
Computational Hardness in Random Optimization
Problems from the Overlap Gap Property

by

Brice Huang
B.S., Mathematics and Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2019

Submitted to the MIT Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 2022

©2022 Brice Huang. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author .
Department of Electrical Engineering and Computer Science

January 26, 2022

Certified by .
Guy Bresler

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

1

Dedicated to the memory of my father, Kevin Xiongfei Huang.

2

3

Acknowledgements

I am grateful to my advisor Guy Bresler for his patient and generous mentorship over the past two years.
He has been a great collaborator, and his guidance has been invaluable in teaching me how to research.

Matthew Brennan was like an older brother to me in my first year. I miss him and am forever grateful
to him.

This thesis is based on joint works [BH21, HS21] with Guy Bresler and Mark Sellke. I am grateful for
their collaboration. I thank Wei-Kuo Chen, David Gamarnik, Andrea Montanari, Cristopher Moore, Dmitry
Panchenko, Mehtaab Sawhney, Yi Sun, and Alex Wein for helpful conversations and comments. I also thank
the Simons Institute at Berkeley, where I spent two stimulating semesters.

Finally, I am grateful to my family for their unending support. Mom, Dad, and Catherine, thank you for
being there for me every step of the way.

4

Abstract

We study the limits of efficient algorithms in random optimization problems. In these problems, we are given
a random objective function and our goal is to find an input achieving a large output. These problems often
exhibit information-computation gaps, where the maximum objective that exists is larger than the maximum
objective that known efficient algorithms can find. Our goal is to find rigorous evidence of computational
hardness in the hard regime.

We focus on the problems of random k-SAT and mean-field spin glasses. Our results are:

• It is known that random k-SAT has a satisfying assignment with high probability up to clause density
2k log 2− 1

2 (1 + log 2) + ok(1), while the best known algorithm (Fix) finds a satisfying assignment up
to clause density (1− ok(1))2k log k/k. We prove that low degree polynomial algorithms cannot find a
satisfying assignment above clause density (1 +ok(1))κ∗2k log k/k, for a universal constant κ∗ ≈ 4.911.
Low degree polynomial algorithms encompass Fix, message passing algorithms including Belief and
Survey Propagation guided decimation, and local algorithms on the factor graph. This is the first
hardness result against any class of algorithms within a constant factor of the clause density achieved
by Fix.

• The maximum asymptotic value OPT of the Hamiltonian HN/N of a spherical or Ising mixed p-spin
glass is given by the celebrated Parisi formula. Recently developed approximate message passing al-
gorithms efficiently optimize HN/N up to a value ALG given by an extended Parisi formula, which
minimizes over a larger space of non-monotone functional order parameters. These two objectives
coincide for spin glasses exhibiting a no overlap gap property, but are generically not equal. We prove
that for mixed even p-spin models, no algorithm satisfying an overlap concentration property can
produce an objective larger than ALG. This property holds for all algorithms with suitably Lipschitz
dependence on the disorder coefficients of HN , including natural formulations of gradient descent, ap-
proximate message passing, and Langevin dynamics run for bounded time. In particular, this includes
the algorithms achieving ALG.

We prove these results by extending the overlap gap property (OGP) framework of Gamarnik and Sudan
to multi-OGPs, which consider forbidden constellations containing several solutions. Our results for random
k-SAT are proved by a multi-OGP that generalizes the ladder constellation introduced by Wein. Our results
for spin glasses are proved by a new multi-OGP, the branching OGP, that uses an arbitrarily complex
ultrametric constellation of solutions.

Contents

1 Introduction 2
1.1 Random Optimization Problems . 2
1.2 Random k-SAT . 3
1.3 Optimization of Mean-Field Spin Glasses . 5
1.4 The Overlap Gap Property as a Barrier to Algorithms . 8

2 Random k-SAT 12
2.1 Results . 12
2.2 Technical Overview of Ladder Multi-OGP . 16
2.3 Proof of Impossibility for Low Degree Polynomials . 19
2.4 The Multi-OGP . 25
2.5 Stability of Low Degree Polynomials . 32
2.6 Proof of Impossibility for Local Algorithms . 36
2.7 Simulation of Local Memory Algorithms . 42
2.8 Proof of Achievability . 51
2.9 Appendix: On Improving the Constant κ∗ . 55

3 Mean-Field Spin Glasses 60
3.1 Results . 61
3.2 Proof of Main Impossibility Result . 63
3.3 Guerra’s Interpolation . 72
3.4 Overlap-Constrained Upper Bound on the Spherical Grand Hamiltonian 77
3.5 Overlap-Constrained Upper Bound on the Ising Grand Hamiltonian 87
3.6 Necessity of Full Branching Trees . 97
3.7 Overlap Concentration of Standard Optimization Algorithms 109
3.8 Appendix 1: Bounds on Hamiltonian Derivatives . 114
3.9 Appendix 2: Explicit Formula for the Spherical Algorithmic Threshold 116

4 Open Problems and Conclusion 119

Bibliography 121

1

Chapter 1

Introduction

1.1 Random Optimization Problems

The subject of this thesis is algorithmic limits in random optimization problems. In a random optimization
problem, we are given a random objective function and our goal is to find an input achieving a large output.
Such problems are ubiquitous at the intersection of probability and computation. Examples of random
optimization problems include:

• Random constraint satisfaction problems (rCSPs): random (MAX-)k-SAT, q-coloring, maxcut, maxi-
mum independent set;

• Mean-field spin glasses;

• Perceptron models;

• Number Partitioning.

Random optimization problems are also a rich source of examples of non-convex optimizaton problems.
There are two natural questions one can ask about any random optimization problem. First, what is the

largest objective that exists with high probability? Second, what is the largest objective that can be found
with high probability by an efficient algorithm? We refer to these values as the existential and algorithmic
limits.

In a large number of random optimization problems, our understanding of these two questions can be
described by the following state of affairs. The existential limit is very well understood, and its in-probability
limiting value is either known exactly or within precise estimates. However, much less is known about the
algorithmic limit. The best known polynomial-time algorithm stalls at an objective well below the existential
limit; this barrier has defied all attempts to devise better algorithms, and is believed to be fundamental.
This phenomenon is known as an information-computation gap.

Understanding the limits of efficient algorithms gives insight into the basic computational limits of opti-
mization. This leads us to our guiding question:

Can we characterize and find rigorous evidence for the limits of efficient algorithms in random optimization
problems? Moreover, can we establish algorithmic limits across many problems in a unified way?

We will study this question through a somewhat surprising connection between the limits of efficient
algorithms and the geometry of the solution space. It was observed in the influential work [ACO08] that in
many problems, the failure of known efficient algorithms coincides with a clustering phase transition, beyond
which metastable states proliferate. The popular wisdom is that beyond this threshold, the optimization
landscape becomes very rugged, rendering efficient algorithms unable to navigate this landscape. It would
thus be of interest to rigorously show that efficient algorithms fail beyond this transition.

Our central tool for showing computational hardness is the Overlap Gap Property (OGP). Introduced by
Gamarnik and Sudan in [GS14], the OGP technique formalizes clustering as the absence of a constellation of

2

solutions with a prescribed geometric structure and leverages this fact to show hardness for powerful classes
of stable algorithms. The notion of stable depends on the problem under consideration, but in all cases
includes the state-of-the-art algorithm for the problem and powerful computatonal frameworks. Thus, OGP
promises to give a unified geometric explanation of hardness across many random optimization problems.

The choice of the forbidden constellation in OGP is crucial to the success of the OGP argument. The
design and analysis of this constellation is one of the main technical barriers to using OGP to show com-
putational hardness. By introducing new tools for this task, our work substantially generalize the reach of
OGP methodology. In Section 1.4, we give a detailed overview of the OGP program and our contributions.

We focus our attention on two of the oldest studied random optimization problems, random k-SAT and
mean-field spin glasses, which we now introduce.

1.2 Random k-SAT

The k-SAT problem occupies a central role in complexity theory as the first and canonical NP-complete
problem [Coo71]. Its average-case analogue, random k-SAT, likewise has a central role in average-case
computational complexity. In this problem, we are given a k-CNF formula with M clauses and N variables
whose kM literals are sampled uniformly and i.i.d. from the 2N possible literals;1 see [Ach09] for a survey.
There are two fundamental questions for random k-SAT. First, at what scalings of (k,N,M) are there
satisfying assignments? Second, when can they be found by efficient algorithms? Note that random k-SAT
can be identified with the random optimization problem of minimizing the number of violated clauses, and
these questions correspond to when the existential and algorithmic limits are zero.2

Early work showed that for fixed k the interesting regime of random k-SAT is when M = Θ(N), and that
the problem’s qualitative behavior in the large-N limit depends on the clause density α = M/N . Namely,
[FP83] showed that if α ≥ 2k log 2, random k-SAT is unsatisfiable with high probability; on the positive
side, [MTF90] showed that if α < 2k/k, a simple algorithm finds a satisfying assignment with nontrivial
probability, and [CR92] improved the guarantee to with high probability. We henceforth work in the double
limit where N →∞ at constant α = α(k), and then k →∞.

As we tune α with k fixed, we encounter phase transitions separating one qualitative behavior from
another. Two phase transitions are of primary interest to us: the satisfiability threshold, below which
random k-SAT admits a satisfying assignment with high probability, and the algorithmic threshold, below
which a polynomial-time algorithm produces a satisfying assignment with high probability.

The satisfiability threshold is well understood. [KKKS98] showed that random k-SAT is unsatisfiable
with high probability at clause density 2k log 2 − 1

2 (log 2 + 1) + ok(1), where ok(1) denotes a term limiting
to 0 as k → ∞. Conversely, [COP16] showed that random k-SAT is satisfiable with high probability at
clause density 2k log 2− 1

2 (log 2 + 1)− ok(1). For large k, the landmark result of Ding, Sly, and Sun [DSS15]
precisely identified the satisfiability threshold αs(k) within this range, proving that with high probability,
random k-SAT is satisfiable when α < αs(k) and unsatisfiable when α > αs(k).

We study the algorithmic threshold, which is much less understood. The best polynomial-time algorithm
known, the Fix algorithm of Coja-Oghlan [CO10], finds a satisfying assignment with high probability at
clause density (1−ok(1))2k log k/k, nearly a factor of k below the satisfiability threshold. A body of evidence
has emerged to suggest that this is the correct threshold, but rigorous results that efficient algorithms fail
beyond this threshold have been scarce.

In the early 2000s, statistical physicists developed a rich but non-rigorous theory describing the solution
geometry of random k-SAT, among other random constraint satisfaction problems [KMRT+07]. This theory
predicts several phase transitions in random k-SAT’s solution geometry, which we now summarize; see
[KMRT+07, Figure 2] for an illustration. At low clause density, the space of satisfying assignments is one
large cluster. When the clause density reaches the uniqueness threshold, disconnected solution clusters appear
but the main cluster contains all but an exponentially small fraction of solutions. At the clustering threshold,
the solution space shatters into an exponentially large number of clusters, each with an exponentially small

1In a variant of this definition, the M clauses are chosen uniformly and without replacement among all 2k
(N
k

)
clauses with

k distinct, non-complementary literals. This definition behaves identically to ours in the large-N limit, and all properties of
random k-SAT we show in this chapter apply equally to this model.

2The question of determining the existential and algorithmic minimum numbers of violated clauses is the MAX-k-SAT
problem, which is interesting in its own right. In this thesis, we focus on the question of satisfying assignments.

3

fraction of solutions. Additional clauses cause these clusters to shrink until at the condensation threshold,
the solution space is dominated by a few clusters of strongly varying sizes. Finally, beyond the satisfiability
threshold there are no satisfying assignments. Many of these predictions have since been proven rigorously:
the prediction of the satisfiability threshold was confirmed in [DSS15], and the physics prediction of the
condensation threshold in random regular NAE-k-SAT was recently confirmed in [NSS20].

[KMRT+07] predicted that Markov Chain Monte Carlo (MCMC) algorithms succeed up to the cluster-
ing threshold and no more. Since then, this threshold has emerged as the predicted limit of all efficient
algorithms, and structural phenomena in the clustered regime have been rigorously established that (still
non-rigorously) suggest algorithmic hardness. [ACO08] showed that clustering occurs at clause density
(1 + ok(1))2k log k/k, confirming the prediction of [KMRT+07]. They showed that at this clause density,
long-range correlations appear in random k-SAT’s solution space, in the following sense. Say variable xi of
a satisfying assignment x ∈ {T, F}N is frozen if any satisfying assignment y with xi 6= yi is at Hamming
distance Ω(N) from x. Then, in all but an o(1) fraction of satisfying assignments, all but an ok(1) fraction
of bits are frozen with high probability. This suggests that above this clause density, local search is unlikely
to succeed, and any algorithmic solution to random k-SAT must use a qualitatively different approach.

The rigorous evidence for the algorithmic threshold consists of exhibiting algorithms on one side and
producing bounds against specific algorithms or restricted computational models on the other side. There
is a long history of work on heuristic algorithms for k-SAT. The oldest heuristic is the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [DP60, DLL61], a backtracking based search algorithm which still
forms the basis for many modern SAT solvers. Other heuristics that have emerged include the pure literal
rule [GPB82]; unit clause propagation [MTF90]; shortest clause [CR92, FS96]; walksat [Pap91, COFF+09];
and Belief and Survey Propagation guided decimation [MRTS07, BMZ05]. However, there is no evidence,
rigorous or non-rigorous, that any of these algorithms succeed beyond clause density Ok(2k/k). (See [CO10,
Table 1] for a review of these algorithms’ performances.) The breakthrough result [CO10] produced the
algorithm Fix, which provably finds a satisfying assignment with high probability up to clause density
(1− ok(1))2k log k/k. This is the best algorithm to date, and the above physics evidence suggests that this
clause density is optimal up to lower order terms.

The earliest rigorous hardness result is [LMS98], which proved that the pure literal rule does not solve
random 3-SAT above clause density approximately 1.63. [AS00] generalized this result, showing that so-called
myopic algorithms cannot solve random 3-SAT above clause density approximately 3.26. (The random 3-SAT
satisfiability threshold is conjectured to be about 4.26 [MPZ02].)

For large k, the earliest hardness result is [ABM04], which showed that DPLL type algorithms require
exponential running time beyond clause density Ok(2k/k). Note that this threshold is smaller than the
clause density (1 − ok(1))2k log k/k where Fix succeeds; thus DPLL algorithms are provably suboptimal.
Gamarnik and Sudan [GS17] showed that balanced sequential local algorithms, which include Belief and
Survey Propagation guided decimation (with constant or mildly growing number of message passing rounds)
cannot solve random NAE-k-SAT at clause density (1 + ok(1))2k−1 log2 k/k. The quantity 2k−1 is the NAE-
k-SAT analogue of 2k for k-SAT. Remaining negative results are bounds against specific algorithms. [Het16]
proved that Survey Propagation guided decimation (without restriction on the number of rounds) fails at
clause density (1+ok(1))2k log k/k, and [COHH17] proved that walksat fails at clause density Ok(2k log2 k/k).
Table 1.1 summarizes these results. To date, all negative results either differ from the conjectured threshold
(1 + ok(1))2k log k/k by a factor growing in k or are tailored to a specific algorithm.

We will show that low degree polynomial algorithms do not solve random k-SAT above clause density
(1 + ok(1))κ∗2k log k/k for a universal constant κ∗ ≈ 4.911. Low degree polynomials encompass many of the
above algorithms, including Fix, Belief and Survey Propagation guided decimation, and local and sequential
local algorithms on the factor graph. This is the first hardness result for any class of algorithms within a
constant factor of the conjectured algorithmic threshold.

Low degree polynomial algorithms have recently emerged as a prominent class in average case complexity
and statistical inference. As outlined in [GJW20, Appendix A], this class contains many popular and powerful
frameworks, including spectral methods, local algorithms on graphs, and (approximate) message passing
[DMM09, BM11, JM13, Mon19, AMS21, Sel21]. In addition, a recent flurry of work has shown that for
many problems in high-dimensional statistics, including planted clique, sparse PCA, community detection,
and tensor PCA, low degree polynomials are as powerful as the best polynomial-time algorithms known
[HS17, HKP+17, Hop18, BKW20, KWB19, DKWB20, CHK+20, BB20, LZ20, SW20, BBK+21, BBH+21].

4

Reference Algorithm or algorithm class Clause density

[ABM04] DPLL algorithms Ok(2k/k)

[GS17] Balanced sequential local algorithms (NAE-k-SAT) (1 + ok(1))2k−1 log2 k/k

[Het16] Survey Propagation guided decimation (1 + ok(1))2k log k/k

[COHH17] Walksat Ok(2k log2 k/k)

This work Low degree polynomials (1 + ok(1))κ∗2k log k/k

Table 1.1: Algorithmic hardness results for random k-SAT with large k. The conjectured algorithmic
threshold is (1 + ok(1))2k log k/k.

Thus, showing that low degree polynomial algorithms fail at some threshold provides evidence that all
polynomial-time algorithms fail at that threshold.

Our result gives strong evidence that the algorithmic threshold is within a constant factor of 2k log k/k.
Because our techniques link clustering to hardness, we believe the true algorithmic threshold is (1 +
ok(1))2k log k/k, matching Fix and the onset of clustering; we leave the question of closing this constant
factor gap as an important open problem.

1.3 Optimization of Mean-Field Spin Glasses

The Sherrington-Kirkpatrick model was introduced in [SK75] as a mean-field model for spin glasses. The
mixed p-spin model generalizes this model to interactions involving more than two spins, and is defined as

follows. For each p ∈ 2N, let G(p) ∈
(
RN
)⊗p

be an independent p-tensor with i.i.d. N (0, 1) entries. Let
h ≥ 0, and set h = (h, . . . , h) ∈ RN . Fix a sequence (γp)p∈2N with γp ≥ 0 and

∑
p∈2N 2pγ2

p <∞. The mixed
even p-spin Hamiltonian HN is

HN (σ) = 〈h,σ〉+ H̃N (σ), where (1.3.1)

H̃N (σ) =
∑
p∈2N

γp
N (p−1)/2

〈G(p),σ⊗p〉. (1.3.2)

We consider inputs σ in either the sphere SN = {x ∈ RN :
∑N
i=1 x

2
i = N} or the cube ΣN = {−1, 1}N . These

define, respectively, the spherical and Ising mixed p-spin glass models. The coefficients γp are customarily

encoded in the mixture function ξ(x) =
∑
p∈2N γ

2
px

p. Note that H̃N is equivalently described as the Gaussian
process with covariance

E H̃N (σ1)H̃N (σ2) = Nξ(〈σ1,σ2〉/N).

The Hamiltonian HN defines a random objective function, and optimizing this function is a random
optimization problem. Let

OPTSp
ξ,h = p-lim

N→∞

1

N
max
σ∈SN

HN (σ), OPTIs
ξ,h = p-lim

N→∞

1

N
max
σ∈ΣN

HN (σ)

denote the existential limits of this problem. We write OPTSp = OPTSp
ξ,h and OPTIs = OPTIs

ξ,h when ξ, h

are clear from context. The values OPTSp and OPTIs are given by the celebrated Parisi formula [Par79]
which was proved for even models by [Tal06b, Tal06a] and in more generality by [Pan14]. While most often
stated as a formula for the limiting free energy at inverse temperature β, the asymptotic maximum can be
recovered as a β → ∞ limit of the Parisi formula. Restricting for concreteness to the Ising case (we will
state the analogous result for the spherical case in Section 3.1), the result can be expressed in the following
form due to Auffinger and Chen [AC17b].

Define the function space

U =

{
ζ : [0, 1)→ R≥0 : ζ is right-continuous and nondecreasing,

∫ 1

0

ζ(t) dt <∞
}
. (1.3.3)

5

For ζ ∈ U , define Φζ : [0, 1]× R→ R to be the solution of the following Parisi PDE.

∂tΦζ(t, x) +
1

2
ξ′′(t)

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))2

)
= 0 (1.3.4)

Φζ(1, x) = |x|. (1.3.5)

Existence and uniqueness properties for this PDE are recalled in Subsection 3.5.1. The Parisi functional
PIs = PIs

ξ,h : U → R is given by

PIs(ζ) = Φζ(0, h)− 1

2

∫ 1

0

tξ′′(t)ζ(t) dt. (1.3.6)

Theorem 1.3.1 ([AC17b, Theorem 1]). The following identity holds.

OPTIs = inf
ζ∈U

PIs(ζ). (1.3.7)

The infimum over ζ ∈ U is achieved at a unique ζ∗ ∈ U as shown in [AC17b, CHL18], which can
be obtained as an appropriately renormalized β → ∞ limit of the corresponding minimizers in the posi-
tive temperature Parisi formula. These positive temperature minimizers roughly correspond to cumulative
distribution functions for the overlap 〈σ1,σ2〉/N of two replicas σ1,σ2 sampled from the Gibbs measure
eβHN /ZN (β), which is why the functions ζ considered in the Parisi formula are nondecreasing.

Efficient algorithms to find an input σ achieving a large objective have recently emerged in a line of work
initiated by [Sub21] and continued in [Mon19, AMS21, Sel21]. The main results of these works in the Ising
case can be described as follows. For a function f : R → R and interval J , let ‖f‖dTV(J) denote the total
variation of f on J , expressed as the supremum over partitions:

‖f‖dTV(J) = sup
n

sup
t0<t1<···<tn,ti∈J

n∑
i=1

|f(ti)− f(ti−1)|.

Let L ⊇ U denote the set of functions given by

L =

{
ζ : [0, 1)→ R≥0 : ζ right-continuous, ‖ξ′′ · ζ‖dTV[0,t] <∞ for all t ∈ [0, 1),

∫ 1

0

ξ′′(t)ζ(t) dt <∞
}
.

(1.3.8)
It turns out (see Subsection 3.5.1) that the definition of PIs above extends from U to L . Therefore we may
define ALGIs = ALGIs

ξ,h by

ALGIs = inf
ζ∈L

PIs(ζ). (1.3.9)

Note that ALGIs ≤ OPTIs trivially holds. We have ALGIs = OPTIs if the infimum in (1.3.9) is attained by
some ζ ∈ U , and otherwise ALGIs < OPTIs.

Theorem 1.3.2 ([AMS21, Sel21]). Assume there exists ζ∗ ∈ L such that PIs(ζ∗) = ALGIs. Then for any
ε > 0, there exists an efficient algorithm A : HN → CN such that

P[HN (A(HN))/N ≥ ALGIs − ε] ≥ 1− o(1), c = c(ε) > 0.

All of the algorithms in [Sub21, Mon19, AMS21, Sel21] are computationally efficient. The latter three
works use a class of iterative algorithms known as approximate message passing (AMP). In particular they
require only a constant number of queries of∇HN (·); this results in computation time linear in the description
length of HN when ξ is a polynomial, assuming oracle access to ζ∗ and the function Φζ∗ . AMP offers a great
deal of flexibility, and the idea introduced in [Mon19] was to use it to encode a stochastic control problem
which is in some sense dual to the Parisi formula. Based on this idea it was shown in [AMS21] that no
AMP algorithm of this powerful but specific form can achieve asymptotic value ALGIs + ε in the case h = 0.
The non-equality ALGIs < OPTIs also has a natural interpretation in terms of the optimizer ζ∗ of (1.3.7) —
it implies that ζ∗ is not strictly increasing, see [Sel21] for a more precise condition called “optimizability”
therein. As explained in [Sel21, Section 6], in the case of even Ising spin glasses this non-equality exactly

6

coincides with the presence of an overlap gap property (discussed below) associated with forms of algorithmic
hardness. It is therefore natural to conjecture that the aforementioned AMP algorithms achieve the best
asymptotic energy possible for efficient algorithms.

This belief is aligned with results on the complexity of pure spherical spin glasses with ξ(x) = xp and
h = 0. In this case, the analogous value ALGSp is the one obtained by [Sub21] and coincides with the onset
of exponentially many bounded index critical points, as established in [ABAČ13, Sub17]. In this case almost
all local optima have energy value ALGSp±o(1) with high probability, which suggests from another direction
that exceeding the energy ALGSp might be computationally intractable.

This belief is also aligned with existing hardness results. For pure spherical and Ising p-spin glasses
where h = 0 and p ≥ 4 is even, ALG < OPT always holds. In such models, [GJW20] showed that low degree
polynomials cannot achieve some objective OPT− ε strictly smaller than OPT, extending a similar hardness
result of [GJ21] for approximate message passing. [GJW21] extended the conclusions of [GJW20] to Boolean
circuits of depth less than logn

2 log logn . As pointed out in [Sel21, Section 6], these results extend in the Ising

case to any mixed even model where ALGIs < OPTIs.
Our results will show that a class of suitably Lipschitz algorithms in the disorder coefficients, which

encompasses natural formulations of gradient descent and AMP, cannot surpass ALG. To this end, we define
the following distance on the space HN of Hamiltonians HN . We identify HN with its disorder coefficients
(G(p))p∈2N, which we concatenate (in an arbitrary but fixed order) into an infinite vector g(HN). We equip
HN with the (possibly infinite) distance

‖HN −H ′N‖2 = ‖g(HN)− g(H ′N)‖2 .

Let BN = {x ∈ RN :
∑N
i=1 x

2
i ≤ N} and CN = [−1, 1]N be the convex hulls of SN and ΣN , which

we equip with the standard ‖·‖2 distance. A consequence of our main result is that no O(1)-Lipschitz

function A : HN → CN can surpass the asymptotic value ALGIs. (And similarly in the spherical case for
A : HN → BN and an analogous ALGSp.)

Theorem 1.3.3. Let τ, ε > 0 be constants. For N sufficiently large, any τ -Lipschitz A : HN → CN satisfies

P
[
HN (A(HN))/N ≥ ALGIs + ε

]
≤ exp(−cN), c = c(ξ, h, ε, τ) > 0.

Note that the Lipschitz condition ‖A(HN)−A(H ′N)‖2 ≤ τ ‖HN −H ′N‖2 holds vacuously when the latter
distance is infinite.

The algorithms of [Mon19, AMS21, Sel21] are O(1)-Lipschitz in the sense above3. While the approach of
[Sub21] is not Lipschitz, its performance is captured by AMP as explained in [AMS21, Remark 2.2].4 Hence
in tandem with these constructive results, Theorem 1.3.3 identifies the exact asymptotic value achievable
by Lipschitz functions A : HN → CN (assuming the existence of a minimizer ζ∗ ∈ L as required in
Theorem 1.3.2). We also give an analogous result for spherical spin glasses, in which there is no question of
existence of a minimizer on the algorithmic side. Let us remark that the rate e−cN in Theorem 1.3.3 is best
possible up to the value of c, being achieved even for the constant function A(HN) = (1, 1, . . . , 1).

Abstractly, the assumption that A is Lipschitz is geometrically natural and brings us near the well-studied
setting of Lipschitz selection [Shv84, PY95, Shv02, FS18]. Here one is given a metrized family S of subsets
inside a metric space X. The goal is to find a function f : S → X with the selection property that f(S) ∈ S
for all S ∈ S, and such that f has a small Lipschitz constant. Indeed a Lipschitz function A : HN → CN
achieving energy E is almost the same as a Lipschitz selector for the level sets

SE(HN) = {σ ∈ CN : HN (σ)/N ≥ E}

metrized by the norm on HN defined above (and leaving aside the fact that SE(HN) may not determine
HN). Of course we can only hope for A(HN) ∈ SE(HN) to hold with high probability, since SE(HN) is
empty with small but positive probability.

3Technically the algorithms in these papers round their outputs to the discrete set ΣN at the end, making them discontinuous.
Removing the rounding step yields Lipschitz maps A : HN → CN with the same performance.

4We also outline a similar impossibility result for a family of variants of Subag’s algorithm in Subsection 3.2.7.

7

In particular, many natural optimization algorithms satisfy the Lipschitz property above on a set KN ⊆
HN of inputs with 1 − exp(−Ω(N)) probability; this suffices just as well for Theorem 1.3.3 (see Subsec-
tion 3.7.1). As explained in Section 3.7, algorithms with this property include the following examples, all
run for a constant (i.e. dimension-independent) number of iterations or amount of time.

• Gradient descent and natural variants thereof;

• Approximate message passing;

• More general “higher-order” optimization methods with access to ∇kHN (·) for constant k;

• Langevin dynamics for the Gibbs measure eβHN with suitable reflecting boundary conditions and any
positive constant β.

In fact we will not require the full Lipschitz assumption on A, but only a consequence that we call overlap
concentration. Roughly speaking, overlap concentration of A means that given any fixed correlation between
the disorder coefficients of H1

N and H2
N , the overlap 〈A(H1

N),A(H2
N)〉/N tightly concentrates around its

mean. This property holds automatically for τ -Lipschitz A thanks to concentration of measure on Gaussian
space. It also might plausibly be satisfied for some discontinuous algorithms such as the Glauber dynamics.

1.3.1 Further Background

We now describe some other results on algorithmically optimizing spin glass Hamiltonians. First, in the
worst case over the disorder G(p), achieving any constant approximation ratio to the true optimum value
is known to be quasi-NP hard even for degree 2 polynomials [ABE+05, BBH+12]. For the Sherrington-
Kirkpatrick model with ξ(t) = t2/2 on the cube, it was recently shown to be NP-hard on average to compute
the exact value of the partition function [GK21b]. Of course, these computational hardness results demand
much stronger guarantees than the approximate optimization with high probability that we consider.

Another important line of work, alluded to above, has studied the complexity of the landscape of HN

on the sphere, defined as the exponential growth rate for the number of suboptimal local optima and other
finite-index saddle points at a given energy level. These are understood to serve as barriers to efficient
optimization, and a non-rigorous study was undertaken in [CLR03, CLR05, Par06] followed by a great deal
of recent progress in [ABAČ13, ABA13, Sub17, McK21, Kiv21, SZ21]. Notably because the true maximum
value of HN is nothing but its largest critical value, the first moment results of [ABAČ13] combined with the
second moment results of [Sub17] gave an alternate self-contained proof of the Parisi formula for the ground
state in pure spherical models. In a related spirit, [Cha09, DEZ15, CS17, CHL18] have shown that mixed
even p-spin Hamiltonians typically contain exponentially many well-separated near-global maxima.

Other works such as [CK94, BCKM98, BADG06, BAGJ20] have studied natural algorithms such as
Langevin and Glauber dynamics on short (independent of N) time scales. These approaches yield (often
non-rigorous) predictions for the energy achieved after a fixed amount of time. However these predictions
involve complicated systems of differential equations, and to the best of our knowledge it is not known
how to cleanly describe the long-time limiting energy achieved. Let us also mention the recent results of
[EKZ21, AJK+21] showing that the Glauber dynamics for the Sherrington-Kirkpatrick model mix rapidly
at high temperature.

1.4 The Overlap Gap Property as a Barrier to Algorithms

The study of solution geometry as a barrier to algorithmic hardness began in the seminal work [ACO08],
which showed the presence of a clustering phase transition in random k-SAT and q-coloring that coincides
with the failure of the best known efficient algorithm. Moreover, [ACO08] conjectured that this is a general
phenomenon: in a general random CSP exhibiting a clustering transition, polynomial-time algorithms suc-
ceed up to this transition and no further. [COE15] showed the presence of a similar clustering transition for
the problem of maximum independent set on a sparse random graph, which also coincides with the failure

8

of the best known polynomial-time algorithm. This intuition is believed to hold in significant generality in
random optimization problems.5

In the past several years, a line of work [GS14, RV17, GS17, CGPR19, GJ21, GJW20, Wei20, GK21a,
GJW21] on the Overlap Gap Property (OGP) has made substantial progress on rigorously linking solution
geometry clustering in random optimization problems to algorithmic hardness. A survey can be found in
[Gam21]. Initiated by Gamarnik and Sudan in [GS14], the OGP technique can be summarized by the
following two steps.

1. Show that if a suitably stable algorithm can construct one solution at the desired objective (or clause
density), it can in fact construct a constellation of such solutions with a specified geometric structure.

2. Separately, show that with high probability, this constellation does not occur in the solution space. By
contradiction, this implies that no stable algorithm can reach this objective.

In the original version of the OGP [GS14], the forbidden constellation was a pair of solutions with medium
overlap, hence the name “overlap gap.”

Over many problems, a pattern has emerged where the classic OGP argument shows the failure of
stable algorithms above an intermediate objective, smaller than the existential threshold but larger than the
algorithmic threshold. Intuitively, this is because the classic OGP is a stronger condition than clustering: in
the clustered regime, it is possible to have a small minority of solution pairs with medium overlap, while the
classic OGP requires there to be zero such pairs. On the other side, the condition that there does not exist
two solutions with medium overlap is a weaker condition than the condition that no solution exists at all, so
the onset of OGP occurs below the existential threshold. To tighten the objective where stable algorithms
are proven to fail, subsequent works have considered “multi-OGPs,” which use forbidden structures involving
several solutions. Multi-OGPs improve on the classic OGP if the structure becomes forbidden at a lower
objective than the classic OGP.

The first Multi-OGP was introduced in [RV17], which showed that local algorithms (also called factors of
i.i.d.) cannot attain any objective asymptotically larger than the believed algorithmic limit. Using a different
multi-OGP, [Wei20] extended this hardness result to the more powerful class of low degree polynomials. These
results are an important success story of multi-OGPs, showing that this technique has the potential to show
computational hardness at objectives matching the best algorithms.

OGPs have also been used to study random k-SAT and spin glass optimization, the two problems under
consideration in this thesis. For random k-SAT, [DMMZ08] showed that the classic OGP occurs at clause
density (1 + ok(1)) 1

22k log 2. (This work predates the OGP literature and was understood as a confirmation
of clustering; the rigorous connection to algorithms was realized later.) The aforementioned result of [GS17]
against balanced sequential local algorithms at clause density (1 + ok(1))2k−1 log2 k/k is proved by a multi-
OGP. For spin glasses, the aforementioned results of [GJ21, GJW20, GJW21] against AMP, low degree
polynomials, and boolean circuits at objective OPT− ε are proved by a classic OGP.

One of the main challenges in a multi-OGP argument is the design of the forbidden structure. Whereas in
the classic OGP, there is essentially one possible forbidden structure, with multi-OGPs we have significantly
more freedom. If our goal is to show hardness at or close to a problem’s algorithmic limit, choosing the
correct forbidden structure is crucial; a suboptimal forbidden structure will not be forbidden at the objective
or clause density we desire, causing the argument to fail. Moreover, as these structures become more complex,
it becomes necessary to develop new techniques to prove that these structures do not occur. By choosing
forbidden structures that better capture these problems’ solution landscapes and introducing tools for their
analysis, we improve the above hardness results to clause density (1 + ok(1))κ∗2k log k/k for random k-SAT
and to the exact value of ALG for mean-field spin glasses.

The design of our multi-OGPs is a significant departure from previous work. Previous OGPs and multi-
OGPs all use one of the following three forbidden structures, see Figure 1.1.

• Classic OGP: two solutions with medium overlap [GS14, CGPR19, GJ21, GJW20, GJW21].

• Star OGP: several solutions with approximately the same pairwise overlap [RV17, GS17, GK21a].

5Perceptron is a notable exception; see Chapter 4 for a discussion. We will see that OGP appears to accurately characterize
hardness, even though the clustering heuristic is wrong.

9

(a) Classic OGP: σ1,σ2 have medium overlap. (b) Star OGP: many solutions, medium pairwise overlaps.

(c) Ladder OGP: many solutions σi,
medium “multi-overlaps” with {σ1, . . . ,σi−1}.

(d) Branching OGP: many solutions arranged in an ultrametric tree.

Figure 1.1: Schematics of forbidden structures in OGP arguments.

• Ladder OGP: several solutions, where the i-th solution (i ≥ 2) has medium “multi-overlap” with the
first i−1 solutions, for a problem-specific notion of multi-overlap of one solution with several solutions
[Wei20].

For random k-SAT, our multi-OGP is a generalization of the ladder multi-OGP introduced in [Wei20]
for the maximum independent set problem. Like in [Wei20], the analysis of the forbidden structure is by
a first moment analysis: we express the log first moment of the forbidden structure as a free entropy, and
our goal is to find a structure making this quantity negative. However, adapting this technique to random
k-SAT requires new ideas. In maximum independent set, the independence of the Erdős-Rényi graph’s edges
makes the analysis of the forbidden structure tractable by the principle of deferred decisions. In contrast,
the forbidden structure in random k-SAT has complex dependencies which make a tight analysis difficult.
It is a priori unclear what forbidden structure to choose.

We overcome these challenges by an appropriate understanding of the energy landscape of random k-
SAT. We introduce a notion of overlap profile of several assignments and define our multi-OGP’s forbidden
structure in terms of this profile. This is a key innovation, as all previous (multi-)OGPs have not required
the overlap profile’s full power. We then perform a free entropy analysis tailored to random k-SAT to show
the forbidden structure does not occur. A technical overview of our proof can be found in Section 2.2.

For mean-field spin glass optimization, we introduce a new forbidden structure consisting of an arbitrarily
complicated ultrametric branching tree of solutions. We call this the Branching OGP. Informally, the
Branching OGP is the condition that for any fixed ε > 0, no constellation of configurations with a certain
ultrametric overlap structure has average energy ALG+ε. The definition involves a family of “ultrametrically
correlated” Hamiltonians, with one input in the constellation per Hamiltonian.

We establish this branching OGP as follows. Using a version of the Guerra-Talagrand interpolation, which
we take to zero temperature, we derive an upper bound for the maximum average energy of configurations

10

arranged into the desired structure. This upper bound is a multi-dimensional analogue of the Parisi formula,
and depends on an essentially arbitrary increasing function ζ : [0, 1] → R+ (which we are free to minimize
over). We show that for a symmetric branching tree, the resulting estimate can be upper bounded by P(κζ).
Here P is the Parisi functional PIs or its spherical analogue PSp, and κ is a decreasing piecewise-constant
function that depends on the tree. By making the tree branch rapidly, the function κ can be arranged to
decrease as rapidly as desired. As a result, the functions κζ are dense in the space L . Thus, we may choose
a tree and ζ such that P(κζ) is arbitrarily close to ALG.

Roughly speaking, we show that an overlap concentrated A allows the construction of an arbitrary
ultrametric constellation of outputs. Consequently, if A outputs points with energy at least ALG + ε,
then A run on the appropriate family of ultrametrically correlated Hamiltonians will output the forbidden
structure above, a contradiction. Some additional complications are created by the fact that E[A(HN)] may
be arbitrary, and that A(HN) may be in the interior of CN (or in the spherical case, BN). The former
issue requires us to control the maximum average energy of ultrametric constellations of points that all
have approximately a fixed overlap with E[A(HN)]. We deal with the latter issue by composing A with an
additional phase that grows each output of A into its own ultrametric tree of points in ΣN (or SN), so that
the resulting set of points has the forbidden ultrametric structure.

We also show that the full strength of the branching OGP is necessary to establish Lipschitz hardness
at all objectives above ALG, in the sense that any less complex ultrametric structure fails to be forbidden
at an energy bounded away from ALG. More precisely, consider a spherical model ξ without external field;
we restrict to this case for convenience. Consider a fixed ultrametric overlap structure of inputs, whose
corresponding rooted tree (cf. Subsection 3.6.2) does not contain a full depth-D binary tree. We prove that
if ALGSp < OPTSp, with high probability there exists a constellation of inputs with this overlap structure
where each input achieves energy at least ALGSp + εξ,D, for a constant εξ,D > 0 depending only on ξ,D.

Remark 1.4.1. Our proof of the branching OGP is the first to leverage powerful tools from probability to
prove the non-existence of the forbidden structure. All prior OGPs and multi-OGPs are established by a first
moment analysis. We regard this connection with probability as an important methodological contribution.
Guerra’s interpolation allows us to prove a hardness result that is tight in the strong sense of characterizing
the exact point ALG where hardness occurs. This is the first hardness result in any random optimization
problem that is tight in this sense; the aforementioned hardness results for maximum independent set on
G(N, d/N) are tight in the sense of matching the best algorithms within a 1 + od(1) factor, in the double
limit of N →∞ followed by d→∞.

Remark 1.4.2. The significance of ultrametricity in mean-field spin glasses began with [Par79] and has
played an enormous role in guiding the mathematical understanding of the low temperature regime in works
such as [Rue87, Pan13a, Jag17, CS21]. Ultrametricity also appears naturally in the context of optimization
algorithms. Indeed in [Sub21, Remark 6], [AM20, Section 3.4] and [Sel21, Theorem 4] it was realized
that the aforementioned algorithms achieving asymptotic energy ALG are capable of more. Namely, they can
construct arbitrary ultrametric constellations of solutions (subject to a suitable diameter upper bound), each
with energy ALG. Our proof based on the branching OGP can be viewed as establishing a sharp converse
— the existence of essentially arbitrary ultrametric configurations at a given energy level is equivalent to
achievability by Lipschitz A.

Remark 1.4.3. Since the algorithm of Subag in [Sub21] uses the top eigenvector of the Hessian ∇2HN (x)
for various x ∈ BN , it is not Lipschitz in HN in the sense required by Theorem 1.3.3. However a different
branching OGP argument shows that a stylized class of algorithms which includes a natural variant of Subag’s
approach is also incapable of achieving energy ALG + ε. This argument uses only a single Hamiltonian,
constructing a branching tree structure using the internal randomness of the algorithm. In this sense, it
bears resemblance to the original OGP analysis of [GS14]. An outline is given in Subsection 3.2.7.

11

Chapter 2

Random k-SAT

This chapter studies algorithmic hardness in the random k-SAT problem and is structured as follows.

• Section 2.1 states our main results. Theorem 2.1.6 shows hardness for low degree polynomials, while
Theorem 2.1.13 shows hardness for the more restricted class of local algorithms with a stronger guar-
antee on the success probability. Theorem 2.1.14 gives a converse, that both computation classes can
solve random k-SAT at clause densities where algorithms are known to succeed.

• Section 2.2 gives a technical overview of the design and analysis of the ladder multi-OGP used in our
hardness proofs.

• Sections 2.3 through 2.5 are devoted to the proof of Theorem 2.1.6. Section 2.3 sets up the OGP
argument and proves Theorem 2.1.6 assuming Propositions 2.3.7(a,c), that outputs of the low degree
polynomial are stable and that the main multi-OGP holds. Sections 2.4 and 2.5 prove these proposi-
tions.

• Section 2.6 proves Theorem 2.1.13.

• Section 2.7 shows that a class of algorithms we call local memory algorithms, which include Fix and
sequential local algorithms, can be simulated by local algorithms and low degree polynomials.

• Using these simulation results, Section 2.8 proves Theorem 2.1.14.

Notation and Preliminaries

For all positive integers N , [N] denotes the set {1, . . . , N}. For two assignments x, y ∈ {T, F}N , let ∆(x, y) =
1
N |{i ∈ [N] : xi 6= yi}| denote the normalized Hamming distance. We occasionally consider assignments
x, y ∈ {T, F, err}N which allow an error symbol; for such assignments the definition of ∆ extends verbatim.

Throughout, log denotes the natural logarithm. The binary entropy function H : [0, 1] → [0, log 2] is
H(x) = −x log x − (1 − x) log(1 − x). We often use the basic inequality H(x) ≤ x log e

x . We also overload
notation and denote by H(·) the entropy of certain distributions. These will be defined where first used.

We reiterate that we work in the double limitN →∞ followed by k →∞. The notationsO(·),Ω(·), o(·), ω(·)
indicate asymptotic behavior in N , suppressing any dependence on k. With a tilde (e.g. Õ(·)) these notations
also suppress polylog(N) factors. When subscripted with k, these notations indicate asymptotic behavior in
k of a quantity independent of N .

2.1 Results

Throughout this chapter, V = {x1, . . . , xN} denotes a set of propositional variables. The set of corresponding
literals, consisting of the variables in V and their negations, is L = {x1, . . . , xN , x̄1, . . . , x̄N}. Let Ωk(N,M)
denote the set of all k-CNF formulas over V with M clauses. We allow literals to appear multiple times in
a clause and clauses to appear multiple times in a formula. We treat each Φ ∈ Ωk(N,M) as an ordered

12

M -tuple of clauses, each of which is an ordered k-tuple of literals. Let Φi (i ∈ [M]) denote the ith clause of Φ
and Φi,j (j ∈ [k]) denote the jth literal of Φi. The central object of this chapter is the following distribution.

Definition 2.1.1 (Random k-SAT). The random k-SAT distribution Φk(N,M) is the law of a uniformly
random sample from Ωk(N,M). Equivalently, we can sample Φ ∼ Φk(N,M) by sampling the literals Φi,j
i.i.d. from unif(L).

We now define the constant κ∗ in our hardness results. Define the function ι : (1,+∞)→ R by

ι(β) =
β

1− βe−(β−1)
.

One easily checks that ι is strictly convex, with ι(β)→ +∞ when β → 1+ or β → +∞. Let κ∗ = min ι(β) ≈
4.911. The minimum is attained at β∗ ≈ 3.513, the unique solution to β2e−(β−1) = 1 in (1,+∞).

2.1.1 Computational Hardness for Low Degree Polynomials

We study the class of low degree polynomial algorithms, defined as follows. This is the same computational
model considered in [GJW20, Wei20].

Definition 2.1.2 (Low degree polynomial). A degree-D polynomial is a function f : Rn → RN of the form

f(x) = (f1(x), . . . , fN (x)) ,

where each fi : Rn → R is a multivariate polynomial (in the ordinary sense) with real coefficients of degree
at most D. A random degree-D polynomial is defined similarly, except the coefficients are random (but
independent of the input x). Formally, for an arbitrary probability space (Ω,Pω), a random degree-D
polynomial is a function f : Rn × Ω→ RN such that for each ω ∈ Ω, f(·, ω) is a degree-D polynomial.

Remark 2.1.3. We will see in Lemma 2.3.1 that randomness does not increase the power of the class of low
degree polynomials. Informally, this is because if a random polynomial f : Rn × Ω → RN solves random
k-SAT in the appropriate sense, there exists a seed ω such that the deterministic polynomial f(·, ω) also
solves random k-SAT.

We now define how to encode a k-SAT formula as an input to a low degree polynomial. Define an
arbitrary total order on L. We encode each Φ ∈ Ωk(N,M) as a “one-hot” vector of indicators Φi,j,s
(i ∈ [M], j ∈ [k], s ∈ [2N]) that Φi,j is the sth element of L. This encoding is an element of {0, 1}n, where
n = m · k · 2N . Slightly abusing notation, we identify Φ with this encoding.

Next, we define how to interpret the output of a low degree polynomial as a Boolean assignment. We
introduce the symbol err and define the function round : R→ {T, F, err} by

round(x) =


T x ≥ 1,

F x ≤ −1,

err otherwise.

When applied to a real-valued vector, round is applied coordinate-wise. Thus, outputs of the polynomial
that are at least 1 represent true, outputs that are at most −1 represent false, and outputs in the interval
(−1, 1) are errors. It is important to exclude (−1, 1) so that a small change in the polynomial output cannot
induce a large change in (the valid outputs of) the assignment.

In the following definition, we relax the notion of satisfying assignment in two ways: we allow the
algorithm to make mistakes in a small fraction η of positions (including all err outputs and possibly others),
and after repairing these mistakes we allow a small fraction ν of clauses to not be satisfied.

Definition 2.1.4 ((η, ν)-satisfy). Let η, ν ∈ [0, 1]. An assignment x ∈ {T, F}N ν-satisfies Φ ∈ Ωk(N,M)
if it satisfies at least (1 − ν)M clauses of Φ. Moreover, x ∈ {T, F, err}N (η, ν)-satisfies Φ if there exists
y ∈ {T, F}N such that ∆(x, y) ≤ η and y ν-satisfies Φ.

13

We remark that any x with more than ηN entries equal to err does not (η, ν)-satisfy Φ. We will show
that for small η, ν independent of N , a low degree polynomial cannot produce a satisfying assignment for
random k-SAT even in this relaxed sense. Formally, we will show hardness for the following notion of solve.

Definition 2.1.5 ((δ, γ, η, ν)-solve). Let δ, η, ν ∈ [0, 1] and γ ≥ 1. A random polynomial f : Rn × Ω→ RN
(δ, γ, η, ν)-solves Φk(N,M) if the following conditions hold.

(a) PΦ,ω [(round ◦ f)(Φ, ω) (η, ν)-satisfies Φ] ≥ 1− δ.

(b) EΦ,ω

[
‖f(Φ, ω)‖22

]
≤ γN .

Here, δ is the algorithm’s failure probability and γ is a normalization parameter. We think of γ as a
large constant; condition (b) is necessary because otherwise we can scale f to make the condition that valid
outputs of f are outside the interval (−1, 1) meaningless.

The following theorem is our main result, that no low degree polynomial can solve random k-SAT at
clause density κ2k log k/k for any κ > κ∗.

Theorem 2.1.6 (Hardness for low degree polynomials). Fix κ > κ∗. Let α = κ2k log k/k and M = bαNc.
There exists k∗ = k∗(κ) > 0 such that for any k ≥ k∗, there exists N∗ > 0, η = Ωk(k−1), ν = 1

k22k
, and

C1, C2 > 0 (depending on κ, k) such that the following holds. If N ≥ N∗, γ ≥ 1, 1 ≤ D ≤ C1N
γ logN and

δ ≤ exp (−C2γD logN) ,

then there is no random degree-D polynomial that (δ, γ, η, ν)-solves Φk(N,M).

The only property of low degree polynomials we use is their smoothness, in the sense of Proposition 2.5.2.
Thus Theorem 2.1.6 applies to any algorithm satisfying the conclusion of this proposition.

Note that Theorem 2.1.6 only rules out algorithms succeeding with quite large probability. This is a
limitation of our methods, shared by all results leveraging OGP to show hardness for low degree polynomials
[GJW20, Wei20]. Our converse achievability result, Theorem 2.1.14, will show that at clause densities where
efficient algorithms solving random k-SAT exist, they can be simulated by low degree polynomials and
succeed with probability larger than that forbidden by Theorem 2.1.6. We will also see in Theorem 2.1.13
that local algorithms, a more restricted computation class that nonetheless simulates Fix, as well as Belief
and Survey Propagation Guided Decimation, cannot solve random k-SAT with even very small probability.

The constant κ∗ can likely be optimized further. However, without further conceptual insights our
methods stall at a value of κ∗ strictly larger than 1, lower bounded by approximately 1.716. Thus further
ideas are needed to close the constant factor gap between our hardness results and the best algorithms. See
Section 2.9 for a discussion of these points. Despite this barrier, we believe the algorithmic phase transition
for low degree polynomials does occur at clause density (1+ok(1))2k log k/k, matching the physics prediction
and positive results. This is formalized in the following conjecture, which we leave as an open problem.

Conjecture 2.1.7. Theorem 2.1.6 (and Theorem 2.1.13) holds for all κ > 1.

2.1.2 Computational Hardness for Local Algorithms

We now consider local algorithms on the factor graph. We first define the factor graph of a k-SAT instance.

Definition 2.1.8 (Factor graph). The factor graph of Φ ∈ Ωk(N,M) is a signed bipartite graph (G, ρ),
where G = (VaG,ClG, EG) is a bipartite graph with left-vertices VaG, right-vertices ClG, and edges EG, and
ρ : EG → {T, F} associates each edge with a polarity. Here, VaG = {v1, . . . , vN} and ClG = {c1, . . . , cM}
represent the variables and clauses of Φ. Every literal xj or x̄j in clause Φi corresponds to an edge e =
(vj , ci) ∈ EG. Edge e has polarity ρG(e) = T if the literal is xj and ρG(e) = F if the literal is x̄j .

To define local algorithms, we first introduce formalism for rooted graphs. Let (Ω,Pω) be an arbitrary
probability space.

14

Definition 2.1.9 (Rooted decorated bipartite graph). A decorated bipartite graph is a tuple (G, ρ, ϕ). Here
G = (VaG,ClG, EG) is a bipartite graph and VG = VaG ∪ClG. Moreover, ρ, ϕ are maps ρ : EG → {T, F} and
ϕ : VG ∪ EG → Ω. A rooted decorated bipartite graph is a tuple (v,G, ρ, ϕ), where (G, ρ, ϕ) is a decorated
bipartite graph and v ∈ VG.

Let Λ denote the set of rooted decorated bipartite graphs. Two such graphs are isomorphic of there exists
a bijection between them preserving v,VaG,ClG, EG, ρ, ϕ.

Definition 2.1.10 (r-neighborhood). Let (v,G, ρ, ϕ) ∈ Λ and r ∈ N. Define the r-neighborhood Nr(v,G) =
(v,G′), where VaG′ ⊆ VaG, ClG′ ⊆ ClG are the sets of vertices reachable from v by a path of length at most
r and EG′ is the set of edges on those paths. Further, define Nr(v,G, ρ, ϕ) = (v,G′, ρ′, ϕ′) ∈ Λ, where
(v,G′) = Nr(v,G) and ρ′ = ρ

∣∣
G′

, ϕ′ = ϕ
∣∣
G′

are the restrictions of ρ, ϕ to G′.

Definition 2.1.11 (r-local function). A function f with domain Λ is r-local if the value of f(v,G, ρ, ϕ)
depends only on the isomorphism class of Nr(v,G, ρ, ϕ).

In other words, a local function has access to the topology of the r-neighborhood, the vertex and edge
decorations, and the location of the root, but not the identities of the vertices and edges.

Definition 2.1.12 (r-local algorithm). Let f be an r-local function with codomain {T, F}. The r-local
algorithm based on f , denoted Af , runs as follows on input Φ ∈ Ωk(N,M) with factor graph (G, ρ).

(1) Sample ϕ ∼ (Ω,Pω)⊗(VG∪EG) (i.e. each output of ϕ : VG ∪ EG → Ω is sampled i.i.d. from (Ω,Pω))
independently of Φ.

(2) For each v = vi ∈ VaG, set xi = f(v,G, ρ, ϕ).

(3) Output (x1, . . . , xN) ∈ {T, F}N .

We now state our hardness result for local algorithms.

Theorem 2.1.13 (Hardness for local algorithms). Fix κ > κ∗. Let α = κ2k log k/k and M = bαNc. There
exists k∗ = k∗(κ) > 0 such that for any k ≥ k∗, there exists η = Ωk(k−2) (depending on κ, k) and ν = 1

k22k

such that the following holds. For all r ∈ N, there exists N∗ > 0 (depending on κ, k, r) such that if n ≥ N∗,
then for any r-local algorithm A with output in {T, F}N ,

P [A(Φ) (η, ν)-satisfies Φ] ≤ exp(−Ω̃(N1/3)).

The probability is over the randomness of Φ ∼ Φk(N,M) and the (independent) internal randomness of A.

This theorem rules out a much smaller success probability than Theorem 2.1.6 because our OGP argument
in this setting can leverage concentration properties of local algorithms, which are considerably stronger than
stability properties of low degree polynomials.

2.1.3 Achievability Results

The following result shows that local algorithms and constant degree polynomials solve random k-SAT at
clause density (1− ε)2k log k/k for any ε > 0. This gives a lower bound on the algorithmic phase transition
within a constant factor and provides a converse to Theorems 2.1.6 and 2.1.13.

Theorem 2.1.14. Fix ε > 0. Let α = (1− ε)2k log k/k and M = bαNc. There exists k∗ = k∗(ε) > 0 such
that for any k ≥ k∗ and η > k−12, there exist N∗, r,D, γ > 0 and a sequence δ(N) = o(1) (dependent on
ε, k, η) such that the following holds for all N ≥ N∗.

(a) There exists an r-local algorithm A such that

P [A(Φ) (η, 0)-satisfies Φ] ≥ 1− δ(N).

