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Abstract
What data should we gather to learn about the underlying structure of the world as quickly
as possible, especially in cases where data is sparse or expensive to acquire? Structure
learning techniques for Gaussian process (GP) probabilistic programs provide a rich frame-
work for inferring qualitative structure in data. In this thesis, we improve the data-efficiency
of probabilistic GP structure learning by extending it to the active learning setting. We
present a sequential Monte Carlo algorithm for Bayesian active learning for GPs with
a novel objective function, Kernel Information Gain (IG-K), to reduce uncertainty over
model structure and parameters. As a baseline for comparison, we also formulate a second
objective function, Predictive Information Gain (IG-P), that reduces uncertainty over the
posterior predictive distribution.

We empirically validate that active learning with our novel IG-K objective is able to
more accurately infer the structure of synthetic datasets using fewer datapoints than ac-
tive learning with IG-P. We also validate the underlying active learning inference algo-
rithm using simulation-based calibration. Finally, we test our active learning algorithm
on a real-world dataset with complex structure. Collectively, the results provide a deeper
understanding of the benefits and limitations of active structure learning using Gaussian
processes, revealing that an active selection strategy suited for inferring the model struc-
ture and parameters may not favorable for providing accurate predictions. These findings
suggest directions for future active learning approaches which combine the IG-K and IG-P
objectives, leveraging the advantages of each objective to efficiently discover structure in
data and provide accurate predictions.
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Chapter 1

Introduction

Exponential gains in available data and computational capabilities are changing the ways
we understand the world and approach challenging predictive problems, such as traffic
patterns [10], pandemic spread, and financial markets. The ability to statistically model
data-rich processes provides a framework to perform optimization, forecasting, and other
critical predictive tasks. In some cases, however, it is expensive or difficult to obtain data
from the process we wish to model. Examples include hyperparameter tuning for machine
learning when the objective functions are computationally expensive to evaluate [18], en-
vironmental pollution monitoring via costly in-situ sampling [10], and composite fuselage
design where obtaining experimental samples is time-consuming and expensive [21]. In
cases like these, we might choose to select observations carefully so as to learn more infor-
mation about the underlying process. Assuming observations are selected sequentially, we
can frame the problem as active learning [10] or optimal experimental design [20], where
the goal is to formulate a sequential policy for selecting the most informative locations to
observe, given information from previous observations and our beliefs about the underlying
process. Formulating a sequential policy can also be considered as formulating an objec-

tive function; the sequential policy selects points which maximize the objective. By using
active learning, we can maximize the amount of information we gain about the underlying
process given a limited budget of observations.

A common model choice for active learning problems is the Gaussian process (GP)
[9, 13], since GPs do not make strong (parametric) assumptions about the statistical pro-
cesses they model. Additionally, it is easy to sample from and evaluate posterior likelihoods
of GPs. Existing GP active learning algorithms [10, 17] maximize objective functions
of predictive entropy and reduction in predictive variance to actively select observations.
However, these algorithms assume that the GP covariance kernel is known either at the
structure level [10] (e.g. whether it is squared exponential or periodic) or at the param-
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eter level [17] (e.g. a fixed period of a periodic kernel), which are often overly strong
assumptions for real-world applications. In such cases, structure and parameter mismatch
of the kernel with the data has been shown to significantly decrease the predictive ability
of GP regression [6, 17]. Additionally, the structure of the covariance kernel determines
almost all the generalization properties of a GP model, so fixing the kernel structure does
not guarantee it is the most appropriate choice to model features of interest in the data [6].

To overcome this limitation, Duvenaud et al. [6] propose structure learning for GPs by
performing search over a rich space of GP kernels which are hierarchically composed from
simpler kernels [6, 11]. Since searching over the infinite space of compositional kernels
is intractable, Duvenaud et al. propose a greedy algorithm for kernel search. Work by
Schaechtle et al. [16] and Saad et al. [14] improve upon the greedy search technique by
reformulating kernel search as probabilistic program synthesis: representing GP models
as probabilistic programs and using Bayesian inference to synthesize these GP programs,
conditioned on observed data. Because this approach quantifies uncertainty over possible
kernel structures, this suggests that it can be combined with active learning to maximize
information gain about model structure, while also overcoming the predictive limitations
of existing GP active learning algorithms. It is the combination of active learning with this
rich GP model class that we investigate in this thesis.

1.1 Key Contributions

This thesis makes the following contributions:

1. Novel objective for optimizing information gain over model structure and pa-
rameters. We formulate a novel GP active learning objective, Kernel Information
Gain (IG-K), to maximize information gain on GP kernel structure and parameters,
defining information gain as reduction in entropy over a GP model class introduced
by Duvenaud et al. [6]. As a baseline for comparison, we also formulate a second
objective, Predictive Information Gain (IG-P), to maximize information gain on pre-
dictive posteriors. IG-P is based on ideas from the Active Learning Cohn (ALC)
objective implemented by Seo et al. in [17].

2. Monte Carlo approximation for information gain objectives. To tractably com-
pute the IG-K and IG-P objectives, we formulate Monte Carlo estimators of IG-K
and IG-P. To justify discrete approximation of the model entropy for the IG-K esti-
mator, we show that model entropy decomposes into the sum of entropies over the
model kernel structure and parameters separately.

12



3. Bayesian active learning algorithm for GPs using SMC. We define a Bayesian ac-
tive learning algorithm for GPs using the estimators of the IG-K and IG-P objectives.
The active learning algorithm extends work by Schaechtle et al. [16] and Saad et al.
[14] on Bayesian synthesis of GP probabilistic programs to the active learning setting
using a sequential Monte Carlo (SMC) procedure [1].

4. Empirical Validation. We present empirical results for inferring the correct GP
model and predicting new data using active learning with the IG-K objective versus
the IG-P objective. We also present empirical validation of the underlying SMC
algorithm using simulation-based calibration (SBC) [5] and results of active learning
with IG-K and IG-P on a real-world dataset. We present qualitative analysis of these
results which provides insight into the benefits and limitations of using GPs for active
structure learning.

Chapter 2 provides background on Bayesian synthesis of GP probabilistic programs
[14] and sequential Monte Carlo (SMC) [5]. Chapter 3 presents the SMC algorithm for
Bayesian active structure learning for GPs with the IG-K and IG-P objectives. It also
presents formulation of the objectives and their Monte Carlo approximations. Chapter 4
presents results of experiments testing active learning with IG-K and IG-P objectives on
synthetic datasets using a grid approximated posterior over constrained GP model classes.
Chapter 5 presents results of simulation-based calibration (SBC) validation of the under-
lying SMC algorithm, as well as results on a real-world dataset of airline travel data. We
conclude with a discussion of our overall findings and potential future work in Chapter 6.

1.2 Related Work

The section reviews previous work in structure discovery and active learning using GPs.
1.2.1 describes work in automating kernel selection for GP regression via greedy search
over a space of compositional covariance kernels [6, 11]. 1.2.2 describes prior work that
reformulates the GP kernel search problem and model class introduced in [6] as proba-
bilistic program synthesis, allowing for more robust Bayesian search over kernel structures
[14]. 1.2.3 and 1.2.4 describe entropy-based GP active learning algorithms [17, 20] which
inform the information gain objectives developed in this thesis. 1.2.5 describes an approx-
imate algorithm for nonmyopic GP active learning [10] which addresses parameter (but
not structure) uncertainty in the GP model, suggesting it can be combined with the myopic
active learning algorithm presented in this thesis to take advantage of both structure search
and nonmyopic planning.
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1.2.1 Structure Discovery via Compositional GP Kernel Search

Choosing an appropriate parametric form of the covariance kernel used in GP regression
can require expertise and trial and error. To automate this choice, Duvenaud et al. present
a greedy kernel search technique: Automatic Bayesian Covariance Discovery (ABCD) [6].
Duvenaud et al. formulate a space of kernel structures defined compositionally in terms
of sums and products of four base kernel structures: squared exponential (SE), periodic
(PER), linear (LIN), and rational quadratic (RQ). Examples of possible kernel structures
in this space include PER, LIN × LIN × LIN, and SE + RQ. To search over the space
of structures, ABCD greedily chooses the highest scoring kernel at each iteration, then
expands it by applying all possible search operators: adding a base kernel, multiplying by
a base kernel, and replacing an existing base kernel with another base kernel type. To score
kernels, the algorithm uses marginal likelihood, which can be computed analytically when
conditioned on the kernel structure with particular parameter values. However, evaluating
a kernel structure means integrating over possible kernel parameters, which is intractable.
ABCD approximates this integral with the Bayesian information criterion (BIC), which
trades off model fit and complexity, on models whose kernel parameters are optimized by
conjugate gradient descent. In experiments, ABCD is validated on real-world and synthetic
datasets and slightly outperforms standard baselines at extrapolation and high-dimensional
prediction.

The kernel structures learned by ABCD often yield decompositions of the data into
diverse and interpretable components. Later work by Lloyd et al. [11] expands on this
interpretability to present an automated statistician which performs ABCD and interprets
the learned kernel to describe the data using natural-language text and figures. The system
is evaluated on univariate timeseries datasets from real-world applications and successfully
discovers complex temporal patterns in the data. To adapt to this use case, the system in-
cludes modifications to ABCD as presented in [6]. Changes include adding white noise
(WN) and constant (C) base kernel types, introducing the changepoint operator, and re-
moving the rational quadratic (RQ) kernel, since it is difficult to interpret.

1.2.2 GP Kernel Search as Probabilistic Program Synthesis

Probabilistic programming languages provide a rich paradigm for specifying models and
performing inference. The work presented in this thesis builds upon a line of previous re-
search in modeling GPs as probabilistic programs, including prior work by Zinberg [22],
Schaechtle et al. [16], and Saad et al. [14] in developing a framework for performing
Bayesian GP structure learning. This framework, presented in detail in chapter 2, refor-
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mulates the GP kernel structure search problem and model class in [6] as Bayesian syn-
thesis of GP probabilistic programs, allowing for more robust Bayesian search over kernel
structures. The Bayesian active structure learning algorithm presented in this thesis is im-
plemented in the Gen probabilistic programming language [4], leveraging Gen’s ability to
perform automated involutive Markov Chain Monte Carlo (MCMC) [3] to search over GP
covariance kernels of the kind introduced in Duvenaud et al. [6].

1.2.3 Variance-Based Active Learning with GPs

Using sequential design methods suggested by MacKay [12] and Cohn [2], Seo et al. im-
plement and evaluate two active selection strategies for GP regression based on the variance
of the GP predictive posterior over target unobserved values [17]. The first strategy, Active
Learning MacKay (ALM), chooses the next point to maximize predictive variance, which
approximates a maximum entropy design. The second strategy, Active Learning Cohn
(ALC), chooses the next point which causes the greatest reduction in predictive variance
averaged over a user-specified range of target values. Both ALM and ALC rely heavily
on the assumption that the correct model, i.e. GP covariance kernel and noise, is known,
which is frequently untrue for real-world data applications. Consequently, ALM and ALC
are able to reduce predictive mean squared error (MSE) on held-out data better for syn-
thetic data than real-world data, due to model mismatch between the assumed kernel and
real-world data. ALC outperforms ALM at reducing predictive variance and MSE, and both
outperform a random selection strategy. The predictive information gain (IG-P) objective
presented in this thesis (section 3.3) is based on the ALC policy.

1.2.4 Active Bayesian Causal Discovery using GP Networks

Kügelgen et al. present a Bayesian GP active learning approach for causal discovery
through targeted interventions [20]. The goal of the algorithm is to learn the structural
causal model over d real-valued observable variables through experiments, i.e. targeted
interventions on one of the variables, fixing its value, and observing the resulting values of
the other variables to find evidence of causality. The structural causal model is assumed to
be a directed acyclic graph where the relationships between parent and child variables are
modeled by non-linear functions with additive noise. The structure and parameterization
of such causal graphs can be modeled as GPs, allowing the marginal likelihood and poste-
riors of observed data and causal graphs to be calculated in closed form. To decide which
experiment to perform next, the authors propose a Bayesian experimental design approach,
selecting an experiment ξ which maximizes a given utility function U(y|ξ) that describes
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the usefulness of observing the outcome y after performing experiment ξ.

To learn the causal model, the authors suggest defining utility as information gain over
model uncertainty. This requires integration over the possible outcomes of particular in-
terventions, which is intractable and approximated using a Monte Carlo estimator which
draws samples from the predictive interventional distribution. The authors also suggest
using Bayesian optimization as a way to find the globally optimal intervention with re-
spect to maximizing utility. The kernel information gain policy (IG-K) presented in this
thesis (section 3.2) is also based on the idea of maximizing information gain over model
uncertainty, with distinct notions of structure and parameter uncertainty. However, IG-K
approximates outcome integrals via gridding rather than sampling over the interventional
distribution, and it searches for the optimal intervention through enumeration rather than
Bayesian optimization.

