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Abstract

As a result of the changing transportation landscape, Mobility-as-a-Service (MaaS)
was developed to be a streamlined operator of emerging on-demand transportation
services and traditional modes of transport. However, much of MaaS’s impact on end-
user’s activities and travel patterns remain unknown and require further investigation.
Due to its complex nature, a tool is necessary to help us reliably quantify and evaluate
the broader impacts of MaaS. To this end, we introduce MaaS into the activity-
based, agent-based travel simulation platform: SimMobility. Prioritizing flexibility
and compatibility with different cities, we provide a generic implementation on which
users can define configurations according to desired scenarios.
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Chapter 1

Introduction

Private mobility tool ownership has long been a cornerstone in transport systems.

Mobility tools such as cars and motorcycles usually feature a high up-front cost and

relatively low marginal cost to use. As a result, long-term ownership decisions can

have a strong influence on short-term travel behaviors (e.g. car owners are less likely

to take bus rides) [9]. In recent years, the growing prominence of smartphones and

the Internet of things (IoT) in the digital age has fueled a shift away from private

ownership and towards digitized, flexible transport models, which holds promise in

reducing sunk cost biases and enhancing mobility.

1.1 Motivation

The rising popularity of the ride-hailing model and applications such as Uber and Lyft

showcases the market demand and shift towards digitized traveler mobility solutions.

These Mobility-on-Demand (MoD) systems have laid the foundations and began to

address concerns with mode choice biases. Without long-term mobility tools being

considered, mode decisions can be driven more by short-term costs. Despite these

innovations, most mobility services remain largely disjointed - different services are

accessible only through their own platforms.

Mobility-as-a-Service (MaaS) is a user-centric, digital and intelligent mobility ser-

vice provision model with which passenger travel needs are met via a single, integrated
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platform. Building upon the momentum and innovation created by existing mobility

services, the concept offers multiple mobility services on one central smartphone ap-

plication, often supported by a pay-per-use or subscription payment model [16][15].

The reform aims to bridge the gap between public and private operators by inte-

grating the currently fragmented services required to conduct a trip. In doing so,

proponents of MaaS argue successful integration of these components can reduce re-

liance on private vehicles, potentially driving down congestion and harmful external

costs [12][5][2][8].

Building on MoD, MaaS works towards minimizing sunk cost and bias while of-

fering more options and enabling integration of multiple modes into one trip. In

particular, a MaaS provider must fulfill two requirements [9]:

1. integrate supported mobility services strategically and operationally.

2. support a user interface, with which users can make payments and interact with

all services.

Due to its novelty, more research is required in order to determine the role of MaaS

in future mobility systems. There have been numerous pilots, designs, and consumer

surveys on MaaS in recent years. Another approach is through simulations, which

has been popular in assessing the future of transport [17][14][3][13]. Based on the rel-

atively small, but growing number of agent-based simulations looking at the impacts

of MaaS, one can identify a key gap: lack of native support for both MaaS require-

ments on simulators. Consequently, existing simulation-based MaaS studies rely on

specialized augmentations to simulators. A generalized MaaS simulator implementa-

tion with both mobility service integration and user interface may be beneficial. Such

an approach would expand the set of input cities and enable simulations on different

MaaS configurations (e.g. supported modes, payment models, etc.) without requiring

changes to the underlying software.

Transport simulators have proven to be an efficient and sustainable approach to

studying the impacts of MaaS on large city systems. SimMobility is an activity-based,

agent-based travel simulation platform on which emerging modes can be evaluated. It
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integrates various mobility-sensitive behavioral models with simulators to predict the

impact of mobility demands on transportation networks, intelligent transportation

services and vehicular emissions. The platform enables the simulation of the effects

of a portfolio of technology, policy and investment options under alternative future

scenarios. In particular, SimMobility encompasses the modeling of millions of agents,

including pedestrians, drivers, trains, etc. [1].

Due to the complex nature of MaaS systems, explicit modeling and simulation

of relevant components is necessary to ensure consistent evaluations. One proposal

details a roadmap aimed at replicating the intricacies of MaaS systems and its compo-

nents. The roadmap outlines five major components: MaaS market model, demand

modeling framework, multi-modal network model, MaaS integration controller, and

mobility service controllers [4]. Most relevant is the paper’s description of a MaaS

integration controller, which fits well within the SimMobility framework and is a ma-

jor component of this project. The MaaS controller is described as a model designed

explicitly for the purpose of interacting with the demand (users) and supply (mobility

service controllers).