(b) There exists a (deterministic) degree-D polynomial that (δ(N), γ, η, 0)-solves Φk(N,M).

15

There also exists a sequence ν(n) = o(1) (dependent on ε, k, η) such that the following holds for all N ≥ N∗.

(c) There exists an r-local algorithm A such that

P [A(Φ) (η, ν(N))-satisfies Φ] ≥ 1− exp(−Ω̃(N1/3)).

(d) There exists a (deterministic) degree-D polynomial that (exp(−Ω̃(N1/5)), γ, η, ν(N))-solves Φk(N,M).

We prove this theorem by simulating the first phase of Fix by a local algorithm and any local algorithm
by a constant degree polynomial. We can arrange both simulations to be accurate within an arbitrarily
small constant (i.e. independent of N , arbitrarily small in k) normalized Hamming distance, with failure
probability exp(−Ω(N1/3)). The requirement η > k−12 arises because the first phase of Fix produces an
assignment within normalized Hamming distance k−12 of a satisfying assignment, which is repaired by the
rest of Fix. We believe that it is possible to simulate the rest of Fix by a local algorithm, which would show
Theorem 2.1.14 for any η > 0; we do not attempt this improvement. Note that k−12 is well within the range
of η ruled out by our hardness results.

In fact, we will show that local algorithms simulate any local memory algorithm. In this generalization
of local algorithms, the algorithm makes its local decisions in series (in a random vertex order), and each
decision can leave information on the vertices it accesses, which future decisions can see. This class includes
the first phase of Fix and the sequential local algorithms considered in [GS17]. Recall that the latter class
includes Belief and Survey Propagation Guided Decimation.

In parts (c,d), where the goal is to satisfy all but an o(1) fraction of clauses, Theorem 2.1.14 gives

algorithms with success probability 1 − exp(−Ω̃(N1/3)) and 1 − exp(−Ω̃(N1/5)). This is within the range
ruled out by even Theorem 2.1.6. Of course, if the goal is to satisfy all clauses as in parts (a,b), we cannot
ensure such a high success probability because Φ ∼ Φk(N,M) is unsatisfiable with probability 1/poly(N) –
for example, if the first 2k clauses each contain variables x1, . . . , xk with all 2k possible polarities.

2.2 Technical Overview of Ladder Multi-OGP

In this section, we outline the construction and analysis of the multi-OGP from which we will derive our
hardness results. We introduce the ladder multi-OGP from [Wei20], which was used to prove computational
hardness for maximum independent set. We discuss the challenges of extending this technique beyond
maximum independent set and how we overcome these challenges for random k-SAT.

2.2.1 Ladder OGP in Maximum Independent Set

In the problem of maximum independent set, we are given a sample G ∼ G(N, d/N) of a sparse Erdős-
Rényi graph and our task is to find a large independent set. We work in the double limit where N →
∞, and then d → ∞. The largest independent set of this graph has asymptotic size (1 + od(1)) 2 log d

d N
[Fri90, BGT10]. However, the best known polynomial-time algorithm [Kar76] only finds an independent set
of size (1 − od(1)) log d

d N , half the optimum. It is believed that no polynomial-time algorithm can find an
asymptotically larger independent set. Using the ladder multi-OGP, [Wei20] proves that for any ε > 0, low
degree polynomials cannot find an independent set of size (1 + ε) log d

d N with a probability similar to that
ruled out by Theorem 2.1.6.

Both our argument and the argument in [Wei20] use an “ensemble” version of OGP, where we require the
forbidden overlap structure to not occur even among the solutions of a polynomial-sized family of problem
instances. To simplify the discussion, we omit this detail and consider a forbidden structure consisting of
several independent sets in the same problem instance. We will see (cf. Remark 2.4.4) that this argument
can be extended to the ensemble with minor adjustments.

At a high level, the ladder OGP chains together many small negative free entropy contributions to force
a free entropy to be negative. We consider the normalized log first moment

1

N
log E

G∼G(N,d/N)
#

(
(S(1), . . . , S(L)) : S(1), . . . , S(L) are independent

sets of G of size (1 + ε) log d
d N satisfying P

)
, (2.2.1)

16

where P is a set of conditions on how S(1), . . . , S(L) overlap. The structure inside the expectation in (2.2.1)
is the forbidden structure we wish to rule out. The log first moment (2.2.1) can be thought of as an annealed
free entropy density of the uniform model over copies of this structure; we henceforth refer to (2.2.1) as a free
entropy. If (2.2.1) is negative, then this structure does not occur with high probability and the multi-OGP
occurs.

The key idea in [Wei20] is to set P = P2 ∩ P3 ∩ · · · ∩ PL, where P` is a condition on how S(`) overlaps
with S(1), . . . , S(`−1), such that the following occurs for all 2 ≤ ` ≤ L.

(1) Let E` denote (2.2.1) with (S(1), . . . , S(`)) in place of (S(1), . . . , S(L)) and P2 ∩ · · · ∩ P` in place of P .
Then, E` is smaller than E`−1 by an amount bounded away from 0. Informally, P` requires S(`) to
overlap with its predecessors in a way that contributes a small negative free entropy to (2.2.1).

(2) For any fixed S(1), . . . , S(`−1), if S(`) starts at S(`−1), evolves by small steps, and eventually evolves
far away from all of S(1), . . . , S(`−1), then at some point along this evolution the condition P` occurs.
Informally, P` defines a moat that a stably evolving S(`) must cross.

Due to condition (1), if we set L large enough, (2.2.1) becomes negative, and the structure in (2.2.1) is
forbidden with high probability. Suppose a low degree polynomial can find a size (1 + ε) log d

d N independent
set with large enough probability. Because the outputs of a low degree polynomial on a sequence of corre-
lated problem instances is (with nontrivial probability) a stable sequence, condition (2) allows us to find a
subsequence of L outputs forming the forbidden structure. Namely, we take S(1) to be the first output in
the sequence, and for ` ≥ 2 we take S(`) to be the first output after S(`−1) such that P` holds. This derives
the desired contradiction.

The main technical challenge is to design the P` such that both (1) and (2) hold. To do this, one must
construct a moat topologically disconnecting a high-dimensional space such that, for all values of S(`) in
the moat, the free entropy decrease in condition (1) occurs. The requirement that the moat topologically
disconnects the space gives us little control, and therein lies the difficulty.

[Wei20, Proposition 2.3] carries out this approach elegantly by defining P` as the condition that∣∣∣S(`) \
(
S(1) ∪ · · · ∪ S(`−1)

)∣∣∣ ∈ [ε log d

4d
N,

ε log d

2d
N

]
and proving that the free entropy decrease in condition (1) occurs.

Extending this technique beyond maximum independent set requires new ideas. In maximum independent
set, due to the independence of the edges ofG ∼ G(N, d/N), the expectation in (2.2.1) is essentially controlled
by the total number of non-edges in the union S(1) ∪ · · · ∪ S(L), for S(1), . . . , S(L) with overlap structure
satisfying P . This fact makes the analysis of (2.2.1) tractable and shows in the relative simplicity of the
moats P`, which only consider S(`)’s non-intersection with the union of its predecessors.

In random k-SAT and other problems, the corresponding free entropy is highly dependent and more tools
are needed to carry out this technique. We develop these tools for random k-SAT. The forbidden structure
we devise will take into account more fine-grained overlap information than previous work.

2.2.2 Ladder Multi-OGP for Random k-SAT and Our Contributions

This paper shows a ladder multi-OGP for random k-SAT at clause density (1 + ok(1))κ∗2k log k/k. We
leverage this OGP to show our hardness results.

Prior to this work, Gamarnik and Sudan [GS17] used a (non-ensemble) multi-OGP to prove that balanced
sequential local algorithms do not solve random NAE-k-SAT beyond clause density (1 + ok(1))2k−1 log2 k/k.
They required the algorithm to be balanced : on any input, each of the algorithm’s output bits must be
unbiased over the algorithm’s internal randomness. To show that a successful algorithm implies the existence
of the forbidden overlap structure, they construct an interpolation over several runs of the algorithm on the
same input, with partially resampled internal randomness. Their proof requires balance to ensure that two
fully independent runs give outputs that are far apart, so that by continuity they can extract the forbidden
structure from this interpolation. Due to this requirement, their result required the symmetry provided by
the NAE variant of random k-SAT. We improve on this result in three ways:

17

(1) We improve the threshold clause density by a logarithmic factor, to (1 + ok(1))κ∗2k log k/k.

(2) We generalize the algorithm class from balanced sequential local algorithms to local and low degree
algorithms. Recall that both of these computation classes simulate sequential local algorithms, even
without the balance requirement.

(3) We show hardness for random k-SAT instead of NAE-k-SAT. A simple adaptation of our argument
shows hardness of random NAE-k-SAT at clause density (1 + ok(1))κ∗2k−1 log k/k.

Improvements due to ensemble OGP. We consider an ensemble OGP, where the random variable
resampled in the interpolation is the k-SAT instance instead of the algorithm’s internal randomness. The
ensemble interpolation allows us to show hardness for local and low degree algorithms. It also obviates the
requirement of balance, so we no longer require the additional symmetry provided by NAE-k-SAT. This
achieves improvements (2) and (3).

A tighter free entropy analysis. Crucially, we conduct a tighter free entropy analysis to achieve im-
provement (1). In contrast to previous work, our forbidden structure considers all 2k ways k + 1 satisfying
assignments y(0), . . . , y(k) can agree or disagree. We formalize such an agreement pattern as an overlap profile
π. We will introduce this formally in Subsection 2.3.3. We will see in Lemma 2.4.1 that the analogue of the
free entropy (2.2.1) for random k-SAT at clause density α is

log 2 + max
π∈P

[
H(π)− α

2k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣] . (2.2.2)

Here y(0), . . . , y(k) have overlap profile π, P is a collection of overlap constraints, and π ∈ P denotes the
set of overlap profiles π consistent with P . Moreover, y(`)[I] is the bit string obtained by indexing y(`) in

positions I, namely (y
(`)
I1
, . . . , y

(`)
Ik

). The positive term H(π) is the overlap entropy of π, which arises because

log 2 +H(π) is the exponential rate of the number of assignment sequences y(0), . . . , y(k) with overlap profile
π. The negative term captures the log likelihood that a random formula is satisfied by all of y(0), . . . , y(k). We
think of these two terms as entropy and energy terms, respectively. We will choose P such that the magnitude
of the energy term exceeds the entropy term by more than log 2, which causes (2.2.2) to be negative. This
implies the absence (except with exponentially small probability) of a constellation of satisfying assignments
with overlap profile π ∈ P .

Similarly to [Wei20], we chain together many small negative free entropies to make (2.2.2) negative.
Because the random k-SAT free entropy is dependent and harder to analyze, it is significantly more difficult
to identify the correct high-dimensional moats. In the multi-OGP of [GS17], the condition P stipulates that
the normalized Hamming distances ∆(y(i), y(j)) of k satisfying assignments are pairwise approximately log k

k .
Using this, the energy term in (2.2.2) can be lower bounded by an inclusion-exclusion truncated at level
2. The inclusion-exclusion truncation is not sharp, and consequently this analysis requires the larger clause
density α = (1 + ok(1))2k log2 k/k (for NAE-k-SAT, (1 + ok(1))2k−1 log2 k/k) to show that the contribution
of each y(`) to (2.2.2) is a small negative number. The fact that this natural estimate of (2.2.2) gives a
threshold too large by a log k factor highlights the difficulty of accurately controlling the k-SAT free entropy
and the necessity of finding good moats.

We find the correct moats. We set P = P1 ∩ · · · ∩ Pk, where P` governs how y(`) overlaps with its
predecessors y(0), . . . , y(`−1). Each P` defines a moat that a smooth evolution of y(`) starting from y(`−1)

must cross. In order to obtain a fine control over the tradeoff between entropy and energy in (2.2.2), we
develop a notion of conditional overlap entropy H(π(y(`)|y(0), . . . , y(`−1))), which is the contribution of y(`)

to the entropy term H(π). Informally, this is a measure of the additional diversity that y(`) adds to the
assignments y(0), . . . , y(`−1). For each ` ≥ 1, our condition P` stipulates that

H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k

k
, β+

log k

k

]
.

This choice of forbidden structure in terms of the conditional overlap entropy is an important contribution
of our work. The choice is motivated by the subsequent energy analysis, which shows a lower bound on the
energy contribution of y(`) that counterbalances the entropy increase. We next summarize this analysis.

18

Energy increment bound via decoupling. We can express the energy term (without the prefactor) as

E
I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ =

∑
σ∈{T,F}k

p(σ), where (2.2.3)

p(σ) = P
I∼unif([N]k)

[
σ = y(`)[I] for some 0 ≤ ` ≤ k

]
.

For each σ, 1 − p(σ) is the probability that σ 6= y(`)[I] for all 0 ≤ ` ≤ k. This can be conditionally
expanded as a product of k factors, where the `th factor is the probability that σ 6= y(`)[I] given the values
of y(0)[I], . . . , y(`−1)[I]. We think of (1 minus) this factor as the contribution of y(`) to p(σ).

We apply the following estimate to decouple these products into sums. We round any factors in the
conditional expansion that are less than 1− 1

k log k up to 1. Then, we note that for 0 ≤ ε1, . . . , εk ≤ 1
k log k ,

1− (1− ε1)(1− ε2) · · · (1− εk) ≈ ε1 + ε2 + · · ·+ εk,

up to a 1 + ok(1) multiplicative factor. This decouples the contributions of the y(`) to the p(σ). We can
bound the total contribution of y(`) to the energy term (2.2.3) by summing the now-decoupled contributions
over σ ∈ {T, F}k.

Probabilistic reinterpretation. Miraculously, this sum can be reinterpreted as the success probability
of an experiment involving a sum of k i.i.d. random variables, which can be controlled by concentration
inequalities. We find that if the contribution of y(`) to the entropy term H(π) is β log k

k , then its contribution

to the rescaled energy term (2.2.3) is at least 1 − βe−(β−1). This motivates the choice of ι(β) as the
(rescaled) ratio of these contributions, and κ∗ as the best possible ratio. When α = κ2k log k/k for κ > κ∗,
the condition P` requires β to be in a range where the contribution of y(`) to the energy term of (2.2.2)
exceeds its contribution to the entropy term by at least ε log k

k , for constant ε depending on κ. Thus the

overall contribution of y(`) to (2.2.2) is upper bounded by −ε log k
k . Summed over the y(`), this shows that

(2.2.2) is negative, establishing the ladder OGP.
This energy analysis via decoupling and probabilistic reinterpretation is original and is another key

contribution of our work.

2.3 Proof of Impossibility for Low Degree Polynomials

This section and the next two sections are devoted to proving our main impossibility result, Theorem 2.1.6.
Throughout, we fix κ > κ∗. We set α = κ2k log k/k and M = bαNc.

2.3.1 Reduction to Deterministic Low Degree Polynomial

The following lemma shows that randomness does not significantly improve the power of low degree polyno-
mial algorithms.

Lemma 2.3.1. Suppose there exists a random degree-D polynomial that (δ, γ, η, ν)-solves Φk(N,M). Then,
there exists a deterministic degree-D polynomial that (3δ, 3γ, η, ν)-solves Φk(N,M).

Proof. Let f : Rn × Ω→ RN be a random degree-D polynomial that (δ, γ, η, ν)-solves Φk(N,M). Then,

E
ω

[
P
Φ

[(round ◦ f)(Φ, ω) does not (η, ν)-satisfy Φ]
]
≤ δ and E

ω

[
E
Φ

[
‖f(Φ, ω)‖22

]]
≤ γN.

By Markov’s inequality,

P
ω

[
P
Φ

[(round ◦ f)(Φ, ω) does not (η, ν)-satisfy Φ] ≥ 3δ
]
≤ 1

3
and P

ω

[
E
Φ

[
‖f(Φ, ω)‖22

]
≥ 3γN

]
≤ 1

3
.

So, there exists ω ∈ Ω such that the deterministic polynomial g(Φ) = f(Φ, ω) satisfies

P
Φ

[(round ◦ g)(Φ) (η, ν)-satisfies Φ] ≥ 1− 3δ and E
Φ

[
‖g(Φ)‖22

]
≤ 3γN.

19

By Lemma 2.3.1, it suffices to show hardness for deterministic polynomials. For the rest of this section
and Section 2.5, except where stated, f : Rn → RN is a deterministic degree-D polynomial.

We let A(Φ) = B((round ◦ f)(Φ),Φ), where B(x,Φ) is a deterministic, computationally unbounded
subroutine outputting y ∈ {T, F}N with ∆(x, y) ≤ η. (If x has more than ηN entries equal to err, B outputs
“fail.”) Informally, B is a computationally unbounded assistant that repairs an ηN fraction of entries of
(round ◦ f)(Φ).

Because f is deterministic, A is also deterministic. Note that round ◦ f outputting a (η, ν)-satisfying
assignment of Φ is equivalent to A outputting a ν-satisfying assignment of Φ. Showing that this does not
occur with the required probability will be our task from here on.

2.3.2 The Interpolation Path

We can enumerate the kM literals of a formula Φ ∈ Ωk(N,M) in lexicographic order:

Φ1,1,Φ1,2, . . . ,Φ1,k,Φ2,1, . . . ,ΦM,k.

For j ∈ [kM], let L(j) denote the pair (a, b) such that Φa,b is the jth literal in this order. That is, L(j) = (a, b)
is the unique pair of integers (a, b) ∈ [M] × [k] satisfying k(a − 1) + b = j. We now define a sequence of
correlated random k-SAT formulas.

Definition 2.3.2 (Interpolation path). Let T = k2M . Let Φ(0), . . . ,Φ(T) ∈ Ωk(N,M) be the sequence of
k-SAT instances sampled as follows. First, sample Φ(0) ∼ Φk(N,M). For each 1 ≤ t ≤ T , let σ(t) ∈ [kM] be

the unique integer such that t ≡ σ(t) (mod kM). Then, Φ(t) is obtained from Φ(t−1) by resampling Φ
(t)
L(σ(t))

from unif(L). Moreover, for 0 ≤ t ≤ T , let x(t) = A(Φ(t)).

In other words, we start from a random k-SAT instance and resample the literals one by one in lexi-
cographic order. After we have resampled all the literals we start over, repeating the procedure until each
literal has been resampled k times. Note that each Φ(t) is marginally a sample from Φk(N,M) and that if
|t − t′| ≥ kM , then Φ(t)⊥⊥Φ(t′). We run our assisted low degree algorithm A on all these k-SAT instances
and collect the outputs as the sequence x(0), x(1), . . . , x(T) ∈ {T, F}N .

2.3.3 Overlap Profiles

We now introduce the overlap profile of an ordered list of assignments. The overlap profile summarizes the
bitwise agreement and disagreement pattern of a list of assignments.

Let P2(`) denote the set of unordered partitions of {0, . . . , ` − 1} into two (possibly empty) sets. For
example,

P2(3) =
{
{{0, 1, 2}, ∅} , {{0, 1}, {2}} , {{0, 2}, {1}} , {{1, 2}, {0}}

}
.

Note that |P2(`)| = 2`−1.

Definition 2.3.3 (Overlap profile). Let y(0), . . . , y(`−1) ∈ {T, F}N be a sequence of assignments. Their

overlap profile π = π(y(0), . . . , y(`−1)), is a vector π ∈ R2`−1

indexed by unordered pairs {S, T} ∈ P2(`),
where

πS,T =
1

N

∣∣∣i ∈ [N] : all {y(t)
i : t ∈ S} equal one value and all {y(t)

i : t ∈ T} equal the other value
∣∣∣ .

Example 2.3.4. Let ` = 3. The overlap profile π = π(y(0), y(1), y(2)) consists of four entries π012,∅, π01,2,
π02,1, and π12,0, where

π012,∅ =
1

N

∣∣∣i ∈ [N] : y
(0)
i = y

(1)
i = y

(2)
i

∣∣∣ and π01,2 =
1

N

∣∣∣i ∈ [N] : y
(0)
i = y

(1)
i 6= y

(2)
i

∣∣∣ ,
and π02,1, π12,0 are analogous to π01,2.

20

We can interpret an overlap profile as a probability distribution: πS,T is the probability that in a random

position i ∼ unif([N]), all {y(t)
i : t ∈ S} equal one value and all {y(t)

i : t ∈ T} equal the other. We naturally
define the overlap entropy of y(0), . . . , y(`−1) by

H
(
π(y(0), . . . , y(`−1))

)
= −

∑
{S,T}∈P2(`)

πS,T log πS,T .

This is the entropy of the unordered pair of sets {S, T} obtained by sampling i ∼ unif([N]) and partitioning

{0, . . . , `− 1} based on the value of y
(t)
i .

We also define conditional overlap profiles. Let π = π(y(0), . . . , y(`−1)). For each {S, T} ∈ P2(`− 1) with
πS,T > 0, π·|S,T is a probability distribution on the two partitions {S ∪{`− 1}, T} and {S, T ∪{`− 1}} with

πS∪{`−1},T |S,T =
πS∪{`−1},T

πS∪{`−1},T + πS,T∪{`−1}
and πS,T∪{`−1}|S,T =

πS,T∪{`−1}

πS∪{`−1},T + πS,T∪{`−1}
.

(If πS∪{`−1},T = πS,T∪{`−1} = 0, we define this distribution arbitrarily.) This is the distribution of the

agreement pattern of y(0), . . . , y(`−1) on a uniformly random position, conditioned on the agreement pattern
of y(0), . . . , y(`−2) in that position being {S, T}. We denote the resulting collection of distributions, one for
each {S, T} ∈ P2(` − 1), by π·|· = π(y(`−1)|y(0), . . . , y(`−2)). We analogously define the conditional overlap
entropy

H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
=

∑
{S,T}∈P2(`−1)

πS,TH(π·|S,T).

Before proceeding, we collect some properties of overlap profiles which will be useful in the rest of the
section. The proofs of these assertions follow readily from the above definitions.

Fact 2.3.5. Overlap profiles have the following properties.

(a) There are at most N2`−1

distinct overlap profiles of ` assignments y(0), . . . , y(`−1) ∈ {T, F}N .

(b) Overlap entropies satisfy the chain rule

H
(
π(y(0), . . . , y(`−1))

)
= H

(
π(y(0), . . . , y(`−2))

)
+H

(
π(y(`−1)|y(0), . . . , y(`−2))

)
.

(c) Repeated assignments do not affect overlap entropies. That is, if z(0), . . . , z(r−1) are the distinct ele-
ments of y(0), . . . , y(`−1), then

H
(
π(y(0), . . . , y(`−1))

)
= H

(
π(z(0), . . . , z(r−1))

)
.

If z(0), . . . , z(r−2) are the distinct elements of y(0), . . . , y(`−2), then

H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
= H

(
π(y(`−1)|z(0), . . . , z(r−2))

)
.

Furthermore, if y(`−1) ∈ {y(0), . . . , y(`−2)}, then H
(
π(y(`−1)|y(0), . . . , y(`−2))

)
= 0.

2.3.4 Outline of Proof of Impossibility

Recall that ι(β) = β
1−βe−(β−1) is strictly convex with with ι(β) → +∞ when β → 1+ or β → +∞, and

has minimum κ∗ attained at β∗. Because κ > κ∗, there exist two solutions βmin, βmax to ι(β) = κ, with

βmin ∈ (1, β∗) and βmax ∈ (β∗,+∞). Set β− = βmin+β∗

2 and β+ = βmax+β∗

2 . (This choice is arbitrary; any

deterministic βmin < β− < β+ < βmax will do.) Set ε > 0 such that β+ε
1−βe−(β−1) ≤ κ for all β ∈ [β−, β+]. We

emphasize that β−, β+, ε depend on κ only.

For the rest of this proof, take η = β+−β−
8k and ν = 1

k22k
. We next define the events Svalid, Sconsec, Sindep, Sogp,

which are measurable in the interpolation path Φ(0), . . . ,Φ(T) defined in Definition 2.3.2. Define

Svalid =
{
x(t) ν-satisfies Φ(t) for all 0 ≤ t ≤ T

}
.

21

This is the event that A succeeds on all Φ(t). Define

Sconsec =

{
∆(x(t), x(t−1)) ≤ β+ − β−

2k
for all 1 ≤ t ≤ T

}
.

This is the event that outputs of A on consecutive Φ(t) are close in Hamming distance. Define Sindep as the
event that there do not exist indices 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T with tk ≥ tk−1 + kM and an assignment
y ∈ {T, F}N such that

(IND-A) y ν-satisfies Φ(tk);

(IND-B) H
(
π(y|x(t0), . . . , x(tk−1))

)
≤ β+

log k
k .

This is the event that if tk is large enough that Φ(tk) is independent of Φ(t0), . . . ,Φ(tk−1), then all ν-satisfying
assignments to Φ(tk) have high conditional overlap entropy relative to the outputs of A on Φ(t0), . . . ,Φ(tk−1).
Finally, define Sogp as the event that there do not exist indices 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T and assignments
y(0), . . . , y(k) ∈ {T, F}N such that

(OGP-A) For all 0 ≤ ` ≤ k, y(`) ν-satisfies Φ(t`);

(OGP-B) For all 1 ≤ ` ≤ k, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
.

Sogp defines the main forbidden structure of our argument. Informally, this forbidden structure consists of
k + 1 assignments, each ν-satisfying possibly different Φ(t) in the interpolation, such that each assignment
has medium conditional overlap entropy relative to its predecessors.

The key ingredients in our proof of Theorem 2.1.6 are the following two propositions. Proposition 2.3.6
shows that these four events do not simultaneously occur, and Proposition 2.3.7 controls their probabil-
ities. These two propositions derive the main contradiction: if a low degree algorithm (δ, γ, η, ν)-solves
Φk(N,M) for the requisite (δ, γ, η, ν), then Proposition 2.3.6 implies Svalid∩Sconsec∩Sindep∩Sogp = ∅, while
Proposition 2.3.7 and a union bound imply Svalid ∩ Sconsec ∩ Sindep ∩ Sogp 6= ∅.

Proposition 2.3.6. For all sufficiently large k, Svalid ∩ Sconsec ∩ Sindep ∩ Sogp = ∅.

Proposition 2.3.7. Suppose f is a deterministic degree-D polynomial that (δ, γ, η, ν)-solves Φk(N,M). For
all sufficiently large k, the following inequalities hold.

(a) P(Svalid ∩ Sconsec) ≥ (2N)−4γDk2/(β+−β−) − (T + 1)δ.

(b) P(Scindep) ≤ exp(−Ω(N)).

(c) P(Scogp) ≤ exp(−Ω(N)).

The remainder of this section and Sections 2.4 and 2.5 will be devoted to proving these propositions.
We will prove Proposition 2.3.6 in Subsection 2.3.5 and Proposition 2.3.7(b) in Subsection 2.3.6. We will
prove Proposition 2.3.7(c), which establishes the main multi-OGP, in Section 2.4. Finally, we will prove
Proposition 2.3.7(a) in Section 2.5. Let us first see how these results imply Theorem 2.1.6.

Proof of Theorem 2.1.6. Assume for sake of contradiction that there exists a (random) degree-D polynomial
f : Rn × Ω → RN that (δ, γ, η, ν)-solves Φk(N,M). By Lemma 2.3.1, there exists a deterministic degree-
D polynomial g : Rn → RN that (3δ, 3γ, η, ν)-solves Φk(N,M). We set k∗ = k∗(κ) large enough that
Propositions 2.3.6 and 2.3.7 both hold. By Proposition 2.3.7 and a union bound,

P(Svalid ∩ Sconsec ∩ Sindep ∩ Sogp) ≥ (2N)−12γDk2/(β+−β−) − 3(T + 1)δ − exp(−Ω(N)).

We will show this probability is positive for suitable C1, C2. Let C2 = 2 + 12k2

β+−β− . Recall that T = k2M =

k2bαNc. If δ ≤ exp(−C2γD logN), then 3(T + 1)δ ≤ 1
3 (2N)−12γDk2/(β+−β−) for sufficiently large N . Note

that if D ≤ C1N
γ logN , then

(2N)−12γDk2/(β+−β−) ≥ N−24γDk2/(β+−β−) ≥ exp

(
− 24C1k

2

β+ − β−
N

)
.

22

Let C1 be small enough that the right-hand side is asymptotically larger than the exp(−Ω(N)) term. Thus for

sufficiently large N , the exp(−Ω(N)) term is at most 1
3 (2N)−12γDk2/(β+−β−). Therefore, there exists N∗ such

that if N ≥ N∗, then P(Svalid∩Sconsec∩Sindep∩Sogp) > 0. This implies that Svalid∩Sconsec∩Sindep∩Sogp 6= ∅,
contradicting Proposition 2.3.6.

2.3.5 Constructing the Forbidden Structure from Algorithm Outputs

In this subsection, we will prove Proposition 2.3.6. We will show that if Svalid, Sconsec, and Sindep all hold,
then we can construct an example of the structure forbidden by Sogp, and therefore all four events cannot
hold simultaneously.

We will need the following auxiliary lemma, which shows that a small change of x ∈ {T, F}N in Hamming
distance induces only a small change in H(π(x|y(0), . . . , y(`−1))). This lemma allows us to convert Sconsec to
a guarantee that consecutive conditional overlap entropies are small. We defer the proof to Subsection 2.3.7.

Lemma 2.3.8. Let ` ∈ N be arbitrary and let x, x′, y(0), . . . , y(`−1) ∈ {T, F}N . If ∆(x, x′) ≤ 1
2 , then∣∣∣H (π(x|y(0), . . . , y(`−1))

)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ H (∆(x, x′)) .

The H(·) on the right denotes the binary entropy function.

Proof of Proposition 2.3.6. Set k large enough that β+−β−
2k ≤ 1

2 and H
(
β+−β−

2k

)
≤ (β+ − β−) log k

k . The

second inequality holds for all sufficiently large k due to the inequality H(x) ≤ x log e
x .

Suppose that Svalid, Sconsec, and Sindep all hold. For 0 ≤ ` ≤ k, let y(`) = x(t`), where 0 ≤ t0 ≤ t1 ≤
· · · ≤ tk ≤ T are defined as follows. Let t0 = 0. For 1 ≤ ` ≤ k, let t` be the smallest t > t`−1 such that

H(x(t)|y(0), . . . , y(`−1)) ∈
[
β−

log k
k , β+

log k
k

]
. We will show that such t` exists and satisfies t` ≤ t`−1 + kM .

Let t′ = t`−1 + kM , and let I = {t`−1, t`−1 + 1, . . . , t′}. For t ∈ I, let h(t) = H
(
π(x(t)|y(0), . . . , y(`−1))

)
;

we will analyze the evolution of h(t) as we increment t ∈ I. By Fact 2.3.5(c), h(t`−1) = 0.
In the definition of Sindep, set tk = t′ and t`, t`+1, . . . , tk−1 equal to t`−1. By Fact 2.3.5(c) (which allows us

to ignore the duplicated t`, . . . , tk−1), Φ(t′) has no ν-satisfying assignment y with H
(
π(y|y(0), . . . , y(`−1))

)
≤

β+
log k
k . But because Svalid holds, x(t′) ν-satisfies Φ(t′). It follows that h(t′) > β+

log k
k .

Because Sconsec holds, we have ∆(x(t), x(t−1)) ≤ β+−β−
2k for all t. By Lemma 2.3.8,

|h(t)− h(t− 1)| ≤ H
(

∆(x(t), x(t−1))
)
≤ H

(
β+ − β−

2k

)
≤ (β+ − β−)

log k

k
. (2.3.1)

Since h(t`−1) = 0 and h(t′) > β+
log k
k , (2.3.1) implies the existence of t ∈ I such that h(t) ∈

[
β−

log k
k , β+

log k
k

]
.

So, t` is well defined and satisfies t` ≤ t`−1 + kM .
Because the interpolation path has length T = k2M , and t` ≤ t`−1 +kM for all 1 ≤ ` ≤ k, this procedure

sets all of t1, . . . , tk before the end of the interpolation. Finally, because Svalid holds, y` ν-satisfies Φ(t`) for
all 0 ≤ ` ≤ k. We have thus constructed the structure forbidden by Sogp.

2.3.6 Solutions to Independent Instances Contribute Large Overlap Entropy

In this subsection, we will prove Proposition 2.3.7(b). The proof is by a first moment argument.

Proof of Proposition 2.3.7(b). By Markov’s inequality, P(Scindep) is upper bounded by the expected number
of (t0, . . . , tk, y) satisfying 0 ≤ t0 ≤ · · · ≤ tk ≤ T , tk ≥ tk−1 + kM , and conditions (IND-A) and (IND-B).
There are at most (T + 1)k+1 possible choices of (t0, . . . , tk). Because tk ≥ tk−1 + kM , Φ(tk) is independent
of x(t0), . . . , x(tk−1).

23

Let P = P (x(t0), . . . , x(tk−1)) denote the set of all overlap profiles π = π(x(t0), . . . , x(tk−1), y) over y ∈
{T, F}N with H(π(y|x(t0), . . . , x(tk−1))) ≤ β+

log k
k . By Fact 2.3.5(a), |P | ≤ N2k . Thus,

P(Scindep) ≤ (T + 1)k+1N2k max
0≤t0≤···≤tk≤T
tk≥tk−1+kM

max
π∈P

E
Φ(tk)

#
(
y ∈ {T, F}N : y ν-satisfies Φ(tk) and π(x(t0), . . . , x(tk−1), y) = π

)
We can evaluate this inner expectation by linearity of expectation. The number of y satisfying that
π(x(t0), . . . , x(tk−1), y) = π is

∏
{S,T}∈P2(k)

(
πS,TN

πS∪{k},TN

)
= exp

N ∑
{S,T}∈P2(k)

πS,TH

(
πS∪{k},T

πS,T

)
+ o(N)


= exp

(
NH

(
π(y|x(t0), . . . , x(tk−1))

)
+ o(N)

)
≤ exp

(
Nβ+

log k

k
+ o(N)

)
.M

Recall that Φ(tk) is independent of x(t0), . . . , x(tk−1). Because
∑νM
j=0

(
M
j

)
≤ (M + 1)

(
M
νM

)
, the probability

that any one of these y ν-satisfies Φ(tk) is at most∑
S⊆[M],|S|≤νM

(1− 2−k)M−|S| ≤ (M + 1)

(
M

νM

)
(1− 2−k)(1−ν)M

≤ exp
(
νM log

e

ν
− (1− ν)2−kM + o(N)

)
= exp

(
N

(
−κ log k

k
+ ok(1)

)
+ o(N)

)
.

Here we used that
(
a
b

)
≤
(
ea
b

)b
. Thus,

P(Scindep) ≤ exp

(
−N(κ− β+ − ok(1))

log k

k
+ o(N)

)
,

where the (T + 1)k+1N2k is absorbed in the o(N). Finally, as

β+ + ε ≤ β+ + ε

1− β+e−(β+−1)
≤ κ,

we have κ− β+ ≥ ε. Thus P(Scindep) = exp(−Ω(N)) for sufficiently large k.

2.3.7 Small Hamming Distance Implies Small Conditional Overlap Entropy Dif-
ference

We now present the deferred proof of Lemma 2.3.8, which shows that a small change in x ∈ {T, F}N causes
only a small change in H(π(x|y(0), . . . , y(`−1))).

Proof of Lemma 2.3.8. For each partition {S, T} ∈ P2(`), let

IS,T =
{
i ∈ [N] : all {y(t)

i : t ∈ S} equal one value and all {y(t)
i : t ∈ T} equal the other value

}
.

Note that |IS,T | = πS,TN . If πS,T 6= 0, define

λS,T =
1

|IS,T |
(i ∈ IS,T : xi = T) and λ′S,T =

1

|IS,T |
(i ∈ IS,T : x′i = T) .

24

(If πS,T = 0, we can set these values arbitrarily in [0, 1].) On each index set IS,T , x and x′ differ in at least

|IS,T | · |λS,T − λ′S,T | = πS,T |λS,T − λ′S,T |n

positions. Thus,
1

2
≥ ∆(x, x′) ≥

∑
{S,T}∈P2(`)

πS,T |λS,T − λ′S,T |.

Let
∑
{S,T}∈P2(`) πS,T |λS,T − λ′S,T | = µ. Moreover, from the definition of conditional overlap entropy,

H
(
π(x|y(0), . . . , y(`−1))

)
=

∑
{S,T}∈P2(`)

πS,TH(λS,T),

and analogously for x′. Note that H(·) is concave, so H ′(·) is decreasing. Thus, for all [a, b] ∈ [0, 1] with
a ≥ b,

H(a)−H(b) =

∫ b

a

H ′(x) dx ≤
∫ a−b

0

H ′(x) dx = H(a− b).

Similarly H(1− b)−H(1− a) ≤ H(a− b), whence |H(a)−H(b)| ≤ H(a− b). Thus,∣∣∣H (π(x|y(0), . . . , y(`−1))
)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ ∑
{S,T}∈P2(`)

πS,T
∣∣H(λS,T)−H(λ′S,T)

∣∣
≤

∑
{S,T}∈P2(`)

πS,TH
(
|λS,T − λ′S,T |

)
.

By concavity of H(·), this last quantity has maximum value H(µ), attained when all the |λS,T − λ′S,T | are

equal to µ. Because H(·) is increasing on [0, 1
2] and µ ≤ ∆(x, x′) ≤ 1

2 , we conclude that∣∣∣H (π(x|y(0), . . . , y(`−1))
)
−H

(
π(x′|y(0), . . . , y(`−1))

)∣∣∣ ≤ H(µ) ≤ H (∆(x, x′)) .

2.4 The Multi-OGP

In this section, we will prove Proposition 2.3.7(c), which shows that the forbidden structure in Sogp does not
occur with high probability.

2.4.1 Proof Outline

We first give a high level overview of the proof, which is by another first moment computation. Throughout
this section, for I ∈ [N]k and x ∈ {T, F}N , let x[I] = (xI1 , . . . , xIk) be the subsequence of x indexed by I.
We begin with the following lemma, which bounds the exponential rate of P(Scogp) in terms of a maximum
over overlap profiles. We will prove this lemma in Subsection 2.4.2.

Lemma 2.4.1. Let P denote the set of overlap profiles π = π(y(0), . . . , y(k)) over y(0), . . . , y(k) ∈ {T, F}N

satisfying that for all 1 ≤ ` ≤ k, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
. Then,

1

N
logP(Scogp) ≤ log 2 + max

π∈P

[
H(π)− κ log k

k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣]+ ok(1) + o(1), (2.4.1)

where in the expectation, y(0), . . . , y(k) ∈ {T, F}N is a sequence of assignments with overlap profile π.

25

Note that the expectation EI∼unif([N]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣ has the same value for any y(0), . . . , y(k) ∈

{T, F}N with overlap profile π. So, the quantity inside the maximum is a function of π.
The negative term in (2.4.1) arises as an upper bound on the exponential rate of the probability that

y(0), . . . , y(k) all respectively ν-satisfy Φ(t0), . . . ,Φ(tk), for fixed y(0), . . . , y(k) and t0, . . . , tk. Let us first
argue heuristically that this bounds the exponential rate; we will formalize this reasoning in Lemma 2.4.3
below. We expect this probability to be maximized when t0 = · · · = tk, because making the ti different
only introduces additional randomness (see Remark 2.4.4). So, let Φ(t0), . . . ,Φ(tk) all equal the same k-SAT
instance Φ ∼ Φk(N,M). We also focus on the probability that y(0), . . . , y(k) all satisfy Φ; we will see that
the relaxation to ν-satisfy only changes the exponential rate by ok(1). The probability that y(0), . . . , y(k) all
satisfy the first clause Φ1 is 1− 2−k EI∼unif([N]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣, because if Φ1 contains the variables

xI1 , . . . , xIk , there are
∣∣{y(`)[I] : 0 ≤ ` ≤ k

}∣∣ ways to set these variables’ polarities in Φ1 so that one of

y(0), . . . , y(k) does not satisfy Φ1. Then, the probability that y(0), . . . , y(k) all satisfy Φ is upper bounded by(
1− 2−k E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣)M ≤ exp

(
−M

2k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣) ,

and M
2k
≈ Nκ log k

k . The second ingredient in the proof of Proposition 2.3.7(c) is the following proposition,
which lower bounds the expectation in the negative term of (2.4.1). We will prove this proposition in
Subsection 2.4.3. Proving the bound in this proposition is one of the main technical challenges of this work,
which we overcome via a surprising probabilistic reformulation of the left-hand expectation.

Proposition 2.4.2. Let β1, . . . , βk ∈ [β−, β+], and let y(0), . . . , y(k) ∈ {T, F}N be assignments satisfying that
H
(
π(y(`)|y(0), . . . , y(`−1))

)
= β`

log k
k . Then,

E
I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≥ (1− ok(1))

k∑
`=1

(
1− β`e−(β`−1)

)
.

From Lemma 2.4.1 and Proposition 2.4.2, we can see the main ideas of the proof of Proposition 2.3.7(c)
and understand the motivation of the definition of Sogp. The ideas are as follows.

We will prove Proposition 2.3.7(c) by showing that the right-hand side of (2.4.1) is negative. For each
π ∈ P , this quantity can be regarded as a free entropy, with entropy term log 2 + H(π) and energy term
κ log k

k EI∼unif([N]k)

∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣. This free entropy exhibits a tradeoff where as the entropy term

increases, the assignments y(0), . . . , y(k) become more diverse, and so the energy term increases too. The
event Sogp is selected so that for overlap profiles π ∈ P , where P is defined in Lemma 2.4.1, the energy term
is larger than the entropy term, which makes the free entropy negative. In particular, (due to Fact 2.3.5(b))
we think of H

(
π(y(`)|y(0), . . . , y(`−1))

)
as the amount that y(`) contributes to the entropy term. Given this

contribution, Proposition 2.4.2 lower bounds the amount that y(`) contributes to the energy term. In the

definition of Sogp, we require the entropy contribution to be in a medium range
[
β−

log k
k , β+

log k
k

]
because

(recalling the definition of β−, β+) in this range the energy-to-entropy ratio is favorable to the energy term.
Specifically, we show that if y(`) contributes an entropy in this range, the energy it contributes is at least ε log k

k

more. Thus each y(`) decreases the free entropy by at least ε log k
k . Together, the k assignments y(1), . . . , y(k)

contribute a free entropy decrease of ε log k, which dominates the starting free entropy of log 2 and makes
the overall free entropy negative.

We now prove Proposition 2.3.7(c) given Lemma 2.4.1 and Proposition 2.4.2.

Proof of Proposition 2.3.7(c). Let P be as in Lemma 2.4.1. Let π ∈ P , and consider assignments y(0), . . . , y(k) ∈
{T, F}N with π(y(0), . . . , y(k)) = π. For 1 ≤ ` ≤ k, define β` by H

(
π(y(`)|y(0), . . . , y(`−1))

)
= β`

log k
k . Note

that the β` are determined given π and satisfy β1, . . . , βk ∈ [β−, β+]. By Fact 2.3.5(b), H(π) = log k
k

∑k
`=1 β`.

By Proposition 2.4.2,

−κ log k

k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≤ −(1− ok(1))

log k

k

k∑
`=1

κ
(

1− β`e−(β`−1)
)

≤ −(1− ok(1))
log k

k

k∑
`=1

(β` + ε) .

26

The last inequality uses that β+ε
1−βe−(β−1) ≤ κ for all β ∈ [β−, β+]. Therefore,

H(π)− κ log k

k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≤ log k

k

k∑
`=1

β` − (1− ok(1))
log k

k

k∑
`=1

(β` + ε)

≤ ok(1)
log k

k

k∑
`=1

β` − (1− ok(1))ε log k

≤ ok(1)β+ log k − (1− ok(1))ε log k

= −(1− ok(1))ε log k.

This bound holds for an arbitrary π ∈ P , and thus for the maximum over π ∈ P . By Lemma 2.4.1,

1

N
logP(Scogp) ≤ log 2− (1− ok(1))ε log k + ok(1) + o(1) < 0

for sufficiently large k and N . Thus P(Scogp) ≤ exp(−Ω(N)).

2.4.2 Bounding the Exponential Rate by a Free Entropy

In this subsection, we will prove Lemma 2.4.1. We begin with the following lemma, which bounds the
probability term arising in the first moment upper bound of P(Scogp).

Lemma 2.4.3. Suppose y(0), . . . , y(k) ∈ {T, F}N is a sequence of assignments and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T .
Then,

1

N
logP

[
y(`) ν-satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ −κ log k

k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ ok(1) + o(1).

Proof. Say a clause index i ∈ [M] is interrupted if for some 0 ≤ ` ≤ k, t` satisfies 1 ≤ σ(t`)− (i−1)k ≤ k−1,
where σ(·) is defined in Definition 2.3.2. Informally, i is interrupted if there is some ` such that Φ(t`) is
partway through resampling the ith clause. Let U denote the set of interrupted clause indices. Note that
each t` interrupts at most one clause, so |U | ≤ k + 1.

Say a clause index i ∈ [M] is bad if some y(`) fails to satisfy Φ
(t`)
i . Let S denote the set of bad clause

indices. If y(`) ν-satisfies Φ(t`) for all 0 ≤ ` ≤ k, then each y(`) fails to satisfy at most νM clauses of Φ(t`),
so |S| ≤ (k + 1)νM .

We will see that because so few clause indices are interrupted or bad, it does not hurt our analysis to
throw them out. We have that

P
[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤

∑
S⊆[M],|S|≤(k+1)νM

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k, i ∈ [M] \ S

]
≤ (M + 1)

(
M

(k + 1)νM

)
max

S⊆[M],|S|≤(k+1)νM
P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k, i ∈ [M] \ (S ∪ U)

]
= (M + 1)

(
M

(k + 1)νM

)
max

S⊆[M],|S|≤(k+1)νM

∏
i∈[M]\(S∪U)

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
. (2.4.2)

The last step uses that over i ∈ [M], the collections of clauses {Φ(t)
i : 0 ≤ t ≤ T} are mutually independent.

We now fix a single i ∈ [M]\ (S∪U) and analyze the last probability. We exploit the following stochastic

property of non-interrupted clauses: if i is not interrupted, then the clauses Φ
(t0)
i ,Φ

(t1)
i , . . . ,Φ

(tk)
i can be

partitioned into equivalence classes, such that all clauses in the same equivalence class are identical and all
clauses in different equivalence classes are mutually independent. Formally, for some 1 ≤ r ≤ k + 1, there
is a surjective map τ : {0, . . . , k} → [r] (dependent only on the indices t0, . . . , tk and i) such that for i.i.d.
clauses C1, . . . , Cr ∼ Φk(N, 1),(

Φ
(t0)
i ,Φ

(t1)
i , . . . ,Φ

(tk)
i

)
=d

(
Cτ(0), Cτ(1), . . . , Cτ(k)

)
.

27

For 1 ≤ s ≤ r, let Bs = τ−1(s) be the set of ` ∈ {0, . . . , k} such that Φ
(t`)
i corresponds to Cs. Thus

B1, . . . , Br partition {0, . . . , k}. Now,

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
=

r∏
s=1

P
[
y(`) satisfies Cs for all ` ∈ Bs

]
. (2.4.3)

Let I ∈ [N]k be the indices of the k variables sampled by Cs, so I ∼ unif([N]k). Given I, there are∣∣{y(`)[I] : ` ∈ Bs
}∣∣ ways to assign polarities to these k variables such that for some ` ∈ Bs, y(`) does not satisfy

Cs. Thus, conditioned on I, the probability that y(`) satisfies Cs for all ` ∈ Bs is 1− 2−k
∣∣{y(`)[I] : ` ∈ Bs

}∣∣.
It follows that

P
[
y(`) satisfies Cs for all ` ∈ Bs

]
= 1− 2−k E

I∼unif([N]k)

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣

≤ exp

(
−2−k E

I∼unif([N]k)

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣) .

So, using (2.4.3) and recalling that B1, . . . , Br partition {0, . . . , k}, we have

P
[
y(`) satisfies Φ

(t`)
i for all 0 ≤ ` ≤ k

]
≤ exp

(
−2−k E

I∼unif([N]k)

r∑
s=1

∣∣∣{y(`)[I] : ` ∈ Bs
}∣∣∣)

≤ exp

(
−2−k E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣) .

Next, we substitute into (2.4.2). Since |S| ≤ (k + 1)νM , |U | ≤ k + 1, and M = bαNc ≥ αN − 1,

|m \ (S ∪ U)| ≥ (1− (k + 1)ν)M − (k + 1)

≥ (1− (k + 1)ν)αN − k − 2.

So,

P
[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ (M + 1)

(
M

(k + 1)νM

)
exp

(
− (1− (k + 1)ν)αN − k − 2

2k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ o(N)

)
.

Thus, using that
(
a
b

)
≤
(
ea
b

)b
,

1

N
logP

[
y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k

]
≤ (k + 1)να log

e

(k + 1)ν
− (1− (k + 1)ν)α

2k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ o(1)

≤ − α

2k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ ok(1) + o(1).

The result follows from α = κ2k log k/k.

Proof of Lemma 2.4.1. By Markov’s inequality, P(Scogp) is upper bounded by the expected number of 0 ≤
t0 ≤ t1 ≤ · · · ≤ tk ≤ T and (y(0), . . . , y(k)) satisfying conditions (OGP-A) and (OGP-B). There are at most

(T + 1)k+1 choices of (t0, . . . , tk), and (by Fact 2.3.5(a)) |P | ≤ N2k . By linearity of expectation,

P(Scogp) ≤ (T + 1)k+1N2k max
0≤t0≤···≤tk≤T

π∈P

E

#

 (y(0), . . . , y(k)) ∈ {T, F}N×(k+1) :
y(`) ν-satisfies Φ(t`) for all 0 ≤ ` ≤ k
and π(y(0), . . . , y(k)) = π

 .
Let πN be the scalar product of π, treated as a vector, by N . There are 2N

(
N
πN

)
sequences of assignments

(y(0), . . . , y(k)) with π(y(0), . . . , y(k)) = π: 2N ways to choose y(0), and then
(
N
πN

)
ways to assign the positions

28

[N] to the partitions of {0, . . . , k}. Over all of these sequences of assignments, the probability of the event
that y(`) satisfies Φ(t`) for all 0 ≤ ` ≤ k is uniformly upper bounded by Lemma 2.4.3. By linearity of
expectation, the last expectation is upper bounded by

2N
(
N

πN

)
exp

(
−N

(
κ

log k

k
E

I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣+ ok(1) + o(1)

))
.

Because
(
N
πN

)
= exp (N(H(π) + o(1))), the result follows.

Remark 2.4.4. The step in the proof of Lemma 2.4.3 where we lower bound
∑r
s=1

∣∣{y(`)[I] : ` ∈ Bs
}∣∣ by∣∣{y(`)[I] : 0 ≤ ` ≤ k

}∣∣ is tight when t0, . . . , tk are all equal, because in this case r = 1 and B1 = {0, 1, . . . , k}.
Thus the exponential rate of P(Scogp) is dominated by the case when the ti are equal. In other words, P(Scogp)

has the same exponential rate as if, in the definition of Sogp, we required all the y(`) to ν-satisfy the same
Φ(t). This shows the power of the “ensemble” part of the ensemble multi-OGP: for no cost in the exponential
rate, we can generalize the forbidden structure to an ensemble. All ensemble (multi-)OGPs in the literature
share and leverage this property, see [GJW20, Wei20].

2.4.3 Lower Bounding the Energy Term

In this subsection, we will prove Proposition 2.4.2. Let y(0), . . . , y(k) and β1, . . . , βk be as in Proposition 2.4.2.
Without loss of generality, we can set y(0) = TN .

To analyze the expectation in Proposition 2.4.2, we introduce the following probabilistic quantities. For
0 ≤ ` ≤ k and σ ∈ {T, F}k, define

E`(σ) =
{
I ∈ [N]k : y(`′)[I] = σ for some 0 ≤ `′ ≤ `

}
and p`(σ) = P

I∼unif([N]k)
(E`(σ)) .

In other words, E`(σ) is the event that σ appears in the set
{
y(`′)[I] : 0 ≤ `′ ≤ `

}
, and p`(σ) is the probability

of this event. The probabilities pk(σ) will be relevant to our analysis by the following identity (2.4.4), while
the probabilities p`(σ) for ` < k will arise in our inductive analysis below, where we lower bound pk(σ) by
peeling off one of y(1), . . . , y(k) at a time. We have that

E
I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ = E

I∼unif([N]k)

 ∑
σ∈{T,F}k

1 {I ∈ Ek(σ)}

 =
∑

σ∈{T,F}k
pk(σ). (2.4.4)

To prove Proposition 2.4.2, we will need to lower bound the right-hand side of (2.4.4). This task will
require several definitions; to motivate these definitions, we first outline our technique for deriving this lower
bound.

Our first step is a conditional expansion. Let I ∼ unif([N]k). We reveal the k bit strings y(1)[I], . . . , y(k)[I]
one by one. (Recall that we fixed y(0) = TN , so y(0)[I] = Tk is known.) Conditioned on its predecessors
y(1)[I], . . . , y(`−1)[I], the distribution of y(`)[I] can be described in terms of the conditional overlap profile
π(y(`)|y(0), . . . , y(`−1)). Then, 1− pk(σ), the probability that σ does not appear in

{
y(`)[I] : 0 ≤ ` ≤ k

}
, can

be expanded as a product of k factors: the `th factor is the conditional probability that the revealed value
of y(`) does not equal σ. The `th factor of this product can be thought of as (1 minus) the contribution of
y(`) to pk(σ).

Our second step is to estimate this product by a sum, whose `th summand is the contribution of y(`) to
this estimate of pk(σ). The purpose of this estimation is to decouple the contributions of the y(`), so that we
can analyze the overall contribution of y(`) by summing over σ ∈ {T, F}k. We achieve this by truncating the
factors in the product at 1− 1

k log k ; any factor smaller than this gets rounded up to 1. Because 1
k log k �

1
k ,

we can separate the contributions of y(1), . . . , y(k) to pk(σ) by the estimate

1− (1− ε1)(1− ε2) · · · (1− εk) ≈ ε1 + ε2 + · · ·+ εk

up to 1− ok(1) multiplicative error. Propositions 2.4.5 and 2.4.6 below carry out this technique.

29

Finally, our third step is to collect the (now additive) contributions of each y(`) to the estimated pk(σ)
over all σ ∈ {T, F}k. Miraculously, we can interpret this sum as a probability of a sum of k i.i.d. random
variables, which can be controlled by a Chernoff bound. This step is carried out in Proposition 2.4.7.

Formally, for 0 ≤ ` ≤ k and i ∈ [N], let y
(≤`)
i = (y

(1)
i , . . . , y

(`)
i). Similarly, for I ∈ [N]k, let y(≤`)[I] =

(y(1)[I], . . . , y(`)[I]). Because y(0) = TN , the overlap profile π determines the distribution of y
(≤k)
i over

i ∼ unif([N]). Namely, for ξ ∈ {T, F}k,

P
i∼unif([N])

[
y

(≤k)
i = ξ

]
= πS∪{0},T

where S = {` ∈ [k] : ξ` = T} and T = {` ∈ [k] : ξ` = F}. Moreover, the distribution of y(≤k)[I], where
I ∼ unif([N]k), is the product of k i.i.d. copies of this distribution. For 1 ≤ ` ≤ k, b ∈ {T, F}, and
ξ ∈ {T, F}`−1, define

φ`(b|ξ) = P
i∼unif([N])

[
y

(`)
i = b|y(≤`−1)

i = ξ
]
.

The probabilities in the aforementioned conditional expansion are products of conditional probabilities

φ`(b|ξ). Namely, the probability that y(`)[I] 6= σ given y(≤`−1)[I] is 1−
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

).