1.2.5 Nonmyopic Bayes-Optimal Active Learning of GPs

To address the model mismatch problem of other GP active learning algorithms, Hoang et
al. present ε-Bayes-optimal active learning (ε-BAL), a nonmyopic selection policy which
jointly optimizes selecting locations informative for both spatial prediction and model es-
timation [10]. Though ε-BAL still assumes that the correct covariance kernel structure (a
squared exponential kernel) is known, it does not assume that the lengthscale parameter is
known, instead maintaining a Bayesian belief over possible lengthscales. Given a planning
horizon of N observations, ε-BAL recursively selects a sequence of N observations which
maximize joint entropy with respect to all possible induced sequences of future beliefs,
hence the term "nonmyopic". Like ALM, this follows a maximum entropy design. Unlike
ε-BAL, which uses a planning horizon of N > 1, all other active learning policies discussed
so far use a horizon of N=1, including the policies presented in this thesis. However, as a
direction for future exploration, the policies presented in this thesis may be combined with
ideas from ε-BAL to take advantage of the former’s search over kernel structures (ε-BAL
assumes kernel structure is fixed) and the latter’s nonmyopic planning horizon.

Due to an uncountable number of candidate observations and unknown model parame-
ters, the stage-wise entropy and expectation quantities required for ε-BAL cannot be eval-
uated precisely and are approximated within a loss bound ε > 0 using a truncated sampling
procedure. Even so, the cost of deriving the ε-optimal policy is exponential with respect
to planning horizon N. To ease this computational burden, the authors present ⟨α, ε⟩-BAL,
an anytime algorithm based on ε-BAL. At each stage, ⟨α, ε⟩-BAL only explores the next
states with uncertainty exceeding α to prune unnecessary exploration while still guaran-
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teeing policy optimality. Using root mean squared prediction error as the performance
metric, ⟨α, ε⟩-BAL outperforms state-of-the-art myopic, entropy-based GP active learning
algorithms on simulated GP data and real-world traffic data, and the performance gain is
especially high when the sample budget is small (5-10 observations). In the experiments,
the planning horizon N does not exceed 5, and 7 candidate values of the lengthscale pa-
rameter are considered.
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Chapter 2

Background

This chapter provides an overview of the Bayesian inference framework for GP probabilis-
tic programs by Saad et al. [14] (built on previous work by Schaechtle et al. [16]) and
provides background on SMC [1], which will allow us to extend this inference framework
to the active learning setting.

Saad et al. [14] reformulate the kernel search problem introduced by Duvenaud et
al. [6] as probabilistic program synthesis [14] to allow for fully Bayesian search over the
space of covariance kernels, making structure discovery more robust and generalizable.
The probabilistic program synthesis approach relies on three key ideas:

1. Representing a class of GP models (from Duvenaud et al. [6]) as probabilistic pro-
grams using a domain-specific language (DSL).

2. Defining prior and posterior distributions over the GP model class, conditioned on
observed data.

3. Performing Bayesian search over the GP model class by (approximately) sampling
from the model posterior.

GP models defined in the DSL are translated to executable code for obtaining GP predic-
tions and likelihoods conditioned on observed data. GP programs approximately sampled
from the model posterior provide a good fit for observed data. Analysis of these sampled
GP programs allow us to quantify uncertainty over possible kernel structures.

Section 2.1 describes the DSL for representing GPs and defines prior and posterior
likelihoods for GP models defined in the DSL. Section 2.2 describes Markov Chain Monte
Carlo (MCMC) techniques which allow for sampling of GP models from the approximate
model posterior given observed data, i.e. Bayesian synthesis of GP programs. Section 2.3
provides an overview of SMC algorithms.
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2.1 GP Models as Probabilistic Programs

2.1.1 GP Model Class

Gaussian processes are distributions over functions f : 𝒳 → 𝒴 such that any finite set of
function evaluations have a jointly Gaussian distribution. Following the notation of [9], we
formalize a GP f ∼ GP(m, k) with mean function m : 𝒳 → 𝒴 and covariance function
k : 𝒳 × 𝒳 → R as follows: f is a collection of random variables { f (x) : x ∈ 𝒳}. Given
locations {x1, ..., xn} the vector of random variables [ f (x1), ..., f (xn)] is jointly Gaussian
with mean vector [m(x1), ...,m(xn)] and covariance matrix [k(xi, x j)]1≤i, j≤n. The prior mean
is typically set to zero, and the functional form of the covariance kernel k defines essential
features of the unknown function f which allow the GP to fit structural patterns in observed
data and make forecasts. To express the space of compositional GP covariance kernels
presented in ABCD [6, 11], Saad et al. [14] define a DSL for expressing the kernel of a
specific GP. The implementation of Bayesian program synthesis used in this thesis uses a
slightly different DSL, which is presented below:

K ∈ Kernel B (C υ) | (LIN υ) | (SE υ) | (PER υ1 υ2)

| (+ K1 K2) | (× K1 K2)

The base kernels are constant (C), linear (LIN), squared exponential (SE), and periodic
(PER). Each base kernel has one or more numeric parameters υ, e.g. PER has a lengthscale
and period. The composition operators are sum (+), product (×). Every GP program in this
DSL also has a numeric noise parameter η representing diagonal noise added to covariance
matrices calculated using the GP kernel. We omit the changepoint CP operator and the
white noise WN kernel presented in the original DSL [14]; WN is effectively replaced by η.

2.1.2 GP Model Prior

Given the DSL grammar, Saad et al. implement a probabilistic context-free grammar
(PCFG) which assigns a production probability (structure prior) to each covariance struc-
ture in the grammar. This makes it possible to sample specific GP programs from the DSL
according to this structure prior. For the implementation of the DSL used in this thesis,
the production probabilities are 0.2 for each base kernel (C, LIN, SE, PER) and 0.1 for
each operator (+, ×), unless otherwise specified in experiment descriptions. Under this
prior, the probability of sampling a GP program with linear + periodic covariance structure
(marginalized over all values of parameters υ) is:
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P((+ (LIN) (PER))) = P(+) · P(LIN) · P(PER)

= 0.1 · 0.2 · 0.2

All numeric kernel parameter values υ are sampled independently from a uniform prior
over the range [0,1], and the noise parameter η is sampled from a Gamma prior with α =

1, β = 1. Using these priors, we can analytically calculate the prior probability of any
specific GP program in the DSL.

2.1.3 GP Model Posterior

Given a the covariance function of a GP specified in the DSL, the predictive distribution
over output values f (x1), ..., f (xn) at locations x1, ..., xn is a standard multivariate normal
which can be calculated analytically using definitions from [9]. Using this key property of
GPs, we can translate any specific GP program in the DSL to executable Gen probabilistic
programs which calculate the likelihood of observed data (x, y) (2.1) and the predictive
posterior of unknown ỹ at location x̃ under the GP θ (2.2), the latter of which allows us to
perform forecasting and interpolation.

P(y | θ; x) (2.1)

P(ỹ | θ; x̃) (2.2)

Using properties of conditional multivariate normal distributions, we can calculate (2.1)
and (2.2) conditioned on previously observed data (in addition to the model θ), which is
useful for the active learning setting where we select data sequentially. Multiplying the
likelihood (2.1) by the prior probability of the GP program P(θ) as defined in section 2.1.2
gives the model posterior conditioned on observed data (2.3).

P(θ | y; x) = P(y | θ; x) · P(θ) (2.3)

Thus, we can analytically calculate the posterior probability of any specific GP program in
the DSL by translating the DSL program to Gen and performing the calculations above.
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2.2 Bayesian Synthesis of GP Probabilistic Programs

The GP model class, prior, and conditional likelihood defined in section 2.1 make it possi-
ble to analytically calculate the posterior likelihood of particular GP models given observed
data. Thus, it is possible to perform Bayesian inference over the model class to learn
(maximum a posteriori) GP models which explain the structure of observed data well, i.e.
Bayesian synthesis of GP programs. However, since the model class consists of an infinite
number of compositional GP kernels (section 2.1.1), calculating the posterior over all pos-
sible models is intractable. Therefore, approximate inference is necessary, and Saad et al.
propose an inference strategy which simulates a Markov chain whose target distribution is
the posterior over the GP model class, conditioned on observed data [14]. For searching
over GP structures (base kernels and operators), they propose a Metropolis-Hastings (MH)
algorithm with a transition operator that stochastically replaces a random sub-expression
in the compositional covariance kernel of a GP program and stochastically accepts or re-
jects the mutation depending on how much it increases or decreases the likelihood of the
GP program. Similarly, for searching over parameters of GP structures (e.g. lengthscale
values for a squared exponential kernel), they propose a MH algorithm where the transition
operator perturbs kernel parameter values.

For the overall Bayesian inference strategy, Saad et al. alternate between performing
a MH step over the program structure and a MH step over program parameters. Saad et
al. show that GP programs approximately sampled from the posterior using this technique
provide a good fit for observed data, formally proving that the inference procedure is sound.
Analysis of sampled GP programs allow us to infer qualitative properties of the underlying
model. For example, the presence of the periodic kernel in a majority of the sampled GP
programs would suggest the presence of a periodic trend in the data. Being able to quantify
uncertainty over possible kernel structures using this inference method suggests that it can
be combined with active learning to maximize information gain about model structure.
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2.3 Sequential Monte Carlo

Bayesian synthesis of GP probabilistic programs [14] performs inference on all available
data at once. In the active learning setting explored in this thesis, data is available sequen-
tially: we select data one observation at a time, update the posterior belief based on this
new information, and select the next observation based on the updated posterior. MCMC
methods such as the one presented in section 2.2 are not suitable for active learning, since
active learning involves a sequence of posteriors π1, ..., πt as more observations are col-
lected. This would require generating a different chain run for each posterior πi, which
is computationally expensive, and does not take into account the previous posterior πi−1.
Thus, to extend the Bayesian synthesis framework to the sequential active learning setting,
we turn to more efficient iterative strategies known as Sequential Monte Carlo (SMC) or
particle filter methods to draw samples from πi by transforming the previous posterior πi−1

via reweighting operations and importance sampling [1].
As defined by Chopin [1], a particle system is a sequence (θi,wi) of weighted random

variables in Θ, θi being a particle with weight wi, which targets a distribution of interest π
over Θ in the sense that

lim
k→+∞

∑︀k
i=1 wih(θ j)∑︀k

i=1 wi
= Eπ{h(θ)}

almost surely, for any measurable h such that Eπ{h(θ)} exists. In order to draw particles
from an unknown distribution π, we use importance sampling: a technique where we draw
particles independently from a known distribution g, and weights proportional to π(θi)/g(θi)
provide a particle system with target distribution π.

An SMC (particle filter) algorithm provides consistent inferences from a sequence of
distributions via the following procedure, where π0 is the prior distribution, and πi is the
i-th posterior distribution in the sequence, conditioned on the sequence of observations d1:i.

Algorithm 1 Sequential Monte Carlo
1: procedure SMC
2: parameters: k, number of particles
3: θi ∼ g for i ∈ [1, k] . Sample k particles
4: wi ←− π0(θi)/g(θi) for i ∈ [1, k] . Compute importance weights
5: for τ ∈ [1, n] do
6: wi ←− wi · πτ(θi)/πτ−1(θi) for i ∈ [1, k] . Reweight: update particle weights
7: (θi,wi)←− (θr

i , 1) for i ∈ [1, k] . Resample: prune low-weight particles
8: (θi,wi) ∼ Rejuvenate(θr

i ,wi) for i ∈ [1, k] . Rejuvenate: perturb particles according to πt

9: end for
10: return [(θ1,w1), ..., (θk,wk)] . Return particle system for inference
11: end procedure

Lines 3-4 initialize the particle system via importance sampling. Line 6 is the reweight-
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ing step, which relies on the key intuition that a simple reweighting operation w′i = wi ·

π2(θi)/π1(θi) shifts the target of a particle system from π1 to π2. This allows us to per-
form reweighting iteratively for each π1, ..., πt when the distribution of interest is evolv-
ing through time, like in active learning. A common problem with reweighting is weight
collapse: as πt moves away from π1, fewer particles retain significant weights and some
particles have high weights. To address this, we can resample particles (line 7), a technique
where each particle θi is replaced by a number ni (possibly zero) of its replicates accord-
ing to some resampling scheme. Each new particle is assigned unit weight. In resampling
schemes, ni and wi are positively correlated, effectively pruning low-weight particles. Re-
sampling also replaces single high-weight particles with numerous lower weight copies
that can evolve in different directions (as opposed to one) when resampling is combined
with a rejuvenation step (line 8). Rejuvenation increases particle diversity by perturbing
resampled particles according to a Markov chain transition operation, effectively replacing
identical replicates of a single particle with fresh values.

