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Abstract 

Semiconductor fabrication relies heavily on the precision and accuracy of its 

individual processes in order to meet device requirements. If left unchecked, variations 

in these processes can lead to decreased performance and yield of the final product. While 

analysis and control of these variations have been employed for decades, recent 

developments in machine learning have introduced a wide variety of new methods that 

can potentially be used to better model, monitor, and control these processes. These 

methods offer the possibility of being more powerful, scalable, and accurate than 

traditional process control methods. 

While many machine learning methods are promising, unique aspects of 

semiconductor fabrication create challenges for many machine learning approaches. In 

particular, the high cost of semiconductor fabrication often results in data limited 

scenarios, as collecting large quantities of data can be infeasibly expensive. Because of this 

limitation, we investigate the use of probabilistic methods in a variety of semiconductor 

fabrication settings. These methods are often less prone to overfitting compared to 

alternative machine learning methods, while still being flexible enough to model complex 

systems. Specifically, we investigate the application of probabilistic machine learning 

methods in four distinct case studies.  

First, we study virtual metrology systems, with two goals in mind. Our first goal is to 

define a virtual metrology framework that allows us to better understand the sources of 

error commonly seen in these systems. This framework relates the recipe, chamber, 

sensor, and wafer variables, and incorporates two common sources of error: observability 

errors and concept drift. Our second goal is to then use this framework to develop our 

own modeling approach that is well suited to model systems where these errors are 

present. Our solution is a Bayesian approach that is similar to the traditional Kalman 

filter; however, it models the relationship between two variables, as opposed to an 

unknown system state.  

We then investigate a probabilistic method for optimizing dose uniformity in ion 

implantation systems. A common approach for improving dose uniformity relies on 

adjusting the implantation time across the wafer in order to compensate for beam 

variations. Here, we learn these variations, then solve for a set of compensating times. Our 

approach is comprised of two components, a modeling component and an optimization 

component. The modeling component is similar to the probabilistic method we use for 

modeling virtual metrology systems, but also incorporates prior beliefs tailored to the ion 



implantation setting. The optimization component then uses our forward model to 

improve dose uniformity given physical constraints of the tool and process. We compare 

this method to the prior existing industry tuning method, and see significant 

improvements in tuning time, process throughput, and tuning success.  

Next, we investigate probabilistic anomaly detection methods, which we use to detect 

process faults as they occur. These methods use process sensor information to determine 

whether the current process is operating nominally or not. We use kernel density 

estimation methods to estimate probability distributions for the sensor signals under 

normal operating conditions; These distributions are then used to determine the 

likelihood that a process is operating nominally. The approach is shown to compare 

favourably to a number of traditional process control methods, including statistical 

process control, one-class support vector machines, as well as variational auto encoder 

based anomaly detection methods.  

Finally, we investigate the use of Bayesian optimization and Gaussian process models 

to improve thickness uniformity in sputtering deposition processes. Here, we use 

Gaussian processes to model the thickness uniformity in sputtering deposition processes 

as a function of both chamber configuration and recipe parameters. This model is used in 

an iterative manner to find parameters that meet the desired uniformity requirements. 

Our modeling technique compares favourably to a number of standard regression 

approaches, including polynomial models, multivariate splines, gradient boosted 

regression trees, and a number of different deep learning architectures.  

While these four case studies each consider a unique application of probabilistic 

methods to semiconductor fabrication, two key themes run throughout. First, we find that 

these probabilistic methods are less prone to overfitting in data limited scenarios 

compared to many alternative methods. The inherent regularization provided by priors 

and observation noise estimates is key to the success of these methods. Second, the 

incorporation of process or domain specific knowledge is crucial to training with limited 

data. Understanding the underlying system, structuring the approach accordingly, and 

making minor approximations reduces the complex original problems to a simpler form, 

enabling effective application of probabilistic machine learning methods.  
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1 Introduction 

In this chapter, we review key background information, as well as present the 

structure of the thesis. First, we discuss semiconductor fabrication in general, and 

highlight key challenges related to process variation present in this field. We then discuss 

our approaches for overcoming these challenges, and highlight key themes seen 

throughout this thesis. Next, we present the structure of the thesis itself. Finally, we 

conclude by surveying common applications of machine learning to semiconductor 

fabrication, and review the probabilistic machine learning methods which we later 

employ.  

1.1 Semiconductor Fabrication 

Semiconductor fabrication is the process of manufacturing integrated circuits (ICs). 

These mass-produced devices are used in nearly all electronics, and have increased our 

communication and computing power enormously. A key factor in this advancement is 

the gradual reduction in device sizes, often expressed as Moore’s Law: every two years, 

the average number of transistors per unit area doubles [1]. This reduction in device size 

enables faster, smaller and more energy efficient devices and ultimately leads to the 

improved computing power we see today [2].   

These ICs are typically fabricated in a series of individual steps, or processes, common 

examples of which are deposition, lithography, etching, oxidation, and ion implantation. 

A critical problem in the continued improvement of IC performance are variations in these 

fabrication processes. If left unchecked, these variations can lead to decreased device 

performance, or even non-functional devices [3]–[7]. Common process variations include 

alignments, geometries, roughness, and material properties that differ from the intended 

designs.  

As devices continue to shrink, these variations must be controlled to an increasing 

degree. For example, physical variations, such as alignments, or device geometries, must 

be reduced as devices shrink in order to keep them proportional to the device itself. 

Therefore, there is an ever growing need for more tightly controlled processes. 

While these variations have been studied for decades, a new class of algorithms, those 

based on machine learning, offer a powerful alternative to model and compensate for 

these variations. Machine learning algorithms have had an enormous impact on a variety 
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of fields, such as computer vision [8], [9], economics [10]–[12], and natural language 

processing [13], [14].  

While these methods are promising, unique aspects of semiconductor fabrication 

hinder the adoption of these methods. A key major difference between this application 

and others is the availability of data. In many applications, data is ample; stock market 

records are gathered and freely available and the internet provides a nearly limitless 

supply of text for natural language processing. However, because semiconductor 

fabrication and metrology is extremely costly, data may be scarce in these scenarios [15], 

[16]. In the case studies that we will focus on, the available data ranges from only a 

handful of training examples, up to a hundred examples, which is often not sufficient for 

many machine learning algorithms. For this reason, machine learning algorithms that 

perform well in these data limited scenarios are particularly valuable tools for modeling 

and compensating variations in semiconductor fabrication. 

In this thesis, we show that a subclass of machine learning methods, those based on 

probabilistic methods, are particularly well suited for this task. These methods offer two 

main advantages over comparable methods. First, their probabilistic nature provides 

inherent regularization that helps prevent overfitting in data limited scenarios. For 

example, we will see that a variation of Kalman filters outperforms traditional fitting 

methods for linear systems. A second advantage of probabilistic machine learning 

methods is their flexibility and ability to model complex functions. While probabilistic 

algorithms include a wide variety of methods, many of these are capable of approximating 

a function to an arbitrary degree. Additionally, these functions can be non-parametric, 

and their accuracy increases as more training data becomes available. This is desirable as 

it allows the model accuracy to scale based on the available data, unlike many deep 

learning methods which have a fixed structure. For example, we will demonstrate the use 

of Gaussian processes to model highly complex and non-linear sputtering deposition 

processes, and use kernel density estimators to model complex likelihood distributions.  

Throughout this thesis, we will see two common themes. The first is the advantage 

that probabilistic machine learning methods offer over alternative approaches. We will 

see that these probabilistic methods benefit from the inherent regularization that these 

methods provide, both in the form of prior belief, and through the explicit incorporation 

of estimated noise. The second major theme is the incorporation of domain specific 

knowledge into our modeling approaches. Some machine learning approaches can be 
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structured in order to take advantage of our existing knowledge, again allowing for more 

accurate training when data is limited. This may be accomplished through belief priors, 

intelligent feature selection, or assumptions about underlying relationships. Both of these 

themes are critical to modeling complex processes with little training data. 

1.2 Thesis Structure 

This thesis is structured in six chapters. In the remainder of Chapter 1, we give an 

overview of relevant background information. We start with an introduction to our 

problem, and outline the structure of the thesis. We then highlight common problems in 

semiconductor manufacturing that machine learning methods are well suited to solve, 

and review the most common solutions to these problems. The following four chapters 

then each cover a unique case study. Each of these chapters looks at an important 

challenge seen in semiconductor manufacturing, and we present a probabilistic machine 

learning solution to each of these problems.  

In Chapter 2, we explore virtual metrology applications. These applications estimate 

key device or wafer properties using sensor information gathered during processing. We 

first create a probabilistic framework that incorporates many of the errors commonly 

seen in these applications, then apply a Bayesian modeling method similar to Kalman 

filters that is well suited to the presence of these errors.  

In Chapter 3, we investigate a process optimization task. Here, we use an iterative 

Bayesian tuning algorithm to rapidly improve dose uniformity for ion implantation tasks. 

This algorithm is divided into a modeling component that resembles our Bayesian 

modeling method from Chapter 2, and an optimization component that is framed as a 

constrained optimization problem. This method is shown to outperform an existing 

industry method in a variety of metrics.  

In Chapter 4, we explore the use of kernel density estimation methods for fault 

detection. These methods estimate probability distributions using historical examples, 

and we use them to model the probability distributions of sensor outputs during normal 

operating conditions. If incoming data is seen as unlikely under these distributions, we 

flag them as anomalous, allowing us to detect potential faults during processing. This 

method is compared to traditional statistical process control methods, as well as deep 

learning and one-class support vector machine based anomaly detection methods.  
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In Chapter 5, we then consider a second process optimization task. Here, we use 

Gaussian processes and Bayesian optimization to model and compensate for thickness 

non-uniformities in sputtering deposition processes. This method is compared against 

other modeling approaches, including polynomial regression, multivariate splines, 

gradient boosted regression, and a variety of deep learning architectures.  

Finally, in Chapter 6, we review the contributions from this thesis and suggest areas 

for future work. In particular, we emphasise the common themes seen within the case 

studies, and discuss how these findings may generalize to other applications.  

1.3 Machine Learning for Semiconductor Manufacturing 

In this section, we highlight typical problems seen in semiconductor manufacturing 

that machine learning algorithms have the potential to address. As both machine learning 

and semiconductor manufacturing are broad and deep fields, we focus here several 

important problems and their corresponding solutions, and present a general taxonomy 

to help organize these problems and solutions. While there are many applications of 

machine learning in semiconductor manufacturing, most of these can be placed in one of 

two broad categories: fabrication monitoring, and fabrication optimization.  

The first broad category, monitoring, tracks the conditions of a fabrication 

environment in order to confirm that they remain within a desired range, and that a 

desired percentage, or yield, of the final product meets its quality specifications. Three 

common subclasses of the monitoring category are fault detection, virtual metrology, and 

predictive maintenance [17]–[20].  

The first of these, fault detection, uses production data, typically measurements 

recorded during processing, such as the temperature, pressure, and gas flow of tools, to 

identify errors when they occur in fabrication processes. These fault detection methods 

can again be divided in many ways, but an important distinction is whether they are one-

class or multi-class methods. One-class methods only have access to known good data, 

and determine whether or not new incoming data comes from the same underlying 

distribution as the example known good data. Multi-class methods have access to both 

nominal and faulty data, and create classification boundaries between these known sets. 

As the available data will dictate which of these two sets of methods can applied, the 

distinction between one-class or multi-class fault detection methodologies is particularly 

important.  
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A traditional set of one-class fault detection methods used in the semiconductor 

industry consists of Statistical Process Control (SPC) methods [21]–[25]. These 

approaches create control limits for measurements taken during fabrication, and raise 

alarms when these limits are violated. Recently, other non-parametric methods have been 

studied, such as One-Class Support Vector Machines (OC-SVMs) [26]–[28], and One-Class 

Gaussian Processes [29], [30] (OC-GPs) which are one-class extensions of the traditional 

multi-class classification algorithms. Oftentimes, these data driven methods are used in 

combination with feature reduction techniques such as Principle Component Analysis 

(PCA) [31], [32] or Auto-Encoding (AE) neural networks [33], [34] in order to reduce the 

dimensionality of multi-sensor time series data. Finally, a neural network based approach 

which uses the discriminator created in Generative Adversarial Networks (GANs) has also 

been proposed as a pure deep learning approach to one-class fault detection [35], [36].  

Multi-class fault detection tasks are simpler than one-class approaches, as they are 

direct applications of traditional machine learning classification methods. These methods 

include applications of K-Nearest Neighbour [37][38], SVMs [39], [40], various tree based 

models [24], [41], as well as artificial Neural Networks (NNs) [42]–[44]. While these rely 

on more traditional methods, they are less desirable as they require examples of faults to 

train, which may be unique in nature, and difficult to gather ample examples of before 

they occur.  

Virtual metrology is another application of machine learning used in semiconductor 

industries. While similar to fault detection, as they both monitor the health of processes 

or product, virtual metrology estimates key characteristics of a fabricated device based 

on secondary measurements such as recorded sensor process data. These estimates are 

less expensive and less invasive than direct measurements and are used for run-to-run 

control, in order to adjust for changing processes [45], [46]. These methods have been 

applied to create virtual representations of a variety of processes, such as deposition [47], 

plasma etch [48], chemical-mechanical polishing [49], spin-coating [50], and electro-

chemical plating [51], or can be used to determine properties for fabricated devices [52], 

[53]. When implementing these models, almost any machine learning based regression 

model can be used; however, the simplest and most commonly used are polynomial based 

compact models [48], [49], [54], while neural network based approaches are also used in 

data-rich scenarios [47], [55], [56].  
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A final sub-category of machine learning based monitoring applications are predictive 

maintenance tasks. These tasks predict when a fault will happen, then raise alerts before 

a fault occurs. While similar to both fault detection and virtual metrology tasks, they are 

often more difficult to implement as they must predict future conditions, as opposed to 

analyze current ones [57]. Predictive maintenance applications can take the form of either 

a regression or classification problem [58], [59]. In the classification case, a machine 

learning method is used to determine whether a process or tool will fail within some 

predetermined time window [60], [61], while in the regression case, the method tries to 

model how much time is left until failure [62], [63]. While this task is of substantial 

interest, as preventing down-time can significantly improve final cost-efficiency of a 

fabrication process, it is still relatively unexplored and rarely deployed in practical 

settings at this point in time [59].  

In addition to fabrication monitoring, fabrication optimization is another primary 

application of machine learning in semiconductor fabrication. These tasks focus on 

actively improving a fabrication process by modeling the process, then using this model 

to choose new equipment or process settings that improve the quality of that process. 

These models may focus on the reduction of spatial and temporal non-uniformities, as 

these non-uniformities lead to variations in the final device properties, or may focus on 

improving average process metrics, instead of reducing variations. 

One optimization approach is the Response Surface Methodology (RSM) [64]–[68]. 

These methods begin by creating and conducting a Design of Experiments (DoE), where 

process settings are explicitly chosen and the output variables of interest are then 

recorded under each set of conditions. The resulting data is then modelled, typically with 

a second order polynomial, although any regression model can be used, and this model is 

used to determine the optimal set of process conditions given some desired specifications. 

It is worth noting that data is often already collected, and explicit DoEs do not have to be 

performed [69]. Recently, process optimization using reinforcement learning techniques 

have been considered alongside RSM based methodologies. One large class of these 

methods are deep learning based reinforcement learning (RL) methods, which are used 

in particular for scheduling tasks [70]–[72], as the flexibility in these tasks leave them 

well suited for the exploration component of RL. Bayesian Optimization (BO) methods are 

another class of reinforcement learning methods which have been used to optimize 

aspects of semiconductor fabrication and design [73]–[75]. These methods typically use 
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Gaussian Processes (GPs) to model, then iteratively optimize black-box functions with the 

help of an acquisition function, a secondary function that selects future process inputs 

and balances exploration and exploitation, based on the current GP model.  

1.4 Probabilistic Machine Learning Methods 

In this section, we give brief overviews of the main probabilistic machine learning 

methods that we explore in the thesis. These probabilistic methods offer distinct 

advantages over other machine learning methods such as neural networks, and in 

particular excel in data limited settings [76]. While neural networks have played a critical 

role in countless applications, their applicability is not universal. In particular, for data-

limited problems, neural networks struggle with overfitting and in these cases, 

probabilistic models offer an attractive alternative. Because collecting fabrication data is 

often extremely costly, it is crucial that an accurate model can be created with as little 

data as possible. Collecting data in many of these fabrication settings often requires 

manual tuning of a tool followed by fabrication and measurement. Not only does this 

require costly materials for the fabrication itself, but also requires highly trained 

engineers to perform the data collection, in addition to the opportunity cost of dedicating 

a tool towards data collection instead of product fabrication. In total, this makes the cost 

of data collection larger than is found in many other machine learning settings, such as 

product recommendations, financial analysis, or natural language processing where data 

is cheap and is produced regardless of whether or not it is used in a machine learning 

context. For this reason, probabilistic models provide substantial benefits in many 

semiconductor fabrication related applications.  

We first review Kalman filters, a method that estimates unknown variables using 

related observations. These unknown variables are modeled as normal random variables, 

and we update our belief of them over time, and as new observations are taken. Then, we 

review Gaussian Processes. These are non-parametric kernel based methods that are well 

suited for small data regression problems. Gaussian Processes represent the outputs of 

interest as a multivariate normal distribution, whose underlying correlations are a 

function of their inputs. Finally, we review kernel based density estimation methods. 

These give likelihood distributions for a random variable based on past historical data.  
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1.4.1 Kalman Filters 

Kalman filter methods are algorithms that estimate latent variables based on directly 

observed variables and have been used successfully for decades in a wide variety of fields, 

such as navigation and robotics [77]–[81]. Kalman filters track the parameters of a 

probability distribution for the latent variable (𝑥), such as the position of an aircraft [82], 

using secondary measurements, such as the distance to nearby landmarks. Typically, this 

distribution is assumed to be a normal distribution with mean 𝜇 and covariance Σ: 

 𝑥~𝑁(𝜇, Σ). (1) 

At each subsequent timestep, these random variables are assumed to evolve based on 

a linear combination of the previous timestep (𝑥𝑡−1), an input to the system (𝑢𝑡) and some 

amount of random Gaussian noise (𝑤𝑡). Here, the transition model 𝐴𝑡 determines how the 

previous state affects the subsequent one, and the control-input model 𝐵 determines how 

any system input will affect the state: 

 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡. (2) 

Additionally, observations (𝑧) are made, which are a function of the hidden state. 

Traditionally, the model assumes a linear relationship between the hidden state and the 

observation. This relationship is known as the Kalman filter observation model (𝐻), and 

these measurements are corrupted by some amount of noise, 𝑣𝑡:  

 𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡 . (3) 

Under these assumptions, the current belief can be updated after new observations 

are made, and between timesteps using a Bayesian update. This allows us to model how 

we expect the variables to evolve over time, and we can update this belief as new 

information becomes available.  

The applications that we will explore focus on inferring an unknown input-output 

relationship between 𝑢𝑡 and 𝑧𝑡. The modeling of an unknown input-output relationship, 

instead of a traditional state variable, such as the position of an aircraft, requires some 

adjustment to the traditional Kalman filter. In particular, the observation model (𝐻) will 

be a function of the system input, as it is the system input in combination with the 

modeled input-output relationship that determines the value that is observed (𝑧). This 

results in the observation model 𝐻 = 𝑘𝑟𝑜𝑛(𝑢𝑡 , 𝐼), where 𝑘𝑟𝑜𝑛(𝑥, 𝑦) is the Kronecker 

product of two variables [83] and will be discussed further in the following sections.  
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In Chapter 2, we will explore the application of Kalman filters to virtual metrology 

tasks. We will examine a simple but powerful framework for semiconductor fabrication 

systems, and will show that Kalman filters are an effective method for estimating an 

unknown input-output relationship under common sources of error. Then in Chapter 3, 

we will explore applications of Kalman filters to modeling and optimizing implantation 

dose uniformity in ion implantation systems, and will compare them to conventional 

tuning approaches.  

1.4.2 Gaussian Processes 

A Gaussian Process is a probabilistic method that models a collection of outputs, 𝑌, as 

a multivariate normal distribution, with mean 𝜇, and correlation structure Σ [29]:  

 [
𝑌1

…
𝑌𝑛

]~𝑁 (𝜇, [

𝜎11 … 𝜎1𝑛

… … …
𝜎𝑛1 … 𝜎𝑛𝑛

]) = 𝑁(𝜇, Σ). (4) 

A critical part of this distribution is its correlation structure, Σ, which represents how 

similar these outputs are expected to be to one another. This correlation structure is 

determined by the similarity of their inputs, 𝑋, using a kernel function, 𝜎𝑖,𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗). 

Here, the kernel function, 𝐾, maps a pair of function inputs, 𝑥𝑖 and 𝑥𝑗, to their covariance, 

𝜎𝑖,𝑗, which determines how correlated these points will be in the normal distribution. 

Outputs with similar inputs will be highly correlated in the distribution, while dissimilar 

inputs result in little correlation between their outputs.  

Gaussian processes include unobserved outputs, 𝑌∗, in the collection of modeled 

outputs, along with observed outputs, 𝑌. The combined distribution can then be used to 

predict the unobserved outputs, 𝑌∗, by calculating the marginal distribution of 𝑌∗:  

 𝑌∗| 𝑌, 𝑋, 𝑋∗~𝑁(𝜇∗, Σ∗) (5) 

where 

 𝜇∗ = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑌 (6) 

 Σ∗ = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗). (7) 

An example predictive distribution generated with a Gaussian Process can be seen in 

Fig. 1. Here, predictions with inputs similar to past examples have outputs that are highly 

correlated to those observed outputs. Both their mean values are similar, and the 

uncertainty of the prediction distribution is low. Conversely, as the similarity to past 
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example inputs decreases, these distributions become less certain, and the outputs 

become less correlated.  

  

Fig. 1: Example GP model for 𝐟(𝐱) = 𝐱𝟐 with four training data points. 

While the assumption that outputs can be modelled as a Gaussian random variable may 

seem to imply that they can only model relatively simple functions, Gaussian Processes 

are indeed capable of modeling complex functions, as the non-parametric nature of the 

model allows its complexity to grow with the amount of training data. This also allows 

them to succeed in data limited scenarios, as automatically limiting model complexity 

when data is limited prevents overfitting, making them well suited for applications where 

data collection is costly [84], [85]. In Chapter 5, we will explore the application of GPs to 

modeling and optimizing thickness uniformity in deposition processes and demonstrate 

these ideas. 

1.4.3 Kernel Density Estimation 

Kernel density estimation (KDE) is a non-parametric method to estimate the 

underlying probability density for a random variable based on a set of data samples. 

These methods use a kernel function 𝐾(𝑥1, 𝑥2) to relate discrete past observations (𝑥) 

into a continuous density function estimate, 𝑑̂(𝑥). Here, each historical example point 

adds some density to surrounding points in the resulting distribution: 

𝑑̂(𝑥) =
1

𝑛
∑𝐾(𝑥, 𝑥𝑖)

𝑛

𝑖=1

. (8) 
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The choice of the kernel function determines exactly how past examples affect the 

estimated density of nearby points. The most common choice of kernel function is the 

Gaussian kernel: 

𝐾(𝑥1, 𝑥2) = 𝑒
−

1
2
(𝑥1−𝑥2)2

𝑙2 . (9) 

Alternatively, this method can be viewed as a convolution between the kernel function 

and past historical examples. Conceptually, the discrete historical points are filtered by 

the kernel function, producing a continuous estimate of their underlying distribution. An 

example of an underlying distribution, example data points, and the estimated 

distribution using KDE can be seen below (Fig.2). Here, each piece of historical data is 

drawn from the true underlying distribution, and these are then used in combination with 

KDE to estimate this underlying distribution.  

 

Fig. 2: Example showing KDE estimating underlying distribution of random variable 𝑋.  

When using the Gaussian kernel, as well as most other kernel choices, a length scale 

parameter (𝑙) determines the smoothness of the resulting density function. The choice of 

this parameter is often critical, as too small a choice will result in a rough density function, 

heavily influenced by the specific historical examples, and choosing too large a length 

scale may smooth out any true features of the underlying distribution.  

In Chapter 4, we will explore the use of these kernel density estimation techniques for 

fault detection applications in both plasma etch, and ion implantation processes. Here, we 

will use these methods to generate a likelihood distribution for sensors monitoring the 

conditions of the tool. Then, when a new process is run, we use new incoming sensor data 
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to determine the likelihood that it came from the same conditions as the known good 

process.  
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2 Understanding and Improving Virtual Metrology Systems with 

Bayesian Methods 

Virtual Metrology (VM) is a well-known approach for monitoring many 

semiconductor processes. These methods estimate key device and wafer properties 

without the need for costly direct measurements. Instead, sensors placed inside the tool 

monitor related properties of the process. Ultimately, these sensor signals are used to 

infer the wafer properties of interest, allowing for fault detection [86] and run to run 

control [46], [87], [88]. These methods are used in a wide variety of processes such as 

plasma etch [85], [89], [90], deposition [47], [91], [92], lithography [93], and chemical-

mechanical planarization [94], [95].  

An illustrative example of this technique is to monitor emissions from a plasma etch 

process in order to estimate device geometries [85] (Fig. 3). As material is etched, by-

products from the etch itself are released and can be monitored by sensors inside of the 

tool. A sufficient model can then infer the rate at which this etch takes place based on the 

sensed concentration of by-products inside of the chamber. Finally, these etch rates can 

be translated to critical device geometries that determine the performance of the devices. 

This virtual metrology technique can then be used in place of costly and invasive direct 

device measurements. 

 

Fig. 3: Illustration of monitored plasma etch process. A sensor monitors etch by-products which 

can be used to infer etch depth and device geometries. 
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While many methods are used for virtual metrology, including neural networks [55], 

[96] and Gaussian Processes [84], [85], many rely on polynomial models [97]–[100]. 

These relate the collected sensor signals to the wafer properties of interest through a 

polynomial function. The simplest approach uses a first order polynomial; however, 

higher orders are frequently used as well.  

Nearly all virtual metrology methods, including polynomial models, suffer from two 

sources of error beyond traditional modeling errors. The first is concept drift, which 

occurs when the underlying system changes over time [45], [101], [102]. This change in 

the system decays model performance, as an initially well-fit or optimal model soon 

becomes out of date. A second, and subtler, source of error comes from limited chamber 

observability. Here, the available sensors do not give sufficient information in order to 

infer the wafer properties of interest. An extreme example of this is when available sensor 

signals are entirely uncorrelated to the wafer properties of interest and provide no 

relevant information. While these issues are significant obstacles and have been 

investigated in other contexts such as run to run control [103], little existing work 

explicitly considers these errors in the virtual metrology context.  

Due to these challenges, many virtual metrology modeling approaches perform sub-

optimally in practice. Static approaches that do not adjust to changing conditions degrade 

over time, and methods prone to overfitting are made worse by low chamber 

observability. Ideally, virtual metrology methods should be created with these challenges 

in mind.  

Problematically, developing these methods may be difficult, as collecting ample 

semiconductor data is often prohibitively expensive [16]. For this reason, there is a need 

to generate synthetic data that mimics sensor and wafer data seen in real world settings. 

This allows for the development and evaluation of model approaches better suited to 

these common problems.  

In this section, we present a framework for better understanding virtual metrology 

systems. This framework incorporates both drift and observability errors, and we use this 

framework to develop a virtual metrology method that is well suited for these problems. 

While the model is linear, our contribution is a Bayesian fitting method that adapts to 

concept drift, and is less likely to overfit than conventional ordinary least squares (OLS) 

linear methods. This method is widely applicable, and can be adapted to fit models beyond 

simple linear models.  
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In Section 2.1, we present our system framework and the approximations made when 

analyzing these systems. In Section 2.2, we present our modeling approach developed 

with the sources of error found in our system framework in mind. This modeling 

approach is similar to Kalman filters [104]; however, it models a relationship between 

two variables as opposed to an unknown state variable. In Section 2.3, we present the 

results of applying our Bayesian modeling approach to our synthetic system, as well as to 

real-world data, and compare them to traditional approaches. Finally, in Section 2.4, we 

present conclusions and related future work. 

