
Stubborn: A Strong Baseline for the Indoor Object
Navigation Task

by

Haokuan Luo

B.S. Computer Science and Engineering

Massachusetts Institute of Technology, 2021

Submitted to the

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 13, 2022

Certified by. .
Pulkit Agrawal

Assistant Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

Stubborn: A Strong Baseline for the Indoor Object

Navigation Task

by

Haokuan Luo

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This work studies the task of indoor object goal navigation, a widely-studied task that
requires the agent to navigate to an instance of a given object category in unseen
indoor environments. Previous state-of-the-art methods to this task include map-
free end-to-end learning-based methods and methods that maintain and plan with
spatial maps, but they both struggle to perform well in the task. Experiments show
that the primary reasons for failures are poor exploration, agent getting trapped, and
inaccurate object identification. For exploration strategy, we show that previous map-
based methods fail to use semantic clues effectively and present our semantic-agnostic
exploration strategy that proves to perform much better. For object identification,
we show that using cumulative information across multiple frames leads to higher
accuracy in object identification. We additionally present our methods for decreasing
the agent’s chance of getting stuck. The combination of our work leads to the winning
entry on the leader board of the CVPR Habitat ObjectNav challenge.

Thesis Supervisor: Pulkit Agrawal
Title: Assistant Professor

2

Contents

1 Introduction . 4

2 Related Work . 5

3 Experimental Setup . 7

4 Agent Behavior Analysis . 8

4.1 Goal-Oriented Semantic Policy 9

4.2 End-to-End Auxiliary Task Agent 11

5 Method . 11

5.1 Task definition . 12

5.2 Overview . 12

5.3 Mapping Module . 13

5.4 Global Goal Module . 14

5.5 Path Planning Module . 17

5.6 Object Detection Module . 18

5.7 Summary . 21

6 Results . 22

6.1 Exploration Efficiency . 23

6.2 Collision Avoidance . 24

6.3 Object Identification . 25

6.4 Performance on the Habitat Challenge 26

3

1 Introduction

The task of indoor object goal navigation requires an agent to navigate to an instance

of an object goal (i.e. bed or table) in an unseen indoor environment. While this

task is easy for a human, it becomes much more challenging for computers. Consider

a human being in an unseen environment with the task of finding the bed. Humans

naturally observe the environment and build global semantic maps in their brains.

With the global map, humans perform deduction on where to explore to maximize

the chance of finding a bed. However, this reasoning process poses a considerable

challenge to computers since it requires estimating accurate spatial and semantic

map, efficient planning algorithms, and associating ego-centric views to the map.

The complexity of the indoor object navigation task makes it a good testbed for

algorithms in robotics and machine learning, and the ability to efficiently reason over

the internal semantic global map and navigate around the environment is critical for a

variety of practical robotic applications (e.g. home robots). Map-based and Map-free

approaches are both used to solve the task of object navigation and achieve similar

performance. Map-free approaches [30, 15, 18, 19, 24, 10] usually use end-to-end

reinforcement learning with methods that encode memory implicitly such as LSTM

[12] or GRU [6]. While traditional end-to-end approaches suffer from many drawbacks

such as low sample efficiency [26] and poor generalization[30], recent advancement in

auxiliary tasks [31] addressed the low sample efficiency problem of end-to-end models,

making end-to-end models a viable approach to object goal navigation[30]. Map-based

approaches[4, 29], on the other hand, maintain explicit maps of the space and plan

accordingly. Those approaches have the advantage that they are easier to reason

about and more sample efficient than map-free approaches.

This work studies the failure modes of the state-of-the-art approaches of Object

Goal Navigation in both the map-based branch [4] and map-free branch [30] and

proposes a method that improved upon Goal-Oriented Semantic Policy(SemExp) [4],

the previous state-of-the-art approach in the map-based branch. Experimental re-

sults show that most failures are caused by goal misidentification, getting stuck, or

4

exploration. The proposed method, called Stubborn, makes three improvements cor-

responding to each of the major failure categories, which lead to the winning entry

on the leaderboard of the CVPR Habitat Object Navigation Challenge [1]. The im-

provements are listed below.

1. Exploration We show that current exploration strategy [4] that exploits se-

mantic information is unable to use it for object goal location inference. We

present a much simpler method that not only works better but also takes less

time and memory.

2. Object Goal Detection Current methods for object goal detection suffer from

object goal misidentification. We present a method for accumulating informa-

tion across multiple frames for detecting goal objects.

3. Getting Trapped We present 4 strategies for collision avoidance that over-

come the issue of agent getting trapped (caused by discretization in agent’s

localization in the global map [7, 8, 20], inaccuracy in depth observations[14],

and environment models of indoor spaces of the Habitat Challenge[22]).

2 Related Work

To find the goal object in an unseen environment, the agent needs to explore the

environment, infer goal object locations, and identify the goal object. We briefly

discuss prior work on the task of object navigation, as well as related work on semantic

maps and object detection.

Object Navigation Some recent works have approached object navigation via

end-to-end imitation or reinforcement learning approaches while implicitly learning

semantic priors within the models. Ye et al. [30] learn a policy via reinforcement

learning with auxiliary learning tasks and an exploration reward. Khandelwal et al.

[15] incorporate CLIP features for object navigation. Furthermore, Maksymets et al.

[18] augment scenes by inserting objects to increase object and trajectory diversity

during training. Mousavian et al. [19] use imitation learning to learn a policy. Wahid

5

et al. [24] address the similar problem of object navigation with continuous control

using Soft Actor-Critic [10].

In contrast, other works have built explicit spatial representations that are then

used in navigation, such as a map of the explored region in SLAM. Chaplot et al.

