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Abstract

Model misspecification constitutes a major obstacle to reliable inference in many
problems. In the Bayesian setting, model misspecification can lead to inconsistency as
well as overconfidence in the posterior distribution associated with any quantity of
interest, i.e., under-reporting of uncertainty.

This thesis develops a Bayesian framework to reduce the impact of a type of model
misspecification arising in inference problems involving time series data: unmodeled
time warping between the observed and modeled data. Inference problems involving
dynamical systems, signal processing, and more generally functional data can be
affected by this type of misspecification. Inverse problems in seismology are an
important example of this class: inaccuracies in characterizing the complex, spatially
heterogeneous propagation velocities of seismic waves can lead to error in their modeled
time evolution. Data are insufficient to constrain these propagation velocities, and
therefore we instead seek robustness to model error. Instrumental to our approach is
the use of transport-Lagrangian (TL) distances as loss/misfit functions: such distances
can be understood as “graph-space” optimal transport distances, and they naturally
disregard certain features of the data that are more sensitive to time warping. We
show that, compared to standard misfit functions, they produce posterior distributions
that are both less biased and less dispersed.

In particular, we use moment tensor inversion, a seismic inverse problem, as our
primary motivating application and demonstrate improved inversion performance of
the TL loss—by a variety of statistical and physical metrics—for a range of increasingly
complex inversion and misspecification scenarios. At the same time, we address several
broader methodological issues. First, in the absence of a tractable expression for a
TL-based likelihood, we construct a consistent prior-to-posterior update using the
notion of a Gibbs posterior. We then compare the impact of different loss functions
on the Gibbs posterior through a broader exploration of what constitutes “good”
inference in the misspecified setting, via several statistical scoring rules and rank



statistics, as well as application-specific physical criteria. In an effort to link our
generalized (Gibbs) Bayesian approach to a more traditional Bayesian setting, we
also conduct an analytical and numerical investigation of statistical properties of the
transport-Lagrangian distance between random noisy signals.

As a complement to Bayesian inversion, we also demonstrate the utility of optimal
transport distances for frequentist regression. We study the linear regression model
with TL loss, describe the geometry of the associated mixed-integer optimization
problem, and propose dedicated algorithms that exploit its underlying structure.
We then compare TL linear regression with classical linear regression in several
applications.

Finally, we discuss potential generalizations of TL distances to include the notion of
“shape” through time series embeddings, as well as possible extensions of the proposed
framework to other forms of model misspecification.

Thesis Supervisor: Youssef M. Marzouk
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Motivation and outline

1.1 Introducing the problem: model misspecifica-

tion, misfit measures, and time series

Model error or misspecification is a determining factor in the quality of the solution
of an inverse problem. Consistency of the Bayesian framework, in particular, heavily
relies on the characterization of the observation error and modeling of the underlying
physical phenomenon. This thesis focuses on a particular kind of model misspecification
that arises when dealing with time series data or data that requires some kind of
discretization over time or space (e.g., images). In such cases a vector or a matrix
contains the intensity or amplitude of the object of interest at specific time or space
coordinates and it is assumed that this mapping is consistent between the observed
and modeled data. In other words, it is assumed that no kind of warping is necessary
to map the discretized point of the modeled data to the observed one (or vice versa).
Under this premise, the use of £, norms as misfit functions is a natural choice: the value
observed at time-index ¢ is mapped (compared) to that of the modeled signal at the
same time index i. An f5-norm misfit function is particularly common, as it matches
the notion of additive Gaussian noise. In reality, it may often occur that portions

of the time series are anticipated or delayed with respect to the model predictions

20



due to various kinds of misspecification: from incorrect modeling of observational
error to deficient modeling of the underlying physics. When this occurs the use of ¢,
norms can have unintended consequences: two signals or images that may look very
similar in “shape” to the human observer may look far apart under an ¢, norm due to
misalignment in the time-space coordinates. These norms, in fact, practically ignore
the relationship between the different coordinate values and treat the time series as a

collection of uni-dimensional data points.

In the context of seismic waveform inversion, for example, this kind of misspeci-
fication is particularly relevant when it comes to modeling the propagation velocity
V of a seismic wave. Due to the extreme difficulties in characterizing the subsurface
medium (e.g., different rock types, three-dimensional spatial heterogeneities) any
velocity model is generally approximate and inaccurate. Mischaracterization of V,
however, can impact one’s ability to infer other quantities of interest such as the
hypocenter x and the moment tensor m (focal mechanism) of a seismic event. In
deterministic full-waveform-inversion this often results in the well known phenomenon
of cycle-skipping, which traps optimizers in local minima [47]. In the Bayesian setting,
model misspecification can lead, in a worst case scenario, to overconfidence in the

posterior distribution, i.e., under-reporting of uncertainty [56, 72|.

The most direct approach to mitigating the impact of model misspecification is to
introduce better physical models (when feasible) or improved statistical discrepancy
models. These approaches, however, typically increase computational cost and may
compromise parameter identifiability. As an example, in moment tensor inversion,
using a simple layered-medium model for the propagation velocity can be orders of
magnitude less expensive to run than a fully three-dimensional elastic wave propagation
model. Moreover, such sophisticated models are typically not available for the majority
of sites, and data for learning the velocity jointly with the focal mechanism in such
a three-dimensional setting may be entirely unavailable, and confounded with the

estimation of the focal mechanism itself.

In this thesis we instead investigate the benefits of using an alternative, optimal
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transport (OT) based, misfit function to measure discrepancies between observed
and model predicted data. Recent literature has demonstrated the applicability of
OT-based distances to seismic imaging problems in a deterministic setting [42, 7, 87,
88, 154]. In this context, OT has been shown to produce drastic reductions in the non-
convexity of the objective function, especially when compared to ¢, distances. A more
convex misfit function also implies a more robust solution to the inverse problem when
subject to uncertainties in the input parameters. Rigorous mathematical treatment
[43] has in fact shown that 1-D quadratic Wasserstein distances (a subset of OT
distances) are convex functions with respect to dilation and translation when applied
to probability density functions. In order for this to remain valid for generic signals

as well, it is however necessary to normalize and positivize them accordingly.

This last requirement introduces data transformations that are not typically
justifiable within the physics of the problem. We therefore propose to focus on a
particular case of Wasserstein distance that does not require signal positivation and
normalization, and therefore makes it more suitable to deal with seismic waves. This
distance is referred to as the transport—Lagrangian (TL) distance [128, 129, 73] and
can be interpreted as the result of solving an optimal transport (OT) problem between

the graphs of two functions.

While the benefits of using this kind of distance have been already explored in a
number of deterministic inverse problems and applications [128], including seismology
[87, 88|, in this thesis we formulate and explore its integration within a fully Bayesian
framework. Within this setup, we interpret the TL distance as a tool to tackle a
broader issue than the cycle-skipping issue highlighted in the deterministic literature
on full waveform inversion (FWI). More precisely, we look at the TL distance as a
data “feature extractor” that deliberately disregards information not relevant to the
inference of a particular quantity of interest, minimizing the impact of uncertainties

in the model.
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1.2 Thesis outline and contributions

The first step in the development of a coherent Bayesian procedure is to establish a
statistical model for the phenomenon of interest and then to derive the associated
likelihood function. We maintain the classical additive Gaussian noise setup, which
normally corresponds to an f5 norm misfit in the exponent of the Gaussian probability
density function (PDF). Instead, however, we introduce the TL distance as our misfit
statistic. For such a statistic, it is not straightforward to characterize the conditional
distribution of the distance given a particular value of model parameters and a model
for the additive Gaussian noise. We discuss some results on this topic from recent
literature [4, 16, 94, 37| and propose the use of so-called Gibbs posteriors, and their
interpretation in the misspecified context. We also derive with more detail certain
statistical properties and behaviors of properly defined TL-based likelihood function,

including a closed form expression for it.

Once the framework is defined, it is important to choose some criteria to quantita-
tively assess its performance. To this purpose, we propose a number of quantitative
metrics to characterize the kind and degree of improvement introduced by the TL
distance. We compare the resulting posterior distributions to those obtained by using
classic (y-based Bayesian frameworks. We emphasize that there is no unique way
to establish in what respect one posterior distribution is better than another, and
if so, how this depends on the specific use that that the analyst intends to make of
it. For this reason, we look at two different scoring rules that exist in the literature.
Continuous rank probability scores (CRPS) [52, 51] effectively capture two important
qualities a posterior distribution needs to have in order to be used as a practical
forecaster: be sufficiently localized (i.e., low variance) and contain the true value of
the quantity of interest within its support, preferably in high-probability regions (i.e.,
low bias). The perfect forecaster would therefore be a delta distribution located at
the true value of the quantity of interest 0: §(6)p—g,,... Aside from CRPS, we also
discuss ways of checking the self consistency of the inference procedure, specifically

in the case of the TL-based likelihood function. For this purpose we focus on recent
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literature proposed around the concept of rank histograms [126, 27|. These are checks
on the frequentist behavior of Bayesian credible intervals and entirely within-model
assessment tools. The objective is to verify whether the inference procedure shows

any bias in reporting uncertainty around certain regions of the parameter space.

As the main testbed for the proposed framework, we construct several instantiations
of the seismic moment tensor estimation problem in which the data generating process
relies on a different velocity model V than the one used for modeling predicted
waveforms. Our empirical studies exhibit increasing levels of complexity and realism.
Overall, we will show that the TL-based likelihood is less sensitive to the nuisance effect
introduced by the misspecified V and allows for the construction of more informative

posterior distributions on m.

Outside the domain of Bayesian inversion, misfit measures for time series and
images also play a central role in classic linear regression problems. These as well can
be affected by the misspecification issues described above and can benefit from the use
of alternative misfit functions. In this thesis we formulate a linear regression method
that instead uses the transport-Lagrangian (TL) distance as the objective function to
be minimized. The associated optimization problem exhibits an increased complexity
over the traditional least-squares setting, since it allows to optimize not only over
the regression coefficients, but also over the amount of transport to perform between
modeled and observed data. In other words it combines a continuous quadratic
program with a discrete optimal assignment problem. We will propose a dedicated

algorithm and test it on a number of applications.

All of the content described above is articulated and detailed within the following

chapters:

e Chapter 2 contains a more detailed and precise definition of the problem of
model misspecification, coupled with background literature on common
approaches to mitigate it. The principal motivating application for the
thesis, i.e., moment tensor inversion, is also presented, with an emphasis on

velocity model misspecification;
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e Chapter 3 presents the first main contribution of this thesis, i.e., the definition of
a consistent Bayesian inference framework to incorporate optimal transport
distances as robust misfit measures. The transport-Lagrangian distance in
particular is defined and associated algorithms for its computation are discussed.
The second part of this chapter is dedicated to answering the question of how
to quantitatively evaluate or score posterior distributions. A number of

criteria are discussed as well as their advantages and disadvantages;

e Chapter 4 is dedicated to testing the proposed framework on a realistic velocity
model for moment tensor inversion: the SEG-EAGE Overthrust model.
Possible implications of the obtained results for some problems of geophysical

nature are also discussed;

e Chapter 5 is dedicated to characterizing a TL-based likelihood function
associated to an additive Gaussian noise model. Some asymptotic results are
proposed together with a closed form expression. Particular care is also taken in

describing the geometry of the statistical model;

e Chapter 6 presents some algorithmic considerations and formulations for a deter-
ministic, TL-based linear regression problem. Applications to demonstrate

the viability and usefulness of this approach are also described.