For 1 ≤ ` ≤ k, σ ∈ {T, F}k and I ∈ [N]k, further define

Q`(σ, I) =

(
k∏
r=1

φ`(σr|y(≤`−1)
Ir

)

)
1

{
k∏
r=1

φ`(σr|y(≤`−1)
Ir

) ≤ 1

k log k

}
and q`(σ) = E

I∼unif([N]k)
[Q`(σ, I)] .

Thus, 1−Q`(σ, I) is a term in the conditional expansion, truncated at 1− 1
k log k in the aforementioned sense,

and q`(σ) is its expectation.
For each σ ∈ {T, F}k, the following two propositions lower bound pk(σ) in terms of q1(σ), . . . , qk(σ) by

peeling off one of y(1), . . . , y(k) at a time.

Proposition 2.4.5. For each σ ∈ {T, F}k and 1 ≤ ` ≤ k, we have that

p`(σ) ≥
(

1− 1

k log k

)
p`−1(σ) + q`(σ).

Proof. Note that

1− p`(σ) = P
I∼unif([N]k)

[
y(`′)[I] 6= σ for all 0 ≤ `′ ≤ `

]
= E
I∼unif([N]k)

[
1
{
y(`′)[I] 6= σ for all 0 ≤ `′ ≤ `− 1

}(
1−

k∏
r=1

φ`(σr|y(≤`−1)
Ir

)

)]
.

Here, we use that the event inside the indicator is y(≤`−1)[I]-measurable, and conditioned on y(≤`−1)[I] the

probability that y(`)[I] = σ is
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

). Moreover, we have
∏k
r=1 φ`(σr|y

(≤`−1)
Ir

) ≥ Q`(σ, I) by
definition. So,

1− p`(σ) ≤ E
I∼unif([N]k)

[(1− 1 {I ∈ E`−1(σ)}) (1−Q`(σ, I))]

≤ E
I∼unif([N]k)

[
1−

(
1− 1

k log k

)
1 {I ∈ E`−1(σ)} −Q`(σ, I)

]
= 1−

(
1− 1

k log k

)
p`−1(σ)− q`(σ).

The second-last line uses the fact that Q`(σ, I) ≤ 1
k log k almost surely, and the last line uses the definitions

of p`−1(σ) and q`(σ). Rearranging yields the desired bound.

30

Proposition 2.4.6. For each σ ∈ {T, F}k, we have that

pk(σ) ≥
(

1− 1

log k

) k∑
`=1

q`(σ).

Proof. By iterating Proposition 2.4.5, we get

pk(σ) ≥
(

1− 1

k log k

)k
p0(σ) +

k∑
`=1

(
1− 1

k log k

)k−`
q`(σ) ≥

(
1− 1

k log k

)k k∑
`=1

q`(σ).

The result follows from the bound
(

1− 1
k log k

)k
≥ 1− 1

log k , by Bernoulli’s inequality.

Equation (2.4.4) and Proposition 2.4.6 leave the task of lower bounding
∑
σ∈{T,F}k

∑k
`=1 q`(σ). This is

achieved by the following proposition, which reinterprets
∑
σ∈{T,F}k q`(σ), the total contribution of y(`), as a

probability.

Proposition 2.4.7. For each 1 ≤ ` ≤ k, we have that∑
σ∈{T,F}k

q`(σ) ≥ 1− β`e−(β`−1) − ok(1).

Proof. Using the definition of q`(σ), we have

∑
σ∈{T,F}k

q`(σ) = E
I∼unif([N]k)

 ∑
σ∈{T,F}k

(
k∏
r=1

φ`(σr|y(≤`−1)
Ir

)

)
1

{
k∏
r=1

φ`(σr|y(≤`−1)
Ir

) ≤ 1

k log k

}
= E
I∼unif([N]k)

 ∑
σ∈{T,F}k

(
k∏
r=1

φ`(σr|y(≤`−1)
Ir

)

)
1

{
−

k∑
r=1

log φ`(σr|y(≤`−1)
Ir

) ≥ log k + log log k

} .
This quantity is the success probability of the following experiment. Sample positive random variables
u1, . . . , uk by the following procedure, repeated independently for each r ∈ [k]. Sample i ∈ unif([N]); this

determines the value of y
(≤`−1)
i . Then, sample b ∈ {T, F} from the measure φ`(·|y(≤`−1)

i). Finally, set

ur = − log φ`(b|y(≤`−1)
Ir

). The experiment succeeds if
∑k
r=1 ur ≥ log k + log log k.

For r ∈ [k], let vr = min(ur, log k). This is a proxy for ur with an almost sure upper bound, which allows
us to control the experiment’s failure probability by a Chernoff bound. This failure probability is bounded
by

P

[
k∑
r=1

ur < log k + log log k

]
≤ P

[
k∑
r=1

vr < log k + log log k

]
= P

[
k∑
r=1

vr
log k

< 1 +
log log k

log k

]
.

Note that the vr
log k are i.i.d. random variables in [0, 1] almost surely. To bound this last probability by a

Chernoff bound, we will lower bound E[vr]. By the definition of φ`,

E[ur] = E
i∼unif([N])

E
b∼φ`(·|y(≤`−1)

i)

[
− log φ`(b|y(≤`−1)

i)
]

= H(π(y(`)|y(0), . . . , y(`−1))) = β`
log k

k
.

Moreover,

E[ur − vr] = E [(ur − log k)1 {ur ≥ log k}]

= E
i∼unif([N])

 ∑
b∈{T,F}

φ`(b|y(≤`−1)
i) log

1

kφ`(b|y(≤`−1)
i)

1

{
φ`(b|y(≤`−1)

i) ≤ 1

k

} .
31

For each i ∈ [N], the quantity inside the last expectation is nonzero for at most one b ∈ {T, F} (for k ≥ 3).
Moreover, on the interval [0, 1

k], the function x 7→ x log 1
kx has maximum value 1

ek , attained at x = 1
ek . Thus,

E[ur − vr] ≤ 1
ek . It follows that E[vr] ≥ β` log k

k −
1
ek . So,

E

[
k∑
r=1

vr
log k

]
≥ β` −

1

e log k
.

Furthermore, (1 + log log k
log k)/(β` − 1

e log k) = 1
β`

+ ok(1). So, by a Chernoff bound,

P

[
k∑
r=1

vr
log k

< 1 +
log log k

log k

]
≤

 e
−(1− 1

β`
−ok(1))(

1
β`

+ ok(1)
) 1
β`

+ok(1)


β`−ok(1)

= β`e
−(β`−1) + ok(1).

Hence,

P

[
k∑
r=1

ur ≥ log k + log log k

]
≥ 1− β`e−(β`−1) − ok(1),

as desired.

We can now combine these propositions to prove Proposition 2.4.2.

Proof of Proposition 2.4.2. By combining (2.4.4), Proposition 2.4.6, and Proposition 2.4.7, we have

E
I∼unif([N]k)

∣∣∣{y(`)[I] : 0 ≤ ` ≤ k
}∣∣∣ ≥ (1− 1

log k

) k∑
`=1

∑
σ∈{T,F}k

q`(σ)

≥ (1− ok(1))

k∑
`=1

(
1− β`e−(β`−1)

)
.

2.5 Stability of Low Degree Polynomials

In this section, we will prove Proposition 2.3.7(a), which lower bounds the probability that x(t) satisfies Φ(t)

for all 0 ≤ t ≤ T and the sequence x(t) has no large jumps in Hamming distance.
The proof is a mild generalization of the stability analysis in [GJW20, Subsection 4.1] and [Wei20,

Subsection 2.3] from a biased Boolean hypercube to a product of discrete uniform measures. Like in these
two works, the proof proceeds in two steps. The interpolation path can be modeled as a walk on a product
graph whose vertices are the elements of Ωk(N,M), where two vertices are adjacent if they differ by one
literal. An edge (Φ,Φ′) is bad if the output of our polynomial f has a large jump between inputs Φ and Φ′.
In the first step, we will use Fourier analysis to upper bound the fraction of bad edges. In the second step,
we translate this bound to a lower bound on the probability that our walk encounters no bad edges.

2.5.1 An Upper Bound on the Rate of Bad Steps

We begin by formalizing the notion of c-badness. Recall that n = M · k · 2N , and each Φ ∈ Ωk(N,M) is
identified with a vector of indicators in {0, 1}n, which is the input of a low degree polynomial.

Definition 2.5.1 (c-badness). Let c > 0 and let f : Rn → RN be a deterministic degree-D polynomial. A

pair of formulas (Φ,Φ′) ∈ Ωk(N,M)2 is c-bad (with respect to f) if ‖f(Φ)− f(Φ′)‖22 > cEΦ∼Φk(N,M) ‖f(Φ)‖22.

Recall the interpolation path Φ(0),Φ(1), . . . ,Φ(T) defined in Definition 2.3.2. We will prove Proposi-
tion 2.3.7(a) via the following proposition, which controls the probability that the output of f does not have
a large jump between any pair of consecutive assignments in the interpolation path.

32

Proposition 2.5.2. Let f : Rn → RN be a deterministic degree-D polynomial. With probability at least
(2N)−4Dk/c, (Φ(t−1),Φ(t)) is not c-bad with respect to f for any 1 ≤ t ≤ T .

We will prove this proposition in Subsection 2.5.3. The objective of this subsection is to prove Propo-
sition 2.5.3 below, which upper bounds the fraction of all possible steps that are bad. To this end, for
1 ≤ j ≤ kM , define Φk(N,M ; j) as the measure of a sample (Φ,Φ′) ∈ Ωk(N,M)2 obtained by sam-
pling Φ ∼ Φk(N,M), and then obtaining Φ′ from Φ by resampling the jth lexicographic literal Φ′L(j) from

unif
(
L \ {ΦL(j)}

)
. (Recall the definition of L(j) before Definition 2.3.2.) Define

λj = P
(Φ,Φ′)∼Φk(N,M ;j)

((Φ,Φ′) is c-bad with respect to f) .

This is the fraction of pairs of formulas in Ωk(N,M), differing in exactly the jth lexicographic literal, that
are c-bad with respect to f .

Proposition 2.5.3. If f is a deterministic degree-D polynomial, then
∑kM
j=1 λj ≤

4D
c .

We recall the following orthogonal decomposition property of functions on product measures, which can
be thought of as a generalization of Fourier analysis on the Boolean cube. We will give brief self-contained
proofs of the relevant facts; a full discussion can be found in [O’D14, Chapter 8.3]. Let (X ,PX) be an
arbitrary probability space, and let J be a positive integer. Let X = (X1, . . . , XJ) ∈ X J . For j ∈ [J], define
the operators Dj and Ej as follows. For any function g : X J → R, Ejg is the function satisfying

Ejg(X) = E
Xj∼(X ,PX)

g(X),

where in the right-hand side the coordinate Xj is resampled from (X ,PX). Let Djg = g − Ejg. Note that
the operators {Dj ,Ej}j∈[J] commute. For S ⊆ [J], define the functions

ĝS =
∏
j∈S

Dj
∏

j∈[J]\S

Ejg.

Note that g =
∑
S⊆[J] ĝS . Moreover, ĝS depends only on the inputs {Xj : j ∈ S}. For any j,

E
Xj∼(X ,PX)

g(X)2 = E
Xj∼(X ,PX)

[
(Djg)(X)2

]
+ (Ejg)(X)2,

and so by induction

E
X∼(X ,PX)⊗J

g(X)2 =
∑
S⊆[J]

E
X∼(X ,PX)⊗J

ĝS(X)2.

For j ∈ [J], define Varjg(X) = EXj∼(X ,PX)

[
(Djg)(X)2

]
. We begin with the following inequality, which can

be considered a converse to the Efron-Stein inequality.

Lemma 2.5.4. Suppose a function g : X J → R can be written in the form g(X) =
∑I
i=1 gi(X), where each

gi(X) depends on at most D coordinates of X. Then,

D Var
X∼(X ,PX)⊗J

g(X) ≥
J∑
j=1

E
X∼(X ,PX)⊗J

Varjg(X).

Proof. By the orthogonal expansion above, we have

Var
X∼(X ,PX)⊗J

g(X) =
∑
S⊆[J]
S 6=∅

E
X∼(X ,PX)⊗j

ĝS(X)2 and E
X∼(X ,PX)⊗J

Varjg(X) =
∑
S⊆[J]
S3j

E
X∼(X ,PX)⊗j

ĝS(X)2.

We claim that for all S ⊆ [J] with |S| > D, we have ĝS ≡ 0. For each i ∈ [I], we have
∏
j∈S Djgi ≡ 0,

because S contains at least one j such that gi(X) does not depend on Xj . Thus,
∏
j∈S Djg ≡ 0, and so

ĝS ≡ 0, as desired. Hence,

J∑
j=1

E
X∼(X ,PX)⊗J

Varjg(X) =
∑
S⊆[J]
|S|≤D

|S| E
X∼(X ,PX)⊗j

ĝS(X)2 ≤ D Var
X∼(X ,PX)⊗J

g(X).

33

Proof of Proposition 2.5.3. Note that Φk(N,M) is composed of kM i.i.d. literals, and thus can be thought
of as the product measure unif(L)⊗kM . By slight abuse of notation, for 1 ≤ j ≤ kM , we can define Dj and
Ej as the above operators with respect to the jth lexicographic literal ΦL(j) of Φ.

For 1 ≤ ` ≤ N , let f` denote the `th component of f . By Markov’s inequality and the inequality
(a− b)2 ≤ 2a2 + 2b2, we have

kM∑
j=1

λj ≤
kM∑
j=1

E(Φ,Φ′)∼Φk(N,M ;j) ‖f(Φ)− f(Φ′)‖22
cEΦ∼Φk(N,M) ‖f(Φ)‖22

=

∑N
`=1

∑kM
j=1 E(Φ,Φ′)∼Φk(N,M ;j)((Djf`)(Φ)− (Djf`)(Φ

′))2

c
∑N
`=1 EΦ∼Φk(N,M) f`(Φ)2

≤
2
∑N
`=1

∑kM
j=1 E(Φ,Φ′)∼Φk(N,M ;j)

(
(Djf`)(Φ)2 + (Djf`)(Φ

′)2
)

c
∑N
`=1 EΦ∼Φk(N,M) f`(Φ)2

=
4
∑N
`=1

∑kM
j=1 EΦ∼Φk(N,M) Varjf`(Φ)

c
∑N
`=1 EΦ∼Φk(N,M) f`(Φ)2

.

Now, each f` is a degree-D polynomial in the indicators Φi,j,s that Φi,j is the sth literal in L. So, each
monomial of each f` depends on at most D literals of Φ. By Lemma 2.5.4,

kM∑
j=1

E
Φ∼Φk(N,M)

Varjf`(Φ) ≤ D Var
Φ∼Φk(N,M)

f`(Φ) ≤ D E
Φ∼Φk(N,M)

f`(Φ)2.

So,
∑kM
j=1 λj ≤

4D
c .

2.5.2 Bounding the Probability of no Bad Step

Proposition 2.5.3 bounds the combined rate of c-bad steps. To derive Proposition 2.5.2, we must translate
this bound on the rate of c-bad steps to a bound on the probability that interpolation path never takes a
c-bad step. To make the ideas in our argument more clear, we abstract to the following graph theoretic
problem, which is interesting in its own right.

Let Σ be a set of symbols and J, T be positive integers. Let G be a graph on ΣJ , where two nodes are
adjacent if their Hamming distance is exactly 1. Each edge has a direction j ∈ [J], the index on which its
endpoints disagree. Let an arbitrary subset of edges be bad ; for adjacent vertices v, w, let B(v, w) denote
the event that the edge (v, w) is bad. For j ∈ [J], let λj denote the fraction of edges in direction j that are
bad. Equivalently, λj = P(B(v, w)), where v ∼ unif(G) and w is obtained from v by resampling wj from
unif (Σ \ {vj}).

Let σ : [T] → [J] be an arbitrary map. Consider the (lazy) random walk v(0), v(1), . . . , v(T) such that

v(0) ∼ unif(G) and for 1 ≤ t ≤ T , v(t) is obtained from v(t−1) by resampling v
(t)
σ(t) from unif(Σ).

Lemma 2.5.5. With probability at least |Σ|−
∑T
t=1 λσ(t) , no step of the random walk v(0), v(1), . . . , v(T) tra-

verses a bad edge.

Note that at each step, the random walk either traverses an edge or does not move; we say that the steps
that do not move do not traverse a bad edge. The lemma is sharp, for example, when all the λj are 0 or 1:
in this case, the random walk does not traverse a bad edge if it does not move at all times t with λσ(t) = 1.

Proof. For v ∈ ΣJ , let q(v) be the probability that the random walk v(0), v(1), . . . , v(T) does not traverse a
bad edge, starting from v(0) = v. We will prove by induction on T that

E
v∼unif(G)

log q(v) ≥ − log |Σ| ·
T∑
t=1

λσ(t).

The lemma then follows from Jensen’s inequality, because logE q(v) ≥ E log q(v).

34

The base case of the claim, T = 0, follows trivially. For the inductive step, let q̃(v) be the probability
that the random walk v(1), v(2), . . . , v(T) does not traverse a bad edge, starting from v(1) = v. Let j = σ(1).
Let v∼j ∈ ΣJ−1 denote an element of ΣJ with the jth coordinate left blank. For s ∈ Σ, let v∼j [s] ∈ ΣJ

denote v∼j with the jth coordinate set to s.
For now, fix some v∼j ∈ ΣJ−1. For s ∈ Σ, we have that

q(v∼j [s]) =
∑
s′∈Σ

1

|Σ|
1
{
s′ = s or B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

=
∑

s′∈Σ\{s}

1

|Σ| − 1

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
.

By Jensen’s inequality, this implies

log q(v∼j [s]) ≥
∑

s′∈Σ\{s}

1

|Σ| − 1
log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
.

Taking an expectation over s ∼ unif(Σ), we have

E
s∼unif(Σ)

log q(v∼j [s]) ≥
∑
s,s′∈Σ
s6=s′

1

|Σ|(|Σ| − 1)

[
log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)]

=
∑
s,s′∈Σ
s6=s′

1

2|Σ|(|Σ| − 1)
ξ(v∼j , s, s

′), (2.5.1)

where for s 6= s′,

ξ(v∼j , s, s
′) = log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
+ log

(
1

|Σ|
q̃(v∼j [s

′]) +
|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s])

)
.

If B (v∼j [s], v∼j [s
′]) holds, then ξ(v∼j , s, s

′) = log q̃(v∼j [s])+log q̃(v∼j [s
′])−2 log |Σ|. Otherwise, by Jensen’s

inequality we have

log

(
1

|Σ|
q̃(v∼j [s]) +

|Σ| − 1

|Σ|
1
{
B (v∼j [s], v∼j [s

′])
c}
q̃(v∼j [s

′])

)
≥ 1

|Σ|
log q̃(v∼j [s]) +

|Σ| − 1

|Σ|
log q̃(v∼j [s

′])

and similarly for the other term of ξ(v∼j , s, s
′). In this case, ξ(v∼j , s, s

′) ≥ log q̃(v∼j [s]) + log q̃(v∼j [s
′]). So,

in all cases
ξ(v∼j , s, s

′) ≥ log q̃(v∼j [s]) + log q̃(v∼j [s
′])− 21 {B (v∼j [s], v∼j [s

′])} log |Σ|.
Substituting into (2.5.1), we have

E
s∼unif(Σ)

log q(v∼j [s]) ≥ E
s∼unif(Σ)

log q̃(v∼j [s])− log |Σ| ·
∑
s,s′∈Σ
s6=s′

1 {B (v∼j [s], v∼j [s
′])}

|Σ|(|Σ| − 1)
.

Taking an expectation over v∼j yields

E
v∼unif(G)

log q(v) ≥ E
v∼unif(G)

log q̃(v)− log |Σ| · λj .

By induction, we have

E
v∼unif(G)

log q̃(v) ≥ − log |Σ| ·
T∑
t=2

λσ(t),

and the result follows.

35

2.5.3 Completing the Proof of Stability

Proof of Proposition 2.5.2. Our interpolation scheme can be modeled as the random walk in Subsection 2.5.2,
with Σ = L, J = kM , T = k2M , σ(t) defined in Definition 2.3.2, and where the bad edges are the c-bad edges.
This correspondence is consistent because the steps in the interpolation path where a formula transitions to
itself are never c-bad.

Since σ maps to every value in [kM] k times and |L| = 2N , Proposition 2.5.3 and Lemma 2.5.5 imply
that the probability of never traversing a c-bad edge is at least (2N)−4Dk/c.

Proof of Proposition 2.3.7(a). Set c = β+−β−
γk . Let Sno-bad be the event that for all 1 ≤ t ≤ T , (Φ(t−1),Φ(t))

is not c-bad with respect to f . By Proposition 2.5.2, P(Sno-bad) ≥ (2N)−4Dk2γ/(β+−β−).

By a union bound, P(Svalid) ≥ 1− (T + 1)δ. Thus, P(Svalid ∩ Sno-bad) ≥ (2N)−4Dk2γ/(β+−β−) − (T + 1)δ.
We claim that on Svalid ∩ Sno-bad, the event Sconsec also occurs.

Suppose for sake of contradiction that Svalid ∩ Sno-bad holds and for some 1 ≤ t ≤ T , we have that
∆(x(t−1), x(t)) > β+−β−

2k . Because (Φ(t−1),Φ(t)) is not c-bad, we have∥∥∥f(Φ(t−1))− f(Φ(t))
∥∥∥2

2
≤ c E

Φ∼Φk(N,M)
‖f(Φ)‖22 ≤ cγN =

β+ − β−
k

N.

Let I = {i ∈ [N] : x
(t−1)
i 6= x

(t)
i }, so |I| > β+−β−

2k N . Define

B(t) =
{
i ∈ [N] : x

(t)
i 6= (round ◦ f)(Φ(t))i

}
.

Because x
(t)
i = A(Φ(t))i and the assistance subroutine B in A can edit only an η fraction of bits of the

assignment, |B(t)| ≤ ηN = β+−β−
8k N . For similarly defined B(t−1), we likewise have |B(t−1)| ≤ β+−β−

8k N .

Let J = I \ (B(t−1) ∪ B(t)), so |J | > β+−β−
4k N . For all i ∈ J , one of fi(Φ

(t−1)) and fi(Φ
(t)) is at least 1

and the other is at most −1, so |fi(Φ(t−1))− fi(Φ(t))| ≥ 2. So,∥∥∥f(Φ(t−1))− f(Φ(t))
∥∥∥2

2
≥
∑
i∈J
|fi(Φ(t−1))− fi(Φ(t))|2 > β+ − β−

k
N.

This is a contradiction. Therefore Sconsec ⊇ Svalid ∩ Sno-bad, and so

P(Svalid ∩ Sconsec) ≥ P(Svalid ∩ Sno-bad) ≥ (2N)−4Dk2γ/(β+−β−) − (T + 1)δ.

2.6 Proof of Impossibility for Local Algorithms

This section proves our impossibility result for local algorithms, Theorem 2.1.13. Throughout, fix κ > κ∗

and r ∈ N. Fix a probability space (Ω,Pω), and let A be an r-local algorithm that, on input Φ ∈ Ωk(N,M)
with factor graph (G, ρ), samples internal randomness ϕ ∼ (Ω,Pω)⊗(VG∪EG).

Let ϕV = ϕ
∣∣
VG

and ϕE = ϕ
∣∣
EG

. We will actually prove Theorem 2.1.13 conditioned on any realization of
ϕV . Fix once and for all a realization of ϕV ; all probabilities and expectations in this section will implicitly
be conditioned on this realization.

2.6.1 A Different Interpolation

Instead of the interpolation path of k2M problem instances used in the proof of Theorem 2.1.6, we now use
an interpolation structured as k paths of length kM originating at a common point. We also couple to this
interpolation the internal randomness ϕE of A run on these problem instances.

36

Definition 2.6.1 (Interplation structure). Let T ′ = kM . We will sample Φ(0) and Φ(`,t) ∈ Ωk(N,M) for
1 ≤ ` ≤ k, 1 ≤ t ≤ T ′. Let the factor graphs of these k-SAT instances be (G(0), ρ(0)) and (G(`,t), ρ(`,t)). We

also sample maps ϕ
(0)
E : EG(0) → Ω and ϕ

(`,t)
E : EG(`,t) → Ω.

We sample Φ(0) ∼ Φk(N,M) and ϕ
(0)
E ∼ (Ω,Pω)⊗EG(0) . For 1 ≤ ` ≤ k, 1 ≤ t ≤ T ′, we obtain Φ(`,t) from

Φ(`,t−1) (take Φ(`,0) = Φ(0) for all `) by resampling Φ
(`,t)
L(t) from unif(L). (Recall that L(t) is the tth pair

(a, b) ∈ [M]× [k] in lexicographic order.)
This resampling deletes an edge e from G(`,t−1), adds an edge e′ to G(`,t) (possibly in the same location),

and samples ρ(`,t)(e) ∼ unif({T, F}). We obtain ϕ
(`,t)
E from ϕ

(`,t−1)
E by deleting the entry for e′ and sampling

ϕ
(`,t)
E (e) ∼ (Ω,Pω).

In other words, starting from a random k-SAT instance we sample k interpolation paths, where in each
path we resample the literals one by one in the same order. Resampling a literal resamples an edge of the
factor graph, and we also resample the output of ϕE on that edge.

Note that each (Φ(`,t), ϕ
(`,t)
E) is marginally distributed as (Φ, ϕE) where Φ ∼ Φk(N,M) and ϕE ∼

(Ω,Pω)⊗EG , where (G, ρ) is the factor graph of Φ. Moreover, (Φ(`,T ′), ϕ
(`,T ′)
E) is independent of (Φ(0), ϕ

(0)
E)

and (Φ(`′,t), ϕ
(`′,t)
E) for all `′ 6= `.

2.6.2 Selecting Problem Instances Yielding the Forbidden Structure

We set β−, β+, ε as in Subsection 2.3.4. Recall that these numbers depend only on κ, and β+ε
1−βe−(β−1) ≤ κ

for all β ∈ [β−, β+]. Moreover, set β0 = β−+β+

2 .

In the proof of Theorem 2.1.6, we selected the problem instances Φ(t0),Φ(t1), . . . ,Φ(tk) where the algorithm
outputs form a forbidden structure after observing the entire interpolation. Here, because we can leverage
concentration properties of local algorithms (instead of stability properties of low degree polynomials), we
know in advance which problem instances to choose. This allows us to immediately restrict our attention to
k + 1 problem instances, instead of the full interpolation structure.

We will choose the problem instances Φ(0) and Φ(`,t`) for 1 ≤ ` ≤ k, for indices t1, . . . , tk we now
determine. Consider random variables (which depend on the t`)

x(0) = A(Φ(0), ϕ
(0)
E) and x(`) = A(Φ(`,t`), ϕ

(`,t`)
E)

for 1 ≤ ` ≤ k. Here, A(Φ, ϕE) denotes A run with input Φ and internal randomness ϕE (we suppress the
dependence on ϕV , which is fixed).

We inductively define t` in terms of t1, . . . , t`−1 as the smallest number satisfying 1 ≤ t` ≤ T ′ and

EH
(
π(x(`)|x(0), . . . , x(`−1))

)
≥ β0

log k

k
.

If no such t` exists, set t` = T ′ and say ` is deficient. Note that the t` are a deterministic function of A and

ϕV . For 1 ≤ ` ≤ k, define Φ(`) = Φ(`,t`) and ϕ
(`)
E = ϕ

(`,t`)
E . Let (G(`), ρ(`)) be the factor graph of Φ(`).

The following lemma follows from the stability of the expected conditional overlap entropy when we
resample one literal of Φ(`,t). We defer its proof to Subsection 2.6.6. The exponent − 1

2 can be replaced by
any constant larger than −1.

Lemma 2.6.2. If ` ∈ [k] is not deficient, then

β0
log k

k
≤ EH

(
π(x(`)|x(0), . . . , x(`−1))

)
≤ β0

log k

k
+O(N−1/2).

2.6.3 Outline of the Proof

For the rest of this proof, take η = β+−β−
32k2 and ν = 1

k22k
. We now define events Svalid, Sconc, Sindep, Sogp,

which are measurable in the (Φ(`), ϕ
(`)
E) for 0 ≤ ` ≤ k.

37

Let Svalid be the event that for all 0 ≤ ` ≤ k, x(`) (η, ν)-satisfies Φ(`). Let Sconc be the event that for all
1 ≤ ` ≤ k, ∣∣∣H (π(x(`)|x(0), . . . , x(`−1))

)
− EH

(
π(x(`)|x(0), . . . , x(`−1))

)∣∣∣ ≤ 1

logN
.

For 1 ≤ ` ≤ k, let S`indep be the event that there does not exist an assignment y ∈ {T, F}N such that

(IND-A) y ν-satisfies Φ(`);

(IND-B) H
(
π(y|x(0), . . . , x(`−1))

)
≤ β+

log k
k .

Let Sogp be the event that there does not exist assignments y(0), . . . , y(k) ∈ {T, F}N such that

(OGP-A) For all 0 ≤ ` ≤ k, x(`) ν-satisfies Φ(`);

(OGP-B) For all 1 ≤ ` ≤ k, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
.

Finally, define
p = P [A(Φ, ϕE) (η, ν)-satisfies Φ] ,

where the probability is over the randomness of Φ ∼ Φk(N,M) and ϕE ∼ (Ω,Pω)⊗EG , where (G, ρ) is the
factor graph of Φ. This is the probability upper bounded by Theorem 2.1.13.

We will derive Theorem 2.1.13 from the following two propositions.

Proposition 2.6.3. For all sufficiently large k and N , the following relations hold.

(a) If ` ∈ [k] is deficient, then Svalid ∩ Sconsec ∩ S`indep = ∅.

(b) If no ` ∈ [k] is deficient, then Svalid ∩ Sconsec ∩ Sogp = ∅.

Proposition 2.6.4. For all sufficiently large k and N , the following inequalities hold.

(a) P(Svalid) ≥ pk+1.

(b) P(Sconc) ≥ 1− exp(−Ω̃(N1/3)).

(c) If ` ∈ [k] is deficient, then P(S`indep) ≥ 1− exp(−Ω(N)).

(d) If no ` ∈ [k] is deficient, then P(Sogp) ≥ 1− exp(−Ω(N)).

We will prove Proposition 2.6.3 in Subsection 2.6.4, Proposition 2.6.4(a) in Subsection 2.6.5, and Propo-
sition 2.6.4(b) in Subsection 2.6.6. Proposition 2.6.4(c,d) are analogous to Proposition 2.3.7(b,c). The proofs
are exactly the same, except we no longer need to union bound over all possible choices of the t`.

First, let us see how these bounds imply Theorem 2.1.13.

Proof of Theorem 2.1.13. Set k∗ such that for all k ≥ k∗, Propositions 2.6.3 and 2.6.4 both hold.
Suppose some ` ∈ [k] is deficient. By Proposition 2.6.3(a), P(Svalid) + P(Sconc) + P(S`indep) ≤ 2. By

Proposition 2.6.4, this implies

pk+1 ≤ exp(−Ω̃(N1/3)) + exp(−Ω(N)),

whence p ≤ exp(−Ω̃(N1/3)). If no ` ∈ [k] is deficient, then by Proposition 2.6.3(b), P(Svalid) + P(Sconc) +

P(Sogp) ≤ 2. By Proposition 2.6.4, we get the same conclusion. So, p ≤ exp(−Ω̃(N1/3)) conditionally on
any realization of ϕV .

38

2.6.4 Successful Algorithm Outputs Contradict S`indep or Sogp

The following corollary to Lemma 2.3.8 is obvious.

Corollary 2.6.5. Let ` ∈ N be arbitrary and let x, x′, y(0), . . . , y(`−1) ∈ {T, F}N . If ∆(x, x′) ≤ 1
2 , then∣∣∣H (π(x, y(0), . . . , y(`−1))

)
−H

(
π(x′, y(0), . . . , y(`−1))

)∣∣∣ ≤ H(∆(x, x′)).

Proof. Use Fact 2.3.5(b).

Proof of Proposition 2.6.3. Suppose Svalid and Sconc both hold. We will construct an example of the structure
forbidden by S`indep or Sogp. Since Svalid holds, there exists y(0), . . . , y(`) such that for all 0 ≤ ` ≤ k,

∆(x(`), y(`)) ≤ η and y(`) ν-satisfies Φ(`).
Suppose ` ∈ [k] is deficient. Then, EH

(
π(x(`)|x(0), . . . , x(`−1))

)
≤ β0

log k
k by definition. By Lemma 2.3.8,∣∣∣H (π(y(`)|x(0), . . . , x(`−1))

)
−H

(
π(x(`)|x(0), . . . , x(`−1))

)∣∣∣ ≤ H(η) ≤ β+ − β−
8

· log k

k2

for sufficiently large k, using the bound H(x) ≤ x log e
x . In tandem with Sconc, this implies

H
(
π(y(`)|x(0), . . . , x(`−1))

)
≤ β0

log k

k
+
β+ − β−

8
· log k

k2
+

1

logN
≤ β+

log k

k

for sufficiently large N . This is an example of the structure forbidden by S`indep. This proves part (a).
Otherwise, suppose no ` ∈ [k] is deficient. Writing (by Fact 2.3.5(b))

H
(
π(x(`)|x(0), . . . , x(`−1))

)
= H

(
π(x(0), . . . , x(`))

)
−H

(
π(x(0), . . . , x(`−1))

)
and applying Corollary 2.6.5 repeatedly, we have, for all 1 ≤ ` ≤ k,∣∣∣H (π(x(`)|x(0), . . . , x(`−1))

)
−H

(
π(y(`)|y(0), . . . , y(`−1))

)∣∣∣ ≤ 2(k + 1)H(η) ≤ β+ − β−
4

· log k

k

for sufficiently large k. By Lemma 2.6.2 and Sconc, this implies∣∣∣∣H (π(y(`)|y(0), . . . , y(`−1))
)
− β0

log k

k

∣∣∣∣ ≤ β+ − β−
4

· log k

k
+

1

logN
+O(N−1/2) ≤ β+ − β−

2
· log k

k

for sufficiently large N . So, H
(
π(y(`)|y(0), . . . , y(`−1))

)
∈
[
β−

log k
k , β+

log k
k

]
for all 1 ≤ ` ≤ k. This is an

example of the structure forbidden by Sogp. This proves part (b).

2.6.5 Lower Bound on the All-Success Probability

Consider the random variable Ψ = (Φ, ϕE), for Φ ∼ Φk(N,M) and ϕE ∼ (Ω,Pω)⊗EG where (G, ρ) is the
factor graph of Φ. In this and the next subsection, the following representation of Ψ as a sequence of kM
i.i.d. random variables will be useful. We can reformat Ψ = (ψj)1≤j≤kM , where ψj = (ΦL(j), ϕE(e)) and e
is the edge in G corresponding to ΦL(j). Each ψj is an i.i.d. sample from Υ = unif(L)× (Ω,Pω).

For 0 ≤ ` ≤ k, let Ψ(`) = (Φ(`), ϕ
(`)
E), which is marginally distributed as Ψ. We similarly can reformat

Ψ(`) = (ψ
(`)
j)1≤j≤kM .

Proof of Proposition 2.6.4(a). For Ψ as above, let

f(Ψ) = 1 {A(Φ, ϕE) (η, ν)-satisfies Φ} .

Note that E f(Ψ) = p by definition, and

P(Svalid) = E

[
k∏
`=0

f(Ψ(`))

]
.

39

We wish to show this expectation is at least pk+1.

The constituent random variables ψ
(`)
j of Ψ(`) = (ψ

(`)
j)1≤j≤kM have the following stochastic structure.

For each 1 ≤ ` ≤ k, the last kM − t` variables (ψ
(`)
j)t`<j≤kM in Ψ(`) are identical to the corresponding

variables in Ψ(0), and the first t` variables (ψ
(`)
j)1≤j≤t` are fresh i.i.d. draws from Υ.

Let τ : [k] → [k] be a permutation such that tτ(1) ≤ tτ(2) ≤ · · · ≤ tτ(k), and let s` = tτ(`). Then,

Ψ(0), . . . ,Ψ(k) all share their last kM − sk variables ψ
(`)
j ; all but Ψ(τ(k)) share the next sk − sk−1 variables;

all but Ψ(τ(k)) and Ψ(τ(k−1)) share the next sk−1 − sk−2 variables, and so on.
For 0 ≤ i ≤ k, let ξi be a sequence of si+1 − si i.i.d. draws from Υ, where s0 = 0 and sk+1 = kM . Let

ξ0
i , ξ

1
i , . . . be a sequence of i.i.d. copies of ξi. By the above discussion, we can generate Ψ(0), . . . ,Ψ(k) by

generating Ψ(0) = (ξ0
i)ki=0, and for 1 ≤ ` ≤ k, generating Ψ(τ(`)) = (ξ

(`−i)+
i)ki=0. For example, when k = 3,

Ψ(0) = (ξ0
0 , ξ

0
1 , ξ

0
2 , ξ

0
3),

Ψ(τ(1)) = (ξ1
0 , ξ

0
1 , ξ

0
2 , ξ

0
3),

Ψ(τ(2)) = (ξ2
0 , ξ

1
1 , ξ

0
2 , ξ

0
3),

Ψ(τ(3)) = (ξ3
0 , ξ

2
1 , ξ

1
2 , ξ

0
3).

Let f(ξ0, . . . , ξk) denote f(Ψ), for the Ψ that can be formatted (by the above discussion) as (ξ0, . . . , ξk). Let
f0 = f , and for 0 ≤ d ≤ k, define

fd+1(ξd+1, . . . , ξk) = E
ξd
fd(ξd, . . . , ξk).

Note that fk+1 takes no inputs and outputs p. Further, for 0 ≤ d ≤ k + 1 define

Pd = E

[
k∏
`=0

fd

(
(ξ

(`−i)+
i)ki=d

)]
.

In particular P0 = P(Svalid) and Pk+1 = pk+1. To finish the proof we will show that Pd ≥ Pd+1 for all
0 ≤ d ≤ k. By Jensen’s inequality,

Pd = E

[
fd
(
(ξ0
i)ki=d

)d+1
k∏

`=d+1

fd

(
(ξ

(`−i)+
i)ki=d

)]

= E

[
E
ξ0d

[
fd
(
(ξ0
i)ki=d

)d+1
] k∏
`=d+1

E
ξ`−dd

[
fd

(
(ξ

(`−i)+
i)ki=d

)]]

≥ E

[
E
ξ0d

[
fd
(
(ξ0
i)ki=d

)]d+1
k∏

`=d+1

E
ξ`−dd

[
fd

(
(ξ

(`−i)+
i)ki=d

)]]

= E

[
fd+1

(
(ξ0
i)ki=d+1

)d+1
k∏

`=d+1

fd+1

(
(ξ

(`−i)+
i)ki=d+1

)]
= Pd+1.

2.6.6 Bounded Differences and Concentration of Local Algorithms

We will use the following variant of McDiarmid’s inequality, which allows a bad event on which bounded
differences are large.

Lemma 2.6.6 ([Kut02, Theorem 3.3]). Let m ∈ N. Let Ω1, . . . ,Ωm be probability spaces and Ω =
∏m
i=1 Ωi.

Let S ⊂ Ω and f : Ω→ R have the following properties.

40

(i) If X,X ′ ∈ S differ in coordinate i, then |f(X)− f(X ′)| ≤ ci.

(ii) If X,X ′ ∈ Ω differ in coordinate i, then |f(X)− f(X ′)| ≤ bi.

Then,

P
X∼Ω

[|f(X)− E f(X)| ≥ t] ≤ 2 exp

(
− t2

8
∑m
i=1 c

2
i

)
+ 2P(Sc)

m∑
i=1

bi
ci
.

The following definition gives the complement of the bad event we will use. The exponent 1
3 is chosen to

minimize the failure probability in Lemma 2.6.6 by balancing the two terms.

Definition 2.6.7. A k-SAT formula Φ ∈ Ωk(N,M) is r-locally small if, for (G, ρ) the factor graph of Φ,
|Nr(v,G)| ≤ N1/3 for all v ∈ VaG.

Fact 2.6.8. If Φ ∼ Φk(N,M) and r ∈ N is constant, Φ is r-locally small with probability 1−exp(−Ω(N1/3)).

Proof. This follows from Lemma 2.7.5 and a union bound. Note that the r-neighborhood of any v ∈ ClG is
contained in the (r + 1)-neighborhood of any of its neighbors.

Proof of Proposition 2.6.4(b). We present the argument for ` = k; showing concentration for the other
conditional overlap entropies is similar. The random variable Y = H

(
π(x(k)|x(0), . . . , x(k−1))

)
is measurable

in Ψ(0), . . . ,Ψ(k). For each 0 ≤ ` ≤ k, we can write Ψ(`) = (ψ
(`)
j)1≤j≤kM . The constituent random variables

ψ
(`)
j can be partitioned into equivalence classes, where variables in the same equivalence class are identical

and different equivalence classes are mutually independent. Let ζ = (ψ1, . . . , ψm) contain one representative
from each equivalence class. Note that ψ1, . . . , ψm i.i.d. samples from Υ and m ≤ k2M .

All the Φ(`) (G(`), ρ(`), ϕ
(`)
E), x(`), overlap profiles of the x(`), and Y are ζ-measurable. We will use Y (ζ)

to denote the Y given by this realization of ζ, and similarly for the remaining random variables.
Let S ⊆ Υm be the event that Φ(`)(ζ) is r-locally small for all 0 ≤ ` ≤ k. By a union bound on Fact 2.6.8,

P(Sc) ≤ exp(−Ω(N1/3)).
Suppose ζ, ζ ′ ∈ S differ in only one coordinate ψi. For each 0 ≤ ` ≤ k, the decorated factor graphs

(G(`), ρ(`), ϕ
(`)
E)(ζ) and (G(`), ρ(`), ϕ

(`)
E)(ζ ′) differ in at most one edge. Because ζ, ζ ′ ∈ S and A is local, x(`)(ζ)

and x(`)(ζ ′) differ in O(N1/3) bits. So, corresponding entries in π(x(0), . . . , x(k))(ζ) and π(x(0), . . . , x(k))(ζ ′)
differ by O(N−2/3). Thus, |Y (ζ)− Y (ζ ′)| ≤ O(N−2/3 logN).

Moreover, for any ζ, ζ ′ ∈ Υm, we have |Y (ζ) − Y (ζ ′)| ≤ log 2 because the conditional overlap entropy
attains values in [0, log 2]. By Lemma 2.6.6,

P
[
|Y − EY | ≥ 1

logN

]
≤ 2 exp

(
− 1/ log2N

8k2MO((N−2/3 logN)2)

)
+ exp(−Ω(N1/3))O

(
2k2M log 2

N−2/3 logN

)
≤ exp(−Ω̃(N1/3)).

Similar ideas prove Lemma 2.6.2.

Proof of Lemma 2.6.2. The lower bound follows from the definition of deficient. For 1 ≤ t ≤ T , let x(`,t) =

A(Φ(`,t), ϕ
(`,t)
E). We will show that∣∣∣EH(π(x(`,t)|x(0), . . . , x(`−1)))− EH(π(x(`,t−1)|x(0), . . . , x(`−1)))

∣∣∣ ≤ O(N−1/2).

Since EH(π(x(`,t`−1)|x(0), . . . , x(`−1))) < β0
log k
k , the above inequality implies the result.

Let S be the event that Φ(`,t−1) and Φ(`,t) are both r-locally small. By Fact 2.6.8 and a union bound,

P(Sc) ≤ exp(−Ω(N1/3)). The decorated factor graphs (G(`,t−1), ρ(`,t−1), ϕ
(`,t−1)
E) and (G(`,t), ρ(`,t), ϕ

(`,t)
E)

differ in at most one edge. On the event S, x(`,t) and x(`,t−1) differ in at most O(N1/3) bits, and by
Lemma 2.3.8,∣∣∣H(π(x(`,t)|x(0), . . . , x(`−1)))−H(π(x(`,t−1)|x(0), . . . , x(`−1)))

∣∣∣ ≤ H(∆(x(`,t), x(`,t−1))) ≤ O(N−2/3 logN).

41

Moreover, this difference is always at most log 2. Thus∣∣∣EH(π(x(`,t)|x(0), . . . , x(`−1)))− EH(π(x(`,t−1)|x(0), . . . , x(`−1)))
∣∣∣ ≤ O(N−2/3 logN) + P(Sc) log 2

≤ O(N−1/2).

2.7 Simulation of Local Memory Algorithms

In this section, we introduce the class of local memory algorithms. These algorithms are a natural general-
ization of local algorithms, which make local decisions in series (in a random vertex order) and allow earlier
decisions to leave local information that later decisions can see. This class includes the first phase of Fix,
as well as the sequential local algorithms considered in [GS17]. We show, somewhat surprisingly, that any
local memory algorithm can be simulated by a local algorithm of larger radius. We then show that any local
algorithm can be simulated by a constant degree polynomial.

The main results of this section are the following two propositions. Throughout this section, fix arbitrary
α = α(k) independent of N and let M = bαNc.

Proposition 2.7.1 (Local algorithms simulate local memory algorithms). Suppose αk, k−1 ≥ 2 and η > 0.
Let A be an r-local memory algorithm (defined in Definition 2.7.12) with output in {T, F}N . There exists
R ∈ N depending on α, k, r, η and an R-local algorithm A′ such that, for some coupling of the internal
randomnesses of A,A′,

P [∆(A(Φ),A′(Φ)) ≥ η] ≤ exp(−Ω(N1/3)),

where the probability is over Φ ∼ Φk(N,M) and the randomnesses of A,A′.

We parse the outputs of a low degree polynomial with the function strictRound : R → {T, F, err},
defined by

strictRound(x) =


T x = 1,

F x = −1,

err otherwise.

When applied to a real-valued vector, strictRound is applied coordinate-wise. Note that this is a more
stringent parsing scheme than round. Let n = M · k · 2N . Recall that each Φ ∈ Ωk(N,M) can be identified
with a vector in {0, 1}n, as described below Definition 2.1.2.

Proposition 2.7.2 (Low degree polynomials simulate local algorithms). Suppose αk, k − 1 ≥ 2 and η > 0.
Let A be an r-local algorithm with output in {T, F}N . There exist D, γ > 0 depending on α, k, r, η and a
(random) degree-D polynomial f : Rn × Ω→ RN such that the following holds. Let A′ = strictRound ◦ f .
For some coupling of the internal randomnesses of A and f ,

P [∆(A(Φ),A′(Φ)) ≥ η] ≤ exp(−Ω(N1/3)),

where the probability is over Φ ∼ Φk(N,M) and the randomnesses of A,A′. Moreover, EΦ,ω ‖f(Φ, ω)‖22 ≤
γN .

Both simulation results incur an error tolerance η independent of N which can be made arbitrarily small
in k and fail with probability only exp(−Ω(N1/3)).

These simulation results imply that our hardness theorems, Theorems 2.1.6 and 2.1.13, apply to any local
memory algorithm. We will also use these results in Section 2.8 with the fact that the first phase of Fix is a
local memory algorithm to show that local algorithms and low degree polynomials solve random k-SAT at
clause density α = (1− ε)2k log k/k.

This section is structured as follows. In Subsection 2.7.1 we review properties of local algorithms and the
k-SAT factor graph. In Subsection 2.7.2 we define local memory algorithms. In Subsection 2.7.3 we prove
Proposition 2.7.1, and in Subsection 2.7.4 we prove Proposition 2.7.2. Subsection 2.7.5 contains deferred
proofs.

42

2.7.1 Properties of Local Algorithms and the k-SAT Factor Graph

Throughout this section, fix a probability space (Ω,Pω). Let DFG(N,M, k, (Ω,Pω)) denote the law of the
decorated random k-SAT factor graph (G, ρ, ϕ), where Φ ∼ Φk(N,M), (G, ρ) is the factor graph of Φ, and
ϕ ∼ (Ω,Pω)⊗(VG∪EG). We write this as DFG(N,M, k) when (Ω,Pω) is unambiguous.

Equivalently, (G, ρ, ϕ) ∼ DFG(N,M, k) can be sampled as follows. VaG = {v1, . . . , vN} and ClG =
{c1, . . . , cM} are fixed. EG consists of k edges from each c ∈ ClG to i.i.d. uniformly random vertices in VaG,
and ρ, ϕ are sampled by ρ ∼ unif({T, F})⊗EG , ϕ ∼ (Ω,Pω)⊗(VG∪EG).

A (possibly infinite) graph is locally finite if every vertex has finite degree. The formalism in Defini-
tions 2.1.9, 2.1.10, and 2.1.11 applies verbatim to locally finite G. The local geometry of a sample from
DFG(N,M, k) can be understood in analogy to the following locally finite tree.

Definition 2.7.3 (Decorated Alternating Galton-Watson Tree). Let d1 > 0, d2 ∈ N. Let DGW(d1, d2, (Ω,Pω))
denote the law of the following rooted decorated tree (o, T, ρ, ϕ). The rooted tree (o, T) is sampled by the
following procedure.

• Start with a root vertex o in layer 0.

• For ` ≥ 1:

– If ` is even, each vertex in layer ` independently spawns Pois(d1) children in layer `+ 1.

– If ` is odd, each vertex in layer ` spawns d2 children in layer `+ 1.

Each non-root vertex is connected to its parent by an edge.

Let VaT and ClT be the sets of even and odd depth vertices of T . Further, let VT = VaT ∪ ClT and let ET
be the edge set of T . Sample ρ ∼ unif({T, F})⊗ET and ϕ ∼ (Ω,Pω)⊗(VT∪ET).

When (Ω,Pω) is unambiguous, we write this as DGW(d1, d2). The significance of this tree is that as
N → ∞, local neighborhoods Nr(v,G, ρ, ϕ) of a sample (G, ρ, ϕ) ∼ DFG(N,M, k), where v ∈ VaG is fixed,
converge weakly to local neighborhoods of the root of DGW(αk, k − 1). This is analogous to the fact that
local neighborhoods of the sparse Erdős-Rényi graph G(N, d/N) converge weakly to local neighborhoods of
the root of the Poisson Galton-Watson tree PGW(d).

We now state several lemmas pertaining to local geometry of samples from DGW(d1, d2) and DFG(N,M, k).
Lemmas 2.7.4 and 2.7.5 control the local neighborhood sizes of the root of DGW(d1, d2) and of a left-vertex
in DFG(N,M, k). Lemma 2.7.6 makes precise the sense in which local neighborhoods of left-vertices of
DFG(n,m, k) converge to local neighborhoods of the root of DGW(αk, k − 1). Lemma 2.7.7 shows con-
centration for the sum of a local function. These lemmas are analogous to [BCN20, Lemma 11.1, Lemma
11.2, Lemma 12.4, Proposition 12.3], which give the analogous results with G(N,M, k) and DGW(αk, k− 1)
replaced by G(n, d/n) and PGW(d) (and without the decorations ρ, ϕ, which do not affect the results). We
omit their proofs, which are easily adapted from the corresponding proofs of [BCN20].

Lemma 2.7.4. Let d1, d2 ≥ 2 and (o, T, ρ, ϕ) ∼ DGW(d1, d2). There are universal constants c0, c1 > 0 such
that for all λ > 0,

P [|N2r(o, T)| ≤ λ(d1d2)r for all positive integers r] ≥ 1− c1e−c0λ.

Lemma 2.7.5. Let αk, k − 1 ≥ 2. Let (G, ρ, ϕ) ∼ DFG(N,M, k), and let v ∈ VaG be fixed. There are
universal constants c0, c1 > 0 such that for all λ > 0,

P [|N2r(v,G)| ≤ λ(αk(k − 1))r for all positive integers r] ≥ 1− c1e−c0λ.

Recall that Λ is the set of (possibly infinite, locally finite) rooted decorated bipartite graphs.

Lemma 2.7.6. Let αk, k − 1 ≥ 2. Let (o, T, ρ, ϕ) ∼ DGW(αk, k − 1), (G, ρ′, ϕ′) ∼ DFG(N,M, k), and let
v ∈ VaG be fixed. Let f : Λ → [−1, 1] be a 2r-local function. There exists c > 0 (depending on α, k, r) such
that for all N ,

|E f(o, T, ρ, ϕ)− E f(v,G, ρ′, ϕ′)| ≤ c logN

N1/2
.

43

Lemma 2.7.7. Let αk, k − 1 ≥ 2, and let (G, ρ, ϕ) ∼ DFG(N,M, k). Let f : Λ → [−1, 1] be a 2r-local
function. There exists c > 0 (depending on α, k, r) such that for all p ≥ 2,

E

[∣∣∣∣∣ ∑
v∈VaG

f(v,G, ρ, ϕ)− E
∑
v∈VaG

f(v,G, ρ, ϕ)

∣∣∣∣∣
p]
≤
(
cN1/2p3/2

)p
.

We can translate Lemma 2.7.7, into the following tail bound for sums of local functions.

Corollary 2.7.8. Let αk, k − 1 ≥ 2, and let (G, ρ, ϕ) ∼ DFG(N,M, k). Let f : Λ → [−1, 1] be a 2r-local
function. There exists c > 0 (depending on α, k, r) such that for all t ≥ cN1/2,

P

[∣∣∣∣∣ ∑
v∈VaG

f(v,G, ρ, ϕ)− E
∑
v∈VaG

f(v,G, ρ, ϕ)

∣∣∣∣∣ ≥ t
]
≤ exp

(
− t2/3

cN1/3

)
.

Proof. Let c be as in Lemma 2.7.7, and suppose t ≥ 23/2ecN1/2. Set p =
(

t
ecN1/2

)2/3 ≥ 2, so by Lemma 2.7.7,

P

[∣∣∣∣∣ ∑
v∈VaG

f(v,G, ρ, ϕ)− E
∑
v∈VaG

f(v,G, ρ, ϕ)

∣∣∣∣∣ ≥ t
]
≤ t−p E

[∣∣∣∣∣ ∑
v∈VaG

f(v,G, ρ, ϕ)− E
∑
v∈VaG

f(v,G, ρ, ϕ)

∣∣∣∣∣
p]

≤
(
cN1/2p3/2

t

)p
= exp(−p)

= exp

(
− t2/3

(ec)2/3N1/3

)
.

The result follows by adjusting the constant c.

2.7.2 Local Memory Algorithms

We now define local memory algorithms. In addition to the usual features of a local algorithm, these
algorithms have access to a mutable memory map µ : VG → Z≥0, which we think of as an unlimited notepad
on each variable. The algorithm processes vertices v ∈ VG (both variables and clauses) in a uniformly random
order. Each step, the algorithm accesses the r-local neighborhood of a vertex and can overwrite the data
written on any vertex in that neighborhood. In the end, each variable v ∈ VaG decides to be true or false
depending on the final value µ(v) on its notepad.

To formalize this algorithm class, we will define memory-augmented versions of Definitions 2.1.9, 2.1.10,
and 2.1.11.

Definition 2.7.9 (Rooted memory-augmented decorated bipartite graph). A memory-augmented decorated
bipartite graph is a tuple (G, ρ, ϕ, µ), where (G, ρ, ϕ) is a decorated bipartite graph and µ is a function
µ : VG → Z≥0. A rooted memory-augmented decorated bipartite graph is a tuple (v,G, ρ, ϕ, µ), where
(G, ρ, ϕ, µ) is a memory-augmented decorated bipartite graph and v ∈ VG.

Let Λ̃ denote the set of rooted memory-augmented decorated bipartite graphs. Two such graphs are
isomorphic of there exists a bijection between them preserving v,VaG,ClG, EG, ρ, ϕ, µ.

