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Abstract

Model misspecification constitutes a major obstacle to reliable inference in many
problems. In the Bayesian setting, model misspecification can lead to inconsistency as
well as overconfidence in the posterior distribution associated with any quantity of
interest, i.e., under-reporting of uncertainty.

This thesis develops a Bayesian framework to reduce the impact of a type of model
misspecification arising in inference problems involving time series data: unmodeled
time warping between the observed and modeled data. Inference problems involving
dynamical systems, signal processing, and more generally functional data can be
affected by this type of misspecification. Inverse problems in seismology are an
important example of this class: inaccuracies in characterizing the complex, spatially
heterogeneous propagation velocities of seismic waves can lead to error in their modeled
time evolution. Data are insufficient to constrain these propagation velocities, and
therefore we instead seek robustness to model error. Instrumental to our approach is
the use of transport–Lagrangian (TL) distances as loss/misfit functions: such distances
can be understood as “graph-space” optimal transport distances, and they naturally
disregard certain features of the data that are more sensitive to time warping. We
show that, compared to standard misfit functions, they produce posterior distributions
that are both less biased and less dispersed.

In particular, we use moment tensor inversion, a seismic inverse problem, as our
primary motivating application and demonstrate improved inversion performance of
the TL loss—by a variety of statistical and physical metrics—for a range of increasingly
complex inversion and misspecification scenarios. At the same time, we address several
broader methodological issues. First, in the absence of a tractable expression for a
TL-based likelihood, we construct a consistent prior-to-posterior update using the
notion of a Gibbs posterior. We then compare the impact of different loss functions
on the Gibbs posterior through a broader exploration of what constitutes “good”
inference in the misspecified setting, via several statistical scoring rules and rank
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statistics, as well as application-specific physical criteria. In an effort to link our
generalized (Gibbs) Bayesian approach to a more traditional Bayesian setting, we
also conduct an analytical and numerical investigation of statistical properties of the
transport-Lagrangian distance between random noisy signals.

As a complement to Bayesian inversion, we also demonstrate the utility of optimal
transport distances for frequentist regression. We study the linear regression model
with TL loss, describe the geometry of the associated mixed-integer optimization
problem, and propose dedicated algorithms that exploit its underlying structure.
We then compare TL linear regression with classical linear regression in several
applications.

Finally, we discuss potential generalizations of TL distances to include the notion of
“shape” through time series embeddings, as well as possible extensions of the proposed
framework to other forms of model misspecification.

Thesis Supervisor: Youssef M. Marzouk
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Motivation and outline

1.1 Introducing the problem: model misspecifica-

tion, misfit measures, and time series

Model error or misspecification is a determining factor in the quality of the solution

of an inverse problem. Consistency of the Bayesian framework, in particular, heavily

relies on the characterization of the observation error and modeling of the underlying

physical phenomenon. This thesis focuses on a particular kind of model misspecification

that arises when dealing with time series data or data that requires some kind of

discretization over time or space (e.g., images). In such cases a vector or a matrix

contains the intensity or amplitude of the object of interest at specific time or space

coordinates and it is assumed that this mapping is consistent between the observed

and modeled data. In other words, it is assumed that no kind of warping is necessary

to map the discretized point of the modeled data to the observed one (or vice versa).

Under this premise, the use of `p norms as misfit functions is a natural choice: the value

observed at time-index i is mapped (compared) to that of the modeled signal at the

same time index i. An `2-norm misfit function is particularly common, as it matches

the notion of additive Gaussian noise. In reality, it may often occur that portions

of the time series are anticipated or delayed with respect to the model predictions
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due to various kinds of misspecification: from incorrect modeling of observational

error to deficient modeling of the underlying physics. When this occurs the use of `p

norms can have unintended consequences: two signals or images that may look very

similar in “shape” to the human observer may look far apart under an `p norm due to

misalignment in the time-space coordinates. These norms, in fact, practically ignore

the relationship between the different coordinate values and treat the time series as a

collection of uni-dimensional data points.

In the context of seismic waveform inversion, for example, this kind of misspeci-

fication is particularly relevant when it comes to modeling the propagation velocity

V of a seismic wave. Due to the extreme difficulties in characterizing the subsurface

medium (e.g., different rock types, three-dimensional spatial heterogeneities) any

velocity model is generally approximate and inaccurate. Mischaracterization of V,

however, can impact one’s ability to infer other quantities of interest such as the

hypocenter x and the moment tensor m (focal mechanism) of a seismic event. In

deterministic full-waveform-inversion this often results in the well known phenomenon

of cycle-skipping, which traps optimizers in local minima [47]. In the Bayesian setting,

model misspecification can lead, in a worst case scenario, to overconfidence in the

posterior distribution, i.e., under-reporting of uncertainty [56, 72].

The most direct approach to mitigating the impact of model misspecification is to

introduce better physical models (when feasible) or improved statistical discrepancy

models. These approaches, however, typically increase computational cost and may

compromise parameter identifiability. As an example, in moment tensor inversion,

using a simple layered-medium model for the propagation velocity can be orders of

magnitude less expensive to run than a fully three-dimensional elastic wave propagation

model. Moreover, such sophisticated models are typically not available for the majority

of sites, and data for learning the velocity jointly with the focal mechanism in such

a three-dimensional setting may be entirely unavailable, and confounded with the

estimation of the focal mechanism itself.

In this thesis we instead investigate the benefits of using an alternative, optimal
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transport (OT) based, misfit function to measure discrepancies between observed

and model predicted data. Recent literature has demonstrated the applicability of

OT-based distances to seismic imaging problems in a deterministic setting [42, ?, 87,

88, 154]. In this context, OT has been shown to produce drastic reductions in the non-

convexity of the objective function, especially when compared to `p distances. A more

convex misfit function also implies a more robust solution to the inverse problem when

subject to uncertainties in the input parameters. Rigorous mathematical treatment

[43] has in fact shown that 1-D quadratic Wasserstein distances (a subset of OT

distances) are convex functions with respect to dilation and translation when applied

to probability density functions. In order for this to remain valid for generic signals

as well, it is however necessary to normalize and positivize them accordingly.

This last requirement introduces data transformations that are not typically

justifiable within the physics of the problem. We therefore propose to focus on a

particular case of Wasserstein distance that does not require signal positivation and

normalization, and therefore makes it more suitable to deal with seismic waves. This

distance is referred to as the transport–Lagrangian (TL) distance [128, 129, 73] and

can be interpreted as the result of solving an optimal transport (OT) problem between

the graphs of two functions.

While the benefits of using this kind of distance have been already explored in a

number of deterministic inverse problems and applications [128], including seismology

[87, 88], in this thesis we formulate and explore its integration within a fully Bayesian

framework. Within this setup, we interpret the TL distance as a tool to tackle a

broader issue than the cycle-skipping issue highlighted in the deterministic literature

on full waveform inversion (FWI). More precisely, we look at the TL distance as a

data “feature extractor” that deliberately disregards information not relevant to the

inference of a particular quantity of interest, minimizing the impact of uncertainties

in the model.
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1.2 Thesis outline and contributions

The first step in the development of a coherent Bayesian procedure is to establish a

statistical model for the phenomenon of interest and then to derive the associated

likelihood function. We maintain the classical additive Gaussian noise setup, which

normally corresponds to an `2 norm misfit in the exponent of the Gaussian probability

density function (PDF). Instead, however, we introduce the TL distance as our misfit

statistic. For such a statistic, it is not straightforward to characterize the conditional

distribution of the distance given a particular value of model parameters and a model

for the additive Gaussian noise. We discuss some results on this topic from recent

literature [4, 16, 94, 37] and propose the use of so-called Gibbs posteriors, and their

interpretation in the misspecified context. We also derive with more detail certain

statistical properties and behaviors of properly defined TL-based likelihood function,

including a closed form expression for it.

Once the framework is defined, it is important to choose some criteria to quantita-

tively assess its performance. To this purpose, we propose a number of quantitative

metrics to characterize the kind and degree of improvement introduced by the TL

distance. We compare the resulting posterior distributions to those obtained by using

classic `2-based Bayesian frameworks. We emphasize that there is no unique way

to establish in what respect one posterior distribution is better than another, and

if so, how this depends on the specific use that that the analyst intends to make of

it. For this reason, we look at two different scoring rules that exist in the literature.

Continuous rank probability scores (CRPS) [52, 51] effectively capture two important

qualities a posterior distribution needs to have in order to be used as a practical

forecaster: be sufficiently localized (i.e., low variance) and contain the true value of

the quantity of interest within its support, preferably in high-probability regions (i.e.,

low bias). The perfect forecaster would therefore be a delta distribution located at

the true value of the quantity of interest θ: δ(θ)θ=θtrue . Aside from CRPS, we also

discuss ways of checking the self consistency of the inference procedure, specifically

in the case of the TL-based likelihood function. For this purpose we focus on recent

23



literature proposed around the concept of rank histograms [126, 27]. These are checks

on the frequentist behavior of Bayesian credible intervals and entirely within-model

assessment tools. The objective is to verify whether the inference procedure shows

any bias in reporting uncertainty around certain regions of the parameter space.

As the main testbed for the proposed framework, we construct several instantiations

of the seismic moment tensor estimation problem in which the data generating process

relies on a different velocity model V than the one used for modeling predicted

waveforms. Our empirical studies exhibit increasing levels of complexity and realism.

Overall, we will show that the TL-based likelihood is less sensitive to the nuisance effect

introduced by the misspecified V and allows for the construction of more informative

posterior distributions on m.

Outside the domain of Bayesian inversion, misfit measures for time series and

images also play a central role in classic linear regression problems. These as well can

be affected by the misspecification issues described above and can benefit from the use

of alternative misfit functions. In this thesis we formulate a linear regression method

that instead uses the transport-Lagrangian (TL) distance as the objective function to

be minimized. The associated optimization problem exhibits an increased complexity

over the traditional least-squares setting, since it allows to optimize not only over

the regression coefficients, but also over the amount of transport to perform between

modeled and observed data. In other words it combines a continuous quadratic

program with a discrete optimal assignment problem. We will propose a dedicated

algorithm and test it on a number of applications.

All of the content described above is articulated and detailed within the following

chapters:

• Chapter 2 contains a more detailed and precise definition of the problem of

model misspecification, coupled with background literature on common

approaches to mitigate it. The principal motivating application for the

thesis, i.e., moment tensor inversion, is also presented, with an emphasis on

velocity model misspecification;
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• Chapter 3 presents the first main contribution of this thesis, i.e., the definition of

a consistentBayesian inference framework to incorporate optimal transport

distances as robust misfit measures. The transport-Lagrangian distance in

particular is defined and associated algorithms for its computation are discussed.

The second part of this chapter is dedicated to answering the question of how

to quantitatively evaluate or score posterior distributions. A number of

criteria are discussed as well as their advantages and disadvantages;

• Chapter 4 is dedicated to testing the proposed framework on a realistic velocity

model for moment tensor inversion: the SEG-EAGE Overthrust model.

Possible implications of the obtained results for some problems of geophysical

nature are also discussed;

• Chapter 5 is dedicated to characterizing a TL-based likelihood function

associated to an additive Gaussian noise model. Some asymptotic results are

proposed together with a closed form expression. Particular care is also taken in

describing the geometry of the statistical model;

• Chapter 6 presents some algorithmic considerations and formulations for a deter-

ministic, TL-based linear regression problem. Applications to demonstrate

the viability and usefulness of this approach are also described.

In the last chapter some conclusive remarks are gathered together with an outlook

on possible extensions and generalization of the proposed framework to other types of

model misspecification.
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Chapter 2

Model misspecification: background

2.1 Model misspecification in Bayesian inference and

inverse problems

Model misspecification in general can have a permanent impact on the ability to

perform accurate inference. In Bayesian inference this can manifest itself in the prior

not including the truth, or not placing sufficient probability on it. More often the

likelihood (which in this view includes the forward model) may not reflect the true

data-generating process. For finite-dimensional parameters, prior distributions are

perhaps less sensitive to this issue, since an infinite amount of data could in principle

correct any belief about the parameter values, unless the support of the prior does

not include the true parameter values.1 But consistency of the statistical model for

the data (as encapsulated in the likelihood function) with the true data-generating

process is essential to achieving meaningful results.

A vast and growing body of literature exists on model misspecification and strategies

for how to perform robust inference. In this chapter we will briefly recall what is

meant by model misspecification and discuss some of the most common approaches to
1This aspect is more complex and subtle in the infinite-dimensional setting of Bayesian non-

parametrics; see, e.g. [32, 99]. We will avoid these complexities and work only in the setting of
finite-dimensional parameters here.
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make Bayesian inference more robust.

2.1.1 The Bernstein–von Mises theorem

For a consistent Bayesian update, it is generally assumed that the distribution of the

data belongs to the family of parameterized distributions defined by the model. More

formally, if {yi}ni=1 is a sequence of i.i.d. random variables each with density g(yi)

(the true data distribution, generally unknown) and {f(yi|θ), θ ∈ Θ} is a family of

parameterized densities to approximate g(yi), we say that the model is well-specified

if there exists a θ0 ∈ Θ such that g(yi) = f(yi|θ0). Under such premises (and some

additional technical conditions), the standard Bernstein–von Mises theorem holds

[49, 135]. This result ensures that the posterior distribution, asymptotically in the

size of the data set n, becomes Gaussian and centered around the true parameter

value θ0. The scale of the posterior covariance shrinks, asymptotically at a 1/n rate,

and posterior credible intervals are guaranteed to have good frequentist coverage.

In contrast, when the model is misspecified, i.e., g(yi) 6= f(yi|θ) for any choice

of θ ∈ Θ, the posterior distribution will, asymptotically in n, become Gaussian but

centered around a value θ∗ which is [72]:

θ∗ = arg min
θ∈Θ
DKL(g(·) || f(·|θ)). (2.1)

where:

DKL(g(·) || f(·|θ)) =

∫ ∞
−∞

g(·) log

(
g(·)
f(·|θ)

)
d·

is the Kullback-Leibler divergence between two probability distributions. Minimizing

the KL divergence will not ensure that the model f(y|θ∗) will be able to reproduce the

data. Moreover, the KL distance does not necessarily have a unique minimizer over Θ.

The posterior covariance will still shrink towards zero as new data is incorporated, and

the posterior distribution may therefore provide a misleading—in particular, overly

confident—characterization of the uncertainty in the problem.
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2.1.2 Common approaches to mitigating model misspecifica-

tion

A certain amount of research has been conducted on how to make inference more robust

to model misspecification [149, 65, 24]. The classical approaches can be categorized in

two threads [119]:

• Better/more articulated physical modeling: either in terms of the actual physics

of the phenomenon or in terms of model selection/extension [107, 108, 21, 113];

• Better or more robust statistical modeling of the data: for instance, moving

beyond Gaussian additive noise, as in y(ti) = u(θ, ti) + εi for some parameters

θ, deterministic forward model u, Gaussian random variable εi, and covariate

values ti, i = 1 . . . n. Along these lines, the influential modeling approach of

[71] argues for the addition of a Gaussian process discrepancy model δ(t) to the

relationship above:

y(ti) = u(θ, ti) + δ(φ, ti) + εi (2.2)

where εi remains a Gaussian noise that represents measurement error and the

term δ(φ, t) is a Gaussian process, indexed by t, aimed at statistically modeling

additional mismatch or discrepancy between the observed data and model

predictions [71]. Here φ are additional parameters describing the Gaussian

discrepancy process, not necessarily related to θ.

Both strategies present advantages and disadvantages. Using more complex physical

models can of course increase the chances of matching the observations; however

this often comes at increased computational cost and/or parameter identifiability

issues. The same can be said for the term δ(φ, t), where the additional parameters

φ need to be estimated. An additional concern regarding this approach is that, by

calibrating φ through the data, it may be difficult to discern whether the term δ is only

compensating for missing statistical modeling or it is instead acting as a compensator
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for the physical model itself. Of similar flavor, although not intended to better capture

the statistical nature of the phenomenon, are methods that go under the name of

model space extension or source extension. In this case, additional degrees of freedom

are introduced at the beginning of the inversion to help fit the data. These additional

(and artificial) degrees of freedom are iteratively converged to 0 along the inversion

process. This approach has been of particular interest in seismic inverse problems

[125] (see next section for more details on this specific application). The main risk of

such approaches is that while the observed data may be better fitted, the prediction

capabilities outside the dataset itself may be extremely poor.

Some more recent approaches revolve around the concept of coarsening [93].

The key idea is to modify the standard Bayesian approach to introduce a posterior

distribution obtained by conditioning not on the event that the data are generated

by the model distribution, but instead on some measure of discrepancy between the

observed data y1:n and model-predicted data yθ1:n. In formulae:

p(θ | D(y1:n||yθ1:n) < ε) ∝ p(θ)P
[
D(y1:n||yθ1:n) < ε

]
, (2.3)

where y1:n are i.i.d. data, p(θ) is a prior probability density, and D is a generic measure

of discrepancy between the two (empirical) distributions of the data. When the

discrepancy measure is chosen to be an empirical approximation of the Kullback–Leibler

(KL) divergence, the posterior distribution defined in (2.3) can be approximated by:

p(θ | DnKL(y1:n||yθ1:n) < ε) ∝ p(θ)
n∏
i=1

f(yi|θ)ξ(n,ε). (2.4)

The parameter ξ(n, ε) ∈ (0, 1) effectively acts as a coarsener and should be chosen to

depend both on the number of samples and ε. Intuitively, the coarsening construction

produces the following effect: as long as some discrepancy is present between the

observed and model-predicted data, the posterior distribution will not concentrate

around a specific value, even with an infinite amount of data. This approach avoids

the undesirable posterior concentration described by the Bernstein–von Mises theorem
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under misspecification [72]. Although a technique is presented in [93] to choose ξ(n, ε)

in systematic way, the procedure still involves some discretionary aspects. A similar

“coarsening” of the posterior distribution is described in [96], where the shrinking

covariance matrix (with asymptotic scale 1/n) deriving from the asymptotically normal

behavior of the posterior distribution [72] is replaced by a covariance matrix that

takes into account the discrepancy between the predicted and observed data. This

covariance, called the “sandwich,” does not shrink even with infinite data as long as a

discrepancy between predictions and observations is present.

Another line of research to address model misspecification has its roots in decision

theory [96, 148, 55]. Here robustness to model misspecification is assessed by the means

of a minimax rule. In [148] a loss function L(θ) is defined with the model parameter θ

as an argument. A posterior distribution p(θ|y) is calculated given the best available

information in terms of modeling, data, and prior distributions. Subsequently, a set

ΓC of distributions pC(θ) is defined such that they all lie (in a KL sense) within a

radius C of the calculated posterior p(θ|y):

ΓC = {p(θ) : DKL(p(θ) ‖ p(θ|y)) ≤ C}. (2.5)

An upper bound is then calculated for the expected loss over all possible distributions

contained in ΓC :

psup
ΓC

= supp(θ)∈ΓC
Ep[L(θ)]. (2.6)

At this point, depending on whether the value of the maximum expected loss is

acceptable or not, the analyst can decide whether to improve the model further. The

definition of the loss function itself, and the maximum acceptable radius in which the

perturbed posterior can lie, are both the results of choices that the analyst must make

a priori, based on the specific scope of the study.

In the same fashion one can look for the minimizer of the expected loss, and thus

end up with a pair of distributions {psup
ΓC
, pinf

ΓC
} that characterize the robustness of the

posterior p(θ|y) for a given loss. This methodology is interesting as it presents a general
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framework under which many existing techniques (including the likelihood-coarsening

technique discussed above) can be incorporated. The definition of the loss function as

well as the set ΓC are flexible enough to incorporate the features the analyst cares

about.

Also based on decision-making strategies is the recent concept of “safe Bayes”

[55]. Here, the analyst defines a set P∗ of credible distributions on θ, according

to some criteria of interest. Informally, P∗ is a set that is subjectively believed to

contain the true posterior (i.e., the posterior on θ that would be obtained with a

well-specified model) ptrue(θ). After collecting some data, a standard (and in general

misspecified) Bayesian posterior distribution p(θ|y1:n) is obtained. This distribution,

called the pragmatic distribution, can be deemed as “safe” for predicting θ if the

following condition holds:

∀p ∈ P∗, Eθ∼p[θ] = Eθ∼p(θ|y1:n)[θ]. (2.7)

In words, this means the posterior update does not alter or bias the subjective

knowledge about θ in a any systematic way. While the notion of robustness is

here clearly established, the notion of “credible set” of posteriors relies on subjective

judgement by the analyst.

2.1.3 An alternative perspective

In this thesis, by taking the seismic inverse problem as a reference application, we

take a different perspective than those offered by the methodologies discussed so far.

Given that the model complexity of seismic wave propagation is already high enough,

more sophisticated modeling would not be the path to follow. Coarsening would

make inference more robust to model misspecification while keeping the complexity of

the model fixed. However, it would do so in a generalized fashion, by increasing the

variance of the posterior distribution without taking into account whether, for at least

a subset of the quantities of interest, it is still possible to capture the true parameter
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value. Decision theoretic frameworks, although theoretically sound, require a number

of assumptions to define with respect to what the posterior shall be considered robust

to. How to build credible sets and loss functions can in fact be a challenging problem

by itself, and the result consists again in adding more uncertainty to the posterior

distribution, rather than directly tackling model misspecification.

We will describe our approach to model misspecification beginning in Chapter 3

(noting it can be combined with the ones just described). Before that, we turn to some

review of the seismic inverse problem, which will make the preceding points clearer.

2.2 An example: full waveform inversion and incor-

rect velocity models

2.2.1 The seismic inverse problem

A major goal in seismology is to understand how seismic waves propagate through a

given subsurface medium (forward problem). Parallel to this is the so-called seismic

inverse problem, which relates the observed seismic displacements (typically recorded

by seismograms on the Earth’s surface) to their source (earthquake). Characterizing

earthquakes provides a better understanding of the earth processes and is of particular

interest in the oil and gas as well as geothermal industries, where small earthquakes

are artificially induced by activities such as mining, fluid injection and oil production.