In the last chapter some conclusive remarks are gathered together with an outlook
on possible extensions and generalization of the proposed framework to other types of

model misspecification.
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Chapter 2

Model misspecification: background

2.1 Model misspecification in Bayesian inference and

inverse problems

Model misspecification in general can have a permanent impact on the ability to
perform accurate inference. In Bayesian inference this can manifest itself in the prior
not including the truth, or not placing sufficient probability on it. More often the
likelihood (which in this view includes the forward model) may not reflect the true
data-generating process. For finite-dimensional parameters, prior distributions are
perhaps less sensitive to this issue, since an infinite amount of data could in principle
correct any belief about the parameter values, unless the support of the prior does
not include the true parameter values.! But consistency of the statistical model for
the data (as encapsulated in the likelihood function) with the true data-generating

process is essential to achieving meaningful results.

A vast and growing body of literature exists on model misspecification and strategies
for how to perform robust inference. In this chapter we will briefly recall what is

meant by model misspecification and discuss some of the most common approaches to

IThis aspect is more complex and subtle in the infinite-dimensional setting of Bayesian non-
parametrics; see, e.g. [32, 99]. We will avoid these complexities and work only in the setting of
finite-dimensional parameters here.
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make Bayesian inference more robust.

2.1.1 The Bernstein—von Mises theorem

For a consistent Bayesian update, it is generally assumed that the distribution of the
data belongs to the family of parameterized distributions defined by the model. More
formally, if {y;}", is a sequence of i.i.d. random variables each with density ¢(y;)
(the true data distribution, generally unknown) and {f(y;|0), 6 € ©} is a family of
parameterized densities to approximate g(y;), we say that the model is well-specified
if there exists a 0y € © such that ¢g(y;) = f(vi|0p). Under such premises (and some
additional technical conditions), the standard Bernstein—von Mises theorem holds
[49, 135]. This result ensures that the posterior distribution, asymptotically in the
size of the data set n, becomes Gaussian and centered around the true parameter
value y. The scale of the posterior covariance shrinks, asymptotically at a 1/n rate,

and posterior credible intervals are guaranteed to have good frequentist coverage.

In contrast, when the model is misspecified, i.e., g(y;) # f(v:|0) for any choice
of 6 € ©, the posterior distribution will, asymptotically in n, become Gaussian but

centered around a value 6* which is [72]:

0" = argmin Dicc(9(-) || 7(16)). (2.1)

where:

Dxr(9() |1 F(:0)) = /_OO g(-)hg(%\‘;ﬁ)d.

is the Kullback-Leibler divergence between two probability distributions. Minimizing
the KL divergence will not ensure that the model f(y|0*) will be able to reproduce the
data. Moreover, the KL distance does not necessarily have a unique minimizer over ©.
The posterior covariance will still shrink towards zero as new data is incorporated, and
the posterior distribution may therefore provide a misleading—in particular, overly

confident—characterization of the uncertainty in the problem.
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2.1.2 Common approaches to mitigating model misspecifica-

tion

A certain amount of research has been conducted on how to make inference more robust
to model misspecification [149, 65, 24|. The classical approaches can be categorized in

two threads [119]:

e Better/more articulated physical modeling: either in terms of the actual physics

of the phenomenon or in terms of model selection/extension [107, 108, 21, 113];

e Better or more robust statistical modeling of the data: for instance, moving
beyond Gaussian additive noise, as in y(¢;) = u(0,t;) + ¢; for some parameters
0, deterministic forward model u, Gaussian random variable ¢;, and covariate
values t;, i = 1...n. Along these lines, the influential modeling approach of
[71] argues for the addition of a Gaussian process discrepancy model §(t) to the

relationship above:

y(t) = u(0, ;) + (¢, 1) + € (2:2)

where ¢; remains a Gaussian noise that represents measurement error and the
term (¢, t) is a Gaussian process, indexed by ¢, aimed at statistically modeling
additional mismatch or discrepancy between the observed data and model
predictions [71]. Here ¢ are additional parameters describing the Gaussian

discrepancy process, not necessarily related to 6.

Both strategies present advantages and disadvantages. Using more complex physical
models can of course increase the chances of matching the observations; however
this often comes at increased computational cost and/or parameter identifiability
issues. The same can be said for the term (¢, t), where the additional parameters
¢ need to be estimated. An additional concern regarding this approach is that, by
calibrating ¢ through the data, it may be difficult to discern whether the term ¢ is only

compensating for missing statistical modeling or it is instead acting as a compensator
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for the physical model itself. Of similar flavor, although not intended to better capture
the statistical nature of the phenomenon, are methods that go under the name of
model space extension or source extension. In this case, additional degrees of freedom
are introduced at the beginning of the inversion to help fit the data. These additional
(and artificial) degrees of freedom are iteratively converged to 0 along the inversion
process. This approach has been of particular interest in seismic inverse problems
[125] (see next section for more details on this specific application). The main risk of
such approaches is that while the observed data may be better fitted, the prediction

capabilities outside the dataset itself may be extremely poor.

Some more recent approaches revolve around the concept of coarsening [93].
The key idea is to modify the standard Bayesian approach to introduce a posterior
distribution obtained by conditioning not on the event that the data are generated
by the model distribution, but instead on some measure of discrepancy between the

observed data y1., and model-predicted data vf, . In formulae:

PO D(y1ally1n) < €) o< POP[D(Yrnllyl.) < €], (2.3)

where yy.,, are i.i.d. data, p(6) is a prior probability density, and D is a generic measure
of discrepancy between the two (empirical) distributions of the data. When the
discrepancy measure is chosen to be an empirical approximation of the Kullback—Leibler

(KL) divergence, the posterior distribution defined in (2.3) can be approximated by:

n

(0| Diy (1l [9.) < €) o< p(6) T £(wil0)S). (2.4)

i=1
The parameter &(n,€) € (0,1) effectively acts as a coarsener and should be chosen to
depend both on the number of samples and €. Intuitively, the coarsening construction
produces the following effect: as long as some discrepancy is present between the
observed and model-predicted data, the posterior distribution will not concentrate
around a specific value, even with an infinite amount of data. This approach avoids

the undesirable posterior concentration described by the Bernstein—von Mises theorem
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under misspecification [72]. Although a technique is presented in [93] to choose &(n,¢€)
in systematic way, the procedure still involves some discretionary aspects. A similar
“coarsening” of the posterior distribution is described in [96], where the shrinking
covariance matrix (with asymptotic scale 1/n) deriving from the asymptotically normal
behavior of the posterior distribution [72] is replaced by a covariance matrix that
takes into account the discrepancy between the predicted and observed data. This
covariance, called the “sandwich,” does not shrink even with infinite data as long as a

discrepancy between predictions and observations is present.

Another line of research to address model misspecification has its roots in decision
theory [96, 148, 55]. Here robustness to model misspecification is assessed by the means
of a minimax rule. In [148] a loss function £(#) is defined with the model parameter 6
as an argument. A posterior distribution p(f|y) is calculated given the best available
information in terms of modeling, data, and prior distributions. Subsequently, a set
['c of distributions pc () is defined such that they all lie (in a KL sense) within a

radius C' of the calculated posterior p(f]y):

Te = {p(9) : Dxr.(p(0) | p(0ly)) < C}. (2.5)

An upper bound is then calculated for the expected loss over all possible distributions

contained in I'c:

Pr. = SuPy(g)ere Ep[L£(0)]. (2.6)

At this point, depending on whether the value of the maximum expected loss is
acceptable or not, the analyst can decide whether to improve the model further. The
definition of the loss function itself, and the maximum acceptable radius in which the
perturbed posterior can lie, are both the results of choices that the analyst must make
a priori, based on the specific scope of the study.
In the same fashion one can look for the minimizer of the expected loss, and thus
sup inf

end up with a pair of distributions {p.”, pi', } that characterize the robustness of the

posterior p(f|y) for a given loss. This methodology is interesting as it presents a general
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framework under which many existing techniques (including the likelihood-coarsening
technique discussed above) can be incorporated. The definition of the loss function as
well as the set I'¢ are flexible enough to incorporate the features the analyst cares
about.

)

Also based on decision-making strategies is the recent concept of “safe Bayes’
[55]. Here, the analyst defines a set P* of credible distributions on 6, according
to some criteria of interest. Informally, P* is a set that is subjectively believed to
contain the true posterior (i.e., the posterior on 6 that would be obtained with a
well-specified model) pue(#). After collecting some data, a standard (and in general
misspecified) Bayesian posterior distribution p(f|y;.,) is obtained. This distribution,
called the pragmatic distribution, can be deemed as “safe” for predicting 6 if the

following condition holds:

vp € 7)*7 EQNP[G] = EgNP(‘ﬂyltn)[e]' (27)

In words, this means the posterior update does not alter or bias the subjective
knowledge about € in a any systematic way. While the notion of robustness is
here clearly established, the notion of “credible set” of posteriors relies on subjective

judgement by the analyst.

2.1.3 An alternative perspective

In this thesis, by taking the seismic inverse problem as a reference application, we
take a different perspective than those offered by the methodologies discussed so far.
Given that the model complexity of seismic wave propagation is already high enough,
more sophisticated modeling would not be the path to follow. Coarsening would
make inference more robust to model misspecification while keeping the complexity of
the model fixed. However, it would do so in a generalized fashion, by increasing the
variance of the posterior distribution without taking into account whether, for at least

a subset of the quantities of interest, it is still possible to capture the true parameter
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value. Decision theoretic frameworks, although theoretically sound, require a number
of assumptions to define with respect to what the posterior shall be considered robust
to. How to build credible sets and loss functions can in fact be a challenging problem
by itself, and the result consists again in adding more uncertainty to the posterior

distribution, rather than directly tackling model misspecification.

We will describe our approach to model misspecification beginning in Chapter 3
(noting it can be combined with the ones just described). Before that, we turn to some

review of the seismic inverse problem, which will make the preceding points clearer.