Currently, SimMobility does not feature the ability to simulate the effects of MaaS

services. For this project, we extend existing mobility implementations and integrate

MaaS functionalities within SimMobility’s demand and supply framework. Prioritiz-

ing fidelity, the project aims to faithfully recreate MaaS design characteristics such as

integration with mobility services and traveler-facing interfaces within the SimMobil-

ity simulation environment. To support future studies on MaaS or including MaaS,

all added modules support a degree of user configurability. Successfully implementing

generalized MaaS simulation capabilities in SimMobility will allow us to more closely

evaluate and quantify the broader impacts and implications of MaaS in cities around

the globe.
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1.2 Background

Fueled by a generational shift in consumer attitude towards ownership and develop-

ments in technology, the past decade saw the boom of the “as-a-service" model [12].

Notably, rapid success and innovation in mobility services such as bike-sharing and

MoD illustrate a trend away from private mobility tool ownership and towards digiti-

zation of personal transportation solutions [7]. These developments are significant as

private cars have long dominated transportation in industrialized countries. However,

these “as-a-service” schemes bear its own set of shortcomings.

As noted by [6] and [18], the new mobility options show promise in extending

existing public transport networks. In areas without robust mobility options, the on-

demand format can serve as connections to fixed transit routes. However, mobility

providers still largely operate independently, making mode combinations difficult [9].

In addition, such a scheme has not been tested on a large scale. Nonetheless, this

idea of “Uberization” of public transport presents an opportunity for a more inclusive

transport model [10]. Indeed, these developments have led to the popularization of a

more unified system aimed at serving individualized travel needs.

The proposed MaaS system hopes to solve fragmentation between the providers

in both the public and private sector. Moreover, it is possible that such an approach

would create more attractive travel alternatives to private vehicles. Early, small-scale

studies yielded results supporting this expectation. For example, a 2016 field trial

conducted in Gothenburg, Sweden allowed individuals to gain access to cars, car-

sharing, and public transport through monthly credits [11]. The results show that

these MaaS users tend to decrease private car usage in favor of using public transit.

Another study looks at the possibility of using MaaS to promote shared modes of

transportation. The survey finds that although shared modes are not particularly

desired, a large portion of the respondents are willing to subscribe to MaaS plans

with shared plans. Furthermore, a significant portion (60%) of potential subscribers

expressed willingness to try new transportation modes included in the MaaS plan

[12]. This finding points towards the potential of using MaaS to draw more travelers
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to shared modes.

Aside from the integration of participating mobility services, the MaaS scheme

also requires a consumer-facing interface, on which travelers can make payments,

access trip information, and book rides:

1. For payment methods, MaaS schemes offer one or both of pay-per-use or pre-

paid monthly subscriptions. Functionally, the pay-per-use model is identical to

booking rides with providers individually; each leg is priced separately by the

provider. However, this payment model is able to leverage the benefits of an

integrated platform. MaaS applications can act as search engines, aggregating

information from different providers and constructing optimal trips for users.

With the subscription model, subscribers pay monthly for a bundle of services

that best meets the traveler’s needs. In turn, the MaaS operator purchases mo-

bility services in bulk, thereby providing guarantees to the user. The structure

of these subscription plans can be decided by the MaaS operator. A generic

bundle example of a MaaS subscription plan would include a list of modes, each

associated with an allowance and discount. One advantage of bundling is that

an individual only needs to pay one price regardless if the trip includes multiple

modes.

2. A simple representation of trip mode options is the idea of a menu. To better

represent the complex dynamics between demand and supply entities with re-

gards to MaaS, a menu is needed to fully capture their interactions. Namely,

the menu serves as a bridge between the supplier (MaaS and mobility service

providers) and travelers, with which users can make decisions based on the at-

tributes of offerings. This is exemplified by the menu option and traveler mode

choice system of the Tripod project, which heavily influences this project [19].

Tripod is a smartphone system that influences travelers’ trip decisions based

on real-time information and incentives. This is accomplished by having users

access Tripod’s personalized menu and make decisions based on the information

shown. In addition to requesting mode options and booking rides, the interface
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must also feature the ability to make payments.

3. Proper integration with mobility service providers imply both business and tech-

nical requirements are fulfilled (e.g. ride request APIs, mobile ticketing for

buses, etc.). From the user’s perspective, the process for booking rides with

a MaaS provider is the same as booking with any individual provider. In this

instance, the platform will act as both a planner and intermediary, satisfying

requests and communicating with relevant providers.