In the SMC procedure presented above, data is passively, rather than actively, selected.
At each timestep of the procedure, the target distribution π is moved by incorporating the
next observation from the known sequence of observations d1, ..., dn. To extend the SMC
procedure to the active learning setting, at each timestep, before reweighting, we select the
next observation according to some policy. The next chapter presents an SMC procedure
for active learning of GP probabilistic programs and formulates two data selection policies
based on different information gain criteria.
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Chapter 3

Bayesian Active Learning of GP
Probabilistic Programs

This chapter presents the algorithm for Bayesian active learning of GP probabilistic pro-
grams, extending prior work by Schaechtle et al. [16] and Saad et al. [14]. This algorithm
uses SMC and active data selection policies that maximize one of two objective functions:
(1) Kernel Information Gain (IG-K) or (2) Predictive Information Gain (IG-P). These
objectives measure information gain on (1) the unknown GP model covariance kernel and
(2) the GP predictive posteriors, respectively, where information gain is the decrease in
entropy conditioned on the observing the data at a chosen location. Section 3.1 presents
the SMC algorithm for Bayesian active learning of GP programs, and sections 3.2 and 3.3
present formulations and pseudocode of the IG-P and IG-K objectives.

3.1 Active Learning as SMC

The particle system for SMC active learning of GP programs consists of particles θi with
corresponding importance weights wi, where a particle θi represents a GP covariance kernel
from the DSL (section 2.1.1) with kernel structure si, parameters υi, and noise ηi.

θi B (si, υi, ηi)

T is the sampling budget of observations (xi, yi) where a new observation location xt is
selected from a set of unobserved locations 𝒳 at each timestep t. Let π0 represent the co-
variance prior (section 2.1.2), and πi be the posterior conditioned on the first i observations
(x1, y1), ..., (xi, yi). Below is the SMC procedure for active learning.

25



Algorithm 2 Sequential Monte Carlo for Active Learning
1: procedure SMC-AL
2: parameters: k, number of particles; c, resampling threshold; T , sampling budget
3: θi ∼ π0 for i ∈ [1, k] . Sample k GPs θ from the covariance prior
4: wi ←− π0(θi) for i ∈ [1, k] . Compute prior probabilities of sampled GPs
5: for t ∈ [1,T ] do
6: if Effective-sample-size(w1, ...,wk)/k < c then
7: (θi,wi) ∼ Resample([(θi,wi)]1:k) for i ∈ [1, k] . Resample if ESS is low
8: end if
9: (θi,wi) ∼ Rejuvenate(θi) for i ∈ [1, k] . Rejuvenate si, υi, ηi

10: xt ←− argmax
x̃∈𝒳

Objective(x̃, [(θi,wi)]1:k, [(x j, y j)]1:t−1) . Select next observation location xt

11: yt ←− Observe(xt)
12: wi ←− wi · πt(θi)/πt−1(θi) . Reweight using new posterior πt

13: end for
14: return [(θi,wi)]1:k . Return particle system for inference
15: end procedure

Lines 3-4 initialize the particle system by sampling GP programs from covariance prior
presented in section 2.1.2 and computing their prior probabilities. For each timestep, we
first calculate the effective sample size (ESS) (line 6), a measure of the inference quality
of a particle system based on the variance of its particle weights. ESS is the sample size
required to attain the same precision as with particles drawn directly from the target distri-
bution [1]. To save unnecessary resampling, we resample (line 7) only when the ESS falls
below a certain proportion c of the number of particles k. The resampling scheme used is
residual resampling, which first allocates each particle θi a number of replicates equal to the
integer floor of the expected number of θi particles drawn if we sampled k times from the
particle system according to weights. If this procedure results in fewer than k replicates, the
remaining particles are sampled at random from the particle system according to weights.

At every timestep, we rejuvenate the particles (line 9) using the following steps with
the hyperparameters α, β, δ, γ for each particle.

1. Rejuvenate kernel structure s using the MH move presented in section 2.2 which may
replace a random sub-expression of the kernel structure.

2. Rejuvenate kernel parameters υ using a MH move that randomly selects a numeric
parameter p with value v in the kernel, and may replace p with a new value sam-
pled from the truncated normal with mean v, standard deviation δ, and range [0, γ]
(support of p). Repeat this procedure α times.

3. Rejuvenate noise parameter η using a MH move which may replace η with a new
value from the noise prior.

4. Repeat steps 1-3 for β iterations.
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Following rejuvenation, we select the next observation location xt ∈ 𝒳 which maxi-
mizes an objective function, either IG-K or IG-P (lines 10-11). Conditioning on the new
observation (xt, yt) changes the target distribution (posterior), so we reweight the particle
system according to the new posterior πt (line 12). The rest of this chapter presents deriva-
tions and pseudocode of the IG-K and IG-P objectives in sections 3.2 and 3.3 respectively.
For readability in 3.2 and 3.3, we will omit the noise parameter η, treating it in calculations
as another numeric parameter included in υ.

3.2 Kernel Information Gain (IG-K) Objective

Active learning with the kernel information gain (IG-K) objective aims to reduce uncer-
tainty in the inferred GP model by selecting observations to maximize information gain of
the model.

Let Θ be a random variable representing the unknown model, a GP covariance kernel
drawn from the model distribution over all kernels specifiable by the DSL (section 2.1).
Thus, the entropy H(Θ) quantifies model uncertainty. Let Yx be a random variable rep-
resenting the unknown observed value at x, so the conditional entropy H(Θ|Yx) quantifies
model uncertainty after observing the value at x.

H(Θ) = −

∫︁
P(θ) log P(θ) dθ

H(Θ|Yx) =

∫︁
f (Yx = y) · H(Θ|Yx = y) dy

To reduce model uncertainty, IG-K selects an observation location x* ∈ 𝒳 to maximize
the information gain of Θ, given an observation at x*.

I(Θ; Yx) = H(Θ) − H(Θ|Yx)

x* = argmax
x∈𝒳

I(Θ; Yx)

At each timestep of the particle filter algorithm, we calculate information gain conditioned
on a sequence of observations. To condition on observations Yx1 ,Yx2 sequentially, we can
the apply chain rule of mutual information as follows.

I(Θ; Yx1) = H(Θ) − H(Θ|Yx1)

I(Θ; Yx2 |Yx1) = H(Θ|Yx1) − H(Θ|Yx2 ,Yx1)
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The rest of this section describes how to estimate the kernel entropy H(Θ) and kernel con-
ditional entropy H(Θ|Yx) needed to calculate the IG-K information gain objective I(Θ; Yx).
Section 3.2.1 shows that H(Θ) and H(Θ|Yx) decomposes to the sum of discrete and differ-
ential entropies over kernel structure and parameterization, which justifies using a discrete
sample-based approximation to estimate kernel entropy. 3.2.2 gives formulations of esti-
mators for H(Θ) and H(Θ|Yx) using particle system approximation. Section 3.2.3 provides
the pseudocode for estimating the IG-K objective.

3.2.1 Kernel Entropy Decomposition

A particular GP kernel θ can be characterized by its structure s and parameterization υ. As
an example, a kernel θ defined in the DSL as

(+ (PER 0.5 0.1) (LIN 0.3))

has periodic + linear structure s and a parameterization υ of {0.5, 0.1, 0.3}. And we can
calculate its probability according to the covariance prior (section 2.1.2) as

P(θ) = P(s) · f (υ|s)

= P(+) · P(PER) · P(LIN) · f (0.5) · f (0.1) · f (0.3)

Let S ∈ 𝒮 be a discrete random variable representing the unknown kernel structure, a struc-
ture s sampled from the posterior over the discrete space 𝒮 of all kernel structures in the
DSL. Let U be a continuous random variable representing the unknown parameterization
υ. In the following propositions, we will prove that the entropy of the unknown model
H(Θ) can be decomposed into the discrete entropy of S and differential entropy of U.

Proposition 3.2.1 (Kernel Entropy). The kernel entropy H(Θ) decomposes into the discrete
entropy of the structure S and conditional differential entropy of the parameterization U:

H(Θ) = H(S ) + h(U |S )

Proof.

H(Θ) = −

∫︁
P(θ) log P(θ) dθ

= −
∑︁
s∈𝒮

∫︁
P(s) f (υ|s) log(P(s) f (υ|s)) dυ
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= −
∑︁
s∈𝒮

P(s)
∫︁

f (υ|s) ·
(︀
log P(s) + log f (υ|s)

)︀
dυ

= −
∑︁
s∈𝒮

P(s) ·
(︃
log P(s)

∫︁
f (υ|s) dυ +

∫︁
f (υ|s) log f (υ|s) dυ

)︃
= −

∑︁
s∈𝒮

P(s) ·
(︃
log P(s) +

∫︁
f (υ|s) log f (υ|s) dυ

)︃
= −

∑︁
s∈𝒮

P(s) log P(s) −
∑︁
s∈S

P(s)
∫︁

f (υ|s) log f (υ|s) dυ

= H(S ) + h(U |S )

�

Proposition 3.2.2 (Kernel Conditional Entropy). The kernel conditional entropy H(Θ|Yx)
decomposes into the conditional discrete entropy of the structure S and conditional differ-
ential entropy of the parameterization U:

H(Θ|Yx) = H(S |Yx) + h(U |S ,Yx)

Proof.

H(Θ|Yx) =

∫︁
f (Yx = y) · H(Θ|Yx = y) dy

= −

∫︁
f (y)

∫︁
P(θ | y) log P(θ|y) dθ

= −

∫︁
f (y)

∑︁
s∈𝒮

∫︁
P(θ | y) log P(θ | y) dυ dy

= −

∫︁
f (y)

∑︁
s∈𝒮

∫︁
f (s, υ | y) log f (s, υ | y) dυ dy

= −

∫︁
f (y)

∑︁
s∈𝒮

P(s|y)
∫︁

f (υ|s, y) log (P(s|y) · f (υ|s, y)) dυ dy

= −

∫︁
f (y)

∑︁
s∈𝒮

P(s|y)
∫︁

f (υ|s, y) ·
(︀
log P(s|y) + log f (υ|s, y)

)︀
dυ dy

= −

∫︁
f (y)

∑︁
s∈𝒮

P(s|y) ·
(︃
log P(s|y)

∫︁
f (υ|s, y) dυ +

∫︁
f (υ|s, y) log f (υ|s, y) dυ

)︃
dy

= −

∫︁
f (y)

∑︁
s∈𝒮

P(s|y) log P(s|y) dy −
∫︁

f (y)
∑︁
s∈𝒮

P(s|y)
∫︁

f (υ|s, y) log f (υ|s, y) dυ dy

= H(S |Yx) + h(U |S ,Yx)

�
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Because kernel entropy H(Θ) and conditional entropy H(Θ|Yx) decompose into the
terms in Propositions 3.2.1 and 3.2.2 respectively, this allows us to intuitively verify that a
discrete approximation of the entropy serves as a valid estimate of the true entropy. Con-
cretely, imagine drawing samples of GP kernels θ with structures s according to P(s) and
parameters υ according to f (υ|s), such that P(θ) = P(s) · f (υ|s); the average negative log
probability of the sampled θ is a valid estimator of of the entropy H(Θ). Using this princi-
ple, we define sampling-based estimators of H(Θ) and H(Θ|Yx) in the next section.

3.2.2 Kernel Entropy Estimator

H(Θ) and H(Θ|Yx) cannot be calculated exactly since they require integrating over an infi-
nite set of possible covariance kernels θ. H(Θ|Yx) also requires integrating over unbounded
Yx. The following section describes how to estimate H(Θ) and H(Θ|Yx) in two parts: (1)
integrating over kernels using particle system approximation and (2) integrating over Yx

using Riemann sums.

Integrating over Kernels

The results of Propositions 3.2.1 and 3.2.2 in the last section provide confidence that we
can estimate H(Θ) and H(Θ|Yx) using discrete samples from the model distribution P(θ).
In practice, the model distribution is unknown, but particle filter algorithms (section 2.3)
allow us to approximately sample from P(θ) via importance sampling. In this section, we
describe how to estimate H(Θ) and H(Θ|Yx) using the following feature of particle systems.

Lemma 3.2.1 (Particle System Consistent Estimator). A particle system with target distri-
bution π provides a consistent (but biased) estimator µ̂(h) of Eπ[h(θ)].