2.1 System Framework 

In this section, we present our proposed framework for virtual metrology systems. 

First, we present the framework itself, then discuss approximations used to simulate 

these systems. Afterwards, we use these approximations to study the effects of the 

underlying system, such as the number of system variables, and the rate at which the 

system drifts. 

Our proposed system framework resembles the general process modeling framework 

originally developed for process flow representations [105], but is developed here for the 

specific study of virtual metrology systems. The framework contains four sets of system 

variables: recipe variables, 𝑅, which represent inputs to the process, such as desired set-

points, chamber variables, 𝐶, which capture the operational state of the tool, sensor 

variables, 𝑆, the signals recorded during fabrication, and wafer variables, 𝑊, which 

represent the key wafer properties to be estimated (Fig. 4).  



 31 

 

Fig. 4: Proposed virtual metrology model framework showing relationship between recipe, 

chamber, sensor, and wafer variables. 

These four sets of variables are each multivariate and are represented as vectors. 

Here, the chamber variables are a function of the recipe as the conditions in the chamber 

are in part determined by set points defined in the recipe:  

 𝐶 = 𝑓𝑐(𝑅). (10) 

Both the sensor and the wafer variables are a function of the chamber variables, since 

the state of the chamber influences both the sensor signals as well as the wafer variables:  

 𝑆 = 𝑓𝑠(𝐶), (11) 

 𝑊 = 𝑓𝑤(𝐶). (12) 

Under this framework, the virtual metrology relationship that we estimate, 𝑓𝑚, models 

𝑊 as a function 𝑆. This function infers 𝐶 through 𝑆, then produces an estimate of 𝑊, 𝑊̂. 

For an invertible 𝑓𝑠 this is written as:  

 𝑓𝑚(𝑆) = 𝑊̂(𝑆) = 𝑓𝑤 (𝑓𝑆
−1(𝑆)). (13) 

This setup implies one source of error commonly seen in virtual metrology 

applications, observability errors. If 𝑓𝑠 is not invertible, then 𝐶 cannot be perfectly 

inferred from the sensor values. If variables in 𝑊 depend on variables in 𝐶 that are not 

observed by 𝑆, then those 𝑊 variables cannot be perfectly estimated from 𝑆.  



 32 

In order to better study these systems, we approximate the underlying functions that 

define 𝐶, 𝑆 and 𝑊, 𝑓𝐶 , 𝑓𝑠, and 𝑓𝑤, as linear functions, 𝐴𝐶 , 𝐴𝑆 and 𝐴𝑊, plus added Gaussian 

noise, with covariances Σ𝑛,𝑐 , Σ𝑛,𝑠, and Σ𝑛,𝑤, respectively:  

 𝐶 = 𝑓𝑐(𝑅) = 𝐴𝐶𝑅 + 𝑁(𝑂, Σ𝑛,𝑐), (14) 

 𝑆 = 𝑓𝑠(𝐶) = 𝐴𝑠𝐶 + 𝑁(𝑂, Σ𝑛,𝑠), (15) 

 𝑊 = 𝑓𝑤(𝐶) = 𝐴𝑊𝐶 + 𝑁(𝑂, Σ𝑛,𝑤) (16) 

While this linear approximation may appear restrictive, process conditions often 

reside in a relatively small range of values, making a linear model valid in many cases. 

Additionally, with the presence of simulated system drift, which we will discuss shortly, 

these linear systems can well-approximate non-linear systems; a drift in these systems 

represents a change in the operating point of such non-linear systems, and when the 

model adapts to this moving operating point, the validity of the linear approximation can 

be maintained. Most importantly, the linear approximation is sufficient for the analysis 

and understanding of the fundamental issues of concept drift and observability in virtual 

metrology that we seek to study. 

With this approximation, we define the optimal, minimum mean squared error, 

modeled system, 𝑓𝑚 ≈ 𝐴𝑀 as:  

 𝑓𝑚(𝑆) = 𝑊̂(𝑆) = 𝐴𝑊𝐴𝑆
−1𝑆 = 𝐴𝑀𝑆. (17) 

When 𝐴𝑆 is not invertible, we use the Moore-Penrose pseudoinverse of 𝐴𝑠, 𝐴𝑠
+, to 

approximate this system. Later, we use this to define the error for the system when an 

optimal model is used:  

 𝑊̂(𝑆) = 𝐴𝑤𝐴𝑆
+𝑆 = 𝐴𝑀𝑆, (18) 

where 

 𝐴+ = 𝐴𝑇(𝐴𝐴𝑇)−1 (19) 

2.1.1 System Drift 

In order to incorporate concept and chamber drift into our framework, we assume 

that the coefficients of the system change over time. Specifically, we assume that each 

system coefficient in our framework models, 𝐴𝐶 , 𝐴𝑆, and 𝐴𝑊, follows a bounded random 

Gaussian walk [106]. Here, we index the system by time, 𝑡, and at each timestep add a 
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Gaussian drift, with standard deviations 𝜎𝑑,𝐶 , 𝜎𝑑,𝑆 and 𝜎𝑑,𝑊, to each element, 𝑖, of 

𝐴𝐶 , 𝐴𝑆 , and 𝐴𝑊, then scale the result:  

 
𝐴𝐶,𝑖,𝑡+1 =

𝜎𝑂,𝐶,𝑖

√𝜎𝑂,𝐶,𝑖
2 + 𝜎𝑑,𝐶,𝑖

2

(𝐴𝐶,𝑖,𝑡 + 𝑁(0, 𝜎𝑑,𝑐,𝑖))∀ 𝑖 ∈ 1: |𝐴𝐶|. 
(20) 

The scaling constant, 𝜎𝑂,𝐶,𝑖

√𝜎𝑂,𝐶,𝑖
2 +𝜎𝑑,𝐶,𝑖

2
, is chosen such that the overall variances of the system 

coefficients, 𝜎𝑂,𝐶 , 𝜎𝑂,𝑆, and 𝜎𝑂,𝑊 are constant before and after each step in the walk.  

Importantly, drifts in these systems are not equivalent. As we will discuss in the 

following section, drift in 𝐴𝐶  results in a drift in the system chamber, and these variables 

can be inferred through 𝑆. Conversely, changes in 𝐴𝑆 and 𝐴𝑊 represent changes in the 

relationship between 𝑆 and 𝑊, i.e., concept drift, which decays model performance.  

It is important to note that both the drift coefficients, 𝜎𝑑, as well as the overall variance 

coefficients, 𝜎𝑂, have unique values for each of the system coefficients in 𝐴. Specifically, 

𝜎𝑂,𝐶,𝑖 refers to the overall system coefficient for the 𝑖𝑡ℎ coefficient in 𝐴𝐶 . 

Here, the drift coefficients, 𝜎𝑑, represent how quickly the coefficients in the modeled 

systems change, while the overall variance coefficient, 𝜎𝑂, represents the variance of the 

variables over all time. A choice of 𝜎𝑑 = 0 implies a constant system, and a choice of 𝜎𝑑 =

∞ results in no correlation between timesteps. In Fig. 5, we show examples of a single 

chamber variable with two different drift rates, 𝜎𝑑,𝑐,𝑖 , as well as two different overall 

variances, 𝜎𝑜,𝑐,𝑖 . 

 
Fig. 5: Example system coefficients following a bounded random walk. Each walk uses either high 

or low values for the overall system variance, 𝜎𝑂,𝐶,1, and drift 𝜎𝑑,𝑐,1, 
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In addition to modeling system drift, the inclusion of time varying system coefficients 

also helps replicate non-linear underlying systems. Assuming that the system drift at each 

time step is relatively small, and the underlying systems are continuous, time varying 

linear systems can approximate a changing operating point in non-linear systems. For 

example, if 𝐴𝐶 , and thus the chamber variables, 𝐶, are slowly changing, we can 

approximate 𝑓𝑆 as the linear system:  

 𝑓𝑠(𝐶) ≈ 𝑓𝑠(𝐶0) + ∇C𝑓𝑠(𝐶0)(𝐶 − 𝐶0). (21) 

Then, as the underlying chamber values change, the operating point, 𝐶0, changes, thus 

changing the gradient ∇C𝑓𝑠(𝐶0). This change in the linear approximation can be modeled 

by our proposed framework, making it still applicable to non-linear systems in addition 

to linear systems. 

2.1.2 Effects of System Size 

While the number of elements in each set of system variables, 𝑅, 𝐶, 𝑆, and 𝑊, can vary, 

the number of linearly independent elements of 𝑆 and 𝐶 are the most important in virtual 

metrology performance. Intuitively, this makes sense, as our underlying goal is to sense 

and infer the state of the chamber, and based on that infer parameters of the wafer. The 

size of 𝑅 is relatively inconsequential, as regardless of the number of recipe parameters, 

the same chamber state variables must be inferred. The number of wafer variables, 𝑊, is 

also inconsequential, as we can either model them simultaneously, or independently. 

In contrast to 𝑅 and 𝑊, the number of linearly independent elements of 𝐶 and 𝑆 have 

a substantial impact on the performance of a virtual metrology approach. To see this, let 

us consider the optimal system model. Using the approximations from the previous 

section, this model is:  

 𝑓𝑚(𝑆) = 𝑊̂(𝑆) = 𝐴𝑊𝐴𝑠
+𝑆. (22) 

We define the error of our prediction as the difference between our prediction and 

the true values of 𝑊:  

 𝐸𝑟𝑟𝑜𝑟 =  𝑊 − 𝑊̂ = 𝐴𝑊𝐶 − 𝐴𝑊𝐴𝑠
+𝑆 = 𝐴𝑊(𝐼 − 𝐴𝑠

+𝐴𝑠)𝐶 (23) 

This expression is similar to the residual in traditional least squares fitting. Here, the 

term 𝐴𝑠
+𝐴𝑠 is the projection matrix of 𝐴𝑆, that informs how well we can infer 𝐶 from 𝑆 

[107]. When 𝐴𝑆 has a full column rank, i.e., it has linearly independent columns, 𝐴𝑆
+𝐴𝑆 = 𝐼, 

and there is zero observability error. Practically, this translates to the case where there 
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are at least as many linearly independent sensors as there are linearly independent 

chamber variables, and those sensors can be used to fully infer the state of the chamber 

due to their 𝐴𝑆 relationship.  

Far more common is the case where there are more linearly independent chamber 

variables than sensor variables. In most cases, as the number of linearly independent 

chamber variables increases, or the number of linearly independent sensors decreases, 

the performance of a virtual metrology method deteriorates, because at some point the 

state of the chamber cannot be adequately inferred.  

To explore this, we first look at the second half of Eq. 23, (𝐼 − 𝐴𝑠
+𝐴𝑠)𝐶. The projection 

matrix, 𝐴𝑠
+𝐴𝑆, projects the true values of 𝐶 onto the null space of 𝐼 − 𝐴𝑆

+𝐴𝑆. The difference 

between the original value of 𝐶 and the projection, 𝐶̂, is the error in our inference of 𝐶. 

Adding additional linearly independent terms to 𝐶 increases the dimensionality of the 𝐶 

space, and decreasing the rank of 𝐴𝑠 decreases the dimensionality of this null space. 

Therefore, both of these changes increases the average projection residual, making 

predictions more difficult, even if the true underlying systems are known (Fig. 6). Again, 

this translates to larger observability errors due to insufficient sensors.  

 
Fig. 6: Illustration showing inference of chamber variables (𝐶̂). Addition of more linearly 

independent chamber variables hinders inference as residual distance between the original and 

projection point increases. 

Crucially, our system setup deviates from traditional least squares fitting in an 

important way. Inferring 𝐶 from 𝑆 is not the goal of a virtual metrology system; instead, 

virtual metrology seeks to infer 𝑊 from 𝑆. In Eq. 23, (𝐼 − 𝐴𝑠
+𝐴𝑠)𝐶 is the error in 𝐶; 
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however, this is mapped to errors in 𝑊 through a multiplication with 𝐴𝑊. Therefore, 

errors in our inference of 𝐶 are scaled based on how much they impact 𝑊. Prediction 

errors of 𝑊 are unaffected by an inability to infer irrelevant chamber variables, while 

inference error in highly relevant chamber variables are highly influential. Practically, this 

makes sense, as there are a possibly infinite number of variables that describe the state 

of the chamber, including both useful information such as the average pressure, flow 

rates, temperature, etc., as well as irrelevant information, such as the exact position of a 

single atom inside of it, or the name of the tool. The performance of a virtual metrology 

method is thus influenced both by its ability to infer information about the state of the 

chamber, and how relevant those states are to the final wafer quantities of interest.  

We empirically explore observability implications for virtual metrology by modeling 

data generated by our proposed system framework. We generate synthetic values of 𝑊 

and 𝑆 and evaluate our ability to predict 𝑊 using an optimal ordinary least squares (OLS) 

model, while adjusting the number of linearly independent elements of 𝐶. As we are only 

interested in determining observability errors in this first analysis, no drift in the modeled 

systems, 𝐴𝑆 and 𝐴𝑊, is present; however, we do drift 𝐴𝐶 .  

In these experiments, we fix the number of linearly independent sensor variables to 

10, then sweep the number of linearly independent chamber variables from 1 to 50. For 

each set of chamber variables we generate 5000 timesteps of time series wafer and sensor 

data. Here, the values of 𝐴𝐶 , 𝐴𝑆 and 𝐴𝑊 are drawn from Gaussian distributions, and the 

drift and variance coefficients are drawn from Poisson distributions. We use the first half 

of each time series sequence to fit an OLS model for 𝑊 as a function of 𝑆, and then predict 

𝑊 using 𝑆 for the second half. Fig. 7 shows the average mean squared errors (MSEs), 

normalized by the system variance and averaged across all timesteps. 
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Fig. 7: MSE (normalized) of the optimal model 𝑊̂(𝑆) as a function of the number of linearly 

independent chamber variables. In each case, the model has access to 10 linearly independent sensor 

variables. 

These results match with our intuition and theory. When there are fewer linearly 

independent chamber variables than linearly independent sensor variables as linked by 

𝐴𝑆, the MSE is effectively 0, as we can perfectly infer the chamber variables. Conversely, 

as the number of linearly independent chamber variables increases, predicting 𝑊 

becomes more difficult, and the MSE asymptotically approaches the underlying system 

variance. 

2.1.3 Effects of Drift Rates 

The rate at which the optimal system model, 𝐴𝑀, drifts influences the rate at which 

the model performance degrades. Higher drift coefficients, 𝜎𝑑, represent quicker changes 

in the underlying systems that lead to more rapid model degradation. However, drift in 

𝐴𝐶  is distinct from drift in 𝐴𝑆 and 𝐴𝑊. 

In most cases, drift in 𝐴𝑆 and 𝐴𝑊 decrease modeling performance; however, drift in 

𝐴𝐶  does not impact modeling performance. Because the system that we estimate is 𝐴𝑀 =

𝐴𝑊𝐴𝑆
+, a change in 𝐴𝑆 and 𝐴𝑊 changes this optimal model; however, a change in 𝐴𝐶  does 

not affect it.  

Intuitively, this makes sense, as a change in 𝐴𝐶  results in a change in the system 

chamber, 𝐶, which is possible to infer via 𝑆 as long as 𝐴𝑠 is constant; this 𝐶 can then be 

used to predict the effects on 𝑊 as long as 𝐴𝑊 is constant. For non-invertible 𝐴𝑠, and for 
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non-linear systems where changes in 𝐶 influence the operating point of 𝑓𝑊 and 𝑓𝑆, this 

may not be the case; however, this effect is second order, and is not considered here. 

In practice, we believe that changes in the chamber state are more likely than changes 

in the relationship between 𝐶, 𝑆, and 𝑊, that is, changes in 𝐴𝑆 and 𝐴𝑊. For example, 

changes in 𝑆 may indicate that the temperature of the chamber (a 𝐶 variable) has changed, 

while changes in 𝐴𝑆 may represent a degradation of the temperature sensor itself, which 

is less likely. Critically, changes in 𝑊 and 𝑆 do not imply changes in 𝐴𝑊 and 𝐴𝑆, 

respectively, as drifts in the chamber via 𝐴𝐶  also impact 𝑊 and 𝑆. In Fig. 8, we plot a 

synthesized value of 𝑊, when 𝐴𝑊 is held constant, but 𝐴𝐶  drifts. The plot demonstrates 

the distinction between the wafer variables, 𝑊, and the sensor function, 𝐴𝑊.  

 
Fig. 8: Wafer variable, 𝑊 (blue) and system coefficient, 𝐴𝑊, (orange) when the chamber drifts, but 

the wafer system coefficient is held constant. 

To demonstrate the impact of draft rates, 𝜎𝑑, we simulate data with varying drift rates 

and observe how a fit OLS model degrades over time. We simulate a system similar to the 

one described in the previous section. This system has 10 linearly independent chamber 

and 10 linearly independent sensor variables, 1 wafer variable, and the starting system 

coefficients are drawn from a Gaussian distribution. The drift coefficients, 𝜎𝑑, are drawn 

from a Poisson distribution, but this distribution is scaled in order to observe the effects 

of varying the drift rates.  

For each drift rate, we fit the optimal model for the starting system, according to Eq. 

22. We then synthesize 𝑆 and 𝑊 while drifting the system, predict 𝑊 using 𝑆 and the 

optimal model, and record the prediction mean squared errors (MSEs). We average these 

MSEs over 1000 ensembles to produce an average error vs. number of timesteps since 
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model fit, and fit these results to an exponential function 𝐴 − 𝐵𝑒−
𝑡

τ (Fig. 9). Importantly, 

the fit exponential decay constant, 𝜏, informs us how quickly the model decays, and we 

use this as a metric for model decay. Finally, we separately repeat this process while 

individually varying 𝜎𝑑,𝐶 , 𝜎𝑑,𝑆, and 𝜎𝑑,𝑊, and plot the results (Fig. 10). 

 
Fig. 9: Experimentally generated MSE vs. number of time steps since model fit, and exponential 

fit. 

 
Fig. 10: Mean drift rate in 𝐴𝐶 , 𝐴𝑆 and 𝐴𝑊 vs. fit model decay coefficient. Smaller time constants 

imply faster model decay. 

Increasing the drift rates of 𝐴𝑊 and 𝐴𝑆 hasten model decay, while adjusting the drift 

of 𝐴𝐶  does not significantly impact the results. As previously described, only 𝐴𝑆 and 

𝐴𝑊 impact the combined system that we aim to model (𝐴𝑊𝐴𝑆
+), so only drift in these 
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functions influence the model decay. Interestingly, drift in 𝐴𝑆 is slightly more impactful 

than drift in 𝐴𝑊. We believe this is due to the inversion of 𝐴𝑆 in the optimal model, which 

may amplify the effects of small changes to the system.  

2.2 Modeling Framework 

In this section, we propose a predictive Bayesian modeling approach that is well 

suited to the system framework from the previous section. We first present the form of 

the predictive model, then discuss how to update it as new information is available, and 

finally, how to decay our belief over time, in order to account for a drifting underlying 

system.  

2.2.1 Model Form 

Our proposed model is linear, 𝑊̂(𝑆) = 𝐴𝑀𝑆. While the model itself is traditional, our 

contribution focuses on how the model coefficients are fit. As we will show, a Bayesian 

fitting method that adjusts to concept drift and is less prone to overfitting can provide 

significant improvements over traditional fitting methods. Other models can be used in 

place of the linear model; however, the model updates have to be adjusted accordingly. 

This modeling approach is similar to a Kalman filter; however, it models a relationship 

between two variables as opposed to an unknown state variable. 

We model our belief of the optimal model, 𝐴𝑀, as a multivariate normal distribution 

with mean 𝜇𝐴 and covariance Σ𝐴:  

 𝐴𝑀~𝑁(𝜇𝐴, Σ𝐴). (24) 

The mean is the most likely estimate for the modeled system, while the covariance 

captures how likely this belief is, and how the model coefficients are related to one 

another.  

2.2.2 Model Updates 

A key part of our modeling approach is updating this belief as new information is 

available. We use a Bayesian approach that is both less prone to overfitting in the case of 

observability errors, and is updated over time to deal with concept drift. When new 

observations of 𝑆 and 𝑊 are made, we update our belief of 𝐴𝑀 using a Bayesian update:  
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 𝑃(𝐴𝑀|𝑆,𝑊) =
𝑃(𝑊|𝐴𝑀 , 𝑆)̇ ∙ 𝑃(𝐴𝑀)

𝑃(𝑊|𝑆)
 (25) 

This updated likelihood can be written explicitly; however, it must first be simplified. 

As 𝑃(𝑊|𝑆) does not depend on 𝐴𝑀, it is ignored during this calculation. Later we will find 

that the posterior, 𝑃(𝐴𝑀|𝑆,𝑊) is also a normal random variable, and this constant is 

determined retroactively:  

 𝑃(𝐴𝑀|𝑆,𝑊) ∝ 𝑃(𝑊|𝐴𝑀 , 𝑆) ∙ 𝑃(𝐴𝑀) (26) 

The prior belief of 𝐴, 𝑃(𝐴𝑀), provides inherent regularization and prevents 

overfitting, as our posterior is weighted by how likely the coefficients of 𝐴𝑀 are under this 

prior. Extreme values of 𝐴𝑀 that commonly arise when overfitting, are unlikely under 

both the prior and posterior. This helps combat overfitting due to observability errors, 

ensuring a better fit model. 

As 𝐴𝑀 is a matrix, we must vectorize it to explicitly write this prior, 𝑃(𝐴𝑀), as a normal 

random variable:  

 𝑃(𝐴𝑀,𝑣𝑒𝑐) ∝  𝑒−
1
2(𝐴𝑀,𝑣𝑒𝑐−𝜇𝐴)

𝑇
𝛴𝐴

−1(𝐴𝑀,𝑣𝑒𝑐−𝜇𝐴) (27) 

To model the probability of an observation given a model, 𝑃(𝑊|𝐴𝑀 , 𝑆), we assume 

normal random noise on the observation of wafer quantities, 𝑊, having standard 

deviation 𝜎𝑛. We then write the likelihood of these observations given 𝐴𝑀 as the 

likelihood of the residual, 𝐴𝑀𝑆 − 𝑊, given the assumed noise:  

 𝑃(𝑊|𝑆, 𝐴𝑀) ∝ 𝑒−
1
2
(𝐴𝑀𝑆−𝑊)𝑇𝛴𝑛

−1(𝐴𝑀𝑆−𝑊)
 (28) 

where 𝛴𝑛 is a diagonal matrix with all non-zero elements equal to the wafer observation 

variances:  

 𝛴𝑛 =

[
 
 
 
 
𝜎𝑛

2 … 0 … 0
… … … … …
0 … 𝜎𝑛

2 … 0
… … … … …
0 … 0 … 𝜎𝑛

2]
 
 
 
 

 (29) 

The value of 𝜎𝑛 is a crucial regularization parameter, as it estimates how much of the 

output is unpredictable due to observability error. For processes with low observability, 

high values of 𝜎𝑛 act as effective regularization parameters, as the model attributes large 

portions of the output variance to uninferable “noise,” making it less prone to overfitting.  

While this update is similar to the traditional Kalman filter update [104], we must 

make slight adjustments as 𝐴𝑀 is a matrix, and not a vector. Multivariate normal 
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distributions conventionally treat the random variable as a vector, so we use the 

vectorized version of 𝐴𝑀 , 𝐴𝑀,𝑣𝑒𝑐 , in Eq. 28. As we use 𝐴𝑀,𝑣𝑒𝑐 in Eq. 28, we must then also 

use it, as well as the vectorized wafer values, 𝑊𝑣𝑒𝑐 , in Eq. 28. In order to do so, we must 

rewrite the matrix multiplication using the Kronecker product:  

 (𝐴𝑀𝑆)𝑣𝑒𝑐 = 𝑆𝑘𝑟𝑜𝑛𝐴𝑀,𝑣𝑒𝑐 (30) 

where 𝑆𝑘𝑟𝑜𝑛 is the Kronecker product, as indicated by ⨂, of 𝑆𝑇 and the identity matrix of 

size |𝑆|, 𝐼|𝑆|:  

 𝑆𝑘𝑟𝑜𝑛 = 𝑆𝑇⨂𝐼|𝑆| (31) 

This allows us to combine the two terms of 𝑃(𝐵|𝐼, 𝑇):  

 
𝑃(𝐴𝑀|𝑆,𝑊) ∝ 𝑒𝑒

−
1
2
(𝐴𝑀,𝑣𝑒𝑐−𝜇𝐴)

𝑇
𝛴𝐴
−1(𝐴𝑀,𝑣𝑒𝑐−𝜇𝐴)

̇
  

 × 𝑒−
1
2(𝑆𝑘𝑟𝑜𝑛𝐴𝑀,𝑣𝑒𝑐−𝑊𝑣𝑒𝑐)

𝑇
𝛴𝑛

−1(𝑆𝑘𝑟𝑜𝑛𝐴𝑀,𝑣𝑒𝑐−𝑊𝑣𝑒𝑐) 

(32) 

Finally, these terms can be rearranged into a normal distribution with posterior mean, 𝜇𝐵
∗ , 

and covariance 𝛴𝐵
∗ :  

 𝑃(𝐴𝑀,𝑣𝑒𝑐|𝑆, 𝑊) =  𝑁(𝜇𝐴
∗ , 𝛴𝐴

∗) (33) 

where  

 𝛴𝐴
∗ = (𝑆𝑘𝑟𝑜𝑛

𝑇 𝛴𝑁
−1𝑆𝑘𝑟𝑜𝑛 + 𝛴𝐴

−1)
−1

 (34) 

and  

 𝜇𝐴
∗ = Σ𝐴

∗(𝑆𝑘𝑟𝑜𝑛
𝑇 𝛴𝑛

−1𝑊𝑣𝑒𝑐 + 𝛴𝐴
−1𝜇𝐴). (35) 

This allows us to update our belief of 𝐴𝑀 in a straightforward and efficient manner, as 

our entire belief is captured in 𝜇𝐴 and 𝛴𝐴. As new observations are made, we use this 

closed form update to incorporate them into our belief in constant time. 

2.2.3 Model Decay 

In addition to updating our model as new sensor and wafer observations are made, 

we also decay our belief to account for concept drift. Between model updates, the 

underlying system is likely to change, and our belief should account for this. When 

viewing our model as a Kalman filter, this decay is equivalent to the state transition 

function that describes how our belief at one time, 𝜇𝐴,𝑡 and Σ𝐴,𝑡, transition to later beliefs, 

𝜇𝐴,𝑡+1, Σ𝐴,𝑡+1.  
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There are two qualities that are desirable for this function. First, it should leave the 

mean of the belief, 𝜇𝐴, unchanged, as we generally do not know how the system will 

change. Secondly, we want our variance matrix, Σ𝐴, to increase over time. With this in 

mind, we use the following state transition function to update our belief from one 

timestep to the next:  

 𝜇𝐴,𝑡+1 = 𝜇𝐴,𝑡 (36) 

 Σ𝐴,𝑡+1 = (Σ𝐴,𝑡 + Σ𝐷,𝐴) ⊙ Σ𝑆,𝐴 . (37) 

Here, Σ𝑆,𝐴 represents a pointwise multiplication, indicated by ⊙, of our uncertainty, while 

Σ𝐷,𝐴 represents a Gaussian drift of the coefficients of the modeled system, 𝐴𝑀. 