As with all the recent emerging mobility services, much is still unknown about

MaaS. There is limited knowledge regarding how these new services will interact with

existing modes as well as with each other. Compared to established modes, these

tech-driven modern mobility solutions are still in their infancy. Representative field

trials can feasibly only be conducted on small scales, and the variety of concepts make

predicting impact on large transportation systems strenuous. Additionally, knowledge

gained from one study environment does not always transfer to another scheme or

city [9]. It is likely that MaaS’s impact on different communities will vary, making

the results of studies conducted in specific cities difficult to generalize. These issues

make simulations a favorable approach for insight discovery for emerging modes.
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Chapter 2

Overview of SimMobility

Infrastructure

SimMobility takes an agent-based approach to traffic simulation. In many cases,

simulations can include millions of agents such as pedestrians and drivers. The simu-

lator features three interconnected levels of temporal granularity: Short-Term (ST),

Mid-Term (MT), and Long-Term (LT). The ST simulator considers events such as

lane-changing and braking, which happen on the order of tenth of a second. The MT

simulator focuses on agents’ behaviors on a mesoscopic scale, including daily activi-

ties and travel patterns. The LT simulator captures land use and economic activities

such as property developments and job relocations.
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Figure 2-1: SimMobility Framework

2.1 Plan Versus Action

MaaS will largely impact agents’ daily travel behavior. As such, all designs and

implementations for this project occur under the scope of the MT simulator. Taking

a closer look at the MT simulator framework, demand is modeled by two component

groups: pre-day and within-day. At the high-level, agents’ daily plans are generated

using pre-day models, while the actual execution of these plans occurs during within-

day simulations.

SimMobility takes an activity-based approach; pre-day models decide agents’ ini-

tial daily plan. This plan - also known as a Daily Activity Schedule (DAS) - includes

information such as the agent’s activity sequence, preferred modes, and departure

times. With the DAS determined, individuals utilize within-day models to further

decide routes for trips and execution plans. The within-day is where demand meets

supply. One of the focal points of this project is to alter these within-day mecha-
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Figure 2-2: SimMobility Mid-Term Model

nisms to accommodate the MaaS infrastructure and newly added models. On the

supply side, we introduce the MaaS operator (implemented as a new controller in

SimMobility) and update associated existing components.

2.2 Controllers

Controllers are one of the central components driving SimMobility’s supply side ab-

straction. The MT simulator framework allows for the plug and play of different

controllers, each in charge of some mode(s). Public transport bus and train con-

trollers are similar in that both handle vehicle movements on the network. Buses

are dispatched by the bus controller at scheduled times while trains will move along

predefined tracks and stop at station platforms. Another set of controllers - general-

ized as mobility service controllers - represent mobility services providers such as taxi

services and Uber.

In SimMobility, this group of mobility service controllers are broken down further

into type OnHailTaxi (on-hail controller) or type OnCall (on-call controller) respec-

tively. On-hail controllers are simple in that their only functionality is to authorize
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taxi drivers to operate on the streets. Additional considerations such as who to pick

up and where to cruise are decided by the drivers independently. On-call controllers

have an additional layer of complexity; they have to fulfill requests from passengers

and coordinate with drivers regarding where to pick up, drop off, etc. In SimMobility,

on-call controllers are the only controllers that require this ride booking mechanism

(to mimic ride-sharing applications). All other modes can be carried out without

notifying the provider (e.g. riders can board trains independently, passengers can

hail cabs without prior communication, etc.). SimMobility users can define a set of

settings for controllers in the simulation configuration XML file.

Controllers run in parallel and are configurable by the user. In theory, Individual

agents have access to any of the enabled controllers. In practice, however, agent

communication with controllers is largely limited to trip requests, which are only

sent to the controller associated with the predetermined mode specified for the trip.

This behavior will change with the integration of MaaS, as MaaS users will query

information from all associated controllers through the MaaS controller.

