdb_MovieLens_v1 7 1.0 4 1.0 3 1.0 383.302
Mesh_v1 29 0.889 23 1.0 4 0.25 0.454
imdb_small_v1 7 0.833 3 1.0 3 0.667 1.454
Toxicology_v1 4 0.75 3 1.0 1 0.0 7.143
pubs_v1 11 0.778 7 0.857 2 0.5 1.224
Chess_v1 2 1.0 2 1.0 0 nan 3.742
Biodegradability_v1 5 1.0 3 1.0 2 1.0 1.379
Mooney_Family_v1 68 0.721 1 1.0 67 0.716 0.508
Elti_v1 11 0.636 1 1.0 10 0.6 0.207
Dunur_v1 17 0.294 1 1.0 16 0.25 0.199
AustralianFootball_v1 4 1.0 3 1.0 1 1.0 37.28
tpch_v1 8 0.875 6 0.833 2 1.0 3087.386
SAP_v1 4 1.0 4 1.0 0 nan 366.371
restbase_v1 3 1.0 3 1.0 0 nan 2.747
medical_v1 3 1.0 1 1.0 1 1.0 1009.238
SAT_v1 36 0.944 35 0.971 1 0.0 0.201
genes_v1 3 1.0 1 1.0 1 1.0 0.325
Atherosclerosis_v1 4 0.75 3 1.0 1 0.0 1182.025
world_v1 3 1.0 2 1.0 1 1.0 6.86

Table 5.2: Primary Key Detection primitive benchmark results (Cont.)
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dataset num_fk f1 prec recall time

TalkingData_v1 7 0.706 0.6 0.857 42047.641
mutagenesis_v1 3 1.0 1.0 1.0 2.673
KRK_v1 0 0.0 0.0 0.0 0.061
Pima_v1 8 0.0 0.0 0.0 10.475
NCAA_v1 17 0.69 0.833 0.588 86.318
UW_std_v1 4 1.0 1.0 1.0 0.419
Seznam_v1 3 0.5 1.0 0.333 285.753
Basketball_women_v1 8 0.4 1.0 0.25 50.172
trains_v1 1 1.0 1.0 1.0 0.111
Toxicology_v1 5 0.75 1.0 0.6 15.886
Carcinogenesis_v1 13 0.0 0.0 0.0 15.315
imdb_MovieLens_v1 6 1.0 1.0 1.0 677.232
world_v1 2 1.0 1.0 1.0 7.203
FNHK_v1 2 1.0 1.0 1.0 227.93
Student_loan_v1 9 0.0 0.0 0.0 3.831
UTube_v1 1 1.0 1.0 1.0 1.075
MuskSmall_v1 1 0.0 0.0 0.0 21.108
genes_v1 3 0.8 1.0 0.667 1.064
medical_v1 2 0.667 1.0 0.5 1006.856
CORA_v1 3 0.667 0.667 0.667 24.49
SalesDB_v1 3 1.0 1.0 1.0 6825.567
Same_gen_v1 6 0.0 0.0 0.0 0.212
Elti_v1 20 0.833 0.714 1.0 1.299
Credit_v1 10 0.824 0.875 0.778 5013.326
restbase_v1 3 0.8 1.0 0.667 5.446
Dunur_v1 32 0.703 0.542 1.0 1.242
TubePricing_v1 39 0.817 0.906 0.744 254.971
Atherosclerosis_v1 3 1.0 1.0 1.0 1165.402
tpcd_v1 8 0.8 0.857 0.75 12094.78
Accidents_v1 3 1.0 1.0 1.0 302.912
ftp_v1 1 0.667 0.5 1.0 45.49
pubs_v1 10 0.632 0.667 0.6 1.528
Countries_v1 3 0.0 0.0 0.0 229.623

Table 5.3: Foreign Key Detection primitive benchmark results. The columns in the
table are: dataset name, number of tables, number of foreign key relations in the
dataset, prediction f1, precision, and recall, and inference time, resp. from left to
right.
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dataset num_fk f1 prec recall time

