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Abstract

The Planning Domain Definition Language (PDDL) is a formal specification language
for symbolic planning problems and domains that is widely used by the AI planning
community. However, most implementations of PDDL are closely tied to particular
planning systems and algorithms, and are not designed for interoperability or modular
use within larger AI systems. This limitation makes it difficult to support extensions
to PDDL without implementing a dedicated planner for that extension, inhibiting
the generality, reach, and adoption of automated planning.

To address these limitations, we present PDDL.jl, an extensible interpreter and
compiler interface for fast and flexible AI planning. PDDL.jl exposes the semantics of
planning domains through a common interface for executing actions, querying state
variables, and other basic operations used within AI planning applications. PDDL.jl
also supports the extension of PDDL semantics (e.g. to stochastic and continuous
domains), domain abstraction for generalized heuristic search (via abstract interpreta-
tion), and domain compilation for efficient planning, enabling speed and flexibility for
PDDL and its many descendants. Collectively, these features allow PDDL.jl to serve
as a general high-performance platform for AI applications and research programs
that leverage the integration of symbolic planning with other AI technologies, such
as neuro-symbolic reinforcement learning, probabilistic programming, and Bayesian
inverse planning for value learning and goal inference.
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Chapter 1

Introduction

If we had better standards for evaluating AI,

the field would progress faster.

John McCarthy

The nice thing about standards is that you

have so many to choose from.

Andrew S. Tanenbaum

One of the earliest problems tackled by AI researchers in their quest to emulate

human intelligence was symbolic planning and problem solving: deriving a series of

steps to achieve a goal given a formal description of the world [1, 2]. This approach

to autonomous decision-making remains important in many contemporary AI and

robotics systems, which combine symbolic planning with stochastic world models

[3], motion planning [4], Bayesian inference [5] and machine learning [6], thereby

overcoming the early limitations of symbolic AI [7] while achieving much greater

computational efficiency than brute-force deep learning algorithms [8, 9]. To enable

the development and evaluation of such planning algorithms, the Planning Domain

Definition Language (PDDL) emerged as a de facto standard for formally specifying

planning problems and domains (Figure 1-1) as input to automated planners [10,

11]. Many extensions of PDDL have since been developed, enabling support for
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(define (domain blocksworld)
(:requirements :strips :typing :equality)
(:types block)
(:predicates (on ?x ?y - block) (ontable ?x - block)

(clear ?x - block) (handempty) (holding ?x - block))
(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty) (holding ?x)))
(:action put-down
:parameters (?x - block)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x)))
(:action stack
:parameters (?x ?y - block)
:precondition (and (holding ?x) (clear ?y) (not (= ?x ?y)))
:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y)))
(:action unstack
:parameters (?x ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty) (not (= ?x ?y)))
:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))
)

(a)

(define (problem bw-problem)
(:domain blocksworld)
(:objects a d e r p w - block)
(:init (handempty)

(ontable d) (on e d) (clear e)
(ontable r) (clear r)
(ontable w) (on p w) (on a p) (clear a))

(:goal (and (ontable r) (on e r) (clear e)))
)

(b)

(unstack e d)

(stack e r)

(c)

Figure 1-1: PDDL can be used to specify planning (a) domains and (b) problems in
terms of symbolic relations and actions. (c) Blocksworld is a well-known example.

stochastic domains [12], continuous environments [13], and other real-world conditions

[14]. PDDL and its descendants thus serve as key infrastructural components in AI

planning and robotics research.

Despite the widespread of use of PDDL, however, most implementations of PDDL

semantics are closely tied to particular planning systems or algorithms, each of which

uses its own compiler for PDDL domain descriptions in order to optimize performance

of the associated algorithm [15, 16, 17]. While this benefits the speed and efficiency

of these planners, enabling them to excel at the semi-annual International Planning

Competitions [18], this comes at the cost of code reuse, extensibility, and integration

within larger AI systems. As a result, each proposed extension to PDDL has typi-

cally required a custom-built planner for that extension [19, 20, 21, 22], and the use of

PDDL for broader applications such as plan recognition or task-and-motion-planning

has required either specific translation techniques [23] or glue code [24]. This im-

plementational barrier limits the uptake of symbolic planning by researchers outside

of the planning community, and inhibits the integration of symbolic, probabilistic

and neural approaches to AI that has been projected to play a key role in the next

generation of autonomous systems [25, 26].
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"Construct a symbolic MDP from a PDDL domain and problem."
function SymbolicMDP(domain::Domain, problem::Problem)

state = PDDL.initstate(domain, problem)
goal = PDDL.get_goal(problem)
metric = PDDL.get_metric(problem)
if metric !== nothing # Extract metric formula to minimize

metric = metric.name == :minimize ?
metric.args[1] : Compound(:-, metric.args)

end
return SymbolicMDP(domain, state, goal, metric)

end

(b) MDP and RL environments using PDDL.jl

b

a
b
c

d

p = 0.85

d

a
b c
d

p = 0.01

a
b c

d

p = 0.45

b
c

a
d

p = 0.12

a

b
c
d

p = 0.14

a
b

cd

p = 0.40

b
a
c

d

p = 0.01p = 0.00

b a

c
d

p = 0.01

a
c
d b

p = 0.10

a
c

b
d

p = 0.10

a

b

c
d

p = 0.14

a

c
d

b

p = 0.12

p = 0.00 p = 0.00

p = 0.00

p = 0.00

ab
c d

p = 0.02

ba t = 1

t = 3

t = 5

Observed:

bObserved:

Observed: c

c

(unstack b c)
(stack b a)

(unstack c d)
(stack c b)

Ground truth states / actionsp   Probability estimate

(c) State estimation using
PDDL.jl and Gen

Figure 1-2: A survey of PDDL.jl applications. PDDL.jl can be used: (a) To build
planning algorithms 20 times faster than Pyperplan, and within an order of magnitude
of FastDownward (Chapter 6.1); (b) As a simulator for reinforcement learning (RL)
that works with existing RL packages (Chapter 6.2); (c) To perform state estimation
from partial observations when combined with the Gen probabilistic programming
system (Chapter 6.3).

To overcome this implementational barrier, this thesis presents PDDL.jl1, an ex-

tensible interpreter and compiler interface designed for fast and flexible symbolic plan-

ning within a wide range of AI systems and applications (see Figure 1-2 for a survey).

PDDL.jl exposes the semantics of PDDL planning domains through a common inter-

face for executing actions, determining the set of applicable actions, querying state

variables, and other basic planning operations, providing implementation-agnostic

building blocks for planning algorithms and related AI systems. Through multiple

implementations of this common interface, PDDL.jl also supports the extension of

1Available at https://github.com/JuliaPlanners/PDDL.jl
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PDDL semantics (via an extensible interpreter), domain abstraction for generalized

heuristic search (via an abstract interpreter), and domain compilation for efficient

planning (via a PDDL compiler), enabling speed and flexibility for applications that

use PDDL or its many descendants. Collectively, these features allow PDDL.jl to serve

as a platform for contemporary AI algorithms and research programs that leverage the

integration of symbolic planning with other AI technologies, including task and mo-

tion planning [13, 27], neuro-symbolic reinforcement learning [28, 29], and Bayesian

inverse planning for value learning and goal inference [30].

1.1 Overview

PDDL.jl differs from standard automated planning systems in that it is designed not

only for speed and efficiency, but also extensibility and interoperability. This is due

to the fact that the design target of PDDL.jl is an interface, not just a particular

algorithm or application. Figure 1-3(a) provides an overview of the architecture of

PDDL.jl and the ecosystem it enables, in comparison with the architecture of stan-

dard planning systems shown in Figure 1-3(b). Standard architectures are designed

primarily for fast and efficient planning, accepting PDDL domain and problem files

as inputs (Figure 1-3(b), pink), rapidly translating and compiling them (orange) to

more efficient representations (yellow), running planning algorithms and heuristics

(blue) over those representations, then producing symbolic plans and metadata as

outputs (green). This architecture enables performance optimization over the entire

pipeline, but limits interaction with external applications to just two channels: (i)

receiving domains and problems as inputs; and (ii) providing plans as outputs.

In contrast, the core of PDDL.jl is its interface (Figure 1-3(a), green): a set of

methods and abstract data types that expose the high-level functionality required

to implement planning algorithms and applications. Centering PDDL.jl around its

interface means that (i) multiple implementations of the interface can coexist (yel-

low), providing either speed, generality or specialized functionality depending on en-

gineering needs; (ii) multiple applications (light blue) can use the interface to achieve

16



PDDL.jl Interface

State ActionDomain ...

satisfy available execute ...

Abstract Data Types

Interface Methods

PDDL
Interpreter

Formula
Interpreter

Effect
Interpreter

PDDL
Compiler

State Compilation

Action Compilation

.
.
.

...

Abstract
Interpreters

Cartesian
Abstractions

Relational
Abstractions

Extension Libraries

Stochastic Domains

PPDDL.jl

Task & Motion Planning

PDDLStream.jl

Hierarchical Planning

HDDL.jl

Multi-Agent Planning

MultiAgentPDDL.jl

Custom Functions
& Imperatives

Custom
Abstractions

Extension Interfaces

used by

implemented by

extensible viaused by

implemented &
extended by

Applications

Planning
Heuristics

Expert Designed

Learned Heuristics

...

Abstraction Based

Planning
Algorithms

A* Search

Goal Regression

...

MCTS

Inverse
Planning

Agent
Models

used

by

used

by

Task & Motion
Planners

used

by

Robotic
Systems

used

by

used

by

used by

......

used by

PDDL Domains & Problems

Blocksworld Logistics

Compilers & Interpreters

interpreted or compiled by

.
.
.

(a) PDDL.jl’s architecture and ecosystem

Planner
Outputs

...

PDDL Domains & Problems

Blocksworld Logistics

Specialized
Compiler

Translation

State Compilation

.
.
.

Planning
Algorithms

A* Search

Hill Climbing

...

(Restricted Family) used

by

Planning
Heuristics

hadd

hFF

...

(Type Restricted)

Specialized
Data Structures

produces

used by used by

produces

compiled by

used by

External
Applications

(b) Standard architecture

Figure 1-3: An overview of (a) the architecture and ecosystem of PDDL.jl, in contrast
to (b) standard planning systems. Dashed lines surround libraries or features that
are yet to be implemented, but are planned for the future.

tighter integration between symbolic planning and other AI components; and (iii)

multiple extensions of PDDL are enabled by implementing and extending the in-

terface through additional libraries (dark blue). By factoring out these components

of traditional planning systems into separate software artifacts, PDDL.jl enables an

ecosystem where implementations can evolve independently from applications (e.g.

through future compiler improvements), applications can interoperate through a com-

mon interface (e.g. Bayesian agent models which interleave planning algorithms with

plan execution [30]), and extensions can be flexibly composed (e.g. stochastic domains

with task and motion planning [31]).

Given this interface-centered design, PDDL.jl itself does not include any applica-

tions or extensions, which are intended to be provided by separate libraries (e.g. the

SymbolicPlanners.jl library of planning algorithms [32]). However, PDDL.jl does

17



include several built-in implementations of its interface: a standard interpreter, an

abstract interpreter, and a compiler. Each of these implementations plays a differ-

ent role in the context of a planning application and its development. The standard

interpreter is designed to be easily extended, and also comes with the ease of de-

bugging and inspection usually associated with interpreters. As such, it is ideal for

checking correctness when specifying a new PDDL domain, or when implementing a

planning algorithm or extension library. The abstract interpreter’s primary intended

use is to compute planning heuristics that rely upon domain relaxation or abstraction

[33]. However, abstract interpreters have many other uses (e.g. program synthesis

for generalized planning) which future applications could take advantage of. Finally,

the PDDL.jl compiler enables efficient planning through just-in-time compilation of

specialized state representations and action semantics. While compilation is less easy

to extend or debug, it provides orders of magnitude speed-ups over interpretation,

allowing PDDL.jl applications to scale to much larger problems.

In the following chapters, we describe the PDDL.jl interface and each of these

implementations in detail. In Chapter 2, we introduce the abstract data types and

interface methods that constitute the PDDL.jl interface, then provide examples of how

it can be used by applications and extended by additional libraries. In Chapter 3,

we describe the standard interpreter in the context of PDDL syntax and semantics,

and how interpreter functionality can be easily extended. In Chapter 4, we intro-

duce the abstract interpreter, and how it can be used to compute planning heuristics

based upon domain abstraction. In Chapter 5, we describe the compiler and the

optimizations it implements. Finally, in Chapter 6, we illustrate and evaluate several

applications of PDDL.jl, including high-performance symbolic planning algorithms

[32], environments for reinforcement learning [34], state estimation from partial ob-

servations, and goal inference via Bayesian inverse planning [30]. The thesis concludes

with a discussion of future research that might be enabled by PDDL.jl.
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Chapter 2

A General Software Interface

for Symbolic Planning

Decades of AI research have led to the development of a wide variety of symbolic

planning algorithms and associated software packages, each of them often tailored

to support specific planning strategies (e.g. planning graph analysis in GraphPlan

[35] vs. forward search in FastForward [16]) or certain classes of planning problems

(e.g. numeric planning in MetricFF [19] or temporal planning in POPF [36]). Some

of these software packages are more general than others; for example, both the Fast-

Downward [17] and ENHSP [21, 22] planning systems support an array of algorithms

and heuristics for classical and numeric planning respectively.

However, there exist very limited options when it comes to software interfaces for

the integration of symbolic planning into larger systems. The most common approach

is integration of existing planners at the invocation level (e.g. in ROSPlan [37]) which

severely limits the degree of inter-operation, or source-code modification of slow but

lightweight planner implementations such as Pyperplan [38]. More general interfaces

are provided by the PDDL4J [39] and PPMaJaL [40] libraries, which define Java

APIs for PDDL-based planners, heuristics, and various utilities. While these libraries

are considerably more flexible than the aforementioned approaches, their design does

not easily allow for deeper semantic extensions (e.g. to probabilistic or multiagent

planning) or for alternative interpretation and compilation techniques.
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To address these limitations, this chapter presents the PDDL.jl interface for sym-

bolic planning, which is motivated by the following desiderata:

1. The interface should be sufficiently general, providing interface methods and

data types for a variety of use cases. This includes classical planning algorithms,

but also applications which operate over symbolic descriptions of the world (e.g.

environment simulators or probabilistic state space models).

2. The interface should be designed for extensibility, allowing developers to sup-

port new classes of planning problems (e.g., continuous or stochastic environ-

ments) primarily by implementing new behavior for existing interface methods,

with minimal extensions to the interface itself.

3. The interface should support specialization of its methods in a domain and

problem-specific manner, so as to enable efficient planning through techniques

such as domain compilation and finite state encodings.

These are achieved by a system of abstract data types and associated interface

methods which mirror the formal semantics of symbolic planning problems, along with

their implementation in the Julia programming language, enabling both extensibility

and specialization through a combination of multiple dispatch and code generation.

In the following sections, we first provide formal definitions of symbolic planning

domains and problems, then introduce the system of abstract data types and interface

methods for symbolic planning that are exposed to downstream applications.

2.1 Background on Symbolic Planning

Symbolic planning is a general term for approaches to automated planning and reason-

ing that describe the world and its dynamics in terms of high-level symbols, typically

using first-order logic. PDDL is one way of representing such symbolic knowledge, but

there are many other formalisms. Here we introduce general definitions of planning

domains, problems, states, and actions (see Figure 2-1 for an overview). These defini-

tions apply to PDDL and related languages such as STRIPS and ADL [41]. Variants
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Initial State
State

Planning Problem
Problem

Planning Domain
Domain

Goal Formula
Term

Action SchemataFluents

Types

block
gripper
...

(on ?x ?y)
(free ?g)
...

Objects

a - block
b - block
c - block
gr - gripper
...

Fluent Values

(on a b) = 1
(on a c) = 0
(on b a) = 0
(on b c) = 1
(on c a) = 0
(on c b) = 0
(free gr) = 1
...

(stack ?g ?x ?y)

Parameters:

Effect:

Precondition:

(?g ?x ?y)
(and (clear ?y) ...)
(and (on ?x ?y) ...)

Action

.
.
.

Cost Metric
Term

.
.
.

(and (on c a) ...)

Figure 2-1: An overview of the relationships between planning domains, problems,
states, actions, fluents, and logical terms in an example Blocksworld problem. Their
corresponding abstract data types in PDDL.jl are annotated in monospace. Optional
components are surrounded by dashed lines.

of PDDL also share these basic definitions, while extending them to incorporate more

functionality and expressivity.

We first introduce the concept of fluents, which we use to define (relational) state

variables which may change over time:

Definition 2.1.1 (Fluents). A fluent 𝐹 of arity 𝑛 is a predicate (Boolean-valued)

or function (non-Boolean) with 𝑛 object arguments, which describes some property

or relation over those arguments that may change over time. A ground fluent 𝑓 is a

fluent defined over particular set of objects. Arguments may optionally be typed.

Example. The fluent (on ?x ?y) is named on, has arity 𝑛 = 2, and describes whether

some object denoted by the variable ?x is stacked on top of ?y. The ground fluent

(on a b) denotes that object a is stacked on top of object b when true.

States of the world can be symbolically described in terms of fluents and their

valuations at a particular point in time:
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Definition 2.1.2 (States). Given a finite set of fluents ℱ , a state 𝑠 is composed of

a set of (optionally typed) objects 𝒪 := objects(𝑠), and valuations of ground fluents

ℱ(𝒪) defined over all objects in 𝒪 of the appropriate types. Each ground fluent thus

refers to a state variable. For a ground fluent 𝑓 ∈ ℱ(𝒪), we use the notation 𝑠[𝑓 ] = 𝑣

to denote that 𝑓 has value 𝑣 in state 𝑠.

Example. Given the fluent (on ?x ?y) and a state 𝑠 with objects(𝑠) = {a, b}, the

expression 𝑠[(on a b)] = true means that object a is on top of b in state 𝑠.

The semantics of actions are specified via action schemata, which describe the

preconditions and effects of actions in terms of the objects they operate over.

Definition 2.1.3 (Action Schemata). An action schema 𝐴, also known as a planning

operator, is a tuple (params(𝐴), precond(𝐴), effect(𝐴)), where:

• params(𝐴) is a list of (optionally typed) parameter variables, which serve as

placeholders for the objects that a concrete action operates over.

• precond(𝐴) is a logical formula, defined using a set of fluents ℱ over the variables

in params(𝐴), which specifies the preconditions under which an action 𝐴(𝑜) with

object arguments 𝑜 may be executed.

• effect(𝐴) is a formula, defined over the variables in params(𝐴), specifying the

effects of an action 𝐴(𝑜) with arguments 𝑜. Effects can be assignments to fluents

in a state, or more general expressions with conditions or probabilistic choices.

Some formalisms also support schemata for durative actions, i.e., actions whose

preconditions or effects apply over time, with accordingly expanded definitions [42].

Definition 2.1.4 (Actions). An action 𝑎 = 𝐴(𝑜) is defined by an action schema 𝐴

and arguments 𝑜, specifying the objects that 𝑎 operates over.