Definition 2.7.10 (r-neighborhood). Let (v,G, ρ, ϕ, µ) ∈ Λ̃ and r ∈ N. Define Nr(v,G, ρ, ϕ, µ) to be
(v,G′, ρ′, ϕ′, µ′) ∈ Λ̃, where (v,G′, ρ′, ϕ′) = Nr(v,G, ρ, ϕ) and µ′ = µ

∣∣
G′

is the restriction of µ to G′.

Definition 2.7.11 (r-local subroutine). An algorithm f with input space Λ̃ is an r-local subroutine if the
execution of f(v,G, ρ, ϕ) depends only on the isomorphism class of Nr(v,G, ρ, ϕ, µ) = (v,G′, ρ′, ϕ′, µ′), and
f interacts with its input by editing the outputs of µ′.

We are now ready to define a local memory algorithm. In the following definition, ψ is an auxiliary
random variable on each vertex that determines the order in which vertices are processed.

44

Definition 2.7.12 (r-local memory algorithm). Let f1 be an r-local subroutine and f2 : Z≥0 → {T, F}
be a function. The r-local memory algorithm based on (f1, f2), denoted Af1,f2 , runs as follows on input
Φ ∈ Ωk(N,M) with factor graph (G, ρ).

(1) Initialize µ : VG → Z≥0 to the all-0 map. Sample ϕ ∼ (Ω,Pω)⊗(VG∪EG) and ψ ∼ unif([0, 1])⊗VG .

(2) Loop through vertices v ∈ VG (both variables and clauses) in increasing order of ψ(v). For each v, run
f1(v,G, ρ, ϕ, µ).

(3) Output x ∈ {T, F}N where xi = f2(µ(vi)).

We will see (Fact 2.8.3) that the first phase of Fix is in this class. The following variant of the sequential
local algorithms in [GS17] is also in this class.

Definition 2.7.13 (Sequential r-local algorithm). Let f : Λ→ [0, 1] be an r-local function. The sequential
r-local algorithm based on f , denoted Bf , runs as follows on input Φ ∈ Ωk(N,M) with factor graph (G, ρ).

(1) Sample ϕ ∼ (Ω,Pω)⊗(VG∪EG) and ψ ∼ unif([0, 1])⊗VaG .

(2) Loop through v ∈ VaG in increasing order of ψ(v). For each v = vi:

(a) Compute p = f(v,G, ρ, ϕ). Set xi = T with probability p, and otherwise xi = F.

(b) Simplify Φ by deleting clauses satisfied by this setting of xi and appearances of xi in clauses not
satisfied by this setting. Furthermore, delete any clauses that become empty (thus not satisfied)
as a result of the latter operation.

(c) Let G′ be the corresponding simplification of G, and let ρ′ = ρ
∣∣
G′

and ϕ′ = ϕ
∣∣
G′

.

(d) Set (G, ρ, ϕ)← (G′, ρ′, ϕ′).

(3) Output (x1, . . . , xN) ∈ {T, F}N .

Fact 2.7.14. For any r ∈ N, a sequential r-local algorithm can simulated by a max(r, 2)-local memory
algorithm.

Proof. Let Bf be a sequential r-local algorithm, whose randomness is sampled i.i.d. from (Ω,Pω). We will
construct an r-local memory algorithm Af1,f2 simulating Bf .

This algorithm maintains the invariant that for v = vi ∈ VaG, µ(v) = 0 if xi is not yet set, 1 if xi is set
true, and 2 if xi is set false. For clause vertices c ∈ ClG, µ(c) = 1 if the clause corresponding to c has been
deleted in the simplification, and otherwise µ(c) = 0.

Thus, Af1,f2 uses randomness sampled from (Ω,Pω) × unif([0, 1]). That is, its internal randomness is
ϕ∗ = (ϕ, q), which is sampled by ϕ ∼ (Ω,Pω)⊗(VG∪EG) and q ∼ unif([0, 1])⊗(VG∪EG).

The r-local subroutine f1 runs as follows on input (v,G, ρ, ϕ∗, µ). If v ∈ ClG, do nothing. Note that the
remaining loop over v ∈ VaG runs over these vertices in a uniformly random order, as desired. If v = vi ∈ VaG,
let G′ be the simplification of G determined by the information recorded in µ, and let ρ′ = ρ

∣∣
G′

, ϕ′ = ϕ
∣∣
G′

.
We can simulate the computation of p = f(v,G′, ρ′, ϕ′) because simplification only deletes vertices and edges,
so any r-local decision in the simplified factor graph is still r-local in the simulation. We then set xi = T if
p < q(v), and otherwise xi = F. We update µ to record this value of xi and any clause simplifications that
result (which is a 2-local operation).

At the end of the algorithm, µ(v) ∈ {1, 2} for all v ∈ VaG. Let f2(x) = T if x = 1 and F if x = 2.

Definition 2.7.13 differs slightly from the presentation in [GS17] in the following way. [GS17] studies
NAE-k-SAT, in which a clause is satisfied if it contains at least one true and false literal. In partially
simplfied formulas of this problem, clauses can exist in four states: “removed,” “already contains true,”
“already contains false,” and “contains neither true nor false,” and the sequential local algorithms of [GS17]
track this information. Of course, we can just as well simulate this by a local memory algorithm by having
µ track these clause states.

45

2.7.3 Local Algorithms Simulate Local Memory Algorithms

In this subsection, we prove Proposition 2.7.1, that any local memory algorithm can be simulated by a local
algorithm of larger (but still constant) radius.

The simulation is the natural one: we expand ϕ to also generate the auxiliary randomness ψ determining
the vertex order, and then determine the output at each v ∈ VaG by simulating the local memory algorithm on
the R-neighborhood of v. Formally, we expand ϕ to ϕ∗, whose outputs are sampled from (Ω,Pω)×unif([0, 1]).
We collect the first coordinates of the outputs into ϕ and the second coordinates into ψ. (This generates
ψ : VG ∪ EG → [0, 1], and we ignore ψ

∣∣
EG

.)
Because sequentiality usually does not create long dependence chains, this simulation will often faithfully

capture the local memory algorithm’s behavior.

Definition 2.7.15 (R-local simulation). Let Af1,f2 be an r-local memory algorithm, with i.i.d. internal
randomness from (Ω,Pω). For R ∈ N, the R-local simulation of Af1,f2 is the R-local algorithm Af that runs
as follows on input Φ ∈ Ωk(N,M) with factor graph (G, ρ).

(1) Sample ϕ∗ = (ϕ,ψ), where ϕ ∼ (Ω,Pω)⊗(VG∪EG) and ψ ∼ unif([0, 1])⊗(VG∪EG).

(2) For each v = vi ∈ VaG, set xi = f(v,G, ρ, ϕ∗). Here f(v,G, ρ, ϕ∗) is the following R-local function.

(a) Let NR(v,G, ρ, ϕ∗) = (v,G′, ρ′, ϕ′∗). Let ϕ′∗ = (ϕ′, ψ′), where ϕ′ = ϕ
∣∣
G′

and ψ′ = ψ
∣∣
G′

.

(b) Initialize µ : VG′ → Z≥0 to the all-0 map.

(c) For u ∈ VG′ in increasing order of ψ′(u), run f1(u,G′, ρ′, ϕ′, µ).

(d) Output f(v,G, ρ, ϕ∗) = f2(µ(v)).

(3) Output (x1, . . . , xN).

The main idea of the proof of Proposition 2.7.1 is that dependencies caused by sequentiality all arise
from the following structure.

Definition 2.7.16 (r-hop ψ-dependence chain). Let G be a locally finite graph and ψ : VG → [0, 1] be a
function. Let r ∈ N. A sequence v1, v2, . . . , vs ∈ VG is an r-hop ψ-dependence chain if consecutive vertices
in the sequence are at most distance r apart and ψ(v1), ψ(v2), . . . , ψ(vs) is decreasing.

We can now define a notion of insulation in terms of these dependence chains. The key point of the
following definition is that if in the R-local simulation in Definition 2.7.15, v ∈ VaG is (r,R, ψ)-insulated,
then the R-local simulation’s output at v must match that of the local memory algorithm run with the same
ϕ,ψ.

Definition 2.7.17 ((r,R, ψ)-insulated). Let G be a locally finite graph and ψ : VG → [0, 1] be a function.
Let v ∈ VG and r,R ∈ N with R ≥ 2r. v is (r,R, ψ)-insulated if there is no 2r-hop ψ-dependence chain
v1, v2, . . . , vs ∈ VG with v = v1 and vs ∈ NR(v,G) \NR−2r(v,G).

In Definition 2.7.15, if Φ ∼ Φk(N,M), then (G, ρ, ϕ∗) is a sample from the decorated k-SAT factor graph
DFG(N,M, k, (Ω,Pω) × unif([0, 1])). To prove Proposition 2.7.1, it suffices to upper bound the fraction of
v ∈ VaG that are not (r,R, ψ)-insulated. To achieve this, we will control the probability that the root
of DGW(d1, d2, (Ω,Pω) × unif([0, 1])) is not (r,R, ψ)-insulated. Then, because (r,R, ψ)-insulatedness is an
R-local property, we can translate this bound to the k-SAT factor graph by the machinery of Lemma 2.7.6
and Corollary 2.7.8.

Proposition 2.7.18. Let d1, d2 ≥ 2, r ∈ N, and η ∈ (0, 1). Let (o, T, ρ, ϕ∗) ∼ DGW(d1, d2, (Ω,Pω) ×
unif([0, 1])), and write ϕ∗ = (ϕ,ψ) for ϕ : VT ∪ET → Ω and ψ : VT ∪ET → [0, 1]. There exists R dependent
on d1, d2, r, η such that

P [o is (r,R, ψ)-insulated in T] ≥ 1− η.

The proof of this proposition relies on the following technical lemma, whose proof we defer to Subsec-
tion 2.7.5.

46

Lemma 2.7.19. Let d1, d2 ≥ 2 and (o, T, ρ, ϕ) ∼ DGW(d1, d2). For any r ∈ N and η ∈ (0, 1), there exist
C,R∗ > 0 depending on d1, d2, r, η such that for all integers R ≥ R∗,

max
v∈NR(o,T)

|N2r(v, T)| ≤ CR

log(r+1)R

with probability at least 1− η. Here, log(r+1) denotes the (r + 1)th iterate of log.

Proof of Proposition 2.7.18. Let R ∈ N be a number we will determine later. Lemma 2.7.19 gives R∗ such
that if R ≥ R∗, then the conclusion of Lemma 2.7.19 holds with probability at least 1 − η/2. Consider
a realization of T, ρ, ϕ such that this event holds. We will control the probability over ψ that o is not
(r,R, ψ)-insulated in T .

If o is not (r,R, ψ)-insulated, there exists a 2r-hop ψ-dependence chain o = v1, v2, . . . , vs ∈ VT where
vs ∈ NR(o, T) \ NR−2r(o, T). By taking an initial subsequence, we get a 2r-hop ψ-dependence chain o =
v1, v2, . . . , vt ∈ VT of length t = d R2r e. By Markov’s inequality,

P [o is not (r,R, ψ)-insulated in T] ≤ E# (2r-hop ψ-dependence chains o = v1, v2, . . . , vt ∈ VT) .

The last expectation is bounded as follows. By Lemma 2.7.19, there are at most
(

CR
log(r+1) R

)t
sequences

o = v1, v2, . . . , vt with consecutive vertices at most distance 2r apart, and for each one, ψ(v1), ψ(v2), . . . , ψ(vt)
is decreasing with probability 1

t! . So (using t! ≥ (t/e)t) the last expectation is at most

1

t!

(
CR

log(r+1)R

)t
≤
(

eCR

t log(r+1)R

)t
≤
(

2eCr

log(r+1)R

)t
≤ η/2 (2.7.1)

for a large enough choice of R. Thus, over the randomness of ψ,

P [o is (r,R, ψ)-insulated in T] ≥ 1− η/2.

The result follows by a union bound.

Unfortunately, due to the last inequality in (2.7.1), the R needed to make this proposition hold is
approximately the power tower exp(r+1) 2eCr. This is the R we will need to simulate an r-local memory
algorithm by an R-local algorithm. While this R is a constant for any constant r, it would of course be nice
to improve this dependence.

Finally, we can prove Proposition 2.7.1.

Proof of Proposition 2.7.1. We let A′ be the R-local simulation of A, for R to be determined. We couple
the runs of A,A′ to use the same ϕ,ψ. If (G, ρ) is the factor graph of Φ, then

∆(A(Φ),A′(Φ)) ≤ 1

N

∑
v∈VaG

1 {v is (r,R, ψ)-insulated in G} .

Recall that (G, ρ, (ϕ,ψ)) ∼ DFG(N,M, k, (Ω,Pω) × unif([0, 1])). The last indicator is an R-local function
taking values in [−1, 1]. By Corollary 2.7.8 with t = ηN/3,

1

N

∑
v∈VaG

1 {v is (r,R, ψ)-insulated in G} ≤ η/3 + E1 {v is (r,R, ψ)-insulated in G}

with probability 1 − exp(−Ω(N1/3)). Let (o, T, ρ, (ϕ,ψ)) ∼ DGW(αk, k − 1, (Ω,Pω) × unif([0, 1])). By
Lemma 2.7.6,

E1 {v is (r,R, ψ)-insulated in G} ≤ c logN

N1/2
+ E1 {o is (r,R, ψ)-insulated in T} .

By Proposition 2.7.18, for sufficiently large R depending on α, k, r, η,

E1 {o is (r,R, ψ)-insulated in T} ≤ η/3.

Putting this all together, with probability 1− exp(−Ω(N1/3)),

∆(A(Φ),A′(Φ)) ≤ 2η/3 +
c logN

N1/2
≤ η

for sufficiently large N .

47

2.7.4 Low Degree Polynomials Simulate Local Algorithms

In this subsection, we prove Proposition 2.7.2, that any local algorithm can be simulated by a constant
degree polynomial. The proof closely resembles the proof of [Wei20, Theorem 1.4]. The main idea is to
construct a low degree polynomial by inclusion-exclusion that simulates the behavior of the local algorithm
on any r-neighborhood that is a tree without too many edges. We now define this simulation.

Consider Φ ∈ Ωk(N,M) with factor graph (G, ρ). Recall that Φ is encoded by indicators Φi,j,s (i ∈ [M],
j ∈ [k], s ∈ [2N]) that Φi,j is the sth literal of L. For each s ∈ [2N], let v(s) ∈ [N] be the index of
the underlying variable of the sth literal of L. Each triple (i, j, s) is naturally associated with the edge
e = (vv(s), ci) of the factor graph. For a set S ⊆ [M] × [k] × [2N], let e(S) be the (multi-)set of edges
associated in this manner to triples (i, j, s) ∈ S. For D ∈ N and v ∈ VaG, let Gv,r,D be the collection of sets
S ⊆ [M]× [k]× [2N] such that

(a) The bipartite graph G(S) = (VaG,ClG, e(S)) is a tree in which every non-isolated vertex has a path
to v of length at most r. (This includes that G(S) does not have multiple edges.)

(b) |S| ≤ D.

Equivalently, Gv,r,D is the collection of sets of (i, j, s) corresponding to all possible tree shaped r-neighborhoods
of v in G of size at most D.

Definition 2.7.20 (Degree-D simulation). Let Ag be an r-local algorithm, with i.i.d. internal randomness
from (Ω,Pω). For D ∈ N, the degree-D simulation of Ag is the random polynomial that runs as follows on
input Φ ∈ Ωk(N,M) with factor graph (G, ρ).

(1) Sample ϕ ∼ (Ω,Pω)⊗(VG∪EG).

(2) For each v = vi ∈ VaG, set

fi(Φ, ϕ) =
∑

S∈Gv,r,D

h(v,G(S), ρ, ϕ)
∏

(i,j,s)∈S

Φ(i,j,s), (2.7.2)

where the coefficients h(v,G(S), ρ, ϕ) are given recursively by

h(v,G(S), ρ, ϕ) = (strictRound−1 ◦ g)(v,G(S), ρ
∣∣
G(S)

, ϕ
∣∣
G(S)

)−
∑
S′(S

h(v,G(S′), ρ, ϕ). (2.7.3)

The internal randomness of f is the map ϕ. It is clear that this f is a degree-D polynomial. We will
analyze the performance of the degree-D simulation by analogy to the following local function.

Definition 2.7.21 (D-truncation). If g : Λ → {T, F} is an r-local function, the D-truncation g≤D : Λ →
{T, F, err} is defined by

g≤D(v,G, ρ, ϕ) =

{
g(v,G, ρ, ϕ) Nr(v,G) is a tree and |Nr(v,G)| ≤ D,
err otherwise.

By inclusion-exclusion, (2.7.2) and (2.7.3) immediately imply the following fact.

Fact 2.7.22. For all v = vi ∈ VaG where g≤D(v,G, ρ, ϕ) 6= err,

(strictRound ◦ fi)(Φ, ϕ) = g(v,G, ρ, ϕ) = g≤D(v,G, ρ, ϕ).

In other words, when Ag, Ag≤D , and the degree-D simulation f of Ag are run with the same ϕ,
strictRound ◦ f correctly simulates any output of Ag that Ag≤D correctly simulates. Therefore, we can
upper bound the fraction of variables where the simulation f fails by bounding the fracton of variables
where Ag≤D fails. We achieve this by controlling the corresponding probability in DGW(d1, d2), and then
translating this bound to the k-SAT factor graph by the machinery of Lemma 2.7.6 and Corollary 2.7.8.

48

Lemma 2.7.23. Suppose αk, k − 1 ≥ 2 and η > 0. Let Ag be an r-local algorithm with output in {T, F}N .
There exists D > 0 depending on α, k, r, η such that if Ag and Ag≤D are run with the same ϕ, then

P
[
∆(Ag(Φ),Ag≤D (Φ)) ≥ η

]
≤ exp(−Ω(N1/3)),

where the probability is over the randomness of Φ ∼ Φk(N,M) and ϕ.

Proof. By Corollary 2.7.8 with t = ηN/3,

∆(Ag(Φ),Ag≤D (Φ)) =
1

N

∑
v∈VaG

1 {Nr(v,G) is not a tree or |Nr(v,G)| > D}

≤ η/3 + E1 {Nr(v,G) is not a tree or |Nr(v,G)| > D}

with probability 1−exp(−Ω(N1/3)), because the indicator is an r-local function taking values in [−1, 1]. Let
(o, T, ρ, ϕ) ∼ DGW(αk, k − 1). By Lemma 2.7.6,

E1 {Nr(v,G) is not a tree or |Nr(v,G)| > D} ≤ c logN

N1/2
+ E1 {|Nr(o, T)| > D} ,

where we use that Nr(o, T) is always a tree. By Lemma 2.7.4, we can pick D large enough (depending on
α, k, r, η) that

E1 {|Nr(o, T)| > D} ≤ η/3.

Putting this all together, with probability 1− exp(−Ω(N1/3)),

∆(Ag(Φ),Ag≤D (Φ)) ≤ 2η/3 +
c logN

N1/2
≤ η

for sufficiently large N .

We get the second conclusion of Proposition 2.7.2 from the following lemma.

Lemma 2.7.24. If Ag is an r-local algorithm and f is its degree-D simulation, then there exists γ depending
on α, k, r,D such that

E ‖f(Φ, ϕ)‖22 ≤ γN.

Proof. We will upper bound each EΦ,ϕ[fi(Φ, ϕ)2] by a constant depending only on α, k, r, η. Fix i ∈ [N].
Let v = vi ∈ VaG and define the random variable X = |Nr(v,G)|. In the expansion (2.7.2), the monomial
indexed by S ∈ Gv,r,D is only nonzero if e(S) is a subset of the edges of Nr(v,G). So, the number of nonzero
monomials is at most

kD
D∑
d=0

(
X

d

)
≤ kD(X + 1)D.

Moreover, by (2.7.3), each of the coefficients h(v,G(S), ρ, ϕ) is upper bounded by a constant a dependent
on α, k, r,D. Thus

fi(Φ, ϕ)2 ≤ a2k2D(X + 1)2D

pointwise, and so
E
[
fi(Φ, ϕ)2

]
≤ a2k2D E

[
(X + 1)2D

]
.

Lemma 2.7.5 gives an exponential bound on the tail probability of X. Integration by tails gives the result.

Proof of Proposition 2.7.2. Set D such that Lemma 2.7.23 holds, and let f be the degree-D simulation of A.
We couple f,Ag,Ag≤D to all use the same ϕ. Fact 2.7.22 and Lemma 2.7.23 imply the first conclusion. Since
D depends on only α, k, r, η, so does the γ given by Lemma 2.7.24. This implies the second conclusion.

49

2.7.5 Deferred Proofs

In this subsection, we give the deferred proof of Lemma 2.7.19. We first prove a sharper version of
Lemma 2.7.4 for a specific r, where the bound is improved by an r-iterated logarithmic factor.

Lemma 2.7.25. Let r ∈ N, d1, d2 ≥ 2 and (o, T, ρ, ϕ) ∼ DGW(d1, d2). There exists t∗ (depending on
r, d1, d2) such that for all t ≥ t∗,

P
[
|N2r(o, T)| ≤ 2t

log(r) t
(d1d2)r

]
≥ 1− e−t.

Proof. For 0 ≤ ` ≤ 2r, let S` denote the number of vertices in DGW(d1, d2) at depth `. The S` have the
following distribution. First, S0 = 1. For ` ≥ 1, S` is the sum of S`−1 i.i.d. copies of Pois(d1) if ` is odd,
and S` = d2S`−1 if ` is even.

For n ∈ [r], define the event

En =

{
S2n−1 ≤

t

log(n) t
dn1d

n−1
2

}
.

This is equivalent to the event that S2n ≤ t
log(n) t

dn1d
n
2 . For convenience, also define E0 = {S0 = 1}, which

holds almost surely. On
⋂r
n=0En, we have

|N2r(o, T)| =
2r∑
`=0

S` ≤
t

log(r) t
· d

r
1d
r−1
2 + dr1d

r
2

1− (d1d2)−1
≤ 2t

log(r) t
(d1d2)r.

So, it remains to show that P [
⋂r
n=0En] ≥ 1− e−t.

Consider n ∈ [r]; we will upper bound P(Ecn|En−1). Let N = t
log(n−1) t

dn−1
1 dn−1

2 (where log(0) t = t).

Conditioned on En−1, we have S2n−2 ≤ N , so S2n−1 is stochastically dominated by
∑N
j=1 ξj , where the ξj

are i.i.d. samples from Pois(d1). By a standard Chernoff bound,

P(Ecn|En−1) ≤ P

 N∑
j=1

ξj ≥
log(n−1) t

log(n) t
d1N


≤

[
inf
s>0

E exp(sξ1) · exp

(
− log(n−1) t

log(n) t
sd1

)]N

=

[
inf
s>0

exp

(
(es − 1)d1 −

log(n−1) t

log(n) t
sd1

)]N

= exp

(
−Nd1γ

(
log(n−1) t

log(n) t

))
,

where γ(x) = x log x− x+ 1. For large enough t,

γ

(
log(n−1) t

log(n) t

)
≥ 3

4

log(n−1) t

log(n) t
log

log(n−1) t

log(n) t
≥ 2

3
log(n−1) t,

while (as d1, d2 ≥ 2 implies dn1d
n−1
2 ≥ 22n−1 ≥ 2n for n ≥ 1)

Nd1 =
t

log(n−1) t
dn1d

n−1
2 ≥ 2n · t

log(n−1) t
.

Thus, for large enough t, P(Ecn|En−1) ≤ exp(− 4
3nt). So,

P

[
r⋂

n=0

En

]
≥ 1−

r∑
n=1

P(Ecn|En−1) ≥ 1−
exp(− 4

3 t)

1− exp(− 4
3 t)
≥ 1− e−t

for sufficiently large t.

50

Proof of Lemma 2.7.19. Set λ > 0 such that the conclusion of Lemma 2.7.4 holds with probability 1− η/2.
Denote this event S; on this event, |NR(o, T)| ≤ λ(d1d2)dR/2e for all R ∈ N.

For R ∈ N, let t(R) be the smallest positive integer such that λ(d1d2)dR/2ee−t(R) ≤ η/2; note that
t(R) = Θ(R) for d1, d2, r, η fixed. Set R∗ such that t(R∗) ≥ t∗ for the t∗ in Lemma 2.7.25. Henceforth let
R ≥ R∗ and t = t(R) ≥ t∗.

For v ∈ VaT , let N↓2r(v, T) denote the subset of N2r(v, T) in the descendant subtree of v. Note that the

descendant subtree of v has distribution DGW(d1, d2), so |N↓2r(v, T)| =d |N2r(o, T)|. By Lemma 2.7.25, for
each v ∈ VaT ,

P
[
|N↓2r(v, T)| ≤ 2t

log(r) t
(d1d2)r

]
≥ 1− e−t.

By a union bound,

P
[
S and max

v∈VaT∩NR(o,T)
|N↓2r(v, T)| ≤ 2t

log(r) t
(d1d2)r

]
≥ 1− η

2
− λ(d1d2)dR/2ee−t ≥ 1− η.

Let S′ be the event in this probability. Note that for v ∈ VaT ,

N2r(v, T) ⊆ N↓2r(v, T) ∪N↓2r(gr(v), T) ∪ · · · ∪N↓2r(grr(v), T),

where gr(v) denotes the grandparent of v. Thus, on the event S′, we have

max
v∈VaT∩NR(o,T)

|N2r(v, T)| ≤ 2t(r + 1)

log(r) t
(d1d2)r.

For v ∈ ClT ∩NR(o, T), simply note that N2(r−1)(v, T) ⊆ N2r(pa(v), T), where pa(v) denotes the parent of
v. It follows that on S′,

max
v∈NR(o,T)

|N2(r−1)(v, T)| ≤ 2t(r + 1)

log(r) t
(d1d2)r ≤ CR

log(r)R
,

using that t = t(R) and t(R) = Θ(R). The result follows by renaming r to r + 1.

2.8 Proof of Achievability

Throughout this section, let ε > 0, α = (1 − ε)2k log k/k, and M = bαNc. In this section we will prove
Theorem 2.1.14, that local algorithms and low degree polynomials can solve random k-SAT at this clause
density α.

We will prove this theorem by simulating the first phase of Fix, which we denote Fix1, by these two
computation classes. Parts (a,b) of Theorem 2.1.14 follow immediately from guarantees on Fix1 in [CO10]
and our simulation results, Propositions 2.7.1 and 2.7.2. To prove parts (c,d), we use the fact that Fix1 is
simulated by a local algorithm to argue concentration of the number of clauses satisfied, in order to prove
the stronger bound on the failure probability.

This section is structured as follows. In Subsection 2.8.1 we define Fix1 and introduce its guarantees.
This immediately implies Theorem 2.1.14(a,b). In Subsection 2.8.2 we show concentration of the number of
clauses satisfied and prove Theorem 2.1.14(c,d).

2.8.1 Review of Fix

At clause density α = (1−ε)2k log k/k, Fix produces a (exactly) satisfying assignment with high probability.
At a high level, Fix runs in three phases. In the first phase, it produces a almost-satisfying assignment.
In the second phase, it modifies this assignment in a small fraction of variables, at most k−12 with high
probability, to “don’t know.” This is done in such a way that the remaining problem of assigning truth
values to the “don’t know” variables is equivalent to a very subcritical random 3-SAT instance. The third
phase solves the remaining problem with a maxflow algorithm.

51

We will only show that local algorithms and low degree polynomials simulate the first phase Fix1. Because
the the rest of Fix changes at most a k−12 fraction of variables with high probability, simulating Fix1 within
normalized Hamming distance η′ > 0 simulates Fix within error η = k−12 + η′. This is why Theorem 2.1.14
requires η > k−12. Let us record the guarantees on Fix1 proved in [CO10].

Theorem 2.8.1 (Implicit in [CO10, Section 3]). Let Fix1 be defined in Algorithm 2.8.2 below. Then,

P
[
Fix1(Φ) (k−12, 0)-satisfies Φ

]
≥ 1− o(1).

The probability is over Φ ∼ Φk(N,M) and the (independent) internal randomness of Fix1.

We now define Fix1. This phase starts from the all-true assignment x = TN and selects a set of indices
Z ⊆ [N] such that if {xi : i ∈ Z} are set false, most clauses are satisfied. To do this, it scans through
the clauses of the input formula Φ. When it encounters an all-negative clause that does not contain any
variable from Z, it tries to find a true variable xi from this clause that when made false does not create more
unsatisfied clauses. It adds this i to Z. Formalizing this idea, we say xi (for i ∈ [N] \ Z) is Z-safe if, when
we set {xi′ : i′ ∈ [N] \ Z} to true and {xi′ : i′ ∈ Z} to false, xi is not the sole true literal in any clause.

Algorithm 2.8.2 (Fix, Phase 1; [CO10]). On input Φ ∈ Ωk(N,M), Fix1 runs as follows.

(1) Set Z = ∅.

(2) Relabel the clauses {Φi : i ∈ [M]} in a uniformly random order. Also, for each i ∈ [M], relabel the
literals {Φi,j : j ∈ [k]} in a uniformly random order.

(3) For i ∈ [M] in increasing order:

(a) If Φi is all-negative and contains no variable from {xi : i ∈ Z}:
(i) If there is 1 ≤ j < dk/2e such that the underlying variable of Φi,j is Z-safe, pick the smallest

such j and add the underlying variable of Φi,j to Z.

(ii) Otherwise, add the underlying variable of Φi,dk/2e to Z.

(4) Output x ∈ {T, F}N where xi = F if i ∈ Z and otherwise xi = T.

The presentation of Fix1 in [CO10] does not rerandomize the clause and literal orders, but of course this
makes no difference. We add this rerandomization so that the algorithm is a local memory algorithm in the
sense we define. For technical reasons having to do with the analysis in [CO10], Fix1 only considers flipping
variables Φi,j where j ≤ dk/2e.

Fact 2.8.3. Fix1 is a 3-local memory algorithm.

Proof. We will construct a 3-local subroutine f1 and a function f2 : Z≥0 → {T, F} such that Af1,f2 simulates
Fix1. Let (G, ρ) be the factor graph of Φ, and let the i.i.d. randomness of ϕ be sampled from unif([0, 1]).

We will maintain the invariant that for each v = vi ∈ VaG, µ(v) = 1 if i ∈ Z, and otherwise µ(v) = 0.
The subroutine f1 runs as follows on (v,G, ρ, ϕ, µ). If v ∈ VaG, do nothing. The remaining loop over

v ∈ ClG runs over these vertices in a uniformly random order, as desired. If v = ci ∈ ClG, f1 orders the
edges e incident to ci in increasing order of ϕ(e). It runs the logic inside the for loop of Fix1, with the
corresponding literals {Φi,j : j ∈ [k]} relabeled in this order, and records the outcome on µ. Note that the
literals {Φi,j : j ∈ [k]} are relabeled in a uniformly random order, and that the logic inside the for loop is
3-local.

The proof of Theorem 2.1.14(a,b) follows immediately from Fact 2.8.3 and our simulation results.

Proof of Theorem 2.1.14(a,b). Since η > k−12, we can find η′ > 0 such that η = k−12 + 2η′. Theorem 2.8.1,
Fact 2.8.3 and Proposition 2.7.1 give r > 0 and an r-local algorithm A such that

P
[
A(Φ) (k−12 + η′, 0)-satisfies Φ

]
≥ 1− δ(N) (2.8.1)

for δ(N) = o(1) + exp(−Ω(N1/3)) = o(1). Since k−12 + η′ < η, this proves part (a).
Proposition 2.7.2 gives D, γ and a random degree-D polynomial that (δ(N), γ, η, 0)-solves Φk(N,M), for

δ(N) with a larger exp(−Ω(N1/3)) term. Here we use that η = k−12 + 2η′. Finally, Lemma 2.3.1 gives a
deterministic degree-D polynomial that (3δ(N), 3γ, η, 0)-solves Φk(N,M). This proves part (b).

52

2.8.2 Concentration of Clauses Satisfied

For x ∈ {T, F}N , Φ ∈ Ωk(N,M), and η ∈ (0, 1), define the objective

Satη(x,Φ) = max
y∈{T,F}N :∆(x,y)≤η

(# clauses of Φ satisfied by y) . (2.8.2)

To prove Theorem 2.1.14(c), we will show that the objective attained by any local algorithm concentrates.
For an assignment x ∈ {T, F}N and a partial assignment z ∈ {T, F}B , where B ⊆ [N], it will be useful to
define the replacement operator Rep(x, z) by

Rep(x, z) = y ∈ {T, F}N where yi =

{
xi i 6∈ B,
zi i ∈ B.

(2.8.3)

Proposition 2.8.4. Let A be an r-local algorithm with internal randomness ϕ. Let η ∈ (0, 1) and Y =
Satη(A(Φ, ϕ),Φ). Then,

P
[
|Y − EY | ≥ M

logN

]
≤ exp(−Ω̃(N1/3)).

Proof. We will show Y has bounded differences with high probability, which implies concentration by
Lemma 2.6.6.

Throughout this section, we will write A(Φ, ϕ) for A run with input Φ and internal randomness ϕ. Define
z = z(Φ, ϕ) ∈ {T, F}B as the partial assignment maximizing

Sat0 (Rep(A(Φ, ϕ), z),Φ) ,

where the maximization is over all B ⊆ [N] with |B| ≤ ηN . We break ties arbitrarily but deterministically.
By definition of Y , Rep(A(Φ, ϕ), z) satisfies Y clauses of Φ.

Let (G, ρ) be the factor graph of Φ. Let the vertex sets of G be Va = {v1, . . . , vN}, Cl = {c1, . . . , cM},
and V = Va ∪ Cl, which are fixed across all realizations of G.

All the above random variables are (Φ, ϕ)-measurable. We can reformat (Φ, ϕ) into kM + M + N
independent parts ζ = (ψ1, . . . , ψkM+M+N): for 1 ≤ j ≤ kM , ψj = (ΦL(j), ϕ(e)) where e is the edge in
G corresponding to ΦL(j), and for kM + 1 ≤ j ≤ kM + M + N , ψj = ϕ(v) ranges over v ∈ V . We will
henceforth write Y (ζ) to denote the Y corresponding to this realization of ζ, and similarly for other random
variables, which are all ζ-measurable.

Let S denote the set of ζ such that Φ(ζ) is (r + 1)-locally small (recall Definition 2.6.7). By Fact 2.6.8,
P(Sc) ≤ exp(−Ω(N1/3)). Suppose ζ, ζ ′ ∈ S differ in only one coordinate. We will upper bound |Y (ζ)−Y (ζ ′)|.
For now, assume the differing coordinate is ψj for 1 ≤ j ≤ kM ; thus the factor graphs G(ζ), G(ζ ′) differ in
one edge. Let c ∈ Cl be the common endpoint of this edge.

Assume without loss of generality that Y (ζ) ≥ Y (ζ ′). Then,

Y (ζ)− Y (ζ ′) = Sat0(Rep(A(ζ), z(ζ)),Φ(ζ))− Sat0(Rep(A(ζ ′), z(ζ ′)),Φ(ζ ′))

≤ Sat0(Rep(A(ζ), z(ζ)),Φ(ζ))− Sat0(Rep(A(ζ ′), z(ζ)),Φ(ζ ′))

The last inequality holds because z(ζ ′) maximizes the number of clauses of Φ(ζ ′) satisfied by Rep(A(ζ ′), z(ζ ′)).
Note that A(ζ) and A(ζ ′) only differ in coordinates i ∈ [N] where vi ∈ Nr(c,G(ζ)) ∪Nr(c,G(ζ ′)). Thus

Rep(A(ζ), z(ζ)) and Rep(A(ζ ′), z(ζ)) differ in only these coordinates. So, if

1 {Rep(A(ζ), z(ζ))) satisfies clause Φ(ζ)i} 6= 1 {Rep(A(ζ ′), z(ζ))) satisfies clause Φ(ζ ′)i} ,

then ci ∈ Nr+1(c,G(ζ)) ∪Nr+1(c,G(ζ ′)). Because ζ, ζ ′ ∈ S, this implies |Y (ζ)− Y (ζ ′)| ≤ O(N1/3).
We can analogously show the same bounded difference inequality when ζ, ζ ′ ∈ S differ in coordinate ψj

for kM + 1 ≤ j ≤ kM + M + N , corresponding to a vertex of the factor graphs. Moreover, for all ζ, ζ ′,
clearly |Y (ζ)− Y (ζ ′)| ≤M . By Lemma 2.6.6,

P
[
|Y − EY | ≥ M

logN

]
≤ 2 exp

(
m2/ log2N

8(kM +M +N)O(N2/3)

)
+ exp(−Ω(N1/3))O

(
2(kM +M +N)m

N1/3

)
≤ exp(−Ω̃(N1/3)).

53

Proof of Theorem 2.1.14(c). Equation (2.8.1) gives an r-local algorithm A such that A(Φ, ϕ) (η, 0)-satisfies
Φ with probability 1− o(1). If Y = Satη(A(Φ, ϕ),Φ), this implies

EY = (1− o(1))M.

Proposition 2.8.4 proves the result with ν(N) = 1
logN + o(1) = o(1).

Recall that the proof of Proposition 2.7.2 simulates a local algorithm by its D-truncation, which can
be implemented by a low degree polynomial. We will prove Theorem 2.1.14(d) by showing a concentration
result analogous to Proposition 2.8.4 for D-truncations of local algorithms.

To formulate this result, we first extend the definition (2.8.2) of Satη to allow x ∈ {T, F, err}N . Note
that the y in the maximum of (2.8.2) must differ from x in all positions where the entry of x is err. We
define Satη(x,Φ) = 0 if x has more than ηN entries equal to err. (In particular, Sat0(x,Φ) = 0 if x has any
entry equal to err.) We similarly extend the definition (2.8.3) of Rep to allow x ∈ {T, F, err}N .

Proposition 2.8.5. Let Ag be an r-local algorithm with internal randomness ϕ, where g : Λ→ {T, F} is an
r-local function, and let g≤D be the D-truncation of g. Let η ∈ (0, 1). Let D be large enough that

P
[
∆(Ag(Φ, ϕ),Ag≤D (Φ, ϕ)) ≥ η

]
≤ exp(−Ω(N1/3)). (2.8.4)

(Such D exists by Lemma 2.7.23.) Let Y = Satη(Ag≤D (Φ, ϕ),Φ). Then,

P
[
|Y − EY | ≥ M

logN

]
≤ exp(−Ω̃(N1/5)).

Proof. We will again show Y has bounded differences with high probability and use Lemma 2.6.6. Define
z = z(Φ, ϕ) ∈ {T, F}B as the partial assignment maximizing

Sat0(Rep(Ag≤D (Φ, ϕ), z),Φ).

Let (G, ρ) be the factor graph of Φ, with vertex sets Va = {v1, . . . , vN}, Cl = {c1, . . . , cM}, and V = Va∪Cl.
Define ζ as in the proof of Proposition 2.8.4. Let S denote the set of ζ such that:

(i) ∆(Ag(ζ),Ag≤D (ζ)) ≤ η and

(ii) For all v ∈ VG, |Nr+1(v,G)| ≤ N1/5.

By the assumption (2.8.4) and Lemma 2.7.5, P(Sc) ≤ exp(−Ω(N1/5)). Note that for ζ ∈ S, (i) implies that
Rep(Ag≤D (ζ), z(ζ)) has no err symbols.

Suppose ζ, ζ ′ ∈ S differ in only one coordinate. We will upper bound |Y (ζ)−Y (ζ ′)|. Assume the differing
coordinate is ψj for some 1 ≤ j ≤ kM . (The case kM + 1 ≤ j ≤ kM + M + N is analogous.) Then, the
factor graphs G(ζ), G(ζ ′) differ in one edge. Let c ∈ Cl be the common endpoint of this edge.

Let U = Nr(c,G(ζ)) ∪Nr(c,G(ζ ′)). Because ζ, ζ ′ ∈ S, (ii) implies |U | ≤ 2N1/5. Note that Ag≤D (ζ) and
Ag≤D (ζ ′) only differ in coordinates i ∈ [N] where vi ∈ U .

Assume without loss of generality that Y (ζ) ≥ Y (ζ ′). Unlike in the proof of Proposition 2.8.4, the
estimate

Sat0(Rep(Ag≤D (ζ ′), z(ζ ′))) ≥ Sat0(Rep(Ag≤D (ζ ′), z(ζ)))

is not helpful because the right-hand side is 0 when Rep(Ag≤D (ζ ′), z(ζ)) has err symbols. Instead we note
that, because Ag≤D (ζ) and Ag≤D (ζ ′) differ in at most |U | positions, there exists z′ differing from z(ζ) in
at most 2|U | positions (|U | entries in z(ζ) not in z′ and vice versa) such that Rep(Ag≤D (ζ ′), z′) has no err

symbols. We use the estimate

Y (ζ)− Y (ζ ′) = Sat0(Rep(Ag≤D (ζ), z(ζ)),Φ(ζ))− Sat0(Rep(Ag≤D (ζ ′), z(ζ ′)),Φ(ζ ′))

≤ Sat0(Rep(Ag≤D (ζ), z(ζ)),Φ(ζ))− Sat0(Rep(Ag≤D (ζ ′), z′),Φ(ζ ′)).

Now, if

1
{

Rep(Ag≤D (ζ), z(ζ))) satisfies clause Φ(ζ)i
}
6= 1

{
Rep(Ag≤D (ζ ′), z′)) satisfies clause Φ(ζ ′)i

}
,

54

either ci ∈ Nr+1(c,G(ζ))∪Nr+1(c,G(ζ ′)) or ci is adjacent to one of the (at most) 2|U | variables where z(ζ)
and z′ disagree. By definition of S, there are at most 2N1/5 clauses in the former case, and 2|U |N1/5 clauses
in the latter case. Thus |Y (ζ)− Y (ζ ′)| ≤ O(N2/5).

For general ζ, ζ ′, we have |Y (ζ)− Y (ζ ′)| ≤M . By Lemma 2.6.6,

P
[
|Y − EY | ≥ M

logN

]
≤ 2 exp

(
M2/ log2N

8(kM +M +N)O((N2/5)2)

)
+ exp(−Ω(N1/5))O

(
2(kM +M +N)m

N2/5

)
≤ exp(−Ω̃(N1/5)).

Proof of Theorem 2.1.14(d). Set η′ > 0 such that η = k−12 + 2η′. Let A = Ag be the r-local algorithm
achieving (2.8.1). By Lemma 2.7.23, there exists D dependent on ε, k, η such that

P
[
∆(Ag(Φ, ϕ),Ag≤D (Φ, ϕ)) ≥ η′

]
≤ exp(−Ω(N1/3)).

With (2.8.1), this implies
P
[
Ag≤D (Φ, ϕ) (η, 0)-satisfies Φ

]
≥ 1− o(1).

Thus,
ESatη(Ag≤D (Φ, ϕ),Φ) = (1− o(1))M.

For ν(N) = o(1) + 1
logN = o(1), Proposition 2.8.5 implies that

P
[
Satη(Ag≤D (Φ, ϕ),Φ) ≥ (1− ν(N))M

]
≥ 1− exp(−Ω̃(N1/5)).

Fact 2.7.22 implies that the degree-D simulation f of Ag satisfies

P [Satη((strictRound ◦ f)(Φ, ϕ),Φ) ≥ (1− ν(N))M] ≥ 1− exp(−Ω̃(N1/5)).

In other words,

P [(strictRound ◦ f)(Φ, ϕ) (η, ν(N))-satisfies Φ] ≥ 1− exp(−Ω̃(N1/5)).

Lemma 2.7.24 gives γ such that
E ‖f(Φ, ϕ)‖22 ≤ γN.

Thus, f is a degree-D polynomial that (exp(−Ω̃(N1/5)), γ, η, ν(N))-solves Φk(N,M). Finally, Lemma 2.3.1

gives a deterministic degree-D polynomial that (exp(−Ω̃(N1/5)), 3γ, η, ν(N))-solves Φk(N,M).

2.9 Appendix: On Improving the Constant κ∗

In this section, we discuss how the constant κ∗ in Theorem 2.1.6 can be improved. We define a constant κ∗∗

as the solution to a maximin problem. We will show that κ∗∗ ≤ κ∗ and sketch how our proof of Theorem 2.1.6
can be lightly modified to improve the constant κ∗ to κ∗∗. We heuristically argue that κ∗∗ < κ∗, so that
this modification is an improvement. We also prove that κ∗∗ is bounded below by a constant larger than
1, approximately 1.716. Further ideas will be needed to prove Theorem 2.1.6 for any κ smaller than κ∗∗.
Because κ∗∗ remains bounded away from 1, and we believe 1 is the optimal constant in Theorem 2.1.6, we
did not attempt to rigorously evaluate κ∗∗ or optimize κ∗.

2.9.1 A Maximin Problem

Let (Ξ, Pξ) be an arbitrary probability space and let Q be the space of functions q : Ξ → [0, 1]. These are
abstractions of quantities in the proof of Proposition 2.4.7: ξ ∼ (Ξ, Pξ) is an abstraction of the random

variables y
(≤`−1)
I where I ∼ unif([N]), and q(ξ) is an abstraction of φ`(T|y(≤`−1)

I). We equip Q with the
metric d(q, q′) = Eξ |q(ξ)− q′(ξ)|.

55

For q ∈ Q, let D(q) be the law of u sampled by the following experiment. First, sample ξ ∼ (Ξ, Pξ).
Then, set u = − log q(ξ) with probability q(ξ), and otherwise set u = − log(1 − q(ξ)). Clearly Eu∼D(q) u =
EξH(q(ξ)). Define

F (q) =
1

log k
· log 2 + kEξH(q(ξ))

P(u1,...,uk)∼D(q)⊗k

[∑k
i=1 ui ≥ log k + log log k

] .
Let P be the set of functions p : Ξ × [0, 1] → [0, 1], such that p(ξ, 0) ∈ {0, 1} and p(ξ, 1) = 1

2 for all ξ ∈ Ξ,
and p(·, s) (which, for fixed s ∈ [0, 1], is an element of Q) is continuous in s with respect to the topology of
Q. Consider the maximin problem

κ∗∗ = lim sup
k→∞

max
p∈P

min
s∈[0,1]

F (p(·, s)). (2.9.1)

This has the following geometric interpretation: κ∗∗ is the smallest constant such that the sub-level set
{q ∈ Q : F (q) ≤ κ∗∗} topologically disconnects the functions q ≡ 0 and q ≡ 1

2 in Q. (Note that Q is
symmetric under replacing q(ξ) with 1 − q(ξ) for any subset of the ξ ∈ Ξ, and F (q) = F (q′) for any q, q′

related by such a symmetry. Thus, equivalently κ∗∗ is the smallest constant such that this sub-level set
disconnects the function q ≡ 1

2 from any q ∈ Q with q(ξ) ∈ {0, 1} for all ξ ∈ Ξ.)
First, we show that κ∗ is an upper bound on the solution to this maximin problem.

Proposition 2.9.1. We have that κ∗ ≥ κ∗∗.

Proof. Fix some p ∈ P. By continuity of p(·, s) in s, we can set s ∈ [0, 1] such that EξH(p(ξ, s)) = β∗ log k
k .

As in the proof of Proposition 2.4.7, we apply a Chernoff bound on the random variables min(ui,log k)
log k to show

that, for any β > 1 and q : Ω→ [0, 1] with EξH(q(ξ)) = β log k
k , we have

P
(u1,...,uk)∼D(q)⊗k

[
k∑
i=1

ui < log k + log log k

]
≤ βe−(β−1) + ok(1). (2.9.2)

In particular, for the s we chose,

F (p(·, s)) ≤
2

log k + β∗

1− β∗e−(β∗−1) − ok(1)
→ ι(β∗) = κ∗.

Next, we sketch how the proof of Theorem 2.1.6 can be improved to replace κ∗ with κ∗∗. The proof of
Theorem 2.1.13 can be modified similarly.

Proposition 2.9.2. Theorem 2.1.6 holds for all κ > κ∗∗.

Proof Sketch. Identically to the original proof of Theorem 2.1.6, we define the interpolation path Φ(0), . . . ,Φ(T)

and set x(t) = A(Φ(t)) for 0 ≤ t ≤ T . We define Svalid as before. Sconsec and Sindep are analogous to be-
fore: Sconsec is the event that consecutive x(t) are close in Hamming distance, and Sindep is the event that
if 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T and tk ≥ tk−1 + kM , then any ν-satisfying assignment to Φ(tk) has large
conditional overlap entropy relative to x(t0), . . . , x(tk−1). We change the parameters quantifying “close” and
“large conditional overlap” slightly so that the below proof succeeds; we omit the details. Lower bounds on
P(Svalid ∩ Sconsec) and P(Sindep) can be proved analogously to Proposition 2.3.7(a,b).

The interesting change will be in the definition of Sogp. For 1 ≤ ` ≤ k, the conditional overlap profile
π(y(`)|y(0), . . . , y(`−1)) determines the conditional probabilities1

φ`(b|ξ) = P
i∼unif([N])

[
y

(`)
i ⊕ y

(0)
i = b|(y(1)

i ⊕ y
(0)
i , . . . , y

(`−1)
i ⊕ y(0)

i) = ξ
]
,

where ⊕ denotes XOR. Let (Ξ, Pξ) be the sample space of (y
(1)
i ⊕y

(0)
i , . . . , y

(`−1)
i ⊕y(0)

i), and let q(ξ) = φ`(T|ξ).
Let ε > 0 satisfy κ − ε > κ∗∗. Sogp is now the event that there does not exist 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T
and assignments y(0), . . . , y(k) ∈ {T, F}N such that

1this is a rewriting of the argument in Subsection 2.4.3. The XORs arise because we no longer assume y(0) = TN .

56

(OGP-A) For all 0 ≤ ` ≤ k, y(`) ν-satisfies Φ(t`);

(OGP-B) For all 1 ≤ ` ≤ k, the conditional overlap profile H
(
π(y(`)|y(0), . . . , y(`−1))

)
satisfies that F (q) ≤

κ− ε for the q defined above.

The key point is that our proof that P(Scogp) ≤ exp(−Ω(N)) requires precisely these properties. Using the
argument in Section 2.4, we readily prove P(Scogp) ≤ exp(−Ω(N)).

By a union bound, this gives a positive lower bound on P(Svalid∩Sconsec∩Sindep∩Sogp), so Svalid∩Sconsec∩
Sindep ∩ Sogp 6= ∅. We will show (analogously to Proposition 2.3.6) that Svalid ∩ Sconsec ∩ Sindep ∩ Sogp = ∅,
yielding a contradiction. When Svalid, Sconsec, Sindep simultaneously hold, we will construct an example of
the structure forbidden by Sogp.

We will set y(`) = x(t`) for all 0 ≤ ` ≤ k, for a sequence 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T we now construct.
We set t0 = 0. For 1 ≤ ` ≤ k we set t` to be the smallest t > t`−1 such that (OGP-B) holds for y(`) = x(t).
We now sketch why t` exists and satisfies t` ≤ t`−1 + kM . Note that this ensures all the t` are well defined
because T = k2M .

By Sconsec, x(t) evolves by small steps. Thus, for fixed y(0), . . . , y(`−1) and varying y(`) = x(t) (varying
as we increment t), the q defined above moves by small steps in Q. Let qt denote this q at time t. By
Fact 2.3.5(c) qt`−1

(ξ) ∈ {0, 1} for all ξ ∈ Ξ. Sindep ensures that qt`−1+kM is far from qt`−1
in Q. The

evolution of qt from t = t`−1 to t = t`−1 + kM can be modeled essentially by a continuous path, and the
definition of the maximin κ∗∗ implies that for some t in this range, F (qt) ≈ κ∗∗ ≤ κ− ε. (Although qt does
not necessarily evolve to the all- 1

2 function, Sindep implies that it ends far from where it started, and we
can show that over this evolution we already encounter qt such that F (qt) is near the maximin value.) This
shows the existence of t` with t` ≤ t`−1 + kM .

Since, by Svalid, each y(`) ν-satisfies Φ(t`), we have constructed an example of the structure forbidden by
Sogp. This gives the desired contradiction.

2.9.2 Suboptimality of κ∗

We believe that κ∗ > κ∗∗ due to the following heuristic argument. The Chernoff bound (2.9.2) is tighest

when most of the mass of the random variables min(ui,log k)
log k is near 0 or 1. When this occurs, most of the the

mass of ui is near 0 or log k. Then, the event that
∑k
i=1 ui ≥ log k + log log k is the event that one or two

of the ui attains a value near log k. This is a tail probability in a non-asymptotic regime – approximately,
the probability that a Poisson random variable is larger than 1 or 2 – so the Chernoff bound will not get the
correct probability.

2.9.3 Proof that κ∗∗ > 1

In this subsection, we will show that κ∗∗ is bounded below by a constant larger than 1, approximately 1.716.
Thus our methods cannot improve the constant κ∗ in Theorems 2.1.6 and 2.1.13 to 1.

We will first show a weaker lower bound on κ∗∗. Define ψ1 : (0,+∞)→ R by

ψ1(λ) =
λ/2

1− (1 + λ)e−λ
,

and let ψ∗1 = minλ>0 ψ1(λ) ≈ 1.675.

Proposition 2.9.3. We have κ∗∗ ≥ ψ∗1 .

Proof. We will prove this proposition by constructing a suitable function family p ∈ P.
Let Ξ = [0, 1] equipped with the uniform measure. Let p : Ξ× [0, 1]→ [0, 1] be defined by

p(ξ, s) =

{
min(s, 1

2) ξ ≤ s,
0 ξ ≥ s.

Thus, for fixed s ∈ [0, 1], p(ξ, s) = min(s, 1
2) with probability s, and otherwise p(ξ, s) = 0. We will show that

for this p,
lim sup
k→∞

min
s∈[0,1]

F (p(·, s)) ≥ ψ∗1 ,

57

from which the proposition follows.
Note that if s = ωk(k−1/2), then EξH(p(ξ, s)) = ωk(log k/k), and so F (p(·, s)) = ωk(1). Therefore it

suffices to consider s = Ok(k−1/2). Then,

E
ξ
H(p(ξ, s)) = (1 + ok(1))s2 log

1

s
.

We now analyze the behavior of the denominator of F (p(·, s)). Note that a sample u ∼ D(p(·, s)) equals log 1
s

with probability s2, log 1
1−s ≤

s
1−s with probability s(1− s), and 0 with probability 1− s. For i = 1, . . . , k,

define

vi = log
1

s
1

{
ui = log

1

s

}
, and wi =

s

1− s
1

{
ui = log

1

1− s

}
.

So, ui ≤ vi + wi. For u1, . . . , uk ∼ D(p(·, s))⊗k, we have

P

[
k∑
i=1

ui ≥ log k + log log k

]
≤ P

[
k∑
i=1

vi ≥ log k

]
+ P

[
k∑
i=1

wi ≥ log log k

]
.

Let 1 + δ = log log k
k Ew1

= log log k
ks2 . Because s = Ok(k−1/2), we have 1 + δ = ωk(1), and so δ2

2+δ ≥
1
2 (1 + δ) for

sufficiently large k. By a Chernoff bound,

P

[
k∑
i=1

wi ≥ log log k

]
≤ P

[
k∑
i=1

1− s
s

wi ≥
1− s
s

log log k

]
≤ exp

(
− δ2

2 + δ
· ks(1− s)

)
≤ exp

(
−1

2
(1 + δ)ks(1− s)

)
≤ exp

(
− (1− s) log log k

2s

)
≤ exp

(
−Ωk(k1/2)

)
.