VisualGenome_v1 6 0.857 0.75 1.0 2888.612
DCG_v1 1 1.0 1.0 1.0 4.259
SAP_v1 3 0.5 1.0 0.333 2271.138
Telstra_v1 4 0.667 0.5 1.0 91.373
Facebook_v1 2 1.0 1.0 1.0 34.813
imdb_ijs_v1 6 1.0 1.0 1.0 1258.828
Bupa_v1 8 0.222 1.0 0.125 3.803
sakila_v1 22 0.462 0.529 0.409 162.178
Hepatitis_std_v1 6 0.714 0.625 0.833 11.947
Triazine_v1 1 1.0 1.0 1.0 0.778
Mesh_v1 33 0.5 0.8 0.364 2.257
legalActs_v1 5 0.75 1.0 0.6 1324.147
lahman_2014_v1 31 0.059 0.333 0.032 3433.072
Chess_v1 1 1.0 1.0 1.0 4.011
financial_v1 8 1.0 1.0 1.0 336.932
Hockey_v1 27 0.0 0.0 0.0 308.699
NBA_v1 5 0.833 0.714 1.0 2.874
tpcc_v1 10 0.111 0.125 0.1 2869.992
SAT_v1 65 0.004 0.002 0.031 141.164
stats_v1 13 0.375 1.0 0.231 1971.854
classicmodels_v1 8 0.769 1.0 0.625 5.233
AustralianFootball_v1 5 0.909 0.833 1.0 78.455
tpch_v1 8 0.857 1.0 0.75 10049.715
Pyrimidine_v1 1 1.0 1.0 1.0 0.409
PTE_v1 39 0.323 0.211 0.692 25.689
university_v1 4 1.0 1.0 1.0 0.259
Airline_v1 33 0.245 0.375 0.182 7944.249
Biodegradability_v1 5 1.0 1.0 1.0 5.581
Mooney_Family_v1 134 0.383 0.237 1.0 18.155
PremierLeague_v1 5 1.0 1.0 1.0 35.953
imdb_small_v1 6 1.0 1.0 1.0 2.411
nations_v1 3 0.4 0.5 0.333 10.866
WebKP_v1 3 1.0 1.0 1.0 16.215

Table 5.4: Foreign Key Detection primitive benchmark results (Cont.)
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dataset num f1 prec recall how time

TalkingData_v1 49 0.889 0.918 0.879 0.816 31790.779
mutagenesis_v1 11 1.0 1.0 1.0 1 29.093
KRK_v1 1 1.0 1.0 1.0 1.0 0.03
Pima_v1 8 1.0 1.0 1.0 1.0 0.866
NCAA_v1 221 0.534 0.534 0.534 0.529 4958.848
UW_std_v1 19 0.842 0.842 0.842 0.842 3.665
Seznam_v1 13 0.385 0.385 0.385 0.385 410.427
Basketball_women_v1 141 0.906 0.909 0.907 0.043 1131.755
trains_v1 3 1.0 1.0 1.0 1.0 0.344
Toxicology_v1 3 0.0 0.0 0.0 0.0 18.071
Carcinogenesis_v1 19 0.211 0.211 0.211 0.211 7.58
imdb_MovieLens_v1 31 0.989 1.0 0.984 0.968 206.728
world_v1 14 0.214 0.214 0.214 0.214 3.005
FNHK_v1 17 1.0 1.0 1.0 1.0 1365.174
Student_loan_v1 12 0.333 0.333 0.333 0.333 1.45
UTube_v1 2 1.0 1.0 1.0 1.0 0.476
MuskSmall_v1 3 1.0 1.0 1.0 1.0 1147.142
genes_v1 7 1.0 1.0 1.0 1.0 19.903
medical_v1 103 0.913 0.913 0.913 0.029 713.198
CORA_v1 11 0.364 0.364 0.364 0.636 13.378
SalesDB_v1 19 0.316 0.316 0.316 1.0 301.282
Same_gen_v1 7 0.857 0.857 0.857 0.857 3.495
Elti_v1 13 0.846 0.846 0.846 0.846 18.968
Credit_v1 71 0.866 0.873 0.862 0.845 1683.774
restbase_v1 15 0.667 0.667 0.667 0.667 21.247
Dunur_v1 19 0.789 0.789 0.789 0.789 50.342
TubePricing_v1 315 0.521 0.521 0.521 0.521 4625.901
Atherosclerosis_v1 111 0.968 0.968 0.969 0.955 210.52
tpcd_v1 43 0.965 0.979 0.979 0.93 44596.046
Accidents_v1 44 0.97 0.97 0.97 0.955 11922.903
ftp_v1 2 1.0 1.0 1.0 1.0 45.699
pubs_v1 55 0.927 0.927 0.927 0.764 22.313
Countries_v1 314 0.503 0.503 0.503 1.0 4805.837

Table 5.5: “Where” and “How” Column Key Detection primitives benchmark results.
The columns in the table are: dataset name, number of fields with lineage, “where”
prediction f1, precision, and recall , “how” prediction precision, and average inference
time for one lineage field, resp. from left to right.
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dataset num f1 prec recall how time