An action is said to be available or applicable in a state 𝑠 if precond(𝐴) holds true

in 𝑠 when the variables in params(𝐴) are substituted by their concrete values 𝑜. It is

said to be relevant to a state 𝑠 if some fluent valuation in 𝑠 could possibly be achieved

by some effect of 𝑎.
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Having defined states and actions, we now define planning domains and problems.

Definition 2.1.5 (Planning Domains). A symbolic planning domain 𝒟 is a tuple

(𝒯 ,ℱ ,𝒜, ...) where 𝒯 is an (optional) set of object types, ℱ a set of fluents that

describe states, preconditions and effects, and 𝒜 a set of action schemata defining the

semantics of actions in 𝒟. Some formalisms extend domains with other components,

such as object constants or axioms for derived predicates [43].

A planning domain effectively specifies the (lifted) transition dynamics of a first-

order symbolic model of the world. When all effects are deterministic, 𝒟 defines a

state transition system over all possible states 𝒮 when paired with a set of objects

𝒪 that states are defined over. When effects are stochastic, 𝒟 defines a transition

distribution 𝑇 (𝑠′|𝑠, 𝑎) over successor states 𝑠′ conditioned on a state 𝑠 and action 𝑎.

Definition 2.1.6 (Planning Problems). A symbolic planning problem 𝒫 is a tuple

(𝒟, 𝑠0, 𝑔, ...), where 𝒟 = (𝒯 ,ℱ ,𝒜, ...) is a planning domain, 𝑠0 is an initial state

defined over objects with types in 𝒯 and fluents in ℱ , and 𝑔 is the goal to achieve,

specified as a logical formula (e.g. a conjunction of fluents to be satisfied).

In addition to a goal formula, a planning problem may also include other speci-

fications, such as a cost metric to minimize, and temporal constraints on the plan.

The task of a planning algorithm is to find a sequence of actions from the initial state

(a plan) or a mapping from states to actions (a policy) that leads to the problem

specifications being satisfied or optimized.

2.2 Abstract Data Types for Symbolic Planning

To support reasoning over fluents, states, actions, domains and problems, we intro-

duce a system of abstract data types (ADTs) in PDDL.jl to mirror these concepts:

Definition 2.2.1 (Term). The Term ADT is used to represent fluents, object con-

stants, free variables, logical formulae (e.g. in action preconditions), effect formulae

(which may include imperative expressions), and ground actions. Every Term has a

name property, indicating the object, variable, fluent, logical operation, imperative
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operation, or action schema it refers to, as well as an args property, representing the

(potentially empty) list of sub-terms it has as arguments.

Definition 2.2.2 (State). The State ADT represents a symbolic state (Definition

2.1.2). Objects in a State 𝑠 can be accessed with get_objects(𝑠::State) and object

types with get_objtypes(𝑠::State). The value 𝑠[𝑓 ] of a ground fluent 𝑓 in 𝑠 can be

accessed with get_fluent(𝑠::State, 𝑓::Term), where 𝑓 is represented as a Term.

For concrete sub-types of State, set_fluent!(𝑠::State, 𝑣, 𝑓::Term) allows the

value 𝑣 to be assigned to 𝑠[𝑓 ].

Definition 2.2.3 (Action). The Action ADT represents an action schema (Defini-

tion 2.1.3). Each Action schema 𝐴 has a name given by get_name(𝐴::Action), a list

of parameter variables given by get_argvars(𝐴::Action), a precondition Term given

by get_precond(𝐴::Action), and an effect Term given by get_effect(𝐴::Action).

Note that ground actions (Definition 2.1.4) are represented with the Term data

type rather than the Action data type, because the name property of a Term is

sufficient to identify an action schema in the context of a planning domain, and the

args property can be used to represent action parameters.

Definition 2.2.4 (Domain). The Domain ADT represents a planning domain (Defi-

nition 2.1.5). For a domain 𝒟 = (𝒯 ,ℱ ,𝒜, ...), get_types(𝒟::Domain) returns the

set of types 𝒯 , get_fluents(𝒟::Domain) returns a map from fluent names to flu-

ent terms in ℱ , and get_actions(𝒟::Domain) returns a map from action names to

action schemata 𝒜.

Definition 2.2.5 (Problem). The Problem ADT represents a planning problem (Def-

inition 2.1.6) sans the domain 𝒟 it is defined over. For a Problem 𝒫 , the function

initstate(𝒟::Domain, 𝒫::Problem) returns the initial state 𝑠0 specified by 𝒫 as

a State, and get_goal(𝒫::Problem) returns the goal specification 𝑔 given by 𝒫 .

Sub-types of the Problem ADT may provide additional methods for accessing other

specifications (e.g. cost metrics).

Figure 2-1 provides an overview of these abstract data types and the entities they

represent in an example Blocksworld problem.
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Figure 2-2: Schematic diagram of PDDL.jl interface methods (magenta, monospace):
satisfiers returns all satisfying assignments of a logical formula in the context of
a state; evaluate returns the value of a ground expression with respect to a state’s
fluents; available returns actions available in a state 𝑠; execute applies an action 𝑓
to a state 𝑠; relevant returns all actions that could possibly lead to a state; regress
executes an action 𝑓 in reverse to get its pre-image.

2.3 Interface Methods for Symbolic Planning

We now introduce a set of interface methods that serve as basic operations in a

wide variety of symbolic planning algorithms and applications, including forward

state space search, backward-chaining search, partial order planning, and variations

or combinations thereof. These methods are intended to be low-level enough such

that planning algorithms can be expressed primarily in terms of the operations they

represent, but high-level enough so as to abstract away from implementational details

such as compiled state representations or optimizing domain transformations. An

overview of most of these interface methods is presented in Figure 2-2.

Since the PDDL.jl interface is defined in Julia, we adopt Julia’s syntax for declar-

ing a method and its signature. For example, foo(n::Int, x::Float64) has the

function name foo, arguments n and x, with types Int and Float64 respectively.
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If an argument is not annotated with a type, then it has no type restrictions. In

addition, we make use of multiple dispatch in Julia, which allows a single function

to have multiple methods, each with their own type signatures and behavior: the

function foo might have an additional method foo(n::Int) that operates on only

an Int argument. This feature allows us to group conceptually related functionality

under the same name. It also allows us to declare an abstract interface by defining

methods with ADTs as arguments, then implement the interface by defining meth-

ods of the same functions over concrete sub-types of those ADTs. This means that

interfaces can be defined over a system of ADTs, not just a single ADT as is typical

in object-oriented programming. We make use of this design pattern in defining the

PDDL.jl interface.

2.3.1 Evaluating Formulae and Expressions

In contrast to planning approaches which assume less knowledge about the environ-

ment, the key distinguishing feature of symbolic planning is the ability to describe

and determine whether certain facts about the world hold true (e.g. is the robot

holding a block?), or evaluate numeric properties (e.g. the distance between two

cities), where these queries are expressed in terms of first-order logic or a similar

language. This allows planners to check whether logical specifications have been met,

and for planning strategies which select actions that achieve sub-formulae of goal

specifications. As such, we introduce the following methods which satisfy or evaluate

first-order expressions in the context of a State:

Definition 2.3.1 (Formula Satisfaction). Given a term representing a well-formed

logical formula, or a collection of terms (treated as conjunctions of such formulae),

the satisfy function returns whether they are satisfiable within a domain and state:

satisfy(domain::Domain, state::State, term::Term)

satisfy(domain::Domain, state::State, terms)

When a term has free variables, satisfy returns true as long as one satisfying as-

signment exists. A related function, satisfiers, returns a list of all satisfying as-
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signments to such variables (a.k.a. substitutions), including the empty list when a

variable-free formula is satisfied (the null value nothing is returned otherwise):

satisfiers(domain::Domain, state::State, term::Term)

Definition 2.3.2 (Term Evaluation). Given a term representing a ground expression

(i.e. one with no free variables), the evaluate function returns the value of that

expression in the context of a domain and state:

evaluate(domain::Domain, state::State, term::Term)

For example, if term refers to a fluent, the value of the fluent is returned. Compound

numeric expressions (e.g., the sum of two fluents) can also be evaluated. For ground

logical formulae (i.e. sentences), evaluate is equivalent to satisfy.

2.3.2 Initialization and Transition Dynamics

As noted in Definitions 2.1.5 and 2.1.6, domains specify the transition dynamics of a

first order symbolic model of the world, while problems specify the initial state and

object set over which these dynamics are grounded. We thus introduce methods for

constructing the initial state, and for simulating the transition dynamics:

Definition 2.3.3 (State Initialization). Given a domain and problem, the initstate

function returns the initial state, the type of which is concrete subtype of ‘State‘:

initstate(domain::Domain, problem::Problem)

The type of the returned state may vary depending on the subtype of the domain

or problem provided. For example, in our compiler implementation (Chapter 5),

providing a compiled domain as an argument leads initstate to return a compiled

state representation.

Definition 2.3.4 (State Transition). Given a domain and state and action, the

transition function returns a successor state after applying action in state, includ-

ing the effects of any exogenous activity (as supported by some temporal extensions

to PDDL [44]) and random sampling (in the case of probabilistic effects [12]):
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transition(domain::Domain, state::State, action::Term)

To support future multi-agent extensions of PDDL.jl, we also introduce a variant of

transition which accepts a set of actions to be executed in parallel:

transition(domain::Domain, state::State, actions)

2.3.3 Forward Action Semantics

A widely-used strategy in symbolic planning is forward state space search, guided by

a planning heuristic. These algorithms are built upon two basic operations to search

forward in state space: querying the actions that are available in any given state,

and executing an action to generate a successor state. This motivates the following

interface methods:

Definition 2.3.5 (Action Availability). Given a domain, state, action schema and

action arguments, the available function returns whether the corresponding action

is available in the specified state — i.e. its precondition is fulfilled. An action may

alternatively be provided as a Term (e.g. (stack a b)):

available(domain::Domain, state::State, action::Action, args)

available(domain::Domain, state::State, action::Term)

When available is called without specifying an action, it returns an iterator over

all actions available in the specified state, effectively encapsulating the logic for node

expansion in a search algorithm:

available(domain::Domain, state::State)

Definition 2.3.6 (Action Execution). Given a domain, state, action schema and

action arguments, the execute function returns the result of applying the specified

action to the state. An action may also be provided as a Term:

execute(domain::Domain, state::State, action::Action, args)

execute(domain::Domain, state::State, action::Term)
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2.3.4 Inverse Semantics

Regression-based planners (e.g. the classical STRIPS algorithm [2]) make use of the

fact that is possible to plan by working backwards from a goal, repeatedly selecting

actions that are relevant to achieving a goal state or specification. This motivates the

following interface methods for (i) constructing abstract states from goal specifications

and (ii) exposing the inverse semantics of actions:

Definition 2.3.7 (Goal States). In symbolic planning, a logical goal formula 𝑔 effec-

tively specifies the set of all concrete goal states where 𝑔 holds true. We can represent

this set of concrete states as an abstract state 𝑠. In the special case where the goal 𝑔

contains no disjunctions or functions, 𝑠 can also be understood as a partial state that

specifies the values of all predicates in 𝑔, and leaves all other predicates unspecified.

To support regression search in this abstract space, PDDL.jl provides the goalstate

method for constructing an abstract state from the goal specification of a problem:

goalstate(domain::Domain, problem::Problem)

As with initstate, the data type of the returned state 𝑠 may depend on the domain

or problem provided. For example, if the domain contains numeric fluents, goalstate

may return an abstract state representation that specifies affine constraints on the

numeric variables.

Definition 2.3.8 (Action Relevance). Given a domain, state, action schema and

action arguments, the relevant function returns whether the action is relevant to

achieving the specified state — i.e., it achieves at least one predicate or numeric

constraint in the state, and destroys none through deletion or modification. In the

case where the action’s effect reduces to a list of predicates to be added and a list to

be deleted, this simplifies to checking that at least one added predicate is true in the

state, and that none are deleted. An action may also be provided as a Term:

relevant(domain::Domain, state::State, action::Action, args)

relevant(domain::Domain, state::State, action::Term)
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When relevant is called without specifying an action, it returns an iterator over

all actions relevant to the specified state, encapsulating the logic for node expansion

in a regression search algorithm:

relevant(domain::Domain, state::State)

Some planning algorithms also select actions based upon their relevance to partic-

ular sub-goals, expressed as logical term. As such, we provide a variant of relevant

that returns an iterator over actions that may achieve a term:

relevant(domain::Domain, term::Term)

Definition 2.3.9 (Action Regression). Given a domain, state, action schema and

action arguments, the regress function executes the action in reverse, returning an

iterator over (potentially abstract) states that constitutes the pre-image of the action

with respect to the state. An action may also be provided as a Term:

regress(domain::Domain, state::State, action::Term)

regress(domain::Domain, state::State, action::Action, args)

Note that the state may be an abstract state that represents a set of concrete states,

as returned by functions such as goalstate.

2.4 Using the Interface

A well-designed software interface should be both general enough to support the im-

plementation of a wide variety of applications, but also simple enough that developers

can easily make use of the interface. While evaluation of these design goals is best

achieved through qualitative and quantitative user studies, we now provide two ex-

amples of how the PDDL.jl interface can be used in order to illustrate the both its

generality and its simplicity.

Our first example is a forward breadth-first search algorithm, bfs, shown in Algo-

rithm 1. The bfs algorithm accepts a Domain and Problem, then constructs the initial

state with the initstate function. It also extracts the goal formula using get_goal.
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Algorithm 1 Forward breadth-first search implemented using PDDL.jl.

function bfs(domain::Domain, problem::Problem)
# Initialize state and extract goal
state = initstate(domain, problem)
goal = get_goal(problem)
# Initialize search queue
plan = []
queue = [(state, plan)]
while length(queue) > 0

# Pop state and plan
state, plan = pop!(queue)
# Check if goal is satisfied
if satisfy(domain, state, goal)

# Return plan if goal is satisfied
return plan

end
# Iterate over available actions and add successors to queue
for action in available(domain, state)

next_state = transition(domain, state, action)
next_plan = [plan; action]
pushfirst!(queue, (next_state, next_plan))

end
end
# Return nothing upon failure
return nothing

end

The algorithm then performs breadth-first search of the state space, popping a state

and corresponding plan off the search queue at each iteration, and checking if the

state satisfies the goal with the satisfy function. If the goal is satisfied, the plan is

returned. If not, the state is expanded by iterating over each available action with

available(domain, state) and constructing the successor state by applying the

effects of that action using the transition function. Each successor state and cor-

responding plan is added to queue, and the search continues until either the queue is

exhausted, or the goal is satisfied.

Our second example, regression, is similar to the original STRIPS algorithm for

planning as theorem-proving [2], but expressed as backward search in the space of

abstract states representing intermediate goals [15]. The algorithm first constructs

an initial state (using initstate) and abstract goal state (using goalstate) from

the domain and problem. It then performs breadth-first search from the goal state,

iterating over actions that are relevant to achieving the goal via relevant(domain,
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Algorithm 2 Regression planner implemented using PDDL.jl.

function regression(domain::Domain, problem::Problem)
# Construct initial state and goal state
init_state = initstate(domain, problem)
state = goalstate(domain, problem)
# Initialize search queue
plan = []
queue = [(state, plan)]
while length(queue) > 0

# Pop state and plan
state, plan = pop!(queue)
# Return plan if initial state implies the current abstract state
if all(evaluate(domain, init_state, fluent) == val

for (fluent, val) in get_fluents(state))
return plan

end
# Iterate over relevant actions and add pre-image states to queue
for action in relevant(domain, state)

next_plan = [action; plan]
for s in regress(domain, state, action)

pushfirst!(queue, (s, next_plan))
end

end
end
# Return nothing upon failure
return nothing

end

state), then computing the preimage induced by each action using regress and

adding the resulting states to the queue. The search terminates when the initial state

is found to be in the preimage of some action, i.e., all fluents that are true in the

preimage are also true in the initial state.

Variants of Algorithm 1 and 2 can be implemented with minor modifications to

the code. For example, best-first search can be implemented by using a priority queue

and incorporating a search heuristic. Different choices for how nodes are expanded

and added to the search frontier lead to other variants such as hill-climbing search.

Importantly, all domain and implementation specific details are encapsulated by the

PDDL.jl interface, allowing the same algorithm to operate across multiple domains,

and even multiple representations of the same domain (e.g. interpreted vs. compiled).

32



2.5 Extending the Interface

The PDDL.jl interface is designed so that it can be easily extended to support plan-

ning formalisms beyond the discrete and deterministic domains that PDDL was ini-

tially intended for. This extensibility is primarily due to the fact that functions in

Julia are open: Julia libraries that use PDDL.jl can also extend the PDDL.jl inter-

face by defining new methods for functions declared in PDDL.jl. In this section, we

provide high-level sketches of how PDDL.jl might be extended to support such for-

malisms, including temporal planning, stochastic domains, task and motion planning,

hierarchical planning, and multi-agent planning, thereby demonstrating the general-

ity and coverage of the PDDL.jl interface. In the future, some of these extensions

may be implemented in extension libraries for PDDL.jl (see Figure 1-3, dark blue).

2.5.1 Temporal Planning

Temporal planning involves reasoning over durative actions with effects or precon-

ditions that apply over that time (introduced in PDDL 2 [45]), and possibly events

and processes which are triggered once their preconditions hold true (introduced in

PDDL+ [44]). While PDDL.jl does not support temporal reasoning by default, such

reasoning can implemented by (i) introducing DurativeAction, Event and Process

as ADTs; (ii) introducing concrete subtypes of the State ADT that store temporal

information; (iii) defining new methods for execute, transition and regress which

manipulate temporal information; and in the case of transition, (iv) ensuring that

events and processes are automatically triggered.

One approach to tracking temporal information would be to use a TemporalState

data type that stores not just the values of fluents, but also all on-going actions, a set

of temporal constraints between action execution times, and a summarized history of

recent changes, tagging each fluent with the action it was most recently changed by

and the timestamp of that change. This augmented state representation is sufficient

for temporal planning algorithms such as POPF [36] to ensure that the execution of

new actions is temporally consistent with previous or ongoing actions.
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2.5.2 Stochastic Domains

Actions in PDDL can be augmented with probabilistic effects (introduced in Proba-

bilistic PDDL [12]), allowing this augmented form of PDDL to represent stochastic

domains and first order Markov decision processes (FOMDPs) [46]. In order to sup-

port planning over such stochastic domains, we can extend the semantics of execute

and transition so that they perform sampling of successor states for actions with

probabilistic effects. Section 3.4 discusses how this can be implemented by extending

PDDL.jl’s built-in interpreter.

This minimal change to the PDDL.jl interface is sufficient for MDP solvers that

only require sampling of future states, such as model-free reinforcement learning or

Monte Carlo Tree Search (MCTS). To support other MDP solvers, we might introduce

transitdist as a new interface method which returns an explicit distribution over

successor states. This distribution could then be iterated over in algorithms that

combine dynamic programming with heuristic search, such as Real-Time Dynamic

Programming [3] or LAO* [47].