At least two main subproblems can be identified within seismic inversion. The first

one aims at reconstructing the structure of the subsurface assuming the hypocenter of

the earthquake is correctly localized as well as its time-history appropriately described.

In this scenario, typical quantities of interest are velocity models, densities or other

elastodynamic properties of the subsurface. Another type of inversion targets instead

the characterization of the source. This includes the location of the source, its time-

signature and focal mechanism (moment tensor). In this dissertation, we will focus on

the second of the two problems just described.
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The equation at the heart of this problem is the momentum equation for a three-

dimensional elastic continuum:

ρ
∂2ui
∂t2

=
3∑
j=1

∂τij
∂xj

+ fi, i = 1, . . . , 3, (2.8)

where ρ(x) is the medium density, ui(x, t) is the displacement in direction i, τij(x, t)

is the ij-th element of the stress tensor, and fi(x, t) is the body force along direction

i. In order to solve the above equation for the displacements ui it is necessary to

relate the stress tensor elements to the ui-s, via Hooke’s law. In particular, for an

homogeneous and isotropic medium:

τij = λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.9)

where λ and µ are Lame’s parameters and δij = 1 for i = j and zero otherwise.

Solving (2.8) and (2.9) for the displacement fields ui(x, t), i = 1, . . . , 3, is generally

difficult [116]. One approach to solving this PDE is to express the solution ui(x, t)

(the displacement in direction i at location x and time t) in terms of the Green’s

function Gi(x,xs, V, t), which is the solution of the PDE at (x, t) when a unit impulse

is applied at xs (earthquake or source location) and t = 0, and when the velocity

model is V (x). The displacement due to a single seismic event at (xs, 0) can then be

expressed as:

ui(x, t) = Gi(x,xs, V, t) ·mT , (2.10)

where Gi is the Green’s function and m is the moment tensor, which represents the

force couples that represent an earthquake. In its most general form, m is a 3 × 3

symmetric matrix, meaning only six of its elements are independent. This allows one

to recast it as a 1× 6 vector m as indicated in (2.10), where Gi is also a 1× 6 vector

for any set of input values. Further simplifications and decompositions are possible

when the earthquake mechanisms are restricted to be of a particular type (e.g., double

couple).

The Green’s function Gi contains, implicitly, all the information relevant to the
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seismic phenomenon beyond the source term. This includes quantities such as the

location of the earthquake xs, the density ρ(x) or the propagation velocity fields of

the primary and secondary waves, V (x) = (Vp(x), Vs(x)) respectively, which in turn

can be determined by the characterization of the stiffness tensor when the medium

cannot be considered isotropic [3]. The objective of full seismic waveform inversion is

that of inferring one or a subset of these quantities of interest, given some observed

displacements yi(x, t) (normally recorded through seismograms positioned at given

locations on the field of interest). A typical choice is to invert for the velocity model.

Even though the velocity is in general not homogeneous with respect to x, in most

applications it is restricted to assume some fixed values within a certain portion or

layer of the terrain of interest, reducing the complexity of the model. For this reason

the notation is simplified to V (x) = V.

In this thesis, our seismic applications will focus on estimating the moment tensor

components, while considering all other parameters (particularly V and xs) fixed to

given values. We will generally refer to the Green’s function by making explicit its

dependence on the location of the source earthquake and the velocity model only. For

any time t, let u(t) be the vector containing the displacements for each direction and

each station/location of interest. If k is the number of stations and we consider all

three components of displacement, then u(t) ∈ R3k for any t. The Green’s function

then becomes a matrix-valued function: for any fixed set of arguments, it is a 3k × 6

matrix. We can now write:

u(t) = G(xs,V, t) ·mT , (2.11)

The Green’s function G is a nonlinear function of xs and V. This implies that the

objective function of a typical least squares minimization problem for these parameters

will most likely be non-convex and that, in a Bayesian setting, the full posterior

distribution p(xs,V,m|y) will be non-Gaussian.
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2.2.2 Velocity model uncertainty

Any velocity model is an imperfect representation of the subsurface and cannot properly

account for the 3D structure of a region. Inhomogeneities and the difficulty of directly

observing the Earth’s structure have induced seismologists to find alternative strategies

to velocity modeling. How to construct reliable models has been a longstanding issue

in seismology to which a definitive answer is yet to be provided [153, 120]. A common

approach that we will consider throughout this thesis is to generate model waveforms

using a layered medium model (e.g., [34]). This model is often derived from well

logs or from some other model of the subsurface, such as one derived from arrival-

time tomography [59] or kinematic source representation [111]. Of course, this adds

considerable uncertainty to the results of any associated inverse problem and, in

general, looking at the effects of layered medium approximations to 3D velocity models

is also at present an undeveloped area of research.

Because the propagation velocity of seismic waves impacts the timing at which

the waves reach the surface, velocity modeling errors can translate into the type of

misspecification outlined in the previous section. As an example, we report in 2-1 a

pair of waveforms—i.e., displacements ui(x, t), for some direction of displacement i

and a fixed surface location x - coming from two different velocity models: the one in

blue come from a 3D model and the one in orange come from a 2D layered-medium

velocity model built from well logs. It is evident that some kind of warping occurs

between the two traces, which are otherwise similar in “shape.”

2.2.3 Methods for solving the seismic inverse problem

We conclude this section with a survey of some common waveform inversion methods

that have been adopted, mainly in deterministic inversion. While none of these

methods specifically aims at tackling the problem of model error, the variety and

nature of the proposed approaches convey the complexity of the problem and are

symptoms of the issue this thesis tries to solve: model misspecification.
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Figure 2-1: Sample waveforms coming from two different velocity models

Local optimization based approaches

Waveform inversion started to become a problem of interest in seismology since the

introduction of seismograph networks capable of recording accurate seismic data

(both active and passive). The most traditional approach to seismic inversion is

non-probabilistic, i.e., the model parameters are recovered by optimizing a misfit

function defined over observed y(t) and model-predicted u(t) waveforms [141]:

M(θ) =M(y(t),u(θ, t)), (2.12)

where θ indicates any subset of the parameters of interest to be recovered (the velocity

field, earthquake location, moment tensor, density of the media, etc.). However, given

the complexity of the forward model and ill-posedness of the inverse problem, the

minimization ofM is often performed locally, meaning the solution is sought only in

the vicinity (∆θ = θ − θ0) of an initial model configuration u(θ0) [141]:

M(θ) =M(θ0 + ∆θ). (2.13)

Typically, misfit functions are chosen to be norms, with the squared `2 norm, as in a

least squares problem, being the most popular choice [98]. A number of techniques

(Newton, truncated Newton [91], Gauss-Newton, gradient or steepest descent) are
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used to solve, under various assumptions, the optimization problem. The ill-posedness

of the seismic inverse problem and associated non-convexity ofM(θ) has motivated

further attempts to constrain the number of possible solutions beyond the perturba-

tion/linearization methods just discussed. Regularization of the objective function

such as Tikhonov regularizers with various weighting (inverse covariance) matrices are

part of the classic repertoire [8, 9, 132]. Recent advances in compressed sensing and

the associated idea of randomized data sampling have also motivated approaches to

full-waveform inversion that look for for sparse solutions [152, 83, 77, 158].

Alternative measures of misfit have also been proposed such as the `1 norm, secant

and mixed `1–`2 norms (Huber penalty) [29], as well as optimal transport based misfit

functions [89, 25, 90, 92]. In [122] the authors proposed a general robust algorithmic

framework to account for different types of misfit functions and regularization terms.

The algorithm relies on quasi-Newton Hessian approximation methods to minimize

the misfit function and proximal gradient methods to minimize the regularizing terms.

Of similar flavor are cross-correlation approaches [136] together with deconvolution

approaches [80, 145, 58]. In both cases the aim is to minimize the impact of phase

traveltime differences, or relative phase shifts, while generally mitigating the well-

known phenomenon of cycle skipping [144]. With the same objective it is also worth

mentioning methods based on instantaneous phase differences and envelope ratios

between observed and synthetic seismograms [18, 109, 79].

Gradient-free methods have also been adopted. In the context of downhole micro-

seismic moment tensor inversion [46], a grid-search is performed over plausible event

locations and velocity models. The best fitting solution, in a least squares sense,

is then identified. In a similar fashion, a large body of literature exists on how to

constrain the number of feasible solutions by estimating source-receiver travel times

and rejecting solutions that are not compatible (ray-tracing techniques) [116].

Solutions of the problem both in the time and frequency domains have also been

attempted [156, 110, 104, 19, 68]. The advantage of using one method over the other

depends on several factors such as the type of data available (high/low frequency,
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noise level, etc.) as well as what kind of information is recovered in the inversion. In

[134], moment tensor inversion is performed through a two-step procedure involving

an inversion both in the time and frequency domains, exploiting the linearity of u(t)

in m when the velocity model and source location are fixed.

Multiscale or multifidelity approaches have also been adopted in the spirit of

mitigating the computational complexity and ill-posedness of the problem [104, 22].

Given recent advances in computational power, 3D full waveform inversion have

become customary in most applications, especially in industry [104, 90, 147, 139,

138, 57, 78, 155]. From a methodological perspective, however, most of the theory

developed I still anchored to 2D models [48].

The main bottleneck to the success of these approaches is often the accuracy of

the starting model, and the validity of assumptions underlying various simplifications

(e.g., linearization). It is hard to build a valid initial model for optimization, especially

when it comes to estimating the velocity V. Starting with a highly misspecified

model inevitably leads to bad parameter estimates. This problem is accentuated by

the fact that deterministic inversion typically yields only single-point estimates; the

uncertainty that surrounds the solution is largely ignored. We argue that a Bayesian

framework offers a more complete representation of one’s current state of knowledge,

and is particularly relevant in a misspecified setting.

Bayesian formulations

An extensive amount of work exists around full waveform inversion performed in a

Bayesian framework [81, 36, 53, 115, 107, 60, 157, 118, 67, 48]. As already stated

in the introduction, the most common statistical assumption regarding the relation

between observations and model predictions is that of additive Gaussian noise. As for

the prior distribution, its choice largely depend on the information available to analyst

prior to inversion. A central aspect of Bayesian computation in seismic inversion is

the computational cost associated with evaluating the posterior distribution and its

marginals. Characterizing the moments of the posterior distribution or calculating its
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normalization constant is often impossible analytically and involves high dimensional

integrals when performed numerically. For iterative methods, the computation of

the forward model at each iteration also poses computational challenges. In [115, 31]

a number of sampling approaches have been considered, from Metropolis-Hastings

Markov chain Monte Carlo (MCMC) to Gibbs sampling and other techniques. An

interesting approach to mitigate the dimensionality issue implicit in seismic Bayesian

inverse problems is the trans-dimensional Markov chain Monte Carlo sampler imple-

mented in [107]. This method represents a way to compromise between computational

cost and modeling accuracy. The cited work relies, however, on the parameterization

of the velocity field through wavelets, which represents itself a simplification of the

phenomenon. A similar approach for velocity and density recovery is also implemented

in [108] with similar results.

Given these challenges, Bayesian approaches to full waveform inversion have usually

required some degree of simplification of the problem to make it tractable. In [10] the

authors propose a Bayesian approach in which the forward model is linearized in the

velocity V. The error and the prior distribution are chosen to be Gaussian, which

allows the posterior distribution to be derived analytically. The results of this study

show that, given a synthetic data-set, although good agreement is found with the

correct solution, a signal to noise ratio of 15 (relatively weak noise) introduces high

degrees of uncertainty in the solution. The simplifications introduced are probably

partly responsible for these unsatisfactory results. In [127] the authors also linearize the

problem, but around the maximum a posteriori (MAP) parameter estimate. Despite

the simplification, the computational challenge of determining the MAP persists. It

involves a nonlinear and non-convex optimization problem and there is no guarantee

that the approximation will be good enough. Other Bayesian inversion attempts with

linearized models can be found in [60, 54]. An alternative consists in pre-computing the

forward model over a grid of possible parameter values [121]. While computationally

efficient, this approach poses the question of how fine the grid over the parameter

space has to be, and can quickly become impractical when performing multi-parameter

inversion.
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In [56] the authors attempted a full Bayesian inversion without any simplifica-

tion of the forward model or linearization around specific solutions. To overcome

the computational challenges and increase robustness of the solution, a number of

sampling strategies were implemented to exploit conditional linearities and associated

Gaussianities in the problem. These include marginal-then-conditional sampling,

pre-computing a library of velocity models and source locations, as well as coarsening

as described in [93]. The results achieved through this implementation are satisfactory

when the velocity is known and set to a specific value. As soon as uncertainty is

introduced in V, the solutions of the problem exhibit a high degree of instability,

indicating model misspecification issues.

More recent approaches have included a proof of concept study for Hamiltonian

Monte-Carlo [48] as well as an ensemble Kalman filtering approach applied to full

waveform inversion [130].

2.3 Conclusions

In this chapter we described the problem of model misspecification in Bayesian inference

both from a theoretical point of view as well in terms of its practical implications in

Bayesian inverse problems. We discussed the main strategies proposed so far in the

Bayesian literature to avoid over-concentration of posterior distributions. In relation

to these methods, we outlined a pathway to a different approach that relies on the

choice of specific misfit measures. Finally, we presented the main application of this

thesis: moment tensor inversion under misspecified velocity models. We discussed

what the misspecification implies in this context and how the problem has been tackled

both in the field of deterministic and Bayesian full-waveform-inversion.
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Chapter 3

Optimal transport misfit measures for

robust Bayesian inference

3.1 Optimal transport distances and time series

3.1.1 Motivation and background

Central to any inverse problem, both in the deterministic and Bayesian framework,

is the choice of a misfit function to compare model and predicted data. We have

described in the introduction how choosing this metric can play a determining role in

performing good inference, especially when dealing with time series. The following

discussion will therefore focus on this specific data type, except when stated otherwise.

The most recurrent choice is the squared `2 norm (as in a least squares problem),

which is also implicitly obtained by adopting the traditional likelihood model that

defines observations as model predictions plus a Gaussian noise that is independent of

the parameters. Yet any `p-norm, including the Euclidean distance `2, compares two

data vectors element-wise. This represents a limitation when data points represent

discretized signals, since they inherently exhibit a temporal structure that cannot be

captured by simply comparing them at common values of the time coordinate. In fact
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we will argue that `p norms ignore the dependence that exists between different points

of the signals and can provide rather distorted distance measures in this setting.

Some literature exists about possible choices for distance measures between time

signals for a variety of purposes such as pattern recognition, signal classification,

detection, etc. [76]. Some still make use of the `2 distance, but only on slices of the

signals, or after performing a circular shift of the time domain [50]. Other approaches

propose counting the number of subsequences of the signals that are similar in an `2

sense [50]. Parameterizations of the signals (i.e., low-rank approximation) have also

been proposed such that the comparison is made in this alternative domain rather in

the original time or space one [11, 23, 75]. While attractive, these techniques are only

relevant to specific applications and therefore tend to have limited applicability.

As mentioned earlier, what often results in discrepancies between modeled and

collected data is some sort of warping along the time dimension. A broad set of

literature exists around time warping, coming from all sciences and applications that

need to deal with time series. The general theory around time warping is described

in [106] in the broader context of functional data analysis. To warp a signal is to

transform the input (e.g. time t) of a function y(t), for instance with an invertible

function h, to yield a warped signal y(h(t)):

t∗ = h(t), and thus (3.1)

y∗ = y(t∗) = y(h(t)) (3.2)

where the h is chosen to satisfy a specific criterion. For instance, when used to build a

misfit a function, h is chosen within some class H to minimize some notion of distance

between two signals (e.g., model predictions and data). In formulae, a misfit dist(·, ·)

between model predictions u(t) and data y(t) that allows for warping is:

dist(y(t), u(t)) = arg min
h∈H

C(y(h(t)), u(t)) (3.3)

where is C is a cost function that the analyst chooses according to context and most
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typically is some `p norm. The most basic type of time warping is the so-called

shift registration. This kind of correction only affects the phase of each curve y, by

shifting the respective support of a constant δ and using `2 as a cost function. More

sophisticated choices for H and C are possible, such as those used in the well known

framework of dynamic time warping (DTW) [95]. In a discrete setting, DTW allows for

assignments of a point y(tj) to one or more points u(ti) of the comparing signal as long

as the monotonicity of the mapping is not violated, i.e., tj ≥ ti. While the cost function

continues to be the `2 norm, efficient dynamic programming algorithms exist to tackle

the computational problem. A number of variations around classical DTW have also

been proposed, such as applying it only to subsets of the signal or introducing some

weighting coefficients on the assignment choices. While the monotonicity condition is

physically interpretable as the requirement to preserve “causality” in the assignment,

it induces, especially when the number of discretization points between the two signals

being compared is the same, splitting of the mass associated to a point i of a signal

to several points j of the other signal. This sort of assignment is not particularly

meaningful physically, as it is equivalent to concentrating/collapsing the signal rather

than simply readjusting the time-scale. In the field of full waveform inversion, the use

of DTW as a means to avoid or mitigate cycle skipping has been investigated in [82].

In the next subsection we will present an alternative to building time-warping-based

misfit functions, using optimal transport distances.

3.1.2 The transport-Lagrangian distance: definition and algo-

rithms

Recent advances in the domain of optimal transport and its many applications have

lead a number of contributions in the field of signal analysis. Optimal transport allows

the type of across-coordinate comparison of functional data that we seek, with some

distinctive features compared to dynamic time warping. Optimal transport (OT) is, in

general (cf. the Kantorovich problem), a way of finding a coupling of two probability
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measures that minimizes a certain total transportation cost [140, 102]. In the very

specific case of discrete/empirical probability measures with equal numbers of equally

weighted points in their support, the OT problem reduces to an assignment problem

[102] between the points in the support of each distribution. The transportation cost

is often taken to be the distance or the squared distance between these points; the

associated minimum total cost, over all possible assignments, is then the 1-Wasserstein

distance or the 2-Wasserstein distance, respectively.

A distinctive feature of Wasserstein distances versus dynamic time warping is

that causality is not ensured. This may seem a limitation in its application to signal

comparison because of the inherent sequential nature of time signals. However, when

dealing with model misspecification this aspect can actually be beneficial in that

inconsistencies in the modeling can produce anticipation or delay in the reproduction

of some parts of the observed signal.

One way of relating the OT problem to the comparison of time-dependent signals

is to treat the signals as univariate probability density functions. For the resulting OT

problem to even have a solution, however, it is necessary for these input signals to be

normalized (i.e., integrating to one) and positive, as these conditions are necessarily

satisfied by probability densities. Yet signals are not measures—i.e., they do not

in general sum/integrate to one and are not in general non-negative. A common

workaround to this problem is to shift the signal along the ordinate axis to make it

positive and then divide it by the sum of all of its points [154, 89, 128]. Having the

signal transformed in such a way also allows a fast, analytical, computation of the

Wasserstein distance in 1-D. Attempts of using the Wasserstein distance in this fashion

have been made in the field of waveform inversion too [154, 89]. Promising results

were achieved in these works for velocity inversion. OT-based misfit functions have

proven to be beneficial in terms of reducing cycle-skipping effects [20, 146]. While

computationally convenient, the transformation of the signals that is required appears

somewhat artificial and is not justified by the physics of the problem. In addition,

the transformation can distort the signal, smoothing out amplitude versus frequency
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differences [128]. In a general sense any a priori transformation of the data introduces

the possibility of a number of artifacts in the results of the inversion that can be hard

to predict and estimate. For this reason, when applied to field data these techniques

may prove to be less reliable.

A different approach that avoids these pitfalls is to use the so-called transport–

Lagrangian (TL) distance [129], which is a specific instantiation of the Wasserstein

distance adapted to signals. Consider two real-valued signals a, b : R → R. For

simplicity, here we focus on the case where both signals have been discretized, the

former on n points t = (ti)
n
i=1 and the latter on m points s = (sj)

m
j=1. Let a(t) =

(a(ti))
n
i=1 and b(s) = (b(sj))

m
j=1. Then the TL distance can be written as the solution

of the following minimization problem:

TLλp(a(t), b(s)) = min
Pi,j

∑
i,j

Cλ
i,jPi,j;

s.t.
m∑
j=1

Pi,j =
1

n
;

n∑
i=1

Pi,j =
1

m
; (3.4)

Pi,j ≥ 0; P ∈ Rn×m;

Cλ
i,j = λ|ti − sj|p + |a(ti)− b(sj)|p; C ∈ Rn×m.

where C is a cost matrix; P a transport plan matrix; and λ ∈ R≥0 is a weighing pa-

rameter between the horizontal and vertical costs. This formulation can be interpreted

in two different ways:

1. optimal transport between the graphs (2D) of a and b, i.e., {t1 × a(t1), t2 ×

a(t2), . . . , an × a(tn)};

2. optimal transport between two (1-D) uniform probability mass functions, with

the cost defined as Cλ(ti, tj) = λ|ti − tj|p + |a(ti)− b(tj)|p.

This distance is particularly interesting as it avoids unnatural data transformations
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while still allowing an OT formulation. In addition, while computing the Wasserstein

distance in general discrete settings amounts to solving a linear programming problem

(with O(max(n,m)3) complexity, n and m being the dimensions of the discretized

signals), for the special case of the TL distance with n = m, one can adopt more

specialized algorithms that solve an assignment problem; in this case, the resulting

optimal P are permutation matrices. Our algorithm of choice for such problems is the

auction algorithm [13], which exhibits a nearly quadratic complexity or an average

complexity of O(n2 log(n)) for problems with n < 1000 [114, 88]. In the rest of this

thesis we will always consider n = m. Finally, the choice of the parameter λ is of

crucial importance for a successful use of this distance. Generally speaking setting

λ→∞ implies reverting to the `2 norm, while λ→ 0 allows for rather large amounts

of horizontal transport, almost neglecting amplitude matching, which is, for most

applications, the most informative feature of the data. Empirically we have found

that a good choice for λ is that of ensuring the scale of the time vector values (A) vs.

that of the amplitude values (T ) are somewhat comparable i.e. λ = A
T . This is an

accordance with related literature [88].