VisualGenome_v1 21 0.429 0.429 0.429 0.429 119.748
DCG_v1 3 0.667 0.667 0.667 0.667 0.12
SAP_v1 29 0.92 0.914 0.931 0.897 1436.256
Telstra_v1 8 1.0 1.0 1.0 1.0 159.695
Facebook_v1 6 0.333 0.333 0.333 0.167 604.666
imdb_ijs_v1 25 0.52 0.52 0.52 0.68 1610.926
Bupa_v1 7 1.0 1.0 1.0 1.0 0.7
sakila_v1 83 0.832 0.833 0.831 0.807 232.247
Hepatitis_std_v1 15 0.867 0.867 0.867 0.933 7.2
Triazine_v1 20 1.0 1.0 1.0 1.0 2.108
Mesh_v1 28 0.25 0.25 0.25 0.25 269.031
legalActs_v1 15 0.4 0.4 0.4 0.467 159.543
lahman_2014_v1 434 0.064 0.068 0.063 0.058 4482.011
Chess_v1 12 1.0 1.0 1.0 1.0 18.152
financial_v1 29 0.759 0.759 0.759 0.759 749.406
Hockey_v1 155 0.111 0.108 0.173 0.103 6465.333
NBA_v1 20 0.35 0.35 0.35 0.35 619.357
tpcc_v1 40 0.749 0.755 0.745 0.5 1658.426
SAT_v1 56 0.786 0.786 0.786 0.786 853.727
stats_v1 89 0.18 0.18 0.18 0.18 7091.478
classicmodels_v1 49 0.633 0.633 0.633 0.776 19.622
AustralianFootball_v1 115 0.991 0.991 0.991 0.991 452.013
tpch_v1 70 0.42 0.429 0.416 0.4 3657.918
Pyrimidine_v1 24 1.0 1.0 1.0 1.0 1.945
PTE_v1 42 0.333 0.333 0.333 0.381 677.706
university_v1 12 1.0 1.0 1.0 1.0 1.395
Airline_v1 2391 0.174 0.173 0.186 0.171 5859.9
Biodegradability_v1 5 1.0 1.0 1.0 1.0 16.467
Mooney_Family_v1 12 0.083 0.083 0.083 0.083 261.057
PremierLeague_v1 32 0.964 0.99 0.956 0.938 1002.749
imdb_small_v1 16 0.938 0.938 0.938 0.562 8.928
nations_v1 4 0.75 0.75 0.75 0.75 232.935
WebKP_v1 2 1.0 1.0 1.0 1.0 8.746

Table 5.6: “Where” and “How” Column Key Detection primitives benchmark results
(Cont.)
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Chapter 6

Lineage Visualization

In this chapter, we justify our design choices made in visualizing the lineage informa-

tion. The overarching goal is to visualize the following information,

• What are the tables in this dataset.

• How are these tables connected by the foreign key relations.

• In each table, what are the fields. Moreover, what are the primary keys, foreign

keys, and for which fields we know the lineage for.

• What are the lineages in the sense of both where-lineage and how-lineage.

while prioritizing the following design principles,

• Scalability: When the number of tables and fields gets large, displaying all

info in one figure is almost impossible. Therefore, we need to design a layered

UI that allows the user to “zoom in” and “zoom out” of tables and lineages.

• Uncertainty: It is inevitable that some info will be just above the threshold.

In other words, we will have some uncertain info that needs to be delivered.

Therefore, displaying the uncertainty in an intuitive manner will be very im-

portant.

Recognizing that even for small datasets it is impossible to display all the above

information in one setting, we have designed a three-stage user interface, allowing
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the user to start from the schema-level visualization and then explore any detailed

information of their choice.

Roughly speaking, the user interface is divided into three zones: the abstract

schema graph zone, the schema info list zone, and the schema relations zone. Due

to the potentially excessive number of lineage relations, we are not able to display

all of them on one page. Consequently, a three-stage interface is designed. In the

first stage, the abstract schema graph stage, users can get a brief view of the entire

dataset and the relations. By selecting any of the tables, users can proceed to the

second stage, the foreign key relations stage, where the graph expands around the

selected table with more details. Finally, the users can choose any of the fields for

which we know the lineage of and proceed to the third, the column lineage stage,

where the details of this lineage are displayed.

6.1 Abstract schema graph

In the first stage, we present our users with an overview of the entire dataset and

relations.

In the first (i.e. abstract schema graph) zone, we represent the dataset using a

classic node-edge graph, where the nodes are the tables and the directed edges are

the foreign key relations pointing from the parent table into the child table. We

implement it as a drawable force-directed graph so that the user can adjust its layout

and focus on the tables of their interest.

If this metadata is generated by our tracer, and thus is uncertain, we will use solid

edges to represent the foreign key relations for which we have high confidence, and

dotted edges for the rest. If classification information about the tables are known, we

will represent them by coloring the nodes by class. Finally, the size of the tables (in

terms of number of fields) will be represented by the size of the nodes. This zone will

remain roughly unchanged throughout the stages.