2.5.3 Task and Motion Planning

Planning in real-world settings (e.g. in robotics) requires reasoning over both symbolic

object properties and relations as well as continuous quantities such as object poses,

joint angles and motion trajectories. This hybrid planning formalism is called task

and motion planning (TAMP) [27], as it requires the integration of symbolic planning

(i.e. task planning) with motion planning.

The primary challenge introduced by TAMP problems is the infinite set of ground

actions introduced by needing to select particular poses or continuous trajectories as

action parameters. In order to overcome this challenge, many TAMP approaches aug-

ment planning systems with the ability to sample continuous action parameters using

externally specified procedures (e.g. streams in the PDDLStream framework [13]).

One approach to using such samplers with PDDL.jl is to allow samplers to be attached

to planning domains. For such domains, action iterators such as available(domain,
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state) and relevant(domain, state) would then iterate infinitely over actions

with sampled continuous parameters. This integration strategy would allow planning

algorithms that do not fully enumerate over actions (e.g. enforced hill climbing [48]

or MCTS) to operate over continuous domains.

Another challenge introduced by TAMP settings is the need to verify continu-

ous constraints or evaluate continuous effects, which may involve arbitrary non-linear

functions. Some TAMP approaches circumvent this problem by delegating all con-

straint satisfaction to the sampling interface [13]. An alternative approach is to

introduce semantic attachments : external function calls which are attached to PDDL

domains to verify constraints and compute effects [24]. PDDL.jl provides built-in

support for attaching custom functions to domains, as described in Section 3.2.

2.5.4 Hierarchical Planning

Hierarchical planning is an approach to planning where tasks are achieved by recur-

sively decomposing them into lower-level tasks until reaching the level of primitive

actions. Hierarchical task networks (HTNs) are a widely used formalism for this ap-

proach to planning [49], and can be expressed in extensions to PDDL such as the

Hierarchical Domain Description Language (HDDL) [50]. The key additional oper-

ation performed in HTN planning is the decomposition of a higher level task into a

network of subtasks. To that end, we can introduce an interface method, decompose,

which accepts a non-primitive task and a decomposition method as inputs, and re-

turns the network of subtasks as outputs.

Since primitive tasks are equivalent to (ground) actions, we can continue using

the available and execute methods for such tasks. In addition, we can extend the

semantics of available and execute to task networks by appropriately composing

the preconditions and effects of the component tasks. The available method should

check that all sub-tasks are primitive actions, that the preconditions of the first sub-

task hold, and that the effects of each sub-task are consistent with the preconditions

of subsequent sub-task. The execute method should execute each component task

in the (partial) order specified by the task network.
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2.5.5 Multi-Agent Planning

Multi-agent planning extends symbolic planning to the setting where multiple agents

in a single environment must either co-operate or compete to achieve some goal. In co-

operative contexts, planning can be centralized, with a single controller coordinating

multiple agents, or decentralized, with each agent forming its own plan. Multi-agent

PDDL (MA-PDDL) [51] supports these extensions to PDDL by allowing the effects

of actions to conditionally depend upon other actions being jointly executed, and by

introducing an agent field for actions.

PDDL.jl can be extended to support these joint action semantics by defining

methods for available, execute, relevant, regress, and transition that accept

multiple actions as inputs. For example, available would return true only for action

sets that are jointly applicable, while execute would take care of any interactions

between simultaneously executed actions. These methods could then directly be used

by centralized multi-agent planners to search for joint plans that achieve a shared

goal. In decentralized contexts, a planner could instead sample or enumerate over

the possible actions of cooperating or competing agents, and use them to form joint

action sets that can be passed to execute for the purposes of planning ahead.

· · ·

Having introduced the PDDL.jl interface for symbolic planning and a roadmap for

future extensions, in the next few chapters we present several implementations of the

interface built into PDDL.jl: a standard PDDL interpreter (Chapter 3), an abstract

PDDL interpreter (Chapter 4), and a PDDL compiler (Chapter 5).
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Chapter 3

An Extensible Interpreter

for PDDL Domain Semantics

In the previous chapter, we introduced a general interface for symbolic planning

applications. While this interface was designed with PDDL in mind, it is not strictly

tied to any planning description language as long as that language shares the basic

concepts introduced in Section 2.1. In order to support planning over PDDL domains

and problems specifically, we need to implement the semantics of PDDL and expose

them through the PDDL.jl interface.

We describe a straightforward approach to doing so in this chapter, namely, im-

plementing a PDDL interpreter. Although interpreters are usually slow relative to

compiled implementations of a language, they benefit from ease of implementation

and increased transparency for debugging and development purposes. Indeed, these

two advantages motivate us to design an interpreter that is extensible, allowing new

language features and constructs to be added with relative ease. This is useful be-

cause of the many extensions and variants of PDDL which introduce new types of

preconditions or effects. While it is possible to support an extension of PDDL by

writing an entirely separate implementation of the PDDL.jl interface, designing the

built-in interpreter to be extensible means that extension developers incur substan-

tially less implementation cost, avoiding code duplication while benefiting from the

ease of debugging new language features.
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We focus here on interpreting logical formulae (used to express preconditions and

goals) and effects, as these form the core semantics of PDDL — actions are then

defined in terms of their preconditions and effects, domains by a set of action schemata

along with sets of recognized types and fluents, and problems by goal formulae paired

with assignments to fluents. Hence, we omit discussion of the syntax of actions,

domains, and problems in PDDL (a full grammar is given in [52], and an example in

Figure 1-1), and refer readers to Section 2.1 for formal definitions. We also restrict

our scope to the non-temporal fragment of PDDL, as temporal planning is sufficiently

different that we believe it warrants separate treatment (see Section 2.5.1). In the

following sections, we describe the interpretation of precondition and goal formulae,

the interpretation of effects, how both can be extended, and how action semantics

can be interpreted in reverse for the purposes of regression search.

3.1 Interpreting Preconditions and Goals

Preconditions and goals in PDDL are expressed as first-order logical formulae, with

a syntax and semantics essentially equivalent to standard first order logic with a few

modifications: the addition of object types, and the restriction that predicates and

functions are only defined over object constants (relaxed in some variants of PDDL).

Full treatments of first order logic can be found in standard textbooks [53]. Here we

present the most relevant aspects to interpreting preconditions and goals in PDDL.

PDDL formulae are written using a Lisp-style syntax, the grammar for which is

shown in Figure 3-1. Apart from the standard logical connectives, PDDL also sup-

ports typed quantifiers over objects, which is the only major difference from standard

first-order logic. For example, the formula (forall (?b - block) (on-table ?b))

expresses that all objects of type block are located on the table. Variables are denoted

by a ? in front of their names, and other atomic terms are either objects, zero-arity

functions, or numeric constants. PDDL.jl parses these expressions to syntax trees of

abstract type Term, with Compound representing compound terms, Var representing

variables, and Const representing (non-variable) atomic terms.
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⟨formula⟩ ::= (and ⟨formula⟩*)
| (or ⟨formula⟩*)
| (imply ⟨formula⟩ ⟨formula⟩)
| (not ⟨formula⟩)
| (forall (⟨typed-vars⟩) ⟨formula⟩)
| (exists (⟨typed-vars⟩) ⟨formula⟩)
| (𝐶 ⟨f-expr⟩ ⟨f-expr⟩) where 𝐶 is a binary comparison
| (𝑃 ⟨atom⟩*) where 𝑃 is a predicate symbol

⟨typed-vars⟩ ::= ⟨var⟩*
| ⟨var⟩+ - 𝑡 ⟨typed-vars⟩ where 𝑡 is a type name

⟨f-expr⟩ ::= (𝐵 ⟨f-expr⟩ ⟨f-expr⟩) where 𝐵 is a binary operator
| (𝐹 ⟨atom⟩*) where 𝐹 is a function symbol
| 𝑥 where 𝑥 ∈ R is a numeric constant

⟨atom⟩ ::= ⟨var⟩
| 𝑜 where 𝑜 is an object name

⟨var⟩ ::= ?𝑣 where 𝑣 is a variable name

Figure 3-1: Syntax for logical formulae in PDDL

A denotational semantics for PDDL formulae is presented in Figure 3-2, showing

the mapping F[[·]] between PDDL and first-order logical expressions in a language ℒ,

as written in standard mathematical notation. Again, the only major difference from

standard first-order logic is that typed quantifiers introduce typeof predicates into

the formulae they quantify over.

To specify when a formula 𝜑 ∈ ℒ is satisfied in a state 𝑠 of domain 𝒟, which we de-

note by (𝑠,𝒟) |= 𝜑, we give a model-theoretic formalization: A state 𝑠 in 𝒟 represents

a structure ℳ = (𝒰 , 𝜎, 𝐼), where 𝒰 is the universe of entities over which predicates

and functions are defined; 𝜎 is the signature which contains predicate names, function

names and their corresponding arities; and 𝐼 is the interpretation function, an assign-

ment of values to predicates and functions. For non-numeric domains, the universe

𝒰 = objects(𝑠) ∪ 𝒯 comprises the objects in 𝑠 and the types 𝒯 in 𝒟. With numeric

fluents, we also include the real numbers R. The signature 𝜎 is specified by the fluents

ℱ of 𝒟, with the addition of the typeof predicate. Finally, the interpretation 𝐼 is

specified by the values of all ground fluents 𝑓 in state 𝑠, such that 𝐼(𝑓) = 𝑠[𝑓 ]. We

also include the standard interpretations for arithmetic operators (+, >,=, etc.).
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F[[𝑒𝑥𝑝𝑟]] : ℒ

F[[(and 𝑓1 ... 𝑓𝑛)]] =
⋀︀𝑛

𝑖=1 F[[𝑓𝑖]]
F[[(or 𝑓1 ... 𝑓𝑛)]] =

⋁︀𝑛
𝑖=1 F[[𝑓𝑖]]

F[[(imply 𝑓1 𝑓2)]] = ¬F[[𝑓1]] ∨ F[[𝑓2]]
F[[(not 𝑓)]] = ¬F[[𝑓 ]]

F[[(forall 𝑣1 - 𝑡1 ... 𝑣𝑘 - 𝑡𝑘 𝑓)]] = ∀𝑣1, ...,∀𝑣𝑘 (
⋀︀𝑘

𝑖=1 typeof(𝑣𝑖, 𝑡𝑖) ∧ F[[𝑓 ]])

F[[(exists 𝑣1 - 𝑡1 ... 𝑣𝑘 - 𝑡𝑘 𝑓)]] = ∃𝑣1, ...,∃𝑣𝑘 (
⋀︀𝑘

𝑖=1 typeof(𝑣𝑖, 𝑡𝑖) ∧ F[[𝑓 ]])
F[[(𝐶 𝑓1 𝑓2)]] = F[[𝑓1]] 𝐶 F[[𝑓2]] where 𝐶 ∈ {=, <,≤, >,≥}
F[[(𝐵 𝑓1 𝑓2)]] = F[[𝑓1]] 𝐵 F[[𝑓2]] where 𝐵 ∈ {+,−, *, /}
F[[(𝑃 𝑎1 ...𝑎𝑛)]] = 𝑃 (F[[𝑎1]], ...,F[[𝑎𝑛]]) where 𝑃 is a predicate symbol
F[[(𝐹 𝑎1 ...𝑎𝑛)]] = 𝐹 (F[[𝑎1]], ...,F[[𝑎𝑛]]) where 𝐹 is a function symbol
F[[?𝑣]] = 𝑣 a variable
F[[𝑥]] = 𝑥 a numeric constant
F[[𝑜]] = 𝑜 an object constant

Figure 3-2: Denotational semantics of logical terms and formulae in PDDL.

We can now state that a ground formula 𝜑 is satisfied in a state 𝑠 of domain 𝒟 when

their corresponding structure ℳ satisfies 𝜑, denoted ℳ |= 𝜑. For a formula 𝜓 with

free variables 𝑣1, ...𝑣𝑘, we say that 𝜓 is satisfiable in a state 𝑠 of domain 𝒟 when ℳ |=

∃𝑣1, ..., 𝑣𝑘 𝜓, i.e., there exists some assignment 𝜇 to variables 𝑣1, ..., 𝑣𝑘 such that 𝜓 is

satisfied. In the case where a domain 𝒟 also specifies a set of axioms {𝑎1, ..., 𝑎𝑛} for

deriving certain predicates from others, we require that the axioms are simultaneously

satisfied for a formula 𝜑 to be satisfied, i.e., ℳ |= 𝜑 ∧ 𝑎1 ∧ ... ∧ 𝑎𝑛. This formalizes

the semantics of the satisfy interface method (Definition 2.3.1). The satisfiers

interface method simply enumerates over all satisfying variable assignments.

In order to implement these satisfiability semantics, we can manually walk the

syntax tree for a ground formula 𝜑, checking whether its predicates are satisfied by

state 𝑠, and whether all comparisons between functional terms hold true. For a for-

mula 𝜓 with free variables however, we either need to enumerate over all potential

variable assignments (i.e. all combinations of all objects in 𝑠), or use a dedicated

solver for first order logic. While many such solvers exist (e.g. standard implemen-

tations of Prolog, or the Z3 automated theorem prover), we opt to use Julog.jl, a

Julia implementation of Prolog-style logical programming which was developed by
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the author as a precursor to this thesis [54]. The satisfy and satisfiers interface

methods are thus easily implemented by concatenating all state fluents and domain

axioms into a database of first-order clauses, then passing that database to Julog

along with the query formula. Julog then returns all satisfying assignments to any

free variables in the query. The tight integration offered by Julog also means that

we can pass in custom function definitions, which we can use to specify the values of

numeric fluents. It also allows us to easily extend the semantics of PDDL formulae

by providing external implementations for custom functions.

3.2 Extending Formulae with Custom Functions

Most real-world planning problems cannot be fully specified with the logical and lin-

ear arithmetic primitives supported by standard PDDL. For example, sorting objects

may require reasoning about lists or sets, while motion planning requires reasoning

about continuous physics and 3D geometry. To meet this challenge, numerous ap-

proaches have been proposed for extending the semantics of PDDL, such as semantic

attachments that link predicates in PDDL with custom external implementations [24],

or the Planning Modulo Theories framework for supporting new (mathematical) the-

ories [33]. PDDL.jl enables such extensions by supporting the evaluation of custom

functions within precondition and goal formulae.

As an example, consider the PDDL domain shown in Figure 3-3(a), which at-

tempts to model projectile motion of a ball that can be thrown at or over a wall.

There are two actions, pick and throw, the latter of which takes the angle theta

as a continuous input parameter, and has the precondition that the height of the

ball must be sufficiently large in order for the ball to reach the other side of the wall.

However, specifying the semantics of height as a function of the launch angle and

throw speed requires trigonometry, which PDDL does not natively support. With

PDDL.jl, we can easily write these functions in Julia, then attach them to the do-

main, as shown in 3-3(b). PDDL.jl’s interpreter will then evaluate these functions in

the course of determining if an action is available or if a goal is achieved.
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(define (domain ball-throw)
(:requirements :fluents)
(:predicates (has-ball ?ball) (on-floor ?ball))
(:functions (throw-speed) (wall-height) (wall-dist) (loc ?ball)

(range ?speed ?theta) (height ?speed ?theta ?dist))
(:action pick
:parameters (?ball)
:precondition (and (on-floor ?ball))
:effect (and (has-ball ?ball) (not (on-floor ?ball)))

)
(:action throw
:parameters (?ball ?theta)
:precondition (and (has-ball ?ball)

(> (height throw-speed ?theta wall-dist) (wall-height)))
:effect (increase (loc ?ball) (range throw-speed ?theta))

)
)

(a) PDDL domain specification

# Load domain
domain = load_domain("ball-throw.pddl")
# Define functions
function throw_range(v, theta)

return v^2*sin(theta) / 9.81
end
function throw_height(v, theta, x)

return tan(theta)*x - 9.81*x^2 / (2*v^2 *cos(theta)^2)
end
# Attach functions to domain
PDDL.attach!(domain, "range", throw_range)
PDDL.attach!(domain, "height", throw_height)

(b) Custom functions attached to the domain using PDDL.jl

Figure 3-3: A ball throwing domain in PDDL, with custom functions specified in
Julia via PDDL.jl to encode the physics of 2D projectile motion.

This functionality can also be employed to support custom theories for symbolic

planning, as introduced by the Planning Modulo Theories [33]. Rather than attaching

custom functions to a particular planning domain, we can write an extension library

for PDDL.jl that extends the semantics of its interpreter at a global level, allowing

it to reason over mathematical objects such as sets and arrays. Figure 3-4 shows an

example of how this can done with minimal implementation effort. In Figure 3-4(a),

we show declarations of set-theoretic operations in the Module Definition Descrip-

tion Language (MDDL) proposed by [33] for describing new theories in a modular
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(define (module set)
(:type set of a')
(:functions

(construct-set ?x+ - a') - set of a'
(empty-set) - set of a'
(cardinality ?s - set of a') - integer
(member ?s - set of a' ?x - a') - boolean
(subset ?x - set of a' ?y - set of a') - boolean
(union ?x - set of a' ?y - set of a') - set of a'
(intersect ?x - set of a' ?y - set of a') - set of a'
(difference ?x - set of a' ?y - set of a') - set of a'
(add-element ?s - set of a' ?x - a') - set of a'
(rem-element ?s - set of a' ?x - a') - set of a'

))

(a) Declarations of set-theoretic operations in MDDL [33]

# Register implementations of set operations
using PDDL
PDDL.register!(:function, "construct-set", (xs...) -> Set(xs))
PDDL.register!(:function, "empty-set", () -> Set())
PDDL.register!(:function, "cardinality", s::Set -> length(s))
PDDL.register!(:function, "member", (s::Set, x) -> in(x, s))
PDDL.register!(:function, "subset", (x::Set, y::Set) -> issubset(x, y))
PDDL.register!(:function, "union", (x::Set, y::Set) -> union(x, y))
PDDL.register!(:function, "intersect", (x::Set, y::Set) -> intersect(x, y))
PDDL.register!(:function, "difference", (x::Set, y::Set) -> setdiff(x, y))
PDDL.register!(:function, "add-element", (s::Set, x) -> union(s, x))
PDDL.register!(:function, "rem-element", (s::Set, x) -> setdiff(s, x))

(b) Set operations defined through PDDL.jl.

Figure 3-4: PDDL.jl can be extended to support reasoning over new data types and
mathematical theories, such as the set operations declared in the Module Definition
Description Language (MDDL) of [33]. These operations (a) can be implemented by
mapping them to (b) corresponding implementations in Julia.

manner. In Figure 3-4(b), we show a corresponding implementation of these oper-

ations, facilitated by PDDL.jl. These operations will automatically be understood

by the built-in PDDL interpreter when evaluating preconditions. They may also be

used by PDDL.jl’s compiler (Chapter 5), which can be configured to look up these

implementations and integrate them into compiled code.