µ̂(h) =

∑︀k
i=1 wih(θ j)∑︀k

i=1 wi

Proof. Proven by Doucet et al. in [5]. �

Using this lemma, we can define consistent estimators of H(Θ) and H(Θ|Yx) as pre-
sented in Propositions 3.2.3 and 3.2.4. For the following, let [(θ1,w1), ..., (θk,wk)] be the
particle system targeting the model distribution P(θ), and w̄i = wi∑︀k

i=1 wi
be the normalized

weights of the particle system. The quantity f (Yx = y|θi) is the posterior probability den-
sity given the model θi, which can be analytically computed.
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Proposition 3.2.3 (Kernel Entropy Estimator). Let P̂(θi) = w̄i, which is a consistent esti-
mate of P(θi) according to Lemma 3.2.1. Then the following estimator Ĥk(Θ) is a consistent
estimator of H(Θ).

Ĥk(Θ) = −

k∑︁
i=1

w̄i · log P̂(θi)

Proof. Using Lemma 3.2.1

lim
k→∞

k∑︁
i=1

w̄i · log P̂(θi) = −EP(θ)[log P(θ)]

= −

∫︁
P(θ) log P(θ) dθ

= H(Θ)

�

Proposition 3.2.4 (Kernel Conditional Entropy Estimator). Let P̂(θi) = w̄i, which is a con-
sistent estimate of P(θi) according to Lemma 3.2.1. Let f (Yx = y|θi) be the posterior prob-
ability density calculated using the GP covariance kernel θi. Then the following estimator
Ĥk(Θ|Yx) is a consistent estimator of H(Θ|Yx).

Ĥk(Θ|Yx) =

∫︁
f̂k(Yx = y) · Ĥk(Θ|Yx = y) dy (3.1)

Ĥk(Θ|Yx = y) = −

k∑︁
i=1

P̂k(θi|Yx = y) · log P̂k(θi|Yx = y) (3.2)

P̂k(θi|Yx = y) =
f (Yx = y|θi) · P̂(θi)

f̂k(Yx = y)
(3.3)

f̂k(Yx = y) =

k∑︁
i=1

w̄i · f (Yx = y|θi) (3.4)

Proof. Using Lemma 3.2.1, we first show f̂k(Yx = y) (Equation 3.4) is consistent.

lim
k→∞

k∑︁
i=1

w̄i · f (Yx = y|θi) = −EP(θ)[ f (Yx = y|θi)]

= −

∫︁
P(θ) f (Yx = y|θi) dθ

= f (Yx = y)
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From this, it follows that P̂k(θi|Yx = y) (Equation 3.3) is consistent.

lim
k→∞

f (Yx = y|θi) · P̂(θi)

f̂k(Yx = y)
=

f (Yx = y|θi) · P(θi)
f (Yx = y)

= P(θi|Yx = y)

Using this and Lemma 3.2.1, we show Ĥk(Θ|Yx = y) (Equation 3.2) is consistent.

lim
k→∞ −

k∑︁
i=1

P̂k(θi|Yx = y) · log P̂k(θi|Yx = y) = −EP(θ|Yx=y)[log P(θ|Yx = y)]

= −

∫︁
P(θ|Yx = y) log P(θ|Yx = y) dθ

= H(Θ|Yx = y)

Since we’ve shown f̂k(Yx = y) and Ĥk(Θ|Yx = y) are consistent, it follows that Ĥk(Θ|Yx)
(Equation 3.1) is consistent.

lim
k→∞

∫︁
f̂k(Yx = y) · Ĥk(Θ|Yx = y) dy =

∫︁
f (Yx = y) · H(Θ|Yx = y) dy

= H(Θ|Yx)

�

Note that Equations 3.3 and 3.4 reweight particles to shift the target distribution of the
particle system from P(θ) to P(θ|Yx = y), and Equation 3.2 estimates conditional entropy
using the reweighted system. The next section describes how to approximate the indefinite
integral over y in Equation 3.1.

Integrating over Yx

To compute the conditional entropy estimator in in Proposition 3.2.4, we need to approx-
imate the indefinite integrate over y in Equation 3.1. To do so, we can first rewrite the
estimator as follows

Ĥk(Θ|Yx) =

∫︁
f̂k(Yx = y) · Ĥk(Θ|Yx = y) dy

=

∫︁ k∑︁
i=1

w̄i · f (Yx = y|θi) · Ĥk(Θ|Yx = y) dy

=

k∑︁
i=1

w̄i ·

∫︁
f (Yx = y|θi) · Ĥk(Θ|Yx = y) dy
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and approximate the resulting indefinite integral over Yx using a midpoint Riemann sum
with m partitions over an interval [ai, bi].∫︁ bi

ai

f̂k(Yx = y|θi) · Ĥk(Θ|Yx = y) dy ≈
bi − ai

m

m∑︁
j=1

f̂k(Yx = yi, j|θi) · Ĥk(Θ|Yx = yi, j)

where yi, j are m midpoints on the interval [ai, bi].

yi, j = (ai +
bi − ai

2m
) + ( j − 1) ·

bi − ai

m

We can make a reasonable choice for [ai, bi] based on where we believe most of the
probability mass of Yx lies. Given the GP kernel θi, we can calculate Yθi

x , an estimate of the
posterior distribution of Yx, using the equations in section 3.3.1.

Yθi
x = 𝒩(µi, σi)

Using 𝒩(µi, σi), we can define [ai, bi] as [µi − 2σi, µi + 2σi], since this interval captures
∼ 95% of the probability mass of the predicted distribution of Yx.

With this approximation method, our final estimator for H(Θ|Yx) becomes

ˆ̂Hm,k(Θ|Yx) =

k∑︁
i=1

w̄i ·
4σi

m

m∑︁
j=1

f (yi, j|θi) · Ĥk(Θ|Yx = yi, j)

such that
lim

k,m→∞
ˆ̂Hm,k(Θ|Yx) =

∫︁ (µ+2σ)Yx

(µ−2σ)Yx

fk(Yx = y) · Hk(Θ|Yx = y) dy
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3.2.3 IG-K Objective Pseudocode

Below is the pseudocode implementation of the kernel information gain (IG-K) objective
that can be called on line 10 of Algorithm 2. K(θ, x, x′) denotes the covariance matrix
between all possible pairs (x, x′) for a given covariance kernel function θ.

Algorithm 3 Kernel Information Gain (IG-K) Objective
1: procedure IGK-OBJ(x̃, [(θi,wi)]1:k, [(x j, y j)]1:t−1)
2: parameters: m, number of partitions in Yx integral approximation
3: w̄i ←− wi/

∑︀k
j=1 w j for i ∈ [1, k] . Calculate normalized weights w̄i

4: H ←− −
∑︀k

i=1 w̄i · log w̄i . Calculate Ĥk(Θ)
5:
6: for i ∈ [1, k] do . Simulate observations ỹi, j at x̃
7: µi ←− K(θi, x̃, x1:t−1)K(θi, x1:t−1, x′1:t−1)y1:t−1

8: σi ←−

√︁
K(θi, x̃, x̃) − K(θi, x̃, x1:t−1)K(θi, x1:t−1, x′1:t−1)−1K(θi, x̃, x1:t−1)T

9: ỹi, j ←− (µi − 2σi + 2σi
m ) + ( j − 1) · 4σi

m for j ∈ [1,m] . Riemann midpoints ỹi, j

10: end for
11: for ỹi, j | i ∈ [1, k], j ∈ [1,m] do . Simulate entropy after observing ỹi, j at x̃
12: w̃l ←− wl · f (ỹi, j | y1:t−1, θl ; x̃, x1:t−1) for l ∈ [1, k] . Simulate reweighting by likelihood
13: ¯̃wl ←− w̃l/

∑︀k
p=1 w̃p for l ∈ [1, k] . Normalize simulated weights w̃l

14: H̃i, j ←− −
∑︀k

l=1
¯̃wl · log ¯̃wl . Calculate Ĥk(Θ|Yx = yi, j)

15: end for
16: H̃ ←−

∑︀k
i=1 w̄i ·

4σi
m

∑︀m
j=1 f (ỹi, j | y1:t−1, θi ; x̃, x1:t−1) · H̃i, j . Calculate ˆ̂Hm,k(Θ|Yx̃)

17: return H − H̃ . Return estimated information gain I(Θ; Yx̃)
18: end procedure

Lines 1-2 estimate the kernel entropy H(Θ) following the procedure presented in Propo-
sition 3.2.3. Lines 5-9 calculate the predictive intervals and Riemann midpoints yi, j for
approximating the integral over Yx as described in section 3.2.2. Lines 10-14 estimate the
kernel entropies H(Θ|Yx = yi, j) conditioned on observing yi, j at x as described in Proposi-
tion 3.2.4. Line 15 estimates the conditional entropy H(Θ|Yx) as described in Proposition
3.2.4 and section 3.2.2. Finally, line 16 returns the estimated kernel information gain (IG-
K) objective.
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3.3 Predictive Information Gain (IG-P) Objective

Unlike the IG-K objective, which reduces uncertainty of the covariance kernel model, the
predictive information gain (IG-P) objective reduces uncertainty of the model predictions
by maximizing information gain on GP predictive posteriors (averaged over a region of
interest). The IG-P objective directly extends the Active Learning Cohn (ALC) GP active
learning criterion implemented by Seo et al. in [17] which assumes the GP model is known.

Section 3.3.1 formulates the IG-P objective assuming the model is known. Section
3.3.2 describes how to estimate the objective and extend it to our active learning setting
where the model is unknown using particle filter approximation. Section 3.3.3 presents the
pseudocode for estimating the objective.

3.3.1 IG-P Objective

In this section, assume the GP model θ is known. Let Yθ
x be a random variable from the GP

predictive distribution at x conditioned on θ. We can also calculate the posterior conditioned
on Yx̃, observations at other locations x̃

P(Yθ
x) = 𝒩(µ(x), σ2(x))

P(Yθ
x |Y

θ
x̃) = 𝒩(µ(x, x̃), σ2(x, x̃))

using the following equations, letting K(θ, x, x′) denote the covariance matrix between all
possible pairs (x, x′) for the covariance kernel θ and ỹ denote the observed values at x̃ [13].

µ2(x) = 0 (3.5)

µ2(x, x̃) = K(θ, x, x̃)K(θ, x̃, x̃′)−1ỹ (3.6)

σ2(x) = K(θ, x, x) (3.7)

σ2(x, x̃) = K(θ, x, x) − K(θ, x, x̃)K(θ, x, x̃′)−1K(θ, x, x̃)T (3.8)

Now assume we are interested in predictions over the interval x ∈ [a, b]. Let 𝒴θ
a,b be

a random variable representing the average value of Yθ
x over the interval x ∈ [a, b]. Let

𝒴θ
a,b|Y

θ
x̃ be the posterior given observations at locations x̃.

𝒴θ
a,b =

∫︁ b

a

1
b − a

· (Yθ
x) dx

𝒴θ
a,b|Y

θ
x̃ =

∫︁ b

a

1
b − a

· (Yθ
x |Y

θ
x̃) dx
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Active learning with IG-P selects x* ∈ 𝒳 to maximize information gain on the entropy of
𝒴θ

a,b, conditioned on the unknown observation Yθ
x* at x*:

I(𝒴θ
a,b; Yθ

x̃) = H(𝒴θ
a,b) − H(𝒴θ

a,b|Y
θ
s̃ )

x* = argmax
x̃∈𝒳

I(𝒴θ
a,b; Yθ

x̃)

3.3.2 Estimating IG-P Objective

Approximating Predictive Entropy

We define the predictive entropy H(𝒴θ
a,b) using differential entropy of a normal distribution

as follows, where σ2(x) is defined using Equation 3.7 in the previous section.

h(Yθ
x) = h(𝒩(µ(x), σ2(x))) = ln(

√︀
σ2(x) · 2πe)

H(𝒴a,b) =

∫︁ b

a

1
b − a

· h(Yθ
x) dx

=

∫︁ b

a

1
b − a

· ln(
√︀
σ2(x) · 2πe) dx

We define the conditional entropy H(𝒴a,b|x̃) similarly, whereσ2(x, x̃) is defined using Equa-
tion 3.8 in the previous section.

h(Yθ
x |Yx̃) = h(𝒩(µ(x, x̃), σ2(x, x̃))) = ln(

√︀
σ2(x, x̃) · 2πe)

H(𝒴θ
a,b|Yx̃) =

∫︁ b

a

1
b − a

· h(Yθ
x |Yx̃) dx

=

∫︁ b

a

1
b − a

· ln(
√︀
σ2(x, x̃) · 2πe) dx

We can approximate the integral over x by a midpoint Riemann sum with m partitions.