2.2 An example: full waveform inversion and incor-

rect velocity models

2.2.1 The seismic inverse problem

A major goal in seismology is to understand how seismic waves propagate through a
given subsurface medium (forward problem). Parallel to this is the so-called seismic
inverse problem, which relates the observed seismic displacements (typically recorded
by seismograms on the Earth’s surface) to their source (earthquake). Characterizing
earthquakes provides a better understanding of the earth processes and is of particular
interest in the oil and gas as well as geothermal industries, where small earthquakes
are artificially induced by activities such as mining, fluid injection and oil production.
At least two main subproblems can be identified within seismic inversion. The first
one aims at reconstructing the structure of the subsurface assuming the hypocenter of
the earthquake is correctly localized as well as its time-history appropriately described.
In this scenario, typical quantities of interest are velocity models, densities or other
elastodynamic properties of the subsurface. Another type of inversion targets instead
the characterization of the source. This includes the location of the source, its time-
signature and focal mechanism (moment tensor). In this dissertation, we will focus on

the second of the two problems just described.
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The equation at the heart of this problem is the momentum equation for a three-
dimensional elastic continuum:

62ui 5 (97'1-]-
p =
8t2 - 8953-
1

=

+fi, i=1,...,3, (2.8)

where p(x) is the medium density, u;(x, t) is the displacement in direction i, 7;;(x,t)
is the ij-th element of the stress tensor, and f;(x,t) is the body force along direction
7. In order to solve the above equation for the displacements w; it is necessary to
relate the stress tensor elements to the wu;-s, via Hooke’s law. In particular, for an
homogeneous and isotropic medium:

where A\ and p are Lame’s parameters and d;; = 1 for ¢ = j and zero otherwise.
Solving (2.8) and (2.9) for the displacement fields w;(x,t), i = 1,...,3, is generally
difficult [116]. One approach to solving this PDE is to express the solution u;(x,t)
(the displacement in direction ¢ at location x and time t) in terms of the Green’s
function G;(x,xg, V,t), which is the solution of the PDE at (x,¢) when a unit impulse
is applied at x, (earthquake or source location) and ¢ = 0, and when the velocity
model is V(x). The displacement due to a single seismic event at (xg,0) can then be
expressed as:

Ui(X, t) = Gi(X7 Xs, V, t) ’ mTa (210)

where G; is the Green’s function and m is the moment tensor, which represents the
force couples that represent an earthquake. In its most general form, m is a 3 x 3
symmetric matrix, meaning only six of its elements are independent. This allows one
to recast it as a 1 x 6 vector m as indicated in (2.10), where G; is also a 1 X 6 vector
for any set of input values. Further simplifications and decompositions are possible
when the earthquake mechanisms are restricted to be of a particular type (e.g., double

couple).

The Green’s function G; contains, implicitly, all the information relevant to the
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seismic phenomenon beyond the source term. This includes quantities such as the
location of the earthquake xg, the density p(x) or the propagation velocity fields of
the primary and secondary waves, V (x) = (V,(x), Vs(x)) respectively, which in turn
can be determined by the characterization of the stiffness tensor when the medium
cannot be considered isotropic [3]. The objective of full seismic waveform inversion is
that of inferring one or a subset of these quantities of interest, given some observed
displacements y;(x,t) (normally recorded through seismograms positioned at given
locations on the field of interest). A typical choice is to invert for the velocity model.
Even though the velocity is in general not homogeneous with respect to x, in most
applications it is restricted to assume some fixed values within a certain portion or
layer of the terrain of interest, reducing the complexity of the model. For this reason

the notation is simplified to V(x) = V.

In this thesis, our seismic applications will focus on estimating the moment tensor
components, while considering all other parameters (particularly V and x;) fixed to
given values. We will generally refer to the Green’s function by making explicit its
dependence on the location of the source earthquake and the velocity model only. For
any time ¢, let u(¢) be the vector containing the displacements for each direction and
each station/location of interest. If £ is the number of stations and we consider all
three components of displacement, then u(t) € R* for any t. The Green’s function
then becomes a matrix-valued function: for any fixed set of arguments, it is a 3k x 6

matrix. We can now write:
u(t) = G(x,, V,t) -m”, (2.11)

The Green’s function G is a nonlinear function of x; and V. This implies that the
objective function of a typical least squares minimization problem for these parameters
will most likely be non-convex and that, in a Bayesian setting, the full posterior

distribution p(xs, V, m|y) will be non-Gaussian.
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2.2.2 Velocity model uncertainty

Any velocity model is an imperfect representation of the subsurface and cannot properly
account for the 3D structure of a region. Inhomogeneities and the difficulty of directly
observing the Earth’s structure have induced seismologists to find alternative strategies
to velocity modeling. How to construct reliable models has been a longstanding issue
in seismology to which a definitive answer is yet to be provided [153, 120]. A common
approach that we will consider throughout this thesis is to generate model waveforms
using a layered medium model (e.g., [34]). This model is often derived from well
logs or from some other model of the subsurface, such as one derived from arrival-
time tomography [59] or kinematic source representation [111]. Of course, this adds
considerable uncertainty to the results of any associated inverse problem and, in
general, looking at the effects of layered medium approximations to 3D velocity models

is also at present an undeveloped area of research.

Because the propagation velocity of seismic waves impacts the timing at which
the waves reach the surface, velocity modeling errors can translate into the type of
misspecification outlined in the previous section. As an example, we report in 2-1 a
pair of waveforms—i.e., displacements u;(x,t), for some direction of displacement i
and a fixed surface location x - coming from two different velocity models: the one in
blue come from a 3D model and the one in orange come from a 2D layered-medium
velocity model built from well logs. It is evident that some kind of warping occurs

between the two traces, which are otherwise similar in “shape.”

2.2.3 Methods for solving the seismic inverse problem

We conclude this section with a survey of some common waveform inversion methods
that have been adopted, mainly in deterministic inversion. While none of these
methods specifically aims at tackling the problem of model error, the variety and
nature of the proposed approaches convey the complexity of the problem and are

symptoms of the issue this thesis tries to solve: model misspecification.
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Figure 2-1: Sample waveforms coming from two different velocity models
Local optimization based approaches

Waveform inversion started to become a problem of interest in seismology since the
introduction of seismograph networks capable of recording accurate seismic data
(both active and passive). The most traditional approach to seismic inversion is
non-probabilistic, i.e., the model parameters are recovered by optimizing a misfit

function defined over observed y(t) and model-predicted u(t) waveforms [141]:

M(0) = M(y(t),u(0,1)), (2.12)

where 6 indicates any subset of the parameters of interest to be recovered (the velocity
field, earthquake location, moment tensor, density of the media, etc.). However, given
the complexity of the forward model and ill-posedness of the inverse problem, the
minimization of M is often performed locally, meaning the solution is sought only in

the vicinity (A8 = 6 — 6y) of an initial model configuration u(fy) [141]:

M(0) = M(6y + AB). (2.13)

Typically, misfit functions are chosen to be norms, with the squared ¢ norm, as in a
least squares problem, being the most popular choice [98]. A number of techniques

(Newton, truncated Newton [91|, Gauss-Newton, gradient or steepest descent) are
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used to solve, under various assumptions, the optimization problem. The ill-posedness
of the seismic inverse problem and associated non-convexity of M(€) has motivated
further attempts to constrain the number of possible solutions beyond the perturba-
tion/linearization methods just discussed. Regularization of the objective function
such as Tikhonov regularizers with various weighting (inverse covariance) matrices are
part of the classic repertoire [8, 9, 132]. Recent advances in compressed sensing and
the associated idea of randomized data sampling have also motivated approaches to

full-waveform inversion that look for for sparse solutions [152, 83, 77, 158].

Alternative measures of misfit have also been proposed such as the ¢! norm, secant
and mixed ¢!'-¢? norms (Huber penalty) [29], as well as optimal transport based misfit
functions [89, 25, 90, 92|. In [122] the authors proposed a general robust algorithmic
framework to account for different types of misfit functions and regularization terms.
The algorithm relies on quasi-Newton Hessian approximation methods to minimize

the misfit function and proximal gradient methods to minimize the regularizing terms.

Of similar flavor are cross-correlation approaches [136] together with deconvolution
approaches [80, 145, 58]. In both cases the aim is to minimize the impact of phase
traveltime differences, or relative phase shifts, while generally mitigating the well-
known phenomenon of cycle skipping [144]. With the same objective it is also worth
mentioning methods based on instantaneous phase differences and envelope ratios

between observed and synthetic seismograms [18, 109, 79|.

Gradient-free methods have also been adopted. In the context of downhole micro-
seismic moment tensor inversion [46], a grid-search is performed over plausible event
locations and velocity models. The best fitting solution, in a least squares sense,
is then identified. In a similar fashion, a large body of literature exists on how to
constrain the number of feasible solutions by estimating source-receiver travel times

and rejecting solutions that are not compatible (ray-tracing techniques) [116].

Solutions of the problem both in the time and frequency domains have also been
attempted [156, 110, 104, 19, 68]. The advantage of using one method over the other

depends on several factors such as the type of data available (high/low frequency,
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noise level, etc.) as well as what kind of information is recovered in the inversion. In
[134], moment tensor inversion is performed through a two-step procedure involving
an inversion both in the time and frequency domains, exploiting the linearity of u(t)

in m when the velocity model and source location are fixed.

Multiscale or multifidelity approaches have also been adopted in the spirit of
mitigating the computational complexity and ill-posedness of the problem [104, 22].
Given recent advances in computational power, 3D full waveform inversion have
become customary in most applications, especially in industry [104, 90, 147, 139,
138, 57, 78, 155]. From a methodological perspective, however, most of the theory
developed I still anchored to 2D models [48].

The main bottleneck to the success of these approaches is often the accuracy of
the starting model, and the validity of assumptions underlying various simplifications
(e.g., linearization). It is hard to build a valid initial model for optimization, especially
when it comes to estimating the velocity V. Starting with a highly misspecified
model inevitably leads to bad parameter estimates. This problem is accentuated by
the fact that deterministic inversion typically yields only single-point estimates; the
uncertainty that surrounds the solution is largely ignored. We argue that a Bayesian
framework offers a more complete representation of one’s current state of knowledge,

and is particularly relevant in a misspecified setting.

Bayesian formulations

An extensive amount of work exists around full waveform inversion performed in a
Bayesian framework [81, 36, 53, 115, 107, 60, 157, 118, 67, 48]. As already stated
in the introduction, the most common statistical assumption regarding the relation
between observations and model predictions is that of additive Gaussian noise. As for
the prior distribution, its choice largely depend on the information available to analyst
prior to inversion. A central aspect of Bayesian computation in seismic inversion is
the computational cost associated with evaluating the posterior distribution and its

marginals. Characterizing the moments of the posterior distribution or calculating its
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normalization constant is often impossible analytically and involves high dimensional
integrals when performed numerically. For iterative methods, the computation of
the forward model at each iteration also poses computational challenges. In [115, 31]
a number of sampling approaches have been considered, from Metropolis-Hastings
Markov chain Monte Carlo (MCMC) to Gibbs sampling and other techniques. An
interesting approach to mitigate the dimensionality issue implicit in seismic Bayesian
inverse problems is the trans-dimensional Markov chain Monte Carlo sampler imple-
mented in [107]. This method represents a way to compromise between computational
cost and modeling accuracy. The cited work relies, however, on the parameterization
of the velocity field through wavelets, which represents itself a simplification of the
phenomenon. A similar approach for velocity and density recovery is also implemented

in [108] with similar results.