For a system where the optimal model, 𝐴𝑀, follows a Gaussian random walk, the 

Gaussian drift decay and model update is the optimal system estimate. However, it is 

important to note that while the underlying synthetic systems, 𝐴𝑊 and 𝐴𝑆, follow a 

Gaussian walk, the combined system, 𝐴𝑊𝐴𝑆
+, does not necessarily follow a Gaussian walk 

as well. This is primarily due to the inversion of 𝐴𝑆 that may lead to the optimal system 

heavily deviating from a Gaussian random walk. For this reason, we also include the term 

Σ𝑆,𝐴, which supplements the Gaussian drift of the modeled system. 

2.2.4 Model Parameter Selection 

To apply this model, we must first select its parameters. These model parameters are 

distinct from the model coefficients 𝐴𝑀, and represent the model’s belief of the system 

drift and observability. These include the model observation noise, 𝜎𝑛, and the sets of 

decay drift, Σ𝐷,𝐴, and scaling, Σ𝑆,𝐴, coefficients. Here, we select parameters that maximize 

the validation accuracy of our model on historical data and use these for all future 

predictions; however, these could also be continuously refit as new data becomes 

available. 

Ideally, parameters could be selected using an Expectation Maximization algorithm 

(EM), a common approach for optimizing large numbers of parameters [108]. 

Unfortunately, given our model formulation, the Maximization step is difficult to calculate, 

and we rely on alternative methods.  

Instead, we use a grid search to optimize these parameters. We first choose a discrete 

set of values for each parameter, then perform a full factorial grid search over these to 

determine the set that gives the best predictive accuracy when evaluating validation data.  
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To evaluate the accuracy for a given set of parameters, we iterate through historical 

data, predict 𝑊 given 𝑆 at each timepoint, and average the mean squared errors (MSEs) 

across all iterations. We decay the model belief before each prediction, and update the 

model once every 𝑈 predictions. This infrequent update is important; in practice, 

observations are not taken with every prediction, as this would defeat the purpose of the 

predictive virtual metrology model.  

As the full factorial search quickly becomes infeasible with large numbers of 

parameters, we make some approximations. Primarily, we assume that the model drift 

decay values, Σ𝐷,𝐴, are equivalent for each coefficient in 𝐴𝑀. A similar assumption is also 

made for the scaling decay values, Σ𝑆,𝐴. While these values may not be equal for all 

coefficients in 𝐴𝑀, this approximation is required to feasibly perform a full factorial search 

on these coefficients. Additionally, assuming uniform drift rates is often desirable, as all 

coefficients must change at approximately the same rate in order to appropriately update 

a linearization of a non-linear function. To implement this, we restrict Σ𝐷,𝐴 to be a diagonal 

matrix with a constant value on the diagonal, and Σ𝑆,𝐴 to be a single constant, and optimize 

these two constants.  

While this parameter selection method provides good empirical results, as will be 

shown in Section 2.3, improving this fitting method is one opportunity for future work. 

Specifically, we believe it is possible to select unique parameters for all terms in 𝐴𝑀 via 

an EM algorithm; however, this approach is not yet known. This will likely improve real 

world performance, as some coefficients are more likely to change over time, while other 

are likely to remain stable.   

2.3 Results 

In this section, we present results of our proposed Bayesian modeling methodology. 

First, we present the results of our predictive model using data synthesized with our 

proposed system framework under a variety of system conditions. Then, we use our 

proposed modeling approach to predict key device characteristics taken from a real world 

industrial setting.  

In these scenarios, we compare our proposed modeling approach to a number of 

different standard linear modeling approaches. These methods include fixed ordinary 

least squares (FOLS), weighted ordinary least squares (WOLS), and previous observation 

(PO) methods.  
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The simplest of these is the previous observation method. Here, the prediction for new 

wafer values are the last wafer values observed. While simple, this method serves as a 

baseline approach; a predictive model must perform better than this method in order to 

be useful. 

 A second baseline approach is a FOLS model. Here, we fit an OLS model on a set of 

training observations, then use this fixed model to predict all future wafer values. While 

rudimentary, models such as these are some of the most frequently used approaches for 

predicting key device characteristics, and serve as a second baseline comparison. 

Additionally, the lack of adjustment for concept drift provides further evidence for its 

necessity, both in the simulated and real world cases.  

Finally, we also compare our method to WOLS. This method is a common approach 

for adjusting linear models to concept drift [109], [110]. Here, linear models are refit 

using all available data as new observations are made. Critically, recently made 

observations are given more weight, while older observations less. This reflects our belief 

that the modeled system is changing over time, and allows for our model to adapt to these 

changes. In our comparisons, we use an exponential weighting, where the weighting of 

each sample is 𝑒−
𝑡

𝛼. Here, 𝑡 represents how much time has elapsed since this sample, and 

𝛼 is a decay constant that represents how quickly we expect the underlying system to 

drift. Large decay constants represent relatively steady systems, while small decay 

constants represent quickly changing systems. In practice, we select this parameter in a 

method similar to the selection for our proposed method. We perform a grid search on a 

set of likely values, and choose the value that performs best to predict a validation set.  

We present the predictive results of our proposed and comparison methods using our 

synthetic system framework under varying system conditions to show the effects of these 

conditions, as well as the superior performance of our proposed method in a variety of 

settings. We adjust the number of linearly independent chamber variables, the drift rates 

of 𝐴𝐶 , 𝐴𝑆 and 𝐴𝑊, and the update frequency, 𝑈, of our model. By default, we use 10 linearly 

independent chamber variables, 10 linearly independent sensor variables, 1 wafer 

variable, and equal drifts in 𝐴𝐶 , 𝐴𝑆 and 𝐴𝑊 and adjust each of these system parameters 

individually.  

In Fig. 11 through Fig. 15, we present the results when sweeping the number of 

chamber variables from 1 to 30, when sweeping the individual drift rates from a factor of 
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10−3 to 102 of their default values, and when sweeping the update frequency from every 

prediction to every 10th prediction.  

In all experiments, we first generate training and testing data using the specified 

system. We then select the proposed model parameters, 𝛼 for the WOLS method, and train 

the FOLS model using the training data, and determine the model accuracies using the 

testing data. We iterate through all testing data, predicting 𝑊 and calculating the MSE at 

each iteration, then updating the models after every 𝑈 observations. Finally, we average 

the MSE error over each iteration and present the results. 

 

 

Fig. 11: Empirical normalized MSE as a function of drift rate of 𝐴𝐶. 

 

Fig. 12: Empirical normalized MSE as a function of drift rate of 𝐴𝑠. 
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Fig. 13: Empirical normalized MSE as a function of drift rate of 𝐴𝑤. 

 

Fig. 14: Empirical normalized MSE as a function of the number of linearly independent chamber 

variables. 
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Fig. 15: Empirical normalized MSE as a function of observation frequency.  

In all of these results, the proposed Bayesian modeling technique performs better 

than the baseline methods. The fixed OLS model performs worst, as it cannot adapt to 

changing process conditions. In cases where drift 𝐴𝑆 or 𝐴𝑊 in the modeled systems is 

more rapid, this effect is exacerbated as the fixed model becomes out of date more quickly.  

Additionally, the proposed Bayesian method outperforms the traditional WOLS 

method. We believe this is for two reasons. First, the more expressive model decay 

function allows the model to adapt to changing process conditions more accurately. 

Secondly, the Bayesian update and prior help prevent overfitting in the case of limited 

observability. Specifically, the proposed model noise, 𝜎𝑛, determines how much of the 

underlying system cannot be predicted, and helps to prevent overfitting due to low 

observability.  

In these results, changing the update frequency 𝑈 and changing the drift rates of the 

modeled systems, 𝐴𝑆 and 𝐴𝑊 produce similar results. Intuitively, this makes sense, as 

drifting the modeled systems at a faster pace is equivalent to updating a slower moving 

system more infrequently. Importantly, the reverse of this is also true: systems that drift 

rapidly can be modeled more effectively with more frequent modeling updates. 

Therefore, the update frequency of a model can often be chosen such that it leads to the 

desired model accuracy.  

In addition to modeling synthetic data, we also use our proposed and comparison 

methods to model a key wafer property for real world industrial fabrication data. Here, 

we model this key value using 50 available sensors and the same approach as described 
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when modeling synthetic data. We show the predictive accuracies in four different tools 

in Table 1, and example predictions for all methods for one of these in Fig. 16.  
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Fig. 16: Predicted and experimental wafer values for proposed and comparison methods, using 

industrial process sensor and wafer data. 

 

Here, we see similar results to those of our synthetic system. The fixed OLS model 

performs by far the worst, as it cannot adapt to changing process conditions. Additionally, 

this error tends to grow over time, indicating that drift is likely present in the underlying 

real system. The WOLS model also performs poorly, likely to due to overfitting of the 

sensor data. As there are 50 sensors, substantial amounts of data are required to 

accurately fit a model. Because the system is also drifting rapidly, sufficient relevant data 

is never available, and regularization is needed beyond what WOLS provides.  

When fitting parameters of our proposed Bayesian model, values are chosen to 

prevent overfitting in this difficult modeling scenario. While both WOLS and the proposed 

method each have parameters that estimate the model drift, only the proposed method is 

tuned for observability errors. The prediction noise, 𝜎𝑛, informs the model how much of 

the output is predictable, and how much cannot be inferred due to observability errors. 

In this real system, it is difficult to fully infer the necessary information to relate all 50 

TABLE I 

RMSE OF PROPOSED AND COMPARISON METHODS WHEN PREDICTING KEY WAFER VALUE IN FOUR 

DIFFERENT TOOLS.  

Tool 
Number 

Data 
STD. 

Previous 
Observation 

WOLS 
Fixed 
OLS 

Proposed 
Method 

1 0.096 0.058 0.076 0.388 0.041 

2 0.085 0.065 0.065 0.203 0.061 

3 0.087 0.063 0.087 0.227 0.044 

4 0.129 0.069 0.083 0.101 0.064 
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sensors to the output, and the Bayesian model estimates a large observation noise value, 

leading to less overfitting. This is seen in the less varied, but more accurate predictions of 

the proposed method compared to the WOLS results.  

The improved performance of our proposed method highlights the two key themes of 

this thesis. First, based on our prior knowledge of virtual metrology systems, we expect 

two key sources of error, observability errors and concept drift. We then compensate for 

these sources of error by incorporating probabilistic model decay and expected 

observability errors into our Bayesian fitting method. These help prevent overfitting 

while still allowing our model to update to changing system conditions, highlighting the 

benefit of incorporated process knowledge, and probabilistic modeling approaches. 

2.4 Conclusions and future work 

In this chapter, we explore virtual metrology for semiconductor fabrication and make 

two key contributions to this area. First, we propose a framework for simulating these 

systems that incorporates concept drift as well as observability errors, both of which are 

expected to be present in real world virtual metrology applications. While this framework 

does not directly model key wafer properties, it can be used to better understand how 

these systems function, and can be used to develop virtual metrology modeling 

techniques. Wafer and sensor data can be synthesized, and improved modeling 

techniques can be developed using such synthetic data. Finally, we use this framework to 

draw conclusions about modeling these systems, and in particular study the effects of 

system drift and chamber observability.  

Our second major contribution is a virtual metrology technique to model the key 

wafer values of interest as a function of sensor values. This Bayesian approach models an 

unknown linear system as a normal random variable, allowing for Bayesian updates as 

new observations are available, and is designed with concept drift and observability 

errors in mind. The proposed method is well suited to model drifting systems, as we decay 

our belief between updates to reflect an unpredictable change in the underlying system. 

Finally, we apply this modeling technique to both synthetic and industrial data, and 

achieve superior results compared to traditional OLS and WOLS methods.  

This case study highlights both key themes of this thesis. First, prior process 

knowledge, such as the expectation of concept drift and observability errors, are 

incorporated into the system framework. This allows us to design our modeling approach 
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with the presence of these errors in mind by incorporating model decay and expected 

observability errors. Secondly, the Bayesian nature of our method helps prevent 

overfitting caused by observability errors, as it has a prior that limits the model to a 

feasible range and a noise parameter, 𝜎𝑛, that assigns some portion of the output variance 

to unpredictable sources. Both the incorporation of system knowledge, as well as the 

Bayesian modeling approach are critical to the improved performance compared to 

traditional modeling methods.  

While the proposed system and modeling frameworks are both promising, we believe 

that improvements to both exist. For the system framework, it is important to investigate 

how our results change for non-linear systems. While our linear models provide good 

approximations for continuously and slowly drifting non-linear systems, real world 

scenarios are often non-linear, and it would be of interest to explicitly investigate the 

impacts of non-linear systems and non-linear models. Additionally, extensions to this 

framework that incorporate tool-tool variations may also be useful for examining 

multiple tools simultaneously. For the modeling framework, an improved drift and noise 

parameter fitting method could also be considered. Currently, we limit our selection by 

assuming equal drift rates for all coefficients relating sensor and wafer variables; 

however, this is likely not the case. Optimizing the parameters for each model coefficient 

uniquely could increase performance. Finally, we believe that there is a further, 

unexplored, benefit from the combined modeling and system frameworks. In our analysis, 

we did not explore the effects of the recipe; however, this is a variable that can be 

controlled in practice. We believe it may also be possible to incorporate these variables 

into the modeling approach for combined virtual metrology and run to run control. 
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3 Optimization of Dosing Uniformity in Ion Implantation Systems 

In this chapter, we explore the use of the Bayesian modeling approach presented in 

the previous chapter to model and optimize dose uniformity in ion optimization 

processes.  

3.1 Introduction 

Ion implantation is a fundamental process in semiconductor fabrication [111]–[113]. 

In this process, ions are accelerated towards a wafer in order to implant dopants in the 

substrate. This gives the substrate a desired dopant concentration, allowing for either p-

type or n-type doping and modifying the conductivity of the substrate.  

Commonly, the ion beam is swept across the wafer in order to provide approximately 

equal dose to all areas of the wafer as illustrated in Fig. 17 [114]. Problematically, 

methods for directing the ion beam often distortion the shape and intensity of the beam 

as it is swept across the wafer, as shown in Fig. 18. In these cases, assigning uniform dose 

time across the wafer leads to non-uniform implantation dose profiles as seen in Fig. 19 

[115], [116]. To compensate for this, the implantation time is often spatially varied in 

order to achieve a uniform implantation dose [117]–[120]. Areas of the wafer with low 

uncompensated doses are given additional implantation time and those with greater 

unadjusted dose less.  

 
Fig. 17: Illustration of ion beam sweeping across wafer. 
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Fig. 18: Experimentally measured implantation rate cross sections when the beam is placed at three 

different wafer locations. Note the change in intensity as the beam location changes. 

 
Fig. 19: Cross section of implantation dose profile when sweeping the beam at a constant speed. 

A key modeling challenge faced is drift of the system dynamics over the course of 

successive implantations, preventing a single set of compensating times from being 

sufficient. When the system dynamics change significantly, previous implantation times 

no longer meet the uniformity criteria, and a new set of compensating times must be 

found. Because this drift may occur relatively quickly, minimizing the re-tuning time is 

critical to reducing loss from tool downtime, and for retaining high yield. Additionally, the 

presence of a drifting system may also lead to spurious correlations between the model 

inputs and outputs resulting in model overfitting. We can see the presence of this drift 

when viewing subsequent implantations using the same tuning times. Below we plot four 

dose profiles taken immediately after one another, when the same implantation times are 

used (Fig. 20), confirming that the systems drift between runs.  
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Fig. 20: Sequential implantation profiles using the same set of process times, demonstrating system 

drift. 

This rate of drift is often influenced by the process recipe, which includes parameters 

such as the ion element, the implantation energy, and mean implantation current. For 

example, low energy implantations, which are often desirable, are more heavily impacted 

by these problems [121]–[123]. Additionally, the recipe also influences the amount of 

required compensation, as some are naturally less uniform and require more extreme 

compensation. Therefore, improved tuning techniques expand the range of recipes that 

can feasibly be run, as high variation recipes can still be sufficiently controlled with 

effective tuning methods. 

In this section, we present a machine learning approach to model and rapidly tune 

implantation dose uniformity through spatial adjustments to the implantation time. Our 

approach is comprised of a forward model, as well as an optimization component, and is 

similar to Bayesian Optimization (BO) methods [124]. The forward model is a Bayesian 

estimate of the relationship between the implantation times and the resulting 

implantation dose profile. This method was presented in the previous section, and is 

similar to Kalman filters, which are used in a variety of tasks such as position tracking 

[77], [78], [80]; however, we again track an input-output relationship that deviates from 

the traditional Kalman Filter method in that the latter only tracks an unknown state 

variable. Our optimization method uses this inferred relationship to select new 

implantation times believed to compensate for dose non-uniformities. Here, we define a 
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constrained optimization problem that minimizes the difference between our desired and 

predicted profiles.  

The combination of these two components results in an effective iterative tuning 

method. After initializing a starting belief, we solve for compensating implantation times. 

The resulting implantation dose profile is then measured, and the model updated. If the 

desired uniformity is not met, the process repeats, updating the model and retuning until 

a sufficient solution is found. We find that this method converges in fewer iterations than 

the prior deployed industry method of record, while also finding solutions that give 

equivalent uniformities with less overall implantation time, increasing the throughput of 

the system. 

In Section 3.2, we discuss the specifics of the modeling approach. We first formalize 

our model, then discuss additional features, including the prior belief initialization, 

incorporation of additional measurement types, and adjustments for beam intensity 

changes in the system. In Section 3.3, we discuss the optimization approach in further 

detail. In Section 3.4, we present a tuning example that illustrates our modeling and 

optimization approach. We present the results of our method in Section 3.5, and compare 

them to the existing industry method of record. Finally, in Section 3.6, we summarize our 

conclusions and discuss future work. 

3.2 Modeling Approach 

Here, we present our machine learning model which predicts the implantation dose 

as a function of the implantation times. First, we present the model itself, and explain how 

model updates are made using new observations. We discuss how to adjust the model to 

account for a drifting system. We then discuss our prior belief, which is critical for rapid 

tuning. Finally, we discuss how to update the model with fast spot measurements, a 

second implantation measurement that is faster to perform than traditional implantation.  

3.2.1 Model 

Here, we present the Bayesian predictive model used in our tuning approach. This 

model predicts the implantation dose across the wafer, 𝐼, as a function of the time spent 

above each point on the wafer, 𝑇, and is an application of the probabilistic modeling 

technique presented in Section 2.  
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During modeling, we discretize both 𝑇 and 𝐼 into discrete elements. Each element of 𝐼 

represents the dose given to a small section of the wafer, while each element of 𝑇 

represents the implantation time spent above a small section of the wafer. During 

implantation, 𝑇 is translated into sweep speeds used for each section of the wafer.  

Although the wafer dose profile is two-dimensional, we approximate it as one-

dimensional. When the beam is swept in one direction, the wafer is quickly moved back 

and forth in the perpendicular direction giving nearly uniform implantation in that 

direction. Thus, we only model and compensate for non-uniformities in the beam sweep 

direction, making 𝑇 and 𝐼 one-dimensional. 

Both 𝑇 and 𝐼 have their own corresponding position vectors, 𝑥𝑇  and 𝑥𝐼 , that denote 

the physical positions of their elements relative to the wafer center. For 300mm wafers, 

the wafer position vector, 𝑥𝐼 , takes values between -150mm and 150mm, and each value 

of 𝑥𝐼 represents the wafer positions where dose measurements are made. Similarly, the 

beam position vector, 𝑥𝑇 , represent discretized locations where the beam can be placed. 

This range is typically larger, as the beam width is non-zero, and off-wafer beams are 

frequently used to adjust the dose on the wafer edges.  

A key assumption we make is that the relationship between 𝑇 and 𝐼 is linear, i.e., the 

sum of two time vectors results in the sum of their dose profiles. Intuitively this make 

sense, as the implantation dose at each location should be the accumulation of impacting 

ions. We define a linear relationship between the dose profile, 𝐼, the time profile, 𝑇, and 

the implantation rates as a function of beam and wafer location, 𝐵:  

 𝐼 = 𝐵𝑇. (38) 

The beam matrix, 𝐵, describes the relationship between the implantation dose profile 

and the implantation times. 𝐵 is a matrix of size |𝐼| × |𝑇| that gives the implantation rate 

at each wafer location, 𝑥𝐼 , for each potential beam location, 𝑥𝑇 . Specifically, each element, 

𝐵𝑖,𝑗, gives the implantation rate at point 𝑥𝐼𝑖  when the beam is placed at 𝑥𝑇𝑗
 as pictured in 

Fig. 21. Vertical slices of 𝐵 represent the beam shape at one beam location, while 

horizontal slices represent the implantation at one wafer location as the beam is swept 

across the wafer. 



 58 

 
Fig. 21: Experimentally measured 𝐵 matrix (normalized), that shows the implantation rates as a 

function of the beam, 𝑥𝑇, and wafer position, 𝑥𝐼 . 

If 𝐵 is known, we can predict 𝐼 for any value of 𝑇. Therefore, building a predictive 

model is equivalent to estimating 𝐵. Our modeling approach estimates 𝐵 using a method 

similar to Kalman filters [125], and is nearly identical to the virtual metrology approach 

discussed in Section 2.3. Kalman filters infer unobservable variables through a set of 

observable variables and are commonly used for position estimation tasks. Here, we use 

a modified approach, where the inferred variable is the relationship, 𝐵, between two 

observed variables, 𝐼 and 𝑇. Specifically, we model 𝐵 as a multivariate normal random 

variable with mean 𝜇𝐵 and covariance matrix 𝛴𝐵:  

 𝐵~𝑁(𝜇𝐵, 𝛴𝐵). (39) 

This representation captures our most likely belief of 𝐵 as well as its uncertainty. The 

mean of our belief, 𝜇𝐵, is the most likely value we expect 𝐵 to take, and the covariance, 𝛴𝐵, 

describes both the confidence in our belief, as well as how the uncertainties are related to 

one another.  

Under this model, we can update our belief as new implantations are observed. When 

a new implantation observation pair, 𝐼, 𝑇, is made, we can calculate the posterior belief of 

𝐵:  

 𝑃(𝐵│𝐼, 𝑇) =
𝑃(𝐼|𝑇, 𝐵) ∙ 𝑃(𝐵)

𝑃(𝐼, 𝑇)
. (40) 

As 𝑃(𝐼, 𝑇) is a constant that does not depend on 𝐵, we ignore it. Later we show that 

the posterior is again a normal random variable, and the constant can be determined 

retroactively:  
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 𝑃(𝐵|𝐼, 𝑇) ∝ 𝑃(𝐵) ∙ 𝑃(𝐼|𝑇, 𝐵). (41) 

In order to explicitly write these probability functions as normal random variables, 

we vectorize these variables. We write the first half of Eq. 41, our prior belief of 𝐵, using 

the vectorized version of the matrix 𝐵, 𝐵𝑣𝑒𝑐:  

 𝑃(𝐵𝑣𝑒𝑐) ∝ 𝑒−
1
2
(𝐵𝑣𝑒𝑐−𝜇𝐵)𝑇𝛴𝐵

−1(𝐵𝑣𝑒𝑐−𝜇𝐵)
. (42) 

To define the second half of Eq. 41, 𝑃(𝐼|𝑇, 𝐵), we assume normal random noise on the 

observed dose profile, with a standard deviation 𝜎𝑛. This allows us to write the likelihood 

of the observation given 𝐵 as the likelihood of the prediction error under this assumed 

noise:  

 𝑃(𝐼|𝑇, 𝐵) ∝ 𝑒−
1
2
((𝐵𝑇−𝐼)𝑣𝑒𝑐)

𝑇𝛴𝑛
−1((𝐵𝑇−𝐼)𝑣𝑒𝑐). (43) 

Here, 𝛴𝑛 is a diagonal matrix with all non-zero elements equal to the implantation 

observation variance:  

 𝛴𝑛 =

[
 
 
 
 
𝜎𝑛

2 … 0 … 0
… … … … …
0 … 𝜎𝑛

2 … 0
… … … … …
0 … 0 … 𝜎𝑛

2]
 
 
 
 

. (44) 

While this update is similar to traditional Kalman filter updates, we must make 

adjustments because the unknown variable is a matrix, instead of a vector. In particular, 

we rewrite the matrix multiplication in Eq. 43 using the Kronecker product [126]:  

 (𝐵𝑇)𝑣𝑒𝑐 = 𝑇𝑘𝑟𝑜𝑛 𝐵𝑣𝑒𝑐 . (45) 

Here, 𝑇𝑘𝑟𝑜𝑛 is the Kronecker product of 𝑇𝑇 and the identity matrix of size |𝑇|, 𝐼|𝑇|:  

 𝑇𝑘𝑟𝑜𝑛 = 𝑇𝑇⨂𝐼|𝑇| . (46) 

This allows us to combine the two terms of 𝑃(𝐵|𝐼, 𝑇):  

 
𝑃(𝐵|𝐼, 𝑇) ∝ 𝑒𝑒

−
1
2
(𝐵𝑣𝑒𝑐−𝜇𝐵)

𝑇
𝛴𝐵
−1(𝐵𝑣𝑒𝑐−𝜇𝐵)

  

 ̇𝑒−
1
2
(𝑇𝑘𝑟𝑜𝑛𝐵𝑣𝑒𝑐−𝐼)𝑇𝛴𝑛(𝑇𝑘𝑟𝑜𝑛𝐵𝑣𝑒𝑐−𝐼𝑣𝑒𝑐). 

(47) 

Finally, we rewrite this expression as a new normal distribution with posterior mean, 

𝜇𝐵
∗ , and covariance 𝛴𝐵

∗ :  

 𝑃(𝐵|𝐼, 𝑇) =  𝑁(𝜇𝐵
∗ , 𝛴𝐵

∗ ). (48) 

where  
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 𝜇𝐵
∗ = 𝛴𝐵

∗−1
(𝑇𝑘𝑟𝑜𝑛

𝑇 𝛴𝑛
−1𝑇𝑘𝑟𝑜𝑛 ∙ 𝐼𝑣𝑒𝑐 + 𝛴𝐵

−1𝜇𝐵) (49) 

and  

 𝛴𝐵
∗ = (𝑇𝑘𝑟𝑜𝑛

𝑇   𝛴𝐵
−1  𝑇𝑘𝑟𝑜𝑛 + 𝛴𝐵

−1)
−1

. (50) 

This belief update of 𝐵 is straightforward and efficient, as we update our belief 

coefficients, 𝜇𝐵 and 𝛴𝐵, using closed form calculations in constant time. In our testing, this 

update takes approximately 0.1 seconds; however, this may change for different sizes of 

𝐵, in addition to differences in computational power. 

3.2.2 Observation Scaling 

For some implantation recipes, the total dose may change between implantations 

even when 𝑇 is unchanged, as the source current may fluctuate from one implantation to 

the next, resulting in scaled dose profiles. In order to avoid overfitting to these expected 

run to run variations, we scale incoming observations to account for these current and 

dose differences. Prior to model updates, we scale the observed dose profile such that the 

total dose of the scaled profile is equal to the total dose of the profile predicted under our 

current belief:  

 𝐼𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐼
∑(𝐵𝑇)

∑𝐼 
 . (51) 

3.2.3 Decay 

Because the beam shapes may vary unintentionally between implantations, we decay 

the certainty of our belief before each update. Without this decay, the precision of our 

belief, 𝛴𝐵
−1, will grow indefinitely, lessening the impact of new observations. This would 

prevent our model from adjusting to changing process conditions, and also lead to 

numerical issues. This decay is equivalent to the state-transition function in Kalman filters 

that describes the evolution of our belief between observations, and is also similar to the 

model decay discussed in Section 2.3.3.  

The transition function should have two qualities. First, it should preserve the mean 

belief, 𝜇𝐵, as we do not know how the system will drift, and should only increase the 

uncertainty of our belief. Secondly, we do not want the uncertainty to increase infinitely. 