IG-P Objective with Unknown Model

So far, we have assumed the model GP kernel θ is known, which is not true for our active
learning setting. We can calculate the entropies when the model is unknown, H(𝒴a,b) and
H(𝒴a,b|Yx̃), as expectations over the model distribution P(θ), and estimate this by taking a
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weighted average over a particle system as described in section 3.2.2.

H(𝒴a,b) = EP(θ)

[︃∫︁ b

a

1
b − a

· h(Yθ
x) dx

]︃
H(𝒴a,b|x̃) = EP(θ)

[︃∫︁ b

a

1
b − a

· h(Yθ
x |Yx̃) dx

]︃
To approximate this expectation, let [(θ1,w1), ..., (θk,wk)] be the particle system targeting
P(θ), and w̄i = wi∑︀k

i=1 wi
be the normalized weights of the particle system. The resulting

estimators, presented below, are consistent by Lemma 3.2.1.

Ĥk(𝒴a,b) =

k∑︁
i=1

w̄i ·

∫︁ b

a

1
b − a

· h(Yθi
x ) dx

Ĥk(𝒴a,b|x̃) =

k∑︁
i=1

w̄i ·

∫︁ b

a

1
b − a

· h(Yθi
x ) dx

We can approximate the integral over x by a midpoint Riemann sum with m partitions.

3.3.3 IG-P Objective Pseudocode

Below is the pseudocode implementation of the predictive information gain (IG-P) objec-
tive that can be called on line 10 of Algorithm 2. For the implementation of IG-P used in
this thesis, we set the region of interest [a, b] to the range of observation locations 𝒳.

Algorithm 4 Predictive Information Gain (IG-P) Objective
1: procedure IGP-OBJ(x̃, [(θi,wi)]1:k, [(x j, y j)]1:t−1)
2: parameters: 𝒳, potential observation locations; m, number of partitions in x integral approximation
3: w̄i ←− wi/

∑︀k
j=1 w j for i ∈ [1, k] . Calculate normalized weights w̄i

4: xt ←− x̃
5: a, b←− min(𝒳),max(𝒳) . Set region of interest to range of 𝒳
6: x̂ j ←− a + b−a

2m + ( j − 1) · b−a
m for j ∈ [1,m] . Riemann midpoints

7: for θi, x̂ j | i ∈ [1, k], j ∈ [1,m] do . Calculate σ2(x) and σ2(x, x̃)
8: (σ2)i, j ←− K(θi, x̂ j, x̂ j) − K(θi, x̂ j, x1:t−1)K(θi, x1:t−1, x′1:t−1)−1K(θi, x̂ j, x1:t−1)T

9: (σ̃2)i, j ←− K(θi, x̂ j, x̂ j) − K(θi, x̂ j, x1:t)K(θi, x1:t, x′1:t)
−1K(θi, x̂ j, x1:t)T

10: end for
11: H ←−

∑︀k
i=1 w̄i ·

1
m

∑︀m
j=1 ln(

√︀
(σ2)i, j · 2πe) . Estimate H(𝒴a,b)

12: H̃ ←−
∑︀k

i=1 w̄i ·
1
m

∑︀m
j=1 ln(

√︀
(σ̃2)i, j · 2πe) . Estimate H(𝒴a,b|Yx̃)

13: return H − H̃ . Return estimated information gain I(𝒴a,b; Yx̃)
14: end procedure

Lines 7-9 calculate the predictive variance for each kernel θi and Riemann midpoint x̂ j

according to the formulas presented in section 3.3.1, both with and without conditioning
on the observation Yx̃ at x̃. Lines 11-12 estimate H(𝒴a,b) and H(𝒴a,b|x̃) according to the
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procedure outlined in section 3.3.2. Note that 1
m factor is the product of the Riemann

partition width b−a
m and 1

b−a , the density of x. Line 13 returns the estimated predictive
information gain (IG-P) objective.

· · ·

The Monte Carlo estimators formulated in this chapter allow us to tractably compute ap-
proximations of the kernel information gain (IG-K) and predictive information gain (IG-P)
objectives for SMC-based Bayesian active learning as presented at the beginning of the
chapter. In the next chapter, we test Bayesian active learning with IG-K and IG-P on syn-
thetic datasets to compare how well each objective performs, in practice, at reducing model
uncertainty and providing accurate predictions of unknown data.
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Chapter 4

Validating Grid Approximated Kernel
Information Gain (IG-K) Objective

The previous chapter presents an SMC algorithm for Bayesian active structure learning
with GP probabilistic programs, based on Monte Carlo approximations of two objectives:
kernel information gain (IG-K) and predictive information gain (IG-P). To evaluate and
compare the efficacy of the approximated IG-K and IG-P objectives at model inference
and accurately predicting data, we ran a series of experiments testing the active learning
algorithm with both objectives on synthetic datasets drawn from one-dimensional GPs.

To avoid the variance and potential inference error introduced by resampling and reju-
venation, we estimate the model distribution P(θ) using grid approximation: we enumerate
discrete structures s and grid over numeric parameters υ in the GP model class to obtain a
set of sample θ for the particle filter meant to approximate the entire model class; hence,
the particles do not need to be resampled or rejuvenated. Unfortunately it is intractable to
grid over the infinite model class of all possible models θ in the DSL (Section 2.1). Thus,
for these experiments, we restrict the model class and change the covariance prior (Section
2.1.2) — e.g. restricting the model class to only periodic covariance kernels by setting
P(PER) = 1 — and we grid over the restricted model class.

Section 4.1 presents the metrics used to assess active learning performance (4.1.1), the
experimental procedure (4.1.2), and results of experiments (4.1.3) where the model class is
constrained to only periodic kernels; only linear kernels; only squared exponential kernels;
and periodic, linear, and periodic + linear kernels respectively. Section 4.2 presents a qual-
itative summary of the experiment results (4.2.1) and discussion and analysis of the results
(4.2.2, 4.2.3), supported by visualizations (4.2.4) of how the information gain and estimated
posterior evolves over time in one run of active learning on a particular synthesized dataset.

39



4.1 Experiments

4.1.1 Evaluation Metrics

To measure the efficacy of active learning, we define and record the following metrics.

• Predictive MSE - the mean squared error of the GP predictive mean, calculated
as a weighted average over gridded models according to their estimated posterior
likelihood. This measures how accurately the inferred models are able to predict
unknown data, given the data observed at locations chosen by active selection.

• Parameter MSE - the mean squared error of the estimated kernel parameters against
the true parameters used to generate the test dataset, also calculated as a weighted av-
erage. This measures how well active learning infers the correct model parameters
for the data. It is not possible to calculate parameter MSE among kernels with differ-
ent structures, since different structures have different parameters.

• Noise MSE - the mean squared error of the estimated noise parameter against the true
noise used to generate the test dataset, also calculated as a weighted average. This
measures how well active learning infers the correct noise parameter for the data.

• Ground truth probability - the estimated posterior probability of the ground truth
model used to generate the dataset, which is always explicitly within the grid of
model structures and parameters. This measures how well active learning infers the
exact model parameters for the data.

• Structure posterior - in experiments where the model class is restricted to more than
one type of kernel structure, we record the total estimated posterior weight placed on
models of each structure type. This measures how well active learning infers the
correct kernel structure for the data.

4.1.2 Experiment Procedure

For each experiment, we follow the procedure below.

1. Restrict the model class to a particular set of covariance structures and grid over pa-
rameterizations υ to obtain a set of models for our grid approximation. Since kernel
parameters υ are drawn from a Uniform(0,1) prior (see section 2.1.2), we grid each
parameter over the range [0, 1] at a width of 0.1 or 0.2. Thus, we grid over kernel pa-
rameters from the sets S 0.1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and S 0.2 =
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{0.2, 0.4, 0.6, 0.8, 1.0}. We fix the noise parameter η of gridded models to 0.1, the
ground truth η used to generate the datasets. For most experiments, we also present
a separate set of results where η is unknown, and we grid over 5 values of η from a
high probability region of the Gamma(1,1) noise prior: N = {0.3, 0.4, 0.5, 0.6, 0.7}

2. Run grid-approximated Bayesian active learning with IG-K and IG-P objectives and
a budget of 16 observations on a number of synthetic datasets generated from GP
models in the grid. Each dataset consists of 100 observations evenly spaced over the
range [-1,1]. Similar to the procedure in experiments by Seo et al. [17], for each of
our experiments, the first observation is fixed to be the center point of the dataset,
and the remaining observations are chosen via active selection from the remaining
locations in the dataset.

3. Record appropriate evaluation metrics (defined above) at each timestep (i.e. after
each new observation), averaged over all dataset runs.

4.1.3 Experiment Results

This section presents results of experiments where we restrict the model class to the fol-
lowing GP covariance kernel types. Section 4.2.1 provides a qualitative summary of the
results presented in this section.

• Periodic-Only (Figures 4-1 and 4-2)

• Linear-Only (Figures 4-3 and 4-4)

• Squared Exponential-Only (Figures 4-5 and 4-6)

• Periodic, Linear, Periodic + Linear (Figures 4-7, 4-8, and 4-9)

For each experiment, we describe the set of gridded GP models; we grid over kernel and
noise parameters using the sets S 0.1, S 0.2, and N (defined in experiment procedure, step 1).
We present appropriate evaluation metrics averaged over all dataset runs at all timesteps
plotted with standard error ribbons. We also present values of the metrics at timesteps 1,
5, 10, and 15 in a table, where bolded values indicate a metric is significantly better (e.g.
lower MSE or higher ground truth probability) according to the standard error (p ≤ 0.32).
For the first three experiments above, we also present results of where we grid over the
noise η. We avoid this for the fourth experiment (Periodic, Linear, Periodic + Linear) due
to computational constraints as the model grid is significantly larger.
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Periodic-Only Model Class Experiment Results

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 123.96 124.51 104.25 98.73 81.41 64.07 70.24
Scale MSE 0.165 0.1608 0.1539 0.1123 0.085 0.067 0.0461
Period MSE 0.165 0.16 0.0921 0.1214 0.0453 0.0801 0.0191
Ground Truth Prob. 0.01 0.0136 0.0482 0.0477 0.1538 0.114 0.256

Figure 4-1: Periodic-Only Model Class with Fixed Noise. Results of experiments where
we restrict the model to only periodic kernels, grid over the scale and period parameters,
and fix noise to the correct amount. Scale and period values come from the set S 0.1, so the
grid consists of 100 periodic GP models parameterized by S 0.1 × S 0.1. We draw one dataset
from each GP model in the grid and present result metrics averaged over all 100 datasets.

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 144.03 142.85 131.07 126.64 107.81 109.01 90.175
Scale MSE 0.16 0.1581 0.1575 0.1406 0.1268 0.1091 0.109
Period MSE 0.16 0.1578 0.1186 0.1385 0.0684 0.1005 0.0408
Ground Truth Prob. 0.0097 0.0103 0.0202 0.0188 0.0474 0.0322 0.0659
Noise MSE 0.0394 0.0388 0.0384 0.0376 0.0362 0.0355 0.0333

Figure 4-2: Periodic-Only Model Class with Gridded Noise. Results of experiments
where we restrict the model to only periodic kernels and grid over the scale, period, and
noise parameters. Scale and period values come from the set S 0.2, and noise values come
from the set N, so the grid consists of 125 periodic GP models parameterized by S 0.2 ×

S 0.2 × N. We draw one dataset from each GP model and present result metrics averaged
over all 125 datasets.
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Linear-Only Model Class Experiment Results

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 30.332 17.364 21.1848 16.838 16.7456 16.234 14.3877
Parameter MSE 0.1553 0.1494 0.0925 0.1481 0.0648 0.1448 0.0553
Ground Truth Prob. 0.1079 0.1107 0.1664 0.1115 0.2341 0.1127 0.2635

Figure 4-3: Linear-Only Model Class with Fixed Noise. Results of experiments where
we restrict the model to only linear kernels, grid over the slope variance parameter, and fix
noise to the correct amount. Slope variance parameter values in the grid come from the
set S 0.1, so the grid consists of 10 linear GP models. We draw five datasets from each GP
model and present result metrics averaged over all 50 datasets.

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 94.921 60.8896 63.557 58.455 58.117 57.9755 55.787
Parameter MSE 0.1444 0.1287 0.0993 0.127 0.0877 0.1248 0.0702
Ground Truth Prob. 0.0275 0.0274 0.0387 0.0265 0.0482 0.0256 0.0552
Noise MSE 0.0401 0.0347 0.0346 0.0254 0.0265 0.0212 0.0222

Figure 4-4: Linear-Only Model Class with Gridded Noise Results of experiments where
we restrict the model to only linear kernels and grid over the slope variance and noise
parameters. Slope variance and noise parameter values in the grid come from the sets S 0.1

and N, respectively, so the grid consists of 50 linear GP models parameterized by S 0.1 × N.
We draw one dataset from each GP model and present result metrics averaged over all 50
datasets.