Given these challenges, Bayesian approaches to full waveform inversion have usually
required some degree of simplification of the problem to make it tractable. In [10] the
authors propose a Bayesian approach in which the forward model is linearized in the
velocity V. The error and the prior distribution are chosen to be Gaussian, which
allows the posterior distribution to be derived analytically. The results of this study
show that, given a synthetic data-set, although good agreement is found with the
correct solution, a signal to noise ratio of 15 (relatively weak noise) introduces high
degrees of uncertainty in the solution. The simplifications introduced are probably
partly responsible for these unsatisfactory results. In [127] the authors also linearize the
problem, but around the mazimum a posteriori (MAP) parameter estimate. Despite
the simplification, the computational challenge of determining the MAP persists. It
involves a nonlinear and non-convex optimization problem and there is no guarantee
that the approximation will be good enough. Other Bayesian inversion attempts with
linearized models can be found in [60, 54]. An alternative consists in pre-computing the
forward model over a grid of possible parameter values [121]. While computationally
efficient, this approach poses the question of how fine the grid over the parameter
space has to be, and can quickly become impractical when performing multi-parameter

inversion.
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In [56] the authors attempted a full Bayesian inversion without any simplifica-
tion of the forward model or linearization around specific solutions. To overcome
the computational challenges and increase robustness of the solution, a number of
sampling strategies were implemented to exploit conditional linearities and associated
Gaussianities in the problem. These include marginal-then-conditional sampling,
pre-computing a library of velocity models and source locations, as well as coarsening
as described in [93]. The results achieved through this implementation are satisfactory
when the velocity is known and set to a specific value. As soon as uncertainty is
introduced in V, the solutions of the problem exhibit a high degree of instability,

indicating model misspecification issues.

More recent approaches have included a proof of concept study for Hamiltonian
Monte-Carlo [48] as well as an ensemble Kalman filtering approach applied to full

waveform inversion [130].

2.3 Conclusions

In this chapter we described the problem of model misspecification in Bayesian inference
both from a theoretical point of view as well in terms of its practical implications in
Bayesian inverse problems. We discussed the main strategies proposed so far in the
Bayesian literature to avoid over-concentration of posterior distributions. In relation
to these methods, we outlined a pathway to a different approach that relies on the
choice of specific misfit measures. Finally, we presented the main application of this
thesis: moment tensor inversion under misspecified velocity models. We discussed
what the misspecification implies in this context and how the problem has been tackled

both in the field of deterministic and Bayesian full-waveform-inversion.
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Chapter 3

Optimal transport misfit measures for

robust Bayesian inference

3.1 Optimal transport distances and time series

3.1.1 Motivation and background

Central to any inverse problem, both in the deterministic and Bayesian framework,
is the choice of a misfit function to compare model and predicted data. We have
described in the introduction how choosing this metric can play a determining role in
performing good inference, especially when dealing with time series. The following

discussion will therefore focus on this specific data type, except when stated otherwise.

The most recurrent choice is the squared ¢/ norm (as in a least squares problem),
which is also implicitly obtained by adopting the traditional likelihood model that
defines observations as model predictions plus a Gaussian noise that is independent of
the parameters. Yet any ¢,-norm, including the Euclidean distance {3, compares two
data vectors element-wise. This represents a limitation when data points represent
discretized signals, since they inherently exhibit a temporal structure that cannot be

captured by simply comparing them at common values of the time coordinate. In fact
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we will argue that £, norms ignore the dependence that exists between different points

of the signals and can provide rather distorted distance measures in this setting.

Some literature exists about possible choices for distance measures between time
signals for a variety of purposes such as pattern recognition, signal classification,
detection, etc. [76]. Some still make use of the ¢, distance, but only on slices of the
signals, or after performing a circular shift of the time domain [50]. Other approaches
propose counting the number of subsequences of the signals that are similar in an ¢
sense [50]. Parameterizations of the signals (i.e., low-rank approximation) have also
been proposed such that the comparison is made in this alternative domain rather in
the original time or space one [11, 23, 75|. While attractive, these techniques are only

relevant to specific applications and therefore tend to have limited applicability.

As mentioned earlier, what often results in discrepancies between modeled and
collected data is some sort of warping along the time dimension. A broad set of
literature exists around time warping, coming from all sciences and applications that
need to deal with time series. The general theory around time warping is described
in [106] in the broader context of functional data analysis. To warp a signal is to
transform the input (e.g. time ¢) of a function y(t), for instance with an invertible

function h, to yield a warped signal y(h(t)):

t* = h(t), and thus (3.1)

y* =y(t") = y(h(t)) (3.2)

where the h is chosen to satisfy a specific criterion. For instance, when used to build a
misfit a function, A is chosen within some class H to minimize some notion of distance

between two signals (e.g., model predictions and data). In formulae, a misfit dist(-, -)

between model predictions u(t) and data y(t) that allows for warping is:

dist(y(t), u(t)) = argergin C(y(h(t)),u(t)) (3.3)

where is C is a cost function that the analyst chooses according to context and most
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typically is some ¢, norm. The most basic type of time warping is the so-called
shift registration. This kind of correction only affects the phase of each curve y, by
shifting the respective support of a constant ¢ and using ¢y as a cost function. More
sophisticated choices for H and C are possible, such as those used in the well known
framework of dynamic time warping (DTW) [95]. In a discrete setting, DTW allows for
assignments of a point y(¢;) to one or more points u(t;) of the comparing signal as long
as the monotonicity of the mapping is not violated, i.e., t; > ¢;. While the cost function
continues to be the /5 norm, efficient dynamic programming algorithms exist to tackle
the computational problem. A number of variations around classical DTW have also
been proposed, such as applying it only to subsets of the signal or introducing some
weighting coefficients on the assignment choices. While the monotonicity condition is
physically interpretable as the requirement to preserve “causality” in the assignment,
it induces, especially when the number of discretization points between the two signals
being compared is the same, splitting of the mass associated to a point ¢ of a signal
to several points j of the other signal. This sort of assignment is not particularly
meaningful physically, as it is equivalent to concentrating/collapsing the signal rather
than simply readjusting the time-scale. In the field of full waveform inversion, the use

of DTW as a means to avoid or mitigate cycle skipping has been investigated in [82].

In the next subsection we will present an alternative to building time-warping-based

misfit functions, using optimal transport distances.

3.1.2 The transport-Lagrangian distance: definition and algo-

rithms

Recent advances in the domain of optimal transport and its many applications have
lead a number of contributions in the field of signal analysis. Optimal transport allows
the type of across-coordinate comparison of functional data that we seek, with some
distinctive features compared to dynamic time warping. Optimal transport (OT) is, in

general (cf. the Kantorovich problem), a way of finding a coupling of two probability
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measures that minimizes a certain total transportation cost [140, 102]. In the very
specific case of discrete/empirical probability measures with equal numbers of equally
weighted points in their support, the OT problem reduces to an assignment problem
[102] between the points in the support of each distribution. The transportation cost
is often taken to be the distance or the squared distance between these points; the
associated minimum total cost, over all possible assignments, is then the 1-Wasserstein

distance or the 2-Wasserstein distance, respectively.

A distinctive feature of Wasserstein distances versus dynamic time warping is
that causality is not ensured. This may seem a limitation in its application to signal
comparison because of the inherent sequential nature of time signals. However, when
dealing with model misspecification this aspect can actually be beneficial in that
inconsistencies in the modeling can produce anticipation or delay in the reproduction

of some parts of the observed signal.

One way of relating the OT problem to the comparison of time-dependent signals
is to treat the signals as univariate probability density functions. For the resulting OT
problem to even have a solution, however, it is necessary for these input signals to be
normalized (i.e., integrating to one) and positive, as these conditions are necessarily
satisfied by probability densities. Yet signals are not measures—i.e., they do not
in general sum/integrate to one and are not in general non-negative. A common
workaround to this problem is to shift the signal along the ordinate axis to make it
positive and then divide it by the sum of all of its points [154, 89, 128]. Having the
signal transformed in such a way also allows a fast, analytical, computation of the
Wasserstein distance in 1-D. Attempts of using the Wasserstein distance in this fashion
have been made in the field of waveform inversion too [154, 89|. Promising results
were achieved in these works for velocity inversion. OT-based misfit functions have
proven to be beneficial in terms of reducing cycle-skipping effects [20, 146]. While
computationally convenient, the transformation of the signals that is required appears
somewhat artificial and is not justified by the physics of the problem. In addition,

the transformation can distort the signal, smoothing out amplitude versus frequency
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differences [128]. In a general sense any a priori transformation of the data introduces
the possibility of a number of artifacts in the results of the inversion that can be hard
to predict and estimate. For this reason, when applied to field data these techniques

may prove to be less reliable.

A different approach that avoids these pitfalls is to use the so-called transport—
Lagrangian (TL) distance [129], which is a specific instantiation of the Wasserstein
distance adapted to signals. Consider two real-valued signals a,b : R — R. For
simplicity, here we focus on the case where both signals have been discretized, the
former on n points t = (¢;);.,; and the latter on m points s = (s;)7.,. Let a(t) =

(a(t;))i—, and b(s) = (b(s;));~,. Then the TL distance can be written as the solution

of the following minimization problem:

TL)(a(t). b(s)) = min G} Py
3] ’L',j

m

st S Py =
j=1
S Py= (3.4)
=1

P;>0; P eR™™

C = A|ts — 5P + |a(t;) — b(s;)[; C € R™™.

where C' is a cost matrix; P a transport plan matrix; and A € R>( is a weighing pa-
rameter between the horizontal and vertical costs. This formulation can be interpreted

in two different ways:

1. optimal transport between the graphs (2D) of a and b, i.e., {t; X a(t1),ts X

alts), ... an X a(ty)};

2. optimal transport between two (1-D) uniform probability mass functions, with

the cost defined as C*(¢;,¢;) = A|t; — ;| + |a(t;) — b(t;) [P

This distance is particularly interesting as it avoids unnatural data transformations
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while still allowing an OT formulation. In addition, while computing the Wasserstein
distance in general discrete settings amounts to solving a linear programming problem
(with O(max(n,m)?®) complexity, n and m being the dimensions of the discretized
signals), for the special case of the TL distance with n = m, one can adopt more
specialized algorithms that solve an assignment problem; in this case, the resulting
optimal P are permutation matrices. Our algorithm of choice for such problems is the
auction algorithm [13|, which exhibits a nearly quadratic complexity or an average
complexity of O(n?log(n)) for problems with n < 1000 [114, 88|. In the rest of this
thesis we will always consider n = m. Finally, the choice of the parameter A is of
crucial importance for a successful use of this distance. Generally speaking setting
A — oo implies reverting to the /5 norm, while A — 0 allows for rather large amounts
of horizontal transport, almost neglecting amplitude matching, which is, for most
applications, the most informative feature of the data. Empirically we have found
that a good choice for A is that of ensuring the scale of the time vector values (A) vs.
that of the amplitude values (7)) are somewhat comparable i.e. A = %A__ This is an

accordance with related literature [88].