[4] propose a hierarchical SLAM-based approach, winning the 2020 iteration of the

Habitat Challenge [1]. The approach maintains a semantic map of the explored

region and used a learned model to learn semantic priors and predict goal locations

to find the target object. Similarly, Gupta et al. [9] construct a belief map to use

for planning. On the other hand, Yang et al. [29] use a topological representation,

constructing an object-to-object knowledge graph and using a graph convolutional

network to generate semantic priors.

Semantic Mapping One of the fundamental components of SLAM is the con-

struction of a 2D or 3D map. Particularly relevant in the case of object navigation

is the incorporation of semantics. Prior works have done so via probabilistic graph-

ical models [2] or learned computer vision models [32, 17]. As we follow the work of

Chaplot et al. [4], we instead learn semantic mapping using differentiable projection

operations.

Object Detection In addition to planning, object detection is a critical module

towards success. Recent works have generally drawn upon pre-trained models from

the computer vision community, mostly from semantic segmentation. For example,

Chaplot et al. [4] use Mask-RCNN [11] and DeepLabv3 [5], whereas Ye et al. [30]

use RedNet [13]. Additionally, with the increased interest in embodied tasks in re-

cent years, video semantic segmentation has also become a field of interest. Classic

semantic segmentation models do not necessarily perform as well in such an environ-

ment, as per-frame predictions can produce inconsistent results across time. Some

prior works have tried to improve accuracy by exploiting these temporal relationships,

such as [21] and [33], which use optical flow networks to propagate predictions. More

recently, Liu et al. (2020) instead incorporates temporal consistency as a component

of the loss and via knowledge distillation during training [16]. Similarly, Wang et al.

(2021) construct a memory and use attention to relate the current frame and previous

6

frames [25]. While we leave incorporating such techniques to future works, we try to

improve temporal consistency via an additional learned model that refines semantic

segmentation.

3 Experimental Setup

We follow the standard experimental setup used in Object Goal Navigation papers

[4, 30]: we run experiments on 2000 episodes of the validation split of the Matterport

3D dataset [3] in the Habitat Simulator[22]. The task config file is identical to the

one used in the habitat challenge, and we do not enforce any run-time limit.

For the semantic segmentation model used in object detection and segmentation

of the agents, we use a RedNet [13] model finetuned by Ye et al. on 100k randomly

sampled forward-facing views from Matterport 3D [30].

Metrics We introduce below the metrics we use in our experiments that’s referred

to in the rest of the paper:

• Success Rate The rate of success, which is defined as the agent being within

a certain distance threshold (1 meter) from the goal object category when it

stops.

• Success Measured by Path Length (SPL) SPL is used to measure the

agent’s efficiency in completing the task. SPL is calculated as

1

𝑁

𝑁∑︁
𝑖=1

𝑆𝑖
𝑙𝑖

max(𝑝𝑖, 𝑙𝑖)

where 𝑁 is the number of episodes, 𝑆𝑖 is the indicator variable for success, 𝑙𝑖 is

the shorted path between the agent and the closest instance of the goal category

object, and 𝑝𝑖 is the path length taken by the agent.

• Ground Truth (GT) Exploration Rate This metric is used to measure

the performance of the exploration strategy. It isolates exploration from other

factors that affect success such as object detection and object localization. The

7

agent explores successfully if it sees the goal object given the ground truth

semantic information. Formally, an agent is considered successful if the target

object appeared in the ground truth semantic mask of the agent’s view and it

occupies at least 0.8% of the pixels in the view. We call the success rate defined

above the “Ground-Truth Exploration Rate” (GT Exploration Rate).

• Plateau Rate This rate is used to measure how often the agent gets trapped.

An agent is considered trapped if it fails to move more than 1 meter for 100

steps. Different from other metrics, this metric is better when it is lower.

4 Agent Behavior Analysis

To improve the success rate in object navigation, it is important to understand the

failure modes of agents. We analyze failure modes of Goal-Oriented Semantic Policy

Agent (SemExp) [4] and End-to-End Auxiliary Task Agent (EEAux) [30]. We choose

them because they won the Habitat ObjectNav Challenge in 2020 and 2021 respec-

tively, and they used completely different methods, making them good representatives

of map-based and map-free approaches to spatial memory.

We break down the failure modes into 14 categories described below, based on the

ones defined in [30]. Note that we renamed the Detection mode Attention. Seven of

them are common to both SemExp and EEAux, six of them are unique to EEAux,

and one of them is unique to SemExp.

Common to Both:

• Explore A generic failure to find the goal despite steady exploration. Includes

semantic failures e.g. going outdoors to find a bed.

• Plateau Repeated collisions with the same or nearby objects cause a plateau

in coverage. Includes when the agent is trapped in spawn.

• Loop Poor exploration due to looping over the same locations or backtracking.

8

• Detection Didn’t detect the object even though it was in view.

• Misidentify Misidentified something as the goal.

• Stairs Agent had to navigate up/down stairs to reach the goal.

• Bad Mesh The house mesh has artifacts, mistakes, practically invisible obsta-

cles. (due to size) or other features that make navigation difficult.

Only in EEAux:

• Attention Despite positive SGE, the agent neither notices nor successfully

navigates to the goal.

• Last mile Gets stuck near the goal.

• Commitment Sees and approaches the goal but passes it.

• Open Explores an open area without any objects.

• Not Navigable Agent started at a location that cannot reach a goal object.

• Quit Agent stopped within roughly 10s with no apparent reason.

Only in SemExp:

• Localization Wrongly predicted goal object location in the 2D map after iden-

tifying it.