43



Squared Exponential-Only Model Class Experiment Results

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 88.307 30.974 47.224 17.541 27.85 14.141 21.502
Parameter MSE 0.165 0.0999 0.0888 0.0578 0.0542 0.0529 0.0457
Ground Truth Prob. 0.1 0.1495 0.1924 0.2515 0.2831 0.277 0.2993

Figure 4-5: Squared Exponential-Only Model Class with Fixed Noise. Results of ex-
periments where we restrict the model to only squared exponential kernels, grid over the
lengthscale parameter, and fix noise to the correct amount. Lengthscale parameter values in
the grid come from the set S 0.1, so the grid consists of 10 squared exponential GP models.
We draw five datasets from each GP model in the grid and present result metrics averaged
over all 50 datasets.

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 116.09 80.225 79.276 66.502 65.365 60.454 59.070
Lengthscale MSE 0.165 0.1335 0.1314 0.117 0.0971 0.1057 0.0772
Ground Truth Prob. 0.0243 0.0293 0.0325 0.0356 0.0562 0.0439 0.0703
Noise MSE 0.0398 0.0354 0.0393 0.034 0.0369 0.0313 0.0313

Figure 4-6: Squared Exponential-Only Model Class with Gridded Noise. Results of
experiments where we restrict the model to only squared exponential kernels and grid over
the lengthscale and noise parameters. Lengthscale and noise parameter values in the grid
come from the sets S 0.1 and N, respectively, so the grid consists of 50 squared exponential
GP models parameterized by S 0.1 × N. We draw one dataset from each GP model and
present result metrics averaged over all 50 datasets.
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Periodic, Linear, Periodic + Linear Model Class Experiment Results

The following figures show the results of experiments where we restrict the model to only
periodic, linear, and periodic + linear kernels. We grid over parameterizations of the three
possible structures and fix the noise to the correct amount. The kernel parameters are scale
and period for the periodic kernel, and slope variance for the linear kernel. Parameter
values in the grid come from the set S 0.2, so the grid consists of 155 GP models as follows:

(a) 25 periodic models with scales and periods in S 0.2 × S 0.2

(b) 5 linear models with slope variances in S 0.2

(c) 125 periodic + linear models composed of kernel pairs in (a) × (b)

We draw one dataset from each GP model in the grid and present result metrics averaged
over all 155 datasets. In figures 4-7, 4-8, and 4-9 we present the results on datasets drawn
from (a), (b), and (c), respectively. For each set of results, the parameter MSE is averaged
over models with the correct structure. The structure posterior metric measures the total
normalized posterior weight placed on each structure type. The covariance prior for these
experiments is {0.3, 0.3, 0.4} for periodic, linear, and plus kernels, respectively.

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 116.86 104.25 91.982 76.038 72.122 50.683 61.487
Scale MSE 0.1338 0.1486 0.1376 0.1049 0.0944 0.0585 0.0619
Period MSE 0.1328 0.1502 0.0729 0.1158 0.0152 0.0748 0.0109
Ground Truth Prob. 0.0224 0.0376 0.1016 0.0978 0.2174 0.2134 0.3234
Correct Structure Prob. 0.5597 0.7035 0.7641 0.7594 0.8151 0.8006 0.8597

Figure 4-7: Periodic Datasets Only. Results averaged over 25 periodic datasets drawn
from (a).
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Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 24.445 16.154 16.147 12.925 12.474 12.09 11.337
Parameter MSE 0.1475 0.145 0.067 0.0962 0.0706 0.0922 0.0661
Ground Truth Prob. 0.0315 0.1583 0.1747 0.2969 0.3491 0.3079 0.405
Correct Structure Prob. 0.1501 0.7828 0.5689 0.9671 0.9429 0.9896 0.9909

Figure 4-8: Linear Datasets Only. Results averaged over 5 linear datasets drawn from (b).

Observations 1 5 10 15
IG-P IG-K IG-P IG-K IG-P IG-K

Predictive MSE 155.74 114.08 101.19 86.991 76.8 53.218 62.116
Scale MSE 0.16 0.1567 0.1478 0.1237 0.09 0.0617 0.0556
Period MSE 0.16 0.153 0.079 0.1193 0.0267 0.0648 0.0083
Parameter MSE 0.1578 0.148 0.1432 0.1394 0.1425 0.1356 0.1383
Ground Truth Prob. 0.0027 0.0047 0.0203 0.0135 0.0575 0.036 0.0807
Correct Structure Prob. 0.3372 0.437 0.5693 0.5182 0.7162 0.6191 0.7587

Figure 4-9: Plus Datasets Only. Results averaged over 125 periodic + linear datasets
drawn from (c).
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4.2 Analysis of Results

This section provides a qualitative analysis of the experiment results presented in section
4.1.3. We compare how effectively active learning with the IG-K and IG-P objectives (1)
infers the correct model parameters and (2) makes accurate predictions, based on (1) reduc-
tion in parameter MSE and increase in ground truth probability metrics, and (2) reduction
in predictive MSE. We summarize these comparisons in 4.2.1. In 4.2.2 and 4.2.3, we dis-
cuss possible reasons for the observed differences between the IG-K and IG-P objectives
at inferring correct model parameters and making accurate predictions. To support our
reasoning and further examine the dynamics of the IG-K and IG-P objectives, we present
visualizations in 4.2.4 of how GP data predictions, information gain objectives, and the es-
timated model posterior evolve over time in one run of active learning on a chosen dataset.

4.2.1 IG-K vs. IG-P Summary

The noise MSE results are not compared since they exhibit too much variance to show
meaningful differences between IG-K and IG-P. However, results from the gridded noise
experiments (where ground truth noise η is higher) allow us to observe the effect of in-
creased noise on model inference and predictive accuracy. Note that the use of the term
significant here refers to significance with regards to the standard error (p ≤ 0.32). While
this is more lenient than the standard p ≤ 0.05 significance level, we note that our grid val-
idation experiments are in a different setting than experiments in the real world. Because
gridding leads to entirely deterministic results, and our standard error is computed over the
set of test datasets, significance at the p ≤ 0.32 level means that approximately 68% or
more of the test datasets perform better on a particular metric when using IG-K vs. IG-P
(or vice versa).

Periodic-Only (Figures 4-1 and 4-2)

• Inferring Model Parameters IG-K is significantly better than IG-P at inferring the
correct period and scale parameters in the presence of lower noise. With more noise,
IG-K is unable to infer the correct scale parameter as well, and performs only slightly
better than IG-P.

• Predictive Accuracy IG-K is significantly better at predicting the data than IG-P,
except in the last few timesteps of the lower noise experiments. In figure 4-10, we
present an example of active learning on a particular dataset in which we obtain this
surprising result.
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Linear-Only (Figures 4-3 and 4-4)

• Inferring Model Parameters IG-K is significantly better than IG-P at inferring the
correct slope variance parameter.

• Predictive Accuracy IG-K is significantly worse at predicting the data than IG-P,
requiring more observations to achieve the same predictive accuracy as IG-P.

Squared Exponential-Only (Figures 4-5 and 4-6)

• Inferring Model Parameters IG-K is slightly better than IG-P at inferring the cor-
rect lengthscale parameter in the presence of higher noise. With less noise, both
objectives perform similarly.

• Predictive Accuracy IG-K is significantly worse at predicting the data than IG-P, in
the presence of lower noise. With more noise, both objectives perform similarly.

Periodic, Linear, Periodic + Linear (Figures 4-7, 4-8, and 4-9)

• Inferring Model Parameters Consistent with previous results, IG-K is significantly
better than IG-P at inferring the correct period and slope variance for periodic and
linear datasets, respectively. For periodic + linear datasets, IG-K is significantly
better at inferring period and scale of the periodic kernel.

• Model Structure Inference Based on the structure posterior metric, IG-K is signifi-
cantly better than IG-P at inferring the correct structure for the periodic and periodic
+ linear datasets, while in linear datasets, IG-K does slightly worse at inferring the
correct structure.

• Predictive Accuracy Both objectives perform about the same at predicting the data
for the periodic and linear datasets, and for the periodic + linear datasets, we see
a similar pattern as in the Periodic-only experiment, where IG-K predicts the data
significantly better until the last few timesteps.

4.2.2 Inferring Model Parameters

Overall, the experiments demonstrate that IG-K is better than IG-P at inferring the correct
GP model parameters, reducing the parameter MSE more with fewer observations. The
degree to which IG-K is better able to infer the correct model parameters varies de-
pending on the GP parameter’s effect on the generated data. For example, IG-K is able
to consistently infer the period parameter of the periodic kernel far better than IG-P since

48



the period’s effect on the data is predictable: if the period is p, then data at two locations
p apart will have the same value, with any disparity attributed only to noise. Thus, it is
possible to select observation locations methodically spaced apart to confirm or eliminate
hypothesized period values. In figure 4-10 of the next section, we provide evidence that the
IG-K objective induces this strategy to reduce period parameter uncertainty.

IG-K is less effective at inferring other GP parameters, such as the scale parameter of
the periodic kernel and the lengthscale parameter of the squared exponential kernel. The
effect of these parameters on the data is the same: a lengthscale or scale of ` means that
data at a location x is highly correlated with data at locations within ` of x. Interestingly,
we notice this effect causes the IG-K objective to favor selecting observations located near
each other to discern the precise lengthscale or scale, as shown in figure 4-11. According
to Duvenaud, these scale parameters determine "the length of the wiggles" in the function
[7]. Since kernel noise causes a similar effect ("wiggles") in the data, IG-K is less effective
at inferring the the correct these scale parameters than the period parameter, since it is
difficult infer whether observed "wiggles" are caused by noise or the kernel parameter.
Consequently, the results of the periodic-only experiments show that IG-K is worse at
inferring scale when noise η is higher.

4.2.3 Predictive Accuracy

The summary in 4.2.1 reveals that even though IG-K is better than IG-P at inferring the cor-
rect model parameters, knowledge of the correct GP model parameters does not necessarily
result in more accurate predictions of the data. Even with the correct model, sufficient
data is necessary in order to make accurate predictions. Additionally, an observation
selection strategy suited for inferring the correct model parameters may not favorable
for providing accurate predictions.

Surprisingly, in experiments where IG-K reduces parameter MSE much more than IG-P
does, IG-K does not reduce predictive MSE more than IG-P does. In some cases, such as
the linear-only experiments, IG-K is actually worse than IG-P at reducing predictive MSE.
For the linear kernel, the GP parameter determines the variance of the slope of the data, so
knowing the parameter is less useful than knowing the slope predicting the test data. Since
IG-K selects observations to learn this parameter rather than learning the slope itself, IG-K
requires more observations than IG-P to reduce predictive MSE. On the other hand, IG-P
is able to rapidly reduce the predictive MSE by inferring the slope with two well-spaced
observations via simple linear regression.

Similarly, the periodic kernel scale and squared exponential kernel lengthscale parame-
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ters (discussed in 4.2.2) are not directly useful for prediction. Since these parameters only
tell us the correlation among data points near each other, making accurate predictions using
these parameters requires data near where we are trying to predict. Due to this, the IG-K
objective’s tendency to select nearby points to learn the lengthscale (discussed in 4.2.2) is
actually an extremely poor strategy for reducing predictive MSE with the squared expo-
nential kernel, since only observing data located in one small region makes it difficult to
predict data beyond that region. This helps explain why IG-K is significantly worse than
IG-P at reducing predictive MSE in the squared exponential-only experiments.

The period parameter of the periodic kernel is relatively more informative in making
accurate predictions due to the repetitive nature of periodic functions, as discussed in 4.2.2.
With the correct period and one datapoint, we can predict data at any number of period
lengths from the datapoint. Given this property, and the IG-K objective’s efficiency in
inferring the correct period (see figure 4-10), it is unsurprising that the periodic-only ex-
periment initially shows IG-K is better than IG-P at reducing predictive MSE. However, by
the last few observations, IG-P is able to reduce predictive MSE further than IG-K. To help
understand this puzzling result, we present a visualization (figure 4-11) of active learning
with IG-K and IG-P on a periodic dataset which exhibits this trend. The visualization shows
that the observation selection strategy induced by the IG-K objective to quickly infer the
correct period is not favorable for improving predictions, since repeatedly selecting points
exactly one period apart does not provide new information about the function shape be-
tween those points. By the last few observations, the IG-P objective also learns the correct
model parameters and has previously selected points which provide more information for
prediction than IG-K.