A rigorous discussion on the applicability of the TL distance as an objective
function in deterministic seismic inversion has been conducted in [88]. Improvements
in the convexity of the misfit have emerged as the primary effect of the choice of such

a distance measure [154, 103].

3.2 A consistent Bayesian framework for optimal

transport distances

In this section we intend to answer the following question: how can we build a coherent
Bayesian framework around the TL distance as a misfit statistic? While maintaining
the classic setup of additive Gaussian noise, we seek an alternative expression for the
likelihood p(TLs(y,u)|f) (where y and u are the vectors containing the discretized

form of the observed and model predicted signals, while 6 are the model parameters).
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Also note the choice of p = 2 to allow for more direct comparison with the 5 norm as

a misfit statistic.

At this point, there are two main impediments that stand in the way of defining a
coherent Bayesian framework for a TL-misfit, both in a well-specified and misspecified
setting. First, calculating the TL-distance involves solving an optimal transport
problem, which implies, in turn, a minimization problem: this non-linearity makes
it difficult to derive an analytical expression for the likelihood p(TLy(y,u)|f). In
the second place, we stated multiple times that it is of our interest to evaluate the
robustness of such misfit measure in a misspecified context. From a rigorous standpoint
however, the definition of likelihood assumes a context in which the data come exactly
from the specified model. Therefore, even if we were able to obtain an exact expression
for p(TLy(y,u)|f), this would not mean that the same expression could be used in a

misspecified context without introducing some sort of inconsistency.

3.2.1 Gibbs posteriors

We therefore seek an alternative framework in which both misspecification and the
newly introduced misfit measure can be integrated. In the statistical literature, a
posterior distribution obtained through this framework is typically referred to as the
Gibbs posterior. A full derivation is contained in [16], but we recall here a short
summary. The central idea is to define a loss function L(7,y;p) over our prior beliefs
(), observations y and space of probability measures p over . We then claim that

a valid update of our beliefs based on available data is given by:

p = argmin L(7,y;p). (3.5)
P

This claim is justified by the argument that, in general, between two measures p; and
P2, one would naturally prefer the one that produces a lower value of the loss function,
given the same data-set. The authors also choose a specific expression for the loss

function that contains both of the fundamental ingredients of a Bayesian update, i.e.,
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balance between prior information (Kullback-Leibler divergence between p and 7(0))

and adherence to observed data under the form of expected loss:

p = argmin( [ 10.¥)9(a8) + Dea . 7(0) ). (36)

p

The function £(6,y) is a generic measure of model-data discrepancy (more discussion

later). The authors show that the minimizer p takes the form:

s6) — _CPLLO.)}(0)

~ [exp{—£(0,y)}r(df) (3.7)

This expression can justify a prior-to-posterior update through an exponential form
given a generic loss function (or misfit measure) £(6,y). While not a rigorously Bayesian
update, it still captures the two main ingredients of Bayesian inference and provides a
rigorous argument for using an exponential pseudo-likelihood. Additionally, we note
that if it is known that the data arose from a given family of distributions (e.g., p(y|0)),
then equation (3.7) reverts exactly to Bayes formula, by taking £(6,y) = — log(p(y|0)).
This ensures the expression above constitutes a rational update with any misfit measure

both in the well and misspecified context.

In our experiments, we adopted a specific expression for the Gibbs posterior as

outlined in [94] (already experimented in a seismic inverse problem in [112]):

p(yl0) = 5™ exp(—s TL,(y, u(9))). (3.8)

where N is the number of observations while the parameter s acts as scaling factor.

The role of the s parameter This parameter plays no role in the data-generating
process but it is necessary to ensure the values taken by the loss functions (in this
case the TL-distance) are of the right order of magnitude to produce meaningful
posterior distributions after being exponentiated. The scaling is therefore not an ad-
hoc manipulation of the data to achieve more desirable results, bur rather a necessary

adjustment to integrate any given loss function with a prior-to-posterior update that
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is not derived explicitly from a physical model. This is reflected in the computational
scheme used to calibrate the amount of scaling: s can be treated as a hyper-parameter
and estimated through a hierarchical Bayesian framework. We associate to s a Gamma
distribution as a conjugate prior, which allows a Gibbs update [94| in a Markov chain
Monte Carlo (MCMC) algorithm that otherwise uses generic adaptive Metropolis [62]
for 6 updates. The choice of values for the shape and rate parameters of the Gamma
prior is particularly critical to obtainment of a meaningful posterior. These values
need to be picked in such a way that whatever loss function ¢(6,y) is chosen to be
used in the Gibbs posterior, it will scaled appropriately to avoid exp (—s - £(6,y))
being numerically insensitive to different values of #, making inference unfruitful. In
the following section we will discuss the reasoning behind the choice of the Gamma

prior for s through a numerical example.

3.2.2 Likelihood free inference

As a counterpart to a Bayesian framework that requires the definition of a likelihood, or
a substitute for it, we outline a number of options for what is known as likelihood-free
inference, an increasingly studied area. While we will not adopt any of these strategies
for the main application and experiments in this thesis, but we will demonstrate their

validity in a number of synthetic examples at the end of this chapter.

Approximate Bayesian computation (ABC) [84] is a common likelihood-free frame-

work and is implemented as follows:
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Algorithm 1 ABC—Approximate Bayesian Computation

1: Initial value: Propose initial estimate 6* and define dataset yy.,;
2: Generate model samples: Draw zy.,, samples from f(6p);

3: Calculate distance: D(yy.,||21:0);

4: While D(y1.,||21.0) > €

1. Resample 0*: Propose another 6* from a prior p();
2. Generate model samples: Draw n samples from f(6%);
3. Calculate distance: D(Y1.n||21:0);

5: Accept: Opcepeted = 07
6: Repeat the process K times, where K is the number of ,cccpteq to characterize

the uncertainty:.

The D(+,-) is a distance or discrepancy measure between model and data chosen
by the analyst, while € is the admissible discrepancy up to which a sample 6* can be
accepted. This kind of estimation procedure possesses theoretical guarantees together
with some common pitfalls, mainly concerning the choice of € and how this affects the
approximation of the true posterior, as well as its use in high dimensional parameter
spaces. We refer to [124] for further discussion. In our context the main advantage of
using such method is that it eliminates the need to characterize the likelihood function

(or a surrogate for it) for a statistical model involving the TL distance.

3.3 Evaluating inference results: posterior scoring

metrics and objectives

While Bayesian inference has become a widely used in many applications, it is still not
entirely clear what constitutes a “good” posterior: how much uncertainty is the right

amount of uncertainty? Should the true value of the parameter always be expected
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to lie in high probability regions of the posterior (e.g., at the center of a Gaussian
posterior)? A number of answers exists in literature and their content largely depends

on the more fundamental question: “What do we want to use the posterior for?”

3.3.1 Continuous rank probability scores

Fairly well known in Bayesian inference are the so called scoring rules [52]. A score
S(G, H) is a measure of predictive accuracy of a forecaster G, established through
an inference procedure, with respect to H, the “perfect” forecaster (e.g., true data
distribution). A scoring rule is said to be proper if S(H, H) = ming S(G, H). In other
words, a scoring rule assigns the lowest score to the case where G equals the perfect
forecaster. Considering continuous distributions with a density, a perfect forecaster
H would be H(y) = y—y,.., while G can be any distribution p(y) like a posterior

distribution. Some examples of scoring rules are:

e DBrier score(quadratic):

+oo
SGH) = [ Gy l0) ~ p0)) (39)
e Logarithmic score:
S(G, H) = —10g p(Yirue); (3.10)

o Continuous ranked probability scores CRPS :
+oo y 2
s = [ ([ st 1,e) ao @.11)
Forecasters are CDFs (cumulative distribution function) instead of PDFs (prob-

ability density function).

All of these rules assign a score zero to the case in which the probability assigned
by p(y) of observing the true data iy is equal to 1. Among these kind of scores of

particular interest is for us the case of the CRPS score. This score compares the CDFs
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of the perfect and inference-built forecasters instead of their PDFs, which presents a
number of advantages: since the CDF is a monotone increasing function, subtracting
the perfect CDF (a step function set at yue) to the inference built CDF provides at
the same time a measure of how much bias and variability is contained in the posterior
distribution. By bias we mean here how distant is most of the mass of the distribution
p(y) from yge and by variability how “spread-out” the posterior distribution is. These
features are relevant in a data-predictive context in which we want to reproduce data
that is as close as possible to yue. Figure 3-1 provides a visualization of the concepts

behind the CRPS. In practice, the real value of ¥, is unknown and thus the perfect

p(9|y0bs) . CDEI
)
Otrue J 0 Otrue
P(6]Yobs) , CDR
)
Otrue j 0 Otrue

Figure 3-1: Bias (bottom) and variability (top) quantification in CRPS scores.

forecaster is approximated by building empirical distributions around “extra” or “newly
collected” data. In the context of our experiment, instead, the CRPS scores would be
of direct applicability since we actually know the true value of the quantity of interest
My (not the data) and the trade-off between bias and variability of the posterior
represents a valid way to compare distributions obtained through the two different

misfit statistics.
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3.3.2 Quantile rank statistics

Scoring rules tend to reward the predictive capability of a posterior, which is achieved
with the least amount of bias and variability as possible. However, these properties
may not completely overlap with other, statistically consistent, behaviors of posterior
distributions. In particular a perfect forecaster may not exhibit what is known as
the frequentist behavior of Bayesian credible intervals. In order to describe what
this behavior is, we introduce another type of posterior-check: posterior quantile
rank statistics [126] [27]. We stress that, contrary to the CRPS score, this is a self-
consistency test that aims at answering the following question: is there any inherent
bias in the way the posterior characterizes the uncertainty around the parameter
space? Algorithm 2 describes the steps necessary to calculate quantile rank statistics

and associated histograms for a specific test-case.

Algorithm 2 Quantile rank statistics
1: for k < N,, do

2. Draw 0~ p(0)

true

3. Generate data y* ~ f(y|0F )

4:  Estimate the posterior p(6*|y*)

5. Draw M samples 6; from the posterior distribution p(6|y*)
6:  Calculate: g, = - Zf\il 16,500

7 k< k+1

8: end for

9: Plot histogram of {g;}

The true values of 6y, should fall uniformly across the posterior credible set, just
as, in a frequentist setting, an a—confidence interval contains the true value oo — % of
the times (Figure 3-2). This behavior translates into a uniform histogram over the
sampled values of ¢: it indicates that the posterior distributions are neither overly
biased towards one subset of the parameter set (Figure 3-3b), nor overly dispersive

(Figure 3-3a), over-representing the amount of uncertainty in the problem.
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Figure 3-2: Quantile rank histogram building process under consistent conditions.
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(a) Bell-shaped indicates an over- (b) U-shaped indicates a biased fore-
dispersed forecasting distribution. casting distribution.