Once a trip request has been received and successfully processed by a on-call

controller, the actual trip will be assigned to and carried out by a driver. This backend

coordination is done only between the on-call provider and individual driver(s). For

MaaS users, trip requests are sent to the MaaS controller as opposed to the on-

call controller. In this instance, the MaaS controller simply acts as an intermediary

between the agent and the relevant on-call controller. As MaaS providers and on-call

providers are separate entities, internal functions of these controllers are kept private

and not exposed unless otherwise specified. Note that the integration of MaaS does

not degrade the utility of existing controllers. Furthermore, for MaaS users, the MaaS

controller preserves the functionalities expected of all service providers.
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Chapter 3

Enhancements

SimMobility must be able to mimic MaaS’s real-life functionalities and properly simu-

late the application’s interactions with users. This involves creating a MaaS controller

and integrating it with all the existing mobility service controllers. The proposed ar-

chitecture is as follows:

Figure 3-1: Integration of the MaaS controller in SimMobility

The resulting supported modes are shown in Figure 3-2. Functionally, modes
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Figure 3-2: Supported modes in SimMobility and their MaaS variants

accessed through the MaaS operator are tagged with a "MaaS" prefix to differentiate

between MaaS and non-MaaS variants of the same mode.

3.1 MaaS Accounts

Current MaaS proposals are structured around collections of discounts and allowances

bundled into MaaS subscription plans. Individuals can then subscribe to any one

specific plan. Discounts and allowances are allocated on a per-mode basis, where

MaaS plans may include different modes, each may be at a different discounted price

(discount) and number of uses (allowance). An agent’s MaaS account describes the

agent’s current allowance with regards to available MaaS usage and associated MaaS

plan. In our implementation, SimMobility users can define these MaaS plans. For

example, it is possible for a MaaS plan to have the same discount rate across all modes

and infinite allowances. Conversely, it is also possible to have a different MaaS plan

in the same simulation with well-defined discount rates and allowances per mode.

In SimMobility, we model whether an individual subscribes to a MaaS plan in

the pre-day simulation, and act accordingly in the within-day. The MaaS controller

must handle each of these cases; if a user is subscribed to a MaaS plan, the MaaS

controller will first check the individual’s remaining allowance for each mode. If the

user has enough, the proper discount will be applied to the cost shown in the menu.

Otherwise, no discounts will be applied. Non-subscribers are still able to ask the

MaaS controller for mode alternatives. However, no discounts would be given. This
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case is implicitly accounted for since those who are not subscribed to a MaaS plan

will have an allowance of zero for all modes.

In our implementation of the MaaS account, we utilize several SQL tables to ensure

the MaaS controller’s ability to properly calculate cost per mode. Namely, the two

tables we use are maas_accounts and maas_plans, described in detail in Tables A.1,

A.2. Agent accounts are loaded using an on-demand policy (i.e. an agent account is

queried from the database only if that agent has an upcoming trip in the simulation).

Since SimMobility is agent-based and many scenarios can include millions of agents,

this paradigm is critical to ensure scalability.

3.2 MaaS Controller

Since MaaS is fundamentally an aggregator of different mobility offerings, its under-

lying structure differs from other service providers in SimMobility. It is an interface

that sits between the user and all mobility services controllers. Its functionality relies

on its connection with individual users and service providers. Thus, our main task

is to integrate the MaaS operator into the existing supply infrastructure and build

communication channels around the MaaS controller and relevant components (as

shown in Figure 3-1).

3.2.1 Communication Channels

In SimMobility, entities such as agents and controllers communicate via messages

sent over a message bus. Since SimMobility is a multi-threaded program, a message

bus is necessary to transfer messages across contexts. These messages are structures

that can hold a variety of information, ranging from driver sign-ons to completed trip

statistics. As a generalized message can serve a host of uses, each message’s purpose

is differentiated by a message type tag. Some examples of message types are listed in

Table 3.1.

Since coordination with drivers is done privately between the driver(s) and on-

call controller, MaaS is only concerned with passenger-facing message types such as
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Message Type Description Message Endpoints

MSG_DRIVER_SUBSCRIBE
Adds the driver to the
service provider’s list
of available drivers.

Driver → Controller

MSG_DRIVER_UNSUBSCRIBE

Removes the driver to
the service provider’s

list of available
drivers.

Driver → Controller

MSG_TRIP_REQUEST

Passenger requests a
origin/destination

ride with an on-call
controller.

Passenger → Controller

MSG_SCHEDULE_PROPOSITION

On-call controller
sends a schedule
proposition to a
driver, specifying

pickups and dropoffs.

Controller → Driver

Table 3.1: Example of existing message types

MSG_TRIP_REQUEST. As described in Section 2.2, the MaaS controller will not

compromise the functionality of existing controllers. Additionally, as the intermediary

abstraction between individual controllers, the MaaS controller will be able to handle

all relevant requests resolvable by the controllers it represents. That is, any passenger

request satisfiable by a mobility controller is also satisfiable by the MaaS controller.