To analyze the other probability, we consider cases s > 1
k and s ≤ 1

k . We first consider s > 1
k . In order to

have
∑k
i=1 vi ≥ log k, at least two vi must be nonzero. This occurs with probability

1− (1− s2)k − s2k(1− s2)k−1 ≤ 1− (1 + s2k)(1− s2)k.

Thus,

F (p(·, s)) ≥ 1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

1− (1 + s2k)(1− s2)k + exp(−Ωk(k1/2))
.

If s2k = ok(1), then 1 − (1 + s2k)(1 − s2)k = Ok(s4k2), and the right-hand side is ωk(1). So, this bound is
minimized at s = λk−1/2 for constant λ, in which case

1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

1− (1 + s2k)(1− s2)k + exp(−Ωk(k1/2))
→ λ/2

1− (1 + λ) exp(−λ)
= ψ1(λ) ≥ ψ∗1 .

We now consider s ≤ 1
k . In order to have

∑k
i=1 vi ≥ log k, at least one vi must be nonzero. This occurs

with probability
1− (1− s2)k = (1 + ok(1))s2k,

and so

F (p(·, s)) ≥ 1

log k
·

log 2 + (1 + ok(1))s2k log 1
s

(1 + ok(1))s2k + exp(−Ωk(k1/2))
.

The right-hand side is ωk(1) because s ≤ 1
k .

For any nonnegative integer n, we may further define

ψn(λ) =
λ/(n+ 1)

1−
(∑

k≤n
λk

k!

)
exp(−λ)

and ψ∗n = infλ>0 ψn(λ). Over positive integers n, the largest ψ∗n is ψ∗2 ≈ 1.716. The following corollary gives
the lower bound on κ∗∗ alluded to above.

58

Corollary 2.9.4. We have that κ∗∗ ≥ ψ∗2 .

Proof. We will construct a suitable function family p. For any nonnegative integer n, we can define

pn(ξ, s) =

{
min(s, 1

2) ξ ≤ sn,
0 ξ ≥ s.

(2.9.3)

By a similar analysis to Proposition 2.9.3, we can show for this p that

lim sup
k→∞

min
s∈[0,1]

F (pn(·, s)) ≥ ψ∗n.

Taking n = 2 yields the result.

Due to Corollary 2.9.4, a proof of Theorem 2.1.6 improving the constant κ∗ below ψ∗2 will require new
conceptual insights. Finally, we conjecture that Corollary 2.9.4 is in fact sharp.

Conjecture 2.9.5. We have that κ∗∗ = ψ∗2 . In particular, Theorem 2.1.6 holds for all κ > ψ∗2 .

The following evidence supports this conjecture. In the maximin problem (2.9.1), if we restrict the
maximum over p to functions such that for every s, p(ξ, s) attains at most one nonzero value, then we can
show by explicit computation that the maximin problem has value ψ∗2 . The idea of this proof is that for each
such p, at the s minimizing F (p(·, s)), p(·, s) equals (up to isomorphism of the probability space (Ξ, Pξ))
pn(·, s′) for some s′ and some (possibly fractional) n. We can show that fractional n do not maximize
mins∈[0,1] F (pn(·, s)). Thus the candidate maxima are pn for integer n, and of these p2 is maximal, attaining
value ψ∗2 . We believe that the maximum of (2.9.1) over p ∈ P is attained by p with this property.

59

Chapter 3

Mean-Field Spin Glasses

This chapter studies the optimization of mean-field spin glasses and is structured as follows.

• Section 3.1 states our main hardness result, Theorem 3.1.3, that overlap concentrated algorithms cannot
surpass the objective ALG defined in (1.3.9) (and for spherical spin glasses, (3.1.5)) with non-negligible
probability.

• In Section 3.2 we formulate Proposition 3.2.2, which establishes the main branching OGP, and prove
Theorem 3.1.3 assuming this proposition.

• Sections 3.3 through 3.5 prove Proposition 3.2.2 using a many-replica version of the Guerra-Talagrand
interpolation.

• Section 3.6 shows that (for spherical models without external field) the full strength of our branching
OGP is necessary to show tight algorithmic hardness.

• Section 3.7 shows that approximately Lipschitz algorithms are overlap concentrated, and that natural
optimization algorithms including gradient descent, AMP, and Langevin dynamics are approximately
Lipschitz. This includes, in particular, the optimal AMP algorithms of [Mon19, AMS21, Sel21].

Notation and Preliminaries

We generally use ordinary lower-case letters (x, y, . . .) for scalars and bold lower-case (x,y, . . .) for vectors.

For x,y ∈ RN , we denote the ordinary inner product by 〈x,y〉 =
∑N
i=1 xiyi and the normalized inner product

by R(x,y) = 1
N 〈x,y〉. We associate with these inner products the norms ‖x‖22 = 〈x,x〉 and ‖x‖2N = R(x,x).

There is no confusion between the ‖·‖N norm and the `p norm, which will not appear in this thesis.
Ensembles of scalars over an index set L are denoted with an arrow (~x, ~y, . . .), and the entry of ~x indexed

by u ∈ L is denoted x(u). Similarly, ensembles of vectors are written in bold and with an arrow (~x, ~y, . . .),
and the entry of ~x indexed by u ∈ L are denoted x(u). Sequences of scalars parametrizing these ensembles

are also denoted with an arrow, for example ~k = (k1, . . . , kD).

We reiterate that SN = {x ∈ RN :
∑N
i=1 x

2
i = N} and ΣN = {−1, 1}N , and that BN = {x ∈ RN :∑N

i=1 x
2
i ≤ N} and CN = [−1, 1]N are their convex hulls. The space of Hamiltonians HN is denoted HN .

We identify each Hamiltonian HN with its disorder coefficients (G(p))p∈2N, which we concatenate into a
vector g = g(HN).

For any tensor Ap ∈ (RN)⊗p, where p ≥ 1, we define the operator norm

‖Ap‖op =
1

N
max

σ1,...,σp∈SN

∣∣〈Ap,σ1 ⊗ · · · ⊗ σp〉
∣∣ .

Note that when p = 1, ‖Ap‖op = ‖Ap‖N . The following proposition shows that with exponentially high

probability, the operator norms of all constant-order gradients of HN are bounded and O(1)-Lipschitz. We
will prove this proposition in Section 3.8.

60

Proposition 3.0.1. For fixed model (ξ, h) and r ∈ [1,
√

2), there exists a constant c > 0, sequence (KN)N≥1

of sets KN ⊆ HN , and sequence of constants (Ck)k≥1 independent of N , such that the following properties
hold.

1. P[HN ∈ KN] ≥ 1− e−cN ;

2. If HN ∈ KN and x,y ∈ RN satisfy ‖x‖N , ‖y‖N ≤ r, then∥∥∇kHN (x)
∥∥

op
≤ Ck, (3.0.1)∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ Ck+1 ‖x− y‖N . (3.0.2)

Finally, the notations O(·),Ω(·), o(·), ω(·) indicate asymptotic behavior in N .

3.1 Results

3.1.1 Overlap Concentrated Algorithms

For any p ∈ [0, 1], we may construct two correlated copies H
(1)
N , H

(2)
N of HN as follows. Construct three i.i.d.

Hamiltonians H̃
[0]
N , H̃

[1]
N , H̃

[2]
N with mixture ξ, as in (1.3.2). Let

H̃
(1)
N =

√
pH̃

[0]
N +

√
1− pH̃ [1]

N and H̃
(2)
N =

√
pH̃

[0]
N +

√
1− pH̃ [2]

N

and define
H

(1)
N (σ) = 〈h,σ〉+ H̃

(1)
N (σ) and H

(2)
N (σ) = 〈h,σ〉+ H̃

(2)
N (σ).

We say the pair of Hamiltonians H
(1)
N , H

(2)
N is p-correlated. Note that pairs of corresponding entries in

g(1) = g(H
(1)
N) and g(2) = g(H

(2)
N) are Gaussian with covariance

[1 p
p 1

]
.

We will determine the maximum energy attained by algorithms AN : HN → BN or AN : HN → CN
(always assumed to be measurable) obeying the following overlap concentration property.

Definition 3.1.1. Let λ, ν > 0. An algorithm A = AN is (λ, ν) overlap concentrated if for any p ∈ [0, 1]

and p-correlated Hamiltonians H
(1)
N , H

(2)
N ,

P
[∣∣∣R(A(H

(1)
N),A(H

(2)
N)
)
− ER

(
A(H

(1)
N),A(H

(2)
N)
)∣∣∣ ≥ λ] ≤ ν. (3.1.1)

3.1.2 The Spherical Zero-Temperature Parisi Functional

We introduce a Parisi functional PSp for the spherical setting, analogous to the Parisi functional PIs for the
Ising setting introduced in (1.3.6). Similarly to Theorem 1.3.1, Auffinger and Chen [AC17a], see also [CS17],
characterize the ground state energy of the spherical spin glass by a variational formula in terms of this
Parisi functional. Recall the set U defined in (1.3.3). Let

V (ξ) =

{
(B, ζ) ∈ R+ ×U : B >

∫ 1

0

ξ′′(t)ζ(t) dt

}
.

Define the spherical Parisi functional PSp = PSp
ξ,h : V (ξ)→ R by

PSp(B, ζ) =
1

2

[
h2

Bζ(0)
+

∫ 1

0

(
ξ′′(t)

Bζ(t)
+Bζ(t)

)
dt

]
, (3.1.2)

where for t ∈ [0, 1]

Bζ(t) = B −
∫ 1

t

ξ′′(q)ζ(q) dq. (3.1.3)

Theorem 3.1.2 ([AC17a, Theorem 10]). The following identity holds.

OPTSp = inf
(B,ζ)∈V (ξ)

PSp(B, ζ). (3.1.4)

The infimum is attained at a unique (B∗, ζ∗) ∈ V (ξ).

61

3.1.3 The Optimal Energy of Overlap Concentrated Algorithms

We defined ALGIs in (1.3.9) by a non-monotone extension of the variational formula in (1.3.7). We can
similarly define ALGSp by a non-monotone extension of (3.1.4). Recall the set L defined in (1.3.8). Let
K (ξ) ⊇ V (ξ) denote the set

K (ξ) =

{
(B, ζ) ∈ R+ ×L : B >

∫ 1

0

ξ′′(t)ζ(t) dt

}
.

The Parisi functional PSp can clearly be defined on K (ξ). We can therefore define ALGSp = ALGSp
ξ,h by

ALGSp = inf
(B,ζ)∈K (ξ)

PSp(B, ζ). (3.1.5)

Note that ALGSp ≤ OPTSp trivially.
We are now ready to state the main result of this work. We will show that for any mixed even spherical

or Ising spin glass, no overlap concentrated algorithm can attain an energy level above the algorithmic
thresholds ALGSp and ALGIs with nontrivial probability.

Theorem 3.1.3 (Main Result). Consider a mixed even Hamiltonian HN with model (ξ, h). Let ALG =
ALGSp (resp. ALGIs). For any ε > 0 there are λ, c,N0 > 0 depending only on ξ, h, ε such that the following
holds for any N ≥ N0 and any ν ∈ [0, 1]. For any (λ, ν) overlap concentrated A = AN : HN → BN (resp.
CN),

P
[

1

N
HN (A(HN)) ≥ ALG + ε

]
≤ exp(−cN) + 3(ν/λ)c.

Remark 3.1.4. If A is τ -Lipschitz, (λ, ν) overlap concentration holds with ν = exp(−cλ,τN) by concentration
of measure on Gaussian space, see Proposition 3.7.2. Hence in this case the probability on the right-hand
side above is exponentially small in N . The same property holds when A is τ -Lipschitz on a set of inputs
with 1− exp(−Ω(N)) probability, see Proposition 3.7.3.

In tandem with Theorem 1.3.2 and its spherical analogue Theorem 3.1.5 below, Theorem 3.1.3 exactly
characterizes the maximum energy attained by overlap concentrated algorithms (again with the caveat on
the algorithmic side in the Ising case that a minimizer γ∗ ∈ L exists in Theorem 1.3.2). We will see in
Section 3.7 that the algorithms in these two theorems are overlap concentrated.

Theorem 3.1.5 ([AMS21, Sel21]). For any ε > 0, there exists an efficient and Oε(1)-Lipschitz AMP
algorithm A : HN → BN such that

P[HN (A(HN))/N ≥ ALGSp − ε] ≥ 1− o(1), c = c(ε) > 0.

In fact, we can show the success probability of the algorithm in Theorem 3.1.5 (resp. Theorem 1.3.2) is
exponentially high. By Theorem 3.7.6, for this algorithm A the map HN 7→ 1

NHN (A(HN)) is O(N−1/2)-
Lipschitz with respect to the ‖·‖2 norm when restricted to HN ∈ KN (see Proposition 3.0.1). By Kirszbraun’s
Theorem, HN 7→ 1

NHN (A(HN)) agrees on KN with an O(N−1/2)-Lipschitz A′ : HN → R. By Gaussian

concentration and the bound P[HN ∈ KN] ≥ 1−e−cN , (after adjusting ε) we have 1
NHN (A(HN)) ≥ ALGSp−ε

(resp. ALGIs − ε) with probability at least 1− e−cεN for a constant cε > 0.
In the case of the spherical spin glass, the value of ALGSp is explicit, and is given by the following

proposition. We will prove this proposition in Section 3.9.

Proposition 3.1.6. If h2 + ξ′(1) ≥ ξ′′(1), then

ALGSp = (h2 + ξ′(1))1/2,

and the infimum in (3.1.5) is uniquely attained by B = (h2 + ξ′(1))1/2, ζ = 0. Otherwise,

ALGSp = q̂ξ′′(q̂)1/2 +

∫ 1

q̂

ξ′′(q)1/2 dq

62

where q̂ ∈ [0, 1) is the unique number satisfying h2 + ξ′(q̂) = q̂ξ′′(q̂). If h > 0, the infimum in (3.1.5) is
uniquely attained by B = ξ′′(1)1/2 and

ζ(q) = 1 {q ≥ q̂} ξ′′′(q)

2ξ′′(q)3/2
= −1 {q ≥ q̂} d

dq
ξ′′(q)−1/2. (3.1.6)

If h = 0, the infimum is not attained. It is achieved by B = ξ′′(1)1/2 and ζ given by (3.1.6) in the limit as
q̂ → 0+.1

Note that ALGSp = OPTSp if and only if the infimum in (3.1.5) is attained at a pair (B, ζ) ∈ V (ξ). Thus,
Proposition 3.1.6 implies that ALGSp = OPTSp if and only if h2 + ξ′(1) ≥ ξ′′(1) or ξ′′(q)−1/2 is concave on
[q̂, 1]. In the former case, the model is replica symmetric at zero temperature; in the latter case it is full
replica symmetry breaking on [q̂, 1] at zero temperature.

In the case h2 +ξ′(1) > ξ′′(1), [Fyo13, BČNS21] showed that HN has trivial complexity, in the sense that
HN has exactly two critical points on SN with high probability, namely its global maximum and minimum.

In the pure p-spin case, h = 0 and ξ(x) = xp for an even p ≥ 4. The corresponding algorithmic limit is

ALGSp =

∫ 1

0

ξ′′(q)1/2 dq = 2

√
p− 1

p
.

This coincides with the threshold E∞(p) identified in [ABAČ13]. As conjectured in [ABAČ13] and proved
in [Sub17], with high probability an overwhelming majority of local maxima of HN on SN have energy value
E∞(p)±o(1). This suggests that it may be computationally intractable to achieve energy at least E∞(p)+ε
for any ε > 0; our results confirm this hypothesis for overlap concentrated algorithms.

Remark 3.1.7. Our results generalize with no changes in the proofs to arbitrary external fields h = (h1, . . . , hN)

which are independent of H̃N — one only needs to replace h2 by ‖h‖2N in (3.1.2) and replace Φ(0, h) by
1
N

∑N
i=1 Φ(0, hi) in (1.3.6). This includes for instance the natural case of Gaussian external field. Here A

can depend arbitrarily on h as long as overlap concentration holds conditionally on h.

3.2 Proof of Main Impossibility Result

In this section, we prove Theorem 3.1.3 assuming Proposition 3.2.2, which establishes the main OGP.
Throughout, we fix a model (ξ, h) and ε > 0. Let HN be a Hamiltonian (1.3.1) with model (ξ, h). Let
λ > 0 be a constant we will set later, and let A : HN → BN (resp. CN) be (λ, ν) overlap concentrated.

3.2.1 The Correlation Function

We define the correlation function χ : [0, 1]→ R by

χ(p) = ER
(
A(H

(1)
N),A(H

(2)
N)
)
, (3.2.1)

where H
(1)
N , H

(2)
N are p-correlated copies of HN . The following proposition establishes several properties of

correlation functions, which we will later exploit.

Proposition 3.2.1. The correlation function χ has the following properties.

(i) For all p ∈ [0, 1], χ(p) ∈ [0, 1].

(ii) χ is either strictly increasing or constant on [0, 1].

(iii) For all p ∈ [0, 1], χ(p) ≤ (1− p)χ(0) + pχ(1).

We call any χ : [0, 1]→ R satisfying the conclusions of Proposition 3.2.1 a correlation function.

1When h = 0, we cannot take q̂ = 0 in (3.1.6) because then B =
∫ 1
0 ξ
′′(q)ζ(q) dq, so (B, ζ) 6∈ K (ξ).

63

Proof. In this proof, we will write A(g) to mean A(HN) for the Hamiltonian HN with disorder coefficients
g = g(HN). We introduce the Fourier expansion of A. For each nonnegative integer j, let Hej denote the
j-th univariate Hermite polynomial. These are defined by He0(x) = 1 and for n ≥ 0,

Hen+1(x) = xHen(x)−He′n(x).

Recall that the renormalized Hermite polynomials H̃en = 1√
n!

Hen form an orthonormal basis of L2(R) with

the standard Gaussian measure, i.e. they form a complete basis and satisfy

E
g∼N (0,1)

H̃en(g)H̃em(g) = 1 {n = m} .

For each multi-index α = (α1, α2, . . . ,) of nonnegative integers that are eventually zero, define the multi-
variate Hermite polynomial

H̃eα(g) =
∏
i

H̃eαi(gi),

These polynomials form an orthonormal basis of L2(RN) with the standard Gaussian measure, see e.g.
[LMP15, Theorem 8.1.7]. Hence for each 1 ≤ i ≤ N , we can write

Ai(g) =
∑
α

Âi(α)H̃eα(g) where Âi(α) = E
[
Ai(g)H̃eα(g)

]
.

For each multi-index α, let |α| =
∑
i≥1 αi. For each nonnegative integer j, introduce the Fourier weight

Wj =
1

N

N∑
i=1

∑
|α|=j

Âi(α)2 ≥ 0.

For i = 1, 2, let g(i) = g(H
(i)
N). Let Tp denote the Ornstein-Uhlenbeck operator. We compute that

χ(p) =
1

N
E
〈
A(g(1)),A(g(2))

〉
=

1

N
E 〈A(g), TpA(g)〉 =

1

N
E
∥∥T√pA(g)

∥∥2

2

=
1

N

N∑
i=1

∥∥T√pAi(g)
∥∥2

2
=

1

N

N∑
i=1

∑
α

p|α|Âi(α)2 =
∑
j≥0

pjWj .

It is now clear that 0 ≤ χ(p) ≤ χ(1). Since χ(1) = E ‖A(HN)‖2N ≤ 1, this proves the first claim. The second
claim follows because χ(p) is strictly increasing unless Wj = 0 for all j ≥ 1, in which case χ(p) is constant.
Finally, the last claim follows since χ is manifestly convex.

3.2.2 Hierarchically Correlated Hamiltonians

Here we define the hierarchically organized ensemble of correlated Hamiltonians that will play a central role
in our proofs of impossibility. Let D be a nonnegative integer and ~k = (k1, . . . , kD) for positive integers
k1, . . . , kD. For each 0 ≤ d ≤ D, let Vd = [k1] × · · · × [kd] denote the set of length d sequences with j-th

element in [kj]. The set V0 consists of the empty tuple, which we denote ∅. Let T(~k) denote the depth D
tree rooted at ∅ with depth d vertex set Vd, where u ∈ Vd is the parent of v ∈ Vd+1 if u is an initial substring

of v. For nodes u1, u2 ∈ T(~k), let

u1 ∧ u2 = max
{
d ∈ Z≥0 : u1

d′ = u2
d′ for all 1 ≤ d′ ≤ d

}
,

where the set on the right-hand side always contains 0 vacuously. This is the depth of the least common
ancestor of u1 and u2. Let L(~k) = VD denote the set of leaves of T(~k). When ~k is clear from context, we

denote T(~k) and L(~k) by T and L. Finally, let K = |L| =
∏D
d=1 kd.

Let sequences ~p = (p0, p1, . . . , pD) and ~q = (q0, q1, . . . , qD) satisfy

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1,

0 ≤ q0 < q1 < · · · < qD = 1.

64

The sequence ~p controls the correlation structure of our ensemble of Hamiltonians, while the sequence ~q
controls the overlap structure that we will require the inputs to these Hamiltonians to have.

We now construct an ensemble of Hamiltonians (H
(u)
N)u∈L, such that each H

(u)
N is marginally distributed

as HN and each pair of Hamiltonians H
(u1)
N , H

(u2)
N is pu1∧u2-correlated. For each u ∈ T, including non-leaf

nodes, let H̃
[u]
N be an independent copy of H̃N , generated by (1.3.2). For each u ∈ L, we construct

H
(u)
N (σ) = 〈h,σ〉+ H̃

(u)
N (σ), where

H̃
(u)
N =

D∑
d=1

√
pd − pd−1 · H̃ [(u1,...,ud)]

N . (3.2.2)

It is clear that this ensemble has the stated properties. Consider a state space of K-tuples

~σ = (σ(u))u∈L ∈ (RN)K .

We define a grand Hamiltonian on this state space by

H~k,~pN (~σ) ≡
∑
u∈L

H
(u)
N (σ(u)).

We will denote this by HN when ~k, ~p are clear from context. For states ~σ1, ~σ2 ∈ (RN)K , define the overlap
matrix R = R(~σ1, ~σ2) ∈ RK×K by

Ru1,u2 = R(σ1(u1),σ2(u2))

for all u1, u2 ∈ L. We now define an overlap matrix Q = Q
~k,~q ∈ RK×K ; we will control the maximum

energy of HN over inputs ~σ with approximately this self-overlap. Let Q have rows and columns indexed by
u1, u2 ∈ L and entries

Qu1,u2 = qu1∧u2 .

Fix a point m ∈ RN such that ‖m‖2N = q0, which we will later take to be m = E[A(HN)]. For a tolerance
η ∈ (0, 1), define the band

B(m, η) =
{
σ ∈ RN : |R(σ,m)− q0| ≤ η

}
.

Define the sets of points in SKN and ΣKN with self-overlap approximately Q and overlap with m approximately
q0 by

QSp(Q,m, η) =
{
~σ ∈ (SN ∩B(m, η))K : ‖R(~σ, ~σ)−Q‖∞ ≤ η

}
,

QIs(Q,m, η) =
{
~σ ∈ (ΣN ∩B(m, η))K : ‖R(~σ, ~σ)−Q‖∞ ≤ η

}
.

Let χ be a correlation function (recall Proposition 3.2.1). We say ~p = (p0, . . . , pD) and ~q = (q0, . . . , qD)
are χ-aligned if the following properties hold for all 0 ≤ d ≤ D.

• If qd ≤ χ(1), then χ(pd) = qd.

• If qd > χ(1), then pd = 1.

The following proposition controls the expected maximum energy of the grand Hamiltonian constrained
on the sets QSp(Q,m, η) and QIs(Q,m, η), and is the main ingredient in our proof of impossibility. We defer
the proof of this proposition to Sections 3.3 through 3.5.

Proposition 3.2.2. For any mixed even model (ξ, h) and ε > 0, there exists a small constant η0 ∈ (0, 1)
and large constants N0,K0 > 0, dependent only on ξ, h, ε, such that for all N ≥ N0 the following holds.

Let ALG = ALGSp (resp. ALGIs). For any correlation function χ and vector m ∈ RN with ‖m‖2N = χ(0),

there exist D,~k, ~p, ~q, η as above such that ~p and ~q are χ-aligned, η ≥ η0, K ≤ K0, and

1

N
E max
~σ∈Q(η)

HN (~σ) ≤ K(ALG + ε),

where Q(η) = QSp(Q,m, η) (resp. QIs(Q,m, η)).

65

3.2.3 Extending a Branching Tree to SN and ΣN

To account for the possibility that A outputs solutions in BN (resp. CN) not in SN (resp. ΣN), we will show
that a branching tree of solutions in BN (resp. CN) output by A can always be extended into a branching
tree of solutions in SN (resp. ΣN), with only a small cost to the energies attained.

Consider χ-aligned ~p, ~q as above. Let D ≤ D be the smallest integer such that pD = 1. Define ~k =
(k1, . . . , kD), ~p = (p0, . . . , pD), and ~q = (q0, . . . , qD). Let L = VD denote the nodes of T at depth D, and let

K = |L| =
∏D
d=1 kd.

Consider an analogous state space of K-tuples

~σ = (σ(u))u∈L ∈ (RN)K .

Define Q = Q
~k,~q ∈ RK×K analogously as the matrix indexed by u1, u2 ∈ L, where

Q
u1,u2 = qu1∧u2 ∧ χ(1).

Note that because ~p, ~q are χ-aligned, qD−1 < χ(1) ≤ qD. So, the right-hand side is χ(1) if u1 ∧ u2 = D (i.e.
u1 = u2) and qu1∧u2 otherwise. The following sets capture the overlap structure of outputs of A.

QSp(Q,m, η) =
{
~σ ∈ (BN ∩B(m, η))K :

∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ η

}
,

QIs(Q,m, η) =
{
~σ ∈ (CN ∩B(m, η))K :

∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ η

}
.

By the construction (3.2.2), for each u ∈ L the Hamiltonians{
H

(u)
N : u ∈ L is a descendant of u in T

}
are equal almost surely. Let H

(u)
N denote any representative from this set.

We next define the condition Seigen which guarantees existence of a suitable “extension” ~σ of ~σ =(
A(H

(u)
N)

)
u∈L

. First, given a subset S ⊆ [N], denote by WS the |S| dimensional subspace spanned by the

elementary basis vectors {es : s ∈ S}. Below, λj denotes the j-th largest eigenvalue and (·)|WS
denotes

restriction to the subspace WS as a bilinear form, or equivalently A|WS
= PWS

APWS
, where PWS

is the
projection onto WS .

Definition 3.2.3. For constants δ and K, let Seigen(δ,K) denote the event that both of the below hold for
all u ∈ L.

1. λ2K+1

(
∇2H

(u)
N (x)|WS

)
≥ 0 for all S ⊆ [N] of size |S| ≥ δN .

2. H
(u)
N ∈ KN , for the KN given by Proposition 3.0.1.

We will use the following lemma, whose proof is deferred to Subsection 3.2.6.

Lemma 3.2.4. Fix a model ξ, h, constants ε, η > 0, and ~k, ~q as above. Let δ be sufficiently small depending
on ξ, h, η, ε, and assume that Seigen(δ,K) holds. For any ~σ ∈ Q(η/2), there exists ~σ ∈ Q(η) such that

H
(u)
N (σ(u)) ≥ H(u)

N (σ(u))−Nε

whenever u ∈ L is an ancestor of u ∈ L.

3.2.4 Completion of the Proof

We will now finish the proof of Theorem 3.1.3. Below we give the proof in the spherical setting; the Ising
case follows verbatim up to replacing BN by CN and ALGSp by ALGIs (since CN ⊆ BN).

66

Let ALG = ALGSp. Let χ be the correlation function of A defined in (3.2.1) and set m = E[A(HN)].

Note that ‖m‖2N = χ(0) by definition. For small ε/2 > 0 there exist N0,K0, η0 and D,~k, ~p, ~q, η,K as in
Proposition 3.2.2 such that

1

N
E max
~σ∈Q(η)

HN (~σ) ≤ K(ALG + ε/2). (3.2.3)

For N ≥ N0 let

αN = P
[

1

N
HN (A(HN)) ≥ ALG + ε

]
.

For each u ∈ L, let σ(u) = A(H
(u)
N), and let ~σ = (σ(u))u∈L. We define the following events, where δ > 0 is

chosen so that Lemma 3.2.4 holds with parameters ε/4, η,~k, ~q. In the statement of Theorem 3.1.3, we take
λ = η0/4 ≤ η/4.

Define the following events.

Ssolve =

{
1

N
H

(u)
N (σ(u)) ≥ ALG + ε for all u ∈ L(~k)

}
,

Soverlap = {~σ ∈ Q(η/2)} ,
Seigen = {Seigen(δ,K)} ,

Sogp =

{
1

N
max
~σ∈Q(η)

HN (~σ) < K(ALG + 3ε/4)

}
.

Proposition 3.2.5. With parameters as above,

Ssolve ∩ Soverlap ∩ Seigen ∩ Sogp = ∅.

Proof. Suppose that the first three events hold. Then A outputs ~σ ∈ Q(η/2) such that for all u ∈ L,

H
(u)
N (σ(u)) ≥ ALG + ε.

Lemma 3.2.4 now implies the existence of ~σ ∈ Q(η) such that for all u ∈ L,

H
(u)
N (σ(u)) ≥ ALG + 3ε/4.

This contradicts Sogp.

Proposition 3.2.6. The following inequalities hold.

(a) P(Ssolve) ≥ αKN .

(b) P(Soverlap) ≥ 1−K2ν − 2Kν
λ .

(c) P(Seigen) ≥ 1− exp(−cN) for c > 0 depending only on ξ, h, ε.

(d) P(Sogp) ≥ 1− 2 exp
(
− ε2

32ξ(1)N
)

.

We defer the proof of this proposition to after the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. Lemma 3.2.5 implies that P(Ssolve) +P(Soverlap) +P(Seigen) +P(Sogp) ≤ 3. Because
(K2 + 2K)1/K ≤ 3 for any positive integer K and λ < 1,

αN ≤
(
K2ν +

2Kν

λ

)1/K

+ 2 exp

(
− ε2

32Kξ(1)
N

)
+ e−cN/K

≤ 3
(ν
λ

)1/K

+ 2 exp

(
− ε2

32Kξ(1)
N

)
+ e−cN/K .

Recall that K ≤ K0 and K0 is a constant depending only on ξ, h, ε. The proof is complete up to choosing
an appropriate c in Theorem 3.1.3.

67

3.2.5 Proofs of Probability Lower Bounds

In this section, we will prove Proposition 3.2.6. As preparation we first give two useful concentration
lemmas. The first shows that R(A(HN),m) concentrates around ‖m‖2N for overlap concentrated algorithms
with E[A(HN)] = m.

Lemma 3.2.7. If A = AN is (λ, ν) overlap concentrated and E[A(HN)] = m, then

P
[∣∣∣R(A(HN),m)− ‖m‖2N

∣∣∣ > 2λ
]
≤ 2ν

λ
. (3.2.4)

Proof. Define the convex function ψ(t) = (|t− ‖m‖2N | − λ)+. Then by Jensen’s inequality, for independent
Hamiltonians HN and H ′N ,

E [ψ (R(A(HN),m))] ≤ E [ψ (R(A(HN),A(H ′N)))] .

Because A is (λ, ν) overlap concentrated, ψ (R(A(HN),A(H ′N))) = 0 with probability at least 1− ν. More-
over, ψ (R(A(HN),A(H ′N))) ≤ 2 pointwise. So,

E [ψ (R(A(HN),m))] ≤ 2ν.

By Markov’s inequality,

P
[∣∣∣R(A(HN),m)− ‖m‖2N

∣∣∣ > 2λ
]

= P [ψ (R(A(HN),m)) > λ] ≤ 2ν

λ
.

The next lemma shows subgaussian concentration for 1
N max~σ∈Q(η)HN (~σ).

Proposition 3.2.8. The random variable

Y =
1

N
max
~σ∈Q(η)

HN (~σ)

satisfies for all t ≥ 0

P[|Y − EY | ≥ t] ≤ 2 exp

(
− Nt2

2K2ξ(1)

)
.

Proof. For any ~σ ∈ SKN , by Cauchy-Schwarz the variance of HN (~σ) is at most

E
[
(HN (~σ)− EHN (~σ))

2
]

=
∑

u1,u2∈L

E H̃(u1)
N (σ(u1))E H̃(u2)

N (σ(u2))

≤ K
∑
u∈L

E H̃(u)
N (σ(u))2

= NK2ξ(1).

The result now follows from the Borell-TIS inequality ([Bor75, CIS76], or see [Zei15, Theorem 2]). Note that
both the statement and proof of Borell-TIS hold for noncentered Gaussian processes with no modification.

We now prove each part of Proposition 3.2.6 in turn.

Proof of Proposition 3.2.6(a). For 0 ≤ d ≤ D, let 1d ∈ T denote the node (1, . . . , 1) with d entries (so 10 = ∅
is the root of T), and let Sd be the event that H

(u)
N (σ(u)) ≥ ALG + ε for all u ∈ L descended from the node

1d. Let Pd = P[Sd]. Note that PD = αN . We will show P0 ≥ αKN ≥ αKN by showing that for all 1 ≤ d ≤ D,

Pd−1 ≥ P kdd .

The result will then follow by induction.

68

Recall the construction (3.2.2) of the Hamiltonians H
(u)
N in terms of i.i.d. Hamiltonians (H̃

[u]
N)u∈T.

Conditioned on the Hamiltonians Ωd−1 = (H̃
[1d
′
]

N)0≤d′≤d−1, let fd(Ωd−1) denote the conditional probability
of Sd. Note that

Pd = E fd(Ωd−1).

By symmetry of the kd descendant subtrees of the node 1d−1,

Pd−1 = E fd(Ωd−1)kd .

Thus Pd−1 ≥ P kdd by Jensen’s inequality.

Proof of Proposition 3.2.6(b). By definition of χ, ER(σ(u1),σ(u2)) = χ(pu1∧u2). If u1 ∧ u2 < D, then
pu1∧u2 < 1. Because ~p, ~q are χ-aligned, we have χ(pu1∧u2) = qu1∧u2 . If u1 ∧ u2 = D, then pu1∧u2 = 1, so
clearly χ(pu1∧u2) = χ(1). So, in all cases, ER(σ(u1),σ(u2)) = Q

u1,u2 .

Using (3.1.1) and a union bound over u1, u2 ∈ L, we have∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ λ

with probability at least 1−K2ν. By Lemma 3.2.7 and a union bound, we have∣∣∣R(A(H
(u)
N),m)− ‖m‖2N

∣∣∣ ≤ 2λ

for all u ∈ L with probability at least 1− 2Kν
λ . Recall that λ = η0/4 ≤ η/4. By a final union bound,

P[~σ ∈ Q(η/2)] ≥ 1−K2ν − 2Kν

λ
.

Proof of Proposition 3.2.6(c). We focus on a fixed u ∈ L. The requirements H
(u)
N ∈ KN follow from Propo-

sition 3.0.1. The uniform eigenvalue lower bound follows by union bounding over subspaces S and a net
of points x. In fact it follows from exactly the same proof as [Sel20, Lemma 2.6] up to replacing each
appearance of an eigenvalue λi to λK+i.

Proof of Proposition 3.2.6(d). By (3.2.3) and Proposition 3.2.8 with t = Kε/4,

P
[

1

N
max
~σ∈Q(η)

HN (~σ) ≥ K(ALG + 3ε/4)

]
≤ P

[
1

N
max
~σ∈Q(η)

HN (~σ)− 1

N
E max
~σ∈Q(η)

HN (~σ) ≥ Kε

4

]
≤ 2 exp

(
− ε2

32ξ(1)
N

)
.

3.2.6 Proof of Lemma 3.2.4

The spherical case of Lemma 3.2.4 follows from [Sub21, Remark 6] and does not require any of the axis-
aligned subspace conditions. We therefore focus on the Ising case, which is a slight extension of the main
result of [Sel20].

Lemma 3.2.9. Suppose Seigen(δ,K) holds. Then for any x ∈ [−1, 1]N with ||x||2N ≤ 1 − δ, any u ∈ L
and any subspace W ⊆ RN of dimension dim(W) ≥ N − K − 1, there are mutually orthogonal vectors
y1, . . . ,yK ∈W ∩ x⊥ such that for each i ∈ [K] the following hold where C3 is as in Proposition 3.0.1.

1. x+ yi ∈ [−1, 1]N .

2. If xj ∈ {−1, 1} then yij = 0.

69

3. H
(u)
N (x+ yi)−H(u)

N (x) ≥ −δ
∥∥yi∥∥2

2
.

4.
∥∥yi∥∥

N
≤ δ

10C3
.

5. If ‖x‖2N < qd for some 1 ≤ d ≤ D, then
∥∥x+ yi

∥∥2

N
≤ qd.

6. At least one of the following three events holds.

(a)
∥∥yi∥∥

N
= δ

10C3
.

(b) x+ yi has strictly more ±1-valued coordinates than x.

(c) ||x||2N < qd and ||x+ yi||2N = qd for some 1 ≤ d ≤ D.

Proof. By the Markov inequality, x has a set S of at least (1 − ||x||2N)N coordinates not in {−1, 1}.
Seigen(δ,K) and the Cauchy interlacing inequality imply

λK

(
∇2H

(u)
N (x)|WS∩W

)
≥ λ2K+1

(
∇2H

(u)
N (x)|WS

)
≥ 0.

Let y1, . . . ,yK ∈WS(x) ∩W be a corresponding choice of orthogonal eigenvectors, each satisfying〈
yi,∇2H

(u)
N (x)yi

〉
≥ 0.

Since yi and −yi play symmetric roles we may assume without loss of generality that 〈∇H(u)
N (y),yi〉 ≥ 0.

Replacing yi by tyi for suitable t ∈ [0, 1] if needed, we may ensure that Items 1, 2, 4, 5, and 6 above hold.

Since Seigen(δ,K) implies that
∥∥∥∇3H

(u)
N

∥∥∥
op

is uniformly bounded by C3, it follows that along the line

segment x + [0, 1]yi the Hessian of H
(u)
N varies in operator norm by at most δ

5 . This combined with

〈∇H(u)
N (x),yi〉 ≥ 0 implies

H
(u)
N (x+ yi) ≥ H(u)

N (x)− δ
∥∥yi∥∥2

2
.

This completes the proof.

Proof of Lemma 3.2.4. Take

δ <
min(ε, η, 1− qD−1)2

16(C1 + C3 + 1)

sufficiently small, where C1, C3 are given by Proposition 3.0.1. Enumerate u1, . . . , uK ∈ L. Assume the
points σ(u) for descendants u ∈ L of u1, . . . , uj−1 have already been chosen and satisfy the conclusions of
Lemma 3.2.4. We show how to define the points σ(u) for u a descendant of uj .

From the starting point x0,uj = σ(uj), we produce iterates xi,v for i ∈ N and v ∈ T a descendant
of uj , similarly to [Sub21] and [Sel20, Proof of Theorem 1]. First let d0 = d0(uj) ∈ [D] be such that

||x0,uj ||2N ∈ [qd0−1, qd0), and set x0,v = x0,uj for all depth d0 descendants v of uj if d0 > D.
Given a point xm,v with v a descendant of uj , suppose that ||xm,v||2N ∈ (q|v|−1, q|v|∧(1−δ)). Then take the

subspace W⊥ (which changes from iteration to iteration) to be the span of m as well as all currently defined
leaves of the exploration tree (including xm,v itself). Hence dim(W⊥) ≤ K+1 and so dim(W) ≥ N −K−1.
(The resulting exploration tree can be constructed in arbitrary order; at any time it will have at most K
leaves.)

Then there exists ym,v satisfying the properties of Lemma 3.2.9 with subspace W and Hamiltonian H
(uj)
N .

We update
xm+1,v = xm,v + ym,v, v ∈ T.

However if ||xm,v||2N = q|v|, then we let v1, . . . , vkd+1 be the children of v in T and generate ym,v
1

, . . .ym,v
kd+1

again using Lemma 3.2.9. We then define

xm+1,vj = xm,v + ym,v
j

, j ∈ [kd+1].

70

Continuing in this way, we eventually reach points xm+1,u with ||xm+1,u||2N ≥ (1− δ) for each u ∈ L; indeed
the last condition of Lemma 3.2.9 ensures that this eventually occurs for each u ∈ L. We set xu = xm+1,u.
Observe that by orthogonality of xm,v and ym,v,

H
(u)
N (xm+1,v) ≥ H(u)

N (xm,v)−Nδ ‖ym,v‖2N
≥ H(u)

N (xm,v)−Nδ ·
(∥∥xm+1,v

∥∥2

N
− ‖xm,v‖2N

)
.

It follows by telescoping that (recall uj ∈ L is an ancestor of u ∈ L),

H
(u)
N (xu) ≥ H(u)

N (xu
j

)−Nδ ≥ H(u)
N (xu

j

)−Nε/2.

Since every update above is made orthogonally to all contemporaneous iterates, it is not difficult to see that
the final iterates (xu)u∈L satisfy the following.

• R(xu,xu) ≥ 1− δ ≥ qu∧u − η
2 .

• If u1 6= u2 are both descendants of uj ∈ L and u1 ∧ u2 < d0(uj), then

R(xu
1

,xu
2

) = R(xu
j

,xu
j

) ≤ qD +
η

2
≤ qu1∧u2 +

η

2
.

and
R(xu

1

,xu
2

) ≥ qd0−1 ≥ qu1∧u2 ,

hence
∣∣∣R(xu

1

,xu
2

)− qu1∧u2

∣∣∣ ≤ η/2.

• Otherwise, R(xu
1

,xu
2

) = qu1∧u2 .

Moreover all updates were also orthogonal to m, so |R(m,xu)| ≤ η/2 for all u ∈ L.
Finally, to produce outputs in ΣN , for each u ∈ L and i ∈ [N] we independently round the coordinate

xui at random to σ(u)i ∈ {−1, 1} so that E[σ(u)] = xu. It is not difficult to see that

P[|R(xu
1

,xu
2

)−R(σ(u1),σ(u2))| ≥ δ] ≤ e−c(δ)N

for each u1, u2 ∈ L, and similarly for inner products with m. We conclude that ~σ ∈ Q(η) holds with

probability 1− e−c(δ)N (since δ ≤ η/2). Similarly ‖σ(u)− xu‖22 is an independent sum of N terms each at
most 1 and has expectation at most δ. It follows that

P[‖σ(u)− xu‖N ≥ 2δ1/2] ≤ e−c(δ)N .

Now using Seigen, for every (u, u) ∈ L× L with u an ancestor of u,

H
(u)
N (σ(u)) ≥ H(u)

N (xu)− 2C1δ
1/2N

≥ H(u)
N (xu)−Nε/2

≥ H(u)
N (xu)−Nε

holds with probability 1 − e−c(δ)N . In particular, the above events hold simultaneously over all (u, u) with
probability at least 1

2 over the random rounding step. Hence there exists some ~σ satisfying all desired
conditions. This concludes the proof.

3.2.7 A Different Class of Algorithms Capturing The Approach of Subag

The optimization algorithm of [Sub21] in the spherical setting can be summarized as follows. Starting from

any x1 ∈ BN with
∥∥x1

∥∥2

N
= δ, repeatedly compute the maximum-eigenvalue unit eigenvector vi ∈ RN of

P(xi)⊥∇2HN (xi)P(xi)⊥ (the Hessian of HN at xi restricted to the orthogonal complement of xi). Then, set

xi+1 = xi + vi
√
δN (3.2.5)

71

where the sign of vi is chosen depending on the gradient ∇HN (xi). By construction,
∥∥xi∥∥2

N
= iδ, so

if δ−1 = m ∈ N then xm ∈ SN . By uniformly lower bounding the maximum eigenvalue of the Hessians,
[Sub21] showed that this algorithm obtains energy at least (ALGSp+oδ(1))N as δ → 0. Because the maximum
eigenvalue is a discontinuous operation, our results do not apply to Subag’s algorithm.

We consider the following variant. At each xi, let the subspace W (xi) be the span of the top bδNc
eigenvectors of P(xi)⊥∇2HN (xi)P(xi)⊥ . Next, choose vi uniformly at random from the unit sphere of W (xi)
and update using (3.2.5). This modified algorithm obeys the same guarantees as that of [Sub21] by exactly
the same proof.

More generally, we define the class of δ-subspace random walk algorithms for δ > 0 with δ−1 = m ∈ N,
only in the spherical setting for convenience, as follows. Given HN , let W (xi) ⊆ RN be an arbitrary

(measurable in (HN ,x)) subspace of dimension bδNc. Starting from arbitrary x1 ∈ BN with ‖x1‖2N = δ,
repeatedly choose a uniformly random unit vector vi ∈ W (xi) and define xi+1 via (3.2.5), leading to the
output σ = xm. Note that in contrast to elsewhere in the paper, here the output xi+1 is random even
given HN , i.e. xi+1 = A(HN , ω) for some independent random variable ω. As we now outline, for δ ≤ δ0(ε)
sufficiently small depending on ε, no δ-subspace random walk algorithm can achieve energy than ALGSp + ε
with non-negligible probability.

Fixing HN and x1, for any j ≤ m we may generate coupled outputs σ1,σ2 as follows. First use shared
iterates xi,1 = xi,2 = xi for i ≤ j and then proceed via

xi+1,` = xi,` + vi,`
√
δN, ` ∈ {1, 2}

for independent update sequences (vj,1, . . . ,vm−1,1) and (vj,2, . . . ,vm−1,2). Finally output σ` = xm,`. It is
not difficult to see that for N sufficiently large,

P
[∣∣R(σ1,σ2)− jδ

∣∣ > η/2
]
≤ e−cN

for some c = c(δ, η) thanks to the random directions of the updates vi,`. With L as in the earlier part of
this section, we can now construct a branching tree of outputs σ(u) for u ∈ L. As δ → 0, for appropriate
jd = bqdδ−1c, the solution configuration ~σ hence constructed satisfies

P[~σ ∈ Q(η)] ≤ e−cN

with m the zero vector. Because we consider a single Hamiltonian HN , we use Proposition 3.2.2 with
χ(p) → 0 for all p < 1. Since the statement is uniform in χ, this does not present any difficulties (we
are essentially “defining” ~p = 1D to be χ-aligned with arbitrary ~q). Mimicking the proofs earlier in this
section (including the argument in the proof of Proposition 3.2.6(a) which now uses Jensen’s inequality on
the randomness of A), we obtain the following result.

Theorem 3.2.10. Consider a mixed even Hamiltonian HN with model (ξ, h). For any ε > 0 there are
δ0, c,N0 > 0 depending only on ξ, h, ε such that the following holds for any N ≥ N0 and δ < δ0. For any
δ-subspace random walk algorithm A,

P
[

1

N
HN (A(HN , ω)) ≥ ALGSp + ε

]
≤ exp(−cN).

3.3 Guerra’s Interpolation

In this section, we begin the proof of Proposition 3.2.2. We take either Q(η) = QSp(Q,m, η) or Q(η) =

QIs(Q,m, η) (recall Q = Q
~k,~q); the proofs in this section apply uniformly to both cases. The goal of this

section is to use Guerra’s interpolation to upper bound the constrained free energy

FN (Q(η)) =
1

N
logE

∫
Q(η)

expHN (~σ) dµK(~σ),

where µ is a (for now) arbitrary measure on SN . In the sequel, we will take µ to be the uniform measure on
SN for spherical spin glasses, and the counting measure on ΣN for Ising spin glasses. We develop a bound on
FN (Q(η)) that holds for all D,~k, ~p, ~q, η, and will set these variables in the sequel to prove Proposition 3.2.2.

72

We will control this free energy by controlling the following related free energy. Let λ ∈ R be a constant
we will set later. For all σ ∈ RN , let π(σ) = σ −m. We define the following modified grand Hamiltonian,
where we add an external field λm centered at m:

HN,λ(~σ) = HN (~σ) +
∑
u∈L
〈λm, π(σ(u))〉

= K〈h,m〉+
∑
u∈L

[
〈h+ λm, π(σ(u))〉+ H̃

(u)
N (σ(u))

]
.

We define the free energy

FN,λ(Q(η)) =
1

N
logE

∫
Q(η)

expHN,λ(~σ) dµK(~σ).

Since Q(η) ⊆ B(m, η)K , we have |HN (~σ)−HN,λ(~σ)| ≤ NK|λ|η for all ~σ ∈ Q(η), and so

|FN (Q(η))− FN,λ(Q(η))| ≤ K|λ|η. (3.3.1)

Define the matrices M
~k,~p,1, . . . ,M

~k,~p,D ∈ RK×K , whose rows and columns are indexed by L, by

M
~k,~p,d
u1,u2 = 1

{
u1 ∧ u2 ≥ d

}
pu1∧u2 .

Further, define M
~k,~p,~q : [q0, 1) → RK×K as the piecewise constant matrix-valued function such that for

q ∈ [qd−1, qd), M
~k,~p,~q(q) = M

~k,~p,d. Define κ
~k,~p,~q : [q0, 1)→ R by

κ
~k,~p,~q(q) =

1

K
Sum(M

~k,~p,~q(q)),

where Sum denotes the sum of entries of a matrix. Explicitly, for q ∈ [qd−1, qd),

κ
~k,~p,~q(q) =

D−1∑
j=d

(kj+1 − 1)

D∏
`=j+2

k`

 pj + pD. (3.3.2)

When ~k, ~p, ~q are clear, we will write Md = M
~k,~p,d, M(q) = M

~k,~p,~q(q) and κ(q) = κ
~k,~p,~q(q). Consider a

sequence
0 = ζ−1 < ζ0 < · · · < ζD = 1,

which we identify with the piecewise constant CDF ζ : [q0, 1)→ [0, 1], where for x ∈ [qd, qd+1),

ζ(x) = ζd, (3.3.3)

corresponding to the discrete distribution ζ({qd}) = ζd − ζd−1. We denote by M~q the set of such CDFs ζ
for a given ~q.

Let TD = N0 ∪ N1 ∪ · · · ∪ ND and for ω ∈ TD, let |ω| denote the length of ω. Let ∅ denote the empty
tuple. We think of TD as a tree rooted at ∅, where the parent of any ω 6= ∅ is the initial substring of ω with
length |ω| − 1. For α ∈ ND, let p(α) = ((α1), (α1, α2), . . . , (α1, . . . , αD)) denote the path of vertices from
the root to α, not including the root. For α1, α2 ∈ ND, let α1 ∧ α2 denote the depth of the least common
ancestor of α1 and α2. Recall the Ruelle cascades (να)α∈ND corresponding to (ζ0, ζ1, . . . , ζD−1) which were
introduced in [Rue87], see also [Pan13b, Section 2.3].

For each increasing ψ : [q0, 1] → R≥0, we define a Gaussian process g
(u)
ψ (α) indexed by (u, α) ∈ L × ND

as follows. Generate ~eta∅ ∈ RK by

~eta∅ = (η∅(u))u∈L ∼ N (0,M1).

Furthermore, for each non-root ω ∈ TD, independently generate ~etaω ∈ RK by

~etaω = (ηω(u))u∈L ∼ N (0,M |ω|).

73

Then, for each u ∈ L, set

g
(u)
ψ (α) = η∅(u)ψ(q0)1/2 +

∑
ω∈p(α)

ηω(u)(ψ(q|ω|)− ψ(q|ω|−1))1/2.

This is the centered Gaussian process with covariance

E g(u1)
ψ (α1)g

(u2)
ψ (α2) = pu1∧u2ψ(qα1∧α2 ∧ qu1∧u2),

where for x, y ∈ R, x ∧ y = min(x, y). Generate N i.i.d. copies of the process g
(u)
ξ′ (α), which we denote

g
(u)
ξ′,i(α) for i = 1, . . . , N . Similarly, for the function

θ(q) = (q − q0)ξ′(q)− ξ(q) + ξ(q0),

we generate N i.i.d. processes g
(u)
θ,i (α) for i = 1, . . . , N . Note that for q ∈ [q0, 1),

θ(q) =

∫ q

q0

(ξ′(q)− ξ′(q′)) dq′ ≥ 0 and θ′(q) = (q − q0)ξ′′(q) ≥ 0,

so θ is nonnegative and increasing, as required. For t ∈ [0, 1], define the interpolating Hamiltonian

HN,λ,t(~σ, α) =
∑
u∈L

[
√
tH̃

(u)
N (σ(u)) +

√
1− t

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i +

√
t

N∑
i=1

g
(u)
θ,i (α)

]
+K〈h,m〉+ 〈h+ λm, π(σ(u))〉 (3.3.4)

and the interpolating free energy

ϕ(t) =
1

N
E log

∑
α∈ND

να

∫
Q(η)

expHN,λ,t(~σ, α) dµK(~σ).

The following bound on FN (Q(η)) is the main result of this section.

Proposition 3.3.1. The free energy FN (Q(η)) is upper bounded by

FN (Q(η)) ≤ ϕ(0)− K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq + 3K2ξ′′(1)η +K|λ|η.

where ζ : [q0, 1)→ [0, 1] is defined in (3.3.3).

Lemma 3.3.2 (Guerra’s interpolation bound). For all t ∈ [0, 1] and η ∈ (0, 1),

ϕ′(t) ≤ 3K2ξ′′(1)η.

Proof. Let 〈·〉t denote the average with respect to the Gibbs measure on Q(η)× ND given by

G(~σ, α) ∝ να expHN,λ,t(~σ, α).

By Gaussian integration by parts [Pan13b, Lemma 1.4],

ϕ′(t) =
1

N
E
〈
∂HN,λ,t
∂t

(~σ, α)

〉
t

=
1

N
E
〈
E
∂HN,λ,t
∂t

(~σ1, α1)HN,λ,t(~σ1, α1)− E
∂HN,λ,t
∂t

(~σ1, α1)HN,λ,t(~σ2, α2)

〉
t

, (3.3.5)

74

where (~σ1, α1) and (~σ2, α2) are independent samples from the Gibbs measure. Recall (3.3.4). For any
realizations (~σ1, α1) and (~σ2, α2),

2

N
E
∂HN,λ,t
∂t

(~σ1, α1)HN,t(~σ2, α2)

=
∑

u1,u2∈L

pu1∧u2

[
ξ(R(σ1(u1),σ2(u2)))−R(π(σ1(u1)), π(σ2(u2)))ξ′(qα1∧α2 ∧ qu1∧u2) + θ(qα1∧α2 ∧ qu1∧u2)

]
=

∑
u1,u2∈L

pu1∧u2

[
ξ(R(σ1(u1),σ2(u2)))

−
(
R(σ1(u1),σ2(u2))−R(σ1(u1),m)−R(σ2(u2),m) +R(m,m)

)
ξ′(qα1∧α2 ∧ qu1∧u2)

+ θ(qα1∧α2 ∧ qu1∧u2)
]

=
∑

u1,u2∈L

pu1∧u2

[
C
(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

)
+
(
R(σ1(u1),m) +R(σ2(u2),m)− 2q0

)
ξ′(qα1∧α2 ∧ qu1∧u2) + ξ(q0)

]
,

where

C(x, y) = ξ(x)− ξ(y)− (x− y)ξ′(y) =

∫ x

y

∫ z

y

ξ′′(w) dw dz. (3.3.6)

Because σ1(u1),σ2(u2) ∈ B(m, η),∣∣(R(σ1(u1),m) +R(σ2(u2),m)− 2q0

)
ξ′(qα1∧α2 ∧ qu1∧u2)

∣∣ ≤ 2ξ′(1)η.

Hence using (3.3.5) and noting that qα1∧α1 = 1, we obtain

ϕ′(t) ≤ 1

2
sup

~σ1,~σ2∈Q(η)

α1,α2∈ND

∑
u1,u2∈L

[
C
(
R(σ1(u1),σ1(u2)), qu1∧u2

)
− C

(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

)]

+ 2K2ξ′(1)η.