These two examples demonstrate the generality and reach of PDDL.jl’s built-in

interpreter in its ability to support new evaluation and satisfiability semantics for a

broad range of theories and domains. However, one limitation of this functionality

is that does not automatically inform PDDL.jl how to find satisfying assignments to
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free variables in logical formulae when those variables are no longer restricted to a

finite domain of objects. This is especially relevant to finding satisfying values for

continuous action parameters, and hence determining the set of applicable actions

within a state. The interpreter can determine whether an action is applicable once

all parameters are specified, but cannot generate available groundings of an action

schema when some of its parameters are not objects.

Fortunately, the extensibility of PDDL.jl is not limited to its interpreter. Users

may also supply custom implementations of the available(domain, state) method,

augmenting it with sampling semantics so that it generates a potentially infinite

stream of actions (see Section 2.5.3). Such extensions would then allow planning

algorithms that do not enumerate all actions to continue operating over the new

(potentially infinite) domain in searching for a goal.

3.3 Interpreting Effect Expressions

⟨effect⟩ ::= (𝑃 ⟨atom⟩*) where 𝑃 is a predicate symbol
| (not (𝑃 ⟨atom⟩*)) where 𝑃 is a predicate symbol
| (⟨assign-op⟩ (𝐹 ⟨atom⟩*) ⟨f-expr⟩) where 𝐹 is a function symbol
| (and ⟨effect⟩*)
| (when ⟨formula⟩ ⟨effect⟩)
| (forall (⟨typed-vars⟩) ⟨effect⟩)

⟨assign-op⟩ ::= assign | increase | decrease | scale-up | scale-down

Figure 3-5: Syntax for effect expressions in PDDL.

Similar to preconditions and goals, effects in PDDL are written using a Lisp-style

syntax, the grammar for which is shown in Figure 3-5. The corresponding seman-

tics are shown in Figure 3-6 using the semantic function C[[·]] (where C stands for

command) that maps an input state 𝑠 ∈ 𝒮 to an output state 𝑠′ ∈ 𝒮. Tradition-

ally, symbolic planning systems only supported two kinds of effects, additions and

deletions of Boolean predicate. PDDL supports this by treating all (non-negated)

terminal predicates in an effect syntax tree as additions, and all negated predicates

as deletions. PDDL also allows for conditional effects using the when keyword, and
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C[[𝑒𝑥𝑝𝑟]] : 𝒮 → 𝒮

C[[(𝑃 𝑎1 ...𝑎𝑛)]]𝑠 = 𝑠[𝑃 (𝑎1, ..., 𝑎𝑛) ↦→ true]

C[[(not (𝑃 𝑎1 ...𝑎𝑛))]]𝑠 = 𝑠[𝑃 (𝑎1, ..., 𝑎𝑛) ↦→ false]

C[[(assign 𝑓1 𝑓2)]]𝑠 = 𝑠[F[[𝑓1]] ↦→ 𝑣], 𝑣 = 𝑠[F[[𝑓2]]]
C[[(increase 𝑓1 𝑓2)]]𝑠 = 𝑠[F[[𝑓1]] ↦→ 𝑣], 𝑣 = 𝑠[F[[𝑓1]]] + 𝑠[F[[𝑓2]]]
C[[(decrease 𝑓1 𝑓2)]]𝑠 = 𝑠[F[[𝑓1]] ↦→ 𝑣], 𝑣 = 𝑠[F[[𝑓1]]]− 𝑠[F[[𝑓2]]]
C[[(scale-up 𝑓1 𝑓2)]]𝑠 = 𝑠[F[[𝑓1]] ↦→ 𝑣], 𝑣 = 𝑠[F[[𝑓1]]] * 𝑠[F[[𝑓2]]]
C[[(scale-down 𝑓1 𝑓2)]]𝑠 = 𝑠[F[[𝑓1]] ↦→ 𝑣], 𝑣 = 𝑠[F[[𝑓1]]] / 𝑠[F[[𝑓2]]]
C[[(and 𝑒1 ... 𝑒𝑛)]]𝑠 = (C[[𝑒1]] || ... || C[[𝑒𝑛]])𝑠
C[[(when 𝑓 𝑒)]]𝑠 = C[[𝑒]]𝑠 if 𝑠 |= F[[𝑓 ]], 𝑠 otherwise
C[[(forall 𝑣 - 𝑡 𝑒)]]𝑠 = (C[[𝑒1]] || ... || C[[𝑒𝑛]])𝑠

where 𝑒1, ..., 𝑒𝑛 ∈ {𝑒[𝑣/𝑥] | ∀𝑥 : 𝑥 ∈ objects(𝑠, 𝑡)}

Figure 3-6: Denotational semantics for effect expressions in PDDL, which map states
𝑠 ∈ 𝒮 to other states. The || symbol denotes parallel composition of effects.

universally-quantified effects using forall keyword, as introduced by Pednault’s Ac-

tion Description Language (ADL) [41]. These expressions allow for (infinitely) more

concise specifications of actions (such as stating that all crates in a truck are unloaded

in a certain city) albeit at the cost of additional work for automated planners. Finally,

the numeric fragment of PDDL supports assignment and arithmetic modification of

numeric fluents using keywords such as assign or increase.

PDDL.jl supports interpretation of all of these expressions, which it performs by

walking the syntax tree and accumulating additions, deletions and assignments in a

Diff data structure that represents the difference between the current and the sub-

sequent states. Because PDDL actions are like atomic commands in programming,

care is taken to ensure that effects represented by sub-expressions are composed in

parallel with each other (denoted in Figure 3-6 using the || operator), as opposed

to the standard sequential composition of commands in (non-concurrent) impera-

tive programs. In particular, parallel composition is defined by performing all read

operations (i.e. looking up fluent values) before any write operations (assignments,

additions, deletions), which is achieved by accumulating all changes in the Diff struc-

ture and applying them at once. It is an error if any conflicting effects are composed

(e.g. addition and deletion of the same fluent).
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3.4 Extending Effects with Custom Imperatives

Certain planning domains require more general effects than can be supported by the

evaluation of custom functions combined with the ability to assign state variables with

the assign effect. For example, probabilistic effects in stochastic domains cannot be

represented as pure deterministic functions without side effects. As such, the PDDL.jl

interpreter is designed so that effects can be extended with custom imperatives as well.

Using an extension interface similar to the one for custom functions, developers can

easily write extension libraries that introduce new imperatives that the interpreter

uses when constructing state Diffs from effect expressions.

Figure 3-7 shows an example of how the interpreter can be extended to support

the probabilistic effect expression defined in Probabilistic PDDL (PPDDL) [12].

Given an expression of the form (probabilistic 𝑝1 𝑒1 ... 𝑝𝑛 𝑒𝑛), it samples the

sub-expression 𝑒𝑖 with probability 𝑝𝑖 from categorical distribution and combines the

effect of 𝑒𝑖 with the diff computed so far. The PDDL interpreter is thus augmented

with a sampling semantics that custom functions are not able to achieve, allowing it

to simulate the transition dynamics of Markov Decision Processes.

"Sample a sub-effect from a categorical distribution."
function prob_effect!(diff::Diff, domain::Domain, state::State, effect::Term)

total_prob = 0.0
# Sample a random uniform variate u in [0, 1]
u = rand()
# Iterate over two arguments at a time
for (prob, eff) in Iterators.partition(effect.args, 2)

# Check if u lies in probability range
if total_prob <= u < total_prob + prob

# Combine sub-effect with current state difference
combine!(diff, effect_diff(domain, state, eff))
break

end
total_prob += prob

end
return diff

end

PDDL.register!(:effect, "probabilistic", prob_effect!)

Figure 3-7: The PDDL.jl interpreter can be extended to support custom effect ex-
pressions such as the probabilistic effect from PPDDL [12].
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3.5 Interpreting Actions in Reverse

A final important feature of the built-in interpreter is that it can also interpret actions

in reverse for the purely logical subset of PDDL domains, thereby implementing the

relevant and regress interface methods for regression-based planners and heuris-

tics. The interpreter does this by treating effect expressions as preconditions and

precondition formulae as effects. If the effect of an action adds at least one predicate

that is true in the current state (or alternatively, deletes at least one predicate that

is currently false), deletes no predicates that are currently true, and adds nothing is

currently false, then it is relevant to achieving that state. The PDDL interpreter im-

plements this by checking whether the additions and deletions of an effect expression

meet the requirement just stated.

To execute the action in reverse (i.e., to perform regression), we first consider the

case where its precondition contains no disjunctions, i.e., it is a conjunction of either

positive or negative literals. It must hence be the case that all of the positive literals

hold true in the pre-image of the action, and that the negative literals hold false.

We can thus reverse an action by setting literals in its precondition to true, and all

negative literals to false. Apart from those literals, any predicates added or deleted

by the action may be either false or true in its preimage, which is also called the

weakest precondition of an action 𝑎 relative to a state 𝑠. We can express this in set

notation as follows:

preimage(𝑠, 𝑎) = facts(𝑠) ∖ add(𝑎) ∪ precond+(𝑎) ∖ precond−(𝑎)

where facts(𝑠) is the set of literals that hold true in 𝑠, add(𝑎) the additions of 𝑎, and

precond+(𝑎), precond−(𝑎) are the positive and negative preconditions respectively. Ex-

tending this to actions with disjunctive preconditions, we can normalize the precon-

dition formula to disjunctive normal form (DNF), apply the same analysis as above,

and take the union of the pre-images with respect to each precondition clause. The

PDDL.jl interpreter implements this by returning a list of partially-specified states

when regress is called, one for each disjunct.
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Note that these implementations of action relevance and regression apply not

just to concrete states, but also to abstract states specified by conjunctions of ground

predicates, where each abstract state 𝑠 corresponds to the set of concrete states where

thase predicates hold true. As noted in Section 2.3.4, this is the primary setting of

regression planners, which work backwards from a goal condition (equivalent to a

set of goal states) by iteratively finding the weakest preconditions of actions (also

specified by conjunctions of predicates) until a set of states is found which includes

the initial state.

It is possible to further extend preimage computation for actions to more general

settings such as numeric planning. However, this requires partial state representations

capable of capturing more general constraints on the space of possible fluent values, for

example, affine constraints on numeric variables. While PDDL.jl does not currently

provide support for such state representations, it does provide the building blocks

for reasoning about abstract sets of states in general. This functionality, known as

abstract interpretation, is discussed by the next chapter in detail.
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Chapter 4

Abstract Interpretation

for Generalized Heuristic Search

Domain-general symbolic planners largely derive their generality by constructing ef-

fective search heuristics through formal analysis of symbolic world models, doing so

without recourse to the domain-specific knowledge and learned expertise that humans

often employ to solve problems. One approach to such heuristic construction is to

consider planning in a relaxed or abstracted state space. By relaxing the problem, two

major benefits are achieved: (i) the length of a solution to the relaxed problem can be

used as an (optimistic) estimate of the distance to the goal, and thus provide heuristic

search guidance; (ii) since the problem is relaxed, it can be much less costly to plan in

the relaxed space relative to the original problem itself, ensuring that heuristic esti-

mates can be computed sufficiently quickly to guide planning in the original problem.

Indeed, this approach to heuristic computation has been so successful that it is now

the dominant approach used by domain-general symbolic planners [15, 16, 17, 21].

In deriving problem relaxations and abstractions for heuristic search, AI planning

researchers have made connections to frameworks for abstraction in other fields, espe-

cially the field of model checking [55, 56]. A closely related framework for abstraction

comes from the theory of abstract interpretation developed by Cousot and Cousot

[57]. Abstract interpretation is a framework for the sound approximation of program

semantics. Since symbolic actions can be understood as commands in a programming
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language, plans are formally equivalent to programs. This suggests that ideas and

innovations from abstract interpretation can be used in heuristics for planning as well.

In this chapter of the thesis, we develop the aforementioned line of thought in the

context of PDDL, articulating the formal connection between abstract interpretation

and problem abstraction for heuristic search. This connection is inspired by the se-

mantics of domain abstraction developed in Planning Modulo Theories [33], and has

been noted in other works on abstraction for planning [58]. However, the connec-

tion described here is, to the author’s knowledge, the first to use the formalism of

abstract interpretation proper, bringing with it many possibilities for re-envisioning

and innovating upon existing approaches to domain abstraction. After making this

connection, we describe how PDDL.jl implements these ideas by extending the in-

terpreter described in Chapter 3 to serve as an abstract interpreter. This abstract

interpreter automatically inherits the extensibility of the generic interpreter through

custom functions. In addition, users can provide custom abstractions, such as the

interval abstraction for numeric fluents. This allows heuristic computation to be

extended to new data types, further increasing the generality of domain-general plan-

ning. Finally, we discuss additional ways that abstract interpretation might benefit

automated planning, and how PDDL.jl enables research into these possibilities.

4.1 Abstract Semantics for Symbolic Planning

Abstract interpretation works by over-approximating the set of possible ways a pro-

gram could branch and evolve as it is executed, perhaps because the program’s ar-

guments are unknown, or because there are non-deterministic choice points in the

program (corresponding to e.g., input from a user) [57, 59]. This is useful for error

detection and verifying correctness. If we can over-approximate all of the ways a

program can run, and check that this never results in an error, then the original (un-

approximated) program must never reach an error. Otherwise, an error is possible,

and a warning can be raised to the programmer. Figure 4-1(a) depicts this graph-

ically, with arrows (→) corresponding to steps along one possible execution path,
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Initial State Concrete Steps Abstract Steps1,2,3,4 Fixpointfp

1

2

3

4 (fp)

Possible
Error

Impossible
Error

(a) Abstract Interpretation for
Error Detection and Formal Verification

1

2

3

4 (fp)

Reachable
Goal

Unreachable
Goal

(b) Abstract Planning for
Goal Reachability and Heuristic Estimation

Figure 4-1: A graphical analogy between (a) abstract interpretation for error detection
and (b) abstract planning for determining the reachability of a goal. In abstract
interpretation, over-approximating the set of reachable states via abstract steps allows
us to rule out impossible errors. In abstract planning, we can similarly rule out some
goals as unreachable, or otherwise estimate how many steps it takes to reach them.

and the solid lines bounding all possible ways the program could execute. Abstract

interpretation over-approximates this set through a series of abstract steps (dashed

ovals): whereas a concrete step moves the program’s state from one specific point

to another, an abstract step updates the set of states in which the program could

be. This set of states typically grows with more steps, until a fixpoint (solid oval)

is reached, at which point further steps make no difference. Having computed this

fixpoint, we are guaranteed that any states outside of it are unreachable, including

any errors they contain. However, states (and errors) that lie within the fixpoint may

still be possible, depending on whether they lie within the true set of reachable states.

As Figure 4-1(b) shows, this process of abstract interpretation is applicable to

symbolic planning with one simple change: instead of trying to detect errors, we

are trying to reach goals. Concrete steps now correspond to symbolic actions, and

program branch points to choices over such actions. If we run this process and find

that the goal set lies outside the fixpoint, we can conclude that it is unreachable

and give up on planning. More interestingly, we can use the results of this abstract
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function nd_search(domain, state, goal)
# Loop until goal is reached
while !satisfy(domain, state, goal)

# Choose and execute an available action
act = choice(available(domain, state)...)
state = execute(domain, state, act)

end
end

(a) Julia implementation

(defun nd-search (goal)
;; Loop until goal is reached
(loop until goal do

;; Get list of available actions
(let (actions (list-available))

;; Choose and execute an action
(apply choice actions))))

(b) Lisp-style implementation

Figure 4-2: State space planning as non-deterministic search. We show (a) a Julia
implementation using the PDDL.jl interface and (b) a Lisp-style implementation in-
spired by ALisp [60]. The choice function indicates non-deterministic choice, and
apply applies this function to a list of arguments.

analysis even if we do not rule out a goal. Since abstract planning is approximate

and hence less difficult than planning in the original space, the number of abstract

steps to a goal (three, in the context of Figure 4-1) serves as an optimistic estimate

of the true number of (concrete) steps required to reach the goal. As such, we can

use this number as heuristic guidance within a symbolic planning algorithm.

To formalize this intuitive picture, we need to clarify how the process of planning

can be viewed as executing a program. Figure 4-2 shows how planning can be framed

as a non-deterministic search procedure, which iteratively explores all possible paths

through state space until a goal predicate (goal) is satisfied. A program path that

successfully reaches the goal constitutes a plan, and the length of that path is the

length of the plan. On the left, we show a Julia implementation using the PDDL.jl

interface. On the right, we show an equivalent Lisp-style implementation inspired by

the ALisp language for programmable reinforcement learning [60], which introduces

the (choice 𝑎1 ... 𝑎𝑛) expression for non-deterministic execution of one of the

actions 𝑎1 to 𝑎𝑛. We also introduce the (list-available) function, which returns

all available actions in the current state. We provide this implementation for con-

sistency with the Lisp-style syntax of PDDL predicates and actions. This allows us

to conveniently interpret PDDL predicates like (on a b) as Boolean expressions in

this ALisp-like language, and (ground) actions like (stack a b) as imperative com-

mands that modify the state. Note that we omit the domain and initial state in this

Lisp-style implementation, which are implicitly assumed.

52



By framing state space search as a non-deterministic program, we can now use

abstract interpretation to ask various questions about the program, and hence about

search. For example:

• Will the search loop ever terminate under any choice of branches? (Is the goal

predicate ever reachable, under any choice of actions?)

• If the loop terminates, can we bound the minimal number of iterations? (What

is a lower bound on the length of the shortest plan to the goal?)

Indeed, we can use abstract interpretation to answer questions about many other pro-

grams besides the procedure in Figure 4-2. For example, we could express programs

that correspond to generalized plans or policies that use control flow to solve multiple

problem instances [60, 61, 62], then use abstract interpretation to check for correct-

ness. Abstract interpretation could even help to synthesize such programs [63, 64, 65].

However, we restrict our attention for now to the program in Figure 4-2, because our

primary focus is on deriving heuristics to speed up search for specific plans.