A rigorous discussion on the applicability of the TL distance as an objective

function in deterministic seismic inversion has been conducted in [88]. Improvements

in the convexity of the misfit have emerged as the primary effect of the choice of such

a distance measure [154, 103].

3.2 A consistent Bayesian framework for optimal

transport distances

In this section we intend to answer the following question: how can we build a coherent

Bayesian framework around the TL distance as a misfit statistic? While maintaining

the classic setup of additive Gaussian noise, we seek an alternative expression for the

likelihood p(TL2(y,u)|θ) (where y and u are the vectors containing the discretized

form of the observed and model predicted signals, while θ are the model parameters).
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Also note the choice of p = 2 to allow for more direct comparison with the `2 norm as

a misfit statistic.

At this point, there are two main impediments that stand in the way of defining a

coherent Bayesian framework for a TL-misfit, both in a well-specified and misspecified

setting. First, calculating the TL-distance involves solving an optimal transport

problem, which implies, in turn, a minimization problem: this non-linearity makes

it difficult to derive an analytical expression for the likelihood p(TL2(y,u)|θ). In

the second place, we stated multiple times that it is of our interest to evaluate the

robustness of such misfit measure in a misspecified context. From a rigorous standpoint

however, the definition of likelihood assumes a context in which the data come exactly

from the specified model. Therefore, even if we were able to obtain an exact expression

for p(TL2(y,u)|θ), this would not mean that the same expression could be used in a

misspecified context without introducing some sort of inconsistency.

3.2.1 Gibbs posteriors

We therefore seek an alternative framework in which both misspecification and the

newly introduced misfit measure can be integrated. In the statistical literature, a

posterior distribution obtained through this framework is typically referred to as the

Gibbs posterior. A full derivation is contained in [16], but we recall here a short

summary. The central idea is to define a loss function L(π,y; p) over our prior beliefs

π(θ), observations y and space of probability measures p over θ. We then claim that

a valid update of our beliefs based on available data is given by:

p̂ = arg min
p
L(π,y; p). (3.5)

This claim is justified by the argument that, in general, between two measures p1 and

p2, one would naturally prefer the one that produces a lower value of the loss function,

given the same data-set. The authors also choose a specific expression for the loss

function that contains both of the fundamental ingredients of a Bayesian update, i.e.,
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balance between prior information (Kullback-Leibler divergence between p and π(θ))

and adherence to observed data under the form of expected loss:

p̂ = arg min
p

(∫
`(θ,y)p(dθ) +DKL(p, π(θ))

)
. (3.6)

The function `(θ,y) is a generic measure of model-data discrepancy (more discussion

later). The authors show that the minimizer p̂ takes the form:

p̂(θ) =
exp{−`(θ,y)}π(θ)∫
exp{−`(θ,y)}π(dθ)

. (3.7)

This expression can justify a prior-to-posterior update through an exponential form

given a generic loss function (or misfit measure) `(θ,y). While not a rigorously Bayesian

update, it still captures the two main ingredients of Bayesian inference and provides a

rigorous argument for using an exponential pseudo-likelihood. Additionally, we note

that if it is known that the data arose from a given family of distributions (e.g., p(y|θ)),

then equation (3.7) reverts exactly to Bayes formula, by taking `(θ,y) = − log(p(y|θ)).

This ensures the expression above constitutes a rational update with any misfit measure

both in the well and misspecified context.

In our experiments, we adopted a specific expression for the Gibbs posterior as

outlined in [94] (already experimented in a seismic inverse problem in [112]):

p(y|θ) = sN exp(−sTLp(y,u(θ))). (3.8)

where N is the number of observations while the parameter s acts as scaling factor.

The role of the s parameter This parameter plays no role in the data-generating

process but it is necessary to ensure the values taken by the loss functions (in this

case the TL-distance) are of the right order of magnitude to produce meaningful

posterior distributions after being exponentiated. The scaling is therefore not an ad-

hoc manipulation of the data to achieve more desirable results, bur rather a necessary

adjustment to integrate any given loss function with a prior-to-posterior update that
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is not derived explicitly from a physical model. This is reflected in the computational

scheme used to calibrate the amount of scaling: s can be treated as a hyper-parameter

and estimated through a hierarchical Bayesian framework. We associate to s a Gamma

distribution as a conjugate prior, which allows a Gibbs update [94] in a Markov chain

Monte Carlo (MCMC) algorithm that otherwise uses generic adaptive Metropolis [62]

for θ updates. The choice of values for the shape and rate parameters of the Gamma

prior is particularly critical to obtainment of a meaningful posterior. These values

need to be picked in such a way that whatever loss function `(θ,y) is chosen to be

used in the Gibbs posterior, it will scaled appropriately to avoid exp (−s · `(θ,y))

being numerically insensitive to different values of θ, making inference unfruitful. In

the following section we will discuss the reasoning behind the choice of the Gamma

prior for s through a numerical example.

3.2.2 Likelihood free inference

As a counterpart to a Bayesian framework that requires the definition of a likelihood, or

a substitute for it, we outline a number of options for what is known as likelihood-free

inference, an increasingly studied area. While we will not adopt any of these strategies

for the main application and experiments in this thesis, but we will demonstrate their

validity in a number of synthetic examples at the end of this chapter.

Approximate Bayesian computation (ABC) [84] is a common likelihood-free frame-

work and is implemented as follows:
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Algorithm 1 ABC—Approximate Bayesian Computation
1: Initial value: Propose initial estimate θ∗ and define dataset y1:n;

2: Generate model samples: Draw z1:n samples from f(θ0);

3: Calculate distance: D(y1:n||z1:n);

4: While D(y1:n||z1:n) > ε:

1. Resample θ∗: Propose another θ∗ from a prior p(θ);

2. Generate model samples: Draw n samples from f(θ∗);

3. Calculate distance: D(y1:n||z1:n);

5: Accept: θaccpeted = θ∗;

6: Repeat the process K times, where K is the number of θaccepted to characterize

the uncertainty.

The D(·, ·) is a distance or discrepancy measure between model and data chosen

by the analyst, while ε is the admissible discrepancy up to which a sample θ∗ can be

accepted. This kind of estimation procedure possesses theoretical guarantees together

with some common pitfalls, mainly concerning the choice of ε and how this affects the

approximation of the true posterior, as well as its use in high dimensional parameter

spaces. We refer to [124] for further discussion. In our context the main advantage of

using such method is that it eliminates the need to characterize the likelihood function

(or a surrogate for it) for a statistical model involving the TL distance.

3.3 Evaluating inference results: posterior scoring

metrics and objectives

While Bayesian inference has become a widely used in many applications, it is still not

entirely clear what constitutes a “good” posterior: how much uncertainty is the right

amount of uncertainty? Should the true value of the parameter always be expected
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to lie in high probability regions of the posterior (e.g., at the center of a Gaussian

posterior)? A number of answers exists in literature and their content largely depends

on the more fundamental question: “What do we want to use the posterior for?”

3.3.1 Continuous rank probability scores

Fairly well known in Bayesian inference are the so called scoring rules [52]. A score

S(G,H) is a measure of predictive accuracy of a forecaster G, established through

an inference procedure, with respect to H, the “perfect” forecaster (e.g., true data

distribution). A scoring rule is said to be proper if S(H,H) = minG S(G,H). In other

words, a scoring rule assigns the lowest score to the case where G equals the perfect

forecaster. Considering continuous distributions with a density, a perfect forecaster

H would be H(y) = δy=ytrue , while G can be any distribution p(y) like a posterior

distribution. Some examples of scoring rules are:

• Brier score(quadratic):

S(G,H) =

∫ +∞

−∞
(δy=yobs(y)− p(y))2dy; (3.9)

• Logarithmic score:

S(G,H) = − log p(ytrue); (3.10)

• Continuous ranked probability scores CRPS :

S(G,H) =

∫ +∞

−∞

(∫ y

−∞
p(z)dz − 1y≤ytrue

)2

dy. (3.11)

Forecasters are CDFs (cumulative distribution function) instead of PDFs (prob-

ability density function).

All of these rules assign a score zero to the case in which the probability assigned

by p(y) of observing the true data ytrue is equal to 1. Among these kind of scores of

particular interest is for us the case of the CRPS score. This score compares the CDFs
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of the perfect and inference-built forecasters instead of their PDFs, which presents a

number of advantages: since the CDF is a monotone increasing function, subtracting

the perfect CDF (a step function set at ytrue) to the inference built CDF provides at

the same time a measure of how much bias and variability is contained in the posterior

distribution. By bias we mean here how distant is most of the mass of the distribution

p(y) from ytrue and by variability how “spread-out” the posterior distribution is. These

features are relevant in a data-predictive context in which we want to reproduce data

that is as close as possible to ytrue. Figure 3-1 provides a visualization of the concepts

behind the CRPS. In practice, the real value of ytrue is unknown and thus the perfect

Figure 3-1: Bias (bottom) and variability (top) quantification in CRPS scores.

forecaster is approximated by building empirical distributions around “extra” or “newly

collected” data. In the context of our experiment, instead, the CRPS scores would be

of direct applicability since we actually know the true value of the quantity of interest

mtrue (not the data) and the trade-off between bias and variability of the posterior

represents a valid way to compare distributions obtained through the two different

misfit statistics.
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3.3.2 Quantile rank statistics

Scoring rules tend to reward the predictive capability of a posterior, which is achieved

with the least amount of bias and variability as possible. However, these properties

may not completely overlap with other, statistically consistent, behaviors of posterior

distributions. In particular a perfect forecaster may not exhibit what is known as

the frequentist behavior of Bayesian credible intervals. In order to describe what

this behavior is, we introduce another type of posterior-check: posterior quantile

rank statistics [126] [27]. We stress that, contrary to the CRPS score, this is a self-

consistency test that aims at answering the following question: is there any inherent

bias in the way the posterior characterizes the uncertainty around the parameter

space? Algorithm 2 describes the steps necessary to calculate quantile rank statistics

and associated histograms for a specific test-case.

Algorithm 2 Quantile rank statistics
1: for k ≤ Nrep do

2: Draw θktrue ∼ p(θ)

3: Generate data yk ∼ f(y|θktrue)

4: Estimate the posterior p(θk|yk)

5: Draw M samples θi from the posterior distribution p(θ|yk)

6: Calculate: qk = 1
M

∑M
i=1 1θi>θtrue

7: k ← k + 1

8: end for

9: Plot histogram of {qk}

The true values of θtrue should fall uniformly across the posterior credible set, just

as, in a frequentist setting, an α−confidence interval contains the true value α−% of

the times (Figure 3-2). This behavior translates into a uniform histogram over the

sampled values of q: it indicates that the posterior distributions are neither overly

biased towards one subset of the parameter set (Figure 3-3b), nor overly dispersive

(Figure 3-3a), over-representing the amount of uncertainty in the problem.
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Figure 3-2: Quantile rank histogram building process under consistent conditions.

(a) Bell-shaped indicates an over-
dispersed forecasting distribution.

(b) U-shaped indicates a biased fore-
casting distribution.

Figure 3-3: Non-uniform quantile rank-histogram shapes.

3.4 Numerical examples

In this section we present some numerical tests performed to start probing the

validity and feasibility of the methodology exposed in the previous sections. We

will start by describing a series of tests concerning the use of the TL distance in

classification and inference problems. For all of the experiments below: let t =

(t1, t2, . . . , tn) ∈ Rn be a vector containing the time indices of the discretization. Let

y ≡ y(t) = (y(t1), y(t2), . . . , y(tn)) ∈ Rn be the vector containing the values of the

discretized signal used as data, and u the corresponding vector for the model).
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3.4.1 Sine waves classification and inference with TL distance

Classification problems

We are first interested in testing the performance of the TL distance when it comes to

classifying signals with respect to certain features. Throughout this entire section we

deal with sine functions that present various differences in terms of phase, frequency

and amplitude. The general expression of these functions we will refer to is:

u = A sin(ωt + φ). (3.12)

TEST A We have a reference signal yref of the form:

yref = sin(3 t). (3.13)

We want to test how well the `2 and the TL distance allow for classification, with

respect to yref , of signals generated by the the model:

u = sin(ω t + φ) where φ ∼ N (0, 1) and ω = {1, 2, 3, 4, 5, 6, 7}. (3.14)

The phase φ is drawn from a distribution to introduce some misspecification when

comparing signals that might have the same frequency. In both cases the distance has

been normalized by the number of discretization points. For the TL we use in this

case p = 2 and λ = 1. 1000 samples have been drawn from the model for each value

of ω. The distances are plotted in Figures 3-4a and 3-4b. Each point represents the

distance (`2 or TL) between a realization of the model (3.14) and yref .

It appears clear how, on-average, the TL distance does a better job at distinguishing

between the various frequencies given a random shift. When the frequency of the

models is the same as the one of the reference signal (ω = 3) the distances can reduce

to almost zero, if the shift is not particularly significant. While the `2 distance can

allow to detect that the true frequency is ω = 3, it does not differentiate between the
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(b) TL distance vs model realizations

Figure 3-4: TEST A

other ω-s. The TL distance, assigns different distance values to different ω-s leaving

the margin for even better detection if the the value of λ is carefully calibrated. The

objective here is to show that the TL distance allows for better differentiation between

signals given variations in a certain input parameter, not that it is the best tool detect

the frequency of a signal per-se.

TEST B We have a reference signal yref of the form:

yref = sin(3 t). (3.15)

We want to test how well the `2 and TL distances can classify signals generated by

the model:

u = sin(ω t + φ) where ω ∼ U(4.8, 7.2) and φ =

{
0,

2π

3ω
,

2π

2ω

}
. (3.16)

The classification is with respect to the delay φ, while the frequency is highly perturbed

to verify how the distances perform in presence of some noise on ω. Again 1000 samples

of u are drawn for each φ value. The results are reported in Figure 3-5a and 3-5b.

Once again the TL distance seems to provide more separation between signals with
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different delay values with respect to the `2.
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Figure 3-5: TEST B

TEST C We have a reference signal yref of the form:

yref = 3 sin(3 t). (3.17)

We want to test how well the `2 and TL distances can classify, with respect to

amplitude, signals generated by the model:

u = A sin(ω t) where ω ∼ U(1, 3) and A = {1, 2, 3, 4}. (3.18)

The frequency is perturbed to test the robustness of the distances to detect signals

frequencies. The results are reported in Figures 3-6a and 3-6b. The TL distance

performs dramatically better in distinguishing the amplitude of the signals regardless

of the frequency perturbation. The `2 distance instead exhibits a higher degree of

(relative) dispersion, especially when the amplitude increases.
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Figure 3-6: TEST C

Inference problem

We are interested in testing the TL based misfit function in an inference framework. To

do so we have performed a number of tests, inspired by the classification problems in

the previous section. Table 3.1 summarizes the test plan. There are 4 types of inference

tests (i.e., different combinations of model and quantity of interest), for each of those

types we tested 2 types of algorithms: Markov chain Monte Carlo Metropolis-Hastings

(MCMC) with exponential likelihood [94] and approximate Bayesian computation

(ABC). For each of these algorithms the classical `2 misfit measure is tested against

the TL distance.

Before we proceed to the analysis of the results, we want to make explicit a number

of technical details concerning the tests above:

• Computation of TL distance: The formulation used for the TL distance is the

one presented in equations (3.4) with n = m. The algorithm of our choice is the

auction algorithm [13]. For the choice of λ, it is generally chosen to be around 1

in accordance to what explained in section 3.1.2.

• Parameter prior distributions : whenever a prior distribution needed to be defined,

a proper uniform prior was adopted (details will be specified for each test case.
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We can now proceed to discuss the results of the experiments.

TESTS A In this test the objective is to infer the frequency of an observed sine

wave with a misspecified model: the model presents no phase shift, while the observed

data has a value of φ = 0.7 (chosen so that it is different from the period of the

model sine function). The prior distribution of ω is uniform between 0 and 10. In

Figure 3-7 we have reported the posterior and approximate posterior distributions

for tests A.1, A.2, A.3 and A.4. The TL distance seems to outperform by far the `2

distance when used in the classical MCMC algorithm. When the ABC methods is

used instead, we can see that the precision of the result highly depends on the choice

of the acceptance threshold ε. For the `2 distance a very tight choice has produced a

very narrow uniform distribution on the interval [3.01, 3.23], which is close, although

does not contain the true value. When the TL distance is used (A.2), we have that

for a specific value of ε a number of peaks appears around specific values of ω. These

partially reflect some of the results obtained in the classification exercise, although

the true parameter value 3 does not emerge as clearly as in test A.1. For a smaller

value of ε, however, a distribution similar to that obtained with the `2 distance can be

achieved. While the TL distance seems to perform globally better than the `2, the

ABC framework exhibits a certain amount of sensitivity relative to the choice of ε.

TESTS B In this test the objective is to infer the phase shift φ of an observed

sine wave with a misspecified model: the model presents perturbations around the

frequency value of the observed data, as specified in table 3.1. The prior distribution

of φ is uniform between −2π and 2π. In Figure 3-8 we have reported the posterior

and approximate posterior distributions for tests B.1, B.2, B.3 and B.4. The TL

distance seems to outperform by far the `2 distance when used in the classical MCMC

algorithm. When the ABC methods is used instead, we can see that the two distances

perform equally well. While it is not particularly intuitive why in this case ABC

performed better than MCMC, it may be worth mentioning that, when well calibrated,

ABC can be more sensitive even to small distance differences, while MCMC does not
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(a) TEST A.1: MCMC `2 (b) TEST A.2 : MCMC TL

(c) TEST A.5 : ABC `2 (d) TEST A.4 : ABC TL

Figure 3-7: TEST A - infer frequency, misspecified phase

operate based on a threshold-type mechanism.

TESTS C In this test the objective is to infer the amplitude A of an observed

sine wave with a misspecified model: the model presents perturbations around the

frequency value ω of the observed data, as specified in table 3.1. The prior distribution

of A is uniform between 0 and 10. In Figure 3-9 we have reported the posterior and

approximate posterior distributions for tests C.1, C.2, C.3 and C.4. The TL distance

seems to outperform the `2 distance in all contexts.
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(a) TEST B.1: MCMC `2 (b) TEST B.2: MCMC TL

(c) TEST B.3: ABC `2 (d) TEST B.4: ABC TL

Figure 3-8: TEST B: infer phase, misspecified frequency

TESTS D In this test the objective is to infer the amplitude A of an observed sine

wave with a misspecified model: the model presents perturbations around the phase

shift value φ of the observed data, as specified in table 3.1. The prior distribution of A

is again uniform between 0 and 10. In Figure 3-10 we have reported the posterior and

approximate posterior distributions for tests D.1, D.2, D.3 and D.4. The TL distance

seems to outperform the `2 distance in the classical Bayesian framework, while in the

ABC context the results appear comparable for appropriate choices of ε.
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(a) TEST C.1: MCMC `2 (b) TEST C.2: MCMC TL

(c) TEST C.3: ABC `2 (d) TEST C.4: ABC TL

Figure 3-9: TEST C - infer amplitude, misspecified frequency

Conclusions: The TL distance seems to generally perform better than the `2

distance in a classical Bayesian inference framework. The ABC algorithm also presents

satisfying results and avoids the problem of defining a likelihood function for the

Wasserstein distance. However, it exhibits a certain degree of sensitivity to the choice

of ε, whose choice only depends on computational power. Finally, it is important to

note that in all test cases we were performing inference with a misspecified model: in

this sense the TL distance seemed to be able to be more robust to model misfit, by

providing a more suitable metric of comparison of the signals.
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(a) TEST D.1: MCMC `2 (b) TEST D.2: MCMC TL

(c) TEST D.3: ABC `2 (d) TEST D.4: ABC TL

Figure 3-10: TEST D - infer amplitude, misspecified phase

3.4.2 Moment tensor inversion and seismic modeling with the

reflectivity method

We are interested in evaluating the benefits of using the TL distance as a misfit statistic

when solving the moment-tensor inverse problem in presence of model misspecifica-

tion. To this purpose, we conduct an experiment using synthetically generated data

from a layered-medium model. This model assumes that the waves travel through

homogeneous elastic layers of different depth and velocity (one value for the velocity

Vp of the primary waves and one value Vs for the velocity of the secondary waves).
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The adopted solution to the forward problem is described in [17] and is a variation

of a powerful and widely known method in seismology called “refelctivity method”

[45]. In this application we assume to collect data from 4 different stations in each

displacement direction (N-E-Z). These stations are located at z = 0 m from the

Earth’s surface and we can express their positions with respect to the epicenter of

the earthquake in polar coordinates: station 1 - r1 = 5.6 km, θ1 = 60 deg; station

2 - r2 = 3.5 km, θ2 = 110 deg; station 3 - r3 = 4.1 km, θ3 = 250 deg; station 4 -

r4 = 5.3 km, θ4 = 280 deg. The source is located at 1.1 km depth with duration 0.01 s.

The entire waveform is recorded for 8.192 s, while we will only use the portion between

1 s and 7 s for the inversion. Model misspecification will be introduced by using a

different velocity model for the data-generating process vs. the inference process.

We will now describe the velocity models that will be used throughout this thesis to

create both well-specified and misspecified inference settings. In all of our experiments

we will use a four-layered media velocity model (table 3.2) for the inference process.

In a realistic setting, this model represents the analyst’s best attempt at describing

the geophysical characteristics of the terrain of interest. We call this model V4lay . For

the data-generating process we will instead use a model that exhibits 3 layers instead

of 4, as specified in table 3.3. We call this model V3lay . Note that the Vp/Vs ration

has been kept constant across the models.

Note that the Vp/Vs ration has been kept constant across the models.