As we will discuss in the next section, we have a prior belief of 𝐵 that represents our belief 

with no observations. When many iterations are performed and no observations are 
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made, our uncertainty should approach that of the prior. With these two characteristics 

in mind, we choose the decay function to be an exponential decay of our belief covariance 

into the prior covariance, 𝛴𝐵,𝑝𝑟𝑖𝑜𝑟 , with no change to the mean belief:  

 𝐵𝑡+1~𝑁(𝜇𝐵,𝑡 , (1 − 𝛼)𝛴𝐵,𝑡 + 𝛼𝛴𝐵,𝑝𝑟𝑖𝑜𝑟). (52) 

Here, 𝛼 is a constant that determines how much change we expect between 

observations. Larger values of 𝛼 more drastically increase the system uncertainty 

between implantations, while lower values suggest that the underlying system is 

relatively unchanged. In our testing, we chose a single value for 𝛼; however, more 

sophisticated methods that consider the time between implantation, or the likelihood of 

observations, may improve performance.  

3.2.4 Prior 

Tuning a process begins by choosing a prior belief of 𝐵. This choice is critical, as an 

accurate prior greatly reduces the number of iterations required to converge to a desired 

uniformity. Here, we present our parameterized prior that incorporates our existing 

belief in the form of 𝐵. 

The prior belief has two components, the mean, 𝜇𝐵, and the covariance matrix, 𝛴𝐵. Our 

choice of 𝜇𝐵 makes two approximations. While beliefs after future observations may not 

adhere to these approximations, they allow us to initialize our belief with a relatively 

accurate prior. The first approximation is that the beam does not change as it moves 

across the wafer, as perturbations of the beam shape are relatively minor, and these are 

learned during tuning. Additionally, as the direction of these perturbations is unknown, 

the most likely belief is an unchanged beam across the entire wafer. The second 

approximation is that the beam shape is Gaussian. While this is not perfectly accurate, the 

implantation rates are most intense at the center of the beam and asymptotically decay to 

zero as the distance from the center increases. Therefore, a Gaussian prior is a relatively 

accurate, parameterizable, approximation that can be refined with additional 

observations. Under this assumption, we parameterize the beam with intensity 𝐴𝜇 , beam 

width 𝑊, and beam center 𝐶 as pictured in Fig. 22, and according to:  

 
𝜇𝐵,𝑖 = 𝐴𝜇  𝑒

−
1
2(

(𝑋𝐼,𝑣𝑒𝑐)𝑖
−(𝑋𝑇,𝑣𝑒𝑐)𝑖

−𝐶

𝑊 )

2

. 
(53) 

In this, and future, definitions, we use full position matrices, 𝑋𝑇 ∈ 𝑅|𝑥𝐼|∙|𝑥𝑇| and 𝑋𝐼 ∈

𝑅|𝑥𝐼|∙|𝑥𝑇| that give the values of the time, 𝑥𝑇 ,  and implant, 𝑥𝐼 , positions respectively for any 
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pair of time and implant position indices, 𝑖 ∈ 1: |𝑥𝐼| and 𝑗 ∈ 1: |𝑥𝑇|. These matrices are 

useful as they are the same size as 𝐵 and allow us to index the two position vectors as well 

as 𝐵 with the same set of indices:  

 𝑋𝐼,𝑖,𝑗 = 𝑥𝐼,𝑗 (54) 

 𝑋𝑇,𝑖,𝑗 = 𝑥𝑇,𝑗. (55) 

 

Fig. 22: Example prior mean, 𝜇𝐵. 

The second component, 𝛴𝐵, requires a more sophisticated design. Each term in the 

covariance matrix contains the uncertainties, as well as the expected relationship, of two 

points in 𝐵. Therefore, we decompose each covariance term, 𝛴𝐵,𝑖,𝑗, into the pointwise 

uncertainties of the points, 𝜎𝐵,𝑖 and 𝜎𝐵,𝑗, and the correlation between them, 𝜌𝑖,𝑗. The 

pointwise uncertainties, 𝜎𝐵,𝑖 and 𝜎𝐵,𝑗 , represent the uncertainty of each term in 𝐵, while 

the correlation coefficients, 𝜌𝑖,𝑗, represent how we expect the terms of 𝐵 to be related. 

Finally, we include a third pointwise noise term, 𝜎𝑝, in the diagonal to ensure that the 

matrix is invertible:  

 𝛴𝐵,𝑖,𝑗 = 𝜎𝐵,𝑖𝜎𝐵,𝑗𝜌𝑖,𝑗 + {
0
𝜎𝑝

   
𝑖𝑓 𝑖 ≠ 𝑗
𝑖𝑓 𝑖 = 𝑗

     . (56) 

When defining 𝜎𝐵, we make the same assumptions as when defining the mean belief. 

Areas with greater intensity, such as the center of the beam, have high uncertainty, while 

areas with little intensity, such as those far away from the beam center, have low 

uncertainty. Therefore, we again parameterize the pointwise uncertainties as a Gaussian 

with the same beam width 𝑊, and the same beam center 𝐶, but with a max uncertainty 
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𝐴𝜎. Additionally, we add a constant variation, 𝜎𝑚, to ensure that there is a minimum 

uncertainty at each point in 𝐵:  

 
𝜎𝐵,𝑖 = 𝐴𝜎  𝑒

−
1
2(

(𝑋𝐼,𝑣𝑒𝑐)𝑖
−(𝑋𝑇,𝑣𝑒𝑐)𝑖

−𝐶

𝑊 )

2

+ 𝜎𝑚. 
(57) 

When constructing 𝜌, we make two assumptions to improve our prior belief. First, we 

assume that as the beam moves across the wafer, its shape remains relatively constant, 

and thus points in 𝐵 with the same distance from the beam center are heavily correlated 

with a trans-wafer correlation coefficient, 𝛽. Secondly, we assume that minor 

perturbations within the beam shape are correlated to nearby beam locations, with a 

length scale, 𝑙𝑏, and that these perturbations are also correlated within the beam with a 

length scale, 𝑙𝑜. With these two assumptions in mind, we define our correlations 

coefficients as:  

 

𝜌𝑖,𝑗 = (𝛽 + (1 − 𝛽)𝑒
−

1
2
(
(𝑋𝑇,𝑣𝑒𝑐,𝑖+𝑋𝐼,𝑣𝑒𝑐,𝑖)−(𝑋𝑇,𝑣𝑒𝑐,𝑗+𝑋𝐼,𝑣𝑒𝑐,𝑗)

𝑙𝑏
)

2

) 

∙   𝑒
−

1
2
(
(𝑋𝑇,𝑣𝑒𝑐,𝑖−𝑋𝐼,𝑣𝑒𝑐,𝑖)−(𝑋𝑇,𝑣𝑒𝑐,𝑗−𝑋𝐼,𝑣𝑒𝑐,𝑗)

𝑙𝑜
)

2

. 

(58) 

In Fig. 23, we show the correlation coefficients for one point in 𝐵. Here, points with 

similar beam locations are highly correlated, and this correlation decreases as the 

distance between the beam locations increases. Additionally, points with similar 

distances from the beam center are also heavily correlated and this too decreases as the 

distance between the beam locations increases; however, these asymptotically approach 

a correlation coefficient of 𝛽, instead of 0, as the beam shape is mostly constant across the 

wafer.  
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Fig. 23: Example correlation coefficient of marked position (red) and all other locations. Note the 

decay as the distance from the beam center, 𝑋𝐼,𝑣𝑒𝑐 − 𝑋𝑇,𝑣𝑒𝑐, (1) as well as the beam location, 𝑋𝐼,𝑣𝑒𝑐 +

𝑋𝑇,𝑣𝑒𝑐,  (2) changes. Additionally, note the minimum trans-wafer correlation (3). 

3.2.5 Fast Spots 

In addition to wafer dose measurements, fast spots are a useful supplemental 

measurement. These are cheaper and quicker to perform, as they do not require a direct 

measurement of the wafer dose. Instead, a faraday, a sensor that measures ion current, is 

placed on the wafer at a specific location, 𝑥𝐼,𝑠. The beam is then swept across the wafer 

with times 𝑇𝑓 , and the dose at the faraday location, 𝐼𝑓, is measured as the beam moves 

across the wafer. This provides the implantation rate at one point on the wafer for every 

beam location; however, these measurements must be incorporated into our modeling 

framework in order to utilize them. 

To do so, we express fast spots as a series of sequential observations, where each 

observation in the series represents one location of the beam during its sweep, and the 

corresponding faraday measurement. Under this description, fast spot measurements can 

be incorporated into our Bayesian modeling framework. 

Since the ion current is continuously measured during the beam sweep, each 

measurement represents the implantation from only a single beam location. Therefore, 

the time vector for the 𝑖𝑡ℎ measurement, 𝑇𝑖, is zero except at the 𝑖𝑡ℎ beam location, where 

𝑇𝑖,𝑖 = 𝑇𝑓,𝑖.  



 65 

Additionally, as we only measure the dose at the faraday location, each dose profile is 

zero for all non-sensor locations, and the dose at the faraday location for the 𝑖𝑡ℎ 

observation, 𝐼𝑖,𝑠, is the 𝑖𝑡ℎ faraday measurement, i.e., 𝐼𝑖,𝑠 = 𝐼𝑓,𝑖. Because the implantation 

dose is likely non-zero at all non-faraday locations, we set the implantation noise to ∞ at 

all non- faraday locations. This represents our lack of observation at non-faraday 

locations, and is implemented by making 𝛴𝑛 from Eq. 47 and 49 a diagonal matrix with 

the sensor noise equal to the default sensor noise, and all others infinity, i.e., 𝛴𝑛,𝑠,𝑠 = 𝜎𝑛 

and 𝛴𝑛,𝑖,𝑖 = ∞ if 𝑖 ≠ 𝑠.  

 𝛴𝑛 =

[
 
 
 
 
∞ … 0 … 0
… … … … …
0 … 𝜎𝑛

2 … 0
… … … … …
0 … 0 … ∞]

 
 
 
 

. (59) 

3.3 Optimization 

After creating a predictive model, we exploit our belief to optimize the implantation 

dose profile. Specifically, we use our belief of 𝐵 to choose a set of times, 𝑇, that lead to our 

desired dose profile, 𝐼𝑑. However, we must also consider the constraints of our solution. 

These include minimum and maximum sweep speeds, translated to minimum, 𝑇𝑚𝑖𝑛, and 

maximum, 𝑇𝑚𝑎𝑥, times for each element of 𝑇, as well as a constraint on the total 

implantation time. Formally, we frame this as a constrained optimization problem, where 

we minimize the mean square error (MSE) between the predicted and desired profiles 

subject to our linear constraints.  

While this can be sufficient, we also add a regularization term to our cost function that 

punishes accelerations in 𝑇 by a factor of 𝜆. This has many benefits: it prevents overfitting 

to our current belief, it leads to smooth time profiles that give more repeatable results, 

and finally, it ensures a well-conditioned optimization problem. Our final formulation is:  

 

𝑚𝑖𝑛
𝑇

∑(𝐵𝑇 − 𝐼𝑑)2 + 𝜆 ∑(𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1)
2 

𝑠. 𝑡.  𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥∀𝑖 ∈ 1: |𝑥𝑇|, 

∑𝑇 = 𝑇𝑡𝑜𝑡𝑎𝑙  . 

(60) 

This is a convex quadratic optimization problem with linear constraints, and numerous 

tools exist to solve these problems.  

In order to fully define this optimization problem, we must choose a value for the 

regularization parameter 𝜆. As 𝜆 decreases, so does the penalty for variations in 𝑇, 
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allowing for a finer tuning of 𝐼. However, larger values of 𝜆 produce smoother 𝑇 vectors 

that help prevent overfitting. Therefore, we should choose the value of 𝜆 in order to 

achieve the uniformity that we desire. Here, we select a value 𝜆 just small enough such 

that the predicted profile meets a desired uniformity requirement. Practically, we use a 

binary search on 𝜆 to find the value that meets this requirement. In our testing, the binary 

search problem and original optimization problem can be solved quickly. Typically, the 

combined problem takes 0.1 seconds or less to solve. 

3.4 Illustrative Example 

In this section, we walk through an example tune using synthetic data in order to 

demonstrate key aspects of the approach. Here, we synthesize data using a beam with a 

fixed beam width, with value 𝑊 = 75 mm, but whose intensity oscillates as it is swept 

across the wafer. The synthetic beam matrix can be seen below in Fig. 24: 

 

Fig. 24: True B matrix used to synthesize illustrative data. 

When initializing our belief, we choose to use a beam width 50% wider than the true 

width, i.e., 𝑊 = 112.5 mm, in order to demonstrate how it learns the true underlying 

system (Fig. 25).  
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Fig. 25: Starting mean belief of the B matrix (𝜇𝐵). 

Under the starting system belief, the first profile to be selected by the optimizer will 

have constant speeds, i.e., one with constant beam times, 𝑇, across the wafer. This is 

because it will minimize both the non-uniformity aspect of the cost function, since the 

predicted profile is flat, as well as the smoothness penalty, since constant times have no 

acceleration in the profile. Using our synthetic “true” system, and constant beam speeds, 

the resulting implantation dose is calculated (Fig. 26). The model is then updated using 

this profile, and the results can be seen (Fig. 27). The updated belief reflects the 

underlying change in intensity; however, its belief of the beam width is still wider than 

the true value 

 

Fig. 26: Dose profile resulting from synthetic beam matrix and constant beam times. 
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Fig. 27: Mean belief of 𝐵, 𝜇𝐵, after observation of linear profile (in Fig. 26) using incorrect starting 

beam width.  

Another valuable type of measurement, referred to as a dip profile, observes the effect 

of either slowing, or speeding up the beam at a specific location, in order to explicitly 

measure the shape of the beam at that location. The dip profile (Fig. 28) can be subtracted 

from the linear profile in order to determine the exact effect of the beam at that location. 

We do not need to explicitly perform this subtraction in our modeling approach, because 

sequentially updating the model with linear and dip observations automatically 

incorporates this knowledge into our belief (Fig. 29). Considering a dip profile provides a 

good example of how information is learned, and demonstrates key aspects of our model. 

Fig. 28 (left) shows an example beam times profile corresponding to our example dip 

profile, whose simulation is shown in Fig. 28 (right). Using these as a second set of 

observations, the model is again updated, resulting in the improved belief of 𝐵 (Fig. 29).  
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Fig. 28: Times profile (left) and resulting implantation dose (right) for a dip observation. 

 

Fig. 29: Mean beam shape beliefs after linear and dip observations. 

After observing the sequential linear and dip profiles, the resulting mean belief, 𝜇𝐵, 

now provides a good approximation for the true underlying system, which can be seen 

when comparing Fig. 29 to Fig. 24. First, the linear profile has informed the model how 

the intensity of the beam changes across the wafer (Fig. 27), giving the belief the same 

oscillating pattern seen in the true system. Then, updating the model using the dip 

observation has improved the estimate of the beam width, as this was originally 

incorrectly set (Fig. 29). Even though we directly observed the beam and its width at one 

location, this information is critically transferred across the entire 𝐵 matrix, giving the 

correct width at all locations. This is due to the trans-wafer correlation built into the prior, 

which assumes that the beam is relatively correlated as it is swept across the wafer. While 
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there is not perfect correlation, as we still see the intensity oscillations, our Bayesian prior 

and modeling approach do transfer critical knowledge about the width of the beam across 

the belief.  

A key theme of this thesis is the incorporation of existing process knowledge into our 

approaches. Here, we see that our assumption of the beam prior allows us to accurately 

estimate the beam shapes with only two observations. Without this prior, it may take as 

many observations as there are beam locations (60 in this case) in order to approximate 

the true system.  

In addition to looking at the posterior mean belief, we can also observe key changes 

to the pointwise uncertainties of our belief (the diagonal of Σ𝐵). These values express how 

certain we are of the current belief, on a pointwise basis. After updating the model using 

the sequential linear and dip profiles, we see a low variance at the location where the dip 

occurred (Fig. 30). As previously described, the combination of the dip and linear profile 

give us near perfect information of the beam shape at the dip location. Thus, our 

uncertainty of the beam at the dip location is lower than other locations, as we have exact 

measurements of these values.  

 

Fig. 30: Pointwise uncertainties after linear and dip observations. 

After these initial model updates, we use our optimizer to select new times that are 

predicted to lead to our desired profile (i.e., a flat implantation dose). To perform this 

optimization, we require our desired profile, our mean belief of 𝐵, 𝜇𝐵, as well as a 

regularization constant, 𝜆. The value of 𝜆 determines how aggressively to tune the 

implantation profile. Larger values of 𝜆 impose larger penalties on variation in the times 
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profile, limiting how accurately a profile can be tuned, but also preventing overfitting. 

Below, we plot resulting times and dose profiles for three separate values of 𝜆 (Fig. 31). 

Here we see that lower values of 𝜆 allow for more variation and less smoothness in 𝑇. This 

allows for tighter tuning of the predicted implantation dose; however, in reality this may 

also lead to overfitting. Conversely, choosing too large a value of 𝜆 overly restricts the 

solution, and does not allow for 𝑇 to vary enough to achieve uniformity. Finally, selecting 

a medium value of 𝜆 allows for both sufficient control over time implantation profile, 

while still retaining smooth values of 𝑇. 

  

 

Fig. 31: Implantation time solutions (top) and predicted dose (bottom) for three values of 𝜆. 

In practice, we must determine which value of 𝜆 to use before selecting new 

implantation times. Here, we can choose a value of 𝜆 that is predicted to give us the 

uniformity we desire. We can solve the optimization problems for many values of 𝜆, and 



 72 

choose the value which we believe will lead to our desired non-uniformity. Below, we see 

the predicted non-uniformity as a function of the value of lambda and also mark the value 

of 𝜆 required in order to achieve a 0.5% non-uniformity (Fig. 32). When performing a tune 

with this desired uniformity, we use the marked value of 𝜆 when selecting new 

implantation times. Selecting significantly smaller values may lead to overfitting, while 

selecting larger values will not allow for sufficient compensation. As this is a monotonic 

function, we choose our value using a binary search in practice. 

 

Fig. 32: Predicted non-uniformity as a function of 𝜆. This is used to select a value of lambda before 

performing a new implantation. Value of 𝜆 needed to achieve 0.5% non-uniformity is marked. 

Finally, using this value of 𝜆 (just below 100 in our case) we select a new set of times. 

A new implantation could then be run with these times for the next round of learning. For 

this illustrative example, the resulting implantation times are shown, as well as the 

simulated implantation dose resulting from these times (Fig. 33) The model could then 

be updated and the process could repeat until convergence if necessary. Here, we see 

large compensating times at regions with low doses in the linear profile, and lower time 

in high dose regions, resulting in a more uniform dose profile. 
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Fig. 33: Synthetic implantation times (top) and resulting dose profile (bottom) in first tune of 

illustrative example. 

3.5 Results  

We next present the results of our tuning algorithm and compare to an existing 

industry tuning method used by Applied Materials, Inc., when used in practice on a real 

implantation tool. Here, we evaluate performance using a low energy Argon implantation 

recipe. This particularly low energy recipe exceeds the limits for what is normally 

recommended, as the resulting beam shape varies drastically as it is swept across the 

wafer. Using this for our benchmarking recipe represents the worse-case tuning scenario, 

and also allows us to consider the feasibility of an expanded recipe set.  
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We perform 27 separate (repeated) tunes using each method. We begin each tune by 

initializing to our prior belief for the proposed method. Then, we alternate between 

tuning the process using our proposed method, and using the existing industry method, 

and record the results. At the beginning of each tune, a linear implantation, i.e., one using 

constant beam times, is performed and the results are used to update each model, a 

procedure required for the prior industry method. Additionally, we update the proposed 

method using cost and time efficient fast spots, taken at faraday locations of 𝑥𝑓 = -50, 0, 

and 50 mm. The time devoted to these is negligible compared to a standard tuning 

implantation, as the sweep time is significantly lower, and the implantation is directly 

measured. 

After 27 repeated tunings using each method, we determine the number of iterations 

required to achieve a desired non-uniformity (𝑁𝑈), defined as:  

 𝑁𝑈(𝐼) =
𝑠𝑡𝑑(𝐼)

𝑚𝑒𝑎𝑛(𝐼)
. (61) 

This is the most important performance metric, as our primary goal is to tune to a 

desired non-uniformity in as few iterations as possible. We choose a desired non-

uniformity of 0.5%, as inherent random run to run variations limit further tuning. 

In Fig. 34, we present the distribution of the number of iterations required to meet 

our desired non-uniformity. We see an enormous improvement, as on average, the 

proposed method tunes in 2.2 iterations, while the existing industry method tunes in 4.3 

iterations. For poorly behaved beams that require frequent re-tuning, this represents a 

significant decrease in tool downtime, as well as in wasted material.  

 

 

Fig. 34: Histogram of number of iterations required to achieve 0.5% uniformity in proposed (left) 

and existing industry (right) methods. 
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Additionally, we present the distribution of non-uniformities for the two methods as 

the tunes progress in Fig. 35. This shows how both methods improve uniformity before 

plateauing; however, the majority of the improvement for the proposed method is 

achieved with the first tune, signifying faster convergence, while still to having a superior 

steady-state non-uniformity, and lower variance in the results. 

 

Fig. 35: Distributions of non-uniformity vs. number of tunes for proposed (left) and existing 

industry method (right). 

Additionally, we plot an example tune for the proposed method in Fig. 36, showing the 

series of implantation times as well as resulting profiles for the three iterations required 

to converge. Here, we see that while the first iteration comes close to a desired solution, 

it is not quite sufficient. On the second tune, the solution overcompensates for the 

remaining variation, and finally this is corrected on the third iteration.  
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Fig. 36: Implantation dose (left) and corresponding times (right) for an example tuning run. 

Additionally, we plot the resulting maximum likelihood belief for 𝐵, 𝜇𝐵, after three 

iterations, and at the end of the tuning session in Fig. 37 and Fig. 38, respectively. It is 

important to note that the maximum likelihood belief, 𝜇𝐵, is physically plausible after a 

small number of learns, as is seen in Fig. 37. Because the system has many inputs (the 

times at each beam location), one would expect a linear model to over-fit to this under-

defined system after only three model updates. However, the presence of the well-chosen 

prior helps prevent this, as we have already imparted our general belief of the beam 

shapes onto the model. This highlights the advantages of a prior chosen using domain 

specific knowledge.  

Additionally, the belief at the end of the example tuning session (Fig. 38) suggests that 

our approach to overcome concept drift is successful. Because the model tunes are still 

accurate even after many repeated model updates, the model is able to successfully adapt 

to a changing system. Additionally, because the structure of 𝜇𝐵 remains physically 

plausible after multiple model updates, this also suggests that we retain key elements of 

our prior belief, which is crucial to remaining accurate. 
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Fig. 37: Example normalized 𝜇𝐵 after three tunes.  

 

Fig. 38: Normalized 𝜇𝐵 at the end of tuning session.  

In addition to the reduced number of required tuning iterations, the proposed 

approach also achieves a 100% tuning success rate, while the existing industry approach 

failed to converge in two out of 27 cases. When operating outside of the recommended 

limits, such as in our testing, the existing approach may fail to converge to a desired non-

uniformity for particularly high variance recipes. When this occurs, the tool must be reset 

then retuned, which requires a large tool downtime. The ability to reliably converge in a 

wider range of recipes is therefore a significant additional advantage of the proposed 

method over the existing tuning approach.  
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Finally, solutions found by our proposed method also provide greater total 

implantation dose using the same total implantation time and uniformity requirements. 

In Fig. 39, we present distributions of the mean implantation dose for the proposed 

method, as well as those of the traditional approach. On average, the solution from the 

proposed method provides a significantly greater dose compared to the traditional 

method. This is highly valuable, as the solution from our proposed method can be scaled 

to give a similar dose as the existing method but in less process run time. This represents 

a significant increase in tool throughput.  

 

Fig. 39: Histogram of mean implantation rate for proposed and existing industry solutions. 

The reason for this increased dose is that solutions from the proposed approach spend 

more time on wafer, and less time off wafer. This can be seen in Fig. 40 showing example 

solutions from both methods. This difference is likely due to a difference in the two 

optimizers. The optimizer in our proposed approach reduces the MSE between the 

predicted and desired profiles. As the desired profile is held constant, this prevents the 

total dose from decreasing over the course of a tune. In contrast, the existing industry 

approach iteratively reduces the time spent at high implantation areas in order to flatten 

the implantation profile, resulting in a lower final implantation dose.  
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Fig. 40: Example implant times given by proposed and existing industry methods. Note the 

difference in time spent far outside wafer (± 250𝑚𝑚). 

3.6 Conclusions and Future Work 

In this chapter, we present a machine learning method for modeling and optimizing 

dose uniformity in ion implantation processes. We first propose a linear relationship 

between implantation times and the resulting implantation dose profile. We use this 

relationship to develop the two halves of our proposed tuning approach. The first half is 

a Bayesian forward model that we iteratively update using new implantation 

measurements. The second half, the optimizer, uses the forward model to select new 

implantation times that meet a desired non-uniformity. This approach is enhanced with 

model decay, a physically motivated prior, and fast spot measurements. Using this 

proposed approach, we tune a worst-case implantation recipe in nearly half as many 

iterations on average compared to an existing industry approach. Additionally, our 

proposed method has a 100% convergence rate in testing, and achieves a significantly 

higher total dose, increasing the tool total throughput by a similar amount.  

This case study highlights both key themes of the thesis. First, the approach effectively 

incorporates prior process knowledge in multiple ways. The underlying linear 

relationship between the implantation times and resulting implantation dose provides a 

necessary assumption that greatly simplifies the problem. Additionally, the selection of a 

physically motivated prior allows effective model updates with little training data. An 

example of this is demonstrated in Section 3.4, where a single dip measurement is able to 

correct for an incorrectly chosen starting beam width. The second key theme seen here is 

the advantage of Bayesian methods. As discussed in Section 3.5, the incorporation of a 

well-chosen prior prevents overfitting when only small numbers of examples are 
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available, because we have an accurate and physically plausible belief after only three 

model updates. The Bayesian framework also allows us to accurately adapt to a drifting 

system. Our tunes remain accurate, even after many repetitions in the presence of concept 

drift, confirming that we stay up to date with the changing system.  

While we have demonstrated excellent results with the proposed tuning 

methodology, there are still additional improvements to explore in future work. In one 

direction, the limits of the method can be pushed to determine if further uniformity and 

total dose improvements can be made. We believe there is a fundamental tradeoff 

between these two metrics, and that greater uniformity can be achieved at the cost of 

lower dose and vice-versa; however, we must still experimentally confirm this. 

Additionally, this method can be tested on additional implantation recipes. While the 

chosen recipe represents a worst-case scenario, we expect to see performance gains in 

other recipes as well.  

Additionally, there are still improvements that can be made to the proposed approach 

itself. We believe using a probabilistic cost function during optimization may perform 

better than the current deterministic cost function. The predictive model provides a 

likelihood distribution for 𝐵, and an optimization cost function that maximizes a 

likelihood under this distribution may perform better than the current deterministic 

approach which uses only the mean value of 𝐵. Finally, we also believe a dynamic choice 

of the model decay constant, 𝛼, may improve the performance of our forward model. 

Larger decay constants are appropriate when the system is rapidly changing, and lower 

decay constants help retain older knowledge when the system is stable. We believe it is 

possible to dynamically chose this coefficient based on the accuracy of the current model. 

When predictions are highly inaccurate, the decay coefficient can be increased and when 

the model remains accurate, the decay constant can be lowered. 
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4 One-Class Process Anomaly Detection Using Kernel Density 

Estimation Methods 

Faults in semiconductor fabrication processes are extraordinarily costly, in particular 

when left undetected and unaddressed for extended periods of time. Without rapid real 

time or run to run detection methods, process faults may remain undetected until the final 

device electrical test (E-Test). This is often weeks after the initial fault occurred, 

potentially degrading or scrapping all wafers processed on the tool during this period. 