Having fixed our program of interest, we now need to specify (i) what it means to

execute multiple branches of this program; and (ii) how to efficiently over-approximate

this set of possible executions, since this is intractable to compute directly due to ex-

ponential growth. To address (i) we need a collecting semantics that defines what

happens when multiple branches (i.e. actions) are simultaneously executed. To ad-

dress (ii) requires specifying an abstract semantics that over-approximates the collect-

ing semantics. We provide these semantics in Figure 4-3. For the collecting semantics

(Figure 4-3(a)), we first define the concrete semantic function E[[·]] for how expressions

like goal formulae, built-in arithmetic functions, or list-available are evaluated in

a state 𝑠 ∈ 𝑆. Next, we lift the effect semantic function C[[·]] defined in Figure 3-6 to

operate over sets of states 𝑆 ∈ 𝒫(𝒮), since we want to keep track of the states along

multiple branches. We then define non-deterministic execution of some action (which

we treat as synonymous with its effects) via choice: Since any choice is possible, we

take the union of all possible resulting outputs. We handle branching at the head of

a loop similarly, per the least fixpoint semantics given in [59].
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E[[𝑒𝑥𝑝𝑟]] : 𝒮 → 𝒱

E[[𝑓 ]]𝑠 = 𝑠 |= F[[𝑓 ]] where 𝑓 is a logical formula
E[[(𝐵 𝑥1 𝑥2)]]𝑠 = standard interpretation, where 𝐵 ∈ {+,−, *, /,=, ...}
E[[(𝐹 𝑎1 ... 𝑎𝑛)]]𝑠 = user-defined, where 𝐹 is a custom function
E[[(list-available)]]𝑠 = {𝑎 ∈ 𝒜 | E[[precond(𝑎)]]𝑠}

C[[𝑒𝑥𝑝𝑟]] : 𝒫(𝒮) → 𝒫(𝒮)

C[[𝑒]]𝑆 = ∪{C[[𝑒]]𝑠 | 𝑠 ∈ 𝑆} where 𝑒 is an effect expression
C[[𝑎]]𝑆 = C[[effect(𝑎)]]𝑆 where 𝑎 is a ground action
C[[(choice 𝑎1 ... 𝑎𝑛)]]𝑆 = C[[𝑎1]]𝑆 ∪ ... ∪ C[[𝑎𝑛]]𝑆
C[[(loop until 𝑓 do 𝑐)]]𝑆 = {𝑠 ∈ least fixpoint of 𝑇 | E[[𝑓 ]]𝑠}

where 𝑇 (𝑋) = 𝑆 ∪ C[[𝑐]]{𝑠 ∈ 𝑋 | ¬E[[𝑓 ]]𝑠}

(a) Concrete collecting semantics for expressions E[[·]] and commands C[[·]].

E♯[[𝑒𝑥𝑝𝑟]] : 𝒳 ♯ → 𝒰 ♯

E♯[[𝑓 ]]𝑆♯ = ∪{𝑠 |= F[[𝑓 ]] | 𝑠 ∈ 𝛾(𝑆♯)} where 𝑓 is a logical formula

E♯[[(𝐵 𝑥1 𝑥2)]]𝑆♯ = user-defined, where 𝐵 ∈ {+,−, *, /,=, ...}
E♯[[(𝐹 𝑎1 ... 𝑎𝑛)]]𝑆♯ = user-defined, where 𝐹 is a custom function

E♯[[(list-available)]]𝑆♯ = {𝑎 ∈ 𝒜 | true ∈ E♯[[precond(𝑎)]]𝑆♯}

C♯[[𝑒𝑥𝑝𝑟]] : 𝒳 ♯ → 𝒳 ♯

C♯[[(𝑃 𝑎1 ... 𝑎𝑛)]]𝑆♯ = 𝑆♯[𝑃 (𝑎1, ..., 𝑎𝑛) ↦→ {true}]
C♯[[(not (𝑃 𝑎1 ... 𝑎𝑛))]]𝑆♯ = 𝑆♯[𝑃 (𝑎1, ..., 𝑎𝑛) ↦→ {false}]
C♯[[(assign 𝑓1 𝑓2)]]𝑆♯ = 𝑆♯[F[[𝑓1]] ↦→ 𝑣], 𝑣 = E♯[[𝑓2]]

C♯[[(and 𝑒1 ... 𝑒𝑛)]]𝑆♯ = (C♯[[𝑒1]]||...||C♯[[𝑒𝑛]])𝑆
♯

C♯[[𝑎]]𝑆♯ = C♯[[effect(𝑎)]]𝑆♯ where 𝑎 is a ground action

C♯[[(choice 𝑎1 ... 𝑎𝑛)]]𝑆♯ = C♯[[𝑒1]]𝑆
♯ ∪♯ ... ∪♯ C♯[[𝑒𝑛]]𝑆

♯

C[[(loop until 𝑓 do 𝑐)]]𝑆♯ = lim
𝑛→∞

(𝑇 ♯)𝑛(𝑆♯) where 𝑇 ♯(𝑋♯) = 𝑆♯ ∪♯ C♯[[𝑐]]𝑋♯

(b) Non-relational abstract semantics for expressions E♯[[·]] and commands C♯[[·]].

Figure 4-3: Concrete collecting semantics and abstract semantics for PDDL with
list-available, choice and loop expressions. We adopt a non-relational (a.k.a
Cartesian) abstraction for the abstract semantics, where an abstract state 𝑆♯ is simply
a tuple of abstract values for each fluent. Abstractions for each value type (e.g.
integers, sets, etc.) and corresponding functions are user defined.
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We next define generic abstract semantics which over-approximate the collecting

semantics, provided in Figure 4-3(b). These semantics operate over abstract states

𝑆♯ ∈ 𝒳 ♯. Each abstract state 𝑆♯ is intended to over-approximate a set of concrete

states 𝑆 ∈ 𝒫(𝒮) across all branches at a particular stage of program execution. To be

precise, 𝑆♯ is a sound over-approximation of 𝑆 if the set of concrete states it represents,

𝛾(𝑆♯), is a superset of 𝑆, i.e., 𝑆 ⊆ 𝛾(𝑆♯). The abstract semantics for expressions are

defined by E♯[[·]], specifying how an expression maps an abstract state 𝑆♯ ∈ 𝒳 ♯ to an

abstract value 𝑉 ♯ ∈ 𝒰 ♯, while the abstract semantics for commands are defined by

C♯[[·]], specifying how a command maps one abstract state to another. Of note is the

abstraction for (choice ...) over actions, which takes the abstract union ∪♯ over the

results of all actions. Similarly, the (loop ...) abstraction takes the repeated abstract

union of 𝑆♯ pre- and post-iteration. This differs from the collecting semantics because

the abstract union ∪♯ over-approximates the ordinary union ∪, making it easier to

compute than tracking an explicit union of values across program branches. How this

is exactly achieved depends on the choice of abstraction, which we discuss next.

As shown in Figure 4-3(b), some aspects of the abstract semantics for PDDL are

user-defined. Because there are many ways to over-approximate states, the choice

of abstraction can be customized. The only major choice that we make is adopting

abstract semantics that are non-relational or Cartesian [56]: Each abstract state 𝑆♯

is just a tuple (𝑓1 ↦→ 𝑉 ♯
1 , ..., 𝑓𝑘 ↦→ 𝑉 ♯

𝑘 ) of the abstract values 𝑉 ♯
𝑖 assigned to each fluent

𝑓𝑖 that the state is defined over. As such, the set of concrete states 𝛾(𝑆♯) represented

by 𝑆♯ is the Cartesian product of sets of concrete values 𝛾(𝑉 ♯
𝑖 ) represented by each

abstract value 𝑉 ♯
𝑖 . Furthermore, the abstract union ∪♯ of states is just the tuple of

abstract unions of their values. We make this choice for ease of implementation, since

it means that once we specify sound abstractions for fluent values, we automatically

have a sound abstraction over states. For example, we could abstract over Booleans

with their powerset (Figure 4-4(a)), allowing predicates to be both false and true

[66, 33], and over numeric fluents using the interval abstraction (Figure 4-4(b)), which

over-approximates a set 𝐴 of numbers by the interval [inf 𝐴, sup𝐴] [33, 21]. Both of

these are sound by construction, and hence their Cartesian product is as well.
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𝐵 ∈ 𝒫(B) = {none, false, true, both}

𝛾(𝐵) = 𝐵 𝛼(𝐵) = 𝐵

𝐵 ⊑ both ⇐⇒ true none ⊑ 𝐵 ⇐⇒ true

false ⊔ true = both 𝐵 ⊔𝐵 = 𝐵

both ⊔ B = both none ⊔ B = 𝐵

both ∧𝐵 = (false ∧𝐵) ⊔ (true ∧𝐵) none ∧𝐵 = none

both ∨𝐵 = (false ∨𝐵) ⊔ (true ∨𝐵) none ∨𝐵 = none

¬ both = both ¬ none = none

(a) Powerset abstraction for Boolean values B (a.k.a. four-valued logic)

𝐼 ∈ ℐ = {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ R ∪ {−∞,+∞}, 𝑎 ≤ 𝑏}

𝛾([𝑎, 𝑏]) = {𝑥 ∈ R|𝑎 ≤ 𝑥 ≤ 𝑏} 𝛼(𝐴) = [inf 𝐴, sup𝐴], 𝐴 ⊆ R

[𝑎, 𝑏] ⊔ [𝑐, 𝑑] = [min(𝑎, 𝑐),max(𝑏, 𝑑)] [𝑎, 𝑏] ⊑ [𝑐, 𝑑] ⇐⇒ (𝑎 ≥ 𝑐) ∧ (𝑏 ≤ 𝑑)

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎+ 𝑐, 𝑏+ 𝑑] [𝑎, 𝑏]− [𝑐, 𝑑] = [𝑎− 𝑑, 𝑏− 𝑐]

(b) Interval abstraction for real-valued fluents (with + and − operations).

Figure 4-4: Commonly used abstractions of fluent values. For each abstraction, we
provide the concretization 𝛾 and abstraction 𝛼 functions, the partial order ⊆, and
the least-upper-bound ⊔, which plays the role of the abstract union ∪♯.

How should a user decide between different value abstractions? In general, one

should consider the soundness of the approximation, its precision, and its efficiency.

Soundness can be achieved by ensuring that all abstractions 𝑔 of concrete operations

𝑓 maintain the over-approximation, i.e. ∀𝑆♯ ∈ 𝒳 ♯ : 𝑓(𝛾(𝑆♯)) ⊆ 𝛾(𝑔(𝑆♯)). This is

the case when using the value abstractions in Figure 4-4 with the Cartesian abstrac-

tion in Figure 4-3 (we omit proof since these choices are standard, see [59]). The

tradeoff between precision and efficiency is harder to navigate: precision means that

abstract computation (including heuristic estimation) is more accurate, but at the

expense of slower computation. For example, the powerset abstraction is exact, but

becomes intractable as the cardinality of the underlying set increases. In contrast,

the abstraction which includes all possible values is useless, but trivial to compute.

Good choices like the interval abstraction lie somewhere in between, and can even be

automatically constructed. We refer the reader to [33] and [56] for some possibilities.
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4.2 Deriving Heuristics through Abstraction

With our abstract semantics defined, we can revisit how this allows us to determine

goal reachability or heuristic distance. Returning to the nd-search procedure in Fig-

ure 4-2(b), we can imagine first abstracting the initial state 𝑆♯
0 = 𝛼({𝑠0}), where 𝛼 is

an abstraction function (that maps e.g. numbers to intervals). We then repeatedly

apply the abstract semantics for (list-available) and (choice ...), the compo-

sition of which we denote as the abstract transition 𝑇 ♯. With each iteration 𝑖, the

abstract state 𝑆♯
𝑖 = 𝑇 ♯(𝑆♯

𝑖−1) grows, because we keep merging the results of executing

all available actions passed to (choice ...), which leads to more preconditions being

satisfied, and hence to more available actions being returned by (list-available).

This eventually leads to one of the following outcomes:

1. A fixpoint 𝐹 ♯ = 𝑇 (𝐹 ♯) is reached without satisfying the goal, in which case the

goal can be ruled out as unreachable from 𝑠0.

2. The abstract state 𝑆♯
𝑖 grows until the goal is satisfied, and the search procedure

terminates (because the loop condition is met).

3. Neither of the above occur. The abstract state keeps growing without reaching

a fixpoint, and abstract execution does not terminate.

In the first case, we can use the fact that the goal is unreachable from 𝑠0 to

avoid exploring that state during a concrete search procedure, assigning it a heuristic

distance of ∞. In the second case, we can keep track of the number of iterations it

takes for the goal to be reached, and use that number as a heuristic distance estimate

to the goal. Indeed, as shown in [33], the heuristic returned by this procedure is

exactly equivalent to the ℎmax and ℎ1 heuristics [67] when the powerset abstraction is

used for Boolean values, and also equivalent to numeric extensions of ℎmax when the

interval abstraction is used [21]. We call this the reachability heuristic, denoted ℎ𝐴reach,

which is parameterized by an abstraction 𝐴. The power of the reachability heuristic

lies in the fact that it is extremely general and customizable: Once a user provides

sound abstractions 𝐴 for the built-in functions in PDDL (arithmetic, etc.) and any
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Algorithm 3 Reachability heuristic ℎ𝐴reach implemented using PDDL.jl.

function h_reach(domain::Domain, state::State, goal::Term, abstractions)
# Construct abstract domain and abstract state
absdom, abstate = PDDL.abstracted(domain, state; abstractions)
# Iterate until we reach the goal or a fixpoint
steps = 0
while !(PDDL.satisfy(absdom, abstate, goal))

steps += 1
# Iterate over available actions
next_abstate = abstate
for act in PDDL.available(domain, state)

# Compute least upper bound with each successor state
next_abstate = PDDL.lub(next_abstate,

PDDL.transition(domain, abstate, act))
end
# Terminate if fixpoint is reached
if next_abstate == abstate return Inf end
abstate = next_abstate

end
return steps

end

custom functions and types they wish to support (sets, arrays, etc.), ℎ𝐴reach can be

used as a search heuristic over the corresponding concrete domain. This basic idea is

due to Planning Modulo Theories [33], but they do not use abstract interpretation as

a framework for customizing abstractions and checking their soundness. In contrast,

PDDL.jl enables an implementation of ℎ𝐴reach that uses abstract interpretation, which

we list in Algorithm 3. As can be seen, this implementation closely follows the

abstract execution of nd-search. We first construct an abstract domain and state

with abstractions that users can customize, then apply the same PDDL.jl interface

methods as used for concrete domains. To merge the results of available actions, we

use the lub function, which implements the abstract union ∪♯ (a.k.a. the least upper

bound). At each iteration, we check if the goal is reached, and return the number of

steps if so. Otherwise, we return ∞ if a fixpoint is reached.

One subtle issue with Algorithm 3 is that, as written, it ignores the possibility of

the third outcome mentioned above, where neither a goal nor a fixpoint is reached.

This can occur when one of the value abstractions exhibits infinite chains : ordered

sequences of abstract values 𝑉 ♯
1 ⊑ 𝑉 ♯

2 ⊑ 𝑉 ♯
3 ... which have infinite length. For example,
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if there is a numeric fluent 𝑓 with an initial abstract value of [2, 2], and an action 𝑎

whose concrete semantics increase the value of 𝑓 by 2, then abstract execution after

𝑖 iterations will lead to abstract value of [2, 2 + 2 * 𝑖], which will never converge to a

fixpoint. If the goal additionally requires that 𝑓 = 0, then the abstract analysis will

never reach this goal, and hence fail to terminate.

To address this issue, most abstract semantics introduce a widening operator

∇ : 𝒳 ♯ × 𝒳 ♯ → 𝒳 ♯ that is applied at the head of loop constructs [57, 59], so called

because it widens the set of represented values at its point of application. The only

conditions for a widening operator are that:

1. It upper bounds its inputs: 𝑋♯, 𝑌 ♯ ⊑ 𝑋♯∇𝑌 ♯

2. Repeated application leads to convergence: for any sequence 𝑌 ♯
1 , 𝑌

♯
2 , ... ∈ 𝒳 ♯,

computing 𝑋♯
𝑖+1 := 𝑋♯

𝑖∇𝑌
♯
𝑖 leads to a fixpoint after finite iterations.

As an example, a naive widening operator for the interval abstraction [𝑎, 𝑏]∇[𝑐, 𝑑]

would be to return [𝑎, 𝑏] if [𝑐, 𝑑] ⊑ [𝑎, 𝑏], and [−∞,∞] otherwise. This is highly

imprecise as an approximation, but ensures convergence. Whatever our choice of ∇,

applying it at the start of each loop iteration resolves the non-termination issue. This

means updating the semantics for (loop until 𝑓 do 𝑐) in Figure 4-3 as follows:

C[[(loop until 𝑓 do 𝑐)]]𝑆♯ = lim
𝑛→∞

(𝑇 ♯)𝑛(𝑆♯)

where 𝑇 ♯(𝑋♯) = 𝑋♯∇(𝑆♯ ∪♯ C♯[[𝑐]]𝑋♯)

By including the widening operator in the loop transition 𝑇 ♯, we guarantee that

repeated application of 𝑇 converges in finite iterations. PDDL.jl also includes the

widen(absdom::Domain, s, s2) method, which applies a custom widening associ-

ated with the abstract domain absdom to states s1 and s2. Adding widen before the

fixpoint check in Algorithm 3 thus addresses the issue in code.

With widening operators in hand, we can ask the question of what widening to

choose so that ℎ𝐴reach is both efficient and informative. If ∇ is too aggressive, as in the

naive example given earlier, then the loop could terminate in as little as one iteration,
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leading to an admissible but highly uninformed heuristic that severely underestimates

the true distance to the goal. If ∇ is too gradual, however, then the loop may converge

too slowly, leading to inefficiency. To navigate this trade-off, we can draw inspiration

from widening techniques used in the abstract interpretation literature [59]:

• Delayed widening. Instead of widening immediately, compute the least-

upper-bound for the first 𝑛 iterations, and apply widening only afterwards.

• Widening with thresholds. For interval abstractions, we can first widen

[𝑎, 𝑏]∇[𝑐, 𝑑] to [−𝑇1, 𝑇1] if [𝑐, 𝑑] ̸⊑ [𝑎, 𝑏], then to a wider interval [−𝑇2, 𝑇2] if this

happens again, and so on until we finally widen to [−∞,∞]. The thresholds

𝑇1, ..., 𝑇𝑁 can be user-specified, or come from an exponential ramp 21, ..., 2𝑁 .

Delayed widening is equivalent to terminating the loop in Algorithm 3 after a fixed

number of iterations, and hence a natural choice that avoids over-relaxing the prob-

lem while limiting the amount of computation. To the author’s knowledge however,

equivalent methods to widening with thresholds have not been explored in the plan-

ning literature (besides the single-threshold case mentioned in [33]). This suggests

that there are potential gains to be made by using this technique within heuristic

computation, among many other innovations in abstract interpretation.

We close this section by remarking that, while we have focused on the reachabil-

ity heuristic as presented in Algorithm 3, there are many other heuristic algorithms

that can be reframed in light of abstract interpretation. For one, while the ℎmax

algorithm is mathematically equivalent to ℎ𝐴reach under the Boolean powerset abstrac-

tion, implementations of the former usually perform Djikstra search over the relaxed

planning graph of actions and preconditions, leading to greater efficiency. As shown

by [19] and [21], this graph search procedure can be modified to accommodate in-

terval abstractions – and by using the framework introduced here, any custom data

type and corresponding abstraction. This gives not only generalized versions of ℎmax,

but also generalized versions of the additive heuristic ℎadd, which is typically much

more informative [15]. Abstract interpretation may also prove useful for generalizing

heuristics based on counter-example guided abstraction refinement [56] to problems
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with continuous values or other data types. Finally, we have thus far only considered

non-relational state abstractions for heuristic derivation. Relational abstractions (e.g.

polyhedra [68]) may allow non-Cartesian abstractions such as the merge-and-shrink

heuristic [69] to be extended beyond propositional domains. By illustrating the for-

mal relationship between abstract interpretation and abstraction-based heuristics, we

hope that many more of these fruitful connections can be explored in the future.