Nbr. Thickness Vp Vs ρ Qp Qs

km km/s km/s g/cm3

1 0.5 2.5 1.00 2.0 40 20

2 0.5 3.0 1.50 2.0 40 20

3 0.5 3.5 1.75 2.0 40 20

4 1.0 5.5 2.75 2.0 40 20

Table 3.2: Layer model used for inference.
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Nbr. Thickness Vp Vs ρ Qp Qs

km km/s km/s g/cm3

1 0.8 2.5 1.00 2.0 40 20

2 1 3.2 1.60 2.0 40 20

3 0.7 5.5 2.75 2.0 40 20

Table 3.3: Layer model used for data generation

The objective is to test whether the TL distance performs better in terms of

recovering the correct value of the moment tensor mtrue compared to the the implicitly

induced `2 norm of the additive Gaussian model (as described in 3.19).

Experiment 1 set-up

We first test the TL distance by examining its behavior in the misspecification setting

as described in the experiment 1 prospect.

Experiment 1 Inference Procedure
1: Set (Strike,Dip,Rake) = (300◦, 20◦, 150◦)→mtrue = [ -0.50, 0.18, 0.32, 0.01, 0.74, -0.51];
2: Generate data y according to:

y = G(xtrue,V3lay , t) ·mT
true + e where: e ∼ N (0, σ2I) (3.19)

3: Estimate the posterior p(m|y) assuming the following model for the data:

u = G(xtrue,V4lay , t) ·mT + e where: e ∼ N (0, σ2I) (3.20)

The posterior will be a joint posterior over the 6 dimensional space of the moment

tensor components (generally correlated). In order to evaluate the impact of the

choice of the misfit statistic on the solution of the problem just described, we will

integrate both the classic `2 misfit measure as well as the TL-based distance into the
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pseudo-likelihood presented in the previous section. More explicitly:

`2 : p(yk|mk) ∝ exp
(
−s ||yk − uk||22

)
; (3.21)

TL2 : p(yk|mk) ∝ exp
(
−s TL2(yk,uk)

)
; (3.22)

The TL-based likelihood is the one derived in (3.8), where the parameter s acts as

a scaling parameter. The `2-based likelihood is derived by simply substituting the

`2 to the TL2 misfit in the Gibbs posterior, although it is important to note that its

analytical form corresponds exactly to the one that could be obtained by conditioning

on the model parameters, starting from equations 3.19. In this case the s parameter

could be directly interpreted as the model variance and would not need to be estimated

through a hierarchical procedure (if assumed to be known). For consistency with the

TL case, however, we treat it as a hyper-parameter and leave the discussion for the

analytical solution of the linear Gaussian inverse problem for the end of this section.

At the end of the experiment we will therefore have one posterior for each of the

following cases:

`2: p`2(y
k|mk); (3.23)

TL2: pTL2(y
k|mk). (3.24)

Before discussing the results we briefly describe the settings for the actual algorithm

used for Bayesian inversion.

Algorithm As already mentioned before, we implemented a Metropolis-within Gibbs

scheme that updates m with a classic adaptive MCMC step, while for s it exploits the

conjugacy of the Gamma prior. In particular we can sample s through a Gibbs update,

meaning we can sample from the full conditional p(s|m,y) = Gamma(a, b+ `(y,u)).

The term `(y,u) stands for whichever distance measure we are considering, either `2

or TL2. The coefficients a and b are the shape and rate parameter of the Gamma

prior on s.
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Prior on moment tensor For the moment tensor prior we adopt a uniform distri-

bution on the 6-dimensional `∞ unit ball (i.e., U(||m||∞ ≤ 1)).

Prior on s We set a Gamma prior on the scaling parameter s: Gamma(a, b). The

rationale behind the choice for the shape (a) and rate (b) parameters is as follows:

in order for exp {−s · `(y,u)} not to concentrate around 0 or +∞ for any value of

proposed m, the monomial s · `(y,u) needs to take values within the range [−10, 10],

at least for a subset of ||m||∞ ≤ 1. Depending on the average magnitude of the

distance measure `(y,u), the Gamma prior must be chosen such that:

O(spost) · O(`(y,u)) ≈ O(1) (3.25)

where spost is the s sampled from the conjugate posterior (i.e., spost ∼ Gamma(a, b+

`(y,u))); In our experiments, for both modes of misspecification we have that:

O(`(y,u)) ≈ 10−2 (3.26)

which in turn requires:

O(spost) ≈ 102 (3.27)

Since E(spost) = a·(b+ `(y,u))−1 and V(spost) = a·(b+ `(y,u))−2, then an appropriate

choice for the shape and scale parameter would be a = 100, b = 1. Given that

O(`(y,u)) ≈ 10−2, this will result in:

E(spost) = 102 (3.28)

and approximately equal value for the variance.

Results

We want to compare two sets of 6 posterior distributions p`2 , pTL2 and understand

if and how the TL-based likelihood performed better than the `2 based one. At
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this stage we can afford to visually inspect each of the posterior distributions and

provide a qualitative judgement. In the following section however, we will broaden the

experimental set-up and discuss ways of carrying out more systematic and quantitative

evaluations of the quality of the posterior distributions.

In Figure 3-11 the marginals of p`2 , pTL2 for each moment tensor component are

shown side-by-side to facilitate comparison. It is quite clear how the TL-based

posteriors seem to provide a better representation of the uncertainty around the

true parameter values (red-lines). By “better” we mean in this case that TL-based

posteriors are usually more centered around the truth and exhibit less spread around it.

In contrast the `2-based posteriors are almost uniform for some parameters (mnn,mzz)

or completely off-centered for others (mez,mne). These Figures however represent one

Figure 3-11: Sample p`2 , pTL2 posteriors for misspecified model

specific instantiation of the problem and are therefore only anecdotal. In the following

section a more systematic investigation of the behavior of the TL-distance compared

to the `2 misfit will be conducted. In particular we will attempt to answer the more

fundamental question of how to evaluate the quality of posterior distributions and,
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more concretely, how to compare or rank them.

Experimental set-up extension for posterior scoring

We want to include CRPS scores in our experimental set-up to quantitatively assess the

performance of the TL-misfit vs. the classic `2 distance under different instantiations

of mtrue for the velocity model configurations V4lay and V3lay defined in the previous

section (experiment 2)

Experiment 2 CRPS scoring
1: for k ≤ Nrep do
2: Draw mk

true ∼ U(||m||∞ ≤ 1);
3: Generate data yk according to:

yk = G(xtrue,V4lay , t) ·mkT

true + e where: e ∼ N (0, σ2I); (3.29)

4: Estimate the posteriors p`2(mk|yk) and pTL2(m
k|yk) assuming the following

model for the data:

uk = G(xtrue,V3lay , t) ·mT + e where: e ∼ N (0, σ2I) (3.30)

5: Calculate the CRPS for the k-th posterior
6: end for

The results from this experiment can be analyzed in multiple ways, each revealing

different pieces of information. First, for each of the posteriors obtained in experiment

2 we can calculate the CRPS score as follows:

CRPS =
1

N

N∑
i

(F (mi|yobs)− 1mi>mtrue)
2, (3.31)

where F is the empirical cumulative distribution function of a given posterior and

the step function is the ideal CDF for the true value of moment tensor. As a first

comparison measure we calculate the mean CRPS for each of the moment tensor

69



components obtained for both the `2 and TL-based posteriors.

CRPS =
1

Nrep

Nrep∑
k=1

CRPSk. (3.32)

We report them in Figure 3-12 together with the associated estimator variance:

σCRPS =
1√
Nrep

√√√√Nrep∑
k=1

(CRPSk − CRPS)2

Nrep − 1
. (3.33)

In order to make the comparison more significant we have repeated experiment 2 in a

well-specified setting, i.e., with both the data and inference model Green’s functions

set to G(xtrue,V4lay , t) and while using both the `2 and TL distance as misfit statistics.

While in the well-specified setting both distances exhibit similar low scores, in the

Figure 3-12: Mean CRPS scores in the well-specified (WS) and misspecified (MS) case
and relative error bars.

misspecified settings the difference between the scores obtained with the `2 distance
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and those obtained with the TL distance is quite significant. The distributions p1
`2

and p2
`2

achieve on average higher scores than the p1
TL and p2

TL, which indicates higher

bias and/or variability. Average scores however do not provide a comprehensive image

of the TL vs. `2 performance in terms of uncertainty quantification. Assuming that,

as shown by the mean values, their behavior is almost identical in the well specified

case, we focus on the misspecified setting. In this case, we are particularly interested

in answering the following question: given the same mtrue and the same velocity

misspecification, how do the CRPS associated to the `2-based posterior compare to

those obtained in the TL2-based one? In particular, are the CRPS scores obtained for

the p`2(mk|yk) always higher than those obtained for the pTL2(m
k|yk)? To provide a

comprehensive and visual answer to this question we build the graph in Figure 3-13.

For some randomly sampled pairs of CRPS, and every component of the moment

tensor, we calculate the relative difference ∆k and mid-point ∆k:

∆k = CRPS`2k − CRPSTL2
k (3.34)

∆k =
CRPS`2k + CRPSTL2

k

2
(3.35)

We then graph this information in the following fashion:

1. we select the moment tensor component of interest (horizontal axis);

2. if ∆k ≥ 0, we plot a green box of height ∆k with the centroid y-coordinate set

at ∆k. The width of the box is set to fixed value for graphical purposes only;

3. if ∆k < 0, we proceed as above, except that we will use the color red;

4. each box is filled with translucent color, which will produce darker shaded regions

where multiple ∆k will be centered around.

The characteristics of this plot allow for the following interpretation: the boxes being

translucent, if in the majority of cases the difference in scores between the `2 and

TL2 posteriors is positive, then we will see a darker shade of green above the x-axis.
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If instead the difference in scores is predominantly negative, the we will see darker

shades of red. Positive ∆k are predominant for all moment tensor components except

m13, showing a superior performance in terms of predictive capability of the TL-based

posteriors. To achieve an even deeper analysis of the TL vs. `2 performance as a

Figure 3-13: Box-plot for ∆k for each moment tensor component in experiment 2.
Red: TL score higher than `2, green vice-versa

misfit, we also plotted a histogram of the ∆k per each moment tensor component

(color-coded in the histogram) as well as a scatter plot of the ∆k vs. ∆̄k. While the

histograms in Figure 3-14 clearly confirm the prevailing positive nature of the ∆k

already discussed in Figure 3-13, the scatter plots in Figure 3-15 provide additional

information on the distribution of the ∆k and the respective average score values ∆̄k.

One trend worth of observation is the fact that the differences in CRPS are much

broader when positive, i.e., when the TL performance is superior, vs. when the `2

is performing better, in which case the difference in score is lower. We conclude by
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tabulating the value of the estimated mean of ∆k and relative standard deviation for

each moment tensor component (Table 3.4).

Figure 3-14: Histograms for ∆k for each moment tensor component, arranged in a
moment tensor matrix format for experiment 2.

Hierarchical model and analytical solution

In the previous section, we mentioned that in a well-specified setting it is possible to

obtain an analytical solution to the linear-Gaussian inverse problem. In fact, assuming

the noise level is known and fixed (i.e., Σ = σ2I) and an unbounded improper uniform

prior, the posterior distribution is a truncated Gaussian with mean and variance as

follows:

m|y, G(xtrue,Vtrue) ∼ N ((GTG)−1GTy, σ2(GTG)−1). (3.36)
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Figure 3-15: Scatter plot of ∆k vs. y-coordinate set at ∆k for experiment 2.

Intuitively, this model should exhibit less variability with respect to the corresponding

hierarchical one since the variance is known and there is also no need to add the

scaling parameter s. The likelihood function inherently handles the scaling of the

data-model misfit. We therefore repeat experiment 2 with the well specified velocity

model and by using the analytic solution for the inverse problem. We then proceed

with the calculation of the mean CRPS scores for this newly obtained set of posterior

distributions and plot them against the ones coming from the hierarchical models

(Figure 3-16). The analytical solution scores are expectedly much lower than the ones

obtained in the misspecified case as well as those obtained in the well-specified case

with a hierarchical model. They also exhibit much less variance. This result confirms

the intuition that a less uncertain model produces better posteriors than a model

that, from a theoretical standpoint, embodies more uncertainty given an additional

parameter to be estimated. This behaviour can be further explained by referring to
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Figure 3-16: Mean CRPS scores in the well-specified (WS) and misspecified (MS) case
and relative error bars, with the additional analytic solution to the WS case.

the scoring rules presented in section 3.3.2. Experiment 3 describes the steps necessary

to calculate quantile rank statistics and associated histograms for our specific test-case.

We plotted the quantile rank statistics histogram for our experiment in the well

specified case when using the `2 misfit both with the hierarchical model (Figure 3-18)

and with the analytical solution (Figure 3-17). It can be observed that while with the

analytical solution the histogram is uniform as expected, in the hierarchical model case

it assumes a relatively narrow delta-shape around the center value 0.5. This result is

consistent with the associated CRPSs: the analytical solution scores lower than the

hierarchical model since it is behaves “perfectly” in Bayesian terms, i.e., exhibits good

frequentist coverage over repeated realizations. Concretely, this means that while the

true value does not always sit in the middle of the posterior distribution, the variance

reduction spans several orders of magnitude compensating the increased bias. The

hierarchical model posterior instead is more consistently centered around mtrue at the

price of over-dispersion, which induces a higher score. For completeness it is also
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Experiment 3 Quantile rank statistics
1: for k ≤ Nrep do
2: Draw mk

true ∼ U(||m||∞ ≤ 1)
3: Generate data yk according to:

yk = G(xtrue,Vtrue, t) ·mT
true + e where: e ∼ N (0, σ2I) (3.37)

4: Estimate the posterior p(mk|yk) assuming the following model for the data
uk = G(xtrue,Vtrue, t) ·mT + e where: e ∼ N (0, σ2I)

5: Draw M samples mi from the posterior distribution p(mk|yk);
6: Calculate: qk = 1

M

∑M
i=1 1mi>mtrue

7: end for

interesting to check what the quantile rank histograms look like in the misspecified

case as well. Figures 3-19 and 3-20 show the histograms in these cases. The results

can be interpreted in the following way: under conditions of model misspecification

the posterior distributions are, on average, biased and concentrate around the wrong

values often enough for the histogram to assume the characteristic U-shape. This

behavior is consistent with the Bernstein-Von Mises theorem discussed in section

2.1.1. While the histograms under these two cases look fairly similar it is worth

nothing that the almost uniform histogram for component m22 in the `2 case is a

byproduct of the fact that the associated posteriors are almost uniform. In fact,

when a posterior is always uniform (bounded) and the true value is drawn from a

uniform (bounded) prior, then the relative quantile rank histogram will also always

be uniform. This may once again appear as a contradiction between quantile-rank

checks that reward a totally uninformative posterior versus another kind of posterior

checks (CRPS) that instead penalize the same posterior, since it is unusable from a

forecasting point of view. Regardless of the specific moment tensor component, the

CRPS clearly highlight a difference between the quality of the posterior distributions

obtained with the `2 distance and the ones based on the TL2 in a misspecified setting.

However, the quantile rank histograms only slightly favor the use of optimal transport.

This indicates that while the TL2 can make inference more robust to misspecification

in terms of predictive capabilities, it does not eliminate the misspecification itself.
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Figure 3-17: Quantile rank-histogram analytical model - well specified setting.

Trough this last exercise we have observed that that different posterior quality checks

reward different behaviors of the posterior. In this regard, the rank-histograms are a

more comprehensive measure of the “correctness” of an inference framework compared

to the CRPS scores. However, as it often occurs in science and engineering, a “wrong”

model may be more useful, under specific circumstances, than a theoretically “sound”

one.

3.5 Conclusions

In this chapter we outlined the proposed methodology of this thesis for robust Bayesian

inference based on optimal transport distances. In particular, we discussed the

characteristics of the transport-Lagrangian distance, some algorithms to compute

it, as well as the benefits it can bring to a specific category of misspecified inverse

problems. We proposed and tested a number of statistically coherent frameworks for
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Figure 3-18: Quantile rank-histogram hierarchical model - well specified setting.

the integration of this distance in a Bayesian (or pseudo-Bayes) inference process.

As an integral part of the framework, we also discussed some evaluation criteria to

compare the statistical quality of the results obtained with the newly proposed method

vs. those based on a classic `2-misfit. We also presented a proof-of-concept application

of the method for moment tensor inversion with layered-media velocity models.
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Figure 3-19: Quantile rank-histogram hierarchical model - misspecified setting `2.

MODEL DATA TEST ALGORITHM DISTANCERef. QoI

sin(ωt+ φ) + e sin(3t) + e
A.1

ω

MCMC `2

A.2 MCMC TL

e ∼ N (0, 0.1) φ = 0.7
A.3 ABC `2

A.4 ABC TL

sin(ωt+ φ) + e sin(2t) + e
B.1

φ

MCMC `2

B.2 MCMC TL

e ∼ N (0, 0.1) ω ∼ U(1.9, 2.1)
B.3 ABC `2

B.4 ABC TL

A sin(ωt) + e 3 sin(2t) + e
C.1

A

MCMC `2

C.2 MCMC TL

e ∼ N (0, 0.1) ω ∼ U(1, 3)
C.3 ABC `2

C.4 ABC TL

A sin(2t+ φ) + e 3 sin(2t) + e
D.1

A

MCMC `2

D.2 MCMC TL

e ∼ N (0, 0.1) φ ∼ U(−π,+π)
D.3 ABC `2

D.4 ABC TL

Table 3.1: Inference tests with TL and `2 distance as misfit function
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Parameter m11 m22 m33 m12 m13 m23

Mean ∆k 0.0396 0.0158 0.0237 0.0709 -0.0066 0.0171
Std. 0.0021 0.0009 0.0021 0.0029 0.0021 0.001

Table 3.4: Mean ∆k values and associated estimator standard deviation - experiment
2.

Figure 3-20: Quantile rank-histogram hierarchical model - misspecified setting TL2 .
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Chapter 4

An application: the SEG Overthrust

model

Seismic inverse problems are a broad class of inverse problems that can be heavily

impacted by model error. In this chapter we present a more realistic and complex

example of velocity model misspecification in moment tensor inversion. For this

specific inverse problem, a common approach is to generate model waveforms using

a layered medium model (e.g., [34]). This model is often derived from well logs

or from some other model of the subsurface, such as one derived from arrival-time

tomography [59]. The model is an imperfect representation of the subsurface and

cannot properly account for the 3D structure of a region. This adds considerable

uncertainty to the results of moment tensor inversion. Looking at the effects of layered

medium approximations to 3D velocity models is also, at present, an undeveloped area

of research [133, 123]. This chapter will be articulated around the following topics:

• description of the velocity model setup and general inference scheme;

• discussion of numerical results;

• implications of the results on the recovery of non-double couple components in

moment tensor inversion.
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4.1 Velocity model and moment tensor setup

Our earthquakes are simulated with the 3D velocity model derived from the

SEG/EAGE Overthrust Model [64, 7, 5, 6]. We choose this model because it contains

structural complexity that, we assumed, cannot be easily represented using layered-

medium models. We use a 15 by 15 km region located in the Southwestern portion of

the Overthrust Model. The model extends to a depth of 4.7 km. Since only the P-wave

velocity (Vp) model is given, we derive the S-wave velocity (Vs) using a variable Vp/Vs

ratio in the range [2, 1.7], where Vp/Vs near the surface is close to 2 and it approaches

1.7 at the bottom of the model. The density model is obtained using the Gardner’s

relation (ρ = 310V 0.25
p ).

Figure 4-1 shows the velocity at the source depth (1.1 km), the positions of the

receivers (blue), which are located at the surface, and the source (yellow). Figure

4-2 shows East-West cross sections of the model taken at the source location, which

is at the position of the yellow star. The source position was taken to be near the

fault that cuts the anticline. We used a total of six stations located at the surface

and surrounding the source. We simulated three-component waveforms for a single

earthquake (strike, dip, rake = 40◦, 50◦, 280◦, respectively) in the elastic 3D model

using SPECFEM [74]. The source time history was taken to be a pulse that is

nearly white between frequencies of approximately 1 and 13 Hz. These waveforms

are taken as our earthquake waveforms. We derived layered-medium models to

be representations of the 3D structure obtained from well logs. We took vertical

profiles of the velocity and density models. We averaged the P-wave velocity over

500 m depth intervals to approximate how one might obtain a layered medium model

from a well log. To this averaged (smoothed) model we added some noise equal to

2% at the top of the model and 10% at the base of the model to mimic increasing

uncertainty in well logs with increasing depth. Further, we used a constant ratio

of Vp/Vs of 1.73 to get the S-wave velocity. The density was taken to be constant

at 2000 km/m3. We used vertical profiles at each station and the source location

to yield a total of 7 layered velocity models. Figure 4-3 shows the source well-log
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Figure 4-1: Horizontal cross section of the P-velocity model at the source depth (yellow
dot). Locations of stations at the surface of the model are shown in blue.
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Figure 4-2: East-West vertical cross sections through SEG/EAGE Overthrust model
at the position of the source (yellow star). Upper plot shows P-velocity model and
lower plot shows ratio of P to S-wave velocities.

velocity profile (on the right) as well as the layered-medium models obtained by

averaging model properties over depth (and adding some noise) at each of the other
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well-logs locations. We simulated 3-component waveforms at each station for each of

the seven velocity models using Axitra, a discrete-wavenumber reflectivity modeling

approach [28]. We initially validated that waveforms simulated for an earthquake in

a layered-medium model using both SPECFEM and Axitra were visually identical.

Waveforms for each of the six moment tensor components at each station were then

simulated using layered-medium models using the identical source time history as was

used for the 3D earthquake simulation using SPECFEM. These waveforms were used

for the inversion. Waveforms simulated using an identical layered medium model were

used as moment-tensor Green’s functions for each inversion test.

Figure 4-3: On the right: vertical velocity profile (“well log”) of 3D model taken at
source location (green) with smoothed (black) and noisy (red) smoothed profiles used
to build the layered- media models. On the left: velocity profiles for layered medium
models at each station location.
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Figure 4-4: Source well log velocity model: matrix plot of the 1D and 2D marginal
posteriors for each moment tensor component and misfit measure

4.2 Numerical results

Given the simulated data from the 3D model, we recover the moment tensor using

each of the 7 layered velocity models, with either the TL or `2 distance. We illustrate

the one and two-parameter marginal posteriors of m for the source velocity model in

Figure 4-4. The TL approach provides significantly better recovery: it exhibits smaller

variance and closer alignment with mtrue. We also report the combined TL-based and

`2-based posteriors for the remaining velocity models in Figures 4-5, 4-6, 4-7, 4-8, 4-9,

4-10. For a more quantitative comparison, we report the average CRPS scores for

each velocity model in Table 4.1.

