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Abstract

Program synthesis is the task of automatically writing computer programs given a
specification for their behavior. Program synthesis is challenging due to the combi-
natorial nature of the search space. In the short term, improving program synthesis
could make people vastly more productive, by transforming how they communicate
with computers. In the long term, improving program synthesis could bring us a step
closer to understanding human intelligence and to building machines with human-like
intelligence. In this work we discuss how symbolic properties (which are themselves
programs) can help program synthesis performance. Specifically, building on the for-
mulation of properties in Odena and Sutton (2020) we present PropsimFit, a novel
online synthesis algorithm that uses properties for program search and show that it
outperforms naive non-property baselines in the Rule (2020) list function dataset.
Finally, we discuss future ways to use properties for synthesis based on the insights
gained from PropsimFit and its limitations.
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Title: Professor
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1 Why program synthesis

Program synthesis is the task of automatically writing computer programs given a

specification for their behavior. Program synthesis technology could have many ben-

efits. In the short term, improving program synthesis could make people vastly more

productive, by transforming how people communicate with computers. In the long

term, improving program synthesis would bring us a step closer to understanding

human intelligence and to building machines with human-like intelligence.

Technically, there are several methods by which a user can specify the program that

they want synthesized. In one common method, the desired programs are specified by

examples of input-output pairs, that is, the expected outputs that are produced when

executing the program on specific inputs. Alternatively, natural language descriptions

of the program’s intent are also often used. Program synthesis is often formulated as

a search problem over possible combinations of elementary program primitives of a

Domain Specific Library (DSL). Even the best synthesis systems can only synthesize

relatively short programs due to combinatorial explosion. The size of the search space

gets prohibitively large as the length of the allowed programs increases. In this work,

we use symbolic programs to represent properties of programs and discuss how they

can help address the above issue and advance program synthesis.

1.1 Transforming how we interact with computers

Fundamentally, for a computer to have any effect on the world it must execute code.

The way we communicate to computers is by writing code. To facilitate code writing

we have invented programming language of increasing level of abstraction. For ex-

ample if we want to have the computer calculate what 3 times 19 is we can just write

and execute the following python code "3 * 19". This is interpreted into byte-code,

which is then interpreted into machine code which is a set of instructions the CPU

can directly process and execute to give the answer "57" (after converting back from

binary). Communicating to the computer in python is a lot easier than communicat-
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ing to the computer in machine code. The most common way we communicate with

computers is by interacting with Graphical User Interfaces (GUI). Clicking around in

an application corresponds to specific computer code being executed. It is this code

that the user indirectly "writes" and communicates to the computer. For example

even if one does not know how to code, they can have the computer calculate what 3

times 19 is by opening their calculator app and clicking on the button "3", then "*",

then "1", then "9", and finally =.

1.1.1 Increased software engineering productivity

High-level programming language, operating systems, applications and websites and

all the components that allow users to interact with a computer are created by writing

code. Since people rely on specialized applications and websites to make use of

computers, how useful computers currently are depends on the quality and amount

of such specialized application and websites. Program synthesis has the potential of

facilitating the job of software engineers, making the process of writing code faster,

which would allow for more and better specialized applications enabling users to

make even better use of computers. In fact, program synthesis tools that aim to

make software engineers more productive already exist, with Github Copilot (a tool

based on the synthesis model Codex (Chen et al., 2021)) being perhaps the most

well-known such example.

1.1.2 Replacing user interfaces

Program synthesis has the potential of drastically changing and in some cases even

replacing costly specialized user interfaces. It takes time to learn how to use some

user interfaces1. Additionally it is costly to build the user interface on top of the

API / DSL of a specific application. It is often easier for the user to express what

1Which is why people put skills like Excel use on their resume (similar to how they might have
programming language)
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they want to do either with natural language or input-output examples. FlashFill

(Gulwani, 2011) is a notable example of a real-world input-output synthesis system

that facilitates the use of Excel, whereas voice assistants are examples of real-world

program synthesis systems from natural language specifications. Thus developing

program synthesis should broaden the usefulness of computers by facilitating the

use of specialized applications. More ambitiously, advanced synthesis systems could

completely replace user interfaces, expanding the scope of what computers can do

for people. In summary, program synthesis has the potential to greatly improve

the usefulness of computers, by facilitating the communication between user and

computer.

1.2 Understanding human intelligence

1.2.1 Modelling human intelligence

Any discipline that studies the natural world needs theories that make testable pre-

dictions. In the same way, to gain insight into human intelligence we want to build

computational models of intelligent human behavior. For a given intelligent human

behavior, we can build a computation model that receives the same inputs as people,

and compare its output behavior to that of humans. The way in which these differ

can then illuminate aspects of human intelligence that our current theories of human

intelligence fail to capture. With better theories we can build better computational

models which can capture increasingly complex intelligent behaviors that previously

seemed out of reach. The above could be useful regardless of whether the mind is fun-

damentally a computational system as argued by proponents of the Computational

Theory of Mind (CTM) (Rescorla, 2020). Although building computational models

of individual intelligent human behaviors is useful, hand-engineered separate models

fail to account for the generality and flexibility of human intelligence. It is important

to go beyond matching human behavior on isolated tasks, and show how a single

computational system could account for human intelligence across domains. A com-

plete picture of human intelligence would have to show how the same computational
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system could learn new concepts, make jokes, give advice to a friend, make plans for

the future, etc. If CTM is true, then such a computational system would be valuable

in a deeper sense, beyond just as a way to make quantifiable predictions to test our

theories of intelligence.

1.2.2 Programs as mental representations

Fodor (1975) argues that human thinking occurs in a mental language, a Language

Of Thought (LOT), consisting of primitives (similar to words) that are composed

with each other to form sentences. This can explain the productivity of thought,

the seeming ability humans have to entertain potentially infinitely many (different)

thoughts. Programs make good candidates for representations of mental primitives

because they share the same language-like compositionality than enables this produc-

tivity. The Probabilistic Language Of Thought hypothesis (PLOT) (Goodman et al.,

2014) postulates stochastic functions (programs) as its primitives. The composition

of these stochastic functions defines a generative process over possible world states

which when combined with the Bayesian statistics machinery can be used to learn

from data through probabilistic inference. Motivated thinking is then analogous to

sampling-based inference in this generative model of programs. These probabilistic

programs can be thought of as a richer version of Bayesian graphical models, which

have had success in modelling cognition as approximate Bayesian inference. PLOT

combines the benefits of an LOT with those of Bayesian inference, which makes it a

very promising computational architecture for modelling cognition and human intel-

ligence.

One potential problem of the above approach is that for many probabilistic programs,

exact Bayesian inference is intractable. Additionally, although there is a empirical

evidence of such models matching human behavior (Lake et al., 2015), they rely on

hand-written generative processes and so how these are acquired and change over

time remains to be explained. Learning new generative processes and new concepts

in PLOT corresponds to probabilistic program induction. It follows that to address
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both these issues and build even better models of human thinking and intelligence,

we need to improve program synthesis performance.