By (3.3.6), 0 ≤ C(x, y) ≤ |x− y|2ξ′′(1). Since |R(σ1(u1),σ1(u2))− qu1∧u2 | ≤ η for ~σ1 ∈ Q(η),

C
(
R(σ1(u1),σ1(u2)), qu1∧u2

)
≤ ξ′′(1)η2.

Moreover,
C
(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

)
≥ 0.

So,

ϕ′(t) ≤ 1

2
K2ξ′′(1)η2 + 2K2ξ′(1)η ≤ 3K2ξ′′(1)η.

We will now evaluate ϕ(1) to complete the proof of Proposition 3.3.1.

Lemma 3.3.3. The following identity holds.

ϕ(1) = FN,λ(Q(η)) +
K

2

D−1∑
d=0

κ(qd)ζd(θ(qd+1)− θ(qd)).

Proof. It is clear that

ϕ(1) = FN,λ(Q(η)) +
1

N
logE

∑
α∈ND

να exp
∑
u∈L

N∑
i=1

g
(u)
θ,i (α).

75

We will evaluate the last term by the recursive evaluation of Ruelle cascades. For 1 ≤ d ≤ D, independently
generate ~ηd = (ηd(u))u∈L ∈ (RN)K by generating, independently for each 1 ≤ i ≤ N ,

(~ηd)i = (ηd(u)i)u∈L ∼ N (0,Md).

(Because θ(q0) = 0, we will not need ~η0, corresponding to the root ∅ of TD.) Let

XD =
∑
u∈L

N∑
i=1

D∑
d=1

ηd(u)i (θ(qd)− θ(qd−1))
1/2

,

and for 0 ≤ d ≤ D − 1 let

Xd =
1

ζd
logEd exp ζdXd+1, (3.3.7)

where Ed denotes expectation with respect to ~ηd+1. By properties of Ruelle cascades [Pan13b, Theorem
2.9],

1

N
logE

∑
α∈ND

να exp
∑
u∈L

N∑
i=1

g
(u)
θ,i (α) =

1

N
X0.

Here we use that the depth-zero term η∅(u)θ(q0)1/2 of g
(u)
θ (α) is zero because θ(q0) = 0. We now evaluate

X0 by (3.3.7). For each 1 ≤ d ≤ D,
∑
u∈L

∑N
i=1 ηd(u)i has variance

E

(∑
u∈L

N∑
i=1

ηd(u)i

)2

= NSum(Md) = NKκ(qd−1).

So,

1

ζd
logEd exp ζd

(∑
u∈L

N∑
i=1

ηd+1(u)i

)
(θ(qd+1)− θ(qd))1/2 =

1

ζd
log exp

(
NK

2
κ(qd)ζ

2
d(θ(qd+1)− θ(qd))

)
=
NK

2
κ(qd)ζd(θ(qd+1)− θ(qd)).

A straightforward induction argument using this computation gives

1

N
X0 =

K

2

D−1∑
d=0

κ(qd)ζd(θ(qd+1)− θ(qd)),

completing the proof.

Corollary 3.3.4. For the distribution function ζ : [q0, 1)→ [0, 1] defined in (3.3.3),

ϕ(1) = FN,λ(Q(η)) +
K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq

Proof. On each interval [qd, qd+1), the functions κ(q) and ζ(q) are constant. Moreover, recall that θ′(q) =
(q − q0)ξ′′(q). The result follows from Lemma 3.3.3.

Proof of Proposition 3.3.1. By Lemma 3.3.2 and Corollary 3.3.4,

FN,λ(Q(η)) ≤ ϕ(0)− K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq + 3K2ξ′′(1)η.

The result follows from (3.3.1).

76

In the following two sections, we will use Proposition 3.3.1 to upper bound FN (Q(η)) in the spherical
and Ising settings by estimating

ϕ(0) = KR(h,m) +
1

N
logE

∑
α∈ND

να

∫
Q(η)

exp
∑
u∈L

[
〈h+ λm, π(σ(u))〉+

N∑
i=1

g
(u)
ξ,i (α)π(σ(u))i

]
dµK(~σ).

(3.3.8)
In the spherical and Ising settings, µ is respectively the uniform measure on SN and the counting measure
on ΣN . We denote ϕ(0) in these settings by ϕSp(0) and ϕIs(0). We will also denote FN in these settings by

F Sp
N and F Is

N .

3.4 Overlap-Constrained Upper Bound on the Spherical Grand
Hamiltonian

In this section, we complete the proof of Proposition 3.2.2 in the spherical setting. Denote the expected
overlap-constrained maximum energy of the grand Hamiltonian by

GSSp
N (Q(η)) =

1

N
E max
~σ∈Q(η)

HN (~σ).

Let L and L denote the subsets of L supported on [0, q0) and [q0, 1), respectively. The function κ defined
in (3.3.2) is an element of L . Moreover (recall (3.3.3)) M~q ⊆ L . For β > 0 and ζ ∈ M~q, let βκζ ∈ L
denote the pointwise product βκζ(q) = βκ(q)ζ(q). For any ζ ∈ L , let ζ + βκζ ∈ L be the function

(ζ + βκζ)(q) =

{
ζ(q) q < q0,

βκζ(q) q ≥ q0.

We will develop the following bound on GSSp
N (Q(η)) for all D,~k, ~p, ~q, η, β.

Proposition 3.4.1. Let ζ ∈M~q and ζ ∈ L be arbitrary. Let β > 0 and suppose that (B, ζ +βκζ) ∈ K (ξ),

B ≥ β−1. There exists a constant C, depending only on ξ, h, such that for N ≥ C log max(K, 2),

GSSp
N (Q(η)) ≤ KPSp(B, ζ + βκζ) + CK2

(
βη +Bη +

log 1
η

β
+

1√
N

)
.

Crucially, in the input of the Parisi functional, the increasing function ζ is pointwise multiplied by κ,
which (by selecting appropriate parameters ~k, ~p, ~q) can be arranged to decrease as rapidly as desired. This
multiplication by κ allows us to pass from increasing functions ζ ∈M~q to arbitrary bounded variation func-
tions, in the sense that βκζ can approximate any element of L . Consequently, ζ+βκζ can approximate any

element of L , and PSp(B, ζ + βκζ) can be made arbitrarily close to ALGSp. We will prove Proposition 3.2.2

by setting the parameters in Proposition 3.4.1 such that (B, ζ + βκζ) approximates the minimizer of PSp

and the error term is small.
Our proof of Proposition 3.2.2 proceeds in three steps. In Subsection 3.4.1 we use the machinery of

the previous section to prove Proposition 3.4.2, an upper bound on the free energy F Sp
N (Q(η)). In Sub-

section 3.4.2, we take this bound to low temperature to prove Proposition 3.4.1. In Subsection 3.4.3, we
complete the proof of Proposition 3.2.2 by setting appropriate parameters in Proposition 3.4.1.

3.4.1 The Free Energy Upper Bound

In this subsection, we will use Proposition 3.3.1 to upper bound F Sp
N (Q(η)). We take µ to be the uniform

measure on SN . The main result of this subsection is the following upper bound on F Sp
N (Q(η)), which holds

for all D,~k, ~p, ~q, η.

77

Proposition 3.4.2. Let ζ ∈M~q and ζ ∈ L be arbitrary. Suppose (B, ζ + κζ) ∈ K (ξ), B ≥ 1, and N ≥ 2.
Then,

F Sp
N (Q(η)) ≤ KPSp(B, ζ + κζ) + 3K2ξ′′(1)η +KBη.

The crux of this argument is to upper bound ϕSp(0) so that we may apply Proposition 3.3.1. We equip
the state space (RN)K with the natural inner product

〈~y1, ~y2〉 =
∑
u∈L
〈y1(u),y2(u)〉

and norm ‖~y‖2 = 〈~y, ~y〉. Generate ~η0 = (η0(u)) ∈ (RN)K by generating, independently for each 1 ≤ i ≤ N ,

(~η0)i = (η0(u)i)u∈L ∼ N (0,M1). (3.4.1)

Similarly, for 1 ≤ d ≤ D, independently generate ~ηd = (ηd(u))u∈L ∈ (RN)K by generating, independently
for each 1 ≤ i ≤ N ,

(~ηd)i = (ηd(u)i)u∈L ∼ N (0,Md). (3.4.2)

Let ~m = (m(u))u∈L ∈ (RN)K and ~h = (h(u))u∈L ∈ (RN)K satisfy m(u) = m and h(u) = h for all u ∈ L.
For ~σ ∈ (RN)K , define π(~σ) = ~σ − ~m. We define the following functions on (RN)K . Let

GD(~y) = log

∫
Q(η)

exp〈~y, π(~σ)〉 dµK(~σ)

= −〈~y, ~m〉+ log

∫
Q(η)

exp〈~y, ~σ〉 dµK(~σ).

and for 0 ≤ d ≤ D − 1, let

Gd(~y) =
1

ζd
logE exp ζdGd+1

(
~y + ~ηd+1(ξ′(qd+1)− ξ′(qd))1/2

)
.

By properties of Ruelle cascades,

ϕSp(0) =
1

N
EG0((~h+ λ ~m) + ~η0ξ

′(q0)1/2) +KR(h,m).

We will estimate the spherical integral GD, and through it the functions Gd for 0 ≤ d ≤ D−1, by comparison
with a Gaussian integral. This step relies on the following lemma, which is a straightforward extension of
[Tal06a, Lemma 3.1]; we defer the proof to the end of this section. For B ≥ 1, let νB denote the measure of
N (0, 1

B). Let χ2(d) denote a χ2 random variable with d degrees of freedom.

Lemma 3.4.3. For all ~y ∈ (RN)K ,

expGD(~y) ≤ P
(
χ2(N) ≥ BN

)−K
exp (−〈~y, ~m〉)

∫
exp〈~y, ~ρ〉 dνN×KB (~ρ).

The probability term in this lemma can be controlled by the following standard bound, whose proof we
also defer.

Lemma 3.4.4. If B ≥ 1 and N ≥ 2, then

P(χ2(N) ≥ BN) ≥ exp(−BN/2).

It remains to analyze the terms in Lemma 3.4.3 involving ~y. Define further

G′D(~y) = −〈~y, ~m〉+ log

∫
exp〈~y, ~ρ〉 dνKb (~ρ) =

‖~y‖22
2B

− 〈~y, ~m〉,

G′d(~y) =
1

ζd
logE exp ζdGd+1

(
~y + ~ηd+1(ξ′(qd+1)− ξ′(qd))1/2

)
for 0 ≤ d ≤ D − 1,

78

Henceforth, suppose N ≥ 2. Lemmas 3.4.3 and 3.4.4 imply that

ϕSp(0) ≤ 1

N
EG′0((~h+ λ ~m) + ~η0ξ

′(q0)1/2) +KR(h,m) +
1

2
KB. (3.4.3)

Consider a new state space RK with elements ~y = (y(u))u∈L where y(u) ∈ R, equipped with the natural
inner product

〈~y1, ~y2〉 =
∑
u∈L

~y1(u)~y2(u)

and norm ‖~y‖22 = 〈~y, ~y〉. Generate the RK-valued Gaussians ~eta0 ∼ N (0,M1) and, for 1 ≤ d ≤ D,
~etad ∼ N (0,Md). Recall that h = (h, . . . , h). Let m = (m1, . . . ,mN), and let ~1 ∈ RK denote the all-1

vector. For 1 ≤ i ≤ N , define the following functions on RK .

ΓiD(~y) =
‖~y‖2

2B
−mi〈~1, ~y〉,

Γid(~y) =
1

ζd
logE exp ζdΓ

i
d+1

(
~y + ~etad+1(ξ′(qd+1)− ξ′(qd))1/2

)
for 0 ≤ d ≤ D − 1.

By independence of the 1 ≤ i ≤ N coordinates in the G′d, (3.4.3) implies

ϕSp(0) ≤ 1

N

N∑
i=1

EΓi0((h+ λmi)~1 + ~eta0ξ
′(q0)1/2) +KR(h,m) +

1

2
KB. (3.4.4)

It remains to compute the Gaussian integrals Γid. For this, we rely on the following lemma. We defer the
proof, which is a standard computation with Gaussian integrals. Let SK denote the set of K ×K positive
definite matrices, and let | · | denote the matrix determinant.

Lemma 3.4.5. Suppose ζ > 0 and Λ,Σ ∈ SK satisfy Λ− ζΣ ∈ SK . If ~v ∈ RK and ~eta ∼ N (0,Σ), then

1

ζ
logE exp

1

2
ζ
[
(~y + ~eta)>Λ−1(~y + ~eta)− 2~v>(~y + ~eta)

]
=

1

2

[
~y>(Λ− ζΣ)−1~y − 2~v>Λ(Λ− ζΣ)−1~y

]
+

1

2ζ
log

|Λ|
|Λ− ζΣ|

+
1

2
~v>(ζΣ)(Λ− ζΣ)−1Λ~v.

We can compute the expectations in (3.4.4) by applying this lemma recursively. Define

K (ξ) =

{
(B, ζ) ∈ R+ ×L : B >

∫ 1

q0

ξ′′(q′)ζ(q′) dq′
}
.

Proposition 3.4.6. Let ζ ∈M~q, and suppose (B, κζ) ∈ K (ξ). Then, for Bκζ defined as in (3.1.3),

EΓi0((h+ λmi)~1 + ~eta0ξ
′(q0)1/2) ≤ K

2

[
(h+ (λ−B)mi)

2 + ξ′(q0)

Bκζ(q0)
+

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq −Bm2

i

]
.

Proof. Let ΛD = BIK , and for 0 ≤ d ≤ D − 1, let

Λd = Λd+1 − ζd(ξ′(qd+1)− ξ′(qd))Md+1.

We will first show that Λ0, . . . ,ΛD ∈ SK , so that we can apply Lemma 3.4.5. For q ∈ [q0, 1], we define

Λ(q) = BIK −
∫ 1

q

ξ′′(q′)M(q′)ζ(q′) dq′.

Note that Λd = Λ(qd) for all 0 ≤ d ≤ D. Since M(q) � κ(q)IK in the Loewner order,

Λ(q) �
(
B −

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′
)
IK = Bκζ(q)IK . (3.4.5)

79

So, the hypothesis (B, κζ) ∈ K (ξ) implies Λ(q) ∈ SK for all q ∈ [q0, 1]. In particular Λ0, . . . ,ΛD ∈ SK .
Further, define ~vD = mi

~1, and for 0 ≤ d ≤ D − 1, define ~vd = Λ−1
d Λd+1~vd+1. This implies that

~vd = BmiΛ
−1
d
~1. We can write ΓiD as

ΓiD(~y) =
1

2

(
~y>Λ−1

D ~y − 2~v>D~y
)
.

By a recursive computation with Lemma 3.4.5 (which applies because Λ0, . . . ,ΛD ∈ SK), we have for all
0 ≤ d ≤ D that

Γid(~y) =
1

2

[
~y>Λ−1

d ~y − 2~v>d ~y +

D−1∑
d′=d

1

ζd′
log
|Λd′+1|
|Λd′ |

+

D−1∑
d′=d

~vd′+1(Λd′+1 − Λd′)Λ
−1
d′ Λd′+1~vd′+1

]

=
1

2

[
~y>Λ−1

d ~y − 2Bmi
~1>Λ−1

d ~y +

D−1∑
d′=d

1

ζd′
log
|Λd′+1|
|Λd′ |

+B2m2
i

D−1∑
d′=d

~1>Λ−1
d′+1(Λd′+1 − Λd′)Λ

−1
d′
~1

]
.

Note that

D−1∑
d′=d

~1>Λ−1
d′+1(Λd′+1 − Λd′)Λ

−1
d′
~1 =

D−1∑
d′=d

~1>(Λ−1
d′ − Λ−1

d′+1)~1 = ~1>(Λ−1
d − Λ−1

D)~1 = ~1>Λ−1
d
~1− K

B
.

So,

Γi0(~y) =
1

2

[
~y>Λ−1

0 ~y − 2Bmi
~1>Λ−1

0 ~y +B2m2
i
~1>Λ−1

0
~1 +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]

=
1

2

[
(~y −Bmi

~1)>Λ−1
0 (~y −Bmi

~1) +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]

Therefore,

EΓi0((h+ λmi)~1 + ~eta0ξ
′(q0)1/2)

=
1

2

[
(h+ (λ−B)mi)

2Tr(Λ−1
0
~1~1>) + ξ′(q0)Tr(Λ−1

0 M1) +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]
.

By Jacobi’s formula,
d

dq
log |Λ(q)| = ξ′′(q)ζ(q)Tr(Λ(q)−1M(q)),

so
1

ζd
log
|Λd+1|
|Λd|

=

∫ qd+1

qd

ξ′′(q)Tr(Λ(q)−1M(q)) dq.

Therefore,

EΓi0((h+ λmi)~1 + ~eta0ξ
′(q0)1/2)

=
1

2

[
(h+ (λ−B)mi)

2Tr(Λ(q0)−1~1~1>) + ξ′(q0)Tr(Λ(q0)−1M(q0)) +

∫ 1

q0

Tr(Λ(q)−1M(q)) dq −KBm2
i

]
.

Finally, for each q ∈ [q0, 1), (3.4.5) implies Λ(q)−1 � IK
Bκζ(q) , so

Tr(Λ(q)−1M(q)) ≤ Tr

(
M(q)

Bκζ(q)

)
=

K

Bκζ(q)
,

and similarly Tr(Λ(q0)−1~1~1>) ≤ K
Bκζ(q0) . This implies the result.

80

Proposition 3.4.6 and (3.4.4) readily imply the following bound on F Sp
N (Q(η)).

Proposition 3.4.7. Let B ≥ 1, N ≥ 2, and λ ∈ R. Let ζ ∈M~q, and suppose (B, κζ) ∈ K (ξ). Then,

F Sp
N (Q(η)) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

(
ξ′′(q)

Bκζ(q)
+Bκζ(q)

)
dq

]
+ 3K2ξ′′(1)η +K|λ|η.

Proof. By averaging Proposition 3.4.6 over 1 ≤ i ≤ N , we get

1

N

N∑
i=1

EΓi0((h+ λmi)~1 + ~eta0ξ
′(q0)1/2) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq −Bq0

]

where we used that ‖m‖2N = q0. Equation (3.4.4) implies that

ϕSp(0) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq + (1− q0)B

]
.

By Proposition 3.3.1, this implies

F Sp
N (Q(η)) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq + (1− q0)B

−
∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq

]
+ 3K2ξ′′(1)η +K|λ|η

By integration by parts,

−
∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq = (q − q0)

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′
∣∣∣1
q=q0

−
∫ 1

q0

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′ dq

=

∫ 1

q0

Bκζ(q) dq − (1− q0)B,

which yields the result.

The next lemma upper bounds our estimates for F Sp
N (Q(η)) in terms of the Parisi functional uniformly

in m.

Lemma 3.4.8. Let q0 ∈ [0, 1]. For (B, ζ) ∈ K (ξ), h = (h, . . . , h), ‖m‖2N = q0, there exists λ ∈ [0, B] such
that

1

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bζ(q0)
+ 2R(h,m) +

∫ 1

q0

(
ξ′′(q)

Bζ(q)
+Bζ(q)

)
dq

]
≤ PSp(ζ).

Proof. We take λ =
∫ 1

0
ξ′′(q)ζ(q) dq. The condition (B, ζ) ∈ K (ξ) implies that λ ∈ [0, B]. Note that

λ−B = −Bζ(0). It suffices to prove that

‖h−Bζ(0)m‖2N + ξ′(q0)

Bζ(q0)
+ 2R(h,m) ≤

‖h‖2N
Bζ(0)

+

∫ q0

0

(
ξ′′(q)

Bζ(q)
+Bζ(q)

)
dq.

Note that

ξ′(q0)

Bζ(q0)
=

∫ q0

0

ξ′′(q)

Bζ(q0)
dq ≤

∫ q0

0

ξ′′(q)

Bζ(q)
dq and q0Bζ(0) ≤

∫ q0

0

Bζ(q) dq.

So, it suffices to prove that

‖h−Bζ(0)m‖2N
Bζ(q0)

+ 2R(h,m) ≤
‖h‖2N
Bζ(0)

+ q0Bζ(0).

81

This rearranges to (using that ‖m‖2N = q0)

0 ≤
(

1

Bζ(0)
− 1

Bζ(q0)

)(
‖h‖2N − 2Bζ(0)R(h,m) +Bζ(0)2 ‖m‖2N

)
,

which follows from Cauchy-Schwarz.

We are now ready to prove Proposition 3.4.2.

Proof of Proposition 3.4.2. Recall that the restriction of ζ + κζ ∈ L on [q0, 1) is κζ. Because (B, ζ + κζ) ∈
K (ξ), we have (B, κζ) ∈ K (ξ), and so Proposition 3.4.7 applies. Combining this with Lemma 3.4.8 applied
on (B, ζ + κζ) gives the result.

3.4.2 From Free Energy to Ground State Energy

Next, we will prove Proposition 3.4.1 by taking Proposition 3.4.2 to low temperature. We introduce the
following temperature-scaled free energy. For β > 0 and η ∈ (0, 1), let

F Sp
N (β,Q(η)) =

1

N
logE

∫
Q(η)

expβHN (~σ) dµK(~σ).

This free energy can be upper bounded by the following application of Proposition 3.4.2.

Corollary 3.4.9. Let ζ ∈ M~q and ζ ∈ L be arbitrary. Let β > 0 and suppose (B, ζ + βκζ) ∈ K (ξ),

B ≥ β−1, and N ≥ 2. Then,

1

β
F Sp
N (β,Q(η)) ≤ KPSp(B, ζ + βκζ) + 3K2ξ′′(1)βη +KBη.

Proof. The hypothesis (B, ζ + βκζ) ∈ K (ξ) implies (βB, β−1ζ + κζ) ∈ K (β2ξ). The hypothesis B ≥ β−1

implies βB ≥ 1. By Proposition 3.4.2 with parameters (β2ξ, βh) (corresponding to the Hamiltonian βHN),
ζ, βB, and β−1ζ,

F Sp
N (β,Q(η)) ≤ KPSp

β2ξ,βh(βB, β−1ζ + κζ) + 3K2ξ′′(1)β2η +KBβη. (3.4.6)

We can verify that
PSp
β2ξ,βh(βB, β−1ζ + κζ) = βPSp

ξ,h(B, ζ + βκζ).

So, dividing (3.4.6) by β gives the result.

The following lemma relates the ground state energy GSSp
N (Q(η)) to this free energy at large inverse

temperature β. We defer the proof, which is a relatively standard approximation argument.

Lemma 3.4.10. There exists a constant C depending only on ξ, h such that for all β > 0, η ∈ (0, 1
2), and

N ≥ C log max(K, 2),

GSSp
N (Q(η)) ≤ 1

β
F Sp
N (β,Q(2η)) + CK

(
η +

log 1
η

β
+

1√
N

)
.

Proof of Proposition 3.4.1. Let C be large enough that Lemma 3.4.10 is satisfied and C log 2 ≥ 2. For all
N ≥ C log max(K, 2), Corollary 3.4.9 (with 2η in place of η) and Lemma 3.4.10 imply that

GSSp
N (η) ≤ KPSp(B, ζ + βκζ) + 6K2ξ′′(1)βη + 2KBη + CK

(
η +

log 1
η

β
+

1√
N

)
.

By applying the estimate K ≤ K2 and absorbing constants depending on only ξ, h into C, we deduce

GSSp
N (η) ≤ KPSp(B, ζ + βκζ) + CK2

(
βη +Bη + η +

log 1
η

β
+

1√
N

)
.

Finally, because B ≥ β−1, we have β +B ≥ β + β−1 ≥ 2, so by increasing the constant C we may drop the
term η from the sum.

82

3.4.3 Proof of the Main Upper Bound

We now complete the proof of Proposition 3.2.2. We will set the parameters of Proposition 3.4.1 such that
(B, ζ + βκζ) approximates the minimizer of PSp in L and the error term is small.

For ζ ∈ L and δ, x ∈ [0, 1), we define a perturbation ζδ,x ∈ L of ζ by

ζδ,x(q) =

{
ζ(x+ δ) q ∈ [x, x+ δ),

ζ(q) otherwise.

Note that ζ0,x = ζ.
We now set several constants depending only on ξ, h, ε. Let C be the constant given by Proposition 3.4.1.

By continuity of the Parisi functional PSp on K (ξ), we may pick (B∗, ζ∗) ∈ K (ξ) and a small constant
∆ ∈ (0, 1) such that the following properties hold.

(a) ζ∗ is positive-valued, right-continuous, and piecewise constant with finitely many jump discontinuities
0 < x1 < · · · < xr < 1.

(b) For all δ ∈ [0,∆] and x ∈ [0, 1), (B∗, ζ∗δ,x) ∈ K (ξ) and

PSp(B∗, ζ∗δ,x) ≤ ALG +
ε

2
. (3.4.7)

The perturbations ζ∗δ,x will be used in the following way. Given q0 ∈ [0, 1], we will apply Proposition 3.4.1

with ζ + βκζ = ζ∗(1−q0)∆,q0
. In particular, we will construct β, κ = κ

~k,~p,~q and ζ ∈ M~q such that βκζ =

ζ∗(1−q0)∆,q0
on [q0, 1). Because ζ is increasing, we must construct a κ that decreases rapidly enough to

make this equality hold. In the below proof, the fact that ζ∗(1−q0)∆,q0
does not have any discontinuities in

[q0, q0 + (1− q0)∆] implies that q1 > q0 + (1− q0)∆, which implies that p1 > ∆ for any χ-aligned ~p, ~q. This

allows us to construct a suitable κ while keeping K =
∏D
d=1 kd bounded by a constant.

Proof of Proposition 3.2.2, spherical case. We first set the constants K0, η0, N0. For x ∈ (0, 1], let ζ∗(x−) =
limy→x− ζ

∗(y). Let

K0 =

r∏
j=1

(⌊
ζ∗(xj)

∆ζ∗(x−j)

⌋
+ 1

)
.

This is well-defined because ζ∗ is positive-valued. Let η0 ∈ (0, 1
2) satisfy the inequalities

CK0

(
B∗η0 + η

1/2
0 + η

1/2
0 log

1

η0

)
≤ ε

4
, (3.4.8)

η0 ≤ (B∗)2, (3.4.9)

η0 < ζ∗(1−)−2. (3.4.10)

Finally, let N0 satisfy N0 ≥ C log max(K0, 2) and

CK0√
N0

≤ ε

4
. (3.4.11)

We emphasize that K0, η0, N0 depend only on ξ, h, ε.

In the below analysis, we always set η = η0 (this clearly satisfies η ≥ η0) and β = η
−1/2
0 .

We are given a correlation function χ : [0, 1] → [0, 1] and a point m ∈ RN with ‖m‖2N = χ(0). We set

q0 = χ(0); we will set the rest of ~q below. We will construct D,~k, ~p, ~q, ζ such that on [q0, 1),

βκ
~k,~p,~qζ = ζ∗(1−q0)∆,q0

. (3.4.12)

Let
S = {x1, . . . , xr} ∩ (q0 + (1− q0)∆, 1).

83

Set D − 1 = |S|. Set ~q such that (q1, . . . , qD−1) is the set S in increasing order and qD = 1.
By Proposition 3.2.1(ii), χ is either strictly increasing or constant. If χ is strictly increasing, set ~p =

(p0, . . . , pD) by pd = χ−1(qd) for all qd ≤ χ(1) and pd = 1 for all qd > χ(1). If χ is constant, its unique value
is q0 = χ(0); set p0 = 0 and pd = 1 for all 1 ≤ d ≤ D. In either case, ~p, ~q are clearly χ-aligned. Moreover,
we always have p1 > ∆: if χ is increasing, this follows from q1 > q0 + (1 − q0)∆ and Proposition 3.2.1(iii),
while if χ is constant this is obvious.

Set k1 = 1, and for 1 ≤ d ≤ D − 1, set

kd+1 =

⌊
ζ∗(q−d)

∆ζ∗(qd)

⌋
+ 1.

Because q1, . . . , qD−1 are a subset of x1, . . . , xr, we indeed have K =
∏D
d=1 kd ≤ K0.

This constructs D,~k, ~p, ~q, η, which definesH~k,~pN , Q(η) = QSp(Q
~k,~q,m, η), and κ

~k,~p,~q. Finally, we construct
the sequence (ζ−1, ζ0, . . . , ζD) satisfying

0 = ζ−1 < ζ0 < · · · < ζD = 1 (3.4.13)

such that the ζ ∈ M~q defined by (3.3.3) satisfies (3.4.12) on [q0, 1). In particular, we define ζd for 0 ≤ d ≤
D − 1 by

ζd =
ζ∗(1−q0)∆,q0

(qd)

βκ~k,~p,~q(qd)
.

For this choice of ζd, (3.4.12) holds at q0, q1, . . . , qd−1 by inspection. Because ζ, κ
~k,~p,~q and ζ∗(1−q0)∆,q0

are

all piecewise constant and right-continuous on [q0, 1) with jump discontinuities only at q1, . . . , qD−1, (3.4.12)
holds on [q0, 1). It remains to verify that this choice of ζd satisfies the increasing condition (3.4.13). Because
ζ∗(1−q0)∆,q0

is positive-valued, ζ0 > ζ−1 = 0. At each 1 ≤ d ≤ D − 1, we have

ζd
ζd−1

=
ζ∗(1−q0)∆,q0

(qd)

ζ∗(1−q0)∆,q0
(qd−1)

· κ
~k,~p,~q(qd−1)

κ~k,~p,~q(qd)

By (3.3.2),

κ
~k,~p,~q(qd) ≤

D−1∑
j=d+1

(kj+1 − 1)

D∏
`=j+2

k`

+ 1 =

D∏
`=d+2

k`,

where we upper bounded all the pd by 1. So,

κ
~k,~p,~q(qd−1)

κ~k,~p,~q(qd)
= 1 +

(kd+1 − 1)
∏D
`=d+2 k`

κ~k,~p,~q(qd)
pd ≥ 1 + (kd+1 − 1)pd ≥ kd+1pd ≥ kd+1∆.

Here we used that pd ≥ p1 ≥ ∆. Further noting that ζ∗(1−q0)∆,q0
(qd−1) = ζ∗(q−d), we have

ζd
ζd−1

≥
∆ζ∗(1−q0)∆,q0

(qd)

ζ∗(1−q0)∆,q0
(qd−1)

· kd+1 =
∆ζ∗(qd)

ζ∗(q−d)
· kd+1 > 1

by definition of kd+1. Thus ζd > ζd−1 for 1 ≤ d ≤ D − 1. Finally, because κ
~k,~p,~q(qD−1) = 1,

ζD−1 =
ζ∗(1−q0)∆,q0

(qD−1)

β
= η

1/2
0 ζ∗(1−) < 1 = ζD,

using (3.4.10). Thus the ζ we constructed satisfies (3.4.12) and (3.4.13).
Define ζ ∈ L by ζ = ζ∗ on [0, q0). Thus, as elements of L ,

ζ + βκ
~k,~p,~qζ = ζ∗(1−q0)∆,q0

.

84

By construction, (B∗, ζ∗(1−q0)∆,q0
) ∈ K (ξ), and (3.4.9) implies B∗ ≥ β−1. By Proposition 3.4.1,

1

N
E max
~σ∈Q(η)

HN (~σ) ≤ KPSp(B∗, ζ∗(1−q0)∆,q0
) + CK2

(
B∗η + η1/2 + η1/2 log

1

η
+

1√
N

)
.

By (3.4.7),

KPSp(B∗, ζ∗(1−q0)δ,q0
) ≤ K

(
ALG +

ε

2

)
.

By (3.4.8),

CK2

(
B∗η + η1/2 + η1/2 log

1

η

)
≤ Kε

4
.

Finally, by (3.4.11),
CK2

√
N
≤ Kε

4
.

Combining the last four inequalities gives the result.

3.4.4 Deferred Proofs

Here we give the proofs of Lemmas 3.4.3, 3.4.4, 3.4.5, and 3.4.10, which are all relatively standard. We recall
the following lemma, due to Talagrand, from which Lemma 3.4.3 readily follows.

Lemma 3.4.11 ([Tal06a, Lemma 3.1]). For all y ∈ RN , the following inequality holds.∫
SN

exp〈y,σ〉 dµ(σ) ≤ P
(
χ2(N) ≥ BN

)−1
∫

exp〈y,ρ〉 dνNB (ρ).

Proof of Lemma 3.4.3. Using Q(η) ⊆ SKN and Lemma 3.4.11, we get

expGD(~y) = exp(−〈~y, ~m〉)
∫
Q(η)

exp〈~y, ~σ〉 dµKN (~σ)

≤ exp(−〈~y, ~m〉)
∫
SKN

exp〈~y, ~σ〉 dµKN (~σ)

= exp(−〈~y, ~m〉)
∏
u∈L

∫
SN

exp〈y(u),σ(u)〉 dµN (~σ(u))

≤ P
(
χ2(N) ≥ BN

)−K
exp(−〈~y, ~m〉)

∏
u∈L

∫
exp〈y(u),ρ(u)〉 dνNB (~ρ(u))

= P
(
χ2(N) ≥ BN

)−K
exp(−〈~y, ~m〉)

∫
exp〈~y, ~ρ〉 dνN×KB (~ρ).

Proof of Lemma 3.4.4. Using the probability density of χ2(N), we compute:

P(χ2(N) ≥ BN) =

∫ ∞
BN

xN/2−1e−x/2

2N/2Γ
(
N
2

) dx

=
(N/2)N/2

Γ
(
N
2

) ∫ ∞
B

yN/2−1e−Ny/2 dy

≥ (N/2)N/2

Γ
(
N
2

) ∫ ∞
B

e−Ny/2 dy

=
(N/2)N/2−1

Γ
(
N
2

) e−BN/2

≥ e−BN/2,

where the last step uses that (N/2)N/2−1 ≥ Γ
(
N
2

)
for N ≥ 2.

85

Proof of Lemma 3.4.5. By a straightforward computation,

E exp
1

2
ζ
[
(~y + ~eta)>Λ−1(~y + ~eta)− 2~v>(~y + ~eta)

]
= |Σ|−1/2(2π)−K/2

∫
exp

[
−1

2

(
~x>Σ−1~x− ζ(~y + ~x)>Λ−1(~y + ~x) + 2ζ~v>(~y + ~x)

)]
d~x

= |Σ|−1/2(2π)−K/2
∫

exp

[
−1

2

(
~x>
(
Σ−1 − ζΛ−1

)
~x− 2ζ(Λ−1~y − ~v)>~x− ζ~y>Λ−1~y + 2ζ~v>~y

)]
d~x

= |Σ|−1/2|Σ−1 − ζΛ−1|−1/2 exp
1

2

(
ζ2(Λ−1~y − ~v)>

(
Σ−1 − ζΛ−1

)−1
(Λ−1~y − ~v) + ζ~y>Λ−1~y − 2ζ~v>~y

)
=

|Λ|1/2

|Λ− ζΣ|1/2
exp

ζ

2

(
~y>(Λ− ζΣ)−1~y − 2~v>Λ(Λ− ζΣ)−1~y + ~v>(ζΣ)(Λ− ζΣ)−1Λ~v

)
.

Taking logarithms and dividing by ζ yields the result.

Proof of Lemma 3.4.10. Define the random variable

~σ∗ = arg max
~σ∈Q(η)

HN (~σ),

where we break ties arbitrarily. For δ > 0, define

B(~σ∗, δ) =
{
~σ ∈ SKN : ‖σ(u)− σ∗(u)‖N ≤ δ for all u ∈ L

}
.

If ~σ ∈ B(~σ∗, η/3), then for each u ∈ L we can write σ(u) = σ∗(u) + δ(u)ρ(u), where ρ(u) ∈ SN and
0 ≤ δ(u) ≤ η/3. Then, for all u ∈ L,

|R(σ(u),m)− q0| ≤ |R(σ∗(u),m)− q0|+ δ(u)|R(ρ(u),m)| ≤ η + η/3 ≤ 2η,

and for all u, v ∈ L,

|R(σ(u),σ(v))− qu∧v|
≤ |R(σ∗(u),σ∗(v))− qu∧v|+ δ(u)|R(σ∗(u),ρ(v))|+ δ(v)|R(σ∗(v),ρ(u))|+ δ(u)δ(v)|R(ρ(u),ρ(u))|
≤ η + η/3 + η/3 + η/3 = 2η.

So, B(~σ∗, η/3) ⊆ Q(2η).
Let constants c, C1 be given by Proposition 3.0.1. By this proposition, the event

S =

{
sup
u∈L

sup
σ∈SN

∥∥∥∇H(u)
N (σ)

∥∥∥
N
≤ C1

}
has probability P(S) ≥ 1−Ke−cN . Here we use the fact that for v ∈ RN , ‖v‖N = ‖v‖op. On S,

HN (~σ) ≥ HN (~σ∗)− C1NKη

3

for all ~σ ∈ B(~σ∗, η/3). So,

F Sp
N (β,Q(2η)) =

1

N
logE

∫
Q(2η)

expβHN (~σ) dµK(~σ)

≥ 1

N
logE1 {S}

∫
B(~σ∗,η/3)

expβHN (~σ) dµK(~σ)

≥ 1

N
logE1 {S}

∫
B(~σ∗,η/3)

expβ

(
HN (~σ∗)− C1NKη

3

)
dµK(~σ)

≥ 1

N
logE1 {S} expβHN (~σ∗)− βC1Kη

3
+

1

N
logµK(B(~σ∗, η/3))

= βGSSp
N (Q(η))− βC1Kη

3
+

1

N
logµK(B(~σ∗, η/3))

+
1

N
logE1 {S} expβ

(
HN (~σ∗)− EHN (~σ∗)

)
.

86

The set B(~σ∗, η/3) is the product of K spherical caps in SN . By elementary properties of the spherical
measure, there exists a large C such that µK(B(~σ∗, η/3)) ≤ ηCNK , and so

1

N
logµK(B(~σ∗, η/3)) ≥ −CK log

1

η
.

By Proposition 3.2.8,

P
(
HN (~σ∗)− EHN (~σ∗) ≤ −K

√
4 log 2 · ξ(1)N

)
≤ 1

2
.

By a union bound, the complement of this event and S simultaneously hold with probability at least 1
2 −

Ke−cN . Thus,

1

N
logE1 {S} expβ

(
HN (~σ∗)− EHN (~σ∗)

)
≥ −βK

√
4 log 2 · ξ(1)

N
+

1

N
log

(
1

2
−Ke−cN

)
.

Putting this all together, we can choose a large C dependent only on ξ, h such that

F Sp
N (β,Q(2η)) ≥ βGSSp

N (Q(η))− CKβη − CK log
1

η
− CKβ√

N
− 1

N
log

1
1
2 −Ke−cN

.

By choosing C large enough, we can ensure that if N ≥ C log max(K, 2), then Ke−cN ≤ 1
4 . Then, we may

absorb the last term into the term CK log 1
η . Rearranging yields the result.

3.5 Overlap-Constrained Upper Bound on the Ising Grand Hamil-
tonian

In this section we upper-bound ϕIs(0). We take the reference measure µ to be the counting measure so that
integrals over QIs(η) become sums.

We define (Z0, . . . , ZD) similarly to Gd of the previous section, but as a sum over all of (ΣN)K directly.
As before, define ~η0, . . . ~ηD to be independent Gaussians as in (3.4.1) and (3.4.2). For ~y ∈ (RK)N , define

ZD(~y) = log
∑

~σ∈(ΣN)K

exp
∑
u∈L
〈h+ λm+ y(u), π(σ(u))〉

= log

N∏
i=1

∏
u∈L

(
2 cosh (h+ λmi + y(u)i) exp (−mi(h+ λmi + y(u)i))

)

=

N∑
i=1

∑
u∈L

(
log (2 cosh (h+ λmi + y(u)i))−mi(h+ λmi + y(u)i)

)
.

Given the sequence 0 = ζ−1 < ζ0 < ζ1 < · · · < ζL = 1, recursively set

Zd(~y) =
1

ζd
E ζdZd+1

(
~y + ~ηd+1(ξ′(qd+1 − ξ′(qd))1/2

)
.

Then Z0 ≡ Z0(0) is a deterministic function of m and h.

Proposition 3.5.1. For any m ∈ [−1, 1]N ,

ϕIs(0) ≤ 1

N
Z0 +KR(h,m).

Proof. Recall from (3.3.8) that

ϕIs(0) = KR(h,m) +
1

N
logE

∑
α∈ND

να
∑

~σ∈QIs(η)

exp

(∑
u∈L
〈h+ λm, π(σ(u))〉+

∑
u∈L

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i

)
.

87

Summing over all of (ΣN)K gives the upper bound

ϕIs(0) ≤ KR(h,m) +
1

N
logE

∑
α∈ND

να
∑

~σ∈(ΣN)K

exp

(∑
u∈L
〈h+ λm, π(σ(u))〉+

∑
u∈L

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i

)
.

Similarly to previous sections or as in [Pan13b, Theorem 2.9], properties of Ruelle cascades imply that the
right hand side above equals

KR(h,m) +
1

N
Z0

because the coordinates i ∈ [N] now decouple.

3.5.1 Properties of Parisi PDEs

Here we review properties of Parisi PDEs. We begin with the 1-dimensional case for general ζ ∈ L and
consider the PDE

∂tΦζ(t, x) +
1

2
ξ′′(t)

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))2

)
= 0 (3.5.1)

Φζ(1, x) = f0(x).

For β > 0 we will consider the initial conditions f0(x) = log(cosh(βx)/β) − ax for a = mi ∈ [−1, 1] which

leads to solution Φβa,ζ . When not specified, we take β = 1 and a = 0, so for instance Φa,ζ = Φ1
a,ζ and

Φβζ = Φβ0,ζ . We also allow the β = ∞ case Φ∞a,ζ corresponding to f0(x) = |x| − ax. Note that (1.3.4)
corresponds to the case (a, β) = (0,∞). Regularity properties for solutions to (3.5.1) were derived in several
works such as [JT16, Che17] for ζ ∈ U . We draw on the results2 of [AMS21] for ζ ∈ L .

Proposition 3.5.2. [AMS21, Proposition 6.1(b) and Lemma 6.4] For ζ ∈ L and (a, β) ∈ [−1, 1]× (0,∞],

the function Φβa,ζ is continuous on [0, 1]× R and 2-Lipschitz in x. Moreover both

∂xxΦβa,ζ(t, x) and ∂tΦ
β
a,ζ(t, x)

are uniformly bounded on (t, x) ∈ [0, 1− ε]× R for any ε > 0. Finally Φβa,ζ(t, x) is convex in x.

Proposition 3.5.3. [AMS21, Lemma 6.5] For ζ ∈ L the SDE

dXt = ξ′′(t)ζ(t)∂xΦβa,ζ(t,Xt) dt+
√
ξ′′(t) dBt, X0 = X0 (3.5.2)

has strong and pathwise unique solution.

Proposition 3.5.4. [AMS21, Proposition 6.1(c)] For ζ1, ζ2 ∈ L , and β ∈ (0,∞],

|Φβζ1 − Φβζ2 | ≤
∫ 1

0

ξ′′(t)|ζ1(t)− ζ2(t)|dt.

The Multi-Dimensional Parisi PDE

Here we define the Parisi PDE on RK . For simplicity we restrict attention to finitely supported ζ ∈ M~q.
We construct ΦL via the Hopf-Cole transformation and verify that it solves a version of (3.5.1).

Recall the definition of Md = M
~k,~p,d ∈ RK×K given by

M
~k,~p,d
u1,u2 = 1

{
u1 ∧ u2 ≥ d

}
pu1∧u2 .

As before, M(t) = Md for t ∈ [qd−1, qd).

2Technically the cited results from [AMS21] assume f0 is 1-Lipschitz and even. The evenness is not used in the proofs of
the statement below. In our case f0 is 2-Lipschitz when |a| ≤ 1, which is equivalent up to a rescaling as in (3.5.7).

88

For an atomic measure ζ ∈ M~q consider the function ΦL
ζ (t, ~x) : [0, 1] × RK → R defined as as follows.

The t = 1 boundary condition is

ΦL
a,ζ(1, ~x) =

∑
u∈L

log (2 coshx(u))− ax(u).

For t ∈ [q0, 1), ΦL
a,ζ is defined recursively by

ΦL
a,ζ(t, x) =

1

ζ(t)
logE exp

(
ζ(t)ΦL

a,ζ(qd+1, ~x+ ~etad+1 · (ξ′(qd+1)− ξ′(t))1/2)
)
, t ∈ [qd, qd+1)

where ~eta0 ∼ N (0,M1) and ~etad ∼ N (0,Md) for 1 ≤ d ≤ D are independent Gaussian vectors in RK . For
t ∈ [0, q0), we extend the definition of ζ so that ζ(t) = 0 and define

ΦL
a,ζ(t, x) = EΦL

a,ζ(q0, ~x+ ~eta0 · (ξ′(q0)− ξ′(t))1/2).

Proposition 3.5.5. For any ζ ∈M~q,

Z0 =
1

N

N∑
i=1

ΦL
mi,ζ(0, (h+ λmi)~1).

Proof. This follows from Lemma 3.5.6 since the recursive definition of ΦL
a,ζ(t, x) restricted to times t ∈

{qd}d∈[D] is exactly that of Z0 up to an spatial shift of (h+ λmi)~1.

We defer the proof of the next lemma, which is a standard computation.

Lemma 3.5.6. The function ΦL
a,ζ is smooth on each time interval [qd, qd+1]×RK . Moreover it is continuous

and solves the K-dimensional Parisi PDE

∂tΦ
L
a,ζ(t, ~x) = −ξ

′′(t)

2

(
〈M(t),∇2ΦL

a,ζ〉+ ζ(t)〈M(t), (∇ΦL
a,ζ)
⊗2〉
)
. (3.5.3)

Finally |∂x(u)Φ
L
a,ζ(t, ~x)| ≤ 1 + |a| holds for all (t, ~x, u) ∈ [0, 1]× RK × L.

Auffinger-Chen Representation

As shown by [AC15] the Parisi PDE admits a stochastic control formulation. We now recall such represen-
tations in the cases of interest starting with the 1-dimensional case. For 0 ≤ t1 ≤ t2 ≤ 1 let D[t1, t2] be the
space of processes v ∈ C([t1, t2];R) with supt1≤r≤t2 |vr| ≤ 2 which are progressively measurable with respect
to filtration supporting a standard Brownian motion Bt. Define the functional

X t1,t2a,ζ (x, v) = E
[
Yt1,t2a,ζ (x, v)−Zt1,t2a,ζ (v)

]
where

Yt1,t2a,ζ (x, v) ≡ Φβa,ζ

(
t2, x+

∫ t2

t1

ζ(r)ξ′′(r)vr dr +

∫ t2

t1

√
ξ′′(r) dBr

)
,

Zt1,t2a,ζ (v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)v2
r dr.

Note that since |vr| ≤ 2 is uniformly bounded and ||ξ′′ · ζ||1 < ∞ there are no continuity issues near t = 1.

The next proposition, whose standard proof we defer, relates Φβa,ζ to stochastic control.

Proposition 3.5.7. For any ζ ∈ L , [t1, t2] ⊆ [0, 1], a ∈ [−1, 1] and β ∈ (0,∞], the function Φβa,ζ satisfies

Φβa,ζ(t1, x) = sup
v∈D[t1,t2]

X t1,t2a,ζ (x, v). (3.5.4)

Moreover the maximum in (3.5.4) is achieved by

vr = ∂xΦβa,ζ(r,Xr)

where Xr solves the SDE (3.5.2) with initial condition Xt1 = x.

89

The corresponding stochastic control formulation in RK is as follows. For 0 ≤ t1 ≤ t2 ≤ 1 let DL[t1, t2]
be the space of processes ~v ∈ C([t1, t2];RK) with supt1≤r≤t2 |~vr|∞ ≤ 2 which are progressively measurable

with respect to a filtration supporting an RK valued Brownian motion ~Br = (Bur)u∈L. Define the functional

X L,t1,t2
a,ζ (~x,~v) ≡ E

[
YL,t1,t2
a,ζ (~x,~v)−ZL,t1,t2

a,ζ (~v)
]

where

YL,t1,t2
a,ζ (~x,~v) ≡ ΦL

a,ζ

(
t2, ~x+

∫ t2

t1

ζ(r)ξ′′(r)M(r)~vr dr +

∫ t2

t1

√
ξ′′(r)M(r) d ~Br

)
,

ZL,t1,t2
a,ζ (~v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)〈M(r), ~v⊗2
r 〉 dr.

In the multi-dimensional case we restrict attention to finitely supported ζ ∈ M~q to avoid the by-now
routine process of extending regularity properties of ΦL

ζ to general ζ. The proof is again deferred.

Proposition 3.5.8. For any ζ ∈M~q, [t1, t2] ⊆ [0, 1] and a ∈ [−1, 1], the function ΦL
a,ζ satisfies

ΦL
a,ζ(t1, ~x) = sup

~v∈DL[t1,t2]

X L,t1,t2
a,ζ (~x,~v). (3.5.5)

Moreover (3.5.5) is maximized by ~vs = ∇ΦL
a,ζ(s,

~Xs) where the RK-valued process ~Xs solves

~Xs = ~x+

∫ s

t1

ζ(r)ξ′′(r)M(r)∇ΦL
a,ζ(r,

~Xr) dr +

∫ s

t1

√
ξ′′(r)M(r) d ~Br, s ∈ [t1, t2].

3.5.2 Relations Among Parisi PDEs

Following [CPS18, Section 8] we relate Φa,ζ to Φζ . Note that we always consider times t ∈ [0, 1] with
endpoint conditions at t = 1, while [CPS18] defines the boundary condition for Φa,ζ at time t = 1− q0, see
e.g. Equation (3.25) therein.

Proposition 3.5.9. For any a ∈ [−1, 1] and ζ ∈ L , with y = x− a
∫ 1

0
ξ′′(t)ζ(t)dt,

Φζ(0, y)− ay = Φa,ζ(0, x) +
a2

2

∫ 1

0

ξ′′(t)ζ(t)dt.

Proof. By setting y = x− a
∫ 1

0
ξ′′(s)ζ(s) ds, it suffices to show that for all t ∈ [0, 1],

Φa,ζ(t, x) = Φζ

(
t, x− a

∫ 1

t

ξ′′(s)ζ(s) ds

)
− ax+

a2

2

∫ 1

t

ξ′′(s)ζ(s) ds.

(In particular the desired result is obtained by setting t = 0.) It suffices to show this for ζ continuous. Set

f(t, x) ≡ Φζ

(
t, x− a

∫ 1

t

ξ′′(s)ζ(s) ds

)
− ax+

a2

2

∫ 1

t

ξ′′(s)ζ(s) ds

and define

b(t, x) ≡ x− a
∫ 1

t

ξ′′(s)ζ(s) ds.

Then we compute

∂tf(t, x) = ∂tΦζ(t, b(t, x)) + aξ′′(t)ζ(t)∂xΦζ(t, b(t, x))− a2

2
ξ′′(t)ζ(t)

90

and

∂xf(t, x) = ∂xΦζ(t, b(t, x))− a,
∂xxf(t, x) = ∂xxΦζ(t, b(t, x)).

It follows that

∂tf(t, x) = −ξ
′′(t)

2

(
∂xxf(t, x) + ζ(t) (∂xf(t, x))

2
)
.

Note that at time 1, f(1, x) = log(2 cosh(x)) − ax = Φa,ζ(1, x). Uniqueness of solutions to the Parisi PDE
as in [JT16, Lemma 13] completes the proof.

Lemma 3.5.10. For any ζ, γ ∈ L and any (t, x, β) ∈ [0, 1]× R× (0,∞],

Φβa,ζ(t, x) ≤ Φβa,ζ+γ(t, x).

Proof. We use the Auffinger-Chen representation (3.5.4) for Φβa,ζ and Φβa,ζ+γ . For any control v, consider
the modified control

wt ≡
ζ(t)vt

ζ(t) + γ(t)
.

It is not difficult to see that
Yt,1a,ζ(x, v) = Yt,1a,ζ+γ(x,w)

since the resulting SDE is the same, while

Zt,1a,ζ(v) ≥ Zt,1a,ζ+γ(w).

Therefore
X t,1a,ζ(x, v) ≤ X t,1a,ζ+γ(x,w)

Since v was arbitrary, we are done by Proposition 3.5.7.

Define ζ = ζ|[q0,1] and ζ = ζ|[0,q0] when ζ ∈ L and q0 ∈ [0, 1] are given. The next lemma is analogous to
Lemma 3.4.8 and will be used to connect our estimates for ϕ(0) to the Parisi functional uniformly in m.

Lemma 3.5.11. For ζ ∈ L , with λ =
∫ 1

0
ξ′′(t)ζ(t)dt,

1

N

N∑
i=1

Φ∞
mi,ζ

(0, h+ λmi)−
1

2

∫ 1

q0

(t− q0)ζ(t)ξ′′(t)dt+R(h,m) ≤ PIs
ξ,h(ζ).

Proof. Define the constants

I =

∫ 1

0

tξ′′(t)ζ(t)dt, J = λ =

∫ 1

0

ξ′′(t)ζ(t)dt,

I =

∫ 1

q0

tξ′′(t)ζ(t)dt, J =

∫ 1

q0

ξ′′(t)ζ(t)dt,

I =

∫ q0

0

tξ′′(t)ζ(t)dt, J =

∫ q0

0

ξ′′(t)ζ(t)dt.

Then I = I + I and J = J + J and q0J ≥ I. Recalling that PIs
ξ,h(ζ) = Φ∞ζ (0, h)− I

2 , we estimate

PIs
ξ,h(ζ) = Φ∞ζ (0, h)− I

2

= 1
N

∑N
i=1

(
Φ∞mi,ζ (0, h+ λmi) +

m2
iJ
2

)
− I

2 +R(h,m)

= 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 +R(h,m)

= 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 + q0J−I

2 +R(h,m)

≥ 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 +R(h,m)

≥ 1
N

∑N
i=1 Φ∞

mi,ζ
(0, h+ λmi) + q0J

2 −
I
2 +R(h,m).

Prop 3.5.2

‖m‖2N = q0

ζ = ζ + ζ

q0J ≥ I

Lem 3.5.10

91

This is exactly what we wanted to show.

The next crucial lemma upper-bounds ΦL
a,ζ using the 1-dimensional function Φa,κζ . As in the spherical

case, multiplying by κ will allow us to pass from increasing ζ ∈M~q to arbitrary functions in L .

Lemma 3.5.12. For any ζ ∈M~q, ~x ∈ RK , a ∈ [−1, 1] and t ∈ [0, 1],

ΦL
a,ζ(t, ~x) ≤

∑
u∈L

Φa,κζ(t, x(u)). (3.5.6)

Proof. Define

Z̃L,t1,t2
a,ζ (~v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)κ(r)−1〈M(r)2, ~v⊗2
r 〉 dr.

Since M(r) � κ(r)IK , in the Loewner order, it follows that

κ(r)−1M(r)2 �M(r).