The ability to detect faults and anomalies when they arise is thus highly desirable, as they 

can quickly be investigated and addressed to prevent additional unnecessary losses; thus 

anomaly and fault detection has been a topic of great interest in the semiconductor 

community [127]–[133].  

Anomaly detection is typically enabled by process sensors placed within a tool that 

monitor and record process information, such as the tool temperature, pressure, and flow 

rates. When a fault occurs, this information often differs significantly from past data 

recorded during normal operating conditions. An appropriate model can detect this 

difference and classify the incoming data as anomalous. 

While many modeling options exist for classification tasks such as these, two aspects 

of semiconductor fabrication restrict these options. First, faults are often unique and 

infrequent, thus it is unlikely that there will be sufficient faulty data to train a traditional 

supervised classification algorithm. For many processes and recipes, particular faults may 

never have been seen at all. Therefore, we are interested in an anomaly detection or 

classification algorithm that is one-class, i.e., it must be trained using only examples of 

non-faulty (nominal) tool data, ruling out the use of supervised classification algorithms. 

Second, in a typical fab, there exists a wide variety of processes, tools, and recipes, 

each with their own unique set of nominal sensor signals. What may seem nominal for 

one tool or recipe, may instead be anomalous for another. In order to be effective, an 

anomaly detection method must be applicable to a wide variety of settings. Additionally, 

as some recipes are used infrequently, even nominal training data may be limited. For this 

reason, we are interested in an anomaly detection algorithm that is able to be trained on 

a relatively small amount of data, and ideally that can employ transfer learning where 

data from one process, tool, or recipe is used to train detectors for others. 
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With these constraints in mind, we explore kernel density estimation (KDE) as the 

basis for an anomaly detection methodology. KDEs use example data to estimate 

underlying probability distributions. In the past, these methods have been used in a wide 

variety of contexts [134]–[137] including in outlier detection tasks [138]–[142]. In the 

context of anomaly detection for semiconductor fabrication, KDEs estimate the 

probability distribution of sensor data under nominal processing conditions. This 

distribution is then used to evaluate the likelihood that new incoming data is also nominal, 

and alerts are raised when the incoming data is unlikely to be nominal.  

In Section 4.1, we overview the data used to develop and evaluate our proposed 

approach. In Section 4.2, we present our proposed anomaly detection methodology. We 

first review KDEs, then discuss the structure of the process data, and finally formalize our 

proposed approach. In Section 4.3, we review benchmark comparison approaches for 

one-class anomaly detection, including those utilizing statistical process control (SPC) 

methods, one-class support vector machines (OC-SVMs), and variational auto-encoders 

(VAEs). We present the results of our proposed method in Section 4.4, and compare to 

results using these benchmark methods. Finally, in Section 4.5, we conclude by 

summarizing key findings and proposing future extensions to the present work. 

4.1 Datasets 

 Here we overview the data used to evaluate our proposed method. Historical 

manufacturing run data at Analog Devices Inc. is used that includes both nominal process 

data, and data recorded during process faults that were undetected for an extended 

period of time. The data from faulty runs is not used to train the anomaly detectors, but 

crucially, the faulty run data provides us the opportunity to test or evaluate anomaly 

detectors built using only the nominal data. This data spans a number of plasma etch and 

ion implant process recipes.  

Data from the plasma etch processes contain 31 different sensor signals, while data 

from the ion implantation processes contain only two. In the plasma etch datasets, 

anomalies are seen relatively easily in one of the many sensors (Fig. 41), while in the ion 

implantation case, anomalies are often subtler (Fig. 42). The plasma etch datasets 

challenge the ability of an anomaly detector to monitor many signals, while the ion 

implantation dataset challenges the ability to detect subtle anomalies with more limited 

sensor data.  
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The plasma etch dataset contains data from two process recipes. One recipe contains 

1764 nominal runs and 479 faulty runs, while the second has 1079 nominal runs and 557 

faulty runs. The ion implantation dataset contains data from 12 process recipes; however, 

only one of these datasets contains faulty run data. This faulty ion implantation recipe 

contains 11,374 nominal runs and 50 faulty runs. It is important to note that only the 

known good data will be used to build and train our anomaly detectors; however, both 

nominal and faulty data will be used to evaluate detector performance. 

 

 
Fig. 41: Example of nominal (left) and fault (right) data for a critical sensor in a plasma etch case. 

 
Fig. 42: Nominal beam currents vs. cycle times (left). An example minor fault (right) at 𝑡 = 0.25 

(blue) and extreme fault at 𝑡 = 0.6 (red). 
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4.2 Anomaly Detection Methodology 

In this section, we discuss the proposed anomaly detection methodology based on 

kernel density estimation (KDE). First, we give an overview of KDE methods. Then, we 

discuss how we structure the fabrication data for use in anomaly detection. Next, we 

discuss our specific approach for detecting anomalies in fabrication processes using KDE, 

and for choosing model hyper-parameters. Finally, we present extensions to the method 

for adjusting to concept drift and to employ transfer learning.  

4.2.1 Kernel Density Estimation 

Kernel density estimation is a non-parametric method that estimates the underlying 

probability density for a random variable using a set of sample data [143], [144]. These 

methods employ a kernel function, 𝐾(𝑥, 𝑥ℎ,𝑖), that creates a local probability distribution 

for an incoming data point, 𝑥, based on similarity or distance to a historical data point, 

𝑥ℎ,𝑖. The contributions from a set of historical examples, 𝑥ℎ, are summed to estimate a 

continuous probability distribution, 𝑓(𝑥), for any new data point 𝑥: 

 𝑓(𝑥) =
1

|𝑥ℎ|
 ∑𝐾(𝑥, 𝑥ℎ,𝑖)

|𝑥ℎ|

𝑖=1

. (62) 

Alternatively, KDEs can be viewed as a convolution between the historical data and 

the kernel function. Conceptually, the discrete historical points are filtered by the kernel 

function, producing a continuous estimate of their underlying distribution.  

The choice of the kernel function determines how historical examples are weighted 

when estimating the probability density of new points. The most common choice of kernel 

function is the Gaussian kernel:  

 𝐾(𝑥1, 𝑥2) = 𝑒
−

1
2

∑
(𝑥1−𝑥2)2

𝑙2 . (63) 

While the kernel itself is Gaussian, the resulting distribution rarely is. KDEs produce 

a smoothed estimate of the historical data, so non-Gaussian data leads to a non-Gaussian 

estimate. The ability to estimate complex distributions is a notable advantage over 

traditional methods that assume an underlying Gaussian distribution, as we will see in 

Section 4.5.  

In most kernels, a length scale parameter, or bandwidth (𝑙), determines the 

smoothness of the resulting density function. This parameter can be more critical than 

the functional form of the kernel itself [145]. Too small a value will result in a rough 
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density function, heavily influenced by the specific historical examples, and too large a 

value will smooth out any true features of the underlying distribution [146], [147].  

4.2.2 Data Structure 

In order to develop and apply our anomaly detection methodology, we specify the 

structure of the process data. Because fabrication processes are typically separated into 

runs, our task is to assign a single label, either nominal (0), or anomalous (1), to an entire 

run using the sensor data, 𝑥, for that run. The sensor data is the key data that we analyze, 

and in this work is assumed to be multi-sensor, time series data, that contains one 

measurement, 𝑥𝑠,𝑡 , for each sensor 𝑠 at each sampled point in time 𝑡. For each run, we 

normalize 𝑡 such that it ranges from 0 to 1. This allows us to compare data between runs, 

even if there are small variations in the total runtime or number of samples taken. 

Extensions for non-constant scaling in time are possible, e.g., using dynamic time-warping 

[148], but are not considered here. 

4.2.3 Application to Anomaly Detection 

Here, we present our methodology for applying KDE to the original anomaly detection 

problem. The proposed approach creates univariate distributions for each sensor and for 

each point in time, then combines these before applying a low pass filter in order to 

reduce the effects of noise. Finally, a single aggregate likelihood is calculated for an 

incoming run, and this is compared to a threshold to assign a binary label.  

When evaluating new incoming data, 𝑥, we first evaluate the probability of the 

individual sensor signals at each point in time. For each sensor, 𝑠, and point in time, 𝑡, we 

use KDE and relevant historical data, 𝑥ℎ,𝑠,𝑡, to estimate the nominal probability 

distribution:  

 𝑓𝑠(𝑥𝑠,𝑡) =  
1

|𝑥ℎ,𝑠,𝑡 |
∑ 𝐾(𝑥𝑠,𝑡, 𝑥ℎ,𝑠,𝑡,𝑖)

|𝑥ℎ,𝑠,𝑡|

𝑖=1

. (64) 

Here, we use the standard Gaussian kernel, with different bandwidths 𝑙𝑠 for each sensor:  

 
𝐾𝑠(𝑥1, 𝑥2) = 𝑒

−
1
2

∑
(𝑥1−𝑥2)2

𝑙𝑠
2

. 
(65) 

In Fig. 43, we show example kernel density estimated probability distributions for a 

critical plasma etch and ion implantation sensor; these can be compared to Fig. 41 and 

Fig. 42. 
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It is important to note that when creating these probability distributions, we only use 

historical data, 𝑥ℎ,𝑠,𝑡, that occurs at similar points in the run time as the evaluated point, 

𝑥𝑠,𝑡. Specifically, we only consider the set of points whose normalized run times fall within 

a window of half-width 𝛥𝑡 of our evaluated point:  

 𝑥ℎ,𝑠,𝑡 = {𝑥ℎ,𝑠,𝑡′    ∀𝑡′   𝑠. 𝑡.    |𝑡 − 𝑡′| ≤ 𝛥𝑡} (66) 

This hyper-parameter 𝛥𝑡 is one of two parameters that must be selected prior to 

model training. Practically, we have found that a choice of 𝛥𝑡 corresponding to the 

sampling rate performs well when there is a relatively constant sampling rate, as is typical 

in most data acquisition systems. However, a larger window size may be appropriate for 

slowly varying signals with substantial amounts of noise. 

 
Fig. 43: Resulting probability distribution using kernel density estimation for critical plasma etch 

(left) and ion implantation sensors (right). Yellow corresponds to high probability, and blue to low 

probability. 

Next, we combine the individual sensor probabilities to create a combined probability 

for each point in time, 𝑓𝑡(𝑥𝑡). Here, we take the product of the sensor probabilities to 

create the aggregate probability:  

 𝑓𝑡(𝑥𝑡) = ∏𝑓𝑠(𝑥𝑠,𝑡)

|𝑠|

𝑠=1

 (67) 

These probabilities are then normalized as a function of time:  

 𝑓𝑛(𝑥𝑡) =
𝑓𝑡(𝑥𝑡)

𝑛(𝑡)
 (68) 
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Here 𝑛(𝑡) is a normalization coefficient that ensures that all times in a process cycle 

are equally likely to trigger a false alarm under nominal operating conditions, and is 

further discussed in Section 4.3.5. Without this normalization, times with higher inherent 

sensor variance are more likely to trigger false alarms compared to lower variance times. 

With this normalization, alerts are equally likely to be raised when minor variations occur 

at times with low sensor variance, as when larger variations occur at more inherently 

varied points in a run. 

We then apply a Gaussian low pass filter, implemented as a convolution (denoted 

by ∗) with a filter, 𝑔(𝑥), with bandwidth 𝛥𝑡, in order to reduce false alarms due to noisy 

sensors:  

 𝑓𝑓(𝑥) = 𝑓𝑛(𝑥) ∗ 𝑔(𝑥) (69) 

where 

 𝑔(𝑥) = 𝑒
−

1
2
(

𝑥
𝛥𝑡

)
2

. (70) 

While this filtering step is not required, it often reduces the number of false alarms, and 

increases the separability of anomalous and nominal testing data. Finally, we assign the 

likelihood of the entire run being nominal, 𝑓𝑟(𝑥), as the minimum likelihood within that 

run:  

 𝑓𝑟(𝑥) = 𝑚𝑖 𝑛 (𝑓𝑓(𝑥)) , (71) 

and decide the run is anomalous if the value is larger than a classification threshold, 𝑇.  

The proposed approach is notable in specifically electing to not estimate full 

multivariate correlated distributions. We believe that the estimation of multiple 

univariate non-Gaussian distributions is better suited for use in anomaly detection with 

the time series multi-sensor data available in typical semiconductor processes. 

Specifically, efficient estimation of multiple univariate non-Gaussian distributions 

becomes possible with very limited data using multiple univariate KDEs. A complete run 

has |𝑠| ∙ |𝑡| features by default; by evaluating the probabilities of each point in time 

separately, we reduce the number of kernel features to |𝑠|, enabling density estimation 

with small amounts of run data. In contexts where detection of subtle anomalies in 

correlated data is important and larger amounts of run data is available, extension to 

multivariate KDE is possible. While evaluation of such contexts is beyond the scope of the 

present work, the next section summarizes how such extension can be carried out.  
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4.2.4 Multivariate KDE 

In cases where either a small number of sensors are present, or where large amounts 

of sample training data is available, estimating the full multivariate distribution may be 

useful. Instead of combining univariate distributions for each sensor, as we do in Eq. 64 

and Eq. 67, one can directly estimate the multivariate sensor distribution using a 

multivariate kernel with covariance matrix Σ𝑙:  

 𝐾(𝑥1, 𝑥2) = 𝑒−
1

2
(𝑥1−𝑥2)𝑇Σ𝑙(𝑥1−𝑥2)


(72) 

The joint distribution can be estimated with fitting of Σ𝑙 , and a KDE based on the 

estimated kernel is capable of detecting correlated errors. Synthetic data as shown in 

Fig. 44 illustrates a case where a full multivariate correlated distribution is required. 

Here, the values of the testing point (red) falls within the nominal univariate ranges for 

sensor 1 and sensor 2; however, the simultaneous values of both as represented by the 

red point is unlikely. Here, our proposed univariate method would miss this anomaly, 

while the multivariate approach would detect it.  

 
Fig. 44: Synthetic training data (black) and resulting multivariate KDE estimate showing a case 

where the combined multiple univariate KDE approach would not detect the faulty testing point (red). 

While the multivariate approach is capable of detecting a wider range of anomalies, 

the drawback of requiring exponentially more training data in order to estimate Σ𝑙  is often 

too limiting. In testing with our process run data, we did not find any anomalies that were 

only detectable with joint distributions. Because these correlated-only errors are 

relatively uncommon, we believe that the less data intensive multiple univariate version 
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is more practically useful in limited data contexts, and we only consider multiple 

univariate detectors in the rest of this section. 

4.2.5 Illustrative Example 

In this section, we present a simple example that illustrates our fault detection 

methodology. We create a synthetic distribution for nominal process sensors, synthesize 

data using this distribution, and estimate this distribution using KDE. We then explore the 

effects of changing key hyper-parameters including the time window half width, Δ𝑡, and 

kernel bandwidth, 𝑙𝑠. Finally, we generate new testing data from the nominal distribution, 

synthesize example process faults, and apply our fault detection methodology to these 

two cases. 

Our synthetic process includes two sensors. Both of these sensors have mean values 

that are a function of the process time, and at each point in time the underlying 

distributions are modelled as Gaussian distributions with standard deviations of 0.075 

for both sensors. Below, we show the distributions for each sensor, as well as example 

points drawn from these distributions (Fig. 45). 
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Fig. 45: Example distributions and example points as a function of process time for sensor 1 (top) 

and sensor 2 (bottom). 

For each of these sensors, we use the example historical datapoints and kernel density 

estimation to approximate the underlying distributions for each point in time. Below, we 

plot the estimated distributions for sensor 1 (Fig. 46). We see that the estimated 

distribution gives a reasonable approximation of the underlying distribution as a function 

of time. At each point in time, sensor values with many historical examples are given high 

probabilities, while those with little or no nearby historical examples are given low 

probabilities.  

  

Fig. 46: Estimated probability distributions for sensor 1 as a function of time before time 

dependent normalization. 
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Importantly, sensor values with low signal derivatives have higher probabilities than 

those with high signal derivatives. This is because the underlying distributions are 

created using a time window of non-zero width, and areas with rapid changes in the signal 

mean include a wider range of historical examples. Areas with little change in the mean 

signal over time include a narrow range of historical values, as adjacent timepoints have 

similar sensor values. Conversely, areas with rapid changes to the signal, such as those 

between the corners, include the values of adjacent timepoints, whose means are different 

from the true mean value. This vertically stretches the estimated distribution, and assigns 

lower probabilities to the signal mean when the signal derivative is high. 

This is particularly problematic when there are abrupt transitions within a process 

cycle, as these transitions have extreme rates of change in the sensor signals. This greatly 

stretches the probability distribution, thus making these points in time more likely to 

trigger false alarms. To compensate for this, we compute and apply normalization 

coefficients that are chosen such that the probability of raising a false alarm is equal for 

each point in the process cycle. The process of choosing these normalization coefficients 

will be described in the next section. Below, we plot the normalized probability 

distribution for sensor 1 when these normalization coefficients are applied (Fig. 47). After 

these are applied, the likelihood for the mean value of the signal is relatively constant, 

regardless of the time, ensuring that each point in time is equally likely to trigger a false 

alarm. 

 

Fig. 47: Probability distribution for sensor 1 as a function of time with applied normalization 

coefficients. 
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In addition to these normalization coefficients, two other hyper-parameters are 

critical to the method. These include the historical window width, Δ𝑡, and the sensor 

length scales, 𝑙𝑠. The first of these determines which points are included when computing 

the underlying distributions. When determining the probability for incoming datapoints, 

we utilize all historical examples with time values within Δ𝑡 from the new incoming point 

in our KDE estimate. Narrow time windows (low Δ𝑡) may result in more accurate 

estimates, as only samples with very similar process times are considered, but are also 

more prone to overfitting, and may lead to artifacts in time, as fewer historical examples 

can be used. Conversely, larger values of Δ𝑡 result in a wider range of adjacent times, thus 

preventing overfitting but may also smooth important temporal features. Below, we plot 

distributions when Δ𝑡 is chosen either too small or too large (Fig. 48), and these can be 

compared to Fig. 47 where an appropriate Δ𝑡 is used. 

 

Fig. 48: Resulting sensor probabilities when the time window, Δ𝑡, is chosen too small (left), or too 

large (right).  

The second hyper-parameter, 𝑙𝑠, is the kernel bandwidth used when determining the 

distributions at each point in time, and specifies how much smoothing to apply when 

computing these distributions. Smaller values lead to less smoothing, allowing for more 

accurate estimates, but are also prone to overfitting and lead to artifacts between 

historical sensor values. Conversely, larger kernel bandwidths prevent overfitting, but 

may smooth out important sensor features, and can result in overly wide estimated 

distributions. Below, we plot distributions when 𝑙𝑠 is chosen either too small or too large 

(Fig. 49) and these can again be compared to Fig. 47 where 𝑙𝑠 has been estimated using 

the procedure to be detailed in Section 4.2.6. 
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Fig. 49: Resulting sensor probabilities when the sensor length scale (𝑙𝑠), are chosen too small (left) 

or too large (right).  

Using these distributions, we now illustrate how an example fault would be detected. 

We consider both example nominal and anomalous signals, as well as their likelihoods of 

being nominal over the course of the cycle. The nominal data is drawn from the original 

synthetic historical distribution, while the anomalous data is also drawn from the same 

historical data, but remains fixed after 𝑡 = 0.5, indicating a fault at that time. We plot the 

data itself (Fig. 50), as well as the probabilities for the example data for the individual 

sensors (Fig. 51), and the combined likelihood that the data came from a nominal process 

(Fig. 52). 

 

Fig. 50: Example data for sensor 1 (left) and sensor 2 (right), for nominal case, and anomalous 

case. 
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Fig. 51: Probabilities for sensor 1 (left) and sensor 2 (right) data for the nominal and anomalous 

cases. 

 

Fig. 52: Combined likelihoods as a function of time for the anomalous and nominal cases. 

Several key points should be noted in these plots. First, because the example nominal 

sensor signals fall within the range of the historical examples, these are seen as highly 

probable throughout the cycle. Additionally, as both sets of sensor signals are always seen 

as highly probable, the likelihood that the combined nominal data is from a nominal 

distribution is also highly likely, demonstrating the ability to properly identify nominal 

signals.  

Second, in the anomalous case, the first half of the cycle is seen as likely, as this data 

is drawn from the same distribution as the nominal data. However, after 𝑡 =  0.5 these 

values diverge from the estimated distribution, and the probability of these signals, as 
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well as the combined likelihood of them being nominal, drops. Additionally, at the end of 

the run, when the value of sensor 1 once again is near its mean value, its probability 

increases; however, the overall likelihood is still low, as sensor 2 remains improbable.  

These probabilities allow us to not only determine which points in time are seen as 

anomalous, but also the degree to which each sensor contributes to the overall score. At 

each point in time, we can look at the probabilities of the individual sensors, and 

determine which sensor data seem most anomalous, potentially giving insight into the 

source of a fault. In practice, after the most anomalous timepoint is first determined, the 

lowest probability sensor at that time can be identified, and its signal can be presented to 

a process engineer for further consideration. 

4.2.6 Hyper-parameter selection 

In this section, we describe the model hyper-parameters in greater detail, and present 

our approach for fitting them using only nominal data. These approaches rely on an 

acceptable false positive rate (AFPR), i.e., the false positive or false alarm rate that the 

model is designed to achieve. Contrary to two-class classification tasks, where both the 

false positive and true positive rates can be estimated for a validation dataset, we must 

choose our hyper-parameters using only the false positive rate because we only have 

access to nominal data in constructing any given anomaly detector.  

The first and most critical set of hyper-parameters are the sensor bandwidths, 𝑙𝑠, used 

in the kernel function, 𝐾𝑠(𝑥𝑖 , 𝑥𝑗). Each sensor bandwidth influences the degree that a new 

data point can deviate from past historical data while still being considered nominal. 

Noisy sensors and sensors with large variations in their historical data should have large 

bandwidths, since deviations in these signals must be large in order to trigger a fault. 

Conversely, sensors with low variance historical distributions should have small 

bandwidths in order to raise anomalies when incoming data deviates even a small amount 

from our narrow expectations.  

While significant past work has investigated the selection of bandwidths for KDE 

applications [143], [146], [149], [150], these works are not directly applicable to our 

situation. The most basic techniques focus on cases where the underlying distribution is 

assumed to be Gaussian [143], a false assumption in many manufacturing settings 

(including our data, as we will show in Section 4.5). Additionally, recorded sensor data 

often takes discrete values which traditional methods may struggle with. Another major 
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problem with these past approaches is that they do not offer a method for selecting a 

single bandwidth that can be applied to each distribution created for each point in the 

cycle time, as is required in our time series methodology.  

With this in mind, we propose a bandwidth selection method designed for our 

problem. Because our distributions are univariate, we can consider each sensor 

individually when determining the bandwidths. We first separate out 𝐸 extremal values 

from the historical sensor data, where |𝐸| = 𝐴𝐹𝑃𝑅 ∙ |𝑥ℎ,𝑠|, i.e., we remove extremal values 

corresponding to our acceptable false positive rate. To do this, we iteratively remove the 

point most distant from all remaining datapoints that are within a time window of half-

width Δ𝑡 of the data point under consideration, until we have removed a sufficient 

number of points. 

We then iterate through the remaining points of the sensor data and find the distance 

to the nearest point above and below each point in its time window. Finally, we use the 

maximum of these distances across all timepoints as 𝑙𝑠. This equates to selecting a 

bandwidth equivalent to the largest “gap” in the historical data (Fig. 53), and ensures that 

that any new data falling between existing historical data will be within one bandwidth of 

past historical examples. This approach is particularly useful for sensors that take 

discrete values, as the difference between these discrete values is a desirable lower bound 

for 𝑙𝑠. While this method provides good empirical results as will be shown in Section 4.5, 

alternative robust methods might further reduce false positives, and could be considered 

for future work. 

 

 
Fig. 53: Example sensor signal for nominal plasma etch data, showing largest “gap” in historical 

data which is used for sensor length scale. 
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The second set of hyper-parameters for selection are the normalization coefficients 

for each slice of time, 𝑛(𝑡). Determining these begins with removing the same 𝐸 extremal 

values that were removed when determining the length scales, 𝑙𝑠. Then we divide the 

historical data into consecutive temporal bins of width 𝛥𝑡, and assign the normalization 

coefficient for each of these time windows as the minimum likelihood of all non-extremal 

values within the bins. This is done through cross validation: for each time window, we 

iterate through all points within it, and determine their likelihoods using the remaining 

data. The minimum likelihoods are then used for the normalization coefficients, making 

it such that each point in time is approximately equally likely to trigger an anomaly.  

The final hyper-parameter to select is the likelihood threshold, 𝑇, used to classify 

incoming data as anomalous or nominal. Here, traditional methods are used. Given a 

historical dataset, we perform cross validation to determine a distribution of the training 

likelihoods. Then, given our desired AFPR, we choose the threshold such that an AFPR of 

those training points are classified as anomalous, and the remaining are classified as 

nominal. 

4.2.7 Concept Drift 

A common obstacle in many machine learning tasks is concept drift [151], [152], a 

tendency for the modelled system to change over time. While many modeling techniques 

require sophisticated adjustments in order to compensate for this [153]–[155], the non-

parametric nature of the proposed KDE-based anomaly detection method enables a 

simple model update as new data becomes available. 

In order to adjust to changing process conditions, we adjust the historical data, 𝑥ℎ, 

used to create the nominal distribution. Practically, we implement this set as a first in, 

first out, queue. When the model classifies new data as nominal, the oldest run is removed 

from the dataset, and the new run data is added. In contrast, if an anomaly is raised, no 

update to the historical known-non-faulty data and model is taken. This ensures that the 

historical set, and thus the nominal distribution, uses the most up to date nominal data 

available. 

In Fig. 54, we show the effects of using this floating dataset. Without dataset updates, 

we see large temporal trends in the likelihood of known nominal data, while these 

temporal trends are eliminated in the floating model case. Using a threshold that targets 

an 80% true positive rate, we see a 15.1% false positive rate without a floating model, and 
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a 0.66% false positive rate with a floating model. This suggests that substantial concept 

drift is present in the underlying system, and the floating model is capable of adjusting to 

these changing conditions. 

 

 
Fig. 54: Run normality score with and without floating model. Large temporal trends are seen if 

the model is not adjusted to changing conditions. 

In terms of traditional SPC terminology, the underlying system is not in “statistical 

control” (because it is drifting); however, in the semiconductor fabrication context the 

process continues to be nominal (non-faulty). We seek a detector that distinguishes faulty 

from nominal historical data rather than a detector that signals “out of control.” The 

ability to adapt to slow distribution changes is an important requirement and capability 

of the proposed approach. 

In Fig. 55, we show the distribution of a critical sensor (wafer chuck temperature in 

plasma etch) at one point in the process cycle for the start of processing, and after 1500 

runs. Here, we see a shift in this distribution over time, again implying changing process 

conditions. Importantly, under the starting distribution, values greater than 2.0 are seen 

to be highly unlikely, while later on, these conditions are seen to be relatively likely. 

Without adjusting to concept drift, these values trigger false alarms, as can be seen in Fig. 

54; however, with this adjustment they are seen as nominal. In addition, Fig. 55 

demonstrates that sensor signals as collected during each run for our fabrication 

processes can be non-Gaussian distributed.  
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Fig. 55: Probability distribution for critical sensor at one point in process cycle. Notice high 

density of values greater than 2 after 1500 runs, which would be flagged as anomalous under the 

starting distribution. 

Finally, we note that it may be beneficial to build both a floating and a stationary 

model, where the historical dataset, 𝑥ℎ, is unchanged over time. While the floating model 

adjusts to changing process conditions, we may want to detect these gradual changes, 

either for predictive maintenance, or other purposes. However, a full consideration of this 

extension is beyond the scope of this thesis, and could be a focus of future work. 