For all of the alternative velocity models, the TL misfit provides better inference

and uncertainty quantification for the moment tensor. The lower CRPS scores indicate

that the TL-based posterior distributions are on average less biased, and exhibit less

variance, than those obtained with the standard `2 distance. This translates into more

reliable moment tensor estimates even in the present misspecified setting - i.e., when

a realistic 3D velocity model is represented (incorrectly) by a layered medium model

constructed from well logs.
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Figure 4-5: East (E) well log velocity model: matrix plot of the 1D and 2D marginal
posteriors for each moment tensor component and misfit measure

Figure 4-6: West (W) well log velocity model: matrix plot of the 1D and 2D marginal
posteriors for each moment tensor component and misfit measure
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Figure 4-7: North East (NE) well log velocity model: matrix plot of the 1D and 2D
marginal posteriors for each moment tensor component and misfit measure

Figure 4-8: North West (NW) well log velocity model: matrix plot of the 1D and 2D
marginal posteriors for each moment tensor component and misfit measure
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Figure 4-9: South East (SE) well log velocity model: matrix plot of the 1D and 2D
marginal posteriors for each moment tensor component and misfit measure

Figure 4-10: South West (SW) well log velocity model: matrix plot of the 1D and 2D
marginal posteriors for each moment tensor component and misfit measure
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Well log TL2 `2 ∆`2−TL

NW 0.0528 0.1685 0.1157
NE 0.0637 0.1785 0.1317
SW 0.0710 0.2005 0.1295
SE 0.0637 0.1785 0.1148
W 0.0635 0.1173 0.0539
E 0.0837 0.1665 0.0828

SOURCE 0.0799 0.3008 0.2209
Mean (Std) 0.0694 0.0105 0.1907 0.0562 0.1213 0.0198

Table 4.1: Average CRPS scores for 1D marginal posteriors

By looking at the variability of the scores across the models, it also appears that

the posteriors obtained with the `2 distance are a bit more sensitive to the velocity

model used for inversion than the TL ones (CRPS standard deviation of 0.005 of the

`2 vs. 0.001 for the TL). The interpretation of this behavior in geophysical terms

requires further investigation, but indicates that TL distance is less sensitive than `2

to variations of the velocity model. This, in turn, suggests that OT misfit measures

exhibit some robustness to variations in experimental design (i.e., choice of station

and well log location).

It is also interesting to calculate the CRPS averages for each moment tensor

element, averaging across velocity models. We report the results in table 4.2 It appears

m TL2 `2 ∆`2−TL

mee 0.1410 0.1294 -0.0116
men 0.0399 0.1809 0.1410
mez 0.0455 0.0625 0.0169
mnn 0.0951 0.2607 0.1656
mnz 0.0202 0.0724 0.0522
mzz 0.0744 0.4381 0.3637

Table 4.2: Average CRPS per moment tensor across velocity models.

that on average themee posteriors obtained with the `2 exhibit lower CRPS scores than

the TL-based ones. By simple visual inspection, it does appear that the `2 posteriors,

while in general more dispersive (i.e. higher variance), exhibit proportionally less bias,

which in turn produces a lower score. At the moment we do not have an explanation
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in geophysical terms for this behavior. However, since it does not seem to be linked

to any specific velocity model, possible causes may be related to the chosen network

configuration.

Six-dimensional quantitative measures As an additional measure of result qual-

ity, we calculate the inner product between the true mtens and each sampled mtens.

This measure is of particular interest since it looks at the six components of the moment

tensor jointly, rather than separately as the CRPS does. In fact a sample from the

posterior has a geophysical meaning only when analyzed in its entirety. We report in

table 4.3 the results for each velocity model. Through this 6-dimensional measure, the

TL manifests itself as the clear winner, with TL-posterior samples scoring an average

of 0.9528 vs. 0.6146. As an additional measure of closeness of the posterior samples

Well log TL2 `2 ∆`2−TL

NW 0.9613 0.5952 0.3661
NE 0.9484 0.5811 0.3673
SW 0.9475 0.4841 0.4634
SE 0.959 0.5709 0.3881
W 0.9551 0.7718 0.1833
E 0.9452 0.6845 0.2607

SOURCE 0.9588 0.0302 0.9286
Mean (Std) 0.9528 0.0065 0.6146 0.2390 0.4225 0.2410

Table 4.3: Average inner product between mtrue and samples from the 6D-posterior

to the true moment tensor, we also plot some histograms of their relative Euclidean

distance (figure 4-11). As it stands out from the plots, the `2-based posteriors exhibit

samples that are much further than to the truth than the TL-based ones. Additionally,

the variance appears to be higher in the `2 case than the TL, confirming a trend

already observed in CRPS scores.

We conclude this section by showing some stereonet plots. These plots are meant

to represent the fault plane orientations associated with a particular moment tensor.

In general, there are two orthogonal planes for each moment tensor and moment tensor

inversion does not allow to exclude one of them based on the data. The information
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Figure 4-11: Histogram of Euclidean distance between posterior samples and true
moment tensor values

about the two planes is visualized as follows: looking down at a hemisphere from

above, a dot indicates the location where the normal to one of the two fault planes

would intercept the sphere. In Figure 4-12 and we report the results for station NW.

The red dots represent the correct answer. It is clear that the TL poles are much more

clustered around the correct answer than the ones from the `2 analysis. The same

results can be plotted on a rectangular grid using strike and dip of a pole on the axes
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Figure 4-12: Stereonet plot of samples (105 samples) from the `2-based posteriors NW
station.

Figure 4-13: Stereonet plot of samples (105 samples) from the TL-based posteriors
NW station.
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(figures 4-14 and 4-15). For completeness we also report the stereonet plots for the

Figure 4-14: Strike-dip plot of samples (105 samples) from the `2-based posteriors NW
station.

Figure 4-15: Strike-dip plot of samples (105 samples) from the TL-based posteriors
NW station.
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remaining stations 4-16, 4-17, 4-18, 4-19, 4-20, 4-21,4-22, 4-22, 4-24, 4-25, 4-26, 4-27.

Figure 4-16: Strike-dip plot of samples (105 samples) from the `2-based posteriors E
station.

Figure 4-17: Strike-dip plot of samples (105 samples) from the TL-based posteriors E
station.
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Figure 4-18: Strike-dip plot of samples (105 samples) from the `2-based posteriors NE
station.

Figure 4-19: Strike-dip plot of samples (105 samples) from the TL-based posteriors
NE station.
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Figure 4-20: Strike-dip plot of samples (105 samples) from the `2-based posteriors W
station.

Figure 4-21: Strike-dip plot of samples (105 samples) from the TL-based posteriors W
station.
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Figure 4-22: Strike-dip plot of samples (105 samples) from the `2-based posteriors SW
station.

Figure 4-23: Strike-dip plot of samples (105 samples) from the TL-based posteriors
SW station.
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Figure 4-24: Strike-dip plot of samples (105 samples) from the `2-based posteriors SE
station.

Figure 4-25: Strike-dip plot of samples (105 samples) from the TL-based posteriors
SE station.
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Figure 4-26: Strike-dip plot of samples (105 samples) from the `2-based posteriors
Source station.

Figure 4-27: Strike-dip plot of samples (105 samples) from the TL-based posteriors
Source station.
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4.3 Impacts of model misspecification on the recov-

ery of double couple vs. non double couple earth-

quakes

In this section we are concerned with providing an additional point of discussion

for a longstanding debate in the seismic community on the modeling and nature of

earthquake mechanics. For the most part, earthquakes have long been considered

as being generated by shear faulting, i.e., two rigid bodies moving with respect to

each other. Mechanically, this motion is traditionally described as the result of the

the action of two force-couples (double couple - DC) with zero net torque i.e. no

momentum transfer between the source region and the rest of the Earth and volume

changes of the source region itself. This description is compatible with the assumptions

underlying the classic equations of motion (i.e. ρuij = σij,j, with ρ being the regions’

density, uij the displacement in the i, j-th direction and σij,j is the i, j-th element of

the stress tensor acting on the j-th direction). These assumptions also imply that

there is no volume change within the source region. More recently, however, it has

been shown that real earthquakes could depart from this model. In earthquakes

originating from volcanic explosions or other types of non-typical tectonic earthquakes

evidence of non-double couple mechanism has emerged [69]. The moment tensor as

used throughout this thesis is more general than the purely DC-mechanism and can

be in fact decomposed into double couple (DC), isotropic (ISO) and compensated

linear vector dipole (CLVD) components, with the letter two being the non-double

couple mechanism. The isotropic mechanism originates from a system of forces that

act radially (i.e. implosion or explosion) around the source producing a volume change.

The CLVD component describes instead mechanisms that have zero-net volume change,

but in which two sets of forces act in orthogonal directions: one expanding and the

other compressing the source region. A viable interpretation of CLVD is that of a

tensile crack with no volume change. In this case, the motion normal to the crack is

outward and large. The motion in the orthogonal directions is smaller and inward.
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Given a moment tensor, it is possible to decompose it into these three components

by means of an eigenvalue decomposition. We refer to [137] for the details of how to

perform this calculation.

In this section we analyze the results obtained through our inversion in terms of

DC and non-DC percentages. As already mentioned, it is object of debate whether

the recovery of any non-DC component in a “natural” or tectonic earthquake is

mathematically and physically reliable [35] [143] [2]. Some researchers consider the

characterization of isotropic or CLVD components in moment tensor inversion as a

byproduct of model misspecification, rather than information actually coming from the

data. As a simple test, we analyze whether there is any change in non-DC percentage

for events recovered through the TL-based posterior vs. the events recovered through

the `2 distance. We recall that the true moment tensor i.e. the moment tensor used

to generate the data is a pure double couple. We report the results in Figure 4-28.

The figure clearly shows a reduction in non-DC components of the samples coming

from the TL vs. the `2 distance. Both in terms of CLVD and ISO components of the

moment tensor. This results seems to confirm the hypothesis, at least in this case,

that the recovery of non-DC mechanisms is mostly linked to the presence of model

misspecification rather than coming from the data themselves. As an additional point

of view, we also present a pie chart (4-29) where we classified an event as DC if the

percentage of DC component was above 60%. From the reported figure it clearly

appears that the share of events with a primarily DC component increase drastically

among the samples from the TL-based posterior.

4.4 Testing robustness under different focal mecha-

nisms

Up to this point in the chapter, we have tested the performance of the TL distance

under inversion with different velocity models. We have however used the same data-

set i.e., data generated through the 3D Overthrust model from a single double-couple
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Figure 4-28: DC-ISO-CLVD decomposition of samples from the posteriors distributions
for each velocity model.

event. In this last section, we instead focus on one layered media model for inversion

(NW), while generating data from the Overthrust model using different values of

the moment tensor. The objective is to verify that the results described so far are

not simply dependent on one specific event. We generate 8 alternative datasets by

choosing focal-mechanism that reflect real earthquakes. All of the events have been

taken from the Harvard CMT catalogue [66, 38, 39, 26, 40]. We report the information
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Figure 4-29: Share of events with a higher than 60% DC component for each velocity
model and per TL vs `2-based posterior.

for the chosen ones in Table 4.4 and 4.5.

These events represent a variety of earthquakes with different percentages of double

couple and CLVD components. In Table 4.6 we report the average 1D CRPS scores

per each event. It can be seen that for all events except 070886A, the TL represents

an improvement in inversion performance. Once again we cannot provide a numerical
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Event Name Mnn Mne Mnz Mee Mez Mzz
070886A -9.933 3 5.247 4.644 -8.325 5.29
070886A - Normalized -0.739 0.223 0.391 0.346 -0.62 0.394
12487G -7.28 0.384 -0.945 6.744 1.105 0.536
12487G - Normalized -0.982 0.052 -0.128 0.91 0.149 0.072
062992L -1.438 -1.178 0.296 1.413 -0.415 0.025
062992L - Normalized -0.733 -0.601 0.151 0.72 -0.212 0.013
092904C -4.75 -1.11 0.002 5.1 0.011 -0.35
092904C - Normalized -0.909 -0.212 0 0.976 0.002 -0.067
201804051929A -0.547 -1.25 -0.125 0.523 0.061 0.025
201804051929A - Normalized -0.398 -0.908 -0.091 0.38 0.044 0.018
201507271812A 0.987 -2 -0.059 -0.676 0.004 -0.311
201507271812A - Normalized 0.425 -0.861 -0.025 -0.291 0.002 -0.134
201511190742A 2.07 -1.11 -0.486 -1.63 -0.076 -0.436
201511190742A - Normalized 0.846 -0.454 -0.199 -0.666 -0.031 -0.178
201511300949A 3.23 -0.651 -0.438 -2.22 -0.325 -1.01
201511300949A - Normalized 0.966 -0.195 -0.131 -0.664 -0.097 -0.302

Table 4.4: List of selected events from the Harvard CMT catalogue [38, 40] - Normalized
and unnormalized moment tensor values.

Event Name Strike Dip Rake Strike Dip Rake DC% CLVD%
070886A 294 37 156 44 76 55 99.4 0.5
12487G 133 78 178 224 88 12 87.2 12.7
062992L 334 77 173 66 83 13 90.9 9.1
092904C 231 90 0 141 90 180 86.6 13.4

201804051929A 168 84 178 258 88 6 97.4 2.5
201507271812A 191 89 180 281 90 1 73.2 26.8
201511190742A 209 78 179 299 89 12 60.8 39.2
201511300949A 219 75 -173 127 83 -15 43.5 56.5

Table 4.5: List of selected events from the Harvard CMT catalogue [38, 40] - Strike,
dip, rake and DC version non-DC percentage.

or intuitive explanation of why this event performed significantly worse than the

others. For completeness we report the posterior distributions for each event (Figures

4-30,4-31,4-32,4-33,4-34,4-35,4-36,4-37) together with the associated stereonets with

contour plots (Figures 4-38, 4-40, 4-42, 4-44, 4-46, 4-48, 4-50, 4-52, 4-39, 4-41, 4-43,

4-45, 4-47, 4-49, 4-51, 4-53). Generally speaking, except for the first event, the TL

contour plots show less biased and less dispersed fault planes recoveries.
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Event Name TL2 `2 ∆`2−TL

070886A 0.7000 0.2027 -0.4973
12487G 0.0282 0.1804 0.1522
062992L 0.0546 0.1702 0.1156
092904C 0.0268 0.1842 0.1574

201804051929A 0.0657 0.1497 0.0840
201507271812A 0.0757 0.1754 0.0997
201511190742A 0.0540 0.1990 0.1450
201511300949A 0.0608 0.1735 0.1127

Mean (Std) 0.1332 0.2148 0.1794 0.0157 0.0462 0.2068

Table 4.6: Average CRPS scores for 1D marginal posteriors

Figure 4-30: Event 070886A: matrix plot of the 1D and 2D marginal posteriors for
each moment tensor component and misfit measure

4.5 Conclusions

In this chapter we tested the proposed robust Bayesian framework presented in Chapter

3 on a more complex and realistic scenario of moment tensor inversion. The data

has been generated using the SEG-EAGE Overthrust velocity model, which is a

3D model. The models used for inversion were instead conceived to be 2D layered-

medium approximations of the 3D model. We demonstrated the reliability of the
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Figure 4-31: Event 12487G: matrix plot of the 1D and 2D marginal posteriors for
each moment tensor component and misfit measure

Figure 4-32: Event 062992L: matrix plot of the 1D and 2D marginal posteriors for
each moment tensor component and misfit measure

methodology in recovering the correct moment tensors under various scenarios of

model misspecification as well as source mechanisms. We quantitatively assessed the
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Figure 4-33: Event 092904C: matrix plot of the 1D and 2D marginal posteriors for
each moment tensor component and misfit measure

Figure 4-34: Event 201804051929A: matrix plot of the 1D and 2D marginal posteriors
for each moment tensor component and misfit measure

validity of these results through a number of statistical a geophysical criteria. Finally,

we showed how the reduction of the impact of model misspecification on the inversion
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Figure 4-35: Event 201507271812A: matrix plot of the 1D and 2D marginal posteriors
for each moment tensor component and misfit measure

Figure 4-36: Event 201511190742A: matrix plot of the 1D and 2D marginal posteriors
for each moment tensor component and misfit measure

results has led to a significant decrease in the non double-couple component of the

recovered focal mechanisms.
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Figure 4-37: Event 201511300949A: matrix plot of the 1D and 2D marginal posteriors
for each moment tensor component and misfit measure

Figure 4-38: Event 070886A: `2 stereonet plot with contour lines.
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Figure 4-39: Event 070886A: TL stereonet plot with contour lines.

Figure 4-40: Event 12487G: `2 stereonet plot with contour lines.

(KFUPM) and Chen Gu (MIT).

110



Figure 4-41: Event 12487G: TL stereonet plot with contour lines.

Figure 4-42: Event 062992L: `2 stereonet plot with contour lines.
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Figure 4-43: Event 062992L: TL stereonet plot with contour lines.

Figure 4-44: Event 092904C: `2 stereonet plot with contour lines.
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Figure 4-45: Event 092904C: TL stereonet plot with contour lines.

Figure 4-46: Event 201804051929A: `2 stereonet plot with contour lines.
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Figure 4-47: Event 201804051929A: TL stereonet plot with contour lines.

Figure 4-48: Event 201507271812A: `2 stereonet plot with contour lines.
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Figure 4-49: Event 201507271812A: TL stereonet plot with contour lines.

Figure 4-50: Event 201511190742A: `2 stereonet plot with contour lines.
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Figure 4-51: Event 201511190742A: TL stereonet plot with contour lines.

Figure 4-52: Event 201511300949A: `2 stereonet plot with contour lines.
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Figure 4-53: Event 201511300949A: TL stereonet plot with contour lines.
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Chapter 5

Beyond Gibbs posteriors: statistical

properties of the TL distance with

additive Gaussian noise

In this chapter we provide some answers to the question of how to characterize the

likelihood function associated to a statistical model involving the transport-Lagrangian

misfit measure. After defining the problem and several underlying assumptions, we

derive an large n closed-form expression for this likelihood. We then provide some

geometrical intuition for the problem and describe how this could be used to achieve a

tractable approximation of the analytical expression. We close the chapter with some

numerical experiments around the statistical behavior of the TL distance.
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5.1 A closed form expression for a TL-based likeli-

hood function

5.1.1 The Transport Lagrangian problem setup

In a continuous setting, given two functions, f, g : [T0, T ] → Rn, the transport-

Lagrangian problem is formulated as follows [128, 129]:

TLλp = min
π∈Π

∫ T

T0

∫ T

T0

(λ|x− y|p + |f(x)− g(y)|p)π(x, y)dxdy

where:

Π =
{
π : [T0, T ]2 → R≥0 s.t. ∀x, y ∈ [T0, T ] :

∫ T

T0

π(x, z)dz =

∫ T

T0

π(z, y)dz =
1

T − T0

}
The set Π contains all the densities 2D π(x, y) such that their marginals are uni-

form distributions over the interval [T0, T ]. In a discrete setting (i.e., functions f, g

discretized at n points xi, yj) the couplings π can be restricted to being all possible

permutations σ of n elements Perm(n) (i.e., vertices of the Birkhoff polytope) [101]:

TLλp = min
σ∈Perm(n)

n∑
i=1

|xi − xσ(i)|p + λ|f(xi)− g(xσ(i))|p = (5.1)

= min
σ∈Perm(n)

||x− xσ||pp + ||f(x)− g(xσ)||pp (5.2)

There are n! possible permutations for a set of n elements, which implies the

summation above (5.2) can only take on n! values. We call each of these values:

Zk = ||x− xσk
||pp + λ||f(x)− g(xσk

)||pp, (5.3)

where k stands for the specific assignment induced by the permutation σk. The TL
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problem therefore reduces to:

TLλp = min{Zk}n!
k=1 (5.4)

5.1.2 Introducing randomness and signal-model interpreta-

tion

We now interpret the g(y), f(x) as signals g(tj), f(ti) and rewrite the indices xi, yj as

time indices ti, tj . We then consider g(ti) as the observation collected at time ti, while

f(ti) is the model prediction from a deterministic model with added Gaussian noise,

i.e., f(ti) = µf(ti) + ε with ε ∼ N (0, ρ). With these premises, we can rewrite the Zk in

more compact notation:

Zk = ak + λ
n∑
i=1

|g(tσk(i))− f(ti)|p (5.5)

where:

ak = ||t− tσk
||pp

We note that the f(ti) are independent Gaussian random variables, each with a

(potentially) different mean, but same variance. Without loss of generality, we assume

λ = 1. We also choose p = 2, which restricts the scope of our discussion to what is a

standard choice for cost functions based on Euclidean metrics. With this choice of p

we can state that:

Xl =

(
g(tj)− f(ti)

ρ

)2

∼ χ2
1,γ=µ2l

with i, j : 1, . . . , n; l : 1, . . . , n2 and l = i+(j−1)∗n

(5.6)
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Each Xl is therefore a non-central1 chi-squared random variable with 1 degree of

freedom and γ = µ2
l , where µl = (µf(ti) − g(tj))/ρ. Although there are n! possible

values that Zk can take, there are only n2 possible values that |g(tj) − f(ti)|2 can

assume. We can therefore express all the Zk as a linear system in Xl:

Z = A+ ρ2BX (5.7)

where:

Z = [Z1, . . . , Zn!] ∈ Rn!
≥0

A = [a1, . . . , an!] ∈ Rn!
≥0

X = [X1, . . . , Xn2 ] ∈ Rn2

≥0

B ∈ {{0, 1}n!×n2

s.t. B1n
2

= n1n!}

1 is vector of 1, B is a “selector” matrix which simply selects and sums the values of

Xl (||g(tj)− f(ti)||2) that contribute to the Zk associated to permutation k. Because

the B matrix only has n entries equal to 1 per row, each Zk−ak
ρ2

is then a non-central

chi-squared random variable with n degrees of freedom and γ specified as follows:

Zk − ak
ρ2

∼ χ2
n,γ with: γ =

n2∑
l=1

bk,lµ
2
l (5.8)

Where bk is the k-th row of B.
1To completely specify a non-central chi-squared random variable two parameters are needed: one

indicating the degrees of freedom and another one indicating its non-centrality, which we refer to
as γ. This is equal to the sum of the squared means of each of the normal random variables being
squared ad summed.
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5.1.3 Finding the minimum of a set of dependent and non-

identically-distributed random variables

While a large body of literature exists on order statistics, these are normally derived

for a set of i.i.d random variables. Nonetheless, according to [30] and [44] the CDF

of the minimum min(Z) of a collection of random variables Z ≡ (Z1, . . . , Zn!) (with

no independence or distributional assumptions) can be expressed by calculating the

probability that at least one of the Zk is less or equal to z. In particular:

P(min(Z) ≤ z) =
n!∑
k=1

(−1)k−1Sk (5.9)

Sk =
∑
τ

τ∈S{1,2,...n!}
|τ |=k

P(Zτ1 ≤ z, Zτ2 ≤ z, . . . , Zτk ≤ z) (5.10)

where S{1,2,...n!} is the power set of the n! elements. The term Sk has to be interpreted

as the sum of the joint CDFs of all subsets of cardinality k of the {Z1, . . . Zn!} random

variables Conceptually the formula just expresses the need to avoid “double counting”

when dealing with events that “overlap” (dependency) and is in fact a version of the

inclusion-exclusion principle [70]. For example, in the two dimensional case we would

have:

P(min(Z) ≤ z) = S1 − S2

S1 = P(Z1 ≤ z) + P(Z2 ≤ z)

S2 = P(Z1 ≤ z, Z2 ≤ z)

The probability of the minimum of two random variables being less or equal to z is

calculated as the sum of the probabilities of each of the two random variables being

less than z individually, minus (to avoid double counting) the probability of both of

them being less than z simultaneously.