We now describe the distribution of failure modes in each method.

4.1 Goal-Oriented Semantic Policy

The Goal-Oriented Semantic Policy (SemExp) [4] won the 2020 Habitat ObjectNav

Challenge with a map-based approach. We ran the SemExp agent with the pre-

trained weights released by Chaplot et al. [4]. We sampled 200 episodes from the

validation episodes in the Matterport 3D [3] ObjectNav dataset for the agent to run.

Since the pre-trained weights released by Chaplot et al. only support 6 of the 21

9

Table 1: Breakdown of Failures of SemExp using predicted semantics, EEAux using
predicted semantics, EEAux using ground truth semantics, and Stubborn using pre-
dicted semantics

Failure Mode SemExp EEAux EEAux GT Stubborn
Misidentify 47.7± 9.0 32.6± 7.6 1.4± 1.1 45.1± 8.8

Stairs 12.6± 5.9 0.7± 1.0 6.9± 4.0 15.9± 6.0
Loop 10.8± 5.9 15.2± 5.6 22.2± 6.9 0.9± 0.9

Plateau 10.8± 5.4 23.2± 6.9 13.9± 5.8 8.0± 5.0
Bad Mesh 3.6± 3.2 0.7± 0.7 5.6± 3.6 7.1± 4.7
Detection 2.7± 2.3 3.6± 3.1 1.4± 1.1 5.3± 3.6
Explore 8.1± 5.0 5.8± 3.8 12.5± 5.4 13.3± 6.1

Localization 3.6± 3.2 - - 4.4± 3.6
Attention - 0.7± 0.7 3.5± 2.5 -
Last Mile - 0.7± 0.7 3.4± 2.5 -

Commitment - 2.1± 2.1 2.8± 2.5 -
Open - 8± 4.2 2.8± 2.5 -

Not Navigable - 5.8± 3.8 2.1± 1.8 -
Quit - 0.7± 0.7 21.5± 6.9 -

goal categories used in the habitat challenge, we only sample from the 6 supported

categories. We manually labeled the failure cases, and the breakdown of failure cases

is presented in Table 1.

The primary reason for failures is due to false positives in object detection. In 48%

of the failure cases, the agent identified the wrong object as the goal and stopped.

Other failure cases are due to diverse reasons. 19% of failures are due to inefficient

exploration strategy, which mainly comprises “explore” and “loop”. 23% of failures

are due to flaws in microscopic movement (“stairs” and “plateau”). Other 10% failures

are due to miscellaneous reasons like flaws in the images generated by the simulator,

locating the goal to the wrong position, and missing the goal even if it appeared in

the view. Although the design of the SemExp agent attempts to utilize semantic

priors, we do not notice any apparent signs of using semantic priors in the agent’s

exploration behavior.

10

4.2 End-to-End Auxiliary Task Agent

While in this paper we present a baseline based on SemExp, we still find it useful to

profile an agent trained via end-to-end reinforcement learning to compare with a map-

based approach. The model presented in Ye et al. [30], which we refer to as EEAux,

won the 2021 Habitat ObjectNav Challenge [1] by introducing semantic features and

multiple auxiliary tasks and adding an exploration reward during training.

We ran the 6-action model with tethering with the pre-trained weights released

by Ye et al. [30] over the validation split of the Matterport3D (MP3D) scenes [3]. In

total, we collected 299 trajectories with ground truth semantics and 189 trajectories

with predicted semantics. Note that [30] includes some analysis of failure modes, they

only do so for the agent provided with ground truth semantics, while we do so for

both ground truth and predicted semantics.

The distribution of failure modes is in Table 1. In the ground truth semantics,

we found a fairly similar breakdown as to what was reported in Ye et al. [30]. The

primary failure modes were Quit and exploration related modes, namely Explore,

Plateau, and Loop, with other modes contributing to a few failures each. On the

other hand, with predicted semantics, misidentification becomes a significant failure

mode, accounting for about 33% of all failures as well as seeming to add additional

failures over the ground truth evaluation. While quitting is no longer a significant

failure mode (likely because any possible cases of it are overshadowed by other issues),

failures related to exploration still persist as the second most significant issue. Some

modes of failure, such as stairs, decreased in the count, but this is mostly because

other reasons predominated over them.

5 Method

In this section, we describe the Stubborn Agent, our map-based approach to solve

the object navigation task.

11

5.1 Task definition

The Object Goal navigation task requires the agent to navigate to an instance of the

given object goal category, such as “bed” or “table”, in an unseen indoor environment.

The input to the agent is an RGB-D sensor and a GPS+Compass sensor. The RGB-D

sensor provides the RGB image and the depth image of the current environment from

the point of view of the agent, and the GPS+Compass sensor provides the location

and orientation of the agent relative to its starting position. At each timestep, the

agent receives the input from the sensors and needs to take one of the four actions:

move forward, turn left, turn right, and stop. There is a limit on the number of steps

the agent can take in each episode (500 steps). Success Rate and SPL are the two

primary performance metrics for the task.

5.2 Overview

We propose a modular framework called “stubborn agent” (Stubborn). We divide

the task of object goal navigation into several modules inspired by how humans solve

the object navigation task: humans naturally construct and maintain maps of their

surroundings, infer where the goal object is most likely to be, navigate to the inferred

location, and repeat this process until the goal is identified. Therefore, the Stubborn

agent consists of 4 modules: a mapping module, a rule-based global goal module, a

rule-based path planning module, and a learned multi-frame goal detection module.

The design of the mapping module and the path planning module are both inspired

by SemExp [4]. The mapping module uses the RGB-D and location input from the

sensors to build a top-down grid map of obstacles and semantic information over time.