4.2.8 Transfer Learning 

In many fabrication settings, a process may encompass many different tools and 

recipes, each with their own unique set of nominal process characteristics, and thus each 

requiring their own anomaly detector. Problematically, infrequently used tools and 

recipes have little historical data, making them prone to overfitting. Therefore, it is 

desirable to transfer knowledge gained from a more frequent use case to these new or 

less frequent cases, a technique known as transfer learning. Historically, transfer learning 

has been explored in deep learning settings [156]–[159]; however, it can be applied to 

our method as well. Here, we present a simple but effective transfer learning technique 

that can be used with the proposed KDE-based anomaly detection method. This method 

creates a new model using limited training data in combination with an existing model 

from a different but related tool or recipe. 

To define an anomaly detection model for a new recipe, four pieces of information are 

needed: example historical data, 𝑥ℎ, sensor bandwidths, 𝑙𝑠, the classification threshold, 𝑇, 

and the normalization coefficients, 𝑛. Several of these can be shared between recipes (e.g., 
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similar recipes on the same tool) and tools (e.g., across multiple instances of the same 

equipment), and others need to be chosen based on the limited available data, as 

described below. 

The first set of information, the examples of historical data, 𝑥ℎ, should come from the 

new recipe and tool of interest. Because each recipe and tool is unique and its sensor data 

may differ from other recipes and tools in important ways, some amount of example data 

is needed to model a new recipe or tool and estimate its sensor distributions; this must 

be provided in order to initialize a new model using our transfer learning method. 

However, by transferring other parameters of the model from a related tool or recipe, we 

require fewer historical examples in order to build an effective detector.  

The second piece of information required is the set of sensor parameter bandwidths, 

𝑙𝑠. These parameters estimate the run to run variation seen for each sensor. Critically, 

even if sensed process conditions such as temperature or pressure differ between recipes 

and tools, the variation of these conditions is often similar. Therefore, we directly transfer 

these parameters from an existing related model to a new tool or recipe when initializing 

the new model. Directly transferring these from one recipe to another is crucial, because 

selecting these length scales is often the most data intensive part of the training process. 

Therefore, transferring these key model parameters from one scenario to another allows 

us to build a new fault detection model with substantially less data. 

The third piece of information needed to define a new model is the set of 

normalization coefficients, 𝑛. Unfortunately, we cannot easily transfer the normalization 

coefficients from one recipe to another. Because different recipes may have different 

numbers of recipe steps, each with different conditions and lengths, the underlying 

distributions vary greatly between recipes. For this reason, it is best to explicitly re-

determine the normalization coefficients for a new recipe, as described in Section 4.2.6. 

While these are determined using a significantly smaller training set, in practice, we do 

not find a substantial negative impact on the classification accuracy, as will be shown in 

Section 4.4.  

The fourth and final piece of information required to define our model is the 

classification threshold, 𝑇. Recipes or tools with ample historical data should have 

approximately the same classification threshold, as scaling the number of example points 

should leave the KDE distribution relatively unchanged when there is sufficient data. 

However, in cases where there is limited data, which are often common in transfer 
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learning scenarios, the KDE distribution may be inaccurate, and it can be desirable to 

choose a lower threshold to avoid increasing the false alarm rate.  

In these scenarios, we use data from the frequently used process, 𝑥ℎ,1, and the 

infrequently used process, 𝑥ℎ,2, to choose a threshold for the data-limited model. We 

chose this threshold using a cross validation scheme evaluated on ensembles of 𝑥ℎ,1 with 

training size |𝑥ℎ,2|, ensuring that a threshold has been chosen using a historical set of the 

correct size. We create ensembles of training data using a sliding window of size |𝑥ℎ,2|, 

then determine the likelihoods of the sample of 𝑥ℎ,1 immediately following the sliding 

window. This matches the temporal relationship between the historical and incoming 

data, allowing for an accurate estimate of the distribution of testing likelihoods. For each 

training ensemble of 𝑥ℎ,1 created using a sliding window of data, we estimate the sensor 

signal distributions using KDE and the original model parameters, then calculate the run 

anomaly likelihood score of the testing sample as described in Section 4.2.3. Finally, we 

choose a threshold that results in our desired 𝐴𝐹𝑃𝑅 for these cross validation likelihood 

scores, and use this as the threshold for the new model.  

After determining these four pieces of information (example historical data, 𝑥ℎ, 

sensor bandwidths, 𝑙𝑠, the normalization coefficients, 𝑛, and the classification threshold, 

𝑇), we can then apply our proposed fault detection method to data from the new recipe 

or tool. Evaluating new likelihood scores is performed just as was described in 

Section 4.2.3; however, the new model parameters are used when implementing this new 

model. 

4.3 Benchmark Methods 

In this section, we present several benchmark methods to compare with our proposed 

approach. We discuss traditional statistical process control (SPC) methods, one-class 

SVMs (OC-SVMs), and anomaly detection methods based on variational auto-encoders 

(VAEs).  

Statistical process control methods are traditional approaches for monitoring 

semiconductor and other manufacturing processes [160]–[162]. These methods produce 

control limits for sensor signals, and raise alerts when incoming signals fall outside of 

their acceptable range. Typically, the distributions of the underlying signals are assumed 

to be Gaussian, and the acceptable limits are determined using this assumption. For 

extremely small amounts of training data, the student-t distribution is also used in place 
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of the Gaussian approximation [163]. As the difference between these two distributions 

is negligible for our training sizes, commonly near 250 data points, we choose to use the 

more common Gaussian approximation in our SPC benchmark anomaly detectors.  

In cases where multiple sensor signals exist, such as ours, multivariate probability 

distributions can be used to determine the process control limits. In our comparison 

method, we use an uncorrelated multivariate Gaussian distribution to approximate the 

normal operating distribution of a process. This combines the univariate probabilities 

from each sensor into a single probability, which is then compared to an anomaly 

threshold in a similar fashion as our proposed KDE method. Multivariate distributions 

that create correlated distributions are also commonly used in SPC, and are capable of 

detecting a wider range of anomalies; however, accurately estimating the correlation 

structures requires more data. Because we seek anomaly detectors in cases where we 

have a limited training dataset, the uncorrelated distributions are also used in our SPC 

benchmark method. 

When creating these distributions, we must determine their mean and standard 

deviations. Here, we implement two methods to compare our proposed method to. First, 

we use a time-invariant estimate of the Gaussian coefficients. In this approach, the mean 

and standard deviation of each sensor signal are determined using all data, regardless of 

when they occur in the process run. This is the simplest SPC approach and serves as a 

naïve baseline method, recognizing that it will miss many anomalies by expanding the 

control limits to cover the extent of normal signals across all time points in a run. 

The second approach is a time-variant SPC method. Here, the distribution mean and 

standard deviation change within the process run time. This is implemented by dividing 

the historical data into temporal bins of size Δ𝑡, then creating a unique mean and standard 

deviation for each bin. This allows the Gaussian distribution to change within the course 

of the process run, giving a more refined estimate of the nominal process distribution. In 

both the time-invariant and time variant SPC methods, we use a floating dataset to adjust 

to changing process conditions. As the historical data changes, we also update the nominal 

distributions, which adjusts the model to changing process conditions. We note that this 

time-variant SPC method is similar in many ways to the KDE-based approach, with a key 

difference being the rigidity or flexibility in representing the underlying probability 

density functions. 
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In addition to these benchmark SPC methods, we also compare our proposed method 

to an SVM-based anomaly detector. Traditional SVMs are a common classification 

technique, used in countless applications [164]. These methods create a separating 

hyperplane that maximizes the distance between two classes. One-class SVMs are an 

extension of traditional SVMs, and create classification boundaries when data from only 

a single class is available. These one-class SVM methods are also widely used in various 

industrial settings [32], [165]–[167].  

One-class SVMs have two common implementations. The first implementation, named 

OC-SVM [27], creates a classification boundary that separates data in the known class 

from the origin. The second implementation, Support Vector Data Descriptions (SVDDs) 

[28], instead create a hyper-sphere that contains data from the example class. 

Interestingly, when a radial basis function kernel function is used, both methods produce 

identical classification boundaries. Since this is the most common kernel and the one that 

we use, we treat these two methods as equivalent.  

Because time series data can have many potential channels or sensors, feature 

reduction techniques are often required when kernel based methods such as SVMs are 

applied [34], [168]–[170]. The most common method is principle component analysis 

(PCA), which reduces all feature information of size |𝑠| ∙ |𝑡| down to a smaller number of 

principle components. We thus use this approach as a preprocessing technique in 

conjunction with OC-SVMs, in order to reduce the problem size to what can feasibly be fit 

with OC-SVMs. In all results presented in the next section, the number of principle 

components used is equal to the number of training examples. This is the maximum 

number possible with limited training examples, and in all cases using fewer components 

resulted in worse performance.  

Finally, we compare our approach to anomaly detection methods based on variational 

auto-encoders (VAEs). Auto-encoders are a deep-learning based feature reduction 

technique comprised of an encoder and a decoder. The encoder is commonly 

implemented as series of convolutional and fully-connected neural network layers that 

reduce an original high-dimensional data point, such as a picture, or set of time series 

sensor signals, down to a small number of latent features. These features are then 

expanded by a decoder, again implemented as a series of convolutional and fully 

connected layers, in order to reconstruct the original image. VAEs are an extension of 

traditional auto-encoders that create a probability distribution for the latent features 



 104 

instead of single set of values [171]. This acts as an effective regularization technique, so 

that small perturbations in the latent space produce appropriately perturbed 

reconstructed signals.  

VAEs are widely used for dimensionality reduction; however, they have also shown 

promise for one-class anomaly detection problems. Historically, there are two common 

approaches for utilizing VAEs for this task. The first uses the reconstruction error as a 

classification metric [172]–[174]. For incoming signals similar to the nominal set of 

training signals, the reconstruction error should be low, as the network is designed to 

compress then reconstruct nominal data. However, because the network was not trained 

on faulty data, it should do a poor job reconstructing signal sets from faulty runs, allowing 

the mean squared error (MSE) of the reconstructed signal to be used as a classification 

metric.  

The second common approach creates a probability distribution for the latent 

features of the nominal training data, then uses the probability of incoming data under 

this distribution as a metric for classification [175], [176]. Incoming nominal run samples 

should have similar latent space representations to the training set, and thus high 

probabilities, while faulty run samples should have significantly different latent space 

representations, and thus low probabilities. Because the reconstruction error approach is 

more common, we use this approach for our VAE-based anomaly detector benchmark.  

4.4 Results 

In this section, we present results for our proposed KDE-based method, and compare 

with the benchmark methods from Section 4.4. We first show results of all methods in the 

standard one-class classification setting, where models are trained and evaluated on data 

from the same recipe. Afterwards, we present results for the proposed transfer learning 

method from Section 4.3 as applied to both the plasma etch and ion implant datasets, and 

show that similar performance can be achieved as in the single recipe case. 

4.4.1 Single Recipe  

Here, we compare the results of the proposed KDE method with the time-invariant 

and time-variant SPC methods, OC-SVM with PCA, and a VAE-based classifier. We test 

these five methods on data from one ion implantation recipe, and two plasma etch recipes. 

In all cases the models are trained with 250 training examples from the time before any 
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known anomalies reside in the data. We then apply the trained anomaly detector on the 

remaining data (11,174 examples in the ion implant case, and 1,993 and 1,386 examples 

in the two plasma etch cases).  

  
Fig. 56: ROC curve of proposed and comparison methods when applied to plasma etch recipe #1. 

  
Fig. 57: ROC curve of proposed and comparison methods when applied to plasma etch recipe #2. 
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Fig. 58: ROC curve of proposed and comparison methods when applied to ion implant data. 

 

 

We show the receiver operator characteristic (ROC) curves, for all methods, and all 

datasets in Fig. 56 through Fig. 58, and Table II shows the area under the curve (AUC) for 

these results. Additionally, Table III shows the true positive rate (TPR) that corresponds 

TABLE II 

Area Under ROC Curve for all methods and datasets. 

Method 
Plasma Etch Recipe 

#1 
PLASMA ETCH RECIPE #2 Ion Implantation 

KDE 1.00 1.00 0.99 

Fixed SPC 0.33 0.36 0.91 

Time variant 

SPC 
0.79 0.74 0.97 

PCA +  

OC-SVM 
0.81 0.77 0.89 

VAE 0.90 0.72 0.91 

    

 

 
TABLE III 

Single recipe TPR results for a 1% FPR. 

Method 
Plasma Etch Recipe 

#1 
PLASMA ETCH RECIPE #2 Ion Implantation 

KDE 100% 100% 82.0% 

Fixed SPC 0.21% 0.54% 62.0% 

Time variant 

SPC 
16.1% 8.80% 60.0% 

PCA +  
OC-SVM 

60.1% 31.2% 48% 

VAE 37.0% 23.7% 63.58% 
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to a 1% false positive rate (FPR) for all models, allowing for a straightforward comparison 

of real world performance. 

In all of these results, we observe that the proposed KDE method outperforms the 

comparison methods by substantial margins. When applying our proposed method to the 

plasma etch datasets, we achieve 100% classification accuracy, while all of the 

comparison methods perform substantially worse. Similarly, applying our method to the 

implantation data again results in better classification results, as we achieve higher true 

positive rates for all false positive rates when compared to the additional methods.  

It is important to note that many of the comparison methods produce similar 

classifications for relatively “easy” anomaly cases. These cases correspond to anomalies 

that are clearly visible in Fig. 41 and Fig. 42, and are detected by all anomaly detection 

methods we investigate. The remaining anomalies, however, prove challenging for the 

benchmark methods to detect, and the improved performance in these difficult cases 

highlights many of the advantages of our proposed method. The improvement in 

performance of the proposed KDE-based method compared to the benchmark methods is 

due to a number of factors which each highlight different advantages of the proposed 

method. 

The worst performing model is the time-invariant SPC method. This can be seen in the 

AUC of this model, which is almost always the lowest when applied to the different 

datasets. This poor performance is primarily due to the lack a time-aware model, which 

is unique among the comparison methods. Since this method assumes constant sensor 

signal distributions for all points in time during a run, it must create excessively wide 

nominal distributions in order to cover all sensor data throughout the process runtime. 

This leads to more false negatives, as the model believes that these signals can take an 

unrealistically wide range of values, thus missing true anomalies.  

Interestingly, this time-invariant SPC performs worse than a random guess for the 

plasma etch datasets, as seen in the ROC curve. This is a result of using the floating dataset, 

which is meant to account for changing process conditions; however, this technique can 

be susceptible to faulty data entering the historical dataset. This is particularly 

problematic when used in combination with low accuracy models (such as the time-

invariant SPC method). When these low accuracy models incorrectly classify incoming 

faults as nominal, they are added back to the historical dataset. This leads to a feedback 

loop, where new incoming faults are seen as increasingly likely, while nominal data 
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increasingly differs from the saved historical dataset. The net effect is that the detector 

becomes worse at distinguishing faults from nominal data, as both are in the historical 

dataset, leading to even worse detection rates. Importantly, this effect is not seen in the 

time-variant SPC and KDE approaches, as both detectors are relatively accurate to begin 

with, so it is unlikely that substantial amounts of faulty data are added back into the 

training set. 

The results for the time-variant SPC method are substantially better than those of the 

time invariant method. This is primarily because it (correctly) assumes that the sensor 

signals change over the course of a run. The resulting time-variant sensor distributions 

are often tighter at each point in time, since they only reflect the signals at a single time 

point, and are thus more likely to detect faults. Additionally, this improved initial 

classification performance also diminishes the negative effects of floating historical 

dataset, which is particularly problematic for the time-invariant SPC model as previously 

noted.  

While the time-variant SPC method is time-aware, it still suffers from the assumed 

underlying Gaussian distribution. We find that processes with abrupt transitions, such as 

that in Fig. 43, commonly break this assumption. In Fig. 59, we see that the KDE estimate 

during this abrupt transition has a clear non-Gaussian distribution. Under the Gaussian 

assumption in the time-variant SPC anomaly detector, many of the tail points at this 

transition are seen as highly unlikely. In order to retain a 1% FPR, a low likelihood 

threshold must be used, which decreases the TPR. Because the proposed KDE method 

does not suffer from this assumption, its performance is often better in these key cases. 

 
Fig. 59: Critical sensor signal KDE distribution slice at normalized cycle time t = 0.6, showing 

non-Gaussian underlying distribution. Estimation with Gaussian distribution leads to substantial 

number of false alarms. 



 109 

Both the OC-SVM and VAE methods share two common problems. First, neither 

account for concept drift, which greatly decreases the likelihood of many nominal cases, 

and the total model accuracy, as was seen in Section 4.2.7. Secondly, both sub-optimally 

normalize the sensor data. The VAE and OC-SVM normalize data to ensure constant 

variance over all time-series data, i.e., the set of time-series data for each sensor are 

normalized to have standard deviation of one in the preprocessing stages of both of these 

approaches. In contrast, the KDE bandwidths (which effectively normalize the signals) 

are chosen based on the variation of sensor data between runs. Critically, a sensor signal 

may have large variance over the course of a run, but may have little variation between 

runs. In these cases, any small sensor deviations may seem unimportant under the VAE 

and OC-SVM methods, as these variations are small compared to the overall signal 

variance; however, these are interpreted as significant under our KDE approach, as there 

is historically little run to run variation. When classifying new data, the OC-SVM and VAE 

approaches are therefore more likely to miss minor deviations in sensors with high 

within-run variations compared to the proposed KDE approach. Conversely, the 

normalization approach of the KDE method helps ensure high sensitivity to historically 

stable sensors, and also helps prevent false alarms due to noisy signals. 

Additionally, we believe that the poor performance of the VAE is in part due to 

overfitting of the model. In these results, we observe substantially higher reconstruction 

errors for the nominal testing set when compared to the nominal training set. This 

suggests that the network is overfit to the training set, and may not be able to properly 

reconstruct unseen nominal data, making it difficult to classify anomalies using the 

reconstruction error. 

Finally, we believe that the poor OC-SVM performance also suffers due to critical 

information lost in the PCA stage. While PCA is a common feature reduction technique, 

we believe it is poorly suited for one-class anomaly detection tasks. PCA chooses a feature 

set that explains the maximum variation in its training set. When applying it to multi-class 

data, the chosen features often represent differences between those classes. However, in 

the one-class case, PCA instead chooses features that represent differences within the 

nominal set, and are not necessarily effective for representing, or detecting, differences 

between nominal and faulty data. This leads to poor performance when these features are 

then used for classification. This can be observed when reconstructing critical faulty 

signals using the poorly chosen PCA basis (Fig. 60). Here, we see that when performing 
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PCA, the reconstructed signal significantly differs from the original signal before PCA is 

applied, and is more similar to the average known good signal (the mean signal value in 

Fig. 60). This indicates that important information has been lost, and the resulting 

representation will often be insufficient for fault detection purposes as it fails to capture 

the distinguishing features of the faulty signals. Unfortunately, this feature reduction is 

needed with OC-SVM as using raw features is computationally infeasible.  

 
Fig. 60: PCA features chosen using only nominal data do not accurately describe faulty sensor data 

leading to poor classification results. 

Finally, in Table IV, we show the TPR and FPR of our proposed model for all datasets 

when an a priori threshold is chosen with a AFPR of 1%. When the threshold is chosen a 

priori using our method proposed in Section 4.3.6, we see similar results to an a posteriori 

threshold resulting in an exact 1% FPR. This demonstrates that we can select a good 

classification threshold without faulty examples, as would be required in a real world 

application of our method.  

 

4.4.2 Transfer Learning 

Here, we present results for our transfer learning methodology with KDE-based 

anomaly detection. Since our ion implantation and plasma etch datasets each contain 

different numbers or proportions of available faulty and nominal recipes, we present 

TABLE IV 

Single recipe KDE results with a priori threshold. 

Method 
Plasma Etch 
Recipe #1 

Plasma Etch 
Recipe #2 

Ion 
Implantation 

KDE FPR 1.25% 1.09% 0.39% 

KDE TPR 100% 100% 72.0% 
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slightly different results for the two cases. The available ion implantation dataset has 11 

recipes with only nominal data, and only one recipe with nominal and faulty data. We 

therefor choose the model hyper-parameters using the 11 partial recipes, then test the 

performance on the single complete dataset. The plasma etch data includes two recipes, 

but both contain faulty and nominal data. Thus, we select hyper-parameters from each 

etch recipe dataset, then test on the other recipe. In both the plasma etch and ion 

implantation data, we select hyper-parameters using 250 example runs, then create a 

model with 25 example runs from a new recipe. We set an AFPR of 1%, and present the 

resulting FPR and TPR for the ion implantation (Table V) and plasma etch cases (Table 

VI).  

 

 

 
 

In all cases, transfer learning produces similar results to training with a full dataset; 

however, the performances are not identical. In the plasma etch cases, the FPRs are higher 

than in the single recipe cases; this is expected considering the smaller training size. In 

the ion implantation cases, the FPRs and TPRs vary greatly when different training sets 

are used. We believe this is primarily due to differences in the choice of threshold selected 

in the training stage. The FPRs and TPRs are highly varied, but positively correlated, 

indicating that the threshold is likely sub-optimally chosen. Selecting too low a threshold 

lowers both the FPR and TPR, and the opposite effect results when selecting too high a 

threshold. These results are promising even with only 25 training runs used for each case, 

TABLE V 

Transfer learning results with ion implantation data. 

Training Recipe Transfer Learning FPR Transfer learning TPR 

Recipe 1 1.46% 82.0% 

Recipe 2 1.49% 72.0% 

Recipe 3 2.92% 90.0% 

Recipe 4 1.58% 80.0% 

Recipe 5 0.42% 68.0% 

Recipe 6 0.31% 60.0% 

Recipe 7 1.75% 76.0% 

Recipe 8 0.35% 48.0% 

Recipe 9 1.42% 72.0% 

Recipe 10 1.53% 80.0% 

Recipe 11 0.52% 64.0% 

   

 
TABLE VI 

Transfer learning results with plasma etch data. 

Training Recipe Transfer Learning FPR 
Transfer learning  

TPR 

Recipe 1 2.94% 100% 

Recipe 2 4.31% 100% 
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enabling relatively accurate detection for infrequently used recipes. This also enables the 

rapid startup of the anomaly detector. As additional runs are obtained, the accuracy of the 

detector improves due to the growth in the size of the example set, e.g., to a stable 250 

samples after which the first-in, first-out update to the basis data can be performed.  

4.5 Conclusions 

We propose a one-class KDE anomaly detection method for semiconductor processes. 

Extensions enable adaptation to concept drift, as well as transfer learning between 

recipes. The approach is demonstrated with good success across two plasma etch recipes, 

and ion implant, in both single recipe and transfer learning scenarios. These results 

compare favorably to benchmark one-class anomaly detection methodologies, including 

naïve and time-varying SPC methods, OC-SVM, and VAE fault-detectors. Transfer learning 

between recipes is also demonstrated, enabling rapid model creation for related recipes 

and tools. 

We believe the KDE-based anomaly detection method is attractive for a number of 

reasons: it is trained using only nominal data, it can be trained with relatively small 

amounts of data, and finally it is process indifferent, as it makes few assumptions about 

the modeled process. These qualities should allow it to be applied to a large number of 

processes and recipes, making it practically useful for semiconductor anomaly detection 

applications. 

This case study again highlights the two key themes seen throughout this thesis. First, 

the incorporation of process knowledge allows us to train our model with less data. 

Primarily, this is seen in our data pre-processing. As we believe the majority of faults in 

our semiconductor context can be detected on a pointwise and univariate basis, we are 

able to create individual sensor distributions for each point in time, drastically reducing 

the data required to estimate these distributions. This allows us to train with limited data, 

outperforming generic feature compression methods such as PCA. Secondly, we see that 

the use of probabilistic methods outperforms deterministic comparison methods such as 

VAEs and OC-SVMs. Even in extremely data limited transfer learning scenarios, our 

method is capable of good performance, confirming its applicability to these data limited 

scenarios.  

Future work could explore further extensions. One is the incorporation of anomalous 

data into the model. While this data may not always be available, there may be times when 
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it is, and faulty examples may improve the training and prediction capabilities of the 

model. Additionally, robust bandwidth selection techniques available in some KDE 

applications could be explored, as described in Section 4.3.6. Additionally, a variant of our 

approach is to use a fixed model to detect long-term system drift, as discussed in Section 

4.3.7. These long-term drifts may be useful for preventative maintenance, or for detecting 

gradual degradation of a tool. Finally, extensions could be considered that explicitly 

consider the time-series nature of the data. The KDE-based detector method presented 

here looks at sensor data on a point by point basis, avoiding the complexity of time-series 

modeling; methods combining time-series and KDE are an interesting avenue for future 

research. 
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5 Modeling and Optimizing Sputtering Deposition Systems Using 

Gaussian Processes 

In this chapter, we explore the use of Gaussian Process (GP) models in order optimize 

thickness uniformity in sputtering deposition processes. Thin film deposition is a 

fundamental process used in the fabrication of nearly all semiconductor products [177]. 

While there are many variants of this process, one is the sputtering deposition process. In 

these processes, ions are accelerated towards a target, striking the target, and sputtering 

material onto a nearby (rotating) wafer (Fig. 61). This creates a thin film of material on 

top of the wafer that forms the basis for many semiconductor structures. 

 

Fig. 61: Illustration of sputtering deposition process. Plasma ions (red) are accelerated by an RF 

power source (blue) towards a target (green). Material (yellow) is then sputtered from the target and 

deposited onto the wafer (grey). 

Unfortunately, this deposition may not be evenly distributed across the wafer. Some 

areas may receive more material, resulting in thicker films, while other may receive less 

(Fig. 62). As these thicknesses later translate to device geometries, these spatial 

variations in the deposition thickness can lead to significant differences in device 

performance. To prevent these variations, equipment configuration or recipe settings can 

be adjusted in order to more evenly distribute material across the wafer. The effects of 
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such parameters on the thickness profile can first be modeled, then this model can be used 

to select configurations or recipe settings that meet a desired uniformity specification. 

 

Fig. 62: Example 73 point sputtering deposition thickness profile demonstrating non-uniform 

deposition. 

However, modeling the effects of these model inputs is not a trivial task. Because the 

system is particularly complex, models based on first principles are infeasible to apply, 

and empirical approaches must be used. Additionally, this process has a large number of 

equipment configuration or recipe parameters, each with potentially complex 

relationships to the output of interest, and the collection of new data is extremely costly, 

thus limiting the feasible amount of training data.  

Because of these constraints, traditional modeling approaches such as polynomial 

models and deep learning methods can be insufficient for many process optimization 

tasks. Simple polynomial methods struggle to represent complex relationships, and 

neural networks are held back by small amounts of available training data. Therefore, 

semiconductor process optimizations tasks are in need of a highly expressive machine 

learning method that can accurately predict key process variations with limited training 

data.  

Prior work has demonstrated the ability of GPs to model and control variations of 

other processes [84], [95], [178], [179], and here we show that they are well suited for 

our proposed application for two reasons. First, a key benefit of GP models is their ability 
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to learn complex functions with relatively small amounts of training data [85], [180]. This 

is critical, as a key constraint in tuning a new chamber or recipe is the cost of running new 

deposition experiments. Adjusting chamber parameters, running the process, and 

measuring the resulting profile is an extremely costly process, and minimizing the 

number of required adjustments is the primary metric of tuning procedure success. For 

this reason, we not only consider the predictive power of a model, but are primarily 

concerned with how effectively it can be used for process optimization. Secondly, GPs also 

provide predictive distributions, as opposed to deterministic outputs. As we will see, this 

is a critical advantage over deterministic methods, as the confidence of these GP models 

can be used to select inputs which are not only predicted to meet the desired 

specifications, but are also likely to be accurate, reducing the effects of overfitting to 

limited data. 