4.3 Abstraction via Function Overloading

Having shown how abstract interpretation can be used to derive and implement

abstraction-based heuristics, we now turn to how PDDL.jl implements abstract in-

terpretation itself. We adopt an elegant approach that exploits Julia’s support for

multiple dispatch, enables user customization, and operates with minimal modifica-

tion to the concrete interpreter (Chapter 3): Introducing Julia data types to represent

abstract values (e.g. real-valued intervals), and overloading functions that are defined

over concrete values so that they implement the abstract semantics when given ab-

stract values as arguments.

As an example of this general approach, Figure 4-5 shows the implementation of

the interval abstraction in PDDL.jl. We use the IntervalAbs data type to represent

abstract interval values, and implement the least upper bound lub, greater lower

bound glb, and arithmetic operations +,−,×, / by forwarding method calls to the

Interval type from IntervalArithmetic.jl [70]. Since the PDDL.jl interpreter evalu-

ates arithmetic expressions by calling their corresponding Julia functions (Base.:+(a,

b) for (+ a b), etc.,) this means that if the interpreter encounters a numeric expres-

sion containing fluents with values of type IntervalAbs, it will automatically dispatch

to the arithmetic methods defined over IntervalAbs arguments, and perform the nec-

essary interval arithmetic. The primary advantage of this implementation strategy

is that it is highly customizable and extensible. Suppose we want to use a different

abstraction over the real numbers, such as the sign abstraction. To implement this

abstraction, we just need to introduce a new Julia type, SignAbs, and implement the
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struct IntervalAbs{T <: Real}
interval::IntervalArithmetic.Interval{T}

end
IntervalAbs(a::T, b::T) where {T <: Real} =

IntervalAbs{T}(IntervalArithmetic.Interval{T}(a, b))
IntervalAbs(x::T) where {T <: Real} =

IntervalAbs{T}(x, x)
PDDL.lub(a::IntervalAbs, b::IntervalAbs) =

IntervalAbs(union(a.interval, b.interval))
PDDL.glb(a::IntervalAbs, b::IntervalAbs) =

IntervalAbs(intersect(a.interval, b.interval))
Base.:-(a::IntervalAbs) = IntervalAbs(-a)
Base.:+(a::IntervalAbs, b::IntervalAbs) = IntervalAbs(a.interval + b.interval)
Base.:-(a::IntervalAbs, b::IntervalAbs) = IntervalAbs(a.interval - b.interval)
Base.:*(a::IntervalAbs, b::IntervalAbs) = IntervalAbs(a.interval * b.interval)
Base.:/(a::IntervalAbs, b::IntervalAbs) = IntervalAbs(a.interval / b.interval)

Figure 4-5: PDDL.jl implementation of the interval abstraction. We introduce a new
type IntervalAbs, and implement its semantics by forwarding method calls to the
Interval type from IntervalArithmetic.jl.

.

same arithmetic and ordering functions shown in Figure 4-5. Alternatively, suppose

that we want to define an abstraction over the custom set theory introduced in Fig-

ure 3-4. Then we can just define an abstraction type, SetAbs, and implement all the

functions that constitute the theory (cardinality, member, union, intersect, etc.)

for this new type.

Given these value abstractions, we can construct abstract domains and states using

the abstracted function shown at the top of Algorithm 3. The abstracted(domain,

state; abstractions) function accepts a concrete domain and state as input, as

well as a dictionary of abstractions that map type symbols to abstraction types (e.g.

:boolean => BooleanAbs, :numeric => IntervalAbs). By changing the entries of

this dictionary, users can customize which abstractions are used for each concrete

value type. This means that, unlike many other planning systems that support some

form of abstraction, PDDL.jl users are not beholden to any particular value abstrac-

tion, and are free to customize and experiment with different abstractions to improve

performance on downstream tasks. In the future, we aim to support even more cus-

tomization, such as allowing abstractions to be specified on a per-fluent basis, allowing

PDDL.jl to serve as a platform for even more uses of abstract interpretation.
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4.4 Other Applications of Abstract Interpretation

In this chapter, we have focused on how abstract interpretation can be used to derive

more general planning heuristics for forward state space search. However, there are

many other possible applications of abstract interpretation that could be enabled by

PDDL.jl, which we briefly reflect upon here.

4.4.1 Constructing Hierarchies of Abstractions

One of the earliest uses of abstraction in planning was to automatically construct

hierarchies of abstract domains, allowing planners to solve problems in a coarse-to-fine

manner by first planning at the most abstract level, and then refining plans at more

and more concrete levels [71, 72]. Similar ideas have much more recently been explored

in counter-example guided abstraction refinement for classical planning [56], which is

inspired by the model-checking literature. Given these connections, it is possible that

the process of hierarchical domain abstraction could be reframed using the theory of

abstract interpretation, allowing for new insights about how to automatically derive

the best abstraction hierarchies for planning.

4.4.2 Reverse Abstract Interpretation for Bidirectional Search

As noted briefly at the end of Chapter 3, abstract interpretation can also be executed

in reverse [73, 74], allowing for generalizations of the pre-image semantics described

in Section 3.5 to numeric and other domains, as well as efficient over-approximations

of these inverse semantics. While PDDL.jl currently does not support abstract inter-

pretation in reverse, implementing this functionality might allow for the development

of new regression search algorithms that operate over more general domains, as well

as novel combinations of (abstract) backwards search with (concrete) forward search.

Such combinations have been explored in both task-and-motion planning [48] and

program analysis [75], suggesting that there is room for an interdisciplinary exchange

of ideas, and perhaps the development of a framework that allows for the systematic

exploration of these bi-directional search algorithms.
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4.4.3 Abstract Interpretation for Generalized Planning

Finally, as mentioned earlier in this chapter, abstract interpretation could be used in

the verification and synthesis of generalized plans, which often take the form of im-

perative programs with control flow [60, 61, 62]. Indeed, with minimal modifications,

the abstract semantics presented in Figure 4-3 could be used for the verification of

ALisp-like policy programs similar to the nd-search procedure in Figure 4-2(b). Sup-

port for abstraction-guided program synthesis, on the other hand, will likely require

more specific infrastructure to be built. Nonetheless, given the many applications of

abstract interpretation to program synthesis outside of symbolic planning [63, 64, 65],

we anticipate that many of the ideas and connections we have developed here will

prove useful in fostering the convergence of these closely related fields.
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Chapter 5

Domain Compilation and Static

Analysis for Efficient Planning

High performance systems for symbolic planning typically reduce computational cost

in multiple ways. In Chapter 4, we described one such approach that PDDL.jl enables:

Deriving heuristics that make search smarter, and hence reduce the number of search

operations necessary. In this chapter, we describe two other approaches supported

by PDDL.jl: Domain compilation to reduce the runtime and memory footprint of

each basic search operation, as well as static analysis to prune irrelevant domain

information and hence reduce the size of the search space.

Compilation is implemented by generating domain-specific state representations

and method definitions for each action in the domain. Since the targets of compilation

are concrete implementations of the abstract data types and methods that comprise

the PDDL.jl interface, users and downstream code can make use of compiled code as

a drop-in replacement for the generic PDDL interpreter (see Figure 5-1), achieving

constant factor speed-ups of an order-of-magnitude or more. Static analysis tools are

provided for downstream use (e.g. ignoring irrelevant actions in planning heuristics),

and can also be used as part of the compilation process. The following sections intro-

duce the two main compilation techniques provided by PDDL.jl’s built-in compiler,

followed by a description of static analysis tools and other compilation techniques,

and finally a discussion of how the semantics of the compiler can be extended.
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# Load a generic representation of PDDL domain and problem
domain = load_domain("blocksworld.pddl")
problem = load_problem("blocksworld-problem.pddl")

# Compile the domain and problem to get a compiled domain and state
c_domain, c_state = compiled(domain, problem)

# Perform breadth-first search on the compiled domain using Algorithm 1
plan = bfs(c_domain, problem)

# Execute the plan on the compiled initial state
for act in plan

c_state = transition(c_domain, c_state, act)
end

# Check that the goal is achieved in the final state
@assert satisfy(c_domain, c_state, get_goal(problem))

Figure 5-1: Using PDDL.jl’s built-in compiler via the compiled method. The com-
piled domain c_domain can be used in place of the generic domain representation
loaded from a PDDL file in a planning algorithm such as Algorithm 1

.

5.1 Compiled State Representations

The symbolic states manipulated by PDDL.jl (Definition 2.1.2) are composed of

ground fluents (represented as Terms in PDDL.jl) and their corresponding valuations.

As such, they can be generically implemented using hash tables, using Julia’s Set data

type for Boolean fluents that are true, and the Dict data type for all other fluents

(Figure 5-2(a)). This is the representation used by the PDDL.jl interpreter. However,

while this implementation is straightforward, it is not very efficient. Accessing the

value of a fluent requires hashing a Term, which accumulates with many accesses, and

the memory overhead of maintaining a hash table can be quite significant.

To avoid these overheads the PDDL.jl compiler generates compiled state represen-

tations that are specialized to a particular domain and problem. This representation

takes advantage of the fixed number of objects in standard PDDL problems, allowing

for the generation of finite-object state representations with a known size in advance,

where Boolean fluents can be represented as bit arrays over their object domains, and

other fluents can be represented as standard arrays of the appropriate type.
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GenericState
types -> Set{Compound} with 3 elements

pddl"(block a)",
pddl"(block b)",
pddl"(block c)"

facts -> Set{Term} with 7 elements
pddl"(handempty)",
pddl"(clear a)",
pddl"(clear b)",
pddl"(clear c)"
pddl"(ontable a)",
pddl"(ontable b)",
pddl"(ontable c)"

values -> Dict{Term,Any} with 0 entries

Size: 1720 bytes
Median Access Time: 394 ns

(a) Generic state representation

CompiledBlocksworldState
handempty ->

true
clear -> 3-element BitVector

1 1 1
holding -> 3-element BitVector

0 0 0
ontable -> 3-element BitVector

1 1 1
on -> 3x3 BitMatrix

0 0 0
0 0 0
0 0 0

Size: 336 bytes
Median Access Time: 58.5 ns

(b) Compiled state representation

Figure 5-2: Generic vs. compiled state representations in the Blocksworld domain.

An example is shown in Figure 5-2(b) for the Blocksworld domain in a prob-

lem with three blocks. Rather than storing each true predicate in a Set, as in the

generic state representation, the compiled representation stores 0-place predicates

(e.g. (handempty)) directly as fields, 1-place predicates (e.g. (ontable ?x)) as

BitVectors, and 2-place predicates (e.g. (on ?x ?y)) as BitArrays). Since bit ar-

rays are highly compact, this leads to significantly reduced memory use and allocation

overhead. In addition, PDDL.jl generates fast accessor implementations for compiled

state representations, directly looking up the appropriate index for a particular set

of object arguments to a fluent, instead of performing a hash computation each time.

In the Blocksworld example of Figure 5-2, these compilations lead to state represen-

tations which require about five times less memory (1720 vs. 336 bytes), and run

about seven times faster when accessing the value of fluents (394 vs. 58.5 ns).

We note that this compilation strategy can readily be modified to use other array

data types if they prove to be more efficient. For example, sparse arrays could be

used for binary predicates over a large number of objects, statically-sized arrays can

be used to speed up operations when the number of objects is small, and views of an

underlying contiguous array could be used to further reduce overhead from memory

allocation. In the future, representing mutually exclusive predicates as finite-domain

variables [76] may lead to even greater improvements in speed and memory use.
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5.2 Compiled Action Semantics

In addition to compiled state representations, PDDL.jl also supports compiled action

semantics, generating specialized implementations of the execute and available

interface methods for each action schema in the compiled domain. This makes use of

Julia’s support for multiple dispatch: By generating concrete subtypes of the Action

datatype for each action schema, specialized methods can be defined for each subtype.

function execute(domain, state, action::GenericAction, args)
# Substitute arguments into effect formula
subst = Subst(var => val for (var, val) in zip(get_argvars(action), args))
effect = substitute(get_effect(action), subst)
# Interpret effect formula and return a state difference
diff = effect_diff(domain, state, effect)
# Apply state difference
state = update(domain, state, diff)
return state

end

(a) Generic implementation of execute for uncompiled actions (Runtime: 21.1 µs)

function execute(domain, state, action::CompiledStackAction, args)
state = copy(state)
# Get object indices for arguments
x_idx = objectindex(state, :block, args[1].name)
y_idx = objectindex(state, :block, args[2].name)
# Assign new values to affected fluents
state.handempty = true
state.clear[x_idx] = true
state.clear[y_idx] = false
state.holding[x_idx] = false
state.on[x_idx, y_idx] = true
return state

end

(b) Compiled implementation of execute for Blocksworld’s stack action (Runtime: 337 ns)

Figure 5-3: Interpreted vs. compiled implementations of the execute method for
applying the effects of an Action to a State.

An example is shown in Figure 5-3, which compares (a) the generic interpreter

implementation of execute to (b) the compiled implementation of execute for the

(stack ?x ?y) action in the Blocksworld domain. Instead of interpreting the effect

formula associated with the action each time it is executed, the compiled version of
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execute directly modifies the appropriate entries of the compiled state representation

for the Blocksworld domain. It does this by first looking up the array indices that

correspond to each argument of the action using the objectindex method (which is

itself compiled), and sets the value of the affected entries in accordance with the add,

delete, and assignment effects specified by the PDDL action schema. All of this code

is compiled from PDDL to Julia, which in turn gets compiled to high performance

machine code by Julia’s own compiler. By directly modifying the state representation,

instead of performing substitution and interpretation of the PDDL syntax tree each

time, the compiled implementation in Figure 5-3 achieves median runtimes up to 60

times faster (336 ns vs. 21.1 µs) than the generic implementation of execute. The

tradeoff is that code generation and compilation takes time, leading to initial overhead

cost that may not always be favorable relative to the interpreter, depending on the

downstream context.

5.3 Static Analysis and Other Compiler Techniques

Static analysis of PDDL domains and problems can be used to derive useful informa-

tion in advance of planning, such as the presence of static fluents (i.e. “fluents” that

are never modified by actions), the reachability of ground actions (i.e. whether they

ever become applicable), the set of predicates that are action-relevant (i.e. necessary

to determine some action’s availability), or the set of predicates that are goal-relevant

(i.e. may appear in a plan to achieve the goal). This information can then be used to

aid compilation as well as prune the search space. For example, by inferring the set

of static fluents, compiled state representations can omit storing the values of those

fluents as mutable variables, reducing memory use. Furthermore, ground actions can

be eliminated as unavailable because they have static preconditions that are never

satisfied, thereby reducing the search space.

PDDL.jl currently supports these analyses as a set of user-available tools, which

can be used in the context of planning algorithms or heuristics to reduce the search

space and improve performance. These tools will be eventually used by the PDDL.jl
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compiler to perform some of the space and time saving compilations mentioned above.

In addition, PDDL.jl supports domain grounding, i.e. generating the set of all possible

ground actions and fluents. This is one of the most widely used static transformations

by symbolic planning systems to accelerate planning, because it enables the imple-

mentation of a variety of useful static analyses (e.g. determining the unreachability or

irrelevance of ground actions, which can then be pruned), and also avoids the need to

dynamically ground actions during search. Notably, PDDL.jl supports this ground-

ing transformation and associated analyses for domains that make use of quantified

expressions and conditional effects allowed by the ADL extension of PDDL [41], as

well as numeric fluents introduced in PDDL 2 [45]. This distinguishes PDDL.jl from

widely used planning systems such as Pyperplan [38], which does not support ADL,

or FastDownward [17], which does not support numeric fluents.

A number of other advanced compilation techniques can be implemented with the

help of static analysis. Two such techniques used in state-of-the-art planning systems

include successor generators, a decision tree-like data structure that allows for the

rapid determination of the set of available actions, or finite-domain representations,

which require inferring which sets of ground predicates are mutually exclusive and can

hence be transformed into finite-domain variables [17]. While PDDL.jl does not yet

implement these techniques, the fact that we abstract its interface from its (multiple)

implementations means that future improvements to the compiler can be made with

relative ease. As such, we anticipate that these advanced compilation techniques will

eventually be supported by PDDL.jl as well.

5.4 Extended Compiler Semantics

In Chapter 3, we described how the PDDL.jl interpreter can be modified to support

extended PDDL semantics via custom functions, semantic theories, and imperatives.

Apart from custom imperatives, this extensibility applies to the built-in compiler as

well. This is because Julia is the target language for the compiler, and the interface for

specifying custom functions or theories requires implementations as Julia functions

70



and data types. As such, when compiling PDDL expressions that contain custom

functions (e.g. in preconditions or effects), the compiler can automatically look up

and insert their Julia implementations within the generated code. Compiled state

representations can also be extended in a similar way, provided that users include

type annotations in the PDDL domain file for fluents with custom data types (e.g.

the set-valued fluents in Figure 3-4). These PDDL fluent types are then mapped to

their Julia type implementations when generating a compiled state.

This implementation strategy means that the abstract semantics introduced in

Chapter 4 can also be compiled. In particular, because abstract interpretation is im-

plemented by introducing new Julia data types to represent abstract values (e.g. the

interval abstraction over numeric fluents) then overloading the Julia implementations

of PDDL functions (e.g. > or +) to operate over these new types, the compiler can

support abstract semantics simply by generating compiled state representations that

use these abstraction types. For example, if the compiled state contains an interval-

valued numeric fluent called fuel represented by the IntervalAbs data type, then

in the course of executing a functional expression such as (> fuel 0), Julia will look

up and dispatch to the method for > that is defined over an IntervalAbs and Int

argument, which will perform the appropriate interval arithmetic. These compiled

abstract semantics can be supported for custom theories as well: Users just need to

define a data type for abstract values in the theory of interest, then overload the Julia

implementations of custom functions to work over the new type.

Given the extensibility of the compiler, it is worth asking what functional limita-

tions it might still have relative to the PDDL.jl interpreter. As of the current version

of PDDL.jl, these limitations are (i) the inability to handle custom imperatives; (ii)

lack of support for reverse execution; and (iii) restrictions on Julia that prevent fully

dynamic code generation for compiled states and actions (which may be desirable

when the number of objects is not fixed). As such, the interpreter is still strictly

more general in the functionality it supports, while also being more easily debugged.

In the future, however, improvements to the compiler could narrow this functionality

gap, such that the interpreter will primarily be useful for debugging purposes.
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Chapter 6

Applications and Evaluation

The preceding chapters of this thesis have described several features of PDDL.jl that

allow it serve as general, extensible, and performant architecture for symbolic plan-

ning applications. In this chapter, we demonstrate and evaluate the utility of this

architecture in the context of several downstream applications. To illustrate the

generality of PDDL.jl, we show how it can be used within a wide variety of such

applications: (i) symbolic planning algorithms, (ii) environment simulation for rein-

forcement learning, (iii) symbolic state estimation from noisy or partial observations,

and (iv) goal inference via Bayesian inverse planning. These applications also ex-

hibit the extensibility of PDDL.jl, both in terms of extended domain semantics and

the ease with which PDDL.jl can be composed with existing libraries in the Julia

ecosystem for reinforcement learning or probabilistic programming. In addition, we

evaluate the performance of PDDL.jl when used within these applications, comparing

against relevant baselines where possible.