The global goal module receives the grid map as input and gives long-term goals,

which are grid coordinates on the map, for the agent to reach, either for exploration

or for approaching a potential goal object. The long-term goals could be either a

single grid or multiple grids. The path planning module receives the grid map and

the long-term goals and determines the action required to reach any of the long-term

goals using the Fast Marching Method [23], a classic path planning algorithm. The

12

goal-detection module is activated when the agent believes it reaches a goal candidate.

The goal-detection module receives the map and the location of the goal candidate

and outputs either True or False. True means the goal candidate is the real goal and

the agent should stop, while False means the goal candidate is false positive and the

agent should keep exploring. We now give details on each module.

5.3 Mapping Module

We maintain a map of size 𝑀 ×𝑀 × 7, where 𝑀 ×𝑀 (7200× 7200) denotes the map

size, and each grid corresponds to an area of size 25𝑐𝑚2. The first three channels

of the map are obstacle maps. They record binary indicators for obstacles, where 1

represents obstacles and 0 represents free space, treating unknown space as free space.

The first channel uses depth input from sensors to calculate the 3D point cloud and

then projects the point cloud to the 2D map to get obstacle information. We noticed

in experiments that depth information alone is not sufficient for constructing a com-

plete obstacle map, as agents could still get trapped when navigating with obstacle

map constructed from depth input, potentially due to inaccuracy in depth input and

environment models (bad meshes) of indoor spaces in the habitat simulator. There-

fore, we additionally use map channels to record obstacles indicated by collisions,

which is defined as the agent attempting to move forward but failing to change its

location. When collision happens, the obstacle’s exact location (Is the obstacle on the

left side of the agent or the right side?) and size is unclear, since visual information

does not show any obstacles. Therefore, we cannot be certain how large of an area to

mark as obstacles when a collision is detected. Marking an area that is too small will

result in the path planner planning a path that is still blocked by obstacles; marking

an area that is too large will result in the path planner failing to plan a path when

there is one. We tackle this problem by maintaining two versions of the obstacle map:

channel two, the pessimistic map, marks larger areas around the front of the agent

as obstacles when collisions are detected, while channel three, the optimistic map,

marks smaller areas as obstacles. This allows the path planner to first plan paths

using the pessimistic map, and switch to the optimistic map in case it fails to plan a

13

path using the pessimistic map.

One rule we found useful in implementing the obstacle maps is that coordinates

along the visited path of the agent should always be marked as free space. This

allows the agent to plan a path out of obstacles along the path it comes in when it

gets trapped.

The rest of the map channels (Channel 4-7) are dedicated to object detection.

Details are described in Sec. 5.6.

5.4 Global Goal Module

The global goal module receives the grid map as input and gives the agent the location

of long-term goals to reach, similar to how humans infer “I should get to the other

end of the corridor to see what’s there”. Human uses semantic information to make

this inference (i.e. the dining table is in the kitchen or living room). Some previous

approaches [4, 29, 27] attempted to use semantic information for better exploration.

Among them, SemExp [4] won the 2020 Habitat Object Navigation Challenge, making

it a good representative of the state-of-the-art in semantic exploration. However, we

find that SemExp is slow and fails to fully utilize semantic information in experiments.

We present a simple rule-based exploration strategy that is semantic-agnostic with

stronger performance and faster speed.

SemExp While evaluating the performance of SemExp, we find that it has the fol-

lowing drawbacks: First, its execution speed is slow. The SemExp agent spent 43%

of its running time maintaining the semantic map, which means the agent would be

much faster without having to maintain semantic information. Execution speed is

critical in the Habitat Challenge [1], as it has a constraint on the total number of

time an agent can take to finish all episodes (42 hours for the 2000 test-std splits).

While submitting to the Habitat Challenge, we found that we have to limit the max-

imum steps the SemExp agent can take to 300 steps per episode to avoid timeout,

while 500 steps are allowed by the rules if the agents are fast enough.

Second, the SemExp agent fails to utilize the semantic information it saved. Fig.

1 presents the Ground Truth Exploration Rate of the SemExp agent and its two vari-

14

Figure 1: Success rate of SemExp and its two variants for ablation analysis, where
success is defined as seeing the goal object with ground truth semantic map. The first
variant’s semantic information is randomly shuffled across categories, and the second
variant’s object goal category is randomly changed for the global planner module.
SemExp achieved a 56.5% success rate, while the two variants achieved 54.7% and
55.0% success rates. SemExp does only slightly better than its ablation variants,
suggesting semantic information is not fully utilized.

ants with ablations evaluated on the 6 semantic categories that were supported by

the publicly released version. The first variant has the semantic map’s channel infor-

mation shuffled (so that the “bed” channel might contain the “table” channel’s data).

The idea behind this experiment is that, if the semantic channels are heavily used

by SemExp, shuffling the semantic channel information would make the performance

much worse. The second variant has the goal category fed into the global planner

shuffled (so that the global planner will try to navigate to a “toilet” while “table” is the

actual goal). The idea behind this experiment is similar: if semantic information is

heavily used, attempting to navigate to the wrong object category should significantly

decrease performance. The experiment result shows that the semantic information

is indeed utilized by the agent, but it contributes only about 2% in performance im-

provement. This motivates us to discard semantic information in the global planner

module.