Furthermore, recall that trip requesting is only necessary for on-call controllers. Thus,

the MaaS controller must be able to handle all expected MaaS functionalities along

with all passenger-facing functionalities of on-call controllers.

Seen above, messages cover a range of endpoints: passenger-to-controller, controller-

to-driver, driver-to-controller. Most notably, there are no controller-to-passenger and

controller-to-controller communication channels in SimMobility. In order to fully

represent the MaaS protocol and simulate agent decisions, we must establish a bi-

directional communication channel amongst passengers and service providers. To

accomplish this, we create channels and endpoints such that:

1. Passengers can receive messages from controllers (more details in Section 3.4).
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2. The MaaS controller can send and receive messages from both passengers and

other controllers.

3. Mobility service controllers can send and receive messages from the MaaS con-

troller (more details in Section 3.3). Recall that although mobility service con-

trollers do not directly send messages to passengers, transmitting information

through the MaaS controller is sufficient.

We introduce a set of new message types, shown in Table 3.2, to facilitate these

requirements.

Message Type Description Message Endpoints

MSG_TRIP_QUERY

Used when users request
mode alternatives and

information for a
origin/destination pair.

Passenger → Controller
Controller → Controller

MSG_MENU
Identifies messages
containing menu

information.

Controller → Controller
Controller → Passenger

MSG_MENU_RESPONSE

Sent by the user to the
MaaS controller when a
mode decision has been

made.

Passenger → Controller

MSG_TRIP_COMPLETE
The MaaS controller is

notified once a user
completes a trip.

Passenger → Controller

MSG_DRIVER_ASSIGNED

On-call controller notifies
the MaaS controller a

driver has been properly
assigned to a requested

trip.

Controller → Controller

Table 3.2: New message types

3.2.2 Menu Construction

Using the new message types, we are able to simulate the data (attribute) collection

process of a functional MaaS service application. The MaaS trip request and booking

protocol starts with the user initiating a menu request. This process reflects the act
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of using a mobile application to check how to get from one location to another. A

menu is an aggregation of possible transportations choices and relevant information

associated with each choice. Attributes of different modes are queried from their

respective mobility controllers. Once all information is gathered, they are compiled

into an optimized menu of service alternatives that is then sent back to the user. The

user then makes a decision based on the information presented in the menu and notifies

the MaaS controller. The purpose of the menu is to help users understand the real-

time mobility attributes and allow them to make grounded travel decisions. Design

of the menu is heavily inspired by the Tripod project [19]. In our implementation in

SimMobility, a menu is a collection of menu items, which consists of the estimated

waiting time, travel time, cost, and associated path.

Figure 3-3: High-level example of menu usage

Once the MaaS controller receives a menu request via a MSG_TRIP_QUERY

request with relevant information such as the requesting user’s unique ID, origin, and

destination, it will begin computing the menu. The menu generation process includes:

1. The MaaS controller sends out MSG_TRIP_QUERY requests to relevant, en-

abled service controllers.
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2. Build up a personalized menu for the agent as the MSG_MENU messages come

back.

3. Update menu item costs based on the requesting agent’s MaaS plan and al-

lowance.

4. Apply the user-defined filter function once all relevant service controllers have

responded.

5. Sending a MSG_MENU message to the requesting user with a finalized menu.

At the end of the menu information aggregation process, we allow an additional

layer of modularity via a user-defined menu filtering function. Without this filtering

capability, it is likely that the menu will contain many different routes and options

for each mode alternative, which will scale poorly as the network grows. For example,

public transit options often have many different routes to get from point A to point

B, some of them are strictly less optimal compared to others of the same mode. This

is similar to how popular navigation applications typically only show the quickest or

shortest distance options by default. To reflect this, SimMobility users can define a

filter in the Lua format, a light-weight and beginner-friendly programming language.

This filter serves to reduce the clutter in an unfiltered menu. It is possible for the

user to define the filter as seen fit for any particular simulation setup. In our case,

we filter each mode for the cheapest option by default, resulting in a final menu with

one option per mode. Listing B.1 shows an example of a Lua function filtering for

only the cheapest option per mode.