The problem therefore reduces to calculating the joint CDF of each subset of Zk-s
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needed to compute the above sum. In general this task can be rather complex, but

in our case we can obtain the joint CDFs of any subset of {Zk}n!
1 by exploiting their

linear dependence to the Xl and their particular covariance structure.

5.1.4 Obtaining the joint CDF of all possible subsets of {Zk}n!k=1

We have already stated that each Xl is a non-central chi-squared random variable

with one degree of freedom. We have also already concluded that given the linearity

of the relationship (5.7), the Zk−ak
ρ2

are non-central chi-squared random variables with

n degrees of freedom and parameter γ as specified in (5.8). While this information

is useful in characterizing the nature of the Zk-s as random variables, a closed form

expression for their multivariate CDF is not available.

In order to proceed further, it is convenient to characterize their large n behavior.

Given the nature of the application we are dealing with, we can safely assume that

n > 100 (discretization points). Additionally, even though the {χ2
1,λ=µ2l

}n2

1 are not all

independent from each other, each row of B ·X is a sum of n independent χ2
1,λ=µ2l

.

Recalling the definition:

Xl =

(
g(tj)− f(ti)

ρ

)2

, (5.11)

the particular nature of the assignment problem makes it such that a Zk will never

be a sum of Xl that originate from the same f(ti). Since the f(ti)-s are independent

by construction, then we will always be dealing with a sum of independent random

variables.

This consideration and the large values of n allow us to apply the Lyapunov

central limit theorem (see applicable conditions in appendix A) and approximate the

distribution of the B ·X with a normal distribution. Subsequently, it becomes trivial

to derive the distribution of any subset of Zk (linear combination of Xl, see (5.7)).
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For the entire set of {Zk}n!
k=1, we would have:

µ = A+ ρ2 ·B · E(X) (5.12)

Σ = ρ4B · Cov(X) ·BT (5.13)

Let us now consider a generic subset of cardinality k of the power set S{1,2,...,n!}

containing the random variable {Zτ1 , Zτ2 , . . . , Zτk}. Each of these subsets will be

distributed according to a multivariate Gaussian with mean and covariance matrix

defined as:

µτ1,τ2,...,τk =


aτ1

aτ2

. . .

aτk

+ ρ2 ·


bτ1

bτ2

. . .

bτk

 · E(X) (5.14)

Στ1,τ2,...,τk = ρ4


bτ1

bτ2

. . .

bτk

 · Cov(X) ·


bτ1

bτ2

. . .

bτk



T

(5.15)

We can now complete the description by making the mean and covariance matrices for

the vector X explicit. As discussed before, the Xl are non-central chi squared random

variables. Therefore, referring to definitions in (5.6), we have:

E(X) = 1 + [µ2
1, . . . , µ

2
n2 ]T

For the covariance matrix, based on the discussion made before on the independence-

dependence structure of the Xl (5.6) we have:

Cov(Xl′ , Xl′′) = 0 ⇐⇒ il′ 6= il′′ (5.16)

Cov(Xl′ , Xl′′) 6= 0 ⇐⇒ il′ = il′′ (5.17)
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In particular the non-zero entries of the matrix will be either on the diagonal (il′ = il′′

and jl′ = jl′′ , which means l′ = l′′) or those Xl that share the same f(ti), but whose

mean has been offset by a different constant g(tj). While the value on the diagonal

entries is simply the variance of each Xl, we report the value of the latter case in the

appendix B only. The important aspect to remember is that, given the nature of the

assignment problem, the off diagonal non-zero entries of Cov(X) will be nullified by

the zero entries of B in the product B · Cov(X) · BT , and we can thus simplify the

discussion by considering Cov(X) as a diagonal matrix:

Cov(X) , In2×n2

(
21 + 4[µ2

1, . . . , µ
2
n2 ]T

)

5.1.5 From the CDF to the PDF of Z

Based the above discussion we are able to propose an approximate analytic expression

for the CDF of min(Z) when n is sufficiently large. Given:

TL2 = min{Zk}n!
1 ,

by calling Φµ,Σ(z) the CDF of a multivariate normal distribution with mean µ and

covariance Σ, we have that:

P(min(Z) ≤ z) =
n!∑
k=1

(−1)k−1Sk

Sk =
∑
τ

τ∈S{1,2,...n!}
|τ |=k

Φµτ1,τ2,...,τk ,Στ1,τ2,...,τk
(z) (5.18)

Before proceeding with the derivation of an expression for the PDF of Z, we note that

a closed form expression for a multivariate normal CDF does not exist. At best, we

can express Φµτ1,τ2,...,τk ,Στ1,τ2,...,τk
(z) as:

Φµτ1,τ2,...,τk ,Στ1,τ2,...,τk
(z) =

∫∫
· · ·
∫ z

−∞
φ(zτ1 , zτ2 , . . . , zτk) dzτ1dzτ2 . . . dzτk , (5.19)
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where φ is the joint density function of a multivariate Gaussian with mean and

covariance µτ1,τ2,...,τk ,Στ1,τ2,...,τk . It is well know that in order to get the PDF (p(·)) of

a random variable it is sufficient to differentiate its CDF. In our case this requires

taking the total derivative with respect to z:

p(z) =
n!∑
k=1

(−1)k−1Sk (5.20)

Sk =
∑
τ

τ∈S{1,2,...n!}
|τ |=k

d

dz

∫∫
· · ·
∫ z

−∞
φ(zτ1 , zτ2 , . . . , zτk) dzτ1dzτ2 . . . dzτk (5.21)

The derivative of the integral in (5.21) can be calculated via the multivariate chain

rule. In particular, we want to compute, for the function φ : Rk → R, the derivative

of the scalar function H : R→ R given by the iterated integral

H(z) =

∫ z

−∞
· · ·
∫ z

−∞
φ(τ1, . . . , τk)dτ1 . . . dτk.

To do this, we note that H can be expressed as the composition H = H2 ◦H1, where:

H1 : R→ Rk, z 7→ [z, . . . , z]T ∈ Rk,

and

H2 : Rk → R, (s1, ..., sk) 7→
∫ s1

−∞
· · ·
∫ sk

−∞
φ(τ1, . . . , τk)dτ1 . . . dτk.

We then see that at each point z and i = 1, ..., k, we have (∂H1,i)
′(z) = 1, and moreover

that for any s ∈ Rk and i = 1, ..., k,

∂H2

∂si
(s) =

∫ s1

−∞
· · ·
∫ sk

−∞
φ(τ1, . . . , τi−1, si, τi+1, ..., τk)dτ1 . . . dτi−1dτi+1 . . . dτk,

where the notation in the above display means integration over all but the i-th variable

(i.e., k− 1 variables). Using the chain rule, we notice that for any z ∈ R, denoting the
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vector z := [z, . . . , z]T the derivative H ′(z) is given by:

H ′(z) =
k∑
i=1

∂H2

∂zi
(z) =

=
k∑
i=1

{∫ z

−∞
· · ·
∫ z

−∞
φ(τ1, . . . , τi−1, z, τi+1, ..., τk)dτ1 . . . dτi−1dτi+1 . . . dτk

}
=

=
k∑
i=1

φτiΦτ−i|τi

By substituting this expression back into (5.21), we obtain:

pmin(Z)(z) =
n!∑
k=1

(−1)k−1Tk (5.22)

Tk =
∑
τ

τ∈S{1,2,...n!}
|τ |=k

k∑
i=1

φτiΦτ−i|τi (5.23)

In order to facilitate the interpretation of the above formula and compare it to the

case where Zi are independent, we focus on the n = 2 case, which allows an effective

pictorial representation of the following expression:

pmin{Z1,Z2}(z) = pZ1(z) + pZ2(z)+

− pZ1(z)P(Z2 ≤ z|Z1 = z)− pZ2(z)P(Z1 ≤ z|Z2 = z)

This expression does not rely on the specific nature of the distribution of the single Zi,

but expresses a general principle represented in Figure (5-1). For a set of dependent

and non-identically distributed random variables, we have that the probability of the

minimum being equal to a specific value z is given by the sum of the probability of

each random variable being equal to z minus (or plus) additional terms that take

into account the fact that when one of the random variables of the set is fixed to

z the others may not be less than z since this would imply that z is not the actual

minimum. This concept is mathematically expressed, in the 2D case, through the

product: pZ1(z)P(Z2 ≤ z|Z1 = z) and pZ2(z)P(Z1 ≤ z|Z2 = z). In the special case
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Figure 5-1: Construction of P (min{Z1, Z2} = z)

when the Zk are independent, then, by definition, P(Zi ≤ z|Zj = z) = P(Zi ≤ z) and

in the 2-D case:

pmin{Z1,Z2}(z) = pZ1(z) + pZ2(z)− pZ1(z)P(Z2 ≤ z)− pZ2(z)P(Z1 ≤ z)

This is consistent with the general formula for order statistics of independent random

variables [30]:

pmin{Z1,Z2}(z) =
d

dz
[1− (1− P(Z1 ≤ z))(1− P(Z2 ≤ z))] =

= (1− P(Z1 ≤ z))pZ2(z) + (1− P(Z2 ≤ z))pZ1(z) =

= pZ1(z) + pZ2(z)− pZ1(z)P(Z2 ≤ z)− pZ2(z)P(Z1 ≤ z).
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5.1.6 Conclusion

Based on the above discussion we can therefore express the PDF of:

TL2 = min{Zk}n!
k=1,

as:

pTL2(z) =
n!∑
k=1

(−1)k−1
∑
τ

τ∈S{1,2,...n!}
|τ |=k

k∑
i=1

φτiΦτ−i|τi (5.24)

This expression is generalizable to any set of random variable (not necessarily normally

distributed) as long as their CDFs and PDFs are available (numerically or analytically).

While the approximation is almost exact for large n, the main impediment to

any practical use of this expression is the number of terms implicit in the double

summations over n! and 2k ∀k : 1 . . . n!. In the next sections we therefore investigate

the numerical behavior of the newly derived TL-likelihood and propose a number of

pathways to a tractable approximation.

5.2 A geometric viewpoint

One of the crucial impediments to obtaining a tractable expression for the TL-based

likelihood is the fact that the Zk Gaussian random variables are not independent. In

particular, while we can easily write:

P(TL2 ≤ z) = 1− P(Z1 ≥ z, Z2 ≥ z, . . . , Zn! ≥ z),

it then is impossible to factor the second term into a product of unidimensional CDFs.

Even if that were possible, there would still be a tractability issue arising from the

extremely high number of factors (n!). A first step towards a simplification of the

problem can be that of exploiting its low-dimensional statistical structure. In fact,
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although we characterized the random nature of the Zk-s alone, these variables can be

also expressed via deterministic coupling with a set of n i.i.d. mean-zero Gaussian

random variable ε ∼ N (0, ρ2I) (see equations (5.6) and (5.7)). We can therefore write:

P(TL2 ≤ z) = 1− P(Z1 ≥ z, Z2 ≥ z, . . . , Zn! ≥ z) = (5.25)

= 1−
∫ ∞
z

· · ·
∫ ∞
z

p(Z = z|ε1, . . . , εn)p(ε1, . . . , εn)dε1 . . . dεn (5.26)

= 1−
∫ ∞
z

· · ·
∫ ∞
z

p(Z = z|ε1, . . . , εn)
n∏
i=1

p(εi)dε1 . . . dεn (5.27)

The density p(Z = z|ε1, ε2, . . . , εn) is in fact degenerate and simply represents the

aforementioned deterministic coupling between Z and X:

Z = A+ ρ2BX

which in turn implies a set of quadratic relationships between Z and ε since X is a

vector containing non-central chi-squared distributions, and therefore X = X(ε). We

express these relationships through the notation Z = P(ε) (which can be through as

a system of quadratic equations in ε) and reformulate the above integral as:

P(TL2 ≤ z) = 1−
∫

z≤P(ε)

n∏
i=1

p(εi)dε1dε2 . . . dεn

At this point the main challenge shifts towards determining the nature of the region

described by the relation z ≤ P(ε) in the n-dimensional ε space. A variable Zk can

be expressed as:

Zk = ak +
n∑
i

(g(tσ(i))− µf(ti) − εi)2

This equation defines an n-dimensional sphere in the {εi}ni=1 coordinate space with

radius
√
Zk − ak. We call Sc,z

k the sphere defined by the equation above and all its

interior points and where c = [g(tσ(1))− µf(t1), . . . , g(tσ(n))− µf(tn)] is its center and z

the radius. The region z ≤ P(ε), for a given z, will be defined by the complement of
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the union of the n! Sk spheres:

W(z) = {ε ∈ Rn : P(ε) ≥ z} = Rn \
n!⋃
k=1

Sc,z
k

This result is again challenging to apply in practice without some sort of approximation

in the limit of n→∞. For this reason we provide some additional facts regarding the

geometry just defined. To simplify the notation we call g(ti) = gi and µf(ti) = µi.

Proposition 5.1. Given a set of n! hyperspheres with centers and radii defined

respectively as:

ck = [gσ(1) − µ1, gσ(2) − µ2, . . . , gσ(n) − µn] ∈ Rn (5.28)

r2
k = z − ak (5.29)

there exists a sphere on which all of the {ck}n!
k=1 lie, whose center C and radius R are,

respectively:

C =

[
1

n

n∑
i=1

gi − µ1,
1

n

n∑
i=1

gi − µ2, . . . ,
1

n

n∑
i=1

gi − µn

]
∈ Rn (5.30)

R2 =
n∑
i

(
gi −

1

n

n∑
i=1

gi

)2

(5.31)

Proof. Let us assume a sphere exists on which all of the {ck}n!
k=1 lie and that its center

C is:

C =
1

n

n∑
i=1

gi − [µ1, µ2, . . . , µn]

Then it must hold that the distance between each of the {ck}n!
k=1 and the point C is
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constant. In particular:

||ck −C||22 = ||[gσk(1) − µ1, gσk(2) − µ2, . . . , gσk(n) − µn]−C||22 = (5.32)

= ||[gσk(1) − µ1, gσk(2) − µ2, . . . , gσk(n) − µn]− 1

n

n∑
i=1

gi + [µ1, µ2, . . . , µn]||22 =

(5.33)

= ||[gσk(1), gσk(2), . . . , gσk(n)]−
n∑
i=1

gi||22 =
n∑
i=1

(
gi −

n∑
i=1

gi

)2

= R2 (5.34)

where the last term is independent of k, i.e., any specific permutation.

With this result, the region W(z) can be understood as having a particular

structure, which could be exploited, under certain circumstances, to facilitate the

calculation of the integral:

∫
W(z)

n∏
i=1

p(εi)dε1dε2 . . . dεn (5.35)

Figures 5-2 and 5-3 represent the configuration of n! = 6 spheres (n = 3) {Sc,z
k }6

k=1 for

the 3-dimensional case. For small values of z the spheres do not intersect, while with

growing z some overlap between the volumes starts to occur. At this point we are

unable to offer a definitive strategy on how to tackle the integral (5.35), however we

can outline a few possible alternatives on how to exploit the geometry just outlined:

1. for sufficiently large values of z it may be possible to approximate the union of

the spheres {Sc,z
k }n!

k=1 with a sphere whose center is that of the sphere on which

all the {ck}n!
k=1 lay and radius equal to R+ z. Referring to equations (5.30) and

(5.31):
n!⋃
k=1

Sc,z
k ≈ S

C,R+z

This would make the calculation of the integral (5.35) easier since the region

W(z) could be expressed as single sphere rather than n!;
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2. the distribution being integrated is a high-dimensional Gaussian distribution. In

high dimensions, it is well known that this distribution concentrates around a

thin shell at a distance ρ
√
n from the origin [142, 15]. Specific tail bounds might

allow us to exploit this property and its interaction with the geometry W(z).

ε1

−6−4−2
0

2
4

6
8ε2

−4 −2 0 2 4 6 8 10

ε3

−14
−12
−10
−8
−6
−4
−2
0

Figure 5-2: {Sc,z
k }6

k=1 and SC,R based on a generic sine-wave type signal and z = 1 <
R = 7.

5.3 Truncation of the inclusion-exclusion formula

So far we have explored possible approximations to the characterization of a TL-based

likelihood through some theoretical arguments, without discussing approximations to

the inclusion-exclusion formula. In order to complete the description, we now analyze

the numerical behavior of possible truncations to it.
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Figure 5-3: {Sc,z
k }6

k=1 and SC,R based on a generic sine-wave type signal and z = 10 >
R = 7.

5.3.1 The low-dimensional structure of the covariance Cov(Z)

As already discussed in the previous section, the random nature of the Zk variables is

low dimensional. Therefore the covariance matrix must also reflect this property. We

show this through some numerical experiments. We start by analyzing the covariance

structure of the X variables. In Figure 5-5 we report the 9-by-9 matrix built by

sampling a n = 3 signal with random values (uniformly samples between -10 and 10)

and added Gaussian noise. As expected, the matrix is block diagonal as the X-s are

only correlated if they correspond to the same f(ti) random variable and off-set by

a different g(tj). The sample covariance values also coincide with the theoretically

derived one as reported in Figures 5-4 and 5-6.

The question is now how this low-dimensional structure reflects on the Z random

variables. We report the sample and analytical covariance matrix for the same n = 3

signal. In this case the covariance matrix is 6-by-6 and does not exhibit the clear block-

structure of the Cov(X) matrix. However it is still low-rank as the Z-s are generated
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Covariance X
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Figure 5-4: Analytical Cov(X) for n = 3 sample signal.

through linear combinations of X-s. We verify this numerically and analytically. From

a numerical standpoint the rank of the Cov(Z) matrix is 3 and analytically it holds

that [97]:

rank(Cov(Z)) = rank(ρ4B · Cov(X) ·BT ) = rank(Cov(X)).

We report in Figure 5-8 and 5-7 the sample and analytical Cov(Z) matrices and their

discrepancy (Figure 5-9). The main difference between the X and Z variables is

that while in the first group of variables it is possible to identify subsets of random

variable that are mutually independent, this is not possible for the Z random variables.

This aspect seems to have a crucial impact on the degree of approximation that can

be obtained by neglecting higher order terms in the summation (5.18).
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Sample Covariance X
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Figure 5-5: Sample Cov(X) for n = 3 sample signal.

5.3.2 Approximating the inclusion-exclusion formula

For the case n = 3, we need to calculate:

P(min(Z) ≤ z) = CDF(z) =
6∑

k=1

(−1)k−1Sk

Sk =
∑
τ

τ∈S{1,2,...n!}
|τ |=k

Φµτ1,τ2,...,τk ,Στ1,τ2,...,τk
(z) (5.36)

which means each possible CDF for the subsets of cardinality up to 6 of the Z random

variables. This means a total of 63 CDFs, i.e., terms in the summation. Unfortunately,

as shown by the covariance matrices above, there is no specific ordering of the variables

that would indicate a preferential way to drop terms in the summation.

Our approach is therefore that of analyzing the effect of successively adding terms to

the inclusion/exclusion formula that refer to CDFs of subsets of increasing cardinality.
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Anlytical vs Sample Covariance X discrepancy

1 2 3 4 5 6 7 8 9

Relative error = 0.003%

1

2

3

4

5

6

7

8

9

-1

0

1

2

3

4

5

6

7

8

9

10

Figure 5-6: Absolute difference between sample and analytical Cov(X) for n = 3
sample signal.