In this chapter, we investigate two models that predict deposition thicknesses across 

the wafer: one considers the effects of the scalar process recipe parameters (pressure, 

target to wafer spacing, bias voltage, and radio frequency power) and a second model 

considers the effect of complex discrete parameters related to deposition chamber 

equipment configuration. This second case is the main focus of the chapter, as the greater 

number of inputs makes it the higher complexity modeling task. In this case, we also 

incorporate prior process knowledge in the form of a physics-based pre-processor. This 

reduces the large number of process inputs to a more feasible size, and which are believed 

to be more directly related to the deposition thickness. 

In Section 5.1, we give an overview of Gaussian Process (GP) models. In Section 5.2, 

we employ the GP model framework to model the scalar process recipe parameters such 

as pressure, and power supply bias. In Section 5.3, we then explore how the same GP 

model framework can be combined with physics-based solvers to efficiently model the 

effects of large numbers of highly non-linear input parameters, including geometric 

equipment configuration parameters of the deposition chamber. In Section 5.4, we 

discuss how this model can be used to iteratively tune a process. In Section 5.5, we present 

polynomial, neural network, multivariate spline, and gradient boosted regression tree 

comparison methods which we benchmark our model against. In Section 5.6, we present 

the results of the proposed model, along with benchmark comparisons. Finally, in Section 

5.7, we offer conclusions and suggestions for future work.  
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5.1 Gaussian Process Models 

In this section we give a brief overview of Gaussian Processes, which are the basis of 

our proposed model. GPs are a probabilistic regression model that create likelihood 

distributions for new inputs based on previously observed outputs, and the similarity of 

their inputs and the new inputs. 

Specifically, a GP models a collection of outputs, in our case the individual deposition 

thicknesses, 𝑇𝑖, as a multivariate normal distribution [181]:  

 [
𝑇1

…
𝑇𝑛

]~𝑁 (0, [

𝜎11 … 𝜎1𝑛

… … …
𝜎𝑛1 … 𝜎𝑛𝑛

]) = 𝑁(0, Σ). (73) 

The correlation structure of these outputs, Σ, determines how similar each output is 

to one another. This correlation structure is determined by the similarity of the 

corresponding inputs, 𝑋𝑖 , in our case the process conditions and radial position. The more 

similar the process conditions and radius are, the more correlated their outputs are 

assumed to be. The function that determines the covariance used in the multivariate 

distribution is referred to as the kernel function, 𝐾:  

 𝜎𝑖𝑗 = 𝐾(𝑋𝑖 , 𝑋𝑗). (74) 

For our purposes we use a common kernel function, the radial basis function (RBF), 

also known as a Gaussian or squared exponential kernel (Eq. 75), with the addition of 

pointwise white noise. With this kernel, two inputs are correlated up to the pointwise 

noise when they are the same, and as the distance between them grows, the correlation 

between them smoothly decays with a length scale 𝑙. In particular, we use an anisotropic 

version, where the length scales of the kernel, 𝑙𝑝, can differ for each process 

parameter, 𝑋𝑖,𝑝, since the scales of each parameter can be different:  

 𝜎𝑖𝑗 = 𝜎 ∙ ∏𝑒
−(

𝑋𝑖,𝑝−𝑋𝑗,𝑝

𝑙𝑝
)
2

𝑝

. (75) 

When predicting an unobserved deposition profile, 𝑇∗
⃗⃗  ⃗, for a new set of process or 

equipment conditions, 𝑋∗, we calculate the distribution for these variables by creating a 

distribution for all variables, and marginalize out the observed outputs, 𝑇⃗  and inputs 𝑋. 

This becomes a new multivariate Gaussian distribution with mean 𝜇∗ and covariance Σ∗:  

 𝑇∗
⃗⃗  ⃗ | 𝑇⃗ , 𝑋, 𝑋∗~𝑁(𝜇∗, Σ∗) (76) 

where 
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 𝜇∗ = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑇⃗  (77) 

 Σ∗ = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗). (78) 

An example predictive distribution generated with a GP model for a single variable 

function with limited data points can be seen in Fig. 63. 

 

 

Fig. 63: Example GP model for 𝑓(𝑥) = 𝑥2 with four training data points. 

A key benefit of GP models are the reliable confidence intervals provided with a 

prediction. These confidence intervals are useful in a process optimization setting as it 

not only allows us to choose new process or equipment parameters whose most likely 

output meets specifications, but also allows us to consider how likely this outcome will 

be.  

5.2 Process Recipe Parameter Modeling 

In this section, we demonstrate how the Gaussian Process framework can be applied 

to modeling the deposition profile as a function of the process recipe parameters, such as 

chamber pressure and target-to-wafer spacing. While a model based on first-principles 

physics may seem desirable, the underlying physics of the process are highly complex, 

and may depend on many other factors such as the chamber geometry and configuration, 

the properties of the deposition material, and the plasma composition [182]. As we will 

see, modeling the impact of the recipe parameters with an empirical model allows us to 

bypass these complex physics while still producing an accurate model. 
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In order to collect data to build the model, we first choose a set of recipe parameters 

to model the impact of, then create a design of experiments (DoE) to plan our data 

collection. In this section, we model the impact of four scalar recipe parameters: chamber 

pressure, RF power, bias, and target-to-wafer spacing. We design a 17-point fractional 

factorial central composite DoE. After choosing our DoE, we sputter our target material 

onto a wafer under each of these conditions and measure the resulting profiles. 

In addition to our process recipe parameters, we must also consider the radial 

position on the wafer as an additional model input, as the deposition thickness changes 

across the wafer. Note that during sputtering, the wafer is rotated in order to improve 

uniformity. For this reason, deposition thickness does not significantly depend on the 

angular position on the wafer, but only on the radial position, i.e., all points on the same 

radius have approximately equal thicknesses. Therefore, when measuring thickness 

variations across the wafer we only require a scan across the center of the wafer, instead 

of collecting data from the entire wafer. For the same reason, we only use the radial 

position as the wafer position input for our GP model, and only plot this central scan when 

plotting thickness profiles. 

After collecting the experimental data, we then build and validate our GP model. Here, 

our GP model takes in the scalar process recipe parameters, 𝑝, along with the radial 

position, 𝑟, as the model inputs, and maps these to the deposition thickness, 𝑇(𝑟, 𝑝).  

Because all hyper-parameters required for our process recipe GP model are chosen in 

training, most importantly the kernel length scales, we use cross-validation to evaluate 

our model rather than training, validation, and testing splits where the effects of hyper-

parameters are also investigated. Here, we train our GP model using all spatial 

observations except those from a single omitted set of process conditions. We then 

predict the deposition profile of the omitted wafer, and calculate the root mean squared 

error (RMSE), R-squared (𝑅2), and mean absolute error (MAE) of our prediction using 

data normalized to their mean. Finally, we repeat this procedure for all wafers, and 

average these metrics over all testing wafers to calculate the cross validation metrics, 

CVRMSE, CV𝑅2, and CVMAE, respectively. These values are 0.061, 0.98, and 0.054 for the 

three metrics, respectively, demonstrating the good ability of the model to predict 

deposition profiles for new process conditions. Example predictions compared to their 

experimental profiles are shown in Fig. 64.  
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Fig. 64: Two examples of predicted vs. experimental deposition profiles. 

In each training, the GP model nearly perfectly fits the training data, and thus results 

in a training 𝑅2 value of approximately 1. The cross validated 𝑅2 value estimates the 

model accuracy when we predict new conditions, and is 0.98 for the process recipe 

parameter models using our 17-point DoE.  

5.3 Chamber Configuration Modeling 

In this section, we demonstrate how the same GP framework can be used to model the 

deposition profile as a function of complex, geometric, chamber configuration variables. 

These equipment configuration variables allow for much finer tuning of the deposition 

profile, making them well suited for reducing the high frequency spatial variations seen 

in many deposition profiles, beyond what can typically be achieved with only process 
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recipe optimization. Here, we incorporate physics-based solvers into our modeling 

framework and add prior knowledge to the model in the form of additional structure, to 

create the overall model pipeline (Fig. 66). A large number of equipment configuration 

variables are our overall model input; these number about 100, compared to only four in 

the process recipe case. For any given equipment configuration, intermediate spatial 

variables are then computed using the physics-based solver; these provide spatial 

information about chamber or plasma conditions at a particular horizontal cut (parallel 

to the wafer) through the chamber. Feature selection is then performed on these 

intermediate spatial variables, resulting in distributions of these variables at each radius 

that are used as inputs to the GP model.  

This approach highlights a key theme of our thesis, incorporating process knowledge 

into the modeling approach. Without this additional model structure, the original process 

inputs would be too numerous, and would have highly non-linear relations to the 

deposition thickness, making it infeasible to empirically model. In this section, we first 

describe the variables of interest, then the model structure, and finally the model fitting 

procedure, corresponding to the model components in Fig. 66.  

5.3.1 Variable Overview 

The equipment variables of interest, 𝐺𝑖, affect the geometry of the chamber, are high 

dimensional (there are approximately 100 independent variables), and are binary (they 

must take one of two states). The deposition profile is highly sensitive to these variables; 

this can be seen in Fig. 65 by observing the effect of changing only a single equipment 

configuration variable. Explicitly modeling the impact of these binary variables would be 

possible in theory; however, this would neglect all prior system knowledge, and would 

require significantly more training data to learn the complex, non-linear relationship 

between 𝐺 and 𝑇. Instead, we incorporate an existing physics-based solver to solve for a 

set of intermediate, spatially changing variables, 𝑆, which are a function of 𝐺. This 

provides a set of basis variables that have a simpler relationship to the deposition profile, 

and allows us to train our model with less data. It is important to note that while these 

intermediate variables, 𝑆(𝑥, 𝑦), may have a simpler relationship to the deposition 

thickness, they are multi-dimensional and spatially varying, and thus the inclusion of the 

physics-based solver leads to an increase in the total number of features. While the 



 122 

dimensions of these variables depend on the choice of discretization size, in practice there 

are often over 10,000 elements in 𝑆. 

 

Fig. 65: Experimental change in deposition resulting from a single changed equipment geometry 

variable. 

This problem of excessive features is compounded by the fact that we not only 

consider the direct outputs of the physics-based solver, but we also consider statistics and 

variants of these variables as additional potential features of the GP model. These 

statistics include the variable gradients, products, wafer means, wafer standard 

deviations, normalizations, and subsequent combinations of these operations. While 

these statistics contain no more information than unmodified spatially changing 

variables, it may be possible to choose the model inputs such that there is either a simpler 

input-output relation for the GP model to learn, or to reduce the larger number of 

variables to a few key statistics. The incorporation of the physics-based solver and these 

statistics both seek to provide the GP model with the simplest choice of input variables so 

that less training data is needed to model the underlying process. We will later discuss 

how the most effective subset of these statistics can be chosen. 

5.3.2 Radial Binning 

A key challenge in using the GP framework for this task is how to structure the GP 

model inputs. Representing the parameters of our system with as few variables as 

possible simplifies the function our GP model must learn, and thus reduces the amount of 

training data required. As previously described, the spatially changing (𝑥, 𝑦) intermediate 

variables and their statistics, 𝑆, are solved for using a physics-based solver. While this 

allows us to incorporate some prior knowledge, it still does not simplify our model, as we 
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have expanded our 100 model inputs to a spatially varying multivariable input, which can 

easy have tens of thousands of terms.  

To simplify our model inputs, we make some assumptions. First, we assume that only 

values of 𝑆 near radius 𝑟 will impact the deposition thickness at that radius, i.e., 𝑇(𝑟) ≈

𝑓(𝑆(𝑟)) [183]. Second, we assume that instead of knowing the exact value of 𝑆 at each 

radius, in reducing from 𝑆(𝑥, 𝑦) to radial 𝑆(𝑟) we only need to know an approximate 

distribution of these variables across the different (𝑥, 𝑦) locations corresponding to each 

radius 𝑟.  

With these assumptions in mind, we then simplify these spatially changing variables 

into a more compact form for our GP model input. For each modeled thickness, 𝑇(𝑟), we 

bin the values of 𝑆(𝑟) into a histogram, and use the normalized bin counts as the GP model 

input, 𝐵(𝑟), i.e., instead of using all values of 𝑆 as our model inputs for 𝑇(𝑟), we use an 

approximate, discrete distribution of the values of 𝑆(𝑟). The intuition behind this feature 

reduction approach is that the intensity of the outputs of the physics-based model, 𝑆(𝑟), 

is believed to be correlated to how many ions strike the target at each location, and thus 

informs how much sputtering occurs at each location. Therefore, by creating a 

distribution of these variables at each radius, we can estimate how much sputtering 

occurs at each radius, and finally the deposition thickness at each radius.  

This feature reduction technique has many properties which we desire. Primarily, it 

reduces the enormous number of total features to a feasible size. This is achieved both by 

reducing a large number of variables to a distribution, but also by only using values of 𝑆 

at radius 𝑟 for predicting 𝑇(𝑟). In our testing, this reduces tens of thousands of features to 

approximately twenty key features in most cases. Secondly, this feature reduction 

Fig. 66: Complete model flow. Chamber equipment configuration variables 𝐺 are fed into a 

physics-based model which calculates the spatially changing variables, 𝑆. These are binned into 

histograms, and these bins are filtered across nearby radii to estimate the effects of sputtering. Finally, 

these filtered bins are used as inputs to the GP model. 
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technique is rotation invariant: spatial rotation of the (𝑥, 𝑦) spatial variables should result 

in a rotated output. However, because the deposition is radially symmetric, a rotation of 

𝑆 should result in the same predicted thickness. This property is achieved because the 

feature inputs, the distribution of 𝑆 at each radius, are unaffected by a rotation, and thus 

predict the same output when a rotation is made.  

5.3.3 Feature Filtering 

Next, we adjust our model to account for spatial interaction effects. As previously 

described, our feature reduction technique does not take into account values of 𝑆 at radii 

other than that being predicted. This is unrealistic, as sputtering from a point source will 

deposit material onto nearby points and thus the values of 𝑆 at one radius can affect the 

deposition thickness at another. Therefore, rather than using only the distribution of 𝑆(𝑟), 

𝐵(𝑟), to predict 𝑇(𝑟), we instead use a distribution of 𝑆(𝑟′) for all values of 𝑟′ close to 𝑟, 

i.e., for 𝑟 − 𝛿 < 𝑟′ < 𝑟 + 𝛿. This distribution of 𝑆 across nearby values of radii, 𝐵𝑓(𝑟) is 

achieved using a spatial filter. Applying a spatial filter to the features creates a distribution 

of 𝑆 not only at radius 𝑟, but also for nearby radii, and weights each feature in this 

distribution based on its spatial distance from the radius of interest.  

To create this distribution, we must make two decisions: the shape of the filter, and 

where in the model to apply it. The spatial filter can occur either before or after the 

binning of 𝑆 and each will result in a different set of features passed into the GP model. 

Applying the filter after binning results in a one dimensional convolution, as the binning 

process compresses 𝑆(𝑥, 𝑦) into 𝑆(𝑟), and the filter is then applied across the radius, while 

filtering before binning applies a two dimensional convolution in both 𝑥 and 𝑦. We 

considered both before and after the radial binning with various filters, including 

Gaussian, exponential, line-of-sight cosine, raised cosine, and square. In practice, we 

found that the best performing filter occurs after radial binning, and takes the form of a 

raised cosine distribution with a length scale 𝑙𝑓 .  

5.3.4 Illustrative Example 

In this section, we present a simple example that illustrates the binning and feature 

filtering steps in our feature engineering pipeline (Fig. 66). For simplicity, we consider 

the case where our physics-based pre-processor outputs a single spatially changing 

variable, 𝑆(𝑥, 𝑦), and this variable is only a function of the radial position (Fig. 67). 
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Fig. 67: Example spatially changing variable as a function of wafer position, 𝑆(𝑥, 𝑦). 

As each set of features represents the spatial variables seen at one radius, the first 

step is to collect the values of all spatially varying variables at that radius. Below, we plot 

the spatial locations used when creating features for 𝑟 = 0.5 (Fig. 68). 

 

Fig. 68: Points used when determining features for 𝑟 =  0.5. Yellow indicates selected points, and 

blue indicates omitted. 

The values of 𝑆 at these locations are collected and converted into a histogram, which 

determines how these spatial variables are distributed at the radius of interest. 
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Importantly, the edges of these bins are determined by the full range of training data, thus 

these bins are fixed both between chamber configurations, as well as between radii. As 

the example data we synthesize is only a function of chamber radius, one bin in the 

histogram contains all values of 𝑆 at that radius, while the others are empty (Fig. 69).  

 

Fig. 69: Histogram showing distributions of data at r = 0.5. 

Additionally, we can view these histograms as a function of wafer position (Fig. 70).  

Since each radius contains only one value of 𝑆, we see one bin containing all data for each 

radius, while the remainder are empty. 

 

Fig. 70: Bin percentages as a function of radial position.  

The pre-processing step before passing these features into the GP model consists of 

applying a spatial filter. Because sputtering from a point source deposits material into a 

nearby area, the values of 𝑆 at one radius will affect nearby deposition thicknesses. 

Therefore, the bin percentages are filtered across radii before being passed to the GP 
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model. These filtered bin percentages can again be viewed as a function of wafer position 

(Fig. 71) or for a specific radius (Fig. 72). 

 

Fig. 71: Filtered bin percentages as a function of wafer position. 

 

Fig. 72: Bin percentages after filtering at 𝑟 = 0.5. 

After preprocessing, these bin percentages can then be concatenated for each 

component of 𝑆. For example, if there are two spatial variables, features 1 through 5 

correspond to the bins for the first spatial variable, and features 6 through 10 correspond 

to the bins for the second spatial variable. For each radius and observed deposition 

thickness, these concatenated features are then used for the inputs to the GP model, 

compressing a large number of spatial inputs down to a representative distribution.  
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5.3.5 Model Fitting 

Fitting and evaluating the model is a non-trivial task, and in this section, we describe 

the procedure. In this case, there are a significant number of model hyper-parameters; 

thus we use a traditional training, validation, testing split. We train the GP model on the 

training dataset, then select the best performing hyper-parameters based on the ability 

to predict the validation dataset, and finally estimate the real-world predictive power 

using the held-out testing dataset.  

The model hyper-parameters are crucial in properly fitting the model and include 

bounds on the GP model length scales, 𝑙𝑝, GP model noise, 𝜎𝑛, filter length scale, 𝑙𝑓 , and 

the choice of which potential features to include. These hyper parameters are selected by 

repeatedly optimizing each sequentially until no improvement on the validation set can 

be found. The objective function used to select the best performing hyper-parameters is 

the leave-one-out cross validation mean squared error (CVMSE), and is implemented the 

same way as was described in Section 5.3. 

When optimizing each hyper-parameter, the scalar hyper-parameters, i.e., all but the 

choice of included features, are each sequentially optimized using a one dimensional grid 

search, while the choice of included features are fit using a stepwise method. In the latter, 

the potential features, i.e., the histograms of 𝑆 and its resulting statistics, are iterated 

through, and for each potential feature, we determine if adding it to the list of included 

features (if not already included), or removing the potential feature (if already included) 

increases or decreases the cross validation MSE. Changes which decrease the cross 

validation MSE are kept, while those which increase it are reverted. In practice, we often 

select the distributions of two to three key features; however, this varies based on the 

training and validation sets. 

5.4 System Optimization 

Once a model for the system (either recipe parameters model or an equipment 

configuration parameters model) has been fit, it can be used to optimize the parameters 

in order to meet some criteria. Advantageously, the output of the GP model is a probability 

distribution, enabling us to maximize the likelihood of a desired profile under the 

predicted distribution. This choice of objective function takes into account both how close 

our maximum likelihood prediction is to the desired profile, and how confident we are in 

this prediction.  
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Here, we consider two cases separately: the first is to optimize the recipe 

parameters, 𝑝, to achieve a desired sputtered film thickness profile; and the second is to 

achieve desired thickness profile uniformity by optimizing the equipment configuration 

chamber parameters, 𝐺. The geometric chamber parameters are highly influential in 

changing or improving higher-frequency variations in film thickness, while the scalar 

recipe parameters are less so. The first case involving process recipe parameters is 

simpler and, within the limitations on uniformity achievable by recipe tuning, generally 

does not require iterative tuning. In contrast, the second case involving equipment 

configuration parameters is more challenging, and places a high demand on a small 

number of iterative tunes in order to achieve acceptable uniformity. 

5.4.1 Process Recipe Parameter Optimization 

Optimizing the process recipe parameters is a relatively easy task, as the inputs are 

continuous, are limited in number (there are five in our case), and their effect on the 

objective function is smooth and contains few, if any, local minima. For this reason, we 

use a simple gradient descent algorithm, combined with a finite difference method to 

estimate the gradients, in order to optimize the scalar process parameters. We test this 

method using a curved profile for our desired deposition thickness. As can be seen in Fig. 

73, the low frequency component of the predicted profile is nearly identical to the desired 

profile; however, the higher frequency ripples are still present. This is expected because 

the process recipe parameters can only control the low frequency components, and have 

little effect on the spatial ripples of the thickness profile. The resulting non-uniformity 

between the predicted and desired profiles is 4.36% in this example. 
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Fig. 73: Resulting profiles for the flat (top) and curved (bottom) desired responses predicted by 

tuning the simple process recipe parameters. 

5.4.2 Chamber Geometry Optimization 

Unlike the process recipe parameters which can effectively be modeled with a small 

amount of training data, the large number of chamber geometry parameters, combined 

with the much more non-linear and non-convex input-output relation, makes it 

impossible to accurately predict the profiles for all combinations of these inputs. This 

makes finding the true global optimum infeasible. However, due to the large number of 

chamber variables, there are many different configurations that will meet our improved 

uniformity requirements, and thus we can afford to stay in a local minimum if it satisfies 

our specifications.  

Because modeling the geometric chamber parameters requires a substantial amount 

of training data, the processes of collecting training data, building a model, and finding an 

optimal set of conditions is not an isolated, one-time procedure, but rather is a continuous, 

iterative tuning cycle. This iterative procedure begins with a small amount of training data 

(in our case, five different chamber configurations), then the steps of modeling, 

optimizing, and collecting more data repeats until an acceptable configuration is found.  

As the chamber configuration variables are discrete, binary, and have a highly non-

linear relationship to the output, we use an incremental local search method to optimize 

these variables at each iteration. After collecting data and updating the model following a 

previous optimization, we select the best known configuration (in our case the 

configuration which results in an experimental profile with the minimum mean squared 

error between it and the desired profile), and use this as our start point for the next 
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optimization. Because each spatial variable is binary, we then create a list of all 

configurations that are at most two equipment parameter changes away from our current 

best known configuration, i.e., they have a Hamming distance of two from our current best 

configuration. This limits the number of configurations that must be considered by the 

model during the optimization process to a feasible number, and avoids too rapid 

movement into highly uncertain areas of the input space. After creating this list of (in our 

case 10,000) potential chamber configurations, we then use our model to predict the 

resulting profiles. We select the configuration that has the lowest cost, i.e., the highest 

likelihood of our desired profile. This chamber configuration is then set, the deposition is 

performed and the thickness profile measured. The new data is used to update the model 

and the process is repeated until an acceptable configuration has been found. 

While we have found this method sufficient for converging to a desired profile, this 

approach differs from traditional Bayesian Optimization (BO), in an important way. Here, 

our acquisition function, the likelihood that the input configuration leads to a desired 

profile, only incorporates exploitation and does not incorporate exploration, i.e., it only 

attempts to select optimal configurations given its current belief, and does not attempt to 

gather additional information. There are two reasons for this. First, we primarily evaluate 

the performance of our method using historical data. For this reason, collecting new data 

with the goal of exploration is not possible, and we must rely solely on evaluating the 

purely predictive power of our model. Secondly, as the input space to our model is high 

dimensional, it is infeasible to model or explore the entire space; however, many sufficient 

solutions exist, and it is likely to find one of these solutions in a small region of this input 

space. Therefore, we suspect acquiring new data points in one small subsection of this 

space via exploitation is often more beneficial that exploring new regions. However, for 

alternative applications that utilize similar approaches, incorporating exploration into 

the acquisition function may improve overall model performance, and can reduce the 

number of iterations required to converge to a desired solution. 

5.5 Comparison Methods 

In this section, we briefly present methods that we compare our proposed Gaussian 

Process approach to. These two methods include polynomial models, gradient boosted 

regression trees (GBRTs), multivariate adaptive regression splines (MARS), 

convolutional neural networks (CNNs), dense neural networks (DNNs), and radial basis 
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function neural networks (RBFNNs). These methods represent common empirical 

modeling techniques widely used in semiconductor applications and in machine learning 

as a whole. These methods also represent different extremes of the bias-variance tradeoff. 

For example, polynomial models are simple to fit with little data, but have limited 

modeling power, while deep learning methods require significantly more data, but can 

model a much wider range of systems.  

Because many of the comparison models also benefit from proper feature selection 

and engineering, we utilize the same feature engineering pipeline previously described in 

order to create inputs to the non-deep learning methods, i.e., the polynomial model, GBR, 

and MARS models. This compressed feature representation reduces the number of inputs 

to a manageable quantity, helping to prevent overfitting, while also providing terms 

which are more directly related to the modelled outputs. This also allows us to determine 

how effective the models are when the feature pre-processing stages are the same in both 

cases. 

5.5.1 Polynomial Modeling 

Modeling the effects of complex equipment configuration chamber parameters using 

a polynomial model presents the same challenges as does using a GP model for the same 

task. In particular, feature selection and engineering is important in both cases. As 

discussed in Section 5.4, there are many different ways to select inputs which can be used 

for either the GP or polynomial model. Using the raw chamber parameters alone results 

in over 100 inputs to the polynomial model. This is often significantly higher than the 

number of training sets available, making overfitting highly likely. Additionally, as there 

is a highly non-linear relationship between the original chamber parameter inputs and 

the deposition thickness, this would require many terms in the polynomial model, making 

overfitting even more likely.  

In addition to sharing the feature selection process, the polynomial implementation 

also utilizes the same hyper-parameter selection technique. While the approaches are the 

same, the set of hyper-parameters are different. Both select which features are relevant 

to the model using the CVMSE; however, the polynomial approach will select the 

polynomial order instead of the GP specific hyper-parameters. As we will describe in 

Section 5.6.1, many training-testing ensembles are used to evaluate the performance of 

these models. Because hyper-parameters are chosen specifically for each ensemble, there 
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is not one set of parameters used; however, in most cases second order polynomials with 

interactions are created through hyper-parameter selection. 

5.5.2 Gradient Boosted Regression Tree Modeling 

A second comparison method we evaluate is gradient boosted regression trees 

(GBRTs) [184], [185]. This is an ensemble method that uses a collection of weak learners, 

in this case decision tree regressors, to create a more robust and expressive model.  

Here, we apply gradient boosted regression tree models in a similar method to our 

application of polynomial and Gaussian Process models. Again, we use the same feature 

pre-processing pipeline and hyper-parameter tuning method as in both the GP and 

polynomial cases. While the hyper-parameter tuning methods are the same, the tuned 

parameters are not identical. Just as before, we select which features are used as inputs 

to the model; however, we optimize the depth of each tree and number of trees instead of 

the polynomial and GP specific hyper-parameters. Again, these hyper-parameters change 

for each ensemble of training data; however, a representative well-fit model uses 60 trees 

of maximum depth 3. Additionally, we use default values for the number of samples 

needed to split a tree (2), as well as the learning rate during gradient descent (. 1). 

5.5.3 Multivariate Adaptive Regression Spline 

A third comparison method we evaluate is multivariate adaptive regression spline 

(MARS) models [186]. These regression models create a piecewise approximation for an 

underlying function. Each piece of the approximation is a linear function; however, higher 

order terms are commonly added to the feature basis to improve the model performance.  