6.1 Planning Algorithms

The most direct application of PDDL.jl is the implementation of symbolic planning

algorithms. As illustrated by the pedagogical examples in Section 2.4, a variety of

such algorithms can be implemented using the PDDL.jl interface, including forward

and regression planners. In this section, we introduce a library of such algorithms

73



Automated Planning Systems
Symbolic

Planners.jl
Pyperplan

[38]
PDDL4J

[39]
HSP
[15]

FastDownward
[17]

ENHSP
[21, 22]

Language Support
STRIPS X X X X X X
ADL X X X X X
Numeric Fluents X X
Sets, Arrays, etc. X
Events & Processes X

Planning Algorithms
Forward Search X X X X XX X
Regression Search X X
Decision-Theoretic X

Heuristic Coverage
Propositional Domains X X X X XX X
Numeric Domains X XX
Sets, Arrays, etc. X

Table 6.1: Comparison of features currently supported by SymbolicPlanners.jl versus
other planning systems. A X indicates support, while XX denotes highest coverage
(most algorithms implemented, etc.) among systems that support the feature.

written using PDDL.jl called SymbolicPlanners.jl [32], and evaluate the performance

of a subset of these algorithms.

SymbolicPlanners.jl is a library that provides a suite of planning algorithms and

heuristics that operate domains and problems specified in PDDL. Similar to PDDL.jl,

the library defines an abstract interface for heuristics, planners, their corresponding

solutions (e.g. plans or policies), as well as goal, reward, and constraint specifications.

Implemented planners currently include forward state space planners (breadth-first

search, greedy best-first search, A*, etc.) [15], regression planners (backward A*,

etc.) [77], and decision-theoretic planners such as RTDP [3] and MCTS [78]. Sup-

ported heuristics include Manhattan or Euclidean distance heuristics for user-specified

fluents, standard delete-relaxation heuristics such as ℎmax, ℎadd and ℎFF, as well as

extensions of these heuristics to work with numeric or functional fluents. In contrast

to most contemporary planning systems, SymbolicPlanners.jl has broader language

support for variants and extensions of PDDL, includes families of planning algorithms

beyond forward state space search, and provides heuristics that generalize to domains

with non-Boolean fluents. A comparison of supported features is shown in Table 6.1.
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In addition to supported features, we compare the performance of SymbolicPlan-

ners.jl against several widely used planning systems:

• Pyperplan [38], a lightweight STRIPS planner written in Python that is often

used in contemporary planning research due to its ease of modification (e.g. to

integrate machine learning and reinforcement learning [29, 79, 80, 81]),

• FastDownward [17], a state-of-the-art planning system written in C++ that

operates over propositional domains,

• ENHSP [21, 22], a heuristic search planner for numeric domains written in

Java, which extends the ℎmax and ℎadd heuristics to support numeric conditions.

To evaluate performance, we collected runtimes and other statistics for each sys-

tem on a variety of planning domains featured in the 2000 and 2002 International

Planning Competitions [82, 83]:

• Blocksworld, Logistics, and Miconic (ADL) for propositional planning.

• Zeno Travel, Depots, and Rovers for numeric planning.

Pyperplan was only evaluated on the Blocksworld and Logistics domains due to its

lack of support for ADL. FastDownward was evaluated on all propositional domains,

while ENHSP was evaluated on the numeric domains. SymbolicPlanners.jl was evalu-

ated on all domains, using both the PDDL.jl interpreter and compiler. All evaluation

runs were performed on an Intel Core i7-8665U CPU @ 2.11 GHz with 16.0 GB of

RAM with a 64-bit Windows 10 Pro operating system, with three runs per problem,

and a time limit of 180 seconds per run. Each planning system was configured to use

the same planning algorithm and heuristic (or the closest possible), so as to evaluate

the performance difference arising from implementational efficiency. To investigate

the impact of heuristic guidance versus implementation efficiency, we also conducted

a two-way comparison within SymbolicPlanners.jl, altering both the informativity of

the search heuristic and the implementation used (interpreter vs. compiler) to assess

the contribution of each to high-performance planning.
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Figure 6-1: Runtime vs. problem size (number of blocks) for Blocksworld problems
across planning heuristics and PDDL.jl implementations. GC refers to the uninfor-
mative goal count heuristic. HAdd refers to the ℎadd heuristic. A* search was used
in all cases. Error bars show standard deviations across runs for each problem size.

Figure 6-1 compares runtimes across different planning heuristics and PDDL.jl

implementations in the Blocksworld domain, while Table 6.2 summarizes this com-

parison across all propositional domains. As can be seen from Figure 6-1, compilation

leads to a constant factor improvement in runtime regardless of planning heuristic.

In contrast, the choice of planning heuristic strongly affects the rate of exponential

growth of runtime as a function of problem size — using an informative heuristic such

as ℎadd leads to much slower growth in search complexity relative to the uninformed

goal count heuristic (which counts the number of unsatisfied sub-goals). These trends

hold across domains, as shown by Table 6.2: Compilation improves median runtime

by about one order of magnitude, while using the goal count heuristic is one to three

orders of magnitude slower than ℎadd. This is due to the much larger number of nodes

expanded during search when using the goal count heuristic, which has a log node

expansion ratio of 4 to 7 relative to ℎadd, indicating rapid exponential growth.
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Relative Runtime: Q1 | M | Q3

hadd Goal Count
Domain Compiled Interpreted Compiled Interpreted

Blocksworld 1.0 | 1.0 | 1.0 4.6 | 6.4 | 8.8 ×100 0.1 | 0.7 | 6.0 ×101 0.2 | 1.1 | 6.9 ×102

Logistics 1.0 | 1.0 | 1.0 0.6 | 1.1 | 1.8 ×101 0.2 | 0.5 | 1.5 ×103 3.2 | 5.7 | 9.6 ×103

Miconic 1.0 | 1.0 | 1.0 1.0 | 1.2 | 1.4 ×101 0.1 | 0.5 | 4.9 ×102 0.1 | 0.5 | 2.2 ×103

Log Node Expansion Ratio: Q1 | M | Q3

Domain hadd Goal Count

Blocksworld 0.0 | 0.0 | 0.0 1.8 | 5.0 | 5.9
Logistics 0.0 | 0.0 | 0.0 6.0 | 7.0 | 7.9
Miconic 0.0 | 0.0 | 0.0 2.1 | 4.2 | 6.8

Table 6.2: Runtime and log node expansions for A* search in SymbolicPlanners.jl
using different heuristics and PDDL.jl implementations, measured relative to the
compiled implementation using the ℎadd heuristic. In each cell, we report the first
quartile (Q1), median (M), and third quartile (Q3) across solved problems.

When we fix the heuristic to ℎadd and compare performance across different plan-

ning systems using A* search, we find that SymbolicPlanners.jl is highly competitive

with existing software. As Figure 6-2 shows, SymbolicPlanners.jl is consistently faster

than Pyperplan in the Blocksworld domain. This is especially true when using the

PDDL.jl compiler, which delivers more than an order of magnitude speed-up over

Pyperplan. Compared to FastDownward, which represents the state-of-the-art, Sym-

bolicPlanners.jl also performs competitively, achieving faster or equivalent runtimes

when using the PDDL.jl compiler on smaller problems, and staying within an order

of magnitude for larger problems.

These trends are again borne out across different domains, as shown by Table 6.3.

On both the Blocksworld and Logistics domains, SymbolicPlanners.jl is between 15 to

23 times faster than Pyperplan in terms of median runtime. Across all propositional

domains, it is only about 3 times slower than FastDownward. Given that Symbolic-

Planners.jl is considerably more general than both Pyperplan and FastDownward in

terms of features and language support, these results imply that it and PDDL.jl can

replace Pyperplan as a more performant high-level platform for automated planning

research, and also serve as a viable alternative to FastDownward, especially when

some performance is worth sacrificing for generality and extensibility.
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Figure 6-2: Runtime vs. problem size (number of blocks) for Blocksworld problems,
compared across Pyperplan, FastDownward, and SymbolicPlanners.jl using both the
PDDL.jl interpreter and compiler. A* search with the ℎadd heuristic was used in all
cases. Error bars show standard deviations across runs for each problem size.

Relative Runtime: Q1 | M | Q3
(Fraction Solved)

SymbolicPlanners.jl Pyperplan FastDownward ENHSP
Domain Compiled Interpreted [38] [17] [21, 22]

Blocksworld 1.0 | 1.0 | 1.0 4.6 | 6.4 | 8.8 19. | 23. | 53. 0.2 | 0.3 | 1.2 —(26 / 26) (26 / 26) (26 / 26) (26 / 26)

Logistics 1.0 | 1.0 | 1.0 6.4 | 11. | 18. 10. | 15. | 23. 0.1 | 0.3 | 0.5 —(23 / 24) (23 / 24) (23 / 24) (23 / 24)

Miconic 1.0 | 1.0 | 1.0 10. | 12. | 14. — 0.1 | 0.3 | 0.6 —(150 / 150) (150 / 150) (150 / 150)

Zeno Travel 1.0 | 1.0 | 1.0 8.7 | 9.8 | 12. — — 5.0 | 7.0 | 36.
(13 / 15) (13 / 15) (13 / 15)

Depots 1.0 | 1.0 | 1.0 8.7 | 9.3 | 9.5 — — 0.7 | 1.1 | 8.1
(8 / 10) (4 / 10) (8 / 10)

Rovers 1.0 | 1.0 | 1.0 19. | 22. | 27. — — 2.5 | 2.5 | 2.5
(6 / 10) (4 / 10) (1 / 10)

Table 6.3: Relative runtime and fraction of problems solved within the time limit,
compared across different planning systems and domains. Runtimes are relative to
SymbolicPlanners.jl using the PDDL.jl compiler. In each cell, we report the first
quartile (Q1), median (M), and third quartile (Q3) across solved problems.
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One important way in which SymbolicPlanners.jl is more general than FastDown-

ward and Pyperplan is its support for numeric domains. Table 6.3 also summarizes

its performance on such domains, comparing against ENHSP as a baseline. Specifi-

cally, we use ENHSP-20 with A* search and its generalization of the ℎadd heuristic to

support numeric subgoals [22]. For SymbolicPlanners.jl, we use a similar but simpler

generalization of ℎadd to numeric domains which avoids the need for interval-based

relaxations (supported by the PDDL.jl abstract interpreter (Chapter 4), but currently

not optimized for use in a ℎadd-style heuristic) at the cost of some informativeness.

We also ignore non-unit action costs, using each system to find a plan that satisfices

rather than optimizes. The results show that SymbolicPlanners.jl generally outcom-

petes ENHSP in this setting, solving all problems that ENHSP is capable of solving

before timing out, while achieving median runtimes that are 1.1 to 7.0 times faster.

On the Rovers domain in particular, SymbolicPlanners.jl is able to solve 6 out of 10

problems within the time limit, whereas EHNSP only solves 1 out of 10, though this

may partly be due to the choice of heuristic and planning algorithm.

The results described in this section demonstrate that using PDDL.jl for symbolic

planning is a compelling alternative to existing systems in terms of both generality and

performance. However, the utility of PDDL.jl is not limited to planning algorithms

alone. In the following sections, we show how PDDL.jl can be flexibly composed with

other libraries via its interface, enabling a wide range of contemporary AI applications.

6.2 Environments for Reinforcement Learning

Reinforcement learning (RL) methods have become highly popular in recent years,

in part due to their ability to achieve super-human performance on complex sequen-

tial decision-making problems via integration with deep neural networks [84, 85, 86].

However, the time required to train such (typically model-free) methods is often

many orders of magnitude greater than the time required for planning by model-

based methods [87], such as the heuristic search algorithms considered in Section 6.1.

To facilitate comparisons between each of these approaches, and to enable the de-
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"Construct a symbolic MDP from a PDDL domain and problem."
function SymbolicMDP(domain::Domain, problem::Problem)

state = PDDL.initstate(domain, problem)
goal = PDDL.get_goal(problem)
metric = PDDL.get_metric(problem)
if metric !== nothing # Extract metric formula to minimize

metric = metric.name == :minimize ?
metric.args[1] : Compound(:-, metric.args)

end
return SymbolicMDP(domain, state, goal, metric)

end

POMDPs.initialstate(m::SymbolicMDP) =
Deterministic(m.init)

POMDPs.actions(m::SymbolicMDP, s) =
PDDL.available(m.domain, s)

POMDPs.transition(m::SymbolicMDP, s, a) =
Deterministic(PDDL.transition(m.domain, s, a))

POMDPs.reward(m::SymbolicMDP, s, a, sp) = m.metric === nothing ?
-1 : PDDL.evaluate(domain, s, m.metric) - PDDL.evaluate(domain, sp, m.metric)

POMDPs.discount(m::SymbolicMDP) =
m.discount

POMDPs.isterminal(m::SymbolicMDP, s) =
PDDL.satisfy(m.domain, s, m.goal)

Figure 6-3: SymbolicMDPs.jl, a MDP and RL environment interface for PDDL do-
mains, can be easily implemented by wrapping the PDDL.jl interface within the
POMDPs.jl package due to their close correspondence.

velopment of hybrid planning algorithms that combine their advantages [28, 29, 81],

it is thus helpful to encapsulate symbolic PDDL domains and problems within RL

environments, allowing them to be used with contemporary RL algorithms.

PDDL.jl supports this functionality, because its interface is easily composed with

existing frameworks for RL and Markov decision processes (MDPs). As a demonstra-

tion, we present SymbolicMDPs.jl [34], a library which provides exactly this func-

tionality by integrating PDDL.jl with the POMDPs.jl library for partially observable

MDPs [88], allowing a wide range of MDP solvers to be applied to PDDL domains.

Since POMDPs.jl interoperates with the ReinforcementLearning.jl library for RL en-

vironments and algorithms [89], as well as the AlphaZero.jl library for neurally-guided

MCTS [90, 91], this also means that a plethora of modern deep RL algorithms can

be tested on PDDL problems and compared against symbolic planning algorithms.

Figure 6-3 shows an excerpt of the source code of SymbolicMDPs.jl. The PDDL.jl
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interface closely mirrors the POMDPs.jl interface and the underlying concepts that

define MDPs. As a result, most of the implementation is extremely straightforward,

consisting of one-line mappings between POMDPs.jl and PDDL.jl methods.

SymbolicMDPs.jl is similar to and inspired by PDDLGym [92], a Python library

that allows PDDL domains and problems to be used as OpenAI Gym environments

[93] for reinforcement learning. We thus use it as a baseline for comparison. We omit

a full feature comparison as both libraries remain in development, noting only that

while PDDLGym benefits from easier integration with machine learning algorithms

in the Python ecosystem, it does not currently support some language features that

SymbolicMDPs.jl inherits from PDDL.jl, especially the ability to handle numeric flu-

ents and conditional effects. For performance, we compare the frames per second

(FPS) that a PDDL-based RL environment can be simulated at, since fast simula-

tion means learning can occur at a faster pace. Results are shown in Table 6.4 for

a representative sample of domains supported by PDDLGym. On most domains,

SymbolicMDPs.jl with the PDDL.jl compiler is the fastest, though on domains such

as Sokoban and Depot, the PDDL.jl interpreter or PDDLGym is faster. This is likely

due to the dynamic action grounding strategy used by the interpreter being consid-

erably faster when there are large numbers of possible ground actions, as in Sokoban.

Future improvements to the compiler (Section 5.3) may reverse this trend.

Frames Per Second

SymbolicMDPs.jl PDDLGym
Domain Compiled Interpreted Sep 2020 [92]

Meet-Pass 32787 16260 7380
Blocksworld 25316 4587 7064
Baking 4219 1356 5897
Hanoi 22472 12579 4580
USA Travel 3846 27 1251
Doors 1034 1812 917
Sokoban 3 1190 155
Depot 41 38 97

Table 6.4: Frames per second (FPS) for eight PDDL-based RL environments, com-
pared across SymbolicMDPs.jl and PDDLGym. Results for PDDLGym are from [92].
For SymbolicMDPs.jl, we adopt a similar evaluation procedure, measuring average
FPS for a domain by running a random policy for 10 timesteps over 200 episodes.
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We conclude this section with a brief survey of RL algorithm research that Sym-

bolicMDPs.jl might enable. Since environment states in SymbolicMDPs.jl support

the same interface defined by PDDL.jl, we can query the value of relations between

objects in the state, enabling deep relational reinforcement learning [94, 28] by con-

verting states into representations suitable for graph and hypergraph neural networks

[95, 79, 96]. In addition, since we can easily specify goals in terms of logical formulae,

this enables research into goal-driven curiosity learning via goal sampling [87, 97].

Finally, because domain-general heuristics can be used as estimates of the cost to

reach a goal, they can be integrated with RL algorithms to either initialize value

function estimators, or serve as proxy rewards [81]. By tightly integrating the en-

gineering stack required for both symbolic planning and reinforcement learning, we

believe that PDDL.jl and SymbolicMDPs.jl will be a significant aid to AI researchers

pursuing these and many other directions.

6.3 State Estimation from Partial Observations

Planning in the real world requires reasoning under uncertainty. Details of the world

relevant to planning are often only partially observable, and sensors are often imper-

fect, leading to noisy observations. Contending with this uncertainty is thus a key

challenge for real world deployments of automated planning, such as in househould

robots and autonomous driving. Indeed, a traditional pitfall of classical approaches

to planning is that they assume determinism in their symbolic models of the world,

leading to brittleness when that deterministic assumption proves wrong.

While PDDL.jl inherits the legacy of classical AI, it is not beholden to its limita-

tions when faced with uncertainty. In addition to supporting probabilistic extensions

(Section 2.5.2), it can also be integrated with modern AI systems for reasoning about

uncertainty, such as probabilistic programming libraries [98]. In this section, we show

how PDDL.jl can be composed with Gen, a probabilistic programming system that

provides a high-level interface for customizable inference [99], enabling estimation of

PDDL states from partial or noisy observations in a principled Bayesian manner.
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@gen function bw_observe(state::State)
for x in PDDL.get_objects(state, :block)

# Look up whether block is clear
is_clear = PDDL.get_fluent(state, pddl"(clear $x)")
# Sample observed value of clear with high probability
{:clear => x.name} ~ Gen.bernoulli(is_clear ? 0.9 : 0.1)

end
end

(a) Observation model
@gen function bw_model(domain::Domain, N::Int, T::Int)

# Sample initial state and observation
state ~ bw_prior(domain, N)
{:obs => :init} ~ bw_observe(state)
for t in 1:T

# Sample and execute a random available action
act ~ Gen.labeled_uniform(PDDL.available(domain, state))
state = PDDL.transition(domain, state, act)
# Sample observations given current state
{:obs => t} ~ bw_observe(state)

end
end

(b) State space model
function bw_inference(domain, n_blocks,

n_particles, observations)
# Initialize filter with samples from model
pf = pf_initialize(bw_model, (domain, n_blocks, 0),

observations[1], n_particles)
for t in 1:length(observations)-1

# Resample particles according to normalized weights
pf_resample!(pf)
# Increment timestep, condition on next observation
pf_update!(pf, (domain, n_blocks, t),

(NoChange(), NoChange(), UnknownChange()),
observations[t])

end
return pf

end

(c) Particle filter for state estimation
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Figure 6-4: State estimation over a partially observable Blocksworld environment
using PDDL.jl and Gen, specified by combining a PDDL domain (Figure 1-1) with
(a) an observation model where only the top-most (i.e. clear) blocks are visible, and
(b) a state space model. Inference is performed via (c) a particle filter written with
Gen’s building blocks, producing (d) an inferred distribution over state trajectories.