1.3 Building machines with human-like intelligence

Human intelligent behavior has been a fruitful source of inspiration for building in-

telligent systems. Many benchmarks today evaluate artificial intelligent systems by

comparing their performance to human performance. More fundamentally, the very

concept of intelligence, and thus how artificial intelligent systems are evaluated and

what is considered progress in artificial intelligence, is inextricably linked to human

intelligence. It follows that computational models with symbolic programs as their

representations and program synthesis as their learning mechanism should be useful

for AI too. In fact they directly address some of the challenges of Artificial Neural

Networks (ANN) which are currently at the forefront of the field. For example, unlike

neural networks, but similar to people, program induction systems can successfully

learn functions from just a few examples. This is because unlike neural networks,

programs induction systems have strong inductive biases (strong priors), similar to

the developmental "start-up software" which enables and guides human learning. For

a more detailed treatment of other benefits of program synthesis models compared to

ANN’s see Lake et al. (2017).

Although cognitive science models with program representations that learn through

program synthesis may be more human-like that does not necessarily imply that they

are the best path towards building intelligent machines. It is possible that they are

a lot harder to engineer than systems with neural representations. However we ar-

gue, that even if that is the case, we should strive to build AI systems that are like

humans. If we are going to build machines that are useful and that we can trust, we

must be able to understand them. One way to build machines we understand, is to

make them more like us.

14



2 Properties introduction

c001 c010 c077
𝑓([2, 4, 3, 2]) = [3] 𝑓([2, 3, 2, 2, 7, 6]) = [3, 2] 𝑓([1, 7, 2, 0]) = [4]

𝑓([9, 6, 9, 8, 6]) = [9] 𝑓([3, 9, 8, 6, 5, 1]) = [9, 8, 6] 𝑓([8, 6, 6]) = [3]

𝑓([0, 0, 0, 0, 0]) = [0] 𝑓([1, 2, 4, 5, 0, 8, 9, 7, 8]) = [2] 𝑓([2]) = [1]

𝑓([8, 1, 8]) = [8] 𝑓([5, 5, 5, 1, 1, 5]) = [5, 5, 1, 1, 5] 𝑓([8, 3, 9, 5, 7]) = [5]

𝑓([5, 7, 5, 7, 5]) = [5] 𝑓([0, 2]) = [] 𝑓([]) = [0]

𝑓([1, 1, 1, 1]) = [1] 𝑓([9, 7, 0, 9, 7, 9, 9, 4, 0, 7]) = [7, 0, 9, 7, 9, 9, 4, 0, 7] 𝑓([4, 4]) = [2]

𝑓([7, 9, 3, 4]) = [3] 𝑓([3, 8, 3, 3, 8, 3, 3]) = [8, 3, 3] 𝑓([1, 3, 1, 3, 1, 3]) = [6]

𝑓([7, 7, 7]) = [7] 𝑓([6, 2, 6, 1, 3, 6, 2, 9]) = [2, 6, 1, 3, 6, 2] 𝑓([7, 9, 9, 9]) = [4]

𝑓 : (𝜆𝑥 (singleton (third 𝑥))) 𝑓 : (𝜆𝑥 (take (first 𝑥) (drop 1 𝑥))) 𝑓 : (𝜆𝑥 (singleton (length 𝑥)))

Figure 1: Example concepts from Rule (2020)

Consider task c001 in Figure 1. We may not immediately realize what the hidden

function 𝑓 . However we may notice that the output always has length 1. This property

"output has length 1" provides useful information for finding what 𝑓 is. Specifically

it restricts the space of possible programs we need to search in, since we only need to

consider programs that applied to these inputs result in outputs of length 1. Similarly

for c010 we might notice the property "the output is a substring of the input" or

more generally "the output is a subset of the input" which immediately restrict the

programs we consider (e.g. we can disregard programs that add arbitrary constants

to the output).2 In fact, for concept c077 the properties "output has length 1" and

"head of output is equal to the length of the input" fully specify its semantics. The

conjunction of these two properties can be thought of as a logical specification of the

program, where a program is correct if and only if these two properties are true of its

corresponding input-output examples. It can also be thought of as a natural program,
2We cannot be certain that any of these properties is true of the latent program (i.e. true for

all possible inputs to the latent program). However the more examples we observe for all of which
a given property is true, the more suspicious it would be if it was not a true property of the latent
program. We believe this has connections to the size principle (Tenenbaum, 1999), where more
specific meanings become exponentially more likely with number of examples observed. All the
properties discussed above are in fact true of the corresponding latent programs (shown in Figure
1) See appendix A.1 for a more detailed discussion on this.
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a set of instructions that can be reliably conveyed to people to produce the intended

output (see Acquaviva et al. (2021) who introduce the term for more discussion on

natural programs). In this work we formalize these properties as symbolic functions

of the spec (the input-output examples) and claim that they are useful for inductive

synthesis. Specifically we make the following contributions:

• We introduce a novel way to score properties for a given spec and discuss its

connections to Bayesian surprise (Itti and Baldi, 2009).

• We introduce PropsimFit, a novel online synthesis algorithm that uses proper-

ties during program search and show that it outperforms naive non-property

baselines in the Rule (2020) list function inductive synthesis dataset.

• We discuss future ways to use properties for synthesis based on the insights

gained from PropsimFit and its limitations.

3 Related Work

In the past the focus of program synthesis has been to synthesize programs from

complete logical specifications (Manna and Waldinger, 1980). In what is often re-

ferred to as deductive synthesis, axioms and deductive rules transform the logical

specification into a program. The process of transformation constitutes a proof that

the program satisfies the logical specification. These systems require a lot of manual

domain-specific work and are restricted in the types of programs they can construct.

Additionally they require complete logical specifications which are often difficult to

acquire.

Inductive synthesis algorithms take in inductive specifications, commonly input-output

examples which are a lot easier to provide than complete logical specifications. Ap-

proaches like FlashFill (Gulwani, 2011) that fall under the FlashMeta framework

(Polozov and Gulwani, 2015), take inspiration from deductive synthesis and use de-

ductive rules to reduce the synthesis problem into smaller synthesis sub-problems.
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Importantly these deductive rules rely on hand-written functions for each DSL prim-

itive that essentially describe the inverse semantics of each DSL primitive. They

employ these deductive rules to restrict the space of programs during enumerative

search. The above make these systems a lot more generally applicable than deductive

synthesis systems.

There is also a lot of recent work using neural networks to guide enumerative pro-

gram search. In Deepcoder (Balog et al., 2016), the input-output examples (spec) are

encoded neurally and a neural network is trained to predict the uses of DSL primi-

tives. In Odena and Sutton (2020) the input-output examples are represented with

a property signature, a list of program property values of the spec, which a neural

network takes as input to predict DSL primitives. In some sense, neural networks

can be used to automatically capture some of the expensive domain-specific inverse

semantics that are manually specified in the deductive inference approaches. Hav-

ing said that, the process of inference using neural-guided enumeration as performed

above is qualitatively different from the deductive inference that systems that fall

under the FlashMeta framework do. We develop synthesis algorithms with automat-

ically generated properties that, like neural network approaches, require less manual

domain-specific work, but unlike neural network approaches, capture and utilize hard

constraints of the spec as in deductive inference systems.