15

Figure 2: Global and Local Map. The Stubborn Agent maintains a global map of
size 𝑀×𝑀 , but only uses a local map of size 𝑁×𝑁 around the agent (the red circle)
for the path planning module to save time. The four green circles on the corners
of the local map are the four possible exploration goal locations outputted by the
Stubborn Policy

Stubborn Policy The Stubborn Policy is a simple rule-based exploration strategy

for the global planner module that is semantic-agnostic with stronger performance

and faster speed. It takes the first three channels of the map (the obstacle map)

as input, and output long-term goals for the agent to reach. As shown in Fig. 2,

although the agent maintains a global map of size 𝑀 ×𝑀 , the goal outputted by the

global planner module is limited to grids on the local map of size 𝑁×𝑁 (1200×1200,

the same value used in SemExp) around the agent, so that the path planning module

can be faster by only performing path planning on the local map. The stubborn

policy chooses one of the four corners of the local map as the global goal. The policy

is “stubborn” in the sense that it does not switch its goal until the path planner can

no longer plan a path to the goal (which usually means the agent entered a dead-end

like one end of the corridor). The policy then rotates the global goal to the next

corner and repeats the process. The motivation behind this policy is that we want

to minimize the time steps wasted by the agent going back and forth by keeping the

agent exploring one direction until it reaches a dead end.

Collision Aversion of Global Planner The stubborn planner we described above

switches its goal when the path planner fails to plan a path to the goal. The ob-

16

stacle map fed into the path planner mentioned above uses the combination of the

depth obstacle map and the pessimistic collision obstacle map (which marks collision

obstacles as larger areas compared to the optimistic one). The motivation for using

the pessimistic collision obstacle map is that we do not want to plan paths too close

to collision points for exploration. We simply change global goals instead in that

case. This design makes sure that the agent only uses the pessimistic obstacle map

for exploration to stay away from the obstacles during exploration.

In the case that a potential goal candidate is detected, the policy outputs locations

of potential goal candidates instead, and details are described in Sec. 5.6.

5.5 Path Planning Module

Shortest Path Algorithm The path planning module receives the local obstacle

map and gird coordinates of the goals, and outputs the action agent needs to take to

reach one of the goals. We use the Fast Marching Method [23] similar to SemExp [4]

for path planning. The fast marching method takes the obstacle map and the goals

and outputs a sequence of coordinates of the path to one of the goals. The agent then

uses the coordinates to decide which of the four actions to take.

Collision Obstacle Map to Use The mapping module described three channels of

the obstacle map. Channel 1 is the obstacle map calculated from depth, and channel 2

and 3 are the pessimistic and optimistic versions of the obstacle map calculated from

collisions. The obstacle map that is fed into the Fast Marching Method is calculated

by the element-wise OR operation of the depth obstacle map and the collision obstacle

map. Since there are two versions of the collision obstacle map, the path planning

module first uses the pessimistic collision obstacle map, and switch to the optimistic

collision obstacle map in case it fails to plan a path using the pessimistic map.

Brute Force Untrap Mode Sometimes the open space is so small that the path

planner fails to plan a path given the obstacle map due to discretization in the agent’s

localization in the grid map. In this case, the path planning module enters the

brute force untrapping mode: the agent will turn left and right and attempt to move

forward.

17

Figure 3: Failure Example. The goal is to navigate to an instance of bed, but the
agent mistakes the sofa as a bed in the last frame, resulting in failure.

5.6 Object Detection Module

The previous approach to object goal detection used by SemExp [4] only uses 1 map

channel for object goal detection, which is a binary indicator channel that records

whether goal object is detected on the corresponding area. They first train a semantic

segmentation model like Mask-RCNN [11] or RedNet [13], then using the semantic

segmentation mask returned by the model to assign labels to the point clouds calcu-

lated from depth input, which allow them to finally project the point clouds to the

2D map to update the goal object binary indicator map, where 1 means the goal is

detected on the corresponding area and 0 means no goal is detected. Whenever there

are non-zero entries on the goal object map, the agent will navigate to the closest

non-zero grid entry and stop when it reaches the grid location.

However, the approach above is subject to noises in the segmentation model and

high levels of false positives. Figure 3 demonstrates one failure example where the

goal is to navigate to an instance of bed. The agent successfully identified the sofa in

the first three pictures, but wrongly identified the sofa as a bed in the last picture,

resulting in failure.

The last frame alone is indeed confusing: even from a human’s perspective, the

last image does look like a bed. However, a human won’t make this mistake if they

are also presented with the previous pictures: they would remember that this object

is actually a sofa, so it is not a bed. We name this situation a spatial-temporal

conflict: the same location in the global map was identified as different objects in

different frames. In the case of spatial-temporal conflict, why do humans know that

the object is not a bed? Because in the many frames we see the object, only the

18

Figure 4: Two stages of Goal Detection. After a candidate object is detected, the
agent enters the candidate stage and approaches it. After reaching the candidate
object, the agent triggers the goal detection module to decide whether to stop or
continue exploring.

last frame was identified as a bed. We call this concept the cumulative confidence.

This motivates us to accumulate information across multiple frames to make more

informed distinctions between objects. We extend object-detection-related mapping

channels to four and construct feature vectors for objects using the extended map

channels to capture accumulated information of objects.

Mapping We use channels 4 - 7 of the map to keep information useful in goal

object detection. Channel 4 is the total view channel: it records the total number

of frames the corresponding area appeared in the view of the agent. Channel 5 is

the cumulative confidence channel: it represents the sum of the confidence scores

reported by the object segmentation model for the goal object across all frames in

that grid. Channel 6 is the highest confidence channel: it represents the highest

confidence scores for the goal object in that grid. Channel 7 is the spatial-temporal

conflict channel: it represents the highest confidence score for non-goal objects (which

suggests spatial-temporal conflict) in that grid.