The second (i.e. schema info list) and the third (i.e. schema relations) zone will

be left blank at this stage.
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Figure 6-1: Stage 1: The relations between tables

6.2 Foreign key relations

By clicking on any of the tables in the abstract schema graph, the user can proceed

to the detailed foreign key relations of this table.

In the first zone, we will make focus of this graph be our selected table, its foreign

key relations, and the tables connected to it by those foreign key relations. These

elements in this graph will get spotlighted.

The second zone will turn into two scrollable lists: the child tables list, and the

parent tables list. The child (parent, resp.) tables list simply lists out all the child

(parent, resp.) tables of this selected table. All the cells in these two lists are clickable

so that the user can have the option to have that table displayed in the third zone

for a further investigation of the foreign key relations.

The third zone will now be filled with the selected table (which is highlighted),

and the child or parent tables that our user chose to display (by clicking them in the

child or parent tables list). Each table is represented by a scrollable list of its field
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Figure 6-2: The foreign key relations related to the chosen table expands out

names. For for fields that is a primary key, foreign key, or has any lineage, there will

be a sign by the field name indicating so.

6.3 Column lineage

Finally, when the user select a field to investigate its lineage, we proceed to the last

stage.

The tables that contains any of the lineage columns will be added to the third

zone if not already selected by the user, and the lineage fields, as well as the foreign

key relations used will be highlighted. If there are too many tables in the third zone

to be displayed, the UI will automatically unselect a few in the second zone to make

space for the lineage tables to be added.
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Figure 6-3: Lineage columns and foreign keys involved are highlighted
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Chapter 7

Conclusion

In this paper we build upon the previous Tracer [9], a machine learning approach to

the data lineage problem, and make it more precise, more general, and more intuitive.

We finish up with a complete framework with two end-to-end pipelines, that could

detect both single and composite primary and foreign keys in the tables, and use them

to answer both the where-lineage and how-lineage problem in relational databases

without any additional input. Additionally, we develop a lineage visualization user

interface that allows the user to interactively, and intuitively view the relations and

lineage in the database.

With these improvements, the Tracer library now way closer to industrial level. It

now has an API that is general enough to support the implementation of any solutions

that solves the data lineage problem of any flavor. Its accuracy is now high enough

to be a helpful reference. And due to the help of our user interface, users can now

intuitively understand its results without any knowledge of the json format where our

output metadata is stored in.

However, this work is far from being perfect and much can be improved. Here are

a few potentially interesting lines of research:

• While the minimal UCC assumption we use in the primary key detection prim-

itive achieves a relatively good balance between precision and speed, it does not

work very well on small tables as the actual primary keys sometimes violate the
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minimality assumption. Moreover, we really can afford to explore more UCCs

when the tables are small. Therefore finding a better balance between precision

and speed would be interesting.

• While the current framework is pretty clean, it is isolating too many tasks. For

example, the both column map detection pipelines deals with one target column

at a time, and each task is completely independent. However, as some columns

are generated together, their lineage will also be highly correlated, and taking

this into consideration might be an interesting thing to think of.

• Following up on the previous bullet point, we also realize that the current iso-

lated design is making the pipelines doing many repeated work when we make

multiple queries to the fields in the same database. For example, the trans-

form step is almost the same in every call. Hence, improving the API to allow

efficient computation would be very nice to have.

• Though one of the Tracer’s advantages is that it does not rely on any additional

input, we should not turn them down if we already know something about

the database. Currently, what we support is restricted to knowledge about the

primary and foreign keys, for which we simply replace output the corresponding

primitive with this extra knowledge. Put other knowledge about the database

and our machine learning approach together would be interesting to see.

• Now that we have an user interface, which allows the user to explore the relations

and lineage step-by-step, one natural question is that if we can make the Tracer

compute out the lineage on demand. More precisely, instead having to run the

Tracer in advance and put everything into a metadata file for the UI to use, we

would like to connect the UI to the Tracer kernel and run the corresponding

primitive/pipeline only when we have to do so. For example, we can run only

the foreign key detection primitive at beginning so that we have a complete

stage 1 to present. Only upon a lineage query request need we run the column

map detection pipeline so that we can have that information ready for the user.
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Unfortunately, the current column map detection pipeline is too slow to be run

in real time. To realize this cool feature, we will need to find out a faster column

map detection algorithm.

• Yet, we have only tried random forest classifier and regressor for all the machine

learning tasks in the primitives. It will be interesting to see if other machine

learning models will perform better.

Once the Tracer can have the above-mentioned features, we believe it will be

accurate enough, fast enough, and user-friendly enough for common commercial use.
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