4 Background

We rely on the formulation of properties proposed in Odena and Sutton (2020) and

for convenience use the same notation. Let program 𝑓 :: 𝑡𝑖𝑛 −→ 𝜏𝑜𝑢𝑡 and property

𝑝 :: (𝜏𝑖𝑛, 𝜏𝑜𝑢𝑡) −→ bool where 𝜏𝑖𝑛 and 𝜏𝑜𝑢𝑡 are the input and output types respectively.

Then if 𝑆 is a set of 𝜏𝑖𝑛 values, let 𝑝(𝑓, 𝑆) = {𝑝(𝑥, 𝑓(𝑥)) | 𝑥 ∈ 𝑆}. Then because 𝑝(𝑓, 𝑆)

is a set of boolean values it will either be {True}, {False} or {True,False}. To simplify

notation, let Π({True}) = 𝐴𝑙𝑙𝑇𝑟𝑢𝑒, Π({False}) = 𝐴𝑙𝑙𝐹𝑎𝑙𝑠𝑒 and Π({True,False}) =

17



𝑀𝑖𝑥𝑒𝑑 3 . Finally let 𝑉 (𝑓) be the (potentially infinite) set of valid inputs for program

𝑓 . We can now talk about the property value Π (𝑝(𝑓, 𝑉 (𝑓))) of a given program 𝑓

and property 𝑝. Odena and Sutton (2020) define the property signature sig(𝑃, 𝑓) of

a program 𝑓 and a property sequence 𝑃 as,

sig(𝑃, 𝑓)[𝑖] = Π(𝑝𝑖(𝑉 (𝑓)))

In programming by example, we only observe a finite set of input-output pairs 𝑆𝑖𝑜

with the goal of inferring 𝑓 that generated them. Odena and Sutton (2020) use this

set 𝑆𝑖𝑜 to compute the estimate property signature of 𝑓 ,

̂︁sig(𝑃, 𝑓)[𝑖] = iosig(𝑃, 𝑆𝑖𝑜)[𝑖] = Π({𝑝𝑖(𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡) | (𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡) ∈ 𝑆𝑖𝑜})

We can say the following about the estimate ̂︁sig(𝑃, 𝑓)[𝑖]. If ̂︁sig(𝑃, 𝑓)[𝑖] = Mixed then

also sig(𝑃, 𝑓)[𝑖] = Mixed. If ̂︁sig(𝑃, 𝑓)[𝑖] = AllTrue then sig(𝑃, 𝑓)[𝑖] could be either

AllTrue or Mixed. Similarly if ̂︁sig(𝑃, 𝑓)[𝑖] = AllFalse, sig(𝑃, 𝑓)[𝑖] could be either

AllFalse or Mixed. See Appendix A.1 for a more detailed treatment of estimated

property values.

Odena and Sutton (2020) use this estimated property signature to featurize the spec

and condition program search on it using a neural network to predict the uses of the

DSL primitives. In the follow-up work BUSTLE (Odena et al., 2020), they use a

neural network in the loop during bottom-up search to predict how likely interme-

diate sub-expressions are to appear in the final program, where sub-expressions are

executed and featurized using property signatures. Although they effectively demon-

strate that the proposed property-based systems outperform non-property baselines

in the examined synthesis domains, their synthesis systems are unsatisfying in the

3We note that properties can be generalized to 𝑝 :: (𝜏𝑖𝑛, 𝜏𝑜𝑢𝑡) −→ 𝜏* where 𝜏* is any type in the
DSL. Although the set of of possible values for 𝑝(𝑓, 𝑆) would not be as small, they could always be
summarized with AllSame when |𝑝(𝑓, 𝑆)| = 1 and Mixed when |𝑝(𝑓, 𝑆)| > 1. This an interesting
direction for future work as it might facilitate automatically generating properties and picking out
useful constants from the spec.
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following ways:

• They do not explicitly utilize the precise constraints implied by prop-

erties. Recall the examples in the introduction, and how properties provide

precise constraints regarding the set of possible correct programs. We want to

build a system that makes these constraints explicit and a central part of how

it uses properties during search, rather than as features for a neural network to

consume.

• They are not as good cognitive science models. There are tasks that are

neither immediately obvious nor impossible us to solve, for which it feels that

we engage in some online inference process that does not seem to rely on having

seen thousands of input-output examples, their corresponding properties, and

what programs they correspond to. We claim that properties play an essential

role in this process and wish to build a computational model that uses properties

to describe it. Additionally, regardless of whether one believes neural networks

can learn to approximate this inference process, they are not interpretable and

so can only give us limited insight into this process and the inference steps

people use to arrive at the final programs.

5 Approach

We want to build a model that matches the following intuitions about how people

use properties to solve inductive synthesis tasks:

a) People notice and pay attention to program-like properties of the spec.

b) People use these properties to restrict the space of possible programs they need

to search in. From a bayesian inference perspective, we would say people use

properties of the spec to refine their approximate posterior distribution over

programs.

As a first step towards a), in section 5.1 we present a way to score properties for a

given spec and discuss its connections to Bayesian surprise (Itti and Baldi, 2009). As
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a first step towards b), in section 5.2 we present PropsimFit, a synthesis algorithm

that uses properties to improve its distribution over programs.

5.1 Scoring properties

In the experiments described below we generate properties by enumerating from the

program DSL (see section 7.4.2 for ways to improve this). This results in a list of

thousands of properties. In order to better match our intuition that people notice

and use a significantly smaller number of properties (as well as for computational

efficiency considerations) we want to keep a small set of the most useful properties

for a given spec4. To accomplish this we need a way to score properties of programs.

Intuitively we assign a high score to rare property values and a low score to more

common ones (under our prior distributions over programs). The value AllTrue for

property "output starts with [4,4,7,8]" is rare and gets assigned a high score, whereas

the value AllTrue for property "output has length > -2" is true for any program we

consider and so get assigned the lowest possible score.

Assuming we have a library L which defines a prior over programs P(𝑓 | 𝐿) we score

a property 𝑝 for a given program 𝑓 based on how surprising the property value 𝑐 =

Π (𝑝(𝑓, 𝑉 (𝑓))) is under the prior over programs where 𝑐 ∈ {AllTrue,AllFalse,Mixed}.

The score is thus a function of only 𝑝 and 𝑐,

score(𝑝, 𝑐) = − log [P (Π (𝑝 (f , 𝑉 (𝑓))) = 𝑐 | 𝐿)]

= − log

[︃∑︁
𝑓

P (Π (𝑝 (𝑓, 𝑉 (𝑓))) = 𝑐 | 𝑓) · P(𝑓 | 𝐿)

]︃

For a given spec, we can then score each of the properties based on the estimated

property value Π(𝑝(𝑓, 𝑆𝑖)). In Table 1 we see the highest scoring properties for task

c001 where we equally weight the primitives of L and enumerate until we get 10,000

4Note in Odena and Sutton (2020) thousands of properties are used to make up the property
signature; it is less of an issue in their system since the neural network can learn to weight them
appropriately.
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programs to estimate the prior over programs 𝒫(𝑝 | 𝐿).

property score Π(𝑝(𝑓, 𝑆𝑖)) Π(𝑝(𝑓, 𝑉 (𝑓)))
output element at index 0 equal input element at index 2 4.25 AllTrue AllTrue
output has length 1 2.14 AllTrue AllTrue
output is shorter than input 0.98 AllTrue AllTrue
output contains input element at index 2 0.93 AllTrue AllTrue
output contains number 2 0.91 AllFalse Mixed
output contains number 4 0.89 AllFalse Mixed
output has length 4 0.88 AllFalse AllFalse
output contains number 6 0.86 AllFalse Mixed
output has length 3 0.78 AllFalse AllFalse
output is same length as input 0.69 AllFalse AllFalse

Table 1: Highest scoring handwritten properties for task c001 (see Figure 1 for
reference) whose program 𝑓 is "remove all but element at index 2". The first column
is a short description of the property, the second column is its score computed using
the estimated property value, the third column is the estimated property value based
on the 8 observed input-output examples generated from applying 𝑓 to inputs 𝑆𝑖, and
the fourth column is the true property value for latent program f (computed over all
valid inputs 𝑉 (𝑓)).