Two Stages of Goal Detection The object goal detection framework has two stages

as shown in Fig. 4. Stage I is called the candidate stage. This is the stage where the

agent identified the potential goal object and approaches it. Whenever the confidence

score of grids in Channel 6 (maximum confidence channel) exceeds a certain threshold,

19

the agent marks the grids as potential goals, and the global goal module output those

grids as long-term goals. After the agent reached the long-term goals, it enters stage

II and the goal detection module is triggered to decide whether the goal candidate

is the true goal or a false positive. The reason why the goal detection module is

triggered after the agent has reached the goal candidate instead of at the beginning

of the candidate stage is that we want to accumulate more information regarding the

goal object through the process of approaching the goal candidate.

Object Goal Detection Module When the goal detection module is triggered, the

agent needs to decide whether the goal candidate is the real goal or a false positive

using information such as spatial-temporal conflict or cumulative confidence. We

treat this as a binary classification learning problem. For the candidate goal object,

we construct a feature vector for it (described below) and use the ground-truth map to

get the ground-truth result on whether the candidate is the real goal or false positive.

We run the agent in the habitat simulator to collect training data and then train

binary classifiers with the training data. The trained binary classifier is then used

in the object goal detection module. If the trained classifier returns True, the agent

believes the candidate is the real goal and stops. Otherwise, the agent marks the

corresponding areas of the candidate object as false positive so that it will not be

tricked by it in the future, and continues exploring.

In practice, we let the agent STOP regardless of what the object goal detection

module outputs if the agent is already past a threshold of time steps (200) in the

episode and reached a goal candidate. The rationale is that if the agent is already

in the later stage of the episode, it will have little time to explore and find another

potential goal, so it is better for the agent to stick with the current goal candidate

even if the current goal candidate is not ideal.

Define “Object” In the description above, we have not defined what an “object” is

from the computational perspective. An object in a human’s concept, such as a bed

or a table, usually corresponds to multiple grid points that are next to each other

on the 2D grid map. Therefore, we treat each connected component of the non-zero

entries of Channel 6 (maximum confidence channel) as an object.

20

Object Feature Vector To construct the feature vector for an object, we want

to include information related to confidence score, cumulative confidence score, and

spatial-temporal conflict. Therefore, we construct a 5-dimension feature vector with

each dimension described below:

• Maximum Confidence Score This is the maximum confidence score reported

by the segmentation model for the candidate object.

• Cumulative Confidence Score This is the sum of confidence scores of the

candidate object across all the frames.

• Total Number of Frames This is the total number of frames the candidate

object appeared in the view of the agent, regardless of whether the candidate

object is identified as a goal or not by the semantic segmentation model.

• Average Confidence Score This number is calculated as

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠

. It is the average confidence score of the candidate among all the frames it

appeared in the view of the agent.

• Conflict Object Score It is the highest confidence score of non-goal categories

reported by the semantic segmentation model in the same location of the goal

candidate object.

5.7 Summary

The Stubborn Agent makes 3 improvement upon SemExp [4] described below:

• Global Goal Module SemExp uses a learned global goal module that at-

tempts to use semantic information, while Stubborn uses a rule-based global

goal module that is semantic-agnostic.

21

• Object Goal Detection Module SemExp uses the confidence score reported

by the semantic segmentation model of every single frame to determine whether

the goal object is found and reached, while Stubborn uses information accumu-

lated from multiple frames to determine whether the goal object is found and

reached.

• Collision Avoidance Four updates are applied to the Stubborn agent to de-

crease failures caused by Plateau. While the four updates are already discussed

in various subsections in Sec. 5, we summarize them below.

– Collision Obstacle Size Two maps are maintained to record collision

obstacles, the pessimistic one marking larger areas as obstacles, while the

optimistic marking smaller areas. The path planner uses the pessimistic

map first, and switch to the optimistic map if it fails with the pessimistic

map.

– Marking visited path as Free Space on Obstacle Maps

– Collision Aversion in Global Planner The stubborn planner we de-

scribed in the global goal module switches its goal when the path planner

fails to plan a path to the goal. To decide when to switch global planner’s

goal, the path planner uses the pessimistic obstacle map to avoid planning

paths too close to collision points for exploration.

– Brute Force Untrapping Mode Sometimes the open space is so small

that the planner fails to accurately plan a path given the obstacle map. In

this case, we enter the brute force mode: the agent will turn left and right

and attempt to move forward.

6 Results

In this section, we evaluate the performance of the Stubborn Agent. As the Stubborn

Agent made 3 primary changes from SemExp [4] described in Sec. 5.7, we evaluate

22

Methods Collision Avoidance Update chair sofa bed plant toilet tv average
Frontier D 0.75 0.65 0.24 0.56 0.29 1.00 0.58± 0.06

SemExp ✗ 0.76 0.65 0.38 0.51 0.26 0.83 0.57± 0.07D 0.79 0.65 0.38 0.57 0.26 0.83 0.58± 0.06

Stubborn ✗ 0.74 0.58 0.38 0.5 0.36 0.66 0.54± 0.06D 0.8 0.72 0.39 0.61 0.67 0.83 0.67 ±0.06

Table 2: Exploration Performance of Frontier, SemExp, and Stubborn. SemExp and
Stubborn are both tested with and without the Collision Avoidance Update described
in Sec. 5.7

the performance change brought by each change respectively. We then present the

Stubborn Agent’s performance on the Habitat Challenge [22].