Once the agent makes a decision from the choices presented in the menu, a

MSG_MENU_RESPONSE message will be sent to the MaaS controller. For trans-

portation modes such as bus or rail, this notification is simply for bookkeeping pur-

poses. For other modes such as SMS and other on-demand variations, the MaaS

controller will continue by forwarding the trip request to the appropriate on-call con-

troller. Once an agent completes a MaaS-affiliated trip, the agent will notify the MaaS

controller with a MSG_TRIP_COMPLETE message. Again, this is for bookkeeping
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Figure 3-4: Sequence diagram of the MaaS protocol in SimMobility

purposes such as updating the passenger’s MaaS account. The full sequence of events

is as shown in Figure 3-4 above.

3.3 Modifications on Existing Controllers

To finalize the aforementioned bi-directional communication channels, we augment

relevant controllers to be able to send messages to other controllers. Many controllers

have existing message handlers capable of receiving messages. Thus, we build upon

these features, and incorporate the ability to handle messages from both users and

other controllers. The goal is to empower relevant controllers with the ability to han-

dle MSG_TRIP_QUERY messages and properly reply with MSG_MENU messages.

Once the service controllers are capable of sending messages to the MaaS controller

and users, we continued by modifying each controller such that trip attributes such

as travel time and cost can be broadcasted. Doing so enables the MaaS controller
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to query information about a trip from individual mobility service controllers. Ulti-

mately, this querying functionality will allow the MaaS controller to systematically

generate menus at the users’ request.

3.4 Agent-Side Modifications

Unlike the previous implementation of trip generation in SimMobility (described in

Section 2.1), MaaS trips do not have a determined plan regarding mode and route

until time of execution. Instead of determining the entire trip at load time, MaaS

trips initially only include the action of querying the MaaS controller. Further sub-

trips are generated only when a mode choice is made. This is done so that decisions

regarding MaaS trips are made with the most up-to-date information.

With the addition of the MaaS communication framework, passengers can receive

messages from other entities. Most importantly for this project, passengers receive

menus from the MaaS controller via messaging. From the passenger’s perspective,

the sequence for using MaaS is as follows:

1. Send a menu request (implemented as a MSG_TRIP_QUERY message) to the

MaaS controller and wait for a response.

2. Once a MSG_MENU is received, the passenger evaluates each menu item using

a SimMobility user-defined Lua model to make a mode choice.

3. Build the rest of the current trip (routes, subtrips, etc.) with the decided mode.

4. Send a MSG_MENU_RESPONSE message to the MaaS controller informing

the mode decision.

5. Send a MSG_TRIP_COMPLETE message to the MaaS controller once the

trip is complete.

Similar to the filtering functionality described in Section 3.2.2, passenger decision

on the choices presented can be modeled by a user-defined Lua script. Refer to Listing

B.2 for an example.
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3.5 Attribute Estimation

For performance, origin/destination (O/D) pair attributes are precomputed and stored

in DB tables according to the mode. Public transport and their multimodal variants

(e.g. Rail and MoD, Rail and Car, etc.) have individual tables. These mode-specific

tables are structured so that each row contains information about a particular route.

Since public transit lines are known and there can be more than one viable route,

each O/D pair query can match multiple entries in the table, and therefore produce

multiple routes with different attributes. As a result, each generated public transport

menu item presented to the traveler is associated with a particular route.

For other modes like taxi, MoD, AMoD, and car, attribute DB tables are divided

based on time of day instead of mode. The current implementation specifically pre-

computes three tables, each representing one of: morning rush, afternoon rush, and

off-peak conditions and estimations. Since paths are decided by the driver, entries in

these tables are not linked to any specific route. The associated controller of these

modes will estimate attributes based on a combination of information retrieved from

the table(s) and configuration set by the SimMobility user. Refer to Tables A.3 and

A.4 for more detail. Attributes in the menu are generated as follows:

1. Taxis: Waiting time is 0 by default unless otherwise configured by the user.

Depending on the time of day, query tables for travel time 𝑡 from origin zone

to destination zone. Estimating cost requires querying for distance 𝑑 and com-

puting the following function:

𝑐𝑜𝑠𝑡 = 𝐵 + 𝑓𝑎𝑟𝑒𝑑 * 𝑑+ 𝑓𝑎𝑟𝑒𝑡 * 𝑡

where base fare 𝐵, distance fare 𝑓𝑎𝑟𝑒𝑑, and time fare 𝑓𝑎𝑟𝑒𝑡 are defined by the

SimMobility user.