The resulting highest scoring properties "output element at index 0 equal input

element at index 2" and "output has length 1" seem to match our intuitions about

which properties relate the most to the semantics of the program. The next two

properties "output is shorter than input" and "output contains input element at index

2" are also always true of the latent program but they are not as specific. Of the

remaining properties some are incorrectly estimated to be AllFalse when they should

be Mixed and others are correctly estimated but not as indicative of the semantics

of the program e.g. "the output has length 3" is AllFalse i.e. "the output never has

length 3". For more discussion on estimated property values see Appendix A.1.

5.1.1 Connection to bayesian surprise

Another way to think of the score is that it picks out the most informative proper-

ties. A high-scoring property is only true for a small fraction of the programs under

consideration and so allows us to exclude a large fraction of the programs. Under

the bayesian view, the highest scoring property values are the ones that are the least
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property score Π(𝑝(𝑓, 𝑆𝑖)) Π(𝑝(𝑓, 𝑉 (𝑓)))
output has length 1 3.12 AllTrue AllTrue
all output elements are less than 0 1.66 AllFalse AllFalse
output list has length 0 1.64 AllFalse AllFalse
output list has length 2 1.46 AllFalse AllFalse
all output elements are less than 7 1.32 AllTrue Mixed
all output elements are less than 8 1.22 AllTrue Mixed
output list has length 3 1.17 AllFalse AllFalse
output list has length 4 1.12 AllFalse AllFalse
all output elements are less than 9 1.22 AllTrue Mixed
output contains number 7 0.94 AllFalse Mixed

Table 2: Highest scoring handwritten properties for task c077 (see Figure 1 for
reference).

likely under the prior and so updating the prior over programs to match the new

estimated property value posterior would result in a large update in our beliefs. In

fact the score as defined above is exactly the bayesian surprise (Itti and Baldi, 2009)

of the estimated property value Π(𝑝(f , 𝑆𝑖)), which is a measure of the difference be-

tween its posterior and prior distribution. Formally, the property score is the KL

divergence between the estimated property value posterior after conditioning on the

observed spec 𝑆𝑖𝑜 and the estimated property value prior. The estimated property

value prior is given by P (Π (𝑝 (f , 𝑆𝑖)) | 𝐿) and the estimated property value poste-

rior is given by P (Π (𝑝 (𝑓, 𝑆𝑖)) | 𝐿, 𝑆𝑖𝑜) which is deterministic (i.e. equal to one of

{AllTrue,AllFalse,Mixed} with probability 1).

It would be interesting to investigate whether the property value score tracks which

properties people notice and pay attention to when looking at the spec in the same

way that Bayesian surprise tracks human attention in Itti and Baldi (2009).

5.1.2 Limitations

• We have been claiming that the property score should pick out the most useful

properties but to show that they are useful we must show that they improve

synthesis performance compared to ablations that don’t use properties.
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• Since we have not run any human experiments we cannot draw any conclusions

as to whether this score captures the properties people notice and use to solve

tasks. In fact we suspect that what properties people notice also depends on how

visible they are (see discussion on visibility in Rule (2020)) which is not captured

by the current formulation of the score. We conjecture that the property score

most likely tracks the properties people find the most useful/suspicious (and

possibly the ones people pay the most attention to if noticed) rather than the

ones that are most noticeable. Consider that for any task (with latent program

𝑓) the highest scoring property will always be "f executed on the input equals the

output" but people that are unable to solve the task never notice this property.

However if they did notice, it would by definition be the most useful property

for program synthesis.

5.2 PropsimFit

PropsimFit provides a way to alter the prior distribution over programs to a dis-

tribution over programs under which programs that share many properties with the

latent program are more probable.5 PropsimFit scores programs from the original

prior distribution of programs based on how many properties they share with the la-

tent program, and fits a Probabilistic Context Free Grammar (PCFG) to the highest

scoring of these to get a new approximate posterior distribution of programs.

Propsim score

To score two programs based on how many properties they share with each other

we propose the propsim score. For a set of properties 𝑃 , library 𝐿 and a prior over

5Note that by "share many properties" here and later on we really mean share property values
e.g. the latent program has property value AllTrue for property "output same length as input" and
so do most samples from the posterior distribution of programs.
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programs P(𝑓 | 𝐿), we calculate the similarity of programs 𝑓𝑎 and 𝑓𝑏 as follows,

propsim(𝑓𝑎, 𝑓𝑏) =
∑︁
𝑖

⎧⎪⎨⎪⎩score(𝑝, 𝑐) if sig(𝑃, 𝑓𝑎)[𝑖] = sig(𝑃, 𝑓𝑏)[𝑖] = 𝑐

0 otherwise

Scored this way, not all properties count equal. The higher the score of the property

the two programs share i.e. the more rare (under the prior over programs) the prop-

erty they share is, the higher its contribution to their propsim score. One potential

downside of this scoring method is that each property independently (of other prop-

erties) contributes to the propsim score which may not be desirable for properties

that are very similar to each other.

The propsim score can also be used to score the similarity between two specs, or

between a program and a spec by replacing sig(𝑃, 𝑓𝑏) above, with the estimated prop-

erty signature ̂︁sig(𝑃, 𝑓𝑏) = iosig(𝑃, 𝑆𝑖𝑜).

PropsimFit Algorithm

Intuitively in PropsimFit we modify the program grammar to generate programs that

have a high propsim score with the spec. The algorithm is as follows,

1. Handwrite or automatically generate set of properties 𝑃

2. Sample/enumerate from DSL to get set of programs 𝐹 = {𝑓 | 𝑓 ∼ P(𝑓 | 𝐿)}

3. For task 𝑥 ∈ 𝑋 (where task x is a set of input-output examples) with inputs 𝑆𝑖

(a) Create synthetic tasks 𝐻 = {makeTask(𝑓, 𝑆𝑖) | 𝑓 ∈ 𝐹} where

makeTask(𝑓, 𝑆) = {(𝑥𝑖𝑛, 𝑓(𝑥𝑖𝑛)) | 𝑥𝑖𝑛 ∈ 𝑆}

(b) Compute propsim(iosig(𝑃, 𝑥), iosig(𝑃, ℎ)) ∀ℎ ∈ 𝐻

(c) Fit the PCFG to the 𝑛 most similar ℎ ∈ 𝐻 (according to propsim score)

i.e. set the weights of 𝐿 using the inside-outside algorithm so that the
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probability of the n most similar programs is maximized. This results in

𝐺𝑓𝑖𝑡𝑡𝑒𝑑 which instantiates the approximate posterior Q(𝑓 | 𝐿, 𝑥).