6.1 Exploration Efficiency

We evaluate the exploration strategy of the Stubborn Agent using GT Exploration

Rate as the metric. Table 2 compares the Stubborn Agent with the baselines. We

use SemExp[4] and the Frontier Based Exploration [28], a classic baseline exploration

strategy where robots always try to navigate to the intersections of observed and unob-

served space (the frontier), as baselines. We run SemExp with the pre-trained model

that is publicly released. We change the global map size of SemExp to 7200 × 7200

to match with Stubborn (The original global map size in the released version of Sem-

Exp is 2400× 2400, which is too small for Matterport 3D dataset). While Stubborn

requires training data for its Object Detection Module, the Object Detection Module

is not relevant when using GT Exploration Rate as metrics, so both Frontier and

Stubborn Agent requires no training.

For both SemExp and Stubborn, we evaluate the performance of those agents both

with and without the Collision Avoidance Update described in Sec. 5.7. Since one

of the baseline methods, SemExp, only supports 6 semantic categories in its publicly

released version, we perform experiments only on those 6 categories: “chair”, “couch”,

“plant”, “bed”, “toilet”, “tv”. The Stubborn Agent with the collision avoidance update

outperforms all baselines by a considerable margin and the difference in success rate

is statistically significant.

Comparing Stubborn and SemExp The Stubborn Agent performs similarly with

23

Figure 5: Plateau Rate of the SemExp Agent and the Stubborn Agent before and
after the Collision Avoidance Update. The lower the Plateau Rate is, the better.
Stubborn benefited from Collision Avoidance Update more than SemExp did.

SemExp when both agents are without the collision avoidance update, but performs

much stronger when both agents receive the collision avoidance update. This is

because the Stubborn Agent gets trapped more easily since its goal is fixed, which

forces the agent to go to the corners of the rooms more often. Therefore the Stubborn

Agent benefited more from the Collision Avoidance Update, as demonstrated in Fig.

5.

6.2 Collision Avoidance

The Stubborn Agent used 4 methods to decrease failures caused by plateau, as dis-

cussed in Sec. 5.7. We present an ablation analysis to show how much improvement

each method made. Table 3 shows the performance of the Stubborn Agent with dif-

ferent ablations on the collision avoidance update. All of the 4 collision avoidance

strategies decreased the plateau rate and improved the GT exploration rate, with the

biggest improvement made by maintaining two versions of the collision obstacle map

(ObsSize).

24

Collision Avoidance Update Performance
Agent BFUntrap ObsSize ColAver VisPath Plateau Rate GT Exploration Rate
I 0.100 0.54
II D 0.087 0.59
III D D 0.067 0.64
IV D D D 0.052 0.64
V D D D D 0.050 0.67

Table 3: The Stubborn Agent with ablations indicated on the left and performance
on the right. A lower Plateau Rate and a higher GT Exploration Rate indicates
stronger performance. Each part in the Collision Avoidance Update correspond to
a method described in Sec. 5.7: BFUntrap is the “Brute Force Untrapping Mode”,
ObsSize is the “Obstacle Size”, ColAver is the “Collision Aversion in Global Planner”,
and VisPath is “Marking visited path as traversible”.

6.3 Object Identification

Training We use the Naive Bayes Classifier as the binary classifier described in Sec.

5.6. We collect training data using the validation episodes of Matterport 3D. We

collect training data in the validation episode instead of the training episode because

the training episodes are already used to train the object segmentation model and

therefore not accurate indicators of how the object segmentation model behaves in

the testing split.

We train a separate Naive Bayes Classifier for each object goal category and each

testing scene. The Classifier for an object goal category only uses data gathered from

the object goal category for training, while the classifier for a testing scene excludes

data gathered from the scene to prevent training and testing on the same scene.

Baseline We compare the Stubborn agent with a naive baseline (Naive). The Naive

baseline differs from the Stubborn agent only in the object detection module: it

uses the simple object detection baseline that is similar to SemExp described at the

beginning of Sec. 5.6, where the agent uses the maximum confidence score reported

by the semantic segmentation model as the only indicator for whether the goal is

found.

Results We consider results only from object goal categories that appeared in more

than 4 scenes in the 2000 validation episodes to make sure the classifier is trained with

sufficient data. Among the 21 object categories, 15 of them satisfied the requirement.

25

Goal Stubborn Naive Improvement %
stool 0.16 0.09 77.78
toilet 0.43 0.35 22.86
sink 0.31 0.26 19.23

chest_of_drawers 0.19 0.16 18.75
plant 0.33 0.28 17.86
bed 0.51 0.44 15.91

cabinet 0.34 0.3 13.33
table 0.61 0.56 8.93

counter 0.39 0.36 8.33
chair 0.47 0.46 2.17
sofa 0.31 0.31 0

seating 0.69 0.69 0
picture 0.27 0.3 -10
cushion 0.46 0.56 -17.86
towel 0.12 0.15 -20

Average 0.37 ±0.03 0.35± 0.03 6.55

Table 4: Success Rate of Stubborn and Naive Agent on 15 semantic categories. Cate-
gories with improvements are marked green, while categories with worse performance
are marked red.

Results are presented in Table 4. The agent has increased performance in most

categories with the detection module update, but not all categories. Overall, the

agent performance increased by about 7%.

Feature Importance The feature vector of an object has 5 dimensions described in

Sec. 5.6. We present in Fig. 6 the permutation feature importance of each dimension.

Cumulative Confidence Score, Total Number of Frames, and Conflict Object Score

are the most important features used by the Global Goal Detection module, which

aligns with how humans make decisions using information across multiple frames.

6.4 Performance on the Habitat Challenge

We evaluate the Stubborn Agent on the 2021 Habitat Object Navigation Challenge

with the test-standard split. Results in Table 5 show that our agent has the best

performance in SPL and the second best performance in Success Rate.