Figure 3-3: Non-uniform quantile rank-histogram shapes.

3.4 Numerical examples

In this section we present some numerical tests performed to start probing the
validity and feasibility of the methodology exposed in the previous sections. We
will start by describing a series of tests concerning the use of the TL distance in
classification and inference problems. For all of the experiments below: let t =
(t1,ta,...,t,) € R™ be a vector containing the time indices of the discretization. Let
y = y(t) = (y(t1),y(t2),...,y(t,)) € R™ be the vector containing the values of the

discretized signal used as data, and u the corresponding vector for the model).
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3.4.1 Sine waves classification and inference with TL distance
Classification problems

We are first interested in testing the performance of the TL distance when it comes to
classifying signals with respect to certain features. Throughout this entire section we
deal with sine functions that present various differences in terms of phase, frequency

and amplitude. The general expression of these functions we will refer to is:

u = Asin(wt + ¢). (3.12)

TEST A We have a reference signal y,e¢ of the form:

Yret = sin(3t). (3.13)

We want to test how well the ¢? and the TL distance allow for classification, with

respect to yref, Of signals generated by the the model:

u=sin(wt+¢) where ¢ ~N(0,1) and w = {1,2,3,4,5,6,7}. (3.14)

The phase ¢ is drawn from a distribution to introduce some misspecification when
comparing signals that might have the same frequency. In both cases the distance has
been normalized by the number of discretization points. For the TL we use in this
case p = 2 and A = 1. 1000 samples have been drawn from the model for each value
of w. The distances are plotted in Figures 3-4a and 3-4b. Each point represents the
distance (¢, or TL) between a realization of the model (3.14) and y,y.

It appears clear how, on-average, the TL distance does a better job at distinguishing
between the various frequencies given a random shift. When the frequency of the
models is the same as the one of the reference signal (w = 3) the distances can reduce
to almost zero, if the shift is not particularly significant. While the ¢, distance can

allow to detect that the true frequency is w = 3, it does not differentiate between the
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Figure 3-4: TEST A

other w-s. The TL distance, assigns different distance values to different w-s leaving
the margin for even better detection if the the value of X is carefully calibrated. The
objective here is to show that the TL distance allows for better differentiation between
signals given variations in a certain input parameter, not that it is the best tool detect

the frequency of a signal per-se.

TEST B We have a reference signal y,ef of the form:
Vet = sin(3t). (3.15)

We want to test how well the 5 and TL distances can classify signals generated by

the model:

27 2
u=sin(wt+ ¢) wherew ~U(4.8,7.2) and ¢ = {0, il } (3.16)

3w’ 2w

The classification is with respect to the delay ¢, while the frequency is highly perturbed

to verify how the distances perform in presence of some noise on w. Again 1000 samples

of u are drawn for each ¢ value. The results are reported in Figure 3-5a and 3-5b.

Once again the TL distance seems to provide more separation between signals with
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different delay values with respect to the /5.
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Figure 3-5: TEST B
TEST C We have a reference signal y,.; of the form:
Vret = 3sin(3t). (3.17)

We want to test how well the ¢, and TL distances can classify, with respect to

amplitude, signals generated by the model:

u= Asin(wt) wherew ~U(1,3) and A ={1,2,3,4}. (3.18)

The frequency is perturbed to test the robustness of the distances to detect signals
frequencies. The results are reported in Figures 3-6a and 3-6b. The TL distance
performs dramatically better in distinguishing the amplitude of the signals regardless
of the frequency perturbation. The /5 distance instead exhibits a higher degree of

(relative) dispersion, especially when the amplitude increases.
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Figure 3-6: TEST C
Inference problem

We are interested in testing the TL based misfit function in an inference framework. To
do so we have performed a number of tests, inspired by the classification problems in
the previous section. Table 3.1 summarizes the test plan. There are 4 types of inference
tests (i.e., different combinations of model and quantity of interest), for each of those
types we tested 2 types of algorithms: Markov chain Monte Carlo Metropolis-Hastings
(MCMC) with exponential likelihood [94] and approximate Bayesian computation
(ABC). For each of these algorithms the classical ¢, misfit measure is tested against

the TL distance.

Before we proceed to the analysis of the results, we want to make explicit a number

of technical details concerning the tests above:

o Computation of TL distance: The formulation used for the TL distance is the
one presented in equations (3.4) with n = m. The algorithm of our choice is the
auction algorithm [13]. For the choice of A, it is generally chosen to be around 1

in accordance to what explained in section 3.1.2.

e Parameter prior distributions: whenever a prior distribution needed to be defined,

a proper uniform prior was adopted (details will be specified for each test case.
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We can now proceed to discuss the results of the experiments.

TESTS A In this test the objective is to infer the frequency of an observed sine
wave with a misspecified model: the model presents no phase shift, while the observed
data has a value of ¢ = 0.7 (chosen so that it is different from the period of the
model sine function). The prior distribution of w is uniform between 0 and 10. In
Figure 3-7 we have reported the posterior and approximate posterior distributions
for tests A.1, A.2, A.3 and A.4. The TL distance seems to outperform by far the ¢,
distance when used in the classical MCMC algorithm. When the ABC methods is
used instead, we can see that the precision of the result highly depends on the choice
of the acceptance threshold e. For the ¢y distance a very tight choice has produced a
very narrow uniform distribution on the interval [3.01,3.23], which is close, although
does not contain the true value. When the TL distance is used (A.2), we have that
for a specific value of € a number of peaks appears around specific values of w. These
partially reflect some of the results obtained in the classification exercise, although
the true parameter value 3 does not emerge as clearly as in test A.1. For a smaller
value of €, however, a distribution similar to that obtained with the /5 distance can be
achieved. While the TL distance seems to perform globally better than the /5, the

ABC framework exhibits a certain amount of sensitivity relative to the choice of e.

TESTS B In this test the objective is to infer the phase shift ¢ of an observed
sine wave with a misspecified model: the model presents perturbations around the
frequency value of the observed data, as specified in table 3.1. The prior distribution
of ¢ is uniform between —27 and 27. In Figure 3-8 we have reported the posterior
and approximate posterior distributions for tests B.1, B.2, B.3 and B.4. The TL
distance seems to outperform by far the ¢, distance when used in the classical MCMC
algorithm. When the ABC methods is used instead, we can see that the two distances
perform equally well. While it is not particularly intuitive why in this case ABC
performed better than MCMC, it may be worth mentioning that, when well calibrated,

ABC can be more sensitive even to small distance differences, while MCMC does not
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Figure 3-7: TEST A - infer frequency, misspecified phase

operate based on a threshold-type mechanism.

TESTS C In this test the objective is to infer the amplitude A of an observed
sine wave with a misspecified model: the model presents perturbations around the
frequency value w of the observed data, as specified in table 3.1. The prior distribution
of A is uniform between 0 and 10. In Figure 3-9 we have reported the posterior and
approximate posterior distributions for tests C.1, C.2, C.3 and C.4. The TL distance

seems to outperform the /5 distance in all contexts.
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Figure 3-8: TEST B: infer phase, misspecified frequency

TESTS D In this test the objective is to infer the amplitude A of an observed sine
wave with a misspecified model: the model presents perturbations around the phase
shift value ¢ of the observed data, as specified in table 3.1. The prior distribution of A
is again uniform between 0 and 10. In Figure 3-10 we have reported the posterior and
approximate posterior distributions for tests D.1, D.2, D.3 and D.4. The TL distance
seems to outperform the ¢y distance in the classical Bayesian framework, while in the

ABC context the results appear comparable for appropriate choices of e.
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Figure 3-9: TEST C - infer amplitude, misspecified frequency

Conclusions: The TL distance seems to generally perform better than the /¢,
distance in a classical Bayesian inference framework. The ABC algorithm also presents
satisfying results and avoids the problem of defining a likelihood function for the
Wasserstein distance. However, it exhibits a certain degree of sensitivity to the choice
of €, whose choice only depends on computational power. Finally, it is important to
note that in all test cases we were performing inference with a misspecified model: in
this sense the TL distance seemed to be able to be more robust to model misfit, by

providing a more suitable metric of comparison of the signals.
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Figure 3-10: TEST D - infer amplitude, misspecified phase

3.4.2 Moment tensor inversion and seismic modeling with the

reflectivity method

We are interested in evaluating the benefits of using the

TL distance as a misfit statistic

when solving the moment-tensor inverse problem in presence of model misspecifica-

tion. To this purpose, we conduct an experiment using synthetically generated data

from a layered-medium model. This model assumes

that the waves travel through

homogeneous elastic layers of different depth and velocity (one value for the velocity

V,, of the primary waves and one value V; for the velocity of the secondary waves).
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The adopted solution to the forward problem is described in [17] and is a variation
of a powerful and widely known method in seismology called ‘“refelctivity method”
[45]. In this application we assume to collect data from 4 different stations in each
displacement direction (N-E-Z). These stations are located at z = 0 m from the
Earth’s surface and we can express their positions with respect to the epicenter of
the earthquake in polar coordinates: station 1 - r; = 5.6 km, 6; = 60 deg; station
2 - ry = 3.5 km,f0; = 110deg; station 3 - r3 = 4.1 km, #3 = 250 deg; station 4 -
ry = 5.3 km, 64 = 280 deg. The source is located at 1.1 km depth with duration 0.01 s.
The entire waveform is recorded for 8.192 s, while we will only use the portion between
1 s and 7 s for the inversion. Model misspecification will be introduced by using a

different velocity model for the data-generating process vs. the inference process.

We will now describe the velocity models that will be used throughout this thesis to
create both well-specified and misspecified inference settings. In all of our experiments
we will use a four-layered media velocity model (table 3.2) for the inference process.
In a realistic setting, this model represents the analyst’s best attempt at describing
the geophysical characteristics of the terrain of interest. We call this model Vy,, . For
the data-generating process we will instead use a model that exhibits 3 layers instead
of 4, as specified in table 3.3. We call this model V3, . Note that the V,/V; ration

has been kept constant across the models.

Note that the V,,/V; ration has been kept constant across the models.

Nbr. Thickness V), Vs p o Qp Qs
kem km/s km/s g/em3

1 0.5 25 1.00 20 40 20

2 0.5 3.0 150 2.0 40 20

3 0.5 3.5 175 20 40 20

4 1.0 5.5 275 2.0 40 20

Table 3.2: Layer model used for inference.
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Nbr. Thickness V, Vs p Qp Qs
km km/s km/s g/em?

1 0.8 25 1.00 2.0 40 20

2 1 3.2 160 2.0 40 20

3 0.7 5.5 275 2.0 40 20

Table 3.3: Layer model used for data generation

The objective is to test whether the TL distance performs better in terms of
recovering the correct value of the moment tensor my,,. compared to the the implicitly

induced ¢, norm of the additive Gaussian model (as described in 3.19).

Experiment 1 set-up

We first test the TL distance by examining its behavior in the misspecification setting

as described in the experiment 1 prospect.