In Figure 5-10 we report the total summation of the CDFs in equation 5.18 up to

cardinality k with k = {1, 2, 3, 4, 5, 6}. For a useful approximation, it could be

considered satisfactory to drop all terms (i.e., k) that do not contribute significantly

to the definition of the “curved” portion of the CDF. In Figure 5-10 it can be seen that

starting with the 3rd or 4th order CDFs most of the monotonically increasing part of

the function is defined. In other words, once z ≈ 200 the CDF could be thresholded

to 1 without the need to include the contribution of higher-order CDFs. In formulae:

CDF(z) ≈



3∑
k=1

(−1)k−1
∑
τ

τ∈S{1,2,...6}
|τ |=k

Φµτ1,τ2,...,τk ,Στ1,τ2,...,τk
(z) for z ≤ 200

1 for z > 200

(5.37)

The validity of this approximation holds even when applied to the PDF as shown in

Figure 5-11. The validity of such approximation may depend on specific instantiation
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Covariance Z
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Figure 5-7: Analytical Cov(Z) for n = 3 sample signal.

of the signals being analyzed and it is difficult to draw general conclusions. However, it

can be observed, at least empirically, that the validity of such approximations largely

depends on the structure of the covariance matrix. In Figures 5-12 and 5-13 we report

the CDF built from a randomly generated covariance matrix that has full rank for a

randomly generated 6-dimensional vector of random variables (i.e., uniformly drawn

between –10 and 10). It clearly appears that the thresholding mechanism would work

more effectively in this case than in the TL-specific case described above i.e., order

k = 3 terms could be disregarded without affecting the accuracy of the approximation.

The same observation holds if for the same vector a rank 3 covariance matrix was

randomly generated (Figures 5-14 and 5-15). The rank-deficiency of the matrix does

not seem to be the determining factor in the number of terms needed for a good

approximation. We therefore conclude this subsection with a number of observations:

• based on a limited set of empirical tests it seems possible to neglect some number

of terms in the identified expression for a TL-based CDF (equation (5.18));
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Sample Covariance Z
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Figure 5-8: Sample Cov(Z) for n = 3 sample signal.

• it appears that high-order (i.e., k ≥ 4) joint CDFs (or PDFs) can be safely

neglected through a thresholding-type mechanism;

• the structure of the covariance matrix, and the ordering of the random variables

in the way the joint CDFs/PDFs are added to the summation defined in (5.18),

seem to have an impact on the quality of the approximation that can be achieved

through thresholding;

• for realistic applications (where n ≥ 100) a useful approximation would need

to limit the cardinality k to 1 or 2, or the number of terms would immediately

increase to an unmanageable level.
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Anlytical vs Sample Covariance Z discrepancy
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Figure 5-9: Absolute difference between sample and analytical Cov(Z) for n = 3
sample signal.

5.4 Empirical approximation

To conclude this chapter on the possible approximation to a TL-based likelihood

function, we now proceed to characterize its behavior through simple Monte Carlo

sampling.

Illustrative examples As a first exploration step we calculate the histogram of

the TL distances between two signals u and y built as follows:

u = A

(
1

2
sin(ωt + ϕ) +

1

2
cos(4ωt + ϕ/4)

)
(5.38)

y = u +N (0, ρI) (5.39)

for 9 different pairs of ω and ϕ and ρ = 1, A = 10 (see Figure 5-16). Note in this

specific case the signals are well-specified in that the only difference between them
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Figure 5-10: Truncated CDF of min(Z) for increasing cardinality orders k. For k = 6
the CDF reported is the exact one.

is the amount of noise. As such we are examining a special case of the more general

discussion held in Section 5.1. We decide to also fit a Gamma distribution to this

histogram and observe its proximity to Gaussianity according to the value taken by

the shape parameter (α). We recall that a Gamma distribution is defined by two

parameters: shape (α) and rate (β) parameters. Both parameters contribute to the

definition of the means and variance of the distribution, however, the value of the shape

parameter is what determines the asymptotically Gaussian behavior. In particular, the

Gamma distribution can be viewed as a sum of exponential distributions for positive

integer values of α: the sum of k exponential distributions with parameter β equals a

Gamma distribution with parameter α = k and rate parameter equal to β [33]. By

means of the central limit theorem, when k is high (i.e., k > 30− 50), the Gamma

distribution approaches the Gaussian one. In Figure 5-17 we observed a good fit of

the gamma distribution in all 9 pairs of ω and ϕ, for an average α value of 60. This

value indicates an almost Gaussian behavior, although not completely. With this level
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Figure 5-11: Truncated PDF of min(Z) for increasing cardinality orders k. For k = 6
the PDF reported is the exact one.

of noise and A we observe that the TL does not, on average, revert to the identity

assignment when comparing the two signals (see Figure 5-18).

We therefore proceed with a more systematic study of how the Gamma fit and

how it is impacted by changes in the noise level ρ and in particular on whether the

Gaussian behavior is related to specific patterns in the mean assignment matrix. We

report in Figure 5-19 a systematic mapping of the values of the shape parameter α

as a function of ρ for the signals u and y as outlined above. It can be observed that

the predominant behavior of the distribution is Gaussian for all regimes in which

the noise level is either much larger or much smaller than the scale of the signal

amplitude. All graphs in fact exhibit a “dip” around values of ρ = 100. This behavior

is justifiable in statistical terms in that for low noise levels, the distance value is simply

a sum randomly drawn i.i.d. chi-squared random variables, for which the central limit

theorem applies. In a similar fashion, when the noise level is much higher than the

signal scale, then the chi-squared random variable become approximately i.i.d and
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Figure 5-12: Comparison case: randomly generated 6-dimensional vector and randomly
generated full-rank covariance matrix - Truncated CDF of min(Z) for increasing
cardinality orders k. For k = 6 the CDF reported is the exact one.

the central limit theorem holds again. We conclude by repeating the experiment in

a misspecified setting, i.e., where u and y are misspecified, i.e., even with minimal

amount of noise, their difference will be non-zero. In this case, for lower values of noise

the fitting is not meaningful since the optimal assignment will only be determined

by the deterministic differences between the two signals and therefore be constant

regardless of the noise draw (as such we have mostly omitted the values of fitted-α).

For values of ρ ≥ 102 the Gaussian approximation holds similarly to the case of a

well-specified pair of signals given the high values of noise. For values of ρ between

1and10 the Gaussian approximation seems to be weaker for a larger portion of ρ-s

than in the well specified case. This behaviour can be understood by the fact that the

misspecification increases the differences in mean of the chi-squared random variables

and invalidates the i.i.d. assumption until higher values of ρ (Figure 5-20).
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Figure 5-13: Comparison case: randomly generated 6-dimensional vector and randomly
generated full-rank covariance matrix - Truncated PDF of min(Z) for increasing
cardinality orders k. For k = 6 the PDF reported is the exact one.

5.5 Conclusions

In this chapter we have described the problem of the determining the nature of a

TL-based likelihood function from three main viewpoints: analytical/exact, geometri-

cally/approximate and numerically/approximate. While in Section 5.1 we were able

to identify a close form expression for the large n behavior of the likelihood, this

expression is intractable and therefore different strategies for its exploitation have been

explored. Both the geometric and empirical approximations show some promising

paths to research further, with the MCMC sampling in particular, showing a behavior

of the empirical distribution easily associable to the well known Gamma family of

distributions.

The discussions and ideas presented in the last two sections need further exploration

to consolidate the intuitions into applicable results.
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Figure 5-14: Comparison case: randomly generated 6-dimensional vector and ran-
domly generated low-rank (rank 3) covariance matrix - Truncated CDF of min(Z) for
increasing cardinality orders k. For k = 6 the CDF reported is the exact one.
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Figure 5-15: Comparison case: randomly generated 6-dimensional vector and ran-
domly generated low-rank (rank 3) covariance matrix - Truncated PDF of min(Z) for
increasing cardinality orders k. For k = 6 the PDF reported is the exact one.
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Figure 5-16: Sample u and y.
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Figure 5-17: Histograms and Gamma fit for a nsamples = 1000 of TL(u,y)
for ρ = 1. Average shape parameter α = 60)
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Figure 5-18: Average assignment matrix for the experiments shown in Figure 5-17.
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Figure 5-19: Value of α shape parameter for a Gamma fit for a nsamples = 1000 of
TL(u,y) for varying values of noise (ρ).

Figure 5-20: Value of α shape parameter for a Gamma fit for a nsamples = 1000 of
TL(u,y) for varying values of noise (ρ) - Misspecified case.
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Chapter 6

Optimal transport based linear

regression

Linear regression is an essential problem across the natural sciences, social sciences,

and engineering. The majority of linear regression approaches use a squared-error

loss function, perhaps augmented with some regularization term (e.g., ridge regression

[63] or the LASSO [131]). We formulate a linear regression problem that instead

uses an optimal transport loss function, specifically the transport-Lagrangian (TL)

distance. As already described earlier in this thesis, the TL distance is well suited to

signal and image analysis, as it allows for the comparison of responses across different

values of the explanatory variables of the regression model—for instance, time or space

coordinates. Computationally, however, regression with the TL distance leads to a

challenging optimization problem: the search space is not only that of the coefficients

for the linear combination (typically Rm), but also that of all possible permutations

σ ∈ Perm(n) of the data vector. The space of the permutations is by nature discrete

and the classic notion of gradient cannot be applied directly. The general problem

of linear regression with permuted data as an additional degree of freedom in the

optimization has already been explored in a variety of contexts unrelated to signal

processing [1, 85, 41]. In all of these applications, the challenges of the optimization

problem ([100]) have been described and tackled in different ways. In some cases,
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constraints on the sparsity of the associated permutation matrix are imposed, as well

as on its distance from the identity matrix [86]. Some convex hull-relaxations have also

been proposed [41]. The main differences between what we propose in this chapter

and previous literature is:

• a new application context based on model misspecification and functional data;

• the introduction, via TL-distance, of a regularizing term - the horizontal cost -

on the possible forms the permutation matrix can take , i.e., discouraging strong

departures form the identity permutation.

In this chapter we provide a geometric description of the optimization problem and use

this geometry to propose several minimization algorithms. We test these algorithms

and demonstrate the usefulness of the TL regression in a variety of application

problems.

6.1 Geometry and algorithms

Let us consider a linear model of the form:

u(x) = Φ(x)β (6.1)

where x represents some set of time-space coordinates, Φ is a discrete forward model

operator (e.g., set of basis functions) and β is the vector containing the coefficients to

be estimated. Setting some notation: x ∈ Rn, Φ(x) ∈ Rn×m, β ∈ Rm and u(x) ∈ Rn.

The classic least-squares estimation method for such linear problems is formulated as

follows:

min
β∈Rm

||y −Φ(x)β||22 (6.2)

where y ∈ Rn is a vector containing the observed data. This problem has a closed

form solution when Φ(x) has full column rank. We now intend to use the transport-

Lagrangian distance as a loss function. Given two vectors y,u, which we interpret as
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discretized signals, the TLλp distance, is defined as follows:

min
β∈Rm

σ∈Perm(N)

||yσ −Φ(x)β||pp + λ||xσ − x||pp (6.3)

where σ indicates any permutation of the elements of the vector y , i.e., yσ =

[yσ(1), . . . , yσ(i), . . . , yσ(n)]. The first term of the above expression resembles the one of

any `p norm: amplitude comparison between u and y at a each coordinate point x.

The second one is meant to control the amount of across-coordinate transport induced

by the optimization over σ. The parameter λ is an additional degree of freedom to be

chosen to control the relative weight of the two terms of the objective function. Since

it will not affect the algorithmic analysis of this chapter, we will set it to λ = 1. We

also focus on p = 2 , i.e., the TL1
2 distance, resulting in:

min
β∈Rm

σ∈Perm(n)

||yσ −Φ(x)β||22 + ||xσ − x||22 (6.4)

The challenge introduced by the transport-Lagrangian distance as a misfit measure is

that the regression problem will have to be solved by optimizing not only over β, but

also over σ. The set of all possible permutations of the elements y vector contains at

most n! distinct elements, which makes enumeration an impractical strategy even for

relatively coarse discretizations (e.g., N = 100).

6.1.1 Computational strategies

Coordinate descent For a given permutation σ, the least-squares optimization

problem in the parameters β has a closed-form solution, given by:

β̂σ =
(
Φ(x)TΦ(x)

)−1
Φ(x)Tyσ (6.5)

From a geometric viewpoint, β̂ represents the vertex (minimum) of a convex quadratic

surface (elliptic paraboloid). Vice-versa, for a given value of the parameters β, it

151



is possible to find the solution to the optimal assignment problem through a linear

programming approach (specialized auction algorithm) with a worst case complexity

of O(n3). This naturally suggests an alternating approach between finding the optimal

assignment σopt and β̂ (in a coordinate-descent fashion) over the space of β and σ.

The challenge is that the convergence of such a approach to the global minimum is

not guaranteed, since the problem is not convex in both σ and β. In fact, the n!

vertices of the paraboloids defined by each of the permutations in the least squares

problem over β are the vertices of a permutohedron that has 2n − 2 faces [105]. This

implies there can be as many as n! local minima that could cause a coordinate descent

approach to fail. When the dimensionality m of β is sufficiently low, a grid search

on region of Rm could be acceptable. However, this approach becomes impractical

when m grows larger. Similarly, enumerating all the possible n! permutations σ is

impractical in the most common scenarios, where for example n > 100.

A geometric approach We propose instead an approach that exploits the geometry

of the problem. Let us fix a permutation σ. The equation of the associated paraboloid

in β writes as follows:

Zσ(β) = ||yσ −Φ(x)β||22 + ||xσ − x||22 (6.6)

where the coordinates-dimensions in which the paraboloid lives are specified by the

vector β. Equation (6.5) gives us the expression for the minimum of a given paraboloid

(zσ), which we substitute in (6.6):

Z(yσ) = ||yσ −Φ(x)
(
Φ(x)TΦ(x)

)−1
Φ(x)Tyσ||22 + ||xσ − x||22 (6.7)

Let us call A = Φ(x)
(
Φ(x)TΦ(x)

)−1
Φ(x)T and rewrite:

Z(yσ) = ||(I−A)yσ||22 + ||xσ − x||22 (6.8)

= yTσ(I−A)T (I−A)yσ + 2||x||22 − 2xTxσ (6.9)
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By temporarily lifting the restriction on the discrete nature of the variable σ, and

ignoring the horizontal transport term xTxσ, we can read equation (6.7) as that of

a paraboloid in the variable-coordinates y ∈ RN . This paraboloid, centered at the

origin, must contain on its surface all of the yσ points that are defined by all possible

permutations of the data vector y. Reintroducing the horizontal term, we will simply

be specifying a different z−axis intercept of the aforementioned paraboloid for each σ .

The permutation σopt that would solve the original problem (6.4) can be geometrically

identified as the one that sets the point yσ the closest to the origin. The problem can

be equivalently formulated as follows:

min
σ

yTσQyσ − 2xTxσ, (6.10)

where Q = (I−A)T (I−A) is symmetric positive semi-definite. This problem is an

integer semi-definite quadratic optimization problem, which can be solved through

specific techniques such as branch and bound, pre-solve, cutting-planes, etc. [151].

While these problems are generally NP-hard, they still represent a more systematic

and efficient way of solving the problem, rather than a brute-force algorithm (implying

the enumeration of all possible permutations σ) or alternating between optimizing

over β and σ as discussed above.

Simplifications to the computational solution of this problem can come both

from continuous relaxations as well as exclusions of the horizontal transport term.

Neglecting the horizontal term may have varying practical implications in terms of

approximations of the original solution. Same applies to continuous relaxations of the

problem. Under certain conditions of positive semi-definiteness of the quadratic form

( i.e., Q) and convexity of the feasible set, the relaxed solution may coincide with that

of the integer problem. In the next subsections we will not explore these options, but

rather use a numerical mixed-integer solver to test the advantage of this formulation

in a misspecified setting versus the classic regression setup.
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6.2 Numerical experiments

In this section we test the above formulation of the problem against a number of

synthetic and then more realistic applications. In all of the cases the minimization

problem has been solved by using GUROBI integer-programming optimizer [61].

6.2.1 Synthetic warping

Data generation and inference model In this set of experiments we try to

recover the coefficients of a linear combination of some basis functions. In particular

we generate our data-set through:

y ∼ a1 exp(−0.2t) cos(2t) + b1 exp(−0.1t) sin(2t)

+a2 exp(−0.1t) cos(5t) + b2 exp(−0.4t) sin(5t)

+a3 cos(6t) + b3 sin(6t) +N (0, I) with t ∈ [0, 10]

with:

a1 = 10 b1 = 8

a2 = 2 b2 = 3

a3 = 6 b3 = 5

We report a realization of y in Figure 6-1 with n = 100 discretization points. The

objective will be to recover these coefficients (linear regression), with a model, however,

that exhibits a non-identity warping around the vector of time indices , i.e., t∗ = h(t).
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Figure 6-1: Sample data vector

In particular:

u∗ ∼a1 exp(−0.2t∗) cos(2t∗) + b1 exp(−0.1t∗) sin(2t∗)

+a2 exp(−0.1t∗) cos(5t∗) + b2 exp(−0.4t∗) sin(5t∗)

+a3 cos(6t∗) + b3 sin(6t∗) +N (0, I)

Warping definition (h(t)) We generate the warping through the following expres-

sion:

h(t) = C0 + C1

∫ t

0

exp (W (z))dz (6.11)

where the the constants C0 and C1 are chosen such that h(0) = 0 and h(10) = 10 (i.e.,

the first and last point of the data time vector are not warped), and the exponentiation

of W (t) ensure the monotonicity of the mapping (see [106]). The W (t) are instead
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Figure 6-2: Samples of warping function corresponding to five different levels of
intensity A = {0.01, 0.1, 0.25, 0.5, 1}

samples from a Gaussian process GP of zero-mean and squared exponential covariance

kernel k(t, t′) = exp(−(t − t′)2/(2l2)) with l = 2. To simulate this kind of process

we used a closed form expression for the eigenvalue/eigenfunction Karhunen-Loeve

expansion, in formulae:

GP(0,k(t, t′)) ∼ A ·
J∑
j=1

λjφj(t)ζj where ζj ∼ N (0, 1) (6.12)

where the eigenvalues λj and eigenfunctions φj (Hermite polynomials) are as detailed

in [150]. The parameter A is instead introduced by us to calibrate the intensity of the

warping , i.e., the level of misspecification. We report in Figure 6-2 a plot of some

samples of h(t∗) for five different levels (i.e., A) of intensity.

Results For each of the intensity levels we sample nsamples = 500 warpings h(t∗) and

generate the associated models. We then invert the data y for each of these models
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Levels a1 a2 b1 b2 c1 c2 Average

Very Low (A = 0.01) -0.1 -0.01 -0.06 -0.28 -0.16 -0.07 -0.11
Low (A = 0.1) 0.84 0.59 0.67 0.18 0.84 1.36 0.75

Medium (A = 0.25) 0.19 1.54 0.76 -0.95 1.71 1.99 0.88
High (A = 0.5) -0.78 1.64 0.28 -3.98 1.3 1.75 0.04

Very High (A = 1) -2.48 0.67 -0.89 -9.36 0.53 0.5 -1.84

Table 6.1: `2RMSE − TL2RMSE over nsamples for each model coefficient and warping
intensity level. Last column contains an average across the coefficients. Color-coding:
red, if `2RMSE < TL2RMSE , green if `2RMSE > TL2RMSE
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Figure 6-3: Histogram of recovered coefficients for nsamples = 500 of A = {0.01} (very
low level) warping h(y)

using both the TL and `2-based regression. We report in Figures 6-3, 6-4, 6-5, 6-6, 6-7

the histograms of the recovered coefficients for each sampled model , i.e., the result of

the inversion of the data y with each sampled model u(h(t)).

Analysis In order to quantitatively interpret the results as shown in the histograms,

we first calculate the difference in RMSE (root mean square error) between the `2 and

TL recovered coefficients. We do so for each intensity level. The values are reported in

table 6.1. We highlighted in red the scores for which the TL performed worse than the

`2 , i.e., the corresponding RMSE is lower for the `2 than the TL. Vice versa, when

the squared error was higher for the `2 than the TL, we plotted the corresponding
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Figure 6-4: Histogram of recovered coefficients for nsamples = 500 of A = {0.1} (low
level) warping h(y)
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Figure 6-5: Histogram of recovered coefficients for nsamples = 500 of A = {0.25}
(medium level) warping h(y)
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Figure 6-6: Histogram of recovered coefficients for nsamples = 500 of A = {0.5} (high
level) warping h(y)
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Figure 6-7: Histogram of recovered coefficients for nsamples = 500 of A = {1} (very
high level) warping h(y)
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difference in score in green. To facilitate the interpretation of these results further,

we also report the box plot of the absolute errors for each intensity level, averaged

across the signal coefficients in Figure 6-8. The main emerging trend is that the TL

lowers the average absolute error in the recovery of the model coefficients when the

warping intensity is neither too low or too high (see Figure 6-9). In the former case,

the performance of the two distances is in fact equivalent, as expected. In the latter

case, the amount of misspecification is high enough for the TL to transport enough

mass to induce bi-modal histograms. This is particularly evident for coefficients a2

and b2 in Figure 6-7, where the TL distance recovers two main values as possible “best

fits.” In this sense, the higher values of RMSE for this warping intensity are mainly

due to the bi-modality of these histograms rather than the TL recovering incorrect

values.