26

Figure 6: Permutation Feature Importance of the Object Feature Vector Described
in Sec. 5.6. More drop in accuracy suggests higher importance. Maximum stands for
Maximum Confidence Score, Cumu stands for Cumulative Confidence Score, Frames
stand for Total Number of Frames, Average stands for Average Confidence Score, and
Conflict stands for Conflict Object Score.

Models SPL Success Rate
(1) yuumi_the_magic_cat(Our Method) 0.098 0.237
(2) PONI (PF) 0.088 0.2
(3) TreasureHunt[18] 0.087 0.211
(4) Habitat on Web (IL-HD) 0.082 0.244
(5) EmbCLIP [15] 0.078 0.181
(6) Arnold (SemExp)2020 [4] 0.0707 0.1785
(7) Red Rabbit 6-Act Base (EEAux)2021 [30] 0.062 0.237
(8) Alstar (2RLs_sl_400) 0.054 0.144
(9) Clueless-Wanderers (PeterBot) 0.018 0.065
(10) BEyond-VRI-UFPR 0.002 0.004

Table 5: 2021 Habitat Object Navigation Challenge We report the leader-
board entries on the Test Standard split. Entries with the superscript 2020 and
2021 indicate challenge winners in the corresponding year. Our Method (named
Yuumi_the_magic_cat) is first in SPL and second in Success Rate, with a large
improvement from SemExp which we built upon.

27

Licenses for Matterport3D:

http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf

28

References

[1] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets,
Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, and Erik Wijmans. Ob-
jectNav revisited: On evaluation of embodied agents navigating to objects. arXiv
preprint arXiv:2006.13171, 2020.

[2] Sean L Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J Pappas.
Probabilistic data association for semantic slam. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 1722–1729. IEEE, 2017.

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niess-
ner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d:
Learning from rgb-d data in indoor environments. International Conference on
3D Vision (3DV), 2017.

[4] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhut-
dinov. Object goal navigation using goal-oriented semantic exploration. NeurIPS,
2020.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[6] Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural
networks. In 2017 IEEE 60th international midwest symposium on circuits and
systems (MWSCAS), pages 1597–1600. IEEE, 2017.

[7] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. IEEE transactions on
Robotics, 23(1):34–46, 2007.

[8] Giorgio Grisettiyz, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and selective
resampling. In Proceedings of the 2005 IEEE international conference on robotics
and automation, pages 2432–2437. IEEE, 2005.

[9] Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive mapping and planning for visual navi-
gation. International Journal of Computer Vision, 128:1311–1330, 2019.

29

[10] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[13] Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang. Rednet: Residual
encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint
arXiv:1806.01054, 2018.

[14] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya
Bhowmik. Intel realsense stereoscopic depth cameras. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 1–10,
2017.

[15] Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kemb-
havi. Simple but effective: Clip embeddings for embodied ai. arXiv preprint
arXiv:2111.09888, 2021.

[16] Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong Wang. Efficient semantic
video segmentation with per-frame inference. In ECCV, 2020.

[17] Lingni Ma, J. Stückler, Christian Kerl, and Daniel Cremers. Multi-view deep
learning for consistent semantic mapping with rgb-d cameras. 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 598–
605, 2017.

[18] Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Woj-
ciech Galuba, Stefan Lee, and Dhruv Batra. Thda: Treasure hunt data augmen-
tation for semantic navigation. In ICCV, 2021.

[19] Arsalan Mousavian, Alexander Toshev, Marek Fiser, Jana Kosecka, and James
Davidson. Visual representations for semantic target driven navigation. 2019
International Conference on Robotics and Automation (ICRA), pages 8846–8852,
2019.

[20] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam:
a versatile and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[21] David Nilsson and Cristian Sminchisescu. Semantic video segmentation by gated
recurrent flow propagation. In CVPR, 2018.

30

[22] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wij-
mans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik,
Devi Parikh, and Dhruv Batra. Habitat: A platform for embodied ai research.
ICCV, pages 9338–9346, 2019.

[23] James A Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[24] Ayzaan Wahid, Austin Stone, Kevin Chen, Brian Ichter, and Alexander Toshev.
Learning object-conditioned exploration using distributed soft actor critic. 2020.

[25] H. Wang, Weining Wang, and Jing Liu. Temporal memory attention for video
semantic segmentation. arXiv preprint arXiv:2102.08643, 2021.

[26] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi
Parikh, Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect point-
goal navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357, 2019.

[27] Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia Gkioxari, and Yuan-
dong Tian. Learning and planning with a semantic model. arXiv preprint
arXiv:1809.10842, 2018.

[28] Brian Yamauchi. A frontier-based approach for autonomous exploration. In
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA’97.’Towards New Computational Principles
for Robotics and Automation’, pages 146–151. IEEE, 1997.

[29] Wei Yang, X. Wang, Ali Farhadi, Abhinav Kumar Gupta, and Roozbeh
Mottaghi. Visual semantic navigation using scene priors. arXiv preprint
arXiv:1810.06543, 2019.

[30] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and
exploration enable object navigation. ICCV, 2021.

[31] Joel Ye, Dhruv Batra, Erik Wijmans, and Abhishek Das. Auxiliary tasks speed
up learning pointgoal navigation. arXiv preprint arXiv:2007.04561, 2020.

[32] Liang Zhang, Leqi Wei, Peiyi Shen, Wei Wei, Guangming Zhu, and Juan Song.
Semantic slam based on object detection and improved octomap. IEEE Access,
6:75545–75559, 2018.

[33] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature
flow for video recognition. In CVPR, 2017.

31