Experiment 1 Inference Procedure

1: Set (Strike, Dip, Rake) = (300°,20°,150°) — myyye = [-0.50, 0.18, 0.32, 0.01, 0.74, -0.51];
2: Generate data y according to:

Y = G(Xtrue, Vi, t) - M + € where: e ~ N (0,0°]) (3.19)

3: Estimate the posterior p(m|y) assuming the following model for the data:

u = G(Xyrue, Va,,,, t) - m” +e where: e ~ N(0,071) (3.20)

The posterior will be a joint posterior over the 6 dimensional space of the moment
tensor components (generally correlated). In order to evaluate the impact of the
choice of the misfit statistic on the solution of the problem just described, we will

integrate both the classic /5 misfit measure as well as the TL-based distance into the
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pseudo-likelihood presented in the previous section. More explicitly:

l: p(y*lm") o exp (—s|ly* — u”|3); (3.21)

TLy: p(y*|m*) ocexp (—s TLy(y", u")); (3.22)

The TL-based likelihood is the one derived in (3.8), where the parameter s acts as
a scaling parameter. The ¢y-based likelihood is derived by simply substituting the
{5 to the TLy misfit in the Gibbs posterior, although it is important to note that its
analytical form corresponds exactly to the one that could be obtained by conditioning
on the model parameters, starting from equations 3.19. In this case the s parameter
could be directly interpreted as the model variance and would not need to be estimated
through a hierarchical procedure (if assumed to be known). For consistency with the
TL case, however, we treat it as a hyper-parameter and leave the discussion for the
analytical solution of the linear Gaussian inverse problem for the end of this section.
At the end of the experiment we will therefore have one posterior for each of the

following cases:

o pr(y"|m"); (3.23)

TLs: prr, (y¥|mF). (3.24)

Before discussing the results we briefly describe the settings for the actual algorithm

used for Bayesian inversion.

Algorithm As already mentioned before, we implemented a Metropolis-within Gibbs
scheme that updates m with a classic adaptive MCMC step, while for s it exploits the
conjugacy of the Gamma prior. In particular we can sample s through a Gibbs update,
meaning we can sample from the full conditional p(s/m,y) = Gamma(a, b+ ((y,u)).
The term ¢(y,u) stands for whichever distance measure we are considering, either (o
or TLy. The coefficients a and b are the shape and rate parameter of the Gamma

prior on s.
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Prior on moment tensor For the moment tensor prior we adopt a uniform distri-

bution on the 6-dimensional ¢, unit ball (i.e., U(||m|| < 1)).

Prior on s We set a Gamma prior on the scaling parameter s: Gamma(a,b). The
rationale behind the choice for the shape (a) and rate (b) parameters is as follows:
in order for exp {—s-¢(y,u)} not to concentrate around 0 or +oo for any value of
proposed m, the monomial s - ¢(y, u) needs to take values within the range [—10, 10],
at least for a subset of ||m||,, < 1. Depending on the average magnitude of the

distance measure ¢(y,u), the Gamma prior must be chosen such that:
O(Spost> ’ O(E(Y7 Ll)) ~ O(l) (325)

where s,,5 is the s sampled from the conjugate posterior (i.e., sy ~ Gamma(a,b +

{(y,u))); In our experiments, for both modes of misspecification we have that:
O((y,n)) ~ 1072 (3.26)

which in turn requires:

O(8post) = 107 (3.27)

Since E(spost) = a-(b+ £(y,u)) " and V(s,05) = a-(b + £(y,u)) ?, then an appropriate
choice for the shape and scale parameter would be ¢ = 100,06 = 1. Given that

O(l(y,u)) =~ 1072, this will result in:
E(8post) = 10 (3.28)
and approximately equal value for the variance.

Results

We want to compare two sets of 6 posterior distributions py,, prr, and understand

if and how the TL-based likelihood performed better than the /5 based one. At
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this stage we can afford to visually inspect each of the posterior distributions and
provide a qualitative judgement. In the following section however, we will broaden the
experimental set-up and discuss ways of carrying out more systematic and quantitative

evaluations of the quality of the posterior distributions.

In Figure 3-11 the marginals of py,, prr, for each moment tensor component are
shown side-by-side to facilitate comparison. It is quite clear how the TL-based
posteriors seem to provide a better representation of the uncertainty around the
true parameter values (red-lines). By “better” we mean in this case that TL-based
posteriors are usually more centered around the truth and exhibit less spread around it.
In contrast the f-based posteriors are almost uniform for some parameters (my,,, m..)

or completely off-centered for others (m.., m,.). These Figures however represent one
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Figure 3-11: Sample py,, prr, posteriors for misspecified model

specific instantiation of the problem and are therefore only anecdotal. In the following
section a more systematic investigation of the behavior of the TL-distance compared
to the ¢, misfit will be conducted. In particular we will attempt to answer the more

fundamental question of how to evaluate the quality of posterior distributions and,
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more concretely, how to compare or rank them.

Experimental set-up extension for posterior scoring

We want to include CRPS scores in our experimental set-up to quantitatively assess the
performance of the TL-misfit vs. the classic {5 distance under different instantiations
of my,,. for the velocity model configurations Vy,, and V3, defined in the previous

section (experiment 2)

Experiment 2 CRPS scoring

1: for k < N,, do
2. Draw m® _ ~ U(||jml| < 1);

true
3. Generate data y* according to:

y" = G(Xtrue, Vi, t) mﬁie +e where: e ~ N(0,0°]); (3.29)

4:  Estimate the posteriors py,(m*|y*) and prr,(m*|y*) assuming the following
model for the data:

" = G(Xirye, Vs, t) - m’ + e where: e ~ N(0, %) (3.30)

o

Calculate the CRPS for the k-th posterior
: end for

(=2}

The results from this experiment can be analyzed in multiple ways, each revealing
different pieces of information. First, for each of the posteriors obtained in experiment

2 we can calculate the CRPS score as follows:

N

1
CRPS - N Z(F(mzb’obs) - ILHli>rﬂtrue)27 (331>

7

where F' is the empirical cumulative distribution function of a given posterior and
the step function is the ideal CDF for the true value of moment tensor. As a first

comparison measure we calculate the mean CRPS for each of the moment tensor
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components obtained for both the /5 and TL-based posteriors.

Nrep

> CRPS;. (3.32)

Tep k=1

CRPS =

We report them in Figure 3-12 together with the associated estimator variance:

Nrep

1 Z (CRPS;, — CRPS)?
OCRPS — .
\/ Nrep k=1 N?"ep -1

In order to make the comparison more significant we have repeated experiment 2 in a

(3.33)

well-specified setting, i.e., with both the data and inference model Green’s functions
set t0 G(Xgrue, V4lay, t) and while using both the ¢, and TL distance as misfit statistics.

While in the well-specified setting both distances exhibit similar low scores, in the
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Figure 3-12: Mean CRPS scores in the well-specified (WS) and misspecified (MS) case
and relative error bars.

misspecified settings the difference between the scores obtained with the ¢y distance
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and those obtained with the TL distance is quite significant. The distributions p%g
and pj, achieve on average higher scores than the py;, and pj;, which indicates higher
bias and/or variability. Average scores however do not provide a comprehensive image
of the TL vs. {5 performance in terms of uncertainty quantification. Assuming that,
as shown by the mean values, their behavior is almost identical in the well specified
case, we focus on the misspecified setting. In this case, we are particularly interested
in answering the following question: given the same my,,, and the same velocity
misspecification, how do the CRPS associated to the />-based posterior compare to
those obtained in the TLy-based one? In particular, are the CRPS scores obtained for
the pg, (m*|y*) always higher than those obtained for the prr,(m*|y*)? To provide a
comprehensive and visual answer to this question we build the graph in Figure 3-13.
For some randomly sampled pairs of CRPS, and every component of the moment

tensor, we calculate the relative difference A, and mid-point Ay:

Aj = CRPS?2 — CRPS} ™ (3.34)

CRPSy + CRPS; "

Ay = 5

(3.35)

We then graph this information in the following fashion:

1. we select the moment tensor component of interest (horizontal axis);

2. if Ay > 0, we plot a green box of height A, with the centroid y-coordinate set
at Aj. The width of the box is set to fixed value for graphical purposes only;

3. if A, < 0, we proceed as above, except that we will use the color red;

4. each box is filled with translucent color, which will produce darker shaded regions

where multiple A, will be centered around.

The characteristics of this plot allow for the following interpretation: the boxes being
translucent, if in the majority of cases the difference in scores between the ¢, and

TL, posteriors is positive, then we will see a darker shade of green above the z-axis.
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If instead the difference in scores is predominantly negative, the we will see darker
shades of red. Positive A are predominant for all moment tensor components except
ma3, showing a superior performance in terms of predictive capability of the TL-based

posteriors. To achieve an even deeper analysis of the TL vs. {5 performance as a

1.2
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BN (o)) Qo

O
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Figure 3-13: Box-plot for A; for each moment tensor component in experiment 2.
Red: TL score higher than /5, green vice-versa

misfit, we also plotted a histogram of the A, per each moment tensor component
(color-coded in the histogram) as well as a scatter plot of the Ay vs. Aj. While the
histograms in Figure 3-14 clearly confirm the prevailing positive nature of the Ay
already discussed in Figure 3-13, the scatter plots in Figure 3-15 provide additional
information on the distribution of the Aj and the respective average score values Ay.
One trend worth of observation is the fact that the differences in CRPS are much
broader when positive, i.e., when the TL performance is superior, vs. when the /5

is performing better, in which case the difference in score is lower. We conclude by
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tabulating the value of the estimated mean of A, and relative standard deviation for

each moment tensor component (Table 3.4).
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Figure 3-14: Histograms for A for each moment tensor component, arranged in a

moment tensor matrix format for experiment 2.

Hierarchical model and analytical solution

In the previous section, we mentioned that in a well-specified setting it is possible to

obtain an analytical solution to the linear-Gaussian inverse problem. In fact, assuming

the noise level is known and fixed (i.e., ¥ = ¢°I) and an unbounded improper uniform

prior, the posterior distribution is a truncated Gaussian with mean and variance as

follows:

mly, G(Xpue, Virwe) ~ N((GTG) Gy, o*(GTG) ). (3.36)
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Figure 3-15: Scatter plot of A, vs. y-coordinate set at A, for experiment 2.

Intuitively, this model should exhibit less variability with respect to the corresponding
hierarchical one since the variance is known and there is also no need to add the
scaling parameter s. The likelihood function inherently handles the scaling of the
data-model misfit. We therefore repeat experiment 2 with the well specified velocity
model and by using the analytic solution for the inverse problem. We then proceed
with the calculation of the mean CRPS scores for this newly obtained set of posterior
distributions and plot them against the ones coming from the hierarchical models
(Figure 3-16). The analytical solution scores are expectedly much lower than the ones
obtained in the misspecified case as well as those obtained in the well-specified case
with a hierarchical model. They also exhibit much less variance. This result confirms
the intuition that a less uncertain model produces better posteriors than a model
that, from a theoretical standpoint, embodies more uncertainty given an additional

parameter to be estimated. This behaviour can be further explained by referring to
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Figure 3-16: Mean CRPS scores in the well-specified (WS) and misspecified (MS) case
and relative error bars, with the additional analytic solution to the WS case.

the scoring rules presented in section 3.3.2. Experiment 3 describes the steps necessary
to calculate quantile rank statistics and associated histograms for our specific test-case.