6.2.2 Harmonic oscillator

Data generation and inference model In this experiment we move towards

a more realistic example involving the solution of the ODE that corresponds to a

harmonic oscillator:

ẍ+ 2ζω0ẋ+ ω2
0x =

F (t)

m
(6.13)

where m is the mass being displaced, ζ is the damping ratio, ω0 the proper angular

frequency and F (t) is the driving force applied to the system. In our case the driving

force is sinusoidal, in particular:

F (t) = F0 sin(ω)

where ω is the driving frequency of the force and F0 its amplitude. We generate

the data by numerically solving the ODE and fixing the values ω = 2,m = 1.3, ζ =

0.28, ω0 = 2.78 and sampling uniformly between 9 and 11 (F0 ∼ U [9, 11]). However, a

closed form solution of the above equation is also available for the steady-state regime,
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in particular:

x(t) =
F0

mZmω
sin(ωt+ ϕ) (6.14)

where:

Zm =

√
(2ω0ζ)2 +

1

ω2
(ω2

0 − ω2)
2

ϕ = arctan

(
2ωω0ζ

ω2 − ω2
0

)
+ nπ

where n is chosen such that the value of ϕ ∈ [−π, 0]. We therefore use this expression

as a model for inversion, introducing some misspecification by neglecting to model the

transitory regime. Through this model, we want to characterize the impedance Zm of

a system for different values of F0 and fixed values of the other parameters , i.e., ω = 2

and m = 1.3. We however assume ϕ = 0, even though this assumption does not hold

for most systems, and its value is instead linked to Zm. This simplifying assumption

reduces the complexity of the inverse problem: by not having to estimate ϕ, we

transition from a 2D non-linear problem, to a a 1D linear problem. Of course, the lack

of appropriately modeled phase shift adds to the misspecification already introduced

by neglecting the modeling of the transitory phase. Through this experiment we

want to test whether the TL-based regression proves to be more robust in recovering

the correct value of the impedance, which in our case is Zm = 2.40. We report in

Figure 6-10 the numerical solution with added noise, superposed with the theoretical

steady-sate solution and the one resulting from the misspecified model, calibrated

at the right value of Zm. As it can be seen from the image, the misspecification at

steady-state reduces to a simple phase shift. We acknowledge the fact, in this specific

instance, the issue could be resolved by inferring ϕ at the same time as Zm. However,

this would mean making the problem non-linear and increase its dimension. For the

harmonic oscillator this may not pose significant challenges, but in general enlarging

the search space (especially in a non-linear model) could pose parameter identifiability

issues or ill-posedness. We therefore use this simple physics-inspired system as a test

bed for our methodology and motivation for more complex problems.
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regression, for different values of F0. `2RMSE

= 0.79 > TLRMSE = 0.26.

Results We now report the histograms of the recovered values for the impedance

Zm for each of the nsamples = 200 of driving force amplitude F0 in Figure 6-11. As it

can be clearly seen, the TL is able to overcome the misspecification introduced on ϕ

and produce values that are on average closer to the truth. In particular we have an

RMSE associated with the `s of 0.79 vs. a TL one of 0.26.

6.2.3 Seismic wave

Data generation and inference model In this last experiment we test the TL-

regression model against the problem of moment tensor inversion. While not as

as extensive as the experiments performed in Chapter 4, we will use some of those

waveforms to check whether the use of the TL-distance can be of benefit in the context

of misspecified deterministic inversion. For our experiment we will generate data

by randomly sampling some i.i.d Gaussian noise and add it to the overthrust model

generated waveform for a specific station (NW) and displacement component (Z).

As an inference model we will instead use the corresponding layered media model

generated waveform as in section 4.2. For clarity the data will be generated as:

y ∼ GZ
NW (xtrue,V3D, t) ·mT

strue
+ e where: e ∼ N (0, σ2I) (6.15)
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while the model used for inference will be:

u = GZ
NW (xtrue,V2D, t) ·mT

strue
(6.16)

where xtrue and mstrue are identical to those used in section 4.2. We observed in

this instance that the addition of a regularization term is necessary to control the

magnitude of the recovered set of moment tensor and reproduce, at least partially, the

role played by the bounded uniform prior used in the Bayesian setting. In particular,

opting for ridge regression (with parameter γ), the analytical solution for a least

squares problem [63] (fixing the permutation σ can be written as:

m̂σ =
(
Φ(x)TΦ(x)− γI

)−1
Φ(x)Tyσ (6.17)

By substituting this expression in equation (6.7) and redefining the matrix S accord-

ingly:

A = Φ(x)
(
Φ(x)TΦ(x)− γI

)−1
Φ(x)T

we revert to equation 6.9. The rest of the algorithm and computational solution is not

impacted.

Results We first report the results for the γ that achieves the lowest RMSE: γ = 1.

In Figure 6-12 we can observe how the TL is generally close to the true values except

for one moment tensor component. The plots for the remaining values of γ can be

found in Figures 6-13, 6-14, 6-15, 6-16, 6-17.

We now report in table 6.2 below the differences between `2 and TL-based RMSE,

as a function of γ. If the TL exhibits a lower RMSE we highlight the difference

(positive) in green; otherwise (negative) in red. We remind readers that although the

highest discrepancy is observed for γ = 0.8, the associated RMSE was lower both for

the TL and `2 for γ = 1.
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Ridge ∆RMSE
`2−TL ∆RMSE

`2−TL ∆RMSE
`2−TL ∆RMSE

`2−TL ∆RMSE
`2−TL ∆RMSE

`2−TL ∆RMSE
`2−TL RMSE

Param. mee mne mez mnn mnz mzz Average TL

γ = 0 329 395 -47 323 -139 2.08 143 488

γ = 0.5 2.59 0.41 0.07 2.17 0.02 2.88 1.35 0.49

γ = 0.8 0.25 0.44 0.13 -0.28 0.08 0.15 0.13 0.34

γ = 0.9 0.12 0.39 0.12 -0.43 0.066 0.023 0.05 0.34

γ = 1 0.11 0.34 0.13 -0.50 0.07 0.02 0.03 0.32

γ = 2 0.19 -0.06 0.02 -0.23 0.02 -0.07 -0.02 0.38

γ = 10 -0.26 -0.04 0.54 -0.16 0.19 -0.42 -0.03 0.47

Table 6.2: RMSE scores and relative differences for different values of Ridge parameter
between TL and `2 based regression.

While the regularization contributed to the improvement of the results, the solution

appears fairly sensitive to it.
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Figure 6-12: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 1
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Figure 6-13: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 0.5

Remarks on comparison with Bayesian inversion

We would like to close this section with a few remarks on the comparison between

the Bayesian inversion results obtained in Chapter 4 and the deterministic inversion

results just described. Generally speaking, it appears that advantage brought by

the TL is less prominent than the one shown in Chapter 4. However, rather than

taking these experiments as a final assessment on the performance of the TL in a

deterministic regression setting, we would like to list a few factors that, while not fully

considered in our study, may significantly enhance its performance. In particular:

1. a more extensive use of the regularization term and fine-tuning of relative

parameters may lead to better results. In Bayesian inversion, this role was

played by the bounded uniform prior, which is not easily translatable in the

regression formulation without adding further constraints;

2. while in the Bayesian formulation the inversion could rely on data coming from 7

stations with a waveform for each sense of displacement (21 waveforms in total),

in this regression we considered one waveform only. This choice was made to

speed up computation since adding more waveforms would have required solving

for 20 additional permutation matrices. The formulation presented is however
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Figure 6-14: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 0.8

still valid and more data could allow results to be better constrained;

3. the role played by the prior on the s parameter in the Gibbs posterior also has

an impact in the Bayesian setting, which is difficult to relate to anything specific

to the regression formulation.

6.3 Conclusion

In this chapter we presented an alternative formulation for linear regression with

permutations of the data vector. We described in what way our formulation differs

from previously proposed ones together with a dedicated algorithm to solve it. We

tested the advantages of such a formulation in a misspecified context on a number of

benchmark problems. More investigation is needed for faster and exact algorithms for

the solution of the problem, as well as additional regularization terms for the objective

function.
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Figure 6-15: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 0.9
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Figure 6-16: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 2
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Figure 6-17: Histogram of recovered moment tensor for nsamples = 1000 of Gaussian
noise γ = 10
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Chapter 7

Conclusions and future directions

The issue of model misspecification is a longstanding one in inverse problems and

modeling in general. In this thesis, we moved away from classical approaches to

this problem, which included either enriching the statistical or physical complexity

of the model or some “loss” minimizing approach (e.g., safe Bayes). We instead

identified a pathway towards reducing the impact of model misspecification, i.e.,

achieving robustness, through the use of alternative misfit measures. In particular,

misfit functions tailored to the the specific data-model pair being considered and

possible ways it may be affected by model error. We restricted our attention to the

use-case of moment tensor inversion in seismic inverse problems. For this setting

and specific type of data (i.e., time series), we identified the transport-Lagrangian

distance (an optimal transport-based distance) as valid misfit measure to reduce the

impact of errors in the velocity models for seismic waves propagation. Aside from the

specific application (SEG-EAGE Overthrust models) (Chapter 4), the investigation

of the statistical properties of the TL distance (Chapter 5) and its application in

a deterministic linear regression context (Chapter 6). We believe the research and

results described in this thesis can be summarized as:

• showing the benefit of using optimal transport based distances in misspecified

inverse problems involving time-series data;
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• introducing a consistent framework for the adoption of such distances in a

Bayesian context;

• a realistic application of the methodology in the field of moment tensor estimation

in seismic inverse problems;

• a discussion of the statistical properties of the TL-distance;

• a new formulation of the liner regression problem with permutations of the data

vector.

Some limitations of the work conducted in this thesis are:

1. the applicability of optimal transport based misfit measures to a specific category

of inverse problems involving data that is discretized in time and space and that

can benefit from the flexibility offered by horizontal transport for amplitude

matching;

2. the lack of a definitive answer to the problem of identifying a tractable expression

for a TL-based likelihood function;

3. an extended validation of the proposed method to a variety of applications

beyond seismic inversion.

Based on these considerations, we also envision potential extensions of the proposed

framework, which we outline as potential future research directions in this chapter.

The numerical and theoretical results obtained in this thesis point at two main possible

threads worth of further investigation:

1. Misfit measures for functional data;

2. Systematic identification and construction of misspecification-robust misfit mea-

sures - data-feature based projection operators;

In the next sections we will provide more details on each of the first two threads.
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7.1 Misfit measures for functional data

Part of the motivation for looking into optimal transport as an alternative misfit

measure for seismic inverse problems comes from the fact there are currently no

distances that are able to capture the differences or similarities in shape between two

signals, functions or geometric entities. While we already extensively described this

problem in section 2, we want to propose here an extension of the transport-Lagrangian

distance that builds on the already well-established construct of time-embedding (or

delay reconstruction) with Wasserstein distances [12]. In particular, if the classic

TL-distance between two vectors of equal length is defined as:

TLPλ = min
σ∈Perm(n)

n∑
i=1

|xi − xσ(i)|p + λ|f(xi)− g(xσ(i))|p = (7.1)

= min
σ∈Perm(n)

||x− xσ||pp + ||f(x)− g(xσ)||pp (7.2)

we propose that instead of taking the squared difference between the indices xi and

xσ(i) and the value that the signals take at those indices only |f(xi)− g(anσ(i))|2, we

extend this second contribution to be that of a window of length τ along the signals f

and g being considered. By defining:

f̃i = (fi, fi−1, fi−2, . . . , fi−τ )i (7.3)

g̃σ(i) = (fσ(i), fσ(i)−1, fσ(i)−2, . . . , fσ(i)−τ )i (7.4)

the time-embedded TL-distance then becomes:

TLPλ = min
σ∈Perm(n)

n∑
i=1

|xi − xσ(i)|p + λ|f̃(xi)− g̃(xσ(i))|p = (7.5)

= min
σ∈Perm(n)

||x− xσ||pp + ||f̃(x)− g̃(xσ)||pp (7.6)

This delay reconstruction or time embedding formulation is supposed to better capture

the concept of shape or curvature that is intrinsic to the ideal of functional data or

signal. while in this thesis we did not test this newly defined distance extensively,
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we would like to underscore that from a computational point of view this does not

represents an increased cost since the only difference consists in the re-definition of

the cost associated to a specific permutation.

7.2 Data-feature based projection operators

Although in this thesis we focused on transport-Lagrangian distances and the role that

optimal transport can play in reducing the impact of model misspecification for time

series data, it is possible to envision a broader perspective in which the concept of

transforming, filtering or projecting the data-model misfit is systematically exploited.

To make some of these ideas more concrete, let us suppose we are interested in a

phenomenon that is described through a deterministic model u that is a function of

some parameter vector θ ∈ Θ such that umodel = u(θ). Let us also suppose that we are

in a full Bayesian setting and thus the parameters are endowed with a prior distribution

p(θ) and the observations are related to the model parameters through a likelihood

function f(y|θ). We assume that the observations y are generated by a distribution

g(y) that is different from f and we are in presence of model misspecification. We

make the additional assumption that the misfit between g and f is linked to the poor

modeling of a certain aspect of the total phenomenon and that only a subset of the

parameters is associated with it. We therefore divide the parameter set into two

subsets: parameters not associated to model misspecification (WS - “well specified”)

and parameters associated with model misspecification (MS - “ well specified”):

Θ = {θWS, θMS}; (7.7)
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We want to look for a data transformation L(y) that achieves the following objectives:

∃θ∗ s.t. L(y) ∼ f(·|θ∗), (7.8)

I(L(y), θMS) ≈ 0, (7.9)

I(L(y), θWS) ≈ I(y, θWS). (7.10)

Let us discuss each of the criteria above:

1. The first objective (7.8) identifies the “projection” condition, i.e., the fact that

the transformation shall bring the observed data to the sample space described

by the model distribution f . Indeed, if we assume that the model is correctly

specified with respect to θWS, then, after the transformation there shall always

be a θ such that the distribution of the transformed data and the parameterized

one are equal. In this context the Berstein-Von-Mises theorem also ensures us

that the inference we will make of θWS will be asymptotically correct;

2. The transformation L(y) is a transformation that depends on the model being

used for inference, thus L(y) = Lf (y);

3. The mutual information (I) criteria aim at addressing the “quality” of the

transformation we are seeking. While it is always possible to find some sort of

transformation such that the data belongs to the model space, the challenge is

to achieve this objective without loosing or distorting the information needed in

order to infer θWS correctly. These criteria can be used to assess: 1) whether

the chosen transformation is decreasing the amount of information related to

θWS; 2) how much information is still carried relative to θMS (ideally minimal,

since θMS is now treated as a nuisance parameter).

4. The criteria above are those a perfect transformation should satisfy. In practice,

it is not straightforward to identify the transformation that meets all of the above

requirements fully. In addition we must also remember that no model is ever

fully well-specified, and that therefore even for θWS we will not reach condition
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7.8 perfectly. All the above criteria are therefore to be intended “loosely” as a

way to test a transformation that is built off some specific knowledge about the

problem.

We conclude this section by listing some ideas on how to identify these transformations

for the test case of seismic inversion.

7.2.1 A test-case: moment tensor inversion

We have a model u that is used to predict observed waveforms y in the following

fashion:

y = u(xtrue,V,mtrue, t) + e where: e ∼ N (0, σ2) (7.11)

u = G(xtrue,V, t) ·mT (7.12)

We know that V is highly misspecified and therefore affects the quality of the

inversion on m as well.

We claim that there exist some data features related to m that are independent of

the specific V that has generated the data and that can be used to perform more robust

inference of m. In this thesis we have proven the benefits of using the TL-distance as

a misfit measure for problems like the one we just described. Our likelihood function

will therefore be expressed through a the TL-distance. As a reminder:

p(TL(y,u)2|m,V) (7.13)

Instead of transforming the data directly, we instead propose to act on the mappings C

(i.e., permutation matrices) that we obtain we calculating the TL-distance between two

waveforms. In other words, we “register” all the mapping C between the misspecified

data and the model to those that we would obtain if the data were coming from a

model set at Vo. This allows to “wash the data out" of any features relevant to the
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misspecified V and infer m in a well specified setting.

The foreseen methodology would be articulated in three steps:

1. Explore the model both in a well specified and misspecified context;

2. Build the mapping transformation or mapping between misspecified mappings

and well specified ones;

3. Transform the misspecified mappings into well-specified ones while performing

inference with a given data-set.

We now provide some ideas and possible strategies to follow for each of these steps.

Explore Sample M pairs of (mi,mj) from an appropriate prior and calculate the

respective waveforms:

ui(t) = u(V = Vo,m = mi, t) (7.14)

uj(t) = u(V = Vo,m = mj, t) (7.15)

where u ∈ RN . For each pair i, j, calculate:

[Di,j, Ci,j] = TL2(ui,uj) for: i, j = 1 . . . N ; (7.16)

Where:

Di,j = total distance between waveform ui = u((m,V)i) and uj = u((m,V)j)

Ci,j = transport maps between waveform ui = u((m,V)i) and uj = u(m,V)j)

With this notation we simply want to emphasize that not only the numerical value

of the distance will be considered, but also the mapping (i.e., optimal permutation

matrix) that led to it. Since the cost maps C calculated in this way come from a well
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specified model, we will refer to them as:

CV
i,j (7.17)

and we will group them in a set CVmisp . Then, following the same logic, we calculate

the maps between the modeled waveforms and the actual data y, which could come,

for example, from a model simply set at a V 6= Vo. The maps build this way would

be referred to as misspecified C�V.

Build At this stage it is necessary to identify the transformation L(·) that would allow

the kind of data-projection sought at the beginning of this chapter. In general terms,

by borrowing some language from linear algebra, we could describe this transformation

as follows:

• identify the span of the CV;

• identify the span of the CVmisp ;

• identify a projector L(·) = Γ = 〈CV,CVmisp〉.

Of course the notion of span{CV} or span{CVmisp} are not immediately defined. A

path that we started to explore required re-defining CV and CVmisp as matrices (which

can be done by expressing permutations as vectors) and then seeking a linear map

between the two spaces via positive least squares, for e.g.:

min
Γ∈RM×N≥>0

||CV − CVmispΓ||F (7.18)

or common-subspace method, by first calculating the singular value decomposition of:

CV = UVCV T (7.19)

CVmisp = U�VSV T (7.20)
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and then expressing Γ as:

Γ =
V CSV T

||V CSV T ||F
(7.21)

We briefly experimented these options and obtained results that required further

refining or pointed towards the construction of non-linear operators (e.g., through

neural networks).
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Appendix A

Conditions to apply the Lyapunov

central limit theorem

We want to show that the Lyapunov central limit theorem can be applied to the sum

of the set of non-central chi-squared random variables, similarly to those defined in

section 5.1.4. To simplify the notation, we define a Zk as the sum of n non-central

chi-squared random variables with one degree of freedom:

Zk =
n∑
i=1

χ2
i (A.1)

We assume these n variables are independent (consistently with the setup in section

5.1.4)), but have different variance and mean. In fact:

E(χ2
i ) = 1 + µ2

i and Var(χ2
i ) = σ2

i = 2(1 + 2µ2
i ) (A.2)

In order to apply Lyapunov CLT we must show that that random variables |χ2
l | have

moments of some order 2 + δ and that the rate of growth of these moments is bounded

in terms of the Lyapunov condition (theorem 27.3 in [14]):

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[∣∣χ2

i − E[χ2
i ]
∣∣2+δ

]
= 0 (A.3)
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where, in our case s2
n = 2n+ 4

∑n
i=1 µ

2
i . By choosing δ = 2:

lim
n→∞

1

s4
n

n∑
i=1

E
[∣∣χ2

i − E[χ2
i ]
∣∣4] (A.4)

= lim
n→∞

1

s4
n

n∑
i=1

σ4
iE

[∣∣∣∣χ2
i − E[χ2

i ]

σi

∣∣∣∣4
]

(A.5)

we recognize in the external expected value the kurtosis (i.e. standardized fourth-

moment) for a non-central chi-squared random variable, which gives [117]:

E

[∣∣∣∣χ2
i − E[χ2

i ]

σi

∣∣∣∣4
]

=
12(1 + 4µ2

i )

(1 + 2µ2
i )

2
(A.6)

By substituting this expression and the value of sn in (A.5), we obtain:

= lim
n→∞

1

s4
n

n∑
i=1

σ4
iE

[∣∣∣∣χ2
i − E[χ2

i ]

σi

∣∣∣∣4
]

(A.7)

= lim
n→∞

1

(2n+ 4
∑n

i=1 µ
2
i )

2

n∑
i=1

4(1 + 2µ2
i )

2 12(1 + 4µ2
i )

(1 + 2µ2
i )

2
(A.8)

= lim
n→∞

48n+ 192
∑n

i+1 µ
2
i

(2n+ 4
∑n

i=1 µ
2
i )

2 = 0 (A.9)
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Appendix B

Covariance matrix for Xl

The covariance matrix for the chi-squared non-central random variables is structured

as follows:

Cov(Xl′ , Xl′′) =


Var(Xl) = 2 + 4µ2

l ⇐⇒ l′ = l′′

0 ⇐⇒ l′ 6= l′′ and il′ 6= il′′

β ⇐⇒ l′ 6= l′′ and il′ = il′′

(B.1)

The exact expression of β is derived in this appendix. Let:

Xij =

(
g(tj)− f(ti)

σ

)2

=

(
g(tj)− µfi

σ
− ζ
)2

(B.2)

Xpq =

(
g(tq)− f(tp)

σ

)2

=

(
g(tq)− µfp

σ
− ζ
)2

(B.3)

Where ζ ∼ N (0, 1). Calling g(tj)−µfi
σ

= aij and
g(tq)−µfp

σ
= apq , we have:

Xij = a2
ij + ζ2 − 2aijζ (B.4)

Xpq = a2
pq + ζ2 − 2apqζ (B.5)
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consequently:

XijXpq = a2
ija

2
pq + a2

ijζ
2 − 2a2

ijapqζ (B.6)

+ a2
klζ

2 + ζ4 − 2aklζ
3 (B.7)

− 2aija
2
klζ − 2aijζ

3 + 4aijapqζ
2 (B.8)

Recalling:

E(ζ) = 0 (B.9)

E(ζ2) = 1 (B.10)

E(ζ3) = 0 (B.11)

E(ζ4) = 3 (B.12)

We have:

E[Xij] = a2
ij + 1 (B.13)

E[Xpq] = a2
pq + 1 (B.14)

E[XijXpq] = a2
ija

2
pq + a2

ij + a2
pq + 3 + 4aijapq (B.15)

Therefore:

Cov(Xij, Xpq) = E[XijXpq]− E[Xij]E[Xpq] = 4aijapq + 2

Substituting the values of aij and apq:

β = Cov(Xij, Xpq) =
4

σ2
(g(tj)− µfi)(g(tq)− µfp) + 2 (B.16)

As a double check, we can verify that if i = p and j = q, we have:

Cov(Xij, Xij) =
4

σ2
(g(tj)− µfi)2 + 2 = 4µ2

l + 2 = Var(Xij) (B.17)
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