We test this method using a similar approach to the GP, polynomial, and GBRT 

methods. We use the same feature pre-processing pipeline, and tune the hyper-

parameters using the same selection method. In addition to selecting which features are 

passed into the MARS method, we also tune the maximum number of terms in each 

piecewise approximation, the maximum polynomial order of these approximations, as 

well as a penalty parameter that controls the smoothness of these approximations. For 

the resulting MARS fits, a representative model uses third order polynomials, a maximum 

of 10 terms in these approximations, as well as a regularization penalty of 3.09. 
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5.5.4 Neural Network Modeling 

The final set of comparison methods we consider use neural networks. In total, we 

implement three unique architectures as comparison methods: dense neural networks, 

radial basis function networks, and convolutional neural networks. Because neural 

networks are prone to overfit to small amounts of training data, we impart some prior 

knowledge into the architecture in order to help alleviate this. 

All three deep learning approaches again use the physics-based solver to perform 

feature pre-processing. Here, the spatially changing variables directly modeled by the 

physics-based solver are used as inputs to the neural networks. The values of these 

features are stored in a 3D tensor where the first two dimensions correspond to the 

spatial (𝑥, 𝑦) position on the wafer plane, and the third corresponds to the variable type 

and is the channel dimension for the networks.  

While each network uses the same preprocessing, the networks themselves vary. The 

most traditional of the three is a dense fully connected multilayer perceptron neural 

network. Here, the preprocessed features are first flattened and then are fed into three 

consecutive dense layers that each use rectifying linear unit (ReLU) activation functions. 

The number of nodes in these layers decrease logarithmically from the starting feature 

size to the output size. For our experiments, these layers have 109375, 1403, and 18 

elements; these are the only elements in the baseline dense neural network. The network 

is trained in order to minimize the mean squared error of the training predictions using 

the ADAM optimizer with default parameters, except that a learning rate of 2 ∙ 10−2 is 

used instead of the default value. Dropout is not used. 

A second deep learning variation we consider are radial basis function networks 

[187], [188]. These are similar to traditional dense neural networks; however, their 

activation function is a radial basis function, instead of a traditional rectifying linear unit 

(ReLU). A commonly seen benefit of these networks is their increased robustness [189], 

which is particularly advantageous for our data limited scenario. Our architecture is 

similar to the dense network, except the activation functions of the first two layers are 

replaced with radial basis functions, instead of the traditional ReLU. The final layer uses 

a fully connected linear layer with no activation function, in order to properly scale the 

output. The same loss function and training parameters as for the DNN are used. 

The final deep learning variation we consider is a convolutional neural network, that 

also incorporates our physical assumptions about the process. As we previously 
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described, CNNs are commonly used in tasks with spatially related variables, such as our 

those produced from our physics-based pre-processor. Again, these spatial variables are 

the inputs to our network, and pass through six 2D filter layers, which each have 7, 14, 28, 

14, 7, and finally 1 feature channels. The number of elements per channel is held constant, 

as these elements represent the spatial locations inside of the chamber, and the final layer 

represents the pointwise deposition at each (𝑥, 𝑦) point on the (non-rotating) wafer. 

Following this, a custom layer applies a radial averaging that maps the 2D pointwise 

deposition map to a 1D vector. The outputs in the 1D vector are the average of the values 

on the 2D map that have approximately the same radial position. This structure allows for 

the convolutional layers to learn only the mapping between the chamber variables and 

deposition rate, while the radial averaging accounts for the rotation of the wafer during 

deposition. This substantially constraints this specific CNN structure, helping to fit with 

the limited available data. 

For all of these networks, we also impart some knowledge into the training process 

itself. Here, we not only train with the direct outputs of the physics-based simulator, but 

also train it with rotated versions of these inputs. Because the wafer rotates during 

deposition, the absolute chamber orientation is irrelevant to the final deposition profile. 

This allows us to add additional examples to the training data set which helps reduce 

overfitting. 

5.6 Results 

In this section we present the performance of the proposed GP model and the 

associated optimization method, as well as comparisons to the polynomial, gradient 

boosted regression tree, multivariate spline, and deep learning methods, applied to the 

equipment configuration optimization problem. As discussed at the start of this chapter, 

the key criteria of tuning procedure success is the number of tunes required to find a 

profile that meets the desired specifications. While this will ultimately be the key 

performance metric, we will first look at the predictive capabilities of each modeling 

approach. Then we will evaluate the performance of the proposed optimizer, and finally 

evaluate the combined tuning performance.  
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5.6.1 Model Performance 

Here, we present the predictive performance of the proposed model, in addition to the 

comparison methods. We use a limited dataset (40 chamber configurations) to evaluate 

the model performance. In each case, we train, validate, and test the model using a cross-

testing procedure. Here, we divide the total data into training and testing sets, use all 

training data to select the best hyper-parameters via cross-validation, and then build the 

model on the entire training set. Finally, the model is used to predict the testing dataset, 

its performance is evaluated, and the process is repeated with a different training-testing 

split. This is done for training datasets of size 5, 10, 15, 20, 25, and 30. 

Using data normalized to their means, the average predictive MAE (Table VII), RMSE 

(Table VIII), and 𝑅2 (Table IX) values are shown for the proposed and comparisons 

methods as a function of training set size. For each training set size, the best predictive 

performance is bolded. Additionally, we also include these metrics when only considering 

the 25% most confident GP predictions. Here, the metrics are computed using the 

prediction, 𝑇𝑝𝑟𝑒𝑑 , the experimental value 𝑇𝑒𝑥𝑝, and the set of all experimental thickness 

data, 𝑇𝑡𝑜𝑡𝑎𝑙, and these are later averaged over all training-testing splits:  

 𝑅2  = 1 −
∑(𝑇𝑒𝑥𝑝 − 𝑇𝑝𝑟𝑒𝑑)

2

𝑣𝑎𝑟(𝑇𝑡𝑜𝑡𝑎𝑙)
 (79) 

 𝑅𝑀𝑆𝐸 = √𝑀𝑒𝑎𝑛 ((
𝑇𝑒𝑥𝑝 − 𝑇𝑝𝑟𝑒𝑑

𝑚𝑒𝑎𝑛(𝑇𝑡𝑜𝑡𝑎𝑙)
)
2

) (80) 

 𝑀𝐴𝐸 = 𝑀𝑒𝑎𝑛 (|
𝑇𝑒𝑥𝑝 − 𝑇𝑝𝑟𝑒𝑑

𝑚𝑒𝑎𝑛(𝑇𝑡𝑜𝑡𝑎𝑙)
|). (81) 

We observe that all accuracies increase as more data is collected, confirming that the 

lack of training data can be a substantial impediment. Interestingly, many 𝑅2 values are 

negative, corresponding to cases where the prediction is worse than a horizontal line 

through the mean, arising due to overfitting in many cases. We also note particularly poor 

performance for the MARS and polynomial models. This is likely due to the fact that both 

models utilize polynomial functions, which are particularly poor at extrapolating data. 

Because our input data is high dimensional and the training sizes are small, such 

extrapolation is likely necessary.  
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In almost all cases, the high-confidence GP model performs the best. Interestingly, the 

overall GP model does not generally have the best average predictive performance across 

the other comparisons; however, we will later show that it still performs better in an 

optimization setting than the other methods. This is because in these predictive results, 

TABLE VII 

NORMALIZED MEAN ABSOLUTE ERRORS AS A FUNCTION OF NUMBER OF TRAINING WAFERS. 

Method 5 10 15 20 25 30 

GP 0.093 0.098 0.075 0.064 0.055 0.052 

GP- High 
Confidence 

0.066 0.079 0.052 0.028 0.045 0.025 

Polynomial 0.122 0.210 0.094 0.095 0.068 0.063 

GBRT 0.105 0.085 0.073 0.074 0.073 0.061 

MARS 0.128 0.179 0.244 0.084 0.111 0.074 

CNN 0.091 0.090 0.078 0.058 0.050 0.045 

DNN 0.101 0.083 0.080 0.069 0.066 0.064 

RBFNN 0.098 0.093 0.086 0.085 0.084 0.086 

       

 

TABLE VIII 

NORMALIZED ROOT MEAN SQUARED ERRORS AS A FUNCTION OF NUMBER OF TRAINING WAFERS. 

Method 5 10 15 20 25 30 

GP 0.117 0.126 0.111 0.093 0.084 0.081 

GP- High 
Confidence 

0.084 0.104 0.068 0.044 0.064 0.037 

Polynomial 0.153 0.360 0.132 0.128 0.085 0.090 

GBRT 0.128 0.111 0.096 0.096 0.096 0.082 

MARS 0.171 0.323 1.850 0.120 0.429 0.126 

CNN 0.098 0.100 0.905 0.066 0.056 0.050 

DNN 0.113 0.092 0.089 0.080 0.074 0.072 

RBFNN 0.110 0.104 0.096 0.094 0.093 0.096 

       

 

TABLE IX 

NORMALIZED 𝑅2
 AS A FUNCTION OF NUMBER OF TRAINING WAFERS. 

Method 5 10 15 20 25 30 

GP -0.73 -1.02 -0.57 -0.12 0.09 0.18 

GP- High 
Confidence 

0.11 -0.36 0.41 0.75 0.48 0.83 

Polynomial -1.97 -15.4 -1.22 -1.08 0.09 -0.03 

GBRT -1.09 -0.56 -0.17 -0.18 -0.18 0.14 

MARS -2.74 -12.3 -434 -0.82 -22.4 -1.00 

CNN -0.17 -0.20 0.016 0.471 0.618 0.704 

DNN -0.53 -0.03 0.042 0.235 0.342 0.385 

RBFNN -0.44 -0.30 -0.11 -0.07 -0.03 -0.12 
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the average predictions for the GP model are skewed by a relatively small number of 

highly inaccurate predictions. This can be seen when comparing the RMSE of the models 

to their MAE, the latter of which weights all error equally, and here the GP outperforms 

all comparisons except the CNN. While the GP results are skewed by small numbers of 

inaccurate predictions, the GP model also tends to have a larger number of highly accurate 

predictions (Fig. 74). These highly accurate predictions are key to achieving high 

uniformity in tuning, because the final uniformity will generally be limited by the most 

accurate prediction (i.e., a prediction that results in a tuning run that satisfies the goal or 

specification). Therefore, the average accuracy is not as important as the ability of the 

model to be more often highly accurate. Even though the mean prediction accuracy of the 

GP model is lower than the CNN, the ability to predict extremely accurately in more cases 

makes it more likely to find a single configuration that meets the desired specifications.  

 

Fig. 74: Distribution of the most accurate predictive 𝑅2 values for CNN (left) and GP (right) 

models using 20 training wafers. Note the difference in 𝑅2 values greater than 0.975 (division marked 

in red). 

Additionally, it is important to note that the GP model not only produces its maximum 

likelihood prediction for the deposition profile, but also provides its confidence in the 

form of the predicted distribution standard deviation. This is critical for the performance 

of our tuning approach, as a key piece of the overall approach is to identify which 

predictions (of the 10,000 evaluated at each iteration) are both similar to the desired 

profile, and we have high confidence in. For this reason, we should also consider the GP 

model confidences when evaluating its accuracy (Fig. 75). The confidence provided by the 

GP model is a key advantage over the deterministic comparison methods, as it greatly 

increases the effective prediction accuracy, and thus the likelihood of meeting the desired 
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specifications on a new tune. Therefore, we also provide the high confidence prediction 

accuracies in Table VII through Table IX in addition to the naïve estimate. 

 

Fig. 75: Predictive accuracy vs. model 95% confidence interval width when trained with 20 wafers, 

for the GP model. 

These results highlight a key theme of this thesis. Probabilistic methods are often 

flexible enough to model highly complex processes, while still providing protection from 

overfitting in data limited cases. The greatest concentration of highly accurate predictions 

demonstrates that GP models are capable of modeling with high accuracy; however, it is 

infeasible to do this in all cases, as data is limited and the underlying process is highly 

complex. However, the GP model is able to recognize this, and only performs poorly when 

it has low confidence in the predictions. This demonstrates a secondary benefit of 

probabilistic methods, that their predictive distributions can often be used to prevent 

overfitting by avoiding low confidence areas. As we will see in the next section, both of 

these aspects enable GP models to outperform alternative modeling methods.  

5.6.2 Optimizer Performance 

Here, we evaluate the performance of the optimizer alone, by estimating how close 

the optimized profile is to the desired profile. It is important to note that this evaluation 

does not depend on the accuracy of the model, but rather on the performance of the 

optimizer, i.e., we are determining how close we can get to the desired profile in one 

iteration, assuming the model is ideal. Here, we use a curved profile for our desired 

profile, and use the non-uniformity between the predicted and desired thicknesses as our 

metric, per Eq. 82. In this example, we achieve a non-uniformity of 1.03% as seen in Fig. 
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76, and note that this is substantially better than the previous non-uniformity using only 

process recipe parameter optimization.  

 𝑁𝑈 =
𝑠𝑡𝑑(𝑇𝑑𝑒𝑠 − 𝑇𝑝𝑟𝑒𝑑)

𝑚𝑒𝑎𝑛(𝑇𝑑𝑒𝑠)
. (82) 

 

Fig. 76: Optimization results for curved desired profile. 

5.6.3 Combined Model and Optimizer Performance 

Finally, we estimate the performance of the overall iterative tuning approach 

combining the equipment configuration model and optimizer using historical data. For 

our application, we desire a total non-uniformity below a specific threshold, 𝑁𝑈𝑑𝑒𝑠. We 

evaluate the performance of the iterative tuning approach by how quickly we expect to 

reach this specific goal. Overall, the probability of reaching the desired profile by iteration 

𝐼, 𝑃(𝑁𝑈𝐼 < 𝑁𝑈𝑑𝑒𝑠), is the complement of not reaching the desired profile in all previous 

iterations.  

 𝑃(𝑁𝑈𝐼 < 𝑁𝑈𝑑𝑒𝑠) = 1 − ∏𝑃(𝑁𝑈𝑖 > 𝑁𝑈𝑑𝑒𝑠)

𝐼

𝑖=1

. (83) 

Now, we estimate the probability of achieving the uniformity goal in each individual 

iteration. Here, we break down the uniformity requirement into the optimizer and model 

components. The total squared error between the experimental film thickness, 𝑇𝑒𝑥𝑝, and 

desired thicknesses, 𝑇𝑑𝑒𝑠, comes from both the predictive model and the optimizer; thus 

the uniformity requirement can be decomposed into two mean square errors, 

𝑀𝑆𝐸𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟  and 𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙,𝑖:  
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 𝑁𝑈𝑖
2 =

𝑣𝑎𝑟(𝑇𝑒𝑥𝑝 − 𝑇𝑑𝑒𝑠)

𝑚𝑒𝑎𝑛(𝑇𝑑𝑒𝑠)
2

≥
𝑀𝑆𝐸𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 + 𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙,𝑖

𝑚𝑒𝑎𝑛(𝑇𝑑𝑒𝑠)
2

. (84) 

As we have already estimated the MSE for the optimizer, we now determine the model 

accuracy at each iteration using past experimental data. In the previous section, we 

determined a distribution of the model accuracy for 5, 10, 15, 20, and 25 training wafers. 

Now, we estimate the probability of meeting the uniformity goal at each individual 

iteration as the percentage of testing wafers that we predict accurately enough to meet 

the combined non-uniformity metric from Eq. 84. Here, we assume that the first five 

wafers are strictly for training, i.e., we will not achieve the desired profile in the first five 

wafers, and use the accuracy of iteration 5𝑁, where 𝑁 is an integer, to estimate the 

accuracy of the following four wafers. Combining this with Eq. 83, we estimate the 

probability of achieving the desired uniformity by iteration 𝐼 for a variety of uniformity 

requirements.  

The results of this analysis can be seen in Fig. 77 through Fig. 83 using the proposed 

GP methodology, as well as for the comparison methods. We see that even for extremely 

tight uniformity requirements, we are likely to converge to the desired profile in a feasible 

number of iterations. In almost all tuning cases, the GP model outperforms the 

comparison methods on this critical metric, and these improvements are greater when 

targeting tighter uniformity requirements, confirming that the GP method is well suited 

for optimizing these sputtering deposition processes. Even though its average predictive 

𝑅2 is not always superior, the greater number of highly accurate predictions enable 

optimization with the GP model to find a single configuration that meets uniformity 

specifications before the other methods. 

It is important to note that in practice we expect significantly fewer wafers to be 

required in order to converge to a desired profile using the GP model compared to the 

estimations presented below. This is because we use all chamber configurations to 

estimate the model accuracy at each iteration, not only those with tight confidence 

intervals. As previously explained, we select new chamber configurations based on their 

likelihood of achieving the desired profiles, so configurations with tight confidence 

intervals are significantly more likely to be chosen than those with low confidence 

intervals. In our calculations, our model error estimates use all past data. Because the 

errors are much higher when the confidence interval is loose, as can be seen in Fig. 75, 

our model accuracy is likely underestimated, and we expect the true convergence rate to 
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be even quicker for the GP model. Therefore, we also present convergence results for the 

GP model using only the 25% most confident predictions. This more accurately estimates 

the true convergence rate, as the model errors take into account the prediction 

confidence, as is done in the selection of new configurations. As expected, this more 

realistic estimate outperforms the naïve convergence estimate of the GP model, which 

already outperforms the comparison methods. This suggests that the proposed GP 

approach is well suited to tuning new processes rapidly, as it has high accuracy 

predictions, and also considers the prediction confidence.  

 

Fig. 77: Probability of converging to desired non-uniformity vs. number of iterations for GP 

model. 

 

Fig. 78: Probability of converging to desired non-uniformity vs. number of iterations for GP model 

using high confidence predictions.  
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Fig. 79: Probability of converging to desired non-uniformity vs. number of iterations for 

polynomial model. 

 

Fig. 80: Probability of converging to desired non-uniformity vs. number of iterations for MARS 

model. 

 

Fig. 81: Probability of converging to desired non-uniformity vs. number of iterations for CNN 

model. 
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Fig. 82: Probability of converging to desired non-uniformity vs. number of iterations for DNN 

model. 

 

Fig. 83: Probability of converging to desired non-uniformity vs. number of iterations for RBFNN 

model. 

5.7 Conclusions and Future Work 

In this chapter, we discuss an empirical method to explore, model, and optimize 

sputtering deposition processes using a Gaussian Process framework with the goal of 

meeting a desired thickness profile. We first apply the GP framework to the modeling of 

film thickness uniformity based on simple scalar process recipe parameters such as 

pressure and rf power. While the recipe parameters are easier to model and optimize, 

their impact on the final profile is limited to long range or low frequency spatial 

uniformity effects. The GP framework is further extended and applied to the more 

challenging problem of modeling and optimizing complex equipment configuration 

parameters, in order to achieve greater uniformity. For modeling and optimization 

complex functions with many inputs such as this, our iterative tuning approach is able to 

converge in a small number of iterations. The GP model with iterative tuning is shown to 

achieve a desired profile in fewer iterations compared to using conventional methods, 

including polynomial gradient boosted regression, multivariate spline, and deep learning 
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modeling methods. Additionally, we believe that in practice the required number of 

iterations will actually be lower than this estimate. 

This case study highlights both of the key themes of the thesis. First, the incorporation 

of process knowledge is critical to performance, as optimizing the process in as few runs 

as possible is the key metric of success. By incorporating a physics-based solver and 

process specific feature pre-processing, we reduce a large number of inputs to a smaller 

number of features with less complex relationships to the output of interest. This allows 

us to model these simpler input-output relationships with less data, and converge to a 

sufficient solution more rapidly. Secondly, the benefit of probabilistic methods is again 

highlighted in this study. We demonstrate that the probabilistic GP approach is more 

likely to be highly accurate compared to alternative methods, again enabling faster 

convergence to a desired profile. Additionally, we also demonstrate that predictive 

distributions can be used to overcome insufficient data. As probabilistic methods often 

output predictive distributions, inputs with high variance outputs can be avoided, and we 

can select only high confidence, and high accuracy, inputs during optimization. This 

enables greater predictive accuracy and a faster convergence rate, demonstrating another 

key benefit of probabilistic methods.  

While we have laid the foundation for an effective Gaussian Process machine learning 

framework for semiconductor fabrication, there is still more that can be done. Future 

work should seek to use the proposed method to rapidly tune a real deposition chamber, 

to confirm that the estimates from Section 5.6 are conservative. Secondly, the approach 

could be applied to other outputs besides thickness, such as film stress or resistivity, and 

to explore multi-objective optimization. While we have demonstrated that it is possible 

to tune a single output such as the thickness profile, the same could be done for multiple 

variables of interest simultaneously. Finally, future work could seek to combine the 

process recipe and equipment configuration models. Both use a GP-based model 

framework; combining the two would be limited primarily by the amount of required 

data. We believe that our Gaussian Process framework can be applied to modeling spatial 

process variations in a wide variety of cases beyond the sputtering deposition process 

presented here.  
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6 Conclusion and Future Work 

In this chapter, we highlight the major contributions of this thesis, and discuss future 

work that may build on the work presented here. 

6.1 Thesis Contribution 

In this thesis, we study the use of probabilistic machine learning methods for 

semiconductor fabrication applications, in particular in data-limited scenarios. 

Semiconductor fabrication offers enormous opportunities for machine learning, as the 

continuous drive to reduce device sizes provides nearly endless opportunities to model, 

optimize, and monitor fabrication processes. However, available data is often limited, and 

machine learning methods must be chosen with this constraint in mind. We believe that 

probabilistic machine learning methods are particularly well suited for these data limited 

cases, and explore their uses. While exploring all fabrication processes, all goals, and all 

probabilistic methods is infeasible, we present four case studies which highlight common 

processes, applications, and probabilistic methods. 

Throughout each of these case studies, two common themes are seen. The first is the 

natural regularization of these methods which helps prevent overfitting in data limited 

scenarios. Many methods in this thesis contain a prior belief that acts as inherent 

regularization, and estimated observation noise also prevents overfitting in many of the 

methods. Secondly, we find that the incorporation of process, or domain specific, 

knowledge is critical to these data limited scenarios. In all cases, we incorporate some 

element of process knowledge, without which we would be unable to successfully apply 

our methods. These often come in the form of prior beliefs, data pre-processing, or 

specific model assumptions. 

Our first case study explores the use of probabilistic methods to study and improve 

modeling performance in virtual metrology systems. Here, we make two primary 

contributions. First, we present a probabilistic framework that can be used to study 

virtual metrology systems and generate synthetic data. This framework contains two 

common sources of error, concept drift and observability errors, and data synthesized 

using it can be used to develop more robust virtual metrology methods. Our second 
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contribution are robust Bayesian models that adapt to concept drift, and provide inherent 

regularization to prevent overfitting to observability errors. This method performs better 

than traditional linear approaches, and highlights the main themes seen in this thesis. The 

presence of both a Bayesian prior and observation noise estimates help prevent 

overfitting, and the incorporation of assumed concept drift and observation errors 

improves the modeling method in real world scenarios.  

Our second case study builds on the use of these Bayesian fitting methods to rapidly 

model and optimize dose uniformity in the ion implantation process. Here, our main 

contribution is the tuning algorithm itself, which is comprised of two components. The 

first component is a forward model that predicts the implantation dose across a wafer as 

a function of the implantation time spent at each point on the wafer, and the second is an 

optimization component that uses this forward model to find a sufficient set of tuning 

times. We compare this method to existing industry methods and see superior results in 

a number of metrics. This case study again highlights the key themes of this thesis. First, 

we assume a physically motivated relationship between the implantation times and 

doses, and second, we utilize a well-chosen, physically motivate prior. Both of these 

prevent overfitting with limited data and in many cases are able to accurately predict and 

tune ion implantation processes, often using only a single piece of training data. For 

traditional deep learning approaches this is virtually impossible, and even compared to a 

problem specific approach, such as the industry method, we still see less overfitting as 

both the tuning time and success rates of our method are superior.   

The third case study focuses on using kernel density estimation for fault detection. We 

use this method to create probability distributions for sensor information under nominal 

processing conditions, then use these to determine the likelihood that new sensor 

information comes from a normally operating process. We compare this method to a 

number of existing methods, including traditional statistical process control, one-class 

support vector machines with principle component analysis, and variational auto-

encoders. Again, this case study highlights the two key themes of this thesis. First, our 

incorporation of process specific knowledge, including the time-series specific feature 

selection and univariate sensor distributions, helps reduce a large number of potential 

features to a feasible amount, and this process specific method outperforms more generic 

methods such as PCA. Second, the proposed method is able to detect faults with high 
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accuracy even with small amounts of training data. Deep learning methods such as 

variational auto-encoders were unable to achieve this, as they suffered from overfitting. 

In our final case study, we use Gaussian processes and Bayesian optimization to 

rapidly tune thickness uniformities in sputtering deposition processes. Here, we model 

the effects of both chamber geometries and process parameters using Gaussian processes 

and incorporate a physics-based pre-processor in order to simplify these inputs. We 

simulate the convergence rate with this model and other historical models, and find that 

it outperforms a wide variety of other models, including polynomial, spline, gradient 

boosted regression, and deep learning methods. Again, we see the two common themes 

present throughout this thesis. First, the inherent regularization of the Gaussian process 

models provides better tuning results with little training data, and secondly, the domain 

specific pre-processing makes not only the Gaussian process models feasible, but also the 

other tested methods. 

 

6.2 Future Work 

While this thesis presents results demonstrating the applicability of probabilistic 

methods to semiconductor fabrication, there is still additional work that can be 

investigated. Such additional investigation includes both extensions to the approaches 

presented here, as well as other applications. 

As we already discussed extensions to the presented work in the previous chapters, 

we will not discuss them in depth here; however, we will highlight a few key extensions 

that are particularly relevant. For our proposed virtual metrology framework, we believe 

further consideration of recipe parameters,could be particularly valuable, in particular 

for run to run control applications. Additionally, for the corresponding modeling 

framework, we believe a more effective model parameter estimation method that does 

not assume equal values between all system coefficients would significantly increase its 

performance. For our proposed ion implantation tuning method, a key area of future 

exploration is the trade-off between mean dose and wafer uniformity. Preliminary 

observations suggest this trade-off may exist; however, it is not yet confirmed, and may 

help inform future recipe choices. For our kernel density estimation fault detection 

methodology, a primary future focus could be developing and incorporating existing 

robust length scale selection methods into our methodology. These length scales 
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significantly impact the method, and increasing the robustness of their selection will 

likely improve future performance. Finally, we believe our use of Gaussian processes to 

improve thickness uniformity in sputtering deposition processes can also be used to 

optimize other metrics of interest, such as the deposition resistivity uniformity.  

In addition to these extensions, we believe there are numerous unexplored 

applications of probabilistic machine learning methods to semiconductor fabrication. 

Some examples of these are applications of our proposed methods, such as Bayesian 

optimization or kernel density estimation fault detection, to other processes which have 

not yet been considered, such as lithography or chemical mechanical planarization. While 

the benefit of this may seem limited, applying known techniques to related scenarios is 

useful. Most of these methods have not yet been adopted by industries, and by further 

demonstrating their generalizability, we present a stronger argument for their wide 

spread adoption. 

One key area that we did not explore is predictive maintenance, the goal of which is 

to predict faults before they occur. While this can be thought of as an extension to fault 

detection, they underlying methods often differ significantly, and must be more carefully 

considered. Traditionally, these methods have been difficult to implement successfully; 

however, this also presents an opportunity for future successes.  

A second key area for future work is the consideration of additional probabilistic 

methods. Additional methods like hidden Markov models, or probabilistic deep learning 

methods, both present new areas to explore. While we have explored many of the key 

methods and applications in this thesis, there are still numerous future works in the 

application of probabilistic machine learning techniques to semiconductor fabrication, 

making it a promising field for future research.  
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