Hence Z̃L,t1,t2
a,ζ (~v) ≤ ZL,t1,t2

a,ζ (~v) for any ~x and ~v. Setting

X̃ L,t1,t2
a,ζ (~x,~v) ≡ YL,t1,t2

a,ζ (~x,~v)− Z̃L,t1,t2
a,ζ (~v),

it follows that
X t,1a,ζ(~x,~v) ≤ X̃ t,1a,ζ(~x,~v)

always holds. Next for any ~v ∈ DL[t, 1] and r ∈ [t, 1], define ~Vr = M(r)~vr
κ(r) ∈ RK . Then

〈M(r)2, ~v⊗2
r 〉 = ‖M(r)~vr‖22 = κ(r)2

∥∥∥~Vr∥∥∥2

and so (including the relevant Brownian motions as arguments in a slight abuse of notation),

Z̃L,t,1
a,ζ (~v, ~B) =

∑
u∈L
Zt,1a,κζ(V (u), B(u)).

Moreover since κ(r)~Vr(u) = M(r)~vr(u),

ỸL,t,1
a,ζ (~x,~v, ~B) =

∑
u∈L
Yt,1a,κζ(x(u), V (u), B(u)).

Since each coordinate Br(u) of ~Br has the marginal law of a 1-dimensional Brownian motion,

X̃ L,t,1
a,ζ (~x,~v) =

∑
u∈L
X t,1a,κζ(x(u), V (u)).

Therefore we obtain

X t,1a,ζ(~x,~v) ≤ X̃ t,1a,ζ(~x,~v)

=
∑
u∈L
X t,1a,κζ(x(u), V (u))

≤
∑
u∈L

Φa,κζ(t, x(u)).

Since ~v ∈ DL,t,1 was arbitrary this concludes the proof.

92

3.5.3 Zero Temperature Limit

We now apply the above results with (β2ξ, βh, βλ) in place of (ξ,h, λ), which corresponds to scaling HN to
βHN . We accordingly define Φβ2ξ,ζ and ϕIs

β2ξ(0) by making this substitution in their definitions. It is not
hard to derive the scaling relation

Φβ2ξ,ζ(t, βx) = β · Φββζ(t, x), (t, x) ∈ [0, 1]× R (3.5.7)

for any β ∈ (0,∞) and ζ ∈ L .
We will also use the following simple estimate to pass to the zero temperature limit.

Proposition 3.5.13. supζ

∣∣∣Φβζ (t, x)− Φ∞ζ (t, x)
∣∣∣ ≤ log 2

β .

Proof. Recall that Φβζ (1, x) is convex and 1-Lipschitz while Φ∞ζ (1, x) = |x| ≤ Φβζ (1, x). It follows that

sup
x∈R

∣∣∣Φβζ (1, x)− Φ∞ζ (1, x)
∣∣∣ =

∣∣∣Φβζ (1, 0)− Φ∞ζ (1, 0)
∣∣∣

=
log 2

β
.

Hence ∣∣∣X 0,1
ζ,β (v, x)−X 0,1

ζ,∞(v, x)
∣∣∣ ≤ log 2

β

holds for any control v, since the only difference is from the boundary value at time t = 1 in Y. Proposi-
tion 3.5.7 now implies the desired result.

Below, recall the definition ζ = ζ|[q0,1].

Lemma 3.5.14. Let (~p, ~q,~k) be as in Section 3.3, and fix β > 0 and ζ ∈ L such that ζ ∈M~q. With

λ =

∫ 1

0

ξ′′(t)κ(t)ζ(t) dt

we have
F Is
N (β,Q(η)) ≤ βKPIs(βκζ) + 3β2K2ξ′′(1)η +Kβλη +K log 2.

Proof. Applying Proposition 3.3.1 with ζ and (β2ξ, βh, βλ) in place of (ξ,h, λ) in the first line,

F Is
N (β,Q(η))− 3β2K2ξ′′(1)η −Kβλη ≤ ϕIs

β2ξ(0)− β2K
2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq

≤ 1
N

∑N
i=1 ΦL

β2ξ,mi,ζ
(q0, βh+ βλmi)− β2K

2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

≤ K
N

∑N
i=1 Φβ2ξ,mi,κζ

(q0, βh+ βλmi)− β2K
2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

= βK
N

∑N
i=1 Φβ

mi,βκζ
(q0, h+ λmi)− β2K

2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

= βK
N

∑N
i=1 Φ∞

mi,βκζ
(q0, h+ λmi)− βK

2

∫ 1

q0
(q − q0)ξ′′(q)βκ(q)ζ(q) dq

+ βKR(h,m) +K log 2

≤ βKPIs(βκζ) +K log 2.

Props 3.5.1,3.5.5

Lem 3.5.12

(3.5.7)

Prop 3.5.13

Lem 3.5.11

Here terms modified from the previous line are in red text.

All that remains is to approximate an arbitrary ζ∗ ∈ L by βκζ on [q0, 1) for ζ ∈ M~q and choose
parameters appropriately. We do this now.

93

Proof of Proposition 3.2.2, Ising case. First choose ζ∗ = ζ∗(ξ, h, ε) ∈ L such that

PIs(ζ∗) ≤ inf
ζ∈L

PIs(ζ) +
ε

10
= ALGIs +

ε

10
. (3.5.8)

Since
∫ 1

0
ξ′′(t)ζ∗(t) dt <∞, the monotone convergence theorem guarantees

lim
β→∞

∫ 1

0

ξ′′(t) · |min(ζ(t), β)− ζ(t)| dt = 0.

Define ζβ(t) = min(ζ(t), β). Therefore there exists

β = β(ζ∗, ξ, ε) = β(ξ, h, ε) ≥ 20 log 2

ε
(3.5.9)

sufficiently large so that (recall Proposition 3.5.4)

PIs(ζβ)− PIs(ζ∗) ≤ 2

∫ 1

0

ξ′′(t) · |ζβ(t)− ζ(t)| dt ≤ ε

10
. (3.5.10)

For δ > 0, let qδ0 = q0 and qd+1
δ = min(qδd + δ, 1). This determines D which satisfies qD−1 < qD = 1. Since

ζβ ∈ L is bounded and has bounded variation, there exists δ = δ(ξ, ζβ , ε) = δ(ξ,h, ε) > 0 such that the
function

ζβ,δ(t) =

{
ζβ(t), t ∈ [0, q0)

max
(
δ, ζβ(qδj)

)
, t ∈ [qδj , q

δ
j+1), j ≥ 0

satisfies

PIs(ζβ)− PIs(ζβ,δ) ≤ 2

∫ 1

0

ξ′′(t) |ζβ(t)− ζβ,δ(t)| dt ≤ ε

10
. (3.5.11)

(Note in particular that δ does not depend on q0.) Observe that ζβ,δ(t) ∈ [δ, β] holds for all t ∈ [0, 1]. Next
define

k1 = k2 = · · · = kD = k∗ ≡
⌈
β

δ2

⌉
.

This leads to pδd = χ−1(qδd) with δ ≤ pδ1 ≤ pδD = 1 and hence κ(t) = κd for t ∈ [qδd, q
δ
d+1), where

δkD−d∗ ≤ κd ≤ kD−d∗ .

Next define

ζ̂β,δ(t) ≡
ζβ,δ(t)

βκ(t)
, t ∈ [q0, 1]

so that βκζ̂β,δ = ζβ,δ. Note that

sup
t∈[0,1]

ζ̂β,δ(t) ≤
sups∈[0,1] ζβ,δ(s)

β
≤ 1.

Additionally ζ̂β,δ is nondecreasing since if qd ≤ td < qδd+1 ≤ td+1 ≤ qδd+2, then

ζ̂β,δ(td)

ζ̂β,δ(td+1)
=
ζβ,δ(td)

ζβ,δ(td)
· κd+1

κd

≤ β

δ2k∗
≤ 1

by definition of k∗. Set

λ =

∫ 1

0

ξ′′(t)κ(t)ζ̂β,δ(t) dt

94

and
η =

ε

30βKξ′′(1) + 10λ
. (3.5.12)

We now show that using ζ̂β,δ in the interpolation implies Proposition 3.2.2. Take ~p, ~q,~k,D, β, η as above.

1
N E

[
max~σ∈QIs(η)H

~k,~p
N (~σ)

]
≤ F Is

N (β,Q(η))/β

≤ KPIs(βκζ̂β,δ) + 3βK2ξ′′(1)η +Kλη + K log 2
β

≤ K · PIs(ζβ,δ) + 2Kε
10

≤ K · PIs(ζβ) + 3Kε
10

≤ K · PIs(ζ∗) + 4Kε
10

≤ K · ALGIs + 5Kε
10 .

Lem 3.5.14

(3.5.9), (3.5.12)

(3.5.11)

(3.5.10)

(3.5.8)

Moreover the values D, η and K above are bounded depending only on ξ, h and ε. Indeed D ≤ δ−1 + 1, η is

bounded as in (3.5.12), and K =
∏D
d=1 ki = kD∗ =

⌈
β
δ2

⌉D
. Meanwhile β as defined in (3.5.9) also depends

only on ξ, h, ε. This concludes the proof.

3.5.4 Deferred Proofs

Here we give the missing proofs for this section, which are all relatively standard.

Proof of Lemma 3.5.6. We assume ζ(t) > 0 as the ζ(t) = 0 case is clear. We consider only the case t ∈
[qD−1, 1) as the remaining cases are identical by induction. Let ~y = ~y(t) ∈ RK be the Gaussian random
vector

~y = ~etaD(ξ′′(1)− ξ′′(t))1/2.

Below A always denotes
A(~x+ ~y) = ΦL

a,ζ(1, ~x+ ~y)

and for convenience we set m = ζD = ζ(t) for t ∈ [qD−1, 1). First note that since |∂x(u)Φ
L
a,ζ(1, ~x)| ≤ 1 + |a|

holds, there are no issues of convergence in any of the expectations even though ~y has unbounded support.
By differentiating in the endpoint value ~x+ ~y before taking expectation in ~y it follows that

∇ΦL
a,ζ =

E[∇AemA]

E[emA]
.

This immediately implies that |∂x(u)Φ
L
a,ζ(t, ~x)| ≤ 1 + |a|. Similarly one has

∂xixjΦ
L
a,ζ =

E
[
∂xixjA+m(∂xiA)(∂xjA)emA

]
E[emA]

−m
(
E[∂xie

mA]

E[emA]

)(
E[∂xje

mA]

E[emA]

)
.

Combining, we compute

〈T,∇2ΦL
a,ζ〉+m〈T, (∇L)⊗2〉 =

1

E[emA]
E[
(
〈T,∇2A〉+m〈T, (∇A)⊗2〉

)
emA]

Next, note that the time-derivative of the covariance of ~y(t) is M(t). Since M(t) is positive semidefinite we
can couple together (~y(t))t∈[qL−1,1] via

~y(t) =

∫ 1

t

√
ξ′′(r)M(r) d ~Br

where ~Br is a standard Brownian motion in RK . Applying Ito’s formula backward in time now implies

d

dt
E emA(~x,~y(t)) = −1

2
mE

[(
〈T,∇2A〉+m〈M(t), (∇A)⊗2〉

)
emA

]
.

95

Therefore we conclude

∂tΦ
L
a,ζ = −

d
dtEe

mA(~x,~y(t))

mE emA(~x,~y(t))

= −1

2
〈T,∇2ΦL

a,ζ〉+m〈T, (∇ΦL
a,ζ)
⊗2〉.

Proof of Proposition 3.5.7. Set

Ws = x+

∫ s

t1

ζ(r)ξ′′(r)vr dr +

∫ s

t1

√
ξ′′(r) dBr

and

Vs ≡ Φβa,ζ (s,Ws)−
1

2

∫ s

t1

ζ(r)ξ′′(r)v2
r dr.

Ito’s formula gives

dVt =

(
∂tΦ

β
a,ζ(t,Wt) + ζ(t)ξ′′(t)vt∂xΦβa,ζ(t,Wt) +

1

2
ξ′′(t)∂xxΦβa,ζ(t,Wt)−

1

2
ζ(t)ξ′′(t)v2

t

)
dt+ Yt dBt.

Here Yt is irrelevant and (3.5.1) lets us rewrite the finite variation part of dVt as

∂tΦ
β
a,ζ(t,Xt) + ζ(t)ξ′′(t)vt∂xΦβa,ζ(t,Wt) +

1

2
ξ′′(t)∂xxΦβa,ζ(t,Wt)−

1

2
ζ(t)ξ′′(t)v2

t

= −1

2
ζ(t)ξ′′(t)

(
vt − ∂xΦβa,ζ(t,Wt)

)2

≤ 0.

We conclude that
Φβζ (t1, x) ≥ X t1,t2ζ (x, v)

with equality when vr = ∂xΦβζ (r,Wr) holds for all r ∈ [t1, t2]. By uniqueness of solutions for SDEs with
Lipschitz coefficients, this implies Wr = Xr.

Proof of Proposition 3.5.8. The proof is similar to the 1-dimensional case. First, the SDE defining ~Xt has
strong and pathwise unique solutions since ∇ΦL

a,ζ(t, ~x) is uniformly bounded and Lipschitz in ~x. Set

~Ws = ~x+

∫ s

t1

ζ(r)ξ′′(r)M(r)~vr dr +

∫ s

t1

√
ξ′′(r)M(r) d ~B(r)

and

V L
s ≡ ΦL

a,ζ

(
s, ~Xs

)
− 1

2

∫ s

t1

ζ(r)ξ′′(r)〈M(r), ~v⊗2
r 〉 dr.

By Ito’s formula,

dV L
t =

(
∂tΦ

L
ζ (t, ~Wt) + ζ(t)ξ′′(t)~vt∂xΦL

ζ (t, ~Wt) +
1

2
ξ′′(t)∂xxΦL

ζ (t, ~Xt)−
ξ′′(t)

2
〈M(t), ~v⊗2

t 〉
)

dt+ Y L
t dBt.

Here Y L
t is again irrelevant. By (3.5.3) the finite variation part of dV L

t is

∂tΦ
L
a,ζ(t, ~Wt) +

〈
M(t), ~vt ⊗∇ΦL

a,ζ(t, ~Wt)
〉

+
1

2
ξ′′(t)∂xxΦL

a,ζ(t, ~Wt)−
ξ′′(t)

2
〈M(t), ~v⊗2

t 〉

= −1

2

〈
M(t),

(
~vt −∇ΦL

a,ζ(t, ~Wt)
)⊗2

〉
≤ 0.

96

We conclude that
ΦL
a,ζ(t1, ~x) ≥ X L,t1,t2

a,ζ (~x,~v)

with equality when
~vr = ∇ΦL

a,ζ(r,
~Wr)

holds for all r ∈ [t1, t2]. Again, uniqueness of solutions to SDEs with Lipschitz coefficients implies ~Wr = ~Xr.

3.6 Necessity of Full Branching Trees

In this section we show, roughly speaking, that it is necessary to use a full branching tree to obtain our results
within the overlap gap framework. We restrict for convenience to the setting of spherical models with null

external field h = 0 and set ALGSp
ξ = ALGSp

ξ,0 =
∫ 1

0
ξ′′(t)1/2 dt (recall Proposition 3.1.6) and OPTSp

ξ = OPTSp
ξ,0.

A consequence of Theorem 3.6.13, proved near the end of this section, can be expressed informally as
follows for any ξ with ALGSp

ξ < OPTSp
ξ . Recall the canonical bijection between finite ultrametric spaces and

edge-weighted rooted trees (or see Subsection 3.6.2 for a reminder). For all finite ultrametric spaces X of
diameter at most

√
2 whose corresponding rooted tree does not contain a subdivision of a full binary subtree

of depth D, with probability at least 1 − e−Ω(N) the following holds. There exists an isometric (up to the
scaling factor

√
N) embedding ι : X → SN such that

HN (ι(x)) ≥ (ALGSp
ξ + εξ,D)N, ∀x ∈ X.

Here εξ,D > 0 is a constant depending only on ξ and D, and in particular is independent of the size of

the ultrametric X. In other words, to rule out algorithms achieving better than ALGSp
ξ + ε using forbidden

ultrametrics, as ε→ 0 it is necessary to take D →∞, in effect using the full power of Proposition 3.2.2.
The full statement of Theorem 3.6.13 shows that in fact a super-constant amount of branching must

occur at all “depths” in [0, 1] where ξ′′(t)−1/2 is strictly convex. We also show in Theorem 3.6.14 that there
exists an embedding ι as above with large average energy

1

|X|
∑
x∈X

HN (ι(x)) ≥ (ALGSp
ξ + εξ,D)N

unless “almost all of” X branches a super-constant amount at “almost all such depths”. Note that this
average energy is what the Guerra-Talagrand interpolation actually allows one to upper bound. Throughout
this section we always consider just a single Hamiltonian HN . This corresponds to the case ~p ≈ (1, 1, . . . , 1),
i.e. a correlation function χ(p) which sharply increases near p = 1 such as χ(p) = p100.

Our plan to prove Theorem 3.6.13 is as follows. If ALGSp
ξ < OPTSp

ξ , there exists an interval [a, b] ⊆ [0, 1]

on which (ξ′′)−1/2 is strictly convex. Let T be the finite rooted tree with leaf set corresponding to the
ultrametric space X. Let ε > 0 be a small constant depending only on ξ and D. We use the algorithm of
[Sub21] to find embeddings of ancestor points ι(xa) for each x ∈ X of norm ‖ι(xa)‖2 =

√
aN which satisfy

HN (ι(xa)) ≥
(∫ a

0

ξ′′(t)1/2 dt− ε
)
N.

Next we embed the depth [a, b] parts of T so that the resulting depth b ancestor embeddings ι(xb) satisfy

HN (ι(xb)) ≥

(∫ b

0

ξ′′(t)1/2 dt+ 2ε

)
N.

In other words, from radius
√
aN to

√
bN , the embedded points’ energy grows by

∫ b
a
ξ′′(t)1/2 dt+ 3ε, which

exceeds the maximum possible growth of an overlap concentrated algorithm by a small constant 3ε. This
is the main step of our procedure, and it succeeds whenever the portion of T at depths in [a, b] does not
contain a full binary tree of depth D. The proof uses induction on D, and the D = 1 case is described in

97

Figure 3.1. We remark that our proof is essentially constructive assuming access to an oracle to find many
orthogonal near-maximizers of HN on arbitrary bands as guaranteed by Lemma 3.6.4.

Finally we again use the algorithm of [Sub21] to define embeddings of the leaves ι(x) ∈ SN for x ∈ X
with

HN (ι(x)) ≥
(∫ 1

0

ξ′′(t)1/2 dt+ ε

)
N.

We remark that in previous multi-OGP arguments, ultrametricity of the forbidden configuration does
not explicitly enter. However in these arguments, it is always possible that the structure of replicas identified
is an ultrametric. Specifically, in a “star” multi-OGP [RV17, GS17, GK21a] all the replicas are pairwise
equidistant. For the “ladder” OGP implementations of [Wei20, BH21], the forbidden structure is defined
by applying some stopping rule to choose a finite number of solutions from a “stably evolving” sequence of
algorithmic outputs. In both settings it is possible that the resulting configuration is a star ultrametric with
all pairwise nonzero distances equal. However, the rooted tree corresponding to such an ultrametric does
not contain even a full binary tree of depth D = 2. Therefore Theorem 3.6.13 strongly suggests that existing
OGP arguments are incapable of ruling out Lipschitz A from achieving energies down to the algorithmic
threshold ALGSp

ξ .

3.6.1 Preparation

For given ξ and t ∈ [0, 1], define

ALGSp
ξ (t) =

∫ t

0

ξ′′(s)1/2 ds

so that ALGSp
ξ (1) = ALGSp

ξ . Define also

ALGSp
ξ ([a, b]) = ALGSp

ξ (b)− ALGSp
ξ (a).

Define
ξa(t) = ξ(t)− ξ(a)− (t− a)ξ′(a).

Note that ξa(a) = ξ′a(a) = 0, and ξ′′a (t) = ξ′′(t) for all t. Define the rescaled mixture function

ξ[a,b](t) = ξa (a+ (b− a)t) .

We derive

ALGSp
ξ[a,b]

=

∫ 1

0

√
ξ′′[a,b](t) dt =

∫ b

a

√
ξ′′a (s) ds =

∫ b

a

√
ξ′′(s) ds = ALGSp

ξ ([a, b]).

Correspondingly, define
OPTSp

ξ ([a, b]) = OPTSp
ξ[a,b]

.

Proposition 3.6.1. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Then

OPTSp
ξ ([a, b]) > ALGξ([a, b]). (3.6.1)

Proof. The result follows from Proposition 3.1.6 applied to ξ[a,b].

The next proposition follows from the work [Sub18] and ensures the existence of many approximately
orthogonal replicas which each approximately achieve the ground state energy in spherical spin glasses
without external field. In Lemma 3.6.4 we make several simple modifications to this result, for instance
requiring that the replicas be exactly orthogonal.

Proposition 3.6.2. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [0, 1]. Then for any C, ε > 0 and k ∈ N, for
N ≥ N0 = N0(ξ, C, ε, k), with probability at least 1 − e−CN either HN /∈ KN (recall Proposition 3.0.1) or
the following holds. There exist k points σ1, . . . ,σk ∈ SN with

|R(σi,σj)| ≤ ε, 1 ≤ i < j ≤ k

and
HN (σi) ≥ N(OPTSp

ξ − ε), i ∈ [k].

98

Proof. With the absence of external field, it follows from [Sub18, Lemma 42] that 0 is multi-samplable. Let
Qk(ε) ⊆ B(m, ε)k ∩SkN denote the set of ~σ with |R(σi,σj)| ≤ ε for i 6= j. Let µ be the uniform measure on
SN . Define

FN,β =
1

βN
log

∫
SN

expβHN (σ) dµ(σ)

to be the quenched free energy of HN on SN at inverse temperature β and

F̃N,β(m) = F̃N,β(m, kN , ε) ≡
1

βNkN
log

∫
QkN (ε)

expβ

kN∑
i=1

HN (σi) dµk(~σ).

Here kN grows to ∞ with N at a suitably slow rate. By [Sub18, Proposition 1 and Theorem 3]3 it follows
that for N ≥ N0 sufficiently large,

P
[
E F̃N,β(m)− EFN,β ≥ −ε

]
≥ 1− e−CN .

Therefore there exists some ~σ ∈ QkN (ε) satisfying

kN∑
i=1

HN (σi) ≥ NkN (OPTSp
ξ − ε− oβ(1)).

Here oβ(1) is a value tending to 0 as β →∞, uniformly in everything else. Assuming HN ∈ KN , the values
1
N |HN (σi)| are uniformly bounded by a constant C1 (because HN (0) = 0). It follows by Markov’s inequality

that at least kN

(
ε

10C1
− ε− oβ(1)

)
of the σi satisfy HN (σi) ≥ N(OPTSp

ξ −
ε
2 − oβ(1)). Since kN → ∞,

eventually

k ≤
⌊
kN

(
ε

10C1
− ε− oβ(1)

)⌋
for suitably large β, which completes the proof.

For fixed m, define the first-order Taylor expansion

H
m

N (σ) = HN (m) + 〈∇HN (m),σ −m〉.

of HN and write
HN = H

m

N + ĤmN .

For 0 ≤ a ≤ b ≤ 1 with m ∈
√
a·SN , define B(m, 0, b) = B(m, 0)∩

√
b·SN and its convex hull B(m, 0, [a, b]).

Lemma 3.6.3. For any fixed m, the law of ĤmN restricted to B(m, 0) is a Gaussian process with covariance

E[ĤmN (σ1)ĤmN (σ2)] = Nξa(R(σ1,σ2)). (3.6.2)

Moreover the restrictions of ĤmN and H
m

N to B(m, 0) are independent.

Proof. Note that for all σ1,σ2 ∈ B(m, 0),

R(σ1 −m,σ2 −m) = R(σ1,σ2)− a.

Since ξa(t) has all derivatives non-negative for t ≥ a, we may sample a centered Gaussian process H̃N on
B(m, 0, [a, 1]) with covariance given by

E[H̃N (σ1)H̃N (σ2)] = Nξa(R(σ1 −m,σ2 −m) + a)

= Nξa(R(σ1,σ2)).

3In the statement of [Sub18, Theorem 3], there are values δN , ρN which also shrink with N . We are taking ε = ρN a small

constant and ignoring the constraint from δ, so our value of F̃N,β(m) is larger than that of [Sub18]. Therefore the lower bound

on F̃N,β(m) we use is somewhat weaker than in the results cited.

99

Next, generate the independent centered Gaussian process HN by

E[HN (σ1)HN (σ2)] = N
(
ξ(a) + ξ′(a)

(
R(σ1,σ2)− a

))
.

It follows by adding covariances (with x = R(σ1,σ2) in the definition of ξa) that

H̃N +HN
d
= HN

when restricted to B(m, 0). Since ξa(a) = ξ′a(a) = 0, it follows that H̃N (m) = 0 and ∇H̃N (m) = 0 hold
almost surely. Therefore HN = H

m

N is the first-order Taylor expansion of HN around m, and then also

H̃N = ĤmN . Moreover H̃N and HN are independent by construction. This concludes the proof.

In the following Lemma 3.6.4, we refine Proposition 3.6.2 in several simple but convenient ways. In
particular, Lemma 3.6.3 implies the same result uniformly over all bands B(m, 0, b); it also guarantees
exact orthogonality. Lemma 3.6.4 will serve as a useful tool for embedding more complicated ultrametric
trees. Roughly speaking, it gives a way to gain on the embedding algorithm of [Sub21] (stated later as
Proposition 3.6.10).

Lemma 3.6.4. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Then there exists ε > 0 depending only on
ξ, a, b such that for any k, for N ≥ N0(ξ, a, b, k) sufficiently large and some c = c(ξ, a, b, k), with probability
1− e−cN the following holds.

For any m with ||m||2N = a ≤ 1 and any linear subspace W ⊆ RN with dim(W) ≥ N − k, there exist k
points σ1, . . . ,σk ∈W +m such that

R(σi −m,σj −m) = (b− a) · 1 {i = j} ∀i, j ∈ [k] (3.6.3)

and
HN (σi) ≥ HN (m) +N(ALGSp

ξ ([a, b]) + ε) ∀i ∈ [k]. (3.6.4)

Proof. Consider a (non-random) η
√
N -net Nη on

√
a · SN of size at most (10/η)N . For any m ∈

√
a · SN ,

the Hamiltonian ĤmN (σ) restricted to B(m, 0, b) has covariance

E ĤmN (σ1)ĤmN (σ2) = Nξa(R(σ1,σ2))

= Nξ[a,b]

(
R

(
σ1 −m√
b− a

,
σ2 −m√
b− a

))
.

Since
||σ −m||2 =

√
N(b− a)

for σ ∈ B(m, 0, b), we conclude that ĤmN is exactly an N − 1 dimensional spin glass with mixture ξ[a,b] on
B(m, 0, b) up to rescaling the input.

Fix a large constant M , and choose ε sufficiently small depending on M . We apply Proposition 3.6.2 to
ĤmN with mixture ξ[a,b](t) based on the observation just above. Recall that the constant C in Proposition 3.6.2
can be arbitrarily large. It follows by a union bound that with probability 1− e−C1N , for all n ∈ Nη there
exist σ̃1(n), . . . , σ̃M (n) satisfying

|R(σ̃i(n)− n, σ̃j(n)− n)− (b− a) · 1 {i = j} | ≤ ε ∀1 ≤ i < j ≤M

and
ĤN (σ̃i(n)) ≥ N(OPTSp

ξ ([a, b])− ε) ∀i ∈ [M]. (3.6.5)

For any m ∈
√
a · SN , there exists by definition n ∈ Nη with ||m− n|| ≤ η

√
N . Then with σ̃i = σ̃i(n) as

above,
|R(σ̃i −m, σ̃j −m)− (b− a) · 1 {i = j} | ≤ ε1 ∀1 ≤ i < j ≤M

for some ε1 = oε,η(1) tending to 0 as ε, η → 0. Define the linear subspace W̃ ⊆W by

W̃ = W ∩m⊥ ∩ (∇HN)⊥

100

where (·)⊥ denotes orthogonal complement. Let P
W̃⊥

be the orthogonal projection matrix onto W̃⊥. It is
easy to see that ∣∣∣∣∣

∣∣∣∣∣
M∑
i=1

(σ̃i −m)⊗2

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ (1 +Mε)N ≤ 2N

for ε sufficiently small. Then

M∑
i=1

||P
W̃⊥

(σ̃i)||22 =

〈
P
W̃⊥

,

M∑
i=1

(σ̃i −m)⊗2

〉

≤ ||P
W̃⊥
||22 ·

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

(σi −m)⊗2

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ 2(k + 2)N.

By the pigeonhole principle, at most M − k values i ∈ [M] can satisfy

||P
W̃⊥

(σi −m)||22 ≥
2(k + 2)N

M − k
.

It follows that there exist a subset σ̃i1 , . . . , σ̃ik with

||P
W̃⊥

(σ̃ij −m)||22 ≤ ηN, j ∈ [k]

where η ≤ 2(k+2)
M−k is arbitrarily small (by choosing M large depending on k). Defining σ′i1 , . . . ,σ

′
ik

by

σ′ij −m = P
W̃⊥

(σ̃ij −m),

we have
σ′i1 , . . . ,σ

′
ik
∈m+ W̃

satisfying
|R(σ′ij −m,σi` −m)− (b− a) · 1 {j = `} | ≤ ε2, j, ` ∈ [k]

and
||σ′ij − σ̃ij ||

2
2 ≤ ηN, j ∈ [k].

Here ε2 = oε1,η(1) tends to 0 as ε1 and η tend to 0. Using Gram-Schmidt orthonormalization inside the
affine subspace B(m, 0), for ε3 = oε2(1) we may find σ̂1, . . . , σ̂k ∈ B(m, [a, b]) ∩W satisfying

R(σ̂i −m, σ̂j −m) = (b− a) · 1 {i = j} ∀1 ≤ i < j ≤ k

and
||σ̂j − σ′ij ||

2
2 ≤ ε3N ∀j ∈ [k].

Assuming HN is C1

√
N -Lipschitz with respect to the ‖·‖2 norm (recall Proposition 3.0.1), this implies based

on (3.6.5) that for some ε4 = oε3(C1 + 1),

ĤN (σ̂j) ≥ N(OPTSp
ξ − ε4) ∀i ∈ [k]

and
||σ̂j − σ̃ij ||22 ≤ 2(ε3 + η)N ∀j ∈ [k].

Recalling Proposition 3.6.1, this completes the proof.

101

3.6.2 Trees and Ultrametrics

We recall the well known connection between trees and ultrametric spaces. Here and throughout given a
rooted tree T with root r(T) we denote by pa(v) the parent of v ∈ V (T)\{r(T)}

Definition 3.6.5. [BD98] A dated, rooted tree T with range [a, b] ⊆ [0, 1] is a finite tree rooted at r(T) ∈
V (T) together with a height function

| · | : V (T)→ [a, b]

satisfying the following properties.

• |r(T)| = a.

• |v| = b for all leaves v ∈ L(T).

• |pa(v)| < |v| for all v ∈ V (T)\{r(T)}.

We say T is reduced if no v ∈ V (T) except possibly r(T) has exactly 1 child.

In a rooted tree, let u ∧ v ∈ V (T) denote the least common ancestor of vertices u and v. To any dated
rooted tree T, we associate a metric dT : V (T)× V (T)→ [0,

√
2] characterized by

|u ∧ v| = |u| − dT (u, v)2 + |v|
2

, u, v ∈ V (T). (3.6.6)

When u, v ∈ L(T) are leaves and T has range [a, b], this becomes

|u ∧ v| = b− dT (u, v)2

2
, u, v ∈ L(T). (3.6.7)

Crucially, observe that for u, v ∈ L(T), the value dT (u, v) is a strictly decreasing function of |u∧v|. Therefore
dT defines an ultrametric on L(T), or in fact the set of vertices at any fixed height. The specific decreasing
bijection between |u ∧ v| ∈ [0, 1] and dT (u, v) ∈ [0,

√
2] for u, v ∈ L(T) can in general be arbitrary; the one

above is suited for embeddings into Euclidean space since

R(σ1,σ2) =
R(σ1,σ1)− ||σ1 − σ2||2N +R(σ2,σ2)

2
, σ1,σ2 ∈ RN . (3.6.8)

The following type of result is well known and seems to be folklore.

Proposition 3.6.6. [RTV86, Section 6],[BD98] For any finite set X, (3.6.6) defines a bijection between the
following two isomorphism classes.

1. Dated, rooted reduced trees with range [0, 1] and leaf set X.

2. Ultrametric structures on X with diameter at most
√

2.

Any dated, rooted tree can be naturally reduced by removing vertices with a single child and connecting
their parent and child. Hence we will consider general dated, rooted trees to give ourselves more flexibility.
We are interested in embeddings of the leaves L(T) into level sets {σ ∈ RN : HN (σ) ≥ (ALG + ε)N} which
are isometries up to the scaling factor

√
N . It will be convenient to embed the entire vertex set V (T).

Definition 3.6.7. A Euclidean embedding of a dated, rooted tree T to is a function ι : V (T)→ RN satisfying

R(ι(u), ι(v)) = |u ∧ v| ∀u, v ∈ V (T).

or equivalently (by (3.6.8)),

||ι(u)− ι(v)||N = dT (u, v) ∀u, v ∈ V (T).

The next lemma gives an alternate characterization of Euclidean embeddings. .

102

Lemma 3.6.8. ι : V (T)→ RN is a Euclidean embedding if and only if the following properties hold. Below
we implicitly define |pa(r(T))| = 0 and ι(pa(r(T)) = 0.

1. ι(r(T)) = a.

2. For all v ∈ V (T),
||ι(v)− ι(pa(v))||N = |v| − |pa(v)|.

3. For all distinct u, v ∈ V (T),

R(ι(u)− ι(pa(u)), ι(v)− ι(pa(v))) = 0.

Proof. First if ι is a Euclidean embedding, then clearly the first property holds. The second holds because

||ι(v)− ι(pa(v))||2N = R(ι(v)− ι(pa(v)), ι(v)− ι(pa(v)))

= |v ∧ v| − |v ∧ pa(v)| − |pa(v) ∧ v|+ |pa(v) ∧ pa(v)|
= |v| − |pa(v)|.

For the third property, we compute

R(ι(u)− ι(pa(u)), ι(v)− ι(pa(v))) = |u ∧ v| − |v ∧ pa(v)| − |pa(u) ∧ v|+ |pa(u) ∧ pa(v)|.

Since u 6= v, without loss of generality suppose v 6= (u ∧ v). Then v is an ancestor of neither u nor pa(u).
The third property then follows because

u ∧ v = u ∧ pa(v) and pa(u) ∧ v = pa(u) ∧ pa(v).

In the other direction, let us assume the three properties hold and show ι is a Euclidean embedding.
Consider vertices u = un and v = vm with ancestor paths

(r(T) = u0, u1, . . . , un−1), (r(T) = v0, v1, . . . , vm−1).

Suppose that u ∧ v = ud = vd, so that uj = vj if and only if j ≤ d. Then we expand

R(ι(u), ι(v)) = a+
∑

1≤i≤n
1≤j≤m

R
(
ι(ui)− ι(ui−1), ι(vj)− ι(vj−1)

)
= a+

∑
1≤i≤d

R
(
ι(ui)− ι(ui−1), ι(ui)− ι(ui−1)

)
= a+

∑
1≤i≤d

|ui| − |ui−1|

= a+ |ud| − |r(T)|
= |u ∧ v|.

Next, define the depth D rooted binary tree T2
D on vertex set

V (T2
D) = ∅ ∪ [2] ∪ [2]2 ∪ · · · ∪ [2]D.

As usual, a vertex v ∈ [2]j is the parent of u ∈ [2]j+1 if and only if v is an initial substring of u. We say the
rooted tree T contains T2

D if there exists an ancestry-preserving injection

φ : V (T2
D)→ V (T)

(which need not preserve the root). Define the branching depth D(T) to be the largest D such that T
contains T2

D. For v ∈ V (T), define D(v) = D(Tv) where Tv ⊆ T is the subtree rooted at v.

103

Proposition 3.6.9. For any rooted tree T, the set

VD = {v ∈ V (T) : D(v) = D(T)} (3.6.9)

is a simple path graph with one endpoint at r(T).

Proof. Let D = D(T). Clearly VD is closed under ancestry and contains r(T). Suppose for sake of contra-
diction that VD is not a path with r(T) as an endpoint. Then VD contains vertices v and w neither of which
is an ancestor of the other. But if the disjoint subtrees rooted at v and w each contain T2

D, then T contains
T2
D+1, a contradiction.

We will use the following slight generalization of the main result of [Sub21]. It can be seen as the “default”

embedding procedure which ensures energy ALGSp
ξ at the leaves, while Lemma 3.6.4 gives a tool to improve

over this embedding on intervals [a, b] where ξ′′(t)−1/2 is convex.

Proposition 3.6.10. For any ε > 0 and k ∈ Z+, there exist c and N0 depending on ξ, ε, k such that with
probability 1− e−cN the following holds for all N ≥ N0.

For any m with ||m||2N = q ≤ 1, any dated, rooted tree T of order |V (T)| ≤ k with range [q, 1], and any
linear subspace W ⊆ RN with dim(W) ≥ N − k, there is an embedding ι of X into W +m such that

||ι(u)− ι(v)||N = d(u, v) ∀u, v ∈ V (T) (3.6.10)

and
HN (ι(x)) ≥ HN (m) +N · (ALGSp

ξ (‖ι(u)‖2N − ALGSp
ξ (‖m‖2N)− ε) ∀v ∈ V (T). (3.6.11)

Proof. The proof is essentially contained in [Sub21, Theorem 4 and Remark 6]. The restriction to W+m has
no effect on the proof whenever k ≤ o(N). Indeed, a GOE matrix has Ωε(N) eigenvalues at least 2− ε with

probability 1− e−Ωε(N
2). This property implies existence of an eigenvalue at least 2− ε when a GOE matrix

is restricted to any subspace of dimension at least N − Ωε(N) by the Courant-Fisher theorem. Repeating
the proof of [Sub21, Theorem 4] with this minor modification establishes the result.

The following simple lemma is a slightly more general statement of Proposition 3.6.10. It will be used to
extend partial embeddings of ancestor-closed subsets of V (T) to all of V (T).

Lemma 3.6.11. For any ε > 0 and finite dated rooted tree T, there exist c and N0 depending on ξ, ε, T such
that with probability 1− e−cN the following holds for all N ≥ N0.

For any ancestor-closed subset U ⊆ V (T), let ιU : U → RN be a Euclidean embedding. Then there is a
Euclidean embedding ι : V (T)→ RN extending ιU such that for any v ∈ V (T) with lowest U -ancestor u ∈ U ,

HN (ι(v)) ≥ HN (ι(u)) +N · (ALGSp
ξ (|v|)− ALGSp

ξ (|u|)− ε). (3.6.12)

Proof. The result follows by repeated application of Proposition 3.6.10. Indeed, V (T)\U consists of a disjoint
union of subtrees Ti rooted at vertices u1, . . . , uk in U . For each j ∈ [k], given a Euclidean embedding ιj−1

U

of

Uj−1 = U ∪

 ⋃
1≤i≤j−1

Ti

 ,

we extend it to Tj as follows. Let
Wj = span(ι(u)u∈Uj−1)⊥

be the orthogonal complement of the span of the already-embedded vertices. Then applying Proposi-
tion 3.6.10 with W = Wj and m = ι(uj), we obtain a Euclidean embedding of Tj into Wj+ι(uj), which joins

with ιj−1
U to form an embedding ιjU on Uj . It follows from Lemma 3.6.8 that ιjU is again a Euclidean embed-

ding of Uj . Moreover (3.6.11) ensures that (3.6.12) is satisfied for each v ∈ Tj . Repeating this inductively
for each j ∈ [k] completes the proof.

104

3.6.3 Proof of Theorems 3.6.13 and 3.6.14

We now show that full binary trees are necessary for our results, in the sense that trees T not containing
T2
D fail as obstructions to energy (ALGSp

ξ + εξ,D)N for some εξ,D > 0 independent of |V (T)|. The main
arguments are devoted to proving Lemma 3.6.12, which implies the two main theorems. Lemma 3.6.12 is
proved by induction on D, and a representative case for D = 1 is depicted in Figure 3.1.

Figure 3.1: A stylized instance of Lemma 3.6.12 in the case D = 1 and [a, b] = [0, 1] is displayed. By
definition of branching depth, whenD = 1 the non-leaves of T consist of a single path. We choose a vertex
v∗ along this path with small depth |v∗| = a2, and embed v∗ to have energy at least (ALG(a2) + 2ε)N
using Lemma 3.6.4. The leaves with parent on the segment connecting v∗ to r(T) (shown in red)
can be embedded one at a time using Lemma 3.6.4. The remaining subtree under v∗ is embedded all
at once using Proposition 3.6.10. This results in a Euclidean embedding ι : V (T) → RN satisfying
HN (ι(v)) ≥ (ALG + ε)N for all v ∈ L(T). For D > 1, we repeat this idea recursively.

In the proofs below, we will repeatedly use the principle that T can be subdivided by placing additional
vertices on the edges of T. This only makes constructing an Euclidean embedding more difficult. In particular,
we may assume that all leaves have an ancestor of any given height. We sometimes make this explicit by
considering the subgraph T[a,a′] of a tree T with range [a, b], for a < a′ < b. Precisely, T[a,a′] is the subgraph
of vertices with heights in [a, a′], where we implicitly assume via subdivision that each leaf in L(T) has
ancestors at heights exactly a and a′. Note that unless a = 0, T[a,a′] is not in general a tree but is a disjoint
union of dated rooted trees each with range [a, a′]. We similarly define T[a] to consist of the subset of V (T)
at heights exactly a, which without loss of generality contains exactly one ancestor of each leaf of T.

Lemma 3.6.12. Fix a mixture ξ, and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Fix D ∈ N and

sufficiently small constants c, ε > 0 depending only on ξ, a, b and D. Then for any a1 ∈
[
a, a+b

2

]
, any k ∈ N,

and any dated rooted tree T with range [a, b], with probability 1 − O(e−cN) over the random choice of HN ,
the following holds.

For any m ∈ √a1 ·SN and any linear subspace W ⊆ RN with dim(W) ≥ N − k, there exists a Euclidean
embedding

ι : V (T)→W +m

with ι(r(T)) = m such that for all v ∈ L(T),

HN (ι(v)) ≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a1)) + ε)N. (3.6.13)

Proof. We proceed by induction on D.

105

Base Case In the base case D = 0, the tree T contains only a single leaf v. It then suffices to find a single
point σ ∈W +m with ‖σ‖2N = b such that

HN (σ) ≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a′) + ε)N.

Indeed such a σ exists by Lemma 3.6.4.

Inductive Step For D ≥ 1, assume the result holds for branching depths up to D− 1. Our strategy is to
first embed the path VD (recall (3.6.9)), and then apply the inductive hypothesis on the remainder of T to
complete the embedding. We will assume in the remainder of the proof that HN is C1

√
N -Lipschitz with

respect to the ‖·‖2 norm for some constant C1 as in Proposition 3.0.1.
Define a2, a3 ∈

[
a1,

3a+b
4

]
such that√

a2
3 − a2

2 =
√
a2

2 − a2
1 ≤

ε

4C1
.

Let t = maxv∈VD |v| denote the maximum height of any v ∈ VD. (Note that t is not affected by adding
extraneous vertices to T.)

Case 1: t ≤ a2 Let vt ∈ VD satisfy |vt| = t. Take

ι : VD :→W +m

to be an arbitrary Euclidean embedding with codomain W +m. Without loss of generality, we may assume
that the children of each v ∈ VD have height at most a3. Next, extend ι to a still arbitrary Euclidean
embedding on QD, which consists of VD together with all children of vertices in VD.

For each vertex v ∈ QD, the Lipschitz property implies

HN (ι(v)) ≥ HN (m)− C1

√
a2

3 − a2
1N

≥ HN (m)− ε1N.

Observe that any v ∈ QD\VD satisfies D(v) ≤ D − 1. Because of this, we can now apply the inductive
hypothesis to each subtree Tv rooted at some v ∈ QD\VD in an arbitrary order over the v’s. More precisely,
suppose a Euclidean embedding mapping a subset U ⊆ V (T) to W +m is given, and that U contains no
strict descendants of v ∈ QD\VD. Then we know that |v| ≤ a3 ≤ 3a+b

4 . Define the affine subspace

Wv = span(ι(u)u∈U)⊥.

Then by the inductive hypothesis (using the same values a, b), there exists ε2 depending only on ξ, a, b,D−1
such that ι extends to a Euclidean embedding

ι : V ∪ Tv →W +m

such that ι(u) ∈Wv for all u ∈ Tv, and which satisfies

HN (ι(u)) ≥ HN (ι(v)) +
(
ALGSp

ξ (b)− ALGSp
ξ (|v|+ ε2)

)
N, ∀u ∈ L(Tv).

In particular, the above procedure can be repeated for each v, resulting in an embedding ι defined on all of
V (T). Finally for any u ∈ L(T), we must have u ∈ L(Tv) for some v as above, and so

HN (ι(u)) ≥ HN (ι(v)) + (ALGSp
ξ (b)− ALGSp

ξ (|v|+ ε2))N

≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (|v|) + ε2 − ε1)N

≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a3) + ε1)N +

(
ε2 − 2ε1 − ξ′(1)

√
a2

3 − a2
1

)
N.

106

Note that

2ε1 + ξ′(1)
√
a2

3 − a2
1 ≤ ε1 ·

(
2 +

ξ′(1)

C1

)
.

Since ε2 depended only on ξ, a, b,D and ε1 was chosen sufficiently small depending on the same parameters,
we may assume that

ε2 − 2ε1 − ξ′(1)
√
a2

3 − a2
1 ≥ 0.

Choosing ε = ε1 finishes Case 1 of the inductive step.

Case 2: t ≥ a2 Let v∗ ∈ V (T) denote the unique vertex on VD at height a2 – such a v∗ exists without
loss of generality. Then applying Lemma 3.6.4 on T[a1,a2], it follows that there exists σ ∈ W + m with
||σ||2N = a2 such that

HN (σ) ≥ HN (m) + (ALGSp
ξ (a2)− ALGSp

ξ (a1) + ε2)N

for some ε2 depending only on ξ, a, b. Set ι(v∗) = σ. Next we apply Proposition 3.6.10 to the subtree Tv∗
rooted at v∗, obtaining a Euclidean embedding

ι : VD ∪ Tv∗ →W +m

such that
HN (ι(x)) ≥ HN (m) + (ALGSp

ξ (a2)− ALGSp
ξ (a1) + ε3)N

for ε3 = ε2/2. Extending to ι to the remainder of V (T) proceeds exactly as in Case 1.

Below we use Lemma 3.6.12 to show that to rule out energies greater than ALGSp, T must have large
branching depth when restricted to any height interval on which ξ′′(t)−1/2 is convex.

Theorem 3.6.13. Fix ξ and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for all t ∈ [a, b] ⊆ [0, 1]. Fix D ∈ N and sufficiently
small constants c, ε > 0 depending only on ξ, a, b and D. Then for any dated rooted tree T with range [0, 1]
such that every connected component of T[a,b] has branching depth at most D, with probability 1−O(e−cN)
over the random choice of HN , there exists a Euclidean embedding

ι : V (T)→ RN

such that for all v ∈ L(T),

HN (ι(v)) ≥ (ALGSp
ξ (|v|) + ε)N. (3.6.14)

Proof of Theorem 3.6.13. We let ε > 0 be sufficiently small throughout the argument. By Proposition 3.6.10,
there exists a Euclidean embedding ι : T[0,a] → RN such that for all v ∈ T[a],

HN (ιa(v)) ≥ (ALGSp
ξ (a)− ε)N. (3.6.15)

Here as usual we assume without loss of generality that all leaves in T have an ancestor at height a. Next
we extend ι to a Euclidean embedding

ι : T[0,b] → RN

such that for all v ∈ V (T[b]) with ancestor u at height a,

HN (ι(v)) ≥ HN (ι(u)) + (ALGSp
ξ (b)− ALGSp

ξ (a) + 3ε)N. (3.6.16)

In fact the existence of such an extension follows directly from Lemma 3.6.12 for ε sufficiently small. Here
as before we repeatedly apply Lemma 3.6.12 to individual subtrees in T[a,b], using the subspace W in the
statement to ensure the orthogonality constraints are satisfied.

Finally extend ι to T[b,1] using Lemma 3.6.11 on each component. The result is that for any x ∈ L(T)
with ancestor v at height b,

HN (ι(x)) ≥ HN (ι(v)) + (ALGSp
ξ (1)− ALGSp

ξ (b)− ε)N. (3.6.17)

Combining (3.6.15), (3.6.16), and (3.6.17) completes the proof.

107

In the Guerra-Talagrand interpolation used for our main argument, it was only possible to directly
estimate the average energy of the replicas instead of the minimum. In the following final result, we show
that to force the average of HN (v) over the leaves v ∈ L(T) to be small, it is necessary to use a tree which
branches a superconstant amount in any height interval [a, b] as above, on a set of components of T[a,b]

ancestral to almost all leaves.
Let us illustrate the difference between Theorems 3.6.13 and 3.6.14 by an example. Form T by starting

with a full symmetric tree as in Proposition 3.2.2 and adding many children of the root as additional leaves.
Then by construction (recall also Proposition 3.2.8), with probability 1− e−Ω(N) any Euclidean embedding
ι : T→ RN satisfies

min
v∈L(T)

HN (ι(v)) ≤ (ALG + ε)N

for ε > 0 as in Proposition 3.2.2 arbitrarily small given ξ. However the same is not true for the average
energy. Indeed, Theorem 3.6.13 with D = 1 implies that the additional leaves in T can be embedded to each
have energy at least (ALG+2ε′)N where ε′ > 0 depends only on ξ. If the additional leaves form a sufficiently
large fraction of L(T), then any Euclidean extension ι to all of T satisfies

1

|L(T)|
∑

v∈L(T)

HN (ι(v)) ≥ (ALG + ε′)N

assuming HN ∈ KN .

Theorem 3.6.14. Fix a mixture ξ and δ > 0, and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Fix
D ∈ N and sufficiently small constants c, ε > 0 depending only on ξ, a, b,D and δ. Consider any tree T
with range [0, 1] and |L(T)| = n leaves such that for at least δn of the leaves v ∈ |L(T)|, the subtree of T[a,b]

consisting of ancestors of v has branching depth at most D. With probability 1−O(e−cN) over the random
choice of HN , there exists a Euclidean embedding

ι : V (T)→ RN

such that
1

L(T)

∑
v∈L(T)

HN (ι(v)) ≥ (ALGSp
ξ + ε)N. (3.6.18)

Proof. Take ε0 > 0 sufficiently small. For v ∈ L(T) and t ∈ [0, 1], let vt denote the ancestor of v at height
v. As before, Proposition 3.6.10 shows that there exists a Euclidean embedding ι : T[0,a] → RN such that
for all va ∈ T[a],

HN (ιa(va)) ≥ (ALGSp
ξ (a)− δε0)N. (3.6.19)

Let T̃[a,b] ⊆ T[a,b] consist of all connected components in T[a,b] of branching depth at most D. Next we
extend ι to a Euclidean embedding

ι : T[0,a] ∪ T̃[a,b] → RN

such that for all vb ∈ L(T̃[a,b]) with ancestor va at height a,

HN (ι(vb)) ≥ HN (ι(va)) + (ALGSp
ξ (b)− ALGSp

ξ (a) + 4ε0)N. (3.6.20)

Lemma 3.6.12 allows ι to extend to the remainder of V (T[a,b]) such that

HN (ι(vb)) ≥ HN (ι(va)) + (ALGSp
ξ (b)− ALGSp

ξ (a)− δε0)N. (3.6.21)

holds for all v ∈ V (T[a,b]). Since at least δ|L(T)| leaves v satisfy va ∈ T̃[a,b], (3.6.20) and (3.6.21) imply

1

|L(T)|
∑

v∈L(T)

HN (ι(va))−HN (ι(vb)) ≥ (ALGSp
ξ (b)− ALGSp

ξ (a) + 3δε0)N (3.6.22)

108

As before we finish by extending ι to T[b,1], using Lemma 3.6.11 one component at a time. Then for any
v ∈ L(T),

HN (ι(v)) ≥ HN (ι(vb)) + (ALGSp
ξ (1)− ALGSp

ξ (b)− δε0)N. (3.6.23)

By combining (3.6.19), (3.6.22) and (3.6.23), it follows that the average of HN (ι(v)) over v ∈ L(T) is

1

|L(T)|
∑

v∈L(T)

[HN (ι(v))] ≥ 1

|L(T)|
∑

v∈L(T)

(
HN (ι(v))−HN (ι(vb)) +HN (ι(vb))−HN (ι(va)) +HN (ι(va))

)
≥ ALGSp

ξ (1) + δε0.

Taking ε = δε0 completes the proof.

3.7 Overlap Concentration of Standard Optimization Algorithms

In this section we prove using Gaussian concentration of measure and Kirszbraun’s theorem that approx-
imately τ -Lipschitz functions A : HN → BN are (λ, e−cλ,τN) overlap concentrated. We also show that
common optimization algorithms such as gradient descent, AMP, and Langevin dynamics are approximately
Lipschitz.

3.7.1 Overlap Concentration of Approximately Lipschitz Algorithms

Recall that we identify each Hamiltonian HN with its disorder coefficients (G(p))p∈2N, which we concatenate
into an infinite vector g = g(HN). We can define a (possibly infinite) distance on these Hamiltonians by

‖HN −H ′N‖N =
1√
N
‖g(HN)− g(H ′N)‖2 . (3.7.1)

We consider algorithms A : HN → BN that are τ -Lipschitz with respect to the ‖·‖N norms, i.e. A satisfying

‖A(HN)−A(H ′N)‖N ≤ τ ‖HN −H ′N‖N . (3.7.2)

for all HN , H
′
N ∈HN . This is the same notion of Lipschitz as in Theorem 1.3.3, though the current scaling

with ‖·‖N norms will be more convenient for proofs.
We will show overlap concentration for the following class of algorithms that relax the Lipschitz condition

to a high probability set of inputs.

Definition 3.7.1. Let τ, ν > 0. An algorithm A : HN → BN is (τ, ν)-approximately Lipschitz if there
exists a τ -Lipschitz A′ : HN → BN with

P [A(HN) = A′(HN)] ≥ 1− ν. (3.7.3)

Proposition 3.7.2. If A : HN → BN is τ -Lipschitz, then for all λ > 0 it is
(
λ, exp

(
− λ2

8τ2N
))

overlap

concentrated.

Proof. We write A(g) to mean A(HN) for the Hamiltonian HN with disorder coefficients g = g(HN).
Let Ai(g) denote the i-th coordinate of A(g), so A(g) = (A1(g), . . . ,AN (g)). Define the gradient matrix
∇A(g) ∈ RN×N by

∇A(g) =
[
∇A1(g) ∇A2(g) · · · ∇AN (g)

]
.

Because A is τ -Lipschitz, we have for all g, g′ ∈ RN that

λ ≥
‖A(g)−A(g′)‖N
‖g − g′‖N

.

By taking the limit g′ → g from the best direction, we conclude that for all g ∈ RN,

λ ≥ smax(∇A(g)), (3.7.4)

109

where smax denotes the largest singular value.
Consider any p ∈ [0, 1]. We can generate p-correlated g(1),g(2) ∈ RN by generating i.i.d. g[0],g[1],g[2] ∈

RN, each with i.i.d. standard Gaussian entries, and setting, for i = 1, 2,

g(i) =
√
pg[0] +

√
1− pg[i].

We will apply Gaussian concentration to the function

F (g[0],g[1],g[2]) = R
(
A(g(0)),A(g(1))

)
,

which is a function of i.i.d. standard Gaussians. For each i ∈ N, let ∇A·,i(g) denote the i-th row of ∇A(g),
i.e.