We plotted the quantile rank statistics histogram for our experiment in the well
specified case when using the ¢, misfit both with the hierarchical model (Figure 3-18)
and with the analytical solution (Figure 3-17). It can be observed that while with the
analytical solution the histogram is uniform as expected, in the hierarchical model case
it assumes a relatively narrow delta-shape around the center value 0.5. This result is
consistent with the associated CRPSs: the analytical solution scores lower than the
hierarchical model since it is behaves “perfectly” in Bayesian terms, i.e., exhibits good
frequentist coverage over repeated realizations. Concretely, this means that while the
true value does not always sit in the middle of the posterior distribution, the variance
reduction spans several orders of magnitude compensating the increased bias. The
hierarchical model posterior instead is more consistently centered around my,,. at the

price of over-dispersion, which induces a higher score. For completeness it is also
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Experiment 3 Quantile rank statistics

1. for k < N,, do
2. Draw mf , ~ U(||m||, < 1)

true
3:  Generate data y* according to:

y" = G(Xtrues Virwe, t) - ml . +e where: e ~ N(0, 0°T) (3.37)

4:  Estimate the posterior p(m*|y*) assuming the following model for the data
u* = G(Xgrue, Virwe, t) - m? + e where: e ~ N (0, 0%1)

5. Draw M samples m; from the posterior distribution p(m*|y*);

6:  Calculate: g = 2 SN Tinsmoe

7: end for

interesting to check what the quantile rank histograms look like in the misspecified
case as well. Figures 3-19 and 3-20 show the histograms in these cases. The results
can be interpreted in the following way: under conditions of model misspecification
the posterior distributions are, on average, biased and concentrate around the wrong
values often enough for the histogram to assume the characteristic U-shape. This
behavior is consistent with the Bernstein-Von Mises theorem discussed in section
2.1.1. While the histograms under these two cases look fairly similar it is worth
nothing that the almost uniform histogram for component ms, in the ¢y case is a
byproduct of the fact that the associated posteriors are almost uniform. In fact,
when a posterior is always uniform (bounded) and the true value is drawn from a
uniform (bounded) prior, then the relative quantile rank histogram will also always
be uniform. This may once again appear as a contradiction between quantile-rank
checks that reward a totally uninformative posterior versus another kind of posterior
checks (CRPS) that instead penalize the same posterior, since it is unusable from a
forecasting point of view. Regardless of the specific moment tensor component, the
CRPS clearly highlight a difference between the quality of the posterior distributions
obtained with the /5 distance and the ones based on the TL, in a misspecified setting.
However, the quantile rank histograms only slightly favor the use of optimal transport.
This indicates that while the TLy can make inference more robust to misspecification

in terms of predictive capabilities, it does not eliminate the misspecification itself.
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Figure 3-17: Quantile rank-histogram analytical model - well specified setting.

Trough this last exercise we have observed that that different posterior quality checks
reward different behaviors of the posterior. In this regard, the rank-histograms are a
more comprehensive measure of the “correctness” of an inference framework compared
to the CRPS scores. However, as it often occurs in science and engineering, a “wrong”
model may be more useful, under specific circumstances, than a theoretically “sound”

one.

3.5 Conclusions

In this chapter we outlined the proposed methodology of this thesis for robust Bayesian
inference based on optimal transport distances. In particular, we discussed the
characteristics of the transport-Lagrangian distance, some algorithms to compute
it, as well as the benefits it can bring to a specific category of misspecified inverse

problems. We proposed and tested a number of statistically coherent frameworks for
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Figure 3-18: Quantile rank-histogram hierarchical model - well specified setting.

the integration of this distance in a Bayesian (or pseudo-Bayes) inference process.
As an integral part of the framework, we also discussed some evaluation criteria to
compare the statistical quality of the results obtained with the newly proposed method
vs. those based on a classic />-misfit. We also presented a proof-of-concept application

of the method for moment tensor inversion with layered-media velocity models.
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Figure 3-19: Quantile rank-histogram hierarchical model - misspecified setting /5.

MODEL DATA TEST ALGORITHM DISTANCE
Ref. Qol

Al MCMC lo
sin(wt+¢)+e  sin(3t)+e A2 " MCMC TL
B A3 ABC t,
e~N(0,0.1) ¢=0.7 A4 ABC TL
B.1 MCMC Uy
sin(wt + ¢) + e sin(2t) +e  B.2 s MCMC TL
B.3 ABC lo
e~N(0,0.1) w~U(19,2.1) B ABC TIL,
C1 MCMC lo
Asin(wt) +e  3sin(2t)+e C.2 A MCMC TL
C.3 ABC Uy
e~N(0,0.1) w~U(1,3) C 4 ABC TL
D.1 MCMC Uy
Asin(2t +¢) +e 3sin(2t)+e D.2 A MCMC TL
D.3 ABC lo
e~N(0,0.1) ¢ ~U(—m,+n) D4 ABC TIL,

Table 3.1: Inference tests with TL and /5 distance as misfit function
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Parameter mii %y mss mio mis mas

Mean A, 0.0396 0.0158 0.0237 0.0709 -0.0066 0.0171
Std. 0.0021  0.0009 0.0021 0.0029 0.0021 0.001

Table 3.4: Mean A, values and associated estimator standard deviation - experiment
2.

Figure 3-20: Quantile rank-histogram hierarchical model - misspecified setting TL, .
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Chapter 4

An application: the SEG Overthrust

model

Seismic inverse problems are a broad class of inverse problems that can be heavily
impacted by model error. In this chapter we present a more realistic and complex
example of velocity model misspecification in moment tensor inversion. For this
specific inverse problem, a common approach is to generate model waveforms using
a layered medium model (e.g., [34]). This model is often derived from well logs
or from some other model of the subsurface, such as one derived from arrival-time
tomography [59]. The model is an imperfect representation of the subsurface and
cannot properly account for the 3D structure of a region. This adds considerable
uncertainty to the results of moment tensor inversion. Looking at the effects of layered
medium approximations to 3D velocity models is also, at present, an undeveloped area

of research [133, 123]. This chapter will be articulated around the following topics:

e description of the velocity model setup and general inference scheme;
e discussion of numerical results;
e implications of the results on the recovery of non-double couple components in

moment tensor inversion.
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4.1 Velocity model and moment tensor setup

Our earthquakes are simulated with the 3D velocity model derived from the
SEG/EAGE Overthrust Model |64, 7, 5, 6]. We choose this model because it contains
structural complexity that, we assumed, cannot be easily represented using layered-
medium models. We use a 15 by 15 km region located in the Southwestern portion of
the Overthrust Model. The model extends to a depth of 4.7 km. Since only the P-wave
velocity (V) model is given, we derive the S-wave velocity (V;) using a variable V,,/Vj
ratio in the range |2, 1.7], where V},/V; near the surface is close to 2 and it approaches
1.7 at the bottom of the model. The density model is obtained using the Gardner’s
relation (p = 310V,)*°).

Figure 4-1 shows the velocity at the source depth (1.1 km), the positions of the
receivers (blue), which are located at the surface, and the source (yellow). Figure
4-2 shows East-West cross sections of the model taken at the source location, which
is at the position of the yellow star. The source position was taken to be near the
fault that cuts the anticline. We used a total of six stations located at the surface
and surrounding the source. We simulated three-component waveforms for a single
earthquake (strike, dip, rake = 40°, 50°, 280°, respectively) in the elastic 3D model
using SPECFEM [74]. The source time history was taken to be a pulse that is
nearly white between frequencies of approximately 1 and 13 Hz. These waveforms
are taken as our earthquake waveforms. We derived layered-medium models to
be representations of the 3D structure obtained from well logs. We took vertical
profiles of the velocity and density models. We averaged the P-wave velocity over
500 m depth intervals to approximate how one might obtain a layered medium model
from a well log. To this averaged (smoothed) model we added some noise equal to
2% at the top of the model and 10% at the base of the model to mimic increasing
uncertainty in well logs with increasing depth. Further, we used a constant ratio
of V,,/Vs of 1.73 to get the S-wave velocity. The density was taken to be constant
at 2000 km/m3. We used vertical profiles at each station and the source location

to yield a total of 7 layered velocity models. Figure 4-3 shows the source well-log
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Figure 4-1: Horizontal cross section of the P-velocity model at the source depth (yellow
dot). Locations of stations at the surface of the model are shown in blue.
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Figure 4-2: East-West vertical cross sections through SEG/EAGE Overthrust model
at the position of the source (yellow star). Upper plot shows P-velocity model and
lower plot shows ratio of P to S-wave velocities.

velocity profile (on the right) as well as the layered-medium models obtained by

averaging model properties over depth (and adding some noise) at each of the other
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well-logs locations. We simulated 3-component waveforms at each station for each of
the seven velocity models using Axitra, a discrete-wavenumber reflectivity modeling
approach [28]. We initially validated that waveforms simulated for an earthquake in
a layered-medium model using both SPECFEM and Axitra were visually identical.
Waveforms for each of the six moment tensor components at each station were then
simulated using layered-medium models using the identical source time history as was
used for the 3D earthquake simulation using SPECFEM. These waveforms were used
for the inversion. Waveforms simulated using an identical layered medium model were

used as moment-tensor Green’s functions for each inversion test.

Vp Vp
3 4 5 6 3 4 5 6
0 : 0—t ¥ |

NE2 Noisy Smoothed Model

SE2
SOUrce
14 ' 14 \—

H NW2 Smoothed Model

Depth in km
»
Depth in km
‘o

Noisy Models at All Receivers

Figure 4-3: On the right: vertical velocity profile (“well log”) of 3D model taken at
source location (green) with smoothed (black) and noisy (red) smoothed profiles used
to build the layered- media models. On the left: velocity profiles for layered medium
models at each station location.
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Figure 4-4: Source well log velocity model: matrix plot of the 1D and 2D marginal
posteriors for each moment tensor component and misfit measure

4.2 Numerical results

Given the simulated data from the 3D model, we recover the moment tensor using
each of the 7 layered velocity models, with either the TL or /5 distance. We illustrate
the one and two-parameter marginal posteriors of m for the source velocity model in
Figure 4-4. The TL approach provides significantly better recovery: it exhibits smaller
variance and closer alignment with my,... We also report the combined TL-based and
ly-based posteriors for the remaining velocity models in Figures 4-5, 4-6, 4-7, 4-8, 4-9,
4-10. For a more quantitative comparison, we report the average CRPS scores for

each velocity model in Table 4.1.

For all of the alternative velocity models, the TL misfit provides better inference