4.2.4 Visualizing IG-K and IG-P

To support claims made in 4.2.2 and 4.2.3, and to further examine the dynamics of the
IG-K and IG-P objectives, we present visualizations of active learning with both objectives
on dataset drawn from a periodic GP kernel with period, scale, and noise parameters of
0.4, 0.6, and 0.1 respectively. For active learning, the model class is restricted to periodic
kernels only, and the grid consists of 100 periodic GP models where the period and scale
are chosen from S 0.1 × S 0.1 as defined in 4.1.2. Figure 4-10 presents the first 5 timesteps of
active learning with the IG-K objective, and figure 4-11 presents timesteps 5, 10, and 15 of
active learning with both IG-K and IG-P objectives.

In the figures, the n-th timestep is presented as three plots stacked vertically. The top
plot shows the test dataset in red, the GP predictions in blue (with error ribbons), and the
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first n observations as yellow circles. The middle plot shows the value of the information
gain objective at the n-th timestep, visualized in green over all x, with a yellow star at
the x which maximizes the objective and is selected as the n-th observation location. The
bottom plot is a heatmap visualizing the model posterior over the gridded models after
the nth observation. Each cell at (x, y) in the heatmap corresponds to a unique gridded
model parameterized by scale x and period y, colored according to the normalized posterior
probability.

In figure 4-10, convergence of the model posterior (bottom plot, heatmap) to the correct
period over timesteps demonstrates that active learning with the IG-K objective is able
to learn the correct period parameter with the first 5 observations. Examination of the
observations (top plot, yellow circles) selected by maximizing information gain (center
plot green) suggests that active learning selects observations to infer the period according
to the strategy described earlier in 4.2.2.

In figure 4-11, the model posteriors suggest that IG-K (subfigure 4-11a) is able to
learn the correct period by the fifth timestep and the correct scale by the tenth timestep;
in contrast, IG-P (subfigure 4-11b) is only able to learn the correct period by the fifteenth
timestep. However, by the fifteenth timestep, the GP predictive posteriors (top plot, blue)
for active learning with IG-P predict the unknown data more accurately than those of IG-
K, as demonstrated by the fit of the blue curves to the red curve. The GP predictions for
active learning with IG-K do not appear to improve much between the tenth and fifteenth
timestep, since it repeatedly selects observations exactly one period apart, which reveal
little information about the shape of the unknown function between observations. This ex-
emplifies the phenomenon discussed earlier in 4.2.3 where a data selection strategy suited
for inferring the correct model parameters does not select informative data for providing
accurate predictions.
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(a) Active learning on periodic data using the IG-K Objective, Timesteps 1-5

Figure 4-10: Inferring period using IG-K. Timestep 1: observation 1 is fixed at the center
of the dataset; Timestep 2: observations 1 and 2 are located 0.6 apart and have similar
y-values, informing the model posterior (grid) to converge towards periods 0.1, 0.2, 0.3,
0.6 (factors of 0.6) as discussed in 4.2.2; Timestep 4: observations 1 and 4 are located
0.8 apart and have nearly identical y-values,informing the model posterior to converge to
periods of 0.4, 0.8 (factors of 0.8); Timestep 5: observations 1, 4, and 5 are located 0.4
apart and have nearly identical y-values, which is more likely with a period of 0.4, so the
model posterior converges to period 0.4, the correct period.
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(a) Active learning on periodic data using the IG-K Objective, Timesteps 5,10,15

(b) Active learning on periodic data using the IG-P Objective, Timesteps 5,10,15

Figure 4-11: Predicting periodic data: IG-K vs. IG-P. Timestep 5: the model posteriors
indicate IG-K learns the correct period (see figure 4-10), but IG-P does not; Timestep 10:
IG-K observation 10 is extremely close to a previous observation, informing the model
posterior to converge towards the correct scale (0.6) as discussed in 4.2.2; Timestep 15:
the model posteriors indicate that both IG-K and IG-P have converged to the correct period,
but IG-P’s GP predictions (blue on top plot) predict the unknown data (red) better, since
IG-K’s selected observations are sub-optimal for prediction as discussed in 4.2.3.
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· · ·

The results of the grid approximation active learning experiments presented in this
chapter empirically validate that active learning with the IG-K objective reduces uncer-
tainty over model parameters and learns the parameters better than active learning with the
IG-P objective. Further analysis of the experimental results reveal that:

1. The degree to which IG-K is better able to infer the correct model parameters varies
depending on the GP parameter’s effect on the generated data.

2. Knowledge of the correct model parameters does not necessarily result in more accu-
rate predictions of the data. Even with the correct model, sufficient data is necessary
in order to make accurate predictions.

3. An observation selection strategy suited for inferring the correct model parameters
may not be favorable for providing accurate predictions.

While grid approximation removes the confound of inference approximation to give us
clear intuition about how IG-K and IG-P work on restricted model classes of structures, it
does not scale to real-world applications where the structure is unknown. The next chapter
presents experiments validating inference of our SMC Bayesian active learning algorithm
and testing SMC active learning with IG-K and IG-P objectives on real-world data.
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Chapter 5

Validating Sample-Based
Approximation of Kernel Information
Gain (IG-K) Objective

The experiments presented in the previous chapter test Bayesian active learning by grid-
ding over kernel parameters for restricted model classes of structures. In practice, Bayesian
active structure learning may not always perform well because of (i) the quality of the infer-
ence approximation; (ii) the quality of the approximation to the information gain objective;
or (iii) negative interactions between the dataset, the model class, and the information gain
objective. Grid approximation removes the confound of inference quality (i), but does
not scale to the general setting where there are too many possible structures to grid over,
including many cases of real-world data.

In this general setting, we measure inference quality by using simulation-based cali-
bration (SBC) [19], which allows us to determine whether our inference procedure pro-
duces sound posterior estimates of the model distribution P(θ) over the entire (unrestricted)
model class. Section 5.1 presents the SBC procedure (5.1.1), rank-statistic (5.1.2), and
results (5.1.3) validating the posterior inference quality of our underlying SMC algorithm.
We further evaluate the performance of our inference algorithm on a real-world dataset in
Section 5.2, which presents Bayesian active learning experiments with IG-P and IG-K on a
dataset of airline passenger volumes.
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5.1 SBC for SMC Active Learning

5.1.1 SBC Algorithm

SBC is well-established sampling-based method for validating an inference algorithm that
only requires the ability to samples from the model P(θ) in question, simulated data ỹ

given a particular model θ, and posterior samples θi given the simulated data ỹ [19]. Below
we state the procedure for SBC, specialized for the context of validating our SMC-based
inference algorithm (Algorithm 2):

Algorithm 5 SBC for Bayesian Active Structure Learning with GPs

1. Sample a GP θ̃ ∼ P(θ) from the covariance prior (Section 2.1.2).

2. Sample data ỹ ∼ P(y|θ̃; x) at the sequence of locations x.

3. Perform SMC inference with ỹ (Algorithm 2 where the observation locations are fixed to x) to obtain
a posterior estimate P̂(θ|ỹ)

4. Sample L models {θ1, ..., θL} ∼ P̂(θ|ỹ) and calculate the rank statistic as follows, where the procedure
to compare two kernels θ1 < θ2 is defined in Section 5.1.2.

r({θ1, ..., θL}, θ̃) =

L∑︁
l=1

1[θl < θ̃] ∈ [0, L]

5. Repeat steps 1-4 N times to obtain N rank statistics.

6. Plot the N rank statistics as a histogram and compare it to the discrete uniform distribution that would
arise if the inference is correct, as proven by Theorem 1 in [19].

The observation locations x in step 2 are a fixed sequence of locations x1, ..., xn for a
sampling budget of n, so the inference procedure in step 3 does not involve active selection
(i.e. IG-K, IG-P). The proof of the correctness of SBC relies on the intuition that the data

averaged posterior recovers the prior distribution as shown below [19].

P(θ) =

∫︁
P(θ|ỹ; x) · P(ỹ|θ̃; x) · P(θ̃) dỹdθ̃

With SMC active learning, however, the observation locations x are not fixed; we select
n observations and their locations (x̃1, ỹ1), ..., (x̃n, ỹn) sequentially using the IG-K or IG-P
objective (Algorithm 2). The first observation location x̃1 is fixed, and future x̃ locations
are selected conditioned on previous ỹ values. We can test SMC active learning with SBC
by treating future x̃ locations as random functions of previous observations:

x̃i ∼ P(x̃i|ỹ1:i−1, x̃1:i−1, θ)
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While this may seem like a significant departure from the standard setting, SBC in fact
remains valid because the averaging the posterior over both the data ỹ and the locations x̃

recovers the prior. First we note that using active learning to repeatedly choose locations x̃i

and observations ỹi leads to the following decomposition of the joint distribution:

P(ỹ1:n, x̃1:n|θ̃) = P(ỹ1, x̃1|θ̃)
n∏︁

i=2

P(ỹi|θ̃, ỹ1:i−1, x̃1:i) · P(x̃i|ỹ1:i−1, x̃1:i−1)

This means that averaging the posterior P(θ|ỹ1:n; x̃1:n) over an active learning process
that sequentially chooses locations and observations (x̃1, ỹ1), ..., (x̃n, ỹn) simply means aver-
aging over the joint distribution P(ỹ1:n, x̃1:n|θ̃), which clearly returns the prior P(θ):

P(θ) =

∫︁
P(θ|ỹ1:n, x̃1:n) ·

⎛⎜⎜⎜⎜⎜⎝P(ỹ1, x̃1|θ̃)
n∏︁

i=2

P(ỹi|θ̃, ỹ1:i−1, x̃1:i) · P(x̃i|ỹ1:i−1, x̃1:i−1)

⎞⎟⎟⎟⎟⎟⎠ · P(θ̃) dỹdx̃dθ̃

P(θ) =

∫︁
P(θ|ỹ1:n, x̃1:n) · P(ỹ1:n, x̃1:n|θ̃) · P(θ̃) dỹdx̃dθ̃

5.1.2 SBC Rank Statistic for GP Kernels

In order to calculate the rank statistic in step 4 of Algorithm 5, we need an ordering on
kernels θ1, θ2 to be able to evaluate θ1 < θ2. We define a kernel ordering procedure loosely
inspired by ideas in [15] which maps the structure of covariance kernels to numeric arrays
for comparison. To map kernels to arrays, we first define a linear ordering on the nodes of
full binary trees and an ordering on the kernel types, as shown in Figure 5-1.

(a) Ordering on kernel types (b) Ordering on nodes of full
binary tree

Figure 5-1

We observe that the structure of any compositional covariance kernel can be represented
as a binary tree as shown in the left of Figure 5-2. To make kernels easier to compare, we
convert the structure tree of each kernel to a numeric array using the previously defined
kernel ordering, as shown in the right of Figure 5-2. Nodes of the full binary tree that do
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not appear in the covariance tree, e.g. nodes 4 and 5 in the example, are denoted by 0 in the
array representation. Since the + and × operators are commutative, there are potentially
many functionally equivalent covariance structures with different tree representations, e.g.
swapping nodes 6 and 7 in the example produces a different tree, but a functionally equiv-
alent kernel. To ensure both trees reduce to the same array representation, we preprocess
trees to make sure left and right children are in ascending kernel order before conversion.

Figure 5-2: We convert compositional covariance kernels into array form by imagining
kernel structure as binary trees. Left: The structure of the covariance kernel specified in
the DSL syntax can be represented as the binary tree shown. Right: The covariance tree
is represented as an array where the array index indicates the position in the tree, and the
value (1-6) represents the kernel type according to the previous ordering.

To compare two kernels, we first convert them to numeric structure arrays as described.
Then, we compare array length (tree depth). If the arrays have equal length, we compare
the arrays lexicographically. If the arrays are identical (kernels have the same structure),
we check the kernel parameters in tree order (e.g. υ1, υ2, υ3, υ4 in the example), which will
almost surely be unique as they are continuous uniform random variables.

5.1.3 SBC Results

We ran SBC according to Algorithm 5 to validate SMC inference (Algorithm 2) with and
without active learning (specifically IG-K), as discussed in 5.1.1. We use the following pa-
rameters as defined in Section 5.1.1 and Section 3.1, and we present the SBC rank statistics
results in Figure 5-3.

• SBC Algorithm: N = 200 iterations, L = 19 posterior samples per iteration.

• SMC Algorithm: Number of particles k = 50, 100, 150, 200; resampling threshold
c = 0.5; sampling budget (i.e. number of observations ỹi) T = 15. We use the
covariance structure, parameter, and noise priors given in Section 2.1.2.