∇A·,i(g) =
[
∂A1

∂gi
(g) ∂A2

∂gi
(g) · · · ∂AN

∂gi
(g)
]
.

We can compute that

∂F

∂g
[0]
i

(g[0],g[1],g[2]) =

√
p

N

[
∇A·,i(g(1))A(g(2)) +∇A·,i(g(2))A(g(1))

]
, (3.7.5)

∂F

∂g
[1]
i

(g[0],g[1],g[2]) =

√
1− p
N

∇A·,i(g(1))A(g(2)), (3.7.6)

∂F

∂g
[2]
i

(g[0],g[1],g[2]) =

√
1− p
N

∇A·,i(g(2))A(g(1)). (3.7.7)

By the inequality (x+ y) ≤ 2x2 + 2y2, (3.7.5) implies

∂F

∂g
[0]
i

(g[0],g[1],g[2])2 ≤ 2p

N2

[(
∇A·,i(g(1))A(g(2))

)2

+
(
∇A·,i(g(2))A(g(1))

)2
]
.

Similarly, (3.7.6) and (3.7.7) imply

∂F

∂g
[1]
i

(g[0],g[1],g[2])2 ≤ 2(1− p)
N2

(
∇A·,i(g(1))A(g(2))

)2

,

∂F

∂g
[2]
i

(g[0],g[1],g[2])2 ≤ 2(1− p)
N2

(
∇A·,i(g(2))A(g(1))

)2

.

Summing over the last three inequalities and over i ∈ N gives∥∥∥∇F (g[0],g[1],g[2])
∥∥∥2

2
≤ 2

N2

∑
i∈N

(
∇A·,i(g(1))A(g(2))

)2

+
2

N2

∑
i∈N

(
∇A·,i(g(2))A(g(1))

)2

=
2

N2

∥∥∥∇A(g(1))A(g(2))
∥∥∥2

2
+

2

N2

∥∥∥∇A(g(2))A(g(1))
∥∥∥2

2
.

Since A(g(1)),A(g(2)) ∈ BN , this implies∥∥∥∇F (g[0],g[1],g[2])
∥∥∥2

2
≤ 2

N
smax

(
∇A(g(1))

)2

+
2

N
smax

(
∇A(g(2))

)2

≤ 4τ2

N

for all g[0],g[1],g[2] ∈ RN. The last inequality uses (3.7.4). By Gaussian concentration,

P
[∣∣∣F (g[0],g[1],g[2])− EF (g[0],g[1],g[2])

∣∣∣ ≥ λ] ≤ exp

(
− λ2

8τ2
N

)
.

Note that Gaussian concentration of measure applies in infinite-dimensional abstract Weiner spaces as ex-
plained just before [Led01, Theorem 2.7] regarding Equation (2.10) therein. Alternatively if one wishes
to avoid infinite-dimensional Gaussian measures, it suffices to prove the present proposition for the (still
τ -Lipschitz) conditional expectations

Ap(HN) = E[A(HN)|G(2), . . . ,G(p)]

and observe that limp→∞Ap(HN) = A(HN) holds almost surely and in L1.

110

Proposition 3.7.3. Suppose A : HN → BN is (τ, ν)-approximately Lipschitz. Then, for any λ > 0, it is(
λ, exp

(
− (λ−4ν)2+

8τ2 N
)

+ 2ν
)

overlap concentrated.

Proof. If λ ≤ 4ν the result is trivial, so suppose λ > 4ν. Let A′ be such that (3.7.3) holds.

Let p ∈ [0, 1], and let H
(1)
N , H

(2)
N be p-correlated. We have∣∣∣R(A(H

(1)
N),A(H

(2)
N)
)
−R

(
A′(H(1)

N),A′(H(2)
N)
)∣∣∣ ≤ 2

pointwise. Furthermore, (3.7.3) implies that

A(H
(1)
N) = A′(H(1)

N) and A(H
(2)
N) = A′(H(2)

N) (3.7.8)

with probability at least 1− 2ν. So,∣∣∣ER(A(H
(1)
N),A(H

(2)
N)
)
− ER

(
A′(H(1)

N),A′(H(2)
N)
)∣∣∣ ≤ 4ν. (3.7.9)

By Proposition 3.7.3, we have∣∣∣R(A′(H(1)
N),A′(H(2)

N)
)
− ER

(
A′(H(1)

N),A′(H(2)
N)
)∣∣∣ ≤ λ− 4ν (3.7.10)

with probability at least 1 − exp
(
− (λ−4ν)2

8τ2 N
)

. The events (3.7.8) and (3.7.10) occur simultaneously with

probability at least 1− exp
(
− (λ−4ν)2

8τ2 N
)
− 2ν. On this event, (3.7.9) and (3.7.10) imply∣∣∣R(A(H

(1)
N),A(H

(2)
N)
)
− ER

(
A(H

(1)
N),A(H

(2)
N)
)∣∣∣ ≤ λ,

as desired.

3.7.2 Standard Deterministic Optimization Algorithms are Approximately Lip-
schitz

Fix constants T0, T, k0 ∈ N and r ∈ [1,
√

2). We take as initialization a sequence (x−T0 , . . . ,x−1) of vectors
in BN , which is independent of the Hamiltonian HN . We consider rather general k0-th order optimization
algorithms which compute

xt+1 = ft

(
(xs)−T0≤s≤t ,

(
∇kHN (xs)

)
1≤k≤k0,−T0≤s≤t

)
, 0 ≤ t ≤ T − 1 (3.7.11)

and output xT . Here, (f0, f1, . . . , fT−1) is a deterministic sequence of functions such that f0, . . . , fT−2 have
codomain rBN , fT−1 has codomain BN , and these functions are all Lipschitz in the sense that there exist
constants c0, . . . , cT−1 > 0 such that∥∥∥ft ((xs)−T0≤s≤t , (A

s
k)1≤k≤k0,−T0≤s≤t

)
− ft

(
(ys)−T0≤s≤t , (B

s
k)1≤k≤k0,−T0≤s≤t

)∥∥∥
N

≤ ct

[
t∑

s=−T0

‖xs − ys‖N +

k0∑
k=1

t∑
s=−T0

‖Ask −Bsk‖op

]
. (3.7.12)

As we review below, the majority of standard convex optimization algorithms fall into this class. However
we remark that some optimization algorithms for highly smooth and convex functions, such as Newton’s
method and the recent advances [GDG+19, Nes21], do not fall into this class. This is because they require
inverting a Hessian matrix or solving another inverse problem each iteration.

Example 3.7.4. Projected gradient descent is of the form in (3.7.11) via

fk = ρ
(
xk − ηk∇HN (xk)

)
.

Here ρ is the projection map onto either BN or CN and the learning rate parameters (η1, . . . ,) are arbitrary
constants. Other variants such as accelerated gradient descent, ISTA, and FISTA (see e.g. [Bub15]) can
similarly be expressed in the form (3.7.11).

111

Example 3.7.5. Approximate message passing (AMP) with arbitrary Lipschitz non-linearities can be ex-
pressed in the form of (3.7.11). Given a deterministic sequence of Lipschitz functions ft : Rt+1 → R for each
t ≥ 0, the AMP iterates are given by

xt+1 = ∇H̃N (ft(x
0, . . . ,xt))−

t∑
s=1

dt,sfs−1(x0, . . . ,xs−1), (3.7.13)

dt,s = ξ′′
(
R
(
ft(x

0, . . . ,xt), fs−1(x0, . . . ,xs−1)
))
· E
[
∂ft
∂Xs

(X0, . . . , Xt)

]
. (3.7.14)

Here X0 ∼ p0 is a uniformly bounded random variable, and x0 has i.i.d. coordinates generated from the
same law. The non-linearities ft are applied entry-wise as functions ft : RN×(t+1) → RN . The sequence
(Xt)t≥1 is an independent centered Gaussian process with covariance Qt,s = E[XtXs] defined recursively by

Qt+1,s+1 = ξ′
(
E
[
ft
(
X0, . . . , Xt

)
fs
(
X0, . . . , Xs

)])
, t, s ≥ 0. (3.7.15)

It is not difficult to see that the iteration (3.7.13) is captured by (3.7.11), by defining the non-linearities
ft(x

0, . . . ,xt) as additional iterates x` so that their gradients can be evaluated.

Theorem 3.7.6. For any functions f0, . . . , fT−1 as above and any initialization (x−T0 , . . . ,x−1) of vectors
in BN , there exist constants τ, c such that the map HN → xT defined by the iteration (3.7.11) is (τ, ν)-
approximately Lipschitz with ν = e−cN .

Proof. We will first show the existence of τ such that the map HN → xT , with domain restricted to KN

(recall Proposition 3.8.1), is τ -Lipschitz with respect to the ‖·‖N norms. Consider running the iteration
(3.7.11) on two Hamiltonians HN , H

′
N ∈ KN with the same initializaton (x−T0 , . . . ,x−1); call the respective

iterates x0, . . . ,xT and y0, . . . ,yT . A straightforward induction using Proposition 3.8.2 and (3.7.12) gives
constants C0, . . . , CT such that for 0 ≤ t ≤ T ,∥∥xt − yt∥∥

N
≤ Ct ‖HN −H ′N‖N .

In particular, we may take τ = CT .
By Kirszbraun’s theorem, there exists a τ -Lipschitz A′ such that A(HN) = A′(HN) for HN ∈ KN . By

Proposition 3.8.1, there exists c such that P(HN ∈ KN) ≥ 1 − e−cN . Therefore A is (τ, ν)-approximately
Lipschitz for ν = e−cN .

The following corollary follows immediately from Theorem 3.7.6 and Proposition 3.7.3.

Corollary 3.7.7. For any functions f0, . . . , fT−1 as above and any initialization (x−T0 , . . . ,x−1) of vectors
in BN , for every λ > 0 there exists a constant cλ such that for sufficiently large N , the map HN → xT

defined by the iteration (3.7.11) is (λ, e−cλN) overlap concentrated.

3.7.3 Reflected Langevin Dynamics are Approximately Lipschitz

Here we show that a natural version of Langevin dynamics, run for bounded time, is approximately Lipschitz
for almost any realization of the driving Brownian motion and hence falls into the scope of our main results.
The Langevin dynamics for a Hamiltonian HN are given by the diffusion

dXt =
β

2
∇HN dt+ dBt.

When Xt can range over all of space, the SDE above may explode to infinity in finite time. We therefore
modify the näıve dynamics above by enforcing an inward-normal reflecting boundary for the convex body
K = rBN or K = rCN . We refer the reader to [Pil14] for the relevant definitions. In short, the result is a
stochastic differential equation of the form

dXt =
β

2
∇HN (Xt) dt+ dBt − vt d`t. (3.7.16)

112

Here `t is non-decreasing and only increases at times when Xt ∈ ∂K. Meanwhile vt ∈ RN is contained in
the outward normal cone of Xt ∈ ∂K for all t. Note that there may be several inequivalent choices for such
a reflected process; our results apply to any of these choices. The Langevin dynamics we consider consists
of solving (3.7.16) for a constant time T starting from X0 which is independent of HN , and then projecting
XT onto BN or CN .

The corresponding Skorokhod problem was shown to have a Lipschitz solution for convex polyhedra such
as rCN in [DI91, Proposition 2.2]. In this case, solving (3.7.16) reduces to solving an SDE with Lipschitz
coefficients as explained in [Pil14, Section 2.2]. As a result, the solutions to (3.7.16) from different starting
points X0 (but with a shared Brownian motion) can be coupled together to give a continuous stochastic flow
(see [RW94, Chapter 5, Section 13]). In the case of a smooth boundary such as BN , although the Skorokhod
problem does not have a Lipschitz solution, the results of [LS84] imply the existence of a stochastic flow as
explained in [Bur09].

Lemma 3.7.8. Let Xt, Yt solve (3.7.16) inside a convex body K with the same Brownian motion. Then∫ t

0

〈
Xt − Yt, vXt d`Xt − vYt d`Yt

〉
≥ 0.

Here (vXt , `
X
t) denote the reflecting boundary terms for Xt and similarly for Yt.

Proof. Recall that `Xt , `
Y
t are increasing. Moreover 〈Xt−Yt, vXt 〉 ≥ 0 whenever Xt ∈ ∂K by the definition of

the normal cone, and similarly 〈Yt −Xt, v
Y
t 〉 ≥ 0 whenever Yt ∈ ∂K. The result follows.

Theorem 3.7.9. Both variants of Langevin dynamics above define, for any initialization X0 ∈ BN and for
almost every path (Bt)t∈[0,T], a (τ, ν) approximately Lipschitz map A : HN → BN with τ = Oξ,h,T (1) and

ν ≤ e−Ω(N).

Proof. Fix Hamiltonians
HX
N , H

Y
N ∈ KN ⊆HN

satisfying
∥∥HX

N −HY
N

∥∥
N

= ∆. Let Xt, Yt be the solutions to (3.7.16) driven by a shared Brownian motion

with HX
N and HY

N for HN respectively, and with shared initial condition X0 = Y0. We will show that

‖XT − YT ‖N ≤ C∆

holds almost surely for some constant C = C(ξ, h, T). This suffices to imply the result. (Note that A might
not be defined on all of HN , but it suffices for it to be well-defined and Lipschitz on KN .)

First observe that Xt − Yt is a finite variation process, i.e. it has no Brownian component. With `X and
`Y the corresponding finite variation processes in (3.7.16), Ito’s formula gives

1

2
d ‖Xt − Yt‖22 = 〈Xt − Yt, dXt − dYt〉 dt

= 〈Xt − Yt,−vXt d`Xt + vYt d`Yt 〉 dt+ β〈Xt − Yt,∇HX
N (Xt)−∇HY

N (Yt)〉 dt.

Integrating and using Lemma 3.7.8, we find

‖Xt − Yt‖22 ≤
∫ t

0

〈Xs − Ys,−vXs d`Xs + vYs d`Ys 〉 ds+ β

∫ t

0

〈Xs − Ys,∇HX
N (Xs)−∇HY

N (Ys)〉 ds

≤ β
∫ t

0

〈Xs − Ys,∇HX
N (Xs)−∇HY

N (Ys)〉 ds.

By Proposition 3.8.2 with C = C ′1,∥∥∇HX
N (Xt)−∇HY

N (Yt)
∥∥
N
≤ C(∆ + ‖Xt − Yt‖N).

113

Using AM-GM and rescaling, we obtain for each t ∈ [0, T] the self-bounding inequality

‖Xt − Yt‖2N ≤ C
∫ t

0

∆ ‖Xs − Ys‖N + ‖Xs − Ys‖2N dt

≤ 2C

∫ t

0

∆2 + ‖Xs − Ys‖2N dt

≤ 2C∆2T + 2C

∫ t

0

‖Xs − Ys‖2N dt.

Grönwall’s inequality now implies ‖XT − YT ‖2N ≤ 2C∆2Te2CT . This concludes the proof.

3.8 Appendix 1: Bounds on Hamiltonian Derivatives

In this section we will prove high-probability bounds on the derivatives of HN , including Proposition 3.0.1.
We write HN (σ) = 〈h,σ〉+ H̃N (σ) for

H̃N (σ) =
∑
p∈2N

γpHN,p(σ),

where the p-tensor component is

HN,p(σ) =
1

N (p−1)/2
〈G(p),σ⊗p〉.

By slight abuse of notation, we also denote 1
N(p−1)/2 G(p) = HN,p.

Proposition 3.8.1. There exists universal constants c, C > 0 such that for all sufficiently large N ,

‖HN,p‖op ≤ C
√
p

for all p ∈ 2N with probability at least 1− e−cN

Proof. By [BASZ20, Equation B.6] with k = p, we have for some universal constant K and all p ∈ 2N,

P
[
‖HN,p‖op ≥ 2K

√
p
]
≤ e−K

2pN/2.

Take C = 2K. The result follows by a union bound over p ∈ 2N.

Proof of Proposition 3.0.1. Let KN ⊆ HN be the set of Hamiltonians HN satisfying the conclusion of
Proposition 3.8.1. We will take

Ck = C
∑

p∈2N,p≥k
γpr

p−kpk
√
p+ h1 {k = 1} ,

where C is given by Proposition 3.8.1 and pk = p(p − 1) · · · (p − k + 1) denotes the k-th falling power of p.
This is finite because r <

√
2 and

∑
p∈2N γ

2
p2p <∞ implies lim supp→∞

γp+2

γp
≤ 1

2 .

If HN ∈ KN , for each σ1, . . . ,σk ∈ SN we have

1

N

〈
∇kH̃N (x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p,x

⊗(p−k) ⊗ σ1 ⊗ · · · ⊗ σk
〉

≤
∑

p∈2N,p≥k
γpr

p−kpk ‖HN,p‖op

≤ C
∑

p∈2N,p≥k
γpr

p−kpk
√
p,

114

by Proposition 3.8.1. Thus ∥∥∥∇kH̃N (x)
∥∥∥

op
≤ C

∑
p∈2N,p≥k

γpr
p−kpk

√
p.

For k ≥ 2, ∇kHN (x) = ∇kH̃N (x), and for k = 1, ‖∇HN (x)‖op ≤
∥∥∥∇H̃N (x)

∥∥∥
op

+ h. This proves the first

claim. Similarly,

1

N

〈
∇kHN (x)−∇kHN (y),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x)−∇kHN,p(y),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p,

(
x⊗(p−k) − y⊗(p−k)

)
⊗ σ1 ⊗ · · · ⊗ σk

〉

=
∑

p∈2N,p≥k

γpp
k

N

p−k−1∑
j=0

〈
HN,p, (x− y)⊗ x⊗(p−k−1−j) ⊗ y⊗j ⊗ σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−k−1pk(p− k) ‖x− y‖N ‖HN,p‖op

≤ Ck+1 ‖x− y‖N ,

so
∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ Ck+1 ‖x− y‖N , proving the second claim.

Proposition 3.8.2. Fix a model (ξ, h) and a constant r ∈ [1,
√

2). Let KN be given by Proposition 3.0.1.
There exists a sequence of constants (C ′k)k≥1 independent of N such that for all HN , H

′
N ∈ KN and x,y ∈ RN

with ‖x‖N , ‖y‖N ≤ r,∥∥∇kHN (x)−∇kH ′N (y)
∥∥

op
≤ C ′k (‖x− y‖N + ‖HN −H ′N‖N) ,

where ‖HN −H ′N‖N is defined by (3.7.1).

Note that when ‖HN −H ′N‖N is infinite, this proposition is vacuously true.

Proof. We have that∥∥∇kHN (x)−∇kH ′N (y)
∥∥

op
≤
∥∥∇kHN (x)−∇kH ′N (x)

∥∥
op

+
∥∥∇kH ′N (x)−∇kH ′N (y)

∥∥
op
,

and by (3.0.2), ∥∥∇kH ′N (x)−∇kH ′N (y)
∥∥

op
≤ Ck+1 ‖x− y‖N .

For all σ1, . . . ,σk ∈ SN , we have

1

N

〈
∇kHN (x)−∇kH ′N (x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x)−∇kH ′N,p(x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p −H ′N,p,x⊗(p−k) ⊗ σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−kpk

∥∥HN,p −H ′N,p
∥∥

op
.

Moreover, ∥∥HN,p −H ′N,p
∥∥

op
=

1

N (p+1)/2
max

σ1,...,σp∈SN
〈G(p) −G′

(p)
,σ1 ⊗ · · · ⊗ σp〉

≤ 1√
N

∥∥∥G(p) −G′
(p)
∥∥∥

2

≤ ‖HN −H ′N‖N .

115

Thus we have

1

N

〈
∇kHN (x)−∇kH ′N (x),σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−kpk · ‖HN −H ′N‖N .

Because this holds for all σ1, . . . ,σk ∈ SN , we have∥∥∇kHN (x)−∇kH ′N (x)
∥∥

op
≤

∑
p∈2N,p≥k

γpr
p−kpk · ‖HN −H ′N‖N .

The result follows by taking C ′k to be the larger of Ck+1 and
∑
p∈2N,p≥k γpr

p−kpk.

3.9 Appendix 2: Explicit Formula for the Spherical Algorithmic
Threshold

In this section, we will prove Proposition 3.1.6, which gives an explicit formula for ALGSp
ξ,h.

We first remark that the q̂ defined in the second case of Proposition 3.1.6 exists and is unique. Define
f(q) = qξ′′(q) − ξ′(q) =

∑
p∈2N p(p − 2)γ2

pq
p−1. If we are in the second case of the proposition, then

h2 + ξ′(1) < ξ′′(1), so f(1) > h2. Since f(0) = 0 ≤ h2, existence of q̂ follows from the Intermediate Value
Theorem. Moreover, f(1) > h2 ≥ 0 implies γp > 0 for some p > 2, so f(q) is strictly increasing for q ∈ [0, 1].
This implies uniqueness.

Recall that the spherical Parisi functional PSp (3.1.2) is defined in terms of a function Bζ(t) = B −∫ 1

t
ξ′′(q)ζ(q) dq. As (B, ζ) ranges over K (ξ), Bζ(t) ranges over all continuous, nondecreasing functions from

[0, 1] to R>0. We can thus reparametrize the minimizaton (3.1.5) as one over continuous and nondecreasing
B : [0, 1]→ R>0. By slight abuse of notation, for continuous and nondecreasing B : [0, 1]→ R>0 define

PSp(B) = PSp
ξ,h(B) =

1

2

[
h2

B(0)
+

∫ 1

0

(
ξ′′(q)

B(q)
+B(q)

)
dq.

]
Proof of Proposition 3.1.6. We first handle the case h = 0. By AM-GM,

PSp(B) =
1

2

∫ 1

0

(
ξ′′(q)

B(q)
+B(q)

)
dq ≥

∫ 1

0

ξ′′(q)1/2 dq.

Equality holds when B(q) = ξ′′(q)1/2 for all q ∈ [0, 1]. However, this requires B(0) = 0, so this objective is

not attained, though approximations to this B get arbitrarily close. Thus ALGSp =
∫ 1

0
ξ′′(q)1/2 dq. We will

show this ALGSp equals the value claimed. If γp > 0 for some p > 2, then ξ′(1) < ξ′′(1), so we are in the
second case of the proposition. Since q̂ = 0, we are done. Otherwise, γp = 0 for all p > 2, and ξ′(1) = ξ′′(1).

Then ξ′′(q) is constant, so ALGSp = ξ′′(1)1/2 = ξ′(1)1/2 as claimed.
Otherwise, h > 0. We extend the definition of q̂ to

q̂ = sup
{
q ∈ [0, 1] : h2 + ξ′(q) ≥ qξ′′(q)

}
.

This gives q̂ = 1 in the first case of the proposition, and matches the definition of q̂ in the second case. Note
that q̂ > 0. Define

B̂ =

(
h2 + ξ′(q̂)

q̂

)1/2

.

We will prove both cases simultaneously by showing that for any continuous and nondecreasing B : [0, 1]→
R>0, we have

PSp(B) ≥ q̂1/2
(
h2 + ξ′(q̂)

)1/2
+

∫ 1

q̂

ξ′′(q)1/2 dq,

with equality if and only if

B(q) =

{
B̂ q ≤ q̂,
ξ′′(q)1/2 q > q̂.

116

It is easy to check that this B is continuous and nondecreasing (i.e. if q̂ < 1, then B̂ = ξ′′(q̂)1/2) and that it
corresponds to the equality cases claimed in the proposition. By AM-GM,

1

2

∫ 1

q̂

(
ξ′′(q)

B(q)
+B(q)

)
dq ≥

∫ 1

q̂

ξ′′(q)1/2 dq, (3.9.1)

with equality if and only if B(q) = ξ′′(q)1/2 on (q̂, 1]. Define the truncated Parisi operator

PSp,q̂(B) =
1

2

[
h2

B(0)
+

∫ q̂

0

(
ξ′′(q)

B(q)
+B(q)

)
dq

]
.

Let B̃ : [0, q̂] → R>0 be given by B̃(q) = B̂, and note that PSp,q̂(B̃) = q̂1/2
(
h2 + ξ′(q̂)

)1/2
. We will show

that for continuous and nondecreasing B : [0, q̂] → R>0, we have PSp,q̂(B) ≥ PSp,q̂(B̃), with equality if and

only if B ≡ B̃ on [0, q̂]. Along with (3.9.1), this implies the conclusion. We consider two cases.

Case 1: B(0) < B̂. Define

q̃ = sup
{
q ∈ [0, q̂] : B(q) ≤ B̂

}
.

It is possible that q̃ = q̂. For q ∈ [q̃, q̂], we have B(q) ≥ B̂, so∫ q̂

q̃

(
ξ′′(q)

B(q)
+B(q)

)
−
∫ q̂

q̃

(
ξ′′(q)

B̂
+ B̂

)
=

∫ q̂

q̃

(
1

B̂
− 1

B(q)

)(
B(q)B̂ − ξ′′(q)

)
dq.

Because

B(q)B̂ ≥ B̂2 ≥ h2 + ξ′(q̂)

q̂
≥ ξ′′(q̂) ≥ ξ′′(q),

we have ∫ q̂

q̃

(
ξ′′(q)

B(q)
+B(q)

)
≥
∫ q̂

q̃

(
ξ′′(q)

B̂
+ B̂

)
. (3.9.2)

Moreover, for q ∈ [0, q̃], we have B(q) ≤ B̂, so

2
(
PSp,q̃(B)− PSp,q̃(B̃)

)
= h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
B(q)B̂ − ξ′′(q)

)(1

B(q)
− 1

B̂

)
dq

≥ h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
B̂2 − ξ′′(q)

)(1

B(q)
− 1

B̂

)
dq

= h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B(q)
− 1

B̂

)
dq

≥ h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B(0)
− 1

B̂

)
dq

=

(
1

B(0)
− 1

B̂

)[
h2 −

∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]

≥
(

1

B(0)
− 1

B̂

)[
h2 −

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]
= 0.

Thus PSp,q̃(B) ≥ PSp,q̃(B̃), with equality only if q̃ = q̂ and B(q) = B̂ for all q ∈ [0, q̃]. Combining this with

(3.9.2) gives that PSp,q̂(B) ≥ PSp,q̂(B̃), with equality only if B ≡ B̃ on [0, q̂].

117

Case 2: B(0) ≥ B̂. In this case, B(q) ≥ B̂ for all q ∈ [0, q̂]. So,

2
(
PSp,q̂(B)− PSp,q̂(B̃)

)
= −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
B(q)B̂ − ξ′′(q)

)(1

B̂
− 1

B(q)

)
dq

≥ −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
B̂2 − ξ′′(q)

)(1

B̂
− 1

B(q)

)
dq

= −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B̂
− 1

B(q)

)
dq

≥ −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B̂
− 1

B(0)

)
dq

=

(
1

B̂
− 1

B(0)

)[
−h2 +

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]
= 0.

For equality to hold, we must have B(q) = B̃ for all q ∈ [0, q̂], so B ≡ B̃ on [0, q̂].

118

Chapter 4

Open Problems and Conclusion

We close with a discussion of related OGP work, future directions, and some open problems that remain.

Branching OGP, the constant factor gap, and other CSPs. An important open problem is to
close the remaining constant factor gap between algorithms for random k-SAT and our hardness result.
As discussed in Section 2.9, the ladder OGP stalls at a clause density lower bounded by 1.716 · 2k log k/k.
One natural approach is to apply the branching OGP to random k-SAT. However, the analog of Guerra’s
interpolation for an overlap constrained system of k-SAT assignments fails, and new ideas are needed to
establish the branching OGP in this setting.

More speculatively, we expect the limiting clause density for efficient algorithms to coincide with the
clustering threshold, even in lower order terms. [KMRT+07, Equation 6] gives the more precise expression
2k

k

(
log k + log log k + 1 +O(log log k

log k)
)

for the clustering threshold. On the algorithmic side, we expect this

clause density to be attained (in the large-radius limit) by suitable refinements of Fix, where the radius of
the neighborhood used to make each decision grows from 3 to a large constant.

It would also be interesting to show hardness results for other random CSPs. [ACO08], the seminal paper
linking clustering to algorithmic hardness, predicted that the connection between computational hardness
and solution geometry holds in substantial generality for random CSPs. We believe that recent developments
in multi-OGP methodology make possible similar hardness results in other CSPs. Showing a general hardness
result for random CSPs would be a significant advancement of the field.

When clustering does not imply hardness. Recent work on the symmetric Ising perceptron [ALS21b,
PX21] showed that clustering (in the sense that is linked to hardness in random CSPs) does not always
imply hardness. In particular, at any positive constraint density in the symmetric Ising perceptron, all but
an exponentially small fraction of solutions are isolated, forming clusters of size one, even though efficient
algorithms that find a solution exist at some positive constraint densities [BS19]. The popular wisdom
regarding this apparent paradox is that in the Ising perceptron, although most solutions are isolated, there
is a distinguished well-connected cluster of solutions that is accessible to algorithms. This picture was
confirmed at some constraint densities in [ALS21a].

Forthcoming work [GK21c] shows that at a constraint density only slightly above where efficient algo-
rithms exist, a multi-OGP rules out stable algorithms. It is plausible that a refinement of this multi-OGP
will match the best algorithms. Thus, while the rigorous connection between multi-OGP and the failure
of stable algorithms still holds, the heuristic that clustering implies hardness breaks down. It would be
enlightening to clarify this heuristic and identify a refined notion of clustering that does match the limits of
algorithms.

Limitations of OGP for low degree hardness. Current OGP techniques to show low degree hardness
only rule out quite large success probabilities. This limitation arises because these arguments use that
low degree polynomials are stable, which occurs with small but nontrivial probability. In contrast, OGP
techniques to show hardness for (for example) local algorithms leverage these algorithms’ concentration

119

properties, which occur with high probability; this allows us to show these algorithms cannot succeed with
even small probability. To see this difference, compare Proposition 2.3.7(a) with Proposition 2.6.4(b). It
would be nice to lower the success probability that low degree hardness results rule out, perhaps by leveraging
a property stronger than stability. Concentration style OGPs also allow the construction of more complex
forbidden structures such as the branching OGP, which appears difficult to replicate by stability style OGPs.
Allowing the use of these structures is another potential benefit of leveraging a property stronger than
stability.

It would also be interesting to prove a low degree hardness result that does not exclude the interval
(−1, 1) in the rounding scheme (and thus, does not reference the normalization parameter γ). Such a
hardness result would be based on the inherent stability of polynomial threshold functions, rather than the
stability imposed by a variance condition in γ. Note that a generalization of the Gotsman-Linial conjecture
[GL92] to non-binary product spaces, plugged in modularly in place of Proposition 2.5.3, would yield a
version of Theorem 2.1.6 in this setting at δ = exp(−CD

√
N logN). One could hope to devise a different

OGP argument that improves this probability.

Planted problems. Another variant of OGP has been used to study the computational hardness of
estimation problems and problems with planted structure [GZ17, GZ19, GJS19, BAWZ20], see also [CM19].
This notion of OGP tracks the overlap between a single solution and the planted truth, instead of between
two or more solutions. OGP occurs if the best loss attained by a solution at some overlap with the planted
truth, as a function of the overlap, is nonmonotone with one minimum at high overlap and another at low
overlap. If this OGP occurs, gradient descent or any local Markov chain with worst-case initialization will be
unable to efficiently find the planted truth. An open problem is to extend these hardness results for planted
problems from local Markov chains to arbitrary stable algorithms.

120

Bibliography

[ABA13] Antonio Auffinger and Gérard Ben Arous. Complexity of random smooth functions on the
high-dimensional sphere. The Annals of Probability, 41(6):4214–4247, 2013.

[ABAČ13] Antonio Auffinger, Gérard Ben Arous, and Jǐŕı Černý. Random matrices and complexity of
spin glasses. Communications on Pure and Applied Mathematics, 66(2):165–201, 2013.

[ABE+05] Sanjeev Arora, Eli Berger, Hazan Elad, Guy Kindler, and Muli Safra. On non-approximability
for quadratic programs. In Proceedings of 46th FOCS, pages 206–215. IEEE, 2005.

[ABM04] Dimitris Achlioptas, Paul Beame, and Michael Molloy. Exponential bounds for DPLL below
the satisfiability threshold. In Proceedings of 15th SODA, pages 139–140, 2004.

[AC15] Antonio Auffinger and Wei-Kuo Chen. The Parisi formula has a unique minimizer. Communi-
cations in Mathematical Physics, 335(3):1429–1444, 2015.

[AC17a] Antonio Auffinger and Wei-Kuo Chen. On the energy landscape of spherical spin glasses.
Advances in Mathematics, 330, 02 2017.

[AC17b] Antonio Auffinger and Wei-Kuo Chen. Parisi formula for the ground state energy in the mixed
p-spin model. The Annals of Probability, 45(6b):4617–4631, 2017.

[Ach09] Dimitris Achlioptas. Random satisfiability, volume 185, pages 245–270. IOS Press, 2009.

[ACO08] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In
Proceedings of 49th FOCS, pages 793–802, 2008.

[AJK+21] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong. En-
tropic independence in high-dimensional expanders: Modified log-Sobolev inequalities for frac-
tionally log-concave polynomials and the Ising model. arXiv preprint arXiv:2106.04105, 2021.

[ALS21a] Emmanuel Abbe, Shuangping Li, and Allan Sly. Binary perceptron: efficient algorithms can
find solutions in a rare well-connected cluster. arXiv preprint 2111.03084, 2021.

[ALS21b] Emmanuel Abbe, Shuangping Li, and Allan Sly. Proof of the contiguity conjecture and lognor-
mal limit for the symmetric perceptron. arXiv preprint 2102.13069, 2021.

[AM20] Ahmed El Alaoui and Andrea Montanari. Algorithmic thresholds in mean field spin glasses.
arXiv preprint arXiv:2009.11481, 2020.

[AMS21] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Optimization of mean-field spin glasses.
Annals of Probability, 49(6):2922–2960, 2021.

[AS00] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for random 3-SAT. In
Proceedings of 41st FOCS, pages 590–600, 2000.

[BADG06] Gérard Ben Arous, Amir Dembo, and Alice Guionnet. Cugliandolo-kurchan equations for
dynamics of spin-glasses. Probability Theory and Related Fields, 136(4):619–660, 2006.

121

[BAGJ20] Gérard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Bounding flows for spherical spin
glass dynamics. Communications in Mathematical Physics, 373(3):1011–1048, 2020.

[BASZ20] Gérard Ben Arous, Eliran Subag, and Ofer Zeitouni. Geometry and temperature chaos in mixed
spherical spin glasses at low temperature: the perturbative regime. Communications on Pure
and Applied Mathematics, 73(8):1732–1828, 2020.

[BAWZ20] Gérard Ben Arous, Alexander S. Wein, and Ilias Zadik. Free energy wells and overlap gap
property in sparse PCA. In Proceedings of 33rd COLT, pages 479–482, 2020.

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret
leakage. In Proceedings of 33rd COLT, pages 648–847, 2020.

[BBH+12] Boaz Barak, Fernando G.S.L. Brandão, Aram W Harrow, Jonathan Kelner, David Steurer, and
Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 307–326. ACM,
2012.

[BBH+21] Matthew Brennan, Guy Bresler, Samuel B. Hopkins, Jerry Li, and Tselil Schramm. Statistical
query algorithms and low-degree tests are almost equivalent. Proceedings of 34th COLT, page
774, 2021.

[BBK+21] Afonso S. Bandeira, Jess Banks, Dmitriy Kunisky, Cristopher Moore, and Alexander S. Wein.
Spectral planting and the hardness of refuting cuts, colorability, and communities in random
graphs. Proceedings of 34th COLT, pages 410–473, 2021.

[BCKM98] Jean-Philippe Bouchaud, Leticia F Cugliandolo, Jorge Kurchan, and Marc Mézard. Out of
equilibrium dynamics in spin-glasses and other glassy systems. Spin glasses and random fields,
pages 161–223, 1998.

[BCN20] Charles Bordenave, Simon Coste, and Raj Rao Nadakuditi. Detection thresholds in very sparse
matrix completion. arXiv preprint arXiv:2005.06062, 2020.

[BČNS21] David Belius, Jǐŕı Černý, Shuta Nakajima, and Marius Schmidt. Triviality of the geometry
of mixed p-spin spherical hamiltonians with external field. arXiv preprint arXiv:2104.06345,
2021.

[BD98] Sebastian Böcker and Andreas W.M. Dress. Recovering symbolically dated, rooted trees from
symbolic ultrametrics. Advances in mathematics, 138(1):105–125, 1998.

[BGT10] Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpola-
tion method and scaling limits in sparse random graphs. In Proceedings of 42nd STOC, pages
105–114, 2010.

[BH21] Guy Bresler and Brice Huang. The algorithmic phase transition of random k-sat for low degree
polynomials. arXiv preprint arXiv:2106.02129, 2021.

[BKW20] Afonso S. Bandeira, Dmitriy Kunisky, and Alexander S. Wein. Computational hardness of
certifying bounds on constrained PCA problems. In Proceedings of 11th ITCS, 2020.

[BM11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with
applications to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–785,
2011.

[BMZ05] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: an algorithm
for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

[Bor75] Christer Borell. The Brunn-Minkowski inequality in Gauss space. Inventiones mathematicae,
30(2):207–216, 1975.

122

[BS19] Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. arXiv preprint
arXiv:1903.06898, 2019.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends
in Machine Learning, 8(3-4):231–357, 2015.

[Bur09] Krzysztof Burdzy. Differentiability of stochastic flow of reflected brownian motions. Electronic
Journal of Probability, 14:2182–2240, 2009.

[CGPR19] Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman. Suboptimality
of local algorithms for a class of max-cut problems. Annals of Probability, 47(3):1587–1618,
2019.

[Cha09] Sourav Chatterjee. Disorder chaos and multiple valleys in spin glasses. arXiv preprint
arXiv:0907.3381, 2009.

[Che17] Wei-Kuo Chen. Variational representations for the Parisi functional and the two-dimensional
Guerra–Talagrand bound. The Annals of Probability, 45(6A):3929–3966, 2017.

[CHK+20] Yeshwanth Cherapanamjeri, Samuel B. Hopkins, Tarun Kathuria, Prasad Raghavendra, and
Nilesh Tripuraneni. Algorithms for heavy-tailed statistics: Regression, covariance estimation,
and beyond. In Proceedings of 52nd STOC, pages 601–609, 2020.

[CHL18] Wei-Kuo Chen, Madeline Handschy, and Gilad Lerman. On the energy landscape of the mixed
even p-spin model. Probability Theory and Related Fields, 171(1-2):53–95, 2018.

[CIS76] Boris S. Cirel’son, Ildar A. Ibragimov, and V.N. Sudakov. Norms of Gaussian sample functions.
In Proceedings of the Third Japan—USSR Symposium on Probability Theory, pages 20–41.
Springer, 1976.

[CK94] Leticia F. Cugliandolo and Jorge Kurchan. On the out-of-equilibrium relaxation of the
Sherrington-Kirkpatrick model. Journal of Physics A: Mathematical and General, 27(17):5749,
1994.

[CLR03] Andrea Crisanti, Luca Leuzzi, and Tommaso Rizzo. The complexity of the spherical p-spin
spin glass model, revisited. The European Physical Journal B-Condensed Matter and Complex
Systems, 36(1):129–136, 2003.

[CLR05] Andrea Crisanti, Luca Leuzzi, and Tommaso Rizzo. Complexity in mean-field spin-glass models:
Ising p-spin. Physical Review B, 71(9):094202, 2005.

[CM19] Michael Celentano and Andrea Montanari. Fundamental barriers to high-dimensional regression
with convex penalties. arXiv preprint arXiv:1903.10603, 2019.

[CO10] Amin Coja-Oghlan. A better algorithm for random k-SAT. SIAM Journal on Computing,
39:2823–2864, 2010.

[COE15] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Structures & Algorithms, 47(3):436–486, 2015.

[COFF+09] Amin Coja-Oghlan, Uriel Feige, Alan Frieze, Michael Krivelevich, and Dan Vilenchik. On
smoothed k-CNF formulas and the walksat algorithm. In Proceedings of 20th SODA, pages
451–460, 2009.

[COHH17] Amin Coja-Oghlan, Amir Haqshenas, and Samuel Hetterich. Walksat stalls well below the
satisfiability threshold. SIAM Journal on Discrete Mathematics, 31:1160–1173, 2017.

[Coo71] Stephen Cook. The complexity of theorem proving procedures. In Proceedings of 3rd STOC,
pages 151–158, 1971.

123

[COP16] Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Advances
in Mathematics, 288:985–1068, 2016.

[CPS18] Wei-Kuo Chen, Dmitry Panchenko, and Eliran Subag. The generalized TAP free energy.
arXiv:1812.05066, 2018.

[CR92] Václav Chvátal and Bruce Reed. Mick gets some (the odds are on his side). In Proceedings of
33th FOCS, pages 620–627, 1992.

[CS17] Wei-Kuo Chen and Arnab Sen. Parisi formula, disorder chaos and fluctuation for the ground
state energy in the spherical mixed p-spin models. Communications in Mathematical Physics,
350(1):129–173, 2017.

[CS21] Sourav Chatterjee and Leila Sloman. Average Gromov hyperbolicity and the Parisi ansatz.
Advances in Mathematics, 376:107417, 2021.

[DEZ15] Jian Ding, Ronen Eldan, and Alex Zhai. On multiple peaks and moderate deviations for the
supremum of a gaussian field. The Annals of Probability, 43(6):3468–3493, 2015.

[DI91] Paul Dupuis and Hitoshi Ishii. On lipschitz continuity of the solution mapping to the skorokhod
problem, with applications. Stochastics: An International Journal of Probability and Stochastic
Processes, 35(1):31–62, 1991.

[DKWB20] Yunzi Ding, Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. Subexponential-
time algorithms for sparse PCA. arXiv preprint arXiv:1907.11635, 2020.

[DLL61] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1961.

[DMM09] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for com-
pressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

[DMMZ08] Hervé Daudé, Marc Mézard, Thierry Mora, and Riccardo Zecchina. Pairs of SAT assignment
in random boolean formulae. Theoretical Computer Science, 393:260–279, 2008.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–205, 1960.

[DSS15] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of 47th STOC, pages 59–68, 2015.

[EKZ21] Ronen Eldan, Frederic Koehler, and Ofer Zeitouni. A spectral condition for spectral gap: fast
mixing in high-temperature ising models. Probability Theory and Related Fields, pages 1–17,
2021.

[FP83] John Franco and Marvin Paull. Probabilistic analysis of the Davis-Putnam procedure for solving
the satisfiability problem. Discrete Applied Mathematics, 5(1):77–87, 1983.

[Fri90] Alan Frieze. On the independence number of random graphs. Discrete Mathematics, 81(2):171–
175, 1990.

[FS96] Alan Frieze and Stephen Suen. Analysis of two simple heuristics on a random instance of
k-SAT. Journal of Algorithms, 20:312–355, 1996.

[FS18] Charles Fefferman and Pavel Shvartsman. Sharp finiteness principles for Lipschitz selections.
Geometric and Functional Analysis, 28(6):1641–1705, 2018.

[Fyo13] Yan V. Fyodorov. High-dimensional random fields and random matrix theory. arXiv preprint
arXiv:1307.2379, 2013.

124

[Gam21] David Gamarnik. The overlap gap property: A topological barrier to optimizing over random
structures. Proceedings of the National Academy of Sciences, 118(41), 2021.

[GDG+19] Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Se-
likhanovych, César A Uribe, Bo Jiang, Haoyue Wang, Shuzhong Zhang, Sébastien Bubeck,
et al. Near optimal methods for minimizing convex functions with lipschitz p-th derivatives. In
Conference on Learning Theory, pages 1392–1393. PMLR, 2019.

[GJ21] David Gamarnik and Aukosh Jagannath. The overlap gap property and approximate message
passing algorithms for p-spin models. The Annals of Probability, 49(1):180–205, 2021.

[GJS19] David Gamarnik, Aukosh Jagannath, and Subhabrata Sen. The overlap gap property in prin-
cipal submatrix recovery. arXiv preprint arXiv:1908.09959, 2019.

[GJW20] David Gamarnik, Aukosh Jagannath, and Alexander S. Wein. Low-degree hardness of random
optimization problems. In Proceedings of 61st FOCS, pages 131–140, 2020.

[GJW21] David Gamarnik, Aukosh Jagannath, and Alexander S. Wein. Circuit lower bounds for the
p-spin optimization problem. arXiv preprint arXiv:2109.01342, 2021.

[GK21a] David Gamarnik and Eren C. Kızıldağ. Algorithmic obstructions in the random number par-
titioning problem. arXiv preprint arXiv:2103.01369, 2021.

[GK21b] David Gamarnik and Eren C. Kızıldağ. Computing the partition function of the Sherrington–
Kirkpatrick model is hard on average. The Annals of Applied Probability, 31(3):1474–1504,
2021.

[GK21c] David Gamarnik and Eren C. Kızıldağ. A curious case of symmetric binary perceptron model:
algorithms and barriers. Simons Institute presentation https://youtu.be/io2OXE1Xw04, Oc-
tober 2021.

[GL92] Craig Gotsman and Nathan Linial. The equivalence of two problems on the cube. Journal of
Combinatorial Theory, Series A, 61(1):142–146, 1992.

[GPB82] Allen T. Goldberg, Paul W. Purdom, and Cynthia Brown. Average time analysis of simplified
Davis-Putnam procedures. Information Processing Letters, 15:72–75, 1982.

[GS14] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. In
Proceedings of 5th ITCS, pages 369–376, 2014.

[GS17] David Gamarnik and Madhu Sudan. Performance of sequential local algorithms for the random
NAE-k-SAT problem. SIAM Journal on Computing, 46(2):590–619, 2017.

[GZ17] David Gamarnik and Ilias Zadik. High-dimensional regression with binary coefficients. esti-
mating squared error and a phase transition. In Proceedings of 30th COLT, pages 948–953,
2017.

[GZ19] David Gamarnik and Ilias Zadik. The landscape of the planted clique problem: dense subgraphs
and the overlap gap property. arXiv preprint arXiv:1904.07174, 2019.

[Het16] Samuel Hetterich. Analysing Survey Propagation guided decimation on random formulas. In
Proceedings of 43rd ICALP, 2016.

[HKP+17] Samuel B. Hopkins, Pravesh K. Kothari, Aaron Potechin, Prasad Raghavendra, Tselil
Schramm, and David Steurer. The power of sum-of-squares for detecting hidden structures. In
Proceedings of 58th FOCS, pages 720–731, 2017.

[Hop18] Samuel B. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell
University, 2018.

125

https://youtu.be/io2OXE1Xw04

[HS17] Samuel B. Hopkins and David Steurer. Efficient Bayesian estimation from few samples: com-
munity detection and related problems. In Proceedings of 58th FOCS, pages 379–390, 2017.

[HS21] Brice Huang and Mark Sellke. Tight Lipschitz hardness for optimizing mean field spin glasses.
arXiv preprint arXiv:2110.07847, 2021.

[Jag17] Aukosh Jagannath. Approximate ultrametricity for random measures and applications to spin
glasses. Communications on Pure and Applied Mathematics, 70(4):611–664, 2017.

[JM13] Adel Javanmard and Andrea Montanari. State evolution for general approximate message
passing algorithms, with applications to spatial coupling. Information and Inference: A Journal
of the IMA, 2(2):115–144, 2013.

[JT16] Aukosh Jagannath and Ian Tobasco. A dynamic programming approach to the parisi functional.
Proceedings of the American Mathematical Society, 144(7):3135–3150, 2016.

[Kar76] Richard M. Karp. The probabilistic analysis of some combinatorial search algorithms, pages
1–19. Academic Press, 1976.

[Kiv21] Pax Kivimae. The ground state energy and concentration of complexity in spherical bipartite
models. arXiv preprint arXiv:2107.13138, 2021.

[KKKS98] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C. Stamatiou. Approx-
imating the unsatisfiability threshold of random formulas. Random Structures & Algorithms,
12(3):253–269, 1998.

[KMRT+07] Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka
Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems.
Proceedings of the National Academy of Sciences, 104:10318–10323, 2007.

[Kut02] Samuel Kutin. Extensions to McDiarmid’s inequality when differences are bounded with high
probability. Technical report, University of Chicago, Department of Computer Science, 2002.

[KWB19] Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. Notes on computational hard-
ness of hypothesis testing: predictions using the low-degree likelihood ratio. arXiv preprint
arXiv:1907.11636, 2019.

[Led01] M. Ledoux. The concentration of measure phenomenon. In Mathematical Surveys and Mono-
graphs, volume 89. American Mathematical Society, Providence, RI, 2001.

[LMP15] Alessandra Lunardi, Michele Miranda, and Diego Pallara. Infinite dimensional analysis. In
19th Internet Seminar, volume 2016, 2015.

[LMS98] Michael G. Luby, Michael Mitzenmacher, and M. Amin Shokrollahi. Analysis of random pro-
cesses via and-or tree evaluation. In Proceedings of 9th SODA, pages 364–373, 1998.

[LS84] Pierre-Louis Lions and Alain-Sol Sznitman. Stochastic differential equations with reflecting
boundary conditions. Communications on Pure and Applied Mathematics, 37(4):511–537, 1984.

[LZ20] Yuetian Luo and Anru R. Zhang. Tensor clustering with planted structures: statistical opti-
mality and computational limits. arXiv preprint arXiv:2005.10743, 2020.

[McK21] Benjamin McKenna. Complexity of bipartite spherical spin glasses. arXiv preprint
arXiv:2105.05043, 2021.

[Mon19] Andrea Montanari. Optimization of the Sherrington-Kirkpatrick hamiltonian. In Proceedings
of 60th FOCS, pages 1417–1433, 2019.

[MPZ02] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic solution of
random satisfiability problems. Science, 297:812–815, 2002.

126

[MRTS07] Andrea Montanari, Federico Ricci-Tersenghi, and Guilhem Semerjian. Solving constraint satis-
faction problems through Belief Propagation-guided decimation. In Proceedings of 45th Aller-
ton, pages 352–359, 2007.

[MTF90] Chao Ming-Te and John Franco. Probabilistic analysis of a generalization of the unit-clause
literal selection heuristic for the k-satisfiability problem. Information Sciences, 51:289–314,
1990.

[Nes21] Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. Journal
of Optimization Theory and Applications, pages 1–30, 2021.

[NSS20] Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random
regular NAE-k-SAT. arXiv preprint arXiv:2011.14270, 2020.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[Pan13a] Dmitry Panchenko. The Parisi ultrametricity conjecture. Annals of Mathematics, pages 383–
393, 2013.

[Pan13b] Dmitry Panchenko. The Sherrington-Kirkpatrick model. Springer Science & Business Media,
2013.

[Pan14] Dmitry Panchenko. The Parisi formula for mixed p-spin models. The Annals of Probability,
42(3):946–958, 2014.

[Pap91] Christos H. Papadimitriou. On selecting a satisfying truth assignment. In Proceedings of 32nd
FOCS, pages 163–169, 1991.

[Par79] Giorgio Parisi. Infinite number of order parameters for spin-glasses. Physical Review Letters,
43(23):1754, 1979.

[Par06] Giorgio Parisi. Computing the number of metastable states in infinite-range models. arXiv
preprint arXiv:cond-mat/0602349, 2006.

[Pil14] Andrey Pilipenko. An introduction to stochastic differential equations with reflection, volume 1.
Universitätsverlag Potsdam, 2014.

[PX21] Will Perkins and Changji Xu. Frozen 1-RSB structure of the symmetric Ising perceptron. arXiv
preprint arXiv:2102.05163, 2021.

[PY95] Krzysztof Przes lawski and David Yost. Lipschitz retracts, selectors, and extensions. Michigan
Mathematical Journal, 42(3):555–571, 1995.

[RTV86] Rammal Rammal, Gérard Toulouse, and Miguel Angel Virasoro. Ultrametricity for physicists.
Reviews of Modern Physics, 58(3):765, 1986.

[Rue87] David Ruelle. A mathematical reformulation of Derrida’s REM and GREM. Communications
in Mathematical Physics, 108(2):225–239, 1987.

[RV17] Mustazee Rahman and Bálint Virág. Local algorithms for independent sets are half-optimal.
The Annals of Probability, 45(3):1543–1577, 2017.

[RW94] L. Chris G. Rogers and David Williams. Diffusions, Markov processes and martingales: Volume
2, Itô calculus, volume 2. Cambridge university press, 1994.

[Sel20] Mark Sellke. Approximate ground states of hypercube spin glasses are near corners. arXiv
preprint arXiv:2009.09316, 2020.

[Sel21] Mark Sellke. Optimizing mean field spin glasses with external field. arXiv preprint
arXiv:2105.03506, 2021.

127

[Shv84] Pavel Shvartsman. Lipshitz selections of multivalued mappings and traces of the Zygmund
class of functions to an arbitrary compact, dokl. acad. nauk sssr 276 (1984), 559-562. In
English transl. in Soviet Math. Dokl, volume 29, pages 565–568, 1984.

[Shv02] Pavel Shvartsman. Lipschitz selections of set-valued mappings and Helly’s theorem. The Journal
of Geometric Analysis, 12(2):289–324, 2002.

[SK75] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical Review
Letters, 35(6), 1975.

[Sub17] Eliran Subag. The complexity of spherical p-spin models—a second moment approach. The
Annals of Probability, 45(5):3385–3450, 2017.

[Sub18] Eliran Subag. Free energy landscapes in spherical spin glasses. arXiv preprint arXiv:1804.10576,
2018.

[Sub21] Eliran Subag. Following the ground states of full-rsb spherical spin glasses. Communications
on Pure and Applied Mathematics, 74(5):1021–1044, 2021.

[SW20] Tselil Schramm and Alexander S. Wein. Computational barriers to estimation from low-degree
polynomials. arXiv preprint arXiv:2008.02269, 2020.

[SZ21] Eliran Subag and Ofer Zeitouni. Concentration of the complexity of spherical pure p-spin
models at arbitrary energies. arXiv preprint arXiv:2109.03163, 2021.

[Tal06a] Michel Talagrand. Free energy of the spherical mean field model. Probability Theory and Related
Fields, 134:339–382, 03 2006.

[Tal06b] Michel Talagrand. The Parisi formula. Annals of Mathematics, pages 221–263, 2006.

[Wei20] Alexander S. Wein. Optimal low-degree hardness of maximum independent set. arXiv preprint
arXiv:2010.06563, 2020.

[Zei15] Ofer Zeitouni. Gaussian Fields Notes for Lectures. https://www.wisdom.weizmann.ac.il/~zeitouni/notesGauss.pdf,
2015.

128

	Introduction
	Random Optimization Problems
	Random k-SAT
	Optimization of Mean-Field Spin Glasses
	The Overlap Gap Property as a Barrier to Algorithms

	Random k-SAT
	Results
	Technical Overview of Ladder Multi-OGP
	Proof of Impossibility for Low Degree Polynomials
	The Multi-OGP
	Stability of Low Degree Polynomials
	Proof of Impossibility for Local Algorithms
	Simulation of Local Memory Algorithms
	Proof of Achievability
	Appendix: On Improving the Constant *

	Mean-Field Spin Glasses
	Results
	Proof of Main Impossibility Result
	Guerra's Interpolation
	Overlap-Constrained Upper Bound on the Spherical Grand Hamiltonian
	Overlap-Constrained Upper Bound on the Ising Grand Hamiltonian
	Necessity of Full Branching Trees
	Overlap Concentration of Standard Optimization Algorithms
	Appendix 1: Bounds on Hamiltonian Derivatives
	Appendix 2: Explicit Formula for the Spherical Algorithmic Threshold

	Open Problems and Conclusion
	Bibliography