(d) Enumerate from grammar 𝐺𝑓𝑖𝑡𝑡𝑒𝑑 proposing programs 𝑓 in decreasing order

of probability under Q(𝑓 | 𝐿, 𝑥) until timeout

6 Experiments

6.1 Preliminaries

Dataset: We use the dataset introduced by Rule 2020, which consists of list func-

tions that transform list of integers to list of integers. For the experiment below we

use the first 80 concepts, which only contain integers in the range 0 to 10. All con-

cepts are manually generated to capture broad variation in how difficult they are for

human learners and in the kinds of algorithmic reasoning they require. Each concept

is specified by 11 input-output examples; we use the first 8 to induce a program and

the remaining 3 to evaluate if the induced program is correct.

DSL: We use the rich DSL (see appendix A.4 for more details) from which the

concepts were formed, the more basic DSL (see A.3) and the starting DSL used in

the Dreamcoder list domain (see A.5).

Properties: We hand-write a set of properties of the spec that seem intuitively use-

ful when manually solving the 80 tasks, parametrizing them when possible. We follow

the formalization of Odena et. al restricting every property to type (𝜏𝑖𝑛, 𝜏𝑜𝑢𝑡) −→ bool.

See appendix A.2 for a full list of the handwritten properties. We also experiment

with automatically generating properties by enumerating from the rich DSL for pro-

grams of type (𝜏𝑖𝑛, 𝜏𝑜𝑢𝑡) −→ bool keeping only ones that result in a unique signature

over the 80 tasks.

PropsimFit Details: We enumerate from the prior P(𝑓 | 𝐿) where all primitives
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in L are equally weighted until we get 10,000 programs that make up 𝐹 . We run

the inside-outside algorithm on the 50 most similar tasks to get a task-specific PCFG

from which we enumerate for 600 seconds for each task.

Baselines: All models including PropsimFit result in a PCFG for each task from

which we perform type-directed enumeration in order of decreasing program probabil-

ity. The baselines differ in how they set the probabilities of the grammar productions.

The simplest baseline Uniform equally weights all productions. The AllFit baseline

assigns grammar production probabilities using the inside-outside algorithm fitting

to all synthetic tasks 𝐻𝑥
6 (unlike PropsimFit which fits on the 50 most similar tasks

of 𝐻𝑥). The Neural baseline is the neural recognition model from Ellis et al. (2021)

which consists of a GRU, a type of recurrent neural network, that encodes the input-

output examples into a vector which is passed into an MLP layer to predict the PCFG

probabilities. As in the list domain experiments in Ellis et al. (2021) it is trained for

10,000 gradient steps.

6.2 Results

Number of tasks (out of 80) solved with fixed enumeration time

Rule rich DSL Rule basic DSL DC list DSL

10s 25s 100s 600s 10s 25s 100s 600s 10s 25s 100s 600s

PropsimFit (handwritten) 4 28 53 56 8 17 19 19 8 26 28 29

PropsimFit (automatic) 6 24 49 55 10 17 18 20 9 21 22 22

Neural 24 40 48 53 9 15 16 16 8 22 25 28

AllFit 1 23 44 52 9 14 15 17 6 19 26 28

Uniform 1 3 25 32 10 13 17 17 6 14 16 16

Table 3: Number of tasks solved for different single CPU enumeration times in Rule
(2020) list function domain using the rich DSL. Each column represents a vertical
slice from Figure 2.

6This does not result in the same grammar as Uniform because the 10,000 programs are the
highest probability programs rather than samples from Uniform and because we exclude programs
that result in the same output for all examples.
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6.2.1 Symbolic properties are useful for program search in Rule (2020)

After enumerating for 600 seconds, PropsimFit solves more tasks than all baselines

for all three DSLs. In the Rule (2020) rich DSL and the Rule (2020) basic DSL ex-

periments, PropsimFit solves 3 more tasks than the next best baseline, while in the

DC list DSL experiments, PropsimFit solves 1 more task than the next best base-

line. Generally PropsimFit with handwritten properties seems to perform marginally

better than with automatically generated properties. Note that 1. PropsimFit with

handwritten properties outperforms AllFit for all three DSLs and 2. AllFit is a form

of ablation of PropsimFit that excludes property information. Taken together these

indicate that properties capture information that is useful for program search.

Figure 2: Cumulative percent tasks solved over time in Rule (2020) list function
domain using the rich DSL (see A.3 for DSL details).

27



(a) Results using starting DSL from Ellis et al.

(2021) list function domain

(b) Results using basic DSL from Rule (2020)

(see A.3)

Figure 3: Cumulative percent tasks solved over time in Rule (2020) list function
domain with other DSLs.

6.2.2 Following property signal improves approximate posterior distribu-

tion

For the vast majority of tasks solved, the approximate posterior probability of the

best program found is higher under PropsimFit than under AllFit (see Figure 4 and

Figure 5). We compare to AllFit instead of Uniform because we want to specifically

show the contribution of properties (rather than the effects of fitting on programs

from type-restricted enumeration that passed the filtering step). It is worth noting

that for some of the easier tasks, the task solution is included in the 50 most similar

tasks found according to the propsim score and so it is less surprising that the ground

truth program has a high probability under the PropsimFit grammar. However, for

the remaining tasks, the fact that the probability of the ground truth programs is

higher under the PropsimFit grammar compared to the AllFit baseline indicates that

programs that are similar under the propsim score are more likely to have common

primitives and are thus a good signal to follow.
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Figure 4: Approximate posterior of MAP program discovered for each concept (con-
cepts for which no model discovered a program are excluded) in Rule (2020).

(a) Results using starting DSL from Ellis et al.

(2021) list function domain

(b) Results using basic DSL from Rule (2020)

(see A.3)

Figure 5: Approximate posterior of MAP program discovered for each concept (con-
cepts for which no model discovered a program are excluded) in Rule (2020) list
function dataset, comparing the baseline AllFit with the best performing PropsimFit
model.

The experiments support the insight that properties are useful for program search

29



and that improving the program prior using shared properties with the spec as a

signal results in a distribution for which the ground truth program is more probable

in the Rule (2020) list function domain. To what extent these insights generalize to

other domains remains to be tested.
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7 Looking forward

Figure 6: Diagram of general approach for using properties for program synthesis.
PropsimFit is a special case of this.

PropsimFit modifies a generative model of programs following the signal of shared

properties. The generative model is modified so that it generates programs that share

more properties with the spec to solve. This approach relies on the assumption that

a generative model of programs that share more properties with the spec will also

be a better model of the latent program (i.e. generate it with high probability).