2. Cars and shared cars: Procedure for estimating waiting time and travel time is

the same as the procedure for taxis. O/D specific distance 𝑑, electronic road
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pricing 𝑐𝑜𝑠𝑡𝑒𝑟𝑝, and parking fee 𝑃 is queried to compute cost as follows:

𝑐𝑜𝑠𝑡 = (𝑐𝑜𝑠𝑡𝑜 * 𝑑+ 𝑐𝑜𝑠𝑡𝑒𝑟𝑝)/𝑛+ 𝑃

where operational cost 𝑐𝑜𝑠𝑡𝑜 is defined by the user. 𝑛 represents the number of

individuals in the car.

3. MoD, MoD Pool, AMoD, AMoD Pool: According to mode and time of day,

query the appropriate precomputed table for waiting time, travel time, and

distance. To estimate cost, apply the following function:

𝑐𝑜𝑠𝑡 = 𝑚𝑎𝑥(𝑓𝑎𝑟𝑒𝑚𝑖𝑛, 𝐵 + 𝑓𝑒𝑒𝑠𝑒𝑟𝑣𝑖𝑐𝑒 + 𝑓𝑎𝑟𝑒𝑑 * 𝑑+ 𝑓𝑎𝑟𝑒𝑡 * 𝑡)

where minimum fare 𝑓𝑎𝑟𝑒𝑚𝑖𝑛, base fare 𝐵, service fee 𝑓𝑒𝑒𝑠𝑒𝑟𝑣𝑖𝑐𝑒, distance fare

𝑓𝑎𝑟𝑒𝑑, and time fare 𝑓𝑎𝑟𝑒𝑡 are all defined by the user. Note that variables 𝐵,

𝑓𝑎𝑟𝑒𝑑, 𝑓𝑎𝑟𝑒𝑡 are different from those used to calculate cost for taxis.

4. Bus and rail: Waiting time, travel time, cost, and route are all determined by

the result of querying the appropriate attribute table.

5. Multimodal trips: Given the requested O/D pair, query the combination-specific

table for valid routes. Break the resulting route down into individual legs such

that each leg uses only one mode. Estimate attributes according to the mode

and O/D of each leg. For example, consider a multimodal route requiring an

AMoD ride to a rail station before taking a train to the final destination. Firstly,

separate the route into an AMoD leg and rail leg. Then, estimate attributes

according to the procedure for each mode and intermediate O/D pairs (initial

origin to rail station and rail station to final destination). Final attributes are

calculated by taking the summation of individual attributes from all legs.

These methods for estimation are implemented with modularity in mind, meaning

any of the procedures above can be easily swapped out by future users.
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Chapter 4

Results

This section describes tests and results to ensure our implementation is correct, ro-

bust, and scalable. To this end, we run simulations using artificial test demands at

different levels of MaaS penetration (i.e. 0%, 10%, 20%, etc. of all trips are MaaS

based). Demand at each level features all supported modes, fed into SimMobility

as 463000 trips and 224911 persons. As the MaaS penetration level increases, trips

in this demand are randomly set to their MaaS mode variants. For the base case

of 0% MaaS penetration, the MaaS controller is disabled to provide context on how

SimMobility performs in the absence of MaaS entirely. Using an exemplary virtual

city as input, all tests are conducted on a machine with a Intel Xeon CPU E5-2695 v4

@ 2.10GHz processor and 256 GB of RAM. In these test runs, all travelers planning

to use a MaaS mode are subscribers of a generic bundle providing 50% discount to

all supported modes.

For correctness, we examine whether MaaS trips are completed at the end of

the simulation, where a trip is completed when a traveler has reached the requested

destination. This indication is necessary and sufficient as a completed MaaS trip

implies that the MaaS protocol is functional (i.e. the traveler is able to request

information on trips, make decisions, book rides, etc.). Recall that MaaS trips are

not fully constructed until a final mode choice has been made. The completion of such

trips would also indicate that the real-time trip construction is correct. For our tests,

we expect the trip completion rate to stay the same or increase as we increase the level
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Figure 4-1: Trip completion rate at different MaaS penetration levels

Figure 4-2: SimMobility runtime at different MaaS penetration levels

of MaaS penetrations. Confirmation of this trend shows that trips updated to their

MaaS variants can still execute properly. Additionally, completion rate is likely to go

up due to the MaaS controller only presenting viable options. As shown in Figure 4-1,

our simulation runs confirms these expectations. Trip completion rate trends upwards

as MaaS penetration increases. Specifically, running SimMobility at the base case of

0% MaaS penetration yielded a completion rate of 98.57%. All simulations at higher

MaaS penetration levels resulted in even higher completion rates, ultimately reaching

99.99% completion rate at 100% MaaS penetration.