• Rejuvenation MCMC Procedure: α = 3 Gaussian drift kernel repetitions with
standard deviation σ = 0.1, truncated to [0, γ] where γ = 1.0, β = 10 full repetitions.
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(a) Histograms of SBC rank statistics from SMC inference with k = 200 particles, with and with-
out active learning. Both histograms indicate no issues as the empirical rank statistics (red) are
consistent with the variation expected of a uniform histogram (gray), as defined in [19].

(b) Plot of uniformity (measured by Pearson chi-squared test p-values) of SBC rank statistics from
SMC inference with k = 50, 100, 150, and 200 particles. Uniformity increases with the number of
inference particles, confirming that using more particles leads to higher inference quality.

Figure 5-3: SBC Results. Results of SBC (N = 200, L = 19) validating the SMC inference
(Algorithm 2) with and without active learning.

The empirical rank statistics of SBC on SMC inference with 200 particles are plotted in
the histograms of Figure 5-3a and show that SMC inference is sound, both with and without
active learning. As an alternative to visual inspection of the histogram, we can assess
uniformity of the rank statistics by using a standard hypothesis test to compute p-values
of the rank statistic frequency distribution under the expected discrete uniform distribution
that would arise if the inference is correct. Like [15], we use the Pearson chi-squared test
to assess uniformity, plotting the p-values for the rank statistics of SBC on inference with
50, 100, 150, and 200 particles in Figure 5-3b. The plot shows that the p-value (i.e. of
uniformity) increases as we increase the number of particles of SMC inference both with
and without active learning. This demonstrates that using more particles leads to higher
quality inference, better approximating the true posterior.
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5.2 Active Learning on an Airline Dataset

To evaluate how Bayesian active learning with the IG-K and IG-P objectives might perform
on real-world data, we performed experiments on the airline dataset used in Duvenaud et al.
[6] and Saad et al. [14] which measures monthly totals of international airline passengers
from 1948 to 1960. The dataset, plotted in Figure 5-4, exhibits both periodic and linear
trends, indicating that it is best modeled by a periodic + linear GP kernel.

Figure 5-4: Airline Dataset. Dataset of monthly totals of international airline passengers;
the data exhibits both periodic and linear trends.

For our experiments, we ran Bayesian active learning according to Algorithm 2 with the
IG-K and IG-P objectives, using k = 200 particles for SMC inference and the values for rest
of the parameters as defined in 5.1.3. Like in previous experiments in Chapter 4, the first
observation is fixed to be the center point of the dataset, and the remaining observations are
chosen via active selection. We standardize the airline dataset so it is suitable to be modeled
by our GP model class with a zero-mean assumption and kernel parameter support of [0, 1].
We run active learning on the last 100 points of the dataset.

In our experiments, we record the predictive MSE and structure posterior metrics as
defined in Section 4.1.1. Because there is no "ground truth" model or parameters for the
airline dataset, we cannot measure the parameter MSE metric from before to assess the
correctness of inferred models. Instead, we examine the posterior over kernel structures
(structure distribution metric) to assess whether active learning is able to detect qualitative
structure in the data (i.e. linear and periodic structure for the airline dataset).
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5.2.1 Experiment Results

Figure 5-5a presents the predictive MSE and kernel structure posterior metrics averaged
over 20 runs of active learning on the airline dataset. To provide a clearer understanding of
how active learning behaves on the dataset, Figures 5-5c and 5-5b present one of the active
learning runs with the IG-K and IGP objectives respectively. Active learning is visualized
in a similar manner to the figures in Section 4.2.4, where each timestep is represented by
three plots stacked vertically. The top plot shows the dataset, selected observations, and GP
predictive posteriors; the middle plot shows the information gain objective; and the bottom
plot shows the structure posterior probabilities plotted as a bar chart over the six kernel
structure types.

The metrics in Figure 5-5a demonstrate that IG-P is better than IG-K at reducing pre-
dictive MSE, but a closer examination of the GP predictive posteriors in Figures 5-5c and
5-5b show that neither IG-K nor IG-P predict unknown data well. Both IG-K and IG-P fail
to infer the linear and periodic trends in the data, and instead converge to a squared expo-
nential kernel. The predictive variance ribbons in Figures 5-5c and 5-5b reveal that this is
because both IG-K and IG-P interpret periodicity in the data as noise. This overestimation
of noise could be due to mismatch between our noise prior and the noise level of the airline
dataset. To verify this, we ran a second set of experiments where we fix the noise parameter
to be smaller (η = 0.01), and present the results in figure 5-6.

With noise η = 0.01, both IG-K and IG-P are able to infer periodic structure within the
first five observations, as demonstrated by the posterior structure distributions in Figures
5-6c and 5-6b. With additional observations, IG-P is able to infer more than periodicity in
the data and predict unknown data quite well. In contrast, IG-K does not predict the data
well, since it selects observations located extremely close together which are uninformative
for both model structure inference and data prediction. In the gridded experiments, we
observed this selection strategy in cases where IG-K is inferring the periodic kernel scale
or squared exponential lengthscale parameter (see 4.2.2). Thus, this failure case of IG-
K on the airline dataset is likely due to initial overconfidence in the periodic structure
combined with a sub-optimal selection strategy to reduce uncertainty of the period kernel
scale parameter.
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(a) Result metrics of active learning on airline dataset averaged over 20 runs

(b) Active learning on airline data using the IG-P Objective, Timesteps 5,10,15

(c) Active learning on airline data using the IG-K Objective, Timesteps 5,10,15

Figure 5-5: Active learning with noise prior on the airline dataset. The kernel structure
posteriors in (a) show that both IG-K and IG-P fail to infer periodic structure in the data; the
squared exponential structure has the highest posterior likelihood. Although IG-P reduces
predictive MSE better than IG-K, examination of the predictive posteriors in (b) and (c)
reveal that neither active learning algorithm predicts unknown data well; periodic structure
in the data falls within the predictive variance (blue error ribbon), suggesting the predicted
noise is too high.
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(a) Result metrics of active learning with η = 0.01 on airline dataset averaged over 20 runs

(b) Active learning with η = 0.01 on airline data using the IG-P Objective, Timesteps 5,10,15

(c) Active learning with η = 0.01 on airline data using the IG-K Objective, Timesteps 5,10,15

Figure 5-6: Active learning with η = 0.01 on the airline dataset. The kernel structure
posteriors show that both IG-K and IG-P are able to quickly infer periodic structure in the
data; the periodic structure has the highest posterior likelihood at timestep 5. The structure
posterior in Figure (b) shows that IG-P is able to infer more than periodic structure in the
data, and the predictive posteriors model the data very well by the fifteenth timestep (fit of
blue curves to red curve). (c) shows that IG-K does not predict the data well, even after
15 observations, since it selects observations in a cluster that reveals very little about the
model structure or unknown data.
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· · ·

The results of SBC on Algorithm 2 demonstrate that our SMC inference produces sound
posterior estimates of the model distribution, with and without active learning (IG-K). Ad-
ditionally the SBC results demonstrate that increasing the number of particles used for
SMC leads to higher quality inference. However, when run on the airline dataset, active
learning with IG-K fails to recover the correct periodic + linear structure. This discrepancy
between the SBC results and results on real-world data could be due to the fact that SBC
tends to sample mostly simpler kernels (due to the default covariance prior). While the
sampling budget of 15 observations is enough to infer simpler structures well, it may not
be sufficient for accurate inference on more complex datasets such as the airline dataset
with good performance.

In such cases, it may be important to ensure that the model priors are well-calibrated
to the type of data being modeled. For example, after calibrating the noise level in the
airline dataset experiments, active learning with IG-P is able to infer the periodic + linear
within 15 observations, suggesting that the initial noise prior was miscalibrated for datasets
with minimal noise. Such issues could be addressed by calibrating model priors against a
wide variety of real-world datasets before applying it to new data of a similar type. Other
visualization methods in Bayesian data analysis (e.g. prior and posterior predictive checks)
can also serve as aids in model calibration [8].

Besides model calibration issues, the limited performance of active learning with IG-K
in reducing predictive uncertainty on real world data may be ultimately due to how the IG-
K objective incentivizes data selection. We discuss this tradeoff between inferring structure
and predicting data, as well as potential solutions, in our final chapter.
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Chapter 6

Discussion and Future Work

In this thesis, we presented a sequential Monte Carlo algorithm for Bayesian active learning
with Gaussian processes to infer structure in data. We defined two objective functions: (1)
kernel information gain (IG-K) to reduce uncertainty over model structure and parameters,
and (2) predictive information gain (IG-P) to reduce uncertainty over predictive posteriors.
We derived Monte Carlo estimators for both information gain objectives to make them
tractably computable, and empirically validated that active learning with our novel IG-K
objective is able to more accurately infer the structure of synthetic datasets using fewer
datapoints than active learning with IG-P. We also validated the underlying SMC inference
algorithm using simulation-based calibration and tested our active learning algorithm on a
real-world dataset with complex structure.

Collectively, the results provide a deeper understanding of the benefits and limitations
of active learning using Gaussian processes, as well as the trade-offs between minimizing
structural vs. predictive uncertainty, which we summarize below:

• Active learning performance is structure-dependent. Optimally learning about
model structure and parameters with the IG-K objective exhibits very structure-
dependent behavior. This behavior can be non-intuitive and sub-optimal for pre-
diction, such as selecting points close to each other to infer the scale of the periodic
kernel (e.g. Figure 5-6).

• Structural accuracy does not imply predictive accuracy. Even after inferring the
correct model structure, sufficient and appropriate data is necessary in order to make
accurate predictions with the inferred GP model. In multiple experiments (e.g. Fig-
ure 4-11), we find that IG-K active learning is more efficient at inferring the correct
model, but IG-P selects better points to improve prediction, especially once the cor-
rect model has been inferred.
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• Importance of model calibration. In real-world applications, it is important to
ensure that our model priors are reasonably calibrated to the data to avoid problems
like the noise parameter overestimation in the airline dataset (Section 5.2.1).

The trade-off between improving structural accuracy and predictive accuracy suggests
that in future work, a hybrid strategy of IG-K and IG-P may be more suitable than either
objective alone for inferring structure in data efficiently and predicting the data well. In the
hybrid strategy, we would initially use the IG-K objective to prioritize learning the correct
model. Once we have enough confidence in our estimate of the model (i.e. kernel entropy is
below some threshold) we would switch to using the IG-P objective to prioritize increasing
predictive accuracy, assuming that the inferred model is approximately correct. However,
if selected observations cause the kernel entropy to rise above the threshold, we switch
back IG-K until entropy is once again below the threshold. This strategy would be helpful
whenever the posterior initially converges towards an incorrect structure, as is the case in
the airline dataset experiments when both IG-P and IG-K active learning initially converge
to the periodic kernel instead of the periodic + linear kernel (Figure 5-6).

In addition to better navigating the trade-off between structural inference and data pre-
diction, the dependence on structure and importance of model calibration suggest that, in
any future work using GPs for active learning, we must carefully consider interactions be-
tween the data and the model class. The results of our experiments suggest that we can
adjust the covariance structure, parameter, and noise priors to express expert information
about or detect specific structure in the data we are trying to model. Results of experiments
with particular kernel structures also help us understand for which types of structures the
information gain objectives offer a more definitive advantage.

Beyond the findings presented above, the development of this thesis led us to many
other important questions about GP active learning that we were not able to explore:

• Efficient optimization procedures for maximizing information gain. Our active
learning approach enumerates over possible observation locations, which does not
generalize to the case where may select observations on a continuous range. As
such, enumeration could become quite expensive and slow as the number of possible
locations increases. For better performance, we could use gradient descent, Bayesian
optimization (as suggested in [20]), or other black-box optimization techniques to
efficiently maximize the information gain objective over a continuous range of ob-
servation locations.

• Extending to multiple input dimensions. In this thesis, we only consider x as one-
dimensional, but GPs are often used to model multidimensional phenomena (e.g.
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spatio-temporal data). A key challenge for extending active learning to the multidi-
mensonal case will be solving the efficient optimization issue above, since enumera-
tion over multiple dimensions will become too expensive.

• More general and realistic decision contexts. Our experiments only consider one
decision context, i.e. maximizing information gain under a fixed sample budget
where samples can be chosen from anywhere within the dataset. In real-world appli-
cations, this context may not always apply. For example, in the temporal setting, we
can only choose future samples, not past ones. Alternatively, sample budgets may
not be fixed, but each sample may instead have some cost that we want to trade off

against gaining more information, e.g. deciding whether to pay to buy more data.

We believe that these and many related research directions are ripe for future work.
We hope that the methods and experiments presented in this thesis will serve as a useful
resource for such work in GP active learning, and in the active learning of probabilistic
programs more broadly, enabling the efficient discovery of hidden structure from rich and
complex data.
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