In Section 6.2 we show PropsimFit solves more task than the naive baselines in

Rule (2020), and results in better approximate posterior distributions of the latent

programs. Although there there is still much room for improvement, we believe these

results indicate that there is merit to the more general approach (discussed above

and illustrated in Figure 6). In PropsimFit the generative model of programs is

a PCFG combined with type-directed top-down enumeration in order of decreasing

program probability. It is modified by changing the grammar production probabilities

to maximize the probability of the programs most similar to the spec according to

the propsim score. Below we discuss some of the limitations of these design decisions

and refer to concrete ways to address them:
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1. Extract more information from similar programs: In PropsimFit the only

information we can extract from similar programs is about the marginal prob-

abilities of individual primitives. If two primitives always co-occur in similar

programs but never occur individually, fitting a PCFG using the inside-outside

algorithm to these programs will not capture this. How much information we

can extract from a list of similar programs and how we generalize from it de-

pends both on the kind of generative model of programs we use and the ways

in which we modify it.

2. Explore different ways to follow shared property signal to improve

generative model of programs: In PropsimFit we update the generative

model of programs based on the propsim score computed from all properties

of the spec. PropsimFit follows the signal of shared properties to improve its

generative model of programs. There are many more options to explore here

regarding how to follow the signal of shared properties. We could chose to follow

the signal from any subset of the properties (ranging anywhere from a single

property to all of the properties of the spec). If the generative model is modified

iteratively, we could dynamically change how many and which property signals

we choose to follow at each iteration. We could even cast this as a reinforcement

learning problem and learn these decisions based on whether they lead to tasks

solutions. We conjecture that the property score introduced in Section 5.1 could

be useful for making these decisions.

3. Improve automatically generated properties: The general approach relies

on the fact that it is easier to generate useful properties than it is to directly

generate the latent program. Both in this work and in Odena and Sutton

(2020), Odena et al. (2020) properties are naively generated using the program

DSL. Although generating properties this way is sufficient for outperforming

the respective synthesis baselines, we believe it is crucial to improve the way

properties are generated to ensure that they capture the semantics of the latent

program. This is an essential feature that upper-bounds the performance of any
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of property-based synthesis methods. Even if we could produce a generative

model that only outputs programs with identical property signatures as the

spec, it would only be useful if properties that made up the property signature

captured a significant part of the semantics of the latent program.

In Section 7.1 we discuss extensions to PropsimFit that address 1. and 2. In Section

7.2 we present preliminary experiments combining properties with MCMC and dis-

cuss future directions and how these relate to 1. and 2.. In Section 7.3 we propose

a different generative model of programs consisting of a population of partial pro-

grams and discuss its connection to 1. and 2. All the above synthesis systems would

benefit from better automatically generated properties and a DSL more tailored to

the datasets to be solved. In Section 7.4 we discuss how to achieve both of these by

combining property-based synthesis algorithms with Dreamcoder library learning.

7.1 PropsimFit extensions

As discussed above PropsimFit is limited in the kind of information it can extract

from similar programs. One straightforward way to improve PropsimFit is to replace

the unigram grammar with a bigram grammar. From a list of similar programs we

would again use the inside-outside algorithm to learn the bigram probabilities. This

change should enable richer learned generative models that more tightly model the

distribution of similar programs. Additionally, we can extract more information from

the list of similar programs, by using the compression algorithm from Ellis et al.

(2021) to invent new primitives from subprograms that appear in multiple similar

programs. In this way, PropsimFit is no longer limited to only being able to learn

unigram or bigram probabilities from the list of similar programs, but rather can

extract and upweight any arbitrary skip-gram that is repeated in multiple similar

programs.

In conjunction with the above, it is worth exploring fitting grammars following the

signal from either one property or a subset of properties instead of using the propsim
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score which considers all properties of the spec. For example, consider a spec that

only has two properties that are AllTrue. We want to modify our original generative

model so that it produces programs that share these two properties i.e. also have value

AllTrue. To accomplish this we could run the PropsimFit algorithm, either once or it-

eratively. Alternatively we could try to first get a good generative model of programs

that share one of the two properties and fit a grammar to the subset of programs

that share that property (using the inside-outside algorithm and the improvements

described above). We could then use the resulting grammar as the generative model

to get a new list of programs fitting to the subset of these that share the second spec

property. The resulting grammar should now generate more programs that share

both properties and could be more effective at this than a grammar directly fitted to

a list of programs (generated from the original grammar) that share both properties.

Of course without having run experiments the usefulness of the above is limited, but

it serves as a concrete example of how to modify the generative model of programs

to incrementally share more spec properties.

7.2 Properties and MCMC

Overview

We also use the propsim score to guide stochastic search in Fleet (Piantadosi, 2020).

In Fleet synthesis is framed as sampling from a Bayesian posterior where the learner

observes a set of input-output examples, and must infer the most likely latent program

to have generated these. The prior is defined by the grammar and the likelihood

typically specifies that the output is observed with some noise. Such approximate

likelihoods result in more programs with non-zero posterior probabilities than an

exact likelihood that assigns 1 to programs which satisfy the spec and 0 to all the rest.

When used with algorithms like MCMC this can allow for more efficient exploration

of the space of programs. Below we show results from experiments using the propsim

score as an approximate likelihood in Fleet.
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Preliminary Experiment

We use the first 100 concepts from Rule (2020) and the same basic DSL used in model

experiments in Rule (2020). Appendix A.3 has the the full list of every primitive name,

its type, and a short description of what it does as taken from A.3. Note for these

experiments we only use integers from 0 to 10 (inclusive).

Figure 7: Cumulative percent of Rule (2020) tasks solved (for 100 tasks) as a function
of MCMC samples using different approximate likelihoods.

Fleet with an approximate likelihood that is just the property score solves fewer

tasks for the same number of samples than the existing prefix-based approximate

likelihood. Combining the two by multiplying them together results in marginally

more tasks solved compared to using the prefix-based approximate likelihood alone.

Discussion

Although in these preliminary experiments were not able to conclusively show that a

property-based approximate likelihood can replace the existing prefix-based one (see

Figure 7), we are optimistic that incorporating properties in Fleet could further im-

prove Fleet’s already high performance in the Rule (2020) list function domain. We

could experiment with more ways to combine the property score with the prefix-based

score, filtering properties that are too similar to each other, as well as using a different

set of (potentially automatically generated) properties. Alternatively, we could use
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properties to guide MCMC proposals. One way of doing this would be to generate

proposals in the same way Fleet currently generates proposals by replacing candidate

program subtress, but use properties to filter them only keeping proposals whose

corresponding specs share as many or more properties than the candidate program.

We could also have different MCMC chains use different approximate property-based

likelihoods each corresponding to a different subset of properties. Combined with the

existing parallel tempering algorithm (Vousden et al., 2016) which maintains many

chains of different temperatures and periodically swaps them, this could be an effec-

tive way to explore the space of programs while prioritizing programs that share many

properties with the spec to solve, while preventing "getting stuck" in local minima.

We can also use MCMC to replace enumeration in PropsimFit. For the prior dis-

tribution which is used in the proposal mechanism we would use the same unigram

PCFG and for the approximate likelihood we would keep the default prefix-based

likelihood (alternatively we could use any of the property-based proposal mechanism

and approximate likelihoods described above). We would then run MCMC to gen-

erate a list of programs (samples) that we can score based on how many properties

they share with the spec to solve, for example by using the propsim score. Depending

on if properties are used during MCMC sampling this step might be unnecessary.