For scalability, we run our tests at each MaaS penetration level five times and

take the average run time. We expect the performance of SimMobility to decrease

given the additional components necessary for the MaaS protocol. As shown in Fig-

ure 4-2, we see a relatively steady increase in runtime as the mode share of MaaS
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modes increase in the input demand. In the extreme case of 100% MaaS penetra-

tion, SimMobility experiences a 55.31% slowdown compared to the base case runtime.

Given the complexity of MaaS compared to other protocols, this level of performance

degradation is expected and acceptable.

37



38



Chapter 5

Conclusion

We implemented MaaS in SimMobility by linking all the components together and

fully integrated the MaaS controller into the existing supply infrastructure. This will

allow the MaaS controller to be fully capable of receiving user requests, generating

menus, and executing user mode choice decisions. More importantly, researchers will

be able to leverage SimMobility and prototypical city simulation models developed

by the ITS Lab. A key problem studying potential impacts is the ability to transfer

findings between cities studied, as each city’s urban structure, network and transit

capacity, and population socio-demographics are different. The prototype cities ap-

proach allows findings to be generalized to all cities within a typology category, and

therefore scaled. These models represent the heterogeneity in population, land use,

passenger mobility patterns, and supply services across cities. Thus, we hope that

the combination of a MaaS-enabled SimMobility and the prototypical city simulation

paradigm will bring upon new insights on cities around the world.
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Appendix A

Tables

column data type explanation
account_id integer Identify unique account
individual_id string Identify individual associated with account
subscribed_maas_controller_id integer Identify MaaS controller recognizing account
active_plan_id integer Identify MaaS plan associated with account
active_plan_expiration_due integer Define end of subscription
active_plan_balance string Define remaining balance for each bundled mode

Table A.1: SimMobility maas_accounts table

column data type explanation
plan_id integer Identify unique plan
maas_controller_id string Identify MaaS controller recognizing plan
plan_cost integer Define cost of MaaS plan
plan_duration integer Define duration of MaaS plan
product_providers integer Identify controllers associated with bundled modes
product_types string Define bundled modes
product_allowance_type string Define unit of allowance (e.g. # of trips)
product_allowance string Define allowance included in plan
product_discount_type string Define unit of discount (e.g. percentage discounts)
product_discount string Define value of discounts

Table A.2: SimMobility maas_plans table
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column data type explanation
pathset_origin_node integer Identify starting node
pathset_dest_node string Identify desired destination node
path string Define path associated with O/D pair
path_travel_time_secs double Define travel time
total_distance_kms double Define distance
total_cost double Define cost
total_waiting_time double Define estimated waiting time

Table A.3: Relevant columns of precomputed attributes tables (public transit and
multimodal variants)

column data type explanation
origin_zone integer Identify starting zone
destination_zone string Identify desired destination zone
distance string Define estimated distance between the two zones
car_cost_erp double Define ERP
car_ivt double Define travel time

Table A.4: Relevant columns of precomputed attributes tables (cars)
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Appendix B

Code

1 function filter_menu(menu , N_choice)

2 local cheapest_option_indices = {}

3 local cheapest_option_values = {}

4 for i = 1,N_choice do

5 local mode = menu:mode(i)

6 end

7 local cost = menu:cost(i)

8 if fasted_option_indices[mode] == nil then

9 cheapest_option_indices[mode] = i

10 cheapest_option_values[mode] = cost

11 else

12 if cost < cheapest_option_values[mode] then

13 cheapest_option_indices[mode] = i

14 cheapest_option_values[mode] = cost

15 end

16 end

17 end

18 local result = {}

19 local count = 0

20 for _, index in pairs(cheapest_option_indices) do

21 result[count + 1] = index

22 count = count + 1

23 result [0] = count

24 end
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25 return result

26 end

Listing B.1: Example Lua menu filtering function

1 function choose_maas_wdme(pparams , mparams , N_choice)

2 computeUtilities(params , dbparams)

3 computeAvailabilities(params , dbparams , numMode)

4 local probability = calculate_probability ("mnl", choice , utility ,

availability , scale)

5 local final_choice = make_final_choice(probability)

6 return final_choice

7 end

Listing B.2: Example Lua menu choice
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