Figure 6-4 shows how to perform state estimation from a sequence of partial

observations of Blocksworld states (Figure 1-1) using PDDL.jl and Gen. In this

example, we make the simplified assumption that only the top-most block of any

tower is observable (i.e., as if the observer is looking at the scene from top-down),

mimicking the occlusion relations that exist in real 3D settings. We specify this

observation model in Figure 6-4(a) as a Gen probabilistic program (bw_observe),

which takes as input a PDDL.jl State, iterates over each block ?x in the state, and

samples an observed value of the predicate (clear ?x) that is correct with 90%

probability (due to e.g. sensor noise). The predicate (clear ?x) indicates whether
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a block has no other block on top of it, and hence is observable. Values of other

fluents are not sampled, because they are assumed to be unobservable. Because

PDDL.jl exposes fluent values through the get_fluent method (Definition 2.2.2), we

can easily define observation models over PDDL states and their fluents in this way.

Having specified the observation model, we integrate this into a full state space

model (bw_model) in Figure 6-4(b), which includes a prior (bw_prior) over initial

Blocksworld states, and a transition distribution between states. For the prior, we

assume we know the total number of blocks 𝑛, and sample an initial state uniformly at

random using the algorithm given by Slaney and Thiébaux [100]. For the transition

model, we sample an available action uniformly at random and execute it on the

current state. Finally, we can perform inference over this model using the particle

filtering algorithm shown in Figure 6-4(c). We initialize the filter by sampling a set

of particles from the prior over initial states, then iteratively update the filter by

incrementing the timestep, reweighting particles by the likelihood of new (partial)

observations at that timestep, and resampling particles according to their normalized

weights. Figure 6-4(d) shows this inference process in action over a sequence of partial

observations of a Blocksworld state with four blocks, using 1500 particles. At 𝑡 = 1,

only block a and b are visible, so the particle filter estimates similar probabilities for

all six states that are consistent with the observations (i.e. where the observed blocks

are at the top of a tower). With more observations, the particles converge towards

two states (𝑡 = 3) and then one state (𝑡 = 5) as the most likely possibility, due to the

blocks newly observed as they are stacked and unstacked.

We note that the particle filtering algorithm described above is the most basic

variant of sequential importance resampling [101], using the model itself as the pro-

posal distribution. Even so, we achieve rapid inference, with each timestep 𝑡 requiring

approximately 0.06 seconds when using the PDDL.jl compiler with Gen, and sam-

pling 1500 particles. However, as the number of blocks increases, the exponential

increase in possible initial states and trajectory branches means that sampling from

the prior may no longer be tractable. Fortunately, Gen also allows us to initialize

and update our particle filter using custom proposal distributions specified as prob-
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abilistic programs [102]. For example, we could initialize the filter using a program

that biasedly samples Blocksworld states consistent with the initial observations. We

could also propose actions between states that are more likely given the observations

(e.g. if block b is visible in one state, and c in the next, this is likely due to block

b being unstacked from c). This ability to customize inference means that inference

algorithms can be easily be tailored for particular domains and application contexts.

Directly estimating PDDL states in this way has many downstream applications.

One immediate application is that it allows symbolic planners to be extended to

partially observable environments, while avoiding the need for hand-implemented

belief-space representations and inference algorithms often used in robotics research

[103, 104]. By combining PDDL.jl with Gen or other probabilistic programming sys-

tems, we can take advantage of their interfaces and algorithms to infer variational or

particle-based beliefs about the current state under a wide variety of partial observ-

ability conditions. These inferred distributions can then be combined with partially-

observable planning algorithms, such as online replanning from sampled states [105],

or heuristic-guided variants of MCTS [106]. Another use case is Bayesian goal infer-

ence over agents operating in PDDL-specifiable domains [30]. State estimation is a

sub-problem of this complex inference task that combines planning algorithms and

partially observable environment models, which we turn to in the next section.

6.4 Goal Inference via Bayesian Inverse Planning

Many symbolic planning algorithms were initially inspired by how humans solve prob-

lems, either by working backwards from a goal [1], or by thinking ahead from the cur-

rent state of the world while guided by heuristics [107]. This suggests using them as

models of human planning and decision-making, allowing for prediction or inference

over how humans might think or act. Indeed, this is exactly the approach adopted by

a line of research known as Bayesian inverse planning, where planning algorithms are

incorporated within Bayesian models of goal-directed agents, allowing for posterior

inference over their goals and plans from observations of their environment and ac-
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Goal inference over a boundedly-rational planning agent in a PDDL domain

Figure 6-5: Visualization of goal inference in a PDDL domain, adapted from [30].
Using PDDL.jl with Gen, we can build models of agents that plan in PDDL domains,
such as this gridworld with doors, keys and gems. From sequential observations of
the environment, we can eventually infer the agent’s true goal (the blue gem).

tions [108, 109, 110, 111]. Research in cognitive science has shown that this approach

can account for how humans model and understand the actions of others, constituting

a formal scientific framework known as Bayesian theory of mind [112, 113, 114]. Re-

cent work by the author [30] has extended this approach to model boundedly-rational

planning using Gen and an earlier version of PDDL.jl (Figure 6-5). In this section,

we illustrate how PDDL.jl can be used to build such models, and how accelerated

inference over these models is enabled by features of PDDL.jl presented in this thesis.

A key insight of recent approaches to Bayesian inverse planning is that (stochastic)

planning algorithms can be viewed as probabilistic programs that define distributions

over randomly generated plans [109, 110, 111]. As such, we can use off-the-shelf

stochastic planners such as the RTDP and MCTS algorithms included in Symbol-

icPlanners.jl as modeling components, and perform sampling-based inference over

their inputs (e.g. goals) and outputs (e.g. action sequences). Alternatively, planning

algorithms can be directly specified as Gen programs to afford control over their in-

ternal random choices, or even automatically transformed into Gen using tools such

as Genify [115]. In [30], we adopted the second approach, specifying a probabilistic

variant of A* search as a Gen program that uses the PDDL.jl interface.
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@gen function prob_astar(domain::Domain, state::State, goal::Term,
heuristic, search_noise, search_budget)

# Initialize search tree and search queue
tree = Dict(state => (distance=0, parent=state))
queue = Dict(state => -heuristic(domain, state, goal))
count = 0
while !isempty(queue)

# Sample next state from Boltzmann distribution over queue
state ~ Gen.boltzmann(keys(queue), values(queue), search_noise)
delete!(queue, state)
count += 1
# Return plan to sampled state if budget or goal is reached
if count >= search_budget || PDDL.satisfy(domain, state, goal)

return reconstruct_plan(state, tree)
end
# Otherwise iterate over successor states
for act in PDDL.available(domain, state)

next_state = PDDL.transition(domain, state, act)
dist = tree[state].distance + 1
# Update search tree and queue if shorter path is found
if dist < tree[next_state].distance

tree[next_state] = (distance=dist, parent=state)
queue[next_state] = -(dist + heuristic(domain, state, goal))

end
end

end
return nothing

end

(a) Probabilistic A* search as a generative model in Gen using PDDL.jl

@gen function agent_env_model(domain::Domain, state::State, T::Int,
heuristic, search_noise, persistence)

# Sample initial goal and observations
goal ~ goal_prior()
{:obs => :init} ~ obs_model(state)
for t in 1:T

if length(plan) < t
# Sample search budget from negative binomial
budget ~ Gen.neg_binom(persistence...)
# Sample partial plan via probabilistic A* search
part_plan ~ prob_astar(domain, state, goal,

heuristic, search_noise, budget)
append!(plan, part_plan)

end
# Execute action according to plan
act = plan[t]
state = PDDL.transition(domain, state, act)
# Sample observations given current state
{:obs => t} ~ obs_model(state)

end
end

(b) Generative model of a planning agent interacting with a PDDL environment.

Figure 6-6: Generative models for Bayesian inverse planning using PDDL.jl and Gen.
We model an agent that (a) plans using probabilistic A* search and (b) interacts
with a PDDL environment over time to pursue an unknown goal. Conditioning on
observations {:obs => t} of the environment allows us to infer the agent’s goals.
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Figure 6-6(a) shows a simplified version of this algorithm (prob_astar), high-

lighting again how PDDL.jl can be composed with Gen to build complex probabilis-

tic models. As in standard A* search, we plan forward from the initial state by

iteratively expanding neighboring states, guided by a heuristic (as provided by e.g.

SymbolicPlanners.jl) that estimates the distance to the goal, until we reach the goal

or use up a search budget. However, probabilistic A* samples the state to expand

according to a Boltzmann distribution over the estimated path costs, such that more

promising states are expanded more often, but not all the time. This mimics how

human planning is generally efficient, but may not always be optimal.

We can incorporate this algorithm into the agent-environment model shown in

Figure 6-6(b). Like the state space model in Figure 6-4(b), this model simulates the

evolution of a PDDL environment over time, including potentially noisy observations

defined by an observation model (obs_model). However, it also models the goals,

plans and actions of an agent interacting with the environment. Initially, the agent

pursues an unknown goal, which we sample from a prior (goal_prior). At each

subsequent time step, the agent starts planning only if its existing plan does not

extend to the current step, first sampling a search budget, then extending its plan with

a partial plan generated via probabilistic A* search (prob_astar). The agent then

executes an action according to its plan, which changes the environment’s state per the

transition function specified by the PDDL domain. Goal inference can be performed

by conditioning on observations of the environment’s state, using a particle filtering

algorithm similar to Figure 6-4(c) called Sequential Inverse Plan Search (SIPS) [30].

An example of goal inference on a PDDL domain called Doors, Keys & Gems is

illustrated in Figure 6-5. In this domain, the agent’s goal is to collect one of three

colored gems. The inferred distribution over goals is initially uncertain (𝑡 = 4), but

converges towards the blue gem as other possibilities are eliminated (𝑡 = 21).

Since our key focus here is on how PDDL.jl enables applications such as goal

inference, we avoid further exposition of the SIPS algorithm and refer readers to [30]

and [114] for technical details and motivations. The only feature of SIPS we highlight

is that, as a particle filtering algorithm, it benefits from the ability to efficiently
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simulate more particles (a.k.a. samples), where each particle corresponds to a possible

way the agent-environment model (Figure 6-6(b)) could evolve: With more particles,

more accurate estimation of the posterior distribution is possible [116]. This in turn

means that faster planning algorithms and PDDL implementations should enable

more accurate and efficient inference by reducing the runtime cost for each particle.a

To evaluate whether PDDL.jl delivers these benefits, we reproduce the quantita-

tive goal inference experiments on the Doors, Keys & Gems and Block Words domains

from [30] with a few adjustments. In addition to testing the older version of PDDL.jl

(v0.1) and associated code from the original experiments, we re-run the experiments

using the updated version of PDDL.jl (v0.2) presented in this thesis, evaluating both

the interpreter and compiler. For the Doors, Keys & Gems domain, we update the rep-

resentation to use compact array-valued fluents as a custom semantic theory (Section

3.2). For the Block Words domain (a version of Blocksworld where goals correspond

to words spelled from lettered blocks), we also use a faster implementation of the ℎadd

heuristic from SymbolicPlanners.jl (Section 6.1). Finally, we adjust the number of

samples used by the particle filter, using either 10 samples or 50 samples per goal to

investigate the impact on speed and accuracy.

Domain Configuration Accuracy (𝑃true) Runtime (s)
(𝑛 Goals) PDDL.jl Compiled Samples Q1 Q2 Q3 IC MC AC

Doors,
Keys & Gems

(3 Goals)

v0.1 No 30 0.38 0.50 0.65 3.36 0.15 0.30
v0.2 No 30 0.37 0.50 0.68 3.25 0.07 0.24
v0.2 No 150 0.38 0.53 0.67 4.32 0.18 0.39
v0.2 Yes 30 0.37 0.51 0.66 0.41 0.01 0.03
v0.2 Yes 150 0.39 0.52 0.67 0.71 0.04 0.08

Block Words
(5 Goals)

v0.1 No 50 0.46 0.79 0.82 10.3 0.96 1.82
v0.2 No 50 0.47 0.80 0.84 1.63 0.16 0.30
v0.2 No 250 0.47 0.84 0.90 5.85 0.88 1.34
v0.2 Yes 50 0.48 0.82 0.86 0.76 0.09 0.16
v0.2 Yes 250 0.48 0.85 0.89 2.00 0.39 0.54

Table 6.5: Accuracy and runtime metrics for goal inference over PDDL domains.
Accuracy is measured as the posterior probability of the true goal 𝑃true at the 1st,
2nd and 3rd quartiles (Q1–Q3) of each observed trajectory. Runtime is measured
in seconds, split into initial cost (IC), marginal cost per timestep (MC), and average
cost per timestep (AC). Reported values are means across a dataset from [30], further
averaged over 5 repetitions. Bolded values are within the 95% CI of the best value.
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Table 6.5 shows accuracy and runtime metrics for these experiments, conducted

on the same system as described in Section 6.1. In terms of accuracy, we find as

expected that both the older and current versions of PDDL.jl perform similarly when

the number of samples is fixed. With 5 times as many samples, we generally do not

see significant improvements on the Doors, Keys & Gems domain, but find 2% to 8%

increases in Q2 and Q3 accuracy on Block Words. This might be due to Block Words

having a larger goal and state space than Doors, Keys & Gems, such that more

particles allow for better coverage during inference. In terms of runtime however,

we find that the new version of PDDL.jl leads to considerable improvements. This is

especially so for the compiled implementation. With the same sample count, inference

on Doors, Keys and Gems is 10 times faster relative to PDDL.jl v0.1 (which does not

support compilation), and 3.75 times faster even when using 5 times as many samples.

We see similar speed-ups on Block Words, with inference running 11 times faster for

given equal sample counts, and 3.4 times faster with 5 times more samples. Absolute

runtime is low as well. Each environment timestep requires 0.03 to 0.54 seconds to

process for the compiled implementation, which is faster than real-time if each step

lasts on the order of seconds in the real world (e.g. a human stacking a block).

These improvements in runtime result from several contributions described in

this thesis. On the Doors, Keys & Gems domain, array-valued fluents (Section 3.2)

reduce the memory required to represent a gridworld state, which otherwise has to

store a large number of Boolean fluents for every wall that is present. On the Block

Words domain, a faster implementation of ℎadd is possible due to static analysis tools

provided by PDDL.jl (Section 5.3), reducing initial planning cost. This is why even

the interpreter for PDDL.jl v0.2 runs faster. Finally, compiled state representations

(Section 5.1) and action semantics (Section 5.2) provide further constant factor speed-

ups. Collectively, these features of PDDL.jl enable not only the construction of highly

complex agent models, but also high performance inference over these models. It is

our hope that these contributions will accelerate the development of such models and

inference algorithms, thereby facilitating the creation of beneficial AI technologies

which assist humans by accurately inferring their preferences, values and goals [117].
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6.5 Other Applications and Future Work

Over the course of this thesis as a whole, we have explored the many ways in which

PDDL.jl serves as a fast and flexible platform for applications of automated planning

and many other connected areas of AI research. This final section summarizes some

of the broad themes from that exploration, elaborating upon them in the context of

potential applications and directions for future work.

The first theme is the value of well-designed interfaces, which carve the conceptual

space of symbolic planning at pragmatically felicitous joints. While PDDL.jl makes

no claim as to providing the optimal design for a symbolic planning interface, the

modularity imposed by its interfaces is a key factor in enabling the many applica-

tions described in this chapter. Many of the contributions of the Chapters 3–5 also

rely upon a clean separation between interface and implementation (interpreted, ab-

stracted, or compiled). Indeed, questions about interface design surface in many of

those chapters as well: how should the interpreter and compiler be designed to be

extensible, and for abstractions to be customizable? By carefully providing solutions

to these questions, PDDL.jl paves the way for a wide range of functionality extensions

in the coming years. These include most of the extensions described in Section 2.5, all

of which will go a long way towards bringing PDDL.jl to the “real world”. Of these,

supporting stochastic environments and task-and-motion planning will be especially

useful for bringing PDDL.jl to robotics applications.

The second theme is the power of formal analyses and abstractions, for the pur-

poses of both domain abstraction (Chapter 4) and domain compilation (Chapter 5).

While this theme has largely faded from the limelight of AI research, the experiments

in this chapter clearly demonstrate that both abstraction (in heuristics) and compila-

tion have a significant impact on efficiency and performance. As discussed in the final

sections of Chapters 4 and 5, there are many more ways to explore how abstractions

and analyses could bring further performance improvements, or even deliver entirely

new capabilities. One particularly exciting possibility is the use of abstract inter-

pretation in the context of program synthesis for generalized plans. Programming
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language researchers have spent many years exploring formal approaches to improv-

ing synthesis and search over the space of programs. The time is ripe for planning

researchers to explore translating these ideas to the context of generalized planning, or

perhaps vice versa. By providing a planning framework that prioritizes the ability to

conduct and make use of formal and abstract analyses, we envision that PDDL.jl will

enable the multifarious connections that exist between planning and programming to

coalesce into concrete research.

The final theme is the richness of composition, integration, and hybridization of

PDDL.jl with other technology platforms. While this echoes the first theme, our

focus here is more upon the creative possibilities enabled by well-designed interfaces,

as demonstrated by the latter three applications of this chapter. In each case, we

showed that PDDL.jl flexibly composes with AI technology from a different subfield,

allowing for the creation of applications beyond the reach of symbolic planning alone.

To the extent that the next wave of AI technologies are likely to be hybrid applications

such as these [26], this is a source of of tremendous value. The promise of composable

platforms like PDDL.jl is that they can draw together disparate paradigms, toolkits,

and research agendas, allowing them to be productively compared and combined in

informative, ambitious, and exiting new ways. Just to list some possibilities, we

noted earlier that SymbolicMDPs.jl naturally enables research into neuro-symbolic

reinforcement learning, including model-free agents whose neural networks learn to

directly approximate the value of relational states [28], but also model-based agents

that combine state space search with neural heuristic learning [91]. On the Bayesian

front, we could imagine using PDDL.jl with Gen for Bayesian program induction

over PDDL domain theories, which could in turn be integrated into a model-based

RL algorithm that combines model learning, neural heuristics, and explicit search.

With advances in planning algorithms, we could also build ever richer agent models

for Bayesian inverse planning, allowing assistive machines to better understand the

complexity of our goals and intentions. These are but a sampling of the full-breadth

of possibilities that PDDL.jl might enable. Whether it delivers on those possibilities

shall be a question for future work.
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