Finally, we can fit a new grammar to the highest scoring programs (again using the

inside-outside algorithm) from which can enumerate or sample with MCMC (using

it as the new prior). Additionally, we could use the highest scoring programs as the

seed programs MCMC starts with and restarts to when it "gets stuck". In the same

way we can run PropsimFit iteratively, we can repeat this process iteratively where

all the same considerations and strategies regarding how many and which properties

to use at each iteration also apply.

7.3 Partial programs with holes

Consider the partial program "(filter input HOLE)" where HOLE can be replaced

with any function that takes an integer and returns a boolean. Regardless of how
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this partial program is filled in, the final program will have value AllTrue for prop-

erty "output length is <= input length". Learning this fact automatically could be

really useful. If the spec we are solving shares this property this should make us

more confident we are on the right track, whereas if it doesn’t we should exclude this

partial program and its potential continuations from consideration. We suggest that

although we might not be able to prove this relationship to be true, we could sample

many times from the hole and if all of the resulting programs share the property judge

that it is highly likely to be true of all possible continuations.

Based on the above we believe it is worth exploring a generative model of programs

that maintains a population of partial programs that are incrementally filled in so

that they share more properties. A key benefit of this representation is that we can

modify the generative model of programs (by extending the partial programs) in a

way that monotonically increases the number of properties satisfied.

Another way to take advantage of the fact that some partial programs always share

certain properties is to use Monte Carlo Tree Search for program synthesis (see Lim

and Yoo (2016) details on how to set up) scoring programs using the propsim score.

If the spec to solve has value AllTrue for property "output length is <= input length"

any path down the tree that begins with the "filter" primitive would correspond to a

program with a high propsim score and thus upweight the corresponding tree path.

Effectively this upweights programs with "filter" as their outermost primitive.

7.4 Synergistic Dreamcoder library learning with properties

7.4.1 Learned concepts can give rise to better properties

Consider a task for which the program is "remove all the non-prime numbers from the

input list". Also assume that through library learning we have learned the primitive

"is_prime". With a neural recognition model, as in Dreamcoder (Ellis et al., 2021),

even if the primitive "is_prime" is included in the program of one of the random
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Helmholtz tasks we train on, it seems unlikely that the neural network could learn

the general concept of primality, as neural networks are good at interpolating not

extrapolating (it could at best learn to exclude all the prime numbers in the training

set but not a general rule for deciding primality). However, by generating properties

from the program DSL (which includes the new "is_prime" primitive) we can hope to

generate a property like "does_output_contain_only_prime_numbers" which (we

hypothesize) should be useful for inferring the program "remove all the non-prime

numbers from the input list". Rather than training a neural network to find the

features of a given task and from those predict the unigram/bigram probabilities of

the DSL as in the recognition model (the last layer of the recognition model can be

thought of as the feature layer), we can leverage the DSL concepts that we already

know are relevant to many tasks (e.g. primality) using symbolic properties as features.

As the DSL concepts become richer and increasingly specialized to our dataset of

tasks we expect to benefit more from using properties (that take advantage of these

concepts) for inference. This could result in a positive feedback loop where better

properties help solve more tasks enabling more library learning which in turn could

lead to even better properties.

7.4.2 Better automatically generated properties

The key argument from above is that learned concepts can be used to construct useful

properties. How this happens depends on how we automatically generate properties.

In PropsimFit we automatically generate properties by sampling/enumerating from

the program grammar. Combined with a property-based synthesis approach automat-

ically generating properties this way could benefit from Dreamcoder library learning

since at each iteration properties would be generated from a richer, more suitable DSL.

Although we expect properties to share primitives with the programs, it is possi-

ble that the program grammar which is updated to maximize the probability of the

discovered programs is not well suited for generating properties. We might instead

38



want to learn a dedicated property grammar. The initial primitives for this grammar

could be handwritten (in the same way that we initially handwrite the primitives of

the DSL) or they could be taken from the program DSL. The initial property gram-

mar could then be improved by: 1. Taking fragments from programs of solved tasks

and including them as primitives in the program DSL. 2. Running Dreamcoder com-

pression on the set of property programs that were useful in solving tasks. How to

decide whether a given property was useful depends on the property-based synthesis

algorithm used. In PropsimFit and other methods that use the propsim score we can

consider properties that contribute significantly to the propsim score as useful. In

Odena and Sutton (2020) we could judge the usefulness of a property using standard

neural network feature importance techniques. In a system like the one described in

section 7.3 each task would use a small number of properties and so we could con-

sider all of them useful. 3. Adding learned primitives from the program DSL as the

program library grows.

8 Conclusion

In this work we extended the property formulation by presenting a way to score

properties for a given program or spec. We introduced PropsimFit, a novel property-

based synthesis algorithm and showed that it outperforms naive baselines in the

Rule (2020) list function domain. We argued that this indicates that there is merit

to the general approach of modifying a generative model of programs following the

signal of shared properties. Finally we outlined future improvements to PropsimFit,

and explored different synthesis systems that share the same general approach but

overcome some of PropsimFit ’s limitations.
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A Appendix

A.1 Estimating property values and suspicious coincidences

c001

𝑓([2, 4, 3, 2]) = [3]

𝑓([9, 6, 9, 8, 6]) = [9]

𝑓([0, 0, 0, 0, 0]) = [0]

𝑓([8, 1, 8]) = [8]

𝑓([5, 7, 5, 7, 5]) = [5]

𝑓([1, 1, 1, 1]) = [1]

𝑓([7, 9, 3, 4]) = [3]

𝑓([7, 7, 7]) = [7]

𝑓 : (𝜆𝑥 (singleton (third 𝑥)))

Figure 8: Concept c001 from Rule (2020).

Consider property "output_has_length_1" for task 𝑐001 (input-output examples

shown in Figure 8 and properties shown in Table 1). Its estimated property value

is AllTrue, that is Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue. What does this imply about the property

value for the latent program 𝑓? Either the latent program 𝑓 has property value All-

True (hypothesis A) or it has property value Mixed and it is a coincidence that all

example inputs result in True (hypothesis B). Both hypotheses are consistent with

the observed data. We claim that as the number of examples observed increases (as-

suming A and B are still consistent with the data, i.e. all examples continue to have

property value True), hypothesis A becomes exponentially more likely. Stated differ-

ently, B becomes exponentially more "suspicious" (Tenenbaum, 1999). Roughly, this

is true because for programs in A, all inputs result in True for this property, whereas

in B, only a subset of the valid inputs result in True for this property (by definition
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of Mixed). A more rigorous justification can be seen below.

The relative Bayesian posterior of A and B is given by,

P(𝐴 | Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue)

P(𝐵 | Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue)
=

P(𝐴) · P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝐴)

P(𝐵) · P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝐵)

We focus on the likelihood terms because only these scale with the number of exam-

ples. For A,

P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝐴) =
∑︁
𝑓∈𝐴

P(𝑓 | 𝐴) · P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝑓)

=
∑︁
𝑓∈𝐴

P(𝑓 | 𝐴) · 1|𝑆𝑖|

For B,

P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝐵) =
∑︁
𝑓∈𝐵

P(𝑓 | 𝐵) · P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝑓)

=
∑︁
𝑓∈𝐵

P(𝑓 | 𝐵) ·

(︃⃒⃒
{𝑖 | 𝑝(𝑓, 𝑖) = True, 𝑖 ∈ 𝑉 (𝑓)}

⃒⃒⃒⃒
{𝑖 | 𝑖 ∈ 𝑉 (𝑓)}

⃒⃒ )︃|𝑆𝑖|

=
∑︁
𝑓∈𝐵

P(𝑓 | 𝐵) · (1 − 𝜖)|𝑆𝑖| where 𝜖 > 0

As the number of examples |𝑆𝑖| increases (assuming the corresponding property value

continues to be True for all examples) the likelihood P(Π(𝑝(𝑓, 𝑆𝑖)) = AllTrue | 𝐵)

exponentially decreases while the likelihood for A remains the same. Consequently,

A quickly becomes more likely than B regardless of the prior probabilities P(𝐴) and

P(𝐵). The above is fundamental to why we can accurately estimate property values

even with a small number of examples.
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Future Work

It would be interesting to explore how well the above Bayesian treatment of esti-

mated property values could model human judgements about property values, espe-

cially using just a couple input-output examples. All the required quantities for the

computational model can be estimated from the program prior. Additionally having

a model that can quantify how good the estimated property values are could also be

really useful for any synthesis algorithm that uses estimated properties (especially if

the spec is only a couple of input-output examples).

A.2 Handwritten Properties

All handwritten properties are either of type (𝑙𝑖𝑠𝑡(𝑖𝑛𝑡), 𝑙𝑖𝑠𝑡(𝑖𝑛𝑡)) −→ 𝑏𝑜𝑜𝑙 or of type

𝑙𝑖𝑠𝑡(𝑖𝑛𝑡) −→ 𝑏𝑜𝑜𝑙. The former are functions of both the input and output lists and

the latter are functions of the output list alone. There is a total of 181 handwritten

properties.

Each of the bullet points below corresponds to a single property:

• output_els_in_input(input, output): Returns true if all output elements

are present in the input.

• input_els_in_output(input, output): Returns true if all input elements

are present in the output.

• output_same_length_as_input(input, output): Returns true if the out-

put list has the same length as the input list.

• output_shorter_than_input(input, output): Returns true if the output

list length is strictly less than the the input list length.

• output_list_longer_than_input(input, output): Returns true if the

output list length is strictly greater than the input list length.
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• every_output_el_gt_every_input_same_idx_el(input, output): Re-

turns true if every element in the output is strictly greater than the input ele-

ment at the same index.

• input_prefix_of_output(input, output): Returns true if the input is a

string prefix of the output.

• input_suffix_of_output(input, output): Returns true if the input is a

string suffix of the output.

Each of the bullet points below corresponds to 10 properties for 𝑘 ∈ [0, 9]:

• output_contains_k(output): Returns true if the output contains the num-

ber k.

• all_output_els_lt_k(output): Returns true if all the output elements are

strictly less than k.

• all_output_els_mod_k_equals_0(output): Returns true if all the out-

put elements are multiples of k.

Each of the bullet points below corresponds to 11 properties for 𝑛 ∈ [0, 10]:

• output_list_length_n(output): Returns true if the output is length n.

Each of the bullet points below corresponds to 11 properties for 𝑖 ∈ [0, 10]:

• output_contains_input_idx_i(input, output): Returns true if the out-

put contains the input element at index i (and it exists).

There are also 121 properties one for each {(𝑖, 𝑗) | 𝑖 ∈ [0, 10], 𝑗 ∈ [0, 10]} of the form:

• output_idx_i_equals_input_idx_j: Returns true if the output element

and index i and the input element at index j exist and are equal.

We choose the values for 𝑘, 𝑛, 𝑖, 𝑗 based on the range of integers and the input

and output list lengths in the Rule (2020) list function dataset (in our experiments
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we only use tasks with integers from 0 to 9). Datasets with longer lists, and larger

integer ranges would result in many more properties. This is a limitation of the cur-

rent formulation of properties of type (𝑙𝑖𝑠𝑡(𝑖𝑛𝑡), 𝑙𝑖𝑠𝑡(𝑖𝑛𝑡)) −→ 𝑏𝑜𝑜𝑙.
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A.3 Josh Rule Basic DSL

The description of this DSL is taken directly from Table 6.1 of Rule (2020). For

the experiments described in 6.2 and 7.2 we only use integers in the range 0 to 10

inclusive.

A.4 Josh Rule Rich DSL

The description of this DSL is taken directly from Table 5.2 of Rule (2020).
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For the purpose of the experiments described in 6.2 and 7.2 we only use integers

in the range 0 to 10 inclusive.
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A.5 Dreamcoder List Domain DSL

The primitives for this DSL can be found in the Dreamcoder repository7.

A.6 More general property formulation

A future direction to explore is to formulate properties to be of type (𝑙𝑖𝑠𝑡(𝑖𝑛𝑡), 𝑙𝑖𝑠𝑡(𝑖𝑛𝑡)) −→

𝜏 where 𝜏 could be any of the DSL types. Then, instead of summarizing property val-

ues over specs with AllTrue, AllFalse and Mixed we would summarize with AllSame

when |𝑝(𝑓, 𝑆)| = 1 and Mixed when |𝑝(𝑓, 𝑆)| > 1. With this formulation instead

of requiring a property "output_list_length_n(output)" for every possible output

list length, we would instead have a single property "output_length(output)". This

would be sufficient to capture the "allSame" coincidences when all output lists of a

given spec have the same length.

A.7 Dreamcoder experiments

In this section we report some initial results from running Dreamcoder (Ellis et al.,

2021) on the Rule (2020) list function dataset. Part of what makes the list function

dataset challenging is that the basic DSL contains a small number of a very prim-

itive functions (as can be seen in A.3 above). This is good reason to suspect that

library learning could be beneficial as there is potential to invent richer primitives

that shorten the program solutions. In fact the rich DSL in A.3 above is proof that

such richer primitives exist. Additionally we run these these experiments as they

can serve as a baseline for any future work that combines a property-based synthesis

system with Dreamcoder.

We use the first 80 tasks from Rule (2020) that only contain integers from 0 to

10. All the Dreamcoder hyper-parameters are identical to the ones used for list do-

main experiments in the original paper and can be found in the original Dreamcoder

7https://github.com/ellisk42/ec/blob/master/dreamcoder/domains/list/listPrimitives.py#L352
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repository8. We use the basic Rule (2020) DSL (rule basic dsl) and the list domain

DSL used in the Dreamcoder experiments (dc list dsl).

Figure 9: Percentage of tasks solved during library learning. We average 6 runs for
the Rule (2020) basic DSL (rule basic dsl) and show the ±1 standard deviation error
bars. Due to memory issues and time constraints we only run Dreamcoder once with
the default Dreamcoder list domain DSL (dc list dsl).

In Figure 9 we see the percentage of the 80 training tasks solved through the

course of library learning.

8https://github.com/ellisk42/ec/blob/master/official_experiments
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